

Agile Web Application
Development with Yii 1.1
and PHP5

Fast-track your web application development by
harnessing the power of the Yii PHP Framework

Jeffery Winesett

 BIRMINGHAM - MUMBAI

Agile Web Application Development with Yii 1.1
and PHP5

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1030810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-58-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Jeffery Winesett

Reviewers
Imre Mehesz

Jonah Turnquist

Kyle Ferreira

Acquisition Editor
Usha Iyer

Development Editors
Dhwani Devater

Reshma Sundaresan

Technical Editors
Aditya Belpathak

Hyacintha D'Souza

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Jeffery Winesett is the director of software engineering and application
development at Control Group Inc., a New York based consulting firm specializing
in delivering technology for big ideas. He has spent the last five of his twelve years
of software development focused on delivering large-scale PHP-based applications.
Jeffery also writes articles on the topics of PHP, web application frameworks, and
software development. He has enjoyed being a Yii evangelist since its early
alpha version.

I'd like to thank all of the technical reviewers, editors, and
staff at Packt for their fantastic contributions, suggestions, and
improvements. I'd like to thank Qiang Xue and the entire Yii
Framework developer team for creating and maintaining this
brilliant framework. Ryan Trammel at Scissortail design for his
attention to detail and CSS assistance. My lovely wife Tiffany, for
her endless patience throughout this project and Lemmy and Lucie
for providing me with an endless supply of sunshine.

About the Reviewers

Imre Mehesz is a long-time open source and PHP enthusiast. He started with
the classic LAMP stack around 2000 and grew into the MVC world with CakePHP,
ZendFramework, and now Yii. He brought Yii into his professional life and runs
the Yii Radio podcast.

I would like to thank Qiang for creating this framework, and my
wife who puts up with my craziness for open source development.

Jonah Turnquist is a self-taught web developer and a college student. He is a
part of the developer team for the Yii Framework, mainly contributing to the official
extension library, Zii. Meanwhile, he is attending a junior college in California, and
he is on his way to being transferred to a four year degree in college in the Fall of
2010. He is studying Electrical Engineering and Computer Sciences.

Kyle Ferreira is a student at the University of Ontario, Institute of Technology
taking a four year degree in IT (BIT) under Network Security. As a student, he has
spent a lot of time researching IT security-related topics, and has valued experience
working with various computer languages and equipment. He's currently running
his own business in web design and development, using the Yii Framework as the
basis for a lot of large projects.

I would like to thank Packt Publishing and its staff for this
opportunity to contribute to this production. I'd also like to thank
Qiang Xue for his exceptional devotion to a well designed and
functioning framework, and for his guidance in helping me learn
and contribute to the framework.

Table of Contents
Preface 1
Chapter 1: Meet Yii 7

Yii is easy 8
Yii is efficient 8
Yii is extensible 9
MVC architecture 9

The model 10
The view 10
The controller 10

Stitching these together: Yii request routing 11
Blog posting example 11

Object-relational mapping and Active Record 13
Active Record 14

The view and controller 14
Summary 15

Chapter 2: Getting Started 17
Installing Yii 17

Installing a database 19
Creating a new application 19
Hello, World! 22

Creating the controller 22
One final step 26
Reviewing our request routing 27

Adding dynamic content 28
Adding the date and time 28
Adding the date and time, a better approach 29

Moving the data creation to the controller 29
Have you been paying attention? 30

Table of Contents

[ii]

Linking pages together 31
Linking to a new page 31
Getting a little help from Yii CHtml 32

Summary 34
Chapter 3: The TrackStar Application 35

Introducing TrackStar 35
Creating user stories 36

Users 36
Projects 36
Issues 37

Navigation and page flow 38
Defining a data scheme 39
Defining our development methodology 41

Automated software testing 41
Unit and functional testing 41
Benefits of testing 42
Test-driven development 43

Testing in Yii 43
Unit tests 44

Installing PHPUnit 45
Functional tests 45

Installing Selenium 45
Running a quick example 46

Hello TDD! 47
Summary 52

Chapter 4: Iteration 1: Creating the Initial TrackStar Application 53
Iteration planning 53
Creating the new application 54
Connecting to the database 55

Testing the connection 55
Yii and databases 57

Adding a db connection as an application component 58
Summary 60

Chapter 5: Iteration 2: Project CRUD 61
Iteration planning 61

Running our test suite 62
Creating the project table 62

Naming conventions 63
Creating the AR model class 64

Configuring Gii 65
Using Gii to create our Project AR class 66

Table of Contents

[iii]

Testing out our newly generated code 68
Creating the unit test file 69
Testing create 69
Testing read 71
Testing update and delete 72

Was all that testing really necessary? 73
Enabling CRUD operations for users 73

Creating CRUD scaffolding for projects 74
Creating a new project 77

Adding a required field to our form 78
Reading the project 82
Updating and deleting projects 83
Managing projects in admin mode 83

More on testing—fixtures 85
Configuring the fixture manager 86
Creating a fixture 86
Configuring this fixture for use 88
Specifying a test database 89

Using fixtures 90
Summary 92

Chapter 6: Iteration 3: Adding Tasks 93
Iteration planning 93
Running the test suite 94
Designing the schema 95

Defining some relationships 95
Building the database and the relationships 96

Creating the Active Record model classes 98
Creating the Issue model class 98
Creating the User model class 101

Creating the Issue CRUD operations 101
Using the Issue CRUD operations 102

Creating a new Issue 103
Adding the types drop-down menu 104
Getting the test in the "Red" 105
Moving From "Red" To "Green" 105
Moving Back To "Red" 106
Getting back to "Green" once again 107
Adding the issue type dropdown 107
Adding the status drop-down menu: Do it yourself 111

Fixing the owner and requester fields 112
Enforcing a project context 112
Implementing a filter 113

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Table of Contents

[iv]

Adding a filter 113
Specifying the filtered actions 114
Adding some filter logic 115
Adding the project ID 117
Altering the project details page 117
Removing the project input form field 118

Returning back to the owner and requester dropdowns 119
Generating the data to populate the drop-down menu 122
Adding User and ProjectUserAssignment fixtures 124
Making one last change 127

Finishing the rest of the CRUD 128
Listing the issues 129
Altering the ProjectController 129

Altering the project view file 130
Making some final tweaks 132

Getting the status and type text to display 132
Adding the text display to the form 136
Changing the issue detail view 137
Getting the owner and requester names to display 139
Using relational AR 139

Making some final navigation tweaks 141
Summary 145

Chapter 7: Iteration 4: User Management and Authentication 147
Iteration planning 147
Running the test suite 148
Creating our User CRUD 149

Updating our common audit history columns 150
Adding a password confirmation field 157
Adding password encryption 159

Authenticating users using the database 160
Introducing the Yii authentication model 160

Changing the authenticate implementation 165
Updating the user last login time 168

Displaying the last login time on the home page 169
Summary 170

Chapter 8: Iteration 5: User Access Control 171
Iteration planning 172
Running our existing test suite 173
accessControl filter 173

Table of Contents

[v]

Role-based access control 178
Configuring the authorization manager 179
Creating the RBAC database tables 180
Creating the RBAC authorization hierarchy 181

Writing a console application command 182
Assigning users to roles 188
Adding RBAC roles to projects 189

Adding RBAC business rules 190
Implementing the new Project AR methods 191

Adding Users To Projects 202
Altering the Project model class 203
Adding the new form model class 205
Adding the new action method to the project controller 207
Adding the new view file to display the form 208
Putting it all together 210

Checking authorization level 211
Summary 213

Chapter 9: Iteration 6: Adding User Comments 215
Iteration planning 215
Creating the model 216
Creating the Comment CRUD 218
Altering the scaffolding to meet requirements 218

Adding a comment 220
Displaying the form 221

Creating a recent comments widget 224
Introducing CWidget 225

More on relational AR queries in Yii 227
Completing the test 229
Creating the widget 232

Summary 237
Chapter 10: Iteration 7: Adding an RSS Web Feed 239

Iteration planning 239
A little background: Content Syndication, RSS, and Zend Framework 240
Installing Zend Framework 241
Using Zend_Feed 241
Creating user friendly URLs 244

Using the URL manager 245
Configuring routing rules 246
Removing the entry script from the URL 247

Adding the feed links 249
Summary 251

Table of Contents

[vi]

Chapter 11: Iteration 8: Making it Pretty - Design, Layout,
Themes, and Internationalization(i18n) 253

Iteration planning 253
Designing with layouts 254

Specifying a layout 255
Applying and using a layout 255

Deconstructing the main.php layout file 257
Introducing the Blueprint CSS framework 259

Understanding the Blueprint installation 260
Setting the page title 260
Defining a page header 261
Displaying menu navigation items 262
Creating a breadcrumb navigation 265
Specifying the content being decorated by the layout 266
Defining the footer 267

Nesting the layouts 267
Creating themes 270

Building themes in Yii 270
Creating a Yii theme 270
Configuring the application to use a theme 277

Translating the site to other languages 278
Defining locale and language 279
Performing language translation 280

Performing message translation 280
Performing file translation 283

Summary 285
Chapter 12: Iteration 9: Modules - Adding Administration 287

Iteration planning 288
Modules 288

Creating a module 288
Using a module 291
Theming a module 292

Applying a theme 293
Restricting admin access 295
Adding a system-wide message 298

Creating the database table 298
Creating our model and CRUD scaffolding 299
Adding a link to our new functionality 301

Table of Contents

[vii]

Displaying the message to users 303
Importing the new model class for application-wide access 303
Selecting the most recently updated message 304
Adding a little design tweak 305

Summary 307
Chapter 13: Iteration 10: Production Readiness 309

Iteration planning 309
Logging 309

Message logging 310
Categories and levels 311
Adding a login message log 312
Message routing 313

Handling errors 316
Displaying errors 318

Caching 322
Configuring for cache 323
Using a file-based cache 324
Cache dependencies 329
Fragment caching 331

Declaring fragment caching options 331
Using fragment cache 332

Page caching 333
General performance tuning tips 335

Using APC 335
Disabling debug mode 335
Using yiilite.php 336
Using caching techniques 336
Enabling schema caching 336

Summary 337
Index 339

Table of Contents

[iii]

Testing out our newly generated code 68
Creating the unit test file 69
Testing create 69
Testing read 71
Testing update and delete 72

Was all that testing really necessary? 73
Enabling CRUD operations for users 73

Creating CRUD scaffolding for projects 74
Creating a new project 77

Adding a required field to our form 78
Reading the project 82
Updating and deleting projects 83
Managing projects in admin mode 83

More on testing—fixtures 85
Configuring the fixture manager 86
Creating a fixture 86
Configuring this fixture for use 88
Specifying a test database 89

Using fixtures 90
Summary 92

Chapter 6: Iteration 3: Adding Tasks 93
Iteration planning 93
Running the test suite 94
Designing the schema 95

Defining some relationships 95
Building the database and the relationships 96

Creating the Active Record model classes 98
Creating the Issue model class 98
Creating the User model class 101

Creating the Issue CRUD operations 101
Using the Issue CRUD operations 102

Creating a new Issue 103
Adding the types drop-down menu 104
Getting the test in the "Red" 105
Moving From "Red" To "Green" 105
Moving Back To "Red" 106
Getting back to "Green" once again 107
Adding the issue type dropdown 107
Adding the status drop-down menu: Do it yourself 111

Fixing the owner and requester fields 112
Enforcing a project context 112
Implementing a filter 113

Preface
Yii is a high-performance, component-based application development framework
written in PHP. It helps ease the complexity of building large-scale applications. It
enables maximum reusability in web programming, and can significantly accelerate
the development process. It does so by allowing the developer to build on top of
already well-written, well-tested, and production-ready code. It prevents you
from having to rewrite core functionality that is common across many of today's
web-based applications, allowing you to concentrate on the business rules and
logic specific to the unique application being built.

This book takes a very pragmatic approach to learning the Yii Framework.
Throughout the chapters we introduce the reader to many of the core features of
Yii by taking a test-first approach to building a real-world task tracking and issue
management application called TrackStar. All of the code is provided. The reader
should be able to borrow from all of the examples provided to get up and running
quickly, but will also be exposed to deeper discussion and explanation to fully
understand what is happening behind the scenes.

What this book cover
Chapter 1—Meet Yii introduces Yii at a high level. We learn the importance
and utility of using application development frameworks, and the characteristics
of Yii that make it incredibly powerful and useful.

Chapter 2—Getting Started walks through a simple Hello, World! style application
using the Yii Framework.

Chapter 3—The TrackStar Application provides an introduction to the task
management and issue tracking application, TrackStar, that will be built
throughout the remainder of the chapters. It also introduces the Test Driven
Development (TDD) approach.

Preface

[2]

Chapter 4—Iteration 1:Creating The Initial TrackStar Application demonstrates the
creation of a new database-driven, Yii web application.

Chapter 5—Iteration 2: Project CRUD introduces the automated code generation
features of Yii, as we work to build out the "C"reate, "R"ead, "U"pdate and
"D"elete functionality for the project entity in our TrackStar application.

Chapter 6—Iteration 3: Adding Tasks introduces us to relational active record and
controller class filters in Yii, as we add in the management issues into TrackStar.

Chapter 7—Iteration 4: User Management and Authentication covers the first part of
Yii's user authentication and authorization framework, Authentication.

Chapter 8—Iteration 5: User Access Control covers the second part of the user
authentication and authentication framework, Authorization. Both Yii's simple
access control and role-based access control are covered.

Chapter 9—Iteration 6: Adding User Comments takes a deeper dive into writing
relational Active Record queries in Yii as well as introduce a basic portlet
architecture for reusing content across multiple pages.

Chapter 10—Iteration 7: Adding an RSS Web Feed demonstrates how easy it is
to integrate other third-party frameworks into a Yii application by integrating
the Zend Framework's Web Feed library to create simple RSS feed within
our application.

Chapter 11—Iteration 8: Making It Pretty: Design, Layout, Themes and Iternationalization
(i18n) delves deeper into the presentation tier of Yii, introducing layout views,
themes as well as internationalization and localization in Yii.

Chapter 12—Iteration 9: Modules – Adding Administration introduces the concept of
a module in Yii by using one to add administrative functionality to the application.

Chapter 13—Iteration 10: Production Readiness covers error handling, logging, caching
and, security as we prepare our TrackStar application for production.

What you need for this book
To follow along in building the TrackStar application, you will need PHP 5, a
web server capable of servicing PHP 5 pages, and a database server. The code has
been tested using the Apache 2 web server and a MySQL 5 database. It is certainly
possible to use a different PHP5-compatible web server and /or different database
server product. While we have attempted to make the examples work independent
of the specific web server or database server, we cannot guarantee 100% accuracy if
you are using something different. Slight adjustments may be required.

Preface

[3]

Who this book is for
If you are a PHP programmer with knowledge of object-oriented programming and
want to rapidly develop modern, sophisticated web applications, then this book is
for you. No prior knowledge of Yii is required to follow this book

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You can type in help to see a list of
commands available to you within his shell."

A block of code is set as follows:

<h1>Hello, World!</h1>
<h3><?php echo $time; ?></h3>
<p><?php echo CHtml::link("Goodbye",array('message/goodbye'));
?></p>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<h1>Hello, World!</h1>
<h3><?php echo $time; ?></h3>
<p><?php echo CHtml::link("Goodbye",array('message/goodbye'));

?></p>

Any command-line input or output is written as follows:

%cd /WebRoot/demo/protected/tests

%phpunit unit/MessageTest.php

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking on the About link provides a simple example of a static page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com
or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/9584_Code.zip
to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Meet Yii
The past several years have marked a significant 'framework boom', and almost
everyone involved in web application development these days is a part of a new
generation of 'framework boomers'. Web development frameworks help jumpstart
your application by immediately delivering the core foundation and plumbing
needed to quickly turn your ideas scribbled on the whiteboard into a functional
and production-ready code. With all of the common features expected from web
applications today and available framework options that meet these expectations,
there is little reason to code your next web application from scratch. A modern,
flexible, and extensible framework is almost as essential a tool as the programming
language itself to today's web developer. Moreover, when the two are particularly
complementary, the results are an extremely powerful toolkit: Java and Spring, Ruby
and Rails, C# and .NET, and PHP and Yii.

Yii is the brainchild of its founder Qiang Xue who started the development of this
open source framework on January 1st, 2008. Prior to this, Qiang had previously
developed and maintained the PRADO framework for many years. The years of
experience and user feedback cultivated from the PRADO project solidified the
need for a much easier, more extensible and more efficient PHP5-based framework
to meet the ever-growing needs of application developers. The initial alpha version
of Yii was officially released to meet these needs in October of 2008. Its extremely
impressive performance metrics when compared to other PHP-based frameworks
immediately drew very positive attention. On December 3rd, 2008, Yii 1.0 was
officially released and as of March 14th, 2010, the latest production-ready version
is 1.1.2. It has a growing development team and continues to gain popularity among
PHP developers everyday. We feel that with just a little help from the information
contained in this book, you will soon understand why.

Meet Yii

[8]

The name Yii (an acronym for Yes, it is, pronounced as Yee or [ji:]) stands for
easy, efficient, and extensible. Yii is a high-performance, component-based, web
application framework written in PHP 5. Yii makes it easier to create and maintain
large-scale web applications. It also makes them more efficient and extensible. Let's
take a quick look at each of these characteristics of Yii in turn.

Yii is easy
To run a Yii-powered web application, all you need is the core framework files and
a web server supporting PHP 5.1.0 or higher. To develop with Yii, you only need to
know PHP and object-oriented programming(OOP). You are not required to learn
any new configuration or templating language. Building a Yii application mainly
involves writing and maintaining your own custom PHP classes, some of which
will extend from the core Yii Framework component classes.

Yii incorporates many of the great ideas and work from other well-known web
programming frameworks and applications. So, if you are coming to Yii after
using other web development frameworks, it is likely you will find it familiar
and easy to navigate.

Yii also embraces a convention over configuration philosophy, which contributes to its
ease of use. This means that Yii has sensible defaults for almost all aspects of wiring
your application. If you follow the prescribed conventions, you will write less code
and spend less time developing your application. If desired, Yii allows you to
customize and easily override all of these conventions. We will be covering some
of these defaults and conventions later in this chapter and throughout the book.

Yii is efficient
Yii is a high-performance component-based framework for developing web
applications on any scale. It encourages maximum code reuse in web programming,
and can significantly accelerate the development process. As mentioned previously,
if you stick with Yii's built-in conventions, you can get your application up and
running with little to no manual configuration.

Yii is also designed to help you with DRY development. DRY (Don't Repeat
Yourself) is a key concept of agile application development. All Yii applications
are built using the Model-View-Controller (MVC) architecture. Yii enforces
this development pattern by providing a place to keep each piece of your MVC
code. This minimizes duplication and helps promote code reuse and ease of
maintainability. The less code you need to write, the less time it takes to get your
application to market. Similarly, the easier it is to maintain your application, the
longer it will stay on the market.

Chapter 1

[9]

Of course, the framework is not just efficient to use, it is also remarkably fast and
performance is optimized. Yii has been developed with performance optimization
in mind from the very beginning, and the result is that it is one of the most efficient
PHP frameworks around. The Yii development team has performed performance
comparison tests with many other PHP frameworks, and Yii outperformed them
all. This means that the additional overhead Yii adds to applications written on top
of it is negligible.

Yii is extensible
Yii has been carefully designed to allow nearly every piece of its code to be extended
and customized to meet almost any need or requirement. In fact, it is difficult not to
take advantage of Yii's ease of extensibility as a primary activity when developing a
Yii-driven application, which is extending the core framework classes. If you want
to turn your extended code into useful tools for other developers to use, Yii provides
easy-to-follow steps and guidelines to help you create such third-party extensions.
This allows you to contribute to Yii's ever-growing list of features and actively
participate in extending Yii itself.

What is also remarkable about Yii is its ease of use, superior performance, and its
depth of extensibility which does not come at the cost of sacrificing features. Yii is
packed with features to help you meet those high demands placed on today's web
applications. AJAX-enabled widgets, web service integration, enforcement of an
MVC architecture, DAO and relational Active Record database layer, sophisticated
caching, hierarchical role-based access control, theming, internationalization (I18N),
and localization (L10N), are just the tip of the Yii iceberg. As of version 1.1, the
core framework is now packaged with an official extension library called Zii. These
extensions are developed and maintained by the core framework team members
who continue to extend Yii's core feature set. With a deep community of users who
are also contributing by writing Yii extensions, the overall feature set available to
a Yii powered application is growing daily. For a complete list of all available user
contributed extensions, see http://www.yiiframework.com/extensions/.

MVC architecture
As mentioned previously, Yii is an MVC framework and it provides an explicit
folder structure for each piece of model, view, and controller code. Before we start
building our first Yii application, we need to define a few key terms, and look at
how Yii implements and enforces this MVC architecture.

Meet Yii

[10]

The model
Typically in an MVC architecture, the model is responsible for maintaining state.
Thus, it should encapsulate the business rules that apply to the data that defines
this state. A model in Yii is any instance of the framework class CModel or its child
class. A model class typically comprises data attributes that can have separate labels
(something user-friendly for the purpose of display), and can be validated against a
set of rules defined in the model. The data that makes up the attributes in the model
class could come from a row of a database table or from the fields in a user input form.

Yii implements two kinds of models: The form model (CFormModel class) and the
active record model (CActiveRecord class). They both extend from the same base
class CModel. CFormModel represents a data model that collects inputs in HTML
form. It encapsulates all the logic for form field validation and any other business
logic that may need to be applied to the form field data. It can then store this data
in memory, or with the help of an active record model, store data in a database.

Active Record (AR) is a design pattern used to abstract database access in an
object-oriented fashion. Each AR object in Yii is an instance of CActiveRecord or
its child class that wraps a single row in a database table or view, encapsulates all
the logic and details around database access, and houses much of the business logic
that is required to be applied to that data. The data field values for each column in
the table row are represented as properties of the AR object. AR is described in more
detail a little later.

The view
Typically, the view is responsible for rendering the user interface, based on the
data in the model. A view in Yii is a PHP script that contains user interface related
elements, often built using HTML, but can also contain PHP statements. Usually any
PHP statements within the view are very simple conditional or looping statements,
or refer to other Yii UI-related elements such as HTML helper class methods or
prebuilt widgets. More sophisticated logic should be separated from the view and
placed appropriately in either the model (if dealing directly with the data), or in the
controller for a more general business logic.

The controller
The controller is our main director of a routed request and is responsible for taking
user input, interacting with the model, and instructing the view to update and
display appropriately. A controller in Yii is an instance of CController or its child.
When a controller runs, it performs the requested action, which then interacts with
needed models and renders an appropriate view. An action, in its simplest form, is
a controller class method whose name starts with the word action.

Chapter 1

[11]

Stitching these together: Yii request
routing
In most MVC implementations, a web request typically has the following lifecycle:

1. The browser sends the request to the server hosting the MVC application.
2. A controller is invoked to handle the request.
3. The controller interacts with the model.
4. The controller invokes the view.
5. The view renders the data (often as HTML) and returns it to the browser

for display.

Yii's MVC implementation is no exception. In a Yii application, incoming requests
from the browser are first received by a router. The router analyzes the request to
decide where in the application it should be sent for further processing. In most
cases, the router identifies a specific action method within a controller class to
which the request is passed. This action method will look at the incoming request
data, possibly interact with the model, and perform other needed business logic.
Eventually, this action class will prepare the response data and send it to the view
class. The view will then massage this data to conform to the desired layout and
design, and return it for the browser to display.

Blog posting example
To help all of this make more sense, let's look at a fictitious example. Pretend we
have used Yii to build ourselves a new blog site, yourblog.com. This site is similar
to most typical blog sites out there. The home page displays a list of recently posted
blog posts. The names of each of these blog postings are hyperlinks that take the user
to the page that displays the full article. The next diagram illustrates how Yii handles
an incoming request sent from clicking on one of these hypothetical blog post links.

Meet Yii

[12]

The figure traces the request made from a user clicking on the following link:

http://yourblog.com/post/show/id/99

First, the request is sent to the router. The router parses the request to decide where
to send it. The structure of the URL is key to the decision the router will make. By
default, Yii recognizes URLs with the following format:

http://hostname/index.php?r=ControllerID/ActionID

The r querystring variable refers to the route that is analyzed by the Yii router.
It will parse this route to determine the appropriate controller and action method
to further handle the request. Now, you may have immediately noticed that the
URL mentioned in the previous example does not follow this default format. It is
a simple matter to configure the application to recognize the more search engine
friendly format:

http://hostname/ControllerID/ActionID

We will continue to use this simplified format for the purposes of this example. The
ControllerID in the URL refers to the name of the controller. By default this is the
first part of the controller class name, up to the word Controller. For example, if
your controller class name is TestController, the ControllerID would be Test.
Similarly, ActionID refers to the name of the action that is defined by the controller.
If the action is a simple method defined within the controller, this will be whatever
follows the word Action in the method name. For example, if your action method is
named actionCreate(), the ActionID is Create.

If the ActionID is omitted, the controller will take the default action,
which is a method in the controller called actionIndex(). If the
ControllerID is also omitted, the application will use the default
controller. The Yii default controller is called SiteController.

Turning back to the example, the router will analyze the following URL,
http://yourblog.com/post/show/id/99, and will take the first part of the URL
path, post to be the ControllerID and the second part, show to be the ActionID.
This will translate to routing the request to the actionShow() method within
the PostController class. The last part of the URL (id/99) is a name/value
querystring parameter that will be available to the method during processing.
In this example, 99 represents the unique internal id for the selected blog post.

The actionShow() method handles requests for specific blog post entries. In this
case, it uses the querystring variable, id to determine which specific post is being
requested. It asks the model to retrieve information about blog post entry number 99.

http://ourblog.com/post/show/id/99
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/ControllerID/ActionID

Chapter 1

[13]

The model AR class interacts with the database to retrieve the requested data. After
retrieving the data from the model, the controller class further prepares it for display
by making it available to the view. The view then renders the needed HTML in a
response back to the user's browser.

This MVC architecture allows us to separate the presentation from the model,
and the controller from the view. This makes it easy for developers to change aspects
of the application without affecting the User Interface (UI) and for UI designers to
freely make changes without affecting the model or business logic. This separation
also makes it very easy to provide multiple presentations of the same model code.
For example, you could use the same model code that drives the HTML layout of
yourblog.com to drive a Flash/Flex RIA presentation or a mobile application or
web services, or a command-line interface. In the end, following this set conventions
and separating the functionality will result in an application that is much easier to
extend and maintain.

Yii does a lot more to help you enforce this separation than simply providing some
naming conventions and suggestions for where your code should be placed in a
folder structure. It helps to take care of all the lower-level glue code needed to stitch
all the pieces together. This allows you to reap the benefits of a strict MVC designed
application without having to spend all the time coding the details yourself. Let's
take a look at some of these lower-level details.

Object-relational mapping and Active
Record
For the most part, the web applications we build house their data in a relational
database. The blog posting application we used in the previous example holds blog
post content in database tables. However, web applications need the data that is
held in the persistent database storage mapped to in-memory class properties that
define the domain objects. Object-relational mapping (ORM) libraries provide this
mapping of database tables to domain object classes.

Much of the code that deals with ORM is about describing how fields in the database
correspond to fields in our objects, which is tedious and repetitive to write. Luckily,
Yii comes to our rescue to save us from this repetition and tedium by providing the
ORM layer in the form of the AR pattern.

Meet Yii

[14]

Active Record
As was previously mentioned, AR is a design pattern used to abstract database
access in an object-oriented fashion. It maps tables to classes, rows to objects and
columns to object attributes. In other words, each instance of an active record class
represents a single row in a database table. However an AR class is more than just
a set of attributes that map to columns in a database table; it also houses the needed
business logic behavior to be applied to that data. The end result is a class that
defines everything about how it should be written to and read from the database.

By relying on convention and sticking with reasonable defaults, Yii's implementation
of AR will save the developer a ton of time normally spent in configuration or in
writing tedious and repetitive SQL statements required to create, read, update and
delete data. It also allows the developer to access data stored in the database in a
much more object-oriented way. To illustrate this, here is some example code that
uses AR to operate on a specific blog posting whose internal id, which is also used
as the table's Primary Key, is 99. It first retrieves the posting by Primary Key, it then
changes the title, and then updates the database to save the changes:

$post=Post::model()->findByPk(99);
$post->title='Some new title';

$post->save();

Active Record completely relieves us of the tedium of having to write any SQL
or otherwise deal with the underlying database.

Active Record does even more than this. It integrates seamlessly with
many other aspects of the Yii Framework. There are myriad active html
helper input form fields that tie directly to their respective AR class
attributes. This way, Active Record extracts the input form field values
directly into the model. It also supports sophisticated, automated data
validation, and if the validation fails, the Yii view classes easily display
the validation errors to the end user. We will be revisiting AR and
providing many concrete examples throughout this book.

The view and controller
The view and the controller are very close cousins. The controller makes the data
available for display to the view and the view generates the pages that trigger events,
which sends data to the controller.

Chapter 1

[15]

In Yii, a view file belongs to the controller class that rendered it. This way, inside a
view script, we can access the controller instance by simply referring to $this. This
implementation makes the view and controller very intimate. Thankfully, all of these
details are handled for us by Yii, so we can focus on coding the specific application.

There is also a lot more to Yii controllers than just calling the model and
rendering views. Controllers can manage services to provide sophisticated
pre- and post-processing on requests, implement basic access control rules to
limit access to certain actions, manage application-wide layout and nested layout
file rendering, manage pagination of data, and many other behind-the-scenes
services. Again, we have Yii to thank for not needing to get our hands dirty with
these messy details.

There is a lot to Yii. The best way to explore all its beauty is to start using it. Now
that we have some of the basic ideas and terminology under our belt, we are
in a great position to do just that. In the next chapter, we will go through the simple
Yii installation process, and then build a working application to better illustrate
these ideas.

Summary
In this chapter, we were introduced at a very high level to the Yii PHP web application
framework. We also covered a number of software design concepts embraced by
Yii. Don't worry if the abstract nature of this initial discussion was a tad lost on you.
It will all make sense once we dive into specific examples. But, to recap, we
specifically covered:

1. The importance and utility of application development frameworks.
2. What Yii is and the characteristics of Yii that make it incredibly powerful

and useful.
3. The MVC application architecture and the implementation of this

architecture in Yii.
4. A typical Yii web request lifecycle and URL structures.
5. Object-relational mapping and Active Record in Yii.

Getting Started
The real pleasures and benefits of Yii are quickly revealed by simply using it.
In this chapter, we will see how the concepts introduced in the previous chapter,
Meet Yii, are manifested in an example Yii application. In the spirit of Yii's
philosophy to follow conventions, we will write a Hello, World! program
to try out this new framework.

In this chapter, we will cover:

•	 Yii Framework installation
•	 Creating a new application
•	 Creating controllers and views
•	 Adding dynamic content to view files
•	 Yii request routing and linking pages together

Before we can use it we need to first install the framework. Let's do that now.

Installing Yii
Prior to installing Yii, you must configure your application development environment
as a web server capable of supporting PHP 5.1.0 or higher. Yii has been thoroughly
tested with Apache HTTP server on Windows and Linux operating systems. It may
also run on other web servers and platforms, provided PHP 5 is supported. There
are myriad free resources available on the Internet to assist you in getting your
environment configured with a PHP 5 compatible web server. We assume the reader
has previously engaged in PHP development and has access to such an environment.
We will leave the installation of a web server and PHP itself as an exercise to
the reader.

Getting Started

[18]

The basic Yii installation is almost trivial. There are really only two necessary steps:

1. Download the Yii Framework from http://www.yiiframework.com/
download/.

2. Unpack the downloaded file to a web-accessible folder.

There are several versions of Yii from which to choose when downloading
the framework. We will be using version 1.1.2 for the purposes of this
book, which is the latest stable version as of the time of writing. Though
most of the sample code should work with any 1.1.x version of Yii, there
may be some subtle differences if you are using a different version. Please
use 1.1.2 if you are following along with the examples.

After installation, it is advised that you verify that your server satisfies all of the
requirements for using Yii and to ensure the installation was a success. Luckily,
doing so is easy. Yii comes with a simple requirement checking tool. To invoke
the tool and have it verify the requirements for your installation, simply point
your browser to:

http://yourhostname/path/to/yii/requirements/index.php

The following screenshot shows the results we see for our configuration:

Chapter 2

[19]

Using the Requirement Checker is not itself a requirement for installation, but it
is certainly recommended to ensure proper installation. As you can see, not all of
our results under the Details section received a Passed status, as some display a
Warning. Of course, your configuration will most likely be slightly different from
ours and consequently, your results may slightly differ as well. That is okay. It is
not necessary that all of the checks under the Details section pass, but it is necessary
to receive the following message under the Conclusion section:

Your server configuration satisfies the minimum requirements by Yii.

Installing a database
Throughout this book, we will be using a database to support many of our
examples and the applications that we will be writing. In order to properly follow
along with this book, it is recommended you install a database server. Though you
can use any database that is supported by PHP with Yii, if you want to use some of
built-in database abstraction layers and tools within Yii, you will need to use one that
is supported by the framework. As of version 1.1, those are:

•	 MySQL 4.1 or later
•	 PostgresSQL 7.3 or later
•	 SQLite 2 and 3
•	 Microsoft SQL Server 2000 or later
•	 Oracle

Now that we have installed the framework, and we have verified that we have
met the minimum requirements, let's create a brand new Yii web application.

Creating a new application
To create a new application, we are going to use a little powerhouse of a tool known
as yiic that comes packaged with the framework. This is a command-line tool that
one can use to quickly jumpstart a brand new Yii application. It is not mandatory to
use this tool, but it saves a lot of time and guarantees that the proper folder and file
structure is in place.

Getting Started

[20]

To use this tool to create your first Yii application, open up a shell window,
and navigate to a place in your filesystem where you will want to create your
application's folder structure. For the purpose of this demo application, we will
assume the following:

•	 YiiRoot is the folder where you have installed Yii
•	 WebRoot is configured as the document root of your web server

•	 From your command line, change to your WebRoot folder and execute
the following:
% cd WebRoot

% YiiRoot/framework/yiic webapp demo

Create a Web application under '/Webroot/demo'? [Yes|No]

Yes

 mkdir /WebRoot/demo

 mkdir /WebRoot/demo/assets

 mkdir /WebRoot/demo/css

 generate css/bg.gif

 generate css/form.css

 generate css/main.css

Your application has been created successfully under /Webroot/demo. The webapp
command is used to create a brand new Yii web application. It takes just a single
argument to specify either the absolute or relative path to the folder in which the
application should be created. The result is the generation of all the needed folders
and files to provide a default Yii web application skeleton.

Now we can change into the newly created demo folder and look at what was created
for us:

% cd demo

% ls –p

assets/ images/ index.php themes/

css/ index-test.php protected/

A description of the high-level items that were automatically created is shown
as follows:

demo/

index.php Web application entry script file

index-test.php entry script file for the functional tests

assets/ containing published resource files

Chapter 2

[21]

css/ containing CSS files

images/ containing image files

themes/ containing application themes

protected/ containing protected application files

With the execution of one simple command from the command line, we have created
all the folder structure and files needed to immediately take advantage of Yii's sensible
default configuration. All of these folders and the files, along with the subfolders
and files they contain, can look a little daunting at first glance. However, we can
ignore most of them as we are getting started. All these folders and files are actually
a working web application. The yiic command has populated the application with
enough code to establish a simple home page, a typical Contact Us page to provide
an example of a web form, and a login page with enough autogenerated code to
demonstrate basic authorization and authentication in Yii. If your web server supports
the GD2 graphics library extension, you will also see a CAPTCHA widget on the
Contact Us form, and the application will have the corresponding validation for this
form item.

As long as your web server is running, you should be able to open up your browser
and navigate to http://localhost/demo/index.php. Here you will be presented
with a My Web Application home page along with the friendly greeting Welcome
to My Web Application, followed by some helpful information on the steps to be
taken next. The next screenshot shows this example home page:

Getting Started

[22]

You'll notice that there is a working application navigation bar along the top of
the page. From left to right there is: Home, About, Contact, and Login. Let's explore
by clicking around. Clicking on the About link provides a simple example of a static
page. The Contact link will take you to the Contact Us form that was mentioned
before, along with the CAPTCHA input field in the form (again, you will only
see the CAPTCHA field if you have the GD graphics extension as part of your
PHP configuration).

The Login link will take you to a page displaying a login form. This is actually
working code with form validations, as well as username and password credential
validation and authentication. Using either demo/demo or admin/admin as the
username/password combination will get you logged into the site. Try it out. You
can try a login that will fail (any combination other than demo/demo or admin/
admin), and see the error validation messages display. After successfully logging
in, the Login link in the header changes to a Logout(username) where username
is either demo or admin, depending on which username you used to login. It is
amazing that so much has been accomplished without having to do any coding.

Hello, World!
All of this autogenerated code will start to make more sense once we walk through a
simple example. To try out this new system, let's build that Hello, World! program
we promised at the start of this chapter. A Hello, World! program in Yii will be a
simple web page application that sends this very important message to our browser.

We have already discussed about Yii being a Model-View-Controller framework in
Chapter 1, Meet Yii,. A typical Yii web application takes in an incoming request from
a browser, parses information in that request to find a controller, and then calls an
action within that controller. The controller can then invoke a particular view to
render and return content to the user. If dealing with data, the controller may also
interact with a model to handle all the Create, Read, Update, and Delete (CRUD)
operations on that data. In our simple Hello, World! application, all we will
require is the code for a controller and a view. We are not dealing with any data,
so a model will not be needed. Let's begin our example by creating our controller.

Creating the controller
As we did when we created the initial application, we will again call on the yiic
command to help us create our controller. In this case, we are going to use the
yiic shell command to start the application within an interactive shell in which
we can invoke other commands. To start the shell, navigate to the root of your
demo application by running the following command:

Chapter 2

[23]

%cd /Webroot/demo

Then execute yiic with the following shell command:

%YiiRoot/framework/yiic shell

Yii Interactive Tool v1.1

Please type 'help' for help. Type 'exit' to quit.

>>

If you have navigated into your web application folder, you can also
envoke the yiic command-line tool by referencing the relative path
protected/yiic rather than the fully qualified path to where Yii
is installed. So, the equivalent way to start the shell from within the
folder would be:
% protected/yiic shell

You are now at the prompt within the interactive shell. You can type help to see
a list of commands available to you within this shell:

>> help
At the prompt, you may enter a PHP statement or one of the following
commands:
 - controller
 - crud
 - form
 - help
 - model
 - module
Type 'help <command-name>' for details about a command.

We see there are several command options available. The controller command
looks like the one we want, as we want to create a controller for our application.
We can find out more about this command by typing help controller from the
shell prompt. Go ahead and type that in. It provides usage, a general description,
parameter descriptions, and some examples.

>> help controller
USAGE
 controller <controller-ID> [action-ID] ...

DESCRIPTION
 This command generates a controller and views associated with
 the specified actions.

Getting Started

[24]

PARAMETERS

 * controller-ID: required, controller ID, e.g., 'post'.

 If the controller should be located under a subdirectory,

 please specify the controller ID as 'path/to/ControllerID',

 e.g., 'admin/user'.

 If the controller belongs to a module, please specify

 the controller ID as 'ModuleID/ControllerID' or

 'ModuleID/path/to/Controller' (assuming the controller is

 under a subdirectory of that module).

 * action-ID: optional, action ID. You may supply one or several

 action IDs. A default 'index' action will always be generated.

EXAMPLES

 * Generates the 'post' controller:

 controller post

 * Generates the 'post' controller with additional actions 'contact'

 and 'about':

 controller post contact about

 * Generates the 'post' controller which should be located under

 the 'admin' subdirectory of the base controller path:

 controller admin/post

 * Generates the 'post' controller which should belong to

 the 'admin' module:

 controller admin/post

NOTE:
In the last two examples, the commands are the same, but the generated
controller file is located under different folders. Yii is able to detect
whether admin refers to a module or a subfolder.

Chapter 2

[25]

So, from reading the help, it is clear that the controller command will generate
the controller, actions, and the views associated with the specified actions. As our
application's primary function is to display a message, let's call our controller,
message, and let's name our action method after the simple message we want
to display:

>> controller message helloWorld

generate MessageController.php

 mkdir /Webroot/demo/protected/views/message

 generate helloworld.php

 generate index.php

Controller 'message' has been created in the following file:

 /Webroot/demo/protected/controllers/MessageController.php

You may access it in the browser using the following URL:

 http://hostname/path/to/index.php?r=message

>>

It should respond by indicating the successful creation of the MessageController in
the default protected/controllers/ folder.

This is great. With one simple command, we have generated a new controller PHP
file, called MessageController.php, and it was placed properly under the default
controllers folder, protected/controllers/. The generated MessageController
class extends an application base class, Controller, located at protected/
components/Controller.php. This class in turn extends the base framework
class, CController, so it automatically gets all of the default controller behavior.
Since we specified an actionID parameter, helloWorld, a simple action was also
created within MessageController called actionHelloWorld(). The yiic tool
also assumed that this action, like most actions defined by a controller, will need to
render a view. So, it added the code to this method to render a view file by the same
name, helloworld.php, and placed it in the default folder for view files associated
with this controller, protected/views/message/. Here is the code that was
generated for the MessageController class:

<?php

class MessageController extends Controller

{

 public function actionHelloWorld()

Getting Started

[26]

 {

 $this->render('helloWorld');

 }

 public function actionIndex()

 {

 $this->render('index');

 }

}

We see that it also added an actionIndex() method that simply renders a view file
that was also auto-created for us at protected/views/message/index.php. As was
discussed in Chapter 1, Meet Yii by convention, a request that specifies message as the
controllerID, but does not specify an action, will be routed to the actionIndex()
method for further processing. The yiic tool was smart to know to create a default
action for us.

Try it out by navigating to http://localhost/demo/index.php?r=message/
helloWorld. You should see something similar to the following screenshot:

One final step
To turn this into a Hello, World! application, all we need to do is customize our
helloWorld.php view to display Hello, World!. It is easy to do this. Edit the
file protected/views/message/helloWorld.php so that it contains just the
following code:

<?php

$this->breadcrumbs=array(

Chapter 2

[27]

 'Message'=>array('message/index'),

 'HelloWorld',

);?>

<h1>Hello, World!</h1>

Save your code, and view the page again in your browser: http://yourhostname/
index.php?r=message/helloWorld

It now displays our introductory greeting in place of the autogenerated copy, as
displayed in the following screenshot:

We have our simple application working with stunningly minimal code. All we have
added is one line of HTML to our helloWorld view file.

Reviewing our request routing
Let's review how Yii is analyzing our request in the context of this
example application:

1. You navigate to the Hello, World! page by pointing your browser at the
following URL: http://yourhostname/demo/index.php?r=message/
helloWorld.

2. Yii analyzes the URL. The route querystring variable indicates that
the controllerID is message. This tells Yii to route the request to the
MessageController class, which it finds in protected/controllers/
MessageController.php.

3. Yii also discovers that the actionID specified is helloWorld. So, the action
method actionHelloWorld() is invoked within the MessageController.

Getting Started

[28]

4. The actionHelloWorld() method renders the helloWorld.php view file
located at protected/views/message/helloWorld.php. And we altered
this view file to simply display our introductory greeting, which is then
returned to the browser.

5. This all came together without having to make any configuration changes.
By following Yii's default conventions, the entire application request routing
has been seamlessly stitched together for us. Of course, Yii gives us every
opportunity to override this default workflow if needed, but the more
you stick with the conventions, the less time you will spend in tweaking
configuration code.

Adding dynamic content
The simplest way to add dynamic content to our view template is to embed PHP
code into the template itself. View files are rendered by our simple application to
result in HTML, and any basic text in these files is passed through without being
changed. However, any content between the <?php and?> tags is interpreted and
executed as PHP code. This is a typical way PHP code is embedded within HTML
files and is probably familiar to you.

Adding the date and time
To spice up our page with dynamic content, let's display the date and time. Open
up the helloWorld view again and add the following line below the greeting text:

<h3><?php echo date("D M j G:i:s T Y"); ?></h3>

Save, and view it at the following URL: http://yourhostname/demo/index.
php?r=message/helloWorld

Presto! We have added dynamic content to our application. With each page refresh,
we see the displayed content changing.

Admittedly, this is not terribly exciting, but it does show how to embed simple PHP
code into our view templates.

Chapter 2

[29]

Adding the date and time, a better approach
Although this approach of embedding PHP code directly into the view file does
allow for any PHP code of any amount or complexity, it is strongly recommended
that these statements do not alter data models and that they remain simple,
display-oriented statements. This will help keep our business logic separate
from our presentation code, which is part of the agenda of an MVC architecture.

Moving the data creation to the controller
Let's move the logic that creates the time back to the controller and have the view
do nothing more than display the time. We'll move the determination of the time
into our actionHelloWorld() method within the controller and set the value in
an instance variable called $time.

1. First, let's alter the controller action. Currently our action in our
MessageController, actionHelloworld(), simply makes a call to render
our helloWorld view by executing the following code:
$this->render('helloWorld');

Before we render the view, let's add the call to determine the time, and
then store it in a local variable called $theTime. Let's then alter our call
to render() by adding a second parameter which includes this variable:
$theTime = date("D M j G:i:s T Y");
$this->render('helloWorld',array('time'=>$theTime));

When calling render() with a second parameter containing array data,
it will extract the values of the array into PHP variables and make those
variables available to the view script. The keys in the array will be the
names of the variables made available to our view file. In this example,
our array key time whose value is $theTime, will be extracted into a
variable named $time, which will be made available in the view. This is
one way to pass data from the controller to the view.

2. Now let's alter the view to use this instance variable, rather than calling
the date function itself. Open up the helloWorld view file again, and
replace the line we previously added to echo the time with the following:
<h3><?php echo $time; ?></h3>

3. Save and view the results again at: http://yourhostname/demo/index.
php?r=message/helloWorld

Getting Started

[30]

The next screenshot shows the end result of our Hello, World! application thus far
(of course, your date and time will differ).

We have demonstrated two approaches to adding PHP generated content to
the view template files. The first approach puts the data creation logic directly into
the view file itself. The second approach housed this logic in the controller class,
and fed the information to the view file by using variables. The end result is the
same, the time is displayed in our rendered HTML file, but the second approach
takes a small step forward in keeping the data acquisition and manipulation, that is
business logic, separate from our presentation code. This separation is exactly what
a Model-View-Controller architecture strives to provide, and Yii's explicit folder
structure and sensible defaults make this a snap to implement.

Have you been paying attention?
It was mentioned in Chapter 1, Meet Yii that the view and controller are close cousins.
So much so that $this within a view file refers to the controller class that rendered
the view.

In the preceding example, we explicitly fed the time to the view file from the
controller by using the second argument in the render method. This second
argument explicitly sets variables that are immediately available to the view file,
but there is another approach we encourage you to try out for yourself.

Alter the previous example by defining a public class property on
MessageController, rather than a locally scoped variable, whose value is the
current date and time. Then display the time in the view file by accessing this
class property through $this.

Chapter 2

[31]

Linking pages together
Typical web applications have more than one page within them for users to
experience, and our simple application should be no exception. Let's add another
page that displays a response from the World, 'Goodbye, Yii developer!', and link
to this page from our Hello, World! page, and vice-versa.

Normally, each rendered HTML page within a Yii web application will correspond
to a separate view (though this does not always have to be the case). So, we will
create a new view and will use a separate action method to render this view. When
adding a new page like this, we also need to consider whether or not to use a
separate controller. As our Hello and Goodbye pages are related and very similar,
there is no compelling reason to delegate the application logic to a separate controller
class at the moment.

Linking to a new page
Let's have the URL for our new page be of the following form:
http://yourhostname/demo/index.php?r=message/goodbye

1. Sticking with Yii conventions, this decision defines the name of our action
method we need in the controller as well as the name of our view. So, open
up MessageController and add an actionGoodbye() method just below
our actionHelloworld() action:
class MessageController extends CController
{
 ...

 public function actionGoodbye()
 {
 $this->render('goodbye');
 }

 ...
}

2. Next we have to create our view file in the /protected/views/message/
folder. This should be called goodbye.php as it should be the same as
the actionID we chose.

Please do keep in mind that this is just a recommended convention. The
view does not have to have the same name as the action by any means.
The view filename just has to match the first argument of render().

Getting Started

[32]

3. Create an empty file in that folder, and add the single line:
<h1>Goodbye, Yii developer!</h1>

4. Saving and viewing again: http://yourhostname/demo/index.
php?r=message/goodbye should display the goodbye message.

5. Now we need to add the links to connect the two pages. To add a link on the
Hello screen to the Goodbye page, we could add an <a> tag directly to the
helloWorld view template, and hardcode the URL structure like:

Goodbye!

This does work, but it tightly couples the view code implementation to a specific
URL structure, which might change at some point. If the URL structure were to
change, these links would become invalid.

Remember in Chapter 1, Meet Yii when we went through the blog
posting application example? We used URLs that were of a different,
more SEO friendly format than the Yii default format, namely:
http://yourhostname/ControllerID/ActionID

It is a simple matter to configure a Yii web application to use this path
format as opposed to the querystring format we are using in this example.
Being able to easily change the URL format can be important to web
applications. As long as we avoid hardcoding them throughout our
application, changing them will remain a simple matter of altering the
application configuration file.

Getting a little help from Yii CHtml
Luckily, Yii comes to the rescue here. It comes with myriad helper methods that
can be used in view templates. These methods exist in the static HTML helper
framework class, CHtml. In this case, we want to employ the helper method link
which takes in a controllerID/actionID pair, and creates the appropriate
hyperlink for you based on how the URL structure is configured for the application.
As all these helper methods are static, we can call them directly without the need to
create an explicit instance of the CHtml class.

1. Using this link helper, our helloWorld view becomes:
<h1>Hello, World!</h1>
<h3><?php echo $time; ?></h3>
<p><?php echo CHtml::link("Goodbye",array('message/goodbye'));
?></p>

http://yourhostname/ControllerID/ActionID

Chapter 2

[33]

2. Save your changes, and view the Hello, World! page at:
http://yourhostname/demo/index.php?r=message/helloWorld

You should see the hyperlink, and clicking it should take you to the Goodbye
page. The first parameter in the call to the link method is the text that will be
displayed in the hyperlink. The second parameter is an array that holds the
value for our controllerID/actionID pair. The results are displayed in the
following figure:

3. We can follow the same approach to place a reciprocal link in our
goodbye view:
<h1>Goodbye, Yii developer!</h1>
<p><?php echo CHtml::link("Hello",array('message/helloWorld'));
?></p>

4. Save and view the Goodbye page at the following link:

http://yourhostname/demo/index.php?r=message/goodbye

You should now see an active link back to the Hello, World! page from
the Goodbye page, as shown in the following screenshot:

http://yourhostname/demo/index.php?r=message/goodbye

Getting Started

[34]

Summary
In this chapter, we constructed an extremely simple application to demonstrate:

•	 How to install the Yii Framework
•	 How to use the yiic command to bootstrap the creation of a new

Yii application
•	 How to use the yiic command to create a new controller within

the application
•	 How Yii turns incoming requests into calls to your code
•	 How to create dynamic content within a controller and have it accessible

to the view files for display to the browser
•	 How to link internal application pages together

We have demonstrated ways to link web pages together in our simple application.
One approach added an HTML <a> tag directly to the view file and hardcoded the
URL structure. The other (preferred approach) made use of Yii's CHtml helper class
to help construct the URLs based on controllerID/actionID pairs, so that the
resulting format will always conform to the application configuration. This way,
we can easily alter the URL format throughout the application without having to
go back and change every view file that happens to have internal links.

Our simple Hello, World! application really reaps the benefits of Yii's convention
over configuration philosophy. By applying certain default behavior and following
the recommended conventions, the building of this simple application, (and our
entire request routing process) just fell together in an easy and convenient way.

While this incredibly simple application has provided concrete examples to help
us better understand using the Yii Framework, it is far too simplistic to demonstrate
Yii's ability to ease the building of our real-world applications. In order to demonstrate
this, we need to build a real-world web application (and we will do just that). In the
next chapter, we will introduce you to the project task and issue tracking application
that we will be building throughout the remainder of this book.

The TrackStar Application
We could continue to keep adding to our simple demo application to provide
examples of Yii's features, but that won't really help us to understand the framework
in the context of a real-world application. In order to do that, we need to build
something that will more closely resemble the types of applications web developers
actually have to build. That is exactly what we are going to be doing throughout the
rest of this book.

In this chapter, we introduce the project task tracking application called TrackStar.
There are many other project management and issue tracking applications out there
in the world, and the basic functionality of ours will not be any different from many
of these. So why build it, you ask? It turns out that this type of user-based application
has many features that are common to a great many web applications out there. This
will allow us to achieve two primary goals:

•	 Showcase Yii's incredible utility and feature set as we build useful
functionality and conquer real-world web application challenges

•	 Provide real-world examples and approaches that will be immediately
applicable to your next web application project

Introducing TrackStar
TrackStar is a Software Development Life Cycle (SDLC) issue management
application. Its main goal is to help keep track of all the many issues that arise
throughout the course of building software applications. It is a user-based
application that allows the creation of user accounts and grants access to the
application features, once a user has been authenticated and authorized. It
allows a user to add and manage projects.

The TrackStar Application

[36]

Projects can have users associated with them (typically the team members
working on the project) as well as issues. The project issues will be things such as
development tasks and application bugs. The issues can be assigned to members
of the project and will have a status such as not yet started, started, and finished. This
way, the tracking tool can give an accurate depiction of projects with regard to what
has been accomplished, what is currently in progress, and what is yet to be started.

Creating user stories
Simple user stories are a great way to identify the required features of your application.
User stories, in their simplest form, state what a user can do with a piece of software.
They should start simple, and grow in complexity as you dive into more and more of
the details around each feature. Our goal here is to begin with just enough complexity
to allow us to get stared. If needed, we'll add more detail and complexity later.

We briefly touched on the three main entities that play a large role in this application:
users, projects, and issues. These are our primary domain objects, and are extremely
important items in this application. So, let's start with them.

Users
TrackStar is a user-based web application. There will be two high-level user types:

•	 Anonymous
•	 Authenticated

An anonymous user is any user of the application that has not been authenticated
through the login process. Anonymous users will only have access to register for a new
account or to log in. All other functionality will be restricted to authenticated users.

An authenticated user is any user that has provided valid authentication credentials
through the login process. In other words, authenticated users are logged-in users.
They will have access to the main features of the application such as creating and
managing projects, and project issues.

Projects
Managing the project is the primary purpose of the TrackStar application. A project
represents a general, high-level goal to be achieved by one or more users of the
application. The project is typically broken down into more granular tasks (or issues)
that represent the smaller steps that need to be taken to achieve the overall goal.

Chapter 3

[37]

As an example, let's take what we are going to be doing throughout this book, that
is, building a project and issue tracking management application. Unfortunately,
we can't use our yet-to-be-created application as a tool to help us track its own
development. However, if we were using a similar tool to help track what we are
building, we might create a project called Build The TrackStar Project/Issue Management
Tool. This project would be broken down into more granular project issues such as
'Create the login screen' or 'Design database schema for issues', and so on.

Authenticated users can create new projects. The creator of the project within
an account has a special role within that project, called the project owner. Project
owners have the ability to edit and delete these projects as well as add new
members to the project. Other users associated with the project—besides the
project owner—are referred to simply as project members. They have the ability
to add new issues, as well as edit existing ones.

Issues
Project issues can be classified into one of the following three categories:

•	 Features: Items that represent real features to be added to the application.
For example, 'Implement the login functionality'

•	 Tasks: Items that represent work that needs to be done, but is not an actual
feature of the software. For example, 'Set up the build and integration server'

•	 Bugs: Items that represent application behaviors that are not working as
expected. For example, 'The account registration form does not validate the
format of input e-mail addresses'

Issues can have one of the following three statuses:

•	 Not yet started
•	 Started
•	 Finished

Project members can add new issues to a project, as well as edit and delete them.
They can assign issues to themselves or other project members.

For now, this is enough information on these three main entities. We could go into a
lot more detail about what exactly account registration entails' and how exactly one
adds a new task to a project', but we have outlined enough specifications to begin on
these basic features. We'll nail down the more granular details as we proceed with
the implementation.

The TrackStar Application

[38]

However, before we start, we should jot down some basic navigation and application
workflow. This will help everyone to better understand the general layout and flow
of the application we are building.

Navigation and page flow
It is always good to outline the main pages within an application, and how they
fit together. This will help us quickly identify some needed Yii controllers, actions
and views as well as help to set everyone's expectations as to what we'll be building
towards at the onset of our development.

The figure below shows the basic idea of the application flow from logging in,
through the project details listing:

When users first come to the application, they must log in to authenticate
themselves before accessing any functionality. Once successfully logged-in,
they will be presented with a list of his current projects along with the option
to create a new project. Choosing a specific project will take them to the project
details page. The project details page will present a list of the issues by type.
There will also be the option to add a new issue as well as edit any of the
listed issues.

Chapter 3

[39]

This is all pretty basic functionality, but the figure gives us a little more information
on how the application is stitched together and allows us to better identify our needed
models, views, and controllers. It also allows something visual to be shared with others
so that everyone involved has the same 'picture' of what we are working towards. In
my experience, almost everyone prefers pictures over written specifications when first
thinking through a new application.

Defining a data scheme
We still need to think a little more about the data we will be working with as we
begin to build toward these specifications. If we pick out all the main nouns from
our system, we may end up with a pretty good list of domain objects and, by
extension of using Active Record, the data we want to model. Our previously
outlined user stories seem to dictate the following:

•	 A User
•	 A Project
•	 An Issue

Based on this and the other details provided in the user stories and application
workflow diagram, a first attempt at the needed data is shown in the following figure.

The TrackStar Application

[40]

This is a basic object model that outlines our primary data entities, their respective
attributes, and some of the relationships between them. The 1..* on either side of the
line between the Project and User objects represents a many-to-many relationship
between them. A user can be associated with one or more projects, and a project has
one or more users. Similarly we have represented the fact that a project can have
zero or more issues associated with it, whereas an issue belongs to just one specific
project. Also, a user can be the owner of (or requester of) many issues, but an issue
has just one owner (and also just one requester).

We have kept the attributes as simple as possible at this state. A User is going to
need a username and a password in order to get past the login screen. The Project
has only a name

Issues have the most associated information based on what we currently know about
them. As discussed briefly in the user stories above, they will have a type attribute to
distinguish the general category (bug, feature, or task). They will also have a status
attribute to indicate the progress of the issue being worked on. A user in the system
will initially create the issue, this is the requester. Once a user in the system has
been assigned to work on the issue, they will be the owner of the issue. We have also
defined the description attribute to allow for some descriptive text of the issue to
be entered.

Notice that we have not explicitly talked about schemas or databases yet. The fact
is, until we think through what is really needed from a data perspective, we won't
know the right tool to use to house this data. Would flat files on the filesystem work
just as well as a relational database? Do we need a persistent data at all?

The answers to these questions are not needed in this early planning state. It is better
to focus more on the features that we want and the type of data needed to support
these features. We can turn to the explicit technology implementation details after
we have had a chance to discuss these ideas with other project stakeholders to ensure
we are on the right track. Other project stakeholders include anyone and everyone
involved in this development project. This can include the client, if building an
application for someone else, as well as other development team members, product/
project managers, and so on. It is always a good idea to get some feedback from
"the team" to help validate the approach and any assumptions being made.

In our case, there is really no one else involved in this development effort. We
would certainly consult with you, the reader, if we could, before moving forward.
Unfortunately, this book format does not allow for real-time, bi-directional
communication. So, as there is no one else to consult, we'll move forward with
the outlined approach.

Chapter 3

[41]

However, before we dive right into building our application, we need to cover
our development approach. We will be employing some specific development
methodologies and principles, and it makes sense to go over these prior to getting
started with coding.

Defining our development methodology
We will be employing an agile inspired process of iterative and incremental
development as we build this application. 'Agile' is certainly a loaded term in
modern software development and can have varied meanings among developers.
Our process will focus on the aspects of an agile methodology that embrace
transparent and open collaboration, constant feedback loops, and a strong ability
to respond quickly to changing requirements.

We will work incrementally in that we won't wait until every detail of the
application has been specified before we start coding. Once the details of a particular
feature have been finalized, we can begin work on implementing that feature, even
though other features or application details are still in the design/planning stage.

The process surrounding this feature implementation will follow an iterative model.
We will do some initial iteration planning, engage in analysis and design, write the
code to try out these ideas, test the code, and gather feedback. We then repeat this
cycle of design->code->test->evaluation, until everyone is happy. Once everyone is
happy, we can deploy the application with the new feature, and then start gathering
the specifications on the next feature(s) to be implemented in the next iteration.

Automated software testing
Gathering feedback is of fundamental importance to agile development. Feedback
from the users of the application and other project stakeholders, feedback from
the development team members, and feedback directly from the software itself.
Developing software in a manner that will allow it to tell you when something is
broken can turn the fear associated with integrating and deploying applications
into boredom. The method by which you empower your software with this feedback
mechanism is writing unit and functional tests, and then executing them repeatedly
and often.

Unit and functional testing
Unit tests are written to provide the developer with verification that the code is
doing the right things. Functional tests are written to provide the developer, as
well as other project stakeholders, that the application, as a whole, is doing things
the right way.

The TrackStar Application

[42]

Unit tests
Unit tests are tests that focus on the smallest units within a software application. In
an object-oriented application, (such as a Yii web application) the smallest units are
the public methods that make up the interfaces to classes. Unit tests should focus on
one single class, and not require other classes or objects to run. Their purpose is to
validate that a single unit of code is working as expected.

Functional tests
Functional tests focus on testing the end-to-end feature functionality of the
application. These tests exist at a higher level than the unit tests and typically do
require multiple classes or objects to run. Their purpose is to validate that a given
feature of the application is working as expected.

Benefits of testing
There are many benefits to writing unit and functional tests. For one, they are a
great way to provide documentation. Unit tests can quickly tell the exact story of
why a block of code exists. Similarly, functional tests document what features
are implemented within an application. If you stay diligent in writing these tests,
then the documentation continues to evolve naturally as the application evolves.

They are also invaluable as a feedback mechanism to constantly reassure the
developer and other project stakeholders that the code and application is working
as expected. You run your tests every time you make changes to the code and get
immediate feedback on whether or not something you altered inadvertently changed
the behavior of the system. You then address these issues immediately. This really
increases the confidence that developers have in the application's behavior and
translates to fewer bugs and more successful projects.

This immediate feedback also helps to facilitate change and improving the design of
the code base. A developer is more likely to make improvements to existing code if a
suite of tests are in place to immediately provide feedback as to whether the changes
made altered the application behavior. The confidence provided by a suite of unit
and functional tests allows developers to write better software, release a more stable
application, and ship quality products.

Chapter 3

[43]

Test-driven development
Test-driven development (TDD) is a software development methodology that
helps to create an environment of comfort and confidence by ensuring your test
suite grows organically with your application, and is always up-to-date. It does
this by stipulating that you begin your coding by first writing a test for the code
you are about to write. The following steps sum up the process:

1. Begin by writing a test that will quickly fail.
2. Run the test to ensure it does, indeed, fail.
3. Quickly add just enough code to the class you are testing to get the test

to pass.
4. Run the test again to ensure it does, indeed, pass.
5. Refactor the code to remove any repetitive logic or improve any corners

cut while you were just trying to get the test to pass.

These steps are then repeated throughout the entire development process.

Even with the best intentions, if you wait to write your tests until after the code
is completed, you probably won't. Writing your tests first and injecting the test
writing process directly into the coding process will ensure the best test coverage.
This depth of coverage will help minimize the stress and fear that can accompany
complex software applications and build confidence by constantly providing
positive feedback as additions and changes are made.

In order to embrace a TDD process, we need to understand how to test within
a Yii application.

Testing in Yii
As of version 1.1, Yii is tightly integrated with the PHPUnit (http://www.phpunit.
de/) and Selenium Remote Control (http://seleniumhq.org/projects/remote-
control/) testing frameworks. There is nothing about TDD that presupposes a
particular testing framework (or any testing framework at all, for that matter),
but using one is strongly recommended.

You may certainly test Yii PHP code with any of the testing frameworks available.
However, the tight integration of Yii with the two frameworks mentioned previously
makes things even easier. And making things easy is one of our primary goals here.
We will be using the testing features of Yii as we proceed.

The TrackStar Application

[44]

When we used the yiic webapp console command to create our new Hello
World demo application in Chapter 2, we noticed that many files and folders
were automatically created for us. The ones among these relevant to writing
and performing automated tests are the following:

Name of folder Use/contents

demo/

protected This contains protected application files
tests/ This contains tests for the application
fixtures/ This contains database fixtures
functional/ This contains functional tests
unit/ This contains unit tests
report/ This contains coverage reports
bootstrap.php The script executed at the very beginning of the tests
phpunit.xml The PHPUnit configuration file
WebTestCase.php The base class for Web-based functional tests

We will be placing our tests into three main folders: fixtures, functional, and
unit. The report folder is used to store the generated code coverage reports.

Note: The PHP extension, XDebug, must be installed in order to generate
reports. It is recommended to use PECL to install XDebug. For details on
this installation, see http://xdebug.org/docs/install. This is not
a requirement if you wish to simply follow along with our examples.

Unit tests
A unit test in Yii is written as a PHP class that extends from the framework class,
CTestCase. The conventions prescribe it be named AbcTest where Abc is replaced
by the name of the class being tested. For example, if we were to test the Message
class in our demo application from Chapter 2, we would name the test class
MessageTest. This class is saved in a file called MessageTest.php under the
folder protected/tests/unit/.

The test class primarily has a set of test methods named testXyz where Xyz is often
the same as the method name the test is built for in the class being tested.

Continuing with the MessageController example, if we were testing our
actionHelloworld() method, we would name the corresponding test method
in our MessageTest class, testActionHelloworld().

Chapter 3

[45]

Installing PHPUnit
In order to follow along with our unit-testing approach, you will need to install
PHPUnit. This should be done using the Pear Installer (for more information on
Pear, see http://pear.php.net/) For Mac OS users, this is a simple as issuing
two commands from the command line:

% sudo pear channel-discover pear.phpunit.de

% sudo pear install phpunit/PHPUnit

However, your configuration may differ slightly. For more information on this
installation process see: http://www.phpunit.de/manual/3.0/en/installation.
html

It is certainly beyond the scope of this book to specifically cover
PHPUnit testing features. It is recommended that you take some time
to go through the documentation (http://www.phpunit.de/
wiki/Documentation) to get a feel for the jargon and learn how to
write basic unit tests.

Functional tests
Much like units tests, functional tests are written as PHP classes. However, they
extend from CWebTestCase rather than CTestCase. The conventions are the same in
that we name our functional test class AbcTest where Abc is the class being tested,
and save the class in a file named AbcTest.php. However, we store these under the
folder protected/tests/functional.

In order to run functional tests, you need to install Selenium.

Installing Selenium
In addition to PHPUnit, the Selenium Remote Control Server (Selenium RC) is
needed in order to run the functional tests. Installing Selenium RC is very simple.

1. Download Selenium Remote Control (Selenium RC) zip file from
http://seleniumhq.org/download/.

2. Unpack the zip file to a preferred location on your system.

The contents of the unzipped folder will have several specific client-based folders
and one that contains the actual RC server. It will be named something similar to

selenium-server-1.0.x/

The TrackStar Application

[46]

Where x will be specific to the version downloaded. Starting the server is also simple.
Just navigate to this server folder on your system and issue:

% java -jar selenium-server.jar

This will start the server in that console.

Running a quick example
The TDD approach we will be taking throughout building the TrackStar application
will primarily focus on the writing and executing of unit tests. However it would be
a shame not to run though at least one functional test example. The site we created
for our demo Hello World application has an example functional test located at
protected/tests/functional/SiteTest.php. This file has three test methods
created within it. One for testing the main home page, one for testing the contact
page, and a third for testing the login and logout functionality.

Before we can run this functional test, we need to make a couple of configuration
changes to our application. First we need to alter protected/tests/WebTestCase.
php to properly define our test URL that Selenium will attempt to open when it runs
the tests. Open up that file and make sure the TEST_BASE_URL definition matches the
URL to your demo application we created in the previous chapter, that is, change the
following line: define('TEST_BASE_URL','http://localhost/testdrive/index-
test.php/');

To: define('TEST_BASE_URL','http://localhost/demo/index-test.php/');

The next change may only apply to Mac OS users. Although, if you are using
Windows but prefer not to use Internet Explorer as the testing browser, then you
may also want to make this change. The file protected/tests/phpunit.xml houses
some configuration settings for Selenium Server. It is configured to use IE as the
primary browser. We can remove the following highlighted line of code to ensure
only Firefox will be used when running Selenium:

<phpunit bootstrap="bootstrap.php"
 colors="false"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 stopOnFailure="false">

 <selenium>
 <browser name="Internet Explorer" browser="*iexplore" />

 <browser name="Firefox" browser="*firefox" />
 </selenium>

</phpunit>

Chapter 3

[47]

Now, as long as you have installed PHPUnit (see earlier Unit test section) and have
ensured that Selenium Server is running (mentioned previously), and then we can
navigate to our tests folder at the command prompt and run this functional test:

% cd protected/tests/
% phpunit functional/SiteTest.php

What should happen is that you will see your browser being automatically invoked, as
the Selenium Server platform is using the browser to access the end-user functionality
of the site that we configured in the WebTestCase.php file. As it runs through the test
methods, it actually automates the behavior of a real user of the site. Pretty cool!

If everything worked, the end results should display back in the command line window
where we executed the test. Something similar to the following will be displayed::

Time: 19 seconds, Memory: 10.25Mb
OK (3 tests, 10 assertions)

Being able to automate these end-user functional tests is a fantastic way to begin
to automate your quality assurance testing (QA testing). If you have a separate QA
team on the project, it would be very beneficial to show them how to use this tool
to test the application. As mentioned, we will be focused more on writing unit tests
than these end-user browser executed functional tests, as we employ a test-driven
approach. However, having a test suite that covers both unit and functional tests is
the best approach to ensuing the best quality in the application development.

It might be the case that one of your functional tests failed when running
the SiteTest.php tests. If the results of your test indicated a failure at
line 44 of the SiteTest.php file, you may need to slightly alter this line
to get your tests to pass. This depends on the way the logout link in the
main menu displays. The autogenerated test might expect the link read
just Logout rather than Logout (demo). If your functional test fails for
this reason, simply change that line to read just as the logout link would
read if you had logged in as demo/demo, like this:
$this->clickAndWait('link=Logout (demo)');

Hello TDD!
Let's briefly revisit Hello World! demo application that we built in the previous
chapter to provide an example of testing in Yii following a TDD approach.

As a reminder, we have a working application that displays Hello World! and
Goodbye, Yii Developer. The two action methods handling the requests to display
these messages are in our MessageController class.

The TrackStar Application

[48]

Let's add some new behavior to MessageController.php. Let's enhance it be able
to take in any message string, and simply return that exact message string back to
the caller. That sounds simple enough. We should just open up MessageController.
php and add a new public method, maybe called repeat() and have it do what we
just described, right? Well, not quite. As we are taking a TDD approach, we should
start by writing a test for this new behavior.

As we are testing the behavior of a class method, we need to write a unit test.
Following the Yii defaults, this unit test should reside in the protected/tests/
unit/ folder and be called MessageTest.php. Taking small steps, let's just add a
new class by this name and have it extend the base Yii Framework class for unit
tests, CTestCase.

Create the new file, protected/tests/unit/MessageTest.php and add to it the
following code:

<?php
class MessageTest extends CTestCase
{
}

Now we can navigate to our tests folder and execute the command to run this test:

%cd /WebRoot/demo/protected/tests

%phpunit unit/MessageTest.php

The following will be displayed after execution:

phpunit unit/MessageTest.php
PHPUnit 3.3.17 by Sebastian Bergmann.

F

Time: 0 seconds

There was 1 failure:

1) Warning(PHPUnit_Framework_Warning)
No tests found in class "MessageTest".

FAILURES!
Tests: 1, Assertions: 0, Failures: 1.

Our test failed. It tells us we don't have a test defined in our test class. This is
certainly true, as we have not coded one yet. But we have started down the first step
of TDD, which is to quickly write a test that fails (though one could argue we have
not really written an actual test as of yet).

Chapter 3

[49]

Let's add a test method. As we are writing a test to validate our MessageController's
ability to repeat back a string fed to it, let's call this test testRepeat. Add the following
code so that our test class looks like:

class MessageTest extends CTestCase
{
 public function testRepeat()
 {
 }
}

If we rerun the test now, we will get the following results:

OK (1 test, 0 assertions)

This is certainly a step in the right direction. We have followed the TDD second step,
which is writing just enough code to get the test to pass. Of course, it passed because
the method does not test anything at all, so this is not terribly useful. Nonetheless,
is a small step in the right direction. As there is nothing to really refactor here, let's
repeat the TDD process back at the top: Quickly write a test that fails.

This time, we will add to the test so it does something. That "something" will be
testing the specific repeat behavior of MessageController. In order to do that,
we need to:

1. Create a new instance of our MessageController class in the test method.
2. Call a method on it by feeding it a string of text.
3. Verify that the returned string is the same as the input string.

Let's add the code to do that now. Alter the testRepeat() method to be:

public function testRepeat()
{
 $message = new MessageController('messageTest');
 $yell = "Hello, Any One Out There?";
 $returnedMessage = $message->repeat($yell);
 $this->assertEquals($returnedMessage, $yell);
}

We have created a new MessageController class by providing a required
controllerId to its constructor. We then built a string called $yell that we want
repeated back. We call the repeat() method with this input string and capture the
returned output in the variable $returnedMessage.

The TrackStar Application

[50]

As we expect the returned message to contain the exact same string as was sent, we
use the phpUnit API method assertEquals() that will compare the first string to
the second and result in true or false depending on whether or not they are indeed
equal. Now that we have a test written, let's try running it:

%phpunit unit/MessageTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

E

Time: 0 seconds, Memory: 10.00Mb

There was 1 error:

1) MessageTest::testRepeat
include(MessageController.php): failed to open stream: No such file or
directory

…

FAILURES!
Tests: 1, Assertions: 0, Errors: 1.

I realize this may feel like we have taken a step backward. But, this is really within the
nature of TDD. Small steps, testing all the time, and working to quickly get the test to
first fail, and then pass. The error is telling us it is trying to create a new instance of
MessageController, but it can't find the class in the classpath. We need to include
the class as part of the unit test file. As we are running this within the context of the
application, we can use the Yii::import syntax to include the class we want to test.

The Yii::import method allows us to quickly include the definition of a
class. It differs from include and require in that it is more efficient. The
class definition being imported is actually not included, until it is referenced
for the first time. Importing the same namespace multiple times is also
much faster than include_once and require_once. Also, it is good to
note that when referring to a class defined by the Yii Framework, we do not
need to import or include it. All core Yii classes are pre-imported.

Alter the MessageTest.php file to include the following line at the top:

<?php
Yii::import('application.controllers.MessageController');
class MessageTest extends CTestCase
{

Chapter 3

[51]

Saving and running the test again does seem to get us past the previous error, but
we are met with another. Now it fails due to the fact that we are calling a method
named repeat() on our MessageController class, but this class does not have such
a method. This certainly makes sense, as we have not added this method yet. Finally,
it is time to code our new method, and get this test to pass.

Add the following method to the MessageController class:

public function repeat($inputString)
{
 return $inputString;
}

Save and run the test again:

% phpunit unit/MessageTest.php

…

OK (1 test, 1 assertion)

Bingo! We have a passing test. We can clean up our test code and refactor just a little
by being a bit more compact in our writing and move some things inline:

public function testRepeat()
 {
 $message = new MessageController('messageTest');
 $this->assertEquals($message->repeat("Any One Out There?"),
"Any One Out There?");
 }

You should run the test one last time to ensure it still passes, as expected.

If TDD is new to you, all of this may seem a little strange, especially given all of the
small, at times excruciatingly small, steps we took to achieve such a trivial method
implementation. This was mostly to help underscore the rhythm of TDD. The size
of the steps you take when using TDD is more of an art than a science. Start out super
small and then take bigger steps as you become more confident and comfortable.

In several of the testing frameworks available to developers, the test results are
displayed as color-coded. Tests that pass are displayed in green, and tests that fail
are displayed in red. This also follows the familiar stoplight metaphor. For this
reason, TDD is often summed up as: Red, Green, Refactor, Repeat. This refers to
the basic rhythm that the previous example underscored:

1. Red: Quickly add a new test and then run all the tests and see the new one fail.
2. Green: Make a little change, just enough to get the failed test to pass.

The TrackStar Application

[52]

3. Refactor: If necessary, remove any duplication in the code or things you
did just to make the test pass quickly, but otherwise makes you feel icky.

4. Repeat: Start over with #1.

Summary
This chapter introduced the task tracking application, TrackStar, which we will be
developing throughout the rest of this book. We talked about what the application
is and what it does and provided some high-level requirements for the application
in the form of informal user stories. We then identified some of the main domain
objects we will need to create as well as worked through some of the data we will
need to be able to house and manage.

Not only did we discuss what we are going to be building, but we also outlined
how we are going to be building it. We covered a basic agile-inspired development
methodology and how we will be applying it to our process. We also introduced Test
Driven Development (TDD) as one of the agile methodologies we will be embracing.
We covered what TDD is in the abstract, but also how to implement it within the
testing framework provided by Yii.

In the next chapter, we will finally leave our world of fake demo applications and
begin coding something we can really sink our programming teeth into.

Iteration 1: Creating the Initial
TrackStar Application

In the previous chapter, we introduced our development methodology, which
embraces an incremental and iterative approach. Within this methodology there
is the concept of an iteration. For our purposes, an iteration can be thought of as an
opportunity for a development team to create working, tested, and production-ready
features of an application within a specified time constraint. The development team
and other project stakeholders decide which features will be worked on within this
fixed amount of time. Creating such a timebox around our desired features cannot
really be done in a book. So, we will let the scope of each chapter define our iteration.

From now on, we'll treat each of our chapters as a new iteration, and begin each
chapter with the iteration planning section. In this section we will:

•	 Identify the features and functionality that we want to focus on within
the iteration

•	 Provide a little upfront design and analysis if necessary, and then quickly
break the items into more granular tasks for implementation

Iteration planning
From what we learned in the previous chapter about our task tracking application,
we know that we are going to be building a web-based application. We also learned
in Chapter 2, Getting Started, just how easy it is to create a new working Yii web
application using the yiic command-line tool.

Iteration 1: Creating the Initial TrackStar Application

[54]

We also talked about data in Chapter 3, The Trackstar Application, but did not talk
specifically about how we want to handle that data. Now is the time to provide
some explicit implementation answers to the questions posed in Chapter 3. Do we
need persistent data at all? Would flat files on the filesystem work just as well as a
relational database?

Based on this being a web-based application and the nature of the information that
we need to store, retrieve, and manipulate, we can safely say that we need to persist
the data in this application. Also, based on the relationships that exist between
the types of data we want to capture and manage, we feel that the best approach
to storing this data would be in a relational database. Because of its ease of use,
excellent price point, general popularity among PHP application developers and
its compatibility with the Yii Framework, we will be using MySQL as the specific
database server.

Getting a basic, working skeleton application in place and successfully connected to
a database is all we want to attempt in this first iteration. So in this first iteration, we
will focus only on the following basic tasks:

•	 Creating a new Yii web application to be the foundation to the
TrackStar application

•	 Creating a new MySQL database
•	 Configuring the new web application to connect to the newly

created database

In Chapter 2, Getting Started, we saw how easy it is to create a new application. Even
though this first iteration will be a short one, at the end, we will have a working,
tested, and deployable web application.

Creating the new application
First things first, let's create the initial Yii web application. We have already
seen how easy this is to accomplish in Chapter 2. As we did there, we will assume
the following:

•	 YiiRoot is the folder where you have installed Yii
•	 WebRoot is configured to be the document root of your web server (that is,

to where http://localhost/ resolves)

Chapter 4

[55]

So, from the command line, change to your WebRoot folder, and execute the following:

% cd WebRoot

% YiiRoot/framework/yiic webapp trackstar

Create a Web application under '/Webroot/trackstar'? [Yes|No] Yes

This provides us with our skeleton folder structure and our out of the box working
application. You should be able to view the homepage of this new application by
navigating to:

 http://localhost/trackstar/index.php?r=site/index

Connecting to the database
Now that we have our skeleton application up and running, let's work on getting
it properly connected to a database. Although this is more a matter of configuration
than writing code, we will maintain a test-first approach, so that basic database
connectivity becomes a part of our routine test suite.

Testing the connection
Chapter 3, introduced us to the testing framework provided by Yii. So, we know we
add our unit tests under protected/tests/unit/. Let's create a simple database
connectivity test file under this folder called DbTest.php. Create this new file with
the following contents:

<?php
class DbTest extends CTestCase
{
 public function testConnection()
 {
 $this->assertTrue(true);
 }
}

Here we have added a fairly trivial test. The assertTrue() method, which is part of
phpUnit, is an assertion that will pass if the argument passed to it is true, and it will
fail if it is false. So, in this case, it will pass if true is true. Of course it is, so this test
will pass. We are doing this to make sure our new application is working as expected
for testing. Navigate to the tests folder and execute this new test:

%cd /WebRoot/trackstar/protected/tests

%phpunit unit/DbTest.php

…

Iteration 1: Creating the Initial TrackStar Application

[56]

Time: 0 seconds, Memory: 10.00Mb

OK (1 test, 1 assertion)

…

Configuring the test suite
If for some reason this test failed on your system, you many need to
change protected/tests/bootstrap.php so that the variable $yiit
properly points to your /YiiRoot/yiit.php file.

Confident that our testing framework is working as expected within our newly
created TrackStar application, we can actually test for a db connection.

Change the trivial assertEquals(true) statement in the testConnection() test
method to:

$this->assertNotEquals(NULL, Yii::app()->db);

And rerun the test:

%phpunit unit/DbTest.php

There was 1 error:

1) DbTest::testConnection

CDbException: CDbConnection failed to open the DB connection: could not
find driver

…

FAILURES!

Tests: 1, Assertions: 0, Errors: 1.

Now we have a failing test. The test is assuming the application has been configured
with a database connection application component called db. (We'll talk a little more
about application components later). The test is written to assert that when the
application is asked for a db connection, the result is not a null value.

In fact, the skeleton application was auto-configured to use a database. A by-product of
using the yiic tool is that our new application is configured to use an SQLite database.
If you take a peek into the main application configuration file, located at protected/
config/main.php, you will see the following declaration about halfway down:

Chapter 4

[57]

'db'=>array('connectionString' => 'sqlite:'.dirname(__FILE__).'/../
data/testdrive.db',
),

And you can also verify the existence of protected/data/testdrive.db, which is
the SQLite database it is configured to use.

In our case, this test fails because we don't have an SQLite driver configured in our
development environment. This test may not have failed for you if you happen to
have the correct driver available. Before we change the configuration to use a MySQL
database server, let's briefly talk about Yii and databases more generally.

Yii and databases
Yii provides great support for database programming. Yii Data Access Objects
(DAO) is built on top of the PHP Data Objects (PDO) extension (http://php.net/
pdo). This is a database abstraction layer that enables the application to interact with
the database independent of the specific choice of database server. All supported
database management systems (DBMS) are encapsulated behind a single uniform
interface. This way, the code can remain database independent, and applications
developed using Yii DAO can be easily switched to use a different DBMS without
the need for modification.

To establish a connection with a supported DBMS, one can simply create a new
CDbConnection class and instantiate it:

$connection=new CDbConnection($dsn,$username,$password);

Here the format of the $dsn variable depends on the specific PDO database driver
being used. Some common formats include:

•	 SQLite: sqlite:/path/to/dbfile
•	 MySQL: mysql:host=localhost;dbname=testdb
•	 PostgreSQL: pgsql:host=localhost;port=5432;dbname=testdb
•	 SQL Server: mssql:host=localhost;dbname=testdb
•	 Oracle: oci:dbname=//localhost:1521/testdb

CDbConnection also extends from CApplicationComponent, which allows it to
be configured as an application component. This means that we can add it to the
components property of the application, and customize the class and property
values that are there in the configuration file. This is our preferred approach.

Iteration 1: Creating the Initial TrackStar Application

[58]

Adding a db connection as an application
component
To take a quick step back. When we created the initial application, we specified
the application type to be a web application. Doing so actually specified that the
application singleton class that is created upon each request should be of type
CWebApplication. This Yii application singleton is the execution context within
which all request processing is run. Its main task is to resolve the user request and
route it to an appropriate controller for further processing. This was represented
as the Yii Application Router back in our Chapter 1, Meet Yii diagrams, when
we covered the request routing. It also serves as the central place for keeping
application-level configuration values.

To customize our application configuration, we normally provide a configuration file
to initialize its property values when the application instance is being created. The
main application configuration file is located in /protected/config/main.php. This
is actually a PHP file containing an array of key-value pairs. Each key represents the
name of a property of the application instance, and each value is the corresponding
property's initial value. If you open up this file, you will see that a few settings have
already been configured for us by the yiic tool.

Adding an application component to the configuration is easy. Open up the main
config file and locate the components property.

We see that there are already entries specifying a log and a user application
component. These will be covered in subsequent chapters. We also see (as we
noted previously) that there is a db component there as well, configured to use an
SQLite connection to an SQLite database located at protected/data/testdrive.db.
We are going to replace that connection with one for a MySQL database. It can
be defined as follows:

// application components
 'components'=>array(
 …
 'db'=>array(
'connectionString' => 'mysql:host=127.0.0.1;dbname=trackstar_dev',
 'emulatePrepare' => true,
 'username' => 'your_db_user_name',
 'password' => 'your_db_password',
 'charset' => 'utf8',
),
),

Chapter 4

[59]

This assumes that a MySQL database has been created called trackstar_dev and
is available to connect to the localhost IP of 127.0.0.1. One of the great benefits
of making this an application component is that from now on, we can reference
the database connection simply as a property of the main Yii application:
Yii::app()->db anywhere throughout our application. Similarly, we can do
this for any of the components defined in the config file.

All of our examples will be using the MySQL database. However, we will be
providing the low-level DDL statements for the table structures, and we will try
to keep things generic from a database implementation perspective. It is entirely
possible to follow along using any Yii-compatible database of your choice. At the
time of writing, Yii has Active Record support for MySQL, PostgresSQL, SQLite, SQL
Server, and Oracle.

The charset property set to utf8 sets the character set used for database
connection. This property is only used for MySQL and PostgreSQL
databases. We are setting it here to ensure proper utf8 unicode character
support for our PHP application.
The emulatePrepare => true configuration sets a PDO attribute
(PDO::ATTR_EMULATE_PREPARES) to true which is recommended if
you are using PHP 5.1.3 or higher.

So, we have specified a MySQL database called trackstar_dev as well as the
username and password needed to connect to this database. We did not show you
how to create such a database in MySQL. We assume you have a favorite database
you are going to use as you follow along and know how to create a new database.
Please refer to your specific database documentation if you are unsure of how to
create a new database called trackstar_dev, and define a username and password
for connectivity.

Once the database is in place, we can test it again by running our unit test again:

%phpunit unit/DbTest.php

PHPUnit 3.3.17 by Sebastian Bergmann.

Time: 0 seconds

OK (1 test, 1 assertion)

Our test now passes

Iteration 1: Creating the Initial TrackStar Application

[60]

Summary
We have completed our first iteration, and we have a working and tested application
that is ready to be deployed if necessary. However, our application certainly does not
do much of anything. All we have is the functionality that comes out of the box from
the autogenerated code when we created the application, and a valid connection to
a database. This is certainly far from what we have described when we introduced
the TrackStar application. But we are taking small, incremental steps towards
achieving our desired functionality, and this first iteration was a great milestone
towards that end.

In the next chapter, we will finally get to sink our teeth into more meaningful
features. We will begin to do some actual coding as we implement the needed
functionality to manage our project entities within the application.

Iteration 2: Project CRUD
Now that we have a basic application in place and configured to communicate with
our database, we can begin to work on some real features of our application. We
know that the project is one of the most fundamental components in our application.
A user cannot do anything useful with the TrackStar application without first either
creating or choosing an existing project within which to add tasks and other issues.
For this reason, we want to use our second iteration to focus on getting the project
entity wired into the application.

Iteration planning
This iteration is fairly straightforward. At the end of this iteration, our application
should allow users to create new projects, select from a list of existing projects,
update/edit existing projects, and delete existing projects.

In order to achieve this goal, we need to identify all the more granular tasks on
which to focus. The following list identifies a more granular list of tasks we aim
to accomplish within this iteration:

•	 Design the database schema to support projects
•	 Build the needed tables and all other database objects indentified in the schema
•	 Create the Yii AR model classes needed to allow the application to easily

interact with the created database table(s)
•	 Create the Yii controller class(es) that will house the functionality to:

	° Create new projects
	° Fetch a list of existing projects for display
	° Update metadata on existing projects
	° Delete existing projects

Iteration 2: Project CRUD

[62]

•	 Create the Yii view files and present their logic in a way that will:

	° Display the form to allow for new project creation
	° Display a list of all the existing projects
	° Display the form to allow a user to edit an existing project
	° Add a delete button to the project listing to allow for

project deletion

This is certainly enough to get us started. We will soon be able to put these tasks into
our TrackStar application, and manage them from there. For now, I guess we will
just have to jot them down in a notebook.

Running our test suite
Before we jump right into development, we should run our existing test suite and
make sure all of our tests pass. We only have one test thus far. The test we added in
Chapter 4, Iteration 1: Creating the Initial TrackStar Application tests for a valid database
connection. So, it certainly won't take too long to quickly run our test suite. Open
up your command prompt and from the /protected/tests folder, run all of the
following unit tests at once:

 %phpunit unit/

 PHPUnit 3.3.17 by Sebastian Bergmann.

 Time:

 ::0 seconds

 OK (1 test, 1 assertion)

With all of our tests passing, our confidence is boosted. Now we can begin to
make changes

Creating the project table
Back in Chapter 3, The TrackStar Application we talked about the basic data that
represents a project, and in Chapter 4 we decided that we would use a MySQL
relational database to build out the persistence layer of this application. Now
we need to turn the idea of project content into a real database table.

We know projects need to have a name and a description. We are also going to keep
some basic table auditing information on each table by tracking the time a record
was created and updated as well as who created and updated the record. This is
enough to get us started and meet the goals of this first iteration.

Chapter 5

[63]

Based on these desired properties, here is how the project table looks:

CREATE TABLE tbl_project
(
id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(128),
description TEXT,
create_time DATETIME,
create_user_id INTEGER,
update_time DATETIME,
update_user_id INTEGER
);

Covering third-party database administration tools is outside of the scope of this
book. We also want to allow you to follow along while potentially using something
other than MySQL. For these reasons, we are going to simply provide the low-level
Data Definition Language (DDL) statements for the structures that we create. So,
go ahead and open up your favorite database editor within your preferred Yii-
supported database server and create this table in the trackstar_dev database
that you created in Chapter 4.

Depending on the particular database you choose to use, there are many
available tools that help with the maintenance of a database schema
and assist in database administration We recommend using a tool that
will make things easier when it comes to database administration. We
are actually using MySQLWorkbench (http://dev.mysql.com/
downloads/workbench/5.1.html) to design, document, and manage
our database schema. We are also using phpMyAdmin (http://
www.phpmyadmin.net/home_page/downloads.php) to help with
general administration. There are many similar tools available. The small
amount of time it takes to become familiar with how to use them can
save you a lot of time in the long run.

Naming conventions
You may have have noticed that we defined our database table as well as all of the
column names in lowercase. Throughout our development, we will use lowercase for
all table names and column names. This is primarily because different DBMS handle
case-sensitivity differently. As one example, PostgreSQL treats column names as
case-insensitive by default, and we must quote a column in a query condition if
the column contains mixed-case letters. Using lowercase would help eliminate
this problem.

Iteration 2: Project CRUD

[64]

You may have also noticed that we used a tbl_ prefix in naming our projects table.
As of version 1.1.0, Yii provides integrated support for using table prefix. Table
prefix is a string that is pre-pended to the names of the tables. It is often used in
shared hosting environments where multiple applications share a single database
and use different table prefixes to differentiate from each other. For example, one
application could use tbl_ as a prefix while another could use yii_. Also, some
database administrators use this as a naming convention to prefix database objects
with an identifier as to what type of entity they are, or otherwise to use a prefix to
help organize objects into similar groups.

In order to take full advantage of the integrated table prefix support in Yii, one must
appropriately set the CDbConnection::tablePrefix property to be the desired
table prefix. Then, in SQL statements used throughout the application, one can use
{{TableName}} to refer to table names, where TableName is the name of the table,
but without the prefix. For example, if we were to make this configuration change
we could use the following code to query about all projects:

$sql='SELECT * FROM {{project}}';
$projects=Yii::app()->db->createCommand($sql)->queryAll();

But this is getting a little ahead of ourselves. Let's leave our configuration as it is
for now, and revisit this topic when we get into database querying a little later in
our application development.

Creating the AR model class
Now that we have the tbl_project table created, we need to create the Yii model
class to allow us to easily manage the data in that table. We introduced Yii's Object
-relational Mapping (ORM) layer and Active Record (AR), back in Chapter 1, Meet
Yii. Now we will see a concrete example of that in the context of this application.

Previously, we used the yiic shell command to help with some autogeneration
of code. As we saw in Chapter 2, Getting Started when we were using the shell
command to create our first controller, there are many other shell commands you
can execute to help auto create application code. However, as of version 1.1.2 of Yii,
there is a new and more sophisticated interface available called Gii. Gii is a highly
customizable and extensible web-based code generation platform that takes the yiic
shell command to new heights. We will be using this new platform to create our
new model class.

Chapter 5

[65]

Configuring Gii
Before we can start using Gii, we have to configure it for use within our application.
At this point you probably know enough to guess we would do that in our main
application configuration file, protected/config/main.php. This is correct. To
configure Gii for use, open this file and add the following highlighted code to the
returned array:

return array(
 'basePath'=>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',
 'name'=>'My Web Application',

 // preloading 'log' component
 'preload'=>array('log'),

 // autoloading model and component classes
 'import'=>array(
 'application.models.*',
 'application.components.*',
),

 'modules'=>array(
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'[add_your_password_here]',
),
),

This configures Gii as an application module. We will cover Yii modules in detail
later in the book. The important thing at this point is to make sure this is added to
the configuration file and that you provide your password. Now, navigate to the
tool at: http://localhost/trackstar/index.php?r=gii.

The following screenshot shows the authentication form you will be presented with:

Iteration 2: Project CRUD

[66]

Using Gii to create our Project AR class
Go ahead and enter the password you provided during the configuration.
A successful entry will take you to the following main menu page of Gii:

As you may recall, these choices are similar to the options we received back in
Chapter 2 when typing help within the yiic shell command-line tool. As we want
to create a new model class for our tbl_project table, the Model Generator option
seems like the right choice. Clicking that link takes us to the following page:

The Table Prefix field is primarily used to help Gii determine how to name the AR
class we are generating. If you are using a prefix, you can add this here. This way, it
won't use that prefix when naming the new class. In our case, we are using the tbl_
prefix, which also just happens to be what this form field defaults to. So, specifying
this value will mean that our newly generated AR class will be named Project, rather
than tbl_project.

Chapter 5

[67]

The next two fields are asking for our Table Name and the name of the class file
we want it to generate. Type in the name of our table, tbl_project, and watch as
the model class name auto-populates. The convention for the Model Class name
is the name of the table, minus the prefix, and starting with an uppercase letter.
So, it will assume a name of Project for our Model Class name, but of course you
can customize this.

The next few fields allow for further customization. The Base Class field is used
to specify the class from which our Model Class will extend. This will have to be
CActiveRecord or a child class thereof. The Model Path field allows you to specify
where in the application folder structure to output the new file. The default is
protected/models/ (also known as application.models). The last field allows us
to specify a template on which the generated code is based. We can customize the
default one to meet any specific needs we have that might be common to all such
class files. For now, the default values for these fields meet our needs just fine.

Proceed by clicking on the Preview button. This will result in the following table
that is displayed at the bottom of the page:

This link allows you to preview the code that will be generated. Before you hit
Generate, click on the models/Project.php link. The following screenshot displays
what this preview looks like:

Iteration 2: Project CRUD

[68]

It provides a nice scrollable popup, so that we can preview the whole file that will
be generated.

Okay, close this popup and go ahead and click on the Generate button. Assuming
all went well, you should see the following screenshot displayed at the bottom of
the page:

Ensure that /protected/models (or whatever folder you specified
in the Model Path form field) is writable by your web server process
prior to attempting to generate your new model class. Otherwise, you
will receive a permissions error.

Gii has created for us a new Yii AR model class, named (as we instructed it to)
as Project.php, and placed it (as we instructed it to) in the default Yii location
for model classes, protected/models/. This class is a wrapper class for our
tbl_project database table. All of the columns in the tbl_project table are
accessible as properties of the Project AR class.

Let's get familiar with our newly created AR class by writing some tests.

Testing out our newly generated code
A great way to get familiar with new code or functionality is to write tests against
it. Starting with some unit tests is a great way to get a general feel of how AR classes
work in Yii. As this iteration is focused on Creating, Reading, Updating, and
Deleting (CRUD) projects, we'll write some tests for these operations on the Project
AR class. The public methods for each of these CRUD functionalities are already
present in our new Project.php AR class, so we won't need to code for those. We
can just focus on writing the tests.

Chapter 5

[69]

Creating the unit test file
First we need to create a new unit test file. Let's create that file here: protected/
tests/unit/ProjectTest.php, and have it contain the following code:

<?php
class ProjectTest extends CDbTestCase
{
 public function testCRUD()
 {
 }
}

The class we have added extends CDbTestCase, which is the Yii Framework base
class for unit test classes specifically intended to test database related functionality.
This database specific base class provides fixture management, which we will cover
in more detail.

We'll use the testCRUD() method for testing all CRUD operations against the Project
AR class. We'll start with testing a new Project creation.

We are not actually engaging in TDD as this point. The reason for this
is that we are not writing any of the code we are testing. We are using
this testing approach to help you get familiar with both AR classes in
Yii as well as with writing some basic tests. As this is not really TDD,
we will not exactly follow the TDD steps closely as outlined in Chapter
3. For example, because the code we are going to be testing is core Yii
Framework code, which works very well, we don't have to do things
such as first writing a failing test.

Testing create
Add the following code to the testCRUD() method that creates a new Project AR
class, sets its project attributes, and then saves it:

public function testCRUD()
{
 //Create a new project
 $newProject=new Project;
 $newProjectName = 'Test Project 1';
 $newProject->setAttributes(
 array(
 'name' => $newProjectName,
 'description' => 'Test project number one',
 'create_time' => '2010-01-01 00:00:00',

Iteration 2: Project CRUD

[70]

 'create_user_id' => 1,
 'update_time' => '2010-01-01 00:00:00',
 'update_user_id' => 1,
)
);
 $this->assertTrue($newProject->save(false));
}

This code first creates a new Project AR instance by invoking new. We then use the
setAttributes() method of the AR class to set the AR class attributes in a bulk way
based on an input array. We see that the class properties are the keys to this input
array, and they will be set to the values specified in this array.

After setting the attributes, we save the new Project by invoking its save() method.
We pass the optional false parameter into the save() method to tell it to bypass
any data validation of the attributes (we'll cover model data validation in the section,
Adding a required field to our form). We then test to make sure the returned value from
saving the new record is true, which indicates a successful save.

Now toggle to the command line to execute this new test to ensure success:

% cd Webroot/protected/tests

% phpunit unit/ProjectTest.php

PHPUnit 3.3.17 by Sebastian Bergmann.

.

Time:

::0 seconds

OK (1 test, 1 assertion)

Great, it passed. So we have successfully added a new project. You can verify this
by querying your database directly. Using your preferred database maintenance
tool, select back everything from the Project table. You will see that you have a new
row with the details that match the attributes we set for the Project AR class. In the
following example we used MySQL command line as follows:

mysql> select * from tbl_project\G

*************************** 1. row ***************************

 id: 1

 name: Test Project 1

 description: Test project number one

 create_time: 2010-01-01 00:00:00

create_user_id: 1

 update_time: 2010-01-01 00:00:00

update_user_id: 1

1 row in set (0.00 sec)

Chapter 5

[71]

You may have noticed that we did not specify the id column when setting the
attributes of the Project AR class. This is because the column is defined to be an
auto-increment Primary Key. The database automatically assigns this value when
inserting new rows. Once the insert is successful, this attribute is properly set in the
AR class itself. You could easily access the newly auto-assigned id attribute in the
following manner:

$newProject->id

We'll use this in our next test.

Testing read
Now that we have verified the create functionality by testing the save() method
of our new Project AR class, let's move on to the read. Add the following highlighted
code to the same testCRUD() method, just below where we saved the new record:

public function testCRUD()
{
 //Create a new project

 //READ back the newly created project
 $retrievedProject=Project::model()->findByPk($newProject->id);
 $this->assertTrue($retrievedProject instanceof Project);
 $this->assertEquals($newProjectName,$retrievedProject->name);
}

Here we use the static method model() that must be defined in every AR class. This
method returns an instance of the Project AR class that is further used to call other
class-level methods. We are calling the findByPk() method to retrieve a specific
instance of Project.

This method (as you might expect) takes in the Primary Key value and returns the
specific row that matches the unique identifier. We feed it the newly created auto
increment id attribute of the Project instance we created previously. This way, we
are attempting to read back the exact row we inserted when we saved $newProject.
We then have two assertions. We first verify that the entity we read back is an
instance of the Project AR class. We then verify that the project name of the record
read back is the same as the name we gave the project when we initially saved it.

Once again, let's toggle to the command line and run the following test:

% phpunit unit/ProjectTest.php

...

OK (1 test, 3 assertions))))

Iteration 2: Project CRUD

[72]

Very nice! We have verified that the "R" in CRUD is working as we expect.

Let's move a little more quickly now and test Update and Delete at the same time.

Testing update and delete
Now add the following code at the bottom of the same testCRUD() method we
have been using, just after the tests we added for create and read previously:

//Create a new project
...

//READ back the newly created project
...

//UPDATE the newly created project
$updatedProjectName = 'Updated Test Project 1';
$newProject->name = $updatedProjectName; $this-
>assertTrue($newProject->save(false));

//read back the record again to ensure the update worked
$updatedProject=Project::model()->findByPk($newProject->id);
$this->assertTrue($updatedProject instanceof Project);
$this->assertEquals($updatedProjectName,$updatedProject->name);

//DELETE the project
$newProjectId = $newProject->id;
$this->assertTrue($newProject->delete());
$deletedProject=Project::model()->findByPk($newProjectId);
$this->assertEquals(NULL,$deletedProject);

Here we have added the tests for updating and deleting a Project. First we gave the
$newProject instance a new and updated name and then saved the project again.
As we are dealing with an existing AR instance this time, our AR class knows to do
an Update, rather than inserting a new record, whenever we invoke ->save(). We
then read back the row to ensure the name was updated.

To test the Delete, we saved the project id into a local variable $newProjectId.
We then called the ->delete() method on our AR instance which (as you probably
guessed) deletes the record from the database and destroys the AR instance. We then
used our local variable holding the project id to attempt to read back the row by this
Primary Key. As the record should have been deleted, we expect this result to be
NULL. The test asserts that we do get a NULL value returned.

Chapter 5

[73]

Let's make sure these tests pass. Run the test once again to ensure success:

% phpunit unit/ProjectTest.php
...
OK (1 test, 8 assertions)

Thus we have verified that all of our Project AR class CRUD operations are working
as expected.

Was all that testing really necessary?
When taking a TDD approach to software development, one is constantly faced with
making a decision of what to test and, sometimes more importantly, what parts not
to test.

These are questions you have to answer for yourself. You want to test enough to
provide maximum confidence in the code, but obviously testing every single line
of code in an application can be overkill.

One general rule of thumb is not to worry about testing code in
external libraries you did not write (unless you have a specific
reason to distrust it).

The CRUD operations we just wrote tests for, against the Project AR class, fall into
this category. The code behind them is part of the Yii Framework, and not code that
we wrote. We did not write these tests because we distrust the framework code, but
rather to get a feel for using Active Record in Yii. A great by-product of this exercise
is that we now have this as part of our test suite. However, it is unnecessary to go
through this testing exercise for every AR model class we create, and thus we won't
be doing so for other AR classes we create.

Enabling CRUD operations for users
The previously mentioned tests introduced us to using AR class instances. It
showed us how to use them to create new records, retrieve back existing records,
update existing records, and delete existing records. We spent a lot of time testing
these lower-level operations on the AR class instance for the Project table, but our
TrackStar application does not yet expose this functionality to users. What we really
need is a way for users to Create, Read, Update, and Delete projects within the
application. Now that we know our way around AR a little, we could start coding
this functionality in some controller class. Luckily, we don't have to.

Iteration 2: Project CRUD

[74]

Creating CRUD scaffolding for projects
Once again, the Gii code generation tool is going to rescue us from having to write
common, tedious and often time-consuming code. CRUD operations are such a
common need of database tables created for applications that the developers of Yii
decided to provide this for us. If you are familiar with other frameworks, you may
know this by the term scaffolding. Let's see how to take advantage of this in Yii.

Navigate back to the main Gii menu located at http://localhost/trackstar/
index.php?r=gii, and choose the Crud Generator link. You will be presented
with the following screen:

Here we are presented with two input form fields. The first one is asking for us
to specify the Model Class against which we would like all of the CRUD operations
generated. In our case, this is our Project.php AR class we created earlier. So
enter Project in this field. As we do this, we notice that the Controller ID field is
auto-populated with the name project, based on convention. We'll stick with this
default for now.

With these two fields filled in, clicking the Preview button will result in the
following table being added to the bottom of the page:

Chapter 5

[75]

We can see that quite a few files are going to be generated, which include a new
ProjectContrller.php controller class that will house all of the CRUD action
methods and many separate view files. There is a separate view file for each of the
operations as well as one that will provide the ability to search project records. You
can, of course, choose not to generate some of these by changing the checkboxes in
the corresponding Generate column in the table. However, for our purposes, we
would like Gii to create all of these for us.

Go ahead and click the Generate button. You should see the following success
message at the bottom of the page:

Iteration 2: Project CRUD

[76]

You may need to ensure that both /protected/controllers, as
well as, /protected/views under the root application folder are
both writable by the web server process. Otherwise, you will receive
permission errors, rather than this success result.

We can now click on the try it now link to take our new functionality for a test drive.

Doing so takes you to the project listing page. This is the page that displays all of the
projects currently in the system. You might not expect any to be in there yet, as we
have not explicitly created any using our new Create functionality. However, our
project listing page does have a few projects displayed as shown in the following
screenshot. (For reference, the page can be found here:
http://localhost/trackstar/index.php?r=project)

So, where did these projects come from? You might even have more or less than these
three that are listed in the preceding screenshot depending on the number of times you
reran the unit tests mentioned previously. The unit tests we wrote to test the CRUD
operations of our new Project AR class were actually creating new records in the
database every time we ran them. These are all of the records that were created before

Chapter 5

[77]

we finished writing our test for deletion, as that test eventually deleted the same record
created in the test for creation. In this particular case, it is nice to have a few projects in
the system so we can see how they are displayed. However, in general it is a bad idea
to run the unit and functional tests against the development database. Soon, we'll cover
how to change these tests to run against a separate dedicated test database. For now,
let's just keep playing with our newly generated code.

Creating a new project
You'll notice on this project listings page (displayed in the previous screenshot)
a little navigation column in the right column block. Go ahead and click on on the
Create Project link. You'll discover this actually takes us to the Login page, rather
than a form to create a new project. The reason for this is that the code Gii has
generated applies a rule that stipulates that only properly authenticated users
(that is, logged-in users) can create new projects. Any anonymous user that
attempts to access the functionality to create a new project will be redirected to
the Login page. Go ahead and log in using the credentials username as demo
and password as demo.

A successful login should redirect you to the following URL:

http://localhost/trackstar/index.php?r=project/create

This page displays a nice input form for adding a new project, as shown in the
following figure:

Iteration 2: Project CRUD

[78]

Let's quickly fill out this form to create a new project. Even though none of the fields
are marked as required, let's fill in the Name field as Test Project and the Description
field as Test project description. Hitting the Create button will post the form data back
to the server, and attempt to add a new project record. If there are any errors, a simple
error message will display that highlights each field in error. A successful save will
redirect to the specific listing for the newly created project. Ours was successful, and
we were redirected to the page with the URL http://localhost/trackstar/index.
php?r=project/view&id=4, as shown in the following screenshot:

As was mentioned previously, one thing we notice about our new project creation
form is that none of the fields are currently marked as being required. We can
successfully submit the form without any data at all. However, we know that
every project needs to have at least a name. Let's make this a required field.

Adding a required field to our form
When working with AR model classes within forms in Yii, setting validation rules
around form fields is a snap. This is done by specifying values in an array set in the
rules() method within the Project AR model class.

Opening up the /protected/models/Project.php class reveals that this public
method has already been defined, and that there are already a few rules in there:

/**
 * @return array validation rules for model attributes.
 */
 public function rules()
 {

Chapter 5

[79]

 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('create_user_id, update_user_id', 'numerical',
'integerOnly'=>true),
 array('name', 'length', 'max'=>128),
 array('create_time, update_time', 'safe'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, name, description, create_time, create_user_id,
update_time, update_user_id', 'safe', 'on'=>'search'),
);

The rules() method returns an array of rules. Each rule is of the following
general format:

Array('Attribute List', 'Validator', 'on'=>'Scenario List', …additional
options);

The Attribute List is a string of comma separated class property names to be
validated according to the Validator. The Validator specifies what kind of rule
should be enforced. The on parameter specifies a list of scenarios in which the rule
should be applied.

Scenarios allow you to restrict the application of a validation to
special contexts. A typical example for an active record would be
insert or update. For example, if 'on'=>'insert' is specified, this would
indicate that the validation rule should only be applied when the
model's scenario attribute is insert. The same holds true for 'update' or
any other scenario you wish to define. You can set a model's scenario
attribute either directly, or by passing it to the constructor when
creating a new instance."

If this is not set, the rule is applied in all scenarios when save() is called. Finally,
the additional options are name/value pairs, which are used to initialize the
Validator's properties.

The Validator can be either a method in the model class, or a separate Validator
class. If defined as a model class method, it must have the following signature:

/**
* @param string the name of the attribute to be validated
* @param array options specified in the validation rule
*/
public function ValidatorName($attribute,$params) { ... }

Iteration 2: Project CRUD

[80]

If we use a separate class to define the Validator, that class must extend from
CValidator. There are actually three ways to specify the Validator in the
previously mentioned general format:

1. One is to specify a method name in the model class itself.
2. A second is to specify a separate class that is of a Validator type

(that is, a class that extends CValidator).
3. The third manner in which you can define the Validator is by specifying

a predefined alias to an existing Validator class in the Yii Framework.

Yii provides many predefined Validator classes for you and also provides aliases
with which to reference these when defining rules. The complete list of predefined
Validator class aliases as of Yii version 1.1 is as follows:

•	 boolean: Alias of CBooleanValidator, ensuring the attribute has a value
that is either true or false

•	 captcha: Alias of CCaptchaValidator, ensuring the attribute is equal to the
verification code displayed in a CAPTCHA

•	 compare: Alias of CCompareValidator, ensuring the attribute is equal to
another attribute or constant

•	 email: Alias of CEmailValidator, ensuring the attribute is a valid
e-mail address

•	 default: Alias of CDefaultVAlidator, assigning a default value to the
specified attributes

•	 exist: Alias of CExistValidator, ensuring the attribute value can be found
in the specified table column

•	 file: Alias of CFileValidator, ensuring the attribute contains the name of
an uploaded file

•	 filter: Alias of CFilterValidator, transforming the attribute with a filter
•	 in: Alias of CRangeValidator, ensuring the data is among a pre-specified list

of values
•	 length: Alias of CStringValidator, ensuring the length of the data is within

certain range
•	 match: Alias of CRegularExpressionValidator, ensuring the data matches

a regular expression
•	 numerical: Alias of CNumberValidator, ensuring the data is a valid number
•	 required: Alias of CRequiredValidator, ensuring the attribute is not empty
•	 type: Alias of CTypeValidator, ensuring the attribute is of a specific

data type

Chapter 5

[81]

•	 unique: Alias of CUniqueValidator, ensuring the data is unique in a
database table column

•	 url: Alias of CUrlValidator, ensuring the data is a valid URL

As we want to make the project name attribute a required field, it looks like the
required alias will meet our needs. Let's add a new rule specifying this alias as the
Validator to validate our project name attribute. We'll append it to the existing rules:

public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('create_user_id, update_user_id', 'numerical','integerO
nly'=>true),
 array('name', 'length', 'max'=>128),
 array('create_time, update_time', 'safe'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, name, description, create_time, create_user_id,
update_time, update_user_id', 'safe', 'on'=>'search'),
 array('name', 'required'),
);
 }

By saving this file and viewing the new Project form again at: http://localhost/
trackstar/index.php?r=project/create, we see a little red asterisk next to the
Name field. This indicates that this field is now required. Try submitting the form
without this field filled in. You should see an error message indicating that the
Name field cannot be blank, as shown in the following screenshot:

Iteration 2: Project CRUD

[82]

While we are making these changes, let's go ahead and make the Description field
required as well. All we have to do is add the Description field to the list of fields
specified in the new rule we just added, as such:

array('name, description', 'required'),

So, we see we can specify multiple fields in the attribute list by comma separating
them. With this in place, you will see that our form now indicates that both the name
and the description are required. Attempting to submit either one without a value
will result in a form validation error.

If we had stipulated the name and description columns as NOT NULL as
part of the SQL when initially creating the table, then this rule would
have been autogenerated for us when we created the model class using
the Gii code generation tool. It will automatically add rules based on
the definitions of the columns in the table. For example, columns with
NOT NULL constraints will be added as required. As another example,
columns that have length restrictions, like our name column being
defined as varchar(128), will have character limit rules automatically
applied. We notice by taking another look at our rules() method in
the Project AR class that Gii auto created the rule array('name',
'length', 'max'=>128) for us based on its column definition.

Reading the project
Viewing the detail listing of our new project: http://localhost/trackstar/
index.php?r=project/view&id=4, does, basically, demonstrate the "R" in CRUD.
However, to view the entire listing, we can click on the List Project link in the right
column. This takes us back to where we started, except now we have our newly
created project in the project list. So, we have the ability to retrieve a listing of all of
the projects in the application, as well as view the details of each project individually.

Chapter 5

[83]

Updating and deleting projects
Navigating back to a project details page can be done by clicking the little project ID
link on any of the projects in the listing. Let's do this for our newly created project,
which is ID: 4 in our case. Clicking this link takes us to the project details page for
this project. This page has a number of action operations in the right-hand column,
as the next screenshot shows:

We see both of the Update Project and Delete Project links which provide us
with the "U" and "D" in our CRUD operations respectively. We'll leave it up to
you to verify that these links do work as expected.

Managing projects in admin mode
The last link we have not covered in the previous screenshot depicting our project
operations is the Manage Project link. Go ahead and click on this link. It will most
likely result in an authorization error, as shown in the following screenshot:

The reason for this error is that when we had to log into the application in order to
create a new project, we used demo/demo as our username/password combination.
The code generated by Gii restricts the access to this functionality to administrators.

Iteration 2: Project CRUD

[84]

An administrator in this context is simply someone who has logged in with the
username/password combination of admin/admin. Go ahead and log out of the
application by clicking Logout (demo) from the main, top, navigation. Then log in
again, but this time, use these administrator credentials. Once successfully logged
in as admin (you can verify this by ensuring the logout link reads Logout (admin).
Navigate back to a specific project listing page, for example: http://localhost/
trackstar/index.php?r=project/view&id=4, and try the Manage Projects link
again .We should now see what is shown in the following screenshot:

What we now see is a highly interactive version of our project listing page. It
displays all the projects in an interactive data table. Each row has inline links, to
view, update and delete each project. Clicking on any of the column header links
sorts the project list by that column value. The little input boxes in the second row
allow you to search this project list by keywords within those individual column
values. The Advanced Search link exposes an entire search form providing the
ability to specify multiple search criteria, to submit against one search. The next
screenshot displays this Advanced Search form:

Chapter 5

[85]

Wow! We have basically implemented all of the functionality we set out to achieve
in this iteration, and haven't really had to code much of anything. In fact, with the
help of Gii, we have implemented basic project searching functionality that we were
not expecting to achieve. Though basic, we have a fully functional application with
features specific to a project task tracking application, and have done very little
coding to achieve it.

But don't hit the beach just yet. All of this scaffolding code is not really intended to
fully replace application development. Rather, it is there to help support us as we
work to build the real application. As we work through all the details and nuances
of how the project functionality should work, we can rely on this autogenerated
code to keep things moving forward. We'll keep as much of it as we can, depending
on project requirements as we move forward, but this type of autogenerated code
scaffolding is not intended to be a complete solution for all the functionality we will
need to manage the projects in our application.

More on testing—fixtures
Before we move on to adding more functionality into our TrackStar application,
we need to briefly revisit our testing configuration. As we previously discussed,
our unit tests actually added new projects to our application in our development
environment. Also, even after we completed our tests by deleting the row we
created, the database will reuse that same project identifier on subsequent inserts.
So, as we continue to run our tests, we will notice gaps in our project ID sequence
(which could be confusing during normal development).

The problem is that the unit tests are run against the same database that the web
form uses when creating new projects. As a result, there is potential for some issues
to arise. What we need to do is to configure our tests to run against a separate,
mirrored database, that is dedicated just to testing. What we also need is a way to
ensure that our tests are always run in the same manner, against the same data. The
former is an easy change in a configuration file, which we will make shortly. The
latter is achieved through the use of fixtures.

A test fixture is a system state or context in which tests are run. We want to run our
tests a multiple number of times, and each time they run, we want to be able to have
them return repeatable results. A fixture is intended to provide a well-known and
fixed environment in which to run our tests. Typically, a fixture's job is to ensure that
all of the objects involved in the testing are consistently initialized to a particular
state. One typical example of a fixture is the loading of a database table with a fixed
and known set of data.

Iteration 2: Project CRUD

[86]

Fixtures in yii are PHP files that return an array specifying the initial data
configuration. They are typically named the same as the database table they represent,
and are located under the protected/tests/fixtures/ folder. So, to specify project
fixture data, we will need to create a new file in this directory called tbl_project.php.
This file holds the fixed and known set of data that will initialize our Project database
table before any tests in the /tests/unit/ProjectTest.php file are run. This fixture
file is specified at the top of the ProjectTest.php test file:

class ProjectTest extends CDbTestCase
{
 public $fixtures=array
 (
 'projects'=>'Project',
);
}

Configuring the fixture manager
Setting up these types of database fixtures can be an extremely time consuming part
of the testing process. Yii comes, once again, to rescue us from this tedium by the
providing CdbFixtureManager class. When configured as an application component,
it will provide the following functionality:

•	 Before all tests are run, it resets all the relevant tables to a known data state
•	 Before a single test is run, it can reset specified tables to a known data state
•	 During the execution of a test, it provides access to the rows of data that are

part of the fixed data state

To use the fixture manager, we configure it in the application configuration files. This
was actually already done for us when we created the initial application. If you open
up the application configuration file specific to testing, protected/config/test.
php, you will see the following application component defined:

'fixture'=>array(
'class'=>'system.test.CDbFixtureManager',),

So the application has already been configured to use this fixture manager. Now we
need to create a new fixture.

Creating a fixture
A fixture in Yii is implemented as a PHP file that returns an array representing the
initial rows of data for a particular table. The filename is the same as the table name.
By default, these fixture files are expected to be placed in the folder protected/

Chapter 5

[87]

tests/fixtures. You can use the CDbFixtureManager::basePath property in
the application configuration to customize this location if desired. Let's provide an
example by creating a new fixture for our tbl_project database table. Create a new
file, protected/tests/fixtures/tbl_project.php, with the following contents:

<?php

return array(
 'project1'=>array(
 'name' => 'Test Project 1',
 'description' => 'This is test project 1',
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
 'project2'=>array(
 'name' => 'Test Project 2',
 'description' => 'This is test project 2',
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
 'project3'=>array(
 'name' => 'Test Project 3',
 'description' => 'This is test project 3',
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '', 'update_user_id' => '',
),
);

As we can see, our fixture array has keys that represent entries in our table. The
value of these keys are themselves arrays with a key=>value pair for each column
in the table. We have added three rows, but you can add as many as you like. For
simplicity, we have only filled out the values we have previously stipulated cannot
be NULL, that is, the name and description fields. This will be enough data for us to
demonstrate the use of fixtures.

You may have also noticed that the id column was not specified in the previous
fixture data. This column is defined to be an auto-increment field. The value for
this column will be handled by the database itself when we insert new rows.

Iteration 2: Project CRUD

[88]

Configuring this fixture for use
We still need to tell our unit tests to actually use this fixture we just created. We do
this in the unit test file. In this case, we will need to add our fixture declaration to the
top of our test file protected/tests/unit/ProjectTest.php as such:

<?php
class ProjectTest extends CDbTestCase
{
 public $fixtures=array
 (
 'projects'=>'Project',
);
}

So, what we have done is specified the $fixtures member variable to be an array
that specifies which fixtures will be used by this test. The array represents a mapping
from fixture names that will be used in the tests to model class names or fixture table
names (for example, from fixture name projects to model class Project). When
using a model class name, as in this case, the underlying tables that correspond to
the model class will be considered as fixture tables. As we described earlier, it is the
fixture manager that will manage these underlying tables and reset the data to some
known state each time a test method is executed.

If you need to use a fixture for a table that is not represented by an AR class, you
need to prefix table name with a colon (for example, :tbl_project) to differentiate
it from the model class name.

Fixture names allow us to access the fixture data in test methods in a convenient
way. So, for example, now that we have defined this in our ProjectTest class, we
can access our fixture data in the following ways:

// return all rows in the 'Project' fixture table
$projects = $this->projects;
// return the row whose alias is 'project1' in the `Project` fixture
table
$projectOne = $this->projects['project1'];
// If our fixture is associated with an active record, return the AR
instance representing
// the 'project1' fixture data row
$project = $this->projects('project1');

We'll provide more concrete examples when we change some of our actual unit tests
to take advantage of this fixture data. First we need to make another change to our
testing environment.

Chapter 5

[89]

Specifying a test database
As we previously mentioned, we need to separate our development database
from our testing database so that our testing will not continue to interfere with
our development.

The test specific application configuration file provides a place for us to do just that.
We need to create another new database, call it trackstar_test. We also need to
replicate the schema we have in our current trackstar_dev database. This is easy as
we just have the one tbl_project table at the moment. Please proceed as you did in
Chapter 4 to create this new database with the tbl_project table. Once created, we
can add the database connection information as an application component to our test
specific configuration file located at protected/config/test.php. You can copy the
db component from your main.php config file that we added back in Chapter 4. For
MySQL users, like us, we add the following highlighted code to our test config file:

return CMap::mergeArray(
 require(dirname(__FILE__).'/main.php'),
 array(
 'components'=>array(
 'fixture'=>array(
 'class'=>'system.test.CDbFixtureManager',
),
 'db'=>array(
 'connectionString' =>
'mysql:host=localhost;dbname=trackstar_test',
 'emulatePrepare' => true,
 'username' => '[your db username]',
 'password' => '[your db password]',
 'charset' => 'utf8',
),
),
)
);

When we run our tests, this test config is loaded, rather than the main config file.
This file actually merges the array from the main config file with the array defined
in this test config file. If the same components or config values are defined in both,
the values in the test file will take precedence. Now when we run our unit tests, we
will be manipulating this test database rather than our development one, and won't
run the risk of having our test suite negatively impact our development progress.

Iteration 2: Project CRUD

[90]

Using fixtures
Now that we have adjusted our test environment to use a separate database, we
should take advantage of what fixtures have to offer. When we initially wrote
the unit tests for the CRUD operations against the Project AR class, we put all
of the Create, Read, Update and Delete tests all into one test method we called
testCRUD(). This has the disadvantage of lumping all these discrete tests into one
big test. If the first create fails, then the execution of that entire test method stops,
and the tests for Read, Update and Delete are never even run. Ideally, we should
separate these so that one test does not have to depend on the others. The main
reason we wrote the test this way was to avoid the need to ensure the order in which
the test methods must run. If we separated the create test from the read test, there
is a potential for the read method to be executed prior to the create method, which
would result in a failed test, as no rows would have been created to read back.
However, we can avoid this issue if we use the fixture data.

Now that our new test environment configured to use a new dedicated database,
and our fixture data defined, we can decouple our CRUD unit tests. This will give
us some concrete examples of how to use our fixture data.

Let's start with Read. Open up the ProjectTest.php unit test file and add the
following test method:

public function testRead()
{
$retrievedProject = $this->projects('project1');
$this->assertTrue($retrievedProject instanceof Project);
$this->assertEquals('Test Project 1',$retrievedProject->name);
}

We know that before this test is run, the fixture manger will reset the tbl_project
table, in the trackstar_test database, to the known state defined by the fixture
data. Here, we are simply reading back the first row of data, referencing the row
alias, project1, which returns a Project AR instance based on that first row of data
defined in our protected/tests/fixtures/tbl_project.php fixture file. We then
test that the returned entity is an instance of Project and test to make sure its name is
what we established in the fixture data.

We can similarly add separate testCreate(), testUpdate(), and testDelete()
methods. The entire test file after making the needed change to decouple all of these
CRUD tests into separate methods is shown below:

<?php

 class ProjectTest extends CDbTestCase
 {

Chapter 5

[91]

 public $fixtures=array(
 'projects'=>'Project',
);
 public function testCreate()
 {
 //CREATE a new Project
 $newProject=new Project;
 $newProjectName = 'Test Project Creation';
 $newProject->setAttributes(array(
 'name' => $newProjectName,
 'description' => 'This is a test for new project creation',
 'createTime' => '2009-09-09 00:00:00',
 'createUser' => '1',
 'updateTime' => '2009-09-09 00:00:00',
 'updateUser' => '1',
)
);
 $this->assertTrue($newProject->save(false));
 //READ back the newly created Project to ensure the creation
 worked
 $retrievedProject=Project::model()->findByPk($newProject->id);
 $this->assertTrue($retrievedProject instanceof Project);
 $this->assertEquals($newProjectName,$retrievedProject->name);
 }
 public function testRead()
 {
 $retrievedProject = $this->projects('project1');
 $this->assertTrue($retrievedProject instanceof Project);
 $this->assertEquals('Test Project 1',$retrievedProject->name);
 }
 public function testUpdate()
 {
 $project = $this->projects('project2');
 $updatedProjectName = 'Updated Test Project 2';
 $project->name = $updatedProjectName;
 $this->assertTrue($project->save(false));
 //read back the record again to ensure the update worked
 $updatedProject=Project::model()->findByPk($project->id);
 $this->assertTrue($updatedProject instanceof Project);
 $this->assertEquals($updatedProjectName,$updatedProject->name);
 }
 public function testDelete()
 {
 $project = $this->projects('project2');
 $savedProjectId = $project->id;
 $this->assertTrue($project->delete());
 $deletedProject=Project::model()->findByPk($savedProjectId);
 $this->assertEquals(NULL,$deletedProject);
 }
 }

Iteration 2: Project CRUD

[92]

Now, if any one of these fails when we run the tests, the rest will still execute
providing us more granular feedback on each distinct operation.

Summary
Even though we did not do a ton of actual coding in this chapter, we accomplished
quite a lot. We created a new database table, which allowed us to see Yii AR in
action. We used the Gii code generation tool to first create an AR class to wrap our
tbl_project database table. We then wrote tests to try out this new class and got
a lot of exposure to using these AR class types.

We then demonstrated how to use the Gii code generation tool to generate actual
CRUD functionality in the Web application. With this amazing tool, we achieved
most of application functionality that we outlined for this iteration. We made one
small change to enforce the project name and description on form submission,
which showcased the form validation functionality.

Finally, we introduced testing fixtures in Yii, and made some adjustments to our
testing environment to take advantage of this feature.

In the next iteration, we will build on what we have learned here and dive more
deeply into Active Record in Yii as we introduce related entities in our data model.

Iteration 3: Adding Tasks
In the previous iteration, we delivered the basic functionality around the project
entity. The project is the foundation of the TrackStar application. However, projects
by themselves are not very useful. Projects are the basic containers of the issues we
want this application to manage. As managing project issues is the main purpose
of this application, we want to spend the next iteration adding some basic issue
management functionality.

Iteration planning
We already have the ability to create and list projects, but these projects are not yet
able to contain anything. At the end of this iteration, we want the application to
expose all CRUD operations on the project issues or tasks (we tend to use the terms
issue and task interchangeably, but in our data model, a task will actually be just one
type of issue). We also want to restrict all CRUD operations on issues to be within
the context of a specific Project. That is, issues belong to projects. The user must have
selected an existing project to work within prior to being able to perform any CRUD
operations on the project issues.

Iteration 3: Adding tasks

[94]

In order to achieve the preceding outlined goals, we need to identify all the granular
items that we will work on within this iteration. The following list outlines these items:

•	 Design the database schema, and build the objects to support project issues
•	 Create the Yii model classes that allow the application to easily interact with

the database table(s) that we created
•	 Create the controller class that will house the functionality to allow us to:

	° Create new issues
	° Fetch a list of existing issues within a project from the

database
	° Update/edit existing issues
	° Delete existing issues

•	 Create views to render user interfaces for these (preceding) actions

This is enough information to allow us to get started. After we run our tests, we'll get
started on making the necessary database changes.

Running the test suite
It is always a good idea to run our existing test suite prior to diving into
development. Our test suite grew a little with the previous iteration's work. We now
have tests for our db connection as well as all CRUD operations for projects. Once
again, we'll run them all at once. Navigate to the test folder, /protected/tests/
unit, and run all unit tests:

%phpunit unit/

PHPUnit 3.3.17 by Sebastian Bergmann.

.....

Time: 0 seconds

OK (5 tests, 11 assertions)

Everything passes. Let's start making some changes.

Chapter 6

[95]

Designing the schema
Back in Chapter 3,The TrackStar Application we proposed some initial ideas about
the issue entity. We proposed it have a type, an owner, a requester, a status, and a
description. We also mentioned when we created the tbl_project table that we
would be adding basic audit history information to each table we create to track the
dates, times and users who update tables. Nothing has changed in the requirements
that would alter this approach, so we can move ahead with that initial proposal.
However, types, owners, requesters, and statuses are themselves, their own entities.
To keep our model flexible and extensible, we'll model some of these separately.
Owners and requesters are both users of the system, and will be referenced to the
rows in a table called tbl_user. We have already introduced the idea of a user in the
tbl_project table, as we added the columns create_user_id and update_user_id
to track the identification of the user who initially created the project, as well as, the
user who was responsible for last updating the project details. Even though we have
not formally introduced that table yet, these fields were modeled to be foreign keys
to another table in the database for storing the user data table. The owner_id and
requestor_id in the our tbl_issue table will also be foreign keys that relate back
to the tbl_user table.

We could similarly model the type and status attributes in the same manner.
However, until our requirements demand this extra complexity in the model, we can
keep things simple. The type and status columns in the tbl_issue table will remain
integer values that map to named types and statuses. Instead of complicating our
model by using separate tables, we will model these as basic class constant (const)
values within the AR model class we create for the issue entity. Don't worry if all of
this is a little fuzzy, it will make more sense in the coming sections.

Defining some relationships
As we are going to be introduced to the tbl_user table, we need to go back and
define the relationship between users and projects. Back when we introduced the
TrackStar application in Chapter 3, we specified that users (we called them project
members) would be associated with one or more projects. We also mentioned
that projects can also have many (zero or more) users. As projects can have many
users, and users can be associated with many projects, we call this a many-to-many
relationship between projects and users. The easiest way to model a many-to-many
relationship in a relational database is to use an association or assignment table. So,
we need to add this table to our model as well.

Iteration 3: Adding tasks

[96]

The following figure outlines a basic entity relationship we need to model among
users, projects, and issues. Projects can have zero to many users. A user needs to
be associated with at least one project, but can also be associated with many. Issues
belong to one and only one project, while projects can have zero to many issues.
Finally, an issue is assigned to (or requested by) a single user.

Building the database and the relationships
So, we need to create three new tables: tbl_issue, tbl_user, and our association
table, tbl_project_user_assignment. For your convenience we have provided
the basic Data Definition Language (DDL) statements for the tables as well as their
relationships. We also provided a little seed data for the users table, so we have a
couple of rows populated for immediate use because basic user management is not a
part of this iteration. Please proceed as you have done in previous iterations to create
the following tables and relationships. The exact syntax of the following statements
assumes a MySQL database:

 CREATE TABLE IF NOT EXISTS 'tbl_issue'
 (
 'id' INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 'name' varchar(256) NOT NULL,
 'description' varchar(2000),
 'project_id' INTEGER,
 'type_id' INTEGER,
 'status_id' INTEGER,
 'owner_id' INTEGER,
 'requester_id' INTEGER,
 'create_time' DATETIME,
 'create_user_id' INTEGER,
 'update_time' DATETIME,
 'update_user_id' INTEGER
) ENGINE = InnoDB
;

Chapter 6

[97]

CREATE TABLE IF NOT EXISTS 'tbl_user'
(
 'id' INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 'email' Varchar(256) NOT NULL,
 'username' Varchar(256),
 'password' Varchar(256),
 'last_login_time' Datetime,
 'create_time' DATETIME,
 'create_user_id' INTEGER,
 'update_time' DATETIME,
 'update_user_id' INTEGER
) ENGINE = InnoDB
;

CREATE TABLE IF NOT EXISTS 'tbl_project_user_assignment'
(
 'project_id' Int(11) NOT NULL,
 'user_id' Int(11) NOT NULL,
 'create_time' DATETIME,
 'create_user_id' INTEGER,
 'update_time' DATETIME,
 'update_user_id' INTEGER,
 PRIMARY KEY ('project_id','user_id')
) ENGINE = InnoDB
;

-- The Relationships
ALTER TABLE 'tbl_issue' ADD CONSTRAINT 'FK_issue_project' FOREIGN KEY
('project_id') REFERENCES 'tbl_project' ('id') ON DELETE CASCADE ON
UPDATE RESTRICT;

ALTER TABLE 'tbl_issue' ADD CONSTRAINT 'FK_issue_owner' FOREIGN KEY
('owner_id') REFERENCES 'tbl_user' ('id') ON DELETE CASCADE ON UPDATE
RESTRICT;

ALTER TABLE 'tbl_issue' ADD CONSTRAINT 'FK_issue_requester' FOREIGN
KEY ('requester_id') REFERENCES 'tbl_user' ('id') ON DELETE CASCADE ON
UPDATE RESTRICT;

ALTER TABLE 'tbl_project_user_assignment' ADD CONSTRAINT 'FK_project_
user' FOREIGN KEY ('project_id') REFERENCES 'tbl_project' ('id') ON
DELETE CASCADE ON UPDATE RESTRICT;

ALTER TABLE 'tbl_project_user_assignment' ADD CONSTRAINT 'FK_user_
project' FOREIGN KEY ('user_id') REFERENCES 'tbl_user' ('id') ON
DELETE CASCADE ON UPDATE RESTRICT;

-- Insert some seed data so we can just begin using the database
INSERT INTO 'tbl_user'
 ('email', 'username', 'password')
VALUES
 ('test1@notanaddress.com','Test_User_One', MD5('test1')),
 ('test2@notanaddress.com','Test_User_Two', MD5('test2'))
;

Iteration 3: Adding tasks

[98]

Creating the Active Record model
classes
Now that we have these tables created, we need to create the Yii AR model classes to
allow us to easily interact with these tables within the application. We did this when
creating the Project.php model class in Chapter 5, Iteration 2: Project CRUD using
the Gii code generation tool. We'll remind you of the steps again here, but spare you
of all the screenshots. Please refer back to Chapter 5 for a more detailed walkthrough
of using the Gii tool.

Creating the Issue model class
Navigate to the Gii tool via http://localhost/trackstar/index.php?r=gii,
and choose the Model Generator link. Leave the table prefix as tbl_. Fill in the Table
Name field as tbl_issue, which will auto-populate the Model Class field as Issue.

Once the form is filled out, click the Preview button to get a link to a popup that
will show you all of the code about to be generated. Then click the Generate button
to actually create the new Issue.php model class in the /protected/models/ folder.
The full listing of the generated code is as follows:

<?php

/**
 * This is the model class for table "tbl_issue".
 */
class Issue extends CActiveRecord
{
 /**
 * The followings are the available columns in table 'tbl_issue':
 * @var integer $id
 * @var string $name
 * @var string $description
 * @var integer $project_id
 * @var integer $type_id
 * @var integer $status_id
 * @var integer $owner_id
 * @var integer $requester_id
 * @var string $create_time
 * @var integer $create_user_id
 * @var string $update_time
 * @var integer $update_user_id
 */

 /**
 * Returns the static model of the specified AR class.
 * @return Issue the static model class

http://localhost/trackstar/index.php?r=gii

Chapter 6

[99]

 */
 public static function model($className=__CLASS__)
 {
 return parent::model($className);
 }

 /**
 * @return string the associated database table name
 */
 public function tableName()
 {
 return 'tbl_issue';
 }

 /**
 * @return array validation rules for model attributes.
 */
 public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('name', 'required'),
 array('project_id, type_id, status_id, owner_id, requester_id,
create_user_id, update_user_id', 'numerical', 'integerOnly'=>true),
 array('name', 'length', 'max'=>256),
 array('description', 'length', 'max'=>2000),
 array('create_time, update_time', 'safe'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, name, description, project_id, type_id, status_id,
owner_id, requester_id, create_time, create_user_id, update_time,
update_user_id', 'safe', 'on'=>'search'),
);
 }

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),
 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),
);
 }

 /**
 * @return array customized attribute labels (name=>label)

Iteration 3: Adding tasks

[100]

 */
 public function attributeLabels()
 {
 return array(
 'id' => 'ID',
 'name' => 'Name',
 'description' => 'Description',
 'project_id' => 'Project',
 'type_id' => 'Type',
 'status_id' => 'Status',
 'owner_id' => 'Owner',
 'requester_id' => 'Requester',
 'create_time' => 'Create Time',
 'create_user_id' => 'Create User',
 'update_time' => 'Update Time',
 'update_user_id' => 'Update User',
);
 }

 /**
 * Retrieves a list of models based on the current search/filter
conditions.
 * @return CActiveDataProvider the data provider that can return the
models based on the search/filter conditions.
 */
 public function search()
 {
 // Warning: Please modify the following code to remove attributes
that
 // should not be searched.

 $criteria=new CDbCriteria;

 $criteria->compare('id',$this->id);

 $criteria->compare('name',$this->name,true);

 $criteria->compare('description',$this->description,true);

 $criteria->compare('project_id',$this->project_id);

 $criteria->compare('type_id',$this->type_id);

 $criteria->compare('status_id',$this->status_id);

 $criteria->compare('owner_id',$this->owner_id);

 $criteria->compare('requester_id',$this->requester_id);

 $criteria->compare('create_time',$this->create_time,true);

 $criteria->compare('create_user_id',$this->create_user_id);

 $criteria->compare('update_time',$this->update_time,true);

 $criteria->compare('update_user_id',$this->update_user_id);

Chapter 6

[101]

 return new CActiveDataProvider(get_class($this), array(
 'criteria'=>$criteria,
));
 }
}

Creating the User model class
This is probably getting to be old-hat for you at this point, so we are going to leave
the creation of the User AR class as an exercise for you. This particular class becomes
much more important in the next chapter, when we dive into user authentication
and authorization.

What about the AR class for the tbl_project_user_assignment
table?
Although one could create an AR class for this table, it is not necessary.
The AR model provides an Object Relational Mapping (ORM) layer to
our application to help us work easily with our domain objects. However,
ProjectUserAssignment is not a domain object of our application. It is
simply a construct in a relational database to help us model and manage
the many-to-many relationship between projects and users. Maintaining
a separate AR class to handle the management of this table is extra
complexity, and we can avoid this for the time being. We will avoid the
additional maintenance and slight performance overhead by managing the
inserts, updates, and deletes on this table using Yii's DAO directly.

Creating the Issue CRUD operations
Now that we have our AR classes in place, we can turn to building the functionality
required to manage our project issues. As the CRUD operations on project issues are
the main goal of this iteration, we'll again lean on the Gii code generation tool to help
create the basics of this functionality. We did this in detail for the projects in Chapter 5.
We'll remind you of the basic steps for issues again here.

Iteration 3: Adding tasks

[102]

Navigate to the Gii generator menu at http://localhost/trackstar/index.
php?r=gii, and choose the Crud Generator link. Fill out the form using Issue as
the value for the Model Class field. This will auto-populate the Controller ID to
also be Issue. The Base Controller Class and Code Template fields can remain their
predefined default values. Click the Preview button to get a list of all of the files that
the Gii tool is proposing to create. The following screenshot shows this list of files:

You can click each individual link to preview the code to be generated. Once
satisfied, click the Generate button to have all of these files created. You should
receive the following success message:

Using the Issue CRUD operations
Let's try this out. Either click the try it now link shown in the previous screenshot or
simply navigate to http://localhost/trackstar/index.php?r=issue. You should
be presented with something similar to what is shown in the following screenshot:

http://localhost/trackstar/index.php?r=gii
http://localhost/trackstar/index.php?r=issue
http://localhost/trackstar/index.php?r=issue

Chapter 6

[103]

Creating a new Issue
As we have not added any new issues as yet, there are none to list. So, let's create a
new one. Click on the Create Issue link (if this takes you to the login page, then log
in using either demo/demo or admin/admin), you should now see a new issue input
form similar to what is shown in the following screenshot:

Iteration 3: Adding tasks

[104]

When looking at this input form, we notice that it has an input field for every
column in the database table, just as it is defined in the database table. However,
as we know from when we designed our schema and built our tables, some of these
fields are not direct input fields, but rather represent relationships to other entities.
For example, rather than having a Type free-form input text field on this form, we
should use a drop-down input form field that is populated with choices of allowed
issue types. A similar argument could be made for the Status field. The Owner and
Requester fields should also be drop-downs exposing choices of the names of users
who have been assigned to work on the project under which the issue resides. Also
all issue management should be taking place within the context of a specific project.
Therefore, the Project field should not even be a part of this form at all. Lastly, the
Create Time, Create User, Update Time, and Update User fields are all values that
should be calculated and determined once the form is submitted, and should not be
available to the user to directly manipulate.

Okay, so we have identified a number of corrections we would like to make on this
initial input form. As we mentioned in Chapter 5, the auto-created CRUD scaffolding
code that is generated by the Gii tool is just the starting point. Rarely is it enough
on its own to meet all the specific functionality needs of an application. We have
certainly identified many changes we need to make to this issue creation process.
We'll take them on, one at a time.

Adding the types drop-down menu
We'll start with adding a dropdown menu for the issue types.

Issues have just the following three types:

•	 Bugs
•	 Features
•	 Tasks

What we would like to see when creating a new issue is a drop-down menu input
type form field with these three choices. We will achieve this by having the Issue
model class itself provide a list of its available types. As you might have guessed,
we'll add this new functionality to the Issue model AR class by first writing a test.

As you remember, back in Chapter 5, we added a new database to run our tests
against called trackstar_test. We did this to ensure our testing environment
would not have an adverse impact on our development environment. So please
make sure that you have updated your test database with the new tables, tbl_issue
and tbl_user, which we created earlier.

Chapter 6

[105]

Getting the test in the "Red"
As we know, the first step in our TDD process is to quickly write a test that fails.
Create a new unit test file protected/tests/unit/IssueTest.php and add to
it the following:

public function testGetTypes()
{
 $options = Issue::model()->typeOptions;
 $this->assertTrue(is_array($options));
}

Now toggle to the command line and run the test from with the
/protected/tests folder

phpunit unit/IssueTest.php

PHPUnit 3.3.17 by Sebastian Bergmann.

.E

Time: 0 seconds

There was 1 error:

1) testGetTypes(IssueTest)

CException: Property "Issue.typeOptions" is not defined.

/YiiRoot/framework/base/CComponent.php:131

/YiiRoot/yii-read-only/framework/db/ar/CActiveRecord.php:107

/Webroot/tasctrak/protected/tests/unit/IssueTest.php:6

FAILURES!

Tests: 1, Assertions: 0, Errors: 1.

Okay, so we have accomplished the first step in TDD (that is, quickly writing
a test that fails). The test fails for obvious reasons. There is no method
Issue::typeOptions() in the model class. We need to add one.

Moving From "Red" To "Green"
Now open the AR model class, in the protected/models/Issue.php folder, and
add the following method to the class:

/**
 * @return array issue type names indexed by type IDs
 */
public function getTypeOptions()
{
 return array();
}

Iteration 3: Adding tasks

[106]

We have added a simple method, named appropriately, that returns an array type
(albeit still empty at the moment).

Now if we run our test again:

phpunit unit/IssueTest.php

PHPUnit 3.3.17 by Sebastian Bergmann.

..

Time: 0 seconds

OK (1 tests, 1 assertion)

It should be noted that Yii Framework base classes make use of
the PHP __get magic function. This allows us in our child classes
to write methods such as getTypeOptions(), and yet reference
those methods like class properties using >typeOptions syntax.

So now our test will pass, and we are in the "green". This is great, but we don't
actually have any values returned yet. We certainly can't add our drop-down menu
based on this empty array. For our basic three issue types, we are going to use class
constants to map these to integer values, and then we will use our getTypeOptions()
method to return user friendly descriptions to be used in the drop-down menu.

Moving Back To "Red"
Before adding this to the Issue class, let's get our test to fail again. Let's add one
more assertion that interrogates the returned array and verifies that its contents
are as expected. We'll test to ensure that the returned array has three elements,
and that these values correspond to our issue types: Bug, Feature, and Task. Alter
the test to be:

public function testGetTypes()
{
 $options = Issue::model()->typeOptions;
 $this->assertTrue(is_array($options));
 $this->assertTrue(3 == count($options));
$this->assertTrue(in_array('Bug', $options));
 $this->assertTrue(in_array('Feature', $options));
 $this->assertTrue(in_array('Task', $options));
}

As the getTypeOptions() method still returns a blank array, our assertions are sure
to fail. So, we are back in the red. Let's add the code to the Issue.php class to get
these new assertions to pass.

Chapter 6

[107]

Getting back to "Green" once again
At the top of the Issue class, add the following three constant definitions:

const TYPE_BUG=0;
const TYPE_FEATURE=1;
const TYPE_TASK=2;

Then, alter the Issue::getTypeOptions() method to return an array based on
these defined constants:

public function getTypeOptions()
{
 return array(
 self::TYPE_BUG=>'Bug',
 self::TYPE_FEATURE=>'Feature',
 self::TYPE_TASK=>'Task',
);
}

Now if we run our tests again, all five of our assertions pass, and we are back in
the green.

phpunit unit/IssueTest.php

PHPUnit 3.3.17 by Sebastian Bergmann.

..

Time: 0 seconds

OK (1 tests, 5 assertions)

We now have our model class returning our issue types as needed, but we don't yet
have a drop-down field in the input form that takes advantage of these values. Let's
add that now.

Adding the issue type dropdown
Open up the file containing the new issue creation form, protected/views/issue/_
form.php, and find the lines that correspond to the Type field on the form:

<div class="row">
 <?php echo $form->labelEx($model,'type_id'); ?>
 <?php echo $form->textField($model,'type_id'); ?>
 <?php echo $form->error($model,'type_id'); ?>
</div>

Iteration 3: Adding tasks

[108]

These lines need a little clarification. In order to understand this, we need to refer to
some code at the top of the _form.php file which is as follows:

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'issue-form',
 'enableAjaxValidation'=>false,
)); ?>

This is defining the $form variable using the CActiveForm widget in Yii. Widgets are
going to be covered in much more detail in Chapter 9. For now, we can comprehend
this code by better understanding CActiveForm. It can be thought of as a helper class
that provides a set of methods to help us to create a data entry form that is associated
with a data model class. In this case, it is represented by the Issue model class.

To fully understand the variables in our view file, let's also review our controller
code that is rendering the view file(s). As you recall, one way to pass data from the
controller to the view is by explicitly declaring an array, the keys of which will be the
names of available variables in the view files. As this is the create action for a new
issue, the controller method rendering the form is IssueController::actionCre
ate(). This method is listed as follows:

public function actionCreate()
 {
 $model=new Issue;

 // Uncomment the following line if AJAX validation is needed
 // $this->performAjaxValidation($model);

 if(isset($_POST['Issue']))
 {
 $model->attributes=$_POST['Issue'];
 if($model->save())
 $this->redirect(array('view','id'=>$model->id));
 }

 $this->render('create',array(
 'model'=>$model,
));

 }

Here, we see that when the view is being rendered, it is being passed an instance
of the Issue model class, that will be available in a variable called $model.

Chapter 6

[109]

Okay, so now let's go back to the code that is responsible for rendering the Type field
on the create new issue entry form. The first line is:

$form->labelEx($model,'type_id');

This line is using the CActiveForm::labelEx() method to render an HTML label for
a the Issue model attribute, type_id. It takes in an instance of the model class, and the
corresponding model attribute for which we want a label generated. The model class'
Issue::attributeLabels() method will be used to determine the label. If we take
a look at this method, we see that the attribute type_id is mapped to a label of Type,
which is exactly what we see rendered as the label to this form field

public function attributeLabels()
 {
 return array(
 'id' => 'ID',
 'name' => 'Name',
 'description' => 'Description',
 'project_id' => 'Project',
 'type_id' => 'Type',
 'status_id' => 'Status',
 'owner_id' => 'Owner',
 'requester_id' => 'Requester',
 'create_time' => 'Create Time',
 'create_user_id' => 'Create User',
 'update_time' => 'Update Time',
 'update_user_id' => 'Update User',
);
 }

The next line of code is as follows:

<?php echo $form->textField($model,'type_id'); ?>

It uses the CActiveForm::textField() method to render a text input field for our
Issue model attribute, type_id. Any of the validation rules defined for type_id in
the model class Issue::rules() method will be applied as form validation rules to
this input form.

The final line of code is as follows:

<?php echo $form->error($model,'type_id'); ?>

It uses the CActiveForm::error() method to render any validation errors associated
with the specific type_id attribute of the Issue model class on submission. Used in this
way, the error message will display directly below the field.

Iteration 3: Adding tasks

[110]

You can try out this validation with the Type field. As the type_id column is
defined as an integer type in our MySQL schema definition, the Gii generated
Issue model class has a validation rule in the Issue::rules() method to
enforce this constraint:

 public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('name', 'required'),
 array('project_id, type_id, status_id, owner_id, requester_id,
create_user_id, update_user_id', 'numerical', 'integerOnly'=>true),

So, if we attempt to submit a string value in our Type form field, we will receive an
inline error, right under the field, as depicted in the following screenshot:

Now that we understand exactly what we have , we are in a better position to
change it. What we need to do is change this field from a free-form text input field
to a drop-down entry type. It probably comes as little surprise that the CActiveForm
class has a dropDownList() method that will generate a drop-down list for a model
attribute. So, let's replace the line that calls $form->textField, with the following:

<?php echo $form->dropDownList($model,'type_id', $model-
>getTypeOptions()); ?>

This still takes in the same model as the first argument and the model attribute as the
second. The third argument specifies the list of drop-down choices. This should be an
array of value=>display pairs. We already created our getTypeOptions() method
in the Issue model class to return an array of this format, so we can use it directly.
Save your work and look again at our issue input form. You should see a nice drop-
down menu of issue type choices in place of the free-form text field, as displayed in
the following screenshot:

Chapter 6

[111]

Adding the status drop-down menu: Do it
yourself
We are going to take the same approach for the issue status. As mentioned back in
Chapter 3 when we introduced the application, issues can be in one of three statuses:

•	 Not yet started
•	 Started
•	 Finished

We are going to leave the implementation of the status dropdown to the reader.
After following the same approach we took for the types (and we hope you take a
test-first approach), and both the Type and Status form field should be dropdown
lists. The form should look similar to what is shown in the following screenshot:

Iteration 3: Adding tasks

[112]

Fixing the owner and requester fields
Another problem that we previously noticed with the issue creation form is that
the Owner and Requester fields were also free-form input text fields. However, we
know these are integer values in the issue table that hold foreign key identifiers to
the tbl_user table. So, we also need to add drop-down fields for these fields. We
won't take the exact same approach we took for the Type and Status attributes, as
issue owners and requesters need to be taken from the tbl_user table. To complicate
things a bit further, because not every user in the system will be associated with the
project under which the issue resides, these cannot be dropdowns populated with
data taken from the entire tbl_user table. We need to restrict the list to just those
users associated with this project.

This brings up another thing we need to address. As mentioned in the Iteration
planning section, we need to manage our issues within the context of a specific
project. That is, a specific project should be chosen before you are even able to view
the form for creating a new issue. Currently, our application functionality does not
enforce this workflow.

Let's address these issues in turn. First we will alter the application to enforce a valid
project that should be identified first, prior to using any functionality to manage the
issues associated with that project. Once a project is chosen, we'll make sure both
our Owner and Requester dropdown choices are restricted to only users that are
associated with that project.

Enforcing a project context
We want to ensure a valid project context is present before we allow any issue-related
functionality. To do this, we are going to implement what is called a filter. A filter in
Yii is bit of code that is configured to be executed either before or after a controller
action is executed. One common example is if we want to ensure a user is logged in
prior to executing a controller action method, then we could write a simple access filter
that would check this requirement before the action is executed. Another example is
if we want to perform some extra logging or other auditing logic after an action has
executed. We could write a simple audit filter to provide this post-action processing.

In this case, we want to ensure a valid project has been chosen prior to creating
a new issue. So, we'll add a project filter to our IssueController class to
accomplish this.

Chapter 6

[113]

Implementing a filter
A filter can be defined as a controller class method or it can be a separate class. When
using the simple method approach, the method name must begin with word filter
and have a specific signature. For example, if we were going to create a filter
method called SomeMethodName, our full filter method would look like:

public function filterSomeMethodName($filterChain)
{
...
}

The other approach is to write a separate class to perform the filter logic. When using
the separate class approach, the class must extend CFilter and then override at least
one of the preFilter() or postFilter() methods depending on whether the logic
should be executed before the action is invoked, or after.

Adding a filter
So, let's add a filter to our IssueController class to handle the valid project.
We'll take the simplest approach for now, and add a method that begins with
the word filter directly to the class. As the invocation of this method is done
by the Yii Framework itself, it is hard for us to take a test-first approach with this
implementation. We'll break from our preferred approach a little bit in this case,
and add this method to the IssueCcontroller without first writing a test.

Open up protected/controllers/IssueController.php and add the following
method to the bottom of the class:

public function filterProjectContext($filterChain)
{
 $filterChain->run();
}

Okay, we now have a filter defined, but it does not do much yet. It simply executes
$filterChain->run(), which continues the filtering process and allows execution
of the action methods that are being filtered by this method. This brings up another
point. How do we define for which action methods we should use this filter?

Iteration 3: Adding tasks

[114]

Specifying the filtered actions
CController, the Yii Framework base class for our controller classes has a
filters() method that needs to be overridden in order to specify the actions
on which to apply filters. In fact, this method has already been overridden in
our IssueController class. This was done for us when we used the Gii tool to
autogenerate this class. It already added a simple accessControl filter, which is
defined in the CController base class, to handle some basic authorization to ensure
that the user has sufficient permission to perform certain actions. We'll be covering
user authentication and authorization in the next chapter. For now, we just need to
add to this filter configuration array. To specify that our new filter should apply to
the create action, alter the IssueController::filters() method by adding the
following highlighted code :

/**
 * @return array action filters
 */
public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD operations
 'projectContext + create', //check to ensure valid project context
);
}

The filters() method should return an array of filter configurations. The previous
method returns a configuration that specifies that the projectContext filter, which
is defined as a method within the class, should apply to the actionCreate()
method. The configuration syntax allows for '+' and '-' symbols to be used to specify
whether or not a filter should or apply. For example, if we decided that we wanted
this filter to apply to all the actions except the actionUpdate() and actionView()
action methods, we could specify:

return array(
 'projectContext - update, view' ,
);

You should not specify both the plus and the minus operator at the same time. Only
one should be used for any given filter configuration. The plus operator means 'Only
apply the filter to the following actions'. The minus operators means 'Apply the filter
to all actions except the following'. If neither the '+' nor the '-' is in the configuration,
the filter will be applied to all actions.

Chapter 6

[115]

At the moment, we'll keep this restricted to just the create action. So, as defined
previously with the + create configuration, our filter method will be called when
any user attempts to create a new issue.

Adding some filter logic
Okay, so now we have a filter defined and we have configured it to be called upon
every attempted actionCreate() method call within the Issuecontroller class.
However, it still does not perform the needed logic. As we want to ensure the project
context before the action is attempted, we need to put the logic in the filter method
before the call to $filterChain->run().

We'll add a project property to the controller class itself. We'll then use a
querystring parameter in our URLs to indicate the project identifier. Our
pre-action filter will check to see if the existing project attribute is null. If so,
it will use the querystring parameter to attempt to select the project based on
the Primary Key identifier. If successful, the action will execute, and if it fails an
exception will be thrown. Here is the code that is required in the IssueController
class to perform all of this:

class IssueController extends CController
{

 /**
 * @var private property containing the associated Project model
instance.
 */
 private $_project = null;

 /**
 * Protected method to load the associated Project model class
 * @project_id the primary identifier of the associated Project
 * @return object the Project data model based on the primary key
 */
 protected function loadProject($project_id) {
 //if the project property is null, create it based on input id
 if($this->_project===null)
 {
 $this->_project=Project::model()->findbyPk($project_id);
 if($this->_project===null)
 {
 throw new CHttpException(404,'The requested project does not
exist.');
 }

Iteration 3: Adding tasks

[116]

 }

 return $this->_project;
 }

 /**
 * In-class defined filter method, configured for use in the above
filters() method
 * It is called before the actionCreate() action method is run in
order to ensure a proper project context
 */
 public function filterProjectContext($filterChain)
 {
 //set the project identifier based on either the GET or POST
input
 //request variables, since we allow both types for
our actions
 $projectId = null;
 if(isset($_GET['pid']))
 $projectId = $_GET['pid'];
 else
 if(isset($_POST['pid']))
 $projectId = $_POST['pid'];

 $this->loadProject($projectId);

 //complete the running of other filters and execute the
requested action
 $filterChain->run();
 }
 ...
}

With this in place, now attempt to create a new issue by clicking the Create Issue
link from the issue listing page at this URL, http://hostname/tasctrak/index.
php?r=issue/list

You should be met with an Error 404 error message which also displays the error
text we specified previously, The requested project does not exist.

This is good. It shows we have properly implemented the code to prevent a new
issue from being created when no project has been identified. The quickest way to
get past this error is to simply add a pid querystring parameter to the URL used
for creating new issues. Let's do that so we can supply the filter with a valid project
identifier, and proceed to the form to create a new issue.

http://hostname/tasctrak/index.php?r=issue/list
http://hostname/tasctrak/index.php?r=issue/list

Chapter 6

[117]

Adding the project ID
Back in Chapter 5, we added several new projects to the application as we were
testing and implementing the CRUD operations on Projects. So, it is likely that
you still have a valid project in your development database. If not, simply use the
application to create a new project again. Once complete, take note of the project ID
created, as we need to add this ID to the new issue URL.

The link we need to alter is in the view file for the issue listing page: /protected/
views/issue/index.php. At the top of that file you will see the create new link
specified in the menu as shown in the following highlighted code:

$this->menu=array(
 array('label'=>'Create Issue', 'url'=>array('create')),
 array('label'=>'Manage Issue', 'url'=>array('admin')),
);

To add a querystring parameter to this link, we simply append a name=>value
pair in the array defined for the url. The code we added for the filter is expecting
the querystring parameter to be pid (for project ID). Also, as we are using the first
(project ID = 1) project for this example, we alter the Create Issue link as follows:

array('label'=>'Create Issue', 'url'=>array('create', 'pid'=>1)),

Now when you view the issue listing page, you will see that the Create Issue
hyperlink opens a URL with a querystring parameter appended to the end:

http://localhost/trackstar/index.php?r=issue/create&pid=1

This querystring parameter allows the filter to properly set the project context. So,
this time when you click the link, rather than getting the 404 error, the create new
issue form will be displayed.

Altering the project details page
Adding the project ID to the URL for the create new issue link was a good first step
to ensure our filter was working as expected. However, now we have hard-coded the
link to always associate a new issue with the project ID '=' 1. Of course, this is not what
we want. What we want to do is to have the menu option for creating a new issue be
a part of the project details page. This way, once you have chosen a project from the
project listing page, the specific project context will be known, and we can dynamically
append that project ID to the create new issue link. Let's make that change.

http://localhosthostname/trackstarasctrak/index.php?r=issue/create&pid=1
http://localhosthostname/trackstarasctrak/index.php?r=issue/create&pid=1

Iteration 3: Adding tasks

[118]

Open up the project details view, /protected/views/project/view.php. At the
top of this file, you will notice the menu items contained within the $this->menu
array. We need to add another create a new issue link to the end of this list of defined
menu links:

$this->menu=array(
 array('label'=>'List Project', 'url'=>array('index')),
 array('label'=>'Create Project', 'url'=>array('create')),
 array('label'=>'Update Project', 'url'=>array('update',
'id'=>$model->id)),
 array('label'=>'Delete Project', 'url'=>'#', 'linkOptions'=>array('s
ubmit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure you
want to delete this item?')),
 array('label'=>'Manage Project', 'url'=>array('admin')),
 array('label'=>'Create Issue', 'url'=>array('issue/create',
'pid'=>$model->id)),
);

What we have done is moved the menu option to create a new issue to the page that
lists the details for a specific project. We used a link similar to the one before, but this
time we had to specify the full controllerId/actionId pair (issue/create). Also,
rather than hardcode the project ID to be 1, we have used the $model variable within
the view file, which is the AR class for the specific project. This way, regardless of the
project we choose, this variable will always reflect the correct project id attribute for
that project.

Removing the project input form field
Now that we have the project context properly set when creating a new issue, we
can remove the Project field as a user input form field. However, we do still need
the project ID to be submitted with the form. As we know the project ID before we
render this input form, we can set the project model attribute in the create action.
This way, the $model instance that is passed to the view file will already have the
proper project ID set.

First, let's alter the IssueController::actionCreate() method to set the
project_id property of the Issue model instance just after it is created:

public function actionCreate()
{
 $model=new Issue;
 $model->project_id = $this->_project->id;
 ...
}

Chapter 6

[119]

Now the project_id property is set and will be available in the form file.

Open up the view file for the new issue form, /protected/views/issue/_form.
php. Remove the following lines that are associated with the Project input field:

<div class="row">
 <?php echo $form->labelEx($model,'project_id'); ?>
 <?php echo $form->textField($model,'project_id'); ?>
 <?php echo $form->error($model,'project_id'); ?>
</div>

Replace them with a hidden field:

<div class="row">
 <?php echo $form->hiddenField($model,'project_id'); ?>
</div>

Now when we submit the form, the project_id attribute will be correctly set. Even
though we don't have our Owner and Requester drop-down menu set yet, we can
submit the form and a new issue will be created with the proper project ID set.

Returning back to the owner and
requester dropdowns
Finally, we can turn back to what we set out to do, which is to change the Owner
and Requester fields to be dropdown choices of valid members of that project. In
order to do this properly, we need to associate some users with a project. As user
management is the focus of Chapter 7 and Chapter 8, we will do this quickly by
adding the association directly to the database via SQL. We already added two new
test users as part of our seed data in our earlier DDL statements. As a reminder, that
insert statement was as follows:

INSERT INTO 'tbl_user'
 ('email', 'username', 'password')
VALUES
 ('test1@notanaddress.com','Test_User_One', MD5('test1')),
 ('test2@notanaddress.com','Test_User_Two', MD5('test2'))
;

This created two new users in our system with ID's 1 and 2. Let's manually assign
these two users to Project #1.

Iteration 3: Adding tasks

[120]

To do so, run the following insert statement against your trackstar_dev and
trackstar_test databases:

INSERT INTO 'tbl_project_user_assignment' ('project_id', 'user_id')
VALUES (1,1), (1,2);

After running the preceding SQL, we have two valid members assigned to
Project #1.

One of the wonderful features of relational Active Record within Yii, is the ability
to access valid members of a project to which an issue belongs directly from the
issue $model instance itself. When we used the Gii tool to initially create our
issue model class, it was smart enough to look at the underlying database and
build in the relevant relationships. This can be seen in the relations() method
within /protected/models/Issue.php. As we created this class after adding the
appropriate relationships to the database, the method should look similar to this:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),
 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),
);
 }

As the NOTE suggests, you may have slightly different attributed names and may
want to adjust them as needed. This array configuration defines properties on the
model instance that are themselves other AR instances. With these relations in place,
we can access the related AR instances incredibly easily. For example, say we want to
access the Project model class to which an issue is associated. We can do so by using
the following syntax:

//create the model instance by primary key:
$model = Issue::model()->findbyPk(1);
//access the associated Project AR instance
$project = $model->project;

Chapter 6

[121]

Now, because we created our Project model class prior to having other tables and
relationships defined in our database, there are no relations defined yet. However,
now that we have some relationships defined, we need to add these to the
Project::relations() method. Open the Project AR class in /protected/models/
Project.php, and replace the entire relations() method with the following:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the
related
 // class name for the relations automatically generated below.
 return array(
 'issues' => array(self::HAS_MANY, 'Issue', 'project_id'),
 'users' => array(self::MANY_MANY, 'User', 'tbl_project_
user_assignment(project_id, user_id)'),
);
 }

With these in place, we can easily access all of the issues and/or users associated
with a project with incredibly easy syntax as follows:

//create the Project model instance by primary key:
$model = Project::model()->findbyPk(1);
//get an array of all associated Issue AR instances
$allIssues = $model->issues;
//get an array of all associated User AR instance
$allUsers = $model->users;
//get the User AR instance representing the owner of
//the first issue associated with this project
$ownerOfFirstIssue = $model->issues[0]->owner;

Normally we would have to write complicated SQL join statements to access such
related data. Using relational AR in Yii saves us from this complexity and tedium.
We can now access these relationships in a very elegant and concise object
oriented manner.

Iteration 3: Adding tasks

[122]

Generating the data to populate the
drop-down menu
Now, there are a couple of ways by which we could use this data to populate our
needed dropdowns for the Requester and Owner fields. We'll follow a similar
approach as we did for the Status and Type drop-down data, and place the logic
inside a model class. In this case, the Project AR class makes the most sense, as valid
users are associated with a project, and not with an issue.

As we are going to add a new public method to the Project AR class, we can once
again use our TDD approach. So, let's quickly write a test that fails.

Once again, remember that we have now setup a trackstar_test
database against which to test. If you are following along, please ensure
this database schema is in sync with the trackstar_dev database.

Open the /protected/tests/unit/ProjectTest.php file and add the
following test:

public function testGetUserOptions()
{
 $project = $this->projects('project1');
 $options = $project->userOptions;
 $this->assertTrue(is_array($options));
}

Now run the test.

 >>phpunit unit/ProjectTest.php

 PHPUnit 3.3.17 by Sebastian Bergmann.

 E

 Time: 0 seconds

 There was 1 error:

 1) ProjectTest::testGetUserOptions

 CException: Property "Project.userOptions" is not defined....

 FAILURES!

 Tests: 5, Assertions: 10, Errors: 1.

Chapter 6

[123]

Okay, we have a test that fails. It is failing for obvious reasons, as we are testing a
method in the Project AR class that does not yet exist. So let's add it. Open up the file
/protected/models/Project.php, and add the following method to the bottom of
the class:

/**
 * @return array of valid users for this project, indexed by user IDs
 */
public function getUserOptions()
{
 $usersArray = array();
 return $usersArray;
}

If we run our tests again, we see we are back in the "green". However, we only have
a method that returns an empty array. What we need is a valid user array that can be
used to populate the form dropdowns. Let's get our test back in the "red" by testing
to ensure the count of the returned array is > 0.

Alter the test method to be:

public function testGetUserOptions()
{
 $project = $this->projects('project1');
 $options = $project->userOptions;
 $this->assertTrue(is_array($options));
 $this->assertTrue(count($options) > 0);
}

Running the test again should now result in the following error:

There was 1 failure:

1) ProjectTest::testGetUserOptions

Failed asserting that <boolean:false> is true.

So, let's toggle back to the Project::getUserOptions() method and return some
actual users. Alter that method to be:

public function getUserOptions()

{

 $usersArray = CHtml::listData($this->users, 'id', 'username');

 return $usersArray;

}}

Iteration 3: Adding tasks

[124]

Here we are using Yii's CHtml helper class to help us create an array of
id=>username pairs from each user associated with the project. Remember that the
users property in the Project class maps to an array of User AR instances. The
CHtml::listData() method can take in this list and product a valid array suitable for
CActiveForm::dropDownList(). Now, as long as we remember to populate our test
database with our two users and associate them with Project #1, our tests will pass.

Adding User and ProjectUserAssignment
fixtures
Our tests are now passing, but only because we explicitly added users, and we also
explicitly added the related entries to the project association table. What happens
if someone comes along and removes these entries? We need to fix this fragile
relationship. We already know that test fixtures are exactly what we need to
ensure that our tests involving database data can be repeatedly run in a consistent
manner. We did this before for our project data. We need to do it again for data
related to both the tbl_user and tbl_project_user_assignment tables.

Create a new file, /protected/tests/fixtures/tbl_user.php, and add to it
the following:

 <?php

return array(
 'user1'=>array(
 'email' => 'test1@notanaddress.com',
 'username' => 'Test_User_One',
 'password' => MD5('test1'),
 'last_login_time' => '',
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
 'user2'=>array(
 'email' => 'test2@notanaddress.com',
 'username' => 'Test_User_Two',
 'password' => MD5('test2'),
 'last_login_time' => '',
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
);

Chapter 6

[125]

This is the same data we added manually via explicit SQL earlier, but here it is
represented as fixture data.

We need to do the same for our association table. Create another new file,
/protected/tests/fixtures/tbl_project_user_assignment.php and
add the following content:

<?php

return array(
 'user1ToProject1'=>array(
 'project_id' => 1,
 'user_id' => 1,
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
 'user2ToProject1'=>array(
 'project_id' => 1,
 'user_id' => 2,
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),
);

This is also the same data as we added to the tbl_project_user_assignment table
manually, but represented as fixture data.

Now we need to add the fixture to the unit test. Open up the ProjectTest file,
/protected/tests/unit/ProjectTest.php, and add it to the fixtures definition
at the top of that file with the following highlighted code:

public $fixtures=array(
 'projects'=>'Project',
 'users'=>'User',
 'projUsrAssign'=>':tbl_project_user_assignment',
);

Notice that we had to add the : when mapping to the tbl_project_user_
assignment table. This is needed to indicate that this is a database table, and
not an AR model class.

Iteration 3: Adding tasks

[126]

Now that this has been added, each time we run the ProjectTest.php unit test, our
tbl_user and tbl_project_user_assignment tables will be reset to a consistent
state using the data defined in the corresponding fixture data files.

Now let us run our project-related tests again:

>> unit/ProjectTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

.....

Time: 0 seconds

OK (5 tests, 12 assertions)

We still have passing tests, but now they are using this new fixture data.

Now that we have our getUserOptions() method working as expected, we need
to implement the dropdown to display that returned data. We already added a
private $_project attribute to our IssueController class. This attribute contains
the valid project context. We need to access this same project attribute in our
view file that displays the input form. So, we need to add a simple getter method
to expose this private attribute. Add the following method to the bottom of the
IssueController class:

/**
 * Returns the project model instance to which this issue belongs
 */
public function getProject()
{
 return $this->_project;
}

Now, open up the view file containing the input form elements, /protected/views/
issue/_form.php, and find where the two text field input forms element definitions
for owner_id and requester_id.

Replace

<?php //echo $form->textField($model,'owner_id'); ?>

with this:

<?php echo $form->dropDownList($model,'owner_id', $this->getProject()-
>getUserOptions()); ?>

Chapter 6

[127]

Also replace this line:

<?php echo $form->textField($model,'requester_id'); ?>

with this:

<?php echo $form->dropDownList($model,'requester_id', $this-
>getProject()->getUserOptions()); ?>

Now if we view our issue creation form again, we see two nicely populated
dropdown fields for the Owner and Requester.

Making one last change
As we already have the Create Issue form view file open, let's quickly make one
last change. The creation time and user as well as the last updated time and user
fields that we have on every table for basic history and auditing purposes should
not be exposed to the user. Later, we will alter the application logic to automatically
populate these fields upon inserts and updates. For now, let's just remove them as
inputs on the form.

Just completely remove the following lines from /protected/views/issue
/_form.php:

<div class="row">
 <?php echo $form->labelEx($model,'create_time'); ?>
 <?php echo $form->textField($model,'create_time'); ?>
 <?php echo $form->error($model,'create_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'create_user_id'); ?>
 <?php echo $form->textField($model,'create_user_id'); ?>
 <?php echo $form->error($model,'create_user_id'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_time'); ?>
 <?php echo $form->textField($model,'update_time'); ?>
 <?php echo $form->error($model,'update_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_user_id'); ?>
 <?php echo $form->textField($model,'update_user_id'); ?>
 <?php echo $form->error($model,'update_user_id'); ?>
 </div>

Iteration 3: Adding tasks

[128]

The following screenshot shows what our new issue creation form now looks like
with all of these changes:

Finishing the rest of the CRUD
The goal of this iteration is to implement all the CRUD operations for issues. We
have finalized the create functionality, but we still need to complete the read, update
and delete of issues. Luckily, most of the foundation has already been laid by using
the Gii CRUD generation functionality. However, as we want to manage issues all
within the context of a project, we need to make some adjustments to how you access
this functionality.

Chapter 6

[129]

Listing the issues
Even though there is the actionIndex() method in the IssueController class that
displays a list of all issues in the database, we don't have a need for this functionality
as it is currently coded. Rather than a separate standalone page that lists all the issues
in the database, we want to only list the issues that are associated with a specific
project. So, we'll alter the application to display the listing of issues as part of the
project details page. As we are taking advantage of the relational AR model in Yii,
it will be a snap to make this change.

Altering the ProjectController
First, let's alter the actionView() method in the ProjectController class. As
we want to display a list of the issues associated with a specific project, we can do
this on the same page as the project details page. The method actionView() is the
method that displays the project details.

Alter that method to be:

/**
 * Displays a particular model.
 */
 public function actionView()
 {
 $issueDataProvider=new CActiveDataProvider('Issue', array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this->loadModel()->id),
),
 'pagination'=>array(
 'pageSize'=>1,
),
));

 $this->render('view',array(
 'model'=>$this->loadModel(),
 'issueDataProvider'=>$issueDataProvider,
));
 }

Iteration 3: Adding tasks

[130]

Here we are using the CActiveDataProvider framework class to provide data in
terms of ActiveRecord objects. It will use the associated AR model class to retrieve
data from the database in a manner that can be used very easily with the Zii widget
CListView to display items in a list rendered in a manner specified in a view file. We
have used the criteria property to specify the condition that it should only retrieve
issues associated with the project being displayed. We also used the pagination
property to limit the issue list to just one issue per page. We set this very low so
we can quickly demonstrate the paging features by just adding two issues. We'll
demonstrate this soon.

The last thing we did was add this data provider to the array defined in the
render() to make it available to the view file in a $issueDataProvider variable.

Altering the project view file
We'll use the Zii widget CListView to display our list of issues on the project details
page. Open up /protected/views/project/view.php, and add this to the bottom
of that file:

<h1>Project Issues</h1>

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$issueDataProvider,
 'itemView'=>'/issue/_view',
)); ?>

Here we are setting the dataProvider property of CListView to be our issue data
provider we created above. And then we are configuring it to use the protected/
views/issue/_view.php file as a template for rendering each item in the data
provider. This file was already created for us by the Gii tool when we generated our
CRUD for issues. We are just using it here to display issues on the project details page.

We need to also make a couple of changes to the /protected/views/issue/_view.
php file that we specified as a layout template for each issue. Alter the entire contents
of that file to be the following:

<div class="view">

 <?php echo CHtml::encode($data->getAttributeLabel('name'));
?>:
 <?php echo CHtml::link(CHtml::encode($data->name), array('issue/
view', 'id'=>$data->id)); ?>

Chapter 6

[131]

 <?php echo CHtml::encode($data->getAttributeLabel('descripti
on')); ?>:
 <?php echo CHtml::encode($data->description); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('type_
id')); ?>:
 <?php echo CHtml::encode($data->type_id); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('status_
id')); ?:
 <?php echo CHtml::encode($data->status_id); ?>

</div>

Now if we save and view our results by looking at the project details page for
Project # 1 (http://localhost/tasctrak/index.php?r=project/view&id=1),
and assuming you have created a couple of test issues under that project, you
should see a page like the one in the following screen:

Iteration 3: Adding tasks

[132]

As we set the pagination property of our data provider very low (remember
we set it to just 1), we can add one more issue to demonstrate the built-in paging
functionality. Adding one more issue changes the display of issues to have links that
allow us to go from page to page within our Project Issues listing, as depicted in the
following screenshot:

Making some final tweaks
We now have a list of our issues associated with a project that are displayed from
within the project details page. We also have the ability to view the details of an
issue "R"ead, as well as links to "U"pdate and "D"elete issues. So, for the most part
our CRUD operations are in place.

However, there are still a few items that need to be addressed before we can close
out this iteration. One thing we notice is that the issues display list is showing
numeric ID numbers for the Type, Status, Owner and Requester fields. We should
change this so that the text values for those are displayed instead. Also, as issues are
under a specific project already, it is a bit redundant to have the project ID displayed
as part of the issue list data. So, we can remove that. Finally, we need to address
some of the navigational links that are displayed on the various other issue related
forms to ensure we are always returning to this project details page as the starting
place for all of our issue management.

We'll tackle these one at a time.

Getting the status and type text to display
Previously we added public methods to the Issue AR class to retrieve the Status
and Type options to populate our dropdowns on the issue creation form. We need
to add similar methods on this AR class to return the text for the specific identifier
for display on our issues listing.

Chapter 6

[133]

As these will be public methods on the issue AR class, we should implement it
using our TDD approach. To speed things up a bit, we'll do both of these at the
same time. Also, as we get a hang of TDD a little bit, we'll start to take bigger steps.
We can always return to a more granular approach.

First we need to add some fixture data to ensure we have a couple of issues
associated with a project. We also need to make sure our issue tests are using the
project fixture data as well as issues belong to projects.

First, add a new fixtures data file for issues, /protected/tests/fixtures/tbl_
issue.php and add to it the following content:

<?php

return array(

 'issueBug'=>array(

 'name' => 'Test Bug 1',

 'description' => 'This is test bug for project 1',

 'project_id' => 1,

 'type_id' => 0,

 'status_id' => 1,

 'owner_id' => 1,

 'requester_id' => 2,

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

 'issueFeature'=>array(

 'name' => 'Test Bug 2',

 'description' => 'This is test bug for project 2',

 'project_id' => 2,

 'type_id' => 1,

 'status_id' => 0,

 'owner_id' => 2,

 'requester_id' => 1,

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

);

Iteration 3: Adding tasks

[134]

Now we need to configure our IssueTest class to use some fixture data. Add the
following fixtures array at the top of the issue test class:

public $fixtures=array(
 'projects'=>'Project',
 'issues'=>'Issue',
);

With our fixture data in place, we can add two new tests to the IssueTest unit test
class for testing the status and type text:

 public function testGetStatusText()
 {
 $this->assertTrue('Started' == $this->issues('issueBug')-
>getStatusText());
 }
And also this test:
public function testGetTypeText()
 {
 $this->assertTrue('Bug' == $this->issues('issueBug')-
>getTypeText());
 }

Now if we run the test, we should get a failure due to the fact that we have not yet
added these public methods to our AR class:

>>phpunit unit/IssueTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

..EE

Time: 2 seconds, Memory: 12.25Mb

There were 2 errors:

1) IssueTest::testGetStatusText

Exception: Unknown method 'issues' for class 'IssueTest'.

…

2) IssueTest::testGetTypeText

Exception: Unknown method 'issues' for class 'IssueTest'.

…

FAILURES!

Tests: 4, Assertions: 10, Errors: 2.

Chapter 6

[135]

So, we've got our failing test, let's add the necessary code to our /protected/
models/Issue.php file to get them to pass. Add the following two new public
methods to the Issue class to retrieve the status and type text for the current issue:

 /**

 * @return string the status text display for the current issue

 */

 public function getStatusText()

 {

 $statusOptions=$this->statusOptions;

 return isset($statusOptions[$this->status_id]) ?
$statusOptions[$this->status_id] : "unknown status ({$this->status_
id})";

 }

 /**

 * @return string the type text display for the current issue

 */

 public function getTypeText()

 {

 $typeOptions=$this->typeOptions;

 return isset($typeOptions[$this->type_id]) ? $typeOptions[$this-
>type_id] : "unknown type ({$this->type_id})";

 }

Now let's run our tests again:

>>phpunit unit/IssueTest.php

....

Time: 1 second, Memory: 12.25Mb

OK (4 tests, 12 assertions)

We have both tests passing and back in the 'green'.

Iteration 3: Adding tasks

[136]

Adding the text display to the form
Now we have our two new public methods that will return the valid status and
type text for our listing to display, we need to make use of them. Alter the following
lines of code in /protected/views/issue/_view.php:

Change the following command:

<?php echo CHtml::encode($data->type_id); ?>

to:

<?php echo CHtml::encode($data->getTypeText()); ?>

and change this command:

<?php echo CHtml::encode($data->status_id); ?>

to this:

<?php echo CHtml::encode($data->getStatusText()); ?>

After these changes, our Issues listing page, http://localhost/trackstar/index.
php?r=issue no longer displays integer values for our issue Type and Status fields.
It now looks like what is displayed in the following screenshot:

As we are using the same view file to display our Issues listing on our project
detail pages, these changes are reflected there as well.

Chapter 6

[137]

Changing the issue detail view
We also need to make these and a few other changes to the detailed view
of the Issue. Currently, if we view the Issue details, it should look like the
following screenshot:

This is using a view file we have not altered at all as of yet. It is still displaying
the project ID, which we don't need to display, as well as the type and status
as integer values, rather than their associated text values. Opening the view file
used to render this display, /protected/views/issue/view.php, we notice that
it is using the Zii extension widget, CDetailView, which we have not seen before.
This is similar to the CListView widget used to display the listing, but is used to
display the details of a single data model instance (or associative array), rather
than for displaying a list view of many. The relevant code from this file showing
the use of this widget is as follows:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 'project_id',
 'type_id',
 'status_id',
 'owner_id',
 'requester_id',

Iteration 3: Adding tasks

[138]

 'create_time',
 'create_user_id',
 'update_time',
 'update_user_id',
),
)); ?>

Here we are setting the data model of the CDetailView widget to be the Issue
model class and then setting a list of attributes of the model to be displayed in
the rendered detail view. An attribute can be specified as a string in the format
of Name:Type:Label, of which both Type and Label are optional, or as an array
itself. Here, just the name of the attributes are specified.

If we specify an attribute as an array, we can customize the display further by
declaring a value element. We will take this approach in order to specify the
model class methods getTypeText() and getStatusText() be used as the
values for the Type and Status fields respectively.

Let's change this use of CDetailView to use the following configuration:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 array(
 'name'=>'type_id',
 'value'=>CHtml::encode($model->getTypeText())
),
 array(
 'name'=>'status_id',
 'value'=>CHtml::encode($model->getStatusText())
),
 'owner_id',
 'requester_id',
),
)); ?>

Here we have removed a few attributes from displaying at all. The project_id,
create_time, update_time, create_user_id, and update_user_id. We will
handle the population and display of some of these later, but for now we can just
remove them from the detail display.

Chapter 6

[139]

We also changed the declaration of the type_id and status_id attributes to use an
array specification so that we could use the value element. We have specified that
the corresponding Issue::getTypeText() and Issue::getStatusText() methods
be used for getting the values of these attributes. With these changes in place, the
Issue details page looks like the following:

Okay, we are getting much closer to what we want, but there are still a couple of
changes we need to make.

Getting the owner and requester names to
display
Things are looking better, but we still see integer identifiers displaying for the
owner and requester, rather than the actual user names. We'll take a similar
approach to what we did for the type and status text displays. We'll add two
new public methods on the Issue model class to return the names of these
two properties.

Using relational AR
As the issues and users are represented as separate database tables and related
through a foreign key relationship, we an actually access the owner and requester
username directly from $model in the view file. Utilizing the power of Yii's relational
AR model features, displaying the username attribute of the related User model class
instance is a snap.

Iteration 3: Adding tasks

[140]

As we have mentioned, the model class Issue::relations() method is where the
relationships are defined. If we take a peek at this method, we see the following:

/**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the
related
 // class name for the relations automatically generated below.
 return array(
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_
id'),
 'requester' => array(self::BELONGS_TO, 'User', 'requester_
id'),
);
 }

The highlighted code is what is most relevant for our needs. There are both owner
and requester attributes defined as relations to the User model class. These
definitions specify that the values of these attributes are User model class instances.
The owner_id and the requester_id specify the unique Primary key of their
respective User class instances. So, we can access these just as we do for other
attributes of the Issue model class.

So, to display the username of the owner and requester User class instances, we once
again change our CDetailView configuration to be:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 array(
 'name'=>'type_id',
 'value'=>CHtml::encode($model->getTypeText())
),
 array(
 'name'=>'status_id',
 'value'=>CHtml::encode($model->getStatusText())
),
 array(

Chapter 6

[141]

 'name'=>'owner_id',
 'value'=>CHtml::encode($model->owner->username)
),
 array(
 'name'=>'requester_id',
 'value'=>CHtml::encode($model->requester->username)
),
),
)); ?>

After making these changes, our Issues detail listing is starting to look pretty good.
The following figure shows the progress thus far:

Making some final navigation tweaks
We are very close to completing the functionality we set out to implement within this
iteration. The only thing left is to clean up our navigation just a little. You may have
noticed that there are still some options available that allow the user to navigate to
an entire listing of issues, or to create a new issue, outside of a project context. For
the purposes of the TrackStar application, everything we do with issues should be
within the context of a specific project. Earlier, we enforced this project context for
creating a new issue (which is a good start), but we still need to make a few changes.

One thing that we notice is that the application still allows the user to navigate
to a listing of all issues, across all projects. For example, on an Issue detail page,
like http://localhost/trackstar/index.php?r=issue/view&id=1, we see in
the right column menu navigation there are the links List Issue and Manage
Issue, corresponding to http://localhost/trackstar/index.php?r=issue/
index and http://localhost/trackstar/index.php?r=issue/admin respectively
(remember that to access the admin page, you have to be logged in as admin/
admin). These still display all issues, across all projects. So, we need to limit this
list to a specific project.

http://localhost/trackstar/index.php?r=issue/view&id=1
http://localhost/trackstar/index.php?r=issue/index
http://localhost/trackstar/index.php?r=issue/index
http://localhost/trackstar/index.php?r=issue/admin

Iteration 3: Adding tasks

[142]

As these links originate from the Issue details page, and that specific issue has
an associated project, we can first alter the links to pass in a specific project ID,
and thehe uof that project ID as both the IssueController::actionIndex, and
IssueController::actionAdmin() methods.

First let's alter the links. Open up /protected/views/issue/view.php file
and locate the array of menu items at the top of the file. Change the menu
configuration to be:

$this->menu=array(
 array('label'=>'List Issue', 'url'=>array('index', 'pid'=>$model-
>project->id)),
 array('label'=>'Create Issue', 'url'=>array('create',
'pid'=>$model->project->id)),
 array('label'=>'Update Issue', 'url'=>array('update', 'id'=>$model-
>id)),
 array('label'=>'Delete Issue', 'url'=>'#', 'linkOptions'=>array('s
ubmit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure you
want to delete this item?')),
 array('label'=>'Manage Issue', 'url'=>array('admin', 'pid'=>$model-
>project->id)),
);

The changes made are highlighted. We have added a new querystring parameter to
the new Create Issue link, as well as to the Issue listing page and the issue admin
listing page. We already knew we had to make this change for the Create link, as we
have previously implemented a filter to enforce a valid project conssue. We won't
have to make any further changes relative to this link. But for the index and admin
links, we will need to alter their corresponding action methods to make use of this
new querystring variable.

As we have already configured a filter to load the associated project using the
querysting variable, let's take advantage of this. We'll need to change the filter
configuration so that our filter method is called prior to execution of both the
IssueController::actionIndex() and IssueController::actionAdmin()
methods. Change the filters method as shown:

public function filters()
 {
 return array(
 'accessControl', // perform access control for CRUD
operations
 'projectContext + create index admin', //perform a check to
ensure valid project context
);
 }

Chapter 6

[143]

With this in place, the associated project will be loaded and available for use. Let's
use it in our IssueController::actionIndex() method. Alter that method to be:

 public function actionIndex()
 {
$dataProvider=new CActiveDataProvider('Issue', array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this->_project->id),
),
));
 $this->render('index',array(
 'dataProvider'=>$dataProvider,
));
 }

Here, as we have done before, we are simply adding a condition to the creation of
the model data provider to only retrieve issues associated with the project. This will
limit the list of issues to just the ones under the project.

We need to make the same change to the admin listing page. However, this view
file, /protected/views/issue/admin.php is using the results of the model class
Issue::search() method to provide the listing of issues. So, we actually need to
make two changes to enforce the project context with this listing.

First, we need to alter the IssueController::actionAdmin() method to set the
correct project_id attribute on the model instance it is sending to the view. The
following highlighted code shows this change:

public function actionAdmin()
 {
 $model=new Issue('search');
 if(isset($_GET['Issue']))
 $model->attributes=$_GET['Issue'];

 $model->project_id = $this->_project->id;

 $this->render('admin',array(
 'model'=>$model,
));
 }

Iteration 3: Adding tasks

[144]

Then we need to add to our criteria in the Issue::search() model class method.
The following highlighted code identifies the change we need to make to this method:

public function search()
 {
 // Warning: Please modify the following code to remove
attributes that
 // should not be searched.

 $criteria=new CDbCriteria;

 $criteria->compare('id',$this->id);

 $criteria->compare('name',$this->name,true);

 $criteria->compare('description',$this->description,true);

 $criteria->compare('type_id',$this->type_id);

 $criteria->compare('status_id',$this->status_id);

 $criteria->compare('owner_id',$this->owner_id);

 $criteria->compare('requester_id',$this->requester_id);

 $criteria->compare('create_time',$this->create_time,true);

 $criteria->compare('create_user_id',$this->create_user_id);

 $criteria->compare('update_time',$this->update_time,true);

 $criteria->compare('update_user_id',$this->update_user_id);

 $criteria->condition='project_id=:projectID';

 $criteria->params=array(':projectID'=>$this->project_id);

 return new CActiveDataProvider(get_class($this), array(
 'criteria'=>$criteria,
));
 }

With these changes in place, the issues listed on the admin page are now restricted to
be only those associated with the specific project.

Chapter 6

[145]

There are several places throughout the view files under /protected/
views/issues/ that contain links that require a pid querystring
to be added in order to work properly. We leave it as an exercise to the
reader to make the appropriate changes following the same approach
as provided in these examples. As we proceed with our application's
development, we'll assume all links to create a new issue or to display
a list of issues are properly formatted to contain the appropriate pid
querystring parameter.

Summary
We were able to cover a lot of different topics in this iteration. Based on the
relationship between issues, projects, and users within our application, the
implementation of our issue management functionality was significantly more
complicated than our project entity management we worked on in the previous
iteration. Fortunately, Yii was able to come to our rescue many times to alleviate
the pain of having to write all of the code needed to address this complexity.

Specifically, we covered:

•	 Using the Gii code generator tool for Active Record model creation as well
as for the initial implementation of all basic CRUD operations against the
Issue entity

•	 Designing and building database tables with explicit relationships
•	 Using relational Active Record
•	 Adding drop-down menu input type form elements
•	 Controller filters

We have made a lot of progress on our basic application thus far, and have done so
without having to write a lot of code. The Yii Framework itself has done most of the
heavy lifting. We now have a working application that allows us to manage projects
and also manage issues within those projects. This is the heart of what our application
is trying to achieve. We should feel proud of the accomplishments thus far.

However, we still have a long way to go before this application is truly ready for
production use. A major missing piece is all of the needed functionality around
user management. This is going to be the focus of the next two iterations.

Iteration 4: User Management
and Authentication

We have made a lot of progress in a short amount of time. The basic functionality
foundations for our TrackStar application have been laid. We now have the ability
to manage projects and issues within projects, and this is the primary purpose of
this application. Of course, there is still much left to do.

Back in Chapter 3, when we were introducing this application, we described it as
a user-based application that allows for the creation of user accounts, and grants
access to the application features once a user has been authenticated and authorized.
In order for this application to be useful to more than one person we need to add
the ability to manage users within projects. This is going to be the focus of the next
two iterations.

Iteration planning
When we used the yiic command line tool to initially create our TrackStar
application, we noticed that basic login functionality was automatically created
for us. The login page allows for two username/password credential combinations,
demo/demo and admin/admin. You may recall that we had to log in to the
application in order to perform some of our CRUD operations on our project
and issue entities.

This basic authentication skeleton code does provide a good start, but we need
to make a few changes in order to support any number of users. We also need
to add user CRUD functionality to the application to allow us to manage these
multiple users. This iteration is going to focus on extending the authentication
model to use the User table and add the needed functionality to allow for basic
user data management.

Iteration 4: User Management and Authentication

[148]

In order to achieve the above outlined goals, we should identify all the more
granular items we will work on within this iteration. The following list identifies
these items:

•	 Create the controller classes that will house the functionality to allow us to:
	° Create new users
	° Fetch a list of existing users from the database
	° Update/edit existing users
	° Delete existing users

•	 Create the view files and presentation tier logic that will:
	° Display the form to allow for new project creation
	° Display a listing of all the existing projects
	° Display the form to allow for a user to edit an existing project
	° Add a delete button to the project listing to allow for

project deletion

•	 Make adjustments to the create new user form so that it can be used by
external users as a self-registration process

•	 Alter the authentication process to use the database to validate the
login credentials

Running the test suite
It's always best to run our test suite before we start adding new functionality. With
each iteration, as we add to our application functionality, we add to our test suite.
As our test suite grows, so does our application's ability to provide us feedback on
its general health. Making sure everything is still working as expected will boost our
confidence as we begin making changes. From the tests folder, /protected/tests/,
run all unit tests as once:

% phpunit unit/

PHPUnit 3.4.12 by Sebastian Bergmann.

..........

Time: 0 seconds

OK (10 tests, 26 assertions)

Everything looks good, so let's dive in to this iteration.

Chapter 7

[149]

Creating our User CRUD
As we are building a user-based web application, we must have the means to add
and manage users. We added a tbl_user table to our database model in Chapter 6.
You may recall that we left it as an exercise for the reader to create the associated AR
model class. If you are following along and did not create the needed user model
class, you will need to do so now.

As a brief reminder on using the Gii code creation tool to create the model
class. Navigate to the Gii tool via http://localhost/trackstar/
index.php?r=gii and choose the Model Generator link. Leave the
table prefix as tbl. Fill in the Table Name field as tbl_user, which will
auto-populate the Model Class name field as User.
Once the form is filled out, click the Preview button to get a link to a
popup that will show you all of the code about to be generated. Then click
the Generate button to actually create the new User.php model class file
in the /protected/models/ directory

With the User AR class in place, creating the CRUD scaffolding is a snap. As we have
done previously, we will once again we lean on the Gii code generation tool for this.
As a reminder, here are the necessary steps:

1. Navigate to the tool via http://localhost/trackstar/index.php?r=gii.
2. Choose the Crud Generator link from the list of available generators.
3. Type in User for the Model Class name field. The corresponding Controller

ID will auto-populate with user.
4. You will then be presented with options to preview each file prior to

generating. When satisfied, click the Generate button, which will generate
all of the associated CRUD files in their proper locations.

With this in place, we can view our user listing page at http://localhost/
trackstar/index.php?r=user. In the previous iteration, we manually created a
couple of users in our system, so that we could properly handle the relationships
between projects, issues and users. So, we should see a couple of users listed on
this page.

Iteration 4: User Management and Authentication

[150]

The following screenshot shows how this page is displaying for us:

We can also view the new Create User form by visiting http://localhost/
tasctrak/index.php?r=user/create. If you are not currently logged in, you will
be routed to the login page before being able to view the form. So you might have to
log in using demo/demo or admin/admin to view this form.

Having created and used our CRUD operation functionality first on our project
entity, and then again with Issues, we are very familiar at this point with how these
features are initially implemented by the Gii code generation tool. The input forms
provided for creating and updating are a great start, but often need some adjusting
to meet the specific application requirements. The form generated for creating a new
user is no exception. It has an input form field for every single column that has been
defined in the tbl_user table. We don't want to expose all of these fields for user
input. The columns for last login time, creation time and user, and update time and
user should all be set programmatically after the form is submitted.

Updating our common audit history columns
Back in Chapters 5 and 6, when we introduced our Project and Issue CRUD
functionality, we also noticed that our forms had more input fields than they should.
As we have defined all of our database tables to have the same creation and update
time and user columns, every one of our auto-created input forms has these fields
exposed. We completely ignored these fields when dealing with the project creation
form back in Chapter 5. Then, with the new issue creation form in Chapter 6, we
removed the fields from in the form, but we never added the logic to properly set
these values when a new row is added.

Chapter 7

[151]

Let's take a minute to add this logic. As all of our entity tables—tbl_project,
tbl_issue, and tbl_user—have the same columns defined, we will add the
required logic to a common base class and then have each of the individual AR
classes extend from this new base class.

As you might have guessed, we'll write a test first before we start adding in the needed
application code. We already have a test in place ProjectTest::testCreate(), in
tests/unit/ProjectTest.php, for testing the creation of a new project. We'll alter
this existing test method to test our new process of updating our common audit
history columns.

The first thing we need to change in our ProjectTest::testCreate() method is
to remove the explicit setting of these columns when we call the setAttributes()
method for the newly created project:

$newProject->setAttributes(array(
 'name' => $newProjectName,
 'description' => 'This is a test for new project creation',
 // - remove - 'createTime' => '2009-09-09 00:00:00',
 // - remove - 'createUser' => '1',
 // - remove - 'updateTime' => '2009-09-09 00:00:00',
 // - remove - 'updateUser' => '1',
));

Now we need to add in the explicit setting of the user ID and remove the false
parameter sent when saving the Active Record, as we now want the validation to be
triggered. The reason we want to trigger the AR validation is because we are going
to tap into the validation workflow in order to update these fields. The code below
shows the entire method with the new changes highlighted:

public function testCreate()
 {
 //CREATE a new Project
 $newProject=new Project;
 $newProjectName = 'Test Project Creation';
 $newProject->setAttributes(array(
 'name' => $newProjectName,
 'description' => 'This is a test for new project creation',
));

 //set the application user id to the first user in our users
fixture data
 Yii::app()->user->setId($this->users('user1')->id);
 //save the new project, triggering attribute validation
 $this->assertTrue($newProject->save());

Iteration 4: User Management and Authentication

[152]

 //READ back the newly created Project to ensure the creation
worked
 $retrievedProject=Project::model()->findByPk($newProject->id);
 $this->assertTrue($retrievedProject instanceof Project);
 $this->assertEquals($newProjectName,$retrievedProject->name);

 //ensure the user associated with creating the new project is
the same as the applicaiton user we set
 //when saving the project
 $this->assertEquals(Yii::app()->user->id, $retrievedProject-
>create_user_id);
 }

The new assertion added is testing that the create_user_id column of the Project
was properly updated with the current application's user ID. This should be enough
to confirm that our approach is working. If you now run this test from the command
line, you should see the test fail, which is what we expect. The test fails because we
have yet to add in the logic required to set this field.

Now let's get this test to pass. We are going to create a new class to house the logic
needed to update our common audit history fields. This class is going to be a base
class from which all our application AR classes can extend. The reason we are
creating this new class, rather than just adding the logic directly to our Project
model class, is because our other model classes, Issue and User, also need this logic.
Rather than duplicate the code in every AR model class, this approach will allow us
to properly set these fields for every AR model class in just one place. We will also
make this new class abstract, as it should not be instantiated directly.

We need to manually create a new file, protected/models/
TrackStarActiveRecord.php, and add the following code::

<?php
abstract class TrackStarActiveRecord extends CActiveRecord
{
 /**
 * Prepares create_time, create_user_id, update_time and update_user_
id attributes before performing validation.
 */
 protected function beforeValidate()
 {
 if($this->isNewRecord)
 {
 // set the create date, last updated date and the user doing the
creating
 $this->create_time=$this->update_time=new
CDbExpression('NOW()');

Chapter 7

[153]

 $this->create_user_id=$this->update_user_id=Yii::app()-
>user->id;
 }
 else
 {
 //not a new record, so just set the last updated time and last
updated user id
 $this->update_time=new CDbExpression('NOW()');
 $this->update_user_id=Yii::app()->user->id;
 }

 return parent::beforeValidate();
 }
}

Here we are overriding the CActiveRecord::beforeValidate() method. This is
one of the many events that CActiveRecord exposes to allow customization of its
process workflow. As a quick reminder, if you do not explicitly send false as a
parameter when calling the save() method on an AR class, the validation process
will be triggered. This process performs the validations as specified in the rules()
method within the AR class. There are two methods exposed that allow us to tap in
to the validation workflow and perform any necessary logic either right before or
right after the validation is performed: beforeValidate() and afterValidate().
In this case, we have decided to explicitly set our audit history fields just prior to
performing the validation.

You probably noticed the use of CDbExpression in the previous code to set the
timestamp for both the creation and update time. Starting from version 1.0.2 of Yii,
an attribute can be assigned a value of CDbExpression type before the record is
saved. That database expression will then be executed to provide the value for the
attribute during the saving process.

Using NOW() in the previous code is specific to MySQL. This may
not work if you are following along using a different database.
You can always take a different approach for setting this value. For
example, using the PHP time function and formatting it appropriately
for the column's data type: $this->createTime=$this-
>updateTime=date('Y-m-d H:i:s', time());

We determine whether or not we are dealing with a new record (that is, an insert) or
an existing record (that is, an update) and set our fields appropriately. We then make
sure to invoke the parent implementation by returning parent::beforeValidate()
to ensure it has a chance to do everything it needs to do.

http://www.yiiframework.com/doc/api/CDbExpression

Iteration 4: User Management and Authentication

[154]

To try this out, we now need to alter each of the three existing AR classes—Project.
php, User.php, and Issue.php—to extend from this new abstract class rather than
directly from CActiveRecord. So, for example, rather than the following:

class Project extends CActiveRecord
{

We need to change it to:

class Project extends TrackStarActiveRecord
{

And similarly for our other model classes. Once you have done this for the Project
model AR class, rerun the tests to ensure they pass.

With this now in place, we can remove these fields from each of the forms for
creating new projects, issues, and users (we already removed them from the issues
form in the previous iteration). The HTML for these form fields are defined in
protected/views/project/_form.php, protected/views/issue/_form.php,
and protected/views/user/_form.php respectively. The lines we need to remove
from each of these files are the following:

 <div class="row">
 <?php echo $form->labelEx($model,'create_time'); ?>
 <?php echo $form->textField($model,'create_time'); ?>
 <?php echo $form->error($model,'create_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'create_user_id'); ?>
 <?php echo $form->textField($model,'create_user_id'); ?>
 <?php echo $form->error($model,'create_user_id'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_time'); ?>
 <?php echo $form->textField($model,'update_time'); ?>
 <?php echo $form->error($model,'update_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_user_id'); ?>
 <?php echo $form->textField($model,'update_user_id'); ?>
 <?php echo $form->error($model,'update_user_id'); ?>
 </div>

Chapter 7

[155]

And from the user creation form, protected/views/user/_form.php, we can also
remove the last login time field:

<div class="row">
 <?php echo $form->labelEx($model,'last_login_time'); ?>
 <?php echo $form->textField($model,'last_login_time'); ?>
 <?php echo $form->error($model,'last_login_time'); ?>
</div>

As we are removing these from being form inputs, we should also remove the
validation rules defined for these fields in the associated rules method. These
validation rules are defined to ensure the data submitted by the user is correctly
formatted. As these fields are not going to be filled in by the user, we can remove
the rules.

In the User::rules() method, the two rules we should remove are:

array('create_user_id, update_user_id', 'numerical',
'integerOnly'=>true),
array('last_login_time, create_time, update_time', 'safe'),

The Project and Issue AR classes have similar rules defined, but not identical.
When removing those rules, be sure to leave in the rules that do still apply to
the user input fields.

The removal of the rule for the last_login_time attribute above
was intentional. We should prevent this from being shown as a user
input field as well. This field needs to be updated automatically upon a
successful login. As we had the view file open and were removing the
other fields, we decided to remove this one now as well. However, we
will wait to add the necessary application logic until after we make a
few other changes and cover a few other topics.

Actually, while we still have our hands in this validation rules method for the User
class, we should make another change. We want to ensure that the e-mail, as well as
the username, for every user is unique. We should validate this requirement when
the form is submitted. We can add these two rules by adding the following line of
code to this rules() method:

array('email, username', 'unique'),

Iteration 4: User Management and Authentication

[156]

The entire User::rules() method should now look like the following:

public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('email', 'required'),
array('email, username, password', 'length', 'max'=>256),
array('email, username', 'unique'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, email, username, password, last_login_time,
create_time, create_user_id, update_time, update_user_id', 'safe',
'on'=>'search'),
);
 }

The unique declaration in the previous rule is an alias that refers to the Yii's built-
in validator, CUniqueValidator. This validates the uniqueness of the model class
attribute against the underlying database table. With the addition of this validation
rule, we will receive an error when attempting to enter either an e-mail and/or
username that has already been entered. When we first created our tbl_user table
in Chapter 6, we added two test users, so we would have some data to play with. The
first of these two users has an e-mail address of test1@notanaddress.com. Try to add
another user using the same e-mail address. The following screenshot shows the error
message received and the highlighting of the field in error after such an attempt:

Chapter 7

[157]

Adding a password confirmation field
We should add a new field to force the user to confirm the password they entered.
This is a standard practice on new user registration forms and helps the user avoid
making a mistake when entering this important piece of information. Fortunately,
Yii comes with another built-in validator, CCompareValidator, which does exactly
what you think it might do. It compares the values of two attributes, and returns an
error if they are not equal.

In order to take advantage of this built-in validation, we need to add a new
attribute to our model class. Add the following attribute to the top of the User
model AR class:

public $password_repeat;

We named this attribute by appending _repeat to the name of the attribute we
want to compare against. The compare validator will allow you to specify any
two attributes to compare, or compare an attribute to a constant value. If no
comparison attribute or value is specified when declaring the compare rule,
it will default to looking for an attribute beginning with the same name as the
one being compared with the addition of _repeat appended to the end. This is
why we named the attribute in this manner. Now we can add a simple validation
rule to the User::rules() method as follows:

array('password', 'compare'),

We want to mark all of the fields on the form as being required. Currently, our
required rule is being applied to the e-mail field only. While we are making changes
to this User::rules() method, let's add username and password to this list as well:

array('email, username, password', 'required'),

As we have explicitly added the $password_repeat attribute to the User AR class,
and it is not a column in the underlying database table, we need to also tell the
model class to allow this field to be set in a bulk manner when the setAttributes()
method is called. We do this by explicitly adding our new attribute to the safe
attributes list for our User model class. To do this, add the following to the
User::rules() array:

array('password_repeat', 'safe'),

To explain this in a little more detail. When our form is submitted back to the
UserController::actionCreate() method, it uses the following code to set
the User model class attributes in a bulk manner:

$model->attributes=$_POST['User'];

Iteration 4: User Management and Authentication

[158]

What happens here is that for every key in the $_POST['User'] array that matches
the name of a safe attribute in the $model class, that class attribute's value is set to the
corresponding value in the array. By default, for a CActiveRecord model class, all
underlying database columns, except the Primary Key, are considered safe. As our
new $password_repeat is not a column of tbl_user, we need to explicitly add it
to this list of safe attributes.

We still need to add this password confirmation field to the form, so let's do
that now.

To add this new field to the HTML form, open up protected/views/user/_form.
php, and add the following code block below the password field:

<div class="row">
 <?php echo $form->label($model,'password_repeat'); ?>
 <?php echo $form->passwordField($model,'password_repeat',array('si
ze'=>60,'maxlength'=>256)); ?>
 <?php echo $form->error($model,'password_repeat'); ?>
</div>

With all of these form changes in place, the create new user form should look as
depicted in the following screen:

Now, if we attempt to submit the form with different values in the Password
and Password Repeat fields, we will be met with an error as shown in the
following screenshot:

Chapter 7

[159]

Adding password encryption
One last change we should make before we leave the new user creation process is
to encrypt the password before we store it. It is the least we can do, from a security
standpoint, to perform a one-way encryption algorithm on sensitive user information
before we add it to persistent storage. We will add this logic to the User.php AR
class by taking advantage of another one of CActiveRecord's methods that allow
us to customize the default active record workflow. This time we'll override the
afterValidate() method and apply a simple MD5 encryption to the password
before we save the record.

Open the User AR class and add the following to the bottom of the class:

/**
 * perform one-way encryption on the password before we store it in
the database
 */
 protected function afterValidate()
 {
 parent::afterValidate();
 $this->password = $this->encrypt($this->password);
 }
 public function encrypt($value)
 {
 return md5($value);
 }

Iteration 4: User Management and Authentication

[160]

With this in place, it will encrypt the password using a simple one-way MD5
encryption just after all of the other attribute validations are performed.

This approach works fine for brand new records, but for updates, it runs the risk of
encrypting an already encrypted value. We could handle this a number of ways, but
to keep things simple for now, we will need to ensure we ask the user to supply a
valid password every time they desire to update their user data.

We now have the ability to add new users to our application. As we initially created
this form using the Gii tool's Crud Generator command, we also have read, update,
and delete functionality for users. Try it out by adding some new users, viewing a
list of those users, updating their information, and then deleting a few of the entries
to ensure everything is working as expected. Remember that you will need to be
logged in as admin, as opposed to demo, in order to perform the deletes.

Authenticating users using the database
As we know, a basic login form and user authentication process was created for us
simply by using the yiic command to create our new application. This authentication
scheme is very simple. It interrogates the input form username/password values,
and if they are either demo/demo or admin/admin, the authentication passes,
otherwise it fails. This is obviously not intended to be the long term solution, but
rather a foundation on which to build. We are going to build upon this by altering the
authentication process to use our user database table that we already have as part of
our model. But before we start changing the default implementation, let's take a closer
look at how Yii implements an authentication model.

Introducing the Yii authentication model
Central to the Yii authentication framework is an application component, called user,
which, in the most general case, is an object implementing the IWebUser interface.
The specific class used by our default implementation is the framework class,
CWebUser. This user component encapsulates all the identity information for the
current user of the application. This component was configured for us as part of the
auto-generated application code when we initially created our application using the
yiic tool. The configuration can be seen in the protected/config/main.php file,
under the components array element:

'user'=>array(
 // enable cookie-based authentication
 'allowAutoLogin'=>true,
),

Chapter 7

[161]

As it is configured as an application component, with the key 'user', we can access
it at any place throughout our application using Yii::app()->user.

We also notice that the class property, allowAutoLogin, is being set here as well.
This property is false by default, but setting it to true enables user information
to be stored in persistent browser cookies. This data is then used to automatically
authenticate the user upon subsequent visits. This is what will allow us to have a
Remember Me checkbox on the login form so that, if the user chooses, they can be
automatically logged in to the application upon subsequent visits to the site.

The Yii authentication framework defines a separate entity to house the actual
authentication logic. This is called an identity class, and in its most general form
is a class that implements the IUserIdentity interface. One of the primary roles
of this class is to encapsulate the authentication logic to easily allow for different
implementations. Depending on the application requirements, we may need to
validate a username and password against values stored in a database, or allow
users to log in with their OpenID credentials, or integrate with an existing LDAP
approach. Separating the logic that is specific to the authentication approach from
the rest of the application login process allows us to easily switch between such
implementations. The identity class provides this separation.

When we initially created our application, the identity class file protected/
components/UserIdentity.php was generated for us. It extends the Yii Framework
class, CUserIdentity, which is a base class for authentication implementations that
use a username and password. Let's take a closer look at the code that was generated
for this class:

<?php
/**
 * UserIdentity represents the data needed to identity a user.
 * It contains the authentication method that checks if the provided
 * data can identify the user.
 */
class UserIdentity extends CUserIdentity
{
 /**
 * Authenticates a user.
 * The example implementation makes sure if the username and
password
 * are both 'demo'.
 * In practical applications, this should be changed to authenticate
 * against some persistent user identity storage (e.g. database).
 * @return boolean whether authentication succeeds.
 */
 public function authenticate()

Iteration 4: User Management and Authentication

[162]

 {
 $users=array(
 // username => password
 'demo'=>'demo',
 'admin'=>'admin',
);
 if(!isset($users[$this->username]))
 $this->errorCode=self::ERROR_USERNAME_INVALID;
 else if($users[$this->username]!==$this->password)
 $this->errorCode=self::ERROR_PASSWORD_INVALID;
 else
 $this->errorCode=self::ERROR_NONE;
 return !$this->errorCode;
 }
}

The bulk of the work in defining an identity class is the implementation of the
authenticate() method. This is where we place the code that is specific to
the authentication approach. This implementation simply uses the hard-coded
username/password values of demo/demo and admin/admin. It checks these
values against the username and password class properties (properties defined in
the parent class, CUserIdentity) and if they don't match, it will set and return an
appropriate error code.

In order to better understand how these pieces fit into the entire end-to-end
authentication process, let's walk through the logic starting with the login
form. If we navigate to the login page: http://localhost/trackstar/index.
php?r=site/login, we see a simple form allowing the input of a username, a
password and an optional checkbox for the Remember Me Next Time functionality
that we discussed before. Submitting this form invokes the logic contained in the
SiteController::actionLogin() method. The following sequence diagram depicts
the class interaction that occurs during a successful login from the moment the form
is submitted.

Chapter 7

[163]

The process starts with setting the class attributes on the form model class,
LoginForm, to the form values submitted. The LoginForm->validate() method is
then called, which validates these attribute values based on the rules defined in the
rules() method. This method is defined as follows:

public function rules()
{
 return array(
 // username and password are required
 array('username, password', 'required'),
 // rememberMe needs to be a boolean
 array('rememberMe', 'boolean'),
 // password needs to be authenticated
 array('password', 'authenticate'),
);
}

The last of these rules stipulates that the password attribute be validated using
the custom method authenticate(), which is also defined in the LoginForm
class as follows:

/**
 * Authenticates the password.
 * This is the 'authenticate' validator as declared in rules().
 */
 public function authenticate($attribute,$params)
 {
 $this->_identity=new UserIdentity($this->username,$this-
>password);
 if(!$this->_identity->authenticate())
 $this->addError('password','Incorrect username or password.');
 }

Continuing to follow the sequence diagram, the password validation within
LoginForm calls the authenticate() method within the same class. This method
creates a new instance of the authentication identity class being used, in this case it
is /protected/components/UserIdentity.php, and then calls its authenticate()
method. This method, UserIdentity::authenticate() is as follows:

/**
 * Authenticates the password.
 * This is the 'authenticate' validator as declared in rules().
 */
public function authenticate($attribute,$params)
{
 if(!$this->hasErrors()) // we only want to authenticate when no

Iteration 4: User Management and Authentication

[164]

input errors
 {
 $identity=new UserIdentity($this->username,$this->password);
 $identity->authenticate();
 switch($identity->errorCode)
 {
 case UserIdentity::ERROR_NONE:
 $duration=$this->rememberMe ? 3600*24*30 : 0; // 30 days
 Yii::app()->user->login($identity,$duration);
 break;
 case UserIdentity::ERROR_USERNAME_INVALID:
 $this->addError('username','Username is incorrect.');
 break;
 default: // UserIdentity::ERROR_PASSWORD_INVALID
 $this->addError('password','Password is incorrect.');
 break;
 }
 }
}

This is implemented to use the username and password to perform its authentication.
In this implementation, as long as the username/password combination is either
demo/demo or admin/admin, this method will return true. As we are walking
through a successful login, the authentication succeeds and the login() method
on the user application component is called.

As mentioned, by default the web application is configured to use the Yii Framework
class, CWebuser as the user application component. Its login() method takes in an
identity class and an optional duration parameter used to set the time to live on the
browser cookie. In the above code, we see that this is set to 30 days if the Remember
Me checkbox was checked when the form was submitted. If you do not pass it a
duration, it is set to 0. A value of zero will result in no cookie being created.

The login method takes the information contained in the identity class and saves it in
persistent storage for the duration of the user session. By default, this storage is the
PHP session storage.

After all of this completes, the validate() method on LoginForm that was initially
called by our controller class returns true, which indicates a successful login. The
controller class then redirects to the URL value in Yii::app()->user->returnUrl.
You can set this on certain pages throughout the application if you want to ensure
the user be redirected back to their previous page, that is, wherever they were in the
application before they decided (or were forced) to log in. This value defaults to the
application entry URL.

Chapter 7

[165]

Changing the authenticate implementation
Now that we understand the entire authentication process, we can easily see
where we need to make the change to use our tbl_user table to validate the
username and password credentials supplied in the login form. We can simply
alter the authenticate() method in the user identity class to verify the existence
of a matching row with the supplied username and password values. Since, at the
moment, there is nothing else in our UserIdentity.php class except the authenticate
method, let's completely replace the contents of this file with the following code:

<?php
/**
 * UserIdentity represents the data needed to identity a user.
 * It contains the authentication method that checks if the provided
 * data can identify the user.
 */
class UserIdentity extends CUserIdentity
{
 private $_id;

 /**
 * Authenticates a user using the User data model.
 * @return boolean whether authentication succeeds.
 */
 public function authenticate()
 {
 $user=User::model()->findByAttributes(array('username'=>$this-
>username));
 if($user===null)
 {
 $this->errorCode=self::ERROR_USERNAME_INVALID;
 }
 else
 {
 if($user->password!==$user->encrypt($this->password))
 {
 $this->errorCode=self::ERROR_PASSWORD_INVALID;
 }
 else
 {
 $this->_id = $user->id;
 if(null===$user->last_login_time)
 {
 $lastLogin = time();
 }

Iteration 4: User Management and Authentication

[166]

 else
 {
 $lastLogin = strtotime($user->last_login_time);
 }
 $this->setState('lastLoginTime', $lastLogin); $this-
>errorCode=self::ERROR_NONE;
 }
 }
 return !$this->errorCode;
 }

 public function getId()
 {
 return $this->_id;
 }
}

There are a few things going on with this new code that should be pointed out. First, it
is now attempting to retrieve a row from the tbl_user table, by way of creating a new
User model AR class instance, where the username is the same as the UserIdentity
class attribute value (remember that this is set to be the value from the login form).
As we enforced the uniqueness of the username when creating a new user, this should
find at most one matching row. If it does not find a matching row, an error message is
sent to indicate that the username is incorrect. If a matching row is found, it compares
the passwords. As we are encrypting our passwords, it has to use the encryption
method, User::encrypt(), that we added to the User class previously. If these do
not match, it sets an error message to indicate an incorrect password.

If the authentication is successful, a couple other things happen before the method
returns. First, we have set a new attribute on the UserIdentity class for the user
ID. The default implementation in the parent class is to return the username for
the ID. As we are using a database, and have numeric Primary Keys as our unique
user identifier, we want to make sure this numeric ID is what is set and returned
throughout the application when the user ID is requested. That is, when the code:
Yii::app()->user->id is executed, we want to make sure that the unique ID
from the database is returned, not the username.

Extending application user attributes
The second thing happening here is the setting of an attribute on the user identity to
be the last login time returned from the database. The user application component,
CWebUser, derives its user attributes from the explicit ID and name attributes defined
in the identity class, and then from name=>value pairs set in array called the identity

Chapter 7

[167]

states. These are the extra user values that should be persisted throughout a user's
session. As an example of this, we are setting the attribute named lastLoginTime to
be the value of the last_login_time field in the database. This way, at any place in
the application, this attribute can be accessed via:

Yii::app()->user->lastLoginTime;

As the initial user rows go into the table with null values for the last login time,
there is a quick check for null so that we can store an appropriate time when the
user logs in for the very first time. We have also taken the time to format the date
for better readability.

The reason we take a different approach when storing the last login time versus the
ID is that id just happens to be an explicitly defined property on the CUserIdentity
class. So, other than name and id, all other user attributes that need to be persisted
throughout the session can be set in a similar manner.

When cookie-based authentication is enabled (by setting
CWebUser::allowAutoLogin to be true), these user identity
states will be stored in cookie. Therefore, you should not store
sensitive information (for example, password) in the same
manner as we have stored the user's last login time.

With these changes in place, you will now need to provide a correct username and
password combination for a user defined in the tbl_user table in the database.
Using demo/demo or admin/admin will, of course, no longer work. Give it a
try. You should be able to log in as any one of the users you created earlier in this
chapter. If you followed along and have the same user data as we do, the following
credentials should work:

Username: Test_User_One

Password: test1

Now that we have altered the login process to authenticate against the
database, we won't be able to access the delete functionality for any of
our project, issue or user entities. The reason for this is that there are
authorization checks in place to ensure that the user is an admin prior
to allowing access. Currently, none of our database users have been
configured to be admins. Don't worry, authorization is the focus of the next
iteration, so we will be able to access that functionality again soon.

Iteration 4: User Management and Authentication

[168]

Updating the user last login time
As we mentioned earlier in this chapter, we removed the last login time as an input
field on the user creation form, but we still need to add the logic to properly update
this field. As we are tracking the last login time in the tbl_user database table, we
need to update this field accordingly after a successful login. As the actual login
happens in the LoginForm::login() method in the form model class, let's update
this value there. Add the following highlighted line to the LoginForm::login()
method:

/**
 * Logs in the user using the given username and password in the
model.
 * @return boolean whether login is successful
 */
 public function login()
 {
 if($this->_identity===null)
 {
 $this->_identity=new UserIdentity($this->username,$this-
>password);
 $this->_identity->authenticate();
 }
 if($this->_identity->errorCode===UserIdentity::ERROR_NONE)
 {
 $duration=$this->rememberMe ? 3600*24*30 : 0; // 30 days
 Yii::app()->user->login($this->_identity,$duration);
 User::model()->updateByPk($this->_identity->id, array('last_
login_time'=>new CDbExpression('NOW()')));
 return true;
 }
 else
 return false;
 }

Here we are calling its updateByPk() method as an efficient approach to simply
update the User record, specifying the Primary Key as well as an array of
name=>value pairs for the columns we want to update.

Chapter 7

[169]

Displaying the last login time on the home
page
Now that we are updating the last login time in the db, and saving it to persistent
session storage when logging in, let's go ahead and display this time on our welcome
screen that a user sees after a successful login. This will also help make us feel better
because we know that all of this is working as expected.

Open up the default view file that is responsible for displaying our homepage:
protected/views/site/index.php. Add the following highlighted lines of code
just below the welcome statement:

<h1>Welcome to <i><?php echo CHtml::encode(Yii::app()->name); ?></i></
h1>

<?php if(!Yii::app()->user->isGuest):?>
<p>
 You last logged in on <?php echo date('l, F d, Y, g:i a',
Yii::app()->user->lastLoginTime); ?>.
</p>
<?php endif;?>

And as we are in there, let's go ahead and remove all of the other autogenerated
help text, which is everything below these lines we just added. Once you save your
changes and log in again, you should see something similar to the screenshot below,
which displays the welcome message following by a formatted time indicating your
last successful login:

Iteration 4: User Management and Authentication

[170]

Summary
This iteration was the first of two iterations focused on user management,
authentication and authorization. We created the ability to manage CRUD operations
for application users, making many adjustments to the new user creation process
along the way. We added a new base class for all of our Active Record classes, so
that we can easily manage our audit history table columns that are present on all of
our tables. We also updated our code to properly manage the user's last login time,
which we are storing in the database. In doing so, we learned about tapping into the
CActiveRecord validation workflow to allow for pre and post-validation processing.

We then focused on understanding the Yii authentication model in order to enhance
it to meet our application's requirements: that the user credentials be validated
against the values stored in the database.

Now that we have covered authentication, we can turn focus to second part of Yii's
auth-and-auth framework, authorization. This will be the focus of the next iteration.

Iteration 5: User Access
Control

User based web applications, like our TrackStar application, typically need to
control access to certain functionality based on who is making the request. When
we speak of user access control, we are referring, at a high-level, to some questions
the application needs to ask when requests are being made such as:

•	 Who is making the request?
•	 Does that user have the appropriate permission to access the

requested functionality?

The answers to these questions help the application respond appropriately.

The work completed in the last iteration provides the application with the ability to
answer the first question. Our implementation of basic user management extended
the application user authentication process to use the database. The application
now allows users to establish their own authentication credentials and validates
the username and password against the database stored values upon user login.
After a successful login, the application now knows exactly who is making
subsequent requests.

This iteration is going to focus on helping the application answer the second question.
Once the user has provided appropriate identification, the application needs a way
to determine if they also have the permission to perform the requested action. We'll
extend our basic authorization model by taking advantage of Yii's user access control
features. Yii provides both a simple access control filter as well as a more sophisticated
role-based access control (RBAC) implementation as means to help us address our
user authorization requirements. We'll be taking a closer look at both of these as we
work to implement the user access requirements for the TrackStar application.

Iteration 5: User Access Control

[172]

Iteration planning
When we first introduced our TrackStar application back in Chapter 3, The TrackStar
Application, we mentioned that the application has two high-level user types:
anonymous and authenticated. This is simply making a distinction between a user
that has successfully logged in, and one who has not. We have also introduced the
idea of authenticated users having different roles within a project. We established
that, within a project, a user can be in one of three roles:

•	 A project owner (is granted all administrative access to the project)
•	 A project member (is granted more limited access to project features

and functionality)
•	 A project reader (only has access to read the content associated with a

project, not change it in any way)

The focus of this iteration is to implement an approach to managing the access
control granted to application users. We need a way to create and manage our roles
and permissions, assign them to users, and enforce the access control rules we want
for each user role.

In order to achieve this goal, we need to identify all the more granular items we will
work on within this iteration. The following is a list of these items:

•	 Implement a strategy to force the user to log in before gaining access to any
project or issue related functionality

•	 Create user roles and associate those roles with a specific functionality
permission structure

•	 Implement the ability to assign users to roles (and their associated permissions)
•	 Ensure our role and permission structure exists on a per project basis (that is,

allow users to have different permissions within different projects)
•	 Implement the ability to associate users to projects and, at the same time, to

roles within that project
•	 Implement the necessary authorization access checking throughout the

application to appropriately grant or deny access to the application user
based on their permissions

Luckily, Yii comes with a lot of built-in functionality to help us implement these
requirements. So, let's get started.

Chapter 8

[173]

Running our existing test suite
As always, we should kick things off by running all of our existing unit tests to
ensure that the tests pass:

% cd WebRoot/protected/tests/

% phpunit unit/

PHPUnit 3.4.12 by Sebastian Bergmann.

................

Time: 3 seconds

OK (10 tests, 27 assertions)

Everything looks good, so we can start making changes.

accessControl filter
We introduced filters back in Chapter 6, Iteration 3: Adding Tasks when we added one
to help us verify the project context when dealing with our Issue related CRUD
operations. The Yii Framework provides a filter called accessControl. This filter
can be directly used in controller classes to provide an authorization scheme to verify
whether or not a user can access a specific controller action. In fact, the astute reader
will remember that when we were implementing our filterProjectContext filter
back in Chapter 6, we noticed that access control filter was already included in the
filters list for both our IssueController and ProjectController classes, as follows:

/**
 * @return array action filters
 */
 public function filters()
 {
 return array(
 'accessControl',
// perform access control for CRUD operations
);
 }

This was included in the autogenerated code produced by using the Gii code
generator to create our skeleton CRUD operations on the Issue and Project
AR classes.

Iteration 5: User Access Control

[174]

The default implementation is set up to allow anyone to view a list of existing issues
and projects. However, it restricts access of creating and updating to authenticated
users, and further restricts the Delete action to a special admin user. You might
remember that when we first implemented CRUD operations on projects, we had to
log in before we were able to create new ones. The same was true when dealing with
issues and again with users. The mechanism controlling this authorization and access
is exactly this accessControl filter. Let's take a closer look at this implementation
within the ProjectController.php class file.

There are two methods relevant to access control in this file,
ProjectController::filters() and ProjectController::accessRules().
The code for the first method is listed as follows:

/**
 * @return array action filters
 */
public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD operations
);
}

The following code is used for the second method:

/**
 * Specifies the access control rules.
 * This method is used by the 'accessControl' filter.
 * @return array access control rules
 */
 public function accessRules()
 {
 return array(
 array('allow', // allow all users to perform 'index' and
'view' actions
 'actions'=>array('index','view'),
 'users'=>array('*'),
),
 array('allow', // allow authenticated user to perform
'create' and 'update' actions
 'actions'=>array('create','update'),
 'users'=>array('@'),
),
 array('allow', // allow admin user to perform 'admin' and
'delete' actions

Chapter 8

[175]

 'actions'=>array('admin','delete'),
 'users'=>array('admin'),
),
 array('deny', // deny all users
 'users'=>array('*'),
),
);
 }

The filters() method is already familiar to us. It is where we specify all the filters
to be used in the controller class. In this case, we have only one, accessControl,
which refers to a filter provided by the Yii Framework. This filter uses the other
method, accessRules(), which defines the rules that drive the access restrictions.

In the accessRules() method mentioned previously, there are four rules specified.
Each rule is represented as an array. The first element of the array is either allow or
deny. These indicate the granting or denying of access respectively. The rest of the
array consists of name=>value pairs specifying the remaining parameters of the rule.

Let's look at the first rule defined previously:

array('allow', // allow all users to perform 'index' and 'view'
actions
 'actions'=>array('index','view'),
 'users'=>array('*'),
),

This rule allows the index and view controller actions to be executed by any
user. The asterisk '*' special character is a way to specify any user (anonymous,
authenticated, or otherwise).

The second rule is as follows:

array('allow', // allow authenticated user to perform 'create' and
'update' actions
 'actions'=>array('create','update'),
 'users'=>array('@'),
),

It allows for any authenticated user to access the create and update controller
actions. The '@' special character is a way to specify any authenticated user.

Iteration 5: User Access Control

[176]

The third rule is as follows:

array('allow', // allow admin user to perform 'admin' and 'delete'
actions
 'actions'=>array('admin','delete'),
 'users'=>array('admin'),
),

This specifies that a specific user, named admin, is allowed to access the
actionAdmin() and actionDelete() controller actions.

The fourth rule is as follows:

array('deny', // deny all users
 'users'=>array('*'),

),

It denies access to all controller actions to all users.

Access rules can be defined using a number of context parameters. The previously
mentioned rules define actions and users to create the rule context, but there are
several others listed as follows:

•	 Controllers: This rule specifies an array of controller IDs to which the rule
should apply.

•	 Roles: This rule specifies a list of authorization items (roles, operation,
permissions) to which the rule applies. This makes used of the RBAC feature
we will be discussing in the next section.

•	 Ips: This rule specifies a list of client IP addresses to which this rule applies.
•	 Verbs: This rule specifies which HTTP request types (GET, POST, and so on)

apply to this rule.
•	 Expression: This rule specifies a PHP expression whose value indicates

whether or not the rule should be applied.
•	 Actions: This rule specifies the action method, by use of the corresponding

action ID, to which the rule should match.
•	 Users: This rule specifies the users to which the rule should apply. The

current application user's name attribute is used for matching. Three special
characters can also be used here:

	° *: any user
	° ?: anonymous users
	° @: authenticated users

Chapter 8

[177]

The access rules are evaluated one by one in the order by which they are specified.
The first rule that matches the current pattern determines the authorization result.
If this rule is an allow rule, the action can be executed; if it is a deny rule, the action
cannot be executed; if none of the rules matches the context, the action can still be
executed. It is for this reason that the fourth rule is stipulated. If we did not stipulate
a rule that denied all actions to all users at the end of our rules list, then we would
not achieve our desired access restrictions. As an example, take the second rule.
It specifies that authenticated users are allowed access to the create and update
actions. However, it does not stipulate that anonymous users be denied access. It
says nothing about anonymous users. The fourth rule ensures that all other requests
that do not match one of the first three specific rules be denied access.

With this already in place, altering our application to deny anonymous users
access to all project, issue, and user related functionality is a snap. All we have
to do is change the special character '*' of the users array value to the '@' special
character. This will only allow authenticated users to access the actionIndex()
and actionView() controller actions. All other actions are already restricted to
authenticated users.

Let's make this change in all of our controllers. Open up all three of the following
files: ProjectController.php, IssueController.php, and UserController.php
files and alter the first rule in the access control rules to be:

array('allow', // allow only authenticated users to perform 'index'
and 'view' actions

 'actions'=>array('index','view'),

 'users'=>array('@'),

),

After making these changes, the application will require a login prior to accessing
any of our project, issue, or user functionality. We still allow anonymous user access
to the SiteController class action methods, which we kept because this is where
our login actions are located. We have to be able to access the login page if we are
not already logged in.

Iteration 5: User Access Control

[178]

Role-based access control
Now that we have used the simple accessControl filter as a broad stroke to limiting
access to authenticated users, we need to turn focus to meeting some more granular
access control needs of our application. As we mentioned, users will play certain
roles within a project. The project will have users of type owner, who can be thought
of as project administrators. They will be granted all access to manipulate the project.
The project will also have users of type member, who will be granted some access
to project functionality, but a subset of what owners are able to perform. Finally,
the project can have users of type reader, who are only able to view project related
content and not alter it in any way. To achieve this type of access model based on the
role of a user, we turn to the RBAC feature of Yii.

RBAC is an established approach in computer systems security to managing the
access permissions of authenticated users. In short, the RBAC approach defines roles
within an application. Permissions to perform certain operations are also defined
and then associated with roles. Users are then assigned to a role and through the
role association, acquire the permissions defined for that role. There is plenty of
documentation available for curious readers about the general RBAC concept and
approach. One good source of information is Wikipedia: http://en.wikipedia.
org/wiki/Role-based_access_control. We'll focus on the specifics of Yii's
implementation of RBAC.

Yii's implementation of RBAC is simple, elegant, and powerful. At the foundation
of RBAC in Yii is the idea of the authorization item. The authorization item is simply
a permission to do things in the application. These permissions can be categorized
as roles, tasks, or operations, and, as such, form a permission hierarchy. Roles can
consist of tasks (or other roles), tasks can consist of operations (or other tasks) and
operations are the most granular permission level.

For example, in our TrackStar application, we need a role of type owner. So, we
would create an authorization item of type role with the name owner. This role could
then consist of tasks such as a "user management" and "issue management". These
tasks could then further consist of the atomic operations that make up these tasks.
For example, the user management task could consist of the operations create new
user, edit user, and delete user. This hierarchy allows for inheritance of these
permissions so that, given this example, if a user is assigned to the owner role, they
inherit the permission to perform create, edit, and delete user operations.

http://en.wikipedia.org/wiki/Role-based_access_control
http://en.wikipedia.org/wiki/Role-based_access_control

Chapter 8

[179]

Typically in RBAC, you assign a user to one or more roles and the user inherits the
permissions that have been assigned to those roles. This holds true for RBAC in Yii
as well. However, in this model, we can associate users to any authorization item,
not just ones of type role. This allows us the flexibility to associate a permission to a
user at any level of granularity. If we only want to grant the delete user operation
to a specific user, and not give them all the access that an owner role would have,
we can simply associate the user to this atomic operation. This makes RBAC in Yii
very flexible.

Configuring the authorization manager
Before we can establish an authorization hierarchy, assign users to roles, and
perform access permission checking, we need to configure the authorization
manager application component, authManager. This component is responsible for
storing the permission data and managing the relationships between permissions
as well as providing the methods to check whether or not a user does have access
to perform a particular operation. Yii provides two types of authorization managers:
CPhpAuthManager and CDbAuthManager. CPhpAuthManager uses a PHP script file
to store the authorization data. CDbAuthManager, as you might have guessed,
stores the authorization data in a database. The authManager is configured as an
application component. Configuring the authorization manager consists simply
of specifying which of these two types to use and then setting its initial class
property values.

As we are already using a database in the TrackStar application, it makes sense for
us to make use of the CDbAuthManager implementation. To make this configuration,
open up the main config file, protected/config/main.php, and add the following
to the application components array:

'authManager'=>array(
 'class'=>'CDbAuthManager',
 'connectionID'=>'db',
),

This establishes a new application component named authManager, specifies
the class type to be CDbAuthManager, and sets the connectionID class property
to be our database connection component. Now we can access this anywhere in
our application using Yii::app()->authManager.

Iteration 5: User Access Control

[180]

Creating the RBAC database tables
As mentioned, the CDbAuthManager class uses database tables to store the permission
data. It expects a specific schema. That schema is identified in the framework file
YiiRoot/framework/web/auth/schema.sql. It is a simple, yet elegant, schema
consisting of three tables, AuthItem, AuthItemChild, and AuthAssignment. The
AuthItem table holds the information defining the authorization item, that is the role,
task or operation. The AuthItemChild table houses the parent/child relationships
that form our hierarchy of authorization items. Finally, the AuthAssignment table is
an association table that holds the association between a user and an authorization
item. The basic DDL statements for the tables are the following:

create table AuthItem
(
 name varchar(64) not null,
 type integer not null,
 description text,
 bizrule text,
 data text,
 primary key (name)
);

create table AuthItemChild
(
 parent varchar(64) not null,
 child varchar(64) not null,
 primary key (parent,child),
 foreign key (parent) references AuthItem (name) on delete cascade
on update cascade,
 foreign key (child) references AuthItem (name) on delete cascade on
update cascade
);

create table AuthAssignment
(
 itemname varchar(64) not null,
 userid varchar(64) not null,
 bizrule text,
 data text,
 primary key (itemname,userid),
 foreign key (itemname) references AuthItem (name) on delete cascade
on update cascade
);

Chapter 8

[181]

This schema is taken directly from the Yii Framework file /framework/
web/auth/schema.sql and does not exactly adhere to our table
naming conventions that we use for our other tables. These are the
default table names expected by CDbAuthManager class. However, you
can configure this class to use different table names. For simplicity, we
use the schema exactly as defined in the framework.

Creating the RBAC authorization hierarchy
After adding the previously mentioned tables to our _dev and _test databases, we
need to populate them with our roles and permissions. We will do this using the API
provided by the authManager. To keep things simple, we are going to only define
roles and basic operations. We will not set up any formal RBAC tasks for now. The
following figure displays the basic hierarchy we wish to define:

Iteration 5: User Access Control

[182]

The diagram shows inheritance from the top down. So, Owners have all the
permissions listed, plus they inherit all the permissions from both the Member and
Reader roles. Likewise, member inherits permissions from the Reader. What we now
need to do is establish this permission hierarchy in the application. As previously
mentioned, the best way to do this is to write code to utilize the authManager API.
As an example, the following code creates a new role and a new operation and then
adds the relationship between the role and the permission:

$auth=Yii::app()->authManager;
$role=$auth->createRole('owner');
$auth->createOperation('createProject','create a new project');
$role->addChild('createProject');

In the preceding code, we first get an instance of the authManager. We then use
its createRole(), createOperation(), and addChild() API methods to create
a new owner role, and a new operation named createProject. We then add the
permission to the owner role. This only demonstrates the creation of a small part of
our needed hierarchy, all of the remaining relationships we outlined in the previous
figure need to be created in a similar manner.

To accomplish the building of our needed permission hierarchy, we are going to
write a simple shell command, which is to be executed at the command line. This
will extend the command options of the yiic command-line tool we used to create
our initial application.

Writing a console application command
We introduced the yiic command-line tool back in Chapter 2, when we created
a new HelloWorld! application, and again in Chapter 4 when we used it to initially
create the structure of our TrackStar Web application. The yiic tool is a console
application in Yii that executes tasks in the form of commands. We have used the
webapp command to create a new applications, and back in Chapter 2, we also used
the yiic shell command to create a new controller class. We have been using the
newer Gii code generator tool when initially creating our model classes and our
CRUD scaffolding code. However, there are commands available with the yiic tool
for creating these as well. As a reminder, the yiic shell command allows you to
interact with a web application on the command line. You can execute it from the
folder that contains the entry script for the application. Then, within the context of
the specific application, it provides tools to automatically generate new controllers,
views and data models.

Chapter 8

[183]

Console applications in Yii are easily extended by writing custom commands, and
this is exactly what we are going to do. We are going to extend the yiic shell
command tool set by writing a new command-line tool to allow us to build our
RBAC authorization hierarchy in a consistent and repeatable manner.

Writing a new command for a console application is quite simple. It is simply a class
that extends from CConsoleCommand which, at a minimum, implements the needed
run() method that will be executed when the command is called. The name of the
class should be exactly the same as the desired command name, followed by Command.
In our case, our command will simply be rbac, so we'll name our class RbacCommand.
Lastly, in order to make this command available to the yiic console application, we
need to save our class into the /protected/commands/shell/ folder.

So, create a new file called RbacCommand.php, and add the following PHP code:

<?php
class RbacCommand extends CConsoleCommand
{

 private $_authManager;

 public function getHelp()
 {
 return <<<EOD
USAGE
 rbac

DESCRIPTION
 This command generates an initial RBAC authorization hierarchy.

EOD;
 }

 /**
 * Execute the action.
 * @param array command line parameters specific for this command
 */
 public function run($args)
 {
 //ensure that an authManager is defined as this is mandatory
for creating an auth heirarchy
 if(($this->_authManager=Yii::app()->authManager)===null)
 {

Iteration 5: User Access Control

[184]

 echo "Error: an authorization manager, named 'authManager'
must be configured to use this command.\n";
 echo "If you already added 'authManager' component in
application configuration,\n";
 echo "please quit and re-enter the yiic shell.\n";
 return;
 }

//provide the oportunity for the use to abort the request
 echo "This command will create three roles: Owner, Member, and
Reader and the following premissions:\n";
 echo "create, read, update and delete user\n";
 echo "create, read, update and delete project\n";
 echo "create, read, update and delete issue\n";
 echo "Would you like to continue? [Yes|No] ";

//check the input from the user and continue if they indicated yes to
the above question
 if(!strncasecmp(trim(fgets(STDIN)),'y',1))
 {
//first we need to remove all operations, roles, child relationship
and assignments
 $this->_authManager->clearAll();

//create the lowest level operations for users
 $this->_authManager->createOperation("createUser","create
a new user");
 $this->_authManager->createOperation("readUser","read
user profile information");
 $this->_authManager->createOperation("updateUser","update
a users information");
 $this->_authManager->createOperation("deleteUser","remove
a user from a project");

//create the lowest level operations for projects
 $this->_authManager->createOperation("createProject","cre
ate a new project");
 $this->_authManager->createOperation("readProject","read
project information");
 $this->_authManager->createOperation("updateProject","up
date project information");
 $this->_authManager->createOperation("deleteProject","del
ete a project");

//create the lowest level operations for issues

Chapter 8

[185]

 $this->_authManager->createOperation("createIssue","crea
te a new issue");
 $this->_authManager->createOperation("readIssue","read
issue information");
 $this->_authManager->createOperation("updateIssue","upda
te issue information");
 $this->_authManager->createOperation("deleteIssue","dele
te an issue from a project");

//create the reader role and add the appropriate permissions as
children to this role
 $role=$this->_authManager->createRole("reader");
 $role->addChild("readUser");
 $role->addChild("readProject");
 $role->addChild("readIssue");

//create the member role, and add the appropriate permissions, as well
as the reader role itself, as children
 $role=$this->_authManager->createRole("member");
 $role->addChild("reader");
 $role->addChild("createIssue");
 $role->addChild("updateIssue");
 $role->addChild("deleteIssue");

//create the owner role, and add the appropriate permissions, as well
as both the reader and member roles as children
 $role=$this->_authManager->createRole("owner");
 $role->addChild("reader");
 $role->addChild("member");
 $role->addChild("createUser");
 $role->addChild("updateUser");
 $role->addChild("deleteUser");
 $role->addChild("createProject");
 $role->addChild("updateProject");
 $role->addChild("deleteProject");

 //provide a message indicating success
 echo "Authorization hierarchy successfully generated.";
 }
 }
}

Iteration 5: User Access Control

[186]

The comments in the previous code should help tell the story of what is happening
here. We provide a simple getHelp() method so that our new command can be
quickly understood by other users. This is also consistent with the other commands
offered by yiic. All of the real action happens in the run() method. It ensures the
application has a vaild authManager application component defined. It then allows
the user to have a last chance to cancel the request before proceeding. If the user of
this command indicates they want to continue, it will proceed to clear all previously
entered data in the RBAC tables and then create a new authorization hierarchy. The
hierarchy that is created here is exactly the one we discussed previously.

We can see that, even based on our fairly simple hierarchy, there is still a significant
amount of code needed. Typically, one would need to develop a more intuitive UI
wrapped around these authorization manager APIs to provide an easy interface to
manage roles, tasks, and operations. For the purposes of our TrackStar application, we
can simply set up the needed database tables, execute this logic once to establish the
initial relationships, and then hope we don't have to make too many changes to it. This
is a great solution for establishing a quick RBAC permission structure, but not ideal for
the long-term maintenance of a permission structure that might change significantly.

In a real-world application, you will most likely need a different,
more interactive tool to help maintain the RBAC relationships.
The Yii extension library (http://www.yiiframework.com/
extensions/) provides some packaged solutions for this.

Let's try out this new command. Navigate to the root of your application and execute
the shell command (Remember YiiRoot stands for where you have installed the
Yii Framework):

% YiiRoot/framework/yiic shell

Yii Interactive Tool v1.1 (based on Yii v1.1.2)

Please type 'help' for help. Type 'exit' to quit.

>>

Now type help to see a list of available commands:

>> help

At the prompt, you may enter a PHP statement or one of the following
commands:

 - controller

 - crud

 - form

 - help

Chapter 8

[187]

 - model

 - module

 - rbac

Type 'help <command-name>' for details about a command.

We see that our rbac command has now been added to the list. Let's attempt to learn
more by typing help rbac:

>> help rbac

USAGE

 rbac

DESCRIPTION

 This command generates an initial RBAC authorization hierarchy.

This is exactly what we wrote in the getHelp() method of our command class.
You can certainly be more verbose, and add more detail as desired.

Now let's run the command to establish the required hierarchy:

>> rbac

This command will create three roles: Owner, Member, and Reader and the
following premissions:

create, read, update and delete user

create, read, update and delete project

create, read, update and delete issue

Would you like to continue? [Yes|No] Yes

Authorization hierarchy successfully generated.

Then go ahead and exit the shell:

>> exit

Assuming you typed Yes when prompted to continue, all of the authorization
hierarchy was created.

Iteration 5: User Access Control

[188]

As you may recall, we have setup a separate database to run our tests against,
namely trackstar_test. As we will need this authorization hierarchy in our test
database as well, we need to run the yiic shell command under the context of the
TrackStar application pointed to the test database. As our test database connection
string is defined in our test config file, /protected/config/test.php, we need
to bootstrap the yiic shell with this config file rather than main.php. This is easy
to do, as the yiic shell command allows you to explicitly specify a config file to
load. So, let's once again start the yiic shell, but let's specify our test configuration
when starting up so that the interactive web application shell is configured to use our
test database:

% YiiRoot/framework/yiic shell protected/config/test.php

Yii Interactive Tool v1.1 (based on Yii v1.1.2)

Please type 'help' for help. Type 'exit' to quit.

>> rbac

This command will create three roles: Owner, Member, and Reader and the
following premissions:

create, read, update and delete user

create, read, update and delete project

create, read, update and delete issue

Would you like to continue? [Yes|No] Yes

Authorization hierarchy successfully generated.

>> exit

Now we have our RBAC authorization hierarchy available in our test database
as well.

Assigning users to roles
Everything we have done thus far does establish an authorization hierarchy, but
it does not yet assign permissions to users. We accomplish this by assigning users
to one of the three roles we created: owner, member, or reader. For example, if we
wanted to associate the user whose unique user ID is 1 with the member role, we
would execute the following:

$auth=Yii::app()->authManager;
$auth->assign('member',1);

Chapter 8

[189]

Once these relationships are established, checking a user's access permission is a
simple matter. We simply ask the application user component whether or not the
current user has the permission. For example, if we wanted to check whether or
not the current user is allowed to create a new issue, we could do so with the
following syntax:

If(Yii::app()->user->checkAccess('createIssue'))
{
 //perform needed logic
}

In this example, we assigned user ID 1 to the role of member, and as in our
authorization hierarchy the member role inherits the createIssue permission,
the previously mentioned if statement would evaluate to true, assuming we were
logged in to the application as user 1.

We will be adding this authorization assignment logic as part of the business logic
executed when adding a new member to a project. We'll be adding a new form
that allows us to add users to projects, and the ability to choose a role as part of
the process. But first we need to address one other aspect of how user roles need
to be implemented within this application, namely that they need to apply on a
per project basis.

Adding RBAC roles to projects
We now have a basic RBAC authorization model in place, but these relationships
apply to the application as a whole. Our needs for the TrackStar application are
slightly more complex. We need to define roles within the context of projects, not
just globally across the application. We need to allow users to be in different roles,
depending on the project. For example, a user may be in the reader role of one
project, a member of a second project, and an owner of some third project. Users can
be associated with many projects, and the role they are assigned needs to be specific
to the project.

Iteration 5: User Access Control

[190]

The RBAC framework in Yii does not have anything built-in that we can take
advantage of to meet this requirement. The RBAC model is only intended to
establish relationships between roles and permissions. It does not know (nor should
it) anything about our TrackStar projects. In order to achieve this extra dimension to
our authorization hierarchy, we will create a separate database table to maintain the
relationship between a user, a role and a project. The DDL statement for this table is
as follows:

create table tbl_project_user_role
(
 project_id INTEGER NOT NULL,
 user_id INTEGER NOT NULL,
 role VARCHAR(64) NOT NULL,
 primary key (projectId,userId,role),
 foreign key (project_id) references tbl_project (id),
 foreign key (user_id) references tbl_user (id),
 foreign key (role) references AuthItem (name)
);

So, open your favorite database editor and ensure this table is part of both the main
and test database models.

Adding RBAC business rules
Although the previous database table will hold the basic information to answer the
question as to whether a user is assigned to a role within the context of a particular
project, we still need our RBAC authorization hierarchy to answer questions
concerning whether or not a user has permission to perform certain functionality.
Although the RBAC model in Yii does not know about our TrackStar projects, it
does have a very powerful feature that we can take advantage of. When you create
authorization items or assign an item to a user, you can associate a snippet of PHP
code that will be executed during the Yii::app()->user->checkAccess() call.
When defined, this bit of code must return true before the user would be granted
that permission.

One example of the usefulness of this feature is in the context of applications that
allow users to maintain personal profile information. Often in this case, the application
would like to ensure that a user have the permission to update only their own profile
information and no one else's. In this case we could create an authorization item called
updateProfile, and then associate a business rule that checks if the current user's ID
is the same as the user ID associated with the profile information.

Chapter 8

[191]

In our case, we are going to associate a business rule with the role assignment. When
we assign a user to a specific role, we will also associate a business rule that will
check the relationship within the context of the project. The checkAccess() method
also allows us to pass in an array of additional parameters for the business rule to
use to perform its logic. We'll use this to pass in the current project context so that the
business rule can call a method on the Project AR class to determine whether or not
the user is assigned to that role within that project.

The business rule we'll create will be slightly different for each role assignment.
For example, the one we'll use when assigning a user to the owner role will look
like the following:

$bizRule='return isset($params["project"]) && $params["project"]-
>isUserInRole('owner');';

The ones for member and reader will be the similar.

We will also have to pass in the project context when we call the checkAccess()
method. So now when checking if a user has access to, for example, the createIssue
operation, the code would look like:

$params=array('project'=>$project);
if(Yii::app()->user->checkAccess('createIssue',$params))
{
 //proceed with issue creation logic
}

Here, the $project variable is the Project AR class instance associated with the
current project context (remember that almost all functionality in our application
occurs within the context of a project).

Implementing the new Project AR methods
Now that we have added a new database table to house the relationship between
user, role and project, we need to implement the required logic to manage and verify
the data in this table. We will be adding public methods to the Project AR class to
handle adding and removing data from this table, as well as verifying the existence
of rows. As you may have guessed, we will start by writing a test.

Iteration 5: User Access Control

[192]

First, let's add the ability to create a new association between a user, project and role.
Open up the unit test file protected/tests/unit/ProjectTest.php, and add the
following test:

public function testUserRoleAssignment()
{
 $project = $this->projects('project1');
 $this->assertEquals(1,$project->associateUserToRole());
}

and then run the following test:

% cd /Webroot/protected/tests/

% phpunit unit/ProjectTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

.....E

Time: 0 seconds

There was 1 error:

1) ProjectTest::testUserRoleAssignment

CException: Project does not have a method named "associateUserToRole".

…

FAILURES!

Tests: 6, Assertions: 13, Errors: 1.

We have our test failing, and for obvious reasons. We need to add the public
method to the Project AR class that will take in a role name and a user ID and create
the association between role, user and project. Open up the protected/models/
Project.php file and add the following method with just enough logic to get the
test to pass:

/**
 * creates an association between the project, the user and the
user's role within the project
 */
public function associateUserToRole()
{
 return 1;
}

Chapter 8

[193]

Running the test again will result in success, as we have simply returned exactly
what test is looking to compare:

% phpunit unit/ProjectTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

......

Time: 0 seconds

OK (6 tests, 14 assertions)

Now let's alter the test to pass in the role name and the user ID to the method on the
project class:

public function testUserRoleAssignment()
{
 $project = $this->projects('project1');
 $user = $this->users('user1');
 $this->assertEquals(1,$project->associateUserToRole('owner',
$user->id));
}

Then alter the Project::associateUserToRole() method to take in these
parameters, and actually insert a row into our tbl_project_user_role table:

public function associateUserToRole($role, $userId)
{
 $sql = "INSERT INTO tbl_project_user_role (project_id, user_id,
role) VALUES (:projectId, :userId, :role)";
 $command = Yii::app()->db->createCommand($sql);
 $command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
 $command->bindValue(":userId", $userId, PDO::PARAM_INT);
 $command->bindValue(":role", $role, PDO::PARAM_STR);
 return $command->execute;
}

Here we are using the Yii Framework CDbCommand class to execute an SQL statement
against the database. An instance of CDbCommand is what is returned from calling the
createCommand() method on our database connection. We are also using binding
our parameter values using the bindValue() method on the CDbCommand. This is
a good practice which can reduce the risk of SQL injection attacks as well as help
improve the performance of SQL statements that are executed multiple times.

Iteration 5: User Access Control

[194]

The CDbCommand::execute() method used previously returns the number of rows
affected by the executed SQL insert statement. A successful insert will affect one
row, so the integer value 1, will be returned. The test compares the return value of
this execution to the integer 1. If you are following along, you should verify that
the test does pass. However, if you run it a second time, it will fail with a database
integrity constraint violation, as it will be trying to insert the same Primary key
again. We should take a moment to address this issue.

As we are dealing with a database table in our tests, we should really add a fixture
for this table to be able to run our tests in a repeatable and consistent manner.

Add a new file called tbl_project_user_role.php to the fixtures folder,
protected/tests/fixtures/, and have it simply return a blank array:

<?php
return array(
);

Next, alter the fixtures array at the top of the protected/tests/unit/Project-
Test.php file to include this new fixture:

public $fixtures=array(
 'projects'=>'Project',
 'users'=>'User',
 'projUsrAssign'=>':tbl_project_user_assignment',
 'projUserRole'=>':tbl_project_user_role',
);

Even though we did not add any explicit fixture data to our fixture, the fixture
manager will truncate our tbl_project_user_role table, thereby removing all
previously inserted rows before each test. We can now run our tests multiple times
without incurring any database constraint errors.

When we change a user's role within a project, or remove a user from a project, we
will need to remove this association. So, let's also add a method to do that. We can
keep working with the same test method.

Let's alter our test and add a call to remove the association, just after we add it:

public function testUserRoleAssignment()
{
 $project = $this->projects('project1');
 $user = $this->users('user1');
 $this->assertEquals(1,$project->associateUserToRole('owner',
$user->id));
 $this->assertEquals(1,$project->removeUserFromRole('owner',
$user->id));
}

Chapter 8

[195]

Run the test again and, of course, it will fail. We need to implement this new method
on the Project AR class. Add the following method at the bottom of that class:

/**
 * removes an association between the project, the user and the
user's role within the project
 */
 public function removeUserFromRole($role, $userId)
 {
 $sql = "DELETE FROM tbl_project_user_role WHERE project_
id=:projectId AND user_id=:userId AND role=:role";
 $command = Yii::app()->db->createCommand($sql);
 $command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
 $command->bindValue(":userId", $userId, PDO::PARAM_INT);
 $command->bindValue(":role", $role, PDO::PARAM_STR);
 return $command->execute();
 }

This simply deletes the row from the table that houses the association between
the role, user and the project. It will return the number of rows affected, which,
if it successfully deleted a row, should be 1. So far, our test adds a new association
and then removes it. We should run it again to make sure everything passes:

% phpunit unit/ProjectTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

......

Time: 1 second

OK (6 tests, 15 assertions)

We now have implemented the methods for adding and removing our associations.
We now need to add functionality to determine whether or not a given user is
associated with a role within the project. We will also add this as a public method
to our Project AR class.

So, starting with a test, add the following test method to ProjectTest.php:

public function testIsInRole()
{
 $project = $this->projects('project1');
 $this->assertTrue($project->isUserInRole('member'));
}

Iteration 5: User Access Control

[196]

This is designed to test the implementation of the Project::isUserInRole()
method. As we have not implemented this method yet, our test will certainly fail.
Let's ensure it does:

% phpunit unit/ProjectTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

......E

Time: 0 seconds

There was 1 error:

1) ProjectTest::testIsInRole

CException: Project does not have a method named "isUserInRole".

…

FAILURES!

Tests: 7, Assertions: 15, Errors: 1.

To get it to pass, add the following method to the bottom of the Project AR
model class:

/**
 * @return boolean whether or not the current user is in the
specified role within the context of this project
 */
 public function isUserInRole($role)
 {
 return true;
 }

This should be enough to get our test to pass:

% phpunit unit/ProjectTest.php

…

OK (7 tests, 16 assertions)

Chapter 8

[197]

Now we need to implement the appropriate logic to see if an association exists. Alter
the method in the Project AR class to be:

public function isUserInRole($role)
 {
 $sql = "SELECT role FROM tbl_project_user_role WHERE project_
id=:projectId AND user_id=:userId AND role=:role";
 $command = Yii::app()->db->createCommand($sql);
 $command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
 $command->bindValue(":userId", Yii::app()->user->getId(),
PDO::PARAM_INT);
 $command->bindValue(":role", $role, PDO::PARAM_STR);
 return $command->execute()==1 ? true : false;
}

This again executes the SQL directly to select from our table. It expects an input role
name and uses the current application user, defined by Yii::app()->user, to make
up the primary key it is searching for. Run the test again:

% phpunit unit/ProjectTest.php

…

Time: 1 second, Memory: 14.25Mb

There was 1 failure:

1) ProjectTest::testIsInRole

Failed asserting that <boolean:false> is true.

…

FAILURES!

Tests: 7, Assertions: 16, Failures: 1.

Our test is failing again. The test is failing because the isUserInRole() method is
using Yii::app()->user->getId() to get the current user ID, and this is returning
nothing. Our test did not explicitly set the current user prior to making this call.
Let's add the needed logic to properly set the current user's user ID. Alter the test
method to be:

public function testIsInRole()
{
 $user = $this->users('user1');
 Yii::app()->user->setId($user->id);
 $project = $this->projects('project1');
 $this->assertTrue($project->isUserInRole('member'));
}

Iteration 5: User Access Control

[198]

This sets the current user ID to that of user1 from our users fixture data. Now run
the test again:

% phpunit unit/ProjectTest.php

…

Time: 1 second, Memory: 14.25Mb

There was 1 failure:

1) ProjectTest::testIsInRole

Failed asserting that <boolean:false> is true.

…

FAILURES!

Tests: 7, Assertions: 16, Failures: 1.

Our test is still failing, but now it is failing because the row does not exist in the
table, the user ID of user1 is not associated with the owner role for this project.
So, let's create that association before we call the isUserInRole() method.

We could use the other methods we added and tested earlier to create and remove
these associations in order to establish the relationship. However, in an attempt to
keep this test as isolated as possible from other tests or Project AR methods, we'll
lean on fixture data to provide the initial conditions.

When we first added the fixture file tests/fixtures/tbl_project_user_role.
php, we had it simply return an empty array. Let's change that to have it populate
a row with a project ID of 2, a user ID of 2, and a role name of member:

return array(
 'row1'=>array(
 'project_id' => 2,
 'user_id' => 2,
 'role' => 'member',
),
);

As our previous tests for the adding and removing of associations are using user1
and project1 fixture data, we've played it safe to avoid any conflicts by using
different IDs to seed this data.

Chapter 8

[199]

Now we'll use this fixture data to set our application user ID as well as to create the
Project AR class. Alter the test method to be:

public function testIsInRole()
 {
 $row1 = $this->projUserRole['row1'];
 Yii::app()->user->setId($row1['user_id']);
 $project=Project::model()->findByPk($row1['project_id']);
 $this->assertTrue($project->isUserInRole('member'));
 }

Here we are using the fixture data defined at the top of the class, called
projUserRole, to retrieve our seeded row data. We then use this data to set the user
ID, and create the Project AR instance by calling Project::model()->findByPk.
We then test to ensure the user has, indeed, been associated with the member role.
Now if we run our test:

% phpunit unit/ProjectTest.php

…

OK (7 tests, 16 assertions)

Our test is passing once again.

We have written and tested the methods to add and remove our role associations
within a project, and the method to determine whether or not a given user is
associated with a project role. We are going to write one final test. We are going to
write a test for our end-to-end implementation of how we plan to add this extra
project dimension to Yii's RBAC structure. We talked about achieving this by adding
a business rule to the Yii RBAC auth assignment whenever we associate a user to a
role. Let's write one final method in to test this approach.

Open back up the ProjectTest.php unit test file, and add the following
test method:

public function testUserAccessBasedOnProjectRole()
 {
 $row1 = $this->projUserRole['row1'];
 Yii::app()->user->setId($row1['user_id']);
 $project=Project::model()->findByPk($row1['project_id']);
 $auth = Yii::app()->authManager;
 $bizRule='return isset($params["project"]) &&
$params["project"]->isUserInRole("member");';
 $auth->assign('member',$row1['user_id'], $bizRule);
 $params=array('project'=>$project);
 $this->assertTrue(Yii::app()->user->checkAccess('updateIssue'
,$params));

Iteration 5: User Access Control

[200]

 $this->assertTrue(Yii::app()->user->checkAccess('readIssue',$
params));
 $this->assertFalse(Yii::app()->user->checkAccess('updateProje
ct',$params));
 }

This final test method uses other existing, and already tested, API methods to
achieve the test, so there is no need to go through our normal TDD steps. In some
ways it could be argued that this is more of a functional test than a unit test, but we
think it still belongs in this unit test class.

We will take the same approach (as we did with the previous test) to setup our user
ID, and establish the project AR instance by using the data from the tbl_project_
user_role.php fixture file. We then create an instance of the auth manager class
that we use to establish the assignment of the user to the role owner. However,
before we make that assignment, we create the business rule. The business rule
uses the $params array by first checking the existence of a project element in the
array, and then calls the isUserInRole() method on the Project AR class, which
it assumes is the value of that array element. We explicitly pass in the name, owner,
to this method, as that is the role we are going to be assigning. Finally, we make the
call to the Yii RBAC related method Yii::app()->user->checkAccess() to see if
the current user, who has now been assigned to the role owner in our RBAC auth
hierarchy as well as is associated with this role within the project.

We are checking whether or not the user has the permission to update an issue, which
we know anyone in the member role should have. We expect this to return true. We
are also making a couple of other assertions to test (and demonstrate) the permission
inheritance. We expect a user in the member role to inherit permissions from reader.
So we also test that the user has access to the readIssue permission, which we know
is a child of the reader role in our auth hierarchy. Finally, we should expect to be
denied access to operations exclusive to the owner role. So we test to ensure false is
returned when we check access to the updateProject operation.

Running the tests again:

% phpunit unit/ProjectTest.php

…

OK (8 tests, 19 assertions)

All the project tests are passing. It seems as if this approach will do the trick.

Chapter 8

[201]

As we are explicitly using the code:

$auth->assign('member',$row1['user_id'], $bizRule);

to insert a row in the AuthAssignment table, we will get a database integrity
violation if we attempt to run this test again. Basically, it will be try to re-insert the
same row, and this will violate a data integrity constraint we have defined on this
table. To avoid this, we need to allow the fixture manager to also manage this table.
We have seen this before. Simply add a new file to the fixtures folder protected/
tests/fixtures/AuthAssignment.php, and have it return an empty array. Then,
alter the fixtures array defined at the top of the ProjectTest.php file to include
this in the fixtures definition:

public $fixtures=array(
 'projects'=>'Project',
 'users'=>'User',
 'projUsrAssign'=>':tbl_project_user_assignment',
 'projUserRole'=>':tbl_project_user_role',
 'authAssign'=>':AuthAssignment',
);

Now our AuthAssignment table will be reset to a consistent state before each
test is run.

Before we leave this test, let's add a little more to ensure that if we pass in a project
to which the user is not assigned, they have no access. As we explicitly set up the
association to be with project id #2, let's just check the user's access using project id #1.
Add the following at the end of the testUserAccessBasedOnProjectRole() method:

//now ensure the user does not have any access to a project they are
not associated with
 $project=Project::model()->findByPk(1);
 $params=array('project'=>$project);
 $this->assertFalse(Yii::app()->user->checkAccess('updateIssue',$p
arams));
 $this->assertFalse(Yii::app()->user->checkAccess('readIssue',$par
ams));
 $this->assertFalse(Yii::app()->user->checkAccess('updateProject',
$params));

Here we are creating a new project instance based on project_id = 1. We know the
user is not associated with this project at all, so all of the checkAccess() calls should
return false.

Iteration 5: User Access Control

[202]

Adding Users To Projects
In the previous iteration, we added the ability to create new users of the application.
However, we do not yet have a way to assign users to specific projects, and further,
assign them to roles within these projects. Now that we have our RBAC approach
in place, we need to build out this new functionality.

The implementation of this needed functionality involves several coding changes.
However, we have provided similar examples of the types of changes needed, and
have covered all of the related concepts when implementing functionality from
previous iterations. Consequently, we will move pretty quickly through this, and
pause only briefly to highlight just a few things we have not yet seen. At this point,
the reader should be able to make all of these changes without much help, and is
encouraged to do so as a hands-on exercise. To further encourage this exercise, we'll
first list everything we are going to do fulfill this new feature requirement. You can
then close the book and try some of these out yourself before looking further down
at our implementation.

To achieve this goal we will perform the following:

•	 Using a test-first approach, add a public static method called
getUserRoleOptions() to the Project model class that returns a valid list
of role options using the auth manager's getRoles() method. We will use
this to populate a roles selection drop-down field in the form for adding a
new user to a project.

•	 Using a test-first approach, add a new public method called
associateUserToProject($user) to the Project model class to associate
a user to a project. This can insert directly into the tbl_project_use_
assignment table to make an association between the user and the project.

•	 Using a test-first approach, add a new public method called
isUserInProject($user) to the Project model class to determine if a user
is already associated with a project. We will use this in our validation rules
upon form submission so that we don't attempt to add a duplicate user to
a project.

•	 Add a new form model class called ProjectUserForm, extending from
CFormModel for a new input form model. Add to this form model class three
attributes: $username, $role, and $project. Also add validation rules to
ensure that both the username and the role are required input fields and that
the username should further be validated through a custom verify() class
method. This verify() method should:

	° Attempt to create a new User AR class instance by finding a
user by matching the input username.

Chapter 8

[203]

	° If the attempt was successful, it should continue to
associate the user to a project using the new method,
associateUserToProject($user), added previously as
well as associate the user to the role in the RBAC approach
discussed earlier in this chapter. If no user was found
matching the username, it needs to set and return an error.
(If needed, review the LoginForm::authenticate() method
as an example of a custom validation rule method.)

•	 Add a new view file under views/project called adduser.php to display
our new form for adding users to projects. This form only needs two input
fields: username and role, which is a dropdown choice listing.

•	 Add a new controller action method called actionAdduser() to the
ProjectController class, and alter its accessRules() method to
ensure it is accessible by authenticated members. This new action
method is responsible for rendering the new view to display the
form and handling the post back when the form is submitted.

Again, we encourage the reader to attempt these changes on their own first. We list
our code changes in the following sections.

Altering the Project model class
To the Project class, we added three new public methods, one of them static so it
can be called without the need for a specific instance:

 /**
 * Returns an array of available roles in which a user can be
placed when being added to a project
 */
 public static function getUserRoleOptions()
 {
 return CHtml::listData(Yii::app()->authManager->getRoles(),
'name', 'name');
}

 /**
 * Makes an association between a user and a the project
 */
 public function associateUserToProject($user)
 {
 $sql = "INSERT INTO tbl_project_user_assignment (project_id,
user_id) VALUES (:projectId, :userId)";
 $command = Yii::app()->db->createCommand($sql);

Iteration 5: User Access Control

[204]

 $command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
 $command->bindValue(":userId", $user->id, PDO::PARAM_INT);
 return $command->execute();
 }
 /*
 * Determines whether or not a user is already part of a project
 */
 public function isUserInProject($user)
 {
 $sql = "SELECT user_id FROM tbl_project_user_assignment WHERE
project_id=:projectId AND user_id=:userId";
 $command = Yii::app()->db->createCommand($sql);
 $command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
 $command->bindValue(":userId", $user->id, PDO::PARAM_INT);
 return $command->execute()==1 ? true : false;
 }

There is nothing special to further describe in the preceding code. As these were all
public methods on the Project model class, we ended up with the following two
test methods within the ProjectTest unit test class:

 public function testGetUserRoleOptions()
 {
 $options = Project::getUserRoleOptions();
 $this->assertEquals(count($options),3);
 $this->assertTrue(isset($options['reader']));
 $this->assertTrue(isset($options['member']));
 $this->assertTrue(isset($options['owner']));
 }

 public function testUserProjectAssignment()
 {
 //since our fixture data already has the two users assigned
to project 1, we'll assign user 1 to project 2
 $this->projects('project2')->associateUserToProject($this-
>users('user1'));
 $this->assertTrue($this->projects('project1')-
>isUserInProject($this->users('user1')));
 }

Chapter 8

[205]

Adding the new form model class
Just as was used in the approach for the login form, we are going to create a new
form model class as a central place to house our form input parameters and to
centralize the validation. This is a fairly simple class that extends from the Yii class
CFormModel and has attributes that map to our form input fields, as well as one to
hold the valid project context. We need the project context to be able to add users
to projects. The entire class is listed as follows:

<?php
/**
 * ProjectUserForm class.
 * ProjectUserForm is the data structure for keeping
 * the form data related to adding an existing user to a project. It
is used by the 'Adduser' action of 'ProjectController'.
 */
class ProjectUserForm extends CFormModel
{
 /**
 * @var string username of the user being added to the project
 */
 public $username;

 /**
 * @var string the role to which the user will be associated
within the project
 */
 public $role;

 /**
 * @var object an instance of the Project AR model class
 */
 public $project;

 /**
 * Declares the validation rules.
 * The rules state that username and password are required,
 * and password needs to be authenticated using the verify()
method
 */
 public function rules()
 {
 return array(
 // username and password are required
 array('username, role', 'required'),

Iteration 5: User Access Control

[206]

 // password needs to be authenticated
 //array('username', 'verify'),
 array('username', 'exist', 'className'=>'User'),
 array('username', 'verify'),
);
 }

 /**
 * Authenticates the existence of the user in the system.
 * If valid, it will also make the association between the user,
role and project
 * This is the 'verify' validator as declared in rules().
 */
 public function verify($attribute,$params)
 {
 if(!$this->hasErrors()) // we only want to authenticate when
no other input errors are present
 {
 $user = User::model()->findByAttributes(array('username'=>
$this->username));
 if($this->project->isUserInProject($user))
 {
 $this->addError('username','This user has already been
added to the project.');
 }
 else
 {
 $this->project->associateUserToProject($user);
 $this->project->associateUserToRole($this->role,
$user->id);
 $auth = Yii::app()->authManager;
 $bizRule='return isset($params["project"]) &&
$params["project"]->isUserInRole("'.$this->role.'");';
 $auth->assign($this->role,$user->id, $bizRule);
 }
 }
 }

}

Chapter 8

[207]

Adding the new action method to the project
controller
We need a controller action to handle the initial request to display the form for
adding a new user to a project. We placed this in the ProjectController class and
named it actionAdduser(). The code for this is as follows:

public function actionAdduser()
 {
 $form=new ProjectUserForm;
 $project = $this->loadModel();
 // collect user input data
 if(isset($_POST['ProjectUserForm']))
 {
 $form->attributes=$_POST['ProjectUserForm'];
 $form->project = $project;
 // validate user input and set a sucessfull flassh message
if valid
 if($form->validate())
 {
 Yii::app()->user->setFlash('success',$form->username .
" has been added to the project.");
 $form=new ProjectUserForm;
 }
 }
 // display the add user form
 $users = User::model()->findAll();
 $usernames=array();
 foreach($users as $user)
 {
 $usernames[]=$user->username;
 }
 $form->project = $project;
 $this->render('adduser',array('model'=>$form,
'usernames'=>$usernames));
 }

Iteration 5: User Access Control

[208]

This is all pretty familiar to us at this point. It handles both the initial GET request
to display the form as well as the POST request after the form is submitted. It follows
very much the same approach as our actionLogin() method in our site controller.
The preceding highlighted code is, however, something we have not seen before.
If the submitted form request is successful, it sets what is called a flash message. A
flash message is a temporary message stored briefly in the session. It is only available
in the current and the next requests. Here we are using the setFlash() method of
our CWebUser application user component to store a temporary message that the
request was successful. When we talk about the view next, we will see how to access
this message, and display it to the user.

Also, in the previous code, we created an array of available usernames from the
system. We will use this array to populate the data of one of Yii's UI widgets,
CAutoComplete, which we will use for the username input form element. As its
name suggests, as we type in the input form field, it will provide choice suggestions
based on the elements in this array.

One other change we had to make to the ProjectController class, was to add
in this new action method to the basic access rules list so that a logged in user is
allowed to access this action:

public function accessRules()
 {
 return array(
 array('allow', // allow all users to perform 'index' and
'view' actions
 'actions'=>array('index','view', 'adduser'),
 'users'=>array('@'),
),
 …

Adding the new view file to display the form
Our new action method is calling ->render('adduser') to render a view file, so we
need to get that created. A full listing of our implementation for protected/views/
project/adduser.php is as follows:

<?php
$this->pageTitle=Yii::app()->name . ' - Add User To Project';
$this->breadcrumbs=array(
 $model->project->name=>array('view','id'=>$model->project->id),
 'Add User',
);

http://www.yiiframework.com/doc/api/CWebUser
http://www.yiiframework.com/doc/api/CWebUser

Chapter 8

[209]

$this->menu=array(
 array('label'=>'Back To Project',
'url'=>array('view','id'=>$model->project->id)),
);
?>

<h1>Add User To <?php echo $model->project->name; ?></h1>

<?php if(Yii::app()->user->hasFlash('success')):?>
 <div class="successMessage">
 <?php echo Yii::app()->user->getFlash('success'); ?>
 </div>
<?php endif; ?>

<div class="form">
<?php $form=$this->beginWidget('CActiveForm'); ?>

 <p class="note">Fields with * are
required.</p>

 <div class="row">
 <?php echo $form->labelEx($model,'username'); ?>
 <?php $this->widget('CAutoComplete', array(
 'model'=>$model,
 'attribute'=>'username',
 'data'=>$usernames,
 'multiple'=>false,
 'htmlOptions'=>array('size'=>25),
)); ?>
 <?php echo $form->error($model,'username'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'role'); ?>
 <?php echo $form->dropDownList($model,'role',
Project::getUserRoleOptions()); ?>
 <?php echo $form->error($model,'role'); ?>
 </div>

 <div class="row buttons">
 <?php echo CHtml::submitButton('Add User'); ?>
 </div>

<?php $this->endWidget(); ?>
</div>

Iteration 5: User Access Control

[210]

Most of this we have seen before. We are defining active labels and active form
elements that tie directly to our ProjectUserForm form model class. We populate
our dropdown using the static method we implemented earlier on the project
model class. We also added a simple link to the menu op to take us back to the
project details page.

The highlighted code above is new to us. This is an example of using the flash
message that we introduced and used in the actionAdduser() method. We access
the message we set using setFlash() by asking the same user component if it has
a flash message, using hasFlash('succcess'). We feed the hasFlash() method
the exact name we gave it when we set the message. This is a nice way to present
the user with some simple feedback about their previous request.

One other small change we made as to add a simple link from the project details
page so we could access this form form the application. The following line was
added to the project show.php view file's list of link options:

[<?php echo CHtml::link('Add User To Project',array('adduser','id'=>$m
odel->projectId)); ?>]

This gives us access to the new form.

Putting it all together
With all of these changes in place, we can navigate to our new form by viewing
one of the project details pages. For example, viewing project id #1 through the
URL: http://localhost/trackstar/index.php?r=project/view&id=1. In the
right column menu of operations is a hyperlink Add User To Project and clicking
on that link should display the following page:

Chapter 8

[211]

You can use the forms we have previously built to create new projects and users to
ensure you have a few added to the application. Then you can play around with
adding users to projects. As you type in the Username field, you will see suggestions
for auto-completion. If you attempt to add a user that is not in the user database
table, you should see an error telling you so. If you attempt to enter a user that has
already been added to the project, you will see an error message. On successful
additions, you will see a short flash message indicating success.

Checking authorization level
The last thing we need to do in this iteration is to add the authorization checks for
the different functionality that we have implemented. Earlier in this chapter we
outlined and then implemented the RBAC authorization hierarchy for the different
roles we have. Everything is in place to allow or deny access to functionality
based on the permissions that have been granted to users within projects, with
one exception. We have not yet implemented the necessary access checking when
attempting to request functionality. The application is still using the simple access
filter that is defined on each of our project, issue and user controllers. We'll do this
for one of our permissions and then leave the remaining implementation as an
exercise for the reader.

We can notice from looking back at our authorization hierarchy that only project
owners should be able to add new users to a project. So, let's start with that. What we
will do is not even display the link on the project details page unless the current user
is in the owner role for that project (you might want to make sure you have added
at least one owner and one member or reader to a project so you can test it when
complete). Open up the protected/views/project/view.php view file where
we placed the link on the menu items for adding a new user. Remove that array
element from the menu array items, and then push it on the end of the array only
if the checkAccess() method returns true. The following code shows how the
menu items should be defined:

$this->menu=array(
 array('label'=>'List Project', 'url'=>array('index')),
 array('label'=>'Create Project', 'url'=>array('create')),
 array('label'=>'Update Project', 'url'=>array('update',
'id'=>$model->id)),
 array('label'=>'Delete Project', 'url'=>'#', 'linkOptions'=>array
('submit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure
you want to delete this item?')),
 array('label'=>'Manage Project', 'url'=>array('admin')),
 array('label'=>'Create Issue', 'url'=>array('issue/create',
'pid'=>$model->id)),

Iteration 5: User Access Control

[212]

);
if(Yii::app()->user->checkAccess('createUser',array('project'=>$mod
el)))
{
 $this->menu[] = array('label'=>'Add User To Project',
'url'=>array('adduser', 'id'=>$model->id));
}

This implements the same approach we had discussed earlier in the chapter. We
call checkAccess() on the current user, and send in the name of the permission we
want to check. Also, as our roles are within the context of projects, we send in the
project model instance as an array input. This will allow the business rule to execute
what has been defined in the authorization assignment. Now if we log in as a project
owner for a particular project and navigate to that project details page, we'll see the
menu option for adding a new user to the project. Conversely, if you log in in as a
user in the member or reader role of that same project, and again navigate to the
details page, this link will not display.

This, of course, will not prevent a savvy user from gaining access to this functionality
by navigating using the URL directly. For example, even while logged in to the
application as a user in the reader role for, say, project id #2, if I navigate directly
to the URL: http://hostname/tasctrak/index.php?r=project/adduser&id=2
I can still access the form.

To prevent this, we need to add our access check directly to the action method
itself. So, in the actionAdduser() method in the project controller class, we
can add the check:

public function actionAdduser()
 {
 $project = $this->loadModel();
 if(!Yii::app()->user->checkAccess('createUser',
array('project'=>$project)))
 {
 throw new CHttpException(403,'You are not authorized to
per-form this action.');
 }
 $form=new ProjectUserForm;
 // collect user input data
 …

Now when we attempt to access this URL directly, we will be denied access unless
we in the project owner role for the project.

We won't go through implementing the access checks for all of the other
functionality. Each would be implemented in a similar manner.

http://hostname/tasctrak/index.php?r=project/adduser&id=2
http://hostname/tasctrak/index.php?r=project/adduser&id=2

Chapter 8

[213]

Summary
We have covered a lot in this iteration. First we were introduced to the basic access
control filter that Yii provides as one method to allow and deny access to specific
controller action methods. We used this approach to ensure that users be logged
into that application before gaining access to any of the main functionality. We
then took a detailed walk through Yii's RBAC model which allows for much more
sophisticated approach to access control. We built an entire user authorization
hierarchy based on application roles. In the process, we were introduced to writing
console applications in Yii, and to some of the benefits of this wonderful feature. We
then built in new functionality to allow the addition of users to projects and being
able to assign them to appropriate roles within those projects. Finally, we discovered
how to implement the needed access checks throughout the application to utilize the
RBAC hierarchy to appropriately grant/deny access to feature functionality.

Iteration 6: Adding User
Comments

With the implementation of user management in the past two iterations, our
Trackstar application is really starting to take shape. The bulk of our primary
application feature functionality is now behind us. We can now start to focus on
some of the nice-to-have features. The first of these features that we will tackle is
the ability for users to leave comments on project issues.

The ability for users to engage in a dialogue about project issues is an important
part of what any issue tracking tool should provide. One way to achieve this is to
allow users to leave comments directly on the issues. The comments will form a
conversation about the issue and provide an immediate, as well as historical context
to help track the full lifespan of any issue. We will also use comments to demonstrate
using Yii widgets and establishing a portlet model for delivering content to the user
(for more information on Portlets, visit http://en.wikipedia.org/wiki/Portlet).

Iteration planning
The goal of this iteration is to implement feature functionality in the Trackstar
application to allow users to leave and read comments on issues. When a user is
viewing the details of any project issue, they should be able to read all comments
previously added as well as create a new comment on the issue. We also want to
add a small fragment of content, or portlet, to the project-listing page that displays
a list of recent comments left on all of the issues. This will be a nice way to provide
a window into recent user activity and allow easy access to the latest issues that have
active conversations.

Iteration 6: Adding User Comments

[216]

The following is a list of high-level tasks that we will need to complete in order to
achieve these goals:

•	 Design and create a new database table to support comments
•	 Create the Yii AR class associated with our new comments table
•	 Add a form directly to the issue details page to allow users to

submit comments
•	 Display a list of all comments associated with an issue directly on the issues

details page
•	 Take advantage of Yii widgets to display a list of the most recent comments

on the projects listing page

Creating the model
As always, we should run our existing test suite at the start of our iteration to
ensure all of our previously written tests are still passing as expected. By this time,
you should be familiar with how to do that, so we will leave it to the reader to ensure
that all the unit tests are passing before proceeding.

We first need to create a new table to house our comments. Below is the basic DDL
definition for the table that we will be using:

CREATE TABLE tbl_comment
(
 `id` INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `content` TEXT NOT NULL,
 `issue_id` INTEGER,
 `create_time` DATETIME,
 `create_user_id` INTEGER,
 `update_time` DATETIME,
 `update_user_id` INTEGER
)

As each comment belongs to a specific issue, identified by the issue_id, and is
written by a specific user, indicated by the create_user_id identifier, we also need
to define the following foreign key relationships:

ALTER TABLE `tbl_comment` ADD CONSTRAINT `FK_comment_issue` FOREIGN
KEY (`issue_id`) REFERENCES `tbl_issue` (`id`);

ALTER TABLE `tbl_comment` ADD CONSTRAINT `FK_comment_author` FOREIGN
KEY (`create_user_id`) REFERENCES `tbl_user` (`id`);

Chapter 9

[217]

If you are following along, please ensure this table is created in both the
trackstar_dev and trackstar_test databases.

Once a database table is in place, creating the associated AR class is a snap. We have
seen this many times in previous iterations. We know exactly how to do this. We
simply use the Gii code creation tool's Model Generator command and create an
AR class called Comment. If needed, refer back to Chapters 5 and 6 for all the details
on using this tool to create model classes.

Since we have already created the model class for issues, we will need to explicitly add
the relations to to the Issue model class for comments. We will also add a relationship
as a statistical query to easily retrieve the number of comments associated with a given
issue (just as we did in the Project AR class for issues). Alter the Issue::relations()
method as such:

public function relations()

{

 return array(

 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),

 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),

 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),

 'comments' => array(self::HAS_MANY, 'Comment', 'issue_id'),

 'commentCount' => array(self::STAT, 'Comment', 'issue_id'),

);

}

Also, we need to change our newly created Comment AR class to extend our custom
TrackStarActiveRecord base class, so that it benefits from the logic we placed in
the beforeValidate() method. Simply alter the beginning of the class definition
as such:

<?php

 /**

 * This is the model class for table "tbl_comment".

 */

class Comment extends TrackStarActiveRecord

{

Iteration 6: Adding User Comments

[218]

We'll make one last small change to the definitions in the Comment::relations()
method. The relational attributes were named for us when the class was created.
Let's change the one named createUser to be author, as this related user does
represent the author of the comment. This is just a semantic change, but will help
to make our code easier to read and understand. Change the method as such:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'author' => array(self::BELONGS_TO, 'User', 'create_user_id'),
 'issue' => array(self::BELONGS_TO, 'Issue', 'issue_id'),
);
 }

Creating the Comment CRUD
Once we have an AR class in place, creating the CRUD scaffolding for managing
the related entity is equally as easy. Again, use the Gii code generation tool's Crud
Generator command with the AR class name, Comment, as the argument. Again, we
have seen this many times in previous iterations, so we will leave this as an exercise
for the reader. Again, if needed, refer back to Chapters 5 and 6 for all the details on
using this tool to create CRUD scaffolding code. Although we will not immediately
implement full CRUD operations for our comments, it is nice to have the scaffolding
for the other operations in place.

As long as we are logged in, we should now be able to view the autogenerated
comment submission form via the following URL:

http://localhost/trackstar/index.php?r=comment/create

Altering the scaffolding to meet
requirements
As we have seen many times before, we often have to make adjustments to the
autogenerated scaffolding code in order to meet the specific requirements of the
application. For one, our autogenerated form for creating a new comment has an
input field for every single column defined in the tbl_comment database table.

Chapter 9

[219]

We don't actually want all of these fields to be part of the form. In fact, we want to
greatly simplify this form to have only a single input field for the comment content.
What's more, we don't want the user to access the form via the above URL, but rather
only by visiting an issue details page. The user will add comments on the same page
where they are viewing the details of the issue. We want to build towards something
similar to what is depicted in the following screenshot:

In order to achieve this, we are going to alter our Issue controller class to handle
the post of the comment form as well as alter the issue details view to display the
existing comments and new comment creation form. Also, as comments should only
be created within the context of an issue, we'll add a new method to the Issue model
class to create new comments.

Iteration 6: Adding User Comments

[220]

Adding a comment
Let's start by writing a test for this new public method on the Issue model class.
Open up the IssueTest.php file and add the following test method:

public function testAddComment()
{
 $comment = new Comment;
 $comment->content = "this is a test comment";
 $this->assertTrue($this->issues('issueBug')->addComment($comment));
}

This, of course, will fail until we add the method to our Issue AR class. Add the
following method to the Issue AR class:

/**
 * Adds a comment to this issue
 */
public function addComment($comment)
{
 $comment->issue_id=$this->id;
 return $comment->save();
}

This method ensures the proper setting of the comment issue ID before saving the
new comment. Run the test again to ensure it now passes.

With this method in place, we can now turn focus to the issue controller class. As
we want the comment creation form to display from and post its data back to the
IssueController::actionView() method, we will need to alter that method. We
will also add a new protected method to handle the form POST request. First, alter
the actionView() method to be the following:

public function actionView()
{
 $issue=$this->loadModel();
 $comment=$this->createComment($issue);

 $this->render('view',array(
 'model'=>$issue,
 'comment'=>$comment,
));
}

Chapter 9

[221]

Then add the following protected method to create a new comment and handle the
form post request for creating a new comment for this issue:

protected function createComment($issue)
{
 $comment=new Comment;
 if(isset($_POST['Comment']))
 {
 $comment->attributes=$_POST['Comment'];
 if($issue->addComment($comment))
 {
 Yii::app()->user->setFlash('commentSubmitted',"Your comment has
been added.");
 $this->refresh();
 }
 }
 return $comment;
}

Our new protected method, createComment() is responsible for handling the
POST request for creating a new comment based on the user input. If the comment
is successfully created, the page will be refreshed displaying the newly created
comment. The changes made to IssueController::actionView() are responsible
for calling this new method and also feeding the new comment instance to the view.

Displaying the form
Now we need to alter our view. First we are going to create a new view file to render
the display of our comments and the comment input form. As we'll render this as a
partial view, we'll stick with the naming conventions and begin the filename with a
leading underscore. Create a new file called _comments.php under the protected/
views/issue/ folder and add the following code to that file:

<?php foreach($comments as $comment): ?>
<div class="comment">
 <div class="author">
 <?php echo $comment->author->username; ?>:
 </div>

 <div class="time">
 on <?php echo date('F j, Y \a\t h:i a',strtotime($comment->create_
time)); ?>
 </div>

 <div class="content">

Iteration 6: Adding User Comments

[222]

 <?php echo nl2br(CHtml::encode($comment->content)); ?>
 </div>
 <hr>
</div><!-- comment -->
<?php endforeach; ?>

This file expects as an input parameter an array of comment instances and displays
them one by one. We now need to alter the view file for the issue detail to use this
new file. We do this by opening protected/views/issue/view.php and adding
the following to the end of the file:

<div id="comments">
 <?php if($model->commentCount>=1): ?>
 <h3>
 <?php echo $model->commentCount>1 ? $model->commentCount . '
comments' : 'One comment'; ?>
 </h3>

 <?php $this->renderPartial('_comments',array(
 'comments'=>$model->comments,
)); ?>
 <?php endif; ?>

 <h3>Leave a Comment</h3>

 <?php if(Yii::app()->user->hasFlash('commentSubmitted')): ?>
 <div class="flash-success">
 <?php echo Yii::app()->user->getFlash('commentSubmitted'); ?>
 </div>
 <?php else: ?>
 <?php $this->renderPartial('/comment/_form',array(
 'model'=>$comment,
)); ?>
 <?php endif; ?>

</div>

Here we are taking advantage of the statistical query property, commentCount, we
added earlier to our Issue AR model class. This allows us to quickly determine if
there are any comments available for the specific issue. If there are comments, it
proceeds to render them using our _comments.php display view file. It then displays
the input form that was created for us when we used the Gii Crud Generator
functionality. It will also display the simple flash message set upon a successfully
saved comment.

Chapter 9

[223]

One last change we need to make is to the comment input form itself. As we have
seen many times in the past, the form created for us has an input field for every
column defined in the underlying tbl_comment table. This is not what we want to
display to the user. We want to make this a simple input form where the user only
needs to submit the comment content. So, open up the view file that houses the input
form, that is, protected/views/comment/_form.php and edit it to be simply:

<div class="form">
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'comment-form',
 'enableAjaxValidation'=>false,
)); ?>
 <p class="note">Fields with * are
required.</p>
 <?php echo $form->errorSummary($model); ?>
 <div class="row">
 <?php echo $form->labelEx($model,'content'); ?>
 <?php echo $form->textArea($model,'content',array('rows'=>6,
'cols'=>50)); ?>
 <?php echo $form->error($model,'content'); ?>
 </div>

 <div class="row buttons">
 <?php echo CHtml::submitButton($model->isNewRecord ? 'Create' :
'Save'); ?>
 </div>

<?php $this->endWidget(); ?>

</div>

With all of this in place, we can visit an issue listing page, for example
http://hostname/trackstar/index.php?r=issue/view&id=1

And we see the following comment input form at the bottom of the page:

Iteration 6: Adding User Comments

[224]

If we attempt to submit the comment without specifying any content, we see an error
as depicted in the following screenshot:

And then, if we are logged in as Test User One and we submit the comment My first
test comment, we are presented with the following display:

Creating a recent comments widget
Now that we have the ability to leave comments on issues, we are going to turn our
focus to the second primary goal of this iteration. We want to display to the user a
list of all of the recent comments that have been left on various issues across all of the
projects. This will provide a nice snapshot of user communication activity within the
application. We also want to build this small block of content in a manner that will
allow it to be re-used in various different locations throughout the site. This is very
much in the style of web portal applications such as news forums, weather reporting
applications and sites such as Yahoo and iGoogle. These small snippets of content
are often referred to as portlets, and this is why we referred to building a portlet
architecture at the beginning of this iteration. Again, you can refer to
http://en.wikipedia.org/wiki/Portlet for more information on this topic.

Chapter 9

[225]

Introducing CWidget
Lucky for us, Yii is readymade to help us achieve this architecture. Yii provides
a component class, called CWidget, which is intended for exactly this purpose.
A Yii widget is an instance of this class (or its child class), and is a presentational
component typically embedded in a view file to display self-contained, reusable
user interface features. We are going to use a Yii widget to build a recent comments
portlet and display it on the main project details page so we can see comment
activity across all issues related to the project. To demonstrate the ease of re-use,
we'll take it one step further and also display a list of project-specific comments on
the project details page.

To begin creating our widget, we are going to first add a new public method on our
Comment AR model class to return the most recently added comments. As expected,
we will begin by writing a test.

But before we write the test method, let's update our comment fixtures data so that
we have a couple of comments to use throughout our testing. Create a new file called
tbl_comment.php within the protected/tests/fixtures folder. Open that file and
add the following content:

<?php

return array(
 'comment1'=>array(
 'content' => 'Test comment 1 on issue bug number 1',
 'issue_id' => 1,
 'create_time' => '',
 'create_user_id' => 1,
 'update_time' => '',
 'update_user_id' => '',
),
 'comment2'=>array(
 'content' => 'Test comment 2 on issue bug number 1',
 'issue_id' => 1,
 'create_time' => '',
 'create_user_id' => 1,
 'update_time' => '',
 'update_user_id' => '',
),
);

Now we have consistent, predictable, and repeatable comment data to work with.

Iteration 6: Adding User Comments

[226]

Create a new unit test file, protected/tests/unit/CommentTest.php and add the
following content:

<?php
class CommentTest extends CDbTestCase
{
 public $fixtures=array(
 'comments'=>'Comment',
);
 public function testRecentComments()
 {
 $recentComments=Comment::findRecentComments();
 $this->assertTrue(is_array($recentComments));
 }
}

This test will of course fail, as we have not yet added the
Comment::findRecentComments() method to the Comment model class. So, let's add
that now. We'll go ahead and add the full method we need, rather than adding just
enough to get the test to pass. But if you are following along, feel free to move at your
own TDD pace. Open Comment.php and add the following public static method:

public static function findRecentComments($limit=10, $projectId=null)
{
 if($projectId != null)
 {
 return self::model()->with(array(
 'issue'=>array('condition'=>'project_id='.$projectId)))-
>findAll(array(
 'order'=>'t.create_time DESC',
 'limit'=>$limit,
));
 }
 else
 {
 //get all comments across all projects
 return self::model()->with('issue')->findAll(array(
 'order'=>'t.create_time DESC',
 'limit'=>$limit,
));
 }
}

Chapter 9

[227]

Our new method takes in two optional parameters, one to limit the number of returned
comments, the other to specify a specific project ID to which all of the comments
should belong. The second parameter will allow us to use our new widget to display
all comments for a project on the project details page. So, if the input project id was
specified, it restricts the returned results to only those comments associated with the
project, otherwise, all comments across all projects are returned.

More on relational AR queries in Yii
The above two relational AR queries are a little new to us. We have not been using
many of these options in our previous queries. Previously we have been using the
simplest approach to executing relational queries:

1. Load the AR instance.
2. Access the relational properties defined in the relations() method.

For example if we wanted to query for all of the issues associated with, say, project
id #1, we would execute the following two lines of code:

// retrieve the project whose ID is 1
$project=Project::model()->findByPk(1);

// retrieve the project's issues: a relational query is actually being
performed behind the scenes here
$issues=$project->issues;

This familiar approach uses what is referred to as a Lazy Loading. When we first
create the project instance, the query does not return all of the associated issues. It
only retrieves the associated issues upon an initial, explicit request for them, that is,
when $project->issues is executed. This is referred to as lazy because it waits to
load the issues.

This approach is convenient and can also be very efficient, especially in those cases
where the associated issues may not be required. However, in other circumstances, this
approach can be somewhat inefficient. For example, if we wanted to retrieve the issue
information across N projects, then using this lazy approach would involve executing
N join queries. Depending on how large N is, this could be very inefficient. In these
situations, we have another option. We can use what is called Eager Loading.

Iteration 6: Adding User Comments

[228]

The Eager Loading approach retrieves the related AR instances at the same time
as the main AR instances are requested. This is accomplished by using the with()
method in concert with either the find() or findAll() methods for AR query.
Sticking with our project example, we could use Eager Loading to retrieve all
issues for all projects by executing the following single line of code:

//retrieve all project AR instances along with their associated issue
AR instances
$projects = Project::model()->with('issues')->findAll();

Now, in this case, every project AR instance in the $projects array already has
its associated issues property populated with an array of issues AR instances. This
result has been achieved by using just a single join query.

We are using this approach in both of the relational queries executed in our
findRecentComments() method. The one we are using to restrict the comments to
a specific project is slightly more complex. As you can see, we are specifying a query
condition on the eagerly loaded issue property for the comments. Let's look at the
following line:

Comment::model()->with(array('issue'=>array('condition'=>'project_
id='.$projectId)))->findAll();

This query specifies a single join between the tbl_comment and the tbl_issue
tables. Sticking with project id #1 for this example, the previous relational AR query
would basically execute something similar to the following SQL statement:

SELECT tbl_comment.*, tbl_issue.* FROM tbl_comment LEFT OUTER JOIN
tbl_issue ON (tbl_comment.issue_id=tbl_issue.id) WHERE (tbl_issue.
project_id=1)

The added array we specify in the findAll() method simply sets an order by
clause and a limit clause to the executed SQL statement.

One last thing to note about the two queries we are using is how the column
names that are common to both tables are disambiguated. Obviously when the
two tables that are being joined have columns with the same name, we have to
make a distinction between the two in our query. In our case, both tables have
 the create_time column defined. We are trying to order by this column in the
tbl_comment table and not the one defined in the issue table. In a relational AR
query in Yii, the alias name for the primary table is fixed as t, while the alias name
for a relational table, by default, is the same as the corresponding relation name.
So, in our two queries, we specify t.create_time to indicate we want to use the
primary table's column. If we wanted to instead order by the issue create_time
column, we would alter, the second query for example, as such:

Chapter 9

[229]

return Comment::model()->with('issue')->findAll(array(
 'order'=>'issue.create_time DESC',
 'limit'=>$limit,
));

Completing the test
Okay, now that we fully understand what our new method is doing, we need to
complete testing of it. In order to fully test our new method, we need to make a few
changes to our fixture data. Open each of the fixture data files: tbl_project.php,
tbl_issue.php, and tbl_comment.php and ensure each of these entries is in place:

Add the following code in tbl_project:

'project3'=>array(

 'name' => 'Test Project 3',

 'description' => 'This is test project 3',

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

In tbl_issue, add the following code:

'issueFeature2'=>array(

 'name' => 'Test Feature For Project 3',

 'description' => 'This is a test feature issue associated with
project # 3 that is completed',

 'project_id' => 3,

 'type_id' => 1,

 'status_id' => 2,

 'owner_id' => 1,

 'requester_id' => 1,

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

Iteration 6: Adding User Comments

[230]

Finally, add the following code in tbl_comment:

'comment3'=>array(
 'content' => 'The first test comment on the first feature issue
associated with Project #3',
 'issue_id' => 3,
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),

We now have a total of three comments in our test database. Two of them associated
with project #1 and one associated with project #3.

Now we can alter our test method to test:

•	 Requesting all comments
•	 Limiting the number of returned comments to just two
•	 Restricting the returned comments to only those associated with project #3

The following method tests all three scenarios:

public function testRecentComments()
{
 //retrieve all the comments for all projects
 $recentComments = Comment::findRecentComments();
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),3);

 //make sure the limit is working
 $recentComments = Comment::findRecentComments(2);
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),2);

 //test retrieving comments only for a specific project
 $recentComments = Comment::findRecentComments(5, 3);
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),1);
}

Chapter 9

[231]

We also need to ensure that our CommentTest class is using the fixture data for
comments, issues, and projects. Make sure the following fixtures are defined
at the top of our CommentTest class:

<?php
class CommentTest extends CDbTestCase
{
 public $fixtures=array(
 'comments'=>'Comment',
 'projects'=>'Project',
 'issues'=>'Issue',
);

Now, if we run this test again, we should have all six assertions passing:

>>phpunit unit/CommentTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

.

Time: 0 seconds

OK (1 test, 6 assertions)

Armed with the knowledge of the benefits of Lazy Loading versus Eager Loading
in Yii, we should make an adjustment to how the Issue model is loaded within the
IssueController::actionView() method. Since we have altered the issues detail
view to display our comments, including the author of the comment, we know it will
be more efficient to use the Eager Loading approach to load our comments along with
their respective authors when we make the call to loadModel() in this method. To do
this, we can add a simple input flag to this loadModel() method to indicate whether
or not we want to load the comments as well.

Alter the IssueController::loadModel() method as shown below:

public function loadModel($withComments=false)
 {
 if($this->_model===null)
 {
 if(isset($_GET['id']))
 {
 if($withComments)
 {
 $this->_model=Issue::model()->with(array(
 'comments'=>array('with'=>'author')))
 ->findbyPk($_GET['id']);
 }
 else

Iteration 6: Adding User Comments

[232]

 {
 $this->_model=Issue::model()->findbyPk($_GET['id']);
 }
 }
 if($this->_model===null)
 throw new CHttpException(404,'The requested page does not
 exist.');
 }
 return $this->_model;
 }

Now we can change the call to this method in IssueController::actionView(),
as such:

public function actionView()
 {
 $issue=$this->loadModel(true);

With this in place, we will load all of our comments, along with their respective
author information, with just one database call.

Creating the widget
Now we are ready to create our new widget to use our new method to display our
recent comments.

As we previously mentioned a widget in Yii is a class that extend from the
framework class CWidget or one of its child classes. We'll add our new widget to the
protected/components/ directly, as the contents of this folder are already specified
in the main configuration file to be auto-loaded within the application. This way we
won't have to explicitly import the class every time we wish to use it. We'll name
our widget RecentComments, so we need to add a php file of the same name to this
directly. Add the following class definition to this newly created RecentComment.
php file:

<?php
/**
 * RecentComments is a Yii widget used to display a list of recent
comments
 */
class RecentComments extends CWidget
{
 private $_comments;
 public $displayLimit = 5;
 public $projectId = null;
 public function init()

Chapter 9

[233]

 {
 $this->_comments = Comment::model()
 ->findRecentComments($this->displayLimit,
 $this->projectId);
 }
 public function getRecentComments()
 {
 return $this->_comments;
 }
 public function run()
 {
 // this method is called by CController::endWidget()
 $this->render('recentComments');
 }
}

The primary work involved when creating a new widget is to override the init()
and run() methods of the base class. The init() method initializes the widget and
is called after its properties have been initialized. The run() method executes the
widget. In this case, we simply initialize the widget by requesting recent comments
based on the $displayLimit and $projectId properties. The execution of the widget
itself simply renders its associated view file, which we have yet to create. view files,
by convention, are placed in views/ directly within the same folder where the widget
resides, and have the same name as the widget, but start with a lowercase letter.
Sticking with convention, create a new file whose fully qualified path is protected/
components/views/renderComments.php. Once created, add the following markup
to that file:

 <?php foreach($this->getRecentComments() as $comment): ?>
 <div class="author">
 <?php echo $comment->author->username; ?> added a comment.
 </div>
 <div class="issue">
 <?php echo CHtml::link(CHtml::encode($comment->issue->name),
array('issue/view', 'id'=>$comment->issue->id)); ?>
 </div>
 <?php endforeach; ?>

This calls the RenderComments widget's getRecentComments() method, which
returns an array of comments. It then iterates over each of them displaying who
added the comment and the associated issue on which the comment was left.

Iteration 6: Adding User Comments

[234]

In order to see the results, we need to embed this widget into an existing controller
view file. As previously mentioned, we want to use this widget on the projects listing
page, to display all recent comments across all projects, and also on a specific project
details page, to display the recent comments for just that specific project.

Let's start with the project listing page. The view file responsible for displaying that
content is protected/views/project/index.php. Open up that file and add the
following at the bottom:

<?php $this->widget('RecentComments'); ?>

Now if we view the projects listing page http://localhost/trackstar/index.
php?r=project, we see something similar to the following screenshot:

We have now embedded our new recent comments data within the page simply
by calling the widget. This is nice, but we can take our little widget one step further
to have it display in a consistent manner with all other potential portlets in the
application. We can do this by taking advantage of another class provided to us
by Yii, CPortlet.

Chapter 9

[235]

Introducing CPortlet
CPortlet is part of zii, the official extension class library that comes packaged
with Yii. It provides a nice base class for all portlet-style widgets. It will allow us
to render a nice title as well as consistent HTML markup, so that all portlets across
the application can be easily styled in a similar manner. Once we have a widget that
renders content (like our RecentComments widget), we can simply use the rendered
content of our widget as the content for CPortlet, which itself is a widget, as it also
extends from CWidget. We can do this by placing our call to the RecentComments
widget between a beginWidget() and an endWiget() call for CPortlet, as such:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments',
));

$this->widget('RecentComments');

$this->endWidget(); ?>

Since CPortlet provides a title property, we set it to be something meaningful
for our portlet. We then use the rendered content of the RecentComments widget
to drive the content for the porlet widget. The end result of this is depicted in the
following screenshot:

Iteration 6: Adding User Comments

[236]

This is not a huge change from what we had previously, but we have now placed
our content into a consistent container that is already being used throughout the site.
Notice the similarity between the right column menu content block and our newly
created recent comments content block. I am sure it will come as no surprise to you
that this right column menu block is also displayed within a CPortlet container.
Taking a peek in protected/views/layouts/column2.php, which is a file that
the yiic webapp command autogenerated for us when we initially created the
application, reveals the following code:

<?php
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Operations',
));
 $this->widget('zii.widgets.CMenu', array(
 'items'=>$this->menu,
 'htmlOptions'=>array('class'=>'operations'),
));
 $this->endWidget();
?>

So it seems that the application has been taking advantage of portlets all along.

Adding our widget to another page
Let's also add our portlet to the project details page, and restrict the comments to just
those associated with the specific project.

Add the following to the bottom of the protected/views/project/view.php file:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Project Comments',
));

$this->widget('RecentComments', array('projectId'=>$model->id));

$this->endWidget(); ?>

This is basically the same thing we added to the project listings page, except we are
initializing the RecentComments widget's $projectId property by adding an array
of name=>value pairs to the call.

Now if we visit a specific project details page, we should see something similar to the
following screenshot:

Chapter 9

[237]

This screenshot shows the details page for project #3, which has one associated
issue with just one comment on that issue, as depicted in the picture. You may
need to add a few issues and comments on those issues in order to generate a
similar display. We now have a way to display recent comments with a few
different configurable parameters anywhere throughout the site in a consistent
and easily maintainable manner.

Summary
With this iteration, we have started to flesh out our Trackstar application with
functionality that has come to be expected of most user-based web applications
today. The ability for users to communicate with each other within the application is
an essential part of a successful issue management system.

As we created this essential feature, we were able to deeper look into how to write
relational AR queries. We were also introduced to content components called
widgets and portlets. This introduced us to an approach to developing small
content blocks and being able to use them anywhere throughout the site. This
approach greatly increases reuse, consistency, and ease of maintenance.

In the next iteration, we'll build upon the recent comments widget created here, and
expose the content generated by our widget as an RSS feed to allow users to track
application or project activity without having to visit the application.

Iteration 7: Adding an RSS
Web Feed

In the previous iteration, we added the ability for the user to leave comments on
issues and to display a list of these comments utilizing a portlet architecture to
allow us to easily and consistently display that listing anywhere throughout the
application. In this iteration, we are going to build upon this feature and expose
this list of comments as an RSS data feed. Furthermore, we are going to use the
existing feed functionality available in another open source framework, the Zend
Framework, to demonstrate just how easy it is for a Yii application to integrate
with other third-party tools.

Iteration planning
The goal of this iteration is to create an RSS feed using the content created from our
user generated comments. We should allow users to subscribe to a comment feed
that spans all projects as well as subscribe to individual project feeds. Luckily, the
widget functionality we built previously has the capability to return a list of recent
comments across all projects, as well as restrict the data to one specific project. So,
we have already coded the appropriate methods to access the needed data. The bulk
of this iteration will focus on putting that data in the correct format to be published
as an RSS feed, and adding links to our application to allow users to subscribe to
these feeds.

The following is a list of high-level tasks we will need to complete in order to achieve
these goals:

•	 Download and install Zend Framework into the Yii application
•	 Create a new action in a controller class to respond to the feed request and

return the appropriate data in an RSS format

Iteration 7: Adding An RSS Web Feed

[240]

•	 Alter our URL structure for ease of use
•	 Add our newly created feed to both the projects listings page, as well as to

each individual project details page

As always, be sure to run the full suite of unit tests prior to making any changes to
ensure everything that is still working as expected.

A little background: Content Syndication,
RSS, and Zend Framework
Web Content Syndication has been around for many years, but has recently
gained enormous popularity. The term Web Content Syndication refers to
publishing information in a standardized format so that it can easily be used by
other websites and easily consumed by reader applications. Many news sites have
long been electronically syndicating their content, but the massive explosion of web
logs (also known as blogs) across the Internet has turned Content Syndication
(also known as known as feeds) into an expected feature of almost every website.
Our TrackStar application will be no exception.

RSS is an acronym that stands for Really Simple Syndication. It is an XML format
specification that provides a standard for Web Content Syndication. There are other
formats that could be used, but due to the overwhelming popularity of RSS among
most websites, we will focus on delivering our feed in this format.

Zend is known as "The PHP Company". Their founders are key contributors to the
core PHP language and the company focuses on creating products to help improve
the entire PHP application development life-cycle experience. They provide products
and services to help with configuration and installation, development, deployment
and with production application administration and maintenance. One of the
products they offer to assist in application development is the Zend Framework. The
framework can be used as a whole to provide an entire application foundation, much
in the same way we are using Yii for our TrackStar application, or piece-meal by
utilizing single feature components of the framework's library. Yii is flexible enough
to allow us to use pieces of other frameworks. We will be using just one component
of the Zend framework library, called Zend_Feed, so that we don't have to write all
of the underlying "plumbing" code to generate our RSS formatted web feeds. For
more on Zend_Feed, visit http://www.zendframework.com/manual/en/zend.
feed.html

Chapter 10

[241]

Installing Zend Framework
As we are using the Zend Framework to help support our RSS needs, we
first need to download and install the framework. To get the latest version, visit
http://framework.zend.com/download/latest. We will only be utilizing a single
component of this framework, Zend_Feed, so the minimal version of the framework
will suffice.

When you expand the downloaded framework file, you should see the following
high-level folder and file structure:

INSTALL.txt

LICENSE.txt

README.txt

bin/

library/

In order to use this framework within our Yii application, we need to move some
of the files within our application's folder structure. Let's create a new folder under
the /protected folder within our application called vendors/. Then, move the
Zend Framework folder /library/Zend underneath this newly created folder.
After everything is in place, ensure that protected/vendors/Zend/Feed.php
exists in the TrackStar application.

Using Zend_Feed
Zend_Feed is a small component of the Zend Framework that encapsulates all of the
complexities of creating web feeds behind a simple, easy-to-use interface. It will help
us get a working, tested, RSS compliant data feed in place in very little time. All we
will need to do is format our comment data in a manner expected by Zend_Feed, and
it does the rest.

We need a place to house the code to handle the requests for our feed. We could
create a new controller for this, but to keep things simple, we'll just add a new action
method to our main CommentController.php file to handle the requests. Rather
than add to the method a little at a time, we'll list the entire method here, and then
talk through what it is doing.

Iteration 7: Adding An RSS Web Feed

[242]

Open up CommentController.php and add the following public method:

public function actionFeed()
{
 if(isset($_GET['pid'])) $projectId = intval($_GET['pid']);
 else $projectId = null;

 $comments = Comment::model()->findRecentComments(20, $projectId);

 //convert from an array of comment AR class instances to an
name=>value array for Zend
 $entries=array();

 foreach($comments as $comment)
 {

 $entries[]=array(
 'title'=>$comment->issue->name,
 'link'=>CHtml::encode($this->createAbsoluteUrl('issue/
view',array('id'=>$comment->issue->id))),
 'description'=> $comment->author->username . '
says:
' . $comment->content,
 'lastUpdate'=>strtotime($comment->create_time),
 'author'=>$comment->author->username,
);
 }

 //now use the Zend Feed class to generate the Feed
 // generate and render RSS feed
 $feed=Zend_Feed::importArray(array(
 'title' => 'Trackstar Project Comments Feed',
 'link' => $this->createUrl(''),
 'charset' => 'UTF-8',
 'entries' => $entries,
), 'rss');

 $feed->send();

}

This is all fairly simple. First we check the input request querystring for the existence
of a pid parameter, which we take to indicate a specific project ID. Remember
that we want to optionally allow the data feed to restrict the content to comments
associated with a single project. Next we use the same method that we used in
the previous iteration to populate our widget to retrieve a list of up to 20 recent
comments, either across all projects, or if the project ID is specified, specific to
that project.

Chapter 10

[243]

You may remember that this method returns an array of Comment AR class instances.
We iterate over this returned array and convert the data into the format expected by
the Zend_Feed component. Zend_Feed expects a simple array containing elements
which are themselves arrays containing the data for each comment entry. Each
individual entry is a simple associative array of name=>value pairs. To comply with
the specific RSS format, each of our individual entries must minimally contain a
title, a link, and a description. We have also added two optional fields, one called
lastUpdate, which Zend_Feed translates to the RSS field, pubDate, and one to specify
the author.

There are a few extra helper methods we take advantage of in order to get the data
in the correct format. For one, we use the controller's createAbsoluteUrl() method,
rather than just the createUrl() method in order to generate a fully qualified URL.
Using createAbsoluteUrl() will generate a link like the following

http://localhost/trackstar/index.php?r=issue/view &id=5 as opposed to
just /index.php?r=issue/view&id=5.

Also, to avoid errors such as "unterminated entity reference" being generated from
PHP's DOMDocument::createElement(), which is used by Zend_Feed to generate
the RSS XML, we need to convert all applicable characters to HTML entities by using
our handy helper function, CHTML::encode. So, we encode the link such that a URL
that looks like:

http://localhost/trackstar/index.php?r=issue/view&id=5

will be converted to:

http://localhost/trackstar/index.php?r=issue/view&id=5

Once all of our entries have been properly populated and formatted, we use Zend_
Feed's importArray() method which expects an array to construct the RSS feed.
Finally, once the Zend feed class is built from the input array of entries and returned,
we call the send() method on that class. This returns the properly formatted RSS
XML and appropriate headers to the client.

We need to make a couple of configuration changes to the CommentController.php
file and class before this will work. First, we need to import the /vendors/Zend/
Feed.php file as well as the Rss.php file under the Feed/ folder. Add
the following statements to the top of CommentController.php:

Yii::import('application.vendors.*');
require_once('Zend/Feed.php');
require_once('Zend/Feed/Rss.php');

Iteration 7: Adding An RSS Web Feed

[244]

Then, alter the CommentController::accessRules() method to allow any user to
access our newly added actionFeed() method:

public function accessRules()
 {
 return array(
 array('allow', // allow all users to perform 'index'
and 'view' actions
 'actions'=>array('index','view', 'feed'),
 'users'=>array('*'),
),
 …

This is really all there is to it. If we now navigate to http://localhost/trackstar/
index.php?r=comment/feed, we can view the results of our effort. As browsers
handle the display of RSS feeds differently, what you see might differ from the
following screenshot. The following screenshot is what you should see you are if
viewing the feed in the Firefox browser:

Creating user friendly URLs
So far, throughout the development process, we have been using the default format
of our Yii application URL structure. This format, discussed back in Chapter 2,
uses a querystring approach. We have the main parameter, 'r', which stands for
route, followed by a controllerID/actionID pair, and then optional querystring

Chapter 10

[245]

parameters as needed by the specific action methods being called. The URL we
created for our new feed is no exception. It is a long, cumbersome and dare we say
ugly URL. There has got to be a better way! Well, in fact, there is.

We could make the above URL look cleaner and more self-explanatory by using the
so-called path format, which eliminates the query string and puts the GET parameters
into the path info part of URL:

Taking our comment feed URL as an example, instead of:

http://localhost/trackstar/index.php?r=comment/feed

we would have:

http://localhost/trackstar/index.php/comment/feed/

What's more, we don't even need to always specify the entry script for each request.
We can also take advantage of Yii's request routing configuration options to remove
the need to specify the controllerID/actionID pair as well. Our request could
then look like:

http://localhost/trackstar/commentfeed

Also, it is common, especially with feed URL, to have the .xml extension specified at
the end. So, it would be nice if we could alter our URL to look like:

http://localhost/trackstar/commentfeed.xml

This greatly simplifies the URL for users and is also an excellent format for URLs to
be properly indexed into major search engines (often referred to as "search engine
friendly URLs"). Let's see how we can use Yii's URL management features to alter
our URL to match the desired format.

Using the URL manager
The built-in URL manager in Yii is an application component that can be configured
in the protected/config/main.php file. Let's open up that file and add a new URL
manager component declaration to the components array:

'urlManager'=>array(
 'urlFormat'=>'path',
),

As long as we stick with the default and name it urlManager, we do not need to
specify the class of the component because it is pre-declared to be CUrlManager.php
in the CWebApplication.php framework class.

Iteration 7: Adding An RSS Web Feed

[246]

With this one simple addition, our URL structure has changed to the 'path' format
throughout the site. For example, previously if we wanted to view, say, a specific
issue whose ID is 1, we would make the request using the following URL:

http://localhost/trackstar/index.php?r=issue/view&id=1

but with these changes in place, our URL now looks like:

http://localhost/trackstar/index.php/issue/view/id/1

You'll notice the changes we have made have affected all the URLs generated
throughout the application. To see this, visit our feed again by going to
http://localhost/trackstar/index.php/comment/feed/. We notice that all of
our issue links have been reformatted to this new structure for us. This is all thanks
to our consistent use of the controller methods and other helper methods to generate
our URLs. We can alter the URL format in just one single configuration file, and the
changes will automatically propagate throughout the application.

Our URLs are looking better, but we still have the entry script, index.php, specified
and we are not yet able to append the .xml suffix on the end of our feed URL. So,
we'll hide the index.php as part of the URL, and also setup the request routing to
understand that a request for commentfeed.xml actually means a request for the
actionFeed() method within the CommentController.php class. Let's actually
tackle the latter, first.

Configuring routing rules
Yii's URL manager allows us to specify rules that define how URLs are parsed and
created. A rule consists of defining a route and a pattern. The pattern is used to match
on the path information part of the URL to determine which rule is used for parsing
or creating URLs. The pattern may contain named parameters using the syntax
ParamName:RegExp. When parsing a URL, a matching rule will extract these named
parameters from the path info and put them into the $_GET variable. When a URL is
being created by the application, a matching rule will extract the named parameters
from $_GET and put them into the path info part of the created URL. If a pattern ends
with '/*', it means additional GET parameters may be appended to the path info part
of the URL.

To specify URL rules, set the set the CUrlManager's rules property as an array of
rules in the format pattern=>route.

As an example, let's look at the following two rules:

'urlManager'=>array(
 'urlFormat'=>'path',
'rules'=>array(

Chapter 10

[247]

'issues'=>'issue/index',
'issue/<id:\d+>/*'=>'issue/view',
)

There are two rules specified in the above code. The first rule says that if the user
requests the URL http://localhost/trackstar/index.php/issues, it should be
treated as http://localhost/trackstar/index.php/issue/index and the same
applies when constructing such a URL.

The second rule contains a named parameter id which is specified using the
<ParamName:RegExp> syntax. It says that, for example, if the user requests the
URL http://localhost/trackstar /index.php/issue/1, it should be treated
as http://localhost/trackstar/index.php/issue/view?id=1. The same also
applies when constructing such a URL.

The route can also be specified as an array itself to allow the setting of other
attributes such as the URL suffix and whether or not the route should be considered
as case sensitive. We'll take advantage of these as we specify the rule for our
comment feed.

Let's add the following rule to our urlManager application component configuration:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array('commentfeed'=>array('comment/feed',
'urlSuffix'=>'.xml', 'caseSensitive'=>false),
),
),

Here, we have used the urlSuffix attribute to specify our desired URL .xml suffix.

Now we can access our feed by using the following URL:

http://localhost/trackstar/index.php/commentFeed.xml

Removing the entry script from the URL
Now we just need to remove the index.php from the URL. This is done in two steps:

1. Alter the web server configuration to re-route all requests that don't
correspond to existing files or directories to index.php.

2. Set the UrlManager's showScriptName property to false.

http://localhost/trackstar/index.php/issue/view?id=1
http://localhost/trackstar/index.php/issue/view?id=1

Iteration 7: Adding An RSS Web Feed

[248]

The first takes care of the how the application routes the requests, the second takes
care of how URLs will be created throughout the application.

As we are using Apache HTTP Server, we can perform the first step by by creating a
.htaccess file in the application root folder and adding the following directives to
that file:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

Note: This approach is only for use with the Apache HTTP Server. You
will need to consult your web server's re-write rules documentation if you
are using a different web server. Also note that this information could
be placed in the Apache configuration file as an alternative to using the
.htaccess file approach.

With the .htaccess file in place, we can now visit our feed by navigating to

http://localhost/trackstar/commentfeed.xml (or http://localhost/
trackstar/commentFeed.xml as we set the case-sensitivity to false)

However, even with this in place, if we use one of the controller methods or one of
our CHTML helper methods in our application to create our URL, say by executing
the following in a controller class:

$this->createAbsoluteUrl('comment/feed');

it will generate the following URL, with index.php still in the URL:

http://localhost/trackstar/index.php/commentfeed.xml

In order to instruct it to not use the entry script name when generating URLs, we
need to set that property on the urlManager component. We do this again in the
main.php config file as such:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(

Chapter 10

[249]

 'commentfeed'=>array('site/commentFeed', 'urlSuffix'=>'.xml',
'caseSensitive'=>false),
),
 'showScriptName'=>false,
),

In order to handle the addition of the project ID in the URL, which we need to
restrict the comment feed data to comments associated with specific projects, we
need to add one other rule:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<pid:\d+>/commentfeed'=>array('site/
commentFeed', 'urlSuffix'=>'.xml', 'caseSensitive'=>false),
 'commentfeed'=>array('site/commentFeed',
'urlSuffix'=>'.xml', 'caseSensitive'=>false),
),
 'showScriptName'=>false,
),

This rule also uses the <Parameter:RegEx> syntax to specify a pattern to allow for
a project ID to be specified before the commentfeed.xml part of the URL. With this
rule in place, we can restrict our RSS feed to comments specific to a project. For
example, if we just want the comments associated with project # 2, the URL format
would be:

http://localhost/trackstar/2/commentfeed.xml

Adding the feed links
Now that we have created our feed and altered the URL structure to make it more
user and search engine friendly, we need to add the ability for users to subscribe to
the feed. One way to do this is to add the following code before rendering the pages
in which we want to add the RSS feed link. Let's do this for both the project listing
page as well as a specific project details page. We'll start with the project listings
page. This page is rendered by the ProjectController::actionIndex() method.
Alter that method as such:

public function actionIndex()

{

 $dataProvider=new CActiveDataProvider('Project');

 Yii::app()->clientScript->registerLinkTag(

Iteration 7: Adding An RSS Web Feed

[250]

 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed'));

 $this->render('index',array(

 'dataProvider'=>$dataProvider,

));

}

The above highlighted code adds the following to the <head> tag of the
rendered HTML:

<link rel="alternate" type="application/rss+xml" href="/commentfeed.
xml" />

In many browsers, this will automatically generate a little RSS feed icon in the
address bar. The following screenshot depicts what this icon looks like in the
Firefox 3.6 address bar:

We make a similar change to add this link to a specific project details page. The
rendering of these pages is handled by the ProjectController::actionView()
method. Alter that method to be the following:

public function actionView()
 {
 $issueDataProvider=new CActiveDataProvider('Issue', array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this-
>loadModel()->id),
),
 'pagination'=>array(
 'pageSize'=>1,
),
));

 Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed',array('pid'=>$this-
>loadModel()->id)));

Chapter 10

[251]

 $this->render('view',array(
 'model'=>$this->loadModel(),
 'issueDataProvider'=>$issueDataProvider,
));
 }

This is almost the same as what we added to the index method, except that we are
specifying the project ID so that our comment entries are restricted to just those
associated with that project. A similar icon will now display in the address bar on
our project details page. Clicking on one of these icons allow the user to subscribe
to these comment feeds.

Summary
This iteration demonstrated just how easy it is to integrate Yii with other external
frameworks. We specifically used the popular Zend Framework to demonstrate this
and were able to quickly add an RSS compliant web feed to our application. Though
we specifically used Zend_Feed, we really demonstrated how to integrate any of the
Zend Framework components into the application. This further extends the already
extensive feature offering of Yii, making Yii applications incredibly feature rich.

We also learned about the URL Management features within Yii and altered our URL
format throughout the application to be more user and search engine friendly. This
is a first step in improving upon the look and feel of our application. Something we
have very much neglected up to this point. Turning our focus to styles, themes, and
generally making things pretty is the focus of the next iteration.

Iteration 8: Making it
Pretty - Design,

Layout, Themes, and
Internationalization(i18n)

In the previous iteration, we started to add a little beauty to our application by
making our URLs more attractive to both, the user and to search engine bots that
crawl the site. In this iteration, we are going to turn more focus to the look and feel
of our application by covering the topics of page layouts and themes in Yii. Though
we will live up to the title of this chapter by changing the look of our application to
something we believe is slightly better looking, we will be focused on the approach
one takes and the tools available to help design the front-end of a Yii application
rather than design itself. So this iteration will focus more on how you can make
your applications pretty, rather than spending a lot of time specifically designing
our TrackStar application.

Iteration planning
This iteration aims to focus on the frontend. We want to create a new look for our site
that is reusable and able to be implemented dynamically. We also want to accomplish
without overwriting or otherwise removing our current design. Also, we are going to
dig into the internationalization features of Yii, so we need to clearly understand how
to accommodate application users from different geographic regions.

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[254]

The following is a list of high-level tasks that we will need to complete in order to
achieve our goals:

•	 Create a new theme for our application by creating new layout, CSS and
other asset files for providing the application with a new front-end design

•	 Use the internationalization and localization features of Yii to help translate
a portion of our application to a new language

Designing with layouts
One thing that you may have noticed is that we have added a lot of functionality to
our application without adding any explicit navigation to access this functionality.
Our home page has not yet changed from the default application we built. We still
have the same navigation items as we did when we first created our new application.
We need to change our basic navigation to better reflect the underlying functionality
present in the application.

Thus far, we have not fully covered how our application is using all of the view files
responsible for displaying the content. We know that our view files are responsible
for our data display and housing the HTML sent back for each page request. When
we create new controller actions, we also often create new views to handle the
display of the returned content from these action methods. Most of these views are
very specific to the action methods they support and not used across multiple pages.
However, there are some things, like the main menu navigation, that are used across
multiple pages throughout the site. These types of UI components are better suited to
reside in what are called layout files.

A layout in Yii, is a special view file used to decorate other view files. Layouts
typically contain markup or other user interface components that are common across
multiple view files. When using a layout to render a view file, Yii embeds the view
file into the layout.

Chapter 11

[255]

Specifying a layout
There are two main places where a layout can be specified. One is the property
called $layout of the CWebApplication itself. This defaults to protected/views/
layouts/main.php if not otherwise explicitly specified. As is the case with all
application settings, this can be overridden in the main config file, protected/
config/main.php. For example, if we created a new layout file, protected/views/
layouts/newlayout.php, and wanted to use this new file as our application-wide
layout file, we could alter our main config file to set the layout property as such:

return array(
 'layout'=>'newlayout',

The filename is specified without the .php extension and is relative to the
$layoutPath property of CWebApplication, which defaults to Webroot/
protected/views/layouts (which itself could be overridden in a similar
manner if this location does not suit your application's needs).

The other place to specify the layout is by setting the $layout property of the
controller class. This allows for more granular control of the layout on a controller-
by-controller basis. This is the way it was specified when we generated the initial
application. Using the yiic tool to create our initial application automatically
created a controller base class, Webroot/protected/components/Controller.php,
from which all of our other controller classes extend. Opening up this file reveals that
the $layout property has been set to "column1". Setting the layout file at the more
granular controller level will override the setting in the CWebApplication class.

Applying and using a layout
The use of a layout file is implicit in the call to the CController::render()
method. That is, when you make the call to the render() method to render a
view file, Yii will embed the contents of the view file into the layout file specified
in either the controller class, or the one specified at the application level. You can
avoid applying any layout decoration of the rendered view file by calling the
CController::renderPartial() method instead.

As previously mentioned, a layout file is typically used to decorate other view files.
One example use of a layout is to provide a consistent header and footer layout to
each and every page. When the render() method is called, what happens behind the
scenes is first a call to renderPartial() on the specified view file. The output of this
is stored in a variable called $content, which is then made available to the layout
file. So, a simple layout file might look like the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[256]

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
 <meta name="language" content="en" />
</head>
<body>
 <div id="header">
 Some Header Content Here
 </div>
 <?php echo $content; ?>

 <div id="footer">
 Some Footer Content Here
 </div>
</body>
</html>

In fact, let's try this out. Create a new file called newlayout.php and place it in the
default folder for layout files, /protected/views/layouts/. Add the above HTML
content to this file and save it. Now we'll put this to use by altering our site controller
to use this new layout. Open up SiteController.php and override the layout
property set in the base class by explicitly adding it to this class, as such:

class SiteController extends Controller
{
 public $layout='newlayout';

This will set the layout file to newlayout.php, but only for this controller. Now,
every time we make the call to the render() method within SiteController,
the newlayout.php layout file will be used.

One page that SiteController is responsible for rendering is the login
page. Let's take a look at that page to verify these changes. If we navigate to
http://localhost/trackstar/site/login (assuming we are not already
logged in), we will see something similar to the following screenshot:

Chapter 11

[257]

If we simply comment out the $layout attribute we just added, and refresh the login
page again, we are back to using the original main.php layout and our page is now
back to what it looked like before.

Deconstructing the main.php layout file
So far, all of our application pages have been using the main.php layout file to
provide the primary layout markup. Before we go making changes to our page
layout and design, it would serve us well to take a closer look at this main layout
file. The following is a listing of the entire contents of that file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
 <meta name="language" content="en" />

 <!-- blueprint CSS framework -->
 <link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/screen.css" media="screen, projection" />
 <link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/print.css" media="print" />
 <!--[if lt IE 8]>
 <link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/ie.css" media="screen, projection" />

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[258]

 <![endif]-->

 <link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/main.css" />
 <link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/form.css" />

 <title><?php echo CHtml::encode($this->pageTitle); ?></title>
</head>

<body>

<div class="container" id="page">

 <div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name); ?></
div>
 </div><!-- header -->

 <div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Home', 'url'=>array('/site/index')),
 array('label'=>'About', 'url'=>array('/site/page',
'view'=>'about')),
 array('label'=>'Contact', 'url'=>array('/site/contact')),
 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
 </div><!-- mainmenu -->

 <?php $this->widget('zii.widgets.CBreadcrumbs', array(
 'links'=>$this->breadcrumbs,
)); ?><!-- breadcrumbs -->

 <?php echo $content; ?>

 <div id="footer">
 Copyright © <?php echo date('Y'); ?> by My Company.

 All Rights Reserved.

 <?php echo Yii::powered(); ?>
 </div><!-- footer -->

</div><!-- page -->

</body>
</html>

Chapter 11

[259]

We'll walk through this starting at the top. The first five lines probably look
somewhat familiar to you.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
 <meta name="language" content="en" />

These lines define a standard HTML document type declaration, followed by a
starting <html> element, then the start of our <head> element. Within the <head>
tag, we first have a meta tag to declare the standard, and very important, XHTML-
compliant UTF-8 character encoding, followed by another <meta> tag that specifies
English as the primary language in which the website is written.

Introducing the Blueprint CSS framework
The next several lines, beginning with the comment <!—blueprint CSS framework
--> may be less familiar to you. Another great thing about Yii is that it utilizes other
best-in-breed frameworks, when appropriate, and the Blueprint CSS framework is
one such example.

The Blueprint CSS framework was included in the application as a by-product of
using the yiic tool when we initially created our application. It is included to help
standardize the CSS development. Blueprint is a CSS Grid framework. It helps
standardize your CSS, provides cross-browser compatibility, and provides consistency
in HTML element placement helping reduce CSS errors. It comes with many screen
and print-friendly layout definitions and helps jumpstart your design by providing
much of the css you need to get something that looks good and in place quickly. For
more on the Blueprint framework, visit http://www.blueprintcss.org/.

So, the following lines of code are required by and specific to the Blueprint
CSS framework:

<!-- blueprint CSS framework -->
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/screen.css" media="screen, projection" />
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/print.css" media="print" />
<!--[if lt IE 8]>
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/ie.css" media="screen, projection" />
<![endif]-->

http://www.blueprintcss.org/

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[260]

Understanding the Blueprint installation
Yii by no means requires the use of Blueprint. However, as the default application
generated does include the framework, understanding its installation and use will
be beneficial.

The typical installation of Blueprint involves first downloading the framework files,
and then placing three of its .css files into the Yii application's main CSS folder. If
we take a peek under the main Webroot/css folder within our TrackStar application,
we already see the inclusion of these three files:

•	 ie.css

•	 print.css

•	 screen.css

So, luckily for us, the basic installation has already been completed as a consequence
of our using the yiic webapp command to generate our application. In order to take
advantage of the framework, the above <link> tags needs to be placed under the
<head> tag for each web page. This is why these declarations are made in the
layout file.

The next two <link> tags:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/main.css" />
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/form.css" />

define some custom css definitions used to provide some layout declarations in
addition to the ones specified in the Blueprint files. You should always place any
custom ones below the ones provide by Blueprint, so that your custom declarations
take precedence.

Setting the page title
Setting a specific and meaningful page title on a per page basis is important to
properly indexing your website pages in search engines and helpful to users who
want to bookmark specific pages of your site. The next line in our main layout file
specifies the page title in the browser:

<title><?php echo CHtml::encode($this->pageTitle); ?></title>

Chapter 11

[261]

Remember that $this in a view file refers to the controller class that initially rendered
the view. The $pageTitle attribute is defined down in the Yii's CController base
class and will default to the action name followed by the controller name. This is easily
customized in the specific controller class, or even within each specific view file.

Defining a page header
It is often the case that websites are designed to have consistent header content
repeated across many pages. The next few lines in our main layout file define the
area for a page header:

<body>
<div class="container" id="page">

 <div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name); ?></
div>
 </div><!-- header -->

The first <div> tag with a class of "container" is required by the Blueprint
framework in order to display the content as a grid.

Again, using the Blueprint CSS Grid framework, or any other
CSS framework is not at all a requirement of Yii. It is just there
to help you jumpstart your design layout if desired.

The next three lines layout the first of the main content we see on these pages. It
displays the name of the application in large letters. So far, this has been displaying
the text 'My Web Application'. I am sure that has been driving some of you crazy.
Although we may change this later to use a logo image, let's go ahead and change
this to the real name of our application, 'TrackStar'.

We could hardcode this name right here in the HTML. However, if we alter our
application configuration to reflect our new name, the changes will propagate
everywhere throughout the site wherever Yii::app()->name is being used. I am
sure you could make this simple change in your sleep at this point. Simply open up
the main configuration file where our application configuration settings are defined,
/protected/config/main.php and change the value of the 'name' property from:

'name'=>'My Web Application',

To:

'name'=>'TrackStar'

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[262]

Save the file, refresh your browser and the header on the home page should now
look something similar to the following screen:

One thing we immediately notice in the above image is that the change has been
made in two places. It just so happens that the view file responsible for our home
page content, /protected/views/site/index.php, also uses the application name
property. As we made the change in the application configuration file, it is reflected
in both places.

Displaying menu navigation items
The main site navigation controls are often repeated across multiple pages in a web
application, and housing this in a layout makes it easy to reuse. The next block of
markup and code in our main layout file defines the top-level menu items:

<div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Home', 'url'=>array('/site/index')),
 array('label'=>'About', 'url'=>array('/site/page',
'view'=>'about')),
 array('label'=>'Contact', 'url'=>array('/site/contact')),
 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
</div><!-- mainmenu -->

Chapter 11

[263]

Here we see that one of the official Zii extensions, called CMenu, is being used. We
introduced Zii back in Chapter 9. To jog your memory, the Zii extension library is a
set of extensions developed by the Yii developer team. This library comes packaged
with the download of the Yii Framework. Any of these extensions are easily used
within a Yii application by simply referring to the desired extension class file using a
path alias in the form of zii.path.to.ClassName. The root alias, zii, is predefined
by the application, and the rest of the path is relative to this framework folder.
So, as this Zii menu extension resides on your filesystem at Path-to-your-Yii-
Framework/zii/widgets/CMenu.php, we can simply use zii.widgets.CMenu
when referring to this in our application code.

Without having to know too much about the specifics of CMenu, we can see it that
it takes in an array of associative arrays that provide the menu item label, a URL to
which that item should link, and an optional third value, visible, that can be set to a
boolean value indicating whether or not that menu item should display. This is used
here when defining the 'login' and 'logout' menu items. Obviously, we only
want the 'login' menu item to display as a clickable link if the user is not already
logged in. And, conversely, we would only want the "Logout" menu link to display
if the user is already logged-in. The use of the visible element in the array that
defines these menu items allows you to display these links dynamically based on
whether the user is logged in or not. The use of Yii::app()->user->isGuest is
used for this. This returns true if the user is not logged in (that is, they are a guest
of the application) or false if the user is logged in. I am sure that you have already
noticed that the 'login' option turns into a 'logout' option in our application's
main menu whenever you are logged in, and vice versa.

Let's update our menu to provide a way to navigate to our specific TrackStar
functionality. First off, we don't want anonymous users to be able to access any
real functionality except the login. So we want to make sure that the login page
is more or less the home page for anonymous users. Also, the main home page
for logged-in users should just be a listing of their projects. We'll achieve this
by making the following changes:

1. Change our default home URL for the application to be the project listing
page, rather than just site/index as it is now.

2. Change the default action within our default controller, SiteController,
to be the login action. This way, any anonymous user that visits the top-level
URL, http://localhost/trackstar/, will be redirected to the login page.

3. Alter our actionLogin() method to redirect the user to the project listing
page if they are already logged in.

4. Change the 'home' menu item to read 'project', and change the URL to be
the project listing page.

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[264]

These are actually very simple changes to make. Starting at the top, we can change
the 'homeUrl' application property in our main application configuration file. Open
up protected/config/main.php and add the following name=>value pair to the
returned array:

'homeUrl'=>'/trackstar/project',

This is all that is needed to make that change.

For the next change, open up protected/controllers/SiteController.php and
add the following to the top of the controller class:

public $defaultAction = 'login';

This sets the default action to be 'login'. Now if you visit your top-level URL for
the application, http://localhost/trackstar/, you should be taken to the login
page. The only issue with this is that you will continue to be taken to the login page
from this top-level URL regardless of whether you are already logged in or not. Let's
fix this by implementing step 3 above. Change the actionLogin() method within
SiteController to include the following code at the beginning of the method:

public function actionLogin()
{
 if(!Yii::app()->user->isGuest)
 {
 $this->redirect(Yii::app()->homeUrl);
 }

This will redirect all logged-in users to the application homeUrl that we just
previously set to be the project listing page.

Finally, let's alter the input array to our CMenu widget to change the specification
for the "Home" menu item. Alter that block of code in the main.php layout file
and replace:

array('label'=>'Home', 'url'=>array('/site/index')),

with:

array('label'=>'Projects', 'url'=>array('/project')),

With this replacement, all of our previously outlined changes are in place. If we now
visit the TrackStar application as an anonymous user, we are directed to the login
page. If we click on the Projects link, we are still directed to the login page. We can
still access the About and Contact pages, which is fine for an anonymous user. If we
log in we are directed to the project listing page. Now if we click the Projects link, we
are allowed to see the project listings.

Chapter 11

[265]

Creating a breadcrumb navigation
Turning back to our main.php layout file, the three lines of code that follow our
menu widget define another Zii extension widget called CBreadcrumbs:

<?php $this->widget('zii.widgets.CBreadcrumbs', array(
 'links'=>$this->breadcrumbs,
)); ?><!-- breadcrumbs -->

This widget is used to display a list of links indicating the position of the current
page, relative to other pages, in the whole website. For example, a linked navigation
list of the format:

Projects >> Project 1 > > Edit

indicates the user is viewing an Edit page for Project 1. This is helpful for the user
to find their way back to where they started, which is a listing of all the projects,
as well as easily see where they are in the website page hierarchy. This is why it is
referred to as a breadcrumb. Many websites implement this type of UI navigational
component in their design.

To use this widget, we need to configure its links property, which specifies the
links to be displayed. The expected value for this property is an array that defines
the breadcrumb path from a starting point, down to the specific page being viewed.
Using our previous example, we could specify the links array as such:

array(
 'Projects'=>array('project/index'),
 'Project 1'=>array('project/view','id'=>1),
 'Edit',
)

The breadcrumbs widget, by default, adds in the very top level "Home" link
automatically, based on the application configuration setting homeUrl. So, what
would be generated from the above would be a breadcrumb like:

Home >> Projects >> Project 1 >> Edit

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[266]

As we explicitly set our application $homeUrl property to be the project listings
page, our first two links are the same in this case. The code in the layout file sets
the link property to be the $breadcrumbs property of the controller class that is
rendering the view. You can see this explicitly being set in several of the view files
that were autogenerated for us when we created our controller files using the Gii
code generation tool. For example, if you take a look at protected/views/project/
update.php, you see at the very top of that file the following:

<?php
$this->breadcrumbs=array(
 'Projects'=>array('index'),
 $model->name=>array('view','id'=>$model->id),
 'Update',
);

And if we navigate to that page in the site, we see the following navigational
breadcrumb generated, just below the main navigation:

Specifying the content being decorated by
the layout
The next line in the layout file is where the content of the view file that is being
decorated by this layout file is placed:

<?php echo $content; ?>

As was discussed earlier in this chapter, when you use $this->render() in a
controller class to display a certain view file, the use of a layout file is implied. Part
of what this method does is to place all of the content in the specific view file being
rendered into a special variable called $content, which is then made available
to the layout file. So, if we again take our project update view file as an example,
the contents of $content would be the rendered content contained in the file
protected/views/project/update.php.

Chapter 11

[267]

Defining the footer
Just as with the header area, it is often the case that websites are designed to have
consistent footer content repeated across many pages The final few lines of our
main.php layout file define a consistent footer for very page:

<div id="footer">
 Copyright © <?php echo date('Y'); ?> by My Company.

 All Rights Reserved.

 <?php echo Yii::powered(); ?>
</div><!-- footer -->

There is nothing special going on here but we should go ahead and update it to
reflect our specific site. We can leave the Powered by Yii Framework line in there
to help promote this great framework. So, just change the "My Company" in the
above code to "TrackStar", and we're done. Refreshing the pages in the site now
displays a consistent footer as depicted in the following figure:

Nesting the layouts
Though it is true that the original layout we have been seeing on our pages is
utilizing the file protected/layouts/main.php, that is not the whole story. When
our initial application was created, all of the controllers were created to extend from
the base controller located at protected/components/Controller.php. If we take a
peek into this file, we see that there is a layout property explicitly defined. But it does
not specify the main layout file. It specifies "column1" as the default layout file for
all child classes. You may have already noticed that when the new application was
created, there were a few layout files generated for us as well, all in the protected/
views/layouts/ folder:

•	 column1.php

•	 column2.php

•	 main.php

So, unless this is being explicitly overridden in a child class, our controllers are
defining column1.php as the primary layout file, not main.php.

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[268]

So, why did we spend all that time going through main.php, you ask? Well, it turns
out that the column1.php layout file is itself decorated by the main.php layout
file. So, not only can normal view files be decorated by layout files, but layout files
themselves can be decorated by other layout files, forming a hierarchy of nested
layout files. This allows for great flexibility in design and also greatly minimizes the
need for any repeated markup in view files. Let's take a closer look at column1.php
to see how this is achieved.

The contents of that file are as follows:

<?php $this->beginContent('/layouts/main'); ?>
<div class="container">
 <div id="content">
 <?php echo $content; ?>
 </div><!-- content -->
</div>
<?php $this->endContent(); ?>

Here we see the use of a couple of methods we have not seen before. The use of
the base controller methods beginContent() and endContent() are being used
to decorate the enclosed content with the specified view. The view being specified
here is our main layout page 'layouts/main'. The beginContent() method
actually makes use of the built-in Yii widget, CContentDecorator, whose primary
purpose is to allow for nested layouts. So, whatever content is between the calls
to beginContent() and endContent() will be decorated with the view specified
in the call to beginContent(). If nothing is specified, it will use the default layout
specified either at the controller level, or if not specified at the controller level, at the
application level.

The rest works just as a normal layout file. All of the markup in the specific view
file will be contained in the variable $content when this column1.php layout file is
rendered, and then the other markup contained in this layout file will be contained
again in the variable $content made available to the final rendering of the main
parent layout file, main.php.

Let's walk through an example. If we take the rendering of the login view as an
example, i.e. the following code in the SiteController::actionLogin() method:

$this->render('login');

Behind the scenes, the following steps are taken:

1. Render all of the content in the specific view file /protected/views/site/
login.php and make that content available via the variable $content to the
layout file specified in the controller, which in this case is column1.php.

Chapter 11

[269]

2. As column1.php is itself being decorated by the layout main.php, the content
between the beingContent() and endContent() calls is again rendered and
made available to the main.php file, also again via the $content variable

3. The layout file main.php is rendered and returned to the user, incorporating
both the content from the specific view file for the login page, as well as the
nested layout file, column1.php.

Another layout file that was autogenerated for us and being used in the application
is column2.php. You probably won't be surprised to discover that this file lays out a
two-column design. We can see this used in the project pages, where we have a little
sub-menu Operations widget display along the right hand side. The contents of this
layout are as follows, and we can see the same approach is being used to achieve the
nested layout:

<?php $this->beginContent('/layouts/main'); ?>
<div class="container">
 <div class="span-19">
 <div id="content">
 <?php echo $content; ?>
 </div><!-- content -->
 </div>
 <div class="span-5 last">
 <div id="sidebar">
 <?php
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Operations',
));
 $this->widget('zii.widgets.CMenu', array(
 'items'=>$this->menu,
 'htmlOptions'=>array('class'=>'operations'),
));
 $this->endWidget();
 ?>
 </div><!-- sidebar -->
 </div>
</div>
<?php $this->endContent(); ?>

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[270]

Creating themes
Themes provide a systematic way of customizing the design layout of a web
application. One of the many benefits of an MVC architecture is the separation of
the presentation tier from both the rest of the back-end stuff. Themes make great use
of this separation by allowing you to easily and dramatically change the overall
look and feel of a web application during runtime. Yii allows for an extremely easy
application of themes to provide great flexibility in your web application design.

Building themes in Yii
In Yii, each theme is represented as a folder consisting of view files, layout files,
and relevant resource files such as images, CSS files, JavaScript files, and so on.
The name of a theme is the same as its folder name. By default, all themes reside
under the same folder WebRoot/themes. Of course, as is the case with all other
application settings, this default folder can be configured to be a different one.
To do so, simply alter the basePath and the baseUrl properties of the
themeManager application component.

Contents under a theme folder should be organized in the same way as those under
the application base path. For example, all view files must be located under views/,
layout view files under views/layouts/, and system view files under views/
system/. For example, if we have created a new theme, called custom, and we want
to replace the update view of our ProjectController with a new view under this
theme, we need to create a new update.php view file and save it in our application
project as themes/custom/views/project/update.php.

Creating a Yii theme
Let's take this for a spin to give our TrackStar application a little facelift. We need to
name our new theme and create a folder under the Webroot/themes folder with this
same name. We'll exercise our extreme creativity and call our new theme, new.

Create a new folder to hold this new theme located at Webroot/themes/new. Also
under this newly created folder, create two other new folders called css/ and
views/. The former is not required by the theming system, but helps us keep our
CSS organized. The latter is required if we are going to make any alterations to our
default view files, which we are. As we are going to change the main.php layout
file just a little, we need yet another folder under this newly created views/ folder
called layouts/ (remember the folder structure needs to mirror that in the default
Webroot/protected/views/ folder).

Chapter 11

[271]

Now let's make some changes. As our view file markup is already referencing
CSS class and ID names currently defined in the Webroot/css/main.css file, the
fastest path to a new face on the application is to use this as a starting point, and
make changes to it as needed to implement a new design. Of course, this is not a
requirement, as we could re-create every single view file of our application in the
new theme. However, to keep things simple, we'll create our new theme by making
a few changes to the main.css file that was auto-generated for us when we created
the application, as well as the primary layout file, main.php.

To begin with, let's make a copy of these two files and place them in our new theme
folder. Copy Webroot/css/main.css to Webroot/themes/new/css/main.css and
also copy Webroot/protected/views/layouts/main.php to Webroot/themes/
new/views/layouts/main.php.

Now, open the newly copied version of the main.css file remove the contents and
then add all of the following:

body
{
 margin: 0;
 padding: 0;
 color: #555;
 font: normal 10pt Arial,Helvetica,sans-serif;
 background: #d6d6d6 url(background.gif) repeat-y center top;
}

#page
{
 margin-bottom: 20px;
 background: white;
 border: 1px solid #898989;
 border-top:none;
 border-bottom:none;
}

#header
{
 margin: 0;
 padding: 0;
 height:100px;
 background:white url(header.jpg) no-repeat left top;
 border-bottom: 1px solid #898989;
}

#content
{
 padding: 20px;
}

#sidebar

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[272]

{
 padding: 20px 20px 20px 0;
}

#footer
{
 padding: 10px;
 margin: 10px 20px;
 font-size: 0.8em;
 text-align: center;
 border-top: 1px solid #C9E0ED;
}

#logo
{
 padding: 10px 20px;
 font-size: 200%;
 /* HIDES LOGO TEXT */
 text-indent:-5000px;
}

#mainmenu
{
 background:white url(bg2.gif) repeat-x left top;
 border-top:1px solid #CCC;
 border-bottom: 1px solid #7d7d7d;
}

#mainmenu ul
{
 padding:6px 20px 5px 20px;
 margin:0px;
}

#mainmenu ul li
{
 display: inline;
}

#mainmenu ul li a
{
 color:#333;
 background-color:transparent;
 font-size:12px;
 font-weight:bold;
 text-decoration:none;
 padding:5px 8px;
}

#mainmenu ul li a:hover, #mainmenu ul li a.active
{

 color: #d11e1e;

Chapter 11

[273]

 background-color:#ccc;
 text-decoration:none;
}

div.flash-error, div.flash-notice, div.flash-success
{
 padding:.8em;
 margin-bottom:1em;
 border:2px solid #ddd;
}

div.flash-error
{
 background:#FBE3E4;
 color:#8a1f11;
 border-color:#FBC2C4;
}

div.flash-notice
{
 background:#FFF6BF;
 color:#514721;
 border-color:#FFD324;
}

div.flash-success
{
 background:#E6EFC2;
 color:#264409;
 border-color:#C6D880;
}

div.flash-error a
{
 color:#8a1f11;
}

div.flash-notice a
{
 color:#514721;
}

div.flash-success a
{
 color:#264409;
}

div.form .rememberMe label
{
 display: inline;
}

div.view

{

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[274]

 padding: 10px;
 margin: 10px 0;
 border: 1px solid #C9E0ED;
}

div.breadcrumbs
{
 font-size: 0.9em;
 padding: 10px 20px;
}

div.breadcrumbs span
{
 font-weight: bold;
}

div.search-form
{
 padding: 10px;
 margin: 10px 0;
 background: #eee;
}

.portlet
{

}

.portlet-decoration
{
 padding: 3px 8px;
 background:white url(bg2.gif) repeat-x left top;
}

.portlet-title
{
 font-size: 12px;
 font-weight: bold;
 padding: 0;
 margin: 0;
 color: #fff;
}

.portlet-content
{
 font-size:0.9em;
 margin: 0 0 15px 0;
 padding: 5px 8px;
 background:#ccc;
}

.operations li a

{

Chapter 11

[275]

 font: bold 12px Arial;
 color: #d11e1e;
 display: block;
 padding: 2px 0 2px 8px;
 line-height: 15px;
 text-decoration: none;
}

.portlet-content ul
{
 list-style-image:none;
 list-style-position:outside;
 list-style-type:none;
 margin: 0;

 padding: 0;
}

.portlet-content li
{
 padding: 2px 0 4px 0px;
}

.operations
{
 list-style-type: none;
 margin: 0;
 padding: 0;
}

.operations li
{
 padding-bottom: 2px;
}

.operations li a
{
 font: bold 12px Arial;
 color: #0066A4;
 display: block;
 padding: 2px 0 2px 8px;
 line-height: 15px;
 text-decoration: none;
}

.operations li a:visited
{
 color: #d11e1e;
}

.operations li a:hover
{
 background: #fff;
}

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[276]

You may have noticed that some of these changes are referencing image files that do
not yet exist in our project. We have added a background.gif image reference in the
body declaration, a new bg2.gif image referenced in the #mainmenu ID declaration
and a new header.jpg image in the #header ID declaration. These can be viewed,
downloaded and used by viewing the site online or accessing the images directly
from http://www.yippyii.com/trackstar/themes/new/css/background.gif,
http://www.yippyii.com/trackstar/themes/new/css/bg2.gif, and
http://www.yippyii.com/trackstar/themes/new/css/header.jpg.

We need to place these new images into the same CSS folder we are using for this
theme, namely Webroot/themes/new/css/.

After these changes are in place, we need to make a couple of small adjustments to
our main.php layout file in this new theme. For one, we need to alter the markup
in the <head> element to properly reference our new main.css file. Currently the
main.css file is being pulled in via this line:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/main.css" />

This is referencing the application request baseUrl property to construct the relative
path to the CSS file. However, we want to use our new main.css file located in our
new theme. For this, we can lean on the theme manager application component,
defined by default to use the Yii built-in CThemeManager.php class. We access the
theme manager in the same way as we access other application components. So, rather
than use the request base URL, we should use the one defined by the theme manager,
which knows what theme the application is using at any given time. So, we need to
alter the above line in /themes/new/views/layouts/main.php as follows:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>theme->baseUrl; ?>/css/main.css" />

Once we configure our application to use our new theme (something we have
not yet done), this baseUrl will resolve to a relative path to where our theme
folder resides.

The other small change we need to make is to remove the display of the application
title from the header. As we altered our CSS to use a new image file to provide our
header and logo information, we don't need to display the application name in this
section. So, again in /themes/new/views/layouts/main.php, we simply need to
change this:

<div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name); ?></div>
</div><!-- header -->

http://www.yippyii.com/trackstar/themes/new/css/background.gif
http://www.yippyii.com/trackstar/themes/new/css/background.gif
http://www.yippyii.com/trackstar/themes/new/css/bg2.gif
http://www.yippyii.com/trackstar/themes/new/css/bg2.gif

Chapter 11

[277]

To the following:

<div id="header"></div><!-- header image is embeded into the #header
declaration in main.css -->

We have put in a comment to remind us where our header image is defined.

One final change we need to make is to the other two layout files used in the
application that we are not copying over to our new theme folder, namely protected/
views/layouts/column1.php and protected/views/layouts/column2.php. As
previously discussed in the section on nesting layouts, these two layout files also use
the main layout file via explicit calls to the beginContent() and endContent(). These
files were auto-generated by the Gii code generation tool, and are explicitly referencing
the main layout file in protected/views/layouts/ folder. We need to change the
input specified to the beginContent() method so that, if available, our new theme
layout will be used. Open both the column1.php and column2.php files and change
the following line of code:

$this->beginContent('application.views.layouts.main');

To be the following:

$this->beginContent('/layouts/main');

Now, once we configure the application to use our new theme, it will first look for a
main.php layout in the themes folder and use that file.

Configuring the application to use a theme
Okay, with our new theme now created and in place, we need to tell the application
itself to use it. Doing so is easy. We just alter the main application's theme property
setting by changing the main application configuration file. By now, we are old pros
at doing this. Simply add the following name=>value pair to the returned array in
the /protected/config/main.php file:

'theme'=>'new',

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[278]

Once this is saved, our application is now using our newly created theme, new,
and our application has a brand new face. Taking a look at the login page, which
is also our default home page if not logged-in, we now see what is depicted in the
following figure:

This, of course is not a huge change. We have kept the changes fairly minimal, but it
does illustrate the process of creating a new theme. The application will first look for
view files in this new theme and use them if they exists, otherwise, it will pull them
from the default location. You can see how easy it is to give the application a new
look and feel. You could create a new theme for each season, or maybe based on
your different moods and then change the application to fit the season or mood
quickly and easily as desired.

Translating the site to other languages
Before we leave this iteration, we are going to talk about internationalization (i18n)
and localization (L10n) in Yii. Internationalization refers to the process of designing
software applications in such a manner that it can be adapted to various languages
without having to make underlying engineering changes. Localization refers to the
process of adapting internationalized software applications for a specific geographic
location or language by adding locale-dependent formatting and translating text. Yii
provides support for these in the following ways:

http://en.wikipedia.org/wiki/Locale

Chapter 11

[279]

•	 It provides the locale data for nearly every language and region
•	 It provides services to assist in the translation of text message and file
•	 It provides locale-dependent date and time formatting
•	 It provides locale-dependent number formatting

Defining locale and language
Locale refers to a set of parameters that define the user's language, country, and
any other user interface preferences that may be relevant to a user's location. It is
typically identified by a composite ID consisting of a language identifier and a region
identifier. For example, a locale ID of en_US stands for the English language and the
region of the United States. For consistency, all locale IDs in Yii are standardized
to the format of either LanguageID or LanguageID_RegionID in lower case (for
example, en or en_us).

In Yii, locale data is represented as an instance of the CLocale class, or a child class
thereof. It provides locale-specific information including currency and numeric
symbols; currency, number, date, and time formats; date-related names like months,
days of week, and so on. Given a locale ID, one can get the corresponding CLocal
instance by either using the static method CLocal::getInstance($localeID) or
using the application. The following example code creates a new instance based on
the en_us local identifier using the application component:

Yii::app()->getLocale('en_us');

Yii comes with locale data for nearly every language and region. The data comes
from the Common Locale Data Repository (CLDR) (http://cldr.unicode.org/)
and is stored in files that are named according to their respective locale id in the Yii
Framework folder framework/i18n/data/. So, in the above example of creating a
new CLocale instance, the data used to populate the attributes came from the file
framework/i18n/data/en_us.php. If you look under this folder, you will see data
files for a great many languages and regions.

So, going back to our example, if we wanted to get, say, the names of the months in
English specific to the US region, we could execute the following code:

$locale = Yii::app()->getLocale('en_us');
print_r($locale->monthNames);

Which would produce the following:

Array ([1] => January [2] => February [3] => March [4] => April [5] => May [6] =>
June [7] => July [8] => August [9] => September [10] => October [11] => November
[12] => December)

http://cldr.unicode.org/

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[280]

Where as if we wanted, say, the same month names for the Italian language, we
could do the same, but create a different CLocale instance:

$locale = Yii::app()->getLocale('it');
print_r($locale->monthNames);

Which would produce the following:

Array ([1] => gennaio [2] => febbraio [3] => marzo [4] => aprile [5] => maggio
[6] => giugno [7] => luglio [8] => agosto [9] => settembre [10] => ottobre [11] =>
novembre [12] => dicembre)

The first instance is based on the data file framework/i18n/data/en_us.php
and the latter on framework/i18n/data/it.php. If desired, the application's
localeDataPath property can be configured in order to specify a custom folder
in which to add your custom locale data files.

Performing language translation
Perhaps the most desired feature of i18n is language translation. As mentioned
previously, Yii provides both message translation and view translation. The former
translates a single text message to a desired language, and the latter translates an
entire file to the desired language.

A translation request consists of the object to be translated (either a string of text or
a file), the source language that the object is in and the target language to which the
object is to be translated. A Yii application makes a distinction between its target
language and its source language. The target language is the language (or locale)
that we are targeting for the user, where the source language refers to the language
in which the application files are written. So far, our TrackStar application has been
written in English and also targeted to English language users. So our target and
source languages thus far have been the same. The internationalization features of Yii,
which include translation, are applicable only when these two languages are different.

Performing message translation
Message translation is performed by calling the application method:

t(string $category, string $message, array $params=array (), string
$source=NULL, string $language=NULL)

This method translates the message from the source language to the target language.

When translating a message, the category must be specified to allow a message to
be translated differently under different categories (contexts). The category yii is
reserved for messages used by the Yii Framework core code.

Chapter 11

[281]

Messages can also contain parameter placeholders which will be replaced with the
actual parameter values upon calling Yii::t(). The following example depicts the
translation of an error message. This message translation request would replace the
{errorCode} placeholder in the original message with the actual $errorCode value:

Yii::t('category', 'The error: "{errorCode}" was encountered during
the last request.', array('{errorCode}'=>$errorCode));

The translated messages are stored in a repository called message source. A message
source is represented as an instance of CMessageSource or its child class. When
Yii::t() is invoked, it will look for the message in the message source and return
its translated version if it is found.

Yii comes with the following types of message sources:

•	 CPhpMessageSource: This is the default message source. The message
translations are stored as key-value pairs in a PHP array. The original
message is the key and the translated message is the value. Each array
represents the translations for a particular category of messages and is
stored in a separate PHP script file whose name is the category name.
The PHP translation files for the same language are stored under the
same folder named as the locale ID. All these folders are located under
the folder specified by basePath.

•	 CGettextMessageSource: The message translations are stored as GNU
Gettext files.

•	 CDbMessageSource: The message translations are stored in database tables.

A message source is loaded as an application component. Yii pre-declares an
application component named messages to store messages that are used in a user
application. By default, the type of this message source is CPhpMessageSource and
the base path for storing the PHP translation files is protected/messages.

An example will go a long way to helping bring all of this together. Let's translate
the form field labels on our Login form into a fictitious language we'll call Reversish.
Reversish is written by taking an English word or phrase and writing it in reverse.
So, here are the Reversish translations of our login form field labels:

English Reversish
Username Emanresu
Password Drowssap
Remember me next time Emit txen em rebmemer

http://www.yiiframework.com/doc/api/YiiBase#t
http://www.yiiframework.com/doc/api/CPhpMessageSource#basePath
http://www.gnu.org/software/gettext/
http://www.yiiframework.com/doc/guide/basics.application#application-component
http://www.yiiframework.com/doc/api/CApplication#messages

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[282]

We'll use the default CPhpMessageSource implementation to house our message
translations. So, the first thing we need to do is create a PHP file containing our
translations. We'll make the locale ID be 'rev' and we'll just call the category
'default' for now. So, we need to create a new file under the messages base
folder that follows the format /localeID/CategoryName.php. So, for this example,
we need to create a new file located at /protected/messages/rev/default.php,
and then add the following translation array:

<?php
return array(
 'Username' => 'Emanresu',
 'Password' => 'Drowssap',
 'Remember me next time' => 'Emit txen em rebmemer',
);

The next thing we need to do is to set the application target language to be Reversish.
We could do this in the application configuration file, so that it would impact the
entire site. However, as we only have translations for our login form, we'll just set it
down in the SiteController::actionLogin() method, so that it will only apply
when rendering the login form for now. So, open that file and set the application
target language right at the beginning of that method:

public function actionLogin()
{
 Yii::app()->language = 'rev';

Now, the last thing we need to do is to make our calls to Yii::t() so that these
form field labels are sent through the translation. These form field labels are defined
in the LoginForm:: attributeLabels() method. Replace that entire method with
the following:

/**
 * Declares attribute labels.
 */
 public function attributeLabels()
 {
 return array(
 'rememberMe'=>Yii::t('default','Remember me next time'),
 'username'=>Yii::t('default', 'Username'),
 'password'=>Yii::t('default', 'Password'),
);
 }

Chapter 11

[283]

Now if we visit our login form again, we see a new Reversish version as depicted in
the following screenshot:

Performing file translation
Yii also provides the ability to use different files based on the target locale ID setting
of the application. File translation is accomplished by calling the application method
CApplication::findLocalizedFile(). This method takes in the path to a file and
this method will look for a file with the same name, but under a directory named the
same as the target locale ID specified either as explicit input to the method, or what
is specified in the application configuration.

Let's try this out. All we really need to do is to create the appropriate translation file.
We'll stick with translating the login form. So, create a new view file /protected/
views/site/rev/login.php and add the following contents that have already been
translated to Reversish:

<?php
$this->pageTitle='Nigol';
$this->breadcrumbs=array(
 'Nigol',
);
?>

<h1>Nigol</h1>

<p>Slaitnederc nigol ruoy htiw mrof gniwollof eht tuo llif esaelp:</p>

<div class="form">
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'login-form',

Iteration 8: Making it Pretty- Design, Layout, Themes, and Internationalization(i18n)

[284]

 'enableAjaxValidation'=>true,
)); ?>

 <p class="note">Deriuqer era * htiw
sdleif.</p>

 <div class="row">
 <?php echo $form->labelEx($model,'username'); ?>
 <?php echo $form->textField($model,'username'); ?>
 <?php echo $form->error($model,'username'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'password'); ?>
 <?php echo $form->passwordField($model,'password'); ?>
 <?php echo $form->error($model,'password'); ?>
 <p class="hint">
 <tt>nimda\nimda</tt> ro <tt>omed\omed</tt> htiw nigol yam uoy
:tnih
 </p>
 </div>

 <div class="row rememberMe">
 <?php echo $form->checkBox($model,'rememberMe'); ?>
 <?php echo $form->label($model,'rememberMe'); ?>
 <?php echo $form->error($model,'rememberMe'); ?>
 </div>

 <div class="row buttons">
 <?php echo CHtml::submitButton('Nigol'); ?>
 </div>

<?php $this->endWidget(); ?>
</div><!-- form -->

We are already setting the target language for the application within the
SiteController::actionLogin() method, and the call to get the localized file
will be taken care of for us behind the scenes when calling render('login'). So,
with this in place, our login form now looks as shown in the following screenshot:

Chapter 11

[285]

Summary
In this iteration, we have seen how a Yii application allows you to quickly and easily
polish up the design. We were introduced to the concept of layout files and walked
through how to use these in an application to layout content and design that needs
to be implemented in a similar manner across many different web pages. This also
introduced us to the CMenu and CBreadcrumbs built-in widgets that provide easy
to use and implement UI navigational constructs on each page.

We then introduced the idea of a theme within Web applications and how they are
specifically implementing within a Yii application. We saw that themes allow you to
easily put a new face on an existing Web application and allow you to re-design your
application without re-building any of the functionality or backend

Finally, we looked at changing the face of the application through the lens of i18n
and language translation. We learned how to set the target locale of the application
to enable localization settings and language translations.

We have made a few references in this and past chapters to modules, but have yet to
dive into what exactly these are within a Yii application. That is going to be the focus
of the next chapter.

Iteration 9: Modules - Adding
Administration

So far we have added a lot of functionality to our TrackStar application. If you recall
back in Chapter 8, we introduced user access controls to restrict certain functionality
based on a user role hierarchy. This was helpful in restricting access to some of the
administrative functions on a per-project basis. For example, within a specific project,
you may not want to allow all members of the team access to delete the project. We
used a role based access control implementation to assign users to specific roles within
a project, and then allowed/restricted access to functionality based on those roles.

However, what we have not yet addressed are the administrative needs of the
application as a whole. Web applications such as TrackStar often require the ability
for very special users to have full access to administer everything. One example is
the ability to manage all the CRUD operations for every single user of the system,
regardless of the project. A system administrator of our application should be able
to log in and remove or update any user, any project, any issues, moderate all
comments, and so on. Also, it is often the case that we build extra features that apply
to the whole application, like the ability to leave site-wide system messages to all
users, manage e-mail campaigns, turn on/off certain application features, manage
the roles and permissions hierarchy itself, change the site theme, and so on. As the
functionality exposed to the administrator can differ greatly from the functionality
exposed to normal users, it is often a good idea to keep these features separate from
the rest of the application. We will be accomplishing this separation by building all
of our administrative functionality in what is called a module in Yii.

Iteration 9: Modules - Adding Administration

[288]

Iteration planning
In this iteration, we will focus on the following granular development tasks:

•	 Creating a new module to house administrative functionality
•	 Creating the ability for administrators to add system-wide messages for

application users to view on the projects listing page
•	 Applying a new theme to the module
•	 Creating a new table to hold the system message data
•	 Generating all CRUD functionality for our system messages
•	 Limiting access to all functionality within the new module only to

admin users
•	 Displaying new system messages on the projects listing page

Modules
A module is similar to an entire mini-application contained within a larger application.
It has a similar structure, containing models, views, controllers, and other supporting
components. However, modules cannot be deployed themselves as stand-alone
applications, they must reside within an application.

Modules are useful in helping architect your application in a modular fashion. Large
applications can often be segmented into discrete application features that could
be separately built using modules. Site features such as adding a user forum, user
blogs, or site-administrator functionality are some example candidates that could
be segmented from the main site features allowing them to be developed separately
and easily reused in future projects. We are going to use a module to create a distinct
place in our application to house our administrative functionality.

Creating a module
Creating a new module is a snap using our old friend, the Gii code generation tool.
With our URL changes in place, the tool is now accessible via http://localhost/
trackstar/gii. Navigate there, and choose the Module Generator option from the
left menu. You will be presented with the following screen:

Chapter 12

[289]

We need to provide a unique name for the module. As we are creating an admin
module, we'll be super creative and give it the name admin. So type this in for the
Module ID field, and click on the Preview button. As the following screenshot
shows, it will present you with all of the files it intends to generate, allowing you
to preview each of these files prior to creating them:

Iteration 9: Modules - Adding Administration

[290]

Then click the Generate button to have it create all of these files. You will need to
ensure that your /protected folder is writable by the web server process for it to
automatically create the required folders and files. The following screenshot shows a
successful module generation:

Let's take a closer look at what the module generator created for us. A module in
Yii is organized as a folder, the name of which is the same as the unique name of
the module. By default, all module folders reside under protected/modules. The
structure of each module folder is very similar to that of our main application. What
this command has done for us is to create the skeleton folder structure for the admin
module. As this was our first module, the top-level folder protected/modules
was created, and then an admin/ folder underneath. The following shows all of the
folders and files that were created when we executed the module command:

Name of folder Use/contents
admin/

AdminModule.php the module class file
components/ containing reusable user components
controllers/ containing controller class files

Chapter 12

[291]

Name of folder Use/contents
DefaultController.
php

the default controller class file

messages/ stores message translations specific to the module
models/ containing model class files
views/ containing controller view and layout files
default/ containing view files for DefaultController
index.php the index view file
layouts/ containing layout view files

A module must have a module class that extends either directly or from a child of
CWebModule. The module class name is created by combining the module ID (that is,
the name we supplied when we created the module, admin) and the string Module.
The first letter of the module ID is also capitalized. So, in our case, our admin module
class file is named AdminModule.php. The module class serves as the central place
for storing information shared by the module code. For example, we can use the
params property of CWebModule to store module specific parameters, and use its
components property to share application components at the module level. This
module class serves a similar role to the module as the application class does to the
entire application. So CWebModule is to our module what CWebApplication is to
our application.

Using a module
Just as the successful creation message indicated, before we can use our new module
we need to configure the modules property of the main application to include it for
use. We did this before when we added the gii module to our application, which
allowed us to access the Gii code generation tool. We make this change in the main
configuration file, protected/config/main.php. The following highlighted code
indicates the required change:

'modules'=>array(
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'iamadmin',
),
 'admin',
),

Iteration 9: Modules - Adding Administration

[292]

After saving this change, our new admin module is wired-up for use. We can take a
look at the simple index page that was created for us by visiting http://localhost/
trackstar/admin/default/index. The request routing structure to access pages in
our module is similar to that for our main application pages, except that we need to
include the moduleID in the route as well. So our routes will be of the general form /
moduleID/controllerID/actionID. Our URL request /admin/default/index is
requesting the admin module's default controller's index method. When we visit this
page, we see something similar to the following screenshot:

Theming a module
We immediately notice that there doesn't seem to be any layout applied to this
view. One might guess that maybe the controller that is rendering this view is
calling renderPartial() rather than render(). However, upon inspection of
our default admin controller file, /protected/modules/admin/controllers/
DefaultController.php, we see that it is, in fact, using the render() method.
Thus, we expect a layout file (if one exists) to be applied.

The issue is that almost everything is separate in a module, including the default
path for layout files. The default layout path for web modules is /protected/
modules/[moduleID]/views/layouts, where moduleID in our case is admin.
We can see that there are no files under this folder, so there is no default layout
to be applied.

There is slightly more to the story in our case, however. In the previous iteration,
we implemented a new theme, called new. We can also manage all of our module
view files, including the layout view files, within this theme as well. If we were to
do that, we need to add to our theme folder structure to accommodate our new
module. The folder structure is very much as expected. It is of a general form: /
themes/[themeName]/views/[moduleID]/layouts/ for layout files and /themes/
[themeName]/views/[moduleID]/[controllerID]/ for controller view files.

To clarify, let's walk through Yii's decision-making process when it is trying to
decide what view files to use for our new admin module. Here is what is happening
when $this->render('index') is issued in the DefaultController.php file
within our admin module:

Chapter 12

[293]

1. As render() is being called, as opposed to renderPartial(), it is going
to attempt to decorate the specified index.php view file with a layout file.
Our application is currently configured to use a theme called new, so it is
going to look for layout files under this theme folder. Our new module's
DefaultController class extends our application component Controller.
php, which has column1 specified as its $layout property. This property is
not overridden so it is also the layout file for DefaultController. Finally,
as this is all happening within the admin module, Yii first looks for the
following layout file: /themes/new/views/admin/layouts/column1.php.
Notice the inclusion of the moduleID in this folder structure.

2. This file does not exist, so it reverts to looking in the default location for the
module. As previously mentioned, the default layout folder is specific to each
module. So, in this case it will attempt to locate the following layout file:
/protected/modules/admin/views/layouts/column1.php.

3. This file also does not exist, so it will be unable to apply a layout. It will
now simply attempt render the specified index.php view file without a
layout. However, again as we have specified the specific "new" theme for
the application, it first looks for the following view file: /themes/new/
views/admin/default/index.php.

4. This file also does not exist, so it will look again in the default location for
this controller (DefaultController.php) within this module (AdminModule),
namely: /protected/modules/admin/views/default/index.php.

This explains why the page http://localhost/trackstar/admin/default/index
is rendered without any layout. To keep things completely separate and simple for
now, let us manage our view files in the default location for our module, rather than
under the new theme. Also, let's apply to our admin module the same design as our
original application had, that is, how the application looked before we applied the
new theme. This way our admin pages will have a different look from our normal
application pages, which will help remind us that we are in the special admin
section, but we won't have to spend any time coming up with a new design.

Applying a theme
First, let's set a default layout value for our module. We set our module-wide
configuration settings in the init() method within our module class, /protected/
modules/AdminModule.php. So open that file and add the following code in bold:

class AdminModule extends CWebModule
{
 public function init()
 {
 // this method is called when the module is being created

Iteration 9: Modules - Adding Administration

[294]

 // you may place code here to customize the module or the
application

 // import the module-level models and components
 $this->setImport(array(
 'admin.models.*',
 'admin.components.*',
));

 $this->layout = 'main';

 }
 ...

This way, if we have not specified a layout file at a more granular level, like in a
controller class, all of the module views will be decorated by the layout file main.php
located in the default layout folder for our module, namely /protected/modules/
admin/views/layouts/.

Now, of course, we need to create this file. Make a copy of the two layout files from
the main application: /protected/views/layouts/main.php and /protected/
views/layouts/column1.php, and place them both in the /protected/modules/
admin/views/layouts/ folder. After you have copied those over, we need to make
a few changes to both of them.

First let's alter column1.php. Remove the explicit reference to /layouts/main in the
call to beginContent() as follows:

<?php $this->beginContent(); ?>

<div class="container">
 <div id="content">
 <?php echo $content; ?>
 </div><!-- content -->
</div>
<?php $this->endContent(); ?>

Not specifying an input file when calling beginContent() will result in it using
the default layout for our module, which we just set to be our newly copied
main.php file.

Now let's make a few changes to our main.php layout file. We are going to add
Admin Console to our application header text to underscore that we are in a separate
part of the application. We will also alter our menu items to have a link to the admin
home page, as well as a link to go back to the main site. We can remove the About
and Contact links from this menu, as we don't need to repeat those options in our
admin section. The changes to the file are highlighted below:

Chapter 12

[295]

...
<div class="container" id="page">
<div id="header">

 <div id="logo"><?php echo CHtml::encode(Yii::app()->name) . " Ad-
min Console"; ?></div>

 </div><!-- header -->
 <div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(

 array('label'=>'Back To Main Site', 'url'=>array('/proj-
ect')),
 array('label'=>'Admin', 'url'=>array('/admin/default/in-
dex')),

 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
 </div><!-- mainmenu -->
...

We can leave the rest of the file unchanged. Now if we visit our admin module page,
we see something similar to the following screenshot:

If we click on the Back To Main Site link, we see that we are taken back to our newly
themed version of our main application.

Restricting admin access
One problem you may have already noticed is that anyone, including guest users,
can access our new admin module. We are building this admin module to expose
application functionality that should only be accessible to users with administrative
access. So, we need to address this issue.

Iteration 9: Modules - Adding Administration

[296]

Luckily, we have already implemented an RBAC access model in our application
back in Chapter 8. All we need to do now is extend it to include a new role for
administrators and new permissions available to that role.

If you recall from chapter 8, we used a Yii shell command to implement our
RBAC structure. We need to add to that. So, open up the file containing that shell
command, /protected/commands/shell/RbacCommand.php and add the following:

//create a general task-level permission for admins
 $this->_authManager->createTask("adminManagement", "access to the
application administration functionality");
 //create the site admin role, and add the appropriate permissions
$role=$this->_authManager->createRole("admin");
$role->addChild("owner";
$role->addChild("reader");
$role->addChild("member");
$role->addChild("adminManagement");
//ensure we have one admin in the system (force it to be user id #1)
$this->_authManager->assign("admin",1);

With these changes in place, we have to rerun our command to update the
database with these changes. To do so, just fire-up the yiic shell, and execute
the rbac command:

% cd Webroot/trackstar

% protected/yiic shell

>> rbac

With these changes to our RBAC model in place, we can add an access check to the
AdminModule::beforeControllerAction() method so that nothing within the
admin module will be executed unless the user has the admin role:

public function beforeControllerAction($controller, $action)
{
 if(parent::beforeControllerAction($controller, $action))
 {
 // this method is called before any module controller action
is performed
 // you may place customized code here

 if(!Yii::app()->authManager->checkAccess("admin", Yii::app()-
>user->id))

 {

 throw new CHttpException(403,Yii::t('yii','You are not au-
thorized to perform this action.'));

 }

Chapter 12

[297]

 else

 {

 return true;

 }

 }
 else
 return false;
}

With this in place, if a user who has not been assigned the admin role now attempts
to visit any page within the admin module, they will be met with an authorization
error page. For example, if you are not logged in and you attempt to visit the admin
page, you will be met with the following result:

The same holds true for any user that has not been assigned to the admin role.

Now we can conditionally add a link to the admin section of the site to our main
application menu. This way, users with administrative access won't have to
remember a cumbersome URL to navigate to the admin console. As a reminder,
our main application menu is located in our application's theme default application
layout file /themes/new/views/layouts/main.php. Open that file and add the
following highlighted code to the menu section:

<div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Projects', 'url'=>array('/project')),
 array('label'=>'About', 'url'=>array('/site/page',
'view'=>'about')),
 array('label'=>'Contact', 'url'=>array('/site/contact')),

 array('label'=>'Admin', 'url'=>array('/admin/default/index'),
'visible'=>Yii::app()->authManager->checkAccess("admin", Yii::app()-
>user->id)),

 array('label'=>'Login', 'url'=>array('/site/login'),

Iteration 9: Modules - Adding Administration

[298]

'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
</div><!-- mainmenu -->

Now, upon logging in to the application as a user with admin access, we will see a
new link in our top navigation that will take us to our newly added admin section
of the site.

Adding a system-wide message
As a module can really be thought of as a mini-application itself, adding functionality
to a module is really the same process as adding functionality to the main application.
Let's add some new functionality just for administrators; the ability to manage
system-wide messages displayed to users when they first log into the application.

Creating the database table
As is often the case with brand new functionality, we need a place to house our data.
We need to create a new table to store our system-wide messages. For our purposes,
we can keep this simple. Here is the definition for our table:

CREATE TABLE `tbl_sys_message`

(

 `id` INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

 `message` TEXT NOT NULL,

 `create_time` DATETIME,

 `create_user_id` INTEGER,

 `update_time` DATETIME,

 `update_user_id` INTEGER

)

Chapter 12

[299]

Create this new table in both the main trackstar_dev and our trackstar_test
databases.

Creating our model and CRUD scaffolding
With the table in place, our next step is to generate the model class using our favorite
tool, the Gii code generator. We'll first use the Model Generator option to create the
model class, and then the Crud Generator to create our basic scaffolding to quickly
interact with this model. Go ahead and navigate to the Gii tool form for creating a
new model. This time, as we are doing this within the context of a module, we need
to explicitly specify the model path. Fill out the form with the values depicted as
shown in the following screenshot (though, of course, your Code Template path
value should be specific to your local setup):

Iteration 9: Modules - Adding Administration

[300]

Now we can create the CRUD scaffolding in the same way. Again, the only real
difference between what we have done previously and what we are doing now is
our specification that the location of the model class is in the admin module. After
choosing the Crud Generator option from the Gii tool, fill out the Model Class and
Controller ID form fields as shown in the following screenshot:

This alerts the tool to the fact that our model class is under the admin module and
that our controller class, as well as all other files related to this code generation
should be placed within the admin module as well.

Complete the creation by first clicking on the Preview button, and then Generate.
The following is a list of all of the files that are created by this action:

Chapter 12

[301]

Adding a link to our new functionality
Let's add a new menu item within the main admin navigation that links to our newly
created message functionality. Open the file that contains our main menu navigation
for our module, /protected/modules/admin/views/layouts/main.php, and add
the following array item to the menu widget:

array('label'=>'System Messages', 'url'=>array('/admin/sysMessage/
index')),

As the auto-created controller and view files for our new system message
functionality were created to use a 2-column layout file, we can do one of two things.
We can alter the controller class to use our existing single column layout file, or we
can add a 2 column layout file to our module layout files. The latter is going to be
slightly easier and will also look better, as all of the view files are created to have
their sub-menu items (that is, the links to all the CRUD functionality) display in a
second right-hand column. Here is all we have to do:

1. Copy the 2 column layout from our main application to our module: That is,
copy /protected/views/layouts/column2.php to /protected/modules/
admin/views/layouts/column2.php.

2. Remove /layouts/main as input to the beginContent() method call on the
first line in the newly copied column2.php file.

3. Alter the SysMessage model class to extend TrackstarActiveRecord (If
you recall, this adds the code to automatically update our create_time/
user and update_time/user properties. Alter the SysMessageController
controller class to use the new column2.php layout file from within the
module folder and not the one from the main application. The autogenerated
code has specified $layout='application.views.layouts.column2', but
we need this to be simply $layout='column2'.

4. As we are extending TrackstarActiveRecord, we can remove the
unnecessary fields from our autogenerated sys messages creation form
and remove their associated rules from the model class. Remove the
following two rules from the SysMessage::rules() method:
array('create_user, update_user', 'numerical',
'integerOnly'=>true), and array('create_time, update_time',
'safe').

You don't absolutely have to do this last step, but it is good to get in to the habit of
only specifying rules for those fields that the user can input.

Iteration 9: Modules - Adding Administration

[302]

One last change we should make is to update our simple access rules to reflect the
requirement that only users in the admin role can access our action methods. This
is mostly for illustrative purposes as we already took care of the access using our
RBAC model approach in the AdminModule::beforeControlerAction method
itself. We could actually just remove the accessRules entirely. However, let's just
update them to reflect the requirement so you can see how that would work using
the access rule approach. In the SysMessageController::accessRules() method,
change the entire contents to the following:

public function accessRules()
{
 return array(
 array('allow', // allow only users in the 'admin' role access
to our actions
 'actions'=>array('index','view', 'create', 'update',
'admin', 'delete'),
 'roles'=>array('admin'),
),
 array('deny', // deny all users
 'users'=>array('*'),
),
);
}

Okay, with all of this in place, if we now access our new message input form by
visiting http://localhost/trackstar/admin/sysMessage/create, we are
presented with something similar to the following screenshot:

Chapter 12

[303]

Fill out this form with the message Hello Users! This is your admin speaking... and
then click Submit. The application will redirect you to the details listing page for this
newly created message as shown in the following screenshot:

Displaying the message to users
Now that we have a message in our system, let's display it to the user on the
application's home page.

Importing the new model class for application-wide
access
In order to access the newly created model from anywhere in our application,
we need to import it as a part of the application configuration. Alter protected/
config/main.php to include the new admin module models folder:

// autoloading model and component classes
'import'=>array(
 'application.models.*',
 'application.components.*',

 'application.modules.admin.models.*',

),

Iteration 9: Modules - Adding Administration

[304]

Selecting the most recently updated message
We'll restrict the display to just one message, and we'll choose the most recently
updated message, based on the update_time column in the table. As we want to add
this to the main projects listing page, we need to alter the ProjectController::act
ionIndex() method. Alter that method by adding the following highlighted code:

public function actionIndex()
 {
 $dataProvider=new CActiveDataProvider('Project');

 Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed'));

 //get the latest system message to display based on the
 update_time column

 $sysMessage = SysMessage::model()->find(array(

 'order'=>'t.update_time DESC',

));

 if($sysMessage != null)

 $message = $sysMessage->message;

 else

 $message = null;

 $this->render('index',array(
 'dataProvider'=>$dataProvider,

 'sysMessage'=>$message,

));
 }

Now we need to alter our view file to display this new bit of content. Add the
following to views/project/index.php, just above the <h1>Projects</h1>
header text:

<?php if($sysMessage != null):?>
 <div class="sys-message">
 <?php echo $sysMessage; ?>
 </div>
<?php endif; ?>

Chapter 12

[305]

Now when we visit our projects listing page (that is, our application's home page)
we can see it display as shown in the following screenshot:

Adding a little design tweak
Okay. This does what we wanted it to do, but this message does not really stand out
very well to the user. Let's change that by adding a little snippet to our main css file
(/themes/new/css/main.css):

div.sys-message
{
 padding:.8em;
 margin-bottom:1em;
 border:3px solid #ddd;
 background:#9EEFFF;
 color:#FF330A;
 border-color:#00849E;
}

With this in place, our message now really stands out on the page. The following
screenshot shows the message with these changes in place:

One might argue that this design tweak went a little too far. Users might get a
headache if they have to stare at those message colors all day. Rather than toning
down the colors, let's use a little JavaScript to fade the message out after five seconds.
As we will display the message every time the user visits this home page, it might be
nice to prevent them from having to stare at it for too long.

Iteration 9: Modules - Adding Administration

[306]

We'll make things easy on ourselves and take advantage of the fact that Yii comes
shipped with the powerful JavaScript framework jQuery. jQuery is an open source
JavaScript library that simplifies the interaction between the HTML Document
Object Model (DOM) and JavaScript. It is outside the scope of this book to dive
into the details of jQuery, but it is well worth visiting its documentation to become a
little acquainted with its features. As Yii comes shipped with jQuery, you can simply
register jQuery code in view files and Yii will take care of including the core jQuery
library for you.

We'll also use the application helper component CClientScript to register our
jQuery JavaScript code for us in the resulting web page. It will make sure it is
placed in the appropriate place as well as properly tagged and formatted.

So, let's alter what we previously added to include a snippet of JavaScript that will
fade out the message. Replace what we just added to views/project/index.php
with the following:

<?php if($sysMessage != null):?>
 <div class="sys-message">
 <?php echo $sysMessage; ?>
 </div>
<?php
 Yii::app()->clientScript->registerScript(
 'fadeAndHideEffect',
 '$(".sys-message").animate({opacity: 1.0}, 5000).
fadeOut("slow");'
);
endif; ?>

Now if we reload our main projects listing page, we see the message fade out after
five seconds. For more information on cool jQuery effects you can easily add to your
pages, take a look at the JQuery API documentation at: http://api.jquery.com/
category/effects/

Finally, to convince yourself everything is working as expected, you can add another
system-wide message. As this newer message will have a more recent update_time
property, it will be the one to display on the projects listing page.

Chapter 12

[307]

Summary
In this iteration, we have introduced the concept of a Yii module and demonstrated
its practicality by using one to create an administrative section of the site. We
demonstrated how to create a new module, how to apply a theme, how to add
application functionality within the module, and even how to take advantage of
an existing RBAC model to apply authorization access controls to a functionality
within a module. We also demonstrated how to use jQuery to add a dash of UI
flare to our application.

With the addition of this administrative interface, we now have all of the major
pieces of the application in place. Though the application is incredibly simple, we
feel it is time to get it ready for production. The next iteration will focus on preparing
our application for production deployment.

Iteration 10: Production
Readiness

Even though our application lacks a significant amount of feature functionality,
our (albeit imaginary) deadlines are approaching and our (also imaginary) client
is getting anxious about getting the application into a production environment.
Although it may take some time before our application actually sees the light of
day in production it is time to get the application "production ready". In this, our
final development iteration, we are going to do just that.

Iteration planning
In order to achieve the goal of preparing our application for a production
environment, we are going to focus on the following granular tasks:

•	 Implement Yii's application logging framework to ensure we are logging
information about critical production errors and events

•	 Implement Yii's application error handling framework to ensure we
understand how this works differently in a production environment
than in a development environment

•	 Implement application data caching to help improve performance

Logging
Logging is a topic that should arguably have been covered before this late stage in
the application development. Informational, warning, and severe error messages are
invaluable when it comes to troubleshooting software applications, most certainly
those in a production environment being used by real users.

Iteration 10: Production Readiness

[310]

Yii provides a flexible and extensible logging feature. Messages logged can be
classified according to log levels and message categories. Using level and category
filters, selected messages can be further routed to different destinations, such as written
to files on disc, sent to administrators as e-mails or displayed to browser windows.

Message logging
Our application has actually been logging many informational messages upon each
request the entire time. When the initial application was created, it was configured to
be in debug mode and, while in this mode, the Yii Framework itself logs information
messages. We can't actually see these messages because, by default, they are being
logged to memory. So, they are around only for the lifetime of the request.

Whether or not the application is in this debug mode is controlled by the following
line in the root index.php file:

defined('YII_DEBUG') or define('YII_DEBUG',true);

To see what is being logged, let's whip up a quick little action method in our
SiteController class to display the messages:

public function actionShowLog()
{
 echo "Logged Messages:

";
 var_dump(Yii::getLogger()->getLogs());
}

If we invoke this action by making the following request at: http://localhost/
trackstar/site/showLog, we see something similar to the following:

Chapter 13

[311]

If we comment out our global application debug variable, defined in index.php,
and refresh the page, we'll notice that nothing was logged. This is because this
system-level debugging information level logging is accomplished by calling
Yii::trace, which only logs the message if the application is in this special
debug mode.

We can log messages using one of two static application methods:

•	 Yii::log($message, $level, $category)
•	 Yii::trace($message, $category)

As mentioned, the main difference between these two methods is that Yii::trace
logs the message only when the application is in debug mode.

Categories and levels
When logging a message, we need to specify its category and level. The category is
represented by a string in the format of xxx.yyy.zzz, which resembles the path alias.
For example, if a message is logged in our application's SiteController class, we
may choose to use the category application.controllers.SiteController. The
category is there to provide extra context to the message being logged. In addition
to specifying the category, when using Yii::log, we can also specify a level for the
message. The level can be thought of as the severity of the message. You can define
your own levels, but typically they take on one of the following values:

•	 Trace: This level is commonly used for tracing the execution flow of the
application during development.

•	 Info: This level is for logging general information, and it is the default level if
none is specified.

•	 Profile: This level is to be used with the performance profile feature, which is
described below.

•	 Warning: This level is for warning messages.
•	 Error: This is level for fatal error messages.

Iteration 10: Production Readiness

[312]

Adding a login message log
As an example, let's add some logging to our user login method. We'll provide
some basic debugging information at the beginning of the method to indicate
the method is being executed. We'll then log an informational message upon
a successful login as well as a warning message if the login fails. Alter our
SiteController::actionLogin() method as follows:

/**
 * Displays the login page
 */
 public function actionLogin()
 {
 Yii::app()->language = 'rev';

 Yii::trace("The actionLogin() method is being requested",
"application.controllers.SiteController");

 if(!Yii::app()->user->isGuest)
 {
 $this->redirect(Yii::app()->homeUrl);
 }

 $model=new LoginForm;

 // if it is ajax validation request
 if(isset($_POST['ajax']) && $_POST['ajax']==='login-form')
 {
 echo CActiveForm::validate($model);
 Yii::app()->end();
 }

 // collect user input data
 if(isset($_POST['LoginForm']))
 {
 $model->attributes=$_POST['LoginForm'];
 // validate user input and redirect to the previous page
if valid

 if($model->validate() && $model->login())

 {

 Yii::log("Successful login of user: " . Yii::app()->user-
>id, "info", "application.controllers.SiteController");

 $this->redirect(Yii::app()->user->returnUrl);

 }

Chapter 13

[313]

 else

 {

 Yii::log("Failed login attempt", "warning", "application.
controllers.SiteController");

 }

 }
 // display the login form
 //public string findLocalizedFile(string $srcFile, string
$srcLanguage=NULL, string $language=NULL)
 $this->render('login',array('model'=>$model));

 }

If we now successfully log in (or perform a failed attempt) and visit our page to view
the logs, we don't see them (If you commented out the debug mode declaration,
make sure you have put the application back in debug mode for this exercise).
Again, the reason is that by default, the logging implementation in Yii simply stores
the messages in memory. They disappear when the request completes. This is not
terribly useful. We need to route them to a more persistent storage area so we can
view them outside of the request in which they are generated.

Message routing
As we mentioned, by default, messages logged using Yii::log or Yii::trace
are kept in memory. Typically, these messages are more useful if they are displayed
in browser windows, or saved to some persistent storage such as in a file, or in a
database or sent as an e-mail. Yii's message routing allows for the log messages to
be routed to different destinations.

In Yii, message routing is managed by a CLogRouter application component.
It allows you to define a list of destinations to which the log messages should
be routed.

In order to take advantage of this message routing, we need to configure the
CLogRouter application component in our protected/config/main.php config file.
We do this by setting its routes property with the desired log message destinations.

If we open our config file, we see that some configuration information has already
been provided (again, courtesy of using the yiic webapp command to initially
create our application). The following is already defined in our configuration:

'log'=>array
 'class'=>'CLogRouter',
 'routes'=>array(

Iteration 10: Production Readiness

[314]

 array(
 'class'=>'CFileLogRoute',
 'levels'=>'error, warning',
),
 // uncomment the following to show log messages on web pages
 /*
 array(
 'class'=>'CWebLogRoute',
),
 */
),
),

The log application component is configured to use the framework class CLogRouter.
You could also certainly create and use a custom child class of this if you have logging
requirements not fully met by the base framework implementation, but in our case,
this will work just fine.

What follows the class definition in the previous configuration is the definition of
the routes property. In this case, there is just one route specified. This one is using
the Yii Framework message routing class, CFileLogRoute. The CFileLogRoute
message routing class uses the filesystem to save the messages. By default, messages
are logged in a file under the application runtime folder, /protected/runtime/
application.log. In fact, if you have been following along with us and have your
own application, you can take a peek at this file and will see several messages that
have been logged by the framework. The levels specification dictates that only
messages whose log level is either error or warning will be routed to this file. The
part of the configuration in the preceding code that is commented out specifies
another route, CWebLogRoute. If used, this will route the message to be displayed on
the currently requested web page. The following is a list of message routes currently
available in version 1.1 of Yii:

•	 CDbLogRoute: Saves messages in a database table
•	 CEmailLogRoute: Sends messages to specified e-mail addresses
•	 CFileLogRoute: Saves messages in a file under the application

runtime folder
•	 CWebLogRoute: Displays messages at the end of the current web page
•	 CProfileLogRoute: Displays profiling messages at the end of the current

web page

The logging that we added to our SiteController::actionLogin() method used
Yii::trace for one message and then used Yii::log for two more. When using
Yii::trace, the log level is automatically set to trace. When using the Yii::log we

Chapter 13

[315]

specified an info log level if the login was successful and a warning level if the login
attempt failed. Let's alter our log routing configuration to write the trace and info
level messages to a new, separate file called infoMessages.log in the same folder
as our application.log file. Also, let's configure it to write the warning messages
to the browser. To do that, we make the following changes to the configuration:

'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CFileLogRoute',

 'levels'=>'error',
),
 array(
 'class'=>'CFileLogRoute',
 'levels'=>'info, trace',
 'logFile'=>'infoMessages.log',
),
 array(
 'class'=>'CWebLogRoute',
 'levels'=>'warning',
),

...

Now, after saving these changes, let's try out the different scenarios. First, try a
successful login. Doing so will write two messages out to our new /protected/
runtime/infoMessages.log file, one for the trace and then one logging the
successful login. After successfully logging in, viewing that file reveals the
following (The full listing was truncated to save a few trees):

…

2010/04/15 00:31:52 [trace] [application.controllers.SiteController] The
actionLogin() method is being requested
2010/04/15 00:31:52 [trace] [system.web.CModule] Loading "user"
application component
2010/04/15 00:31:52 [trace] [system.web.CModule] Loading "session"
application component
2010/04/15 00:31:52 [trace] [system.web.CModule] Loading "db"
application component
2010/04/15 00:31:52 [trace] [system.db.CDbConnection] Opening DB
connection
…

2010/04/15 00:31:52 [info] [application.controllers.SiteController] Successful
login of user: 1
…

Iteration 10: Production Readiness

[316]

Wow, there is a lot more in there than just our two messages. But our two did
show up; they are bolded in the above listing. Now that we are routing all of trace
messages to this new file, all of the framework trace messages are showing up here
as well. This is actually very informative and helps you get a picture of the lifecycle
of a request as it makes its way through the framework. There is a lot going on under
the covers. We would obviously turn off this verbose level of logging when moving
this application to production. In non-debug mode, we would only see our single
info level message. But this level of detail can be very informative when trying to
track down bugs and just figure out what the application is doing. It is comforting
to know it is here when/if ever needed.

Now let's try the failed login attempt scenario. If we now log out and try our login
again, but this time specify incorrect credentials to force a failed login, we see
our warning level display along the bottom of the returned web page, just as we
configured it to do. The following screenshot shows this warning being displayed:

When using the CLogRouter message router, the logfiles are stored under the
logPath property and the filename is specified by the logFile. Another great
feature of this log router is automatic logfile rotation. If the size of the logfile is
greater than the value set in the maxFileSize (in kilobytes) property, a rotation is
performed, which renames the current logfile by suffixing the filename with '1'. All
existing logfiles are moved backwards one place, that is, '.2' to '.3', '.1' to '.2'. The
property maxLogFiles can be used to specify how many files are to be kept.

Handling errors
Properly handling the errors that invariably occur in software applications is of the
utmost importance. This, again, is a topic that arguably should have been covered
prior to coding our application, rather than at this late stage. Luckily, though, as we
have been leaning on tools within the Yii Framework to autogenerate much of our
core application skeleton, our application is already taking advantage of some of
Yii's error handling features.

Chapter 13

[317]

Yii provides a complete error handling framework based on PHP 5 exceptions, a
built-in mechanism for handling program failures through centralized points. When
the main Yii application component is created to handle an incoming user request,
it registers its CApplication::handleError() method to handle PHP warnings
and notices. It registers its CApplication::handleException() method to handle
uncaught PHP exceptions. Consequently, if a PHP warning/notice or an uncaught
exception occurs during the application execution, one of the error handlers will take
over the control and start the necessary error handling procedure.

The registration of error handlers is done in the application's constructor
by calling the PHP functions set_exception_handler and set_
error_handler. If you prefer to not have Yii handle these types of
errors and exceptions, you may override this default behavior by defining
a global constant YII_ENABLE_ERROR_HANDLER and YII_ENABLE_
EXCEPTION_HANDLER to be false in the main index.php entry script.

By default, the application will use the framework class CErrorHandler as the
application component tasked with handling PHP errors and uncaught exceptions.
Part of the task of this built-in application component is displaying these errors using
appropriate view files based on whether or not the application is running in debug
mode or in production mode. This allows you to customize your error messages
for these different environments. It makes sense to display much more verbose
error information in a development environment, to help troubleshoot problems.
But allowing users of a production application to view this same information could
compromise security. Also, if you have implemented your site in multiple languages,
CErrorHandler also chooses the most preferred language for displaying the error.

You raise exceptions in Yii the same way you would normally raise a PHP exception.
One uses the following general syntax to raise an exception when needed:

throw new ExceptionClass('ExceptionMessage');

The two exception classes the Yii provides are:

•	 CException

•	 CHttpException

CException is a generic exception class. CHttpException represents an exception
that is intended to be displayed to the end user. CHttpException also carries
a statusCode property to represent an HTTP status code. Errors are displayed
differently in the browser, depending on the exception class that is thrown.

Iteration 10: Production Readiness

[318]

Displaying errors
As was previously mentioned, when an error is forwarded to the CErrorHandler
application component, it makes a decision as to which view file to use when
displaying the error. If the error is meant to be displayed to end users, such as is
the case when using CHttpException, the default behavior is to use a view named
errorXXX, where XXX represents the HTTP status code (for example, 400, 404, 500).
If the error is an internal one and should only be displayed to developers, it will use
a view named exception. When the application is in debug mode, a complete call
stack as well as the error line in the source file will be displayed.

However, this is not the full story. When the application is running in production
mode, all errors will be displayed using the errorXXX view files. This is because the
call stack of an error may contain sensitive information that should not be displayed
to just any end user.

When the application is in production mode, developers should rely on the error
logs to provide more information about an error. A message of level error will
always be logged when an error occurs. If the error is caused by a PHP warning or
notice, the message will be logged with category php. If the error is caused by an
uncaught exception, the category will be exception.ExceptionClassName, where
the exception class name is one of, or child class of, either CHttpException or
CException. One can thus take advantage of the logging features, discussed in the
previous section, to monitor errors that occur within a production application.

By default, CErrorHandler searches for the location of the corresponding view file
in the following order:

1. WebRoot/themes/ThemeName/views/system: The system view file under
the currently active theme.

2. WebRoot/protected/views/system: The default system view file for an
application.

3. YiiRoot/framework/views: The standard system view folder provided
by the Yii Framework.

So, you can customize the error display by creating custom error view files under
the system view folder of the application or theme.

Yii also allows you to define a specific controller action method to handle the display
of the error. This is actually how our application is configured. We'll see this as we
go through a couple of examples.

Chapter 13

[319]

Let's look at a couple examples of this in action. Some of the code that was generated
for us as a by-product of using the Gii CRUD generator tool to create our CRUD
scaffolding is taking advantage of Yii's error handling. One such example is the
ProjectController::loadModel() method. That method is defined as follows:

public function loadModel()
{
 if($this->_model===null)
 {
 if(isset($_GET['id']))
 $this->_model=Project::model()->findbyPk($_GET['id']);
 if($this->_model===null)

 throw new CHttpException(404,'The requested page does not
 exist.');

 }
 return $this->_model;
}

We see that it is attempting to load the appropriate Project model AR instance based
on the input id querystring parameter. If it is unable to locate the requested project,
it throws a CHttpException as a way to let the user know that the page they are
requesting, in this case the project details page, does not exist. We can test this in our
browser by explicitly requesting a project that we know does not exist. As we know
our application does not have a project associated with an ID of 99, a request for
http://localhost/trackstar/project/view/id/99 will result in the following
page being returned:

Iteration 10: Production Readiness

[320]

This is nice, because the page looks like any other page in our application, with the
same theme, header, footer, and so on. This is actually not the default behavior for
rendering this type of error page. Our initial application was configured to use a
specific controller action for the handling of such errors. We mentioned this was
another option for how to handle errors in an application. If we take a peek into
this configuration file, we see the following code snippet:

'errorHandler'=>array(
 // use 'site/error' action to display errors
 'errorAction'=>'site/error',
),

This configures our error handler application component to use the
SiteController::actionError() method to handle all of the exceptions intended
to be displayed to users. If we take a look at that action method, we notice that it is
rendering the protected/views/site/error.php view file. This is just a normal
controller view file, so it will also render any relevant application layout files and
will apply the appropriate theme. This way, we are able to provide the user with a
very friendly experience when certain errors happen.

To see what the default behavior is, without this added configuration, let's
temporarily comment out the above lines of configuration code (in protected/
config/main.php) and request the non-existent project again. Now we see the
following page:

As we have not explicitly defined any custom error pages following the convention
outlined earlier, this is the error404.php file in the Yii Framework itself.

Go ahead and revert these changes to the configuration file to have the error
handling use the SiteController::actionError() method.

Now let's see how this compares to throwing a CException, rather than the HTTP
exception class. Let's comment out the current line of code throwing the HTTP
exception and add a new line to throw this other exception class, as follows:

public function loadModel()
{
 if($this->_model===null)
 {

Chapter 13

[321]

 if(isset($_GET['id']))
 $this->_model=Project::model()->findbyPk($_GET['id']);
 if($this->_model===null)

 //throw new CHttpException(404,'The requested page does
 not exist.');

 throw new CException('The is an example of throwing a
 CException');

 }
 return $this->_model;
}

Now if we make our request for a non-existent project, we see a very different result.
This time we see a system generated error page with a full stack trace error info dump
along with the specific source file where the error occurred. The results were a little
too long to capture in a screenshot, but it will display the fact that a CException was
thrown along with the description The is an example of throwing a CException,
the source file and then the full stack trace.

So throwing this different exception class, along with the fact the application is in
debug mode, has a different result. This is the type of information we would like to
display to help us troubleshoot the problem, but only as long as our application is
running in a secure development environment. Let's temporarily comment out the
debug setting in the root index.php file, in order to see what would be displayed
when in production mode:

// remove the following line when in production mode
//defined('YII_DEBUG') or define('YII_DEBUG',true);

With this commented out, if we refresh our request for our non-existent project,
we see that the exception is displayed as an end-user friendly HTTP 500 error, as
depicted in the following screenshot:

Iteration 10: Production Readiness

[322]

So we see that none of our sensitive code or stack trace information is displayed
when in production mode.

Caching
Caching data is a great method for helping to improve the performance of a
production web application. If there is specific content that is not expected to change
upon every request, using the cache to store and serve this content can save the time
it takes to retrieve and process that data.

Yii provides for some nice features when it comes to caching. The tour of Yii's
caching features will begin with configuring a cache application component. Such
a component is one of several child classes extending CCache, the base class for
cache classes with different cache storage implementations.

Yii provides many different specific cache component class implementations that
store the data utilizing different approaches. The following is a list of the current
cache implementations that Yii provides as of version 1.1.2:

•	 CMemCache: Uses the PHP memcache extension.
•	 CApcCache: Uses the PHP APC extension.
•	 CXCache: Uses PHP XCache extension
•	 CEAcceleratorCache: Uses the PHP EAccelerator extension.
•	 CDbCache: Uses a database table to store cached data. By default, it will

create and use a SQLite3 database under the runtime folder. You can explicitly
specify a database for it to use by setting its connectionID property.

•	 CZendDataCache: Uses Zend Data Cache as the underlying caching medium.
•	 CFileCache: Uses files to store cached data. This is particular suitable to

cache large chunk of data (such as pages).
•	 CDummyCache: This presents the consistent cache interface, but does not

actually perform any caching. The reason for this implementation is to that if
you are faced with situation where your development environment does not
have cache support, you can still execute and test your code that will need to
use cache once available. This allows you to continue to code to a consistent
interface, and when the time comes to actually implement a real caching
component. You will not need to change the code written to write
to or retrieve data from cache.

Chapter 13

[323]

All of these components extend from the same base class, CCache and expose
a consistent API. This means that you can change the implementation of the
application component in order to use a different caching strategy without
having to change any of the code that is using the cache.

Configuring for cache
As was mentioned, using cache in Yii typically involves choosing one of these
implementations, and then configuring the application component for use in the /
protected/config/main.php file. The specifics of the configuration will, of course,
depend on the specific cache implementation. For example, if one were to use the
memcached implementation, that is, CMemCache, which is a distributed memory
object caching system that allows you to specify multiple host servers as your cache
servers, configuring it to use two servers might look similar to:

array(

 'components'=>array(

 'cache'=>array(
 'class'=>'system.caching.CMemCache',
 'servers'=>array(
 array('host'=>'server1', 'port'=>12345,
'weight'=>60),
 array('host'=>'server2', 'port'=>12345,
'weight'=>40),
),
),
),
);

To keep things relatively simple for the reader following along with the TrackStar
development, we'll use the filesystem implementation, CFileCache, as we go
through some examples. This should be readily available on any development
environment that allows access to reading and writing files from the filesystem.

If for some reason this is not an option for you, but you still want to
follow along with the code examples, simply use the CDummyCache
option. As mentioned, it won't actually store any data in the cache, but
the code will execute against it just fine.

Iteration 10: Production Readiness

[324]

CFileCache provides a file-based caching mechanism. When using this
implementation, each data value being cached is stored in a separate file. By
default, these files are stored under the protected/runtime/cache/ folder, but
one can easily change this by setting the cachePath property when configuring
the component. For our purposes, this default is fine, so we simply need to add
the following to the components array in our /protected/config/main.php
configuration file as such:

// application components
 'components'=>array(
 …

 'cache'=>array(

 'class'=>'system.caching.CFileCache',

),

 …
),

With this in place, we can access this new application component anywhere in our
running application via Yii::app()->cache.

Using a file-based cache
Let's try out this new component. Remember that system message we added as
part of our administrative functionality in the previous iteration? Rather than get it
from the database upon every request, let's store the value initially returned from
the database in our cache for a limited amount of time, so that not every subsequent
request has to retrieve the data from the database.

Let's add a new public method to our SysMessage AR model class to handle the
retrieval of the latest system messages. Let's make this new method both public and
static so that other parts of the application can easily use this method to access the
latest system message without having to explicitly create an instance of SysMessage.
This also will help in writing our test.

Test? You'd probably thought we forgot all about our test-first approach to
development at this point. Well, we haven't, so let's get back to it.

Create a new test file, protected/tests/unit/SysMessgeTest.php, and add to it
the following a fixture definition and single test method:

<?php
class SysMessageTest extends CDbTestCase
{
 public function testGetLatest()
 {

Chapter 13

[325]

 $message = SysMessage::getLatest();
 $this->assertTrue($message instanceof SysMessage);
 }
}

Running this test from the command line will immediately fail due to the fact that
we have not yet added this new method. Let's add this method to the SysMessage
class as follows:

/**
 * Retrieves the most recent system message.
 * @return SysMessage the AR instance representing the latest
system message.
 */

public static function getLatest()
{

 //see if it is in the cache, if so, just return it
 if(($cache=Yii::app()->cache)!==null)
 {
 $key='TrackStar.ProjectListing.SystemMessage';
 if(($sysMessage=$cache->get($key))!==false)
 return $sysMessage;
 }
 //The system message was either not found in the cache, or
//there is no cache component defined for the application
//retrieve the system message from the database
 $sysMessage = SysMessage::model()->find(array(
 'order'=>'t.update_time DESC',
));
 if($sysMessage != null)
 {
 //a valid message was found. Store it in cache for future
retrievals
 if(isset($key))
 $cache->set($key,$sysMessage,300);
 return $sysMessage;
 }
 else
 return null;
 }

Iteration 10: Production Readiness

[326]

We'll cover the details in just a minute. First, let's get our test to pass. With this in place,
if we run our test again, we still get a failure. But this time, the failure is because our
method is returning null, and we are testing for a non-null return value. The reason
that it is returning null is that there are no system messages in our test database.
Remember, our tests are run against the trackstar_test database. Okay, no problem,
fixtures to the rescue. Add a new fixture file protected/tests/fixtures/tbl_sys_
message.php which is similar to look this:

<?php
return array(
 'message1'=>array(
 'message' => 'This is a test message',
 'create_time' => new CDbExpression('NOW()'),
 'create_user_id' => 1,
 'update_time' => new CDbExpression('NOW()'),
 'update_user_id' => 1,
),
);

Also, ensure that the test case class is configured to be using the fixture by verifying
the following code is at the top of the SysMessageTest test class:

public $fixtures=array(
 'messages'=>'SysMessage',
);

Okay, now we can fire off our test again, and this time it succeeds. The method
should have tried to retrieve the message from the cache. But, as this was the
first time for the request in our test environment, it would not yet be there. So, it
proceeded to retrieve it from the database and then store the result into cache for
subsequent requests.

If we do a folder listing for the default location being used for file caching,
protected/runtime/cache/, we do indeed see one strangely named file
(yours may be slightly different):

8b22da6eaf1bf772dae212cd28d2f4bc.bin

Which if we open in a text editor, reveals the following:

a:2:{i:0;O:10:"SysMessage":11:{s:18:"CActiveRecord_md";N;s:19:"18
CActiveRecord_new";b:0;s:26:"CActiveRecord_attributes";a:6:{s:2
:"id";s:1:"1";s:7:"message";s:22:"This is a test
message";s:11:"create_time";s:19:"2010-07-08
21:42:00";s:14:"create_user_id";s:1:"1";s:11:"update_time";s:19:"2010-
07-08
21:42:00";s:14:"update_user_id";s:1:"1";}s:23:"18CActiveRecord18_rela

Chapter 13

[327]

ted";a:0:{}s:17:"CActiveRecord_c";N;s:18:"CActiveRecord_pk";s
:1:"1";s:15:"CModel_errors";a:0:{}s:19:"CModel_validators";N;
s:17:"CModel_scenario";s:6:"update";s:14:"CComponent_e";N;s:1
4:"CComponent_m";N;}i:1;N;}

This is the serialized, cached value of our most recently updated SysMessage AR
class instance, which is exactly what we would expect to be there. So, we see that
the caching is actually working.

When running tests, executing the application in the test environment,
against the test database, we might want to configure a different location
to cache our test data. In this case, we might want to add to our test
application configuration, protected/config/test.php, a cache
component that is configured slightly differently. For example, if we
wanted to specify a different folder to place the test cache data, we could
add the following to our application components in this test config file:
'cache'=>array(
 'class'=>'system.caching.CFileCache',
 'cachePath'=> '/Webroot/trackstar/protected/runtime/cache/test',
),
This way, we won't alter our test results by reading that was cached from
normal use of the main development application.

Let's revisit the above code for our new SysMessage::getLatest() method in a bit
more detail. The first thing the code is doing is checking to see if the requested data
is already in the cache, and if so, returns that value:

//see if it is in the cache, if so, just return it

if(($cache=Yii::app()->cache)!==null)

{

 $key='TrackStar.ProjectListing.SystemMessage';

 if(($sysMessage=$cache->get($key))!==false)

 return $sysMessage;

}

Iteration 10: Production Readiness

[328]

As we mentioned, we configured the cache application component to be available
anywhere in the application via Yii::app()->cache. So, it first checks to see if there
even is such a component defined. If so, it attempts to look up the data in the cache
via the $cache->get($key) method. This does more or less what you would expect.
It attempts to retrieve a value from cache based on the specified key. The key is a
unique string identifier that is used to map to each piece of data stored in the cache.
In our system message example, we only need to display one message at a time, and
therefore can have a fairly simple key identify the single system message to display.
The key can be any string value, as long as it remains unique for each piece of data
we want to cache. In this case we have chosen the descriptive string TrackStar.
ProjectListing.SystemMessage as the key used when storing and retrieving
our cached system message.

When this code is executed for the very first time, there will not yet be any data
associated with this key value in the cache. Therefore, a call to $cache->get() for
this key will return false. So, our method will continue to the next bit of code, which
simply attempts to retrieve the appropriate system message from the database, using
the AR class:

$sysMessage = SysMessage::model()->find(array(
 'order'=>'t.update_time DESC',
));

We then proceed with the following code that first checks if we did get anything
back from the database. If we did, then it stores it in the cache before returning the
value, otherwise, null is returned:

if($sysMessage != null)
{
 if(isset($key))
 $cache->set($key,$sysMessage->message,300);
 return $sysMessage->message;
}
else
 return null;

If a valid system message was returned, we use the $cache->set() method to store
the data into cache. This method has the following general form:

set($key,$value,$duration=0,$dependency=null)

When placing a piece of data into cache, one must specify a unique key, as well
as the data to be stored. The key is a unique string value, as discussed above, and
the value is whatever data desired to be cached. This can be in any format, as long
as it can be serialized. The duration parameter specifies an optional time-to-live
(TTL) requirement. This can be used to ensure that the cached value is refreshed

Chapter 13

[329]

after a period of time. The default is 0, which means it will never expire, that is, it
will live forever in the cache. (Actually, internally, Yii translates a value of <=0 for
the duration to mean that it should expire in one year. So, not exactly forever, but
definitely a long time).

We are calling the set() method in the following manner:

$cache->set($key,$sysMessage->message,300);

We set the key to be what we had it defined as before, TrackStar.ProjectListing.
SystemMessage, the data being stored is the message attribute of our returned
SystemMessage AR class, that is, the message column of our tbl_sys_message table,
and then we set the duration to be 300 seconds. This way, the data in the cache will
expire every five minutes, at which time the database is queried again for the most
recent system message. We did not specify a dependency when we set the data. We'll
discuss this optional parameter next.

Cache dependencies
The dependency parameter allows for an alternative and much more sophisticated
approach to deciding whether or not the stored data in the cache should be
refreshed. Rather than declaring a simple time period for the expiration of cached
data, your caching strategy may require that the data become invalid based on
things like the specific user making the request, or the general mode or state of the
application, or whether a file on the filesystem has been recently updated. This
parameter allows you to specify such cache validation rules.

The dependency is an instance of CCacheDependency or its child class. Yii makes
available the following specific cache dependencies:

•	 CFileCacheDependency: The data in the cache will be invalid if the specified
file's last modification time has changed since the previous cache lookup.

•	 CDirectoryCacheDependency: Similar to the above for the file cache
dependency, but this checks all the files and subdirectories within a given
specified folder.

•	 CDbCacheDependency: The data in the cache will be invalid if the
query result of a specified SQL statement is changed since the previous
cache lookup.

•	 CGlobalStateCacheDependency: The data in the cache will be invalid if the
value of the specified global state is changed. A global state is a variable that
is persistent across multiple requests and multiple sessions in an application.
It is defined via CApplication::setGlobalState().

Iteration 10: Production Readiness

[330]

•	 CChainedCacheDependency: This allows you to chain together multiple
dependencies. The data in the cache will become invalid if any of the
dependencies on the chain is changed.

•	 CExpressionDependency: The data in the cache will be invalid if the result
of the specified PHP expression is changed.

To provide a concrete example, let's use a dependency to expire the data in
the cache whenever a change to the tbl_sys_message database table is made.
Rather than arbitrarily expire our cached system message after five minutes,
we'll expire it exactly when we need to, that is, when there has been a change to
the update_time column for one of the system messages in the table. We'll use
the CDbCacheDependency implementation to achieve this, since it is designed to
invalidate cached data based on a change in the results of a SQL query.

We alter our call to the set() method to set the duration time to 0, so that it won't
expire based on time, but pass in a new dependency instance with our specified SQL
statement as such:

$cache->set($key, $sysMessage->message, 0, new
CDbCacheDependency('select id from tbl_sys_message order by update_
time desc'));

Changing the duration TTL time to 0 is not at all a prerequisite of using
a dependency. We could have just as easily left the duration in as 300
seconds. This would just stipulate another rule to render the data in the
cache invalid. The data would only be valid in the cache for a maximum
of five minutes, but would also be regenerated prior to this time limit if
there as a change to the update_time column occurred on one or more
records in the table.

With this in place, the cache will expire only when the results of the query statement
are changed. This example is a little contrived, since we were originally caching the
data to avoid a database call altogether. Now we have configured it to execute a
database query every time we attempt to retrieve data from cache. However, if the
cached data was a much more complex data set, that involved much more overhead
to retrieve and process, a simple SQL statement for cache validity could make a lot
of sense. The specific caching implementation, the data stored, the expiration time as
well as any other data validation in the form of these dependencies will all depend
on the specific requirements of the application being built. It is good to know that Yii
has many options available to help meet our varied requirements.

To complete the changes to our application to take advantage of the caching of data
in our new method, we still need to refactor the ProjectController::actionIn
dex() method to use this newly create method. This is easy. Just replace the code

Chapter 13

[331]

that was generating the system message from the database, with a call to this new
method. That is, in ProjectController::actionIndex(), simply change this:

$sysMessage = SysMessage::model()->find(array('order'=>'t.update_time
DESC',));

to the following:

$sysMessage = SysMessage::getLatest();

Now the system message being displayed on the projects listing page is taking
advantage of the file cache.

Fragment caching
The previous example demonstrates the use of data caching. This is where we take
a single piece of data and store it in the cache. There are other approaches available
in Yii to store fragments of pages generated by a portion of a view script, or even the
entire page itself.

Fragment caching refers to caching a fragment of a page. We can take
advantage of fragment caching inside of view scripts. To do so, we use the
CController::beginCache() and CController::endCache() methods. These
two methods are used to mark the beginning and the end of the rendered page
content that should be stored in cache. Just as is the case when using a data caching
approach, we need a unique key to identify the content being cached. In general,
the syntax for using fragment caching inside of a view script is as follows:

...some HTML content...
<?php if($this->beginCache($key)) { ?>
...content to be cached...
<?php $this->endCache(); } ?>
...other HTML content...

If the call to beginCache() returns false, the cached content will be automatically
inserted at that place; otherwise, the content inside the if statement will be executed
and will be cached when endCache() is invoked.

Declaring fragment caching options
When calling beginCache(), we can supply an array as the second parameter
consisting of caching options to customize the fragment caching. As a matter of
fact, the beginCache() and endCache() methods are a convenient wrapper of the
COutputCache filter/widget. Therefore, the caching options can be initial values
for any properties of COutputCache.

Iteration 10: Production Readiness

[332]

Arguably one of the most common options specified when caching data is the
duration, which specifies how long the content can remain valid in the cache. It is
similar to the duration parameter we used when using the data caching approach
for our system messages. You can specify the duration parameter when calling
beginCache() as follows:

$this->beginCache($key, array('duration'=>3600))

The default setting for this fragment caching approach is different than that for the
data caching. If we do not set the duration, it defaults to 60 seconds, meaning the
cached content will be invalidated after 60 seconds. There a many other options you
can set when using the fragment caching. For more information, refer to the API
documentation for COutputCache as well as the fragment caching section of the
definitive guide, available on the Yii Framework site: http://www.yiiframework.
com/doc/guide/caching.fragment

Using fragment cache
Let's implement this in our TrackStar application. We'll again focus on the project
listings page. As you recall, towards the bottom of this page, there is a list of the
comments that users have left on the issues associated with each project. This list
indicates who left a comment on which issue. Rather than re-generate this list upon
each request, let's use fragment caching to cache this list for, say, two minutes. The
application can tolerate this data being slightly stale, and two minutes is really not
that long to have to wait for an updated comment list.

To do this, we make our changes to the listing view file, protected/views/
project/index.php. We'll wrap the call to our entire recent comments portlet
inside this fragment caching approach, as such:

<?php
$key = "TrackStar.ProjectListing.RecentComments";
if($this->beginCache($key, array('duration'=>120))) {
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments',
));
 $this->widget('RecentComments');
 $this->endWidget();
 $this->endCache();
}
?>

Chapter 13

[333]

With this in place, if we visit the project listings page for the first time, our comments
list will be stored in the cache. If we then quickly (by quickly, we mean before two
minutes have elapsed) add a new comment to one of the issues within a project, and
then toggle back to the project listings page, we won't immediately see the newly
added comment. But if we keep refreshing the page, once the content in the cache
expires (a maximum of two min in this case), the data will be refreshed, and our new
comment will be displayed in the listing.

You could also simply add an echo time(); PHP statement to the above
cached content to see if it is working as expected. If the content is properly
caching, the time display will not update until the cache is refreshed.
When using the file cache, remember to ensure that your /protected/
runtime/ folder is writable by the web server process, as this is where
the cache content is stored by default.

Page caching
In addition to fragment caching, Yii offers options to cache the results of the entire
page request. Page caching is similar to that of fragment caching. However, because
the content of an entire page is often generated by applying additional layouts to
a view, we can't simply call beginCache() and endCache() in the layout file. The
reason is because the layout is applied within the call to the CController::render()
method after the content view is evaluated. So, we would always miss the opportunity
to retrieve the content from the cache.

Therefore, to cache a whole page, we should entirely skip the execution of the action
generating the page content. To accomplish this, we can use COutputCache class as
an action filter in our controller class.

Let's provide an example. Let's use the page caching approach to cache the page
results for every project detail page. The project detail pages in TrackStar are
rendered by requesting URLs of the format, http://localhost/trackstar/
project/view/id/[id], where [id] is the specific project ID we are requesting
the details of. What we want to do is set up a page caching filter that will cache
the entire contents of this page, separately for every ID requested. We need to
incorporate the project ID into the key value when we cache the content. That is,
we don't want to make a request for the details of project #1, and have the
application return a cached result for project #2. Luckily, the COutputCache filter
anticipated this need.

Iteration 10: Production Readiness

[334]

Open protected/controllers/ProjectController.php and alter the existing
filters() method as such:

public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD
operations

 array(

 'COutputCache + view', //cache the entire output from
 the actionView() method for 2 minutes

 'duration'=>120,

 'varyByParam'=>array('id'),

),

);
}

This filter configuration utilizes the COutputCache filter to cache the entire output
generated by the application from a call to ProjectController::actionView().
The + view added just after the COutputCache declaration, as you may recall, is
the standard way we include specific action methods to which a filter should apply.
The duration parameter specifies a TTL of 120 seconds (2 min), after which the page
content will be regenerated.

The varyByParam configuration is a really great option that we alluded to
before. Rather than putting the responsibility on you, the developer, to come up
with a unique key strategy for the content being cached, this feature allows the
variation to be handled automatically. In this case, by specifying a list of names
that correspond to GET parameters in the input request. Since we are caching the
page content of requests for projects by project_id, it makes perfect sense to use
this id as part of the unique key generation for caching the content. By specifying
'varyByParam'=>array('id'), COutputCache does this for us, based on the input
querystring parameter, id. There are more options available to achieve this type of
auto content variation strategy when using COutputCache to cache our data. As of
this writing, the following variation features are available to use:

•	 varyByRoute: By setting this option to true, the specific request route will be
incorporated into the unique identifier for the cached data. Therefore, you
can use the combination of the requested controller and action to distinguish
cached content.

•	 varyBySession: By setting this option to true, the unique session id is used
distinguish the content in the cache. Each user session may see different
content but all of this content can still be served from the cache.

Chapter 13

[335]

•	 varyByParam: As discussed previously, this uses the input GET querystring
parameters to distinguish the content in the cache.

•	 varyByExpression: By setting this option to a PHP expression, we can use
the result of this expression to distinguish the content in the cache.

So, with the above filter configured in our ProjectController class, each request
for a specific project details page is stored in the cache for up to two minutes before
being regenerated and again stored in the cache. You can test this out by first
viewing a specific project, then updating that project in some way. Your updates
will not immediately display if done within the TTL of two minutes.

Caching entire page results is a great way to improve site performance, however it
certainly does not make sense for every page in every application. A combination
of the above three approaches: data, fragment and page caching, will probably need
to be implemented in most real-world applications. We have really just scratched
the surface of all caching options available within Yii. Hopefully this has whet your
appetite to further investigate the full caching landscape available.

General performance tuning tips
Before we wrap up this final iteration, we'll briefly outline some other areas
of consideration when working to tweak the performance of a Yii-based
web application.

These more or less come straight from the Performance Tuning section of the
Yii definitive guide, http://www.yiiframework.com/doc/guide/topics.
performance. But it is good to restate them here for completeness and
general awareness.

Using APC
Enabling the PHP APC extension is perhaps the easiest way to improve the
overall performance of an application. The extension caches and optimizes PHP
intermediate code and avoids the time spent in parsing PHP scripts for every
incoming request.

Disabling debug mode
We discussed this earlier in the chapter, but it won't hurt to hear it again. Disabling
debug mode is another easy way to improve performance and security. A Yii
application runs in debug mode if the constant YII_DEBUG is defined as true in
the main index.php entry script. Many components, including those down in the
framework itself, incur extra overhead when running in debug mode.

Iteration 10: Production Readiness

[336]

Using yiilite.php
When the PHP APC extension is enabled, one can replace yii.php with a
different Yii bootstrap file named yiilite.php. This can help to further boost the
performance of a Yii-powered application. The file yiilite.php comes with every
Yii release. It is the result of merging some commonly used Yii class files. Both
comments and trace statements are stripped from the merged file. Therefore, using
yiilite.php would reduce the number of files being included and avoid execution
of trace statements.

Note, using yiilite.php without APC may actually reduce
performance, because yiilite.php contains some classes that
are not necessarily used in every request and would take extra
parsing time. It is also observed that using yiilite.php is slower
with some server configurations, even when APC is turned on. The
best way to judge whether to use yiilite.php or not is to run a
benchmark using the included hello world demo.

Using caching techniques
As we described and demonstrated in this chapter, Yii provides many caching
solutions that may improve the performance of a web application significantly.
The available caching systems are as follows:

•	 If the generation of some data takes long time, we can use the data caching
approach to reduce the data generation frequency

•	 If a portion of page remains relatively static, we can use the fragment caching
approach to reduce its rendering frequency

•	 If a whole page remains relative static, we can use the page caching approach
to save the rendering cost for the whole page

Enabling schema caching
If the application is using Active Record, one can turn on the schema caching in a
production environment to save the time of parsing database schema. This can be
done by configuring the CDbConnection::schemaCachingDuration property to
be a value greater than 0.

Besides these application-level caching techniques, we can also use server-side
caching solutions to boost the application performance. The enabling of APC
caching that we described above belongs to this category. There are other
server-side techniques, such as Zend Optimizer, eAccelerator and Squid,
just to name a few.

Chapter 13

[337]

These, for the most part, just provide some good-practice guidelines as you work
to prepare your Yii application for production, or as you troubleshoot an existing
application for bottlenecks. General application performance tuning is much more
art than science, and there are many, many factors outside of the Yii Framework
that play into the overall performance. Yii has been built with performance in mind
since its inception and continues to out-perform many other PHP-based application
development frameworks by a long shot (see http://www.yiiframework.com/
performance/ for more details). Of course, every single web application will need
to be tweaked to enhance its performance, but making Yii the development
framework of choice certainly puts your application on a great performance
footing from the onset.

Summary
In this final iteration, we turned our attention to making changes to our application to
help improve its maintainability and performance in a production environment. We
first covered application logging strategies available in Yii, and how to log and route
messages based on varying severity levels and categories. We then turned focus to
error handling and how Yii exploits the underlying exception implementation in PHP
5 to provide a flexible and robust error handling framework. We then learned about
some different caching strategies available in Yii. We learned about the caching of
application data and content at varying levels of granularity. Data caching for specific
variables or individual pieces of data, fragment caching for content areas within pages,
and full page caching to cache the entire rendered output of a page request. Finally, we
provided a list of "good practices" to follow when working to improve the performance
of a Yii-powered Web application.

Unfortunately, our TrackStar application is actually quite far from a complete, full
featured task management system, and even many of the concepts covered were
left to the reader to fully implement. However, a nice foundation on which to build
has been laid, and now that you have the power of Yii on your side, you could very
quickly turn this into a much more useable and feature-rich application. Also a great
many of the examples covered will translate well to other types of Web applications
you may be building. Good luck with your future projects, and happy developing!

Index
Symbols
$dsn variable

about 57
formats 57

$pageTitle attribute 261

A
accessControl filter 114

about 173
implementing 174, 175

access rules
about 176
actions 176
controllers 176
expression 176
ips 176
roles 176
users 176
verbs 176

accessRules() method 175, 203
actionAdduser() method 203-212
actionAdmin() contorller action 176
actionCreate() method 12, 114
actionDelete() controller action 176
actionFeed() method 244
actionGoodbye() method 31
actionHelloWorld() method 25, 28, 44
actionID parameter 25
actionIndex() method 12, 26, 129
actionLogin() method 208, 263
actionShow() method 12
actionUpdate() method 114
actionView() method 114, 129, 220
Active Record (AR) 10, 14

Active Record model classes
creating 98
issue model class, creating 98-100
user model class, creating 101

addChild() method 182
admin module

building 295-298
AdminModule::beforeControllerAction()

method 296
afterValidate() method 159
anonymous user 36
AR model class

creating 64
creating, Gii used 66-68
Gii, configuring 65
stesting 68

assertEquals() 50
associateUserToProject() method 202
Attribute List 79
AuthAssignment table 180
authenticated user 36
authenticate() method 163
AuthItemChild table 180
AuthItem table 180
authManager component 179
authorization item 178
authorization level

checking 211, 212
authorization manager, RBAC

configuring 179

B
basic entity relationship

about 96
diagrammatic representation 96

[340]

beforeValidate() method 217
beginCache() method 331
beginContent() method 268
bindValue() method 193
blog posting example 11, 12
Blueprint CSS framework 259
Blueprint installation 260

C
cache

configuring 323
dependencies 329
file-based cache 324-328
fragment caching 331
page caching 333

cache dependencies
about 329
CCacheDependency 329
CChainedCacheDependency 330
CDbCacheDependency 329
CDirectoryCacheDependency 329
CExpressionDependency 330
CFileCacheDependency 329
CGlobalStateCacheDependency 329

cache, Yii
about 322
CApcCache 322
CDbCache 322
CDummyCache 322
CEAcceleratorCache 322
CFileCache 322
CMemCache 322
CXCache 322
CZendDataCache 322

caching 322
caching techniques 336
CActiveForm class 110
CActiveForm::labelEx() method 109
CActiveForm::textField() method 109
CActiveForm widget 108
CActiveRecord 67
CActiveRecord::beforeValidate() method

153
CActiveRecord class 10
CApcCache 322
CApplication::findLocalizedFile() method

283
CApplication::handleError() method 317
CBreadcrumbs 265
CController base class 114
CController::beginCache() method 331
CController::endCache() method 331
CController::render() method 333
CController::renderPartial() method 255
CDbAuthManager component 179
CDbCache 322
CDbCommand class 193
CDbConnection class 57
CDbConnection::tablePrefix property 64
CdbFixtureManager class 86
CDbMessageSource 281
CDetailView widget 138
CDummyCache 322
CEAcceleratorCache 322
CErrorHandler 317, 318
CException 317
CFileCache 322
CFileLogRoute message routing 314
CFormModel class 10
CGettextMessageSource 281
checkAccess() method 191
CHtml 32
CHtml helper class 34, 124
CHtml::listData() method 124
CListView widget 137
CMemCache 322
CommentController::accessRules() method

244
comment CRUD

creating 218
Comment::findRecentComments() method

226
Comment::relations() method 218
Common Locale Data Repository (CLDR)

279
configuration, Yii 19
controller 10, 14
controller command 25
controller method 108
COutputCache class 333
COutputCache filter 334
CPhpAuthManager component 179
CPhpMessageSource 281

[341]

CPortlet 235, 236
createAbsoluteUrl() method 243
createCommand() method 193
createOperation() method 182
createRole() method 182
createUrl() method 243
CRUD operations

implementing, for issues 128
CRUD operations, enabling

CRUD scaffolding, creating 74-77
for users 73
new project, creating 77, 78
new project, reading 82
projects, deleting 83
projects, managing in admin console 83, 85
projects, updating 83
required field, adding to form 78-82

CRUD operations implementation, for
issues

about 128
issues, listing 129
ProjectController, altering 129, 130
project view file, altering 130-132

CWebApplication class 255
CWidget

about 225
relational AR queries, executing 227, 228
test, completing 229-231

CXCache 322
CZendDataCache 322

D
database connection, TrackStar application

about 55
component 58, 59
testing 55, 56

databases
MySQL 57
Oracle 57
PostgreSQL 57
SQLite 57
SQL Server 57

Data Definition Language (DDL) 63
Data Definition Language (DDL) statements

96
data scheme

defining 39, 40
DBMS

about 57
connection, establishing 57

debug mode
disabling 335

development methodology
automated software testing 41
benefits, of testing 42
defining 41
TDD 43
unit and functional testing 41

Document Object Model (DOM) 306
DOMDocument::createElement() method

243
dropDownList() method 110
dynamic content

adding, to view template 28
dynamic content, adding

data creation, moving to controller 29, 30
date and time, adding 28

E
eager loading 228
endCache() method 331
endContent() method 268
error handling

about 316
errors, displaying 318-321

exception classes
CException 317
CHttpException 317

F
false parameter 70
file-based cache

about 324
implementing 324-328

filters() method 175
final changes, issues

issue detail view, changing 137-139
owner and requester names, getting to

display 139
relational AR, using 139, 140
status and type text, getting to display

132, 134

[342]

text display, adding to form 136
final navigation tweaks, issues

making 141-144
findAll() method 228
findByPk() method 71
find() method 228
findRecentComments() method 228
fixture manager

configuring 86
fixtures

about 85
configuring 88
creating 86

flash message 208
fragment caching

about 331
options, declaring 331
using 332, 333

functional tests
about 42, 45
Selenium, installing 45
test example, running 46, 47

G
getHelp() method 186
getRecentComments() method 233
getRoles() method 202
getStatusText() method 138
getter method 126
getTypeOptions() method 106, 110
getTypeText() method 138
getUserOptions() method 126
getUserRoleOptions() method 202
Gii

about 64
configuring 65

H
hasFlash() method 210
Hello World! example

about 22
building 22
controller, creating 22-26
helloWorld.php view, customizing 26, 27
request routing, reviewing 27

helper class 108

I
importArray() method 243
init() method 233, 293
installation

database 19
Yii 17

internationalization (i18n) 278
issue

creating 103, 104
dropdown menu, adding for types 104
types 104

Issue AR class 220
Issue::attributeLabels() method 109
Issue class 107
IssueController::actionAdmin() method 142
IssueController::actionCreate() method 118
IssueController::actionIndex() method 142
IssueController::actionView() method

220-232
IssueController class 112
IssueController::filters() method 114
issue creation process

drop-down menu, adding 104
issue type dropdown, adding 107-109
status dropdown, adding 111
test, getting in red 105
test, moving red to green 105
test, moving to green 107
test, moving to red 106

Issue CRUD operations
creating 101, 102
using 102

Issue::getStatusText() method 139
Issue::getTypeOptions() method 107
Issue::getTypeText() method 139
issue management functionality

Active Record model classes, creating 98
iteration planning 93
relationships, defining 95
schema, designing 95
tables and relationships, creating 96, 97
test suite, running 94

Issue model attribute 109
issue model class

about 108
creating 98

[343]

Issue.php model class 110
issue::relations() method 140, 217
Issue::rules() method 109
issues

final tweaks 132
listing 129
ProjectController, altering 129, 130
project view file, altering 130, 131

Issue::search() model class method 144
isUserInProject() method 202
isUserInRole() method 197

L
language translation

about 280
file translation, performing 283, 284
message translation, performing 280-282
performing 280

last_login_time attribute 155
layout

about 254
nesting 267, 268

layout files
about 254

lazy loading 227
localization (L10n) 278
logging

about 309
categories 311
levels 311
login message log, adding 312, 313
message logging 310, 311
message routing 313-316

LoginForm::attributeLabels() method 282
login() method 164
logPath property 316

M
main.php layout file, deconstructing

about 257
Blueprint CSS Framework, introducing 259
breadcrumb navigation, creating 265
content, specifying 266
footer, defining 267
menu navigation items, displaying 263, 264
page header, defining 261, 262

page title, setting 260
MessageController class 25, 47
message logging 310, 311
message routes

CDbLogRoute 314
CEmailLogRoute 314
CProfileLogRoute 314
CWebLogRoute 314

message routing 313-316
message sources, Yii

CDbMessageSource 281
CGettextMessageSource 281
CPhpMessageSource 281

model
about 10
active record model 10
Form model 10

model, user comments
creating 216, 217

module
about 288
creating 288-291
system-wide message, adding 298
theme, applying 293-295
theming 292, 293
using 291

MVC architecture, Yii
about 9
controller 10
model 10
view 10

O
Object-relational mapping 13
on parameter 79
owner and requester dropdowns

changing 119-121
data, generating 122, 123
fields, removing 127, 128
ProjectUserAssignment fixture, adding

124-127
user fixture, adding 124-127

owner and requester fields, fixing
about 112
filter, adding 113
filtered actions, specifying 114

[344]

filter, implementing 113
filter logic, adding 115, 116
project context, enforcing 112
project details page, altering 117
project id, adding 117
project input form field, removing 118, 119

P
page caching 333, 334
performance tuning tips

about 335
APCextension , using 335
caching techniques, using 336
debug mode, disabling 335
schema caching, enabling 336
yiilite.php, using 336

PHP APC extension
enabling 335

PHPUnit
installing 45

Portlets 215
PostgreSQL 63
private $_project attribute 126
production environment

caching 322
error handling 316
iteration planning 309
logging 309
performance tuning tips 335
preparing 309

production mode 322
Project AR class, testing

about 68
create, testing 69, 70
delete, testing 72
read, testing 71
unit test file, creating 69
update, testing 72

Project::associateUserToRole() method 193
project attribute 126
projectContext filter 114
ProjectController::accessRules() method 174
ProjectController::actionIndex() method

249-330
ProjectController::actionView() method 250
ProjectController class 129

ProjectController::filters() method 174
ProjectController::loadModel() method 319
project CRUD

AR model class, creating 64
CRUD operations, enabling 73
iteration planning 61
project table, creating 62
test suite, running 62

project_id attribute 119
project_id property 119
project issues, TrackStar application

bugs, categories 37
categories 37
features, categories 37
tasks, categories 37

Project::isUserInRole() method 196
Project::relations() method 121
project table

creating 62, 63
naming conventions 63, 64

ProjectTest::testCreate() method 151
public method 192

Q
querystring parameter 117, 319
querystring variable 12

R
RBAC authorization hierarchy

console application command, writing
182-188

creating 181
RBAC database tables

AuthAssignment table 180
AuthItemChild table 180
AuthItem table 180
creating 180

RBAC roles
adding, to projects 189
new Project AR methods, implementing

191-201
RBAC business rules, adding 190, 191

RBAC users, assigning to projects
about 202
new action method, adding to project

controller 207, 208

[345]

new form model class, adding 205
new view file, adding to diplay form

208, 210
Project model class, altering 203, 204

Really Simple Syndication 240
recent comments widget

creating 224
relational AR queries

eager loading 228
executing 227, 228
lazy loading 227

relations() method 120
render() 31
render() method 256
renderPartial() 292
repeat() 51
request routing, Yii

about 11
blog posting example 11, 12

Reversish translations 281
role-based access control (RBAC)

about 171-179
authorization hierarchy, creating 181, 182
authorization manager, configuring 179
business rules, adding 190, 191
database tables, creating 180
roles, adding to projects 189, 190
users, assigning to projects 202, 203
users, assigning to roles 188, 189

RSS feed
about 239
iteration planning 239

rules() method 78, 155
run() method 186, 233

S
save() method 70, 153
scaffolding 74
scaffolding code, user comments

altering 218
comment, adding 220
form, displaying 221, 222

schema caching
enabling 336

Selenium
installing 45

setAttributes() method 70, 151
setFlash() method 208
SiteController 12
SiteController::actionLogin() method 268,

312
SiteController class 311
SomeMethodName 113
static method 210
statusCode property 317
SysMessageController::accessRules()

method 302
system-wide message, adding to module

CRUD scaffolding, creating 300
database table, creating 298
link, adding 301, 303
message, displaying to users 303
model, creating 299

system-wide message, displaying to users
design tweak, adding 305, 306
most recently updated message, selecting

304
new model class, importing for

application-wide access 303

T
tbl_project table 68
TDD

about 43
implementing, in testing framework 47-51

testActionHelloworld() method 44
testCreate() method 90
testCRUD() method 69
test database

specifying 89
specifying, fixtures used 90

testDelete() method 90
Test-driven development. See TDD
test fixture 85
testing

benefits 42
testing fixtures

about 85
fixture, configuring 88
fixture, creating 86, 87
fixture manager, configuring 86
test database, specifying 89

[346]

test database, specifying with fixtures
90, 92

testing, Yii
about 43
TDD approach, implementing 47-51

testRepeat() method 49
testUserAccessBasedOnProjectRole()

method 201
themes

creating 270
TrackStar 35
TrackStarActiveRecord base class 217
TrackStar application

configuring, to use theme 277
designing, with layouts 254
internationalization (i18n) 278
language, defining 279
language translation, performing 280
layout, applying 255, 256
layouts, nesting 267
layout, specifying 255
layout, using 255, 256
locale, defining 279
localization (L10n) 278
main.php layout file, deconstructing

257-259
themes, creating 270
application flow 38, 39
caching 322
database, connecting 55
database connection, testing 55, 56
data scheme, defining 39, 40
development methodology, defining 41
error handling 316
iteration planning 53, 54
logging 309
navigation and page flow 38
performance tuning tips 335
project issues 37
projects, managing 36, 37
user stories, creating 36
Yii web application, creating 54
translating, to other languages 278

trackstar_dev database 63, 122
type_id attribute 109

U
unit tests

about 42, 44
PHPUnit, installing 45

url manager
about 245, 246
entry script, removing from url 247-249
routing rules, configuring 246, 247
using 246

user access requirements
accessControl filter 173
access rules 176
authorization level, checking 211, 212
iteration planning 172
ProjectController::accessRules() method

174
ProjectController::filters() method 174
test suite, running 173

user authentication
application user attributes, extending 166,

167
authenticate implementation, changing

165, 166
database used 160
Yii authentication model, introducing

160-164
user comments

comment CRUD, creating 218
iteration planning 215
model, creating 216, 217
recent comments widget, creating 224
scaffolding code, altering 218

user CRUD
common audit history columns, updating

150-155
creating 149, 150
password confirmation field, adding 157
password encryption, adding 159, 160

user friendly URLs
creating 244, 245
feed links, adding 249, 251
url manager used 245, 246

UserIdentity::authenticate() method 163
user last login time

displaying, on home page 169
updating 168

[347]

user management
iteration planning 147
test suite, running 148
user CRUD, creating 149, 150
user last login time, updating 168
users, authenticating 160

user model class
creating 101

User::rules() method 155
user stories, TrackStar application

creating 36
project issues 37
projects 36
users 36

users, TrackStar
about 36
anonymous user 36
authenticated user 36

V
validate() method 164
Validator 79
Validator class aliases

boolean 80
captcha 80
compare 80
default 80
email 80
exist 80
file 80
filter 80
in 80
length 80
match 80
required 80
type 80
unique 81

varyByExpression 335
varyByParam 335
varyByParam configuration 334
varyByRoute 334
varyBySession 334
verify() method 202
view 10, 14

W
webapp command 20, 182
Web Content Syndication 240
web pages, linking

about 31
CHtml, using 32, 33
new page, linking to 31

widget
adding, to another page 236
creating 225-234

with() method 228

Y
Yii

message sources 281
themes, building 270
Active Record 14
Active Record (AR) 14
application, creating 19
blog posting example 11, 12
controller 14
databases 57
downloading 17
dynamic content, adding 28
efficiency 8
exception classes 317
extensibility 9
features 8, 9
functional tests 45
Hello World! program 22
installing 17
logging 310
message routes 314
MVC architecture 9
Object-relational mapping 13
overview 7
request routing 11
testing 43
unit tests 44
user-friendly 9
view 14
web pages, linking 31
web request lifecycle 11

[348]

yiic command 21
Yii controller. See controller
yiic shell command 182
yiic tool 25, 182
yiic webapp command 313
yiic webapp console command 44
Yii DAO 57
Yii installation

about 17
configuration 19
database, installing 19
ensuring 18

yiilite.php
using 336

Yii::log method 311
Yii theme

creating 270-276

Yii::trace method 311
Yii web application

creating 19-22
dynamic content, adding 28

Yii web request lifecycle 11
Yii widget 225

Z
Zend_Feed

about 240, 241
using 241-243

Zend Framework
about 240
installing 241

Zii 9

Thank you for buying
Agile Web Application Development with Yii1.1 and PHP5

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

AJAX and PHP: Building Modern
Web Applications 2nd Edition
ISBN: 978-1-847197-72-6 Paperback: 308 pages

Build user friendly Web 2.0 Applications with
JavaScript and PHP

1. The ultimate AJAX tutorial for building modern
Web 2.0 Applications

2. Create faster, lighter, better web applications
by using the AJAX technologies to their
full potential

3. Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with a responsive
AJAX clientWrite better JavaScript code to
enable powerful web features

Zend Framework 1.8 Web
Application Development
ISBN: 978-1-847194-22-0 Paperback: 380 pages

Design, develop, and deploy feature-rich PHP web
applications with this MVC framework

1. Create powerful web applications
by leveraging the power of this
Model-View-Controller-based framework

2. Learn by doing – create a "real-life"
storefront application

3. Covers access control, performance
optimization, and testing

4. Best practices, as well as debugging and
designing discussion

Please check www.PacktPub.com for information on our titles

Building Websites with PHP-Nuke
ISBN: 978-1-904811-05-3 Paperback: 320 pages

A practical guide to creating and maintaining your
own community website with PHP-Nuke

1. Step through creating your own web portal
with PHP-Nuke

2. Simple and practical guidance to mastering
PHP-Nuke

3. For people with basic knowledge of web
development

PHP and script.aculo.us Web 2.0
Application Interfaces
ISBN: 978-1-847194-04-6 Paperback: 264 pages

Build powerful interactive AJAX applications with
script.aculo.us and PHP

1. Get started quickly with script.aculo.us library
with as little as one line of code

2. Explore Prototype library features, tutorials,
code, and examples

3. Learn script.aculo.us' In-place Editing, Auto
Completion, Sliders, Drag-and-Drop, Effects,
and Multimedia

4. A book with less jargon, and more code
explanation for building real-world examples
—Tadalist clone, Digg and Delicious clones, 43
things.com clone

Please check www.PacktPub.com for information on our titles

Magento 1.3: PHP Developer's
Guide
ISBN: 978-1-847197-42-9 Paperback: 260 pages

Design, develop, and deploy feature-rich Magento
online stores with PHP coding

1. Extend and customize the Magento e-commerce
system using PHP code

2. Set up your own data profile to import or
export data in Magento

3. # Build applications that interface with the
customer, product, and order data using
Magento's Core API

jQuery UI 1.7: The User Interface
Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with ready-
to-use widgets from the jQuery User Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2. Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

3. Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

4. Revised and targeted at jQuery UI 1.7

Please check www.PacktPub.com for information on our titles

Drupal E-commerce with Ubercart
2.x
ISBN: 978-1-847199-20-1 Paperback: 364 pages

Build, administer, and customize an online store
using Drupal with Ubercart

1. Create a powerful e-shop using the award-
winning CMS Drupal and the robust
e-commerce module Ubercart

2. Create and manage the product catalog and
insert products in manual or batch mode

3. Apply SEO (search engine optimization)
to your e-shop and adopt turn-key internet
marketing techniques

PrestaShop 1.3 Beginner's Guide
ISBN: 978-1-849511-14-8 Paperback: 308 pages

Build and customize your online store with this
speedy, lightweight e-commerce solution

1. Covers every topic required to start and run
a real, trading e-commerce business with
PrestaShop

2. Deploy PrestaShop quickly and easily, and
make your PrestaShop search-engine friendly

3. Learn how to turn a single new PrestaShop into
a thriving e-commerce empire

4. Step-by-step fully illustrated explanation and
discussions aimed at helping beginners like you
towards the realization of your own PrestaShop
store and beyond

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Meet Yii
	Yii is easy
	Yii is efficient
	Yii is extensible
	MVC architecture
	The model
	The view
	The controller

	Stitching these together: Yii request routing
	Blog posting example

	Object-relational mapping and Active Record
	Active Record

	The view and controller
	Summary

	Chapter 2: Getting Started
	Installing Yii
	Installing a database

	Creating a new application
	Hello, World!
	Creating the controller
	One final step
	Reviewing our request routing

	Adding dynamic content
	Adding the date and time
	Adding the date and time, a better approach
	Moving the data creation to the controller

	Have you been paying attention?

	Linking pages together
	Linking to a new page
	Getting a little help from Yii CHtml

	Summary

	Chapter 3: The TrackStar Application
	Introducing TrackStar
	Creating user stories
	Users
	Projects
	Issues

	Navigation and page flow
	Defining a data scheme
	Defining our development methodology
	Automated software testing
	Unit and functional testing
	Benefits of testing
	Test-driven development

	Testing in Yii
	Unit tests
	Installing PHPUnit

	Functional tests
	Installing Selenium
	Running a quick example

	Hello TDD!

	Summary

	Chapter 4: Iteration 1: Creating the Initial TrackStar Application
	Iteration planning
	Creating the new application
	Connecting to the database
	Testing the connection
	Yii and databases

	Adding a db connection as an application component

	Summary

	Chapter 5: Iteration 2: Project CRUD
	Iteration planning
	Running our test suite

	Creating the project table
	Naming conventions

	Creating the AR model class
	Configuring Gii
	Using Gii to create our Project AR class
	Testing out our newly generated code
	Creating the unit test file
	Testing create
	Testing read
	Testing update and delete

	Was all that testing really necessary?

	Enabling CRUD operations for users
	Creating CRUD scaffolding for projects
	Creating a new project
	Adding a required field to our form

	Reading the project
	Updating and deleting projects
	Managing projects in admin mode

	More on testing—fixtures
	Configuring the fixture manager
	Creating a fixture
	Configuring this fixture for use
	Specifying a test database
	Using fixtures

	Summary

	Chapter 6: Iteration 3: Adding tasks
	Iteration planning
	Running the test suite
	Designing the schema
	Defining some relationships
	Building the database and the relationships

	Creating the Active Record model classes
	Creating the issue model class
	Creating the User model class

	Creating the Issue CRUD operations
	Using the Issue CRUD operations

	Creating a new Issue
	Adding the types drop-down menu
	Getting the test in the "Red"
	Moving From "Red" To "Green"
	Moving Back To "Red"
	Getting back to "Green" once again
	Adding the issue type dropdown
	Adding the status dropdown: Do it yourself

	Fixing the owner and requester fields
	Enforcing a project context
	Implementing a filter
	Adding a filter
	Specifying the filtered actions
	Adding some filter logic
	Adding the project id
	Altering the project details page
	Removing the project input form field

	Returning back to the owner and requester dropdowns
	Generating the data to populate the
drop-down menu
	Adding User and ProjectUserAssignment fixtures
	Making one last change

	Finishing the rest of the CRUD
	Listing the issues
	Altering the ProjectController
	Altering the project view file

	Making some final tweaks
	Getting the status and type text to display
	Adding the text display to the form
	Changing the issue detail view
	Getting the owner and requester names to display
	Using relational AR

	Making some final navigation tweaks
	Summary

	Chapter 7: Iteration 4: User Management and Authentication
	Iteration planning
	Running the test suite
	Creating our User CRUD
	Updating our common audit history columns
	Adding a password confirmation field
	Adding password encryption

	Authenticating users using the database
	Introducing the Yii authentication model
	Changing the authenticate implementation

	Updating the user last login time
	Displaying the last login time on the home page

	Summary

	Chapter 8: Iteration 5: User Access Control
	Iteration planning
	Running our existing test suite
	accessControl filter
	Role-based access control
	Configuring the authorization manager
	Creating the RBAC database tables
	Creating the RBAC authorization hierarchy
	Writing a console application command

	Assigning users to roles
	Adding RBAC roles to projects
	Adding RBAC business rules
	Implementing the new Project AR methods

	Adding Users To Projects
	Altering the Project model class
	Adding the new form model class
	Adding the new action method to the project controller
	Adding the new view file to display the form
	Putting it all together

	Checking authorization level
	Summary

	Chapter 9: Iteration 6: Adding User Comments
	Iteration planning
	Creating the model
	Creating the Comment CRUD
	Altering the scaffolding to meet requirements
	Adding a comment
	Displaying the form

	Creating a recent comments widget
	Introducing CWidget
	More on relational AR queries in Yii
	Completing the test
	Creating the widget

	Summary

	Chapter 10: Iteration 7: Adding an RSS Web Feed
	Iteration planning
	A little background: Content Syndication, RSS, and Zend Framework
	Installing Zend Framework
	Using Zend_Feed
	Creating user friendly URLs
	Using the URL manager
	Configuring routing rules
	Removing the entry script from the URL

	Adding the feed links
	Summary

	Chapter 11: Iteration 8: Making it
Pretty - Design, Layout, Themes, and Internationalization(i18n)
	Iteration planning
	Designing with layouts
	Specifying a layout
	Applying and using a layout

	Deconstructing the main.php layout file
	Introducing the Blueprint CSS framework
	Understanding the Blueprint installation

	Setting the page title
	Defining a page header
	Displaying menu navigation items
	Creating a breadcrumb navigation
	Specifying the content being decorated by
the layout
	Defining the footer

	Nesting the layouts
	Creating themes
	Building themes in Yii
	Creating a Yii theme
	Configuring the application to use a theme

	Translating the site to other languages
	Defining locale and language
	Performing language translation
	Performing message translation
	Performing file translation

	Summary

	Chapter 12: Iteration 9: Modules - Adding Administration
	Iteration planning
	Modules
	Creating a module
	Using a module
	Theming a module
	Applying a theme

	Restricting admin access
	Adding a system-wide message
	Creating the database table
	Creating our model and CRUD scaffolding
	Adding a link to our new functionality
	Displaying the message to users
	Importing the new model class for application-wide access
	Selecting the most recently updated message
	Adding a little design tweak

	Summary

	Chapter 13: Iteration 10: Production Readiness
	Iteration planning
	Logging
	Message logging
	Categories and Levels
	Adding a login message log
	Message routing

	Handling errors
	Displaying errors

	Caching
	Configuring for cache
	Using a file-based cache
	Cache dependencies
	Fragment caching
	Declaring fragment caching options
	Using fragment cache

	Page caching

	General performance tuning tips
	Using APC
	Disabling debug mode
	Using yiilite.php
	Using caching techniques
	Enabling schema caching

	Summary

	Index

