
Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Overview of
Servlets and

JavaServer Pages

Topics in This Chapter

• What servlets are

• When and why you would use servlets

• What JavaServer Pages are

• When and why you would use JSP

• Obtaining the servlet and JSP software

• Software installation and setup

5

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

his chapter gives a quick overview of servlets and JavaServer Pages
(JSP), outlining the major advantages of each. It then summarizes
how to obtain and configure the software you need to write servlets

and develop JSP documents.

1.1 Servlets

Servlets are Java technology’s answer to Common Gateway Interface (CGI)
programming. They are programs that run on a Web server, acting as a mid-
dle layer between a request coming from a Web browser or other HTTP cli-
ent and databases or applications on the HTTP server. Their job is to:

1. Read any data sent by the user.
This data is usually entered in a form on a Web page, but could
also come from a Java applet or a custom HTTP client program.

2. Look up any other information about the request that is
embedded in the HTTP request.
This information includes details about browser capabilities,
cookies, the host name of the requesting client, and so forth.

T

6 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3. Generate the results.
This process may require talking to a database, executing an
RMI or CORBA call, invoking a legacy application, or comput-
ing the response directly.

4. Format the results inside a document.
In most cases, this involves embedding the information inside
an HTML page.

5. Set the appropriate HTTP response parameters.
This means telling the browser what type of document is being
returned (e.g., HTML), setting cookies and caching parameters,
and other such tasks.

6. Send the document back to the client.
This document may be sent in text format (HTML), binary for-
mat (GIF images), or even in a compressed format like gzip that
is layered on top of some other underlying format.

Many client requests can be satisfied by returning pre-built documents,
and these requests would be handled by the server without invoking servlets.
In many cases, however, a static result is not sufficient, and a page needs to
be generated for each request. There are a number of reasons why Web
pages need to be built on-the-fly like this:

• The Web page is based on data submitted by the user.
For instance, the results page from search engines and
order-confirmation pages at on-line stores are specific to
particular user requests.

• The Web page is derived from data that changes
frequently.
For example, a weather report or news headlines page might
build the page dynamically, perhaps returning a previously built
page if it is still up to date.

• The Web page uses information from corporate
databases or other server-side sources.
For example, an e-commerce site could use a servlet to build a
Web page that lists the current price and availability of each
item that is for sale.

In principle, servlets are not restricted to Web or application servers that
handle HTTP requests, but can be used for other types of servers as well. For

1.2 The Advantages of Servlets Over “Traditional” CGI 7

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

example, servlets could be embedded in mail or FTP servers to extend their
functionality. In practice, however, this use of servlets has not caught on, and
I’ll only be discussing HTTP servlets.

1.2 The Advantages of Servlets
Over “Traditional” CGI

Java servlets are more efficient, easier to use, more powerful, more portable,
safer, and cheaper than traditional CGI and many alternative CGI-like tech-
nologies.

Efficient

With traditional CGI, a new process is started for each HTTP request. If the
CGI program itself is relatively short, the overhead of starting the process can
dominate the execution time. With servlets, the Java Virtual Machine stays
running and handles each request using a lightweight Java thread, not a
heavyweight operating system process. Similarly, in traditional CGI, if there
are N simultaneous requests to the same CGI program, the code for the CGI
program is loaded into memory N times. With servlets, however, there would
be N threads but only a single copy of the servlet class. Finally, when a CGI
program finishes handling a request, the program terminates. This makes it
difficult to cache computations, keep database connections open, and per-
form other optimizations that rely on persistent data. Servlets, however,
remain in memory even after they complete a response, so it is straightfor-
ward to store arbitrarily complex data between requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decod-
ing HTML form data, reading and setting HTTP headers, handling cookies,
tracking sessions, and many other such high-level utilities. Besides, you already
know the Java programming language. Why learn Perl too? You’re already con-
vinced that Java technology makes for more reliable and reusable code than
does C++. Why go back to C++ for server-side programming?

8 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Powerful

Servlets support several capabilities that are difficult or impossible to accom-
plish with regular CGI. Servlets can talk directly to the Web server, whereas
regular CGI programs cannot, at least not without using a server-specific
API. Communicating with the Web server makes it easier to translate relative
URLs into concrete path names, for instance. Multiple servlets can also share
data, making it easy to implement database connection pooling and similar
resource-sharing optimizations. Servlets can also maintain information from
request to request, simplifying techniques like session tracking and caching
of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard
API. Consequently, servlets written for, say, I-Planet Enterprise Server can
run virtually unchanged on Apache, Microsoft Internet Information Server
(IIS), IBM WebSphere, or StarNine WebStar. For example, virtually all of
the servlets and JSP pages in this book were executed on Sun’s Java Web
Server, Apache Tomcat and Sun’s JavaServer Web Development Kit
(JSWDK) with no changes whatsoever in the code. Many were tested on
BEA WebLogic and IBM WebSphere as well. In fact, servlets are supported
directly or by a plug-in on virtually every major Web server. They are now
part of the Java 2 Platform, Enterprise Edition (J2EE; see
http://java.sun.com/j2ee/), so industry support for servlets is becoming
even more pervasive.

Secure

One of the main sources of vulnerabilities in traditional CGI programs
stems from the fact that they are often executed by general-purpose operat-
ing system shells. So the CGI programmer has to be very careful to filter
out characters such as backquotes and semicolons that are treated specially
by the shell. This is harder than one might think, and weaknesses stemming
from this problem are constantly being uncovered in widely used CGI
libraries. A second source of problems is the fact that some CGI programs
are processed by languages that do not automatically check array or string
bounds. For example, in C and C++ it is perfectly legal to allocate a

1.3 JavaServer Pages 9

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

100-element array then write into the 999th “element,” which is really some
random part of program memory. So programmers who forget to do this
check themselves open their system up to deliberate or accidental buffer
overflow attacks. Servlets suffer from neither of these problems. Even if a
servlet executes a remote system call to invoke a program on the local oper-
ating system, it does not use a shell to do so. And of course array bounds
checking and other memory protection features are a central part of the
Java programming language.

Inexpensive

There are a number of free or very inexpensive Web servers available that are
good for “personal” use or low-volume Web sites. However, with the major
exception of Apache, which is free, most commercial-quality Web servers are
relatively expensive. Nevertheless, once you have a Web server, no matter its
cost, adding servlet support to it (if it doesn’t come preconfigured to support
servlets) costs very little extra. This is in contrast to many of the other CGI
alternatives, which require a significant initial investment to purchase a pro-
prietary package.

1.3 JavaServer Pages

JavaServer Pages (JSP) technology enables you to mix regular, static HTML
with dynamically generated content from servlets. Many Web pages that
are built by CGI programs are primarily static, with the parts that change
limited to a few small locations. For example, the initial page at most
on-line stores is the same for all visitors, except for a small welcome mes-
sage giving the visitor’s name if it is known. But most CGI variations,
including servlets, make you generate the entire page via your program,
even though most of it is always the same. JSP lets you create the two parts
separately. Listing 1.1 gives an example. Most of the page consists of regu-
lar HTML, which is passed to the visitor unchanged. Parts that are gener-
ated dynamically are marked with special HTML-like tags and mixed right
into the page.

10 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.4 The Advantages of JSP

JSP has a number of advantages over many of its alternatives. Here are a
few of them.

Versus Active Server Pages (ASP)

ASP is a competing technology from Microsoft. The advantages of JSP are
twofold. First, the dynamic part is written in Java, not VBScript or another
ASP-specific language, so it is more powerful and better suited to complex
applications that require reusable components. Second, JSP is portable to
other operating systems and Web servers; you aren’t locked into Windows
NT/2000 and IIS. You could make the same argument when comparing JSP
to ColdFusion; with JSP you can use Java and are not tied to a particular
server product.

Versus PHP

PHP is a free, open-source HTML-embedded scripting language that is some-
what similar to both ASP and JSP. The advantage of JSP is that the dynamic
part is written in Java, which you probably already know, which already has an

Listing 1.1 A sample JSP page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Welcome to Our Store</TITLE></HEAD>
<BODY>
<H1>Welcome to Our Store</H1>
<SMALL>Welcome,
<!-- User name is "New User" for first-time visitors -->
<%= Utils.getUserNameFromCookie(request) %>
To access your account settings, click
here.</SMALL>
<P>
Regular HTML for all the rest of the on-line store’s Web page.
</BODY>
</HTML>

1.4 The Advantages of JSP 11

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

extensive API for networking, database access, distributed objects, and the like,
whereas PHP requires learning an entirely new language.

Versus Pure Servlets

JSP doesn’t provide any capabilities that couldn’t in principle be accom-
plished with a servlet. In fact, JSP documents are automatically translated
into servlets behind the scenes. But it is more convenient to write (and to
modify!) regular HTML than to have a zillion println statements that gen-
erate the HTML. Plus, by separating the presentation from the content, you
can put different people on different tasks: your Web page design experts can
build the HTML using familiar tools and leave places for your servlet pro-
grammers to insert the dynamic content.

Versus Server-Side Includes (SSI)

SSI is a widely supported technology for inserting externally defined pieces
into a static Web page. JSP is better because you have a richer set of tools for
building that external piece and have more options regarding the stage of the
HTTP response at which the piece actually gets inserted. Besides, SSI is
really intended only for simple inclusions, not for “real” programs that use
form data, make database connections, and the like.

Versus JavaScript

JavaScript, which is completely distinct from the Java programming language,
is normally used to generate HTML dynamically on the client, building parts
of the Web page as the browser loads the document. This is a useful capabil-
ity but only handles situations where the dynamic information is based on the
client’s environment. With the exception of cookies, the HTTP request data
is not available to client-side JavaScript routines. And, since JavaScript lacks
routines for network programming, JavaScript code on the client cannot
access server-side resources like databases, catalogs, pricing information, and
the like. JavaScript can also be used on the server, most notably on Netscape
servers and as a scripting language for IIS. Java is far more powerful, flexible,
reliable, and portable.

12 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Versus Static HTML

Regular HTML, of course, cannot contain dynamic information, so static
HTML pages cannot be based upon user input or server-side data sources.
JSP is so easy and convenient that it is quite reasonable to augment HTML
pages that only benefit slightly by the insertion of dynamic data. Previously,
the difficulty of using dynamic data precluded its use in all but the most valu-
able instances.

1.5 Installation and Setup

Before you can get started, you have to download the software you need and
configure your system to take advantage of it. Here’s an outline of the steps
involved. Please note, however, that although your servlet code will follow a
standard API, there is no standard for downloading and configuring Web or
application servers. Thus, unlike most sections of this book, the methods
described here vary significantly from server to server, and the examples in
this section should be taken only as representative samples. Check your
server’s documentation for authoritative instructions.

Obtain Servlet and JSP Software

Your first step is to download software that implements the Java Servlet 2.1 or
2.2 and JavaServer Pages 1.0 or 1.1 specifications. If you are using an
up-to-date Web or application server, there is a good chance that it already
has everything you need. Check your server documentation or see the latest
list of servers that support servlets at http://java.sun.com/prod-

ucts/servlet/industry.html. Although you’ll eventually want to deploy
in a commercial-quality server, when first learning it is useful to have a free
system that you can install on your desktop machine for development and
testing purposes. Here are some of the most popular options:

• Apache Tomcat.
Tomcat is the official reference implementation of the servlet 2.2
and JSP 1.1 specifications. It can be used as a small stand-alone
server for testing servlets and JSP pages, or can be integrated into
the Apache Web server. However, many other servers have
announced upcoming support, so these specifications will be

1.5 Installation and Setup 13

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

covered in detail throughout this book. Tomcat, like Apache
itself, is free. However, also like Apache (which is very fast, highly
reliable, but a bit hard to configure and install), Tomcat requires
significantly more effort to set up than do the commercial servlet
engines. For details, see http://jakarta.apache.org/.

• JavaServer Web Development Kit (JSWDK).
The JSWDK is the official reference implementation of the
servlet 2.1 and JSP 1.0 specifications. It is used as a small
stand-alone server for testing servlets and JSP pages before they
are deployed to a full Web server that supports these
technologies. It is free and reliable, but takes quite a bit of
effort to install and configure. For details, see
http://java.sun.com/products/servlet/download.html.

• Allaire JRun.
JRun is a servlet and JSP engine that can be plugged into
Netscape Enterprise or FastTrack servers, IIS, Microsoft
Personal Web Server, older versions of Apache, O’Reilly’s
WebSite, or StarNine WebSTAR. A limited version that
supports up to five simultaneous connections is available for
free; the commercial version removes this restriction and adds
capabilities like a remote administration console. For details,
see http://www.allaire.com/products/jrun/.

• New Atlanta’s ServletExec. ServletExec is a servlet and JSP
engine that can be plugged into most popular Web servers for
Solaris, Windows, MacOS, HP-UX and Linux. You can
download and use it for free, but many of the advanced features
and administration utilities are disabled until you purchase a
license. For details, see http://newatlanta.com/.

• LiteWebServer (LWS) from Gefion Software.
LWS is a small free Web server derived from Tomcat that
supports servlets version 2.2 and JSP 1.1. Gefion also has a free
plug-in called WAICoolRunner that adds servlet 2.2 and JSP 1.1
support to Netscape FastTrack and Enterprise servers. For details,
see http://www.gefionsoftware.com/.

• Sun’s Java Web Server.
This server is written entirely in Java and was one of the first
Web servers to fully support the servlet 2.1 and JSP 1.0
specifications. Although it is no longer under active
development because Sun is concentrating on the
Netscape/I-Planet server, it is still a popular choice for learning

14 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

servlets and JSP. For a free trial version, see
http://www.sun.com/software/jwebserver/try/. For a
free non-expiring version for teaching purposes at academic
institutions, see http://freeware.thesphere.com/.

Bookmark or Install the Servlet and JSP API
Documentation

Just as no serious programmer should develop general-purpose Java applica-
tions without access to the JDK 1.1 or 1.2 API documentation, no serious pro-
grammer should develop servlets or JSP pages without access to the API for
classes in the javax.servlet packages. Here is a summary of where to find
the API:

• http://java.sun.com/products/jsp/download.html

This site lets you download either the 2.1/1.0 API or the 2.2/1.1
API to your local system. You may have to download the entire
reference implementation and then extract the documentation.

• http://java.sun.com/products/servlet/2.2/javadoc/

This site lets you browse the servlet 2.2 API on-line.
• http://www.java.sun.com/j2ee/j2sdkee/techdocs/api/

This address lets you browse the complete API for the Java 2
Platform, Enterprise Edition (J2EE), which includes the servlet
2.2 and JSP 1.1 packages.

If Sun or Apache place any new additions on-line (e.g., a place to browse
the 2.1/1.0 API), they will be listed under Chapter 1 in the book source
archive at http://www.coreservlets.com/.

Identify the Classes to the Java Compiler

Once you’ve obtained the necessary software, you need to tell the Java com-
piler (javac) where to find the servlet and JSP class files when it compiles
your servlets. Check the documentation of your particular package for defini-
tive details, but the necessary class files are usually in the lib subdirectory of
the server’s installation directory, with the servlet classes in servlet.jar and
the JSP classes in jsp.jar, jspengine.jar, or jasper.jar. There are a
couple of different ways to tell javac about these classes, the easiest of which
is to put the JAR files in your CLASSPATH. If you’ve never dealt with the
CLASSPATH before, it is the variable that specifies where javac looks for

1.5 Installation and Setup 15

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

classes when compiling. If the variable is unspecified, javac looks in the cur-
rent directory and the standard system libraries. If you set CLASSPATH your-
self, be sure to include “.”, signifying the current directory.

Following is a brief summary of how to set the environment variable on a
couple of different platforms. Assume dir is the directory in which the serv-
let and JSP classes are found.

Unix (C Shell)

setenv CLASSPATH .:dir/servlet.jar:dir/jspengine.jar

Add :$CLASSPATH to the end of the setenv line if your CLASSPATH is
already set and you want to add more to it, not replace it. Note that on Unix
systems you use forward slashes to separate directories within an entry and
colons to separate entries, whereas you use backward slashes and semicolons
on Windows. To make this setting permanent, you would typically put this
statement in your .cshrc file.

Windows

set CLASSPATH=.;dir\servlet.jar;dir\jspengine.jar

Add ;%CLASSPATH% to the end of the above line if your CLASSPATH is
already set and you want to add more to it, not replace it. Note that on Win-
dows you use backward slashes to separate directories within an entry and
semicolons to separate entries, while you use forward slashes and colons on
Unix. To make this setting permanent on Windows 95/98, you’d typically put
this statement in your autoexec.bat file. On Windows NT or 2000, you
would go to the Start menu, select Settings, select Control Panel, select Sys-
tem, select Environment, then enter the variable and value.

Package the Classes

As you’ll see in the next chapter, you probably want to put your servlets into
packages to avoid name conflicts with servlets other people write for the
same Web or application server. In that case, you may find it convenient to
add the top-level directory of your package hierarchy to the CLASSPATH as
well. See Section 2.4 (Packaging Servlets) for details.

16 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Configure the Server

Before you start the server, you may want to designate parameters like the
port on which it listens, the directories in which it looks for HTML files, and
so forth. This process is totally server-specific, and for commercial-quality
Web servers should be clearly documented in the installation notes. How-
ever, with the small stand-alone servers that Apache and Sun provide as ref-
erence implementations of the servlet 2.2/JSP 1.1 specs (Apache Tomcat) or
2.1/1.0 specs (Sun JSWDK), there are a number of important but poorly doc-
umented settings that I’ll describe here.

Port Number

Tomcat and the JSWDK both use a nonstandard port by default in order to
avoid conflicts with existing Web servers. If you use one of these products for
initial development and testing, and don’t have another Web server running,
you will probably find it convenient to switch to 80, the standard HTTP port
number. With Tomcat 3.0, do so by editing install_dir/server.xml,
changing 8080 to 80 in the line

<ContextManager port="8080" hostName="" inet="">

With the JSWDK 1.0.1, edit the install_dir/webserver.xml file and
replace 8080 with 80 in the line

port NMTOKEN "8080"

The Java Web Server 2.0 also uses a non-standard port. To change it, use
the remote administration interface, available by visiting http://some-
hostname:9090/, where somehostname is replaced by either the real name
of the host running the server or by localhost if the server is running on the
local machine.

JAVA_HOME Setting

If you use JDK 1.2 or 1.3 with Tomcat or the JSWDK, you must set the
JAVA_HOME environment variable to refer to the JDK installation directory.
This setting is unnecessary with JDK 1.1. The easiest way to specify this vari-
able is to insert a line that sets it into the top of the startup (Tomcat) or
startserver (JSWDK) script. For example, here’s the top of the modified
version of startup.bat and startserver.bat that I use:

rem Marty Hall: added JAVA_HOME setting below

set JAVA_HOME=C:\jdk1.2.2

No
te

:i
fy

ou
us

e
To

m
ca

t3
.2

or
4.

x,
se

e
up

da
te

d
in

fo
rm

at
io

n
at

ht
tp

://
ar

ch
iv

e.
co

re
se

rv
le

ts
.c

om
/U

si
ng

-T
om

ca
t.h

tm
l

1.5 Installation and Setup 17

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

DOS Memory Setting

If you start Tomcat or the JSWDK server from Windows 95 or 98, you proba-
bly have to modify the amount of memory DOS allocates for environment
variables. To do this, start a fresh DOS window, click on the MS-DOS icon in
the top-left corner of the window, and select Properties. From there,
choose the Memory tab, go to the Initial Environment setting, and change
the value from Auto to 2816. This configuration only needs to be done once.

Tomcat 3.0 CR/LF Settings

The first releases of Tomcat suffered from a serious problem: the text files
were saved in Unix format (where the end of line is marked with a linefeed),
not Windows format (where the end of the line is marked with a carriage
return/linefeed pair). As a result, the startup and shutdown scripts failed on
Windows. You can determine if your version suffers from this problem by
opening install_dir/startup.bat in Notepad; if it appears normal you
have a patched version. If the file appears to be one long jumbled line, then
quit Notepad and open and immediately save the following files using Word-
pad (not Notepad):

• install_dir/startup.bat

• install_dir/tomcat.bat

• install_dir/shutdown.bat

• install_dir/tomcatEnv.bat

• install_dir/webpages/WEB-INF/web.xml

• install_dir/examples/WEB-INF/web.xml

Start the Server

To start one of the “real” Web servers, check its documentation. In many
cases, starting it involves executing a command called httpd either from the
command line or by instructing the operating system to do so automatically
when the system is first booted.

With Tomcat 3.0, you start the server by executing a script called startup
in the main installation directory. With the JSWDK 1.0.1, you execute a simi-
lar script called startserver.

18 Chapter 1 Overview of Servlets and JavaServer Pages

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Compile and Install Your Servlets

Once you’ve properly set your CLASSPATH, as described earlier in this sec-
tion, just use “javac ServletName.java” to compile a servlet. The result-
ant class file needs to go in a location that the server knows to check during
execution. As you might expect, this location varies from server to server. Fol-
lowing is a quick summary of the locations used by the latest releases of Tom-
cat, the JSWDK, and the Java Web Server. In all three cases, assume
install_dir is the server’s main installation directory.

Tomcat

• install_dir/webpages/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

Tomcat 3.1
Just before this book went to press, Apache released a beta version of
Tomcat 3.1. If there is a final version of this version available when you go to
download Tomcat, you should use it. Here is the new directory organization
that Tomcat 3.1 uses:

• install_dir/webapps/ROOT/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

The JSWDK
• install_dir/webpages/WEB-INF/servlets

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

1.5 Installation and Setup 19

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Java Web Server 2.0

• install_dir/servlets

Location for frequently changing servlet classes. The server
automatically detects when servlets in this directory change,
and reloads them if necessary. This is in contrast to Tomcat and
the JSWDK, where you have to restart the server when a servlet
that is already in server memory changes. Most commercial
servers have an option similar to this auto-reloading feature.

• install_dir/classes

Location for infrequently changing servlet classes.
• install_dir/lib

Location for JAR files containing classes.

I realize that this sounds a bit overwhelming. Don’t worry, I’ll walk you
through the process with a couple of different servers when I introduce some
real servlet code in the next chapter.

