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Preface

The purpose of these lecture notes is to briefly describe some of the basic con-
cepts interlacing discrete mathematics, statistical physics and knot theory. I
tried to emphasize a ’combinatorial common sense’ as the main method. No
attempt of completeness was made. The book should be accessible to the stu-
dents of both mathematics and physics. I profited from previous books and
expositions on discrete mathematics, statistical physics, knot theory and others,
namely [B1], [BRJ], [BB], [J1], [KG], [LL], [MN], [MJ], [MT], [S0], [S3], [SM],
[WFY], [WD], [KSV]. Most of the material contained in the book is introduc-
tory and appears without a reference to the original source. This book has been
an idea of my editor Martin Aigner. I would like to thank to him for his support
and help. Many other colleagues helped me with the book. Mihyun Kang, Jirka
Matoušek, Iain Moffatt, Jarik Nešetřil, Dominic Welsh and Christian Kratten-
thaler read earlier versions, and without their extensive comments the book
would probably not exist. I had enlightening discussions on several topics dis-
cussed in the book, in particular with Martin Klazar, Roman Kotecký, Ondřej
Pangrác, Gregor Masbaum, Xavier Viennot and Uli Wagner. Marcos Kiwi saved
the whole project by gently teaching me how to draw pictures amd Winfried
Hochstaettler drew one; I am sure you will be able to detect it. Large part of
the book was written during my visit, in the whole year 2006, at the School of
Mathematics and the Centro Modelamiento Matematico, Universidad de Chile.
I want to thank my colleagues there for wonderful hospitality, and gratefully
acknowledge the support of CONICYT via project Anillo en Redes, ACT-08.
But of course, the seminal ingredient in the process of making the book was the
creative environment of my home department of applied mathematics and the
institute of theoretical computer science at the Charles University, Prague.
Some theorems and observations in the book appear without a proof. Usually
a pointer is given to a book (preferentially) or to a paper where a proof can be
found. If no pointer is given, then I believe (possibly mistakenly) that it should
be possible to prove the statement in an elementary and not very complicated
way. The reader is encouraged to write down such proofs as exercises. The first
five chapters concentrate on the introductory discrete mathematics. Chapters
six and seven are devoted to the partition functions, and chapter eight is an in-
troduction to the theory of knots. The last chapter describes two combinatorial
technics which solve the 2D Ising and dimer problems.

Prague, September 2009
Martin Loebl
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Chapter 1

Basic concepts

In this introductory chapter we first present some very basic mathematical for-
malism. Then we introduce algorithms and complexity. The chapter ends with
basic tools of discrete calculations.

1.1 Sets, functions, structures

We will use symbols N,Z,P,Q,R, and C to denote the sets of the natural,
integer, positive integer, rational, real, and complex numbers. If not specified
otherwise then i,j,k,m ,n are non-negative integers. We sometimes denote by
[n] the set {1,...,n}. We denote by |X | the cardinality of a set X . A function
f from a set X to a set Y is called one-to-one or injective if for x,y ∈ X x �= y

implies f(x) �= f(y), it is surjective or onto if for each y ∈ Y there is x ∈ X

such that f(x) = y, and it is a bijection if it is both one-to-one and onto. If
X ,Y are finite then a bijection is also called a permutation. Let |X | = n and
|Y | = m . There are n! = n(n − 1)(n − 2) · · · 1 permutations of X ; n! is the
factorial function. The number of all functions from X to Y is m n and the
number of one-to-one functions from X to Y is m (m − 1) · · · (m − n+ 1). The
number of surjective functions does not have such a nice formula, it may be
written with the help of the principle of inclusion and exclusion as

m
∑

i=0

(−1)i

(

m

i

)

(m − i)n. (1.1)

The Kronecker delta function is defined by δ (x,y) = 1 if x = y, and zero
otherwise. If X is a set, then we denote by 2X the set of all the subsets of X ;
|2X | = 2n. We further denote by

(

X
k

)

the set of all subsets of X of cardinality
k. We have

∣

∣

∣

∣

(

X

k

)∣

∣

∣

∣

=

(

n

k

)

=
n!

k!(n− k)!
.
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The binomial theorem says that

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k.

The symbol
(

n
k

)

is called the binomial coefficient. The multinomial coefficient
is defined by

(

n

k1,· · · ,km

)

=
n!

k1! · · ·km!

and the multinomial theorem says that

(x1 + · · · + xm)n =
∑

k1+···+km=n

(

n

k1,· · · ,km

)

x
k1
1 · · ·xkm

m .

A very good estimate of the factorial function n! is given by Stirling’s formula
which approximates n! by (2 π n)1/2(n

e )n.
If Y ⊂ X , then the incidence vector of Y will be denoted by i(Y ); i(Y ) is the
0,1 vector indexed by the elements of X , where [i(Y )]z = 1 if and only if z∈ Y .
We will sometimes not distinguish between a set and its incidence vector.
An ordered pair is usually denoted by (x,y) where x is the first element of the
pair. A binary relation on X is any subset of X × X = {(x,x′);x ∈ X ,x′ ∈ X }.
Any function X → X is a binary relation on X . A partially ordered set, or
poset for short, is a pair (X ,�), where X is a set and � is a binary relation
on X that is reflexive (x � x), transitive (x � y and y � z imply x � z), and
(weakly) antisymmetric (x � y and y� x imply x = y). The binary relation �
is itself called a partial ordering. A partial ordering where any pair of elements
is comparable is called a linear ordering. An important example of a linear
ordering is the lexicographic ordering. Let a= (a1,...,an) and b= (b1,...,bm)
be two strings of integers. We say that a is lexicographically smaller than b if a
is an initial segment of b or aj < bj for the smallest index j such that aj �= bj .
Let (X ,�) be a poset and Y ⊂ X . We say that Y is a chain if the induced
ordering (Y,�) is linear.
The symbol F will denote a field; F will usually be equal to R or C, or to the
finite 2-element field G F (2) = ({0,1},+,×) with addition and multiplication
modulo 2. The symbol Fd denotes the vector space of dimension d over F. The
elements of Fd are called vectors; for x ∈ Fd we write x = (x1,· · · ,xd). We
will understand vectors as both row and column vectors. The scalar product
of two vectors x,y is xy = x1y1 + · · · + xdyd. A set {x1,· · · ,xk} of vectors of

Fd is linearly independent if, whenever
∑k

i=1 aix
i = 0 and each ai ∈ F, then

a1 = a2 = · · · = ak = 0. The dimension dim({x1,· · · ,xk}) of a set of vec-
tors {x1,· · · ,xk} is the maximum number of linearly independent elements in
{x1,· · · ,xk}. A subspace of a vector space Fd is any subset of Fd which is closed
under addition, and multiplication by an element of F. Two subspaces X ,Y are
isomorphic if there is a bijection f : X → Y such that for each a,b ∈ X and
c∈ F, f(a+ b) = f(a) + f(b) and f(ca) = cf(a). The orthogonal complement
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of a subspace X ⊂ Fd is the subspace {y∈ Fd;xy= 0 for each x ∈ X }.
Let A = (aij) be a matrix of n rows and m columns, with entries from field
F. We say that A is an n × m matrix. If n = m then A is a square ma-
trix. The determinant of a square n × n matrix A is defined by det(A ) =
∑

π(−1)sign(π)
∏n

i=1 aπ(i)i, where the sum is over all permutations π of 1,· · · ,n
and sign(π ) = |{i< j; π (i) > π (j)}|. The determinant characterizes linearly
independent vectors. A set of n vectors of length n is linearly independent if
and only if det(A ) �= 0, where A is the matrix whose set of columns (or rows)
is formed by the vectors. The determinant of a matrix may be calculated ef-
ficiently by the Gaussian elimination. The permanent of matrix A is defined
analogously as the determinant, but the (−1)sign(π) term is omited from each
summand. Hence, Per(A ) =

∑

π

∏n
i=1 aπ(i)i. There is no efficient algorithm to

calculate the permanent. The identity matrix is the square matrix A such that
aii = 1 and aij = 0 for i �= j. The trace of a square matrix A , denoted by tr(A ),
is defined by tr(A ) =

∑

i aii.
The symbol Rd also denotes the Euclidean space of dimension d. A curve in Rd is
the image of a continuous function f : [0,1] → Rd. A curve is simple if it is one-
to-one, and it connects its endpoints f(0),f(1). A curve is closed if f(0) = f(1).
The Euclidean norm of x ∈ Rd is ||x|| = (xx)1/2. A set {x0,x1,· · · ,xk} of

vectors of Rd is affinely independent if, whenever
∑k

i=0 aix
i = 0,

∑k
i=0 ai = 0

and each ai ∈ R, then a0 = a1 = · · · = ak = 0. For two points x0,x1 affine inde-
pendence means x0 �= x1; for three points it means that x0,x1,x2 do not lie on
a common line; for four points it means that they do not lie on a common plane;
and so on. The rank of a set of points of Rd, denoted by rank({x0,· · · ,xk}), is
the maximum number of affinely independent elements in {x0,· · · ,xk}.
There is a simple relation between linear and affine independence: x0,· · · ,xk are
affinely independent if and only if x1−x0,· · · ,xk −x0 are linearly independent.
This happens if and only if the (d+1)-dimensional vectors (1,x0),...,(1,xk) are
linearly independent. An affine subspace is any subset A ⊂ Rd which contains,
for each pair of its elements x,y, the line through x,y. A hyperplane in Rd is
a (d− 1)-dimensional affine subspace, i.e., a set of the form {x ∈ Rd : ax = b}
for some nonzero a ∈ Rd and b ∈ R. A (closed) half-space has the form
{x ∈ Rd : ax ≤ b} for some nonzero a ∈ Rd and b∈ R.
A set C ⊂ Rd is convex if for every x,y ∈ C , the segment {ax+(1−a)y : 0 ≤ a≤
1} between x and y is contained in C . The convex hull of a set X ⊂ Rd is the
intersection of all convex sets containing X , and it is denoted by conv(X ). Each
x ∈ conv(X ) may be written as a convex combination of elements of X : there

are x1,· · · ,xk ∈ X and real numbers a1,· · · ,ak ≥ 0 such that
∑k

i=1 ai = 1 and

x =
∑k

i=1 aix
i.

A convex polytope is the convex hull of a finite subset of Rd. Each convex
polytope can be expressed as the intersection of finitely many half-spaces. Con-
versely, by the Minkowski-Weyl theorem, if an intersection of finitely many
half-spaces is bounded, then it is a convex polytope. A face of a convex poly-
tope P is P itself or a non-empty intersection of P with a hyperplane that does
not dissect P (i.e., not both of the open half-spaces defined by the hyperplane
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intersect P in a non-empty set).

1.2 Algorithms and Complexity

Algorithmic considerations are important for many concepts of both discrete
mathematics and statistical physics. We make only basic algorithmic remarks
in this book, and therefore the following exposition on algorithms and complex-
ity is very brief.
Informally, an algorithm is a set of instructions to be carried out mechanically.
Applying an algorithm to its input we get some output, provided that the se-
quence of the instructions prescribed by applying the algorithm terminates. The
application of an algorithm is often called a computation. Usually inputs and
outputs are strings (words, finite sequences) from a finite alphabet; a basic ex-
ample are binary words, i.e., finite sequences of 0,1. The notion of an algorithm
is usually formalized by the definition of a Turing machine.
A Turing machine consists of the following components:

• a finite set S called the alphabet,

• an element b∈ S called the blank symbol,

• a subset A ⊂ S called the external alphabet; we assume b /∈ A ,

• a finite set Q whose elements are called states of the Turing machine,

• an initial state s∈ Q ,

• a transition function, i.e., a function

t: Q × S → Q × S × {−1,0,1}.

A Turing machine has a tape that is divided into cells. Each cell carries one
symbol from S. We assume that the tape is infinite, thus the content of the
tape is an infinite sequence s= s0,s1,· · · of elements of S.
A Turing machine also has a read-write head that moves along the tape and
changes symbols. If the head is in position p along the tape, it can read symbol
sp and write another symbol in its place.
The behaviour of a Turing machine is determined by a control device. At each
step of the computation, this device is in some state q ∈ Q . The state q and
the symbol sp under the head determine the action performed by the Turing
machine: the value of the transition function, t(q,sp) = (q′,s′,p′), contains the
new state q′, the new symbol s′ to be written in the place of sp, and the shift
p′ ∈ {−1,0,1} of the position of the head. If the head bumps into the left
boundary of the tape (that happens when p+ p′ < 0), then the computation
stops.
Next we describe the input given to the Turing machine, and how the output is
obtained. Let A ∗ denote the set of all the strings (finite sequences) of elements
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of A . Inputs and outputs to the Turing machine with the external alphabet A
are strings from A ∗. An input string I is written on the tape and followed by
the blank symbol b. Initially, the head is at the beginning (left end) of I. If
the Turing machine stops (by bumping into the left boundary of the tape), we
read the tape from left to right starting from the left end until we reach some
symbol that does not belong to A . The initial segment of the tape until that
symbol will be the output of the Turing machine.
Every Turing machine computes a function from a subset of A ∗ to A ∗. There are
functions that are not computable. A Turing machine is obviously an algorithm
in the informal sense. The converse assertion is called the

Church-Turing thesis: Any algorithm can be realised by a Turing machine.
Note that the Church-Turing thesis is not a mathematical theorem, but rather
a statement about our understanding of the informal notion of algorithm.

Complexity classes. The computability of a function does not guarantee
that we can compute it in practice since an algorithm may require too much
time. The idea of an effective algorithm is usually formalized by the notion
of polynomial algorithms. We say that a function T on the positive integers
is of polynomial growth if T (n) ≤ cnd for all n and some constants c,d. We
say that a function f defined on the binary strings of {0,1}∗ is computable in
polynomial time if there exists a Turing machine that computes f in time T (n)
of polynomial growth, where n is the length of the input. Such a Turing machine
is called a polynomial algorithm. Polynomial time encoding plays a crucial role.
For instance, if the input is an integer N in the unary representation then the
input size is |N | but if the representation is binary, the input size is only log(|N |).
The class of all functions computable in polynomial time is denoted by P . We
should remark here that computability in polynomial time does not guarantee
practical computability either, but it is a good indication for it.
A special class of algorithmic problems are the decision problems. In a decision
problem, we want the answer to be yes or no. This clearly may be modeled as a
function from a subset of A ∗ to {0,1} where 0 encodes no and 1 encodes yes. It
is customary to call such functions predicates. One can think about predicates
as about properties: the predicate indicates for each string whether it has the
property (yes) or does not have the property (not). Hence the algorithmic
problem to compute a predicate may be formulated as the algorithmic problem
to test the corresponding property.
Another basic complexity class, the class N P , is usually defined only for the
predicates. We say that a predicate R (x,y), where x and y are binary strings,
is polynomially decidable if there is a Turing machine that computes it in time
of polynomial growth (the size of the input is |x| + |y|).
The class N P is the class of all predicates f for which there is a polynomial
growth function T (n) and a polynomially decidable predicate R of two variables
so that f(x) = 1 if and only if there is y such that |y| < T (|x|) and R (x,y) = 1.
Informally, N P is the class of the predicates (i.e., properties), for which there
is a certificate (coded by y) that can be checked in polynomial time. Most of
the properties discussed in this book belong to N P .
Clearly P ⊂ N P . Over the past 30 years intensive research has been directed
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towards proving that the inclusion is strict. The question whether P �= N P

is today one of the fundamental problems of both mathematics and computer
science.

Reducibility. When can we say that one problem is algorithmically at least
as hard as another problem? We model the efficiency by the polynomial time
complexity, and so the answer is naturally given by the following notion of poly-
nomial reducibility: we say that a predicate f1 is polynomially reducible to a
predicate f2 if there exists a function g ∈ P so that f1(x) = f2(g(x)), for each
input string x.
A predicate f ∈ N P is called N P -complete if any predicate in N P is polynomi-
ally reducible to it. The predicates that are N P -complete are the most difficult
predicates of N P : if some N P -complete predicate is in P then P = N P . It
is customary to speak about N P -complete problems rather than N P -complete
predicates. The existence of an efficient algorithm to solve an N P -complete
problem is considered to be very unlikely.
A seminal result in algorithmic complexity is that N P -complete predicates
(problems) exist. This was proved independently by Cook and Levin. Many
natural N P -complete problems are known, see [GJ].

1.3 Generating functions

A useful way of counting is provided by generating functions. If f is a func-
tion from the non-negative integers, we can consider its (ordinary) generating
function

∑

n≥0 f(n)xn and its exponential generating function
∑

n≥0 f(n)xn/n!.
The generating functions are formal power series, since we are not concerned

with letting x take particular values, and we ignore questions of convergence.
This formalism is convenient since we can perform various operations on the
formal power series, for instance





∑

n≥0

anx
n



 +





∑

n≥0

bnx
n



 =
∑

n≥0

(an + bn)xn,





∑

n≥0

anx
n/n!



 +





∑

n≥0

bnx
n/n!



 =
∑

n≥0

(an + bn)xn/n!

and




∑

n≥0

anx
n









∑

n≥0

bnx
n



 =
∑

n≥0

cnx
n





∑

n≥0

anx
n/n!









∑

n≥0

bnx
n/n!



 =
∑

n≥0

dnx
n/n!

where cn =
∑n

i=0 aibn−i and dn =
∑n

i=0

(

n
i

)

aibn−i.
These operations coincide with the addition and multiplication of functions
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when the power series converge for some values of x. Let us denote by C[[x]] the
set of all formal power series

∑

n≥0 anx
n with complex coefficients. Addition and

multiplication in C[[x]] are clearly commutative, associative and distributive,
thus C[[x]] forms a commutative ring where 1 is the unity. Formal power series
with the coefficients in a non-commutative ring (like the square matrices of the
same size) are also extensively considered; they form a non-commutative ring
with unity.

If F (x) and G (x) are elements of C[[x]] satisfying F (x)G (x) = 1 then we
write G (x) = F (x)−1. It is easy to see that F (x)−1 exists if and only if
a0 = F (0) �= 0. If F (x)−1 exists then it is uniquely determined. We have
((F (x)−1)−1 = F (x).

Example 1.3.1. Let a �= 0 and (
∑

n≥0 a
nxn)(1 − ax) =

∑

n≥0 cnx
n, where a is

a non-zero complex number. Then from the definition of multiplication we get
c0 = 1 and cn = 0 for n > 0. Hence we may write

∑

n≥0

anxn = (1 − ax)−1.

The identity may be derived in the same way in every ring of formal power series
over a (not necessarily commutative) ring with unity. Hence, for instance, for
square complex matrices it can be written as

∑

n≥0

Anxn = (I− Ax)−1.

This is of course just the formula for summing a geometric series. Informally
speaking, if we have an identity involving power series that is valid when the
power series are regarded as functions (when the variables are sufficiently small
complex numbers), then the identity remains valid when regarded as an identity
among formal power series. Formal power series may naturally have more than
one variable.

1.4 Principle of inclusion and exclusion

Let us start with the introduction of a paper of Whitney, which appeared in
Annals of Mathematics in August 1932:

”Suppose we have a finite set of objects (for instance books on a table), each
of which either has or has not a certain given property A (say of being red). Let n
be the total number of objects, n(A ) the number with the property A , and n(Ā )
the number without the property A . Then obviously n(Ā ) = n−n(A ). Similarly,
if n(AB ) denotes the number with both properties A and B , and n(Ā B̄ ) the
number with neither property, then n(Ā B̄ ) = n− n(A )− n(B ) + n(AB ), which
is easily seen to be true. The extension of these formulas to the general case
where any number of properties is considered is quite simple, and is well known
to logicians. It should be better known to mathematicians also; we give in this
paper several applications which show its usefulness.”

It is known today, under the name principle of inclusion and exclusion (PIE).
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Theorem 1.4.1. Suppose A 1,...,An are finite sets, and A J =
⋂

i∈J A i. Then
∣

∣

∣

∣

∣

n
⋃

i=1

A i

∣

∣

∣

∣

∣

=
n

∑

k=1

(−1)k−1
∑

J∈([n]
k )

|A J |.

Proof. We proceed by induction on n. The case n = 2 is clear. In the induction
step,

∣

∣

∣

∣

∣

n
⋃

i=1

A i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−1
⋃

i=1

A i ∪ An

∣

∣

∣

∣

∣

=

|An| +

n−1
∑

k=1

(−1)k−1Σ
J∈([n− 1]

k )|A J | −

∣

∣

∣

∣

∣

n−1
⋃

i=1

(A i ∩ An)

∣

∣

∣

∣

∣

=

n
∑

k=1

(−1)k−1Σ
J∈([n]

k )|A J |.

Let (X ,≤) be a finite partially ordered set (poset). For example, the set of
all subsets of a finite set S equipped with the relation ’⊂’ forms a poset called
the Boolean lattice. Let F be a field and let us denote by F(X ) the collection of
all functions f : X × X → F, with the property that f(x,y) �= 0 only if x ≤ y.
We equip the set F(X ) with the convolution product

(f ∗ g)(x,y) =
∑

x≤z≤y

f(x,z)g(z,y).

It is straightforward to verify that the convolution product is associative.
We recall from the introduction that the Kronecker delta function is defined by
δ (x,y) = 1 if and only if x = y, and it is zero otherwise. The Kronecker delta
function acts as the identity function with respect to the convolution product,
since δ ∗ f = f ∗ δ = f. Another basic function is the zeta function defined by
ζ (x,y) = 1 if x ≤ y, and ζ (x,y) = 0 otherwise.

Theorem 1.4.2. Let f ∈ F(X ) be a function such that f(x,x) �= 0 for each
x ∈ X . Then there is unique function g so that f ∗ g= g∗ f = δ .

Proof. We can define g inductively by first letting

g(x,x) = 1/f(x,x),

and then letting

g(x,y) = −
∑

x≤z<y

g(x,z)
f(z,y)

f(y,y)
.

Hence g ∗ f = δ and so g is the left inverse of f. Similarly we can define
function hwhich is the right inverse of f. By associativity, g= g∗ δ = g∗(f∗h) =
(g∗ f) ∗ h = δ ∗ h = h.
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Another basic function is the inverse of the zeta function; it is called the
Möbius function and denoted by µ(x,y). We immediately have

Exercise 1.4.3. µ(x,x) = 1 and µ(x,y) = −
∑

x≤z<y µ(x,z).

Exercise 1.4.4. Prove by induction on |B − A | that the Möbius function of the
Boolean poset (2n,⊂) is given by µ(A,B ) = (−1)|B−A|.

Exercise 1.4.5. Let (X ,≤) be an interval in the set of integers. Then µ(x,x) = 1,
µ(x,x+ 1) = −1 and µ(x,y) = 0 otherwise.

Let us state the Möbius inversion formula (MIF).

Theorem 1.4.6. Let (X ,≤) be a finite poset and let f,g be two functions
from X to F. Then g(x) =

∑

y≤x f(y) for all x ∈ X if and only if f(x) =
∑

y≤x g(y)µ(y,x) for all x ∈ X .

Proof.
∑

y≤x

g(y)µ(y,x) =
∑

y≤x

∑

z≤y

f(z)µ(y,x) =

∑

y≤x

µ(y,x)
∑

z∈X

ζ (z,y)f(z) =

∑

z∈X





∑

z≤y≤x

ζ (z,y)µ(y,x)



f(z) =

∑

z∈X

δ (z,x)f(z) = f(x).

If (X ,≤1) and (Y,≤2) are two posets then their direct product is the poset
(Z,�) where Z = X ×Y = {(x,y);x ∈ X ,y ∈ Y } and (x,y) � (x′,y′) if x ≤1 x

′

and y≤2 y
′.

Theorem 1.4.7. The Möbius function of the direct product of two posets is the
product of their Möbius functions: µ((x1,y1)(x2,y2)) = µ1(x1,x2)µ2(y1,y2).

Proof. This can be proven in a straightforward way by induction on the number
of pairs (u,v) that lie between (x,y) and (x′,y′), and using Exercise 1.4.3.

The following theorem is an easy consequence of Exercise 1.4.3.

Theorem 1.4.8. Let P be a finite poset and let P ′ be P with adjoined smallest
and largest elements (denoted by 0 and 1). Let ci be the number of chains in P ′

between 0,1 of length i. Then µ(0,1) = c0 − c1 + · · · .

This means that µ(0,1) may be interpreted as the Euler characteristic of the
abstract simplicial complex associated with P ′ (see Section 5.1).
Applying Theorem 1.4.6 to the Boolean lattice, and using Exercise 1.4.4, we get
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Corollary 1.4.9. Let F be a function on the set 2S of all subsets of an n-
element set S to a field F. For K ⊂ S let G (K ) =

∑

L⊂K F (L). Then

F (K ) =
∑

L⊂K

(−1)|K−L|G (L).

Corollary 1.4.9 implies a formula which gives a simple exponential algorithm
to calculate a permanent.

Corollary 1.4.10. Let A be an n× n matrix. Then

PerA =
∑

S⊂{1,··· ,n}

(−1)n−|S|
n

∏

i=1





∑

j∈S

aij



.

Next we consider the poset (X ,�) where X = {1,2,· · · ,n} and a � b if a
divides b.

Theorem 1.4.11. Let µ be the Möbius function of (X ,�). Then µ(1,1) = 1,
µ(k,n) = µ(1,n

k ) if k divides n, µ(1,n) = (−1)m if n is a product of m distinct
primes, and µ(1,n) = 0 otherwise.

Proof. The first claim is simple. For the second one let n = p
α1
1 · · ·pαk

k be
the unique factorization of n into primes. Clearly, we only need to consider
the Möbius function of (X ′,�), where X ′ consists of all positive integers that
divide n. Clearly, (X ′,�) is the direct product of the linearly ordered sets
(X i,�), i= 1,· · · ,k, where X i = {1,pi,· · · ,p

αi

i }. The theorem thus follows
from Theorem 1.4.7 and Exercise 1.4.5.

The Euler function φ (n) is equal to the number of integers 1 ≤ k ≤ n such
that k and n have the greates common divisor equal to 1. For example φ (9) = 6.
A classical formula that precedes all general Möbius inversion formulas reads as
follows.

Theorem 1.4.12.

φ (n) = n
∏

p|n

(1 − 1/p),

where the product is over all distinct primes p dividing n.

Proof. Let d divide n. Then φ (n
d ) equals the number of integers 1 ≤ k≤ n such

that the greatest common divisor of k,n is d, since any such integer k is of the
form k= dk′ where 1 ≤ k′ ≤ n

d and the greatest common divisor of k′ and n
d is

1.
We take the function f in the Möbius inversion formula 1.4.6 to be the Euler
function φ . Let g(x) =

∑

y�x f(y). We observe that g(n) = n, since for each
1 ≤ k ≤ n there is unique d such that the greatest common divisor of k and n

is d. The inversion formula and Theorem 1.4.11 thus give

φ (n) =
∑

d�n

µ(d,n)d=
∑

d�n

µ(1,d)
n

d
.
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Let p1,· · · ,pk be the distinct primes that divide n. Theorem 1.4.11 gives

φ (n) = n−

(

n

p1
+

n

p2
+ · · ·

)

+

(

n

p1p2
+

n

p1p3
+ · · ·

)

− · · · =

n

k
∏

i=1

(1 −
1

pi
).





Chapter 2

Introduction to Graph

Theory

2.1 Basic notions of graph theory

A graph is an ordered pair of sets (V,E ) such that E is a subset of the set
(

V
2

)

of unordered pairs of elements of V . The set V = V (G ) is the set of vertices
and E = E (G ) is the set of edges. The vertices u and v are the endvertices of
this edge and we also say that u,v are adjacent vertices in G .
We say that G ′ = (V ′,E ′) is a subgraph of G = (V,E ) if V ′ ⊂ V and E ′ ⊂ E .
If a subgraph G ′ contains all the edges induced by a subset V ′ of vertices, then
G ′ is called an induced subgraph. If V ′ = V then G ′ is a spanning subgraph. If
V ′ ⊂ V then G − V ′ is the subgraph of G induced by V \ V ′. If E ′ ⊂ E then
G −E ′ = (V,E \E ′). If V ′ = {v} and E ′ = {e} then we may write G −v,G −e

instead of G − V ′,G − E ′. Two graphs are isomorphic if one may be obtained
from the other by renaming the vertices. The degree degG(v) of a vertex v is
equal to the number of vertices incident with v. Clearly, the sum of all the
degrees equals twice the number of edges of the graph. A subset E ′ ⊂ E of
edges is called even if the graph (V,E ′) has all degrees even (zero is an even
number).
A walk in a graph is a sequence v1,e1,v2,e2,...,vi,ei,vi+1,...,en,vn+1 such that
each vj is a vertex and each ej = vjvj+1 is an edge. The vertices v1 and vn+1

are the endvertices of the walk and n is its length. A walk is called a trail if all
of its edges are distinct, and a path if all of its vertices are distinct. Hence a
path is necessarily a trail. A walk whose endvertices coincide is called a closed
walk. The set of the edges of a path whose endvertices coincide is called a cycle.
A cycle which induces an induced subgraph on its vertices is induced cycle.
A graph G = (V,E ) is connected if it has a path between any pair of vertices. If a
graph is not connected, then it is naturally partitioned into maximal connected
components.
We will use the symbol Pn to denote a path of length n, and Cn to denote a
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cycle of length n. Moreover, K n denotes a complete graph with n vertices and
all possible edges. Hence K n has

(

n
2

)

edges.
A graph G is a bipartite graph if V may be partitioned into vertex classes (or
parts) V1 and V2, i.e. V = V1 ∪ V2 and V1, V2 are disjoint, such that every edge
joins a vertex of V1 to a vertex of V2:

E ⊂ {{v1,v2};v1 ∈ V1,v2 ∈ V2}.

We denote by K m,n the complete bipartite graph whose vertex classes have m
and n vertices. It is not difficult to make the following observation.

Observation 2.1.1. A graph G is bipartite if and only if it has no cycle of odd
length.

Proof. A subgraph of a bipartite graph is bipartite and no cycle of an odd length
is bipartite. This shows the only if part. On the other hand, if G has no cycle
of odd length then the following ’greedy’ algorithm finds the bipartition of each
component: color an arbitrary vertex by 1, all its neighbours by 2, all their
neighbours by 1 and so on.

A very natural way to describe a graph is to draw it. Figure 2.1 illustrates
the basic graphs by pictures.

P3 C5
K4

K3,3

Figure 2.1. Basic pictures of graph theory

A graph with no cycle is a forest or an acyclic graph. A tree is a connected
forest. Clearly each forest is bipartite.

Observation 2.1.2. Each tree with at least one edge has at least two vertices
of degree one.

Proof. The endvertices of any maximal path in the tree are vertices of degree
one.

A vertex of degree one in a tree is called a leaf.

Observation 2.1.3. For a graph G = (V,E ), the following statements are
equivalent:
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Figure 2.2. Examples of trees

(1) G is a tree,

(2) G is connected and becomes disconnected after deletion of any edge (G is
a minimal connected graph),

(3) G is a maximal acyclic graph,

(4) G is connected and |E | = |V | − 1.

Proof. All four properties are invariant under deleting or adding a vertex of
degree one. We know by Observation 2.1.2 that a tree has a vertex of degree
one, so in order to prove the observation by induction on the number of vertices
of G it suffices to show that the graphs which satisfy the second or the third or
the fourth property must have a vertex of degree one: if G satisfies (2) or (3)
then it cannot have a cycle and hence it must have a vertex of degree one by the
same argument which proves Observation 2.1.2. If G satisfies (4) then it must
have a vertex of degree one since the sum of the degrees equals 2|E |.

A tree which is a subgraph of a graph G will be called a subtree of G . A
subtree is called a spanning tree if it contains all vertices of the graph. Similarly
a spanning forest of a graph is a subforest which contains all vertices. It follows
from Observation 2.1.3 that every connected graph has a spanning tree, and
every graph has a spanning forest.
If a graph G is connected, and for some set U of vertices G −U is disconnected,
then we say that U separates G , or that U is a vertex cut, or simply a cut.
If vertices s,t belong to different components of G − U , then we say that U
separates s from t. A vertex that separates G is called a cutvertex. For k ≥ 2,
we say that G is k-connected if either G is a complete graph K k+1 or it has at
least k+ 2 vertices and no set of k− 1 vertices separates it.
Similarly we can say that a set E ′ of edges separates a graph G if G − E ′ is
disconnected. An edge that separates G is called a bridge of G . A graph is k-
edge-connected if it has at least two vertices and no set of at most k−1 edges that
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separates it. Clearly, a graph is 2-connected if and only if it is connected, has
at least three vertices and no cutvertex. Similarly a graph is 2-edge-connected
if and only if it is connected, has at least two vertices and no bridge.
Basic techniques in graph theory are graph decompositions. The starting point
is always connectivity. We call a subgraph of G a block if either it is a bridge
(together with the two vertices incident with the bridge) or else it is a maximal
2-connected subgraph of G .

Observation 2.1.4. Every vertex which belongs to at least two blocks is a
cutvertex and conversely every cutvertex belongs to at least two blocks.

As a simple corollary we get that any two blocks have at most one vertex in
common. We see that a graph decomposes into its blocks: if the blocks of G are
B 1,· · · ,B n then their edge sets are pairwise disjoint and E (G ) =

⋃n
i=1 E (B i).

The decomposition of a connected graph into its blocks has a tree structure: let
bc(G ) be the graph whose vertices are the blocks and the cutvertices of G , and
the edges connect each cutvertex to the blocks containing it. Then bc(G ) is a
tree. There are several useful tree structures associated with a graph. Let us
call this one block tree structure.
Next we study 2-connected graphs. We start with a simple observation which
follows directly from the definitions.

Observation 2.1.5. If G is 2-connected, then it is 2-edge-connected.

Theorem 2.1.6. A graph is 2-connected if and only if there exists, for any pair
of vertices, a cycle containing both of them.

Proof. The condition is clearly sufficient for the 2-connectivity. Let us prove
the necessity. Let u,v be two vertices of G . We proceed by induction on the
length of the shortest path between u,v. If uv is an edge then the existence of
the cycle containing u,v follows from Observation 2.1.5. Hence let the distance
between u,v be k > 1, and let P = (u = v1,· · · ,vk−1,vk = v) be a shortest
path connecting u,v. By the induction assumption there is a cycle C containing
u,vk−1. Moreover there is a path Q in G − vk−1 connecting u and v. It is not
difficult to observe that C + Q + {vk−1,v} contains a cycle with u,v in it (see
Figure 2.3).

The operation of edge subdivision replaces an edge by a path of length 2
with the same endvertices. Clearly, a graph G is 2-connected if and only if any
graph obtained from G by edge subdivisions is 2-connected. This observation
together with Theorem 2.1.6 implies the following

Corollary 2.1.7. A graph is 2-connected if and only if there exists, for any
pair of edges, a cycle containing both of them.

Next theorem shows how each 2-connected graph may be built from smaller
graphs by operations of edge addition and edge subdivision.
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C

vk−1

Q

u

v

Figure 2.3. Cycles and 2-connectivity

Theorem 2.1.8. A graph G is 2-connected if and only if it can be constructed
from a triangle by a sequence of edge subdivisions and edge additions.

Proof. Clearly any graph constructed by the two operations is 2-connected. For
the other part we first realize that it is the same as saying that each 2-connected
graph can be built from a cycle by adding ears; an ear is a path that shares
only its endvertices with the already constructed part.
By Theorem 2.1.6 every 2-connected graph has a cycle. Now, let G ′ �= G be a
subgraph of G constructed from a cycle by adding ears. All we have to show is
that we can extend it by another ear. If there is an edge not in G ′ with both
endvertices in G ′ then any such edge forms a new ear. Otherwise, clearly, G has
an edge uv where u ∈ G ′ and v /∈ G ′. Moreover, G − u has a path connecting
v to G ′ since G is 2-connected. This path together with the edge uv forms the
desired new ear.

There are several notions closely related to that of a graph. By definition a
graph does not contain a loop, i.e. an ’edge’ joining a vertex to itself; neither
does it contain multiple edges, that is, several ’edges’ joining the same pair of
vertices. In a multigraph both multiple edges and multiple loops are allowed. In
multigraphs we can introduce the operation of edge contraction as follows:

Definition 2.1.9. Let G = (V,E ) be a multigraph and let e be its edge. Then
we denote by G /e the multigraph obtained from G by identification of the
endvertices of e. We note that the contraction possibly creates a loop and
multiple edges. If V ′ ⊂ V then we denote by G /V ′ the multigraph obtained
from G by identification of all the vertices of V ′ into a single vertex.

The contraction is often applied in the class of simple graphs as well. Clearly,
for formal reasons, in the class of simple graphs the multiple edges and the loops
must be deleted after the contraction.
If the edges are ordered pairs of vertices, then we get the notions of a directed
graph and a directed multigraph. An ordered pair (u,v) is said to be a directed
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Figure 2.4. Building of a 2-connected graph

edge or an arc, and it is directed from vertex u to vertex v. A directed walk,
directed trail, directed path, directed cycle, indegree, outdegree are notions used
in an obvious way. The underlying multigraph of a directed graph is obtained
by forgetting the orientation of each edge. An orientation of a graph G is a
directed graph obtained by orienting the edges of G , that is, by giving each
edge uv an orientation (uv) or (vu).

2.2 Cycles and Euler’s theorem

In this introductory part of the book we are assembling some connections be-
tween combinatorics and statistical physics. Perhaps the first theorem of graph
theory is Euler’s theorem. Let us first write down an observation. A subset
of directed edges will be called even if for every vertex its indegree equals its
outdegree.

Observation 2.2.1. Each even set of (directed) edges may be partitioned into
disjoint (directed) cycles.

Proof. This observation might be called the greedy principle of walking. To
prove it we observe first that each non-empty even set contains a cycle since
any (directed) path in it may be prolonged; if we delete a (directed) cycle from
an even set, we again get an even set, and we can continue in this way until the
remaining set is empty. In this way we can construct a desired partition.
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loop

underlying

multiple edge

directed graph D

G orientation of G

multigraph
of D

Figure 2.5. More concepts of graph theory

A (directed) graph is called Eulerian if it has an Euler tour, i.e. a closed
(directed) trail containing all the (directed) edges. Here comes Euler’s theorem.

Theorem 2.2.2. A (directed) graph is Eulerian if and only if its edge set E is
even and the (underlying multigraph of the directed) graph is connected.

Proof. Follows from Observation 2.2.1 since any connected collection of disjoint
(directed) cycles may be combined into a (directed) closed trail.

A connected graph is Eulerian if one can walk through all its edges exactly
once and return back to the origin. Theorem 2.2.2 provides a characterization
of Eulerian graphs, and its proof also gives an efficient algorithm for finding an
Euler tour. It turns out that the problem changes drastically if we want to walk
through each vertex exactly once.
In the traveling salesman problem (TSP), a salesman is to make a tour of n
cities, at the end of which he has to return to the city he starts from. The cost
of the journey between any two cities is known. The TSP asks for (the cost of)
a least expensive tour. This basic discrete optimization problem belongs to the
class of N P -complete problems, where the existence of an efficient algorithm is
considered unlikely. If the cost of the journey between a pair of cities is either
1 or +∞, we get the problem of finding a cycle in a graph, that goes through
all the vertices. Such a cycle is called a Hamiltonian cycle; deciding whether a
graph has a Hamiltonian cycle is also an N P -complete problem.
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2.3 Cycle space and cut space

There are several matrices naturally associated with graphs. Here we encounter
the first one. Given a graph G let IG be its incidence matrix, that is, a V × E

matrix satisfying (IG)ve = 1 if v ∈ e and (IG)ve = 0 otherwise. We recall that
for A ⊂ E , the incidence vector of A is denoted by i(A ) and it is the 0,1 vector
indexed by E , where [i(A )]e = 1 if and only if e∈ A . Let K denote the set of all
even sets of edges, and also the set of the incidence vectors of the even sets of
edges: we will not distinguish between a set and its incident vector here. Since
z∈ K if and only if each degree of (V,z) is 0 modulo 2, we have

Observation 2.3.1. K = {z∈ {0,1}E;IGz= 0}, where the equality is modulo
2.

This means that K together with the operation of symmetric difference (sym-
metric difference on subsets corresponds to the operation of ’sum modulo 2’ on
the incidence vectors) is a vector space over the 2-element field G F (2). It is
called the cycle space. Since each even set is a disjoint union of cycles, the set of
the cycles of G generates the cycle space. Next we generalize this construction.
If D is an arbitrary orientation of G we let ID be the V × E matrix satisfying
(ID)ve = 1 if e starts in v, (ID)ve = −1 if e ends in v, and (ID)ve = 0 otherwise.
Let F be an arbitrary field and let A be a matrix over F. The kernel of A is the
set {x ∈ FE ;Ax = 0} and the image of A is the set {xA ;x ∈ FV }. The kernel
and the image of a matrix are orthogonal complements of each other.
The kernel of ID over F is called the cycle space of G over F and the image of
ID is the cut space of G over F. Hence the cycle space and the cut space are
orthogonal complements. It is not hard to see that the cycle spaces correspond-
ing to different orientations of G are isomorphic, and the same holds for the cut
spaces.

Observation 2.3.2. The cycle space of G (over a field F) depends only on G ,
not on the orientation D . The dimension of the cut space (over F) is |V | − k

and the dimension of the cycle space (over F) is |E | − |V | + k, where k is the
number of the connected components of G .

Proof. Let T ⊂ E be a maximum acyclic set of edges of G . We learned in the
introductory part on trees that |T | = |V | − k, and if e ∈ E − T then T ∪ {e}
contains exactly one cycle which we denote by C e.
Let C be a cycle of G . We associate to it a vector as follows: Let us choose one
of the two ways of walking along C and let us denote by C (D ) the vector from
{0,1,−1}E defined by

C (D )e = 1 if e∈ C and e is oriented in D in agreement with our walking,
C (D )e = −1 if e∈ C and e is oriented in D against our walking,
and C (D )e = 0 otherwise.

We will show that {C e(D );e∈ E \ T} forms a basis of K over F. This implies
all the claims of the observation. For instance, the dimension of the cut space is
|V |−k since the dimensions of the complementary cycle and cut spaces sum up
to |E |. The vectors C e(D ) are clearly linearly independent since each is nonzero
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at a unique and different edge of E \ T . Each element z of the cycle space is a
circulation, i.e., for each vertex v∈ V , we have the following equality in F:

∑

(uv)∈E

z(uv) =
∑

(vu)∈E

z(vu).

It is not difficult to observe that each circulation is a linear combination of
vectors C (D ) for some cycles C of G . Hence let us assume that z = C (D ) for
some cycle C of G . Let s=

∑

e∈C−T sign(C,D ,e)C e(D ) where sign(C,D ,e) = 1
if C e(D )e = C (D )e and sign(C,D ,e) = −1 otherwise. Then z+ (−s) is a
circulation since both z,s are. Moreover z and s are identical in the entries
indexed by E \ T and so the circulation z+ (−s) is zero in a complement of an
acyclic set. But that is possible only if z+ (−s) = 0, i.e. z= s.

Definition 2.3.3. A set E ′ ⊂ E is an edge cut if there is a partition of V into
two sets V1,V2 so that E ′ = {{u,v} ∈ E : u ∈ V1,v∈ V2}.

Example 2.3.4. Each non-empty edge cut separates G , and each separating
set of edges contains a non-empty edge cut. The empty set is the edge cut
corresponding to the trivial bipartition (V,∅) of V .

Where does the name cut space come from? We saw above that the cycle
space of a graph G over a field F is the set of all circulations (over F) with respect
to an orientation D = (V,E ) of G . Similarly it is not difficult to see that the
cut space over F is the set of all potential differences in D ; given a function p (a
potential) on V with values in F, the corresponding potential difference is the
function p′ on E defined by p′(uv) = p(u) − p(v) for each (uv) ∈ E . If the field
F is G F (2) then the potential differences coincide with the incidence vectors of
the edge cuts.

Max-Cut and Min-Cut problems belong to the basic hard problems of com-
puter science. Given a graph G = (V,E ) with a (rational) weight w (e) assigned
to each edge e ∈ E , the Max-Cut problem asks for the maximum value of
∑

e∈E ′
w (e) over all edge cuts E ′ of G , while the Min-Cut problem asks for the

minimum of the same function. The Max-Cut problem is hard (NP-complete)
for non-negative edge-weights and hence both Max-Cut and Min-Cut problems
are hard for general rational edge-weights. The Min-Cut problem is efficiently
(polynomially) solvable for non-negative edge-weights. This is a fundamental
result of computer science, known as the max-flow, min-cut algorithm (see The-
orem 2.4.1). Still, there are some important classes of graphs where the general
Max-Cut problem is efficiently solvable. One such class is the class of the planar
graphs.

A basic question about cycles is, when do two graphs have isomorphic cycle
spaces, i.e. when is there a bijection between their sets of edges that induces a
bijection between the sets of their cycles. This we treat next.

Definition 2.3.5. Let G = (V,E ) and G ′ = (V ′,E ′) be graphs. We say that
G ′ is cycle isomorphic to G if there is a bijection f from E to E ′ so that z is a
cycle of G if and only if f(z) is a cycle of G ′.
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Figure 2.6. An example of a twist

We now review a classical theorem of Whitney. Let G be a 2-connected
graph with vertex cut {u,v}. Let there be subgraphs G 1 and G 2 such that
V (G 1) ∪ V (G 2) = V (G ), V (G 1) ∩ V (G 2) = {u,v}, E (G 1) ∪ E (G 2) = E (G )
and E (G 1) ∩ E (G 2) = {uv} or ∅ depending on whether or not uv is an edge of
G . Let G ′ be the graph obtained from G by replacing each occurrence of u in
an edge of G 1 with v and each occurrence of v in an edge of G 1 with u (the
neighbors of u and v in G 1 are interchanged). Then G ′ is obtained from G by
a twist, and G ′ is a twist of G (see Figure 2.6).

Theorem 2.3.6. Let G be a 2-connected graph with n vertices and let G ′ be
cycle isomorphic to G . Then G ′ can be transformed to a graph isomorphic to G
by a sequence of at most n− 2 twists.

In order to prove Theorem 2.3.6, we write down a sequence of lemmas.

Lemma 2.3.7. If G is 3-connected then G ′ is isomorphic to G .

Proof. Let f : E → E ′ be a cycle isomorphism of G and G ′. The cut space is
the orthogonal complement of the cycle space and so C is an edge cut of G if
and only if f(C ) is an edge cut of G ′. Further, if C1 ∩C2 = ∅, C1 is an edge cut
and C2 is a cycle of G , then f(C1)∩f(C2) = ∅, f(C1) is an edge cut and f(C2)
is a cycle of G ′.
Let v be a vertex of G . Let N (v) denote the set of edges incident to v. Since
G is 2-connected, N (v) is a minimal (w.r.t. inclusion) edge cut. Since G − v is
2-connected, N (v) has the property that each pair of edges of E −N (v) belongs
to a common cycle of E −N (v) (see Corollary 2.1.7). Further it is not difficult to
see that in a 2-connected graph, any minimal edge cut with the above property
must be the neighborhood N (u) for some vertex u.
We have that each f(N (v)) is a minimal edge cut of G ′ and each pair of edges
of E ′ − f(N (v)) belongs to a common cycle of E ′ − f(N (v)). Further observe
that G ′ is 2-connected since each pair of edges of G ′ belong to a common cycle
(again by Corollary 2.1.7). Hence the edge cuts f(N (v)),v ∈ V are exactly
the edge cuts of G ′ around the vertices. Cycle isomorphism f thus induces an
isomorphism of G and G ′.
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Definition 2.3.8. Let k≥ 2. A connected graph G is a generalized cycle with
parts G 1,· · · ,G k if the following conditions hold.

(1) Each G i is connected with at least one edge and if k= 2 then both G 1,G 2

have at least three vertices.

(2) Each G i shares exactly two vertices (called contact vertices) with ∪j �=iG j .

(3) The edge-sets of G i’s partition E .

(4) If each G i is replaced by an edge joining its contact vertices then the
resulting graph is a cycle.

Lemma 2.3.9. Let G be 2-connected but not 3-connected and have at least 4
vertices. Then G has a representation as a generalized cycle where each part is
2-connected or an edge.

Proof. Let {u,v} be a cut of G and let H 1 be a component of G − {u,v}. Let
H 2 = G − {u,v} − H 1. Let G 1 be the subgraph of G induced by H 1 ∪ {u,v}
and let G 2 be the subgraph of G induced by H 2 ∪ {u,v} where we delete edge
{u,v} if it belongs to G . Then G is a generalized cycle with parts G 1,G 2. If G 1

is neither an edge nor 2-connected then it has a vertex w distinct from both u

and v such that w cuts G 1 into two connected parts G 1,1 and G 1,2 and we get
a representation of G as a generalized cycle with parts G 1,1,G 1,2,G 2. Clearly
we can repeat this procedure until the claim is fulfilled.

Following notation introduced earlier we say that a graph is a block if it is
2-connected, or an edge. Let us call a generalized cycle robust if each part is a
block. The next lemma is the key to Whitney’s theorem (Theorem 2.3.6).

Lemma 2.3.10. Let G be a graph represented as a robust generalized cycle with
parts G 1,· · · ,G k. Let G ′ be a graph and let f : E → E ′ be a cycle isomorphism
of G and G ′. Then G ′ is a generalized cycle with parts G ′

1,· · · ,G
′
k where each

G ′
i is induced by f(E (G i)).

Proof. G is 2-connected and thus any pair of its edges belong to a common
cycle. Since G ′ is cycle isomorphic to G , every pair of edges of G ′ belongs to a
common cycle and G ′ is thus 2-connected as well. Each G ′

i is cycle isomorphic
to G i. Hence each G ′

i is a block. We let G−i = ∪j �=iG j , and analogously we
define G ′

−i. Since G and consequently also G ′ have a cycle containing at least
one edge from each part, Lemma 2.3.10 will follow if we show that

|V (G ′
−i) ∩ V (G ′

i)| = 2.

This is clearly true if G ′
i is an edge. Hence let G ′

i be 2-connected. The
existence of a cycle meeting all parts of G ′ implies that |V (G ′

−i) ∩ V (G ′
i)| ≥ 2.

Let x be a contact vertex of G i and let Ex be the set of the edges of G i

which contain x. Then f(Ex) is a minimal edge cut in G ′
i since Ex is a minimal
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edge cut in G i. The key property (a consequence of the analogous property of
G i) is that

Every cycle of G ′ that contains an edge of G ′
i and an edge of G ′

−i also
contains an edge of f(Ex).
Let V (G ′

−i)∩V (G ′
i) = C . Let us assume for a contradiction that C has at least

three vertices. Let e1,e2,e3 be three edges of G ′
−i incident to three different

vertices of C . Each pair of ei,ej belongs to a common cycle. Hence, there are at
least two pairs of vertices from C (say uv and wz), where at least three vertices
among u,v,w,z are distinct, so that each pair is connected in G ′

−i by a path
whose inner vertices do not belong to G ′

i.
Since f(Ex) is a minimal edge cut in G ′

i, the graph G ′
i − f(Ex) has exactly two

connected components. This together with the existence of the pairs uv and wz

produces a cycle in G ′ which contains an edge of G ′
i, an edge of G ′

−i, but no
edge of f(Ex). This contradicts the key property above.

The following lemma completes the proof of Theorem 2.3.6. It turns out to
be convenient to formulate the lemma for graphs where some edges are directed.
An isomorphism of such graphs must keep the orientation of the directed edges.

Lemma 2.3.11. Let G and G ′ be 2-connected graphs such that exactly one
edge of each graph, e ∈ E ,e′ ∈ E ′ are directed. Let f : E → E ′ be a cycle
isomorphism and f(e) = e′. Then G ′ may be transformed by a sequence of at
most |V | − 2 twists into a graph isomorphic with G by the function f.

Proof. If |V | = 2 or G is 3-connected then the lemma holds (by Lemma 2.3.7;
at most one twist to preserve the direction of e is needed).
Now we proceed by induction. Let |V | = n, and assume the lemma is true
for any graph with at most n − 1 vertices. Let G be represented as a robust
generalized cycle with parts G 1,· · · ,G k (numbered along the cycle), and let G ′

be represented as a robust generalized cycle with parts G ′
1,· · · ,G

′
k such that

f(E (G i)) = E (G ′
i). Let e∈ G 1. Let ui be the contact vertex between G i and

G i+1 (counting is modulo k). Analogously let u′i be the contact vertex between
G ′

i and G ′
i+1.

Let H 1 (H ′
1 respectively) be obtained from G 1 (G ′

1 respectively) by adding the
edge {uk,u1} ({u′k,u

′
1} respectively). Let us define f1 : E (H 1) → E (H ′

1) to be
equal to f restricted to G 1, and f({uk,u1}) = {u′k,u

′
1}. Then f1 is a cycle iso-

morphism and by the induction assumption we can transform H ′
1 into a graph

isomorphic to H 1 by at most n1 − 2 twists, where n1 is the number of vertices
of H 1.
By these twists G ′

1 is transformed into a graph G ∗
1 isomorphic to G 1; the iso-

morphism is induced by f1 and we denote it by F1. For i �= 1, G ′
i is unchanged,

but the contact vertices might be interchanged: G ′
2 may be attached to G ∗

1 at
F1(u1) or at F1(uk).
Further, let H 2 be obtained from G−1 by adding the directed edge (u1,uk).
Let H ′

2 be obtained from G ′
−1 by adding the directed edge (F1(u1),F1(uk))

or (F1(uk),F1(u1)), depending on whether F1 keeps or interchanges the contact
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Figure 2.7. A cut of capacity 13

vertices. Analogously as above, applying at most n−n1 +2−2 twists to G ′
−1 we

obtain a graph G ∗ isomorphic to G . We used at most (n1−2)+(n−n1) = n−2
twists.

In the next sections we study graph connectivity and network flows. The
flows are flowing as much as we are walking in this book.

2.4 Flows in directed graphs

Let D = (V,E ) be a directed graph and let v∈ V . A function f on E is a flow
at v if it satisfies Kirchhoff’s current law: the total flow into v is equal to the
total flow leaving v, or

∑

(uv)∈E f(uv) =
∑

(vu)∈E f(vu). A circulation is a flow
at each vertex of D .
We study flows from vertex s (the source) to vertex t(the sink). We say that a
function f on E is an s,t-flow, if it is a flow at each vertex different from both
s,t. Clearly, whichever flows out of s in an s,t−flow, must flow into t. Hence
we may define the value |f| of the s,t-flow f by

|f| =
∑

(sv)∈E

f(sv) −
∑

(us)∈E

f(us) =
∑

(ut)∈E

f(ut) −
∑

(tv)∈E

f(tv).

The Max-Flow Problem. We are given a directed graph D = (V,E ), two
different vertices s,tof D and a non-negative rational capacity c(e) of each edge
e∈ E . The max-flow problem is to find a maximum value s,t−flow f such that
for each e∈ E , 0 ≤ f(e) ≤ c(e).
If S ⊂ V such that s∈ S and t/∈ S then let us denote by S+ the set of directed
edges leaving S, i.e., S+ = {(u,v);u ∈ S,v /∈ S}. Each such set S+ is called an
s,t-cut, and its capacity c(S+) is defined by c(S+) =

∑

e∈S+ c(e).

Theorem 2.4.1. The maximum s,t−flow value is equal to the minimum ca-
pacity of an s,t−cut.



26 CHAPTER 2. INTRODUCTION TO GRAPH THEORY

Proof. We have |f| =
∑

(uv)∈S+ f(uv)−
∑

(vu)∈E,v/∈S,u∈S f(vu) for each s,t−cut

S+ and so the maximum is at most the minimum.
In order to finish the proof, we update an s,t−flow f and the subset S ⊂ V

recursively as follows. First let S = {s} and f be the zero flow. If u ∈ S, v /∈ S,
and c(u,v) > f(uv) or f(vu) > 0 then we add v to S. In the end two things may
occur. If t∈ S then we can improve the value of f: let s= v0,v1,· · · ,vl = tbe
a path in S connecting s and t. We have

0 < ǫ i = max{(c(vi,vi+1) − f(vi,vi+1)),f(vi+1,vi)}.

Let ǫ = min ǫ i,i= 0,· · · ,l− 1. Then f may be augmented along that path to
a flow f′ with value |f′| = |f| + ǫ as follows: if ǫ i = c(vivi+1) − f(vivi+1) then
let f′(vivi+1) = f(vivi+1) + ǫ , else let f′(vi+1vi) = f(vi+1vi) − ǫ .
On the other hand, if t/∈ S, then f has maximum value since

|f| =
∑

u∈S,v/∈S

f(uv) −
∑

u/∈S,v∈S

f(uv) =
∑

u∈S,v/∈S

c(uv) = c(S+).

The capacities are rational and the graph is finite and so in each step we augment
the flow by at least a fixed non-zero fraction. Hence a maximum flow is reached
in a finite number of steps.

We remark that the proof also shows the following

Corollary 2.4.2. If the capacity function is integral then there is a maximal
flow that is integral.

Let us assume now that we have capacity restrictions on the vertices, except
for the source and the sink, and we want to find a maximum value flow f such
that for each vertex v,

∑

(u,v)∈E

f(u,v) ≤ c(v).

This is reduced to flows by an important operation called splitting.

Definition 2.4.3. Let D = (V,E ) be a directed graph and let v ∈ V . We say
that D ′ is obtained from D by splitting a vertex v if v is replaced by two new
vertices vs,vt so that each edge of D starting in v starts in vs of D ′, each edge
of D terminating in v terminates in vt of D ′, and e(v) = (vt,vs) ∈ E (D ′).

We say that a set U of vertices is an s,t-vertex cut if D − U has no directed
path from s to t.

Theorem 2.4.4. Let D be a directed graph with a rational capacity c(v) ≥ 0 on
each vertex v different from s,t. Then the minimum capacity of an s,t-vertex
cut is equal to the maximum s,t-flow value.
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Proof. Let D ′ be obtained from D by splitting each vertex v different from s,t.
We also let c(vtvs) = c(v) and c(e) = +∞ for all other edges of D ′. Clearly,
there is a bijection between the set of the flows of D and the set of the flows of D ′

and the s,t−cuts of D ′ of finite capacity exactly correspond to the s,t−vertex
cuts.

2.5 Connectivity

Let G = (V,E ) be a graph and let s,tbe two distinct vertices of G . We say that
two s,t−paths are independent if they have only the vertices s,tin common. The
following Menger’s theorem is perhaps the most important theorem regarding
graph connectivity.

Theorem 2.5.1. Let s and t be distinct non-adjacent vertices of a graph G .
Then the minimum number of vertices separating s from t is equal to the max-
imum number of independent s,t-paths. Moreover, if s,t are distinct vertices
of G , then the minimum number of edges separating s from t is equal to the
maximum number of edge-disjoint s,t-paths.

Proof. This follows from the max-flow min-cut theorems 2.4.1, 2.4.2 and 2.4.4 if
we replace each edge by two oppositely oriented edges with the same endvertices,
and let the capacities of the vertices (for the first statement) and of the edges
(for the second statement) be 1.

Corollary 2.5.2. For k≥ 2, a graph is k-connected if and only if it has at least
2 vertices and any two vertices may be joined by k independent paths. Also, a
graph is k-edge-connected if and only if it has at least two vertices and any two
vertices may be joined by k edge-disjoint paths.

The last observation on connectivity characterizes 2-edge-connectivity by
the existence of an orientation. The relations of connectivity and the existence
of orientations with particular properties is a flourishing research subject with
many results much stronger than the one we present below.
We say that a directed graph is strongly connected if there is a directed path
from each vertex to any other vertex.
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Theorem 2.5.3. A graph is 2-edge-connected if and only if it has a strongly
connected orientation.

This theorem is quite easy to prove directly, you may try it as an exercise. It
is a nice surprise that there is a statement about integer lattices hiding behind it.
This we explain now. An integer lattice is a subset of Zd closed under addition
and multiplication by an element of Z.

Theorem 2.5.4. Let L ⊂ Zd be an integer lattice and let A ⊂ L. There exists
s : A → {1,−1} such that each element of L is a non-negative integral linear
combination of {s(a)a : a ∈ A} if and only if the following two conditions are
satisfied:

(1) Each element of L is an integral linear combination of elements of A .

(2) For each a ∈ A , there are integers ia(b),b∈ A , such that ia(a) �= 0 and
0 =

∑

b∈A ia(b)b.

Proof. Condition (1) is clearly necessary. To show that Condition (2) is neces-
sary let s exist. Let a ∈ A . Since −s(a)a ∈ L , we have −s(a)a =

∑

b∈A ia(b)b
where ia(b) = 0 or ia(b) has the same sign as s(b). Adding s(a)a to both sides,
we get (2). Let us prove that the two conditions are sufficient. In fact, we will
prove a stronger statement.
Let us assume that A ∪ {−a;a ∈ A} generates L . Moreover let A ′ ⊂ A and
s′ : A ′ → {1,−1} be given with the following property P:
For each a ∈ A we may write 0 =

∑

b∈A ia(b)b, where each ia(b) is integer,
ia(a) �= 0 and for b∈ A ′, if ia(b) �= 0 then it has the same sign as s′(b).

Claim. Let b∈ A \ A ′ arbitrary. Then s′ may be extended to s′′ : A ′ ∪ {b} →
{1,−1} so that P is valid for A ′ ∪ {b} and s′′.

Proof of Claim. For contradiction assume that s′ cannot be extended to
A ′ ∪ {b}. This means that, if we let s′′(b) = 1, then P is violated for some
x ∈ A , and if we let s′′(b) = −1, then P is violated for some y ∈ A . Since P

holds for s′ we have that x �= y and 0 =
∑

c∈A ix(c)c, where ix(x) �= 0, ix(b) < 0
and for each c ∈ A ′, ix(c) = 0 or it has the same sign as s′(c). We also have
ix(y) = 0 since otherwise y does not contradict property P for s′′(b) = −1.
Analogously for y we have ix(y) = 0 and 0 =

∑

c∈A iy(c)c, where iy(y) �= 0,
iy(b) > 0 and for each c∈ A ′, iy(c) = 0 or it has the same sign as s′(c).
Without loss of generality assume that −ix(b) ≥ iy(b). We set, for each c∈ A ,
i′y(c) = ix(c)+iy(c). Then i′y(y) �= 0, i′y(b) ≤ 0, and 0 =

∑

c∈A i
′
y(c)c. Moreover,

for each c ∈ A ′, i′y(c) = 0 or it has the same sign as s′(c). Hence if we let
s′′(b) = −1 then P is satisfied for y and s′′, which contradicts the choice of y.

Corollary 2.5.5. Let L be an integer lattice and A ⊂ L such that each element
of L is an integral linear combination of A −{a}, for any a ∈ A . Then a signing
s as in Theorem 2.5.4 exists.
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Proof of Theorem 2.5.3. Let V = {1,...,n}. For any i < j let σ (i,j) ∈
{0,1,−1}n be a vector whose components are all equal to zero except σ (i,j)i = 1
and σ (i,j)j = −1. Let L be the integer lattice generated by all the vectors
σ (i,j), and let A = { σ (i,j); {i,j} ∈ E }. Then G has a strongly connected
orientation if and only if signing s as in Theorem 2.5.4 exists for A . Moreover,
the two conditions of Theorem 2.5.4 are equivalent to G being connected (con-
dition (1)) and each edge belonging to a cycle (condition (2)). This is equivalent
to G being 2-edge-connected.

Remark 2.5.6. It may be interesting to find other examples of a ’linear connec-
tivity’ in the spirit of Theorem 2.5.4.

2.6 Factors, matchings, and dimers

Let G = (V,E ) be a graph. A subgraph (V ′,E ′) of G is spanning if V = V ′.
Spanning subgraphs are sometimes called factors. An important tool in studying
factors is their degree sequence, i.e. the sequence of the vertex-degrees of E ′.
Let us first characterize the degree sequences of graphs.

Definition 2.6.1. Let v1,...,vn be the vertices of a graph G . The sequence
(deg(v1),...,deg(vn)) is called the degree sequence or the score of G .

The degree sequence is determined up to ordering. What can be said about
a degree sequence? Clearly

∑

v∈V

deg(v) = 2|E |,

and in particular, each graph has an even number of odd degrees. However,
we can say more: the next theorem gives a recursive characterization of degree
sequences.

Theorem 2.6.2. Let D = (d1,...,dn) be a sequence of natural numbers, n > 1
and d1 ≤ d2 ≤ · · · ≤ dn. Let D ′ = (d′1,...,d

′
n−1) be given by d′i = di for

i< n−dn while d′i = di − 1 for i≥ n− dn. Then D is a score if and only if D ′

is a score.

Proof. If D ′ is a score and G ′ is a graph of score D ′ then a graph G obtained
from G ′ by adding a new vertex vn with new edges {vn,vi},i= n−1,...,n−dn,
has score D . For the other implication we need to show:
If D is a score, then there is a graph G with score D such that a vertex v of
the largest degree dn is connected to a set of dn vertices different from v, whose
degree is at least as large as any remaining degree.
If dn = n− 1 then any graph with score D satisfies this, so let dn < n− 1. Let
G be the set of the graphs of score D . For each G ∈ G let j(G ) be the largest
index so that {vn,vj} /∈ E (G ). Let G 0 be a graph such that j(G 0) is as small
as possible. We show that j(G 0) = n− dn − 1: this will finish the proof of the
theorem. For contradiction let j> n−dn − 1 and suppose that vj is not joined
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by an edge to vn in G 0. Then there is i< j such that vi is joined to vn. There is
also k �= i,j,n such that vk is joined to vj but not to vi since dj ≥ di (see Figure
2.9). In this situation we can construct a new graph G ′ from G by exchanging

vk vi
vj

vn

Figure 2.9. An exchange

the edges vnvi,vkvj for the edges vnvj,vkvi. The graph G ′ clearly has score D
and j(G ′) < j= j(G 0), which contradicts the choice of G 0.

The most interesting factors are the matchings. They are the factors which
have degree at most one at each vertex. Hence a matching in a graph is a
set of disjoint edges. A matching is maximum if its cardinality is as large as
possible, and it is perfect if it covers all the vertices of the graph, i.e., if its
cardinality is half the number of vertices of the graph. In statistical physics, a
matching is called a monomer-dimer arrangement and a perfect matching is a
dimer arrangement.
Let G = (V,E ) be a graph. We define the neighbourhood of S ⊂ V by N ′

G(S) =
{v∈ G −S; there is u ∈ S such that uv∈ E }. We write N ′(S) instead of N ′

G(S)
if no confusion may arise. If v is a vertex, e is an edge, and v ∈ e then we say
that e covers v and v covers e.
We start with matchings in bipartite graphs. Let G = (V,E ) be a bipartite
graph and let V1,V2 be its vertex classes. A matching of G is called a complete
matching from V1 if it covers all vertices of V1. The following famous theorem of
Hall (Theorem 2.6.3) characterizes bipartite graphs with a complete matching.
It follows directly from Menger’s theorem Theorem 2.5.1.

Theorem 2.6.3. A bipartite graph G with vertex sets V1 and V2 has a complete
matching from V1 if and only if

|N ′
G(S)| ≥ |S|

for every S ⊂ V1.

Proof. Let G ′ be obtained from G by introducing two new vertices s,tand by
joining s to all vertices of V1 and t to all vertices of V2. Menger’s theorem
applied to s and t says the following: if G does not have a complete matching
from V1 then there are T1 ⊂ V1 and T2 ⊂ V2 such that |T1| + |T2| < |V1| and
there is no edge from V1 − T1 to V2 − T2. Then

|N ′
G(V1 − T1)| ≤ |T2| < |V1| − |T1| = |V1 − T1|.
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This shows the sufficiency of the condition. The necessity is obvious.

Corollary 2.6.4. If a bipartite graph G with vertex classes V1,V2 satisfies

|N G(S)| ≥ |S| − d

for every S ⊂ V1, then G contains a matching of cardinality |V1| − d.

Proof. It suffices to apply Hall’s theorem (Theorem 2.6.3) to the graph obtained
from G by adding d vertices to V2 and joining them to each vertex of V1.

Menger’s theorem also implies Kőnig’s theorem:

Theorem 2.6.5. Let G be a bipartite graph. The maximum cardinality of a
matching is equal to the minimum number of vertices necessary to cover all the
edges.

Bipartite graphs are often successfully used to encode families of sets and
0,1 matrices. Given a family A = {A 1,· · · ,Am} of subsets of a set X , we can
form its incidence bipartite graph as the bipartite graph (X ∪ {1,· · · ,m },E )
where xi∈ E if and only if x ∈ A i. We say that Y ⊂ X is a system of distinct
representatives for A if the elements of Y may be numbered so that the i-th
element belongs to A i, i= 1,· · · ,m . In the language of the families of sets,
Hall’s theorem says the following:

Theorem 2.6.6. A family A = {A 1,· · · ,Am} of subsets of a set X has a
system of distinct representatives if and only if

|
⋃

i∈F

A i| ≥ |F |

for every F ⊂ {1,· · · ,m }.

Given a general matrix A where the rows are indexed by a set V1 and the
columns are indexed by a set V2, we can form its bipartite graph (V1 ∪ V2,E )
where ij∈ E if and only if A ij = 1. Let us call the rows and the columns of A
the lines of A . Finally we say that a set T of nonzero entries of a matrix is a
transversal if no line contains more than one element of T . In the language of
matrices, Kőnig’s theorem says

Theorem 2.6.7. Let A be a general matrix. Then the maximum cardinality of
a transversal of A is equal to the minimum number of lines of A that cover all
the non-zero entries.

Next we move to matchings in general graphs and present a theorem of Tutte
which characterizes the graphs with a perfect matching.

Theorem 2.6.8. A graph G = (V,E ) has a perfect matching if and only if for
each S ⊂ V , the number of components of G − S of odd cardinality is at most
|S|.
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Proof. The condition is clearly necessary, so let us prove its sufficiency. Let
o(G ′) denote the number of components of G ′ of odd cardinality.
If we apply the condition of the theorem for S = ∅, we obtain that G must
have an even number of vertices. Let S0 be a maximal nonempty set for which
the condition of the theorem is satisfied with equality; such a set exists since
e.g. each one-element set necessarily satisfies the condition with equality. Let
|S0| = m > 0, let C1,· · · ,Cm be the components of G − S0 of odd cardinality
and let D 1,· · · ,D k be the components of G − S0 of even cardinality.

• Each D j has a perfect matching: For each S ⊂ V (D j) we have

o(G − S0) + o(D j − S) = o(G − (S0 ∪ S)) ≤ |S0| + |S|.

Since o(G −S0) = |S0|, we have that o(D j −S) ≤ |S|. Hence the assertion
holds for D j by the induction assumption.

• If v ∈ C i then C i − v has a perfect matching: If not then the condition
of the theorem is not satisfied for a set S ⊂ V (C i) − v and since o(C i −
({v} ∪ S)) + |{v} ∪ S| has the same (odd) parity as |V (C i)|, we get

o(C i − ({v} ∪ S)) ≥ |S| + 2.

Consequently,

|S0 ∪ S ∪ {v}| ≥ o(G − (S0 ∪ S ∪ {v})) =

o(G − S0) − 1 + o(C i − (S ∪ {v})) ≥ |S0| + |S| + 1.

Hence S0 ∪ S ∪ {v} satisfies the condition of the theorem with equality,
which contradicts the maximality of S0.

• G contains a matching covering S0 so that the other endvertices of its
edges lie in pairwise different components C j : We form a bipartite graph
with the vertex classes S0 and {C1,· · · ,Cm} so that C i is joined to v∈ S

if there is an edge in G from v to a vertex of C i. The assertion now follows
from Hall’s theorem.

The three claims we proved construct a perfect matching of G .

Corollary 2.6.9. A graph has a matching covering all but at most d vertices
if and only if for each S ⊂ V , the number of components of G − S of an odd
cardinality is at most |S| + d.

A graph is factor-critical if it has a perfect matching after deletion of an
arbitrary vertex.
The proof of Theorem 2.6.8 proves more: it demonstrates a useful graph de-
composition, the Edmonds-Gallai decomposition.
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Corollary 2.6.10. Let G = (V,E ) be a graph. Let C be the set of the vertices
of G not covered by at least one maximum matching. Let S ⊂ V − C be the
set of the neighbours of the vertices of C , and let D be the set of the remaining
vertices. Then each component of C is factor-critical and each component of D
has a perfect matching. Furthermore, each maximum matching of G consists of
a perfect matching of D , a near perfect matching of each component of C and a
matching of S to C so that each vertex of S is matched to a different component
of C .

C

S

D

Figure 2.10. Edmonds-Gallai decomposition

Next we turn our attention to the question, when two graphs have the same
set of perfect matchings? We recall that the pairs of graphs with the same set
of cycles are characterized by Whitney’s theorem (Theorem 2.3.6).
Quite surprisingly, the problem for perfect matchings was solved as late as 2004,
and only for bipartite graphs. The question for general graphs remains open.
A bijection ψ : E (G ) → E (G ′) is matching preserving provided that M is a
perfect matching in G if and only if ψ (M ) is a perfect matching in G ′. For a
positive integer k, a graph G is k-extendable if G has a matching of size k and
every matching in G of size at most k can be extended to a perfect matching in
G .
The characterization of the matching preserving bijections for bipartite graphs
starts with the twist, the basic operation that preserves cycles (see Figure 2.6).
Let G be a connected, 1-extendable, bipartite graph with parts U and V of size
n. Let u and v be vertices belonging to different parts of G such that {u,v}
forms a cut of G . Thus there are bipartite graphs G 1 with parts U1 ⊆ U,V1 ⊆ V ,
and G 2 with parts U2 ⊆ U,V2 ⊆ V , such that U1 ∩ U2 = {u} and V1 ∩ V2 = {v}
and each edge of G belongs to either G 1 or G 2 (if uv is an edge of G , then
uv is the only common edge of G 1 and G 2). Let G ′ be the bipartite graph
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Figure 2.11. Bi-transposition

obtained from G by the twist with respect to the vertices u and v. We recall
that this twist consists in replacing each occurrence of u in an edge of G 1 with
v and each occurrence of v in an edge of G 1 with u (the neighbors of u and v in
G 1 are interchanged). Then G ′ is a bipartite graph with parts V1 ∪ (U2 \ {u})
and U1 ∪ (V2 \ {v}). It is easy to verify that these twists preserve perfect
matchings. Are twists sufficient for a description of the matching preserving
bijections between bipartite graphs? The answer is no, one more operation is
needed:
Let G 1,G 2,G 3 be bipartite graphs with bipartitions (V i

1,V
i
2 ), i= 1,2,3, and

having pairwise disjoint vertex sets. We further assume that |V i
1 | = |V i

2 | + 1.
Let ai,bi be vertices from the same part V i

1 of G i, i= 1,2,3. Let G be the
bipartite graph obtained from G 1,G 2,G 3 by identifying the vertices in each of
the three pairs {b1,a2}, {b2,a3}, and {b3,a1}. Let G ′ be the bipartite graph
obtained from G 1,G 2,G 3 by identifying the vertices in each of the three pairs
{b1,a3}, {b2,a1}, and {b3,a2}. Then the graph G ′ is said to be obtained from
G by a bi-transposition of G 1 and G 2 (see Figure 2.6). It is straightforward to
verify that the operation of bi-transposition also preserves perfect matchings,
and cannot be realised by twists. The following theorem is proved in [BLP].

Theorem 2.6.11. Let G and G ′ be two 1-extendable, bipartite graphs and let
ψ : E (G ) → E (G ′) be a matching preserver. Then there is a sequence of bi-
twists and bi-transpositions of G resulting in a graph isomorphic to G ′ and ψ is
induced by this isomorphism.

We will not include a proof of Theorem 2.6.11 here. But, we will explain an
idea that leads to a proof.
There is a useful correspondence between the perfect matchings in a bipartite
graph G with the bipartition U,V and the directed circuits in a directed graph
D (G ,M ) constructed from G and a specified perfect matching M . Let D (G ,M )
be the digraph obtained from G by orienting each edge from U to V , and then
contracting all of the edges of M . Let M ′ be another perfect matching in G .
Then (M \M ′)∪(M ′\M ) is a collection of pairwise vertex disjoint cycles of G of
even length whose edges alternate between M and M ′. In D (G ,M ) these cycles
correspond to vertex-disjoint directed cycles. Using the matching M , we may
reverse this construction to obtain, given a collection of vertex-disjoint directed
cycles of D (G ,M ), a perfect matching M ′ of G .
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There is a one-to-one correspondence between perfect matchings in G and col-
lections of vertex-disjoint directed cycles in D (G ,M ).
Further, it is not difficult to observe that G is 1-extendable if and only if
D (G ,M ) is strongly connected. By this transformation we arrive at the prob-
lem of when two strongly connected digraphs have the same collections of vertex
disjoint directed cycles. We will not discuss this problem here, for its solution
see [BLP].
Instead, let us consider a more basic problem, namely when they have the same
directed cycles. An isomorphism, respectively, an anti-isomorphism, of a di-
graph D onto a digraph D ′ is a bijection f : V (D ) → V (D ′) such that, for
all u,v ∈ V (D ), there is an arc in D from vertex u to vertex v if and only if
there is an arc in D ′ from vertex f(u) to vertex f(v) (from f(v) to f(u) respec-
tively). A directed twist of a digraph D is defined in a similar way as a twist
in a graph. Let D 1, D 2 be subgraphs of D with at least 3 vertices, such that
V (D 1) ∪ V (D 2) = V (D ), V (D 1) ∩ V (D 2) = {u,v}, E (D 1) ∪ E (D 2) = E (D ).
Let D ′ be obtained from D by replacing arcs of the form uw , wu, vw , and wv

by, respectively, wv, vw , wu and uw for each w ∈ V (D 2), and then reversing
the direction of all the remaining arcs of D 2. Then D ′ is obtained from D by a
di-twist. Clearly, D and D ′ have the same circuits and D is strongly connected
if and only if D ′ is. If D is a digraph, then GD denotes the underlying graph of
G . Here comes the theorem of Thomassen (see [TC] for the proof) which is the
starting point for proving Theorem 2.6.11.

Theorem 2.6.12. Let D and D ′ be two strongly connected digraphs with 2-
connected underlying graphs GD and GD ′ . Let ϕ : E (D ) → E (D ′) be a bijection
such that ϕ and ϕ −1 preserve directed cycles. Then there exists a sequence of di-
twists of D resulting in a digraph D ∗ such that ϕ is induced by an isomorphism
or anti-isomorphism of D ∗ onto D ′.

The matching problem asks for (the size of) a matching of maximum size,
or, when there are weights on the edges, for a matching of the maximum to-
tal weight. Next we describe a result of Edmonds who designed a polynomial
algorithm for the maximum matching problem in 1963 (appeared in [E1]) and
argued that efficient algorithm should be defined by polynomiality. This work is
a cornerstone in the development of computer science. In his work on good char-
acterizations ([E2]) the understanding of a nondeterministic algorithm appears.
Edmond’s solution of the weighted maximum matching problem is a founding
result of polyhedral combinatorics, and by conjecturing that there is no poly-
nomial algorithm for the travelling salesman problem he in fact conjectured the
famous P �= N P .

Let G be a graph, M a matching in G . A trail is alternating if it contains
alternately edges of M and out of M . The basic trick for the algorithm is
strikingly simple: if M is not a maximum matching, then let M ′ be a bigger
matching (we know it exists but we do not have it in our hands). The symmetric
difference of M and M ′ consists of vertex-disjoint alternating paths and cycles.
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Since M ′ is bigger, there must be an alternating path that starts and ends by
an edge out of M . Hence, we get the following.

Observation 2.6.13. M is maximum if and only if there is no alternating path
with both endvertices not covered by M .

Such a path will be called an augmenting path. Let M be a matching. An
alternating trail W = (v0,e0,v1,· · · ,vt) is called a flower of M if t is odd,
v0,· · · ,vt−1 are all distinct, v0 not covered by M and vt = vi for some even i,
0 ≤ i< t. Moreover, a cycle C of odd length is called a blossom of M if M
induces a maximum matching of C , and no edge of M contains only one vertex
of C . We note that each flower of M induces a blossom of M ′ where M ′ is
obtained from M by alternating along e0,· · · ,ei−1. The matchings M and M ′

have the same size.
Edmonds noticed that the blossoms may be contracted; we recall that to con-
tract a set V ′ of vertices means to identify them into one vertex, and keep all
the edges (since loops are irrelevant when matching is considered, we also delete
the loops which appear). The resulting graph is denoted by G /V ′.

Observation 2.6.14. Let B be a blossom of M in G . Then M is a maximum
matching in G if and only if M \ B is a maximum matching in G /B .

Observation 2.6.14 naturally leads to a polynomial algorithm. We start with
a matching M of G . We construct, in a greedy way, a maximal forest F so that
each component has a vertex uncovered by M (its root), and each maximal path
from a root is alternating and ends with an edge of M . If there is an edge in G

between two vertices with an even distance to a (possibly different) root then
there is an augmenting path, or a flower and thus a blossom of a matching of
the same size as M . We can contract the blossom and continue with the smaller
graph. If no such edge exists then the vertices of F of an odd distance to a root
prove that M is maximum, by Corollary 2.6.9.

2.7 Graph colorings

The most famous problem-theorem of graph theory is the Four Color theorem
(4CT), which may be stated as follows: The vertices of any planar graph, i.e.
any graph that can be drawn in the plane without edge-crossings, may be as-
signed one of four colors so that no edge has its vertices of the same color.

This theorem still has only a computer-assisted proof. It is much easier to show
that five colors suffice (see Theorem 2.10.4). We will discuss planar graphs in-
cluding the Four Color theorem in more detail in section 2.10.
Let G = (V,E ) be a graph. A proper k-coloring of G is any function f : V →
{0,...,k− 1} so that if uv∈ E then f(u) �= f(v). The chromatic number χ (G )
is the minimum k so that G has a proper k-coloring.
For instance, χ (C2k+1) = 3, χ (K n) = n, the chromatic number of a bipartite
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graph is at most 2 and the 4CT is equivalent to saying that the chromatic num-
ber of any planar graph (see 2.10) is at most 4.
Let us denote by ω (G ) the maximum number of vertices of a complete subgraph
of G (such a subgraph is called a clique), and by α (G ) the independence number
of G , i.e. the maximum number of vertices with no edge between any pair of
them. We can start with the following simple observation.

Observation 2.7.1.

χ (G ) ≥ max(ω (G ),|V (G )|/α (G )).

A very straightforward way to color a graph is to first order the vertices,
and then proceed gradually from vertex to vertex and always use the lowest
available color. This algorithm may be very bad, as shows the example below;
it is a homework to guess a bad ordering there. But on the other hand, there is
always an ordering of the vertices so that the greedy algorithm applied to this
ordering finds an optimal proper coloring.

Figure 2.12. Greedy may need |V |/2 colors

The greedy algorithm clearly needs at most ∆(G ) + 1 colors, where ∆(G )
denotes the maximum degree of G . The next theorem due to Brooks improves
this by 1 for most of the graphs.

Theorem 2.7.2. Let G = (V,E ) be a connected graph with maximum degree ∆
which is neither a complete graph nor a cycle of odd length. Then χ (G ) ≤ ∆.

A proof may be found in [BB]. Another way to determine the chromatic
number of a graph is to count, for each k, the number M (G ,k) of proper k-
colorings. M (G ,x) is known as the chromatic polynomial. We will speak more
about it in Section 7.2.
We can color edges as well as vertices. A proper edge-coloring is a coloring where
the edges incident to the same vertex get different colors. The edge-chromatic
number χ ′(G ) is the minimum number of colors in a proper edge-coloring. There
is a theorem of Vizing:

Theorem 2.7.3. A graph of maximum degree ∆ has edge-chromatic number ∆
or ∆ + 1.

A proof may be found in [BB]. Let us mention that it is algorithmically hard
to say, for a given graph, where the truth is.
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2.8 Random graphs and Ramsey theory

The G (n,p) model of a random graph is perhaps the best known random graph
model. It was invented by Erdős and Renyi. The ground set is the set of all
graphs with vertex set {1,· · · ,n}. To get a random element of the space G (n,p),
we select the edges independently, with probability p. Hence the probability of

a graph H with m edges is pm(1−p)(
n

2)−m. We are almost always interested in
what happens when n goes to infinity, and so it is important to have in mind
that pmay depend on n: p= p(n). It is customary to denote by G n,p a random
element from G (n,p). Next we present a classical example of the use of the
random graphs method, the lower bound of Erdős on Ramsey numbers. In fact
it gives us a good reason to introduce the basics of Ramsey theory, another
milestone of combinatorics. Ramsey theory extends the following principle,
known as the pigeon hole principle: if many objects are partitioned into few
classes then at least one class is large.
It is convenient to describe the partitions into two parts of the pairs of a finite
set as the colorings of the edges of a complete graph by two colors.
Let R (s,t) denote the smallest integer n such that every red-blue coloring of
the edges of K n contains a red K s or a blue K t. Equivalently, every graph on
n vertices contains an independent set of s vertices of a complete graph of t
vertices. Obviously R (s,t) = R (t,s) and R (s,2) = s.

Theorem 2.8.1. If s> 2,t> 2, then

R (s,t) ≤ R (s− 1,t) + R (s,t− 1),

and

R (s,t) ≤

(

s+ t− 2

s− 1

)

.

Proof. Let s+ t be smallest such that the recursion does not hold. Let n =
R (s−1,t)+R (s,t−1); note that n is well defined. Consider a red-blue coloring
of the edges of K n. The degree of each vertex is n− 1. A vertex v of K n thus
has at least n1 = R (s− 1,t) red incident edges, or at least n2 = R (s,t− 1) blue
incident edges; w.l.o.g. assume the first case. Let K n1 be the complete subgraph
of K n formed by the vertices joined to v by the red edges. K n1 contains either
a blue K t or a red K s−1, and K n thus has either a blue K t or a red K s. This
contradicts the choice of n.
The inequality of the theorem holds with equality for s= 2 or t= 2. For the
remaining cases it immediately follows by induction, using the recurrence.

Let R (s) = R (s,s). The above theorem gives

R (s) ≤
22s−2

(π s)1/2
.

The following exponential lower bound has been proved by Erdős, using the
random graphs method. No constructive proof is available.
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Theorem 2.8.2. If 3 ≤ s≤ n and

(

n

s

)

< 2(s

2)−1
,

then R (s) ≥ n+ 1. Also,

R (s) > 2s/2.

Proof. Let G = (V,E ) be a graph with n vertices. Let X (G ,s) denote the
number of complete subgraphs of G of s vertices, and let X ′(G ,s) denote the
number of independent sets of s vertices in G . For the expectation E(X (G ,s)+
X ′(G ,s)) in the space G (n,1/2) we have

E(X (G ,s) + X ′(G ,s)) = 2

(

n

s

)

2−(s

2) < 1,

and so there is a graph G on n vertices with X (G ,s) + X ′(G ,s) = 0. To show
the second inequality we observe that n = n(s) = 2s/2 satisfies the assumption
of the theorem.

2.9 Regularity lemma

A set A of positive integers is said to have positive upper density if

lim sup
n→∞

|A ∩ {1,· · · ,n}| > 0.

In 1975 Szemeredi proved that every set of natural numbers with positive upper
density contains arbitrary long arithmetic progressions. A crucial step in the
proof is a ’uniformity-regularity’ lemma which we now formulate. Roughly
speaking, the lemma claims that every graph can be partitioned into a bounded
number of almost equal classes such that most pairs of the classes are uniform
in the following sense.
For disjoint U,W ⊂ V let e(U,W ) be the number of edges between U,W , and
set

d(U,W ) =
e(U,W )

|U ||W |
.

A pair U,W is ε -uniform if

|d(U ∗,W ∗) − d(U,W )| < ε

whenever U ∗ ⊂ U , |U ∗| ≥ ε |U | > 0 and W ∗ ⊂ W , |W ∗| ≥ ε |W | > 0.
A partition C0∪C1∪· · ·∪Ck of V is equitable with exceptional class C0 if |C1| =
|C2| = · · · = |Ck|. Finally, an ε -uniform partition is an equitable partition such
that the exceptional class C0 has at most ε n vertices and all but at most ε k2

pairs (C i,C j), i,j= 1,· · · ,k, are ε -uniform.
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Theorem 2.9.1. For any positive integer m and every 0 < ε < 1/2 there is
an integer M = M (m ,ε ) such that every graph with at least m vertices has an
ε -uniform partition into k parts with m ≤ k≤ M .

The proof can be found in [BB]. It seems that the regularity lemma is a
general mathematical principle which appears in many diverse considerations.
Probably many readers can find its footprint in their own world. Here we include
a classical combinatorial consequence (see [BB] for a proof).

Theorem 2.9.2. For every ǫ > 0 and every graph H , there is a constant
n0(ǫ ,H ) with the following property. Let G be a graph with n ≥ n0(ǫ ,H ) vertices
that does not have H as a subgraph. Then G contains a set E ′ of less than ǫ n2

edges such that G − E ′ has no K r, where r= χ (H ).

By the way, what is the maximum number of edges of a graph with n vertices
and no K r as a subgraph? By a fundamental theorem of Turan, it is about
(1− 1/r)

(

n
2

)

. This is the starting theorem of the extensively studied Turan-type
problems, and extremal graph theory.

2.10 Planar graphs

A lot of results described in this book depend on a representation of a graph
on a 2-dimensional surface. In this introductory part we describe some results
on planar representations, i.e. drawings (embeddings) of graphs in the plane
so that the vertices are represented by distinct points, each edge is represented
by a curve between the representations of the end-vertices of the edge, and
the interior of each edge-representation is disjoint with the rest of the graph
representation (i.e., in particular the edges do not cross each other). The graphs
that can be represented (embedded) in the plane R2 in this way are called planar,
and graphs represented (embedded) in the plane in this way are called plane
graphs, or topological planar graphs. In this section we will deal with the planar
embeddings in an intuitive way. More background on embeddings is given in
Chapter 5; here we only include the basic Jordan curve theorem (for the proof
see [MT]).

Theorem 2.10.1. Any simple closed curve C in the plane divides the plane
into exactly two connected components. Both of these regions have C as the
boundary.

Each plane graph is by definition a subset of the plane. A face of a plane
graph is any connected component of its planar complement. Exactly one face
of a plane graph G is unbounded; it is called the outer face of G . For a planar
graph G we denote by v,e,p its number of vertices, edges and faces. These
numbers are interconnected by the celebrated Euler’s formula.

Theorem 2.10.2. Let G be a connected plane graph. Then

v− e+ p= 2.
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Figure 2.13. The same side?

Proof. We proceed by induction on e− v. If G is a tree then e− v = 1 and
p= 1, hence the theorem holds. For the induction step we observe that adding
an edge to a connected plane graph increases the number of faces by one.

What is the maximum number of edges of a planar graph with v vertices?
Quite intuitively the maximum is achieved for a plane graph where each face
is a triangle. For such plane graphs we get from Euler’s formula v− e+ p =
v−e+ 2e/3 = 2, and thus e= 3v− 6. Each planar graph with n vertices hence
has at most 3n−6 edges. In particular, each planar graph has a vertex of degree
at most 5. Which graphs are not planar? We leave as an exercise to show (using
the Jordan Curve Theorem 2.10.1) that neither K 5 nor K 3,3 are planar. The
Kuratowski’s theorem (Theorem 2.10.15) says that these are in fact the only
essential non-planar graphs.
Perhaps the most famous theorem of the graph theory is the Four Color theorem.

Theorem 2.10.3. Each planar graph can be properly colored by 4 colors.

The Four Color problem dates back to 1852 when Francis Guthrie, while
trying to color the map of the counties of England, noticed that four colors
sufficed. He asked his brother Frederick if it was true that any map can be col-
ored using four colors in such a way that adjacent regions (i.e., those sharing a
common boundary segment, not just a point) receive different colors. Frederick
Guthrie communicated the conjecture to DeMorgan, and the rich mathemati-
cal history of the problem started ([TR]). In 1977, Appel and Haken ([AH])
published their computer assisted proof of Theorem 2.10.3, but some scepticism
remained regarding its validity. Robertson, Sanders, Seymour and Thomas
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([RSST]) published their proof in 1997. This proof is also computer assisted
and follows essentially the same strategy as the original proof of Appel and
Haken. The crucial difference is that the new proof was independently verified.
Independent verification was essentially impossible for the old proof. The Four
Color theorem motivated extensive mathematical research, see [TR]. There is
only a computer-assisted proof of the Four Color theorem, but the Five Color
theorem is not hard to prove.

Theorem 2.10.4. Each plane graph G = (V,E ) can be properly colored with 5
colors.

Proof. We proceed by induction on the number of vertices. Let u be a vertex
of G of degree 5 (if there is a vertex u of degree less than 5 then we can extend
an arbitrary proper 5-coloring of G − u (it exists by the induction assumption)
to a proper 5-coloring of G ). Since G does not contain K 5, a vertex u must
have neighbours x,y such that xy /∈ E . Let G ′ be obtained from G by the
contraction of edges ux,uy into a single vertex which we denote by z. Clearly
G ′ is a plane graph with a smaller number of vertices than G and hence we
can assume (by the induction assumption) that G ′ has a proper 5-coloring. We
assume that vertex u has degree 5 in G , and so vertex z has degree 3 in G ′. A
proper 5-coloring of G ′ can thus be extended to G so that x and y get the color
of the contracted vertex z, and one color remains for u.

A curve in the plane is a polygonal arc if it is the union of a finite number
of straight line segments. The following lemma is very intuitive.

Lemma 2.10.5. Every planar graph may be embedded into the plane so that
all edges are represented by simple polygonal arcs.

An important concept we will need is that of the dual graph G ∗ of a plane
graph G . It turns out to be convenient to define G ∗ as an abstract (not topo-
logical) graph. But we need to allow multiple edges and loops which is not
included in the concept of the graph as a pair (V,E ), where E ⊂

(

V
2

)

. A stan-
dard way out is to define a graph as a triple (V,E ,g) where V,E are sets and
g is a function from E to

(

V
2

)

∪ V which gives to each edge its endvertices. For
instance, e ∈ E is a loop if and only if g(e) ∈ V . Now we can define G ∗ as
the triple (F (G ),{e∗;e∈ E (G )},g) where F (G ) is the set of the faces of G and
g(e∗) = {f ∈ F (G ); e belongs to the boundary of f}.
It is important that the dual graph is defined with respect to an embedding.
In fact, a planar graph may have several non-isomorphic dual graphs associated
with it, corresponding to its different planar embeddings.
If G is a topological planar graph then G ∗ is planar. There is a natural way
to properly draw G ∗ to the plane: represent each dual vertex f ∈ F (G ) as a
point on face f, and represent each dual edge e∗ by a curve between the points
representing its endvertices, which crosses exactly once the representation of e
in G and is disjoint from the rest of the representations of both G and G ∗ (see
Figure 2.14).
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Figure 2.14. A planar graph and its dual

Let us recall that a set of edges is even if it induces even degrees at each ver-
tex. We will say that a subset E ′ of edges of a plane graph G is dual even if
{e∗;e∈ E ′} is an even set of edges of G ∗.

Observation 2.10.6. The dual even subsets of edges of G are exactly the edge
cuts of G .

Whitney noticed that this observation characterizes planar graphs:

Definition 2.10.7. Let G ,G ∗ be connected multigraphs and let f be a bijection
between their edge-sets. We say that G ∗ is a combinatorial dual of G if, for each
F ⊂ E (G ), F is the edge-set of a cycle of G if and only if f(F ) is a minimal
(with respect to inclusion) edge cut in G ∗.

The proof of the following Whitney’s characterization of planarity can be
found in [MT].

Theorem 2.10.8. Let G be a 2-connected multigraph. Then G is planar if and
only if it has a combinatorial dual. If G ∗ is a combinatorial dual of G , then G

has an embedding in the plane such that G ∗ is isomorphic to the geometric dual
of this embedding of G .

Definition 2.10.9. A set of edges which is a cycle and bounds a face of a plane
graph will be called a facial cycle.

Theorem 2.10.10. Let G be a 2-connected plane graph. Then each face is
bounded by a cycle of G and each edge belongs to the facial cycles of exactly two
faces. If G is not a cycle, then G ∗ is also 2-connected.
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Proof. It follows from Theorem 2.1.6 that each 2-connected graph has an edge
e so that G − e is 2-connected, or G has a vertex of degree 2. This proves the
first part. If a multigraph G with more than one vertex is not 2-connected then
neither is any of its geometric duals G ∗. The second part now follows since we
can write (in a sloppy way) that G ∗∗ = G (see Figure 2.14).

When shall we say that two planar embeddings of the same 2-connected
graph are the same? The following Jordan-Schönflies theorem is the starting
point. Its proof can be found in [MT].

Theorem 2.10.11. If f is a homeomorphism (i.e. bijection preserving the open
sets, see Section 5.1) of a simple closed curve C in the plane onto a closed curve
C ′ in the plane, then f can be extended to a homeomorphism of the entire plane.

With the help of the Jordan-Schönflies theorem, it is possible to show the
following (see[MT]):

Theorem 2.10.12. Let G and G ′ be two 2-connected isomorphic plane graphs
such that each facial cycle of G corresponds to a facial cycle of G ′ and the
cycle bounding the outer face of G also bounds the outer face of G ′. Then any
homeomorphism of G and G ′ (extending an isomorphism of G onto G ′) can be
extended to a homeomorphism of the entire plane.

Hence we say that two planar embeddings of the same 2-connected graph
are equivalent if their sets of facial cycles are the same. Next we characterize
all non-equivalent planar embeddings of a 2-connected planar graph G . Let us
call a flip a move which replaces a 2-connected component of a plane graph G

by its rotation by 180 degrees around the axis determined by its 2-vertex cut.
For an example see Figure 2.15.

v

u u

v

Figure 2.15. A flip

Theorem 2.10.13. Let G be a 2-connected plane multigraph. Then any plane
multigraph G ′ isomorphic to G is equivalent to an embedding obtained from G

by a sequence of flips.
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Proof. The geometric duals of G and G ′ have the same cycle space since G is
isomorphic to G ′. Moreover it is not difficult to see that the flips on G correspond
exactly to the twists on the corresponding geometric duals. Whitney’s theorem
(Theorem 2.3.6) therefore implies Theorem 2.10.13.

In particular, we obtain that planar embeddings of 3-connected graphs are
unique.

Corollary 2.10.14. All planar embeddings of a 3-connected planar graph are
equivalent.

Next, we write down a combinatorial characterization of planar graphs, the
Kuratowski’s theorem. The notion of subdivision was used before, in Theorem
2.1.8.

Theorem 2.10.15. A graph is planar if and only if it does not contain a sub-
division of K 5 or a subdivision of K 3,3 as a subgraph.

We leave as an exercise to show (using the Jordan Curve Theorem 2.10.1)
that neither a subdivision of K 5 nor a subdivision of K 3,3 is planar. The other
(difficult) part of the proof will follow directly from Lemma 2.10.16, Lemma
2.10.18 and Lemma 2.10.19 below.
We recall that G /e denotes the multigraph obtained from G by contraction of
the edge e. In this part we are not interested in the loops or the multiple edges
and so we delete them after each contraction. We hence stay in the class of
graphs.

Lemma 2.10.16. Every 3-connected graph G = (V,E ) with at least 5 vertices
contains an edge e such that the graph G /e is 3-connected.

Proof. Let G be a counterexample and let xy = e ∈ E . The graph G /e has
a separating set consisting of two vertices. One of them must be the vertex
obtained by contracting xy, since G is 3-connected. Hence G has a separating
set {x,y,z} and we choose x,y,z so that the largest component of G −{x,y,z}
is as large as possible. We denote it by H . Let H ′ be another component of
G −{x,y,z} and let u be a vertex of H ′ adjacent to z. Repeating the argument
for uz, G has a separating set of the form z,u,v. The subgraph of G induced
on (V (H )∪ {x,y}) \ {v} is connected (otherwise v,z separate G ), and thus it is
contained in a connected component of G −{z,u,v}. This gives a contradiction
to the maximality of H .

We make use of two additional basic notions.

Definition 2.10.17. A plane graph is straight line embedded if each edge is
represented as a straight line segment. If, in addition, each inner face is convex
and the outer face is the complement of a convex set, then the graph is convex
embedded.
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Lemma 2.10.18. Every 3-connected graph containing no subdivision of K 3,3

or K 5 as a subgraph has a convex embedding in the plane.

Proof. We proceed by induction on the number of vertices of G . If G has at most
5 vertices then the lemma clearly holds, and we thus show the induction step.
By Lemma 2.10.16, G has an edge e= xy so that G ′ = G /e is 3-connected. Let
z denote the vertex obtained by identifying x and y. G ′ contains no subdivision
of K 3,3 or K 5 (otherwise G does as well) and thus, by the induction assumption,
G ′ has a convex embedding in the plane. The graph G ′ − z is 2-connected and
thus by Theorem 2.10.10, its face containing the point z is bounded by a cycle
which we denote by C . Clearly, C is also a cycle in G . Let x1,· · · ,xk be the
neighbours of x, appearing along C in this order. If all the neighbours of y
belong to a segment of C between some xi,xi+1 then the convex embedding of
G ′ may be easily modified to a convex embedding of G , otherwise G contains a
subdivision of K 3,3 or K 5.

Lemma 2.10.19. Every graph with a fixed set of at least four vertices and a
maximal set of edges with no subdivision of K 3,3 or K 5 as a subgraph is 3-
connected.

Proof. We again proceed by induction on the number of vertices of G . If G has
at most 5 vertices then the lemma clearly holds, and we thus show the induction
step. It is easy to verify that G must be 2-connected and if u,v separate G then
uv ∈ E . If G is not 3-connected then it has two vertices u,v that separate
it, and we may thus write G = G 1 ∪ G 2 where G 1 and G 2 have precisely the
vertices x,y and the edge xy in common. We observe that the addition of any
edge creates a subdivision of K 3,3 or K 5 in each G i and thus by the inducton
assumption, each G i is either K 3 or 3-connected. Hence each G i has a convex
embedding in the plane by Lemma 2.10.18. Let zi be a vertex distinct from
u,v but on the boundary of the same face of the convex embedding of G i. By
the assumption of the theorem, G + z1z2 contains a subdivision K of K 3,3 or
K 5. If all vertices of K of degree at least 3 are in G 1 (or in G 2), then we get a
subdivision of K 3,3 or K 5 in G 1 (or in G 2), a contradiction. Since K 3,3 and K 5

are 3-connected, one of V (G 1) \ V (G 2) or V (G 1) \ V (G 2), say V (G 2) \ V (G 1),
contains precisely one vertex of K of degree at least 3. Since K 5 is 4-connected,
K must be a subdivision of K 3,3. But this means that we can find a subdivision
of K 3,3 in the graph obtained from G 1 by adding one new vertex and joining
it to u,v,z1. But all these neighbours are on the boundary of the same face of
G 1, this graph is thus planar which gives a contradiction.

As an immediate corollary we get Tutte’s convex embedding theorem. Later
in Section 5.4 we will include another proof.

Theorem 2.10.20. Every 3-connected planar graph has a convex embedding in
the plane.
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2.11 Tree-width and excluded minors

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting some connected subgraphs to single vertices. A well-quasi-ordering

G H

Figure 2.16. G is a minor of H

of a set X is a reflexive and transitive relation  such that for every infinite
sequence x1,x2,· · · ,of elements of X , there are indices i< j such that xi  xj .
One of the highlights of modern combinatorics is the excluded minors theory
of Robertson and Seymour. The main result is a (very complicated) proof of
Wagner’s conjecture: the class of all finite graphs with the minor relation is a
well-quasi-ordering. As a straightforward corollary we get the following seminal
theorem.

Theorem 2.11.1. Let M be a minor-closed class of finite graphs. Then the set
F of the graphs that are minimal graphs(with respect to the relation of being a
minor) not in M is finite.

Such a set of minimal excluded minors can be extremely large: there are
some natural classes M for which this ’finiteness statement’ may be formulated
in Finite Set Theory, but cannot be proved or disproved there.
The main tool in obtaining the proof of the Wagner’s conjecture is a structural
theorem for the classes of graphs with an excluded minor. Another discovery of
Robertson and Seymour is a polynomial algorithm for testing whether an input
graph has a fixed minor.

Corollary 2.11.2. Membership testing for any minor-closed class C of graphs
admits a polynomial algorithm.

Proof. As a consequence of Wagner’s conjecture, there is a finite set S of graphs
such that G ∈ C if and only if G does not have a minor from S. The corollary
follows from the fact that testing minors is polynomial.

The theory only states the existence of the algorithm, the actual list of
forbidden minors is usually hard to find. An important example of a minor-
closed class of graphs is the class consisting of the finite graphs embeddable on
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a (fixed) surface S. As a corollary we get that a Kuratowski-type theorem holds
for any S. A fundamental notion of the theory of Robertson and Seymour is
tree decomposition and tree width.

Definition 2.11.3. Let G = (V,E ) be a graph and let T = (W ,F ) be a tree
where each vertex w ∈ W has an induced subgraph G w of G associated with it.
We say that T,(G w : w ∈ W ) is a tree decomposition if each edge of G belongs
to some G w, and for each vertex v of G , the set {w ∈ W ;v ∈ G w} induces
a connected subgraph Tv of T . The width of this tree decomposition is max
{|V (G i)| − 1;i= 1,· · · ,n}.

The tree width of a graph G , tw (G ), is the smallest width of a tree de-
composition of G . Hence the connected graphs of tree width at most one are
precisely the trees. See Figure 2.17 for an example of a graph of tree width 3.
Tree decompositions are closely related to chordal graphs, i.e., graphs without

Figure 2.17. A graph of tree width 3

an induced cycle of length bigger than three. Here are some basic observations
about chordal graphs, which are easy to prove.

Observation 2.11.4. Let G = (V,E ) be a chordal graph. Each minimal cut
induces a complete subgraph. There is a simplicial vertex, i.e. a vertex v ∈ V

such that {u ∈ V : {u,v} ∈ E } induces a complete subgraph.

Observation 2.11.5. Let G be a chordal graph and let T = (W ,F ),(G w ;w ∈
W ) be its tree decomposition. Then G is the intersection graph of the subtrees
Tv,v∈ V (see Definition 2.11.3),i.e., uv∈ E if and only if Tu ∩ Tv �= ∅.

If G = (V,E ) is a graph then any chordal graph on V that contains G as a
subgraph is called a chordal completion of G .

Corollary 2.11.6. Let G = (V,E ) be a graph. Then tw (G ) = m − 1, where m
is the minimum, over all chordal completions G ′ of G , of the number of vertices
in a maximum complete subgraph (clique) of G ′.
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It follows from Corollary 2.11.6 that the class of graphs of tree width at most
k is minor-closed. Another related observation is that a big planar square grid
has a big tree width. It is much harder to show that the converse is also true.
The proof of the following theorem can be found in [MT].

Theorem 2.11.7. Let r,m > 0 be integers, and let G be a graph of tree-width
at least r4m2(r+2). Then G contains either K m or the r× r planar square grid
as a minor.





Chapter 3

Trees and electrical

networks

3.1 Minimum spanning tree and greedy

Given a connected graph G = (V,E ) and a weight function w : E → Q, the
minimum spanning tree problem asks for a spanning tree T = (V,F ), F ⊂ E ,
for which

∑

e∈F w (e) is minimal. A greedy algorithm (GA) is as follows: in the
initial step we choose a cheapest edge, and in each subsequent step we choose
one among the cheapest remaining edges with the restriction that the subgraph
of G formed by the selected edges is acyclic.
The first algorithm to find the minimum spanning tree was proposed by Bor̊uvka
in the 1920’s to plan the electrification of a region of Moravia. This algorithm
works only if all the costs are different. Suppose the villages in an area are
to be joined by electric wires. Each village (independently) starts bulding a
connection, of course to the (unique, since all the weights are different) nearest
village. It can (but need not) happen that both village x and village y build
the connection xy. At the end of this stage some villages are connected but
the whole system can be disconnected. Hence at the next stage the groups of
the joined villages perform the same procedure as single villages at the previous
step.

Theorem 3.1.1. Both the greedy algorithm and Bor̊uvka’s algorithm produce
a minimum spanning tree. If no two edges have the same cost then there is a
unique minimum spanning tree.

Proof. Let T1 be a spanning tree constructed by the greedy algorithm and let
T be a minimum spanning tree that has as many edges in common as possible
with T1. If T �= T1 then let e be the first edge added to T1 that does not
belong to T . Let P be the unique path in T between the endvertices of e. Since
P + e is a cycle, P must have an edge e′ which doesn’t belong to T1. When e

algorithm
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was added to T1 by the greedy algorithm, e′ was also considered; we thus have
w (e) ≤ w (e′). Then, however, T −e′ +e is a minimum spanning tree with more
edges in common with T1, a contradiction. So T = T1.
Suppose now that no two edges have the same cost. Let T2 be the spanning
tree constructed by Bor̊uvka’s method (Homework: why does Bor̊uvka’s method
produce a spanning tree?). Let T be a minimum spanning tree. Again let e be
the first edge not in T that was selected for T2. Edge e was selected since it
is the least costly connection from a subtree F to the rest of the vertices. The
path between the endvertices of e in T has an edge e′ joining a vertex of F to
a vertex out of F and thus w (e) < w (e′). This is, however, impossible since
T −e′+e is also a spanning tree and it has a smaller total cost than T . We note
that this also proves the uniqueness of a minimum spanning tree (assuming no
two edges have the same cost.

3.2 Tree isomorphism

It is an open problem to find an efficient way to recognize non-isomorphic graphs.
We describe an efficient algorithm to distinguish non-isomorphic trees. First,
however, let us spend some time for the general problem. There are two variants:
we can either try to distinguish non-isomorphic graphs algorithmically, or we
can try to find a natural function on graphs that separates non-isomorphic
graphs. In the next short discussion on graph isomorphism we unfortunately
need some concepts introduced later in the book. Still it seems that this is a
natural place for such a discussion. Bollobás, Pebody and Riordan made the
following conjecture (the intuitive notion of almost all graphs was made clear in
Section 2.8, and the Tutte polynomial is introduced in Section 7.2).

Conjecture 3.2.1. Almost all graphs are uniquely determined by their Tutte
polynomial, i.e., for almost all graphs G there is no graph H so that G and H

are not isomorphic and have the same Tutte polynomial.

The function X G and the q−dichromate are introduced in Section 7.5. Stan-
ley asked whether

Conjecture 3.2.2. The symmetric function generalization X G of the chromatic
polynomial distinguishes non-isomorphic trees.

I propose

Conjecture 3.2.3. All chordal graphs are distinguished by the q−dichromate.

Replacing the Tutte polynomial by the q−dichromate should be a reasomable
generalization in view of Theorem 7.5.10. Moreover, the isomorphism problem
for general graphs can be reduced to the isomorphism problem in the class of
chordal graphs: if G = (V,E ) is a graph then we can construct a chordal graph
ch(G ) = (V ′,E ′) defined by V ′ = V ∪ E and E ′ = (

(

V
2

)

) ∪ {ve : v incident
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with e in G }. Clearly two graphs G and G ′ are isomorphic if and only if ch(G )
and ch(G ′) are isomorphic. Conjecture 3.2.3 implies that each chordal graph
can be determined from the system of its proper (w.r.t. the edge set or w.r.t.
the vertex set) subgraphs. This concept is extensively studied. It is called edge
reconstructability and vertex reconstructability. The edge reconstructability of
chordal graphs was proved by Thatte. An important feature of chordal graphs is
their tree structure, see Section 2.11. Each tree is obviously chordal. Conjecture
3.2.3 for trees is weaker than Conjecture 3.2.2. After all of these conjectures let
us get back to the algorithmic testing of tree isomorphism.

Definition 3.2.4. A rooted tree is a tree with one distinguished vertex called
the root. If the vertex u lies on the path from its neighbour v to the root then
u is the father of v and v is a son of u. A planted tree (see Figure 3.1) is a
rooted tree together with the fixed linear orderings of the sets of the sons of
each vertex. This is naturally represented by a plane drawing of the tree, where
the root is the lowest vertex and the orderings of the sons of each vertex are
left-right orderings. Two rooted (planted) trees are isomorphic if they differ
only by names of their vertices.

Let us denote the isomorphism of trees by ∼=, the isomorphism of rooted
trees by ∼=1 and the isomorphism of planted trees by ∼=2.
We first define, by Figure 3.1, a code c(T ) of a planted tree: Each leaf different
from the root gets 01. If all sons s1,· · · ,sk of a vertex v are assigned codes
c(s1),· · · ,c(sk), then v gets c(v) = 0c(s1) · · ·c(sk)1. Finally, the code c(T ) is
defined to be the code of the root of T .

01

01

01

01

01

01 01

001011

0001011011

00001011011011

Figure 3.1. Planted tree and its code

Observation 3.2.5. Two planted trees are isomorphic if and only if their codes
are the same.
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Proof. We need to show that a code corresponds to a unique (up to renaming
of the vertices) planted tree. We use the induction on the number of vertices.
The beginning of the induction is straightforward. Each code has a form c=
(0A 1 ...A k1), where A 1 can be identified as the shortest segment which has the
same number of 0’s as 1’s, and similarly we can detect A 2,...,A k. Each A i is
the code of a son si of the root, and si is to the left of sj for i< j. Each A i is
also the code of a planted tree rooted at si and, by the induction assumption,
we already know that A i codes a unique planted tree. Hence also c codes a
unique planted tree.

A simple decoding procedure is described in Figure 3.2.

0 1
00001011011011

Figure 3.2. Decoding

Next we associate a code to each rooted tree. The leaves different from the
root will again get 01, and once we have a father u whose all sons s1,· · · ,sk

already received codes A 1,...,A k, then the code of u will be 0A ′
1 · · ·A

′
k1 where

A ′
1,· · · ,A

′
k is the lexicographic ordering of A 1 · · ·A k. We recall the definition

of the lexicographic ordering from the first chapter: Let a = (a1,· · · ,an) and
b= (b1,· · · ,bm) be two strings of integers. We say that a is lexicographically
smaller than b if a is an initial segment of b or, if j is the smallest index such
that aj �= bj , then aj < bj .
The rooted tree can again be uniquely reconstructed from its code. Finally, in
order to define a code of a tree, we will find a canonical root and define the code
of a tree as the code of the corresponding rooted tree.

Definition 3.2.6. Let G be a graph. The excentricity of a vertex is the maxi-
mum distance from the other vertices. The center C (G ) is the set of the vertices
of G with minimum excentricity.

Observation 3.2.7. For any tree T , C (T ) consists of one vertex or of two
vertices connected by an edge.

Proof. This follows from the observation that if we delete all the leaves of T ,
the center does not change.
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The definition of the center clearly does not depend on the names of the
vertices and so it is preserved under isomorphism. We can thus define the
canonical root of a tree T as follows: if T has one-vertex center then let it be
the root. Otherwise, if uv is the center, then T−uvhas exactly two components.
Let us root them in u and v, make their codes, and root T in whichever u or v
has a lexicographically smaller code.

3.3 Tree enumeration

We will calculate the number of the spanning trees of a graph. Let us start with
Cayley’s formula.

Theorem 3.3.1. For each n ≥ 2, the number of the spanning trees of the
complete graph K n equals nn−2.

Proof. Let us call a spanning tree with two marks (a circle and a square) placed
on its (not necessarily distinct) vertices a vertebrate.
Since the number of the vertebrates equals n2 times the number of the spanning
trees and the number of the functions on {1,· · · ,n} is nn, the theorem follows
from Lemma 3.3.2 below.

Lemma 3.3.2. There exists a bijection between the set of all vertebrates and
the set of all functions of {1,· · · ,n} to itself.

Proof. A vertebrate W has a unique path P between the marked vertices. Let
us list the vertices of P first in the increasing order and then in the order as they
appear on P when read from the circle to the square. This defines a permutation
of the vertices of P . We write down its decomposition into directed cycles (see
Figure 3.3). Next, there are subtrees of W ’hanging out’ from the vertices of P ;
we direct all their edges towards the vertices of P . This finishes the construction
of a directed graph D (W ). It follows that each vertex of D (W ) has exactly one
directed edge leaving it, and so D (W ) defines a function fW on {1,· · · ,n}. On
the other hand, each function f on {1,· · · ,n} uniquely determines a directed
graph D (W ) for some W , and W may be uniquely obtained from D (W ).

Next we express the number T (G ) of the spanning trees of a connected graph
G as the determinant of a minor of the Laplace matrix L(G ) = (quv)u,v∈V . The
Laplace matrix is defined as follows: quu = degG(u), quv = −1 if uv ∈ E , and
quv = 0 otherwise. Let (L(G ) : u,v) denote the minor of L(G ) obtained by
removing row u and column v of L(G ).

Theorem 3.3.3. For every connected graph G and u ∈ V , T (G ) = det(L(G ) :
u,u).

Proof. Let D be an arbitrary orientation of G and let us denote also by ID =
(dij) the incidence matrix of the orientation D , i.e. the V × E matrix defined
by due = −1 if vertex u is the tail of e in D , due = 1 if u is the head of e in
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Figure 3.3. A vertebrate and the corresponding mapping

D , and due = 0 otherwise. Let (D : u) denote the matrix obtained from D by
deleting row u. It is easy to check the following observation.

Observation 3.3.4. D D T = L(G ) and (D : u)(D : u)T = (L(G ) : u,u).

Here comes the key step of the proof.

Observation 3.3.5. Let T be a spanning subgraph of G with |V |−1 edges. Let R
be an orientation of T , and let u be a vertex of G . Then det(IR : u) ∈ {1,−1,0}
and det(IR : u) �= 0 if and only if T is a tree.

Proof. If a vertex v �= u is isolated in T then det(IR : u) = 0 since it has a
zero row. If there is v ∈ V − u which has degree 1 in T then we can expand
det(IR : u) along the v-row, and consider a smaller matrix. If none of the two
cases applies then each v �= u has degree 2 in T and u has degree 0. In this case
det(IR : u) = 0

To finish the proof of Theorem 3.3.3, we use the Binet-Cauchy formula. It
says that for an arbitrary n×m matrix A , det(AA T ) =

∑

J det(A J )2, where the
sum is over all n-element subsets J ⊂ {1,· · · ,m } and A J denotes the matrix
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obtained from A by deleting all columns whose indices do not belong to J.
Hence, by the Binet-Cauchy formula,

det(L(G ) : u,u) = det((ID : u)(ID : u)T ) =
∑

J

(det((ID : u)J))
2
.

By Observation 3.3.5 this is exactly the number of spanning trees of G .

3.4 Electrical networks

The number of spanning trees of a graph was first studied in connection with
calculations in electrical networks.
An electrical network is a multigraph G = (V,E ) where each edge e is assigned
a real number r(e) called resistance. The conductance of e is c(e) = 1/r(e). Let
e= uv. If there is a potential difference p((uv)) from u to v then the electric
current w (e) flows in e from u to v according to Ohm’s law (OL):

w (uv) =
p(uv)

r(e)
.

Let’s make this precise. We started with an undirected multigraph but the cur-
rents flow in some direction. If the potential difference in a directed edge (u,v)
is p(u,v) then the potential difference in the reversed edge (v,u) is p(v,u) =
−p(u,v). The functions p and w are governed by the laws of Kirchhoff:

Kirchhoff’s potential (voltage) law (KPL) states that the potential differences
sum to 0 around any cycle of G . KPL is equivalent to saying that there exist
absolute potentials V (u),u ∈ V so that for each edge e= (uv), p(uv) = V (u) −
V (v). If the network is connected and the potential differences p(e) are given,
then we can choose arbitrarily the potential of one of the vertices (usually, it is
chosen to be 0) and this determines the other vertex potentials.
Kirchhoff’s current law (KCL) states that the total current entering a vertex v

is equal to the total current leaving v:

E v +
∑

(x,v)∈E

w (x,v) = Lv +
∑

(v,x)∈E

w (v,x),

where E v denotes the amount of current entering v from outside of G and Lv

denotes the amount of current leaving v to outside of G .
If the only vertices where a non-zero current enters or leaves the network are
s,t, then by KCL the total current from s to t is E s = Lt. If the potential
difference from s to t is p, then by Ohm’s law r= p/E s is the total resistance
of the network between s and t.
A solution of the electrical network is the current function w . There are several
tools in practical calculations: for a series connection the resistances add, for
a parallel connection the conductances add, and two vertices with the same
absolute potentials get shorted (identified); see Figure 3.4.
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Figure 3.4. Resistors connected in series and in parallel; by symmetry

(all resistors are assumed to be the same) V (a) = V (c) and V (d) = V (f)

so a is identified with c and d is identified with f

The star-triangle transformation appears for the first time in this book: Let
v be a vertex of degree three connected to vertices a,b,c (the star), and let no
current be allowed to enter or leave the network at v. Then we can replace the
star by the triangle as shown in Figure 3.5, where the resistances are calculated.
The corresponding networks have precisely the same currents leaving vertices
a,b,c.

A theorem of Kirchhoff states that any network has a solution. But first let
us observe that there is always at most one solution.

Lemma 3.4.1. Each network has at most one solution.

Proof. For simplicity we consider only the case when all resistances are the
same. If there were two different currents, i.e., functions on the set of the
directed edges satisfying KPL, KCL and OL, then their difference is a non-zero
current satisfying KPL, KCL and OL, in the network which no current enters or
leaves. In a circulation, if a non-zero (say positive) current flows in some edge,
it is pushed further and since the network is finite, there will be a directed cycle
where a positive current flows. That contradicts KPL.

Here comes the theorem of Kirchhoff.
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Figure 3.5. A1 = S/A, B1 = S/B, C1 = S/C, S = AB + BC + CA

Theorem 3.4.2. Let (uv) be a directed edge of a connected network G where
each edge has a unit resistance. Let us denote by N (s,u,v,t) the number of
spanning trees of G in which the unique path from s to t contains u and v, in
this order. We recall (see Theorem 3.3.3) that T (G ) denotes the total number
of spanning trees of G . Let w be a function on the set of the directed edges of
G defined by

w (uv) =
N (s,u,v,t) − N (s,v,u,t)

T (G )
.

Then w is a current of unit size from s to tsatisfying KCL, KPL, OL.

Proof. It follows from its definition that w satisfies OL and KPL. If T is a
spanning tree then let w (T ) be the current of size 1 along the unique path P from
s to t in T , i.e. w (T )(uv) = 1 if uv appears in P in this order, w (T )(uv) = −1
if uv appears in P in the opposite order, and w (T ) = 0 otherwise. We have

N (s,u,v,t) − N (s,v,u,t) =
∑

T

w (T )(uv).

The function
∑

T w (T ) satisfies KCL since it is a sum of elementary functions
which clearly satisfy KCL.

Let us describe two constructions of a current in a network G , with no current
leaving or entering the network at vertices other than s1,· · · ,sk. By Lemma
3.4.1, the two constructions output the same current.

The approach assuming KCL and OL. Consider a flow f(uv) with outlets
(sources and sinks) s1,...,sk. In order to turn the flow to a proper electric
current with outlets s1,...,sk all we have to make sure is that KPL holds, i.e.,
that

∑

e∈C

f(e)r(e) = 0

for every oriented cycle C . The flow f satisfying this condition is the current.
The approach assuming KPL and OL. Consider absolute potentials V (u) on

the vertices. This gives a current with outlets s1,...,sk if and only if KCL
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holds, i.e., for each u ∈ V − {s1,...,sk},

∑

uw∈E

V (u) − V (w )

r(uw )
= 0.

We recall that the conductance c(uv) = 1/r(uv). Let C (u) =
∑

{u,v}∈E c(uv).
The KCL condition can be written as

C (u)V (u) =
∑

uv∈E

c(uv)V (v).

If c(uv) = 1 everywhere then this condition says that V is a discrete harmonic
function with boundary s1,...,sk.

Definition 3.4.3. Let G = (V,E ) be a graph and S ⊂ V . A real function f on
V is said to be a discrete harmonic function (DHF) on G with boundary S if

f(x) =
1

deg(x)

∑

{x,y}∈E

f(y)

whenever x ∈ V (G ) − S and deg(x) ≥ 1.

Let us now introduce the notion of the energy in the network. We are given
an edge uv with resistance r(uv) and potential difference p(uv) = V (u)− V (v),
and hence with a current of size w (uv) = p(uv)/r(uv) = (V (u) − V (v))/r(uv).
The energy in uv is defined to be

w 2(uv)r(uv) =
(V (u) − V (v))2

r(uv)
= (V (u) − V (v))w (uv).

The total energy in the network is the sum of the energies of the edges, i.e.

∑

{uv}∈E

w 2(uv)r(uv).

Let us formulate Dirichlet’s principle:

Theorem 3.4.4. Let G be an electrical network with resistances r(e), outlets
s1,· · · ,sk and absolute potentials V (si),i= 1,...,k, for the outlets. Then there
are absolute potentials V (u),u ∈ V − {s1,...,sk}, so that the energy

∑

{uv}∈E

(V (u) − V (v))2

r(uv)

is minimal. These absolute potentials give a proper electric current with outlets
among s1,· · · ,sk.
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Proof. The energy is a continuous function of the absolute potentials and it
goes to infinity when the maximum of the absolute potentials goes to infinity.
This implies that the infimum of the energy is attained for some V0(u),u ∈
V − {s1,...,sk}. For this solution we must have the derivative of the energy
with respect to each V (u),u ∈ V − {s1,...,sk}, equal to zero. Hence for each
u ∈ V − {s1,...,sk},

∑

{uw}∈E

2(V (u) − V (w ))

r(uw )
= 0.

Hence the solution defines the current satisfying KCL.

Thompson’s principle reads as follows:

Theorem 3.4.5. Let G be an electrical network with resistances r(e) and outlets
s1,· · · ,sk. Let f(si) ∈ R, i = 1,...,k such that

∑

i f(si) = 0. We again
consider the energy function

∑

{u,v}∈E

f2(uv)r(uv)

for flows f(uv) in which a flow of size f(si) (possibly negative) enters the net-
work at outlet si. Then there is such a flow f minimizing the energy, and this
flow satisfies KPL and so it is a proper electric current.

Proof. Similarly as in the proof of Theorem 3.4.4 we observe that a flow f0

minimizing the energy exists. For each fixed cycle C let f(ǫ ) be the flow obtained
from f0 by increasing it in each edge of C by ǫ . The energy as a function of ǫ
has its minimum for ǫ = 0, and there the derivative of the energy with respect
to ǫ equals zero, and so KPL holds for the cycle C .

The next theorem is Rayleigh’s conservation of energy principle.

Theorem 3.4.6. Let D = (V,E ) be a directed graph and let f be an s,t-flow,
i.e., a function on the directed edges satisfying KCL at each vertex other than
s,t. Let f(s) =

∑

u f(su) −
∑

v f(vs) and let V (u) be any function on the
vertices. Then

(V (s) − V (t))f(s) =
∑

uv∈E

(V (u) − V (v))f(uv).

Proof.
∑

uv∈E

(V (u) − V (v))f(uv) =
∑

u∈V

V (u)(
∑

uv∈E

f(uv) −
∑

vu∈E

f(vu)) =

V (s)f(s) − V (t)f(t) = (V (s) − V (t))f(s).
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Corollary 3.4.7. The total energy in an electric current from s to tis equal to
(V (s) − V (t))w (s), where w (s) is the value of the current.

The effective conductance C eff = C eff(s,t) of an electrical network from s

to t is the value of the current from s to t if s,tare set at potential difference
1. The effective resistance R eff = 1/C eff is the potential difference between s,t

ensuring a current of size 1 from s to t.
Dirichlet’s principle and Thompson’s principle have the following consequences.

Corollary 3.4.8.

Ceff (s,t) = inf
V





∑

{uv}∈E

(V (u) − V (v))2

r(uv)
: V (s) = 1,V (t) = 0



,

R eff (s,t) = inf
f





∑

{uv}∈E

f2(uv)r(uv) : f(xy) is an s-t flow of size 1



.

Corollary 3.4.9. If the resistance of an edge is increased (in particular if the
edge is deleted), then the effective resistance (between two vertices) doesn’t de-
crease.

3.5 Random walks

We learned in the previous section that the function of absolute potentials is a
discrete harmonic function (DHF). Another natural source of DHFs are random
walks on graphs. A (discrete time) Markov chain on a finite or countable set V
of states is a sequence of random variables X 0,X 1,· · · taking values in V such
that for all x0,· · · ,xt+1 ∈ V , the probability of X t+1 = xt+1, conditioned on
X 0 = x0,· · · ,X t = xt, depends only on xt and xt+1. Markov chains on graphs
are called random walks.
We consider directed multigraph G = (V,E ) with positive edge-weights. Let
auv be the sum of the weights of the multiple edges directed from u to v, and
let A u =

∑

v auv . Let P be the V × V matrix defined by

Puv = auv/A u.

Thus P is a matrix with non-negative entries in which each row-sum is 1. We
interpret the matrix P as the transition probability matrix of a random walk on
G : Puv describes the probability of going from u to v in one step. The matrix
P together with the initial distribution X 0 determines the random walk by

X t = X 0P
t.

The entries of the matrix P t are called t-step transition probabilities. A state i
is accessible from state j if for some t, P t

j,i > 0. A Markov chain is irreducible
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if each state is accessible from any other state. Let Pe(i,∞) be the probability
(called escape probability) that, when starting at state i, we never return back
to it. A state i is transient if Pe(i,∞) > 0, and it is recurrent otherwise. A
random walk is recurrent if all its states are recurrent. We futher denote by
hi,i the expected time to return to state iwhen starting at state i. A recurrent
state i is positive recurrent if hi,i < ∞. Finally, a state i is periodic if there is
∆ > 1 such that

Pr(X t+s = i|X t = i) = 0

unless s is divisible by ∆. A Markov chain is periodic if all its states are periodic.

Definition 3.5.1. An aperiodic, positive recurrent state is an ergodic state. A
Markov chain is ergodic if all its states are ergodic.

A stationary distribution of a Markov chain is a distribution π such that
π = π P , where P is the corresponding transition matrix. The following two
fundamental theorems on Markov chains characterize chains that converge to
stationary distributions.

Theorem 3.5.2. Any irreducible aperiodic Markov chain with a finite set of
states V = {0,1,· · · ,n} has the following properties:

(1) The chain has a unique stationary distribution π .

(2) For all j and i, the limit limt→∞ P t
j,i exists and it is independent of j.

(3) π (i) = limt→∞ P t
j,i = 1/hi,i.

Theorem 3.5.3. Any irreducible aperiodic Markov chain with V countable in-
finite belongs to one of the following two categories:

(1) The chain is ergodic; for all j and i, the limit limt→∞ P t
j,i exists and it

is independent of j, and the chain has a unique stationary distribution
π (i) = limt→∞ P t

j,i = 1/hi,i.

(2) No state is positive recurrent; for all j and i, limt→∞ P t
j,i = 0, and the

chain has no stationary distribution.

Random walks provide another construction of a current in an electrical
network. The electrical network is a weighted multigraph where the weight is
given by the conductance; we will denote by cuv the sum of the conductances of
all the parallel edges with the endvertices u,v. Let P denote the corresponding
symmetric transition probability matrix.

Theorem 3.5.4. Let G be a connected electrical network and let s �= t be
vertices of G . Let us consider the random walk whose transition probability
matrix P is defined by the conductances c(u,v). For a vertex u let

V (u) = Pr(starting at u, we get to s before we get to t).

Hence V (s) = 1 and V (t) = 0. Then V (u) gives the absolute potential for the
unit current from s to t.
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Proof. If vertex u is different from s,tthen we have

V (u) =
∑

v

PuvV (v) =
∑

v

c(uv)

C (u)V (v)
,

and hence
C (u)V (u) =

∑

v

c(uv)V (v).

The theorem now follows from the fact proven earlier that each electrical network
has a unique solution (Lemma 3.4.1, Theorem 3.4.2).



Chapter 4

Matroids

Matroids provide a successful connection between graph theory, geometry and
linear algebra. Some of the dualities we will discuss later are rooted in the the-
ory of matroids. Moreover, matroids provide a basis for discrete optimization.
Several important algorithms, for instance the greedy algorithm, belong to the
matroid world. We make a notational agreement in this chapter: the graphs are
allowed to have loops and multiple edges.

Definition 4.0.5. Let X be a finite set and S ⊂ 2X . We say that M = (X ,S)
is a matroid if the following conditions are satisfied:

(I1) ∅ ∈ S,

(I2) A ∈ S and A ′ ⊂ A then A ′ ∈ S (S is hereditary),

(I3) U,V ∈ S and |U | = |V | + 1 then there is x ∈ U − V so that V ∪ {x} ∈ S

(S satisfies an exchange axiom).

Example 4.0.6. Let X be the set of all columns of a matrix over a field and let
S consist of all the subsets of X that are linearly independent. Then (X ,S) is
a matroid (called vectorial or linear matroid).

Definition 4.0.7. Let M = (X ,S) be a matroid. The elements of S are called
independent sets of M . The maximal elements of S (w.r.t. inclusion) are called
bases. Let A ⊂ X . The rank of A , r(A ), is defined by r(A ) = max{|A ′|;A ′ ⊂
A,A ′ ∈ S}. The closure of A , σ (A ), equals {x;r(A ∪{x}) = r(A )}. If A = σ (A )
then A is closed.

By repeated use of (I3) in Definition 4.0.5 we get

Corollary 4.0.8. If U,V ∈ S and |U | > |V | then there is Z ⊂ U − V , |Z | =
|U − V | and V ∪ Z ∈ S. All bases have the same cardinality.

Theorem 4.0.9. A non-empty collection B of subsets of X is the set of all
bases of a matroid on X if and only if the following condition is satisfied.



66 CHAPTER 4. MATROIDS

(B1) If B 1,B 2 ∈ B and x ∈ B 1 − B 2 then there is y ∈ B 2 − B 1 such that
B 1 − {x} ∪ {y} ∈ B.

Proof. Property (B1) is true for matroids: we apply (I3) to B 1 − {x},B 2. To
show the other implication we need to prove that each hereditary system satis-
fying (B1) satisfies (I3) too. First we observe that (B1) implies that no element
of B is a strict subset of another one, and by repeated application of (B1) we
observe that in fact all the elements of B have the same size. To show (I3)
let BU,B V be bases containing U,V from (I3) and such that their symmetric
difference is as small as possible. If (B V ∩ (U − V )) �= ∅ then any element from
there may be added to V and (I3) holds. We show that (B V ∩(U −V )) = ∅ leads
to a contradiction with the choice of BU,B V : If x ∈ B V − BU − V then (B1)
produces a pair of bases with smaller symmetric difference. Hence B V −BU −V

is empty. But then necessarily |B V | < |BU |, a contradiction.

Theorem 4.0.10. A collection S of subsets of X is the set of all independent
sets of a matroid on X if and only if (I1), (I2) and the following condition are
satisfied.

(I3’) If A is any subset of X then all the maximal (w.r.t. inclusion) subsets Y
of A with Y ∈ S have the same cardinality.

Proof. Property (I3’) is clerly equivalent to (I3).

Theorem 4.0.11. An integer function r on 2X is a rank function of a matroid
on X if and only if the following conditions are satisfied.

(R1) r(∅) = 0,

(R2) r(Y ) ≤ r(Y ∪ {y}) ≤ r(Y ) + 1,

(R3) If r(Y ∪ {y}) = r(Y ∪ {z}) = r(Y ) then r(Y ) = r(Y ∪ {y,z}).

Proof. Clearly (R1),(R2) hold for matroids. To show (R3) let B be a maximal
independent subset of Y . If r(Y ) < r(Y ∪ {y,z}) then B is not maximal inde-
pendent in Y ∪ {y,z}, but any enlargement leads to a contradiction.
To show the other direction we say that A is independent if r(A ) = |A |. Ob-
viously the set of the independent sets satisfies (I1). If A is independent and
B ⊂ A then r(B ) = |B | since otherwise, by (R2), r(A ) ≤ |B − A |+ r(B ) < |A |.
Hence (I2) holds. If (I3) does not hold for U,V then by repeated application of
(R3) we get that r(V ∪(U −V )) = r(V ), but this set contains U , a contradiction.

Theorem 4.0.12. An integer function on 2X is a rank function of a matroid
on X if and only if the following conditions are satisfied.

(R1’) 0 ≤ r(Y ) ≤ |Y |,

(R2’) Z ⊂ Y implies r(Z ) ≤ r(Y ),

(R3’) r(Y ∪Z )+r(Y ∩Z ) ≤ r(Y )+r(Z ). This property is called submodularity.
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Proof. Clearly (R1’) and (R2’) hold for matroids. To show (R3’) let B be a
maximal independent set in Y ∩ Z and let B Y ,BZ be maximal independent in
Y,Z containing B . We have r(Y ∩ Z ) = |B Y ∩ BZ | and clearly r(B Y ∪ BZ) ≤
|Y ∪ Z |. Hence (R3’) follows. On the other hand, (R1),(R2) and (R3) follow
easily from (R1’), (R2’) and (R3’).

Theorem 4.0.13. The closure σ (A ) is the smallest (w.r.t. inclusion) closed
set containing A .

Proof. First observe that σ (A ) is closed, since r(σ (A ) ∪ {x}) = r(σ (A )) implies
r(A ∪ {x}) ≤ r(σ (A ) ∪ {x}) = r(σ (A )) = r(A ). To show the second part let
A ⊂ C , C closed and x ∈ (σ (A )−C ). Hence r(C ∪{x}) > r(C ) and this implies
r(A ∪ {x}) > r(A ). (exercise: why?) This contradicts x ∈ σ (A ).

Theorem 4.0.14. A function σ : 2X → 2X is the closure operator of a matroid
on X if and only if the following conditions are satisfied.

(S1) Y ⊂ σ (Y ),

(S2) Z ⊂ Y then σ (Z ) ⊂ σ (Y ),

(S3) σ (σ (Y )) = σ (Y ),

(S4) if y /∈ σ (Y ) but y ∈ σ (Y ∪ {z}) then z ∈ σ (Y ∪ {y}). This property is
called the Steinitz-MacLane exchange axiom.

We say that two matroids are isomorphic if they differ only in the names of
their groundset elements.

4.1 Examples of matroids

We already know vectorial matroids. A matroid is representable if it is isomor-
phic to a vectorial matroid.
Let G = (V,E ) be a graph and let M (G ) = (E ,S) where S = {F ⊂ E ;F forest}.
Then M (G ) is a matroid, called the cycle matroid of G . Its rank function is
r(F ) = |V | − c(F ), where we recall that c(F ) denotes the number of connected
components of the spanning subgraph (V,F ). The matroids isomorphic to cycle
matroids of graphs are called graphic matroids.
Let G = (V,E ) be a graph. The matching matroid of G is the pair (V,S) where
A ∈ S if and only if A may be covered by a matching of G . This is a matroid
since the basis axiom corresponds to the exchange along an alternating path of
two maximum matchings of G .

A matroid is simple if r(A ) = |A | whenever |A | < 3. Simple matroids of
rank 3 have a natural representation that we now describe. Each matroid is
determined by its rank function and so each simple matroid M of rank 3 is
determined by the set L(M ) = {A ⊂ X ; |A | > 2,r(A ) = 2,A closed }; if |A | > 2
then r(A ) = 2 if and only if A is a subset of an element of L(M ).
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Lemma 4.1.1. If A,B ∈ L(M ) then |A ∩ B | ≤ 1.

Proof. We assume for a contradiction {x,z} ⊂ A ∩B , a ∈ A −B and b∈ B −A .
Then both a,b belong to σ ({x,z}) and hence, by Theorem 4.0.13, both a,b

belong to any closed set containing {x,z}: a contradiction.

A set C ⊂ 2X is a configuration on X if each element of C has at least
3 elements and any pair of elements of C have at most one element of X in
common.

Theorem 4.1.2. Each configuration is the set L(M ) of a simple matroid of
rank 3 on X .

Proof. Given C , for each A ⊂ X define r(A ) = |A | if |A | ≤ 2, and if |A | > 2 then
r(A ) = 2 if and only if A is a subset of an element of C ; r(A ) = 3 otherwise. We
show that r is a rank function of a matroid. Note that (R 1,(R 2) are obviously
satisfied. We show (R 3): If r(Y ∪ {y}) = r(Y ∪ {z}) = r(Y ) then |Y | ≥ 2
and both Y ∪ {y}, Y ∪ {z} are subsets of an element of C . They are in fact
subsets of the same element of C since their intersection has size 2. Hence
r(Y ) = r(Y ∪ {y,z}).

Hence we can represent simple matroids of rank 3 by a system of ’lines’ in
the plane corresponding to the elements of L(M ). The most famous picture
of matroid theory, the Fano matroid F7, is depicted in Figure 4.1. The Fano
matroid is the vectorial matroid, over G F (2), of the matrix whose columns are
all non-zero vectors of G F (2)3.

010 011 001

111

101

100

110

Figure 4.1. Fano matroid F7
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4.2 Greedy algorithm

Let (X ,S) be a set system and w a weight function on X = {1,2,· · · ,n}. In a
discrete optimization problem we may want to find J ∈ S such that

∑

i∈J w i is
maximized. We encountered the greedy algorithm (GA) in Section 3.1. There,
it was shown that GA correctly solves the minimum spanning tree problem (in
order to turn the minimum spanning tree problem into a maximization problem
we change the sign of each weight). Let us first define the greedy algorithm in
a more general way, as an algorithm for the general optimisation problem that
works as follows:

• Order the elements of X so that w1 ≥ w2 ≥ · · · ≥ wn.

• J := ∅.

• For i= 1,· · · ,n do: if J ∪ {i} ∈ S and w i ≥ 0 then J := J ∪ {i}.

The next theorem shows that applicability of GA characterizes matroids.

Theorem 4.2.1. Let (X ,S) be a hereditary non-empty set system. Then the
greedy algorithm solves the discrete optimization problem correctly for any weight
function w on X if and only if (X ,S) is a matroid.

Proof. If a hereditary system is not a matroid then it does not satisfy (I3’) and
it is not difficult to construct a weight function w for which the greedy algorithm
does not work. Let us prove the opposite implication: Let m be maximal such
that wm ≥ 0. Let z′ be the characteristic vector of a set produced by the
greedy algorithm and let z be the characteristic vector of any other set of S.
Let Ti = {1,· · · ,i}, i= 1,· · · ,m . We notice that for each i

z′(Ti) =
∑

j≤i

z′j ≥
∑

j≤i

zj = z(Ti),

since J ∩ Ti is a maximal subset of Ti which belongs to S (by the definition of
GA). We have

wz≤

m
∑

i=1

w izi =

m
∑

i=1

w i(z(Ti) − z(Ti−1)) =

m−1
∑

i=1

(w i − w i+1)z(Ti) + wmz(Tm) ≤

m−1
∑

i=1

(w i − w i+1)z
′(Ti) + wmz

′(Tm) = wz′.

The only property we used in the proof is that z≥ 0 and z(Ti) ≤ z′(Ti) =
r(Ti). GA thus solves also the following problem:

maximize
∑

i∈X w izi

z(A ) =
∑

i∈A zi ≤ r(A ), A ⊂ X ;
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zi ≥ 0, i∈ X .
The problems that may be described in this form are called linear programs,
and the part of optimization which studies linear programs is called linear pro-
gramming.

Corollary 4.2.2. Edmonds Matroid Polytope theorem: For any matroid, the
convex hull of the characteristic vectors of the independent sets is equal to P =
{z≥ 0; for each A ⊂ X ,z(A ) ≤ r(A )}.

Proof. (sketch) The convex hull is clearly a subset of P . By the Minkowski-Weyl
theorem introduced in the beginning of the book we have that P , a bounded
intersection of finitely many half-spaces, is a polytope, i.e. a convex hull of its
vertices. Each vertex c of P is characterized by the existence of a half-space
{z;wz ≤ b} which intersects P exactly in {c}. Since GA solves any problem
max{wz;z∈ P}, each non-empty intersection of P with a half-space necessarily
contains the incidence vector of an independent set. In particular, each vertex
of P is the incidence vector of an independent set, and the theorem follows.

Finally we remark that the greedy algorithm is polynomial time if there is a
polynomial algorithm to answer the questions ’Is J independent ?’. It is usual for
matroids to be given, for algorithmic purposes, by such an independence-testing
oracle.

4.3 Circuits

Definition 4.3.1. A circuit in a matroid is a minimal (w.r.t. inclusion) non-
empty dependent set.

The circuits of graphic matroids are the cycles of the underlying graphs.

Theorem 4.3.2. A non-empty set C is the set of the circuits of a matroid if
and only if the following conditions are satisfied.

(C1) If C1 �= C2 are circuits then C1 is not a subset of C2,

(C2) If C1 �= C2 are circuits and z ∈ C1 ∩ C2 then (C1 ∪ C2) − z contains a
circuit.

Proof. First we show that a matroid satisfies the above properties. The first is
obvious. For the second we have r(C1 ∪ C2) ≤ r(C1) + r(C2) − r(C1 ∩ C2) =
|C1| + |C2| − |C1 ∩ C2| − 2 = |C1 ∪ C2| − 2. Hence (C1 ∪ C2) − z must be
dependent. On the other hand, we define S to be the set of all subsets which do
not contain an element of C and show that (X ,S) is a matroid. Axioms (I1) and
(I2) are obvious and we show (I3’): let A ⊂ X and for a contradiction let J1,J2

be maximal subsets of A that belong to S and |J1| < |J2|, and let |J1∩J2| be as
large as possible. Let x ∈ J1−J2 and C the unique circuit of J2∪x. Necessarily
there is f ∈ C − J1 and J3 = (J2 ∪ x)− f belongs to S by the uniqueness of C .
Then |J3 ∩ J1| < |J2 ∩ J1|, a contradiction.
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Corollary 4.3.3. If A is independent, then A∪{x} contains at most one circuit.

Proposition 4.3.4. Let A ⊂ X and x /∈ A . Then x ∈ σ (A ) if and only if there
is a circuit C with x ∈ C ⊂ A ∪ {x}.

Proof. If x ∈ σ (A ) and B is maximal independent in A , then B ∪x is dependent
and hence contains a circuit. On the other hand, let D be a maximal indepen-
dent set in A containing C − x. Then D is also maximal independent in A ∪ x

and hence x ∈ σ (A ).

4.4 Basic operations

Definition 4.4.1. A k-truncation of M is a matroid M ′ on X such that A is
independent in M ′ if and only if |A | ≤ k and A is independent in M .

Each truncation of a matroid is a matroid.

Definition 4.4.2. Let M 1,M 2 be matroids and X 1 ∩X 2 = ∅. M 1 +M 2 (direct
sum of M 1,M 2) is the matroid on X 1 ∪ X 2 such that A is independent if and
only if A ∩ X 1 is independent in M 1 and A ∩ X 2 is independent in M 2.

Definition 4.4.3. Let X be a disjoint union of X i,i= 1,· · · ,n and let Si =
{A ⊂ X i; |A | ≤ 1}. Then

∑

i(X i,Si) is called a partition matroid.

It follows immediately from the definition that M \ U = (X \ U,S|X\U ) is a
matroid. This operation is called deletion of U .

Definition 4.4.4. Let T ⊂ X and let J be a maximal independent subset of
T ′ = X \ T . M /T ′ (contraction of T ′) is a matroid on T defined so that A is
independent if and only if A ∪ J is independent in M .

Theorem 4.4.5. M /T ′ is a matroid and its rank function r′ satisfies r′(A ) =
r(A ∪ T ) − r(T ). Hence M /T ′ does not depend on the choice of J.

Proof. Obviously M /T ′ satisfies (I1) and (I2). Let A ⊂ T and let J′ be a
maximal subset of A that is independent in M /T ′. Observe that J ∪ J′ is
maximal independent in A ∪ T ′, by the choices of J,J′.

4.5 Duality

Definition 4.5.1. Let M = (X ,S) be a matroid. Its dual matroid is M ∗ =
(X ,S∗) such that I∈ S∗ if and only if r(X \ I) = r(X ) (r is the rank of M ).

Proposition 4.5.2. M ∗ is a matroid and its rank function r∗ satisfies r∗(A ) =
|A | − r(X ) + r(X \ A ).

Proof. Again the only nontrivial property is (I3’). Let A ⊂ X and let J be a
maximal subset of A which belongs to S∗. Let B be a maximal independent (in
M ) subset of X \ A and let B ′ be a basis of M containing B and B ′ ⊂ X \ J.
If there is x ∈ (A \ J) \ B ′ then J was not maximal (a contradiction). Hence
A \ J ⊂ B ′ and the formula for r∗ follows.
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The objects (bases, circuits, closed sets) of M ∗ are called dual objects or
coobjects, e.g., dual bases or cobases. Let us note some simple facts: M ∗∗ =
M . The dual bases are exactly complements of the bases. The cocircuits are
minimal (w.r.t. inclusion) sets intersecting each basis. The cocircuits are exactly
complements of hyperplanes. A hyperplane of M is a closed set whose rank is
one less than r(X )).

Proposition 4.5.3. Let G be a graph. Then the cocircuits of the graphic ma-
troid M (G ) are exactly the minimal edge cuts.

Proof. Note that edge cuts are exactly the sets of edges intersecting each basis
of M (G ).

Corollary 4.5.4. Let G be a planar graph and G ∗ its geometric dual. Then
M (G ∗) = M (G )∗.

Definition 4.5.5. M is called a minor of N if M is obtained from N by some
finite sequence of deletions and contractions.

Let G be a graph. A minor of G is a graph obtained from G by deletions
and contractions of edges. Observe the following: H is a minor of G if and only
if M (H ) is a minor of M (G ).
The following series of propositions are proved by comparing the rank functions
(we recall that the rank function uniquely determines the matroid).

Proposition 4.5.6. We have

(1) (M /T )∗ = M ∗ \ T ,

(2) (M \ T )∗ = M ∗/T ,

(3) M is a minor of N if and only if M ∗ is a minor of N ∗,

(4) M is a minor of N if and only if M may be obtained from N by a deletion
(contraction) followed by a contraction (deletion).

A matroid M is called cographic if it is isomorphic to M ∗(G ) for some graph
G . It is also called a cocycle matroid of G . For example, it is not difficult to ob-
serve that U 2

4 = ({1,2,3,4},{∅,1,2,3,4,12,13,14,23,24,34}) is not cographic.
Next we recall Kuratowski’s theorem (Theorem 2.10.15): G is planar if and only
if G has no minor isomorphic to K 5 or K 3,3.

Proposition 4.5.7. M (K 5) and M (K 3,3) are not cographic.

Proof. Assume M (K 3,3) = M ∗(G ). Then |E (G )| = 9, G is a simple graph
because no pair of edges separates K 3,3, and each edge cut of G contains at
least 4 edges. Hence each degree of G is at least 4 and we get 4|V (G )| ≤ 18:
a contradiction because G is simple. For K 5 one can use the fact that such a
graph G has no circuit of length 3.
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Next comes a restatement of a classical theorem of Whitney about planar
graphs.

Theorem 4.5.8. G is planar if and only if its cycle matroid is cographic.

Proof. By Corollary 4.5.4, if G is planar then M (G ) = M ∗(G ∗). To show the
other direction, using the Kuratowski theorem, it suffices to observe that a minor
of a cographic matroid is cographic (by dualizing the statement that a minor of
a graphic matroid is graphic), and use Proposition 4.5.7.

Here is an equivalent formulation: a matroid M is both graphic and co-
graphic if and only if M is the cycle matroid of a planar graph.

4.6 Representable matroids

A matroid is called binary if it is representable over the 2-element field G F (2).
It is called regular if it is representable over an arbitrary field. Let A be a
matrix representing matroid M and let A ′ be obtained from A by operations of
adding a row to another row. Then again A ′ represents M . A representation of
a matroid M is called standard w.r.t. a basis B if it has the form I|A , where I is
the identity matrix of r(M ) rows whose columns are indexed by the elements of
B . Since the elementary row operations do not change the matroid, we get that
each representable matroid has a standard representation w.r.t. an arbitrary
basis.

Theorem 4.6.1. Let I|A be a standard representation of M . Then A T |I is a
representation of M ∗.

Corollary 4.6.2. If M is representable over a field F and N is a minor of M
then both M ∗ and N are representable over F.

Proof. Deletion clearly corresponds to deletion of the corresponding column in
a representation. For contraction we use Theorem 4.6.1 and the duality between
contraction and deletion.

Clearly, U 4
2 is not binary. Hence binary matroids do not have U 4

2 as a minor.
Next we list some seminal results of Tutte, characterizing classes of matroids by
forbidden minors.

Theorem 4.6.3. M is binary if and only if M does not have U 4
2 as a minor.

M is regular if and only if M is binary and does not have F7 or F ∗
7 as a minor.

M is graphic if and only if M is regular and does not have M (K 5)
∗ or M (K 3,3)

∗

as a minor.

We recall that F7 denotes the Fano matroid. It is easy to observe that the
graphic matroids are regular: Let D = (V,E ) be an arbitrary orientation of G
and let ID be the incidence matrix of D (see Section 2.3). Then ID represents
M (G ) over an arbitrary field, since a set of columns is linearly dependent if and
only if its index set contains a cycle of G .
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4.7 Matroid intersection

Given two matroids on the same set X , the matroid intersection problem is to
find a common independent set of maximum cardinality. Let us mention two
special cases: maximum matching in bipartite graphs (here the two matroids
are partition matroids), and maximum branching in a digraph (branching is a
forest in which each node has in-degree at most one); here one of the matroids
is the corresponding graphic matroid and the second one is a partition matroid
of the set-system of sets of the incoming edges at each vertex.

Theorem 4.7.1. For two matroids (X ,S1) and (X ,S2), the maximum |J| such
that J ∈ S1 ∩ S2 equals the minimum of r1(A ) + r2(X \ A ), over all A ⊂ X .

Proof. If J ∈ S1∩S2 then for each A ⊂ X , J∩A ∈ S1 and J∩(X \A ) ∈ S2. Hence
|J| ≤ r1(A ) + r2(X \ A ). The second part is proved by induction on |X |. Let k
equal the minimum of r1(A ) + r2(X \ A ) and let x be such that {x} ∈ S1 ∩ S2.
Note: if there is no such x then k= 0, and if we take A = {x;r1({x}) = 0}, we
are done. Let X ′ = X − x. If the minimum over A ⊂ X ′ of r1(A ) + r2(X \ A )
also equals k then we are done by the induction assumption. Let S ′

i denote Si

contracted on X \ x. If the minimum over A ⊂ X ′ of r′1(A ) + r′2(X \ A ) is at
least k− 1 then the induction gives a common independent set of S ′

1,S
′
2 of size

k− 1 and adding x gives the desired common independent set of S1,S2. If none
of these happens, then there are A,B ⊂ X ′ so that

r1(A ) + r2(X
′ \ A ) ≤ k− 1

and

r1(B ∪ {x}) − 1 + r2((X
′ \ B ) ∪ {x}) − 1 ≤ k− 2.

Adding and applying submodularity we get

r1(A ∪B ∪{x})+r1(A ∩B )+r2(X \ (A ∩B ))+r2(X \ (A ∪B ∪{x})) ≤ 2k− 1.

It follows that the sum of the middle two terms or the sum of the outer two
terms is at most k− 1, a contradiction.

A polynomial time algorithm exists provided the rank can be found in poly-
nomial time, even for the weighted case, but we do not include this here.

4.8 Matroid union and min-max theorems

The matroid union is closely related to the matroid intersection, as we will see.

Theorem 4.8.1. Let M ′ = (X ′,S ′) be a matroid and f an arbitrary function
from X ′ to X . Let S = {f(I);I ∈ S ′}. Then (X ,S) is a matroid with rank
function

r(U ) = m inT⊂U{|U − T |+ r′(f−1(T ))}.
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Proof. It suffices to show the formula for the rank function since obviously S

is non-empty and hereditary. The formula follows from Theorem 4.7.1 since
r(U ) is equal to the maximum size of a common independent set of M ′ and the
partition matroid (X ′,W ) induced by the family (f−1(s);s∈ U ).

Definition 4.8.2. If M i = (X i,Si),i= 1,· · · ,k are matroids and X = ∪X i

then their union is defined as (X ,{I1 ∪ I2 · · · ∪ Ik;Ii ∈ Si}).

Corollary 4.8.3. Matroid union (partitioning) theorem: The union of matroids
is again a matroid, with its rank function given by

r(U ) = m inT⊂U{|U − T |+ r1(T ∩ X 1) + · · · + rk(T ∩ X k)}.

Proof. We first make X i mutually disjoint and then use Theorem 4.8.1.

Example 4.8.4. Let G = (V,W ,E ) be a bipartite graph. For each u ∈ V define
a matroid M u on the set of neighbours of u so that a set is independent if and
only if its cardinality is at most one. Then the union of M u,u ∈ V is called the
transversal matroid.

Corollary 4.8.5. The maximum size of a union of k independent sets of a
matroid M is

m inT⊂X{|X \ T |+ kr(U )}.

Corollary 4.8.6. X can be covered by k independent sets if and only if for each
U ⊂ X ,

kr(U ) ≥ |U |.

Proof. X can be covered by k independent sets if and only if there is a union of
k independent sets of size |X |.

Corollary 4.8.7. There are k disjoint bases if and only if for each U ⊂ X ,

k(r(X ) − r(U )) ≤ |X − U |.

Proof. There are k disjoint bases if and only if the maximum size of the union
of k independent sets is kr(X ).

Corollary 4.8.8. A finite subset X of a vector space can be covered by k linearly
independent sets if and only if for each U ⊂ X ,

k.r(U ) ≥ |U |.

These are some examples of min-max theorems, the pillars of discrete opti-
mization.





Chapter 5

Geometric representations

of graphs

The geometric representations of graphs provide some of the most useful deco-
rations of abstract graphs. This chapter introduces basic concepts.

5.1 Topological spaces

A lot of the results described in this book depend on a representation of a
graph on a 2−dimensional surface. In this preparatory section we review a
few concepts from general topology. We begin by recalling the definition of a
topological space, which is a mathematical structure capturing the notion of
continuity.

Definition 5.1.1. A topological space is a pair (X ,O) where X is a (typically
infinite) ground set and O ⊂ 2X is a set system whose members are called the
open sets; the open sets satisfy: ∅ ∈ O, X ∈ O, the intersection of finitely many
open sets is an open set, and so is the union of an arbitrary collection of open
sets.

For example, in the standard topology of Rd, a set U ⊂ Rd is open if and
only if for every point x ∈ U there exists ε > 0 such that the ε -ball {x : ||x|| ≤ ε }
around x is contained in U . The same definition applies for any metric space.
Even though the standard topology is induced by the Euclidean metric, the
notion of ’being the same’ for topological spaces is different than for the cor-
responding metric spaces. ’Being the same’ in topological spaces is called a
homeomorphism. Homeomorphism of topological spaces is defined in the same
way as other isomorphisms we encountered so far. Two spaces (X 1,O1) and
(X 2,O2) are homeomorphic if one is obtained from the other by renaming the
elements of the ground-set. An example of the homeomorphic topological spaces
is the real line R and the open interval (0,1).
Let (X ,O) be a topological space. Every Y ⊂ X defines a subspace, namely
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(Y,{U ∩ Y ;U ∈ O}). A topological space (X ,O) is Hausdorff if for every two
distinct points x,y ∈ X there are disjoint open sets U,V with x ∈ U and y ∈ V .
A set Y ⊂ X is closed if X \Y is open. The closure of Y ⊂ X is the intersection
of all closed sets containing Y , and the boundary of Y is the intersection of the
closure of Y and the closure of X \ Y . If (X 1,O1) and (X 2,O2) are topological
spaces, a mapping f : X 1 → X 2 is called continuous if preimages of open sets
are open.
Let X be a topological space. A curve (or an arc) in X is the image of a contin-
uous function f : [0,1] → X . The curve connects its endpoints f(0) and f(1). A
curve is closed if f(0) = f(1). A topological space is (arcwise) connected if any
two elements are connected by an arc in X . We will not consider other notions
of connectivity of topological spaces.
Finally, a space (X ,O) is called compact if for every collection of open sets U
with

⋃

U = X , there exists a finite subcollection U0 ⊂ U with
⋃

U0 = X . In a
compact metric space, every infinite sequence has a convergent subsequence. A
space X ⊂ Rd is compact if and only if X is a closed and bounded set.
We want to study 2-dimensional surfaces, so here comes their definition.

Definition 5.1.2. A surface is a connected compact Hausdorff topological space
S which is locally homeomorphic to an open disc in the plane, i.e., each point
of S has an open neighborhood homeomorphic to the open unit disc in R2.

The surfaces may be constructed from regular polygons by glueing together
their sides. But, before saying this more precisely, we introduce the simplices
and the simplicial complexes.

Definition 5.1.3. A simplex σ is the convex hull of a finite affinely independent
set A ⊂ Rd. The points of A are called vertices of σ . The dimension of σ is
dim σ = |A | − 1. A k-dimensional simplex is called a k-simplex.

The convex hull of an arbitrary subset of vertices of a simplex σ is a face of
σ . Thus every face is itself a simplex.

Definition 5.1.4. A non-empty family ∆ of simplices is a simplicial complex
if the following two conditions hold:

(1) Each face of any simplex σ ∈ ∆ is also a simplex of ∆,

(2) The intersection σ 1 ∩ σ 2 of any two simplices of ∆ is a face of both σ 1 and
σ 2.

The union of all simplices in a simplicial complex ∆ is the polyhedron of ∆
and is denoted by P (∆). The dimension of a simplicial complex is the largest
dimension of a simplex of the complex. The vertex-set of ∆, denoted by V (∆),
is the union of the sets of vertices of all simplices of ∆. The simplicial com-
plex that consists only of the empty simplex is defined to have dimension −1.
Zero-dimensional simplicial complexes are just configurations of points, and one-
dimensional simplicial complexes correspond to graphs, represented geometri-
cally with straight edges that do not cross.
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Observation 5.1.5. The set of all faces of a simplex is a simplicial complex.

If fi denotes the number of faces of dimension i in a simplicial complex ∆,
then the Euler characteristic of ∆ is the alternating sum

∑

i

(−1)ifi.

Next we show that a simplicial complex may be regarded as a purely combinato-
rial object. A collection K of subsets of set V is hereditary if A ∈ K and B ⊂ A

implies B ∈ K . Every hereditary system (V,K ) of subsets of V will be called
an abstract simplicial complex. Its dimension dim(K ) = max{|F | − 1;F ∈ K }.
Each simplicial complex determines an abstract simplicial complex: V = V (∆),
and K is the set of the vertex-sets of all the simplices of ∆. On the other hand,
it is easy to see that any abstract simplicial complex (V,K ) with V finite has a
geometric realization. Let n = |V | − 1 and let us identify V with the vertex-set
of an n-simplex σ n. We define a subcomplex ∆ of σ n by ∆ = {conv(F );F ∈ K }.
This is a simplicial complex, and its associated abstract simplicial complex is
(V,K ). In fact, a much sharper result is true.

Theorem 5.1.6. If ∆1 and ∆2 are two geometric realizations of an abstract
simplicial complex then their polyhedra P (∆1) and P (∆2) are homeomorphic.
Every finite abstract d-dimensional simplicial complex K has a geometric real-
ization in R2d+1.

The proof may be found in [MJ]. An important example of a simplicial
complex is formed by the partially ordered sets. We recall that a partially
ordered set, or poset for short, is a pair (P,�), where P is a set and � is a
binary relation on P that is reflexive (x � x), transitive (x � y and y� z imply
x � z), and weakly antisymmetric (x � y and y � x imply x = y). Now, if
(P,�) is a poset then its order complex is the abstract simplicial complex whose
vertices are the elements of P and whose simplices are all the chains (i.e. all
the linearly ordered subsets, of the form ({x1,· · · ,xk}, x1 ≺ x2 ≺ · · · ≺ xk) of
P . We remark that this construction also naturally associates a poset to each
simplicial complex.

Let X be a topological space. A simplicial complex ∆ such that P (∆) is home-
omorphic to X , is called a triangulation of X . For example, a natural triangula-
tion of the sphere Sd−1 is the boundary of a d-simplex, that is, the subcomplex
consisting of all of its proper faces. Other triangulations may be obtained from
convex polytopes in Rd.
Now we are ready to describe surfaces. We recall Definition 5.1.2: a surface is
a connected compact Hausdorff topological space S which is locally homeomor-
phic to an open disc in the plane, i.e., each point of S has an open neighborhood
homeomorphic to the open unit disc in R2. The next theorem expresses that
we can get all surfaces by glueing together triangles. Its proof can be found in
[MT].
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Theorem 5.1.7. Every surface has a finite triangulation of dimension 2.

Let us consider two disjoint triangles T1,T2 with all sides equal, in a 2-
simplex F of a triangulation of a surface S. We can make a new surface S ′

from S by deleting from F the interiors of T1,T2 and identifying T1 with T2

such that the clockwise orientations (in F ⊂ R2) around T1 and T2 disagree;
see (a) of Figure 5.1 where the arrows indicate how the sides are identified. We
say that S ′ is obtained from S by adding a handle. There is another possibility
of identifying T1 with T2, as indicated in (b) of Figure 5.1. We say that the
resulting surface S ′′ was obtained from S by adding a twisted handle. Finally
let T be a quadrangle (with equilateral sides) in F . We let S ′′′ denote the sur-
face obtained from S by deleting the interior of T and identifying diametrically
opposite points of the quadrangle as shown in (c) of Figure 5.1. We say that
S ′′′ is obtained from S by adding a crosscap. Let us consider now all surfaces

c
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Figure 5.1. Adding a handle, a twisted handle and a crosscap

obtained from the sphere S0 (which we can think of here as a tetrahedron) by
adding handles, twisted handles and crosscaps. If we add h handles to S0, we
obtain Sh, the orientable surface of genus h. If we add h crosscaps to S0 we
get N h, the nonorientable surface of genus h. The surface S1 is the torus (the
doughnut surface), N 1 is the projective plane, and N 2 is the Klein bottle. The
Klein bottle cannot be realized as a subset of R3.
It is not difficult to observe that the location and the order of adding handles
and crosscaps is not important: the resulting surface is always the same, up to
homeomorphism. Adding a twisted handle amounts to the same, up to home-
omorphism, as adding two crosscaps. Moreover, if we have already added a
crosscap, then adding a handle amounts to the same, up to homeomorphism,
as adding a twisted handle. In particular, if S is the surface obtained from the
sphere by adding h handles, t twisted handles and c crosscaps then S = Sh

provided t= c= 0 and S = N 2h+2t+c otherwise.
Now we are ready to state the classification theorem for surfaces. The proof
can be found in [MT].
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Theorem 5.1.8. Every surface is homeomorphic to precisely one of the surfaces
Sh or N k.

Next we extend the concept of a triangulation of dimension 2 to embeddings
of graphs. Let X be a topological space. Analogously as in the Euclidean space,
we say that a curve in X is the image of a continuous function f : [0,1] → X .
The curve is simple if f is one-to-one, and it connects its endpoints f(0) and
f(1). A curve is closed if f(0) = f(1). A topological space is (arcwise) connected
if any two elements are connected by an arc in X . A set C ⊂ X separates X if
X − C is not connected. A face of C ⊂ X is a maximal connected component
of X − C .
A graph G is embedded in a topological space X if the vertices of G are distinct
elements of X and every edge of G is a simple arc connecting its two endvertices
in X and such that its interior is disjoint from other edges or vertices. It is easy
to see that every graph has an embedding in R3. A graph embedded in a
topological space X is also called a topological graph. If G is a topological graph
then we denote by F (G ) the set of its faces.
In this book, we embed graphs almost exclusively on surfaces. The notion which
generalizes a triangulation is that of a map.

Definition 5.1.9. A map is a topological graph embedded on an orientable
surface so that each face is homeomorphic to an open disc in the plane.

The next observation is Euler’s formula, for the proof look again at [MT].

Lemma 5.1.10. Let Sh be an orientable surface of genus h and let G be a map
in Sh with v vertices, e edges and p faces. Then v− e+ p= 2 − 2h.

The genus of a map is usually defined as the genus h of the surface Sh where
the map exists. Lemma 5.1.10 justifies us to define the Euler characteristic of
the surface Sh in analogy to simplicial complexes by χ (Sh) = 2 − 2h.

What is a map? The definition of a map is presented above, but Edmonds
realized that maps may also be defined purely combinatorially. The proof of
the next theorem can be found in [MT].

Theorem 5.1.11. There is a natural bijection between maps and the connected
graphs decorated with fixed cyclic orderings of the incident edges of each vertex.

Physicists sometimes prefere fatgraphs to maps. This term corresponds to a
helpful graphic representation of a graph (not necessarily connected), in which
the vertices are made into discs (islands) and connected by fattened edges
(bridges) prescribed by the cyclic orderings of the incident edges of each ver-
tex. This defines a two-dimensional orientable surface with boundary. We
usually denote a fatgraph and also the corresponding surface with boundary
by F . Each component of the boundary of F is called a face of F . Each
face is an embedded circle. We will denote by G (F ) the underlying graph of
F . In Figure 5.2, the edges of G (F ) are denoted by dotted lines. We denote
by e(F ),v(F ),p(F ),c(F ),g(F ) the number of edges, vertices, faces, connected
components, and the genus of F . Let us rewrite the Euler formula for fatgraphs:
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Figure 5.2. A fatgraph

Lemma 5.1.12. v(F ) − e(F ) + p(F ) = 2(c(F ) − g(F )).

An important concept is that of the dual graph G ∗ of a topological graph G . It
may be defined for general topological graphs in exactly the same way as for
the topological planar graphs, see Section 2.10.

5.2 Planar curves: Gauß codes

A closed curve C on a surface that crosses itself in a finite set I of points through
which it passes exactly twice, gives rise to a word consisting of two copies of
each element of I, as in Figure 5.3. Such a word is the Gauß code of the curve
C , denoted by G auß(C ). Gauß noticed some properties of these sequences for
planar curves (see[G]). For i∈ I let ∆(i) denote the subset of I formed by the
elements that appear exactly once between the two occurences of i. We say that
i,j are interlaced if j∈ ∆(i). The interlaced graph is the graph with vertex-set
I and edge-set consisting of the interlaced pairs of letters.

Theorem 5.2.1. A word w where each element of a finite set I appears exactly
twice is a Gauß code of a planar curve if and only if the following conditions
are satisfied:

(1) Any letter of w has an even number of interlaced letters.

(2) Any two noninterlaced letters have an even number of interlaced letters in
common.

(3) The pairs of interlaced letters which have an even number of interlaced
letters in common form an edge-cut in the interlaced graph.
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1

2 3

4

5
6

134125623456

Figure 5.3. Gauß code: an example

We present a construction of Rosenstiehl (see [RP] and for an independent
proof see [FOM]) leading to a proof of Theorem 5.2.1. Given a fatgraph F , we
construct its medial graph M (F ) as follows (see Figure 5.4): for each bridge,
we ’cross’ (or twist) its boundaries. The vertices of M (F ) are these crossings,
and the edges are the connections left from the fatgraph F . The parts of former
bridges become faces of M (F ). We call them the discs and color them black.
The remaining faces of M (F ) will be colored white. This gives the checkerboard
coloring of the faces of M (F ). Each vertex of M (F ) has degree 4. If M (F ) is
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Figure 5.4. A fat graph and its medial graph

connected then it has an Euler tour and if we are even more lucky, there will be
an Euler tour C which crosses itself at each vertex of M (F ). Such a tour C is a
closed curve on the surface where F lives, and it gives rise to a Gauß code; the
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crossings of C are the vertices of M (F ) which correspond to the edges of the
underlying topological graph of F : we will denote this topological graph also by
F . Let F ∗ denote the geometric dual of F ; let us draw it properly along with F .
What we have got so far looks locally at each edge of F as in Figure 5.5, where
the edges of F are solid, the edges of F ∗ are dotted, and the edges of M (F )
are bold. We naturally associate a sign to each crossing of C , as described in

Figure 5.5. A patch around an edge of F

Figure 5.6. Theorem 5.2.1 may be proved by reversing this construction:

+ −

Figure 5.6. The signs of the crossings of C

Let w be a word where each symbol appears exactly twice. Let I be the set of
the symbols of w and let A ⊂ I. We associate with each e∈ I a patch P (e) as in
Figure 5.5. Next we connect these patches in the order given by w , as indicated
by Figure 5.7. This is straightforward if the current symbol e appears for the
first time along w ; if e currently appears for the second time, the patch P (e)
has already been inserted. Let f be the predecessor of the current symbol (e)
in w . There are two ways how to connect P (e) to P (f), which lead to different
signs of the median at e: see Figure 5.7. If e∈ A then we choose the connection
which results in the positive sign and if e /∈ A then we choose the connection
which results in the negative sign.

Observation 5.2.2. In this way we construct a topological graph F = F (w,A )
on a surface (not necessarily orientable) along with its dual F ∗ and a checker-
board coloring of its faces. An example is given in Figure 5.7. The edges of
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F (w,A ) are indexed by the set I of the symbols of w . Moreover the medial
graph M (F ) admits an Euler tour C = C (w,A ) which crosses itself in each
vertex of M (F ) and such that A is the set of the crossings of C of the positive
sign. Finally, w equals the Gauß code of C .

1

3

4

2

6

5

Figure 5.7. w = 134261253456, A = {1, 2, 6}

The Euler tour C of M (F ) from Observation 5.2.2 induces a walk PC on the
edges of F so that in PC , each edge of F is traversed exactly twice. Analogously,
C induces a walk P ∗

C on the edges of F ∗ so that in P ∗
C , each edge of F ∗ is

traversed exactly twice. It is not difficult to verify

Observation 5.2.3. The walk PC traverses an edge e twice in the same direc-
tion if and only if the walk P ∗

C traverses the edge e∗ in the opposite directions
if and only if e∈ A .

Let I(e) denote the (incidence vector of the) subset of I of the symbols
interlaced with e in w . We will use a symbol e to denote the characteristic
vector of set {e} as well. Next we introduce two functions on I.

Definition 5.2.4. We let α (e) = I(e) + e if e∈ A and α (e) = I(e) if e /∈ A .

We let β (e) = I(e) if e∈ A and β (e) = I(e) + e if e /∈ A .

Observation 5.2.3 leads to the following

Corollary 5.2.5. For each e ∈ I, α (e) belongs to the cycle space of F over
G F (2) and β (e) belongs to the cycle space of F ∗ over G F (2).

The vertices of M (F ) partition each edge e of F into two half-edges e1,e2.
The following straightforward characterization of α (e) will be useful.
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Observation 5.2.6. Let us start walking along PC with edge e of F , and let e1
be the initial half-edge of our walk. Let us stop at the moment when we are going
to use the same half-edge e1 for the second time (in either direction). Then α (e)
is the set of edges of F whose both half-edges we traversed exactly once.

Observation 5.2.7. { α (e);e∈ I} generates the cycle space of F and { β (e);e∈
I} generates the cycle space of F ∗.

Proof. We need to show that each vector z from the orthogonal complement of
{ α (e);e∈ I} belongs to the cut space of F . We recall from Section 2.3 that the
cut space is the orthogonal complement of the cycle space.
Given such z, let p be a function on the half-edges of F so that p(e1)+p(e2) = 1
modulo 2 if e1,e2 form an edge of z, and p(e1) + p(e2) = 0 modulo 2 for any
other pair of consecutive half-edges of PC . The function p may be constructed
by choosing p(h) = 0 for an arbitrary half-edge h, and following the defining
rules along PC . Knowing that zα (e) = 0 modulo 2, it follows from Observation
5.2.6 that we never get into a contradiction. The rules defining p along with the
way we constructed F as a topological graph embedded on a surface imply that
p(h) = p(h′) whenever h,h′ share a vertex of F . Hence p induces a function
π : V (F ) → {0,1} so that z is the set of the edges uv of F such that π (u) 
= π (v).
Hence z belongs to the cut space of F .

Corollary 5.2.8. A word w where each element of a finite set I appears exactly
twice is a Gauß code of a planar curve C if and only if there is A ⊂ I such that
{ α (e);e∈ I} is orthogonal to { β (e);e∈ I}.

Proof. A closed curve C in the plane with checkerboard coloring of the faces
may be interpreted as an Euler tour of the median M (F ) of a planar map F .
The set A corresponds to the sets of the vertices of C of the same sign. The cycle
spaces of F and F ∗ are orthogonal since F is planar, and hence { α (e);e∈ I} is
orthogonal to { β (e);e∈ I} by Observation 5.2.7.
On the other hand, let w satisfy the conditions of Corollary 5.2.8. Let us denote
by K the cycle space of F = F (w,A ), by K′ the subspace of K generated by the
faces of F , and by K′′ the cycle space of F ∗. We have

K′ ⊂ K =< { α (e);e∈ I} >⊂< { β (e);e∈ I} > ∗= [K′′]∗ = K ′,

which implies that K′ = K and thus w is the Gauß code of a planar curve.

It is not difficult to observe that the conditions of Theorem 5.2.1 are neces-
sary. Hence the following observation completes the proof of Theorem 5.2.1.

Observation 5.2.9. The conditions of Theorem 5.2.1 hold if and only if we
have that { α (e);e∈ I} is orthogonal to { β (e);e∈ I}, where α and β are defined
w.r.t. set A which forms one of the vertex classes of the edge-cut of Condition
(3).



5.3. PLANAR CURVES: ROTATION 87

5.3 Planar curves: rotation

Function f is a regular closed curve if f is a continuously differentiable function
from the closed unit interval [0,1] into the plane R2 with f(0) = f(1), and the
derivative f′(t) is non-zero everywhere. We consider regular closed curve as a
directed curve. We recall that a closed curve is simple if it is one-to-one. It is
customary that the points on a regular curve that are not one-to-one are called
the singularities. A regular closed curve is normal if all its singularities form a
finite number of simple crossings through which the curve passes exactly twice.

Definition 5.3.1. The rotation rot(C ) of a regular closed curve C is the number
of complete turns the tangent vector to the curve makes when passing once
around the curve; the anti-clockwise turns are counted positive and the clockwise
turns are counted negative.

The following theorem has been proved by Whitney.

Theorem 5.3.2. Two regular closed curves in the plane can be continuously
transformed into each other (without creating singularities) if and only if they
have the same rotation number.

A basic property of rotation is its additivity: if C is a concatenation of
curves C1 and C2 and the tangent vectors are the same at the concatenation
then rot(C ) = rot(C1) + rot(C2). For normal closed curves there is a natural
procedure of obtaining the rotation.

Lemma 5.3.3. Let C be a normal closed curve in the plane. We can split it
into disjoint cycles as indicated in Figure 5.8. Then rot(C ) equals the number
of anti-clockwise oriented cycles minus the number of clockwise oriented cycles
from the split-decomposition of C .

Proof. We smoothen C at each crossing. Imagine that we start at a crossing w
and walk along C , until we return back to w for the first time. This splits C
into C1 and C2 and clearly rot(C ) = rot(C1) + rot(C2). The lemma follows e.g.
by induction on the number of crossings, see Figure 5.8.

Observation 5.3.4. Let C be a normal closed curve and let c be the number
of the crossings of C . Then (−1)1+rot(C) = (−1)c.

Proof. The curve C determines a 4-regular plane graph G whose vertices are
the crossings. The cycles into which the curve decomposes as in Lemma 5.3.3
are the boundary cycles of the faces of G . The observation now follows from
the Euler formula (Lemma 5.1.12).
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rot(p) = 3

Figure 5.8. Rotation: an example

5.4 Convex embeddings

We first return to convex embeddings of Section 2.10 and show how they lead
to the third natural construction of discrete harmonic functions. We recall that
other sources of the discrete harmonic functions we discussed in the previous
sections are absolute potentials in electrical networks, and random walks.
Let us recall Definition 2.10.17. A plane graph is straight line embedded if each
edge is a straight line segment. If in addition each inner face is convex and the
outer face is a complement of a convex set, then the graph is convex embedded.

Lemma 5.4.1. Let G be a 2-connected planar graph. A straight line plane
representation of G is convex if and only if the vertices of the outer face are
embedded on a convex polygon in the compatible order, and each other vertex
belongs to the convex closure of its neighbours.

Proof. First let G be convex embedded and let v be an inner vertex. Since each
face incident to v is convex, we can add straight lines between the neighbours
of v to form a cycle on the neighbours with v inside. Hence v is in the convex
closure of its neighbours. On the other hand, if an inner face is not convex and
v1,v2,v3 are its three consecutive vertices which define a concave angle at v2,
then v2 belongs neither to the convex closure of its neighbours, nor to the outer
face.

Definition 5.4.2. Let G = (V,E ) be a planar 3-connected graph and let F
be a face of G (we recall that by Corollary 2.10.14 the set of the faces does
not depend on the planar embedding). A planar embedding f of its vertices
obtained by fixing the vertices of F along a convex polygon in the compatible
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order, and for each u /∈ F letting

f(u) =
1

deg(u)

∑

{u,v}∈E

f(v),

is called a barycentric representation.

Let us recall Tutte’s theorem (Theorem 2.10.20): Every 3-connected planar
graph has a convex embedding in the plane. In his proof, Tutte shows that each
barycentric embedding of a 3-connected planar graph is a convex embedding.
Let us further recall Definition 3.4.3 of a discrete harmonic function (DHF): A
real function f on V is a DHF on G with boundary S if

f(u) =
1

deg(u)

∑

{u,v}∈E

f(v)

whenever u ∈ V − S. This means that each coordinate of a barycentric embed-
ding is DHF with boundary F . Hence Lemma 3.4.1 and Dirichlet’s principle
(Theorem 3.4.4) imply:

Corollary 5.4.3. Let G be a planar 3-connected graph. Assume we fix an em-
bedding of the vertices of one face of G along a convex polygon, in the compatible
order. Then the barycentric representation of G which extends this fixed partial
embedding is uniquely determined.

Next we assume that the edges of G are made of ideal springs with unit
Hooke constant, i.e., it takes h units of force to stretch them to length h. We
nail the vertices of a face F to the vertices of a regular convex polygon. Then
we let the system find its equilibrium. Let us denote by f the function that
gives the planar position of each vertex. The energy of f is given by

E(f) =
∑

uv∈E

||f(u) − f(v)||2,

where ||.|| is the Euclidean norm. Dirichlet’s principle (Theorem 3.4.4) applied
for unit resistances and the connection with DHF shows the following:

Theorem 5.4.4. The barycentric representation coincides with the unique f

minimizing E(f).

We have seen three sources of discrete harmonic functions (Definition 3.4.3)
so far: Dirichlet’s principle (Theorem 3.4.4), Theorem 3.5.4 from random walks,
and ideal springs. These different constructions yield really the same object, by
the uniqueness of harmonic extension.
Of course we can apply Dirichlet’s principle for systems of ideal springs with
general Hooke constants, and in general Euclidean space Rn. Linial, Lovász and
Wigderson noticed a beautiful application to graph connectivity, which we now
describe.
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Let G = (V,E ) be a graph and let U,W be two subsets of V . We denote by
p(U,W ) the maximum number of vertex disjoint paths from U to W (disjoint-
ness includes the endvertices). We say that X ⊂ Rd is in general position if
rank(Y ) = d+ 1 for each Y ⊂ X of d+ 1 elements (see the first chapter for the
definition of the rank).

Definition 5.4.5. Let G be a graph and X ⊂ V . A convex X -embedding of
G is any mapping f : V → R|X|−1 such that each vertex of V − X belongs to
the convex hull of its neighbours. Further such an embedding is said to be in
general position if the set f(V ) is in general position.

Theorem 5.4.6. A graph G is k-connected (1 < k < |V |) if and only if for
every X ⊂ V , |X | = k, G has a convex X -embedding in general position.

We first prove two lemmas.

Lemma 5.4.7. Let G be a graph, X ⊂ V , f a convex X -embedding of G and
∅ 
= U ⊂ V . Then f(U ) has at most p(U,X ) affinely independent points.

Proof. By Menger’s theorem, there is an S ⊂ V , |S| = p(U,X ), such that G −S

contains no path between X and U . Let W be the union of the connected
components of G − S − X . Let w ∈ W . Since w /∈ X , f(w ) lies in the convex
hull of its neighbours and hence in the convex hull of f(W ∪ S − w ). Hence
f(w ) cannot be an extreme point of the convex hull of f(W ∪S). It follows that
f(W ) is a subset of the convex hull of f(S). Hence

rank(f(U )) ≤ rank(f(W ∪ S)) = rank(f(S)) ≤ |S| = p(U,X ).

Lemma 5.4.8. Let G be a graph and X ⊂ V . Then G has a convex X -
embedding f such that for every ∅ 
= U ⊂ V , f(U ) has p(U,X ) affinely inde-
pendent points.

Proof. Let |X | = k. We start constructing the embedding f by assigning the
elements of X to the vertices of a k-simplex in Rk−1. Further we assign to each
edge uv a positive elasticity coefficient cuv > 0 and let cv =

∑

uv∈E cuv . Using
Dirichlet’s principle 3.4.4, we can uniquely extend f to fc on V so that for each
u /∈ X ,

fc(u) = 1/cu
∑

uv∈E

cuvfc(v).

Hence each fc is a convex X -embedding of G .
Let U ⊂ V and p(U,X ) ≥ 1, otherwise the statement of the lemma clearly
holds. We can also assume w.l.o.g. that |U | = p(U,X ); let U = {u1,· · · ,um}.
The defining linear equations of a discrete harmonic function imply that the
coefficients of each f(ui) are rational functions of the coefficient-vector c. The
set f(U ) is affinely dependent if and only if {f(u1) − f(um),...,f(um−1) −
f(um)} is linearly dependent if and only if D (c) = 0, where D is the sum of
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the determinants of all the maximal square submatrices of the matrix with rows
f(u1 − f(um),...,f(um−1) − f(um).
Finally we show that D (c) is a rational function which is not identically zero:
let P be the set of the edges of a system of p(U,X ) = m disjoint paths between
U and X . If we let ce = 1 for e /∈ P and ce → ∞ for e∈ P then the defining
equations cause the edges of P to shrink and the points of f(U ) belong to
the gradually shrinking neighbourhood of the corresponding points of f(X ).
Necessarily at some stage rank(f(U )) = m since the points of f(X ) are affinely
independent, and D (C ) is not identically zero.
Hence D (c) vanishes only in a set of measure zero; we can have different such
’bad’ set of coefficient-vectors for each U ⊂ V . But, since each of them is
negligible, their union is negligible as well and we can find a coefficient-vector c
which does not belong to any bad set.

Proof. (of Theorem 5.4.6) If G is k-connected then Lemma 5.4.8 implies the
existence of a convex X -embedding f such that for every Y ⊂ V , |Y | = k, f(Y )
contains at least p(X ,Y ) = k = |X | affinely independent points. Hence f is
in general position. On the other hand, let f be the claimed embedding and
X ,Y arbitrary subsets of V of k elements. Then by Lemma 5.4.7, the number
of affinely independent points of f(Y ) is at most p(X ,Y ) but it is also at least
k= |X | since f is in general position.

5.5 Coin representations

Let G be a planar graph. A coin representation (CR) of G is a set of circles
{Cv;v ∈ V (G )} in the plane such that the interiors of the circles are pairwise
disjoint and Cu,Cv touch if and only if G has the edge uv (see Figure 5.9). It has
been proved by Koebe in 1936 that every planar graph has a CR. Clearly, each
CR induces a convex embedding in the plane where each vertex is the center of
the corresponding circle, and each edge is a straight line.
It will be convenient to consider also circle packings which contain one special
circle, denoted by C0, which behaves differently: it is required that none of
the other circles intersects the exterior of C0. We say that C0 is centered at
infinity. The corresponding ’planar embedding’ has half-lines from the center
of each circle Cv through Cv ∩ C0 (towards infinity). Let G be a connected
planar graph. A primal-dual CR (PDCR) of G is a pair of simultaneous coin
representations of G and the geometric dual G ∗ of the induced planar embedding
of G such that for any pair of dual edges e= uv,e∗ = u∗v∗, the circles Cu,Cv

touch at the same point as the circles Cu∗ ,Cv ∗ . Moreover the two corresponding
dual edges are perpendicular. We assume that the circle corresponding to the
outer face of G is centered at infinity. The following theorem was proved by
Brightwell and Scheinerman. For its proof as well as for the proof of its corollary
see [MT].
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Figure 5.9. A coin representation of the cube

Theorem 5.5.1. Let G be a 3-connected planar graph. Then G admits a PDCR
representation.

If Q is a convex polytope in R3 (i.e. a bounded set which is an intersection of
finitely many half-spaces and not a subset of a line), then the graph of polytope
Q has the corners of Q as its vertices, and the edges of Q as its edges.

Theorem 5.5.2. If G is a 3-connected planar graph then there is a convex
polytope Q in R3 whose graph is isomorphic to G , and such that all edges of Q
are tangent to the unit sphere in R3.

This leads to Steinitz’s theorem:

Theorem 5.5.3. A graph G is the graph of a convex polytope in R3 if and only
if it is planar and 3-connected.
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Coin representations are closely related to conformal (analytic) mappings
(see [MT]). Conformal mappings in turn are closely related to criticality of the
Ising problem. Motivated by this connection, Mercat (see [MC]) defined discrete
analytic functions on a simultaneous embedding of a finite graph and its dual
in a 2-dimensional surface, and studied their criticality.

5.6 Counting fatgraphs: matrix integrals

Let M be an N ×N matrix and let f(M ) =
∑

I aI

∏

(ij)∈I M ij be a polynomial
in its entries, where I ranges over a finite system of multisets of elements of
N × N , and the aI ’s are real constants. The basis of the Wick game is the
following definition of < f > .

Definition 5.6.1. We let

< f > =
∑

I

aI <
∏

(ij)∈I

M ij > =
∑

I

aI

∑

P

∏

(p,q)∈P

< M pM q > ,

where P ranges over all partitions of I into pairs, and for p= (p1,p2),q= (q1,q2)
we have < M pM q > non-zero only if p1 = q2 and p2 = q1 and in that case
< M pM q > = 1/N .

A seminal technique of theoretical physics called Wick’s theorem interprets
the expression < f > as a Gaußian matrix integral. The principally studied
functions f are products of powers of the trace of M k. For such functions f,
< f > has a useful graphic interpretation as the number of labeled fatgraphs
(maps) with given degree sequence, sorted by their Euler characteristics (these
maps are the Feynman diagrams for the matrix integral).
Let us define Gaußian integral and Gaußian matrix integral. We first consider
the case N = 1. For an arbitrary real function f, the standard Gaußian integral
is defined as

< f > =
1

√
2 π

∫ ∞

−∞

e−
x
2

2 f(x)dx, (5.1)

where we abuse notation by a multiple use of the symbol < > . Note that < 1 >
= 1. We are in particular interested in functions of the form f(x) = x2n, where
n is an integer. In order to compute < x2n > , we introduce the so-called source
integral < exs > for a given real s. Taking the k-th derivative of < exs > with
respect to s and setting s= 0, we get

∂k

∂sk
< exs >

∣

∣

∣

s=0
=

1
√

2 π

∫ ∞

−∞

e−
x
2

2
∂k

∂sk
exs

∣

∣

∣

s=0
dx

=
1

√
2 π

∫ ∞

−∞

e−
x
2

2 xkdx

=< xk > . (5.2)
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On the other hand the source integral becomes

< exs > =
1

√
2 π

∫ ∞

−∞

e−
x
2

2 exsdx

=
1

√
2 π

∫ ∞

−∞

e−
(x− s)2

2 + s
2

2 dx

= e
s
2

2
1

√
2 π

∫ ∞

−∞

e−
(x− s)2

2 dx

= e
s
2

2 . (5.3)

Thus we have

< xk > =
∂k

∂sk
< exs >

∣

∣

∣

s=0
=

∂k

∂sk
e

s
2

2

∣

∣

∣

s=0
. (5.4)

As a consequence, we obtain < xk > = 0 for odd k, and < x2 > = 1. Further

since the derivative ∂2n

∂s2ne
s
2

2

∣

∣

∣

s=0
must be taken in pairs, < x2n > is the same as

the number of ways to partition 2n elements into n pairs, which is (2n− 1)!! =
(2n− 1) × (2n− 3) × · · · 3 × 1.

Let us further consider the general case N > 1. We want to repeat the trick
of the source integral, and as you will see below, for that we need to restrict our-
selves to the set of matrices satisfying, for matrices M ,S, that trM S = trSM .
Hence we consider the set of the Hermitian matrices. Let M = (M ij) be an N ×
N Hermitian matrix, i.e., M ij = M ji for every 1 ≤ i,j≤ N , where M ji denotes
the complex conjugate of M ji. Let dM =

∏

i dM ii

∏

i<j dRe(M ij)dIm (M ij)
denote the standard Haar measure. This is the measure which enables integra-
tion over the Hermitian matrices. The Gaußian Hermitian matrix integral of an
arbitrary function f is defined as

< f(M ) > =
1

Z0(N )

∫

e−N tr( M
2

2 )f(M )dM , (5.5)

where the integration is over all the N × N Hermitian matrices, and Z0(N ) is

the normalization factor making < 1 > = 1, i.e., Z0(N ) =
∫

e−N tr( M
2

2 )dM .
As before we are particularly interested in a function of the form f(M ) =

∑

I aI

∏

(ij)∈I M ij , where I ranges over a finite system of multisets of elements

of N ×N . We also introduce the source integral < etr(MS) > for a given N ×N

Hermitian matrix S. It can easily be computed as

< etr(MS) > =
1

Z0(N )

∫

e−N tr( M
2

2 )etr(MS)dM

=
1

Z0(N )

∫

e−N tr( 1
2 (M− S

N
)2)e

tr(S2)
2N dM

= e
tr(S2)

2N , (5.6)
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since the trace is linear and tr(M S) = tr(SM ), and thus we get

−N tr

(

M 2

2

)

+ tr(M S) = −N tr

(

M 2

2
−
M S + SM

2N

)

= −N tr

(

1

2

(

M −
S

N

)2
)

+
tr

(

S2
)

2N
.

On the other hand, for any 1 ≤ i,j≤ N we get

∂

∂Sji
etr(MS)

∣

∣

∣

S=0
=

(

∂

∂Sji
tr(M S)

)

etr(MS)
∣

∣

∣

S=0

=

(

∂

∂Sji

∑

m,n

M mnSnm

)

etr(MS)
∣

∣

∣

S=0

= M ij.

Thus the derivatives of the source integral becomes

∂

∂Sji

∂

∂Slk
· · · < etr(MS) >

∣

∣

∣

S=0

=
1

Z0(N )

∫

e−N tr( M
2

2 ) ∂

∂Sji

∂

∂Slk
· · ·etr(MS)

∣

∣

∣

S=0
dM

=
1

Z0(N )

∫

e−N tr( M
2

2 )M ijM kl · · ·dM

= < M ijM kl · · · > . (5.7)

Using (5.7) and (5.6), we obtain

< M ijM kl · · · >
(5.7)
=

∂

∂Sji

∂

∂Slk
· · · < etr(MS) >

∣

∣

∣

S=0

(5.6)
=

∂

∂Sji

∂

∂Slk
· · ·e

tr(S2)
2N

∣

∣

∣

S=0
(5.8)

and in particular

< M ijM kl > =
∂

∂Sji

∂

∂Slk
e

tr(S2)
2N

∣

∣

∣

S=0

=
∂

∂Sji

(

∂

∂Slk

tr(S2)

2N

)

e
tr(S2)

2N

∣

∣

∣

S=0

=
∂

∂Sji

(

∂

∂Slk

∑

m,n SmnSnm

2N

)

e
tr(S2)

2N

∣

∣

∣

S=0

=
∂

∂Sji

Skl

N
e

tr(S2)
2N

∣

∣

∣

S=0

=
δ il δ jk

N
. (5.9)
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Further, it is clear that the derivatives in (5.8) and (5.9) must be taken in pairs
(e.g., Sji and Slk with l= iand k = j) to get a non-zero contribution. This
yields Wick’s theorem:

Theorem 5.6.2. Let M and I be as above. Then

<
∏

(ij)∈I

M ij > =
∑

pairings,P⊂I2

∏

((ij),(kl))∈P

< M ijM kl >

=
∑

pairings,P⊂I2

∏

((ij),(kl))∈P

δ il δ jk

N
,

where P ranges over all partitions of I into pairs.

Due to the linearity of the Gaußian matrix integeral, together with (5.10),
we get that for a function f defined by f(M ) =

∑

I aI

∏

(ij)∈I M ij ,

< f > =
∑

I

aI <
∏

(ij)∈I

M ij > =
∑

I

aI

∑

P

∏

(p,q)∈P

< M pM q > .

For p= (p1,p2),q= (q1,q2) we have that < M pM q > is non-zero only if p1 = q2
and p2 = q1, and in that case < M pM q > = 1/N . This is how we arrive at the
definition of < · > in Definition 5.6.1.

Graphic interpretation. Next we will count fatgraphs (see Section 5.1). We
recall that a fatgraph is a graph together with a set consisting of one cyclic
permutation, of the incident edges, for each vertex. A fatgraph is pointed if for
each vertex one incident edge is specified.

Observation 5.6.3. Let F be a pointed fatgraph. The following procedure ori-
ents each face of F : for each vertex v, orient the first (clockwise) shore of each
incident fatedge out of v, and the other shore towards v.

The graphic interpretation for the non-zero contributions to < f > where
f(M ) =

∑

I aI

∏

(ij)∈I M ij , is as follows. We represent M ij as a half-fatedge
consisting of two end points and two lines with the opposite orientation such that
i is associated with the out-going line and j with the in-coming line: Further,

����

����i

j
M ij

Figure 5.10. A half-fatedge

(5.9) can be interpreted as the fact that two half-fatedges M ij and M kl construct
a fatedge with oppositely oriented shores and with weight 1/N if and only if
i= l and j = k: A fatedge with oppositely oriented shores will be called a
decorated fatedge (see Figure 5.11).



5.6. COUNTING FATGRAPHS: MATRIX INTEGRALS 97

����

���� ����

����

i

j

l,

k,

l = i

k = j
< M ij,M kl >= 1

N

Figure 5.11. A decorated fatedge

For example, let us consider f(M ) = tr(M n). By the definition of the trace we
get

tr(M n) =
∑

1≤i1,i2,··· ,in≤N

M i1i2M i2i3 · · ·M ini1.

Following the above graphic interpretation we represent tr(M n) as a star fat
diagram with n decorated half- fat edges arranged in a clockwise pointed order
and such that for each half- fat edge, its first shore (clockwise along the center)
is oriented from the center, as in Figure 5.12. Moreover, using the matrix Wick
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�
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�
�
��

i3
i1 i2
inM i1i2M i2i3 · · ·M ini1

Figure 5.12. tr(Mn

) and its graphic interpretation as a star fat diagram

theorem we can compute

< tr(M n) > =<
∑

1≤i1,i2,··· ,in≤N

M i1i2M i2i3 · · ·M ini1 >

=
∑

1≤i1,i2,··· ,in≤N

∑

pairing

∏

< M ikik+1
M ilil+1

>

=
∑

1≤i1,i2,··· ,in≤N

∑

pairing

∏ δ ikil+1
δ ilik+1

N
. (5.10)

Note that n should be even in order to get a non-zero contribution to (5.10)
and thus we set n = 2m . Further, observe that only a fraction of possible
pairings have a non-zero contribution to (5.10); we can think of a pairing as
a pointed fatgraph with one island, whose faces are oriented as in Observation
5.6.3. It indeed defines uniquely an embedding on a surface (see Figure 5.13).
Let F be a contributing pointed fatgraph. Certainly it has n/2 = m edges.
Since each edge contibutes 1/N to (5.10), each pairing gets 1/N m from all its
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Figure 5.13. All possible fatgraphs with one island and n = 4

edges. However, we should count the contributions due to the summations
over 1 ≤ i1,i2,· · · ,in ≤ N . We notice that in each pairing with non-zero
contribution, each (oriented) face attains independently exactly one index from
1 to N . The faces thus contribute N p(F ) to (5.10); we recall that p(F ) denotes
the number of faces of F . Summarizing, each pointed fatgraph F with one
island and m edges contribute N p(F )−m. Thus pointed fatgraphs with genus
zero (i.e., planar) contribute the leading term in N as N → ∞.

Example 5.6.4. Let f(M ) = tr(M 3)4 tr(M 2)3. As before we can compute

< tr(M 3)4 tr(M 2)3 > =

<





∑

1≤i1,i2,i3≤N

M i1i2M i2i3M i3i1





4 



∑

1≤j1,j2≤N

M j1j2M j2j1





3

> (5.11)

Analogously to the previous example, (5.11) equals
∑

F N p(F )−e(F ), where the
sum is over all pointed fatgraphs F (not necessarily connected) cosisting of four
islands of degree 3, and three islands of degree 2 (see Figure 5.14).
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Figure 5.14. A fatgraph interpreted from < tr(M3
)
4

tr(M2
)
3 >

Summarizing, if f(M ) is a product of the traces of powers of M then < f >

equals the number of pointed fatgraphs F with the degree sequence given by
the powers, and weighted by N p(F )−e(F ).
This machinery is useful for instance for obtaining a formula for the number of
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fatgraphs with a given degree sequence, sorted by their genus. Next we explain
this.

We first define, for a formal power series X , the exponential function exp(X ),
or eX , by the formula

eX =
∞
∑

n=0

X n

n!
= 1 + X +

X 2

2!
+
X 3

3!
+
X 4

4!
+ · · · .

As usual, the inverse (in the ring of the formal power series) of the exponential
function is called the logarithm. For a formal power series X , the logarithm
log(X ) is defined by the formula

log(X ) =

∞
∑

n=1

(−1)n+1

n
(X − 1)n

= (X − 1) −
(X − 1)2

2
+

(X − 1)3

3
−

(X − 1)4

4
· · · .

We consider a function ψ which maps each N × N Hermitian matrix M to

ψ (M ) := e
(−N)

P

i≥ 1 zi tr
“

M
i

i

”

. (5.12)

Finally, for a formal power series X =
∑

n≥0 anz
n with the coefficients in the

ring of the N × N Hermitian matrices we define < X >=
∑

n≥0 < an > zn.
Taking the logarithm of < ψ > we get the following formula for connected maps
sorted by their genus. For this and other interesting applications see the survey
of DiFrancesco [F]. Let us remark here that in the applications of the formal
power series, generating functions of connected objects are often expressed as
the logarithm.

Theorem 5.6.5.

log < ψ >=
∑

g≥0

N 2−2g
∑

(n1,··· ,nk)∈Nk

k
∏

i=1

(−zi)
ni

ni!
M g(n1,· · · ,nk)

where M g(n1,· · · ,nk) denotes the number of connected fatgraphs with genus g
and ni vertices of degree i for 1 ≤ i≤ k.

The equality in Theorem 5.6.5 holds only on the level of formal power se-
ries. The convergence of the formal power series in Theorem 5.6.5 was studied
extensively. For example, the following theorem appears in [EM].

Theorem 5.6.6. Let a function ˜ψ map each N × N Hermitian matrix M to

˜ψ (M ) := e
(−N)

P

i∈ I
zi tr

“

M
i

i

”

,
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where I is a finite set of positive integers such that its maximum element is
even. Then for each i∈ I there is ǫ i > 0 so that for zi a non-zero real variable
with zi ∈ (0,ǫ i), Theorem 5.6.5 holds as equalities between analytic functions
(in variables zi) when ψ is replaced by ˜ψ .



Chapter 6

Game of dualities

6.1 Edwards-Anderson Ising model

A physical system consisting of many particles can be described on two levels:
Microscopically it is determined by its configuration, i.e., by the positions and
momenta of all particles. Knowing a configuration of a system which obeys the
laws of classical mechanics and which is not influenced from outside allows one in
principle to determine its exact configuration at any future time. Of course, the
configuration of a realistic large system cannot even approximately be known.
On the other hand, a good description of the macroscopic properties of such a
system is provided by a relatively small number of observable parameters like
total energy, temperature, entropy, etc. These macroscopic properties are mod-
elled, in mathematics, as parameters associated with probability distributions
on the space of all configurations.
This point of view was developed towards the end of the 19th century in the
works of Boltzmann and Gibbs. If a physical system that is confined to a finite
volume is not influenced from the outside, it is driven by its internal fluctuations
towards an equilibrium distribution, which maximises the entropy. The branch
of mathematics which studies equilibrium distributions is called ergodic theory.
Let us try to explain the basic setting by an elementary example, as in [KG].
Let X be a finite set, the (abstract) configuration space. Since X is finite, a
distribution p is given as an assignment of probability p(x) to each x ∈ X . Let
us further assume p(x) > 0 for each x ∈ X . In ergodic theory, the distributions
on the configuration space are called states. We do not follow this convention
here; we reserve the name ’state’ for a configuration of the Ising model.
The entropy of the distribution p is defined as H (p) = −

∑

x∈X p(x) log p(x).
This entropy, also called the information entropy, measures the amount of uncer-
tainty that the observer is left with when s(he) knows that the system follows
distribution p. This can be explained as follows. Let A ⊂ X . We want to
associate a real number IA with it that can be interpreted as the amount of in-
formation in the claim ’z∈ A ’. If one requires that IA is a continuous function
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of the probability p(A ) =
∑

x∈A p(x) and that IA∩B = IA + IB for sets A,B
such that p(A ∩ B ) = p(A )p(B ) (i.e. for independent events), the only possible
choice is IA = − logp(A ), where the logarithm can be taken to any base. It
is customary to use the natural logarithm. The entropy H (p) =

∑

x∈X p(x)Ix
thus models the average amount of information of the elementary claims z= x,
for x ∈ X . In other words, H (p) is the expected amount of information that can
be gained from further observations on the system, if its present distribution is
known to be p.
Let us continue specifying our model: each configuration x ∈ X is assigned an
energy z(x) ∈ R. In the distribution p, the system has the mean energy

Ep(z) =
∑

x∈X

p(x)z(x).

The energy specifies the partition function

Z (β ) =
∑

x∈X

e−βz(x).

For β ∈ R, the Gibbs measure pβ is defined by

pβ(x) =
1

Z (β )
e−βz(x).

Gibbs measures are characterized by the following variational principle:

Theorem 6.1.1. Each Gibbs measure pβ with β ∈ R satisfies

H (pβ) + Epβ
(z) = logZ (β ) = sup

p
[H (p) + Ep(− β z)].

A distribution p for which this supremum is attained is called an equilibrium
distribution. Thus Gibbs measures are equilibrium distributions. In fact, pβ is
the only equilibrium distribution for a given β .
In a physical context, if we set the Boltzmann constant kB = 1 for simplicity,
then T = 1/β denotes the temperature of the system.
Free energy of the distribution p is defined by F (p) = Ep(z) − TH (p). We can
reformulate the variational principle in the following way:

F (p) ≥ F (p 1
T

) = −T log Z (
1

T
),

with equality if and only if p= p 1
T

.
If the system is infinite, it is possible to define equilibrium distributions, but for
given β ∈ R the equilibrium distribution need not be unique. For example, a
coexistence of two equilibrium distributions (states) at a given temperature in
the Ising model (described below) on an infinite graph is interpreted in statistical
physics as a phase transition of the first order.

In more realistic physical models configurations usually have some spatial struc-
ture. A classical example is the Ising model. It was designed by Lenz around
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1920 to explain ferromagnetism and was named after his student Ising who con-
tributed to its theory. The idea is that iron atoms are situated at vertices of a
graph G = (V,E ) and behave like small magnets that can be oriented upwards
(have spin +1) or downwards (have spin −1). Physically, two magnets that are
close to one another need less energy to be oriented in the same way than in
the opposite way. This leads to the following simplified model:
We assume that each edge uv of G has an assigned weight (or, a coupling
constant) w (uv). A configuration of the system is an assignment of the spin
σ v ∈ {+1,−1} to each vertex v. This describes the two possible spin orienta-
tions the vertex can take. As is custumary in statistical physics, we will call the
configurations of the Ising model its states.
The energy function (or Hamiltonian) of the model is defined as

z(σ ) = −
∑

uv∈E

w (uv)σ u σ v.

We can rewrite the Hamiltonian in the following way:

z(σ ) =
∑

{u,v}∈C

w (uv) −
∑

{u,v}∈E\C

w (uv) = 2w (C ) − W ,

where C is the set of edges connecting the pairs of vertices of different spins,
and W =

∑

{u,v}∈E w (uv) is the sum of all edge weights in the graph. Clearly,

if we find the value of max-cut (see Section 2.3 for the definition of max-cut,
min-cut), we have found the maximum energy of the model. Similarly, min-cut
corresponds to the minimum energy (groundstate). The partition function is
defined by

Z (G ,β ) =
∑

σ

e−βz(σ).

In the next section we describe an efficient algorithm to determine the ground-
state energy of the Ising model for any planar graph. In fact the whole partition
function may be determined efficiently for planar graphs, and the principal in-
gredient is the concept of enumeration dualities of Section 6.4 and Section 6.3.

6.2 Max-Cut for planar graphs

Observation 2.10.6 reduces, for planar graphs, the Max-Cut problem to the
Maximum even subset problem. Given a graph G = (V,E ) with rational weights
on the edges, find the maximum value of

∑

e∈E ′
w (e) over all even subsets

E ′ ⊂ E . The following theorem thus means that the Max-Cut problem is
efficiently solvable for planar graphs.

Theorem 6.2.1. The maximum even subset problem is efficiently solvable for
general graphs.
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The theorem is proved by a reduction to the matching problem. An efficient
algorithm to find a maximum matching of a graph has been found by Edmonds
(see Section 2.6). Edmonds also found an efficient algorithm to solve the
weighted perfect matching problem: Given a graph G = (V,E ) with rational
weights on the edges, the weighted perfect matching problem asks for the max-
imum value of

∑

e∈E ′
w (e) over all perfect matchings E ′ of G .

This algorithm together with the following reduction of Fisher proves Theorem
6.2.1.

Theorem 6.2.2. Given a graph G = (V,E ) with a weight function w on E , it
is possible to construct a graph G ′ = (V ′,E ′) and a weight function w ′ on E ′

so that there is a natural weight preserving bijection between the set of the even
sets of G and the set of the perfect matchings of G ′.

Proof. The graph G ′ may be constructed from G by a local transformation at
each vertex, described in Figure 6.1. We let w ′(e) = w (e) for all edges e of G ,
and w ′(e) = 0 for each new edge. It is straightforward to verify the statement

1

4

21

4 3

3

2

Figure 6.1. Each vertex is replaced by a path of triangles

of the theorem for G and G ′.

In statistical physics, a perfect matching is known under the name of a
dimer arrangement or a dimer configuration. The dimer problem is the problem
to enumerate all perfect matchings, i.e., to find the partition function:

P(G ,x) =
∑

E ′ perfect matching

x
P

e∈ E ′
w(e).

In discrete mathematics, partition functions are called generating functions. The
bijection of Theorem 6.2.2 does more than just a reduction of the maximum even
set to the maximum perfect matching. The whole information about the even
sets is transformed to the information about the perfect matchings. This may
be expressed by the equality of the generating functions.
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Let G be a graph and let w be a weight function on E . For E ′ ⊂ E let w (E ′) =
∑

e∈E ′
w (e). We define the generating functions C(G ,x),E(G ,x),P(G ,x) of the

edge-cuts, the even sets and the perfect matchings as follows.

C(G ,x) =
∑

E ′ edge-cut

xw(E ′ ),

E(G ,x) =
∑

E ′ even set

xw(E ′ ),

P(G ,x) =
∑

E ′ perfect matching

xw(E ′ ).

The transformation of Theorem 6.2.2 shows that E(G ,x) = P(G ′,x).

6.3 Van der Waerden’s theorem

The Ising partition function for a graph G may be expressed in terms of the
generating function of the even sets of the same graph G . This is a theorem
of Van der Waerden. We will use the following standard notation: sinh(x) =

(ex − e−x)/2, cosh(x) = (ex + e−x)/2, tanh(x) = sinh(x)
cosh(x) .

Theorem 6.3.1.

Z (G ,β ) = 2|V |

(

∏

uv∈E

cosh(β w (uv))

) (

∑

E ′ ⊂E even

∏

uv∈E ′

tanh(β w (uv))

)

.

Proof. We have

Z (G ,β ) =
∑

σ

eβ
P

uv
w(uv)σuσv =

∑

σ

∏

uv∈E

(cosh(β w (uv)) + σ u σ v sinh(β w (uv))) =

∏

uv∈E

cosh(β w (uv))
∑

σ

∏

uv∈E

(1 + σ u σ v tanh(β w (uv))) =

∏

uv∈E

cosh(β w (uv))
∑

σ

∑

E ′ ⊂E

∏

uv∈E ′

σ u σ v tanh(β w (uv)) =

∏

uv∈E

cosh(β w (uv))
∑

E ′ ⊂E

(U (E ′)
∏

uv∈E ′

tanh(β w (uv))),

where
U (E ′) =

∑

σ

∏

uv∈E ′

σ u σ v.

The proof is complete after noticing that U (E ′) = 2|V | if E ′ is even and U (E ′) =
0 otherwise.
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It may help (optically) to shorten the right-hand-side of the formula by

∑

E ′ ⊂E even

∏

uv∈E ′

tanh(β w (uv))) = E(G ,x)|xw(uv) :=tanh(βw(uv)),

where E(G ,x) is the generating function of even subsets introduced at the end
of Section 6.2. Let us recall that we may write the partition function as

Z (G ,β ) =
∑

σ

eβ
P

uv
w(uv)σuσv = K

∑

σ

e
−2β

P

uv:σ(u)�=σ(v) w(uv)
,

where K =
∑

σ e
β

P

uv
w(uv) is a constant.

Hence the partition function Z (G ,β ) may be looked at as the generating function
of edge-cuts with specified shores. The theorem of Van der Waerden expresses
it in terms of the generating function E(G ,x) of the even sets of edges.
We can also consider the honest generating function of edge-cuts

C(G ,x) =
∑

E ′ ⊂E edge-cut

xw(E ′ ).

It turns out that C(G ,x) may also be expressed in terms of E(G ,x). This is a
consequence of another theorem, of MacWilliams, which we explain now.

6.4 MacWilliams’ theorem

Let V = Fn be a finite vector space over a finite field F. Each subspace C

of V of dimension k is called a linear code of length n and dimension k. If
F = G F (2) then C is a binary (linear) code. The elements of a linear code are
called codewords. The weight of a codeword is the number of its nonzero entries.
The weight distribution of C is the sequence A 0,A 1,· · · ,An where A i equals the
number of codewords of C of weight i, 0 ≤ i≤ n.
The dual code of C is denoted by C ∗ and consists of all the n-tuples (d1,· · · ,dn)
of Fn satisfying

c1d1 + · · · + cndn = 0

in F, for all codewords (c1,· · · ,cn) ∈ C . Hence, C ∗ is a code of length n and
dimension n− k. The weight enumerator of C is the polynomial

AC(t) =

n
∑

i=0

A it
i.

MacWilliams’ theorem for F = G F (2) reads as follows:

Theorem 6.4.1.

AC ∗ (x) =
1

|C |
(1 + x)nAC

(

1 − x

1 + x

)

.
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The proof proceeds by a series of lemmas. We start by defining the extended
generating function of a code.

Definition 6.4.2. Let C ⊂ {0,1}n be a binary linear code and x = (x1,· · · ,xn),y=
(y1,· · · ,yn) be variables. The extended generating function of C is defined by
W C(x,y) =

∑

b∈C W b(x,y), where for b= (b1,· · · ,bn), W b(x,y) =
∏n

i=1 W bi
(xi,yi)

and W bi
(xi,yi) = xi if bi = 0 and W bi

(xi,yi) = yi if bi = 1.

Lemma 6.4.3. Let b∈ {0,1}n. Then

W b(x+ y,x− y) =
∑

c∈{0,1}n

(−1)bcW c(x,y).

Proof. We note that

W b(x+ y,x− y) =

n
∏

i=1

W bi
(xi + yi,xi − yi) =

n
∏

i=1

(xi + (−1)biyi).

Expanding the right hand side we get a sum of 2n terms of the form ±z1 · · ·zn

where zi = xi or zi = yi and the sign is negative if and only if there is an odd
number of indices iwhere zi = yi and bi = 1. Letting c index this sum of 2n

terms we get

n
∏

i=1

(xi + (−1)biyi) =
∑

c∈{0,1}n

(−1)bc
n

∏

i=1

W ci
(xi,yi).

Lemma 6.4.4. If c /∈ C ∗ then the sets A i = {b ∈ C ;cb = i} have the same
cardinality (i= 0,1).

Proof. We first note that both A i are non-empty: 0 ∈ A 0 and since c /∈ C ∗, there
is b∈ C such that bc= 1. Let b∈ A 1. Then |b+ A 0| = |A 0| and b+ A 0 ⊂ A 1.
Hence |A 0| ≤ |A 1|. Analogously, | − b+ A 1| = |A 1| and −b+ A 1 ⊂ A 0. Hence
|A 1| ≤ |A 0|.

Lemma 6.4.5.

W C ∗ (x,y) =
1

|C |
W C(x+ y,x− y).

Proof.

W C(x+ y,x− y) =
∑

b∈C

∑

c∈{0,1}n

(−1)bcW c(x,y) =

∑

b∈C

∑

c∈C ∗

W c(x,y) +
∑

b∈C

∑

c/∈C ∗

(−1)bcW c(x,y) = |C |W C ∗ (x,y)

by Lemma 6.4.4.
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Lemma 6.4.6.

xnAC(y/x) = W C(x,...,x,y,...,y).

Proof. We observe that

W C(x,...,x,y,...,y) = xn
∑

b∈C

(y/x)w(b),

where w (b) denotes the weight of b.

Proof. (of MacWilliam’s Theorem 6.4.1) We have from Lemma 6.4.6 that

AC ∗ (y) = W C ∗ (1,· · · ,1,y,· · · ,y).

Next we apply Lemma 6.4.5 and Lemma 6.4.6 again.

We saw in section 2.3 that the set of the edge-cuts and the set of the even
sets of edges form dual binary codes, hence MacWilliams’ theorem applies here.
Finally we remark that a version of MacWilliams’ theorem is true more generally,
for instance for linear codes over finite fields G F (q).

6.5 Phase transition of 2D Ising

One of the basic observations about the world around us is that small changes
of outside parameters may result in dramatic changes in some systems. An
example is a phase transition from water to steam. Naturally, we want that our
models of the reality also exhibit this feature. The 2-dimensional Ising model
is one of the earliest models where a phase transition was proved to exist. But,
how should the phase transitions (and the critical temperature) in the Ising
model be defined? We saw in Section 6.1 that a phase transition of the first
order exists if more than one equilibrium distribution (states) coexist. The
critical temperature is defined as the supremum of the temperatures at which
phase transitions of the first order occur.
We will assume in this section that a graph G = (V,E ) is a finite planar n× n

square grid, and as is usual we denote by N = n2 its number of vertices.
Moreover for simplicity we will assume all the edges to have the same weight,
i.e. we assume w (uv) = J for each uv∈ E . Let

Z (N ,β ) = Z (G ,β ) =
∑

σ

eβJ
P

uv ∈ E
σuσv.

The 2-dimensional Ising model lives in the infinite square grid. We may look at
it as the limit of the Ising model on the square grid G for N → ∞.
Let F (β ) be the free energy, i.e.

−F (β ) = lim
N→∞

N −1 logZ (N ,β ).
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The critical temperature of the 2-dimensional Ising model is modeled as Tc =
1/β c such that at β c, F is not a real analytic map of b (i.e., the Taylor series of
F does not converge to F in β c) .
In 1944, Onsager ([O]) provided a formula for the free energy of the 2-dimensional
Ising problem. But three years earlier, Kramers and Wannier located its criti-
cal temperature, under the assumption that the critical temperature exists and
is unique. Their beautiful argument ([KW]), based on a game of dualities, is
retold now.
We will take advantage of the interplay between the geometric duality and the
enumeration duality (Theorem 6.3.1). Let G ∗ denote the dual graph of G . A
great property of the planar square grid is that it is essentially self-dual; there
are some differences on the boundary, but who cares, we are playing anyway.
We will cheat and assume that G = G ∗. This omitting of boundary irregulari-
ties, for the planar square grid and for the hexagonal lattice in the next section,
is the only cheating in the book, so enjoy it. If you wish to avoid the cheating,
you can for example work with the toroidal grid instead of the planar square
grid.
Low temperature expansion. Here we use the geometric duality. Let σ : V →
{1,−1} be an Ising state in G . It corresponds to the assignments of + or − to
the plaquettes (i.e. square faces) of G ∗. An edge of G ∗ is called frontal for σ
if it borders two plaquettes with opposite signs. It follows from the geometric
duality that the set of frontal edges for σ is an even subset of G ∗. Moreover,
each even subset of edges of G ∗ corresponds to exactly two opposite Ising states
in G . Summarizing,

Z (N ,β ) =
∑

σ

eβJ
P

uv ∈ E
σuσv =

2
∑

E ′ ⊂E ∗ even

e−βJ|E ′ |+βJ|E ∗ −E ′ | =

2e|E|βJ
∑

E ′ ⊂E even

e−2|E ′ |βJ,

where in the last equation we use G ∗ = G .
We recall that β = 1/T where T denotes the temperature. If T goes to zero then
β goes to infinity, and hence small even sets, i.e. short cycles, should dominate
this expression of the partition function. This sort of explains why this formula
is called the low temperature expansion.
High temperature expansion. Here we use Theorem 6.3.1. It gives

Z (N ,β ) = 2N cosh(β J)|E|
∑

E ′ ⊂E even

tanh(β J)|E
′ |.

If T goes to infinity then β goes to zero, and hence small cycles should again
dominate this expression of the partition function.

Critical temperature of the 2-dimensional Ising model. Let us assume for sim-
plicity that J = 1. At a critical point the free energy F is a non-analytic
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function of β . Moreover we assume that there is only one critical point. Then
the expressions above help us locate it: let us define F ∗ by

F ∗(x) = lim
N→∞

N −1 log(
∑

E ′ ⊂E even

x|E
′ |).

Then, using the low and high temperature expansions, we get

− β F (β ) = 2 β + F ∗(e−2β) = log(2 cosh(β )) + F ∗(tanh(β )).

If we define β ∗ by tanh(β ∗) = e−2β , we have

− β ∗F (β ∗) − log(2 cosh(β ∗)) = F ∗(tanh(β ∗)) = F ′(e−2β),

and hence

2 β − β ∗F (β ∗) − log(2 cosh(β ∗)) = F ′(e−2β) + 2 β = − β F (β ).

If β is large, β ∗ is small; the last equation relates the free energy at a low
temperature to that at a high temperature. Hence, if there is only one critical
value β c, then necessarily β c = β ∗

c which determines β c: We have tanh(β c) =
e−2βc , and hence sinh(2β c) = 1 and β c = 0.44068679....

6.6 Critical temperature of the honeycomb

Let us try to apply the same trick to the planar hexagonal (honeycomb) lattice
H 2N with 2N vertices and edge-weights (coupling constants) L1,L2,L3 defined
by Figure 6.2. We have

L2

L2

L2

L1

L1

L1

L3L3

l

k

j

i

Figure 6.2. Weights in the hexagonal lattice

lattice
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Z (H 2N,β ) =
∑

σ

e
β(L1

P

il∈ E1
σiσl+L2

P

jl ∈ E2
σjσl+L3

P

kl ∈ E3
σkσl),

where E i,i= 1,2,3, denotes the set of the edges with the coupling constant
L i. If we disregard the boundary irregularities, the geometric dual of H 2N is
the triangular lattice TN with N vertices (see Figure 6.3). If we apply the high
temperature expansion to H 2N and the low temperature expansion to TN , we
get an expression of Z (H 2N,β ) in terms of Z (TN,β ):

Observation 6.6.1.

Z (TN,β ) = 2N
∏

i=1,2,3

cosh(β Li)
|Ei|

∑

E ′ ⊂E(TN ) even

∏

i=1,2,3

tanh(β Li)
|E ′ ∩Ei| =

2N−1
∏

i=1,2,3

cosh(β L i)
|Ei|Z (H 2N,tanh(β )).

In order to extract the critical temperature, we need one more relation, and
we will get it from the ∆ − Y (or, star-triangle) transformation.

Definition 6.6.2. A ∆−Y (star-triangle) transformation in any graph consists
in the exchange of a vertex lof degree 3 connected to independent vertices i,j,k
(a Y ), for three edges between vertices i,j,k that form a ∆ (a triangle).

The star-triangle transformation is illustrated in the second part of Figure
6.3. We first note that the hexagonal lattice H 2N is bipartite; let the bipartition

Figure 6.3. The honeycomb lattice and the associated triangular lattices

formed by the geometric duality and by the star- triangle transformation

be V = V1 ∪V2. We will denote a typical vertex of V2 by l(see Figure 6.2). The
neighbours of lwill be denoted by i,j,k as is in Figure 6.2. We also say that
(i,j,k) is a triplet and we denote by T the set of all the triplets.
The new trick is to apply the star-triangle transformation to all vertices of V2.
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The result is what we want, the triangular lattice TN on the vertices of V1. We
can write

Z (H 2N,β ) =
∑

σ

e
β(L1

P

il∈ E1
σiσl+L2

P

jl ∈ E2
σjσl+L3

P

kl ∈ E3
σkσl) =

∑

σ:V1→{1,−1}

∏

(i,j,k)∈T

w (σ i,σ j,σ k),

where

w (σ i,σ j,σ k) =
∑

σl∈{1,−1}

eβσl(L1σi+L2σj+L3σk) = 2 cosh(β (L1 σ i +L2 σ j +L3 σ k)).

Summarizing we can write Z (H 2N,β ) as

∑

σ:V1→{1,−1}

∏

(i,j,k)∈T

w (σ i,σ j,σ k),

which may be regarded as a function on the triangular lattice TN on V1; its
triangles are the triplets of T .
We want to transform this further into the Ising partition function of this new
triangular lattice TN . Well, it is not a big deal: all we need is to compute
constants R,K 1,K 2,K 3 so that for all values of σ i,σ j,σ k we have

w (σ i,σ j,σ k) = ReK1σjσk+K2σkσi+K3σiσj ;

for simplicity of presentation we let β = 1.
The constants K 1,K 2,K 3 are the edge-weights (coupling constants) for the tri-
angular lattice, see Figure 6.4. It is straightforward to write this as a system of
equations with variables R,K 1,K 2,K 3 and parameters L1,L2,L3.

Observation 6.6.3. Let c= cosh(L1 + L2 + L3), c1 = cosh(−L1 + L2 + L3),
and ci is defined analogously for i= 2,3. Then for i= 1,2,3,

sinh(2K i) sinh(2L i) = k−1,

where

k=
sinh(2L1) sinh(2L2) sinh(2L3)

2(cc1c2c3)1/2
.

Moreover

R 2 = 2ksinh(2L1) sinh(2L2) sinh(2L3) = 2/(k2 sinh(2K 1) sinh(2K 2) sinh(2K 3)).

This expression for Z (TN,β ) and Observation 6.6.1 suffice to extract the
critical temperature for Z (TN,β ).
The equations of Observation 6.6.3 lead to the famous Yang-Baxter equation.
But before getting to it, let us explain the transfer matrix method first.
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K3j

K1

k

L3

K2

l

L2 L1

i

Figure 6.4. Dual weights

6.7 Transfer matrix method

Observation 6.7.1. Let D = (V,E ) be a directed graph with weights w (e) on
its directed edges and let A be its (V × V ) adjacency matrix, i.e. A uv = w (uv).
Then the sum of the weights of the directed walks of D from u to v of length k

is equal to (A k)uv.

Proof. We proceed by induction on k. The case k = 1 is clear. For k > 1, any
walk from u to v of length k consists of an edge uw and a walk from w to v of
length k− 1. This is modeled by multiplication of matrices.

Hence the matrix A helps us to enumerate these walks. Let us further analyse
the generating function

Fuv(x) =
∑

n≥0

(An)uvx
n,

for arbitrary u,v∈ V .

Theorem 6.7.2.

Fuv(x) =
(−1)u+v det(I− xA : v,u)

det(I− xA )
,
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where (B : v,u) denotes the matrix obtained by removing row v and column u

of B .

Proof. We have, in the ring of the formal power series over the space of the
V × V complex matrices, the equality

∑

n≥0 x
nAn = (Ix0 − Ax)−1. This space

is isomorphic to the space of the V ×V matrices whose entries are formal power
series over complex numbers. The isomorphism enables us to write (Ix0 −
Ax)−1 = (I− xA )−1; this equality uses the fact that multiplicative inverses in
any (not necessarily commutative) ring with 1 are unique. Summarizing, Fuv(x)
is the uv entry of the matrix

∑

n≥0 x
nAn = (I− xA )−1. The rest follows from

Cramer’s rule, which holds for any matrix over a commutative ring with 1: If
B is an invertible matrix then

(B −1)ij = (−1)i+j det(B : j,i)

det(B )
.

In the next example let the graph G = (V,E ) be a strip of plaquettes (see Figure
6.5). Each plaquette is determined by a cycle of length 4 which we will also call
a plaquette. We let each edge e have weight w (e) ∈ {1,−1}. We recall that a
state of the Ising model is any function σ from the set of the vertices to {1,−1}.
We say that the edge e= uv is satisfied by σ if w (e)σ (u)σ (v) = 1. A plaquette
is frustrated if it has an odd number of edges ewith weight w (e) = −1. No state
can satisfy all the edges of a frustrated plaquette, and that is the reason for
its name. We say that a state satisfies a plaquette if it satisfies the maximum
possible number of its edges. Let us consider a graph G that is a ladder graph

P1

P2

a1 b1

a2

a3

an

b2

b3

bn

Pn

bn+1
an+1

Figure 6.5. A strip of plaquettes

of frustrated plaquettes P1,...,Pn. We want to enumerate all states that satisfy
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all of these plaquettes; we will call them satisfying states. We start from the
topmost pair of vertices a1,b1 and choose arbitrarily the spin from {1,−1} for
each of them. There are several ways in which we can choose the values for
the next pair a2,b2, so that the plaquette P1 = (a1,b1,b2,a2) is satisfied. We
have three options if the edge {a1,b1} has been satisfied and only one option
otherwise. It will be important how the spins of a2,b2 in a satisfying state
depend on the spins of a1,b1. We encode this dependence in a 4 × 4 matrix A

which is indexed by the spin assigments to α = (a1,b1) and β = (a2,b2). There
are four possibilities for each pair of spins and we will consider them as indices,
in the order (++,−+,+−,−−). We let

• aβα = 1 if [α ,β ] satisfies the plaquette,

• aβα = 0 otherwise.

For example, consider a frustrated plaquette P where the edge {b1,b2} has a
negative weight while the other 3 edges have a positive weight. The correspond-
ing matrix is

A =









1
0
1
1

0
0
0
1

1
0
0
0

1
1
0
1









The matrix A works as a linear operator. If we denote the unit vectors by eα,
then the vector Aeα is the α -column of A . It describes the number of spin
assignments, in the satisfying states, of vertices a2,b2, with the condition that
the spins for a1,b1 are given by α . We can say that the β -entry of the vector
Aeα is equal to the number of satisfying states of the plaquette P1 = P where
α gives the spins to a1,b1 and β gives the spins to a2,b2.
Let A = A 1 and let A 2 be the matrix describing the plaquette P2. Let {a3,b3}
be the edge of P2 disjoint from P1. Then we can analogously say that the β -
component of the vector A 2A 1eα is equal to the number of satisfying states of
the column of two plaquettes P1,P2 where α gives the spins to a1,b1 and β gives
the spins to a3,b3. Inductively, for a strip of n plaquettes we get that

g(α ,β ) = eβAnAn−1 · · ·A 1eα

is the number of satisfying states of the strip of plaquettes P1,...,Pn, with the
spins on the topmost pair a1,b1 given by α and the spins on the bottom pair
an+1,bn+1 given by β .
In case the strip of plaquettes is periodic, we just identify the top with the
bottom and we get that the total number of satisfying states is

g=
∑

α

eT
αAnAn−1 · · ·A 1eα = tr(An...A 1).

For example, let us consider a periodic strip of n equal frustrated plaquettes
characterized by the matrix A above. Then the number of satisfying states is

g= tr(An) =

4
∑

i=1

λ n
i ,
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where λ 1,λ 2,λ 3,λ 4 are the eigenvalues of A . Since the largest eigenvalue of A
is λ 1 = 1 +

√
2 (and the other eigenvalues are ±1 and 1 −

√
2), the number of

satisfying states grows approximately as (1 +
√

2)n. Note that the matrix A

in our example is symmetric, which not need be true in general. The singular
values rather than the eigenvalues are then useful in the analysis.
It will help us in the next section to summarize what we are doing here. We want
to calculate the number of satisfying states of a (periodic) strip of plaquettes.
We consider a row of two spins σ 1,σ 2, and for each plaquette we consider an
operator which is a 22 × 22 matrix that encodes the satisfying assignments of
the plaquette. The product of these operators applied to the vector ( σ 1,σ 2)
then describes the total number of satisfying states of the whole strip, when the
topmost spins are given by σ 1,σ 2.
It is intuitive to think that we are building the strip of plaquettes, rather than
building the operator that describes the number of satisfying states.

6.8 The Yang-Baxter equation

As illustrated by the previous example, in two-dimensional lattice problems it is
often useful to consider a row of spins σ 1,· · · ,σ m (m = 2 in the strip of plaque-
ttes), and operators that are built up gradually by adding contributions of small
parts (plaquettes in the previous example). These operators are 2m×2m matri-
ces, with rows labelled by (σ 1,· · · ,σ m) and columns labelled by (σ ′

1,· · · ,σ
′
m).

Let us now build in this way an operator that describes the Ising partition func-
tion of the m × m square grid. The smallest building blocks are the following
basic operators s1,· · · ,sm and c1,· · · ,cm. Operator si is the diagonal matrix
with entries σ i and ci is the operator that reverses the spin in position i, i.e.

(ci)σσ ′ = δ (σ 1,σ
′
1) · · · δ (σ i−1,σ

′
i−1)δ (σ i,− σ

′
i)δ (σ i+1,σ

′
i+1) · · · δ (σ m,σ

′
m),

Where δ is the Kronecker’s delta function defined in the introduction. Writing
[x,y] = xy− yx for the commutator of the operators x,y, we have s2i = c2i = I,
sici + cisi = 0, and [si,sj] = [ci,sj ] = [ci,cj ] = 0 for i �= j.
In the Ising model, the building operators are

P1(K ),· · · ,Pm−1(K ),Q 1(L),· · · ,Qm(L),

where
[Pi(K )]σσ ′ = eKσiσi+1 δ (σ 1,σ

′
1) · · · δ (σ m,σ

′
m),

[Q i(K )]σσ ′ = eLσiσ
′

i δ (σ 1,σ
′
1) · · · δ (σ i−1,σ

′
i−1)δ (σ i,σ

′
i)δ (σ i+1,σ

′
i+1) · · · δ (σ m,σ

′
m).

The effect of the operator Pi(K ) is to add the contribution of an edge with cou-
pling constant K , between vertices iand i+1. The effect of Q i(L) is to introduce
a new vertex in position i, and add the contribution of the edge between the
new and old vertices in position i, with interaction coefficient L . The operator
Pi(K ) thus adds a horizontal edge and the operator Q i(L) adds a vertical edge.
We can also describe by means of operators the contribution of triangles and
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stars to the Ising partition function. For that, let us define operators U1,· · · ,U2m−1

by
U2j(K ,L) = Pj(K ),

U2j−1(K ,L) = (2 sinh(2L))−1/2Q j(L).

The equations of Observation 6.6.3 imply

U i+1(K 1,L1)U i(K 2,L2)U i+1(K 3,L3) = U i(K 3,L3)U i+1(K 2,L2)U i(K 1,L1),

for i= 1,· · · ,2N − 2. If iis even then the LHS of the equation above adds the
contribution of the corresponding star with the coupling constants (L1,L2,L3)
and the RHS adds the contribution of the corresponding triangle with the cou-
pling constants (K 1,K 2,K 3). This is reversed if i is odd.
The equation

U i+1U iU i+1 = U iU i+1U i

is known as the Yang-Baxter equation and we get back to it when we will speak
about knots.





Chapter 7

The zeta function and

graph polynomials

7.1 The Zeta function of a graph

The theory of the Möbius function connects the principle of inclusion and ex-
clusion (PIE) with another basic concept, namely the zeta function of a graph.
In this section we discuss the theorem of Bass which will be useful in Chapter
9, and the MacMahon Master theorem, which will be useful in Chapter 8. Then
we study graph polynomials, which constitute the basic connection between
enumeration and the partition functions of statistical physics.

Let G = (V, E) be a graph. If e ∈ E then we let ae denote an orientation of
e (arbitrary but fixed), and a−1

e the reversed directed edge to ae. A circular
sequence p = v1, a1, v2, a2, ..., an, vn+1 and vn+1 = v1 is called a prime reduced
cycle if the following conditions are satisfied: ai ∈ {ae, a

−1
e : e ∈ E}, ai �= a−1

i+1

and (a1, ..., an) �= Zm for some sequence Z and m > 1.

Definition 7.1.1. Let G = (V, E) be a graph. The Ihara-Selberg function of
G is

I(u) =
∏

γ

(1 − u|γ|)

where the product is defined by

∏

γ

(1 − u|γ|) =
∑

G

(−1)|G|u
P

γ ∈ G

|γ|,

and the sum is over all finite sets G of the prime reduced cycles. The zeta
function of G is

Z(u) = I(u)−1.

The theorem of Bass reads as follows:
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Theorem 7.1.2. (Bass’ theorem) For any graph G

I(u) = det(I − uT ),

where T is the matrix of transitions between directed edges defined as follows:
Let a, a′ ∈ {ae, a

−1
e : e ∈ E}. If the terminal vertex of a is the initial vertex of

a′ and a′ �= a−1 then Ta,a′ = 1, otherwise Ta,a′ = 0.

Next we write down the MacMahon Master theorem.

Theorem 7.1.3. (MacMahon Master theorem) Let A = (aij) be an n × n ma-
trix, and let x = (x1, · · · , xn) be a vector of commuting variables. The coefficient
of xm1

1 · · ·xmn

n in
n

∏

i=1

(
n

∑

j=1

aijxj)
mi

is equal to the coefficient of xm1
1 · · ·xmn

n in the expansion of [det(I − xA)]−1.

We include the proofs of these theorems based on the theory of Lyndon
words. We closely follow [FZ]. Let X be a non-empty linearly ordered set, and
consider the set X∗ of all finite words from X . Let < denote the lexicographic
ordering on X∗ derived from the linear ordering on X : for u �= v we say that
u < v if v = uz for some z ∈ X∗, or u = ras, v = rbt with a < b and r, s, t ∈ X∗.
We consider the set X∗ of all words from X equipped with the binary operation
of concatenation:

(a1, . . . , an)(b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

A Lyndon word is a nonempty word of X∗ that is prime (i.e., it cannot be written
as a power of a shorter word), and minimal among its cyclic rearrangements (for
example, 221 is not a Lyndon word since 221 > 122. Let L denote the set of all
Lyndon words.

Observation 7.1.4. A non-empty word w is Lyndon if and only if w is smaller
than any of its proper right factors if and only if w ∈ X or w = lm with l, m ∈ L
and l < m.

The following theorem is called Lyndon’s factorization theorem.

Theorem 7.1.5. Each nonempty word l ∈ X∗ can be uniquely written as a
nonincreasing concatenation of Lyndon words: l = l1l2 · · · ln, lk ∈ L, l1 ≥ l2 ≥
· · · ≥ ln.

Proof. To prove the theorem, we simply take a factorization l = l1l2 · · · ln into
Lyndon words (a factorization like that clearly exists since each element of X is
a Lyndon word) such that n is as small as possible. The Lyndon words in this
factorization must be nonincreasing by Observation 7.1.4. The observation also
proves the uniqueness.
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Next we consider formal power series with integer coefficients, and with
variables in X , which are not commuting. It is convenient to use the symbol
X∗ to denote

∑

l∈X ∗
l. As an exercise in this notation (we denote by X∗

r the
set of the reversed words of X∗) prove that the Lyndon factorization theorem
is the same as

∏

l∈L

(1 − l)−1 = X∗
r = X∗ = (1 −

∑

z∈X

z)−1,

where the indices in the product appear in the increasing order.

We get Amitsur’s identity as a useful corollary:

Proposition 7.1.6. Let X be the set of matrices A1, . . . , Ak, linearly ordered
by their indices. Then

det(I − (A1 + · · · + Ak)) =
∏

l∈L

det(I − l).

Proof. We can write as above

∏

l∈L

(I − l)−1 = (I − (
∑

z∈X

z))−1.

Now we take the inverse of this identity, and take the determinant of both sides.
This finishes the proof.

Let B be an X × X matrix whose entries are commuting variables. We
denote the ij−entry of B by b(i, j). We can think of b(i, j) as the weight of the
transition between the elements i, j of X .

Definition 7.1.7. Let w = x1x2 · · ·xm be a nonempty word of X∗. We define

βcirc(w) = b(x1, x2)b(x2, x3) · · · b(xm−1, xm)b(xm, x1),

and βcirc(w) = 1 if w is empty. Let w = l1l2 · · · ln be the expression of w as the
nonincreasing concatenation of Lyndon words. We further define

βdec(w) = βcirc(l1)βcirc(l2) · · ·βcirc(ln).

Finally, when the m letters of w are written in the nondecreasing order, we get
the word w′ = x′

1x
′
2 · · ·x

′
m. We let

βvert(w) = b(x′
1, x1)b(x

′
2, x2) · · · b(x

′
m, xm).

We also let βdec(w) = βvert(l) = 1 if w is empty.

The following elementary observation is an exercise in the use of these new
notions; it will be useful.
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Observation 7.1.8. Let w ∈ X∗ and let w = l1 · · · ln be the decomposition
into a nonincreasing sequence of Lyndon words. Further, let w = d1 · · · dr be
the decreasing factorization, where each new factor starts always when a letter
smaller than or equal to each letter to its left appears. Then each Lyndon word
li is a concatenation of factors dj. Moreover

βdec(w) = βcirc(l1)βcirc(l2) · · ·βcirc(ln) = βcirc(d1)βcirc(d2) · · ·βcirc(dr).

The following theorem summarizes the relations among the notions we in-
troduced. Both the theorem of Bass and the MacMahon Master theorem are
straightforward consequences.

Theorem 7.1.9. The following properties hold.

∏

l∈L

(1 − βcirc(l))
−1 =

∑

w∈X ∗

βdec(w) (1)

∑

w∈X ∗

βdec(w) =
∑

w∈X ∗

βvert(w) (2)

∑

w∈X ∗

βvert(w) = (det(I − B))−1 (3)

∏

l∈L

(1 − βcirc(l)) = det(I − B) (4)

Proof of the MacMahon Master theorem and Bass’s theorem. The MacMahon
Master theorem follows from statement (3) of Theorem 7.1.9. Bass’s theorem is
the statement (4) of Theorem 7.1.9 for X equal to the orientations of the edges,
and b(e, e′) = u if e is a successor of e′ and e is not the reversed e′.

Proof. (of Theorem 7.1.9) First note that (1),(2) and (4) imply (3). Next let us
associate, with each Lyndon word l, a variable denoted by [l]. We assume that
these variables are distinct and commute with each other. Let β([l]) = βcirc(l).
We have

∏

l∈L

(1 − βcirc(l))
−1 =

∏

l∈L

(1 − β([l]))−1 =
∑

[li1 ],··· ,[lin
]

β([li1 ])β([li2 ]) · · ·β([lin
]),

where the sum is over all the commuting monomials [li1 ], · · · , [lin
], or equiva-

lently over the nonincreasing collections li1 ≥ · · · ≥ lin
of Lyndon words. By

Theorem 7.1.5, this equals
∑

w∈X ∗

βdec(w).

This proves (1).
In order to prove (2), we construct a bijection f of X∗ onto itself so that for
each w, f(w) is a rearrangement of w and βdec(w) = βvert(f(w)). The con-
struction goes as follows: Let w ∈ X∗ and let w = l1 · · · ln be the decomposition
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into the nonincreasing sequence of Lyndon words, and let w = d1 · · ·dr be the
decreasing factorization of w (see Observation 7.1.8). We define a set S of or-
dered pairs as follows: for each 1 ≤ i ≤ r, if di = i1 · · · ip then we put the pairs
(i1, i2), · · · , (ip−1, ip), (ip, i1) into S. We define f(w) to be the word consisting
of the second elements of each pair of S, written according to the nondecreasing
lexicographic order of S. The properties of f follow from Observation 7.1.8.
Finally we show that (4) follows from Amitsur’s identity (Theorem 7.1.6). We
consider the lexicographic order on the indices of B (i.e. on the elements of
X × X). If ij is the m-th pair then let Am be the matrix whose entries are all
zero except (Am)ij = b(i, j). Then A1 + · · · + A|X|2 = B.
Consider a word l = (i1, j1), · · · , (ip, jp) in the alphabet X2 and let Al =
∏p

s=1 A(is,js). If j1 = i2, j2 = i3, · · · , jp−1 = ip then Al is the matrix whose
elements are all zero except (Al)i1jp

= b(i1, i2)b(i2, i3) · · · b(ip, jp). In all other
cases Al is the zero matrix. Hence, if jp = i1 we have det(I − Al) = 1 −
b(i1, i2)b(i2, i3) · · · b(ip, i1), and in all the other cases we have det(I − Al) = 1.
It means that the infinite product in Amitsur’s identity may be restricted to
the Lyndon words l = (i1, j1), · · · , (ip, jp) satisfying j1 = i2, j2 = i3, · · · , jp−1 =
ip, jp = i1. But these are in bijection with the Lyndon words i1 · · · ip in the
alphabet X .

We conclude this section by a reformulation of the MacMahon Master theo-
rem in terms of flows. A natural flow f on a digraph G is a function f : E −→ N

on the edges of G that satisfies Kirchhoff’s current law
∑

e begins at v

f(e) =
∑

e ends at v

f(e)

at all vertices v of G. Let us set

f(v) =
∑

e begins at v

f(e).

Let F(G) denote the set of all natural flows of a digraph G. If β is a weight
function on the set of edges of G and f is a flow on G, then

• the weight β(f) of f is given by β(f) =
∏

e β(e)f(e), where β(e) is the
weight of the edge e.

• The multiplicity at a vertex v with outgoing edges e1, e2, · · · is given by
multv(f) =

(f(e1)+f(e2)+···
f(e1),f(e2),···

)

, and the multiplicity of f is given by mult(f) =
∏

v multv(f).

• If E′ is a subset of edges then we let f(E′) =
∑

e∈E ′
f(e).

Theorem 7.1.10. If G is a digraph with the edge-weights given by matrix B,
then

1

det(I − B)
=

∑

f∈F(G)

β(f)mult(f).
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Proof. This is another reformulation of statement (3) of Theorem 7.1.9: we
observe that βvert(w) = β(f) for a natural flow f and mult(f) elements w ∈ X∗.

For r = 1, the above corollary states that

1

1 − x
=

∞
∑

n=0

xn

where x = b11. Thus, Corollary 7.1.10 is a version of the geometric series
summation.

7.2 Chromatic, Tutte and flow polynomials

In this section we introduce basic graph polynomials. In his paper [WH1] Whit-
ney wrote down a formula for the number of ways of coloring a graph as one
of the applications of the principle of inclusion and exclusion (PIE): Suppose
we have a fixed number z of colors at our disposal. Any way of assigning one
of these colors to each vertex of the graph in such a way that any two vertices
which are joined by an edge are of different colors, will be called an admissible
coloring, using z or fewer colors. We wish to find the number M(G, z) of such
admissible colorings. If there are n vertices in G, then there are zn possible
colorings. Let Auv denote those colorings with the property that u and v are of
the same color. Then the number of admissible colorings is, by PIE,

M(G, z) =
∑

E ′ ⊂E

(−1)|E
′ ||

⋂

uv∈E ′

Auv |.

A typical term |
⋂

uv∈E ′
Auv | is the number of ways of coloring (V, E′) with z

or fewer colors in such a way that any two vertices that are joined by an edge
must be of the same color; thus all vertices in a single connected component are
of the same color. If there are p connected pieces in (V, E′), the value of this
term is therefore zp. If there are (p, s) (this is Birkhoff’s symbol) subgraphs
of s edges in p components, the corresponding terms contribute the amount of
(−1)s(p, s)zp to M(G, z). Therefore,

M(G, z) =
∑

p,s

(−1)s(p, s)zp.

This function is called the chromatic polynomial. A basic recurrence relation
for M(G, z) is as follows: if u, v ∈ V are such that uv /∈ E then in any proper
coloring, u, v may receive the same color, or different colors. Hence,

M(G, z) = M(G/uv, z) + M(G + uv, z),

where G/uv denotes the graph obtained from G by identifying the vertices u
and v, and G + uv denotes the graph obtained from G by adding the edge uv.
In other words, if e ∈ E then

M(G, z) = M(G − e, z) − M(G/e, z).
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For A ⊂ E let r(A) = |V |−c(A), where c(A) denotes the number of components
of (V, A). Then we can write

M(G, z) = zc(E)(−1)r(E)
∑

A⊂E

(−z)r(E)−r(A)(−1)|A|−r(A).

This leads directly to the Whitney rank generating function S(G, x, y) defined
by

S(G, x, y) =
∑

A⊂E

xr(E)−r(A)y|A|−r(A),

and to the Tutte polynomial

T (G, x, y) =
∑

A⊂E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

The Tutte polynomial enumerates many basic objects. As a first example,
notice that for any connected graph G, T (G, 1, 1) counts the number of spanning
trees of G: indeed, the only non-zero terms of T (G, 1, 1) are those for which
r(A) = r(E) = |A|. These are exactly the spanning trees of G.

Theorem 7.2.1. Let G = (V, E) be a graph and e ∈ E. Then
S(G, x, y) = (x + 1)S(G − e, x, y) if e is a bridge,
S(G, x, y) = (y + 1)S(G − e, x, y) if e is a loop,
S(G, x, y) = S(G − e, x, y) + S(G/e, x, y) otherwise.
Furthermore, S(G, x, y) = 1 for any graph with no edges.

Proof. These formulas follow in a straightforward way by analyzing the defini-
tion of S.

Another important observation is the universality of Whitney and Tutte
polynomials. It is expressed by the following theorem.

Theorem 7.2.2. There is a unique map M from the class of finite graphs to the
class of the integer polynomials in variables x, y, α, β, γ such that M(G) = αn

if G is the graph of n vertices and no edges, and for every e ∈ E(G) we have
M(G) = xM(G − e) if e is a bridge,
M(G) = yM(G − e) if e is a loop, and
M(G) = βM(G − e) + γM(G/e) otherwise. Moreover,
M(G) = αc(G)β|E|−r(G)γr(G)T (G, αx

γ , y
β ).

Proof. The uniqueness is immediate since the formulas provide a recursion for
M. It remains to observe that function αc(G)βn(G)γr(G)T (G, αx

γ , y
β ) has the

initial three properties. This follows directly from Theorem 7.2.1.

Next we define and study nowhere-zero flows.
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Definition 7.2.3. Let G be a graph with a fixed orientation and let Zk be the
additive group of integers modulo k. A circulation on G with values in Zk is
called a Zk-flow. Moreover if the circulation is never zero, then it is called a
nowhere-zero Zk-flow.

For an important illustration we consider an orientation of a 2−edge-connected
topological planar graph G which is face-k−colorable, i.e. its faces may be col-
ored by k colors so that each edge belongs to the boundary of two faces of
different colors. Consider the colors as elements of an additive group of order
k, say Zk. For each edge e let r(e) and l(e) be the colors of the faces on its left
and right (G is directed!). Then r − l is nowhere-zero and it is a flow: for each
vertex v,

∑

(u,v)∈E

(r − l)((u, v)) =
∑

(v,u)∈E

(r − l)((v, u)).

In fact, the following is true.

Theorem 7.2.4. An orientation of a 2−edge-connected topological planar graph
G is face-k−colorable if and only if it has a nowhere-zero Zk-flow.

Proof. There is a correspondence between the flows on G and the potential
differences in the geometric dual G∗ (see Kirchhoff’s potential law in Section
3.4). This means that in G, each flow can be obtained by assigning a value to
each face, and then assigning to each edge the difference between the value of
the face on the right and the value of the face on the left.

We remark that the orientation of G is used only as a reference point for the
flows. A flow (or a circulation or a current) is a fundamental object of graph
theory and it appears often in this book. The theorem above led Tutte to study
nowhere-zero flows on general graphs. He introduced the flow polynomial of a
graph G. It again needs an orientation of G to be defined, but does not depend
on it.

Theorem 7.2.5. If A is an Abelian group of order k, then the number of
nowhere-zero A-flows on a connected directed graph G is

F (G, k) =
∑

E ′ ⊂E

(−1)|E−E ′ |k|E ′ |−r(E ′ ).

Proof. Let T be a spanning tree of G. We recall Observation 2.3.2; the vectors
C(G)e, e ∈ E(G) \ E(T ), form a cycle basis and the A-flows are exactly the
linear combinations of these vectors with the coefficients from A. This has the
following consequence. Let c : E(G)\E(T ) → A be an arbitrary mapping. Then
there exists exactly one A-flow f of G such that for each edge e ∈ E(G) \E(T ),
f(e) = c(e).
Hence for every E′ ⊂ E, the number of A-flows of the subgraph (V, E′) is
k|E ′ |−r(E ′ ). The theorem now follows by the principle of inclusion and exclusion.
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The function F (G, x) is called the flow polynomial of G. It is, in a sense,
dual to the chromatic polynomial. This is expressed explicitly as follows.

Theorem 7.2.6. If G is a connected planar topological graph and G∗ its dual,
then xF (G, x) = M(G∗, x).

Definition 7.2.7. A nowhere-zero k−flow is an integer flow whose absolute
values are among 1, · · · , k − 1.

Tutte proved also the following theorem; for a proof see [J1].

Theorem 7.2.8. A graph has a nowhere-zero k−flow if and only if it has a
nowhere-zero A-flow for every additive group A of order k.

Theorem 7.2.8 and Theorem 7.2.4 imply that the Four Color Theorem 2.10.3
is equivalent to

Corollary 7.2.9. Every orientation of a 2−edge-connected planar graph has an
integer flow with all edge values among 1,−1, 2,−2, 3,−3.

Nowhere-zero flows unify three sets of conjectures which live around the Four
Color theorem and which have inspired some major research in graph theory.
Tutte made the 4−flow conjecture and the 5−flow conjecture:

Conjecture 7.2.10. Every orientation of a 2−edge-connected graph with no
subgraph contractible to the Petersen graph (see Figure 7.1), has a nowhere-zero
4−flow.

Figure 7.1. The Petersen graph

Conjecture 7.2.11. Every 2−edge-connected graph has a nowhere-zero 5−flow.

The existence of a 6−flow is a theorem of Seymour (see [S]).
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Theorem 7.2.12. Every 2−edge-connected graph has a nowhere-zero 6−flow.

A cycle double cover of a graph G is a family of cycles of G such that every edge
appears in exactly two cycles of this family. The following cycle double cover
conjecture was asked independently by several researchers; Bondy and Seymour
made it particularly popular.

Conjecture 7.2.13. Every 2−edge-connected graph has a cycle double cover.

A cycle double cover is called directed if one can prescribe one of two pos-
sible orientations to each of its cycles so that each edge of the graph appears
oriented in two opposite ways. Jaeger proposed the directed cycle double cover
conjecture:

Conjecture 7.2.14. Every 2−edge-connected graph has a directed cycle double
cover.

Finally there is Fulkerson’s conjecture:

Conjecture 7.2.15. Every 3−regular 2−edge-connected graph has six perfect
matchings such that each edge appears in exactly two of them.

7.3 Potts, dichromate and ice

In this section we introduce the partition functions of the statistical physics
models that correspond to the graph polynomials of the previous section. We
start with a definition of a generalization of the Ising model, the Potts model.
Its partition function is a generalisation of the Tutte polynomial.
Let G = (V, E) be a graph, k positive integer and let Je = Juv be a weight
(coupling constant) associated with an edge e = uv ∈ E. The partition function
of the Potts model is defined by

P k(G, Je) =
∑

s:V →{0,··· ,k−1}

ez(P k)(s),

where
z(P k)(s) =

∑

uv∈E

Juvδ(s(u), s(v)),

and δ is Kronecker delta function defined in the beginning of the book. The
following function called the dichromate is extensively studied in combinatorics.
It is clearly equivalent to the Tutte polynomial.

B(G, x, y) =
∑

A⊂E

x|A|yc(A).

We may write

P k(G, Je) =
∑

s:V →{0,··· ,k−1}

∏

uv∈E

(1 + zuvδ(s(u), s(v))) =
∑

E ′ ⊂E

kc(E ′ )
∏

uv∈E ′

zuv,
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where zuv = eJuv − 1. This formula explains why the function P k(G, Je) is
sometimes called the multivariate Tutte polynomial. If Juv are all equal to x we
get an expression of the Potts partition function in the form of the dichromate:

P k(G, x) =
∑

s

∏

uv∈E

exδ(s(u),s(v)) =
∑

E ′ ⊂E

kc(E ′ )(ex − 1)|E
′ | = B(G, ex − 1, k).

Fortuin and Kasteleyn constructed an extension of the Potts model, called the
random cluster model. It is a probability space on all spanning subgraphs of G.
The partition function of the Fortuin-Kasteleyn model is

FK(G, p, q) =
∑

E ′ ⊂E

p|E
′ |(1 − p)|E−E ′ |qc(E ′ ),

and the probability of E′ ⊂ E is

p|E
′ |(1 − p)|E−E ′ |qc(E ′ )

FK(G, p, q)
.

The random cluster model appears to be close to the usual G(n, p) random
graphs model (see section 2.8), but is much harder to analyze; the bias is by
qc(E ′ ): if q is large, the model favours graphs with many components. The
following observation is straighforward.

Observation 7.3.1.

FK(G, p, q) = (1 − p)|E|B(G, v, q),

where v = p/(1 − p).

Ice model. There exist in the nature a number of crystals with hydrogen
bonding. The most familiar example is ice. In the 2-dimensional ice model
the oxygen atoms fill the vertex set of a planar square lattice. Each vertex has
degree 4, and between each adjacent pair of oxygen atoms there is an hydrogen
ion. Each ion is located near one or the other end of the edge in which it lies.
In 1941, Slater proposed, on the basis of local electric neutrality, that the ions
should satisfy the ice rule: Of the four ions surrounding each oxygen atom, two
are close to it, and two are remote, on their respective bonds. The partition
function then equals

I(β) =
∑

A

e−E(A)β,

where the sum is over all arrangements A of the hydrogen ions that are allowed
by the ice rule, and E denotes the energy of the arrangement.
The arrangements of the ions may be naturally represented by the orientations
of edges; the edge-orientation points towards the end of the edge occupied by
the ion. In this way each arrangement of the ions corresponds to an orienta-
tion of the underlying square lattice; the ice rule is equivalent to saying that at
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1 2 3 4 5 6

Figure 7.2. Six admissible configurations

each vertex there must be two edges directed towards it, and two edges directed
out of it. This leaves us with six ways of arranging the arrows at each vertex,
and so the ice model is also called the six-vertex model (see Figure 7.2). In
a general ice-type model, each of these six configurations will have a different
energy: let us denote these energies by ǫ1, · · · , ǫ6. Then the energy of the whole
arrangement is E(A) = n1ǫ1 + · · · + n6ǫ6, where ni is the number of vertices
where configuration i appears. For instances, the ice problem itself is obtained
by taking all ǫi = 0.
Lieb pointed out that the partition function of the ice model on the toroidal
square lattice is equivalent to counting the number of ways of properly coloring
the faces of this square lattice with three colours. To see this, consider such a
coloring by colors 1, 2, 3. Place arrows to the edges according to the following
rule: If an observer in one face, with color c, looks across an edge to a neigh-

c

c

c + 1
c − 1

Figure 7.3. Ice and 3-face-colorings

boring face which has color c + 1 (modulo 3), then place the arrow pointing to
the observer’s left, otherwise to his right (see Figure 7.3).
The six-vertex model may also be considered for the planar square grids with
some boundary conditions. The boundary conditions mean here that there may
be vertices of degree 1 attached to different vertices of the boundary of the
square grid, and their incident edges have fixed orientations.
In particular, the states of the six-vertex model of an n × n square grid with



7.4. GRAPH POLYNOMIALS FOR EMBEDDED GRAPHS 131

boundary edges pointing inward at both vertical sides and outward at the top
and bottom horisontal sides of the grid correspond to the alternating sign matri-
ces. An alternating sign matrix (ASM) is a matrix whose elements are 0, 1,−1
and the non-zero elements in each row and column alternate between 1,−1 and
begin and end with 1. The bijection between the ASMs and the ice configura-
tions is explained by Figure 7.4. The partition function of the ice problem on

0 0 0 0 1 −1

Figure 7.4. Ice and ASM

the square grid was calculated asymptotically by Lieb. There are many fascinat-
ing objects and relations to be discovered around the alternating sign matrices.
Many of them can be found in the survey articles [P], [GJ]. The exact formula
for the number of the ASMs was proved by Zeilberger ([Z]).

Theorem 7.3.2. The number of n × n alternating sign matrices is

1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
.

7.4 Graph polynomials for embedded graphs

Embeddings enrich graph polynomials. Let us present two examples. In the
first example, we show how the flow polynomial F (G, x) for cubic plane maps
may be expressed as a rotation polynomial (see section 5.3 for basic facts about
the rotation).
Let G = (V, E) be a planar cubic map. If H is an even set of edges in G then
it is a vertex-disjoint union of cycles. Each cycle has two possible orientations,
clockwise or anti-clockwise. A cycle along with one of the two orientations will
be called an oriented cycle, and an even set, in which each cycle has a fixed
orientation attached, will be called an oriented even set. The set of all oriented
even sets of edges will be denoted by OC.

Definition 7.4.1. The rotation polynomial R(G, x) is defined as follows.

R(G, x) =
∑

C∈OC

[G, C]x2rot(C),

where [G, C] =
∏

v∈V [v, G, C] and the weights [v, G, C] are defined by Figure
7.5, where the edges not in C are dotted. Finally we recall from Section 5.3
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that, since C consists of vertex-disjoint cycles, rot(C) is equal to the number of
clockwise directed cycles minus the number of anti-clockwise directed cycles of
C.

−x−1

x − x−1 x

Figure 7.5. Rotation polynomial weights

The proof of the following theorem may be found in [J2].

Theorem 7.4.2. For every planar cubic map G

R(G, x) = F (G, (x + x−1)2).

Arrow coverings. In the second example we show how to express the Potts
partition function of a planar graph as an ice partition function.
Let G = (V, E) be an undirected graph, possibly with loops and multiple edges.
Let us recall that G together with a fixed cyclic order of the edges incident
to each vertex is called a map, or a fatgraph; see Figure 5.2. We recall that a
fatgraph F may be represented by making vertices into islands and connecting
them by fattened edges (bridges) as prescribed by the cyclic orders. This defines
a 2-dimensional surface with boundary, which will also be denoted by F . The
genus g(F ) of a fatgraph F is defined as the genus of this surface. It will always
be clear from the context whether by F we mean a fatgraph or a surface. For a
fatgraph F we will usually denote its underlying graph by G = G(F ). Let V (F )
be its set of vertices, E(F ) its set of edges. We denote the number of connected
components of F by c(F ), and the number of connected components of the
boundary of the surface F by p(F ). Further let v(F ) = |V (F )|, e(F ) = |E(F )|,
r(F ) = |V | − c(F ) and n(F ) = e(F ) − r(F ). The functions v, e, r, n, c are used
for graphs as well. We recall Euler’s formula

v(F ) − e(F ) + p(F ) = 2(c(F ) − g(F )).

We further recall that given a fatgraph F , we construct its medial graph M(F )
as follows (see Figure 5.4): for each bridge, we ’cross’ (twist) its boundaries.
The vertices of M(F ) are these crossings, and the edges are the connections left
from the fatgraph F . We call the ’squeezed faces’ of M(F ) discs and we color
them black, while the rest of the plane is white. This defines a checkerboard
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coloring of the plane.
We denote by S(F ) the set of the spanning fatsubgraphs of F .

Lemma 7.4.3. We can express the partition function P k(F, Je) of the Potts
model on the fatgraph F as

∑

H∈S(F )

kc(H)
∏

uv∈E(H)

zuv =
∑

H∈S(F )

k1/2(v(H)+p(H)+2g(H))
∏

uv∈E(H)

k−1/2zuv ,

(7.1)
where zuv = eJuv − 1.

Proof. We describe what a state is: we can ’split’ each vertex of M(F ) so that
the black discs incident with it are joined into one, or they are disconnected.
There are 2e(F ) ways to split all the vertices of M(F ): these ways are called
states. We can naturally associate an element of S(F ) to each state, and so we
identify the set of the states with S(F ).
Using r(F ) = v(F )− c(F ), n(F ) = e(F )− r(F ) and g(F ) = 1/2(c(F )− p(F ) +
n(F )), the lemma follows.

Next we change the expression of Lemma 7.4.3 into an ice partition function
by the technique called arrow coverings.
Let us define x by the equation k1/2 = x2π + x−2π . Each state H ∈ S(F ) has
p(H) faces, which are disjoint polygons (see Figure 5.4). We will think of them
as being made up from all the edges of M(F ). Let us direct the edges so that
each face-polygon is directed, i.e. each polygon corner has one directed edge
entering and one directed edge leaving. These orientations are called allowed
arrow coverings. We can further think of the polygon corners as transitions from
one directed edge to the other. Let us give to each corner weight xγ , where γ is
the angle to the left through which an observer moving in the direction of the
arrows turns when passing through the corner (see Figure 7.6). Since the edges
do not overlap, −π < γ < π. Still considering a particular state and its allowed

γ < 0γ > 0

Figure 7.6. Angles at a corner

arrow coverings, we form the product, over all polygon corners, of these weights
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xγ . Next comes a crucial observation:
The sum of this combined weight over all allowed arrow coverings of a particular
state is kp/2.
Indeed, walking around a polygon, the observer turns through the total angle 2π
if going anti-clockwise, or −2π if going clockwise. These possibilities can occur
independently for each polygon and so the total contribution of the polygon is
z2π + z−2π = k1/2.
Finally we observe that for each state, the allowed arrow coverings correspond to
the admissible orientations of the ice problem on the medial graph M(F ). The
correspondence is depicted in Figure 7.7, where the first row describes a state
with the disconnected black faces and the second row describes a state with the
joined black faces. Each of the last two columns of the picture corresponds to a
single admissible orientation. Hence we can write the Potts partition function

α

β

δ

γ
y = k−1/2zuv

xα−γ xγ−α

x−β−δ xβ+δ

yxβ−δ yxδ−β

yxα+γ yx−α−γ

Figure 7.7. Admissible orientations, allowed arrow coverings, and transition weights

P k(F, Je) for the planar fatgraphs as the partition function of an ice-type model:

P k(F, Je) = k1/2(v(F )
∑

D

∏

v∈V (F )

w(v, D)
∏

uv∈E(H)

k−1/2zij , (7.2)

where the sum is over all admissible orientations of M(F ), and w(v, D) contains
the information about the weights xγ and is defined according to Figure 7.7.
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This derivation was first discovered for the square-lattice Potts model by Tem-
perley and Lieb. They worked with transfer matrices and discovered that their
operators form an interesting algebra, known nowadays as the Temperley-Lieb
algebra. The Temperley-Lieb algebra with parameter α is the associative algeba
generated by 1, e0, e1, . . . , en and the relations e2

i = αei, eiei+1ei = ei, eiei−1ei =
ei, and eiej = ejei for |i − j| ≥ 2.

7.5 Some generalizations

Let us start with the following q-chromatic function on graphs:

Definition 7.5.1. Let G = (V, E) be a graph. Let V = {1, · · · , n} and for k ∈
{1, 2, · · · } let V (G, k) denote the set of all vertex colorings s : V → {0, · · · , k−1}
such that s(u) �= s(v) whenever uv ∈ E.

Mq(G, k) =
∑

s∈V (G,k)

q
P

v ∈ V
s(v).

Note that Mq(G, k)|q=1 is the classical chromatic polynomial of G. As the
first example we calculate the q−chromatic function of a complete graph. We
need some notation first. For a positive integer k, let (k)q = qk−1 + · · · +
q + 1 denote a q-integer, with the convention that (0)q = 0, and let (k)!q =
∏

1≤n≤k(n)q, with the convention that (0)!q = 1. For 0 ≤ n ≤ k the q-binomial
coefficients are defined by

(

n

k

)

q

=
(n)!q

(k)!q(n − k)!q
.

These are also known as Gaußian binomial coefficients. A simple q-binomial
formula leads to a formula for the summation of the products of distinct powers.
This gives the q−chromatic function for the complete graph.

Lemma 7.5.2.

(a − z)(a − qz) · · · (a − qn−1z) =

n
∑

i=0

(−1)i

(

n

i

)

q

qi(i−1)/2an−izi.

Proof. We proceed by induction on n. It is easy to check the case n = 1. In
the induction step assume the statement holds for n and we want to prove it
for n + 1. Let y = qz. We have

(a − z)(a − qz) . . . (a − qnz) = (a − z)(a − y) . . . (a − qn−1y) =

(a − z)[

n
∑

i=0

(−1)i

(

n

i

)

q

qi(i−1)/2an−iyi] =

n
∑

i=0

(−1)i

(

n

i

)

q

qi(i−1)/2an+1−iziqi +

n
∑

i=0

(−1)i+1

(

n

i

)

q

qi(i−1)/2an−izi+1qi =
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n
∑

i=0

(−1)i

(

n

i

)

q

qi(i−1)/2an+1−iziqi +

n+1
∑

i=1

(−1)i

(

n

i − 1

)

q

qi(i−1)/2an+1−izi =

(

n

0

)

q

an+1 + (−1)n+1

(

n

n

)

q

qn(n+1)/2zn+1+

n
∑

i=1

(−1)iqi(i−1)/2an+1−izi[qi

(

n

i

)

q

+

(

n

i − 1

)

q

] =

n+1
∑

i=0

(−1)i

(

n + 1

i

)

q

qi(i−1)/2an+1−izi

since it may be observed directly that

qi

(

n

i

)

q

+

(

n

i − 1

)

q

=

(

n + 1

i

)

q

.

Corollary 7.5.3. For a positive integer k, the q-chromatic function of the com-
plete graph on n ≤ k vertices is given by

Mq(Kn, k) = n!

(

k

n

)

q

qn(n−1)/2

and Mq(Kn, k) = 0 for n > k.

The next theorem provides a natural way to extend the q−chromatic func-
tion from positive integers to real numbers, by extending q−integers (k)q to

q-numbers (y)q = qy−1
q−1 for real variables y and q �= 1 (and (y)1 = y by con-

tinuity, limq→1(y)q = y.) If G = (V, E) is a graph and A ⊂ E then let C(A)
denote the set of the connected components of graph (V, A) and c(A) = |C(A)|.
If W ∈ C(A) then let |W | denote the number of vertices of W .

Theorem 7.5.4. For positive integers k,

Mq(G, k) =
∑

A⊂E

(−1)|A|
∏

W∈C(A)

(k)q|W |.

Proof. We connect the principle of inclusion and exclusion (PIE) with the geo-
metric series formula:

Mq(G, k) =
∑

s:V →{0,··· ,k−1}

q
P

v ∈ V
s(v) −

∑

s∈
S

e∈ E
Ie

q
P

v ∈ V
s(v),

where Ie, e = uv ∈ E, denotes the set of functions s : V → {0, · · · , k − 1} for
which s(u) = s(v).
By PIE this equals

∑

A⊂E

(−1)|A|
∑

s∈IA

q
P

v
s(v) =
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∑

A⊂E

(−1)|A|
∏

W∈C(A)

∑

0≤i≤k−1

qi|W | =
∑

A⊂E

(−1)|A|
∏

W∈C(A)

(k)q|W |.

The formula of Theorem 7.5.4 leads naturally to the definition of the q−dichromate.

Definition 7.5.5. For variables x, y

Bq(G, x, y) =
∑

A⊂E

x|A|
∏

W∈C(A)

(y)q|W |.

Note that Bq=1(G, x, y) = B(G, x, y) and Mq(G, k) = Bq(G,−1, k) by The-
orem 7.5.4.
Let x1, x2, · · · be commuting indeterminates and let G = (V, E) be a graph. The
q−chromatic function Mq(G, y) restricted to non-negative integers y is the prin-
cipal specialization of XG, the symmetric function generalization of the chro-
matic polynomial defined by Stanley as follows:

Definition 7.5.6.

XG(x0, x1, · · · ) =
∑

s∈∪k ∈ NV (G,k)

∏

v∈V

xs(v),

where the sum is over all proper colorings of G by {0, 1, · · · }.

Therefore Mq(G, k) = XG(xi = qi(0 ≤ i ≤ k − 1), xi = 0(i ≥ k)). Stan-
ley further defined the symmetric function generalization of the bad coloring
polynomial:

Definition 7.5.7.

XBG(t, x0, x1, · · · ) =
∑

s:V →{0,1,··· }

(1 + t)b(s)
∏

v∈V

xs(v),

where the sum ranges over ALL colorings of G by {0, 1, · · · } and b(s) := |{uv ∈
E : s(u) = s(v)}| denotes the number of monochromatic edges of f .

Noble and Welsh defined the U -polynomial and showed that it is equivalent
to XBG. I. Sarmiento proved that the polychromate defined by Brylawski is
also equivalent to the U -polynomial.

Definition 7.5.8.

UG(z, x1, x2 · · · ) =
∑

A⊂E(G)

x(τA)(z − 1)|A|−|V |+c(A),

where τA = (n1 ≥ n2 ≥ · · · ≥ nl) is the partition of |V | determined by the
connected components of A, x(τA) = xn1 · · ·xnl

.
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The motivation for the work of Noble and Welsh was a series of papers
by Chmutov, Duzhin and Lando where they observed that the U -polynomial,
evaluated at z = 0 and applied to the intersection graphs of chord diagrams,
satisfies the 4T−relation of the weight systems (see Section 8.10). Hence the
same is true for Mq(G, k) for each positive integers k since it is a particular
evaluation of the U -polynomial.

Observation 7.5.9. For a positive integer k,

Mq(G, k) = (−1)|V |UG(0, x1, x2, · · · )|xi=−(k)
qi

.

On the other hand, it seems plausible that the q−dichromate determines
the U -polynomial. If true, then the q−dichromate would provide a compact
representation of all the multivariate generalizations of the Tutte polynomial
mentioned above.
The next theorem states how the q−dichromate is related to the partition func-
tion of the Potts model (with a variable external field).

Theorem 7.5.10.
∑

A⊂E

∏

W∈C(A)

(k)q|W |

∏

uv∈A

zuv =
∑

s

q
P

v ∈ V
s(v)eE(P k)(s),

where zuv = eJuv − 1 as above.

Proof. Let W (A, k) denote the set of all colorings s : V → {0, · · · , k− 1} whose
set of monochromatic edges contains A.
We have

P k
q (G, Je) =

∑

s

q
P

v ∈ V
s(v)

∏

uv∈E

(1 + zuvδ(s(u), s(v))) =

∑

s

q
P

v ∈ V
s(v)

∑

A⊂E

∏

uv∈A

zuvδ(s(u), s(v)) =

∑

A⊂E

∑

s∈W (A,k)

q
P

v ∈ V
s(v)

∏

uv∈A

zuv =

∑

A⊂E

∏

W∈C(A)

(k)q|W |

∏

uv∈A

zuv.

7.6 Tutte polynomial of a matroid

The Tutte polynomial of a matroid is defined as follows.

Definition 7.6.1. Let M be a matroid on set E. For A ⊂ E let r(A) denote
the rank of A in M . Then let

T (M, x, y) =
∑

A⊂E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).
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Example 7.6.2. If G is a graph then T (G, x, y) = T (M(G), x, y).

If M is a matroid and M∗ is its dual, then by Proposition 4.5.2, r∗(E) −
r∗(A) = |A|− r(A) and we immediately get the duality of the Tutte polynomial:

T (M, x, y) = T (M∗, y, x).

If a linear code C of length n (see section 6.4) is given as the row space of a
k × n matrix A over a field F, i.e. C = {xA; x ∈ Fk}, then we will denote it by
C = C(F, A). We recall that C(F, A)∗ = {x ∈ Fn; Ax = 0}.
We denote by M(A) the matroid represented by the columns of A. If C =
C(F, A) and a matroid M is represented by the columns of A, then we say that
C is the cut space of M and C∗ is the cycle space of M . This coincides with the
notions introduced for graphs in Section 2.3.
Greene proved that the weight enumerator of a linear code over a finite field
F = GF (q) is an evaluation of the Tutte polynomial of a matroid represented
by the generating matrix of the code. His theorem reads as follows.

Theorem 7.6.3. Let C be a linear code of length n and dimension k over
GF (q), which is the cycle space of a matroid M . Then for 0 �= t �= 1,

AC(t) = (1 − t)ktn−kT

(

M(GF (q), C),
1 + (q − 1)t

(1 − t)
,
1

t

)

.





Chapter 8

Knots

A knot is a subset of R3 which is homeomorphic to a circle. We restrict ourselves
here to tame knots, i.e. those which are simple closed polygons in R3. A link with
k components is a subset of R3 which consists of k disjoint knots (components
of the link). A link is oriented if each component is prescribed one of the
two possible directions of traversal. Since the beginning of the knot theory,
knots are regularly projected onto the plane and thus represented by a (planar
knot) diagram. The notion of the knot or link diagram is very intuitive. Some
examples of oriented diagrams appear in Figure 8.1. A link diagram is simply
a 4-regular topological planar graph where the vertices are replaced by the
crossings. At each crossing it is specified which transition goes up and which one
goes down. For oriented links this leads to two kinds of crossings, denoted by the

Figure 8.1. Unknot, unknot, right-handed trefoil, figure eight knot

signs + and −. These signs are defined by Figure 8.2. Two knots are equivalent
if they can be transformed into each other by a continuous deformation of the
ambient space. The equivalence may be captured combinatorially by the ∆-
move in R3 and its reverse move. If K is a knot in R3, i.e. a closed simple
polygon by our assumption, then a ∆-move consists in replacing a straight line
segment l of K by the other two sides of a triangle T having sides l, k, j. It is
assumed that T and K intersect only in l.
An unknot is any knot which is equivalent to the knot whose diagram is a circle.
A natural task of listing all the knots leads to the problem of deciding whether
two knots represented by their diagrams are equivalent. This is extensively
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+ −

Figure 8.2. Oriented signs

studied and is considered to be a hard problem. The classification problem
for knots also led to study knot invariants. Knot invariants are functions on
the knot diagrams which give the same answer for the diagrams of equivalent
knots. It is a seminal open problem to find a knot invariant that assigns a
polynomial to every diagram (a polynomial knot invariant) and distinguishes
every two inequivalent knots.

8.1 Reidemeister moves

An initial step in understanding knot invariants was a description of a system
of basic moves for the diagrams, which capture the equivalence of the knots in
R3 given by the ∆-moves. These are the Reidemeister moves. The moves are
described in Figure 8.3 for the unoriented diagrams. The Reidemeister moves for

I. ==

=II.

=
III.

Figure 8.3. Three types of Reidemeister moves for unoriented knots
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the oriented diagrams may be grouped into three types following the unoriented
case. With regard to the orientation, there are clearly 4 types of the oriented
I-move. It is not hard to observe that all the oriented II-moves together with
all the oriented III-moves can be generated by the moves II(A), II(B), III(+)
described in Figure 8.4. Here comes the theorem of Reidemeister.

II(A)

= =

=

III(+)

II(B)

Figure 8.4. Three types of Reidemeister moves for oriented knots

Theorem 8.1.1. Two knots are equivalent if and only if any diagram of one
can be obtained from any diagram of the other by some finite sequence of Rei-
demeister moves.

Two diagrams that can be obtained from each other by II-moves and III-
moves only are said to be regular isotopic.

Example 8.1.2. The writhe is defined by ω(K) = n+ − n−, where n+ is the
number of positive crossings of the oriented link diagramK and n− is the number
of negative crossings of K. For knots, this does not depend on the chosen
orientation. It is clear that ω(K) is regular isotopy invariant and that, under
type-I move, it changes by one.

8.2 Skein relation

Skein relations are recursion relations for knot invariants which describe the
value of the invariant on a link diagram L as a simple function of values of the
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invariant on the diagrams obtained by a local change of L. The skein relation
often describes the knot invariant in a most elementary way. Let us consider
oriented knots first. A basic skein relation is

L+

L0L
−

Figure 8.5. Three configurations of the skein relation

xP (L+, x, y, z) + yP (L−, x, y, z) = zP (L0, x, y, z),

where P is a function on the diagrams, x, y, z are variables and L+, L−, L0

behave in a small neighborhood of a crossing as described in Figure 8.5, and
they are equal to L outside the neighborhood.
Why does such a recursion relation determine P? Using the skein relation,
we can transform the calculation of P (L, x, y, z) to the calculation of P on
a diagram with fewer crossings than L and on a diagram with a chosen sign
of L altered. Both of these operations eventually lead to the unknot. Hence
P (L, x, y, z) equals a linear combination of terms of the form P (unknot, x, y, z)
times a polynomial in the variables x, x−1, y, y−1, z, z−1. Usually one specifies
P (unknot, x, y, z) = 1. The real problem is to show the invariance under the
Reidemeister moves. The above skein relation defines a three variable knot
invariant P , called the Homfly polynomial.

8.3 The knot complement

Two equivalent links have homeomorphic complements. The opposite implica-
tion is not true. For instance, a link and its mirror image have homeomorphic
complements but need not be equivalent. The mirror image is defined from a
diagram by exchanging the signs of all the crossings. It was proved by Gordon
and Luecke that two knots with homeomorphic complements are equivalent un-
der Reidemeister moves and taking mirror images.
The knot group is the fundamental group π1(R

3 −K) of the knot complement.
There is an easy way, called the Wirtinger presentation, to describe the knot
group. Let K be a directed knot diagram. An arc is a segment of K which starts
at an undercrossing and continues until the next undercrossing. A diagram with
r crossings clearly has r arcs. Let u be a point lying ’above’ the oriented knot
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Figure 8.6. Loops around every arc

diagram. For any arc a of the diagram, we consider an oriented loop la in R3

which starts at u and goes around a in positive direction (see Figure 8.6). Let
r be the number of crossings of the diagram, which is also its number of arcs.
The r loops l1, · · · , lr represent homotopy classes in π1(R

3 − K), and we have
r relations s1, · · · , sr, one at every crossing, described in Figure 8.7. The next

lk lj

li
li lj

lk

lkljl
−1

i l−1

j
lkl
−1

j l−1

i lj

Figure 8.7. Relations in the Wirtinger presentation

theorem of van Kampen asserts that these are sufficient to give a presentation
of the knot group π1(R

3 −K). Let us briefly recall that (G, ·) is a group if G is
a non-empty set and · is a binary operation on G which is associative, there is
unity 1 ∈ G satisfying 1 · g = g · 1 = g for each g ∈ G; and for each g ∈ G there
is g−1 ∈ G so that g · g1 = g−1 · g = 1. A presentation of the group G is a pair
(X, R) where X is a set and R is a set of non-empty words with letters from X ,
which satisfies the following property:
Let X∗ denote the set of the words with letters from X . Two words W, Q from
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X∗ are equivalent if W can be reduced to Q by a sequence of operations. Each
operation applied to a word consists in inserting or deleting an element of R,
or a word of type g · g−1, between its consecutive symbols, or at the beginning
or at the end of the word. We say that (X, R) is a presentation of G if G is
isomorphic to the set of the equivalence classes of X∗ with the operation of
concatenation.

Theorem 8.3.1. π1(R
3 −K) = (l1, · · · , lr; s1, · · · , sr).

In fact, one of the relations is redundant. We saw above that equivalent
knots have homeomorphic complements, and hence the knot complement is an
invariant. The knot group is thus also an invariant. It is weaker than the
complement: there are knots with the same group but different complements.
The sum is a basic operation on knots: let K1, K2 be two disjoint knots and let
l1, l2 be line segments in K1, K2. Then the sum K1 + K2 is the knot which we
get from K1 by exchanging l1 by K2 \ l2. A knot is prime if it is not the unknot,
and cannot be expressed as the sum of two non-trivial knots. Two prime knots
with isomorphic groups do have homeomorphic complements.

8.4 The Alexander-Conway polynomial

The considerations of the knot group led to the discovery of the first polynomial
knot invariant, the Alexander-Conway polynomial. The Alexander-Conway
polynomial ∆(L, t) was discovered in 1928 by Alexander. In 1970 Conway con-
structed a knot invariant equivalent to ∆(L, t).
The skein relation is

∆(L+, t) − ∆(L−, t) = (t−1/2 − t1/2)∆(L0, t),

and ∆(unknot, t−1/2 − t1/2) = 1. (See Figure 8.5 for L+, L−, L0).
A remarkable fact about the Alexander-Conway polynomial is that it can be
defined directly from the circle embedded in R3. Any presentation of the knot
group leads to an (r − 1) × (r − 1) matrix whose determinant is the Alexander
polynomial ∆(t), up to a power of t. We explain the construction for the
Wirtinger presentation. The Wirtinger presentation leads to the following r
by r transition matrix BK = (βij) called the Bureau matrix. We introduce it
together with the notion of the arc-graph which will be useful in the study of
the Jones polynomial as well.
Let a1, · · · , ar be the arcs of K which we label so that each arc ai ends at
the crossing i. We will single out a specific arc of K which we decorate by ⋆.
Without loss of generality, we may assume that the last arc ar is decorated by
⋆. We denote by K the long knot obtained by removing ⋆ from K. Given K, we
construct a weighted directed graph GK.
The arc-graph GK has r vertices 1, . . . , r, r blue directed edges (v, v+1) (v taken
modulo r) and r red directed edges (u, v), where at the crossing u the arc that
crosses over is labeled by av.
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Each vertex v of GK is equipped with a sign sign(v) equal to the sign of the
corresponding crossing v of K. The edges of GK are equipped with a weight β,
where the weight of the blue edge (v, v + 1) is t−sign(v), and the weight of the
red edge (u, v) is 1 − t−sign(u). Here t is a variable. Finally, GK denotes the
digraph obtained by deleting vertex r from GK.
It is clear that from every vertex of GK, the blue outdegree is 1, the red outdegree
is 1, and the blue indegree is 1. It is also clear that GK has a Hamiltonian cycle
that consists of all the blue edges. We denote by eb

i (er
i ) the blue (red) edge

leaving vertex i.

Example 8.4.1. For the figure 8 knot we have:

a
2

+2

−1 −3

+4

a
4

a
1
a

3

*

Its arc-graph GK with the ordering and signs of its vertices is given by

GK =

+2

−1
+4

−3

where the blue edges are the ones with circles on them.

The Bureau matrix BK has entries equal to the weights β of the arc-graph.
Let BK denote the submatrix obtained by removing the row and the column
indexed by the ∗.

For example for the figure 8 knot we have:

BK =









0 t 0 1 − t
1 − t̄ 0 t̄ 0

0 1 − t 0 t
t̄ 0 1 − t̄ 0









.

Theorem 8.4.2. For every knot diagram K we have:

∆(K, t) =t det(I − BK),

where the equality is up to a power of t.

Since the Alexander polynomial may be expressed by a determinant, it is
efficiently computable.
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8.5 Braids and the braid group

In this section we describe the braid group. The Yang-Baxter equation from
Section 6.8 appears as a defining relation of the braid group. We show how
the Yang-Baxter equation appears very naturally from the third Reidemeister
move.
A braid of m strings (m-braid) is constructed as follows: take m distinct points
u1, · · · , um in a horizontal line and link them to distinct points v1, · · · , vm ly-
ing in a parallel line by m disjoint simple strings l1, · · · , lm. The strings are
required to ’run downwards’, as illustrated in Figure 8.8. The linking deter-

Figure 8.8. A braid and its closure

mines a permutation π of 1, · · · , m so that each ui is linked by li to vπ(i). The
permutation π is called the permutation of the braid. The braid is closed by
joining the points ui, vi, see Figure 8.8. Alexander proved that every link is
equivalent to the closure of a braid. There is a natural way to compose braids
with the same number of strings. Let a braid b have initial points u1, · · · , um

and terminal points v1, · · · , vm, and a braid b′ have initial points u′
1, · · · , u′

m

and terminal points v′1, · · · , v′m. The composition bb′ is obtained by identifying
each pair vi, u

′
i. Under this composition, the classes of the equivalent m-braids

form a group, called the braid group Bm. The braid group Bm is generated by
the elementary braids σi, σ

−1
i , i = 1, · · · , m − 1, which represent transpositions

(i, i + 1). Each elementary braid has exactly one crossing and thus the ele-
mentary braids come in pairs σi, σ

−1
i that have the opposite sign of this unique

crossing. Defining relations of the braid group were proved by Artin to be
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(1) σiσjσi = σjσiσj if |i − j| = 1,

(2) σiσj = σjσi if |i − j| > 1.

The relation (1) describes the Reidemeister move III(+) (see Figure 8.4). It is
the Yang-Baxter equation of Section 6.8.

8.6 Knot invariants and vertex models

In a vertex model we are given a graph G = (V, E). A state is defined as an
arbitrary function which assigns to each edge an element of {1, . . . , q}. We also
say that each element is assigned a color. The partition function is now defined
by

I(G) =
∑

s:E→{1,...,q}

∏

v∈V

I(v, s),

where I(v, s) is a function of the colors of the edges incident with v.
An important case is when G is directed and each vertex has two incoming and
two outgoing incident directed edges. We already saw this as the ice model in
Section 7.3. In this case, the vertex weights I(v, s) may be described by a square
q2 × q2 matrix where the rows are indexed by the colorings of the two incoming
edges and the columns are indexed by the colorings of the two outgoing edges.
Such a matrix is known as the R-matrix in knot theory. We further restrict
ourselves to q = 2. In this case the R-matrices are 4 × 4 matrices. We will
denote by R(v)cd

ab the element of the R-matrix which describes the weight of
vertex v when the two incoming edges have colors a, b and the two outgoing
edges have colors c, d. If a graph G is a knot diagram then the weights of
vertices are typically described by two matrices, R+ and R−, one for each sign
of the crossings (see Figure 8.9). Which R−matrices lead to knot invariants? We

c c c
d

a b
a b

(R+)cd
ab

(R−)cd
ab

Figure 8.9. R-matrix correspondence

saw in Section 8.5 that the solutions of the Yang-Baxter equation lead naturally
to the invariance of type III Reidemeister moves. Another basic idea in the
constructions of quantum knot invariants is that vertex models on topological
graphs embedded on a 2-dimensional surface can be conveniently endowed with a
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local geometric information. This seems to have been used first by Baxter, when
he formulated the Potts model on a planar topological graph as a vertex model;
see Section 7.3. Jones and Turaev carried this idea over to knots. They observed
that it may be advantageous to enhance the R−matrix of each vertex by factors
depending on the angles between the incident edges. These factors may differ
from vertex to vertex and they may often be regrouped to the global rotation
contribution. An example is given in the next section, where the Alexander
polynomial is described as such an enhanced vertex model.

8.7 Alexander-Conway as a vertex model

We will use the notion of Section 8.6. In particular we consider each knot
diagram as a directed plane graph where each vertex is assigned by a sign, and
has exactly two incoming and two outgoing incident edges. The R−matrices
R+ and R− = (R+)−1, which describe the vertex weights I(v, s) (see Section
8.6), are given for the Alexander-Conway polynomial by

(R+)0,0
0,0 = 1 (R+)1,0

0,1 = (R+)0,1
1,0 = −t (R+)1,1

1,1 = −t2 (R+)0,1
0,1 = 1 − t2

(R−)0,0
0,0 = 1 (R−)1,0

0,1 = (R−)0,1
1,0 = −t−1 (R−)1,1

1,1 = −t−2 (R−)1,0
1,0 = 1 − t−2

All other entries of the R−matrix are zero.
We say that a 2-coloring (state) s is admissible if

∏

vcrossing I(v, s) �= 0 (see
Section 8.6). In each admissible coloring, each of the two sets of monochromatic
edges defines a collection of closed oriented loops in the plane. Let us denote
these sets by s0 and s1 according to the color. We now let rot(s0) be the rotation
of s0 introduced in Section 5.3. The following theorem was obtained by Jaeger,
Kauffman and Saleur (see [JKS]).

Theorem 8.7.1. Let e be an arbitrary edge of the diagram K. Then

∆(K, t2) =t (−t)−ω(K)
∑

state s;s(e)=1

(−1)rot(s0)
∏

v crossing

I(v, s),

where the equality is up to a power of t.

8.8 The Kauffman derivation of the Jones

Spectacular advances in knot theory based on the connections with theoretical
physics were initiated by Jones’ discovery of the Jones polynomial V (t) in 1985.
In 1986 Kauffman produced a beautiful derivation of the Jones polynomial using
the bracket polynomial, defined in a statistical mechanical way as a state sum.
The following skein relation was obtained by Jones in the original paper:

t2V (L+, t) − t−2V (L−, t) = (t − t−1)V (L0, t),

polynomial
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and V (unknot, t) = t + t−1.
We will also consider the normalized version of the Jones polynomial defined by
J(K)(t) = V (K)(t1/2)/V (unknot)(t1/2).
The Jones polynomial was originally understood in terms of representations of
quantum groups, and Witten gave a quantum field theory interpretation of the
Jones polynomial as the expectation value of Wilson loops of a 3-dimensional
theory, the Cherns-Simons theory. This connection between statistical physics,
knot theory, quantum field theory and combinatorics has kept mathematicians
and physisists busy for decades. The Homfly polynomial was defined shortly
after Jones’ discovery, and it specializes to both the Alexander and Jones poly-
nomials.

We will now show a construction of Kauffman, which derives the Jones poly-
nomial from the Potts partition function. Let K be a directed knot diagram,
where each crossing c has a directed sign sign(v) associated with it, and two
arcs entering and leaving it. We consider K as a directed plane graph. Given K,
we construct its medial graph M = (V (M), E(M)). The construction is similar
as in the study of Gauß codes in Section 5.2. It can be described as follows.
First we color the faces of K white and black so that the neighbouring faces
receive a different color, and the outer face is white. Let b(v) be the undirected
sign of crossing v, induced by this coloring (see Figure 8.10). Let V (M) be the
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Figure 8.10. Undirected sign

set of the black faces, where two vertices are joined by an edge in E(M) if the
corresponding faces share a crossing. Note that M is again a plane graph. For
the edge e of M let b(e) be the ’undirected’ sign of the crossing shared by the
end-vertices of e.
Let us now describe what a state will be: we can ’split’ each crossing v of K so
that the white faces incident with v are merged into one face and the black faces
are disconnected, or vice versa. If K has r crossings then there are 2r ways to
split all of them: these are called states. After performing all the splittings of a
state s, we are left with a set of disjoint non-self-intersecting cycles in the plane;
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let S(s) denote their number. The state s will be identified with a function s
from the crossings of K to {−1, 1}, where s(v) = 1 if the black faces are merged
at v and s(v) = −1 if the white faces are merged at v. The following theorem
was discovered by Kauffman (see [K1]).

Theorem 8.8.1. Let K be a directed knot diagram. The following function
fK(K) is a knot invariant:

fK(K, A) = (−A)−3ω(K)
∑

s

(−A2 − A−2)S(s)−1A
P

v crossing
b(v)s(v).

Moreover the Jones polynomial is given by

J(K, A−4) = fK(K, A).

Each state s determines a subset of edges E(s) ⊂ E(M) which are not
deleted by the splittings of s, and it is easy to see that this gives a natural
bijection between the set of the states and the subsets of E(M). Moreover for
each state s

∑

v crossing

b(v)s(v) = −
∑

e∈E(M)

b(e) + 2
∑

e∈E(s)

b(e).

Proposition 8.8.2.

S(s) = 2c(E(s)) + |E(s)| − |V (M)|,

where we recall that c(E(s)) denotes the number of the connected components of
graph (V (M), E(s)).

Proof. Note that S(s) = f(E(s)) + c(E(s)) − 1, where f(E(s)) denotes the
number of faces of a plane graph (V (M), E(s)). Hence the formula follows from
the Euler formula.

Corollary 8.8.3.

fK(K, A) = (−A)−3ω(K)(−A2 − A−2)−|V (M)|−1A−
P

e∈ E(M) b(e)×
∑

E ′ ⊂E(M)

(−A2 − A−2)2c(E ′ )
∏

e∈E ′

(−A2 − A−2)A2b(e).

This obviously provides an expression for the Jones polynomial of a knot
diagram K as the Potts partition function of its medial graph M . In particular,
if K is alternating and thus all the signs b(e) are the same, its Jones polynomial
can be expressed using the Tutte polynomial. Having the q−dichromate (see
Definition 7.5.5) in mind, we may ask:

Question 8.8.4. Is
∑

E ′ ⊂E(M)

∏

e∈E ′

(−A2 − A−2)A2b(e)
∏

W∈C(E ′ )

((−A2 − A−2)2)q|W |

times an appropriate prefactor (equal to that for fK(K, A) when q = 1) also a
knot invariant? We recall that C(E′) denotes the set of the components of the
graph (V (M), E′).
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8.9 Jones polynomial as vertex model

We will use the notions of Section 8.6. In particular we again consider each
knot diagram as a directed plane graph where each vertex is decorated by a
sign, and has exactly two incoming and two outgoing incident edges. We recall
from Section 8.6 that the partition function of a vertex model may be written
as

I(G) =
∑

states

∏

v∈V

I(v, s).

For the Jones polynomial, the weight I(v, s) is given, according to Section 8.6,
by the R-matrices R+ and R− = (R+)−1 below.

(R+)0,0
0,0 = (R+)1,1

1,1 = −q (R+)1,0
0,1 = (R+)0,1

1,0 = 1 (R+)0,1
0,1 = q−1 − q

(R−)0,0
0,0 = (R−)1,1

1,1 = −q−1 (R−)1,0
0,1 = (R−)0,1

1,0 = 1 (R−)1,0
1,0 = q − q−1

and all other entries of the R matrix are zero.
As before, we say that a 2-coloring (a state) s is admissible if

∏

vcrossing I(v, s) �=
0. In each admissible coloring, each of the two sets of the monochromatic edges
defines a collection of closed oriented loops in the plane. Let us denote these
sets by s0 and s1 according to the color. We now let rot(s) = rot(s0)− rot(s1),
where rot(si) is the rotation introduced in Section 5.3. Turaev ([TV]) proved
the following

Theorem 8.9.1.

V (K, q) = (−q2)−ω(K)
∑

2-coloring s

qrot(s)
∏

v crossing

I(v, s).

We remark that another vertex model expression for the Jones polynomial
can be obtained from Theorem 8.8.1, that expresses the Jones polynomial as
the Potts partition function, and from Equation 7.2, that expresses the Potts
partition function of a planar topological graph as a vertex model.

8.10 Vassiliev invariants and weight systems

An important role within the theory of quantum knot invariants (cousins of
the Jones polynomial) has been played by the finite type invariants (Vassiliev
invariants) and their weight systems. We follow [B1] in this brief introduction.
We consider a generalization of the knot diagrams where we change some of
the crossings into normal vertices. These new vertices are called double points.
Let Km be the set of all m-singular knot diagrams, i.e., knot diagrams with m
double points.
Let V be an arbitrary invariant of oriented knots. We can extend V to Km by
repeatedly using the formula of Figure 8.11. We say that V is of type m if its
extension to Km+1 vanishes identically. We say that V is of finite type if it is of
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V ( ) V ( ) V ( )= −

Figure 8.11. A double point resolution

type m for some m. Intuition of knot theorists has been that this extension by
repeated differences corresponds to repeated derivatives, and hence finite type
invariants can be thought of as ’polynomials’. The finite type invariants have a
rich and interesting structure with strong connection to the Lie algebras. It re-
mains a seminal open problem whether the finite type invariants separate knots,
or at least recognize the unknot. All the knot invariants we mentioned in this
book have expansions whose coefficients are finite type invariants constructed
from Lie algebras.
A powerful tool in the study of an invariant V of type m is its weight system
V (m), which gives its values on the diagrams with exactly m double points.
The intuition is that these determine the ’constants of the leading terms of the
polynomial’. Indeed, the weight system of the invariant V of type m determines
V up to invariants of lower type. By definition, any change of the signs of the
honest crossings in an m-singular diagram cannot change the value of an in-
variant of type m applied to it. Hence the weight system ’sees’ only the chord
diagram with m chords (an m−chord diagram) defined by the m-singular knot
diagram (see Figure 8.12). The weight systems are directly characterized. Let

4 3

2

1

1

4

3

2

1

3

4

2

Figure 8.12. Figure 8 knot with double points and its chord diagram

∆m denote the space of all formal linear combinations with rational coefficients
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of m−chord diagrams. Let Ar
m be the quotient of ∆m by all 4T relations (see

Figure 8.13) and the FI relations D = 0, where D is a chord diagram with an
isolated chord.

−

−

4T

=

Figure 8.13. 4T relation

Theorem 8.10.1. If V is a rational valued type m invariant then its weight
system V (m) defines a linear function on Ar

m. Moreover, for any linear function
W on Ar

m there is a rational valued type m invariant V so that V (m) = W .

This is the fundamental theorem of the theory of finite type invariants, see
[B1]. Weight systems form a rich combinatorial structure whose connections
to classical discrete mathematics have only started to be discovered. We have
seen already an example of a weight system in the definition 7.5.8 of the U-
polynomial. An interesting construction of Bar-Natan (see [B2]) relates the
weight systems with the Four Color Theorem 2.10.3.





Chapter 9

2D Ising and dimer models

Since the solution of the 2-dimensional (planar) Ising problem was achieved by
Onsager, the physicists have been trying to reproduce his solution by more un-
derstandable methods. In the fifties and in the beginning of sixties two discrete
methods appeared: the Pfaffian method of Kasteleyn and independently Fisher,
Temperley, and the path method of Kac, Ward, Potts, Feynman and Sherman.
Both methods start by reducing the Ising partition function Z(G, β) to the
generating function E(G, x) of even subsets of edges. This is accomplished by
van der Waerden’s theorem (Theorem 6.3.1). The Pfaffian method seems to
be better known to discrete mathematicians. It further reduces E(G, x) to the
generating function P(G′, x) of the perfect matchings (dimer arrangements) of
a graph G′ obtained from G by a local operation at each vertex (see Section
6.2). It is important that these operations are locally planar, i.e., G′ may be
embedded on the same surface as G.

9.1 Pfaffians, dimers, permanents

Let G = (V, E) be a graph and let M, N be two perfect matchings of G. We
recall that M ⊂ E is a matching if e∩e′ = ∅ for each pair e, e′ of edges of M , and
a matching is perfect if its elements contain all the vertices of graph G. A cycle is
alternating with respect to a perfect matching M if it contains alternately edges
of M and out of M ; each alternating cycle thus has an even length. We further
recall that ∆ denotes the symmetric difference, X∆Y = (X \ Y ) ∪ (Y \ X).
If m and N are two perfect matchings then M∆N consists of vertex disjoint
alternating cycles.
Let C be a cycle of G of an even length and let D be an orientation of G. C is
said to be clockwise even in D if it has an even number of edges directed in D in
agreement with a chosen direction of traversal. Otherwise C is called clockwise
odd.

Definition 9.1.1. Let G be a graph with a weight function w on the edges.
Let D be an orientation of G. Let M be a perfect matching of G. For each
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perfect matching P of G let sign(D, M∆P ) = (−1)z where z is the number of
clockwise even alternating cycles of M∆P . Moreover let

P(D, M) =
∑

P perfect matching

sgn(D, M∆P )xw(P ).

Let G = (V, E) be a graph with 2n vertices and D an orientation of G.
Denote by A(D) the skew-symmetric matrix with the rows and the columns
indexed by V , where auv = xw(u,v) in case (u, v) is an arc of D, au,v = −xw(u,v)

in case (v, u) is an arc of D, and au,v = 0 otherwise.

Definition 9.1.2. The Pfaffian of A(D) is defined as

Pf(A(D)) =
∑

P

s∗(P )ai1j1 · · ·ainjn
,

where P = {{i1j1}, · · · , {injn}} is a partition of the set {1, · · · , 2n} into pairs,
ik < jk for k = 1, · · · , n, and s∗(P ) equals the sign of the permutation i1j1 · · · injn

of 12 · · · (2n). Hence, each nonzero term of the expansion of the Pfaffian equals
xw(P ) or −xw(P ) where P is a perfect matching of G. If s(D, P ) denotes the
sign of the term xw(P ) in the expansion, we may write

Pf(A(D)) =
∑

P

s(D, P )xw(P ).

The following theorem was proved by Kasteleyn.

Theorem 9.1.3. Let G be a graph and D an orientation of G. Let P, M be
two perfect matchings of G. Then

s(D, P ) = s(D, M)sign(D, M∆P ).

Corollary 9.1.4.

Pf(A(D)) = s(D, M)P(D, M).

The relevance of the Pfaffians in our context lies in the fact that the Pfaffian
is a determinant-type function. The determinants are invariant under elemen-
tary row/column operations and these can be used in the Gaussian elimination
to calculate a determinant. The Pfaffian may be computed efficiently by a vari-
ant of Gaussian elimination. Let A be an antisymmetric 2n × 2n matrix. A
cross of the matrix A is the union of a row and a column of the same index: the
k-th cross is the following set of elements:

Ak = {aik; 1 ≤ i ≤ 2n} ∪ {akj ; 1 ≤ j ≤ 2n}.

Multiplying a cross Ak by a scalar α means multliplying each element of Ak by
α.
Swapping crosses Ak and Al means exchanging both the respective rows and
columns. Another way of regarding the swap operation is that it exchanges
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the values of k and l in both of the index positions. The resulting matrix B is
antisymmetric again;
Adding cross Ak to cross Al means adding first the k-th row to the l-th one, and
then adding the respective columns. The matrix remains antisymmetric.

These operations may be used to transform matrix A by at most O(n2) cross
operations into a form where the Pfaffian can be determined trivially. Moreover,
for graphs with some restrictive properties, e.g. for graphs with bounded genus,
there are more efficient ways to perform the elimination. Apart of the Gaussian
elimination, we also have the following classical theorem of Cayley.

Theorem 9.1.5.

(Pf(A(D)))2 = det(A(D)).

Kasteleyn introduced the following seminal notion:

Definition 9.1.6. A graph G is called Pfaffian if it has a Pfaffian orientation,
i.e., an orientation such that all alternating cycles with respect to an arbitrary
fixed perfect matching M of G are clockwise odd.

If G has a Pfaffian orientation D, then by Theorem 9.1.3 the signs s(D, P )
are all equal and P(G, x) is equal to Pf(A(D)) up to a sign. Kasteleyn proved
that each planar graph has a Pfaffian orientation.

Theorem 9.1.7. Every topological planar graph has a Pfaffian orientation in
which all inner faces are clockwise odd.

Proof. Let G be a topological planar graph, and let M be a perfect matching
in it. Without loss of generality we assume that G is 2-connected. Then, by
Proposition 2.10.10, each face is bounded by a cycle. Starting with an arbitrary
inner face, we can gradually construct an orientation D such that in D, each
inner face is clockwise odd. Next we observe, e.g. by induction on the number
of faces, that this orientation D satisfies: A cycle is clockwise odd if and only if
it encircles an even number of vertices. However, each alternating cycle with a
perfect matching in the complement must encircle an even number of vertices,
and hence it is clockwise odd.

As a consequence we obtain the following theorem of Kasteleyn.

Theorem 9.1.8. Each planar graph has an orientation D so that

P(G, x) = Pf(A(D)).

Kasteleyn stated that for a graph of genus g, P(G, x) is a linear combina-
tion of 4g Pfaffians. This was proved by Galluccio, Loebl and independently
by Tesler. There were earlier partial results towards the proof by Regge and
Zecchina. Tesler extended the result to the non-orientable surfaces. Galluccio
and Loebl in fact proved the following compact formula.
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Theorem 9.1.9. If G is a graph of genus g then it has 4g orientations D1, · · · , D4g

so that

P(G, x) = 2−g
4g

∑

i=1

sign(Di)Pf(A(Di), x),

for well-defined sign(Di) ∈ {1,−1}.

The proof can be found in [GL1]. Such a linear combination repair of a
non-zero genus complication is a basic technique used both by mathematicians
and physicists. The earliest work I have seen it in is by Kac and Ward; we will
get to it in the next section. The next section also contains a theorem analogous
to Theorem 9.1.9; there we will include the proof. Theorem 9.1.9 has attractive
algorithmic consequences.

Corollary 9.1.10. The Ising partition function Z(G, β) can be determined ef-
ficiently for the topological graphs on an arbitrary surface of bounded genus.
Also, the whole density function of the weighted edge-cuts, or weighted perfect
matchings, may be computed efficiently for such graphs. Another well-known
problem which is efficiently solvable for these graphs by the method of Theorem
9.1.9 is the exact matching problem: Given a positive integer k, a graph G and
let the edges of G be colored by blue and red. It should be decided if there is a
perfect matching with exactly k red edges.
The efficiency is in the following sence: if we have integer weights, then the
complexity is polynomial in the sum of the absolute values of the edge-weights.

We remark that a stronger notion of efficiency, where the complexity needs
to be polynomial in the size of the graph plus the maximum of the logarithms of
the edge-weights, is more customary. The existence of a polynomial algorithm
in this sence is still open.
Curiously, there is no other polynomial method known to solve the max-cut
problem alone even for the graphs on the torus. The method of Theorem 9.1.9
led to a useful implementation by Vondrák ([GLV1], [GLV2]).

Question 9.1.11. Is there an efficient combinatorial algorithm for the toroidal
max-cut problem?

A lot of attention was given to the problem of characterizing graphs which
admit a Pfaffian orientation. The problem of recognizing the Pfaffian bipartite
graphs goes implicitly back to 1913, when Pólya asked for a characterization of
convertible matrices (this is the ’Pólya scheme’). A matrix A is convertible if
one can change some signs of its entries to obtain a matrix B such that Per(A) =
det(B). A polynomial-time algorithm to recognize the Pfaffian bipartite graphs
(this problem is equivalent to the Pólya problem described above) has been
obtained by McCuaig, Robertson, Seymour and Thomas. For the recognition of
the Pfaffian graphs embeddable on an arbitrary 2-dimensional surface, there is a
polynomial algorithm by Galluccio and Loebl (using Theorem 9.1.9). Theorem
9.1.9 can also be used in a straightforward way to complete the Pólya scheme.
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Corollary 9.1.12. For each matrix A there are matrices Bi, i = 1, · · · , 4g,
obtained from A by changing signs of some entries, so that Per(A) is an alter-
nating sum of the det(Bi)’s. The parameter g is the genus of the bipartite graph
determined by the non-zero entries of A.

Several researchers (Hammersley, Heilmann, Lieb, Godsil, Gutman) no-
ticed that Per(A), A a general complex matrix, is equal to the expectation of
(det(B))2, where B is obtained from A by taking the square root of the minimal
argument of each non-zero entry and then multiplying each non-zero entry by
an element of {1,−1} chosen independently uniformly at random. This leads to
a Monte-Carlo algorithm for estimating the permanent (see Karmarkar, Karp,
Lipton, Lovász and Luby [KKLLL] for the rate of convergence analysis).

Theorem 9.1.13. Let A be a matrix and let B be the random matrix obtained
from A by taking the square root of minimal argument of each non-zero en-
try and then multiplying each non-zero entry by an element of {1,−1} chosen
independently uniformly at random. Then E((det(B))2) = Per(A).

Proof. Since det(B) =
∑

π sign(π)
∏

i Biπ(i), we have

(det(B))2 =
∑

(π1,π2)

sign(π1)sign(π2))
∏

i

Biπ1(i)Biπ2(i) =

∑

π

sign(π)2
∏

i

B2
iπ(i)+

∑

(π1,π2);π1 �=π2

sign(π1)sign(π2))
∏

i

Biπ1(i)Biπ2(i) =

Per(A) +
∑

(π1,π2);π1 �=π2

sign(π1)sign(π2))
∏

i

Biπ1(i)Biπ2(i).

It remains to show that the expectation of the last sum is zero. Let A be an
n× n matrix and let π1 �= π2 be two permutations of n. We can associate with
them a graph G(π1, π2). Its vertex-set is the set of all pairs (i, j) for j = π1(i)
or j = π2(i). Two vertices (i, j), (i′, j′) are connected by an edge if and only
if i = i′ or j = j′. We recall that c(G) denotes the number of the connected
components of G.
Clearly, each G(π1, π2) has at least one edge, and the non-empty components of
each G(π1, π2) are cycles of an even length. Let G be the set of all such graphs
G(π1, π2) for some π1 �= π2. If G ∈ G then we let eq(G) = {(π1, π2) : G =
G(π1, π2)}. We observe that |eq(G)| = 2c(G). Finally let us denote by (ij)(G)
an arbitrary vertex of G which belongs to a cycle. Now, we can write

∑

(π1,π2);π1 �=π2

sign(π1)sign(π2))
∏

i

Biπ1(i)Biπ2(i) =

∑

G∈G

∑

(π1,π2)∈eq(G)

sign(π1)sign(π2))
∏

i

Biπ1(i)Biπ2(i) =
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∑

G∈G

B(ij)(G)y(G),

where y(G) is a random variable independent of B(ij)(G). Since the expectation
of B(ij)(G) is equal to zero, the proof is finished.

However, for the matrices with 0, 1 entries, there is something better. Jer-
rum, Sinclair and Vigoda constructed a fully polynomial randomized approxi-
mation scheme (FPRAS, in short) for approximating permanents of matrices
with nonnegative entries. Briefly, a FPRAS for the permanent is an algorithm
which, when given as input an n × n nonnegative matrix A together with an
accuracy parameter ǫ ∈ (0, 1], outputs a number Z (a random variable of the
coins tossed by the algorithm) such that

Prob[(1 − ǫ)Z ≤ Per(A) ≤ (1 + ǫ)Z] ≥
3

4

and runs in time polynomial in n,
∑

|log(Aij)| and ǫ−1. The probability 3/4
can be increased to 1− δ for any desired δ ∈ (0, 1] by outputting the median of
O(log δ−1) independent trials.

9.2 Products over aperiodic closed walks

The following solution to the 2-dimensional Ising model has been developed by
Kac, Ward and Feynman. This theory is closely related to that of Section 7.1.
Let G = (V, E) be a planar topological graph. It is convenient to associate a
variable xe instead of a weight to each edge e. If e ∈ E then ae will denote the
orientation of e and a−1

e will be the reversed orientation. We let xa = xe for
each orientation a of e. A circular sequence p = v1, a1, v2, a2, ..., an, (vn+1 = v1)
is called a prime reduced cycle, if the following conditions are satisfied: ai ∈
{ae, a

−1
e : e ∈ E}, ai �= a−1

i+1 and (a1, ..., an) �= Zm for some sequence Z and
m > 1. We let X(p) =

∏n
i=1 xai

and if each degree of G is at most 4 then we
let W (p) = (−1)rot(p)X(p) where rot(p) was defined in Chapter 5.
If E′ ⊂ E then we also let X(E′) =

∏

e∈E ′
xe. There is a natural equivalence

on the prime reduced cycles: p is equivalent to reversed p. Each equivalence
class has two elements and will be denoted by [p]. We let W ([p]) = W (p) and
note that this definition is correct since equivalent walks have the same sign.
The following theorem was proposed by Feynman and proved by Sherman. It
provides, for a planar graph G, an expression for the generating function E(G, x)
of the even sets of edges (see Section 2.1), in terms of the Ihara-Selberg function
of G (see Definition 7.1.1).

Theorem 9.2.1. Let G be a planar topological graph with each degree even and
at most 4. Then

E(G, x) =
∏

(1 − W ([p]),
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where we denote by
∏

(1−W ([p]) the formal product of (1−W ([p]) over all equiv-
alence classes of prime reduced cycles of G (the formal product was considered
in Chapter 7).

Note that the product is infinite even for a very simple graph consisting of
one vertex and two loops.
When each transition between a pair of directed edges is decorated by its rota-
tion contribution (see Section 5.3), Theorem 9.2.1 implies that E2(G, x) becomes
an Ihara-Selberg function (see Section 7.1). Hence we get the following corol-
lary, whose statement (and incorrect proof) by Kac and Ward was in fact the
starting point of the whole path approach.

Theorem 9.2.2. Let G be a topological planar graph with all degrees even and at
most 4. Then E2(G, x) equals the determinant of the transition matrix between
directed edges; each transition is decorated by its rotation contribution.

Theorem 9.2.1 is formulated for those topological planar graphs where each
degree is even and at most 4. It is not difficult to reduce E(G, x), G a gen-
eral topological planar graph, to this case: First we make each degree even by
doubling each edge. If we set the variables of the new edges to zero then each
term containing a contribution of at least one new edge disappears. Next we
make each non-zero degree equal to 2 or 4 as follows. We replace each vertex
v with incident edges e1, ..., e2k, k > 2, listed in the circular order given by
the embedding of G in the plane, by a path P of 2k − 2 vertices. We set the
variables of the edges of P equal to 1. Next we double each edge of the unique
perfect matching of P and set the variables of the new edges to zero. Finally we
join the edges e1, ..., e2k to the vertices of the auxiliary path so that the order
is preserved along the path and each degree is four: there is a unique way to do
that.
In order to prove Theorem 9.2.1, Sherman formulated and proved the following
generalization which we now state. Let v be a vertex of degree 4 of G and let p
be an aperiodic closed walk of G. We say that p satisfies the crossover condition
at v if the way p passes through v is consistent with the crossover pairing of the
four edges incident with v.
Let U be a subset of vertices of degree 4. An even subset E′ ⊂ E is called
acceptable for U if, for each u ∈ U and for both pairs of edges incident with
u and paired by the crossover pairing at u, if E′ contains one edge of the pair
then it also contains the other one.

Theorem 9.2.3. Let G = (V, E) be a topological planar graph where each degree
is even and at most 4. Let U be a subset of vertices of G of degree 4. Let
∏′

G,U (1−W ([p])) denote the product over all equivalence classes of the aperiodic
closed walks of G which satisfy the crossover condition at each u ∈ U . Then

∏

′
G,U (1 − W ([p])) =

∑

(−1)c(E ′ )X(E′),

where the sum is over all acceptable even subsets E′ ⊂ E and c(E′) is equal to
the number of vertices of U such that E′ contains all four edges incident with
it.
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The proof proceeds in two steps. First we show that, when the infinite product
is expanded as a sum of monomials of variables, the coefficient corresponding
to X(E′), for any E′ acceptable for U , is equal to (−1)c(E ′ ). In the second step
we show that all the remaining coefficients are zero.

Proposition 9.2.4. Let E′ be acceptable for U . If
∏′

G,U (1−W ([p])) is expanded
as a sum of monomials of variables then the coefficient of X(E′) is equal to
(−1)c(E ′ ).

Proof. By induction on the number of vertices of non-zero degree in E′. If E′ has
just one vertex then it consists of one loop e or two loops e, f and c(E′) equals
zero or one. If E′ consists of one loop only then

∏′
G,U (1−W ([p])) = (1 + xe)×

product of terms which cannot influence the coefficient at X(E′). If E′ consists
of two loops and c(E′) = 0 then

∏′
G,U (1 − W ([p])) equals (1 + xe)(1 + xf )(1 +

xexf )(1 − xexf )× product of terms which cannot influence the coefficient at
X(E′). Finally let c(E′) = 1 and E′ consist of two loops.

∏′
G,U (1 − W ([p]))

equals (1 − xexf )× product of terms which cannot influence the coefficient at
X(E′). Hence the base of the induction is verified.
Now we assume the statement is true for all acceptable subsets of edges with
n ≥ 1 vertices of non-zero degree. Let E′ be an acceptable subgraph with n + 1
vertices of non-zero degree. A vertex v will be called free if it does not contribute
to c(E′), i.e., if v has degree 2 in E′ or v /∈ U . Let k = n + 1 − c(E′) be the
number of free vertices.
We continue by induction on k. First let k = 0, i.e., each vertex of non-
zero degree in E′ has degree 4 and belongs to U . The crossover conditions
cause that there is a unique decomposition of E′ into prime reduced cycles
p1, ..., pr such that X(E′) =

∏r
i=1 X(pi). If r = 1 then by Observation 5.3.4,

(−1)rot(p1) = (−1)c(E ′ ). If r > 1 then
∏r

i=1(−1)rot(pi) = (−1)c(E ′ ) since any two
of the pi’s mutually intersect in an even number of vertices, and each vertex
contributes to c(E′).
Hence let k > 0 and the statement holds for all acceptable subsets with less
than k free vertices. If all free vertices have degree 2 in E′ then we may proceed
as in the case k = 0. Hence let v be a free vertex of E′ of degree four in E′.
We denote the edges incident with v by north, east, south and west according
to the cyclic order induced by the embedding in the plane. We partition the
prime reduced cycles of G which satisfy the crossover conditions at the vertices
of U into four classes. Classes I,II,III contain prime reduced cycles that have
an edge incident with v, and:

class I contains the prime reduced cycles that are consistent with west-north
and east-south pairing,

class II contains the prime reduced cycles that are consistent with west-south
and east-north pairing,

class III contains the prime reduced cycles that are consistent with north-
south and east-west pairing , and finally

class IV contains the prime reduced cycles that do not contain any edge in-
cident with v. Suppose p ∈ I and q ∈ II. Then the product W [p]W [q] contains
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I II III

Figure 9.1. Classes I- III

a variable with the exponent bigger than 1. Hence it can make no contribution
to X(E′). The same is true for II, III and I, II. Hence, if

∏′
G,U (1 − W ([p])

is expanded as a sum, the coefficient of X(E′) is the sum of the corresponding
coefficients in I × IV , II × IV and III × IV .
The contribution to I × IV can be regarded as the coefficient of X(E′′) in
∏′

G ′ ,U (1 − W ([p])) where G′ and E′′ are obtained from G and E′ by deleting
vertex v and by identifying the west, north edges into one edge, and the east,
south edges into one edge. Analogously, we can treat the case II × IV . Hence
by the induction assumption the sum of the contributions from I × IV and
II × IV is 2(−1)c(E ′ ). The contribution to III × IV can be regarded as coming
from

∏′
G,U∪{v}(1−W ([p])), i.e. one additional cross-over condition is imposed,

on vertex v. Using the induction assumption again (this time for k) we get that
this contribution is equal to (−1)c(E ′ )+1.
Summarizing when the product

∏′
(1−W ([p])) is expanded as a sum, the coef-

ficient of X(E′) is equal to 2(−1)c(E ′ ) + (−1)c(E ′ )+1, which we wanted to show.

To finish the proof of Theorem 9.2.3, we need to show that the remaining
coefficients of the expansion of the infinite product are all equal to zero. We
observe that the remaining coefficients belong to terms which are products of
variables where at least one of the exponents is greater than 1.
We temporarily consider

∏′
G,U (1−W (p)), where now the product is over prime

reduced cycles and so it is the square of the original
∏′

G,U (1 − W [p])) . Let

a1 > a−1
1 > ... > ... be a linear order of orientations of the edges of G.

Let A1 be the set of all prime reduced cycles p such that a1 appears in p. Each
p ∈ A1 has a unique factorization into words (W1, ..., Wk) each of which starts
with a1 and has no other appearance of a1. Some of these words contain a−1

1

and some do not. We will need a lemma on coin arrangements stated below.
The lemma was proved by Sherman. We present a proof based on the Witt
identity from combinatorial group theory.
Witt Identity: Let z1, ..., zk be commuting variables. Then

∏

m1,...,mk≥0

(1 − zm1
1 · · · zmk

k )M(m1,...,mk) = 1 − z1 − z2 − . . . − zk,
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where M(m1, . . . , mk) is the number of different non-periodic circular sequences
made from the collection of mi variables zi, i = 1, · · · , k.

Proof. (of Witt’s identity) We take the inverse of both sides, expand and apply
the Lyndon’s Theorem 7.1.5.

Here comes the lemma. Suppose we have a fixed collection of N objects
of which mi are of ith kind, i = 1, . . . , n. Let bk be the number of exhaustive
unordered arrangements of these symbols into k disjoint, nonempty, circularly
ordered sets such that no two circular orders are the same and none are periodic.
For example suppose we have 10 coins of which 3 are pennies, 4 are nickles and
3 are quarters. The arrangement {(p, n), (n, p), (p, n, n, q, q, q)} is not counted
in b3 since (p, n) and (n, p) represent the same circular order.

Lemma 9.2.5. (On coin arrangements) If N > 1 then
∑N

i=1(−1)ibi = 0.

Proof. The lemma follows immediately if we expand the LHS of the Witt iden-
tity and collect the terms where the sums of the exponents of zi’s are the same.

Proposition 9.2.6.
∏

p∈A1
(1 − W (p)) = 1 + xa1d11 where d11 is a formal

(possibly infinite) sum of monomials none of which has xa1 as a factor.

Proof. First we note that the additivity of rotation implies the following fact:
if p1, p2 are two prime reduced cycles both containing a1 and p1p2 is also prime
reduced then (−1)rot(p1p2) = (−1)rot(p1)+rot(p2).
Let D be a monomial summand in the expansion of

∏

p∈A1
(1 − W (p)). Hence

D is a product of finitely many W (p), p ∈ A1. Each p ∈ A1 has a unique
factorization into words (W1, ..., Wk) each of which starts with a1 and has no
other appearance of a1. Each word may appear several times in the factorization
of p, and also in the factorization of different prime reduced cycles of A1. Let
B(D) be the set-system of all the words (with repetition) appearing in the
factorizations of the prime reduced cycles of D. It follows from the lemma on
coin arrangements that the sum of all monomial summands D in the expansion
of

∏

p∈A1
(1 − W (p)), which have the same B(D) of more than one element,

is zero. Hence the monomial summands D which survive in the expansion of
∏

p∈A1
(1−W (p) all have B(D) consisting of exactly one word. This word may

but need not contain a−1
1 . However, only the summands with their word NOT

containng a−1
1 survive, by the following observation: If b, c1, ..., ck are walks that

contain neither a1 nor a−1
1 then

W (a1ba
−1
1 c1a

−1
1 c2...a

−1
1 ck) + W (a1b

−1a−1
1 c1a

−1
1 c2...a

−1
1 ck)+

W (a1ba
−1
1 c1a

−1
1 c2...a

−1
1 c−1

k ) + W (a1b
−1a−1

1 c1a
−1
1 c2...a

−1
1 c−1

k ) = 0.
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Analogously, let A2 be the set of all prime reduced cycles p such that a−1
1

appears in p. Possibly A1 ∩ A2 �= ∅. Analogously as for p ∈ A1, each p ∈ A2

has a unique factorization into words (W1, ..., Wk) each of which starts with a−1
1

and has no other appearance of a−1
1 . Some of these words contain a1 and some

do not. The following proposition may be proved in exactly the same way as
Proposition 9.2.6.

Proposition 9.2.7. Let A1, A2 be as above. Then

∏

p∈A2

(1 − W (p)) =
∏

p∈A1\A2

(1 − W (p)) =
∏

p∈A2\A1

(1 − W (p)) =
∏

p∈A1

(1 − W (p)).

Let B be the set of prime reduced cycles in which neither a1 nor a−1
1 appears.

We may write
∏

p∈B

(1 − W (p)) = (1 + d12)
2,

where d12 is a formal sum of monomials, none of which has xa1 as a factor. In
∏

p∈A1
(1−W (p))×

∏

p∈A2
(1−W (p)) = (1+xa1d11)

2, the prime reduced cycles
from A1 ∩ A2 have been counted doubly, while the prime reduced cycles from
A1 \ A2 and A2 \ A1 have been counted only once. Hence





∏

p∈(A1∪A2)

(1 − W (p))





2

=

∏

p∈A1

(1−W (p))×
∏

p∈A2

(1−W (p))×
∏

p∈A1−A2

(1−W (p))×
∏

p∈A2−A1

(1−W (p)) =

(1 + xa1d11)
4.

Proof. (of Theorem 9.2.3)

(

∏

′
G,U (1 − W ([p]))

)2

=
∏

′
G,U (1 − W (p)) =

∏

p∈(A1∪A2)

(1 − W (p)) ×
∏

p∈B

(1 − W (p)) =

(1 + xa1d11)
2(1 + d12)

2,

and
∏

′
G,U (1 − W ([p])) = (1 + xa1d11)(1 + d12).

Thus, there are no monomial summands having factors xn
a1

, n ≥ 2. The same
argument disposes of the summands with factors xn

ai
, i �= 1, n ≥ 2.
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Theorem 9.2.3 can be used to express E(G, x) for general graphs as a linear
combination of infinite products. A useful trick to obtain explicit formulas is
to base such a linear combination on the genus. This we explain next. Let us
first consider the graphs embeddable on torus (they are usually called toroidal
graphs). We will again assume that each degree is even and at most 4. Let us
take a natural representation of the torus as a rectangle with opposite edges
identified. The edges of the original rectangle form two cycles on the torus. Let
us call them the vertical cycle, and the horizontal cycle. Let G be a topological
toroidal graph such that no vertex belongs to the horizontal or to the vertical
cycle. If p is a prime reduced cycle of G, then let h(p) denote the number of
times p crosses the horizontal cycle, and let v(p) denote the number of times
p crosses the vertical cycle. The notation h(E′) and v(E′) is also used for
even subsets E′ of G. How do we define rot(p) on the torus? We unglue the
edges of the rectangle which represents the torus. Hence each rectangle edge
crossing now corresponds to ’leaving’ the rectangle and ’coming back’ to the
rectangle by the opposite rectangle edge. If we draw all this in the plane, we
get h(G)v(G) crossings of the curves representing the edges of G. Let G′ be
the graph obtained from G by introducing a vertex to each such intersection.
Note that G′ is properly drawn in the plane and each degree of G′ is even and
at most four. Let us call the new vertices special and note that each special
vertex has degree four in G′. Further note that each prime reduced cycle p of
G corresponds to the prime reduced cycle p′ of G′ which satisfies the crossover
condition at each special vertex. We let

(−1)rot(p) = (−1)h(p)+v(p)(−1)rot(p
′ ).

Finally we let

Wh(p) = (−1)h(p)W (p),

Wv(p) = (−1)v(p)W (p)

and

Wh,v(p) = (−1)h(p)+v(p)W (p).

Hence

W ([p′]) = Wh,v([p]).

Theorem 9.2.9 and in particular Theorem 9.2.12 are based on the following
curious lemma.

Lemma 9.2.8. Let R be the set of all 0, 1-vectors of length 2n and let a be an
arbitrary integer vector of length 2n. Then

2−n(−1)
P

n

i=1 a2i− 1a2i

(

∑

r∈R

(−1)ra(−1)s(r)

)

= 1,

where s(r) denotes the number of i such that r2i−1 = r2i = 1.
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Proof. We proceed by induction on n. The initial case n = 1 may be easily
checked by hand. Next assume that Lemma 9.2.8 is true for n and we want to
prove it for n + 1. Let R′ be the set of all 0, 1-vectors of length 2(n + 1) and
let a′ be an arbitrary integer vector of length 2(n + 1). Let a denote the initial
part of a′ of length 2n. Then

2−n−1(−1)
P

n+1
i=1 a′

2i− 1a′

2i

(

∑

r∈R′

(−1)ra ′

(−1)s(r)

)

=

2−1(−1)a′

2n+1a′

2n+2α[(−1)a′

2n+1 + (−1)a′

2n+2 − (−1)a′

2n+1+a′

2n+2 + 1],

where

α = 2−n(−1)
P

n

i=1 a2i− 1a2i

(

∑

r∈R

(−1)ra(−1)s(r)

)

.

By induction assumption we have that α = 1 and applying again the first step
of the induction, we find that the lemma holds.

Theorem 9.2.9. If G = (V, E) is a toroidal graph where each degree is even
and at most four, then

E(G, x) =

1/2
(

∏

(1 − Wh([p])) +
∏

(1 − Wv([p])) +
∏

(1 − Wh,v([p])) −
∏

(1 − W ([p])
)

),

where
∏

is the product over all equivalence classes of prime reduced cycles of
G.

Proof. Using Theorem 9.2.3 we get that
∏

(1 − Wh,v([p])) =
∏

′(1 − W ([p′])) =
∑

(−1)h(E ′ )v(E ′ )X(E′),

where the sum goes over all acceptable subgraphs E′ of G′, i.e. over all even
subgraphs of G. Hence also

∏

(1 − Wv([p])) =
∑

(−1)h(E ′ )v(E ′ )+h(E ′ )X(E′),
∏

(1 − Wh([p])) =
∑

(−1)h(E ′ )v(E ′ )+v(E ′ )X(E′),

and
∏

(1 + W ([p])) =
∑

(−1)h(E ′ )v(E ′ )+h(E ′ )+v(E ′ )X(E′).

Let E′ be an arbitrary even subset of G. Then the coefficient of X(E′) in

1/2
(

∏

(1 − Wh([p])) +
∏

(1 − Wv([p])) +
∏

(1 − Wh,v([p])) −
∏

(1 − W ([p]))
)

equals

1/2(−1)h(E ′ )v(E ′ )
(

(−1)h(E ′ ) + (−1)v(E ′ ) − (−1)h(E ′ )+v(E ′ ) + 1
)

= 1,

by Lemma 9.2.8.
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Using the machinery of g-graphs (see Definition 9.2.11), we can write down
a formula for general graphs. The machinery is based on the following repre-
sentation of orientable surfaces.

Definition 9.2.10. A highway surface Sg consists of a base B0 and 2g bridges
Bi

j , i = 1, ..., g and j = 1, 2, where

(i) B0 is a convex 4g-gon with vertices a1, ..., a4g numbered clockwise;

(ii) Bi
1, i = 1, · · · , g, is a 4-gon with vertices xi

1, x
i
2, x

i
3, x

i
4 numbered clockwise.

It is glued with B0 so that the edge [xi
1, x

i
2] of Bi

1 is identified with the
edge [a4(i−1)+1, a4(i−1)+2] of B0 and the edge [xi

3, x
i
4] of Bi

1 is identified
with the edge [a4(i−1)+3, a4(i−1)+4] of B0;

(iii) Bi
2, i = 1, · · · , g, is a 4-gon with vertices yi

1, y
i
2, y

i
3, y

i
4 numbered clockwise.

It is glued with B0 so that the edge [yi
1, y

i
2] of Bi

2 is identified with the
edge [a4(i−1)+2, a4(i−1)+3] of B0 and the edge [yi

3, y
i
4] of Bi

2 is identified
with the edge [a4(i−1)+4, a4(i−1)+5(mod4g)] of B0.

We remark that in Definition 9.2.10 we denote by [a, b] edges of polygons
and not edges of graphs. The usual representation in the space of an orientable
surface S of genus g may then be obtained from Sg by the following operation:
for each bridge B, glue together the two segments which B shares with the
boundary of B0, and delete B.

Definition 9.2.11. A graph G is called a g-graph if it is embedded on Sg so
that all the vertices belong to the base B0, and each time an edge intersects a
bridge, it crosses it completely.

This is analogous to the situation described earlier for the torus: we can
imagine that we contract all the bridges (and get a usual representation of an
orientable surface of genus g), draw our graph there, and then split the bridges
back. The resulting drawing is a g-graph on Sg. If G is a g-graph and p is a
prime reduced cycle of G then we denote by a(p) the vector of length 2g such
that a(p)2(i−1)+j equals the number of times p crosses bridge Bi

j , i = 1, ..., g,
j = 1, 2. Similarly we will use the notation a(E′) where E′ is an even subset of
G.
Note that any graph G can be embedded as a g-graph where g is genus of G.
As before, we only need to consider g-graphs that have all degrees even and at
most four (by a remark after Theorem 9.2.1). We define (−1)rot(p) analogously
as for the torus: We consider G embedded in the plane by the projection of
the bridges Bi

j outside B0. We get
∑g

i=1 a(G)2i−1a(G)2i crossings of the curves
representing the edges of G. Let G′ be the graph obtained from G by introducing
a vertex to each such intersection. Note that G′ is a topological planar graph,
and each degree of G′ is even and at most four. Let us call the new vertices
special and note that each special vertex has degree 4 in G′. Each non-periodic
closed walk p of G corresponds to the prime reduced cycle p′ of G′ which satisfies
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the crossover condition at each special vertex. Let J denote the vector (1, . . . , 1)
of all 1’s. We define (−1)rot(p) by

(−1)rot(p
′ ) = (−1)Ja(p)(−1)rot(p).

Let R(g) denote the set of all 0, 1-vectors of length 2g. For r ∈ R(g) we let
Wr([p]) = (−1)ra(p)W ([p]). Hence W ([p′]) = WJ ([p]).

Theorem 9.2.12. If G = (V, E) is a g-graph where each degree is even and at
most four, then

E(G, x) = 2−g
∑

r∈R(g)

(−1)s(J−r)
∏

(1 − Wr([p])),

where
∏

is the formal infinite product over all equivalence classes of prime
reduced cycles of G.

Proof. We proceed as in the proof of Theorem 9.2.9. Using Theorem 9.2.3 we
get

∏

(1 − WJ([p])) =
∏

′(1 − W ([p′])) =
∑

(−1)
P

g

i=1 a(E ′ )2i− 1a(E ′ )2iX(E′),

where the sum is over all acceptable subsets E′′ of G′, i.e., over all even subsets
of G. Hence for r ∈ R(g) we have

∏

(1 − Wr([p])) =
∑

(−1)
P

g

i=1 a(E ′ )2i− 1a(E ′ )2i+(J−r)a(E ′ )X(E′),

where the sum is over all even subsets E′ of G. Let E′ be an arbitrary even
subset of G. Then the coefficient of X(E′) in

2−g
∑

r∈R(g)

(−1)s(J−r)
∏

(1 − Wr([p]))

is equal to

2−g(−1)
P

g

i=1 a(E ′ )2i− 1a(E ′ )2i

∑

r∈R(g)

(−1)(J−r)a(E ′ )(−1)s(J−r) = 1,

by Lemma 9.2.8, since we can replace r by J − r in the summation.
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