
Microsoft Office XP Developer's Guide

DEVELOPING OFFICE APPLICATIONS USING VBA

Table of Contents
1. Office Objects and Object Models...3

Integrated Office Solution Development ..3

Objects, Collections, and Object Models: Technology Backgrounder..4

Office Application Automation...13

2. Working with Office Applications...24

Working with Microsoft Access Objects ..24

Working with Microsoft Excel Objects...68

Working with Microsoft FrontPage Objects ...80

Working with Microsoft Outlook Objects...83

Working with Microsoft PowerPoint Objects ...90

Working with Microsoft Project Objects ..98

Working with Microsoft Visio Objects ...106

Working with Microsoft Word Objects...108

3. Working with Shared Office Components..126

Referencing Shared Office Components ...126

Working with the FileSearch Object ...127

Working with the Office Assistant..129

Working with Command Bars...134

Working with Document Properties..146

Working with Scripts ..150

4. Getting the Most Out of Visual Basic for Applications ...154

Working with Strings ..154

Working with Numbers...162

Working with Dates and Times...167

Working with Files..170

Understanding Arrays ...174

Tips for Defining Procedures in VBA...179

Optimizing VBA Code..180

5. Add-ins, Templates, Wizards, and Libraries ...182

What Is a COM Add-in? ...182

Building COM Add-ins for the Visual Basic Editor ...184

Building COM Add-ins for Office Applications...186

Building Application-Specific Add-ins...196

Creating Templates ...203

Creating Wizards...206

 1

Microsoft® Office application development is typically the process of customizing an Office application to perform some
function or service. Developing an Office application can range from writing a simple Microsoft® Visual Basic® for
Applications (VBA) procedure to creating a sophisticated financial analysis and reporting application. An Office developer is
anyone who uses the programmability features of Office to make an application do something better, faster, or more efficiently
than it could be done before. An Office application is an application that uses an Office application or component as part of its
overall architecture.

Every custom application is, in some sense, an answer to a particular problem or requirement. When you understand the
problem, the success of your application will depend on your ability to deliver a response that uses appropriate tools tailored to
the experience level of the people who will be using your application.

The Benefits of Office Programmability

There are currently more than 2.5 million Office developers creating custom applications that use the applications or
components in Microsoft® Office. The term "Office developer" includes developers who work exclusively in one or more of
the Office applications. It also includes developers working in any language that can access the objects exposed by Office
applications. For more than ten years, Microsoft has been making improvements to the Office suite that make it possible for
developers to quickly and easily build and deploy custom desktop applications. These improvements are the reason why Office
applications continue to play such an important role in custom application development:

• Users and businesses already use the Microsoft Office suite of applications. Most users already have Office on
their desktop. The most recent surveys indicate that more than 40 million people regularly use Office to get their work
done. Building applications based on the Office platform makes it possible for developers to target this large base of
users. Also, even if you are not developing within the Office development environment, it is still a good idea to take
advantage of the objects exposed by Office applications so that your custom applications can leverage existing,
proven, and tested Office functionality.

• Office supports programmable objects and an integrated development environment. Each Office application
exposes its functionality through programmable objects, and each also supports the ability to integrate with other
applications by using Automation (formerly OLE Automation). Most applications share the same programming
language (Visual Basic for Applications) and integrated development environment (the Visual Basic Editor).
Applications created with VBA run in the same memory space as the host application and therefore execute faster.
The programmable objects and powerful development tools in Office let developers build applications that tightly
integrate applications and seamlessly share data and information. In addition, distribution of Office-based applications
is simplified because VBA code and Microsoft® ActiveX®controls are part of the application document or project.

• Faster development cycles mean more affordable applications. The use of a single language and development
environment also makes application development faster. What you learn while programming one application applies
when working with another application. VBA code written for one application can often be reused in an application
that works with a different application. Developers' skills become more valuable because they can work across many
applications. Reducing the number of development environments or languages that developers must learn means that
the time and cost of creating custom applications is reduced. Reliance on existing components eliminates the need to
develop or test large portions of the application. This lets developers quickly build robust applications that previously
might have been cost-prohibitive.

• Users become part of the application. Because applications are created and run in an environment familiar to the
user, support costs are kept to an absolute minimum. Building an application based on Office technologies makes it
possible for you define the application in a context with which your users are already familiar. This makes it possible
for greater user participation in the application-design process and can dramatically reduce training and support costs.
It takes less time and effort to customize applications your users already own than to build new applications from
scratch. The more familiar users are with the application, the easier it is going to be for them to understand and use
your application.

 2

1. OFFICE OBJECTS AND OBJECT MODELS

Each Microsoft® Office XP application contains a powerful set of tools designed to help you accomplish a related set of tasks.
For example, Microsoft® Access provides powerful data-management and query capabilities, Microsoft® Excel provides
mathematical, analytical, and reporting tools, Microsoft® Outlook® provides tools for sending and receiving e-mail, for
scheduling, and for contact and task management, and Microsoft® Word makes it possible for you create and manage
documents, track versions of documents among different users, and create forms and templates. As powerful as these and the
other Office applications are on their own, you also can integrate the features from two or more Office applications into a
single solution to amplify and focus users' productivity.

The key technology that makes individual Office applications programmable and makes creating an integrated Office solution
possible is the Component Object Model (COM) technology known as automation.

Automation makes it possible for a developer to use Microsoft® Visual Basic® for Applications (VBA) code to create and
control software objects exposed by any application, dynamic-link library (DLL), or Microsoft® ActiveX® control that
supports the appropriate programmatic interfaces. VBA and automation make it possible for you to program individual Office
applications, as well as to run other applications from within a host application. For example, you can run a hidden instance of
Excel from within Access to perform mathematical and analytical operations on your Access data. The key to understanding
automation is to understand objects and object models: what they are, how they work, and how they work together.

Note
To master the use of automation in your Office solutions, you must have a detailed working knowledge of the applications you
are integrating. That is the kind of knowledge and experience that can be gained only with further application-specific training
and hands-on experience.

In This Section

Integrated Office Solution Development
Use the COM software architecture or VBA to develop an integrated Office solution.

Objects, Collections, and Object Models: Technology Backgrounder
Understand how to reference objects in an application's object model and how to use the objects and features available to build
your solution.

Office Application Automation
Learn how to automate one Office application from another.

Integrated Office Solution Development

The ability to develop an integrated Office solution heavily depends on two technologies:
• The Component Object Model (COM) software architecture
• Microsoft® Visual Basic® for Applications (VBA)

The COM software architecture makes it possible for software developers to build their applications and services from
individual software components collectively referred to as COM components or simply components. COM components consist
of the physical, compiled files that contain classes, which are code modules that define programmable objects. There are two
types of COM components: in-process components and out-of-process components. In-process components are either DLLs or
Microsoft® ActiveX®controls (.ocx files) and can run only within the process of another application. Out-of-process
components are .exe files and run as freestanding applications. A COM component can serve either or both of the following
roles in application development:

• Sharing its objects with other applications. This role is called being an Automation server.
• Using other components' objects. This role is called being an Automation client. In earlier documentation, this role

was called being an Automation controller.

The Microsoft® Windows® operating system and Microsoft® Office XP suite of applications are examples of products that
have been developed by using the COM software architecture. Just because software is developed by using COM does not
mean that it can be programmed by using VBA. However, if an application or service supports automation, it can expose
interfaces to the features of its components as objects that can be programmed from VBA, as well as many other programming
languages. To support automation, an application or service must provide either or both of two methods of exposing its custom
interfaces:

• By providing the IDispatch interface. In this way, the application or service can be queried for further information
about its custom interfaces. Applications and services that support the IDispatch interface provide information about
their custom interfaces at run time by using a method called late binding.

• By making it possible for direct access at design time to the member functions in its virtual function table, or vtable,
that implement its interfaces. Applications and services that support direct access to custom interfaces support what is
called vtable binding or early binding.

An application can be said to support automation if it supports either one, but not necessarily both, of these methods. Most
contemporary applications and services provide support for both methods and are referred to as supporting dual interfaces.

 3

To support early or late binding, an application or service also must supply a type library (also known as an object library). A
type library is a file or part of a file that describes the type of one or more objects. Type libraries do not store objects; they
store type information. By accessing a type library, a programming environment can determine the characteristics of an object,
such as the interfaces supported by the object and the names and addresses of the members of each interface. With this
information, the programming language can be used to work with the exposed interfaces.

In the VBA programming environment, you can establish a connection to a type library, which is called establishing a
reference to a type library. After you establish a reference to a type library, you can view information about the objects made
available through the type library by using the Object Browser. Establishing a reference to a type library also makes it possible
for VBA to perform error-checking at compile time to ensure code written against the type library is free from errors because
of improper declarations or from passing values of the wrong type. Additionally, referencing a type library makes it possible
for you to take advantage of VBA features that simplify writing code, such as automatic listing of the properties and methods
of objects exposed by the type library. Furthermore, referencing a type library makes your code run faster, because information
about the objects you are programming is available to VBA at design time; this information can be used to optimize your code
when it is compiled.

The VBA programming environment can be incorporated into applications that support automation to make them
programmable. The suite of Microsoft® Office XP applications, incorporate the VBA programming environment and are
written to support both kinds of automation interfaces. Additionally, many other software components, such as Microsoft®
ActiveX® controls and DLLs, expose their functionality to VBA programmers through automation interfaces.

Using the objects, properties, and methods exposed through automation interfaces, you can use VBA code running in modules
associated with the currently open document, template, database, Microsoft® FrontPage®-based web, or add-in to automate
that application. VBA and automation make it possible to record simple macros to automate keystrokes and mouse actions (in
applications that support macro recording), and to create sophisticated integrated solutions, such as document management,
accounting, and database applications.

To produce even more powerful integrated applications, you can use VBA code running in one application to create and work
with objects from another installed application or component. For example, if you are developing a solution in Microsoft®
Access and you want to use mathematical or other functions available only in Microsoft® Excel, you can use VBA to create an
instance of Excel and use its features from code running in Access.

You can think of automation as a nervous system that makes programmatic communication and feedback between applications
and components possible, and as "glue" that makes it possible for you integrate features from Office applications and other
software components into a custom solution.

The VBA support for automation provides Office developers with incredible flexibility and power. By taking advantage of
automation, you can use the features exposed through the object models of the entire Office suite of applications (as well as
any third-party applications and components that support automation interfaces) as a set of business-application building
blocks. By taking advantage of the pre-built components exposed through automation, you do not have to develop your own
custom components and procedures every time you want to get something done. In addition to shortening the development
time for your solution, using pre-built components means you can take advantage of the thousands of hours of design,
development, and testing that went into producing them.

By using VBA and objects exposed through automation, you can select the best set of features to use to perform the tasks you
want to accomplish, you can provide the data users must have to accomplish their jobs, and you can manage workflow to
provide an effective and productive solution.

Objects, Collections, and Object Models: Technology Backgrounder

Microsoft® Office XP applications expose their functionality to the Microsoft® Visual Basic® for Applications (VBA)
language through a hierarchical system of objects and collections of objects called an object model. When you understand how
to reference objects in an application's object model, you can use the objects and features available to build your solution.

An application fundamentally consists of two things: content and functionality. Content refers to the information within an
application, that is, the documents, worksheets, tables, or slides and the information they contain. Content also refers to
information about the attributes of individual elements in that application, such as the size of a window, the color of a graphic,
or the font size of a word. Functionality refers to all the ways you can work with the content in the application, for example,
opening, closing, adding, deleting, sending, copying, pasting, editing, or formatting the content in the application.

The content and functionality that make up an application are represented to the Visual Basic language as discrete units called
objects. For the most part, the set of objects exposed by an application to VBA corresponds to all the objects that you can work
with by using the application's user interface. You probably are familiar with many of these objects, such as Microsoft®
Access databases, tables, queries, forms, and reports; Microsoft® Excel workbooks, worksheets, and cell ranges; Word
documents, sections, paragraphs, sentences, and words; Microsoft® Outlook® messages, appointments, and contacts;
Microsoft® PowerPoint®presentations and slides; and Microsoft® FrontPage®-based webs and web pages.

The objects exposed by an application are arranged relative to each other in hierarchical relationships. The top-level object in a
Microsoft® Office XP application is the Application object, which represents the application itself. The Application object
contains other objects that you have access to only when the Application object exists (that is, when an instance of the
application itself is running). For example, the Excel Application object contains Workbook objects, and the Word Application

 4

object contains Document objects. Because the Document object depends on the existence of the Word Application object for
its own existence, the Document object is said to be the child of the Application object; conversely, the Application object is
said to be the parent of the Document object.

Many child objects have children of their own. For example, the Excel Workbook object contains, or is parent to, the
Worksheets object. The Worksheets object is a special kind of object called a collection that represents a set of objects - in this
case, all the worksheets in the workbook, which in turn are represented as individual Worksheet objects within that collection.
A parent object can have multiple children; for instance, the Word Window object has as children the Document, Panes,
Selection, and View objects. Additionally, identically named child objects might belong to more than one parent object; for
instance, in Word, both the Application object and the Document object have a Windows collection as a child object. However,
even though the child objects have the same name, typically, their functionality is determined by the parent object; for example,
the Microsoft® Windows® collection for the Application object contains all the current document windows in the application,
whereas the Windows collection for the Document object contains only the windows that display the specified document.

In addition to containing child objects, each object in the hierarchy contains content and functionality that apply both to the
object itself and to all its child objects. The higher an object is in a hierarchy of nested objects (that is, the more child objects
an object has), the wider the scope of its content and functionality. For example, in Excel, the Application object contains the
size of the application window and the ability to quit the application; the Workbook object contains the file name and format of
the workbook and the ability to save the workbook; the Worksheets collection contains Worksheet object names and the ability
to add and delete worksheets.

You often do not get to the actual contents of a file, such as the values on an Excel worksheet or the text in a Word document,
until you have navigated through several levels in the object hierarchy. This is because the scope of this specific content
belongs to a particular functionality of the application. For example, the value in a cell on a worksheet applies only to that cell,
not to all cells on the worksheet, so you cannot store the value directly in a Worksheet object.

To work with the content and functionality exposed by an object, you use properties and methods of that object. You use
properties to determine or change some characteristic of an object, such as its color, dimensions, or state. For example, you can
set the Visible property of an Excel Worksheet object to specify whether a worksheet is visible to the user. You use methods to
perform a particular action on an object. For example, you use the PrintOut method of the Word Document object to print the
document.

Some objects also respond to events. An event is an action that typically is performed by a user such as clicking a mouse,
pressing a key, changing data, or opening a document or form but also can be performed by program code or by the system
itself. You can write code, called an event procedure, which will run whenever an event occurs. For example, you can write
code in a form's Open event to size or position the form whenever it is opened.

In summary, the representation of content and functionality in an application is divided among the objects in the application's
object model. Together, the objects in the object model's hierarchy represent all the content and functionality in the application
that is exposed to Visual Basic. Separately, the objects provide access to very specific areas of content and functionality. To
determine or set a characteristic of an object, you read or set one of the object's properties. To perform an action on or with an
object, you use one of the object's methods. Additionally, some objects provide events that are typically triggered by a user's
action, so you can write code that will run in response to that action.

Objects Exposed by an Object Model
To work with the objects exposed by an object model, you first must declare an object variable and set a reference to the object
you want to work with. When you have established a reference to an object, you can work with its properties, methods, or
events.

To set a reference, you must build an expression that gains access to one object in the object model and then use properties or
methods to move up or down the object hierarchy until you get to the object you want to work with. The properties and
methods you use to return the object you start from and to move from one object to another are called "object accessors" or just
"accessors."

Accessors typically have the same name as the object they are used to access; for example, the Word Documents property is
used to access the Documents collection. Accessors are typically properties, but in some object models, accessors are methods.

This topic includes the following sections:
• The Application Object
• Navigating the Object Hierarchy
• Shortcut Accessors
• Referencing the Document or Workbook in Which Code Is Running
• The Parent Property
• Accessing an Embedded OLE Object's Application
• Creating Your Own Objects and Object Models

The Application Object

A common place to gain access to the object model is the top-level object. In all Microsoft® Office XP applications and in
most applications that support Microsoft® Visual Basic® for Applications (VBA), the top-level object is the Application

 5

object. However, some applications and components might have a different top-level object. For example, when you are
programming the Visual Basic Editor (by using a reference to the Visual Basic for Applications Extensibility 5.3 library), the
top-level object is the VBE object.

Note
The following code assumes you are running Microsoft® Word.

You use the Application property to return a reference to the Application object. The following code fragment returns a
reference to the Application object and then sets properties to display scroll bars, ScreenTips, and the status bar:

Dim wdApp As Application
Set wdApp = Application
With wdApp
 .DisplayScrollBars = True
 .DisplayScreenTips = True
 .DisplayStatusBar = True
End With

If you have established references to more than one type library that contains an Application object, the Application property
will always return the Application object for the host application. In addition, for any other object that has the same name in
two or more referenced type libraries, the accessor property or method will return the object from the first type library
referenced in the Available References list of the References dialog box (Tools menu).

For example, the Microsoft® ActiveX® Data Objects (ADO) and Data Access Objects (DAO) type libraries both have
Recordset objects. If you have a reference to the ADO type library followed by the DAO type library, a declaration such as the
following will always return the ADO Recordset object:

Dim rstNew As Recordset

While you might be able to adjust the priority of references in the References dialog box to correct this, a better solution,
which eliminates any ambiguity and prevents errors, is to declare an object variable by using the fully qualified class name,
also called the programmatic identifier or ProgID, of the object. To do this, combine the name of the application or component
that contains the object (as it appears in the Object Browser's Project/Library box) with the name of the object separated by a
period.

For example, to declare an object variable that will be used to work with the Word Application object from another application,
you must declare the object variable this way:

Dim wdApp As Word.Application

Similarly, if you have both the ADO and the DAO type libraries referenced in your project, you should declare object variables
to work with Recordset objects this way:

Dim rstADO As ADODB.Recordset
Dim rstDAO As DAO.Recordset

Note
You can view the ProgIDs of all installed applications and components on a computer by running the Registry Editor and
looking under the \HKEY_CLASSES_ROOT\CLSID subkey.

Navigating the Object Hierarchy

To get to an object from the top-level object, you must step through all the objects above it in the hierarchy by using accessors
to return one object from another. Many objects, such as workbooks, worksheets, documents, presentations, and slides, are
members of collections. A collection is an object that contains a set of related objects. You can work with the objects in a
collection as a single group rather than as separate entities. Because collections are always one level higher than individual
objects in the hierarchy, you usually have to access a collection before you can access an object in that collection. The accessor
that returns a collection object usually has the same name as the collection object itself. For example, the Documents property
of the Word Application object returns the Documents collection object, which represents all open documents. The following
expression returns a reference to the Word Documents collection object:

Application.Documents

You reference an item in a collection either by using a number that refers to its position in the collection or by using its name.
For example, if a document named Report.doc is the first open document in the Documents collection, you can reference it in
either of the following ways:

Application.Documents(1)
-or-
Application.Documents("Report.doc")

To get to an object further down the object hierarchy, simply add additional accessors and objects to your expression until you
get to the desired object. For example, the following expression returns a reference to the second paragraph in the Paragraphs
collection of the first open document:

Application.Documents(1).Paragraphs(2)
 6

Shortcut Accessors

There are shortcut accessors you can use to gain direct access to objects in the model without having to navigate from the
Application object. These shortcuts include accessors, such as the Documents, Workbooks, Items, and Presentations properties,
that you can use to return a reference to the document collection for the corresponding application. For example, in Word, you
can use either of the following statements to open MyDoc.doc:

Application.Documents.Open Filename:="c:\docs\mydoc.doc"
-or-
Documents.Open Filename:="c:\docs\mydoc.doc"

There are other shortcut accessors, such as the ActiveWindow, ActiveDocument, ActiveWorksheet, or ActiveCell properties
that return a direct reference to an active part of an application. The following statement closes the active Word document.
Note that the Application object and the Documents collection object are not explicitly specified.

ActiveDocument.Close

Tip
When <globals> is selected in the Classes list in the Object Browser, you can use any accessor that appears in the Members of
list as a shortcut. That is, you do not have to return the object that the property or method applies to before you use the property
or method, because VBA can determine that information from the context in which your code is running.

Referencing the Document or Workbook in Which Code Is Running

When you are using the ActiveDocument and ActiveWorkbook accessor properties, it is important to remember that the
reference returned is to the document or workbook that is currently in use (the topmost window of all open documents or
workbooks). In many circumstances, you can reference an active object implicitly, that is, without including the entire
hierarchy above the object to which you are referring. For example, you can create a reference to the active workbook's
Worksheets collection without preceding the collection with ActiveWorkbook. or an explicit reference to the workbook's name
or number in the Workbooks collection:

Worksheets("MySheet")

However, using implicit references or references to the ActiveDocument or ActiveWorkbook accessor properties can create
problems if you are developing a global template or add-in and need to make sure your code refers to the add-in or global
template itself. Word and Excel provide two special accessor properties that return a reference to the document or workbook in
which the VBA code is running: ThisDocument and ThisWorkbook. Use the ThisDocument or ThisWorkbook property
whenever you need to make sure that your code refers to the document or workbook that contains the code that is running.

For example, both of the following Set statements reference the worksheet named Addin Definition. The first makes an explicit
reference to the active workbook by using the ActiveWorkbook property. The second makes an implicit reference; because it
doesn't explicitly refer to a specific workbook, the reference is assumed to be to the active workbook. In either case, the
reference made in the Set statement will be to the worksheet in whatever workbook happens to be active when the code runs.

Set rngMenuDef = ActiveWorkbook.Worksheets("Addin Definition"). Range("MenuDefinition")
Set rngMenuDef = Worksheets("Addin Definition"). Range("MenuDefinition")

References such as these will work correctly while you are developing an add-in or template if you have no other documents or
workbooks open while you are testing your code, or if the add-in or template is in the active window when the code is running.
However, when your add-in or template is in use, these types of references can cause errors. To make sure that you are
referencing the workbook in which code is running, use the ThisWorkbook property as shown in the following Set statement:

Set rngMenuDef = ThisWorkbook.Worksheets("Addin Definition"), Range("MenuDefinition")

The Parent Property

To access an object higher up in the object hierarchy from the current object, you can often use the Parent property of the
object. Using an object's Parent property makes it possible for you to reference the higher object that contains the current
object. For example, if you write a function to work with a control on a form (the function takes an argument of type Control),
you can use the control's Parent property to reference the form that contains the control.

Note that the Parent property doesn't always return the object immediately above the current object in the hierarchy, it might
return a higher object, especially if the object immediately above the current object is a collection. For example, the Parent
property of a Word Document object returns the Application object, not the Documents collection. You can use the TypeName
function to find out what kind of object to which the Parent property of an object refers. For example, in Word, the following
statement displays the type of object that the Parent property of the Document object refers to:

MsgBox TypeName(Documents("Document1").Parent)

Tip
You can use the TypeName function to determine the type of object returned by any expression, not just expressions that use
the Parent property. The TypeName function can also be used to determine the kind of data type returned by an expression,
such as Byte, Integer, or Long.

 7

Creating Your Own Objects and Object Models

You can create your own objects and object models by creating and using class modules. For example, you might need to work
with complex sets of data that need to be managed in a consistent and reliable way. By creating your own objects, properties,
and methods to work with this data in a class module, you can create an object model to make working with your data simpler
and less error-prone. Similarly, you can create class modules to create wrapper functions around Windows application
programming interface (API) calls or even complex parts of existing object models to make them easier to use.

Collections

Although collections and the objects they contain, such as the Workbooks collection and the Workbook object are distinct
objects each with their own properties and methods, they're grouped as one unit in most object model graphics to reduce
complexity.

To return a single member of a collection, you usually use the Item property or method and pass the name or index number of
the member as the index argument. For example, in Excel, the following expression returns a reference to an open workbook
by passing its name "Sales.xls" to the Item property and then invokes the Close method to close it:

Workbooks.Item("Sales.xls").Close

The Item property or method is the default for most collections, so you can usually omit it from your expression. For example,
in Excel, the following two expressions are equivalent:

Workbooks.Item("Sales.xls")
-or-
Workbooks("Sales.xls")

To reference items in a collection by using an index number, simply pass the number of the item to the Item property or
method of the collection. For example, if Sales.xls is the second workbook in the Workbooks collection, the following
expression will return a reference to it:

Workbooks(2)

Note
Most collections used in Office applications (except Access) are one-based, that is, the index number of the first item in the
collection is 1. However, the collections in Access and some components, such as ADO and DAO, are zero-based, which is,
the index number of the first item is 0. For more information, refer to the Visual Basic Reference Help topic for the collection
you want to work with.

Adding Objects to a Collection

You can also create new objects and add them to a collection, usually by using the Add method of that collection. The
following code fragment creates a new document by using the Professional Memo.dot template and assigns it to the object
variable docNew:

Const TEMPLATE_PATH As String = "c:\program files\microsoft office\templates\1033\"
Dim docNew As Word.Document

Set docNew = Documents.Add(Template:=TEMPLATE_PATH & "memos\professional memo.dot")

Working with Objects in a Collection

You can find out how many objects there are in a collection by using the Count property. The following Excel example
displays a message box with the number of workbooks that are open:

MsgBox Workbooks.Count & " workbooks are open."

You can perform an operation on all the objects in a collection, or you can set or test a value for all the objects in a collection.
To do this, you use a For Each...Next structure, or a For...Next structure in conjunction with the Count property to loop through
all the objects in the collection.

Whenever possible, you should use a For Each...Next loop when you need to work with all the items in a collection. A For
Each...Next loop generally performs faster and doesn't require you to use or test a loop counter, which can introduce errors.
The following Excel example contains a For Each...Next structure that loops through the Worksheets collection of a workbook
and appends " - By Automation" to the name of each worksheet:

Sub CreateExcelObjects()
 Dim xlApp As Excel.Application
 Dim wkbNewBook As Excel.Workbook
 Dim wksSheet As Excel.Worksheet
 Dim strBookName As String

 ' Create new hidden instance of Excel.
 Set xlApp = New Excel.Application

 8

 ' Add new workbook to Workbooks collection.
 Set wkbNewBook = xlApp.Workbooks.Add
 ' Specify path to save workbook.
 strBookName = "c:\my documents\xlautomation.xls"
 ' Loop through each worksheet and append " - By Automation" to the name of each sheet. Close and save workbook to
specified path.
 With wkbNewBook
 For Each wksSheet In .Worksheets
 wksSheet.Name = wksSheet.Name & " - By Automation"
 Next wksSheet
 .Close SaveChanges:=True, FileName:=strBookName
 End With
 Set wkbNewBook = Nothing
 Set xlApp = Nothing
End Sub

Under some circumstances, you must use a For...Next loop to work with items in a collection. For example, if you try to use a
For Each...Next loop to delete all the objects in a collection, only every other object in the collection will be deleted. This is
because after deleting the first item, all items in the collection are re-indexed so that what was the second item is now the first.
When the Next statement runs at the end of the first execution of the loop, the pointer is advanced one, skipping that item for
the next iteration of the loop. For this reason, to delete all items in a collection, you must use a For...Next loop that starts from
the end of the collection and works backwards.

Another situation that requires you to use a For...Next loop to work with items in a collection is if you need to work with only
a specific number of items, say the first ten, or every tenth item.

Properties and Methods

To work with the content and functionality exposed by an object, you use properties and methods of that object. The following
Excel example uses the Value property of the Range object to set the contents of cell B3 on the Sales worksheet in the
Current.xls workbook to 3:

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Value = 3

The following example uses the Bold property of the Font object to apply bold formatting to cell B3 on the Sales worksheet:

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Font.Bold = True

The following Word example uses the Close method of the Document object to close the file named Draft3.doc:

Documents("Draft3.doc").Close

In general, you use properties to set or read the content, which can include the text or value contained in an object, or other
attributes of the object, and you use methods to work with an application's (or the Microsoft®Visual Basic®for Applications)
built-in functionality to perform operations on the content. Be aware, however, that this distinction doesn't always hold true;
there are a number of properties and methods in every object model that are exceptions to this rule.

Events

An event is an action that is typically performed by a user, such as clicking a mouse button, pressing a key, changing data, or
opening a document or form, but the action can also be performed by program code, or by the system itself. You can write
event procedure code to respond to such actions at either of two levels:

• Document-level or subdocument-level events These events occur for open documents and in some cases, for
objects within them. For example, the Word Document object can respond to the Open, New, and Close events; the
Excel Workbook object can respond to events such as the Open, BeforeClose, and BeforeSave events; and the Excel
Worksheet object can respond to events, such as the Activate and Calculate events. Microsoft® PowerPoint®
supports only application-level events.

• Application-level events These events occur at the level of the application itself, for example, when a new
Microsoft® Word document, Microsoft® Excel workbook, or PowerPoint presentation is created, for which the
corresponding events are the NewDocument, NewWorkbook, and NewPresentation events.

Microsoft® Access provides a different model that responds to events on Form and Report objects, and most of the controls on
them, such as ListBox and TextBox objects. UserForms, which can be used from Excel, Word, and PowerPoint, provide a
similar event model to Access forms.

The Microsoft® Outlook® Application object provides events that can be used from the ThisOutlookSession module or a
COM add-in running from an installation of the Outlook application, such as ItemSend, NewMail, OptionsPagesAdd, Quit,
Reminder, and Startup. To create code that responds to a user's actions in the Outlook user interface, you can use the
WithEvents keyword to declare object variables that can respond to Outlook Explorer, Inspector, and MAPIFolder object
events. All Outlook item objects, except the NoteItem object, can respond to events, such as the Open, Read, and Reply events.

 9

The Microsoft® FrontPage® Application object provides events that make it possible for your solution to respond to the
creation and editing of pages and FrontPage-based webs, such as OnPageNew, OnPageOpen, OnBeforePageSave,
OnAfterPageSave, and OnPageClose, and OnWebNew, OnWebOpen, OnBeforeWebPublish, OnAfterWebPublish, and
OnWebClose.

In addition to the events supported by each Office application, the CommandBarButton object, CommandBarComboBox
object, and CommandBars collection support events.

Responding to Document-Level Events

To create event procedures for events in Excel workbooks and Word documents, you need to work with the ThisWorkbook or
ThisDocument modules. For example, to write an event procedure that will run when a Word document is opened, open the
document and then open the Visual Basic Editor. In the Project Explorer, double-click ThisDocument to open the
ThisDocument module. In the Object box in the Code window, click Document, and then click Open in the Procedure box. The
Microsoft® Visual Basic® Editor will create an event procedure template for the document's Open event. You can then enter
any code you want to run whenever the document is opened. For example, the following event procedure sets certain features
of the active window and view of a Word document when it is opened:

Private Sub Document_Open()
' Set Window and View properties to display document with document map in page layout view.
 With ActiveWindow
 .DisplayVerticalScrollBar = True
 .DisplayRulers = False
 .DisplayScreenTips = True
 .DocumentMap = True
 .DocumentMapPercentWidth = 25
 With .View
 .Type = wdPageView
 .WrapToWindow = True
 .EnlargeFontsLessThan = 11
 .ShowAll = False
 .ShowPicturePlaceHolders = False
 .ShowFieldCodes = False
 .ShowBookmarks = False
 End With
 End With
End Sub

If you want to prevent code written in a document's Open event from running when the document is opened programmatically
from another application, you can check the Application object's UserControl property to determine if a user opened the
application.

Responding to Application-Level Events

Microsoft® Office XP includes a comparable set of events for Word and PowerPoint with similar names across each
application. For example, where Excel provides NewWorkbook and WorkbookOpen events, Word provides NewDocument
and DocumentOpen events, and PowerPoint provides NewPresentation and PresentationOpen events. Providing consistent
event handling and similar names across Word, Excel, and PowerPoint makes it easier to create a COM add-in that works
across these applications. FrontPage doesn't supply as extensive a set of application-level events as the other Office
applications, but FrontPage events also have similar names; for example, OnPageNew, OnWebNew, OnPageOpen, and
OnWebOpen.

The NewDocument, NewWorkbook, NewPresentation, and OnPageNew events are useful for tasks such as automatically
formatting new documents and inserting content such as the date, time, author, or latest company logo off the intranet.
Similarly, the OnWebNew event can be used to automatically apply themes or to add pages and content to new FrontPage-
based webs. The DocumentOpen, WorkbookOpen, PresentationOpen, and OnPageOpen events can be used to retrieve
information from the document and update command bar customizations. The DocumentClose, DocumentSave, and
DocumentPrint events in Word (and comparable events in Excel and PowerPoint) can be used to ensure that document
properties, such as the author or subject, are entered in the document before the document can be closed, saved, or printed.
Similarly, the FrontPage OnBeforePageSave, OnBeforeWebPublish, OnPageClose, and OnWebClose events can be used to
check page properties or to check the sizes of image files on the page, and to verify hyperlinks before publishing a FrontPage-
based web.

To write event procedures for the Application object, you must create a new class module and declare an object variable as
type Application by using the WithEvents keyword. For example, you can create a class module named XLEvents and add the
following declaration to create a private Excel Application object variable to respond to events:

Private WithEvents xlApp As Excel.Application

When you have done this, you can click xlApp in the Object box of the class module's Code window, and then click any of the
events in the Procedure box to write event procedures to respond to Excel Application object events. However, because you

 10

can't use the New keyword to create an instance of the Application object variable when you are declaring it by using the
WithEvents keyword, you'll need to write a Set statement to do so in the class module's Initialize event this way:

Private Sub Class_Initialize
 Set xlApp = Excel.Application
End Sub

This process is called creating an event sink. To activate the event sink, you declare in another module a public (or private)
object variable for your event sink class, and then run a procedure that will create an instance of your class before the events
you want to handle occur. For example:

Public evtEvents As XLEvents
Public Sub InitXLEvents()
 Set evtEvents = New XLEvents
End Sub

Creating an event sink in a class module provides a way for you to create an independent object that will respond to
application-level events. The VBA project that contains the class module and procedure used to initialize your event sink must
be running before any of the events you want to trap occur. Because application-level events are triggered by events that occur
while the application itself is being used to open and work with documents, you will most typically implement an event sink in
an add-in to trap an application's application-level events, or in automation code running from another application.

Using the Object Browser

The Object Browser is available in all Microsoft products that contain the Microsoft® Visual Basic® for Applications (VBA)
programming environment. The Object Browser makes it possible for you to view all objects, methods, properties, events, and
constants of all COM components whose type libraries are referenced by the application you are working with. By default,
each Microsoft® Office XP application references a set of type libraries. For example, Word references by default Visual
Basic for Applications, Microsoft® Word, OLE automation, and Microsoft® Office XP type libraries.

To manually reference any additional type libraries available on your system
• From the Tools menu in the Visual Basic Editor , click References .

The Object Browser

The Project/Library box shows all the available referenced type libraries. These libraries make it possible for you to use early
binding with the corresponding applications.

The Search Text box shows any keywords you have searched for by using the drop-down list. You can also type a word in this
box, and then click the Search button to search the available libraries for that word. The Search Results list displays any classes,
properties, methods, events, or constants that contain the word you searched for.

 11

The Classes list displays all objects and collections in the library, and the Members of list displays all methods, properties,
events, and constants associated with the selected object in the Classes list. The bottom pane of the dialog box (the Details
pane) displays other information about the currently selected item, such as what kind of object it is, its data type, what
arguments it might take, and what library or collection of which the item is a member.

t® Outlook® differs somewhat from the other Microsoft® Office applications. You can
work wit

 within the Outlook forms that are used to display items such

r. In Outlook, the Visual Basic Editor makes it possible for you to write code that can be run
 code to the ThisOutlookSession module, you can write code

wMail, OptionsPagesAdd, Quit, Reminder, and Startup. Just as
with es, and UserForms to further customize your solution,
and

machines where Outlook is installed. However, a much better way to distribute your solution is to

utlook Script Editor. Outlook forms (that is, all items you can
, appointments, and contacts) support scripting in Microsoft® Visual Basic® Scripting

t Editor. Because VBScript is a subset of VBA, there are limitations to what you
s only one data type, the Variant data type, and a number of VBA keywords and features

look item you want to base your form on.

then click Design This Form. To start from an existing custom form, point

e Form menu, click View Code.

When working with scripting in Outlook forms, you will most pically be writing event procedures. For example, you might
want to write an event procedure for your form's Open event to initialize the form to display a particular tab page and enter
default values in certain fields.

itialize a late-bound

Either s object variable to work with the other objects, properties, methods, and events of the Outlook
object

If a Help file has been associated with the objects in the type library, you can display a Help topic by clicking the item in either
the Classes or Members of list, and then pressing F1 or clicking the Help button in the upper-right corner of the dialog box.

Working with the Outlook Object Model
The programming model of Microsof

h Outlook's object model in three ways:
• You can write Microsoft® Visual Basic® for Applications (VBA) code that runs from a local project file or a COM

add-in that is associated with the local installation of Outlook.
• You can use the native scripting environment available

as messages and appointments.
• You can use automation to work with Outlook from other Office applications and applications that support VBA.

To write VBA code that runs from a local project file (VBAProject.OTM), open Outlook, point to Macro on the Tools menu,
and then click Visual Basic Edito
from this installation of Outlook only. For example, by adding
agai th nd, Nenst e following Application object events: ItemSe

 other Office applications, you can insert code modules, class modul
 you can run procedures from menu items or toolbar buttons.

To distribute a solution created by using a local Outlook VBA project, you can export your modules and objects to files and
then import them on other
compile and install your solution as a COM add-in by using the COM add-in designer available in Microsoft® Office XP
Developer or in Microsoft® Visual Basic® 6.0.

To write script that runs within Outlook items, you use the O
open in Outlook, such as messages
Edition (VBScript) by using the Outlook Scrip
can do; for example, VBScript support
aren't supported. To access the Outlook Script Editor, you must be in form design mode.

To open the Outlook Script Editor
1. Open the Out
2. On the Tools menu, point to Forms , and

to Forms on the Tools menu, click Design a Form , and then select a form.
3. Make any changes you want to the design of the form.
4. On th

ty

To add an event handler stub to the Outlook Script Editor
1. From the Script menu, click Event Handler.
2. Select the event you want to work with, and then click Add.

For more information about the Outlook object model, click Microsoft® Outlook® Object Library Help on the Help menu in
the Outlook Script Editor.

To work with Outlook from another application, you can use automation code with either early binding or late binding. To use
early binding, establish a reference to the Microsoft® Outlook® object library and then declare and initialize an object variable
that references the Outlook Application object. For example:

Dim olApp As Outlook.Application
Set olApp = New Outlook.Application

Similarly, you can use the CreateObject function with an object variable declared as type Object to in
object variable. For example:

Dim olApp As Object
et olApp = CreateObject("Outlook.Application") S

way, you can then use thi
model.

 12

Office Application Automation

Automating one application from another is often referred to as running code from a host application to automate another
 Office application from another is generally accomplished in the same way, there are

som

y is set to the default (msoFeatureInstallOnDemand), any attempt to use an uninstalled object

reInstall property to msoFeatureInstallOnDemandWithUI to

her custom action, you
et the FeatureInstall property to msoFeatureInstallNone. For more information and details about application-specific

ference to the application's type library by using the References dialog box.

cation, you should set a reference to that application by using the
ences dialog box.

ls menu in the Visual Basic Editor .

ur custom solutions, you must reference only the application that contains the objects you want to manipulate by using

ur code can't use

, as in the following line of code:

Applic

esn't guarantee that the same value will be used in future versions of Microsoft®

application. Although automating one
e important differences regarding how you work with each application.

When Microsoft® Visual Basic® for Applications (VBA) code references an object that is not installed, the Windows installer
technology will attempt to install the required feature. In all Microsoft® Office applications except Microsoft® Outlook® and
Microsoft® FrontPage®, you can use the FeatureInstall property to control what happens when an uninstalled object is
referenced. When this propert
causes the Microsoft® Windows® installer to try to install the requested feature.

In some circumstances, this might take some time, and the user might believe that the machine has stopped responding to
additional commands. To address this, you can set the Featu
display a progress meter so that users can see that something is happening as the feature is being installed.

If you want to trap the error that is returned and display your own dialog box to the user or take some ot
can s
behavior, search the Office application's Help index for "FeatureInstall property."

Setting References

The first step in automating one Microsoft® Office application from another is referencing the application you want to
automate. This reference lets your application "see" the objects exposed by the other application. In most cases, this means
setting a re

Before you work with objects exposed by an Office appli
Refer

To open the References dialog box

• Click References on the Too

In yo
automation. Including unnecessary references will increase the time it takes for your solution to load and will consume some
additional memory resources.

You can use the objects of another Office application (or the objects exposed by any other application or component that
supports automation) without setting a reference in the References dialog box by using the CreateObject or GetObject function
and declaring object variables as the generic Object type.

If you use this technique, the objects in your code will be late-bound, and as a result you will not be able to use design-time
tools such as automatic statement completion or the Object Browser, and your code will not run as fast.

Tip
Because the Application object of every Office XP application includes accessor properties to work with some of the shared
Office components such as the Assistant and FileSearch objects, you can work with these objects without having a reference to
the Microsoft Office XP object library. You might want to do this if your application must load quickly. However, when you
are using a shared Office component without a reference to the Microsoft® Office XP object library, yo
enumerated constants; if it does, an error will be displayed. For example, when you are using the Assistant object with a
reference to the Microsoft® Office XP object library, you can use a line of code such as the following to animate the Office
Assistant:

Application.Assistant.Animation = msoAnimationGreeting

Tip
To use the same line of code without a reference to the Microsoft® Office XP office library, you must use the actual value of

e msoAnimationGreeting constant, which is 2th

ation.Assistant.Animation = 2

Tip
However, this is not a recommended coding procedure, because these numbers could change during the next revision. Using
the constant makes sure your code will not break because of a change in the number. To determine the values for constants
such as msoAnimationGreeting, you must temporarily establish a reference to the Microsoft® Office XP office library and use
the Object Browser to look up the numeric values of the constants you want work with. Using the numeric values will make
your code less readable, and Microsoft do
Office, so code written in this manner might not work correctly in future versions of Office. The VBA projects for all Office
applications except Access include a reference to the Microsoft® Office XP office library by default. Therefore, if you want to
prevent a reference to the Microsoft® Office XP office library from being loaded when your solution is opened, you must
remove the reference in your solution's VBA project.

 13

When you refer to an object in code, VBA determines what type of object it is by searching the type libraries selected in the
References dialog box in the order in which they are displayed. If an object has the same name in two or more referenced type
libraries, VBA uses the definition provided by the type library listed higher in the Available References list.

To change the order in which the libraries are searched, you can use the Priority buttons to move the type libraries (except for
sual Basic for Applications and the host application's type library) up or down the list. However, a better way to

 library, you can learn about the exposed objects by
 the Help system.

 application's type library, it must first determine what
information is contained in that type library. The process of querying the objects, methods, and properties exposed by another

en your solution is running, thereby enhancing your solution's performance.

de to run against
on't know the type of object you are working with until run time. Note that the additional
n at run time can slow down the performance of your solution.

ing languages such as
t support references or specific object data

the Vi
eliminate ambiguous object references is to fully qualify type declarations by including the programmatic identifier in front of
the object name; for example, Dim docNew As Word.Document. Qualifying type declarations by using the programmatic
identifier eliminates a potential source of errors and also makes your code more self-documenting.

If you have established a reference to an application or component's type
using the Object Browser and

Object Variable Declaration

Before one application can work with the objects exposed by another

application is called binding. Microsoft® Visual Basic® for Applications (VBA) programming in Microsoft® Office
applications supports two kinds of binding: early binding and late binding. How and when binding occurs can have a great
impact on how your solution performs.

If you establish a reference to the application's or component's type library, you can use early binding. When early binding is
used, VBA retrieves information at design time about the application's objects directly from the type library, thus making it
possible for you to declare object variables as specific types. For example, if you establish a reference to the Microsoft®Word
object library when you are working with Word documents, you can declare object variables by using data types that are
specific to Word, such as the Documents or Document types. Early binding reduces the amount of communication that needs
to occur wh

Late binding queries the application you are automating at run time, which makes it possible for you to declare object variables
by using the generic Object or Variant data type. In general, late binding is useful if you are writing generic co
any of several applications and w
overhead of querying an applicatio

Note
Some applications and components that support automation support only late binding. All Office XP applications and most
contemporary applications that support automation support both early and late binding. However, script
VBScript and Microsoft® JScript® don't support early binding because they don'
types (for example, in VBScript only the Variant data type is supported).

Early-Bound Declarations

Early binding makes it possible for you to declare an object variable as a programmatic identifier, or class name, rather than as
an Object or a Variant data type. The programmatic identifier of an application is stored in the Microsoft® Windows® registry

inding, you can initialize the object variable by using the CreateObject or GetObject function or by

pplication.

table binding. To use early
must establish a reference to a type library (.tlb) or an object library (.olb), or an .exe, .dll, or .ocx
ation about the objects, methods, properties, and events of the application or service you want to

plication

checking When you use early binding, VBA checks the syntax of your statements against the syntax stored in the

as a subkey below the \HKEY_CLASSES_ROOT subtree. For example, the programmatic identifier for Microsoft® Access is
"Access.Application"; for Microsoft® Excel it is "Excel.Application."

When you are using early b
using the New keyword if the application supports it. All Office XP applications can be initialized by using the New keyword.
Because the Microsoft® Outlook® programming environment for Outlook items supports only scripting, you can't use early
binding declarations of any sort in its VBScript programming environment; however, you can use early binding in VBA code
in a local Outlook VBA project or COM add-in, or in automation code that works with Outlook from another host a

Early binding is the friendly name for what C programmers call virtual function table binding, or v
binding, the host application
file that contains type inform
automate.

In the following code fragment, an Application variable is declared by using the programmatic identifier for Word
(Word.Application) and a new instance of Word is created by using the Set statement with the New keyword:

Dim wdApp As Word.Ap

Set wdApp = New Word.Application

If the code following these lines doesn't set the Application object's Visible property to True, the new instance of Word will be
hidden. All Office applications are hidden by default when they are automated from another application.

Use early binding whenever possible. Early binding has the following advantages:

 Syntax
object library during compilation rather than checking it at run time, so that you can catch and address errors at design time.
For example, VBA can determine if you are using valid properties or methods of an object, and if you are passing valid
arguments to those properties and methods.

 14

 Support for statement-building tools When you use early binding, the Visual Basic Editor supports features that make
writing code much easier and less prone to errors, such as automatic listing of an object's properties and methods, and pop-up

-in constants for method
argum design time. If you use late
bindin cumentation.

tips for named arguments.

 Support for built-in constants When you use early binding, your code can refer to the built
ents and property settings because this information is available from the type library at
g, you must define these constants in your code by looking up the values in the application's do

 Better performance Performance is significantly faster with early binding than with late binding.

Late-Bound Declarations

Late binding makes it possible for you to declare a variable as an Object or a Variant data type. The variable is initialized by
calling the GetObject or CreateObject function and specifying the application's programmatic identifier. For example, in the
following code fragment, an Object variable is declared and then set to an instance of Microsoft® Access by using the

mation. For this reason, you can use late binding to
y with older applications. However, late binding uses a lot of overhead; it is faster than

lower than early binding.

ished before OLE for exchanging data between Windows applications. There is no need to
because of their support for automation. However, you might have to

 an Office application. For
n you want to work with.

from any automation component from script. This is
 establishing references to type libraries to support early binding.

ject Variables to Automate Another Office Application

with the objects from one Microsoft® Office application to another Office application through Microsoft® Visual
ode is very similar to using code to work with the objects within the code's host application.

 object variable that points to the Application object representing the Office application
o work with. In general, you create an early-bound object variable by using the New

rcumstances where you might choose to use the CreateObject or GetObject function to

plication that manipulates objects within that same application, the reference to the
 are automating another application, the reference to the Application object generally
mples illustrate this difference. The first example contains VBA code intended to be

de intended to be run from another Office application (or any
rence must be set to the

document to Documents collection.

Documents.Add
nt.

n.TypeText "Four score and seven years ago"

tion

.

ion

CreateObject function:

Dim objApp As Object

Set objApp = CreateObject("Access.Application")

Late binding is the friendly name for what C programmers used to call IDispatch binding, and was the first method of binding
implemented in applications that can control other applications through auto
maintain backward compatibilit
dynamic data exchange (DDE), but s

Tip
establDDE is a protocol that was

use DDE to exchange data between Office applications
use DDE from some other application that doesn't support automation code to work with data from

 about using DDE, search the Visual Basic Reference Help for the Office applicatiomore information

The CreateObject function must also be used to work with objects
because scripting has no method of

Creation of Ob
Working
Basic® for Applications (VBA) c
In most cases, you begin by creating an
that contains the objects you want t

word. However, there are limited cikey
create an object variable.

When you write VBA code in an ap
Application object is implicit. When you
must be explicit. The following two exa
run in Microsoft® Word. The second example contains VBA co
application that supports automation through VBA). For the second example to work, a refe

rd object library in the application the code is run from. Microsoft® Wo

Sub CodeRunningInsideWord()
 Dim docNew As Word.Document
 ' Add new
 Set docNew =
 ' Type text into docume
 Selectio
 ' Display document name and count of words, and then close document without saving changes.
 With docNew
 MsgBox "'" & .Name & "' contains " & .Words.Count & " words."
 .Close wdDoNotSaveChanges
 End With
 Set docNew = Nothing
End Sub

Sub CodeRunningOutsideWord()
 Dim wdApp As Word.Applica
 Dim docNew As Word.Document

 ' Create new hidden instance of Word
 Set wdApp = New Word.Applicat
 ' Create a new document.

 15

 Set docNew = wdApp.Documents.Add

ore and seven years ago"
ocument name and count of words, and then close document without saving changes.

 "' contains " & .Words.Count & " words."
 wdDoNotSaveChanges

b

In m t
access th ence to the Application object, you use additional

or you to create a top-level reference to certain child objects of
, it is possible to rewrite the previous CodeRunningOutsideWord procedure to start from

ject, this way:

erty to access the implicit instance of the Word Application object.
r score and seven years ago"

Similarly, Excel makes it possible for y top-level ing from the Workbook object. You can do this in
either of two ways:

• By using the Excel.Sheet clas rkb ngle worksheet.
or-

• By using the Excel.Chart clas work worksheet with an embedded Chart object
and another worksheet that contains a default data set for the chart.

To create a Workbook object either w the C nction, because the Excel.Sheet and Excel.Chart
class names don't support the New keyw e, to au starting with a top-level reference to a Workbook
object that contains a single worksheet, use code such as this:

Dim wbkSheet As Excel.Workbook

Set wbkSheet = CreateObject("Excel.S

To automate Excel starting with a top- s a worksheet with a chart and another
worksheet containing a default data set f u

Dim wbkChart As Excel.Workbook

Set wbkChart = CreateObject("Excel.C

When ou are automating Word starting from a Document object or automating Excel starting from a Workbook object, an
implicit reference is created to the Application object. If you must access properties and methods of the Application object, you
can us cument or Workbook objects. While using the Document or Workbook
objects you have to write somewhat, in most cases your code will be

 ' Add text to document.
 wdApp.Selection.TypeText "Four sc
 ' Display d
 With docNew
 MsgBox "'" & .Name &
 .Close
 End With
 wdApp.Quit
 Set wdApp = Nothing
End Su

os cases, you will create an object variable that refers to the top-level object representing the application you want to
rough automation, the Application object. When you have the refer

references to that object's child objects to navigate to the object or method you want to manipulate. You assign object variables
to child objects by using a method of a higher-level object with the Set statement.

However, Microsoft®Excel and Word also make it possible f
the Application object. For this reason
a reference to a Word Document ob

Sub CodeRunningOutsideWord()
 Dim docNew As Word.Document

 Set docNew = New Word.Document
 Set docNew = Documents.Add
 ' The following line uses the Application prop
 docNew.Application.Selection.TypeText "Fou
 With docNew
 MsgBox "'" & .Name & "' contains " & .Words.Count & " words."
 .Close wdDoNotSaveChanges
 End With
 docNew.Application.Quit
 Set docNew = Nothing
End Sub

ou to create a reference start

s name to create a wo ook that contains a si

s name to create a book that contains a

ay, you must use
ord. For exampl

reateObject fu
tomate Excel

heet")

level reference to a Work
or the chart, use code s

book object that contain
ch as this:

hart")

y

e the Application accessor property of the Do
 as top-level objects might reduce the amount of code

easier to understand and more consistent if you start from a reference to the Application object.

The following table shows all the top-level Office objects you can reference and their class names.

Object type Class name

Access application Access.Application

Excel application Excel.Application

 16

Excel workbook
Excel.Sheet

Excel.Chart

FrontPage application FrontPage.Application

Outlook application Outlook.Application

PowerPoint application PowerPoint.Application

Word application Word.Application

Word document Word.Document

Automating the Visual Basic Editor

In addition to using code to work with other Microsoft®Office applications, you can also use automation code to work with the
bjects exposed by the Microsoft® Visual Basic® Editor object model. You can use the Visual Basic Editor's object model to

work with the rs, which makes it possible for you to develop
add-in ionally, you can use the Visual Basic Editor's

cause the Visual Basic Editor isn't an independent application or service; it's running as part of
 initialize an object variable to work with the Visual Basic Editor, you must use the VBE

Application object. The VBE property is available in all Office applications except
o initialize an object variable to work with the Visual Basic Editor:

jVBE = Application.VBE

al Basic Editor's object model, see the Visual Basic Language Developer's Handbook

ences collection and Reference object that make it possible for you

ch the
ual Basic Reference Help index for "References collection."

 Automation

h a specific object type that represents the top-level object and then
y child objects you want to reference. You then create an instance of the top-level object by using the Set

owever, the New keyword can't be used to create a new instance of a child object. To create
a child object, use the appropriate method of the parent object along with the Set statement.

le, the top-level Microsoft® Excel Application object variable is assigned by using the Set statement
ew keyword. The object variable representing the Workbook child object is assigned by using the parent object's Add

 and the Set statement.

e of Excel.

 strBookName = "c:\my documents\xlautomation.xls"

o
objects in its user interface, such as its windows and command ba

s to customize and extend the Visual Basic Editor's user interface. Addit
object model to work with your Microsoft® Visual Basic® for Applications (VBA) project itself to add and delete references,
to set and read project properties, and to work with the components that make up your project, such as standard modules, class
modules, and UserForms. This feature makes it possible for you to write code to maintain references, to document and set
properties for projects, and to work with existing components and add new ones.

To work with the Visual Basic Editor's objects, first you must establish a reference to its type library, which is named
Microsoft® Visual Basic® for Applications Extensibility 5.3. To write code to work with the Visual Basic Editor, you must
initialize a variable to work with the Visual Basic Editor's top-level object, the VBE object. However, you can't reference the
VBE object directly. This is be
the host application's process. To
accessor property of the host application's
Outlook. The following example shows how t

Dim objVBE As VBIDE.VBE

Set ob

For an overview of working with the Visu
by Ken Getz and Mike Gilbert (Sybex, 1999).

Note
The Microsoft® Access Application object provides a Refer
to work with references in an Access VBA project without requiring you to establish a reference to the Microsoft Visual Basic
for Applications Extensibility 5.3 type library. For more information about the Access References collection, sear
Microsoft Access Vis

The Set Statement and the New Keyword in
You start automation code by declaring object variables wit
declaring an
statement and the New keyword. H
an instance of

In the following examp
and the N
method

Sub CreateExcelObjects()
 Dim xlApp As Excel.Application
 Dim wkbNewBook As Excel.Workbook
 Dim wksSheet As Excel.Worksheet
 Dim strBookName As String

 ' Create new hidden instanc
 Set xlApp = New Excel.Application
 ' Add new workbook to Workbooks collection.
 Set wkbNewBook = xlApp.Workbooks.Add
 ' Specify path to save workbook.

 17

 ' Loop through each worksheet and append " - By Automation" to the name of each sheet. Close and save workbook_

elObjects procedure uses three Excel object variables, b ut only the first two are instantiated by using the Set
ou do not need to use the Set statement to create an object variable that will be used only inside a For...Each loop.

l Microsoft®Outlook® Application object is created by using the Set statement and the New
 child object variable is created by using the Application object's CreateItem method. The Recipient
y using the Add method of the MailItem object's Recipients collection.

eateOutlookMail()

n current instance.

 .Body = "This message was created by VBA code running " & "Outlook through Automation."
 If b
 .S

tion

a Set statement to instantiate the object. However, this technique is not recommended
xample, if your code must test to see if an object

rn True if you have created an instance of the
object in the Dim statement. Additionally, you t except at the user's request. If you create an
instance of the object by using New in the Dim d even if it isn't used. To maintain control
over when an object is created, don't use the word statement, and instantiate the object by using a Set
statement at the point in your code where you m he object.

Single-Use vs. Multi-Use Applic
Whether you return a reference to a new instance of the Application object or an existing instance depends on whether the
application's default behavior is as a single-use on. A single-use application causes a new instance of
that application to be created whenever an object variable is instantiated in any host application. For example, Microsoft®

 ‘ to specified path.
 With wkbNewBook
 For Each wksSheet In .Worksheets
 wksSheet.Name = wksSheet.Name & " - By Automation"
 Next wksSheet
 .Close SaveChanges:=True, FileName:=strBookName
 End With
 Set wkbNewBook = Nothing
 XlApp.Quit
 Set xlApp = Nothing
End Sub

Note
ExcThe Create

statement. Y

In the next example, the top-leve
keyword. The MailItem
child object is created b

Sub Cr
 Dim olApp As Outlook.Application
 Dim olMailMessage As Outlook.MailItem
 Dim olRecipient As Outlook.Recipient
 Dim blnKnownRecipient As Boolean

 ' Create new instance of Outlook or ope
 Set olApp = New Outlook.Application
 ' Create new message.
 Set olMailMessage = olApp.CreateItem(olMailItem)
 ' Prompt for message recipient, attempt to resolve address, and then send or display.
 With olMailMessage
 Set olRecipient = .Recipients.Add(InputBox("Enter name of message recipient", "Recipient Name"))
 blnKnownRecipient = olRecipient.Resolve
 .Subject = "Testing mail by Automation"

lnKnownRecipient = True Then
end

 Else
 .Display
 End If
 End With
 Set olMailMessage = Nothing
 olApp.Quit
 Set olApp = Nothing
End Sub

Note
At the end of this procedure, each object variable is destroyed by explicitly setting it equal to the Nothing keyword.

You can also use the New keyword to create a new instance of the object at the same time you declare its object variable. For
example:

Dim olApp As New Outlook.Applica

If you do this, there is no need to use
because you have no control over when the object variable is created. For e
exists by using a statement such as If olApp Is Nothing Then, this test will retu

 might not ne
 statement, the

ed to use an objec
 object will be create

New key
ust use t

 in the Dim

ations

 or a multi-use applicati

 18

Word is a single-use application, so the followi nstance of Microsoft® Word regardless of how many
instances of Word might be running already:

Dim wdApp aAs Word.Application

lication makes it possible for host applications to share the same instance of the application. The next example

p As Outlook.Application

 behavior for each Office application.

lication Application type

ng code creates a new i

Set wdApp = New Word.Application

A multi-use app
creates a new instance of Microsoft®Outlook®only if Outlook is not running when the code is executed. Because Outlook is a
multi-use application, if Outlook is running already when this code is run, the object variable points to the currently running
instance.

Dim olAp

Set olApp = New Outlook.Application

The following table shows the default

App

Access Single-use

Excel Single-use

FrontPage Single-use

Outlook Multi-use

PowerPoint Multi-use

Word Single-use

You can use the GetObject function to create an object variable that references a currently running instance of a single-use
application.

If you create an object variable that points to a multi-use application (Outlook or Microsoft® PowerPoint®) and an instance of
the application is running already, any method you use to create the object variable will return a reference to the running

utlook is running already, the following lines of code all return a reference to the same instance of

ion. These functions should be used only in those situations where the New keyword
ality you require.

t function to create a top-level object variable that represents an Office application in the following

r which you want to create an Application object is not available on the local computer but is
ple, you can run Microsoft® Visual Basic® for Applications

se that is located on a network server even though Access is
 run. If Access is installed on the network server, you can create an Access

he CreateObject function's optional

s.Application", "MyServer1")

me argument of the CreateObject function is the same as the machine name portion of a share name. Therefore,
rver1\Public, the servername argument is "MyServer1".

ssfully run an Office application as a remote server, you must configure Distributed Component Object Model
) settings on the computer that is acting as a server, and also possibly on the client computers. To configure DCOM,

instance. For example, if O
Outlook:

Dim olApp1 As Outlook.Application
Dim olApp2 As Outlook.Application
Dim olApp3 As Outlook.Application

Set olApp1 = New Outlook.Application
Set olApp2 = CreateObject("Outlook.Application")
Set olApp3 = GetObject(, "Outlook.Application")

Using the CreateObject and GetObject Functions

You can use the Set statement with the CreateObject and GetObject functions to create a top-level object variable that
represents a Microsoft® Office applicat
does not provide the function

You use the CreateObjec
two situations:

The Office application fo
available on some other computer on your network. For exam

ccess databa(VBA) code that prints reports from a Microsoft® A
he code isnot installed on the computer from which t

Application object that runs on the server by specifying the name of the server in t
rgument. For example: servername a

Dim objAcApp As Object

Set objAcApp = CreateObject("Acces

The serverna
for a share named \\MySe

To succe
(DCOM

 19

run the Distributed COM Configuration utility (Dcomcnfg.exe) from the Run box on the Startup menu. For more information
about configuring DCOM, search the Microsoft Technical Support Web site (http://support.microsoft.com55) for "Configure
DCOM."

The CreateObject function is also useful when you are not sure if the Office application you want to automate will be installed

 Const ERR

 On Err
 ' Attem

Access.Application")
hen

 " & "Could not automate Access."

is procedure is declared by using the Object data type and is late-bound to the application
n object variable is declared as a specific

reak.

n also must be used to work with objects from any automation component from script. This is
pting has no method of establishing references to type libraries to support early binding. However, for security

ou wouldn't typically use the CreateObject function from script to create an instance of an Office application.

You can

1.

ble for the Access Application object.

Sub GetO
 Dim ac
 Const

 On Err
 ' Attemp
 Se A
 ' If Acc
 If Err
 Set a

If multiple instances of the application you want to automate are running, there is no way to guarantee which instance
ple, if two sessions of Access are running and you use the GetObject

 of Access from code running in Excel, there's no way to guarantee which instance of

Object function to return a reference to a running
 If a user opened the running instance, you would rarely want your code to be
nstance of the application. However, when you use the Shell function to start an

on the computer that runs your code. The following example illustrates how to use the CreateObject function to make sure an
application is available for automation:

Sub CreateObjectExample()
 Dim objApp As Object

_APP_NOTFOUND As Long = 429

or Resume Next
pt to create late-bound instance of Access application.

 Set objApp = CreateObject("
 If Err = ERR_APP_NOTFOUND T
 MsgBox "Access isn't installed on this computer.

 Exit Sub
 End If
 With objApp
 ' Code to automate Access here.
 .Quit
 End With
 Set objApp = Nothing
End Sub

Note
The Application object variable in th
by using the CreateObject function. The code must be written this way, because, if a
Application object type and that application is not present, the code will b

Note
The CreateObject functio
because scri
reasons, y

 use the GetObject function in these situations:

You must create a reference to a running instance of an application. For example, the following code creates a
reference to the running instance of Access. If Access is not running when the code executes, a Set statement is used
to create an object varia

bjectExample()
App As Access.Application

ERR_APP_NOTRUNNING As Long = 429

or Resume Next
t to reference running instance of Access.

t ac pp = GetObject(, "Access.Application")
ess isn't running, create a new instance.

= ERR_APP_NOTRUNNING Then
cApp = New Access.Application

 End If
 With acApp
 ' Code to automate Access here.
 End With
 ' If instance of Access was started by this code, shut down application.
 If Not acApp.UserControl Then
 acApp.Quit
 Set acApp = Nothing
 End If
End Sub

the GetObject function will return. For exam
function to retrieve an instance
Access will be used.

There are few circumstances where it makes sense to use the Get
instance of an Office application.

ing the objects in that imanipulat

 20

Access application (so that you can supply a password and workgroup information file to open a secured database), it
e sense to work with the running instance of Access by using the GetObject function to return a reference to

 to the host application
n an Access database

When HTML is passed as the value for the lngRptType
.

pe is specified,
rresponding application.

he following constants defined by Enum opgRptType in the Declarations section of this module:
Format, SNAPSHOT = output to Access snapshot report format

ified, the report is opened in Access and displayed in Print Preview.
 As Access.Application

As String = "c:\program files\" & "microsoft office\office\samples\northwind.mdb"

etical List of Products"
ath = "c:\my documents\"

s and open Northwind Traders database.
GetObject(SAMPLE_DB_PATH, "Access.Application")

 With acApp
 ' O
 Wi

 "autoxls.xls", True

 .OutputTo acOutputReport, strReportName, acFormatRTF, strReportPath & "autortf.rtf", True
' Snap

ase
 .OutputTo acOutputReport, strReportName, acFormatSNP, strReportPath & "autosnap.snp", True

ase
Outp tReport, strReportName, acFormatHTML, strReportPath & "autohtml.htm", _

 EM.HTM"
ase
App

 .OpenReport strReportName, acViewPreview
 End Sel

With
se Ac

 If Not .Us
 acApp.Quit

et acApp = Nothing
d If

xplained in the following table.

does mak
the instance of Access that you started.

2. You also use the GetObject function when you must open an Office file and return a reference
o use the GetObject function to opeobject at the same time. The following example shows how t

turn a reference to the Access application. from disk and re
argument, the procedure creates a Web page from a report and displays that page in a Web browser

Function GetReport(Optional lngRptType As opgRptType) As Boolean
 ' This function outputs a report in the format specified by the optional lngRptType argument. If lngRptTy
 rt is automatically opened in the co ' the repo
 ' lngRptType can be any of t
 ' XLS = output to Excel, RTF = output to Rich Text
 ' HTML = output to HTML. If lngRptType is not spec
 Dim acApp
 Dim strReportName As String
 Dim strReportPath As String
 Const SAMPLE_DB_PATH

 strReportName = "Alphab
 strReportP
 ' Start Acces
 Set acApp =

utput or display in specified format.
th .DoCmd

 Select Case lngRptType
 Case XLS
 .OutputTo acOutputReport, strReportName, acFormatXLS, strReportPath &
 Case RTF

 C

shot Viewer must be installed to view snapshot output.
SNAPSHOT

 C
 .

HTML
utTo acOutpu
 True, "NWINDT

 C
 ac

Else
.Visible = True

ect
 End
 ' Clo cess if this code created current instance.

erControl Then

 S
 En
 End With
End Function

Working with Documents That Contain Startup Code

Using automation to open a document does not prevent a document's startup code from running. Startup code can be defined in
various ways in Microsoft® Office applications, as e

Application Startup code location

Word Startup code is contained in the event procedures for the Open or New events in the ThisDocument module of a
document or template.

Excel Startup code is con
.

tained in the event procedure for the Open event in the ThisWorkbook module of a workbook
or template

Outlook Startup code is contained in the event procedure for the Startup event in the ThisOutlookSession of the local
Outlook VBA project.

 21

If you create an Access macro
Access

 named AutoExec, this macro's actions will run on startup.

You can also place startup code in the event procedure for the startup form's Open event. To specify a form to be
opened on startup, use the Startup command on the Tools menu.

Note

Microsoft® PowerPoint® and Microsoft® FrontPage® documents don't have a way to define startup code.

Because startup code might display message boxes or modal forms that act as dialog boxes, these message or dialog boxes
might prevent your code from proceeding until a user closes or responds to them. If you have startup code in a Microsoft®

 False only when the document or workbook is opened from automation by using
For example, the following code defined in an

ned by a user or a visible instance of the Excel
k by using a hidden instance of the Excel Application object from code running in

 the message box won't be displayed.

Msg As String

hen
sgBox strMsg

ote
In Mic e from running with the UserControl property. If
Word rd Application or Document object from within a

m's

 goes here.

roperty of the Access Application object to control whether actions in a database's
ed from another program by using automation. To do this, you must enter
umn for each action you want to cancel. (To display the Condition column,

 a startup form or code. COM add-ins support events that you can use to
connecting the add-in.

eated by Using Automation

ocedure in which it is declared is finished executing. However, it is good
an application-level object variable used to automate another application by setting

 Nothing keyword. Doing this frees any remaining memory used by the variable. For some Application objects,

Excel workbook or a Microsoft® Access database that you don't want to run if the document is opened programmatically from
another application, you can use the UserControl property of the Application object to determine how a document is being
opened and then act accordingly. If you can't use the UserControl property, you might need to use a SendKeys statement to
send keystrokes to close the message or dialog box.

In Excel, the UserControl property will return
a hidden instance of the Excel Application object (Application.Visible = False).

ill run only if the workbook is opeExcel workbook's Open event procedure w
Application object. If you open the workboo
another application,

Private Sub Workbook_Open()
 Dim str

 strMsg = "This message was triggered by this workbook's " & "Open event." & vbCrLf & _
 "It won't be displayed if this workbook is opened by using a hidden" & vbCrLf & _
 "instance of the Excel Application object from Automation code."
 ' If opened through Automation by using a hidden instance, the UserControl property will be False.
 If Application.UserControl = True T
 M
 End If
End Sub

N
rosoft® Word 97 and later, there is no way to prevent Open event cod
is visible to the user, or if you call the UserControl property of a Wo

Word code module, this property will always return True. However, you can still use the Word UserControl property from
automation code (that creates a hidden instance of Word) running from another application to determine if a document was
opened programmatically or by the user.

In Access, you don't have to check or keep track of whether the instance of the Application object is hidden or visible because
the UserControl property is False whenever the application is started from code. To control whether code in the startup for
Open event is executed, Access provides a Cancel argument for the Open event. As shown in the following example, you can
set the Cancel argument to True to keep a startup form from opening if you open the database by using automation code:

Private Sub Form_Open (Cancel As Integer)
 ' If database is opened from Automation, cancel the Open event of the form.
 If Application.UserControl = False Then
 Cancel = True
 Else
 ' Any startup code that needs to run when the database is opened by a user
 End If
End Sub

You can also use the UserControl p
AutoExec macro will run when the database is open

ndition colApplication.UserControl = True in the Co
ew menu.) click Conditions on the Vi

Tip
You can also use COM add-ins to implement
determine how an application was loaded before

Shutting Down Objects Cr
A local variable is normally destroyed wh

ing practice to explicitly destroy
en the pr

programm
it equal to the

 22

you might also have to use the object's Quit method to completely destroy an object variable and free up the memory it is using.
 it's safest to do both: Use the Quit method and then set the object variable equal to the Nothing keyword.

ere you must determine if the instance of an application you are working with was created by your
shutting it down. Generally, you can inspect the UserControl property of the Application object to determine if

ned the current instance. However, there are cases where the value of the UserControl property can change from
rue as your code executes. For example, if you start Microsoft® Excel through automation, make it visible, and make

ble for the user to interact with this instance, such as by typing something in a cell, the UserControl property will return

ject, and use this variable to test the value of the UserControl
roperty before closing the application, as shown in the following example:

Sub GetObjectXL()
 Dim xlApp As Excel.Application
 Dim blnUserControl As Boolean

 Const ERR_APP_NOTRUNNING As Long = 429
 ' Set blnUserControl to True as default.
 blnUserControl = True
 On Error Resume Next
 ' Attempt to open current instance of Excel.
 Set xlApp = GetObject(, "Excel.Application")
 ' If no instance, create new instance.
 If Err = ERR_APP_NOTRUNNING Then
 Set xlApp = New Excel.Application
 ' Store current state of UserControl property.
 blnUserControl = xlApp.UserControl
 End If
 With xlApp
 ' Code to automate Excel here. Check original value of UserControl property.
 If blnUserControl = False Then
 xlApp.Quit
 Set xlApp = Nothing
 End If
 End With
End Sub

Note
Microsoft® PowerPoint®, Microsoft® Outlook®, and Microsoft® FrontPage® have no method of determining if an instance
of the Application object has been started by a user or program.

As a general rule,

There might be situations wh
code before

 opeyour code
False to T
it possi
True even though your code started the instance. To handle this situation, assign the value of the UserControl property to a
variable right after you create the instance of the Application ob
p

 23

2. WORKING WITH OFFICE APPLICATIONS

Each Microsoft® Office XP application exposes an object model with hundreds of different objects, collections of objects,
properties, methods, and events that you can take advantage of to build your application.

This section introduces the objects that you will use most often in each of the Office applications. This introduction helps you
become immediately productive when you are working with Microsoft® Visual Basic® for Applications (VBA) in any Office
application or when you are driving another application through Automation (formerly called OLE Automation).

In This Section

Working with Microsoft Access Objects
Use Form, Report, and DataAccessPage objects and the controls they contain to format and display data and make it possible
to add or edit data in a database.

Working with Microsoft Excel Objects
Use Microsoft® Visual Basic®for Applications (VBA) to work with Microsoft® Excel objects, from within either Excel itself
or another Microsoft® Office XP application to gain access to every part of Excel.

Working with Microsoft FrontPage Objects
Create, deploy, modify, and manage Web sites using Microsoft® FrontPag®.

Working with Microsoft Outlook Objects
Create custom Microsoft® Outlook® objects and manipulate those objects from within Outlook or from another application
using VBA code from within Outlook or another Microsoft® Office XP application by using Automation.

Working with Microsoft PowerPoint Objects
Automate Microsoft® PowerPoint® by using the Application object, from which you can open an existing Presentation object
or create a new presentation.

Working with Microsoft Project Objects
Build powerful custom applications easily with the Microsoft® Project object model.

Working with Microsoft Publisher Objects
Use Microsoft®Visual Basic® for Applications (VBA) to work with t he Microsoft® Publisher object model.

Working with Microsoft Word Objects
Use Microsoft® Visual Basic® for Applications(VBA) to work with the Microsoft® Word Document object, Application
object, and Documents collection.

Working with Microsoft Visio Objects
Design, model, and manage complex enterprise-level systems with the sophisticated tool set provided by Microsoft®
Visio®products.

Working with Microsoft Access Objects

Working with Microsoft® Access objects primarily means working with Form, Report, and DataAccessPage objects and the
controls they contain. You can use these powerful Access objects to format and display data and make it possible for the user
to add or edit data in a database. In addition, Access exposes many other objects you can use to work with your Access
application; among the most important are the CurrentProject, CurrentData, CodeProject, CodeData, Screen, and DoCmd
objects and the Modules and References collections. This section presents an overview of how to work with Access objects by
using Microsoft® Visual Basic® for Applications (VBA).

Note
You can use the Object Browser and Access Visual Basic Reference Help to learn more about individual objects, properties,
methods, and events.

Tables and relationships, the data in tables, and queries are managed and maintained by a database engine. For .mdb-type
databases, Access uses the Microsoft® Jet database engine. For .adp-type databases, Access uses the Microsoft® SQL Server
database engine or any other ActiveX Data Objects (ADO) data source. You programmatically work with tables, data in tables,
or queries by using ADO or Data Access Objects (DAO).

In This Section

Understanding the Access Application Object
Use the properties and methods provided by the Application objects to create and work with other Access objects.

Built-in Access Functions and Methods
Learn about functions and methods that appear in the Object Browser as methods of the Application object.

Working with Reports, Forms, and Data Access Pages
Use reports, forms, and data access pages provided by Access to display data to the user.

 24

Understanding the Access Application Object

The Application object is the top-level object in the Microsoft® Access® object model. It provides properties and methods you
can use to create and work with other Access objects. It also provides several built-in functions you can use to work with the
objects in your database. In essence, the Application object serves as the gateway to all other Access objects.

Application-wide options are available through the Options dialog box and the Startup dialog box. The commands to open
these dialog boxes are located on the Tools menu. You can use the Options dialog box to specify or determine application-wide
settings, such as whether the status bar is displayed, the new database sort order, and the default record-locking settings. You
use the Startup dialog box to specify or determine settings such as which form opens automatically when your database opens
and your database application's title and icon. The following sections discuss how you can use Microsoft®Visual Basic®for
Applications (VBA) to access all of these settings.

Figure 1. Microsoft Access Object Model

Working with the Options Dialog Box Settings

Use the Application object's SetOption and GetOption methods to specify or determine the settings in the Options dialog box.
Both methods use a string argument that identifies the option you want to access. The SetOption method takes an additional
argument representing the value you want to set. For example, the following code displays a message box that indicates
whether datasheet gridlines are turned on:

MsgBox "Horizontal Gridlines On = " & CBool(GetOption("Default Gridlines Horizontal")) & vbCrLf _
 & "Vertical Gridlines On = " & CBool(GetOption("Default Gridlines Vertical"))

The next example illustrates how you can use the SetOption method to specify a new default database folder:

SetOption "Default Database Directory", "C:\NewMDBs"

 25

To see a list of all the string arguments used to access settings in the Options dialog box, search the Microsoft® Access Visual
Basic Reference Help index for "options, setting," open the topic "Set Startup Properties and Options in Code," and then jump
to the topic "Set Options from Visual Basic."

The value returned by the GetOption method and the value you pass to the SetOption method as the setting argument depend
on the type of option you are using. The following table establishes some guidelines for Options dialog box settings.

If the option is Then the value of the option is

A text box A string or numeric value

A check box An integer that will be True (-1) (selected) or False (0) (not selected)

An option button in an option group, or an
item in a combo box or a list box

An integer corresponding to the item's position in the option group or list (starting
with 0 for the first item, 1 for the second item, and so on)

Note

If you use the SetOption method to change a user's Options dialog box settings, be sure to restore those settings when your
code is finished executing or when your application ends. Otherwise, the settings you specify will be applied to any database
the user opens. Note that the settings in the Options dialog box are stored in the Microsoft®Windows® registry in the
\HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\Access\Settings subkey. As a result, changes to these settings will
not persist if the database is run on a different machine.

Understanding Startup Properties

You use startup properties to customize how a database application appears when it is opened. You work with startup
properties differently than you do the settings in the Options dialog box. Each option in the Startup dialog box has a
corresponding Access property, but you won't find these properties in the Object Browser. In a new database, the startup
properties do not exist until a user makes a change to the default settings in the Startup dialog box.

To set these properties programmatically for an .mdb-type database, you must first add each property to the Properties
collection of the Database object. This is true whether you are using DAO or ADO. In other words, even without a reference to
DAO, you still use the Properties collection of the Database object to work with these properties. In an .adp-type database,
startup properties are stored in the Properties collection of the CurrentProject object.

In the following sample, the AddCustomProperty sample procedure is used to set the AppTitle property in an .mdb-type
database. Note that if the property does not exist when the AddCustomProperty procedure is called, the property is created and
appended to the Properties collection of the Database object.

Const TEXT_VALUE As Integer = 10
If AddCustomProperty("AppTitle", TEXT_VALUE, "MyDatabase") Then ' Property added to collection.
End If

Function AddCustomProperty(strName As String, varType As Variant, varValue As Variant) As Boolean
 ' The following generic object variables are required when there is no reference to the DAO 3.6 object library.
 Dim objDatabase As Object
 Dim objProperty As Object
 Const PROP_NOT_FOUND_ERROR = 3270
 Set objDatabase = CurrentDb
 On Error GoTo AddProp_Err
 objDatabase.Properties(strName) = varValue
 AddCustomProperty = True
AddProp_End:
 Exit Function
AddProp_Err:
 If Err = PROP_NOT_FOUND_ERROR Then
 Set prpProperty = objDatabase.CreateProperty(strName, varType, varValue)
 objDatabase.Properties.Append objProperty
 Resume
 Else
 AddCustomProperty = False
 Resume AddProp_End
 End If
End Function

Note
Changes you make to any of the startup properties by using VBA will be available programmatically but will not take effect
until the next time the database is opened.

 26

Built-in Access Functions and Methods

The Microsoft® Access Application object contains several functions and methods you can use to work with data, Access
objects, or the application itself. These functions and methods appear in the Object Browser as methods of the Application
object, although they might be referred to as "functions." These functions and methods can be used within Access or from
another application by using Automation.

Calling Built-in Access Functions and Methods Without Using an Application Object Variable

To use Automation, you usually have to create an instance of the Application object, but you can call built-in Access functions
and methods of the Application object from other Microsoft® Office applications without first creating an Access Application
object variable. The only requirements are that you set a reference to the Microsoft® Access object library in the calling
application's Microsoft® Visual Basic® for Applications (VBA) project, and that you call the function or method by using the
Access qualifier, as illustrated in the following example. For example, you could use the following VBA code to call the built-
in Access Eval function to evaluate a string expression contained in a Microsoft® Word bookmark:

Dim rngResults As Word.Range
Set rngResults = ActiveDocument.Bookmarks("MathMark").Range
rngResults.Text = Access.Eval(rngResults.Text)

Note
Direct calls to built-in Access functions and methods, such as the one illustrated in the preceding example, automatically create
a new instance of Access that remains in memory until the document containing the code that called the function or method is
closed. If you want more control over when the instance of Access is created and destroyed, create it by using the New
keyword or the CreateObject or GetObject function, and close it by setting the Application object variable equal to Nothing.

The following table summarizes some of the Access functions and methods available to you from the Application object and
descriptions of how they might be used.

Function or method Description

Domain aggregate
functions

A domain is simply a set of records defined by a table or query. You use domain aggregate functions
to get statistical information about a set of records, for example, to count the number of records or to
determine the sum of values in a particular field. These functions use a naming convention that
begins with a capital "D", for example, DAvg, DCount, DLookup, DSum, and so on. You can use
these functions in VBA code, in a query expression, or in a calculated control on a form or report.

Eval function

You use this function to evaluate a string expression that results in a text string or numeric value.
The Eval function uses a single argument that either is a string expression that returns a value or is
the name of a built-in or user-defined function that returns a string. You can use the Eval function in
a calculated control, a query expression, a macro, or VBA code.

GUIDFromString and
StringFromGUID
functions

You use these functions to convert a globally unique identifier (GUID) to a String value or a String
value to a GUID. A GUID is a 16-byte value used to uniquely identify an object.

hWndAccessApp
method

You can use this method to determine the handle (a unique Long Integer value) assigned by
Microsoft® Window® to the main Access window. You can use the hWnd property to determine the
handle assigned by Microsoft Windows to an Access Form or Report window.

HyperlinkPart function
The HyperlinkPart function returns information about data stored in a field that has the Hyperlink
data type. This information is similar to the information contained in the properties of a Hyperlink
object. You can use this function in VBA code, a query expression, or a calculated control.

LoadPicture method This method loads a graphic file stored on disk into the Picture property of a control. You use this
method to set or change the Picture property of a control at run time.

Nz function
You use the Nz function to evaluate a value and return a specified value if the evaluated value is
Null. This function is useful when you are assigning values from a field in a recordset to a control
that cannot use Null values.

SysCmd method

This is the Swiss army knife of Access methods. It can perform a variety of tasks depending on the
value of the acSysCmdAction constant supplied in its action argument. For example, you can use
this method to display a progress meter or text in the status bar, return information about Access
(such as the directory where Msaccess.exe is located), or to get information about an Access object
(such as whether a form is open).

Note
In addition to working with built-in Access methods and functions, you can use the Application object's Run method to call
custom procedures stored in an Access database.
 27

Creating, Opening, and Closing an Access Application

You can create a new database, or open and close an existing database, from within Microsoft® Access® or by using
Automation from another application. The methods discussed in this section are typically used in Automation from another
application. If your code is running inside Access, the code typically works with the currently open database, and using these
methods is not necessary.

Note
If you are working in another application and you must access only the data in a database (tables or queries), and not objects
such as forms or reports, you use ADO to access the data you require.

You use the NewCurrentDatabase method to create a new .mdb-type database. You use the OpenCurrentDatabase and
CloseCurrentDatabase methods to open and close an existing .mdb-type database. The following sample is designed to be run
from any Microsoft® Office application. It opens the Northwind Traders sample database and prints the portion of the Product
Catalog report specified in the OpenReport method:

Sub PrintReport(strCategoryName As String)
 Dim acApp As Access.Application
 Dim strDBPath As String

 Const DB_PATH As String = _
 "c:\program files\microsoft office\office\samples\northwind.mdb"
 Set acApp = New Access.Application
 With acApp
 .OpenCurrentDatabase DB_PATH
 ' Print the Product Catalog report.
 .DoCmd.OpenReport "Catalog", acViewNormal, , "CategoryName = '" & strCategoryName & "'"
 End With
 acApp.Quit
 Set acApp = Nothing
End Sub

You use the NewAccessProject, OpenAccessProject, or CreateAccessProject method to open or create an .adp-type database.
The NewAccessProject method creates a new .adp-type database and causes it to become active, whereas the
CreateAccessProject method only creates an .adp file on disk. You use the OpenAccessProject method to open an
existing .adp-type database and the CloseCurrentDatabase method to close an .adp-type database.

When you create a new database or have a database open, you can use other methods of the Application object to create new
Access objects. For example, you use the CreateForm and CreateControl methods to create forms and controls on forms. You
use the CreateReport and CreateReportControl methods to create reports and controls on reports. You use the
CreateDataAccessPage method to create data access pages. To programmatically add controls to a data access page, you must
use script or the Dynamic HTML (DHTML) object model to work with HTML directly.

Note
Although the methods discussed above let you programmatically create a database and the objects it contains, these methods
typically are used only in wizards or add-ins. Generally, you create the database and its objects through the Access user
interface and then work with these objects programmatically by using Microsoft® Visual Basic®for Applications (VBA) code
run from Access or another Office application.

The CurrentData and CurrentProject Objects

In previous versions of Microsoft® Access, you can use Data Access Objects (DAO's) and their methods and properties to get
information about forms, reports, macros, tables, fields, relationships, and queries. For example, you can use Document objects
to get information about the tables and queries in a database. There are separate Container objects representing forms, reports,
scripts (Access macros), tables (tables and queries), and modules. Each of these Container objects contains a collection of
Document objects representing all the objects of the specified type in the current database. Each Document object contains
only summary information about each object and does not provide access to the properties of the object or the data it contains.
You use DAO Recordset objects to work with the data in a table or query, and you use members of the Forms or Reports
collection to work with forms and reports themselves.

However, in Access, DAO is no longer the default programmatic way to interact with data and objects that contain data;
therefore, Access has two new objects-CurrentData and CurrentProject-that contain collections of AccessObject objects, which
are used in place of the Container and Document objects available through DAO in previous versions.

Access uses the CurrentData object to store collections of AccessObject objects that are administered by the database engine,
for example, tables and queries in .mdb-type databases, and database diagrams, stored procedures, tables, and views in .adp-
type databases. Information about each collection of objects is stored in a collection where each object is represented as an
AccessObject object. For example, information about tables is contained in the AllTables collection, and information about
views is stored in the AllViews collection. To access the CurrentData object, you use the CurrentData property of the
Application object. When code is running in an add-in or library database, you would use the CodeData object to refer to the
objects managed by the add-in or library database. The CodeData property of the Application object returns the CodeData
object.

 28

Note
AccessObject objects contain information about the objects that contain data, but do not provide access to the data itself.

You use the CurrentProject property of the Application object to get information about the Access objects in a database, such
as data access pages, forms, macros, modules, and reports. The CurrentProject property of the Application object returns the
CurrentProject object, which contains collections of AccessObject objects as well as information about the name, path, and
connection of the database itself. For example, the AllForms collection contains information about all the forms in a database,
and the AllReports collection contains information about all the reports in the database. When code is running in an add-in or
library database, the CodeProject object contains the collections of AccessObject objects in the add-in or library database. The
CodeProject property of the Application object returns the CodeProject object.

An AccessObject object exposes the following properties you can use to get information about an object: IsLoaded, Name,
Parent, Properties, and Type. These properties are described in the following table.

AccessObject
property Description

IsLoaded A Boolean value indicating whether the object is currently loaded. This property is True when an object is
open in any view.

Name A String value representing the name of the object.

Parent
Returns the parent object for the specified object. For example, the parent of an item in the AllForms
collection is the AllForms collection object. The parent of the CurrentProject object is the Application
object.

Properties Returns an AccessObjectProperties collection, which contains all the custom properties associated with a
particular AccessObject object. The Properties collection can store String or Long Integer values only.

Type A Long Integer value representing one of the objects specified by the acObjectType intrinsic constants.

Note
Collections of AccessObject items are indexed beginning with a value of 0 for the first item in the collection, 1 for the second
item, and so on.

The following sample shows how you can use the IsLoaded property to determine if a form, report, or data access page is
currently loaded:

With CurrentProject
 Select Case intObjectType
 Case acForm
 IsObjectOpen = .AllForms(strObjName).IsLoaded
 Case acReport
 IsObjectOpen = .AllReports(strObjName).IsLoaded
 Case acDataAccessPage
 IsObjectOpen = .AllDataAccessPages(strObjName).IsLoaded
 Case Else
 Err.Raise ERR_INVALIDOBJTYPE
 End Select
End With

The intObjectType variable would be passed to a procedure as an argument of type acObjectType. The next sample illustrates
how to add custom properties to a form:

Sub AddCustomFormProperty(strFormName As String, strPropName As String, varPropValue As Variant)
 ' This procedure illustrates how to add custom properties to the Properties collection that
 ' is associated with an AccessObject object.
 With CurrentProject.AllForms(strFormName).Properties
 .Add strPropName, varPropValue
 End With
End Sub

The Printer Object and Printer Collection

Microsoft® Access contains a Printer object and a Printers collection that make it possible for you to control printer
configuration without using Microsoft® Windows® api calls and the complex structure that PrtDevMode requires. This object
makes it possible for you to change printer settings without opening the object in a design model, making custom printer
settings in MDE/ADE files possible. You can make these changes even during print preview.

For example, to set printer properties for a Catalog report, you could use the following code:

 29

Reports("Catalog").Printer.LeftMargin = 1440 'Set left margin to 1 inch
Reports("Catalog").Printer.Orientation = acPRORLandscape 'Set orientation to landscape
Reports("Catalog").Printer.PaperSize = acPRPSLegal 'Set paper size to legal
To cycle through the installed printers on the system, you can use the following:
Dim prt As Access.Printer
For Each prt In Application.Printers
 Debug.Print prt.DeviceName
Next

The AddItem and RemoveItem Objects

Microsoft® Access adds the methods AddItem and RemoveItem to the combo box and list box objects. These new methods
make it possible for you to add and remove values from a combo box or list box programmatically. For multicolumn combo
boxes, you use a semicolon-delimited string to add values to separate columns.

For example, to add values to a two-column combo box, use the format:
Combo1.AddItem "ALFKI;Alfred's Futterkiste"

The following string removes the first item in a combo box:
Combo1.RemoveItem 0

To remove an item where the bound column is ALFKI, you can use this format:
Combo1.RemoveItem "ALFKI"

The Save Model

Microsoft® Access speeds up the process of regularly saving your work. Until you compile your project, Access saves only the
modules that you have modified since your last save. This makes it less of a chore to save often during active development.
After you compile the project, Access will save the complete project each time. Until then, it is more efficient to save only the
parts you have changed.

Working with the Screen Object

Other Microsoft®Office applications have properties that return a reference to active objects. For example, Microsoft® Word
has the ActiveDocument property to determine which document currently has the focus. Microsoft® Excel has properties to
return the active Workbook, Worksheet, Cell, Chart, and Window objects. Similarly, Microsoft® PowerPoint® has the
ActivePresentation property to determine the active presentation.

In Microsoft® Access, you use the Screen object to work with the object or control that currently has the focus. The Screen
object has properties that return a reference to the currently active control (on a form or report), data access page, datasheet,
form, or report. These properties are useful in code that operates against an object and must know only the type of object. For
example, the following line of code hides the currently active form:

Screen.ActiveForm.Visible = False

The next example shows how you can use the Screen object to determine which cell in a datasheet is selected:
MsgBox "The selected item is located at: Row " & Screen.ActiveDatasheet.SelTop & ", Column " _
 & Screen.ActiveDatasheet.SelLeft

The Screen object also has properties you can use to work with the previously active control and the mouse pointer.

Note
If you try to refer to an object by using properties of the Screen object and there is no object of that type currently active, an
error occurs.

Working with the DoCmd Object

The DoCmd object makes it possible for you to carry out various Microsoft® Access commands by using Microsoft® Visual
Basic® for Applications (VBA). These commands are called actions when they are used in Access macros and are called
methods of the DoCmd object when they are carried out in code.

Note
In other Microsoft® Office applications, the term "macro" is synonymous with a VBA procedure. In Access, macros are
completely different from the VBA code you write in a procedure. For more information about Access macros, search the
Microsoft® Access Help index for "macros, overview," and then open the topic "Macros: What they are and how they work."

Two of the most common tasks that require methods of the DoCmd object are opening and closing Access objects. To open an
Access object, you use the DoCmd object's OpenObject method, where Object represents the name of the object you want to
open. For example, you use the OpenForm method to open a form, the OpenReport method to open a report, and the
OpenQuery method to open a query. All of the OpenObject methods take arguments that specify the object to open and how to
display the object. For example, the following code opens the Customers form as read-only in Form view (acNormal) and
specifies that only customers in the USA be shown:

 30

DoCmd.OpenForm FormName:="Customers", View:=acNormal,
 WhereCondition:="Country = 'USA'", DataMode:=acFormReadOnly

You can use the OpenReport method to open a report in Design view or Print Preview, or you can specify that the report be
printed, as in the following example:

DoCmd.OpenReport ReportName:="CustomerPhoneList", View:=acViewNormal, WhereCondition:="Country = 'USA'"
Note
When you use the acViewNormal constant in the view argument of the OpenReport method, the report is not displayed but is
printed to the default printer.

You use the DoCmd object's Close method to close an Access object. You can use the optional arguments of the Close method
to specify the object to close and whether to save any changes. The following example closes the Customers form without
saving changes:

DoCmd.Close acForm, "Customers", acSaveNo

Note
All the arguments of the Close method are optional. If you use the method without specifying arguments, the method closes the
currently active object.

You can use the DoCmd object's RunCommand method to run commands that appear on an Access menu or toolbar that do not
have separate methods exposed in the Access object model. The RunCommand method uses a collection of enumerated
constants to represent available menu and toolbar commands. For more information about the RunCommand method, search
the Microsoft® Access Visual Basic® Reference Help index for "RunCommand method."

Working with the Modules Collection

The Modules collection contains a Module object representing each module that is currently opened for editing. The Module
object might represent a standard or class module that is currently open in the Microsoft® Visual Basic® Editor or a module
associated with a form or report that is open in Design view. You can use the methods and properties of a Module object to get
information about the code contained in the module or to insert procedures or lines of code. The objects in this collection are
typically used by code running in an add-in or wizard.

For more information about the Modules collection and Module objects, search the Microsoft® Access Visual Basic®
Reference Help index for "Modules collection" or "Module object."

Working with the References Collection

The References collection contains Reference objects representing each reference in the References dialog box (Tools menu in
the Microsoft® Visual Basic® Editor) to another project or object library. A new Microsoft®Access database contains four
references by default. You can add or remove references by using the References dialog box or by using methods of the
References collection in Microsoft® Visual Basic® for Applications (VBA) code.

For more information about the References collection and Reference objects, search the Microsoft® Access Visual Basic®
Reference Help index for "References collection" or "Reference object."

Working with Reports, Forms, and Data Access Pages

Microsoft® Access provides three objects you can use to display data to the user: reports, forms, and data access pages.
Although these objects have many similar features, they are used in different ways.

You use reports to display formatted data. The user cannot edit or add data to a report. Reports can be viewed in the database
where they were created or printed. You can also save reports as snapshot files so they can be viewed outside an Access
application. For more information about working with snapshot files, search the Microsoft® Access Help index for "report
snapshots."

You can also use forms to display data to users. However, the real power of forms comes from their ability to collect data from
users or let users add new records or edit existing records. Forms can also be printed or saved as reports or data access pages.

Note
Although Microsoft® Access hosts Microsof®Visual Basic®for Applications (VBA) as it does with the other Microsoft®
Office applications, it uses its own built-in forms package. UserForms are not available in Access.

Data access pages combine the features of forms and reports so that you can display data to users and let users interact with
data through Microsoft® Internet Explorer version 5 or later. (You can also use other Web browsers to display data access
pages, but users will not be able to work with the data directly.) Although you design data access pages by using Access, you
save them to disk as separate files designed to be used in a Web browser, which means users can work with Access data from
within an Access database or over an intranet or the Internet. Data access pages can contain data in an Access database (.mdb
file) or Access project (.adp file).

Access forms, reports, and data access pages have numerous properties, methods, and events you can use to specify how the
object will look and behave. A complete discussion of all properties, methods, and events is beyond the scope of this section.

 31

For information about a specific property, method, or event, search the Microsoft® Access Visual Basic® Reference Help
index for the name of the item about which you want information.

You can use the Application object's CreateForm, CreateReport, and CreateDataAccessPage methods to programmatically
create forms, reports, and data access pages. You can also add controls to these objects through VBA code, but unless you are
building an add-in or a wizard, you typically create these objects by using the Access user interface and then display them from
code. When you display an object, you can use various properties of the object to specify the records it will contain.

Working with PivotViews

Microsoft® Access adds two new views to the set of views that currently exist for tables, queries, stored procedures, and
functions. The views are called PivotTable View and PivotChart View, and they make it easy to create flexible reports and to
quickly publish your work to the Web using data access pages.

PivotView reports are powerful tools for presenting and analyzing data. They provide a means to view a single set of data in a
variety of configurations in a manner similar to the capabilities provided by Microsoft® Excel. As with a query, a PivotView
report can answer a question about a data set: Which customers provided the most sales for the first quarter of this year? In
which country was a particular product most popular last year? How well did a particular sales representative do in Europe for
the past two years?

If you are skilled at building queries, you can answer each of these questions with a separate query. The advantage of the
PivotView report, however, is when you have defined the data set, you can "pivot" the data to answer all of these questions
with a single data set. For most users, this is easier and more intuitive than building a query, especially when the PivotView
report combines data from multiple tables and queries. In addition, because PivotTable data is cached in memory, PivotView
reports provide extremely fast querying.

Referring to Open Objects

The Application object has properties that return collections of open Microsoft® Access objects. The Reports property returns
a reference to the Reports collection that contains all currently open reports. The Forms property returns a reference to the
Forms collection that contains all currently open forms. The DataAccessPages property returns a reference to the
DataAccessPages collection that contains all currently open data access pages. You specify a member of a collection by using
its name or its index value in the collection. You typically use the index value only when iterating through all the members of a
collection because the index value of an item can change as items are added to or removed from the collection. For example,
the following sample uses the form's name to reference the Open Customers form:

Dim rstCustomers As ADODB.Recordset
Set rstCustomers = Forms("Customers").Recordset
The next example closes and saves all open data access pages by looping through the DataAccessPages collection:
For intPageCount = DataAccessPages.Count - 1 To 0 Step -1
 DoCmd.Close acDataAccessPage, DataAccessPages(intPageCount).Name, acSaveYes
Next intPageCount

The Forms, Reports, and DataAccessPages collections contain only open objects. To determine if an object is open, you can
use the IsLoaded property of an item in the AllForms, AllReports, or AllDataAccessPages collections, or you can use the
SysCmd method with the acSysCmdGetObjectState constant. You can also use the CurrentView property to determine if a
form is open in Design, Form, or Datasheet view or if a data access page is open in Design or Page view. The following
procedure uses the SysCmd method and the CurrentView property to determine if a form is open in Form or Datasheet view:

Function IsLoaded(ByVal strFormName As String) As Boolean
 ' Returns True if the specified form is open in Form view or Datasheet view.
 Const OBJ_STATE_CLOSED = 0
 Const DESIGN_VIEW = 0

 If SysCmd(acSysCmdGetObjectState, acForm, strFormName) <> OBJ_STATE_CLOSED Then
 If Forms(strFormName).CurrentView <> DESIGN_VIEW Then
 IsLoaded = True
 End If
 End If
End Function

The Data Behind Forms and Reports

Most of the forms you create will be designed to display or collect data. Forms can display data for viewing, editing, or input.
Forms are also used to create dialog boxes that collect information from a user, but do not display data. Reports display static
data only, and aren't used to edit or collect data.

The source of the data behind a form or report is specified by the object's RecordSource property. The RecordSource property
can be a table, a query, or a Structured Query Language (SQL) statement. You can display subsets of the data contained in the
object's RecordSource property by using the Filter property to filter the data or by using the wherecondition argument of the
OpenForm or OpenReport method to specify a subset of data. When you have specified a record source for a form or report,
you can use the field list (in form or report Design view) to drag fields from the object's source of data to the object.

 32

If you set the RecordSource property by using Microsoft® Visual Basic® for Applications (VBA), you can use the name of an
existing table or query, or a SQL statement. The easiest way to create a SQL statement to use in code, whether from within a
Microsoft® Access module or another Microsoft(Office application, is to use the Access query design grid to create a query
that displays the appropriate records. When the query contains the records you want, click SQL View on the View menu and
copy the SQL string that defines your query. You can then paste the SQL string into your VBA code and replace any hard-
coded criteria with variables that will contain the data you want to use as criteria.

The following figure shows a query created in the query design grid that selects all fields from the Customers table for the
customer named B's Beverages.

Specifying Criteria in the Query Design Grid

The SQL view for this query contains the following SQL statement:

 WHERE CompanyName = "B's Beverages";

ify this SQL statement for use in the following VBA procedure so that it will display a single customer record for
any passed in the strCompanyName variable:

following:

 the variable can be surrounded with single quotation marks ('). However, if the value of the
 mark, this technique will not work. For example, if you are searching for records that

", you will encounter errors. If there is any chance that a variable will
ark, you should surround the variable with two sets of double quotation

st", _
""" & strCompanyName & """"

p
Quotation Marks in Strings."

e working with forms, you can also use the new Recordset property to specify the Recordset object that contains

SELECT * FROM Customers

You can mod
any comp

Option Explicit
Dim frmTempForm As Form

Sub ShowCustomerRecord(strCompanyName As String)
 Dim strSQL As String

 strSQL = "SELECT * FROM Customers WHERE CompanyName = " & """" & strCompanyName & """"
 Set frmTempForm = New Form_Customers
 With frmTempForm
 .RecordSource = strSQL
 .Visible = True
 End With
End Sub

Secifying String Criteria by Using Variables in Code

When you specify criteria for a query, filter, or wherecondition argument from code, you typically use a variable. For example,
you could specify the wherecondition argument of the OpenReport method as in the

DoCmd.OpenReport ReportName:="CustomerPhoneList", _
 WhereCondition:="CompanyName = " & "'" & strCompanyName & "'"

When the criteria used is a string,
variable contains a single quotation
match the criteria "CompanyName = 'B's Beverages'
ontain a value that itself contains a single quotation mc

marks ("), as shown in the following example:

DoCmd.OpenReport ReportName:="CustomerPhoneLi
 WhereCondition:="CompanyName = " & "

For more information about using quotation marks in strings, search the Microsoft® Access Visual Basic® Reference Hel
index for "quotation marks," and then open the topic "

When you ar
the records of the form or the subform. The following example illustrates how to change the source of data for a currently open
form:
 33

Sub ChangeRecordsetProperty()
 Dim frmNewRecords As Form
 Dim rstNewRecordset As New ADODB.Recordset

 Call ShowCustomerRecord("B's Beverages")
 Stop
 Set fr

 ' View Customers form containing 1 record.

DAO) RecordsetClone property or the ActiveX Data Objects (ADO) Clone method to create a second recordset that

property, you must use the Set statement, as illustrated in the preceding code sample.

mNewRecords = Forms(Forms.Count - 1)
 rstNewRecordset.Open "SELECT * FROM Customers", CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 Set frmNewRecords.Recordset = rstNewRecordset
 Stop ' View Customers form containing 91 records.
End Sub

The Recordset property of forms is new in Access. You use the Recordset property to specify or determine the Recordset
object representing a form's source of data. The recordset represented by the Recordset property is a read-only recordset. If you
must programmatically work with the data contained in the records displayed in a form, you must to use the Data Access
Object (
you can manipulate with VBA code. The Recordset property can be accessed only by using VBA code and can be used to bind
multiple forms to a single recordset or to synchronize multiple forms or multiple Recordset objects. When you change a form's
Recordset

Note
Changing a form's Recordset property might also change the RecordSource, RecordsetType, and RecordLocks properties. In
addition, other data-related properties also might be overridden, for example, the Filter, FilterOn, OrderBy, and OrderByOn
properties might all be affected when you change the Recordset property of a form.

Working with Controls on Forms and Reports

Although forms, reports, and data access pages are the objects you use to present or gather data from users, it is really the
e variety of built-in controls that you can use on these

 reports, and data access pages all use controls to display information or to make it possible for the user to interact with
ls on the

r report as a member of the Controls collection or by using the name of the control itself.
ines of code illustrate three ways to return the RowSource property setting for a combo box

ontrol on a form. Because the Controls property is the default property of a Form object, you can refer to the control's name
rty, as shown in the second and third examples that follow:

sPerson").RowSource
tals")!cboSelectSalesPerson.RowSource

!SalesTotals!cboSelectSalesPerson.RowSource

perty for each text box control to a zero-length string (""):

rrent As Form)

ou could call the ClearText

controls on these objects that do all the work. Access contains a wid
objects.

Forms,
the object or the data it contains. Forms and reports have a Controls property that returns a collection of all the contro
object.

Cntrols Collections for Forms and Reports

You can refer to a control on a form o
For example, the following l
c
without explicitly specifying the Controls prope

strSource = Forms("SalesTo
 Forms("SalesTo

tals").Controls("cboSelectSale
strSource =
strSource = Forms

Note
The ! operator is used to refer to user-defined items, such as forms, reports, and controls on Access forms or reports.

You can also use the Controls property to work with all the controls on a form or report. For example, the following code loops
through all the controls on a form and sets the Text pro

Sub ClearText(frmCu
 Dim ctlCurrent As Control

 For Each ctlCurrent In frmCurrent.Controls
 If ctlCurrent.ControlType = acTextBox Then
 ctlCurrent.Value = ""
 End If
 Next ctlCurrent
End Sub

You can pass the Form object to the ClearText procedure by using the Me property. The Me property returns an object
representing the form, report, or class module where code is currently running. For example, y
procedure from a form by using the following syntax:

Call ClearText(Me)

Certain controls on forms and reports also have a Controls collection. For example, the option group control might contain a
Controls collection representing option button, toggle button, check box, or label controls in the option group. The tab control
has a Pages collection containing a Page object for each page in the tab control. Each Page object also has a Controls collection
representing all the controls on a page in a tab control.

 34

Subform and Subreport Controls

Forms and reports can also contain subform or subreport controls that contain another form or report. These controls make it
possible for you to display related records from another form or report within a main form or report. A common example of
this is a Customers form that contains a subform containing customer orders. You use the SourceObject property of the
subform or subreport control to specify the form or report that will be displayed in the control.

n as the linking field, with the records
en the subform or subreport and

ers main form both contain a
 field that links the two forms. To specify the linking field, you use the

Form property of a subform control to refer to controls on a subform. You use the Report property of a subreport

erQuantity = Forms!CustomerOrders!SubForm1.Form!Quantity
lngNumProducts = Reports!SuppliersAndProducts!SubReport1.Form.Recordset.RecordCount

List Box and Com

List box and co ols are very powerful n and making it possible for
the user to interact with data displayed on a form n Access than list box and combo box
controls in othe lications, and it is imp es if you want to use these controls
effectively.

If you are used to working with these controls in other applications, the most important difference is how you add items to and
remove items fr ther applicat have AddItem and RemoveItem methods to add and
remove items. These methods are not supported for Access list and combo box controls. Instead, you use combinations of

The form or report in the subform or subreport control can share a common field, know
displayed in the main form or report. The linking field is used to synchronize the records betwe
the main form or report. For example, if the record sources for an Orders subform and a Custom
CustomerID field, this would be the common
LinkChildFields property of the subform or subreport control and LinkMasterFields property of the main form or report.
However, the easiest way to create a linked subform or subreport is to open the main form or report in Design view, drag the
appropriate form or report from the Database window to the main form or report, and then release the mouse button.

You use the
control to refer to controls on a subreport. The following examples illustrate how to get the value of a control on a subform or
subreport by using VBA. The first two lines show alternative ways to reference a control named Quantity on a subform. The
last line shows how to use the RecordCount property to get the number of records contained in the recordset associated with a
subreport control:

lngOrderQuantity = Forms("CustomerOrders").Controls("SubForm1").Form!Quantity
lngOrd

bo Box Controls on Forms

mbo box contr and versatile tools for displaying informatio
 the

r Office app
. These controls work differently i

ortant to understand these differenc

om these controls. In o ions, these controls

RowSource and RowSourceType properties to specify the data that appears in a list box or combo box control. The
relationship between the RowSource property setting and the RowSourceType property setting is illustrated in the following
table.

RowSourceType property setting RowSource property setting

Table/Query Table name, query name, or SQL statement

Value List Semicolon-delimited list of values

Field List List of field names from a table, query, or SQL statement

User-defined function No value specified

For more information about setting the RowSourceType and RowSource properties to fill a list box or combo box control,
search the Microsoft® Access Visual Basic® Reference Help index for "RowSource property" or "RowSourceType property."

If you are creating list box or combo box controls through the Access user interface, you can take advantage of the List Box
Wizard and the Combo Box Wizard to set the various properties required to display data in these controls. To use these
wizards, make sure the Control Wizards tool in the toolbox is pressed in, then click the List Box or Combo Box tool in the

x control without using the wizard by using the control's property sheet or
lSource property to bind a list box or combo box control to a field in the recordset specified in the

on with the
he source of data for the list box or combo box control.

operty specifies which column in the record source specified by the RowSource property will contain the
ontrol. If a list box or combo box control does not have a ControlSource property setting,

erty to 0. When you do this, the Value property of the control will contain the row number
ed by the RowSource property. The row number of the selected row is the same as the value of the

x property. The ColumnCount and ColumnWidths properties specify which columns are displayed in the

toolbox, and then click the place on the form where you want the control to appear. Follow the instructions displayed by the
wizard.

You can set the properties of a list box or combo bo
VBA. You use the Contro
form's RecordSource property. As mentioned earlier, you use the RowSource property in combinati
RowSourceType property to specify t

The BoundColumn pr
value of the list box or combo box c

mn propyou can set the BoundColu
w specifiof the selected ro

istIndecontrol's L
control.

 35

The following sample fills a combo box control with data from an SQL statement, specifies which column in the SQL
statement specified by the RowSource property will contain the value for the control, and uses the ColumnWidths property to
specify which columns are displayed in the control:

With Me!cboEmployees
 .RowSource = "SELECT EmployeeID, FirstName, " & "LastName FROM Employees ORDER BY LastName"
 .RowSourceType = "Table/Query"
 .BoundColumn = 1
 .ColumnCount = 3
 .ColumnWidths = "0in;.5in;.5in"
 .ColumnHeads = False
 .ListRows = 5
End With

The preceding code fills a combo box with data from 3 fields (columns) from each record (row) in the Employees table, as
specified by the RowSource property. The BoundColumn property is set to the first field in the Employees table, in this case,

mbo box, the value of the EmployeeID field will be the control's value and
ontrolSource property. Note that the first column in the ColumnWidths

o open the
opic.

 the user interface
eet view. When this property is set to True (the default), the user can't add new items

 any column other than 1, Access will automatically set the
are added to the underlying record source

 True, any attempt to add a new item to a combo box control will cause the NotInList
e NotInList event procedure to handle the attempt to add new data to the control. This

onse arguments to represent the new data the user has tried to enter and the
you want to provide in the attempt to add new data. Setting the Response argument to one of the following built-in

ecifies how you want to respond to the attempt to add data to the control: acDataErrAdded, acDataErrContinue, or

ata As String, Response As Integer)
 the items in this control?", _

 DoCmd.OpenForm "AddNewData", acNormal, , , acAdd, acDialog, NewData
 ' Continue without displaying default error message.

ou set the MultiSelect property. When the

EmployeeID. When an item is selected from the co
is the value saved to the field specified by the C
property is set to 0 inches. This hides the bound column (EmployeeID) from the user when the combo box's drop-down list is
displayed. The user sees only the FirstName and LastName fields, and these fields are displayed in .5-inch wide columns. Note
also that the ColumnHeads property is set to False, meaning that the names of the FirstName and LastName fields are not
shown in the control's drop-down list. And finally, the ListRows property is set to 5, specifying that the control's drop-down
list will display only 5 records at a time.

Using a User-Defined Function to Fill a List Box or Combo Box Control

You can specify a user-defined function as the RowSourceType property setting for a list box or combo box control. The
function you use for this property setting has to meet specific criteria in order to work correctly because the function is called
repeatedly as Access fills the control with data. For more information about creating and using user-defined functions to fill a
list box or combo box control, search the Microsoft® Access Visual Basi®Reference Help index for "RowSourceType
property," then open the "RowSourceType, RowSource Properties" topic, and then use the See Also jump t
"RowSourceType Property (User-Defined Function)-Code Argument Values" t

A w Values to a Combo Box Control dding Ne

You use the LimitToList property to specify whether a user can add new values to a bound combo box from
when the form is in Form view or Datash
to the combo box. If the BoundColumn property is set to
LimitToList property to True. When this property is set to False, new values
specified by the RowSource property.

When the LimitToList property is set to
event to occur. You can add code to th

cedure uses the NewData and Respevent pro
response
constants sp
acDataErrDisplay. For example, the following sample illustrates one way to add new data to a combo box control:

Private Sub CategoryID_NotInList(NewD
 If MsgBox("Do you want to add '" & NewData & "' to
 vbOKCancel, "Add New Item?") = vbOK Then
 ' Remove new data from combo box so control can be requeried after the AddNewData form is closed.
 DoCmd.RunCommand acCmdUndo
 ' Display form to collect data needed for the new record.

 Response = acDataErrAdded
 Else
 Response = acDataErrContinue
 End If
End Sub

For more information about how to use the NotInList event procedure, search the Microsoft®Access Visual Basic®Reference
Help index for "NotInList event."

Enabling Multiple Selections in a List Box Control

To make it possible for users to make multiple selections from a list box control, y
MultiSelect property is set to Simple (2) or Extended (1), the Value property of the control is Null. You work with multiple
selections in a list box control by using the Selected, ItemsSelected, and Column properties.

 36

Working with Data Access Pages

Data access pages are HTML documents comprised of HTML code, HTML intrinsic controls, and Microsoft®
ActiveX®controls. Data access pages rely on DHTML and are designed to work best with Microsoft® Internet Explorer
version 5 or later. (You can also use other Web browsers to display data access pages, but users will not be able to work with
the data directly.)

ow definition. Data access pages do support much of the functionality you

abase window without deleting the
abase, data access pages are stored on disk as .htm files that are separate

 a toolbox and property sheet. The toolbox contains

ment in Access. However, there might be

Page method. You can use
hod to work with an existing HTML page as a data access page or to create a new, blank page.
e illustrates how to use this method to create a new page called BlankDAP.htm:

reateNewFileName:=True

aAccessPage method creates a new blank page by default and adds a link to that page in the Pages object list in

e argument contains the path and file name of a file for which there is already a link in the Pages object

d file name for pages that appear in the Pages object list in the Database window by using the
t that represents a particular data access page. For example, the

DataAccessPages
ebug.Print "The '" & objDAP.Name & "' is located at: " & objDAP.FullName

A data access page can be a simple HTML document or can include data-bound controls that let users use a Web browser to
interact with data stored in a database. Microsoft® Access provides a WYSIWYG design environment for creating data access
pages and a means for deploying those pages and any necessary supporting files to a Web server, network server, or local file
system. In addition, you can view and use data access pages within Access itself.

You might be tempted to think of data access pages as HTML documents that combine the best features of forms and reports
for display on the Web, but that would be a very narr
are used to in Access forms and reports, but they also provide a completely new way to interact with data from within an
Access database or on the Web. These objects make it possible for users to use a Web browser to work with data in an
interactive manner and in a way that has never been possible before. Data access pages are similar to forms in that you can use
them to view, edit, or delete existing records, and you can also use them to add new records to an underlying record source.
They are similar to reports in that you can sort and filter records as well as group records according to criteria you specify. In
addition, while a page is displayed, you can manipulate the records that are displayed and change how the records are
displayed.

You can create data access pages from scratch in Access or you can base them on existing HTML pages created by using some
other HTML authoring tool. Only those pages created or modified within the Access design environment will be visible in the
Pages object list in the Database window. This means that if you edit an HTML document in Access, a link to that document is
created, even if you later use another tool to make additional changes. In addition, because the data access pages that appear in
the Database window are links to the files stored on disk, you can delete a page in the Dat
file from disk. Unlike other objects in an Access dat
from the Access database in which they are created.

Creating a data access page in Access is similar to creating a form or report. Data access pages have their own object list in the
Database window, and when they are opened in Design view, they have
tools for inserting the HTML intrinsic controls, such as the text box, label, list box, and command button controls. In addition,
the toolbox contains tools for inserting controls that are useful only on data access pages, such as expand, bound HTML, and
scrolling text controls. The toolbox also contains tools for inserting the Microsoft® Office Web Component controls on a data
access page.

Note
Because Access does not use the shared Microsoft® Office components related to Script objects or HTMLProject objects, you
can't use these objects to work with scripts or the HTML code in data access pages through VBA code. To work with scripts or
the HTML code in an Access DataAccessPage object, you use the Microsoft® Script Editor or a DataAccessPage object's
Document property, which returns the Web browser's document object for an HTML page.

Creating, Saving, and Closing Data Access Pages

You will typically create data access pages in the data access page design environ
circumstances where you want to use VBA code to display a data access page within Access or to programmatically output a
page to a separate location, such as a Web server on your local intranet.

You create a data access page programmatically by using the Application object's CreateDataAccess
the CreateDataAccessPage met
For example, the following cod

Application.CreateDataAccessPage FileName:="c:\WebPages\BlankDAP.htm" C

The CreateDat
the Database window. If the file specified in the FileName argument already exists when the method is called and the
CreateNewFileName argument is set to True (the default), an error occurs. If you set the method's CreateNewFileName
argument to False, the FileName argument must contain the path and name of an existing file. If the file does not exist, an error
occurs. If the FileNam
list in the Database window, a new, uniquely named link is created that points to the same file on disk. If you provide a name
but do not specify the path to a new file, the page is created in the current directory.

You can determine the path an
read-only FullName property of the AccessObject objec
following code prints the Name and FullName properties for each page in the current database:

Dim objDAP As AccessObject
For Each objDAP In CurrentProject.All
D
Next objDAP

 37

When you call the CreateDataAccessPage method, Access creates a temporary file on disk. To permanently save the page and
d of

page, work with the HTML in the page, and
 illustrates one way to use an error trap to

ata access page, work with the HTML in the page, and then save the page.
error trap to avoid the error that ocurrs if strFileName already exists.

ateDAP_Err
ge.

 = Application.CreateDataAccessPage(strFileName, True)
e to

yText").innerText = "When you work " & "with the HTML in a data access page, you " _
ment property of the page " & "to get to the HTML. "

ay = ""

e page and save all changes.
sPage, dapNewPage.Name, acSaveYes

d:

DAP_Err:

tion.CreateDataAccessPage(strFileName, False)

ate a new data access page, the display property of the style object for the HeadingText and BeforeBodyText
s how to change this setting so the text you insert is

eDAP procedure uses the data access page's Document property to return the Internet Explorer 5 document object

be viewed in a browser, you can display data access pages in Access to let users
 with data as they do with forms and reports.

the Pages object list in the Database window, you use the
rgument of the OpenDataAccessPage method to specify

or Page view. The following example illustrates how to open the Employees page in

owse

whether a page is currently open in Page view or Design view, you use a DataAccessPage object's CurrentView

create a pointer to it from the Pages object list in the Database window, you must use the Save method or the Close metho
the DoCmd object.

The following code fragment illustrates how you could create a new data access
e it to disk. The procedure alsothen create a link to the page and permanently sav

handle files that already exist.

Function CreateDAP(strFileName As String) As Boolean
 ' This procedure illustrates how to create a d
 ' The procedure also shows how to use an
 Dim dapNewPage As DataAccessPage
 Const DAP_EXISTS As Long = 2023

 On Error GoTo Cre
 ' Create the new pa
 Set dapNewPage
 ' Use the Document property to return the Internet Explorer 5 document object, and then use the objects on the pag
 ' work with the HTML in the page.
 With dapNewPage.Document
 .All("HeadingText").innerText = "This page was created programmatically!"
 .All("HeadingText").Style.display = ""
 .All("BeforeBod
 & "must use the docu
 .All("BeforeBodyText").Style.displ
 End With
 ' Close th
 DoCmd.Close acDataAcces
 CreateDAP = True

CreateDAP_En
 Exit Function
Create
 If Err = DAP_EXISTS Then ' The file specified in strFileName already exists, so replace it with this new page.
 If MsgBox("'" & strFileName & "' already exists. Do you want to " & "replace it with a new, blank page?", vbYesNo, _
 "Replace existing page?") = vbYes Then
 Set dapNewPage = Applica
 Resume Next
 Else
 CreateDAP = False
 Resume CreateDAP_End
 End If
 Else
 CreateDAP = False
 Resume CreateDAP_End
 End If
End Function

Note
When you cre
elements is set to None by default. The preceding example also illustrate
visible when the page is viewed.

The Creat
and then sets properties of elements in the page. This procedure also uses the innerText property of an HTML element to
specify the text that appears in the element.

Opening and Working with Data Access Pages

Although data access pages are designed to
view and work

To open an existing data access page for which a link exists in
ethod. You use the View aDoCmd object's OpenDataAccessPage m

 Design view whether to view the page in
Page view:

DoCmd.OpenDataAccessPage "Employees", acDataAccessPageBr

To determine
property.

 38

The DataAccessPages collection contains all currently open data access pages. You can access an open page as a member of

")
"

taAccessPageBrowse

te
 the DoCmd

e changes to a page while it is in Page view, those changes
d.

her a page is currently open, you use the CurrentProject
 controls on a page, you use the
information about data access

indow.

SIGNVIEW As Integer = 0
 As Integer = 1

rint "There are "; CurrentProject.AllDataAccessPages.Count & " data access pages in this database."

me: " & objCurrentDAP.FullName

.Name).CurrentView

Print vbTab & "The '" & objCurrentDAP.Name & "' page is open in Design view."

rrentDAP

a Source control is set to True so the page can be used only to enter new records:

b cmdSimpleDAPDataEntry_Click()

cluded in every data access page you create but is not visible on the page itself. In the preceding
e. As you can see, the control is created by using an id property

this collection and gain access to the properties and methods of the page itself as well as any controls on the page. The
following sample code opens the Employees page in Design view, applies a theme, adds some text to the main heading, and
then displays the page to the user:

With DoCmd
 .Echo False
 .OpenDataAccessPage "Employees", acDataAccessPageDesign
 With DataAccessPages("Employees
 .ApplyTheme "Blends
 .Document.All("HeadingText").innerText = "Today is "& Format(Date, "mmmm d, yyyy"
 End With
 .OpenDataAccessPage "Employees", acDa
 .Echo True
End With

No
To save the changes you make to a data access page, you must make sure the page is in Design view, and then use
object's Save method to save changes. If you programmatically mak
will be lost as soon as you call the Save metho

To get information about the pages in your database, including whet
object's AllDataAccessPages collection. To specify or determine property settings for a page or

s of a DataAccessPage object. The following sample uses both techniques to print propertie
pages to the Immediate window:

Sub DAPGetPageInfo()
 ' This procedure prints information about the data access pages in this database to the Immediate w
 Dim objCurrentDAP As AccessObject
 Dim strPageInfo As String
 Const DAP_DE
 Const DAP_PAGEVIEW

 Debug.P
 For Each objCurrentDAP In CurrentProject.AllDataAccessPages
 Debug.Print objCurrentDAP.Name & ":"
 Debug.Print vbTab & "File na
 If objCurrentDAP.IsLoaded <> True Then
 Debug.Print vbTab & "The '" & objCurrentDAP.Name & "' page is not currently open."
 Else
 Select Case DataAccessPages(objCurrentDAP

P_DESIGNVIEW Case DA
 Debug.
 Case DAP_PAGEVIEW
 Debug.Print vbTab & "The '" & objCurrentDAP.Name & "' page is open in Page view."

t End Selec
 End If
 Next ob
End Sub

jCu

Note that the DataAccessPages collection contains DataAccessPage objects, whereas the AllDataAccessPages collection
contains AccessObject objects.

When you work with data access pages inside Access, you can use VBA code in a form, for example, to specify or determine
property settings of the page or controls on a page. In the next example, the SimplePageExample page is opened and the
DataEntry property of the page's Dat

Private Su
 With DoCmd
 .Echo False
 .OpenDataAccessPage "SimplePageExample", acDataAccessPageBrowse
 DataAccessPages("SimplePageExample").Document.All("MSODSC").DataEntry = True
 .Echo True
 End With
End Sub

Note
The ActiveX control that binds controls on a page to an underlying data source is the Microsoft® Office Data Source control
(MSODSC). This control is in
example, the DataEntry property of the MSODSC is set to Tru

 39

setting of "MSODSC", and you use this id property to specify that the control is a member of the all collection in the data
access page's Document object.

Caution
Although the HTML underlying the MSODSC is available, you should never modify the HTML directly either in Access or in
any HTML authoring tool. To set properties of the MSODSC, you must use its property sheet in the Microsoft® Script Editor
or use Microsoft® Visual Basic®Scripting Edition (VBScript) code in the data access page itself.

cess pages.

lor-coded HTML code and script in the page. In addition,
on the controls you have placed on the page, you might also see icons representing some controls. For example, the

control is displayed as an icon. You can see the HTML and XML code underlying a control's icon by right-

ally changes the ID attribute to reflect the controls you are
nges the ID attribute to HeaderCustomers. You
 on a form or report. Outside of this section,

 be positioned in this manner.

itor does not insert the event procedure arguments when they are required.
every event associated with the Data Source control requires a single

ipt FOR=MSODSC EVENT=Current>
!-- -->

</SCR

 requires an understanding of database security as well as
ternet Explorer security.

provides the means for you to import data formatted in XML, and makes it possible for you, the developer,
ccess, either to load pre-existing tables with information contained within an XML file or to create the tables

of Access to manipulate and query your data.

, linked through Microsoft® SQL

To open the SimplePageExample page so that it displays all records, you would use the following code:

DoCmd.OpenDataAccessPage "SimplePageExample", acDataAccessPageBrowse

You can also use the Microsoft® Script Editor to add to a page script that runs when the page is displayed or in response to
events that occur on the page. The script you add to a page is part of the page itself and can run when the page is displayed in
Access or in a Web browser.

Using the Microsoft Script Editor with Data Access Pages

The Microsoft® Script Editor is an editor and debugger that you can use to work with the HTML code and script in a data
access page. This section describes how to use the Script Editor with data ac

When you view a data access page in the Script Editor, you see co
depending
Data Source
clicking the icon in the Script Editor and clicking Always View As Text on the shortcut menu.

When you create a new data access page, the page contains a two-dimensional section, represented by a <DIV> tag in the
HTML code that uses the CLASS attribute MSOShowDesignGrid and a default ID attribute of SectionUnbound. When you
add data-bound controls to this section of the page, Access automatic
using. For example, if you drag the Customers table to this section, Access cha
can place controls anywhere within the two-dimensional section as you can
controls cannot

When you create event procedures, the Script Ed
You must insert these yourself. For example,
dscEventInfo argument. If you double-click the Current event for the Data Source control (MSODSC) in the Script Editor's
Script Outline window, the following script block is inserted in your page:

<SCRIPT Language=vbscr
<

IPT>

You must add the event's argument or arguments by adding parentheses and a name for the argument or arguments. It does not
matter what name you use for each argument, and it does not matter if the argument is actually used in your script. You must
supply all the arguments to the event, even if your code does not use them, or the code will not work. For example, here is the
corrected event handler for the Data Source control's Current event:

<SCRIPT Language=vbscript FOR=MSODSC EVENT=Current(EventInfo)>
<!-- -->
</SCRIPT>

Security Considerations for Data Access Pages

Because data access pages are designed to work both within and outside Access databases, security issues pertaining to data
access pages require special attention. Understanding these issues
In

Access and XML

Moving information between applications and across the Web often has been difficult because of differences in data formats
and proprietary structures. With Extensible Markup Language (XML), however, data, metadata, and presentation information
can be moved, translated, and stored without difficulty. XML is a transport format, however, and does not make it possible for
you to combine information from multiple files and query the result or create merged subsets easily.

Microsoft® Access
and the users of A
on Import. Then, you can use the many other features

Access also provides an export mechanism for sharing data stored in Microsoft® Jet
Server™and referenced by views or queries. Adding a TransferXML method to support XML export and import makes it
possible for Access to expand its information sharing capabilities.

 40

Working with Microsoft Data Analyzer
Microsoft® Data Analyzer, part of the Business Intelligence offering from Office, is an easy-to-use tool that makes

as automate Data Analyzer features with
s (VBA), Microsoft Visual Basic Scripting Edition, and

 This Section
Explor
This article b Analyzer.

Using the Microsoft Data Analyzer ActiveX Control in Web Pages
This article describes how to embed the Microsoft Data Analyzer ActiveX Control in Web pages hosted by Microsoft
FrontPage, a Web site based on SharePoint Team Services by Microsoft, a SQL Server Digital Dashboard 3.0 dashboard, or
Microsoft SharePoint Portal Server.

Understanding the Data Analyzer Application Object

Data Analyzer provides a rich infrastructure for accessing and modifying dimensional data. All the facilities provided in the
second programmability layer are extensible using a collection of COM components bound together via a clever use of XML.
The treasure house of the programmatic power in the application is the Max 3.0 API. The focus of the API is opening and
managing views with the application. Thus, the two principal objects of interest to developers usually will be the Application
object and View object. You can see the organization of some of the objects in the API in FIGURE 2. Keep in mind that the
API objects do not always work as you might expect. For example, the Qualities object is not a collection that returns a set of
Quality objects the way one might expect in a lot of libraries, such as a Workbooks collection that lets you do a For...Each
loop to get all of the workbooks. Hence, you cannot iterate through a Qualities collection, get a Quality object, and then get
some properties of that Quality. These and other little anomalies aside, the main objects are fairly easy to figure out.

sophisticated business intelligence accessible to everyone, regardless of technical expertise. Developers can customize Data
Analyzer by using the documented application programming interface (API), as well
Microsoft Visual Basic®, Microsoft Visual Basic for Application
Microsoft Visual C++®. Data Analyzer can also be hosted on Web pages, digital dashboards, or forms. This Web site will
provide you with technical content on Data Analyzer and related Business Intelligence technologies like OLAP or the Office
Web Components.
In

ing Microsoft Data Analyzer Programmability
riefly explores the programmability features of the Microsoft Data

Max3API Library VBA Code Sample Reference for Microsoft Data Analyzer
Find VBA code samples for many of the objects and members of the Max3API library that is included with Microsoft Data
Analyzer.
MdhInterfacesLib Library VBA Code Sample Reference for Microsoft Data Analyzer
Provides VBA code samples for many of the objects and members in the Microsoft Data Analyzer MdhInterfacesLib library.
Using the Microsoft Data Analyzer ActiveX Control in Microsoft Excel 2002
Learn how to embed and use the Microsoft Data Analyzer ActiveX control in Microsoft Excel 2002 to spot trends,
opportunities, and potential problems with online analytical processing (OLAP) data.

Figure 1: Main objects in the Data Analyzer API.

s, you can build a view
iew to the sample cube that ships with Data Analyzer:

The Application object represents the Data Analyzer application. You can open views, show dialog boxes to export reports,
and exit the application. The View object is the real workhorse of your programmatic solution because it is the focus of nearly
all user interaction. The View object represents the entry into the dimensional data, the reports and so forth. You can open a
view using the OpenView method and specifying the path to a max file. If you are really adventurou
from scratch. The following code opens a v

 41

 Private Sub Form_Load()
 Dim daApp As Max3API.Application
 Set daApp = MSDA1.Application()
 daApp.ActiveView.OpenView "C:\Airline.Max", _
 vlocFileSystem
End Sub
What this code does is load the view definition into an xml file. Then, the Data Analyzer application object uses the
OpenView method.

Exploring Microsoft Data Analyzer Programmability
The Microsoft® Data Analyzer is a software application, part of the Microsoft Office family of products, which enables you to
graphically mine your organization's multidimensional data. Microsoft Data Analyzer is designed to work in conjunction with
online analytical processing (OLAP) data based on Microsoft SQL Server™ 2000 with Analysis Services (currently, the only
supported database is MSOLAP). For more information, visit the Microsoft Data Analyzer Web site.
Setting Up Microsoft Data Analyzer
To use Microsoft Data Analyzer, you need to connect to an OLAP database. For this column, I am using SQL Server 2000
with n
You can
dial database connection.

onnection, as well as the name of the OLAP database

 A alysis Services and the sample Food Mart 2000 database.
 create a new connection to an existing database by clicking New on the File menu. In the Define View—Connections

og box, use the Add or Edit buttons to create or edit a
If you click the Add button, you will need to provide a name for the c
server, a local OLAP .cub file, or an HTTP URL containing the OLAP data. Once you have entered this information, click the
Connect button. You will then need to pick the data catalog and the OLAP cube in the database.
For the Food Mart 2000 database, I will select the Sales OLAP cube.
Programming the Microsoft Data Analyzer ActiveX Control
In addition to the standalone user interface, Data Analyzer supplies as an ActiveX® control. This enables you to

iveX control on a Web page and manipulate it with

base views.

Usin h

programmatically control Data Analyzer from COM-based development applications such as Microsoft Visual Basic®. For
example, you could embed the Microsoft Data Analyzer ActiveX control on a UserForm and manipulate it with Visual Basic
for Applications (VBA) code, embed the Microsoft Data Analyzer ActiveX control on a Visual Basic form and manipulate it
with Visual Basic code, or embed the Microsoft Data Analyzer Act
Microsoft Visual Basic Scripting Edition (VBScript) code.
Some of the features you can programmatically control with the Microsoft Data Analyzer ActiveX control are:

• Creating, loading, configuring, and saving data
• Changing properties such as colors, visualization methods, dialog boxes, analysis algorithms, and built-in functions.
• Running menu items.
g t e Microsoft Data Analyzer ActiveX Control in a UserForm

 embed the Microsoft Data Analyzer ActiveX control in a UserForm and manipulate it with VBA code. To do so, on a You can

uns

, Tools
x3A a default installation, this DLL can b Progr s\Microsoft Data
lyz I.dll).

Using the Microsoft Data Analyzer ActiveX Control in a Web Page

computer with Data Analyzer installed, add a UserForm to a VBA project, then in the Toolbox (View menu), right-click and
select Additional Controls. In the Available Controls dialog box, check the Max3Ax Class box, and then click OK. Finally,
drag the Max3Ax Class control onto the UserForm. At design time, the Microsoft Data Analyzer ActiveX control's user
interface will not be visible. At run time, the Microsoft Data Analyzer ActiveX control's user interface is visible and r
within the confines of the UserForm.
To program against the Microsoft Data Analyzer ActiveX control, you must also set a reference (References dialog box
menu) to the Ma
Analyzer\Data Ana

PI DLL (in
er 3.5\Max3AP

e found at C:\ am File

nclude t so in Micros

Data Analyzer installe
On the Insert

mpo e C , cl eX Control, and
k Ne
oose ize and check ss box,

then click OK selecting the Max3Ax Class entry in the Choose a control list, click Finish.
ely, if you ar ou ca ally type the fo HTML code in a

t classid="clsid 31-00724ED9288F" width height="100 Max3Ax1"/>
crosoft Data A

You can also i he Microsoft Data Analyzer user interface on a Web pag
d:

e. To do oft FrontPage® 2002 with

• menu, click Web Component.
• In the Co

then clic
nent Type list, select Advanced Controls, and in th

xt.
hoose an effect list ick Activ

• In the Ch a control list, if Max3Ax Class is not available, click
. After

 Custom the Max3Ax Cla

Alternativ
Web page:

e not using FrontPage to create your Web page, y n manu llowing

<objec :E0ECA9C3-D669-4EF4-82 ="100%" %" id="
The Mi nalyzer Object Model
The following tables in bjects and collections in the naly t model: cludes a description of the o Microsoft Data A zer objec

Object/collection Description Parent objects Child
objects/collections

Application the Microsoft Data y, Toolbar Provides programmatic access to (None) View, Histor

 42

Analyzer ActiveX Control.

Aspect ts AspectMembers Represents an aspect of a database view. Aspec

AspectMember Represents an aspect member of a database view. AspectMembers (None)

AspectMembers members of a database Represents all of the aspect
view.

Aspect AspectMember

Aspects Represents all of the aspects of a database view. View Aspect

Band Represents a toolbar band. Bands (None)

Bands Represents a collection of toolbar bands. Toolbar Band

ColorManager Represents color settings. TraitsManager (None)

History Represents the history manager. Application (None)

Qualities Represents a collection of qualities. Trait (None)

Toolbar Represents a toolbar. Application Bands

Trait Represents a single trait (like color or quantity) with a
 a collection of traits (like a grid)

TraitsManager Qualities
single quality, or
with many qualities.

TraitsManager Represents all of the traits of the active database view. View ColorManager, Trait

View Represents a database view. Application Aspects, ViewQualities,
TraitsManager

ViewQualities Represents a collection of database view qualities. View (None)

In the balance of this article, I will show you how to programmatically manipulate the Microsoft Data Analyzer ActiveX
control through VBA code. You can easily adapt this code to Visual Basic or VBScript, depending on your solution
environment.
Working with Views
The Application object's ActiveView property returns a View object representing the active database view. Two of the most

5\FoodMart2000Connection.max"

View VIEW_NAME, vlocFileSystem
 With

 ShowDialog method to display built-in dialog boxes. The EMaxDialogs enumerated

ngeView

sible

 the main menu, and the Status Bar.

ed.
o disables many of the "bells and whistles" in the interface from the user at run time.

nt in a database view. A trait is the type of measurement (for example, length or color). Traits,
ed, are the same for all aspects in a database view.

common methods of the View object are OpenView and SaveView, as shown in the following example code:
Private Const VIEW_NAME As String = _
 "C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.
Private Sub Max3Ax1_Initialized()
 With Max3Ax1.Application.ActiveView
 .OpenView VIEW_NAME, vlocFileSystem

some processing on the view here. ' Do
 .Save
 End
End Sub
Working with Built-In Dialog Boxes
You can use the Application object's
type contains constants for the various built-in dialog boxes; for example, to show the Change View dialog box, you would
use the following code:
Max3Ax1.Application.ShowDialog Dialog:=mxDlgCha
Working with the Toolbar, Main Menu, and Status Bar
The Main Toolbar, the main menu, and the Status Bar can be made visible or hidden by setting the Band object's Vi
property to True or False, as shown in the following example code:
' Hide the Main Toolbar,
With Max3Ax1.Application.MainToolbar
 .Bands(Index:="MainToolBar").Visible = False
 .Bands(Index:="MainMenu").Visible = False
 .Bands(Index:="Main.StatusBar").Visible = False
End With
Note

persist if Microsoft Internet Explorer is refresh If you hide the main menu, this setting will not
This is a great technique if you want t
Working with Qualities and Traits
A quality
once defin

is a unit of measureme

The following example code reports on the color trait:

 43

' Repo

o add, remove, and clear aspects, respectively. When you use the

 to conditionally add or remove visible dimensions at run time.

ode Sample Reference for Microsoft Data Analyzer
 Microsoft Data Analyzer API Help with the

e path of C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.5\MSDA35om.chm. This CHM file contains a

, and enumerations, consult the Microsoft Data

urposes of these code samples, this reference assumes an instance of the Microsoft Data Analyzer ActiveX® control has
VBA UserForm and references have been set to the Max3 ActiveX 3.0 Type Library (using the default

soft Data Analyzer\Data Analyzer 3.5\Max3ActiveX.dll) and the Max3API library (using the

. To gain entry into the Max3API library

te Const VIEW_FILE_PATH As String = "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"
 UserForm_Initialize()

PI.Application

End Sub
To adapt these code samples for use in Microsoft Data Analyzer ActiveX
control (C:\Program Files\Microsoft D l) on a Web page, copy and paste the

ple from this reference, and modify it to adhere to VBScript syntax rules. For example, to repurpose the

am Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"
ocFileSystem

rts the value of the Color trait (Change View dialog box (View menu), Measures tab, Color list).
MsgBox Prompt:=Max3Ax1.Application.ActiveView.TraitsManager.Trait(TraitID:=trtColor).Qualities.QualityID(v:=0)
You can use the Add, Clear, and Remove methods of the Qualities object to add, clear, and remove qualities.
Working with Aspects
An aspect is a dimension in an OLAP cube, such as time, geographical location, product, and so on. The Aspects collection
allows you to use the Add, Remove, and Clear methods t
Add or Remove methods, you must specify the unique dimension name in the data cube, and you must enclose the dimension's
name in brackets "[]". For example:
With Max3Ax1.Application.ActiveView
 ' Next line of code will cause an error if this dimension doesn't exist in the database or
 ' this dimesion is already visible in the view.
 .Aspects.Add "[Education Level]"
 ' Next line of code will cause an error if this dimension is not already visible in the view.
 .Aspects.Remove "[Gender]"
End With
This technique is useful if you want

Max3API Library VBA C
Microsoft® Data Analyzer ships with a compiled HTML Help (CHM) file titled
default fil
few snippets of Microsoft Visual Basic® code and Microsoft Visual Basic Scripting Edition code; individual API topics
contain C++ code stubs but no Visual Basic or VBScript code samples. This article contains Visual Basic for Applications
(VBA) code samples for many of the API member topics.
For complete descriptions of each of the API's objects, collections, members
Analyzer API Help file (MSDA35om.chm) included with Data Analyzer.
For p
been embedded on a
path C:\Program Files\Micro
default path C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.5\Max3API.dll).
Only code for the Max3API library (Max3API.dll) will be presented in this reference

A, you can use code similar to the following: using VB
Priva
Private Sub
 Dim daApp As Max3A
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem

 VBScript code samples, embed an instance of the
ata Analyzer\Data Analyzer 3.5\Max3ActiveX.dl

VBA code sam
previous code sample using VBScript on a Web page, use the following code:
<script id=clientEventHandlersVBS language=vbscript>
<!--
Sub window_onload
 Const vlocFileSystem = 1
 Const VIEW_FILE_PATH ="C:\Progr
 Max3Ax1.Application.ActiveView.OpenView VIEW_FILE_PATH, vl
End Sub
-->
</script>
Object Model Map

ry. The following figure provides a graphical representation of the relationships among the objects in the Max3API libra

 44

Figure 1. Max3API library object model map

Code Samples
Application Object: ActiveView Property/View Object: OpenView Method
The following code sample accesses the Application object to open a data view.
Private Const VIEW_FILE_PATH As String = "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"

ication
iew VIEW_FILE_PATH, vlocFileSystem

od, Forward Method
.

\Data Analyzer3.5\Airline.max"
 "C:\Program Files\Microsoft Data Analyzer\Data Analyzer _

penView AIRLINE_FILE_PATH, vlocFileSystem
.max opened."

penView FOODMART_FILE_PATH, vlocFileSystem

o Airline.max."
History.Forward

le = False

Private Sub UserForm_Initialize()
 Dim daApp As Max3API.Application
 Set daApp = Max3Ax1.Appl
 daApp.ActiveView.OpenV
End Sub
Application Object: History Property / History Object: Back Meth
The following code sample opens two data views and navigates back and forward between them

:\Program Files\Microsoft Data AnalyzerPrivate Const AIRLINE_FILE_PATH As String = “C
PATH As String =Private Const FOODMART_FILE_

 3.5\FoodMart2000.max"
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.O
 MsgBox "Airline
 daApp.ActiveView.O
 MsgBox "FoodMart2000.max opened."
 daApp.History.Back
 MsgBox "Back t
 daApp.
 MsgBox "Forward to FoodMart2000.max."
End Sub
Application Object: MainToolbar Property/ Band Object: Visible Property/ Bands Object: Item Property
/ Toolbar Object: Bands Property
The following code sample hides the Data Analyzer ActiveX control's main toolbar, status bar, and main menu bar.
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Set daApp = Max3Ax1.Application
 With daApp.MainToolbar.Bands
 .Item("MainToolBar").Visible = False
 .Item("MainMenu").Visible = False
 .Item("Main.StatusBar").Visib

 45

 End With
End Sub
Application Object: ShowDialog Method
The following code sample displays the About dialog box.
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Set daApp = Max3Ax1.Application

About daApp.ShowDialog mxDlg
End Sub
Aspect Object: ID Property, Members Property, Minimized Property/ AspectMember Object: Selected Property

bject: Aspects Property
isible OLAP dimensions and members in the Data

ata Analyzer3.5\Airline.max"

API.Application

rLf
ctiveView.Aspects

 vbTab & _
ember).ID & ": " & objAspect.Members.Item(intMember).Selected & vbCrLf

bject: MDHMember Property, View Object: MetaData

eturns an IMdhHeirarchy object. The MDHMember property returns an IMdhMember
ed in the

path C:\Program Files\\Microsoft Data Analyzer\Data Analyzer
 are contained in the Max3API library, they are not included in

 Analyzer API help file

ludeUnselected Method, GotoLevel Method, ReverseSelection Method, SelectAll Method,
ly Method, SmartSelectByName Method, SmartSelectByProperty Method, SmartSelectByQuality Method

ies Object: Count Property, QualityID Property, QualityType Property

s String = "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"
 = "[Destinations]"

s String = ".[All Destinations]"
L As String = ".[Destination]"

()
pplication

(intQuality) & ", " & _

/ AspectMembers Object: Count Property, Item Property/ View O
The following code sample uses several For Each loops to list the v
Analyzer ActiveX control.
Private Const VIEW_FILE_PATH As String = "C:\Program Files\Microsoft Data Analyzer\D
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3
 Dim objAspect As Max3API.Aspect

nteger Dim intMember As I
 Dim strResults As String
 Set daApp = Max3Ax1.Application

FILE_PATH, vlocFileSystem daApp.ActiveView.OpenView VIEW_
 strResults = "Aspects (OLAP Dimensions)" & _
 vbCrLf & vbTab & "Aspect Members (OLAP Members): Selected?"& vbCrLf & vbC
 For Each objAspect In daApp.A
 objAspect.Minimized = True
 strResults = strResults & objAspect.ID & vbCrLf
 For intMember = 0 To objAspect.Members.Count - 1
 strResults = strResults &
 objAspect.Members.Item(intM
 Next intMember
 Next objAspect
 MsgBox strResults

iew.Aspects For Each objAspect In daApp.ActiveV
 objAspect.Minimized = False
 Next objAspect
End Sub
Aspect Object: MDHHeirarchy Property, AspectMember O
Property
The MDHHeirarchy property r
object. The MetaData property returns an IMdhManager object. All three of these returned objects are contain
MdhInterfacesLib library (using the default
3.5\MDHInterfaces.tlb). Because none of these returned objects
this reference. For more information, see the "Use Metadata" topic in the Microsoft Data
(MSDA35om.chm).
Aspect Object: Exc
SelectOn
Aspects Collection: Item Property, Qualit
View Object: Qualities Property
The following code sample filters a data view using various methods.
Private Const VIEW_FILE_PATH A
Private Const ASPECT_NAME As String
Private Const ASPECT_LEVEL_ALL A
Private Const ASPECT_LEVE
Private Sub Max3Ax1_Initialized
 Dim daApp As Max3API.A
 Dim objAspect As Max3API.Aspect
 Dim intQuality As Integer
 Dim strResults As String
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem
 strResults = "Qualities (OLAP Measures), Quality Types: " & vbCrLf
 For in
 strResults = strResults & daApp.ActiveView.Qualities.QualityID

tQuality = 0 To daApp.ActiveView.Qualities.Count - 1

 46

 daApp.ActiveView.Qualities.QualityType(intQuality) & vbCrLf
 Next intQuality

pp.ActiveView.Aspects.Item(ASPECT_NAME)
All

ect.GotoLevel ASPECT_NAME & ASPECT_LEVEL

, ssopExclude, ssorStartsWith, "West", "", False

 & ASPECT_LEVEL
operty "", ssopExclude, _
, 20000, "", False

sures].[Profitability]", ssorGT, 30#, "", False

spect)

& vbCrLf

& vbTab & objAspect.Members.Item(intAspectMember).ID & vbCrLf

x strResults

erty
alues of a data view.

g = "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"
x1_Initialized()

r

 & vbCrLf & vbTab & "Values" & vbCrLf

ults & objAspect.Members.Item(intMember).ID & ", " & _
spect.Members.Item(intMember).Selected & vbCrLf

r intQuality = 0 To daApp.ActiveView.Qualities.Count - 1

Method, Remove Method / AspectMembers Object: Add Method, Remove

, adds, modifies, and clears various components of a data view.
oft Data Analyzer\Data Analyzer3.5\Airline.max"

n

 MsgBox strResults
 Set objAspect = daA
 objAspect.Select
 Call ListAspectMembers(objAspect)
 objAsp
 Call ListAspectMembers(objAspect)
 objAspect.GotoLevel ASPECT_NAME & ".[Region Name]"
 objAspect.SelectOnly ASPECT_NAME & ASPECT_LEVEL_ALL & ".[West Europe]"
 objAspect.ExcludeUnselected
 Call ListAspectMembers(objAspect)
 objAspect.GotoLevel ASPECT_NAME & ".[Region Name]"
 objAspect.SmartSelectByName ""
 objAspect.ReverseSelection
 Call ListAspectMembers(objAspect)

CT_NAME objAspect.GotoLevel ASPE
 objAspect.SmartSelectByPr

T "Total Revenue", ssorG
 Call ListAspectMembers(objAspect)
 objAspect.SmartSelectByQuality "", ssopExclude, qtypMeasure, "[Mea

objAspect) Call ListAspectMembers(
End Sub

ers(objAspect As Max3API.APrivate Sub ListAspectMemb
 Dim intAspectMember As Integer
 Dim strResults As String
 strResults = "Aspects (OLAP Dimensions)" & vbCrLf & vbTab & "Aspect Members (OLAP Members)" & vbCrLf
 strResults = strResults & objAspect.ID
 For intAspectMember = 0 To objAspect.Members.Count - 1
 strResults = strResults
 Next intAspectMember
 MsgBo
End Sub
AspectMember Object: Values Prop
The following code sample lists the properties and data v
Private Const VIEW_FILE_PATH As Strin
Private S
 Dim da

ub Max3A
App As Max3API.Application

 Dim objAspect As Max3API.Aspect
 Dim intQuality As Integer
 Dim intMember As Intege
 Dim strResults As String
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem
 strResults = "Aspect Members (OLAP Measures), Selected?"
 For Each objAspect In daApp.ActiveView.Aspects
 For intMember = 0 To objAspect.Members.Count - 1
 strResults = strRes

 objA
 Fo
 strResults = strResults & vbTab & daApp.ActiveView.Qualities.QualityID(intQuality) & _

": " & objAspect.Members.Item(intMember).Values intQuality) & vbCrLf
 Next intQuality
 Next intMember
 Next objAspect
 Debug.Print strResults
End Sub
Aspects Collection: Add Method, Clear
Method
The following code sample removes
Private Const VIEW_FILE_PATH As String = "C:\Program Files\Micros
Private Const ASPECT_NAME As String = "[Destinations]"
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Applicatio
 Dim objAspect As Max3API.Aspect
 47

 Dim intQuality As Integer
 Dim intMember As Integer
 Dim strResults As String
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem
 Call ListAspects(daApp)
 daApp.ActiveView.Aspects.Remove ASPECT_NAME
 Call ListAspects(daApp)
 daApp.ActiveView.Aspects.Add ASPECT_NAME
 Call ListAspects(daApp)
 daApp.ActiveView.Aspects.Item(ASPECT_NAME).Members.Remo
 Call ListAspects(daApp)

ve ASPECT_NAME & ASPECT_LEVEL & ".[East Asia]"

bers.Add ASPECT_NAME & ASPECT_LEVEL & ".[East Asia]"

pect)

ax3API.Aspect)

ts (OLAP Dimensions)" & vbCrLf & _
mbers (OLAP Members)" & vbCrLf

er
x strResults

Private C er\Data Analyzer3.5\Airline.max"

 Dim o

TH, vlocFileSystem
r.ColorManager.ColorScaleVisible =False
aitsManager.Trait(trtColor)

 vbCrLf

ctiveView.TraitsManager.Trait(trtGrid).Qualities
roperties):" & vbCrLf

f Seats]"
rLf

lities.Remove qtypMeasure, "[Measures].[Number Of Seats]"

 daApp.ActiveView.Aspects.Item(ASPECT_NAME).Mem
 Call ListAspects(daApp)
 daApp.ActiveView.Aspects.Clear
End Sub
Private Sub ListAspects(daApp As Max3API.Application)
 Dim objAspect As Max3API.Aspect

ctiveView.Aspects For Each objAspect In daApp.A
ListAspectMembers(objAs Call

 Next objAspect
End Sub
Private Sub ListAspectMembers(objAspect As M
 Dim intAspectMember As Integer

s String Dim strResults A
 strResults = "Aspec

b & "Aspect Me vbTa
 strResults = strResults & objAspect.ID & vbCrLf
 For intAspectMember = 0 To objAspect.Members.Count - 1
 strResults = strResults & vbTab & _
 o
 Next intAspectMemb

bjAspect.Members.Item(intAspectMember).ID & vbCrLf

 MsgBo
End Sub
ColorManager Object: ColorScaleVisible Property, Qualities Object: Add Method, Clear Method, Remove Method,
 View Object: TraitsManager Property, Trait Object: ID Property, Qualities Property, SingleQualityID Property

s data view properties and property traits. The following code sample modifies and lists variou
onst VIEW_FILE_PATH As String = "C:\Program Files\Microsoft Data Analyz

Private strResults As String
Private S
 Dim daApp As Max3API.Application

ub Max3Ax1_Initialized()

bjQualities As Max3API.Qualities
 Dim objTrait As Max3API.Trait
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PA
 daApp.ActiveView.TraitsManage
Set objTrait = daApp.ActiveView.Tr
 Call ListTraitProperties(objTrait)
Set objTrait = daApp.ActiveView.TraitsManager.Trait(trtGrid)
Call ListTraitProperties(objTrait)
Set objTrait = daApp.ActiveView.TraitsManager.Trait(trtLength)
Call ListTraitProperties(objTrait)
Set objQualities = daApp.ActiveView.TraitsManager.Trait(trtColor).Qualities
 strResults = "Color Qualities (Properties):" &
Call ListQualities(objQualities)
Set objQualities = daApp.A
 strResults = "Grid Qualities (P
 objQualities.Clear
 strResults = "Grid Qualities (Properties):" & vbCrLf
Call ListQualities(objQualities)
 objQualities.Add qtypMeasure, "[Measures].[Number O
 strResults = "Grid Qualities (Properties):" & vbC
Call ListQualities(objQualities)
 objQua
 strResults = "Grid Qualities (Properties):" & vbCrLf

 48

Call ListQualities(objQualities)
Set objQualities =daApp.ActiveView.TraitsManager.Trait(trtLength).Qualities

roperties):" & vbCrLf strResults = "Length Qualities (P
 Call ListQualities(objQualities)
End Sub

jPrivate Sub ListQualities(ob Qualities As Max3API.Qualities)

itProperties(objTrait As Max3API.Trait)
it ID, Single Quality ID, Single Quality Type" & vbCrLf & objTrait.ID & ", " &_

 Msg

:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"

Priv
 D
 D o

_PATH_2

iew
ct "location=MyOLAPServerName;provider=msolap"

odMart 2000"

ctiveView.Cube

bject: Count Property, QualityID Property, QualityType Property
 sample provides a list of data view properties.

LE_PATH As String = "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline.max"

tQuality As Integer
 Dim strResults As String
Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem
 strResults = "View Qualities (Properties), View Quality Types" & vbCrLf
 For intQuality = 0 To daApp.ActiveView.Qualities.Count - 1
 strResults = strResults & _
 daApp.ActiveView.Qualities.QualityID(intQuality) & ", " & daApp.ActiveView.Qualities.QualityType(intQuality) & vbCrLf
 Next intQuality
MsgBox strResults
End Sub

 Dim intQuality As Integer
 For intQuality = 0 To objQualities.Count - 1
 strResults = strResults & objQualities.QualityID(intQuality) & vbCrLf
 Next intQuality
 MsgBox strResults
End Sub
Private Sub ListTra
 strResults = "Tra

 objTrait.SingleQualityID & ", " & objTrait.SingleQualityType
Box strResults

End Sub
View Object: Catalog Property, Connect Method, CloseView Method, Cube Property, IsOpen Property, Refresh Method
The following code sample saves a data view using various methods. This code sample also opens a new view based on a
connection to a Microsoft SQL Server running Analysis Services.
Private Const VIEW_FILE_PATH As String = "C
Private Const VIEW_SAVE_PATH As String = _

 "C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline_1.max"
Private Const VIEW_HTML_PATH_1 As String = _

"C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline_Bars.htm"
Priv Cate onst VIEW_HTML_PATH_2 As String = _

"C:\Program Files\Microsoft Data Analyzer\Data Analyzer3.5\Airline_Grid.htm"
ate Sub Max3Ax1_Initialized()
im daApp As Max3API.Application
im bjQualities As Max3API.Qualities

bjTrait As Max3API.Trait Dim o
Set daApp = Max3Ax1.Application
 daApp.ActiveView.OpenView VIEW_FILE_PATH, vlocFileSystem
 daApp.ActiveView.SaveView VIEW_SAVE_PATH, vlocFileSystem
MsgBox "Saved to " & VIEW_SAVE_PATH
 daApp.ActiveView.SaveAsWebPage VIEW_HTML_PATH_1, wpgkBars, "Airline (Bars)"
MsgBox "Saved to " & VIEW_HTML_PATH_1
 daApp.ActiveView.SaveAsWebPageEx VIEW_HTML_PATH_2, "Maximal.Grid", "Airline (Grid)"
MsgBox "Saved to " & VIEW_HTML
 daApp.ActiveView.Refresh rfrkSoft
MsgBox "View refreshed."
 daApp.ActiveView.CloseV
 daApp.ActiveView.Conne
 daApp.ActiveView.Catalog = "Fo
 daApp.ActiveView.Cube = "Sales"
MsgBox "Catalog Name: " & daApp.ActiveView.Catalog
MsgBox "Cube Name: " & daApp.A
MsgBox "View Open: " & daApp.ActiveView.IsOpen
End Sub
ViewQualities O
The following code
Private Const VIEW_FI
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Dim in

 49

MdhInterfacesLib Library VBA Code Sample Reference for Microsoft Data Analyzer
Microsoft® Data Analyzer ships with a compiled HTML Help (CHM) file titled Microsoft Data Analyzer API Help with the
default file path of C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.5\MSDA35om.chm. This CHM file contains a
few snippets of Microsoft Visual Basic® code and Microsoft Visual Basic Scripting Edition code; individual API topics
contain C++ code stubs but no Visual Basic or VBScript code samples. This article contains Visual Basic for Applications
(VBA) code samples for some of the API topics.
For complete descriptions of each of the API's objects, collections, members, and enumerations, consult the Microsoft Data
Analyzer API Help file (MSDA35om.chm) included with Data Analyzer.
For purposes of these code samples, this reference assumes an instance of the Microsoft Data Analyzer ActiveX® control has
been embedded on a VBA UserForm and references have been set to the:

• Max3 ActiveX 3.0 Type Library (using the default path C:\Program Files\Microsoft Data Analyzer\Data Analyzer
3.5\Max3ActiveX.dll)

• Max3API library (using the default path C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.5\Max3API.dll)
• MdhInterfacesLib library (using the default path C:\Program Files\Microsoft Data Analyzer\Data Analyzer

3.5\MdhInterfacesLib.tlb)
Only code for the MdhInterfacesLib library (MdhInterfacesLib.tlb) will be presented in this reference.
The MDHHeirarchy property in the Max3API library returns an IMdhHeirarchy object in the MdhInterfacesLib library.
The MDHMem ib library. The

erty in the Max3API library returns an IMdhManager object in the MdhInterfacesLib library. Because none
roperties are contained in the MdhInterfacesLib library, they are not included in this reference. For more

xample, to gain
milar to the following:

acesLib.CMdhInterfaces

ation
tion=MyOLAPServerName;provider=msolap"

ber property in the Max3API library returns an IMdhMember object in the MdhInterfacesL
MetaData prop
of these three p
information on these properties, see the Microsoft Data Analyzer API help file (MSDA35om.chm). For e
entry into the MdhInterfacesLib library from the Max3API library using VBA, you can use code si
Private Sub Max3Ax1_Initialized()

ion Dim daApp As Max3API.Applicat
 Dim objCMdhInterfaces As MdhInterf
 Dim intCube As Integer
 Dim strResults As String

icSet daApp = Max3Ax1.Appl
 daApp.ActiveView.Connect "loca
Set objCMdhInterfaces = daApp.ActiveView.MetaData
 strResults = "Cubes:" & vbCrLf
 For intCube = 0 To objCMdhInterfaces.Cubes.Count - 1

ubes.Item(intCube).Name & vbCrLf strResults = strResults & objCMdhInterfaces.C
 Next intCube
MsgBox strResults
End Sub
Object Model Map
The following figure provides a graphical representation of the relationships among the objects in the MdhInterfacesLib
library.

Figure 1. MdhInterfacesLib library object model map (click picture to see larger image)

Code Samples
CMdhInterfaces Object: ActiveCatalog Property, Catalogs Property, ConnectionDescription Property

operty
ovides high-level information about the catalogs on a particular OLAP server.

3Ax1_Initialized()

IMdhCatalog Object: Name Property, IMdhCatalogs Object: Count Property, Item Pr
The following code sample pr
Private Sub Max
 50

 Dim daApp As Max3API.Application
jCMdhInterfaces As MdhInterfacesLib.CMdhInterfaces

onnect "location= MyOLAPServerName;provider=msolap"

Lf
& vbCrLf

Item(intCatalog).Name & vbCrLf

ces.ActiveCatalog.Name

Property, IMdhCube Object: Dimensions Property, LastUpdate Property, Name
perty, IMdhDimension Object: Name

d dimensions on a particular OLAP server.

 Dim strResults
 Max

Set objCMdhInte
 strResults = "C
 For in

sults & "Cube: " & objIMdhCube.Name & vbCrLf & " Last Update: " & _
dhCube.LastUpdate & vbCrLf & " Type: " & objIMdhCube.Type & vbCrLf
n = 0 To objIMdhCube.Dimensions.Count - 1

 Set objIMdhDimension = objIMdhCube.Dimensions.Item(intDimension)

t intDimension

ption Property,
Property, NumericPrecision Property, NumericScale Property, Type Property,

t: Count Property, Item Property, IMdhMeasuresDimension Object:

d measures on a particular OLAP server.

sLib.CMdhInterfaces
cesLib.IMdhCube

nterfacesLib.IMdhMeasure

vider=msolap"

(intMeasure)

 Dim ob
 Dim intCatalog As Integer
 Dim strResults As String
Set daApp = Max3Ax1.Application
 daApp.ActiveView.C
Set objCMdhInterfaces = daApp.ActiveView.MetaData

tion: " & objCMdhInterfaces.ConnectionDescription & vbCr strResults = "Connection Descrip
 strResults = strResults & "Catalogs:"
 For intCatalog = 0 To objCMdhInterfaces.Catalogs.Count - 1

s.Catalogs. strResults = strResults & " " & objCMdhInterface
 Next intCatalog

 "Active Catalog: " & objCMdhInterfa strResults = strResults &
MsgBox strResults
End Sub
CMdhInterfaces Object: Cubes
Property, Type Property, IMdhCubes Object: Count Property, Item Pro

 Item Property Property, IMdhDimensions Object: Count Property,
bes anThe following code sample iterates through the cu

Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Dim objCMdhInterfaces As MdhInterfacesLib.CMdhInterfaces
 Dim objIMdhCube As MdhInterfacesLib.IMdhCube
 Dim objIMdhDimension As MdhInterfacesLib.IMdhDimension
 Dim intCube As Integer
 Dim intDimension As Integer

 As String
Set daApp =
 daApp.ActiveView.Connect "location= MyOLAPServerName;provider=msolap

3Ax1.Application
"

rfaces = daApp.ActiveView.MetaData
ubes / Dimensions: " & vbCrLf

tCube =
objIMdhCube = objCMdhInterfaces.Cubes.Item(intCube)

0 To objCMdhInterfaces.Cubes.Count - 1
 Set
 strResults = strRe
 objIM
 For intDimensio

 strResults = strResults & " Dimension: " & objIMdhDimension.Name & vbCrLf
 Nex
 Next intCube
Debug.Print strResults
End Sub
IMdhCube Object: MeasuresDimension Property, IMdhMeasure Object: AggregatorType Property, Ca
DataType Property, Dimension
UniqueName Property, IMdhMeasures Objec
Measures Property
The following code sample iterates through the cubes an
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Dim objCMdhInterfaces As MdhInterface
 Dim objIMdhCube As MdhInterfa
 Dim objIMdhMeasure As MdhI
 Dim intCube As Integer
 Dim intMeasure As Integer
 Dim strResults As String
Set daApp = Max3Ax1.Application
 daApp.ActiveView.Connect "location=MyOLAPServerName;pro
Set objCMdhInterfaces = daApp.ActiveView.MetaData
 strResults = "Cubes / Measures: " & vbCrLf
 For intCube = 0 To objCMdhInterfaces.Cubes.Count - 1
 Set objIMdhCube = objCMdhInterfaces.Cubes.Item(intCube)
 strResults = strResults & "Cube: " & objIMdhCube.Name & vbCrLf
 strResults = strResults & " Measures:" & vbCrLf
 For intMeasure = 0 To objIMdhCube.MeasuresDimension.Measures.Count - 1
 Set objIMdhMeasure = objIMdhCube.MeasuresDimension.Measures.Item

 51

 strResults = strResults & " Unique Name: " & objIMdhMeasure.UniqueName & vbCrLf & _
 " Aggregator Type: " & objIMdhMeasure.AggregatorType & vbCrLf & _

on & vbCrLf & _

 " Numeric Pr
 " Numeric Sc

 " Type: " & o
 Next intMeasure

ct: Caption Property, Hierarchies Property, IsMeasuresDimension Property, UniqueName

cesLib.IMdhCube
acesLib.IMdhDimension

 "location= MyOLAPServerName;provider=msolap"
App.ActiveView.MetaData

ces.Cubes.Count - 1

.Name & vbCrLf
ount - 1

(intDimension)

 vbCrLf & _

 _

hDimension.IsMeauresDimension & vbCrLf
o _

m(intHierarchy)
ue Name: " & objIMdhHierarchy.UniqueName & vbCrLf & _

CrLf & _
rdinality & vbCrLf & _

.Caption & vbCrLf & _
imension.Caption & vbCrLf

End Sub
IMdhHierarchy Object: ty, LevelNumber
Property, MemberProp Property, Type
Property, UniqueName ren Property,
Dimension Property, Le ty,
UserProperties Property
The following code lists i t dimension in the cube, the first

imension
ialized()
I.Application

 " Caption: " & objIMdhMeasure.Capti
 " Data Type: " & objIMdhMeasure.DataType & vbCrLf & _

 " Dimension Name: " & objIMdhMeasure.Dimension.Name & vbCrLf &_
ecision: " & objIMdhMeasure.NumericPrecision & vbCrLf &_
ale: " & ojIMdhMeasure.NumericScale & vbCrLf & _
bjIMdhMeasure.Type & vbCrLf

 Next intCube
Debug.Print strResults
End Sub
IMdhDimension Obje
Property
IMdhHierarchies Object: Count Property, Item Property
IMdhHierarchy Object: Caption Property, Cardinality Property, DefaultMember Property, Dimension Property,
UniqueName Property
The following code sample iterates through the cubes, hierarchies, and members on a particular OLAP server.
Private Sub Max3Ax1_Initialized()
 Dim daApp As Max3API.Application
 Dim objCMdhInterfaces As MdhInterfacesLib.CMdhInterfaces
 Dim objIMdhCube As MdhInterfa
 Dim objIMdhDimension As MdhInterf
 Dim objIMdhHierarchy As MdhInterfacesLib.IMdhHierarchy
 Dim intCube As Integer
 Dim intDimension As Integer
 Dim intHierarchy As Integer
 Dim strResults As String
Set daApp = Max3Ax1.Application
 daApp.ActiveView.Connect
Set objCMdhInterfaces = da
 For intCube = 0 To objCMdhInterfa
 Set objIMdhCube = objCMdhInterfaces.Cubes.Item(intCube)
 strResults = strResults & "Cube: " & objIMdhCube
 For intDimension = 0 To objIMdhCube.Dimensions.C
 Set objIMdhDimension = objIMdhCube.Dimensions.Item
 strResults = strResults & _
 " Dimension Name: " & objIMdhDimension.Name &
 " Unique Name: " & objIMdhDimension.UniqueName & vbCrLf & _
 " Caption: " & objIMdhDimension.Caption & vbCrLf &
 " Cube Name: " & objIMdhDimension.Cube.Name & vbCrLf & _
 " Is This A Measures Dimension: " & objIMd
 For intHierarchy = 0 T
 objIMdhDimension.Hierarchies.Count - 1
 Set objIMdhHierarchy = objIMdhDimension.Hierarchies.Ite
 strResults = strResults & " Dimension Hierarchy Uniq

" Caption: " & objIMdhHierarchy.Caption & vb
" Cardinality: " & objIMdhHierarchy.Ca
" Default Member Caption: " & objIMdhHierarchy.DefaultMember
" Dimension Caption: " & objIMdhHierarchy.D

 Next intHierarchy
 Next intDimension
 Next intCube
Debug.Print strResults

 Levels Property, IMdhLevel Object: Caption Property, Dimension Proper
erties Property, Members Property, MemberUserProperties Property, Name
 Property, IMdhLevels Object: Item Property, IMdhMember Object: Child
vel Property, Name Property, Properties Property, Type Property, UniqueName Proper
, IMdhMembers Object: Item Property
nformation about the first cube on a particular OLAP server, the firs
, the first level in the hierarchy, and the first member in the level. hierarchy in the d

Private Sub Max3Ax1_Init
App As Max3AP Dim da

 Dim objCMdhInterfaces As MdhInterfacesLib.CMdhInterfaces
 Dim objIMdhCube As MdhInterfacesLib.IMdhCube

 52

 Dim objIMdhDimension As MdhInterfacesLib.IMdhDimension
 Dim objIMdhHierarchy As MdhInterfacesLib.IMdhHierarchy
 Dim objIMdhLevel As MdhInterfacesLib.IMdhLevel

esLib.IMdhMember

rovider=msolap"
ta

rfaces.Cubes.Count - 1

0)
IMdhDimension.Name & vbCrLf

 _

 Count of Member Properties: " & objIMdhLevel.MemberProperties.Count & vbCrLf & _

 & _
el.Type & vbCrLf

IMdhLe mbers Object: Count Property
The lo of dimensions in the first cube, a
cou f of members in the first level.
Priv alized()

terfaces As MdhInterfacesLib.CMdhInterfaces

 D
 D
 D o
Set daAp .Application
 d p
Set objC daApp.ActiveView.MetaData
 D g

Using the Microsoft Data Analyzer ActiveX Control in Microsoft Excel 2002

 Dim objIMdhMember As MdhInterfac
 Dim intCube As Integer
 Dim strResults As String
 Set daApp = Max3Ax1.Application
 daApp.ActiveView.Connect "location= MyOLAPServerName;p
 Set objCMdhInterfaces = daApp.ActiveView.MetaDa
 For intCube = 0 To objCMdhInte
 Set objIMdhCube = objCMdhInterfaces.Cubes.Item(intCube)

.Name & vbCrLf strResults = strResults & "Cube: " & objIMdhCube
 Set objIMdhDimension = objIMdhCube.Dimensions.Item(

" & obj strResults = strResults & " First Dimension Name:
 Set objIMdhHierarchy = objIMdhDimension.Hierarchies.Item(0)

e: " & objIMdhHierarchy.UniqueName & vbCrLf strResults = strResults & " First Hierarchy Unique Nam
 Set objIMdhLevel = objIMdhHierarchy.Levels.Item(0)
 strResults = strResults & _
 " First Level Name: " & objIMdhLevel.Name & vbCrLf &
 " Unique Name: " & objIMdhLevel.UniqueName & vbCrLf & _

Lf & _ " Caption: " & objIMdhLevel.Caption & vbCr
 " Dimension Name: " & objIMdhLevel.Dimension.Name & vbCrLf & _

 Level Number: " & objIMdhLevel.LevelNumber & vbCrLf & _ "
 "

 " Count of Members: " & objIMdhLevel.Members.Count & vbCrLf & _
 " Count of Member User Properties: " & objIMdhLevel.MemberUserProperties.Count & vbCrLf

 " Type: " & objIMdhLev
 Set objIMdhMember = objIMdhLevel.Members.Item(0)
 strResults = strResults & " First Member Name: " & objIMdhMember.Name & vbCrLf & _

 " Unique Name: " & objIMdhMember.UniqueName & vbCrL & _
 " Caption: " & objIMdhMember.Caption & vbCrLf & _
 " Count of Children: " & objIMdhMember.Children.Count & vbCrLf & _
 " Dimension Name: " & objIMdhMember.Dimension.Name & vbCrLf & _
 " Count of Properties: " & objIMdhMember.Properties.Count & vbCrLf & _
 " Count of User Properties: " & objIMdhMember.UserProperties.Count & vbCrLf & _
 " Type: " & objIMdhMember.Type & vbCrLf & _
 " Level Name: " & objIMdhMember.Level.Name & vbCrLf

 Next intCube
 Debug.Print strResults
End Sub

vels Object: Count Property, IMdhMe
fol wing code sample provides a count of cubes on a particular OLAP server, a count

nt o hierarchies in the first dimension, a count of levels in the first hierarchy, and a count
ate Sub Max3Ax1_Initi

 Dim daApp As Max3API.Application
 Dim objCMdhIn
 Dim objIMdhCube As MdhInterfacesLib.IMdhCube

im objIMdhDimension As MdhInterfacesLib.IMdhDimension
im objIMdhHierarchy As MdhInterfacesLib.IMdhHierarchy
im bjIMdhLevel As MdhInterfacesLib.IMdhLevel

p = Max3Ax1
aAp .ActiveView.Connect "location= MyOLAPServerName;provider=msolap"

MdhInterfaces =
ebu .Print "Cubes: " & objCMdhInterfaces.Cubes.Count

Set objIMdhCube = objCMdhInterfaces.Cubes.Item(0)
 Debug.Print " Dimensions in First Cube (" & objIMdhCube.Name & "): " & objIMdhCube.Dimensions.Count
Set objIMdhDimension = objIMdhCube.Dimensions.Item(0)
 Debug.Print " Hierarchies in First Dimension (" & objIMdhDimension.UniqueName & "): " & _
 objIMdhDimension.Hierarchies.Count
Set objIMdhHierarchy = objIMdhDimension.Hierarchies.Item(0)
 Debug.Print " Levels in First Hierarchy (" & objIMdhHierarchy.UniqueName & "): " & objIMdhHierarchy.Levels.Count
Set objIMdhLevel = objIMdhHierarchy.Levels.Item(0)
 Debug.Print " Members in First Level (" & objIMdhLevel.UniqueName & "): " & objIMdhLevel.Members.Count
End Sub

 53

Download Odc_dactrlexcel.exe.
Microsoft® Data Analyzer belongs to the Microsoft Office family of software applications. It provides a graphical analysis
interface for users to apply business intelligence to their operational data. Data Analyzer is designed to work with online
analytical processing (OLAP) data, based on Microsoft SQL Server™ 2000 with Analysis Services. By using Data Analyzer,
users can spot trends, opportunities, and potential problems regardless of their level of technical expertise.
In addition to a standalone user interface, Data Analyzer also provides a Microsoft ActiveX® control that can be embedded in
Microsoft Office application documents such as Microsoft Excel worksheets, Microsoft PowerPoint® slides, Microsoft Word

bject Model (COM)-based applications like Excel or Word. Additionally,
nd manipulated with Microsoft Visual Basic Scripting

an be used to programmatically control many features of Data
Ana

ualization methods, dialogs, and functions

For d Exploring Microsoft Data Analyzer

documents, and manipulated with Microsoft Visual Basic® for Applications (VBA) code. The Data Analyzer ActiveX control
can also be embedded in a UserForm in Component O
the control can be embedded in Web pages in Microsoft FrontPage® a
Edition (VBScript) code. Developers can use the Data Analyzer ActiveX control to access the Data Analyzer application-
programming interface (API) in order to run most of the user-interface operations available in the standalone Data Analyzer.
The Data Analyzer API contains a rich object model that c

lyzer including the ability to:
• Create, load, configure, and save views
• Change the properties such as colors, vis
• Run menu items

ee ad itional information on the Microsoft Data Analyzer Object Model, s
Programmability.
In th

l 2002 and connect to a Data Analyzer view file
is article, we will demonstrate creating the forms and sample code to do the following:
• Embed the Data Analyzer ActiveX control into a UserForm in Exce
• Open a dialog box where the user can select from a list of Data Analyzer operations normally available from the user

interface
• Open up another dialog box that displays a hierarchical view of the different components that make up a Data

Analyzer view
• Add code to a workbook so that the sample opens automatically when the workbook is opened

Why Embed the Microsoft Data Analyzer ActiveX Control in Excel?
Why would you want to embed the Microsoft Data Analyzer ActiveX control inside of an Excel 2002 worksheet? On its own,
Excel provides a number of features to help you work with OLAP data and analyze your multidimensional data. For example,
the PivotTable® report is a special type of table that you can use to summarize information from a data source. The data source

er of alternative perspectives.
sources in Excel just as you do to other external data sources. For example, you

th Microsoft SQL Server 2000 Analysis Services, the Microsoft OLAP server product.
-party OLAP products that are compatible with OLE DB for OLAP.

ber of functions that you can use to perform complex calculations on your data. By combining
 with the data analysis capabilities of Data Analyzer, you can create very powerful applications.

Analyzer allows you to provide an easy-to-use data analysis tool to your

icrosoft Data Analyzer ActiveX Control in Excel

can be a relational file, an OLAP cube, or an Excel list. After specifying information during the creation of the PivotTable such
as the fields that you are interested in, the layout of the fields, and the types of calculations you want, you can rearrange the
data to provide any numb
Additionally, you can connect to OLAP data
can work with databases created wi
Excel can also work with third
Excel also provides a large num
the calculation features of Excel
For example, you can embed the Data Analyzer ActiveX control inside of an Excel UserForm to enable your users to quickly
view their data and then provide custom VBA code that users can execute to retrieve selected data from the Data Analyzer
view and insert that data into cells on a worksheet for further analysis and calculations. Or you could create a macro that
retrieves data from a Data Analyzer view, defines special print settings, and prints a document containing the data with custom
formatting and border styles.
Combining the capabilities of Excel and the Data
users with the powerful calculation engine of Excel.
Embedding the M
First, we will embed the Microsoft Data Analyzer ActiveX contr to a UserForm in Excel 2002 and manipulate it with VBA
code. To do so, on a computer with Da

d the text in the

 Finally, drag the Max3ax Class control onto the frmControl form.
l's user interface will not be visible (see Figure 1). At run time, the

Dat
To p r
Max3AP ata Analyzer, this dynamic-link library (DLL) can be found at C:\Program

ol in
ta Analyzer installed:

1. Start Excel 2002 and create a new, blank workbook.
2. On the Tools menu, point to Macro, and then click Visual Basic Editor to switch to the Visual Basic Editor (VBE).
3. On the Insert menu, click UserForm.
4. In the Properties window for the UserForm, replace the text in the Name property with frmControl an

Caption property with Microsoft Data Analyzer ActiveX control—Sample.
5. In the Toolbox (View menu), right-click, and click Additional Controls.
6. In the Additional Controls dialog box, check the Max3Ax Class box, and then click OK.
7.

Note At design time, the Data Analyzer ActiveX contro
a Analyzer ActiveX control's user interface is visible and runs within the confines of the UserForm.
rog am against the Data Analyzer ActiveX control, you must set a reference (on the Tools menu, click References) to the

I DLL (in a default installation of D

 54

File i
the Max etadata so you will need to set a reference to the MaxODBO 1.0 Type

 a default installation of Data Analyzer, this DLL can be found at C:\Program Files\Microsoft Data
 in order to use the TreeView ActiveX control in this example, you

ally found at
C:\W
To g s
this

API.Application

The mobjMSDA variable represents the Max3API Application object that gives us programmatic control over the Data
Analyzer user interface. The mobjView variable represents the Max3API View object, which gives us access to the methods
and properties of a Data Analyzer view. The mintDialog variable will contain an Integer value that will be used to display a
Data Analyzer dialog box. The strFileName String variable will contain the filename of the view that appears in Data
Analyzer. And finally, the intUniqueID Integer variable will be used as a counter to append a unique identifier to a node name.
Adding Controls to the frmControl Form

s\M crosoft Data Analyzer\Data Analyzer 3.5\Max3API.dll). Additionally, in this example we will be using interfaces from
ODBO 1.0 Type Library to retrieve OLAP m

Library DLL (in
Analyzer\Data Analyzer 3.5\MaxODBO.dll). And finally,
will need to set a reference to the Microsoft TreeView Control, version 5.0 (SP2) OCX (usu

INNT\System32\Comctl32.ocx).
et tarted, you will first need to declare some variables so that they are available to all of the forms and procedures. To do

, we will create a standard module and declare the variables with the Public keyword. On the Insert menu, click Module
and type the following:
Public mobjMSDA As Max3
Public mobjView As Max3API.View
Public mintDialog As Integer
Public strFileName As String
Public intUniqueID As Integer

We will now add three command buttons to the frmControl form. The form should resemble Figure 1 when all of the controls
have been added.

 form in Design View Figure 1. The frmControl

isplay the frmDialogs form fromThe Show Dialog button will d which the user can select from a list of actions. The Show
 the different objects (aspects, traits, and so forth) making up a Data

 a CommandButton control onto the UserForm in the lower right hand corner.
e text in the Name property with cmdClose and the text in the

ntrol to open up the cmdClose_Click event procedure. Between the Sub and the End Sub

rol form.
n control onto the form to the left of the Close button.

the text in the Name property with cmdDetail and the text in the

indow for the control, replace the text in the Name property with cmdDialog and the text in the
perty with Show Dialog.

 up the cmdDialog_Click event procedure. In the procedure, type the following:

Detail button will open a form that displays a tree view of
Analyzer view. We will also add a Close button to the form.

1. In the Toolbox, drag
2. In the Properties window for the control, replace th

Caption property with Close.
3. Double-click the co

statements, type the following:
End
Executing this command will close the frmCont

 a CommandButto4. In the Toolbox, drag
5. In the Properties window for the control, replace

Caption property with Show Detail.
6. Double-click the control to open up the cmdDetail_Click event procedure. Between the Sub statement and the End

Sub statement, type the following:
frmDetail.Show
Executing this command will display the frmDetail form.

7. In the Toolbox, drag a CommandButton control onto the form to the left of the Show Detail button.
8. In the Properties w

Caption pro
9. Double-click the control to bring

 55

' Displays a list of action dialogs.
frmDialogs.Show vbModal
mobjMSDA.ShowDialog mintDialog

execute the ShowDialog method of the Data Analyzer Application
is article. Figure 2 shows how the frmControl form will appear when

Clicking this button will display the frmDialogs form and
object. This will be explained in more detail later in th
opened to a view.

 •
Figure 2. The frmControl Form at Run Time

Adding Code to the frmControl Form
Now, we will add some additional code to the frmControl form. First, we will add code that will allo
This will allow users to change the size of the form to fit their screens. This code will also resize th

w our form to be resizable.
crosoft Data Analyzer

l need to make calls to the

 using

e frmControl form resizable.

er32" _
ByVal lpClassName As String, ByVal lpWindowName As String) As Long

 "user32" _
g, ByVal nIndex As Long) As Long

ser32" _
g, ByVal nIndex As Long, ByVal dwNewLong As Long) As Long

ed discussion of these declarations is beyond the scope of this article. However, more information on Windows APIs

 window, select the Activate event from the right drop-down list box at the top of the code
ow. Type the following code into the procedure:

ontains the form's Windows handle value.

he form (for Excel 2000 or later).
= FindWindow("ThunderDFrame", frmControl.Caption)

 the form resizable

L_STYLE, iStyle

e Mi
ActiveX control and reposition the form's command buttons as the form is resized. To do this, we wil
Microsoft Windows® API. Before we can use the procedures in the Windows API, we need to tell VBA where the DLLs
containing those procedures can be found, what parameters they accept, and what information they return. We do this by
a Declare statement. In the Declarations section of the frmControl form's code window, type the following:
' Windows API calls used to make th
'Find the form's window handle
 Private Declare Function FindWindow Lib "us
 Alias "FindWindowA" (
'Get the form's window style
 Private Declare Function GetWindowLong Lib
 Alias "GetWindowLongA" (ByVal hWnd As Lon
'Set the form's window style
Private Declare Function SetWindowLong Lib "u
 Alias "SetWindowLongA" (ByVal hWnd As Lon
'The offset of a window's style

-16) Private Const GWL_STYLE As Long = (
'Style to add a sizable frame
 Private Const WS_THICKFRAME As Long = &H40000
A detail
can be found in the article Overview of the Windows API.
Next, in the frmControl form's code
window. The Activate event occurs when the form becomes the active wind

elected by the user in the frmIntro form. C' Purpose: Open up a view file s
Dim mhWndForm As Long
Dim iStyle As Long
On Error GoTo UserForm_Activate_Err
' Get the handle for t

Form mhWnd
'Make
 iStyle = GetWindowLong(mhWndForm, GWL_STYLE)
 iStyle = iStyle Or WS_THICKFRAME
 SetWindowLong mhWndForm, GW
' Set a reference to the Data Analyzer ActiveX control.
 Set mobjMSDA = Max3Ax1.Application()

 56

' Open up the view.
 mobjMSDA.ActiveView.OpenView strFileName, vlocFileSystem

s not " & "exist or it is not a valid View.", vbOKOnly

"

ng value and contains a handle (a unique number used
l form). The iStyle variable contains the Style property

window. Then, we call the FindWindow method in the Windows API to get the handle for
nd the Caption property contains the name

 the current Style property setting for the form. We
E constant and then use the result in a call to the
This identifies the form as resizable.

view based on the strFileName String variable.
A.ActiveView.OpenView strFileName, vlocFileSystem

rFileName String variable gets its value from the frmIntro form that we will discuss shortly.
.

 executes when the user resizes the form. In the frmControl form's code

rol As Msforms.Control
' Const for the size and positions of the controls
' on the frmControl form.
Const intDAControlHeightOffset As

r = 20
Con
Con
Const n
Con
For

 E

 C

"
l.Width – intDetailBtnWidthOffset

t

lared a variable that can be used to represent each control on the form.

define where the controls should be located on the form relative to the form's borders.

t As Integer = 48
loseBtnWidthOffset As Integer = 78

ialogBtnWidthOffset As Integer = 234
form's Controls collection. For each control on the form, we set the Width and Height properties to

l to fit the form, based on an offset value.

UserForm_Activate_End:
 Exit Sub
UserForm_Activate_Err:
 If Err.Number = -2147221394 Then
 MsgBox "Cannot open the View. Either the View file doe
 GoTo UserForm_Activate_End
 Else
 MsgBox "Error " & Err.Number & ": " & Err.Description, , "UserForm_Activate
 End If
Examining this procedure, the mhWndForm variable is declared as a Lo
by Windows to identify a window) to the active window (the frmContro
setting that Windows uses for this
form. ThunderDFrame is the class name Windows uses to identify Excel 2002 a
of the form.
Next, we call the GetWindowsLong method in the Windows API to get

 that value with the WS_THICKFRAMperform an Or operation using
SetWindowLong method in the Windows API to reset the Style property.

 reference to the Max3Ax Application object and open a We then create a
mobjMSD
The st
We also include error-handling code in the event in case the view is not a valid Data Analyzer view
Next, we will insert and examine the procedure that
window, select the Resize event from the right drop-down list at the top of the code window and insert the following:
' Purpose: Maintains the size of the Data Analyzer control and the position of the three command buttons relative
' to the size of the frmControl form.
Dim ctlCont

Integer = 60
Const intDAControlWidthOffset As Intege

st intCmdButtonHeightOffset As Integer = 48
st intCloseBtnWidthOffset As Integer = 78

 i tDetailBtnWidthOffset As Integer = 156
st intDialogBtnWidthOffset As Integer = 234
Each ctlControl In frmControl.Controls ' Loop through each control on the form and set size or' position.

 If ctlControl.Name = "Max3Ax1" Then
 ctlControl.Height = frmControl.Height - intDAControlHeightOffset

 ctlControl.Width = frmControl.Width - intDAControlWidthOffset
lse
 ctlControl.Top = frmControl.Height - intCmdButtonHeightOffset
 Select Case ctlControl.Name

ase "cmdClose"
 ctlControl.Left = frmControl.Width – intCloseBtnWidthOffset
 Case "cmdShowDetail
 ctlControl.Left = frmContro
 Case "cmdShowDialog"
 ctlControl.Left = frmControl.Width – intDialogBtnWidthOffset
 End Selec
 End If
Next
First, we dec
Dim ctlControl As Msforms.Contr

lared a series of constants to
ol

Then, we dec
Const intDAControlHeightOffset As Integer = 60
Const intDAControlWidthOffset As Integer = 20
Const intCmdButtonHeightOffse
Const intC
Const intDetailBtnWidthOffset As Integer = 156
Const intD
Next, we loop through the
position the contro

 57

For Each ctlControl In frmControl.Controls
rol.Name = "Max3Ax1" Then

t = frmControl.Height - intDAControlHeightOffset
trolWidthOffset

 If ctlCont
 ctlControl.Heigh
 ctlControl.Width = frmControl.Width - intDACon
 Else
 ctlControl.Top = frmControl.Height - intCmdButtonHeightOffset
 Select Case ctlControl.Name
 Case "cmdClose"
 ctlControl.Left = frmControl.Width – intCloseBtnWidthOffset
 Case "cmdShowDetail"
 ctlControl.Left = frmControl.Width – intDetailBtnWidthOffset
 Case "cmdShowDialog"
 ctlControl.Left = frmControl.Width – intDialogBtnWidthOffset
 End Select
 End If
Next
Now the controls will maintain size and position whenever the user changes the size of the form.
Creating and Adding Code to the frmIntro Form
The frmIntro form is the initial form displayed when Excel opens. The form contains text that instructs the user to open a Data
Analyzer view file. When the user clicks OK, a FileOpen dialog box appears and the user can then navigate to and open a
view file. Data Analyzer views can be contained in .max files or in .xml files. Figure 3 shows the frmIntro form when it is
completed.

Figure 3. The frmIntro form when it is completed

Let's create the form and add code to it:
1. From the Insert menu, click UserForm.
2. In the Properties window for the UserForm, replace the text in the Name property with frmIntro and the text in the

Caption property with Open a Data Analyzer View.
3. In the Toolbox, click the Label control and drag the control to the form.
4. In the Properties window for the control, replace the text in the Caption property with the following:

Please select a Data Analyzer view (.max) file or a valid XML view (.xml) file.
5. In the Toolbox, click the TextBox control and drag the control to the form under the label, centered in the form.
6. In the Properties window for the control, replace the text in the Name property with cmdOK and the text in the

Caption property with OK.
7. Double-click the control to bring up the cmdOK_Click event procedure. Between the Sub statement and the End Sub

statement, type the following:
' Purpose: This procedure opens a file open dialog and allows the user to choose a view or cube file.
'Dim FDialog As FileDialog
Dim FFilters As FileDialogFilters
On Error GoTo cmdOK_Click_Err
Set FDialog = Application.FileDialog(msoFileDialogOpen) ' Set up the File | Open dialog.
With FDialog
 Set FFilters = .Filters ' Set up the file filters.
 With FFilters
 .Clear
 .Add "Data Analyzer Views", "*

 E
 .A
 If o

 E f
 st l
End
Unl
frmC t
cmd _
 U a
 Exit Sub

.max"
 .Add "XML Views", "*.xml"

nd With
llowMultiSelect = False ' Allow user to select just one file.
.Sh w = False Then ' Exit if the user selects CANCEL.
 GoTo cmdOK_Click_End
nd I
rFi eName = .SelectedItems(1) ' Assigned the file selection.
 With
oad frmIntro

on rol.Show
OK Click_End:
nlo d frmIntro

 58

cmdOK_
 MsgB & _

n, , "cmdOK_Click"
This o
Applica alog object and then specify the type of dialog we want by using the

Dialog object to return a reference to the
 preset filters. The Clear method of the

 show only .max and .xml files.
 of the FileDialog object displays the File Open dialog box. If the user clicks the Open button, the Show

Cancel button, the Show method returns False and we exit the procedure.

Click_Err:
ox "Error " & Err.Number & ": "

 Err.Descriptio
 pr cedure uses the FileDialog object to display the File Open dialog box. First, we use the FileDialog property of the

tion object to return a reference to the FileDi
msoFileDialogOpen constant. Next we use the Filters property of the File
FileDialogFilters collection. The FileDialogFilters collection contains a number of

 collection removes any pre-existing filters. We then add our own filters toFileDialogFilters
ethodThe Show m

method returns a value of True. If the user clicks the
Creating the frmDetail Form
The frmDetails form is used to display a hierarchical view of the current Data Analyzer view. It does this using the TreeView
Act rol, version 5.0 (SP2) OCX (Comctl32.ocx). The VBA

llections, objects, and methods of the Data Analyzer API

ology), and traits (how qualities are displayed in a view such as by length or by
Type Library provide access to the objects, methods, and properties that can be
adata) on the OLAP objects (catalogs, cubes, dimensions, measures, hierarchies)

iew is derived.
s the frmDetail form when it is completed.

iveX control, which is available in the Microsoft TreeView Cont
ulates the TreeView control by using the cocode behind the form pop

object model and the interfaces in the MaxODBO 1.0 Type Library. The Data Analyzer API object model provides access to
cludes aspects (similar to dimensions in OLAP terminology), aspect members, the components that make up a view. This in

 terminqualities (similar to measures in OLAP
color). The interfaces in the MaxODBO 1.0

 and gather information (metused manipulate
e vfrom which th

wFigure 4 sho

Figure 4. The frmDetail form when it is completed

 the Insert menu, click UserForm.

ntrol, version 5.0 (SP2) box, and then

cmdClose and the text in the

e End Sub

Let's create the form and add code to it:
1. On
2. In the Properties window for the UserForm, replace the text in the Name property with frmDetail and the text in the

Caption property with Structure of a Data Analyzer View.
3. In the Toolbox, right-click, and click Additional Controls.
4. In the Additional Controls dialog box, check the Microsoft TreeView Co

click OK.
5. Drag the TreeView control onto the frmDetail form.
6. Next, add a command button to the form. In the Toolbox, drag a CommandButton control onto the lower right hand

corner of the frmDetail form.
7. In the Properties window for the co ntrol, replace the text in the Name property with

Caption property with Close.
8. Double-click the control to open up the cmdClose_Click event

statements, enter the following:
procedure. Between the Sub and th

Unload frmDetail

 59

9. Next, select the Activate event from the right drop-down list at the top of the code window. Type the following code
e event procedure:

opulate the TreeView control.
ppended to the node name when needed.

nded = True
 the TreeView control to display the first node, once it is populated.

 that populate the TreeView control with information on Aspects (dimensions) and Traits (measures).
MSDA.ActiveView

 procedure creates a reference to the active Data Analyzer view by using the ActiveView property of the Data
ication object. The code then appends the initial node (named View) to the tree by using the TreeView control's

hat append the cube metadata.

n call the routines that add the aspect members to the tree.

spects.Item(i)
jAspect.ID, objAspect.ID

t.Members, objAspect.ID ' Get the aspect members

lls the routines to get the cube metadata.
a", "MetaData"

ends an Aspects label to the tree and then iterates through the Aspects collection to add each Aspect object
the tree. Then, the GetAspectMembers subroutine is called to retrieve the members of the Aspect object. And

etCube subroutine is called to retrieve information from the cube. If
 the tree, refer to Figure 4.

into the frmDetail_Activat
' The LoadView procedure contains routines that p
' Initialize the unique identifier that will be a
intUniqueID = 0
LoadView
' Show first node of the TreeView control expanded.
TreeView1.Nodes.Item(1).Expa
This code calls the LoadView procedure and expands

10. Type the following procedure into the form's code window:
b LoadView() Private Su

 'Purpose: Calls routines
bjView = mobj Set mo

 ' Add initial "View" level to the tree.
 TreeView1.Nodes.Add , , "Root", "View"
 LoadAspects
 LoadTraits
End Sub
The Load

 Appl
View

Analyzer
Add method. Next, the LoadAspects and LoadTraits subroutines are called to populate the tree.
Adding Aspects and MetaData to the Tree
An aspect is a dimension in an OLAP cube. Examples of aspects include time, customers, products, and regions. As we will
see in the next procedure, the Aspects collection of the Data Analyzer object model provides the Count property and Item
method. These members are used to determine the number of Aspect objects in the collection and access individual Aspect
objects.
Type the following procedure into the frmDetail form code window:
Private Sub LoadAspects()
 ' Purpose: Appends the Aspects label to tree and then calls routines to append individual aspect members. Also calls
routines t
 Dim objAspects As Aspects
 Dim objAspect As Aspect
 Dim objHierarchy As IMdhHierarchy
 Dim i As Integer
 Set objAspects = mobjView.Aspects()
 TreeView1.Nodes.Add "Root", tvwChild, "Aspects", "Aspects" ' Add an Aspects label node to the tree.
' Add information about each Aspect object to the tree. The
 For i = 0 To objAspects.Count - 1
 Set objAspect = objA
 TreeView1.Nodes.Add "Aspects", tvwChild, ob
 GetAspectMembers objAspec
 Next i
' Add an MetaData label node to the tree and then ca

Dat TreeView1.Nodes.Add "Root", tvwChild, "Meta
 Set objAspect = objAspects.Item(0)
 Set objHierarchy = objAspect.MDHHierarchy

ata" GetCube objHierarchy.Dimension.Cube, "MetaD
End Sub

ure appThis proced
(dimension) to
finally, a MetaData label is appended to the tree and the G

each other inyou are unsure about how the nodes relate to
Adding Aspect Members
Next we will examine the GetAspectMembers subroutine. This procedure appends an AspectMembers label to the tree view

terates through the AspectMembers collection, and adds each Aspect object to the tree. Type the following code
ode window of the frmDetail form:

_NAME_NOT_UNIQUE = 35602

and then i
into the c
Private Sub GetAspectMembers(ByVal asptMembers As AspectMembers, ByVal Node As String)
 ' Purpose: Appends the aspect members to the tree. Accepts: asptMembers - Collection of aspect members.
 ‘Node - Branch ID of node where this information will be appended.
 Dim keytext As String
 Dim i As Integer
 Dim objMember As AspectMember
 Dim immediateparent As String
 Const NODE

 60

 On Error GoTo GetAspectMembers_Err
 ' Add an AspectsMembers label node and then appends each aspect member to the tree.

text
bers.Count - 1

em(i)
hild, keytext, "Aspect:" & objMember.ID

me

llowing arguments: asptMembers, which represents the AspectMembers collection, and the
e.

is variable is assigned the ID value of the node we are working with.
ust be unique so that the subroutine knows which node to append the information to. However, because the

ode ID of the parent node may be the same as the value of the node ID for the child node, an error may occur
ry to append the node information to the tree. To overcome this, we've added some code to the error handling routine.
iqueID + 1 expression adds a value of 1 to the public counter variable intUniqueID. The value of the counter is then

 keytext = "AspectMembers"
 TreeView1.Nodes.Add Node, tvwChild, keytext, "AspectMembers"
 immediateparent = key
 For i = 0 To asptMem
 Set objMember = asptMembers.It
 TreeView1.Nodes.Add immediateparent, tvwC
 Next i
GetAspectMembers_End:
 Exit Sub
GetAspectMembers_Err:
 If Err.Number = NODE_NAME_NOT_UNIQUE Then
 keytext = keytext & intUniqueID + 1
 Err.Clear
 Resu
 End If
End Sub
This procedure accepts the fo
Node String variable that contains the ID of the parent nod
Notice the keytext String variable in the procedure. Th
The node ID m
value for the n
when we t
The intUn
appended to the node ID (the value of the keytext variable) in order to make the node ID unique. The error is then cleared and
the procedure resumes execution from where the error was generated. This procedure is repeated in other procedures in the
form.
Adding Cube Information
The next procedure is called from the LoadAspects subroutine and adds cube information to the tree.

s String)
mation.

be_Err
me
e routines that

Cube:" & mtdCube.Name
asuresDimension, keytext

NIQUE Then

s the following arguments: mtdCube, which is an IMdhCube object that contains metadata for the Cube
nt node. The procedure appends a Cube label to the tree view
formation on the measures associated with the cube. Then, the

eve information on the dimensions associated with the cube.
Information

Type the following procedure into the frmDetail form code window:
Private Sub GetCube(ByVal mtdCube As IMdhCube, ByVal Node A
 ' Purpose: Appends the Cube label to the tree and then calls routines that append dimension and level infor
 ' Accepts: mtdCube - Contain information on the cube.
 'Node - Branch ID of node where this information will be appended.
 Dim keytext As String
 Const NODE_NAME_NOT_UNIQUE = 35602
 On Error GoTo GetCu
 keytext = "Cube:" & mtdCube.Na

th ' Adds label node and then calls
 ' append dimension and measure information.
 TreeView1.Nodes.Add Node, tvwChild, keytext, "
 GetMeasuresDimension mtdCube.Me
 GetDimensions mtdCube.Dimensions, keytext
GetCube_End:
 Exit Sub
GetCube_Err:
 If Err.Number = NODE_NAME_NOT_U

ueID + 1 keytext = keytext & intUniq
 Err.Clear

me Resu
 End If
End Sub
This procedure accept
object, and the Node String which contains the ID of the pare

 subroutine to get inand then calls the GetMeasuresDimension
 subroutine is called to retriGetDimensions

ures Adding Meas
ocedure adds information on the Measures object to the tree. Type the following procedure into the frmDetail form

ow:

 ' Accepts: mtdMeasureDim - Collection containing information on the measures in the cube.
'Node - Branch ID of node where this information will be appended.

The next pr
code wind
Private Sub GetMeasuresDimension(ByVal mtdMeasuresDim As IMdhMeasuresDimension, ByVal Node As String)
 ' Purpose: Appends measures information to the tree.

 61

 Dim keytext As String
 Dim i As Integer
 Dim objMeasure As IMdhMeasure
 Const NODE_NAME_NOT_UNIQUE = 35602
 On Error GoTo GetMeasuresDimension_Err

ds label node and then appends measures information to the tree. ' Ad
 TreeView1.Nodes.Add Node, tvwChild, "Measures", "Measures"
 For i = 0 To mtdMeasuresDim.Measures.Count - 1
 Set objMeasure = mtdMeasuresDim.Measures.Item(i)
 keytext = objMeasure.Caption
 TreeView1.Nodes.Add "Measures", tvwChild, keytext, keytext
 Next i
GetMeasuresDimension_End:

IQUE Then

edure accepts the following arguments: mtdMeasuresDim, which represents an IMdhMeasuresDimension collection,

 Exit Sub
GetMeasuresDimension_Err:
 If Err.Number = NODE_NAME_NOT_UN
 keytext = objMeasure.Caption & intUniqueID + 1
 Err.Clear
 Resume
 End If
End Sub
This proc
which contains the Measures objects, and the Node String, which contains the ID of the parent node. The procedure appends a
MeasuresDimension label to the tree and then iterates through the IMdhMeasuresDimension collection and adds
information on each measure to the tree.
Adding Dimension Information
The following procedure appends a Dimensions label node to the tree and then iterates through the IMdhDimensions

mensions, ByVal Node As String)
ension information to the tree.

 - Collection containing information on the dimensions in the cube.
 this information will be appended.

 "Dimensions"

ption
dd immediateparent, tvwChild, keytext, "Dimension:" & objDim.Caption

r = NODE_NAME_NOT_UNIQUE Then
 keytext & intUniqueID + 1

lear

collection to add information on each Dimension object to the tree.
ow: Type the following code to the frmDetail form code wind

Val mtdDimensions As IMdhDiPrivate Sub GetDimensions(By
s the dim ' Purpose: Append

 ' Accepts: mtdDimension
 'Node - Branch ID of node where
 Dim keytext As String
 Dim i As Integer
 Dim objDim As IMdhDimension
 Dim immediateparent As String

UE = 35602 Const NODE_NAME_NOT_UNIQ
 On Error GoTo GetDimensions_Err
 keytext = "Dimensions"

ppends dimension information to the tree. ' Adds label node and then a
 TreeView1.Nodes.Add Node, tvwChild, keytext,
 immediateparent = keytext
 For i = 0 To mtdDimensions.Count - 1

m = mtdDimensions.Item(i) Set objDi
 keytext = objDim.Ca

ew1.Nodes.A TreeVi
 Next i
GetDimensions_End:
 Exit Sub

Err: GetDimensions_
e If Err.Numb

xt = keyte
 Err.C
 Resume
 End If
End Sub
This procedure accepts the following arguments: mtdDimensions, which represents the IMdhDimensions collection, and the
Node String, which contains the ID of the parent node.

Adding Trait Information
Traits in a Data Analyzer view are a way to graphically represent qualities to the user. A trait may be single (like length or
color) and contain one quality value or multiple (like a grid) and contain a list of qualities.

 62

Qualities are essentially the same as measures in OLAP terminology. Each view has a list of qualities, which are common to all
aspects (Grid view are the same in all aspects).
Not
The term essarily an OLAP measure. Currently, other quality
type e ption) for example.
In Data
the t a
Typ e
Priva S
 ' p
 D o

jView.TraitsManager()

 ' Rout
 G r

 This procedure appends the TraitQualities label node to the tree and
gh the Qualities collection of the Trait object to add information on each Quality object to the tree. Type

he frmDetail form code window:
al trtTrait As Trait, ByVal Node As String, ByVal trtType As String)

such as profitability, total revenue, and so forth and appends them to the tree.
ngth or color.
his information will be appended.

h, color, or grid.

 35602
 GetTraitQualities_Err

"TraitQualities:" & trtType

wChild, keytext, "Quality:" & objQuals.QualityID(i)

Get
 If Err

End
he following arguments: trtTrait, which represents the Trait object, and the Node String, which

Cre

for example, the measures shown in the
e

 quality is used instead of measure because a quality is not nec
s ar supported: template measures and member properties (ca

Analyzer, the TraitManager object manages the traits of a view. The following procedure adds a Traits label node to
nd then calls the GetTraitQualities subroutine, once for each type of trait. ree

e th following procedure into the frmDetail form code window:
te ub LoadTraits()

Pur ose: Populates the TreeView control with Trait information; single traits (length, color) and multiple traits (grid).
im bjTM As TraitsManager

 Set objTM = mob
 TreeView1.Nodes.Add "Root", tvwChild, "Traits", "Traits" ' Add Traits label to the tree.

ines which append the various traits.
its", "Length" etT aitQualities objTM.Trait(trtLength), "Tra

etT aitQualities objTM.Trait(trtColor), "Traits", G r "Color"
 GetTraitQualities objTM.Trait(trtGrid), "Traits", "Grid"
End Sub
Next, we will examine the GetTraitQualities subroutine.
then iterates throu
the following procedure into t
Private Sub GetTraitQualities(ByV
 ' Purpose: Retrieves the trait qualities
 ' Accepts: trtTrait - Trait such as le
 'Node - Branch ID of node where t
 ' trtType - Type of trait such as lengt
 Dim objQuals As Qualities
 Dim i As Integer
 Dim keytext As String
 Dim immediateparent As String
 Const NODE_NAME_NOT_UNIQUE =
 On Error GoTo
 keytext =
' Qualities is a collection of Quality measures for each aspect such as Profitability and Total Revenue.
 Set objQuals = trtTrait.Qualities
' Add trait container (parent) node to tree.
 TreeView1.Nodes.Add Node, tvwChild, keytext, "TraitQualities:" & trtType
 immediateparent = keytext
' Add individual quality child node(s) to the tree.
 For i = 0 To objQuals.Count
 TreeView1.Nodes.Add immediateparent, tv
 Next i
GetTraitQualities_End:
 Exit Sub

TraitQualities_Err:
.Number = NODE_NAME_NOT_UNIQUE Then

 keytext = keytext & intUniqueID + 1
 Err.Clear

 Resume
 End If

 Sub
This procedure accepts t
contains the ID of the parent node.

ating the frmDialogs Form
The a that perform tasks
also
Save As ew dialog box. When the user selects an operation from the

ialog box is displayed. Figure 5 shows the frmDialogs form when it is completed.

 fin l form that we will create is the frmDialogs form. This form is used to present a list of operations
 available from the user interface. For example, there is an Open File operation that displays the Open File dialog box, a

File dialog box, a New View dialog box, and a Change Vi
list, the appropriate d

Figure 5. The frmDialogs form when it is completed

 63

Let's create the form and add code to it:
1. On the Insert menu, click UserForm.
2. In the Properties window for the UserForm, replace the text in the Name property with frmDialogs and the text in the

Caption property with Data Analyzer User Interface Options.
3. In the Toolbox, drag a ComboBox control to the form.
4. In the Properties window for the control, replace the text in the Name property with cboDialogs and click 2—

fmStyleDropDownList in the Style property to prevent users from typing in the drop-down list box.
5. In the Toolbox, drag a CommandButton control onto the lower right hand corner of the form.
6. In the Properties window for the control, replace the text in the Name property with cmdOK and the text in the

Caption property with OK.
 End Sub

Unl
 window. This will create

9. mintDialog = cboDialogs.ListIndex + 1
In the left drop-down list box at th UserForm. This will create the
frmDialogs_Activate event procedure.
' Pu
With cbo
 .A It
 .A

Save As File Dialog"

 .ListIndex = 1
End W

intDialog Integer variable. When the user closes the

orkbook Opens
d. To do this, we need to

2. box at the top of the code window, click Workbook. This will create the Workbook_Open

3. ent, type the following statement:

he workbook and close Excel.

e forms we need and added the code, let's try out the sample.

le Open dialog box, navigate to a Data Analyzer view file and click Open. The Microsoft Data Analyzer

a Analyzer, the Airline.max file is located at C:\Program Files\Microsoft Data Analyzer\Data
Analyzer 3.5\Airline.max.

7. Double-click the control to bring up the cmdOK_Click event procedure. Between the Sub statement and the
statement, add the following:

oad frmDialogs
Click cboDialogs from the left drop-down list box at the top of the frmDialog8. s form code
the cboDialogs_Click event procedure. Type the following in that procedure:

e top of the frmDialogs form code window, click
 Type the following code in that procedure:

rpose: Populates the cboDialog combo box control.
Dialogs
em "Aboutdd Dialog"

ddItem "Open File Dialog"
 .AddItem "
 .AddItem "HTML Report Dialog"
 .AddItem "New View Dialog"
 .AddItem "Change View Dialog"
 .AddItem "Drill Through Dialog"
 .AddItem "Export to XL Pivot Table Dialog"
 .AddItem "Open Using Connection Dialog"
 .AddItem "Business Center Dialog"
 .AddItem "Export to XL Static Dialog"

ith
Now let's examine how this form works. When the user clicks Show Dialog on the frmControl form, the cmdDialog_Click
event procedure executes and opens the frmDialogs form. The frmDialogs_Activate event procedure executes which populates
the cboDialogs combo box. The user then clicks the cboDialogs combo box and selects one of the available options. This
selection assigns the value of the cboDialogs ListIndex property to the m
frmDialogs form, programmatic control returns to the cmdDialog_Click event procedure. The next statement executes the
ShowDialog method of the Data Analyzer Application object and passes the ID of the user's selection (as contained in the
mintDialog variable). The requested dialog box appears.
Running Code When the W
The only thing left is to add the code that will open the frmIntro form when the workbook is opene
add a statement to the Workbook_Open subroutine:

1. From the Project Explorer window, double-click the Workbook icon.
In the left drop-down list
event procedure.
Between the Sub statement and the End Sub statem

4. frmIntro.Show
Now, when the workbook is opened, the frmIntro form will be displayed.

5. Save t
Putting It All Together
Now that we created th

1. Open the samp le workbook file you just created in Excel.
2. Click OK in the Open a View dialog box. The File Open dialog box is displayed (see Figure 6).
3. In the Fi

ActiveX Control—Sample dialog box is displayed.
Hint
In a default installation of Dat

 64

Figure 6. The File Open dialog box

now use and explore the features of the Data Analyzer just as if you were in the Data Analyzer application. You can
er Interface Options dialog box, click About Dialog in the drop-down

4. Click Show Dialog. In the Data Analyzer Us
list box. The Data Analyzer About Dialog dialog box appears (see Figure 7).

5. Click OK. The Microsoft Data Analyzer ActiveX Control—Sample dialog box appears.

Figure 7. The Data Analyzer About Dialog box

alyzer View dialog box appears. Click 6. Click Show Detail. The Structure of a Data An
different nodes of the tree. Click Close. The M

on the + icons to explore the
icrosoft Data Analyzer ActiveX Control—Sample dialog box

x.

ol into a UserForm in Excel 2002. We
e forms and sample code to connect the control to a Data Analyzer view file and display a dialog that allows the user
om a list of actions normally available from the user interface. We also created a form and sample code that allows
display and populate a tree view of the different components that make up a Data Analyzer View. And lastly, we

e to the workbook so that a form is displayed when the workbook is opened.

eX Control in Web Pages
nalyzer is a member of the Microsoft Office family of software applications. Data Analyzer enables you

nization's multidimensional data. Solution developers can expose the core features of Data
ol in a Visual Basic® for Applications (VBA) UserForm, as well as on a Web page. This article

iveX control in VBA UserForms, as well as an overview of the Data
rticle Exploring Microsoft Data Analyzer Programmability

appears.
7. Click Close to close the Microsoft Data Analyzer ActiveX Control—Sample dialog bo

Conclusion
In this article, we demonstrated embedding the Microsoft Data Analyzer ActiveX contr
created th
to select fr
the user to
added cod
By using the sample code and procedures in this article, you can embed the Data Analyzer ActiveX control into your
applications and explore the structure of your data using the Data Analyzer object models.

Using the Microsoft Data Analyzer Activ
The Microsoft Data A
to graphically mine your orga
Analyzer as an ActiveX® contr
describes how to use the Data Analyzer ActiveX control in Web pages.
For more information about using the Data Analyzer Act
Analyzer ActiveX control's overall object model, see my earlier a .

ta AnalyzerFor general information about Data Analyzer, see the Microsoft Da Web site.
Development Approaches
There are two main approaches to using the Data Analyzer ActiveX control in Web pages. You can:

• Add a new instance of the control to a Web page, or edit an existing instance of the control in a Web page, using
icrosoft FrontPage®.

hboard

computer. The Data Analyzer ActiveX control cannot be distributed separately from the full Data Analyzer
prod .
Bef s, let's look at the code that is used to create and automate an instance of the Data Analyzer
ActiveX con
Examining th C

M
• Create a Web Part containing an instance of the control in a dashboard created with SQL Server™ Digital Das

3.0 or Microsoft SharePoint™ Portal Server 2001.
Note To view and interact with the Data Analyzer ActiveX control, a user must have a licensed copy of Data Analyzer
installed on their

uct
ore we examine both approache

trol.
odee

Regardless o e
ActiveX cont

f th development approach you take, here is the basic HTML code to create an instance of the Data Analyzer
rol:

 65

<ob
You sign time by entering one or more <param> tags between the <object>
and </ob
<pa
Whe sponding member's value:

trol. Although you can add a <param
 has no meaningful purpose at design time.

<pa

tate when the user navigates away from the Web page containing
rol's state during page navigation,

hod is set to a valid XML string, this method sets the control's view to the

 name="ViewURL"> tag to the <object> tag, the ViewData method has no
aft a valid XML string containing the entire view's

• n the control is first displayed on the Web page. If a
e ViewURL method is ignored. Example:

am Files\Microsoft Data Analyzer\Data Analyzer 3.5\Airline.max">

TTP URLs. It can only open views using file system
ata Analyzer view schema.

a Web page, you can write script against it using the id value provided in
> tag (in this case, Max3Ax1). For example, the following HTML code opens a view:

<script i
<!--
Sub wind
 'The n represents the constant vlocFileSystem(corresponds to a file in the file system).

</sc t
Not
Sim ot open views using HTTP URLs. It can only open views using
file syste e Data Analyzer view schema.
The o he current view:
<script i age=vbscript>
<!--
Sub
 With M ation

rline.max", 1
s bar.

.Visible = False

</sc
Add

ject classid="clsid:E0ECA9C3-D669-4EF4-8231-00724ED9288F" d="Max3Ax1" height=100% width=100%></object>
 can also modify the control's startup behavior at de

ject> tags as follows:
ram name="Member" value="Value">
re "Member" is one of the following members, and "Value" is the corre
• Application Retrieves the Application object from the con

name="Application"> tag to the <object> tag, the Application method
• ExitCommandVisible Determines whether the Exit command on the control's File menu is visible (value="-1").

The default value is to hide the Exit command (value="0"). Example:
ram name="ExitCommandVisible" value="0">

• InteractiveStartup Determines whether the Microsoft Data Analyzer Startup dialog box is displayed when the
page containing the control is opened (value="-1"). The default value is to hide the Microsoft Data Analyzer
Startup dialog box (value="0"). Example:

<param name="InteractiveStartup" value="0">
• SupportIEHistory If the control is viewed on a Web page hosted in Microsoft Internet Explorer 4.0 or later, this

method determines whether the control retains its s
the control and back again, which is the default (value="-1"). To disregard the cont
set value="0". Example:

<param name="SupportIEHistory" value="-1">
• ViewData When the value of this met

contents of the XML. If a value is specified for this method, it overrides any value provided for the ViewURL method.
Although you can add a <param
meaningful purpose at design time (unless you were to handcr
visual representation!).
ViewURL Lo ads the view specified in the value parameter whe
value is also provided for the ViewData method, the value of th

<param name="ViewURL" value="C:\Progr
Note

d cannot open views using HContrary to its name, the ViewURL metho
paths or a valid XML string that conforms to the D
Once you add the Data Analyzer ActiveX control to
the <object

d=clientEventHandlersVBS language=vbscript>

ow_onload
umber 1

 Max3Ax1.Application.ActiveView.OpenView _
 "C:\Program Files\Microsoft Data Analyzer\Data Analyzer 3.5\Airline.max", 1
End Sub
-->

rip >
e

thod cannilar to the ViewURL method, the OpenView me
m paths or a valid XML string that conforms to th

foll wing code hides the main toolbar, the main menu, and the status bar from t
d=clientEventHandlersVBS langu

 window_onload

ax3Ax1.Applic
 .ActiveView.OpenView _

 Analyzer\Data Analyzer 3.5\Ai "C:\Program Files\Microsoft Data
 'Hide the main toolbar, main menu, and statu
 .MainToolbar.Bands.Item("MainToolBar").Visible = False

).Visible = False .MainToolbar.Bands.Item("MainMenu"
 .MainToolbar.Bands.Item("Main.StatusBar")
 End with
End Sub
-->

ript>
ing the Control to a Microsoft FrontPage 2002 Web Page or a Web Site Based on SharePoint Team Services

 66

To add the Data Analyzer ActiveX control to a Microsoft FrontPage 2002 Web page or a Web site based on SharePoint™
Team Services from Microsoft, you must have Data Analyzer installed on the same computer from which you perform the
following steps:

1. Start FrontPage 2002.
2. Do one of the following:

• On the File menu, point to New, and click Page or Web. In the New Page or Web task pane, click Blank
Page.

• On the File menu, cl

 the Component Type pane, click Advanced Controls.

and interact with the results. Notice that you can use the Data Analyzer user interface
ou would if you had started Data Analyzer from your Programs menu (you may need to switch back to

er interface).

ick Open, and select an existing Web page.
• On the File menu, click Open Web, and select an existing FrontPage Web or a Web based on SharePoint

Team Services. Once the Web is open, on the View menu, click Folders, and select an existing Web page.
3. Position your insertion point at the place on the Web page that you want to insert the Data Analyzer ActiveX control.
4. On the Insert menu, click Web Component.
5. In
6. In the Choose a control pane, click ActiveX Control, and click Next.
7. Click Customize.
8. In the Control list, check the Max3Ax Class box, and click OK.
9. In the Choose a control list, click Max3Ax Class, and click Finish.
10. Switch to HTML view to modify the code that FrontPage generates.
11. Switch to Preview view to view

just as y
Normal view to resize the Data Analyzer us

Creating an Instance of the Control in a SQL Server Digital Dashboard 3.0 Dashboard
To manually add the Data Analyzer ActiveX control to a dashboard based on SQL Server Digital Dashboard 3.0. This
procedure assumes that you have both Data Analyzer and the Digital Dashboard Resource Kit installed on an appropriate Web

l Dashboard installation, see the Microsoft Digital Dashboardserver (for more information on Digita Web site).

d.
k in the top link bar.

box, type Data

b, in the Name box, type DataAnalyzer, and in the Display
Name box, type Data Analyzer.

7. .
8. sent the Data Analyzer ActiveX control, and then click Save.

<param name="InteractiveStartup" value="0">
<param name="ViewURL" value="C:\Program Files\Microsoft Data
Analyzer\Data Analyzer 3.5\airline.max">
<param name="SupportIEHistory" value="-1">
<param name="ExitCommandVisible" value="0">
</object>

9. In the Dashboard View pane, click Go to see the dashboard.
10. To export this Web Part for use in other dashboards, in the Web Part List pane, click the Data Analyzer Web Part. In

the Web Part Properties pane, click Export. Browse to a location where you want to store the Web Part, and click
Save.

Creating an Instance of the Control for Use in a Microsoft SharePoint Portal Server 2001 Web Site

1. Navigate to your DDRK Web site. The URL for this site will generally take the form
http://WebServerName/Dashboar

2. Click the Administration lin
3. In the Dashboard View pane, expand DAVCatalog, click Parts, and click New.
4. In the Dashboard Properties pane, in the Name box, type DataAnalyzer, and in the Display Name

Analyzer.
5. In the Web Part List pane, click New.
6. In the Web Part Properties pane, on the General ta

 On the Advanced tab, in the Content Type box, click HTML
 In the Embedded Content box, type the code to repre

For example:
<object classid="clsid:E0ECA9C3-D669-4EF4-8231-00724ED9288F"
id="Max3Ax1" height=325 width=745>

These steps assume that you have Data Analyzer and Microsoft SharePoint Portal Server 2001 installed on an appropriate Web
server and have rights to publish on that server.

1. Navigate to your SharePoint Portal Server workspace. The URL for this site will generally take the form
http://WebServerName/WorkspaceName.

2. Click the Management tab in the top-most link bar.
3. Click Create a new personal dashboard.
4. Leave all of the default settings, and click Save.
5. Click Content in the upper right corner of your new personal dashboard.
6. Click Create a New Web Part.
7. In the Name box, type Data Analyzer.
8. Type the code to represent the Data Analyzer ActiveX control in the Embedded content box, and then click Save.

For example:
<object classid="clsid:E0ECA9C3-D669-4EF4-8231-00724ED9288F"
id="Max3Ax1" width=325 height=745>
<param name="InteractiveStartup" value="0">

 67

<param name="ViewURL" value="C:\Program Files\Microsoft Data
Analyzer\Data Analyzer 3.5\airline.max">
<param name="SupportIEHistory" value="-1">
<param name="ExitCommandVisible" value="0">
</object>

9. Click Save again to view your dashboard.
10. To export this Web Part for use in other dashboards, click Content in the upper right corner of your new personal

dashboard. In the Web Parts area, click the entry that corresponds to the Web Part you want to export, and then click
Export. Browse to a location where you want to save the Web Part, and click Save.

Conclusion
In this article, you were shown how to add an instance of the Data Analyzer ActiveX control to a Microsoft FrontPage 2002
Web page, a Web site based on SharePoint Team Services, a SQL Server Digital Dashboard 3.0 dashboard, and a SharePoint
Portal Server 2001 workspace. You were also shown how to script against the control to extend the control's features. Using
the sample code and procedures in this article, you can now add robust data analysis features to your Web sites using the Data
Analyzer ActiveX control.

Working with Microsoft Excel Objects

The Microsoft® Excel object model contains several dozen objects that you can manipulate through Microsoft® Visual
Basic® for Applications (VBA) code. Almost anything you can do with Excel from its user interface, you can do by
manipulating its objects through VBA. In addition, you can do things through VBA that can't be done through the user
interface.

When you use VBA to work with Excel objects, from either within Excel itself or another Office application, you have access
to every part of Excel. The objects you will work with include cells, ranges, sheets, workbooks, charts, and more. In other
words, every element in Excel can be represented by an object that you can manipulate through VBA.

There are four Excel objects you will work with more than any others: the Application object, the Workbook object, the
Worksheet object, and the Range object.

In This Section

Understanding the Excel Application Object
Use the Microsoft® Excel Application object to determine or specify application-level properties or execute application-level
methods.

Understanding the Workbook Object
Work with the Workbook object to use with a single Microsoft® Excel workbook, and use the Workbooks collection to work
with all currently open Workbook objects.

Understanding the Worksheet Object
Use a worksheet, containing a grid of cells, to work with data and hundreds of properties, methods, and events.

Understanding the Range Object
Develop a full understanding of the Range object and how to use it effectively in Microsoft® Visual Basic®for Applications
(VBA) procedures and harness the power of Microsoft®Excel.

Understanding the Excel Application Object

The Microsoft® Excel Application object is the top-level object in Excel's object model. You use the Application object to
determine or specify application-level properties or execute application-level methods. The Application object is also the entry
point into the rest of the Excel object model.

 68

Figure 1. Microsoft Excel Object Model (page 1)

 69

Figure 2. Microsoft Excel Object Model (page 2)

 70

Figure 3. Microsoft Excel Object Model (page 3)

When you work with properties and methods of the Application object by using Microsoft® Visual Basic® for Applications
(VBA) from within Excel, the Application object is available to you by default. This is known as an implicit reference to the
object. If you work with Excel objects from another Office application, then you must create an object variable representing

owNameFromOutsideXL()

 On Error GoTo ShowName_Err

the Excel Application object. This is known as an explicit reference to the object. For example, the following two procedures
return the name of the currently active Worksheet object. The ShowNameFromInsideXL procedure is designed to work from
within Excel and uses an implicit reference to the Application object. In other words, it references the ActiveSheet property of
the Application object without explicitly referencing the Application object itself. The ShowNameFromOutsideXL procedure
is designed to be run from outside Excel and so must use an explicit reference to the Application object.

Sub ShowNameFromInsideXL()
 MsgBox "'" & ActiveSheet.Name & "' is the currently active worksheet."
End Sub
Sub Sh
 Dim xlApp As Excel.Application
 Const XL_NOTRUNNING As Long = 429

 71

 Set xlApp = GetObject(, "Excel.Application")
 MsgBox "'" & ActiveSheet.Name & "' is the currently active worksheet."

tion

ox Err.Number & " - " & Err.Description

 xlApp.Quit
 Set xlApp = Nothing
 ShowName_End:
 Exit Sub
ShowName_Err:
 If Err = XL_NOTRUNNING Then
 ' Excel is not currently running.
 Set xlApp = New Excel.Applica
 xlApp.Workbooks.Add
 Resume Next
 Else
 MsgB
 End If
 Resume ShowName_End
End Sub

Shortcuts to Active Objects

As with other Microsoft® Office XP application object models, the Microsoft® Excel Application object exposes several
an use to work with a currently active Excel object. For example, you often will write Microsoft® Visual

cations (VBA) procedures designed to work with information in the currently selected cell, or with the
plication object exposes the ActiveCell, ActiveChart, ActivePrinter, ActiveSheet,
 properties, which you can use to return a reference to the currently active cell, chart,

workbook. The following examples illustrate various ways you might use some of these properties:

xample:
 As String) As Boolean

eWorkbook.SaveAs ActiveWorkbook.Path & "\" & strFileName

umeric(.Text) And .Formula < 0 Then

oolean
 ActiveSheet.Name = strNewName

End Fu

ample uses the Workbooks property to determine if a workbook is already open, and if not, to open it:

ase$(wkbCurrent.Name) = UCase$(strBookName) Then

properties you c
Basic® for Appli
currently active worksheet. The Ap

tiveWorkbookActiveWindow, and Ac
printer, sheet, window, or

' ActiveWorkbook property e
Function SaveBookAs(strFileName
 Activ
End Function
' ActiveCell property example:
Function CustomFormatCell()
 With ActiveCell
 If IsN
 With .Font
 .Bold = True
 .Italic = True
 End With
 .Borders.Color = 255
 End If
 End With
End Function
' ActiveSheet property example:

unction ChangeName(strNewName As String) As BF

nction

In addition to the ActiveWorkbook property, you can use the Application object's Workbooks and Worksheets properties to
return equivalent Excel objects. The Workbooks property returns the Workbooks collection that contains all the currently open
Workbook objects. The Worksheets property returns the Sheets collection associated with the currently active workbook. The
following ex

Function OpenBook(strFilePath As String) As Boolean
 ' This procedure checks to see if the workbook specified in the strFilePath argument is open.
 ' If it is open, the workbook is activated. If it is not open, the procedure opens it.
 Dim wkbCurrent As Excel.Workbook
 Dim strBookName As String
 On Error GoTo OpenBook_Err
 ' Determine the name portion of the strFilePath argument.
 strBookName = NameFromPath(strFilePath)
 If Len(strBookName) = 0 Then Exit Function
 If Workbooks.Count > 0 Then
 For Each wkbCurrent In Workbooks
 If UC
 wkbCurrent.Activate
 Exit Function
 End If
 Next wkbCurrent
 72

 End If
 Workbooks.Open strBookName
 OpenBook = True
 OpenBook_End:
 Exit Function
OpenBook_Err:
 OpenBook = False
 Resume OpenBook_End
End Function

Note
In the preceding example, the OpenBook procedure calls a custom procedure named NameFromPath that returns the file name

 the full path and file name passed to the OpenBook procedure in the strFilePath argument.

ct model, the Workbook object appears just below the Application object. The Workbook object

ntly open Workbook objects.

t's ActiveWorkbook property to return a reference to the currently active workbook. The
 visible and hidden workbooks are open. By

 workbook named Personal.xls. The Personal.xls workbook is created by Excel as a
orkbook, the ActiveWorkbook property returns

s 1. The Workbooks collection's Count property will return 0
ere are no hidden or visible open workbooks.

portion of

Understanding the Workbook Object

In the Microsoft® Excel obje
represents an Excel .xls or .xla workbook file. You use the Workbook object to work with a single Excel workbook. You use
the Workbooks collection to work with all curre

You can also use the Application objec
Workbooks collection has a Count property you can use to determine how many
default, Excel typically has one hidden
place to store macros. If the hidden Personal.xls workbook is the only open w
Nothing, but the Workbooks collection's Count property return
only when th

Creating, Saving, Opening, and Closing Workbook Objects

You create a new Workbook object by using the Workbooks collection's Add method. The Add method not only creates a new
rkbook as well. The Add method also returns an object variable that represents

orkbook will contain the number of worksheets specified in the Sheets In New
ral tab of the Options dialog box (Tools menu). You can also specify the number of sheets a

have by using the Application object's SheetsInNewWorkbook property.

ve a new workbook by using the Workbook object's SaveAs method and specifying the name of the workbook you

so save a copy of an
pyAs method. You can supply a file name to be used with the
bject's GetSaveAsFileName method to let the user supply the

ent of the SaveAs method. The Name property is read-only; to change the name of a workbook, you must use
rent value in the Filename argument.

s FullName property contains the object's path and file name, whereas the Path property contains only the
 a new workbook is saved, the FullName property has the same as the Name

operty has no value.

book. To specify whether pending changes to the workbook
e object is closed, you use the SaveChanges argument. If the SaveChanges argument is omitted, the

anges. You can also use the Close method of the Workbooks object to close all open
workbook when this method is used, the user is prompted to save

his Save dialog box, an error occurs. You can suppress this Save dialog box by setting the
perty to False before executing the Close method. When you use the Workbooks object's

r, any unsaved changes to open workbooks are lost. After the Close method has run, remember to

Note

workbook, but also immediately opens the wo
the new workbook just created. The new w
Workbook dialog box on the Gene
new workbook will

You can sa
want to save. If a workbook by that name already exists, an error occurs. When a workbook has been saved by using the
SaveAs method, additional changes are saved by using the Workbook object's Save method. You can al
existing workbook with a different file name by using the SaveCo
SaveAs or SaveCopyAs method, or you can use the Application o
name to be used to save the workbook. If the user clicks Cancel in the Save As dialog box, the GetSaveAsFileName method
returns False.

Before you save a new workbook by using the SaveAs method, the Workbook object's Name property setting is a value
assigned by Excel, such as Book1.xls. After you save the workbook, the Name property contains the name you supplied in the
Filename argum
the SaveAs method again, and pass a diffe

Note
A Workbook object'
saved path to the current workbook. Before
property, and the Path pr

The Workbooks collection's Open method opens an existing workbook. When you open a workbook by using the Open
method, it also becomes the active workbook. You can supply a file name to be used with the Open method, or you can use the
Application object's GetOpenFileName method to let the user select the workbook to open. If the user clicks Cancel in the
Open dialog box, the GetOpenFileName method returns False.

You use a Workbook object's Close method to close an open work
should be saved before th
user is prompted to save pending ch
workbooks. If there are unsaved changes to any open
changes. If the user clicks Cancel in t
Application object's DisplayAlerts pro
Close method in this manne
set the DisplayAlerts property to True.

The Auto_Open and Auto_Close procedures are ignored when a workbook is opened or closed by using the Open or Close
methods. You can force these procedures to run by using the Workbook object's RunAutoMacros method. The Microsoft®

 73

Visual Basic® for Applications (VBA) code in a workbook's Open and BeforeClose event procedures will be executed when
the workbook is opened or closed by using the Open or Close methods.

The following example illustrates how to create a new workbook and specify the number of worksheets it will have:

tring = "", Optional intNumSheets As Integer = 3) As Workbook
es it by using the path and name specified in the strBookName

 the default is 3.

bNew As Excel.Workbook

 Application.SheetsInNewWorkbook = intNumSheets
 End
 Set w

rkbook has been saved. The Saved property
 and False for a workbook that has unsaved

o True. Doing this prevents the user from being prompted to save changes when the

 Automation

Function CreateNewWorkbook(Optional strBookName As S
 ' This procedure creates a new workbook file and sav
argument. You use the intNumsheets argument to specify the number of worksheets in the workbook;
 Dim intOrigNumSheets As Integer
 Dim wk
 On Error GoTo CreateNew_Err
 intOrigNumSheets = Application.SheetsInNewWorkbook

 If intOrigNumSheets <> intNumSheets Then

If
kbNew = Workbooks.Add

 If Len(strBookName) = 0 Then strBookName = Application.GetSaveAsFilename
 wkbNew.SaveAs strBookName
 Set CreateNewWorkbook = wkbNew
 Application.SheetsInNewWorkbook = intOrigNumSheets
CreateNew_End:
 Exit Function
CreateNew_Err:
 Set CreateNewWorkbook = Nothing
 wkbNew.Close False
 Set wkbNew = Nothing
 Resume CreateNew_End
End Function

Note
A Workbook object's Saved property is a Boolean value indicating whether the wo
will be True for any new or opened workbook where no changes have been made
changes. You can set the Saved property t
workbook closes but does not actually save any changes made since the last time the workbook was saved by using the Save
method.

A Note About Working with Workbooks Through

 the workbook is invisible and the user has to click Unhide on the Window menu to view the workbook.

ng the Worksheet Object

hin a range of cells, you use a Range object. The Worksheet
e the two most basic and most important components of any custom application you create within Excel.

ct's Worksheets property returns a collection of all the worksheets in the workbook. The Workbook
rty returns a collection of all the worksheets and chart sheets in the workbook.

orksheet objects and can contain one or more chart sheets as well. Charts in
ntained on a chart sheet. You can have only one chart on a chart sheet, but you

eet. Each embedded chart on a worksheet is a member of the Worksheet object's

When you are using Automation to edit an Excel workbook, keep the following in mind.

Creating a new instance of Excel and opening a workbook results in an invisible instance of Excel and a hidden instance of the
workbook. Therefore, if you edit the workbook and save it, the workbook is saved as hidden. The next time the user opens
Excel manually,

To avoid this behavior, your Automation code should unhide the workbook before editing it and saving it. Note that this does
not mean Microsoft® Excel itself has to be visible.

Understandi
Most of the work you will do in Microsoft® Excel will be within the context of a worksheet. A worksheet contains a grid of
cells you can use to work with data and hundreds of properties, methods, and events you can use to work with the data in a
worksheet.

To work with the data contained in a worksheet, in a cell or wit
and Range objects ar

The Workbook obje
object's Sheets prope

Each Excel workbook contains one or more W
 coExcel are either embedded in a worksheet or

can have multiple charts on a worksh
ChartObjects collection. Worksheet objects are contained in the Worksheets collection, which you can access by using the
Workbook object's Worksheets property. When you use Microsoft® Visual Basic® for Applications (VBA) to create a new
workbook, you can specify how many worksheets it will contain by using the Application object's SheetsInNewWorkbook
property.

Referring to a Worksheet Object

Because a Worksheet object exists as a member of a Worksheets collection, you refer to a worksheet by its name or its index
value. In the following example, both object variables refer to the first worksheet in a workbook:

 74

Sub ReferToWorksheetExample()
 ' This procedure illustrates how to programmatically refer to a worksheet.
 Dim wksSheetByIndex As Excel.Worksheet
 Dim wksSheetByName As Excel.Worksheet

ith ActiveWorkbook

ain")
hen
yIndex.Index & vb eet named '" _

"Worksheets Match!"

You can also use the Application object's ActiveSheet property to return a reference to the currently active worksheet in the

pplications (VBA) Array rksheets at the

 ' This procedure shows how to programmatically refer to multiple worksheets.

 F5 to clear the contents from these worksheets.

rent.UsedRange.Clear
 Next wksCurrent

You can specify or determine the name of a worksheet by using its Name property. To change the name of a new worksheet,

opying, and Moving a Worksheet Object

 W
 Set wksSheetByIndex = Worksheets(1)
 Set wksSheetByName = Worksheets("M
 If wksSheetByIndex.Index = wksSheetByName.Index T
 MsgBox "The worksheet indexed as #" & wksSheetB CrLf & "is the same as the worksh
 & wksSheetByName.Name & "'", vbOKOnly,
 End If
 End With
End Sub

Note

currently active workbook.

You can use the Microsoft®Visual Basic®for A
same time, as shown in the following example:

 function to work with multiple wo

Sub ReferToMultipleSheetsExample()

 Dim wksCurrent As Excel.Worksheet
 With ActiveWorkbook.Worksheets(Array("Employees", "Sheet2", "Sheet3"
 .FillAcrossSheets (Worksheets("Employees").UsedRange)
 End With

))

 Stop
 ' The worksheets named "Sheet2" and "Sheet3" should now contain the sa
 ' sheet. Press

me table that is found on the "Employees"

 For Each wksCurrent In ActiveWorkbook _
 .Worksheets(Array("Sheet2", "Sheet3"))
 wksCur

End Sub

you first add it to the Worksheets collection and then set the Name property to

Adding, Deleting, C

 the name you want to use.

e Add method
d multiple worksheets, the A t added to the

Worksheets collection. If the Before or After arguments of the Add method are omitted, the new worksheet is added before the

alse, always set it back to True before your procedure has finished executing, as
shown in the preceding example.

You can add one or more worksheets to the Worksheets collection by usi
returns the new Worksheet object. If you ad

ng the collection's Add method. Th
dd method returns the last workshee

currently active worksheet. The following example adds a new worksheet before the active worksheet in the current collection
of worksheets:

Dim wksNewSheet As Excel.Worksheet
Set wksNewSheet = Worksheets.Add
With wksNewSheet
 ' Work with properties and methods of the
 ' new worksheet here.
End With

You use the Worksheet object's Delete method to delete a worksheet from the Worksheets collection. When you try to
programmatically delete a worksheet, Microsoft® Excel will display a message (alert); to suppress the message, you must set
the Application object's DisplayAlerts property to False, as illustrated in the following example:

Function DeleteWorksheet(strSheetName As String) As Boolean
 On Error Resume Next
 Application.DisplayAlerts = False
 ActiveWorkbook.Worksheets(strSheetName).Delete
 Application.DisplayAlerts = True
 ' Return True if no error occurred;
 ' otherwise return False.
 DeleteWorksheet = Not CBool(Err.Number)
End Function

Note
When you set the DisplayAlerts property to F

 75

You can copy a worksheet by using the Worksheet object's Copy method. To copy a worksheet to the same workbook as the
source worksheet, you must specify either the Before or After argument of the Copy method. You move a worksheet by using
the Worksheet object's Move method. For example:

Worksheets("Sheet1").Copy After:=Worksheets("Sheet3")
Worksheets("Sheet1").Move After:=Worksheets("Sheet3")

s how to move a worksheet so that it is the last worksheet in a workbook:
e After:=Worksheets(Worksheets.Count)

 is the most powerful, dynamic, and often-used object. When you develop a full
nd how to use it effectively in Microsoft® Visual Basic® for Applications (VBA)

g the power of Excel.

unique in terms of objects. In most cases, an "object" is a thing with some clearly
ample, a Workbook object is recognizable as an .xls file. In a workbook,

cts is represented in the user interface by separate tabbed sheets. But the Range object is
g in different circumstances. A Range object can be a single cell or a collection of cells.

be a row or column, and it can represent a three-dimensional
ion of cells that span multiple worksheets. In addition, unlike other objects that exist as objects and as members of a

ing you want to work with.

ActiveCell property returns a Range object representing the currently active cell and the Selection property

 with a range of cells whose size you have no control over.

ty to return a Range object with the same dimensions as a specified Range object but offset from the
specified range.

The next example illustrate
vWorksheets("Sheet1").Mo

Note
When you use either the Copy or the Move method, if you do not specify the Before or After argument, Excel creates a new
workbook and copies the specified worksheet to it.

Understanding the Range Object

In Microsoft® Excel, the Range object
understanding of the Range object a
procedures, you will be well on your way to harnessin

The Excel Range object is somewhat
identifiable corollary in the Excel user interface. For ex
the collection of Worksheet obje
different. A range can be a different thin
It can be a single object or a collection of objects. It can
collect
collection of objects, there is no Ranges collection containing all Range objects in a workbook or worksheet. It is probably
easiest to think of the Range object as your handle to the th

In This Section

The Range Property
Use the Range property to return a Range object in many different circumstances.

The ActiveCell and Selection Properties
Learn how the
returns a Range object representing all the cells within the current selection when a cell or group of cells is selected.

Using the CurrentRegion and UsedRange Properties
Use the CurrentRegion and UsedRange properties to work

Using the Cells Property
Understand how the Cells property loops through a range of cells on a worksheet or refers to a range by using numeric row and
column values.

Using the Offset Property
Use the Offset proper

The Range Property

You will use the Range property to return a Range object in many different circumstances. The Application object, the
Worksheet object, and the Range object all have a Range property. The Application object's Range property returns the same
Range object as that returned by the Worksheet object. In other words, the Application object's Range property returns a
reference to the specified cell or cells on the active worksheet. T e Range property of the Range object has a subtle difference

me cell. In this example, rng1 and rng2 both return a reference to
nce occurs because the Range object's Range property returns a

ll. In this case, the specified cell is B5. Therefore, the "B" means that the reference will be
ht of B5, and the "5" means the reference will be the fifth row below the row specified by B5. In other

h
that is important to understand. Consider the following example:

Dim rng1 As Range
Dim rng2 As Range
Dim rng3 As Range
Set rng1 = Application.Range("B5")
Set rng2 = Worksheets("Sheet1").Range("B5")
Set rng3 = rng2.Range("B5")

The three Range objects do not all return a reference to the sa
e to cell C9. This differecell B5. But rng3 returns a referenc

he specified cereference relative to t
one column to the rig
words, the Range object's Range property returns a reference to a cell that is n columns to the right and y rows down from the
specified cell.

 76

Typically, you will use the Range property to return a Range object, and then use the properties and methods of that Range
object to work with the data in a cell or group of cells. The following table contains several examples illustrating usage of the
Range property.

To Use this code

Set the value of cell A1 on Sheet1 to 100 Worksheets("Sheet1").Range("A1").Value = 100

Set the value for a group of cells on the active worksheet Range("B2:B14").Value = 10000

Set the formula for cell B15 on the active worksheet Range("B15").Formula = "=Sum(B2:B14)"

Set the font to bold Range("B15").Font.Bold = True

Set the font color to green Range("B15").Font.Color = RGB(0, 255, 0)

Set an object variable to refer to a single cell Set rngCurrent = Range("A1")

Set an object variable to refer to a group of cells Set rngCurrent = Range("A1:L1")

Format all the cells in a named range Range("YTDSalesTotals").Font.Bold = True

Set an object variable to a named range Set rngCurrent = Range("NovemberReturns")

Set an object variable representing all the used cells on the Employees Set rngCurrent =
worksheet Worksheets("Employees").UsedRange

Set an object variable representing the group of related cells that surround
the active cell Set rngCurrent = ActiveCell.CurrentRegion

Set an object variable representing the first three columns in the active
worksheet Set rngCurrent = Range("A:C")

Set an object variable representing rows 3, 5, 7, and 9 of the active Set rngCurrent = Range("3:3, 5:5, 7:7, 9:9") worksheet

Set an object variable representing multiple noncontiguous groups of cells Set rngCurrent = Range("A1:C4, D6:G12, I2:L7") on the active sheet

Remove the contents for all cells within a specified group of cells).ClearContents (B5:B10) while leaving the formatting intact Range("B5", "B10"

As you can see from the examples in the preceding table, the Cell argument of the Range property is either an A1-style string

ts as arguments to other methods in the Microsoft® Excel object
ualify the Worksheet object to which the Range

operty in arguments for Excel methods is one of the

reference or a string representing a named range within the current workbook.

You will also use the Range property to return Range objec
model. When you use the Range property in this way, make sure you fully q

ified references to the Range prproperty applies. Failing to use fully qual
most common sources of error in range-related code.

The ActiveCell and Selection Properties

The ActiveCe
ro

ll property returns a Range object representing the currently active cell. When a single cell is selected, the
perty returns a Range object representing that single cell. When multiple cells are selected, the ActiveCell

ngle active cell within the current selection. When a cell or group of cells is selected, the Selection
object representing all the cells within the current selection.

how the ActiveCell and Selection properties relate to one another, consider the case where a user selects cells

lls and then perform some
When you use

ions (VBA) to work with cells, you are not required to make a selection before
n a Range object representing the cell or cells
 by using the user interface, you would select

erforms the same action in VBA:

.Range("A1").Value = "January"

ActiveCell p
property represents the si
property returns a Range

To understand
A1 through F1 by clicking cell A1 and dragging until the selection extends over cell F1. In this case, the ActiveCell property
returns a Range object that represents cell A1. The Selection property returns a Range object representing cells A1 through F1.

When you work with the Microsoft® Excel user interface, you typically select a cell or group of ce
 as entering a value for a single cell or formatting a group of cells. action on the selected cell or cells, such

icatMicrosoft® Visual Basic® for Appl
performing some action on a cell or group of cells. Instead, you only must retur

anuary" as the value for cell A1you want to work with. For example, to enter "J
e following sample pcell A1 and type January. Th

ActiveSheet

 77

Using VBA to work with a Range object in this manner does not change the selected cells on the current worksheet. However,
n cells in the same way as a user working through the user interface by using the Range

lect a cell or range of cells and then using the Range object's Activate method to activate a cell

ect method to select multiple cells, the first cell referenced will be the active cell. For example, in the
erty returns a reference to cell A1, even though cells

1 through A6 are selected. After the Activate method is executed in the next line of code, the ActiveCell property returns a
reference to cell A3 while cells A1 s how to return a Range object by
using the ActiveCell property or th

intRangeInfo custom procedure called in the preceding example prints information about the cell or cells contained in

lection Object

 solid grasp on the most efficient way to work with Excel objects, you will find yourself rewriting or
rder to use the Range object instead.

you can make your VBA code act upo
object's Select method to se
within the current selection. For example, the following code selects cells A1 through A6 and then makes cell A3 the active
cell:

With ActiveSheet
 .Range("A1:A6").Select
 .Range("A3").Activate
End With

When you use the Sel
preceding sample, after the Select method is executed, the ActiveCell prop
A

 through A6 remain selected. The next example illustrate
e Selection property:

Dim rngActiveRange As Excel.Range
' Range object returned from the Selection property.
Set rngActiveRange = Selection
Call PrintRangeInfo(rngActiveRange)
' Range object returned from the ActiveCell property.
Set rngActiveRange = ActiveCell
Call PrintRangeInfo(rngActiveRange)

Note
The Pr
the Range object passed in the argument to the procedure.

The Macro Recorder and the Se

When you are learning to work with the Excel object model, it is often helpful to turn on the macro recorder and carry out the
steps you want to accomplish and then examine the VBA code that results to see which objects, properties, and methods are
used. You should be aware, however, that in many cases the macro recorder records your actions from the perspective of a user
interacting with the user interface. This means that the Selection object, the Select method, and the Activate method are used
over and over.

When you get a
restructuring the VBA code written by the macro reco

Using the CurrentRegion and UsedRange Properties

There are many circumstances where you will write code to work against a range of cells, but at the time yo
you will not have information about the range. For example, you might not know the size or location of a ra

u write the code,
nge or the location

f a cell in relation to another cell. You can use the CurrentRegion and UsedRange properties to work with a range of cells
whose perty to work with cells in relation to other cells where the cell
locatio

o
 size you have no control over. You can use the Offset pro
n is unknown.

As shown in the following figure, the Range object's CurrentRegion property returns a Range object representing a range
bounded by (but not including) any combination of blank rows and blank columns or the edges of the worksheet.

The Ranges Returned by the ActiveCell and CurrentRegion Properties

The CurrentRegion property can return many different ranges on a single worksheet. This property is useful for operations
where you must know the dimensions of a group of related cells, but all you know for sure is the location of a cell or cells

 78

within the group. For example, when the active cell is inside a table of cells, you could use the following line of code to apply
formatting to the entire table:

ActiveCell.CurrentRegion.AutoFormat xlRangeAutoFormatAccounting4
You could also use the CurrentRegion property to return a collection of cells. For example:
Dim rngCurrentCell As Excel.Range
For Each rngCurrentCell In ActiveCell.CurrentRegion.Cells
 ' Work with individual cells here.
Next rngCurrentCell

Every Worksheet object has a UsedRange property that returns a Range object representing the area of a worksheet that is
being used. The UsedRange property represents the area described by the farthest upper-left and farthest lower-right nonempty
cells in a worksheet and includes all cells in between. For example, imagine a worksheet with entries in only two cells: A1 and
G55. The worksheet's UsedRange property would return a Range object containing 385 cells between and including A1 and G55.

You might use the UsedRange property together with the SpecialCells method to return a Range object representing all cells in
a worksheet of a specified type. For example, the following code returns a Range object that includes all the cells in the active
worksheet that contain a formula:

Dim rngFormulas As Excel.Range
Set rngFormulas = ActiveSheet.UsedRange.SpecialCells(xlCellTypeFormulas)

Using the Cells Property

You use the Cells property to loop through a range of cells in a worksheet or to refer to a range by using numeric row and
column values. The Cells property returns a Range object representing all the cells, or a specified cell, in a worksheet. To work
with a single cell, you use the Item property of the Range object returned by the Cells property to specify the index of a
specific cell. The Item property accepts arguments specifying the row or the row and column index for a cell.

Because the Item property is the default property of the Range object, it is not necessary to explicitly reference it. For example,
the following Set statements both return a reference to cell B5 on Sheet1:

Dim rng1 As Excel.Range
Dim rng2 As Excel.Range
Set rng1 = Worksheet("Sheet1").Cells.Item(5, 2)
Set rng2 = Worksheet("Sheet1").Cells(5, 2)

The row and column index arguments of the Item property return references to individual cells beginning with the first cell in
the specified range. For example, the following message box displays "G11" because that is the first cell in the specified Range
object:

MsgBox Range("G11:M30").Cells(1,1).Address

The following procedure illustrates how h all the cells in a specified range. The
OutOfBounds procedure looks for valu range of values and changes the font

HighlightColor (default is red).

e > lngHighValue Then

 you would use the Cells property to loop throug
es that are greater than or less than a specified

color for each cell with such a value:

Function OutOfBounds(rngToCheck As Excel.Range, lngLowValue As Long, lngHighValue As Long, _
 Optional lngHighlightColor As Long = 255) As Boolean
 ' This procedure illustrates how to use the Cells property to iterate through a collection of cells in a range.
 ' For each cell in the rngTocheck range, if the value of the cell is numeric and it falls outside the range of values
 ' specified by lngLowValue to lngHighValue, the cell font is changed to the value of lng
 Dim rngTemp As Excel.Range
 Dim lngRowCounter As Long
 Dim lngColCounter As Long
 ' Validate bounds parameters.
 If lngLowValu
 Err.Raise vbObjectError + 512 + 1, "OutOfBounds Procedure", _
 "Invalid bounds parameters submitted: " & "Low value must be lower than high value."
 Exit Function
 End If
 ' Iterate through cells and determine if values are outside bounds parameters. If so, highlight value.
 For lngRowCounter = 1 To rngToCheck.Rows.Count
 For lngColCounter = 1 To rngToCheck.Columns.Count
 Set rngTemp = rngToCheck.Cells(lngRowCounter, lngColCounter)
 If IsNumeric(rngTemp.Value) Then
 If rngTemp.Value < lngLowValue Or rngTemp.Value > lngHighValue Then
 rngTemp.Font.Color = lngHighlightColor
 OutOfBounds = True
 End If
 End If
 79

 Next lngColCounter
 Next lngRowCounter
End Function

In addition, you can use a For Each...Next statement to loop through the range returned by the Cells property. The following
code could be used in the OutOfBounds procedure to loop through cells in a range:

' Iterate through cells and determine if values are outside bounds parameters. If so, highlight value.
For Each rngTemp in rngToCheck.Cells
 If IsNumeric(rngTemp.Value) Then

ngTemp.Value < lngLowValue Or rngTemp.Value > lngHighValue Then If r
 rngTemp.Font.Color = lngHighlightColor
 OutOfBounds = True
 End If
 End If
Next rngTemp

Using the Offset Property

You can use the Offset property to return a Range object with the same dimensions as a specified Range object but offset from
the specified range. For example, you could use the Offset property to create a new Range object adjacent to the active cell to

active cell.

ces where you do not know the specific address of the cells you must work with, but
relation to other cells you must work with. For example, you might have a command

contain calculated values based on the

The Offset property is useful in circumstan
you do know where the cell is located in
bar button in your custom application that fills the active cell with the average of the values in the two cells immediately to the
left of the active cell:
ActiveCell.Value = (ActiveCell.Offset(0, -2) + ActiveCell.Offset(0, -1)/2)

Working with Microsoft FrontPage Objects

Microsoft® FrontPage® is a powerful and popular application used to create, deploy, and manage Web sites. You also can use
FrontPage to create individual Web pages or modify existing Web pages.

FrontPage supports the Microsoft® Visual Basic® Editor and Microsoft® Visual Basic® for Applications (VBA). In addition,
to make it possible for you to work with the various parts of a FrontPage-based web or a Web page, FrontPage now exposes a

om another application through
 ensure backward compatibility,

 of FrontPage object model, but these

icrosoft FrontPage Visual Basic Reference Help to learn more about individual objects,
d events.

t VBA, it is used a bit differently in FrontPage and Microsoft® Outlook® than it is in
ice applications. FrontPage and Outlook support a single VBA project that is associated with a running instance of

roject with each Office document.
ok can have its own VBA project

ss modules, and UserForms. In FrontPage, you can have several webs or Web pages open at one time,
 The FrontPage VBA project is stored in a file named Microsoft FrontPage.fpm.

ection

b page through the DHTML document object model.

l
gned to work with Web sites. A Web site can exist on a local intranet or on a server on the

ioning a Web site. For example, you can think
as a collection of windows showing different parts of the Web site in an open instance of FrontPage. Or, you

ink of a Web site as a collection of files on disk, organized in folders, all of which are organized under one main folder

tion window containing the web. The
WebWindow object looks like a separate instance of FrontPage, for example, each WebWindow object has its own FrontPage

complete object model that you can use either from within a FrontPage VBA project or fr
nts. ToAutomation. The new VBA language elements replace the FrontPage 98 language eleme

nts in the latest versionthe FrontPage 98 language elements are included as hidden eleme
mended for use in FrontPage. language elements are not recom

Note
You can use the Object Browser and M
properties, methods, an

Although al
er Off

l Office applications suppor
the oth
the application. The other Office applications make it possible for you to associate a VBA p

e several workbooks open in Excel at one time, and each workboFor example, you can hav
les, clathat contains modu

but there is only one VBA project.

In This S
Understanding the FrontPage Object Model

ge®to work with Web sites. Learn how to use Microsoft®FrontPa
 ModelUnderstanding the Page Object

Write script to work with the HTML elements in a We

Understanding the FrontPage Object Mode
Microsoft® FrontPage® is desi
World Wide Web. There are several different metaphors you can use when envis
of a Web site
might th
that contains the entire web. Finally, you could think of a Web site as the relationship between pages that exists as a result of
the navigation structure between the pages.

When you have one or more Web sites open in FrontPage, the Webs collection contains a Web object representing each open
Web site. Each Web object has a WebWindow object that represents the main applica

 80

icon on the Windows taskbar. Each WebWindow object has a PageWindows collection that contains a PageWindow object for
each open Web page. In addition, each PageWindow object has a Document property that returns the DHTML document

bject for a Web page in the FrontPage web. o

Figure 1. Microsoft FrontPage Object Model

When you first open FrontPage, you see a blank Web page open in Page view. You can use the Normal, HTML, and Preview
tabs along the bottom of the page to edit the page in different ways or to preview it in your Web browser. The FrontPage menu
bar and toolbars appear above the page, and the FrontPage Views bar appears along the left side of the page. At this point,
FrontPage contains a single blank document only. There is no open Web site, and as a result, the Webs collection object's

ition, the WebWindows collection contains a single WebWindow object, and the
ageWindow object that contains the blank page.

well as Save and SaveAs methods you can use to

e exist on disk as a collection of files organized in folders. The base for the web is the root folder in
the directory structure. For example, if you created a web called MyPersonalWeb on your hard disk, the root folder for the web
could be C:\MyWebs\MyPersonalWeb. All the directories that make up your Web site would be under the MyPersonalWeb
folder. For example, when you use Front Web template, FrontPage creates nine

tion

Count property returns zero. In add
PageWindows collection contains one P

Each of these objects and collections has methods and properties you can use to work with the object. For example, the
PageWindow object has a Document property you can use to work with the HTML elements contained in the Web page and an
IsDirty property you can use to determine if the page has been changed. In addition, the PageWindow object has an
ApplyTheme method you can use to apply a FrontPage theme to the page, as
save the page.

Webs based on FrontPag

Page to create a Web site based on the Personal
rting files, such as images and style sheets. subfolders for the web that contain suppo

The file structure of a web as it exists on disk also is available through the object model. Each folder in the web is represented
by a WebFolder object. The RootFolder property returns the root WebFolder object in the web. The WebFolders collec
contains a WebFolder object for each folder in the web. Each WebFolder object has, among others, a Folders property and a

 81

Files property. The Folders property returns a WebFolders collection for all the subfolders under a folder. The Files property
ebFile object for each file in a folder.

 home page that can branch off to other pages in the Web site. In FrontPage,
by using NavigationNode objects. A
e NavigationNodes collection contains

ion at the home page by using the HomeNavigationNode
ge. Each NavigationNode object has a Children
es you can navigate to from a NavigationNode

 method to move among NavigationNode objects in the NavigationNodes collection returned by the
roperty. You use the Next and Prev properties to return the next or previous NavigationNode object.

ndows, files, or navigation nodes to move among objects in FrontPage will depend on what you are trying

ore information about the objects, methods, and properties in the FrontPage object model by using Microsoft

returns a WebFiles collection that contains a W

The navigation structure of a Web site start
you can move programmatically throug

s with a
h the navigation structure of a Web site

resents a node in the navigation structure of a Web site. ThNavigationNode object rep
all the NavigationNode objects in a Web site. You start navigat
property, which returns the NavigationNode object for the Web site's home pa
property that returns the NavigationNodes collection representing all of the pag
object. You use the Move
Children p

Whether you use wi
to accomplish.

Note
You can get m
FrontPage Visual Basic Reference Help.

Understanding the Application Object

The Application object is the top-level object in the Microsoft® FrontPage® object model. It represents FrontPage itself and
provides access to all of the objects in the FrontPage object model. If you are automating FrontPage from another Microsoft®
Office application, you should set a reference to the Microsoft FrontPage Page Object Reference library by clicking References

h you are working. Then, you can
le, as shown in the following example:

bject without setting a reference to the FrontPage 4.0 Object Reference library, you can

al Basic® for Applications (VBA) code from within the FrontPage VBA project, you can

n reach any other object in the FrontPage object model. In addition, the properties,
urn currently active objects. A

plication object or any top-
lobal properties that represent active objects in FrontPage are ActiveDocument, ActivePageWindow,

, and ActiveWebWindow. The following examples illustrate how you can work with these properties and the

pecify vivid colors and active graphics.
lyTheme "classic", fpThemeVividColors + fpThemeActiveGraphics

 in the currently active web.

formation.htm")

ere.

ive page window has changed and, if so, save it to disk.

Then
sh SaveChanges:=True

sage showing the window captions for all open documents in the active web window.
r As PageWindow

 String
.PageWindows.Count > 0 Then

rr In ActiveWebWindow.PageWindows
strCaptions & pgeCurr.Caption & vbCrLf

en
ages are currently open:" & vbCrLf & strCaptions

on the Tools menu in the Microsoft® Visual Basic® Editor in the application from whic
write code to create an instance of an Application object variab

Dim fpApp As FrontPage.Application
Set fpApp = New FrontPage.Application

To create a FrontPage Application o
use the CreateObject function.

If you are writing Microsoft® Visu
refer to the Application object directly without creating an object variable.

From the Application object, you ca
methods, and events of the Application object are also global properties that you can use to ret

property that you can use to return an object without having to refer to the Apglobal property is a
ts. The glevel objec

ActiveWeb
objects they represent:

' Apply the classic theme to the active document and s
ActiveDocument.App
' Locate the HelpInformation.htm file
Dim wflCurrentFile As WebFile
Set wflCurrentFile = ActiveWeb.LocateFile("HelpIn
If Not wflCurrentFile Is Nothing Then
 With wflCurrentFile
 ' Code to work with found file h
 End With
End If
' Check to see if the page in the act
With ActivePageWindow
 If .IsDirty
 .Refre
 End If
End With
' Display a mes
Dim pgeCur
Dim strCaptions As
If ActiveWebWindow

u For Each pgeC
 strCaptions =
 Next pgeCurr
 If Len(strCaptions) > 0 Th

he following p MsgBox "T
 End If
End If

 82

The Application object also exposes properties you can use to get information about the current machine, such as the user's
name, the version of FrontPage, the language settings, the registry values, and so on. You can use the System property to return
the System object, which provides information about the operating system and screen resolution. You also can use the

When Web page, you are working with the page through the DHTML
docum ethods and properties of this object model through the FrontPage

ou have access to all HTML elements contained in a Web page.

ProfileString property of the System object to read and write FrontPage registry values.

In addition to getting information about the current machine, the Application object provides 10 application-level events you
can use to run VBA code when the events occur.

Understanding the Page Object Model
you write script to work with the HTML elements in a
ent object model. FrontPage exposes nearly all of the m

Page object model. To see the restrictions of the Page object model, search the Microsoft FrontPage Visual Basic Reference
Help index for "object model," and then open the "Exploring the FrontPage Object Model" topic.

In FrontPage, you can use Microsoft®Visual Basic® for Applications (VBA) code to work with the HTML elements in a Web
page. You use the Document property or the ActiveDocument property to return a DHTML document object. When you have
the document object, y

Working with Microsoft Outlook Objects

other Microsoft® Office XP application by using Automation. The Outlook object model exposes
Outlook objects, which you can use to gain programmatic access to Outlook functionality. Before you use VBA to access

m another application, you must first set a reference to the Microsoft Outlook object
or.

icrosoft® Outlook® item and access existing

tlook® item.

tor objects programmatically, and display items for the user.

n individual Microsoft® Office XP

ding Events in Outlook
bjects within the application or item-

ated with a particular Microsoft®Outlook®item.

utlook® objects, you always start with the Application object. If you are using
al Basic® for Applications (VBA) in Outlook, there is a reference to the Outlook object library set by default.

g Automation to work with Outlook objects from another application, you must first set a reference to the

rary, you must use the CreateObject function. There can only be one
yword (or the CreateObject
hen using the New keyword

rns a reference to the running instance.

reateItem method to create a new Outlook item. You access existing Outlook items by using

You can create custom Microsoft® Outlook® objects and manipulate those objects from within Outlook or from another
application. You can manipulate Outlook objects by using Microsoft® Visual Basic® for Applications (VBA) code from
within Outlook or an

Outlook objects, methods, or properties fro
library by clicking References on the Tools menu in the Visual Basic Edit

In This Section

Understanding the Application and NameSpace Objects
Learn how to use the Application object's CreateItem method to create a new M
Outlook items by using the NameSpace object.

Working with Outlook Folders and Item
Access folders for any built-in Microsoft® Ou

s

Understanding the Explorer and Inspector Objects
Open the Explorer and Inspec

Understanding VBA in Outlook
Visual Basic®for Applications (VBA) project as code behind aAssociate a Microsoft®

document.

Understan
Work with application-level events associated with the application itself or top-level o
level events associ

Understanding the Application and NameSpace Objects

When y
Microsof

ou manipulate Microsoft® O
t® Visu

If you are usin
Outlook object library by using the References dialog box in the application you are working from. If you have set a reference
to the Outlook object library, you create a new instance of an Outlook Application object by using the New keyword as follows:

Dim olApp As Outlook.Application
Set olApp = New Outlook.Application

If you have not set a reference to the Outlook object lib
instance of Outlook available at one time. Therefore, when Outlook is not running, the New ke

nstance of Outlook. If an instance of Outlook is already running, tfunction) creates a new, hidden, i
(or the CreateObject function) retu

You use the Application object's C
the NameSpace object.

 83

Figure 1. Microsoft Outlook Object Model
he Application object and the

as been created and, if not, calls the
cedure to create an instance of the global Application and NameSpace object variables. For example:

 global Outlook Application and NameSpace variables. These are declared as global variables so that they need not

ction is used to initialize the global Application and NameSpace variables.
ror GoTo Init_Err

utlook = True

e CreateItem method's single argument to specify whether you want to create a new
 distribution list, journal entry, mail message, note, posting to a public folder, or task. The CreateItem

object of the type specified in the olItemType constant; you can then use this object to set additional
e, the following procedure creates a new mail message and sets the recipients, attachments,
he information passed to the procedure as arguments:

reateMail(astrRecip As Variant, strSubject As String, strMessage As String, _
nts As Variant) As Boolean

ow to create a new mail message and use the information passed as arguments to set message
r the subject, text (Body property), attachments, and recipients.

il As Outlook.MailItem
p As Variant

All the sample procedures discussed in this section use global object variables to represent t
NameSpace object. Each procedure first checks to see if the Application object variable h
InitializeOutlook pro

' Declare
' be re-created for each procedure that uses them.
Public golApp As Outlook.Application

ok.NameSpace Public gnspNameSpace As Outlo
Function InitializeOutlook() As Boolean
 ' This fun
 On Er
 Set golApp = New Outlook.Application ' Application object.
 Set gnspNameSpace = golApp.GetNamespace("MAPI") ' Namespace object.
InitializeO
Init_End:
 Exit Function
Init_Err:
 InitializeOutlook = False
 Resume Init_End
End Function

You use an olItemTyp
t,

e constant as th
appointment, contac
method returns an
properties of the item. For exampl

 text by using tsubject, and message

Function C
 Optional astrAttachme
 ' This procedure illustrates h
 ' properties fo
 Dim objNewMa
 Dim varReci
 84

 Dim varAttach As Variant
 Dim blnResolveSuccess As Boolean

To CreateMail_Err

 object variables!"

t varAttach

 .Send
 Else
 MsgBox "Unable to resolve all recipients. Please check the names."

 .Display
 En
 End

ting a recognized data source.
essage store as the only valid NameSpace object. To see an example of how to use

 variable, see the InitializeOutlook procedure earlier in this section.

ook is not running when you create a NameSpace object variable, the user will be prompted for a profile if the user's

m\Profiles subkey.

Working with Outlook Folders and Items

You can think of the NameSpace object as the gateway to all existing Microsoft® Outlook® folders. By default, Outlook
creates two top-level folders representing all public folders and all mailbox folders. Mailbox folders contain all Outlook built-
in and custom folders. Each folder is a MAPIFolder object. MAPIFolder objects can contain subfolders (which are also
MAPIFolder objects), as well as individual Outlook item objects, such as MailItem objects, ContactItem objects, JournalItem
objects, and so on.

Note
In Outlook, an item is the object that holds information (similar to files in other applications). Items include mail messages,
appointments, contacts, tasks, journal entries, and notes.

When you have created a NameSpace object variable, you can access the top-level folder for any built-in Outlook item by
using the NameSpace object's GetDefaultFolder method. For example, the following code sample returns a reference to the
ContactItems folder:

Dim fld ontacts As Outlook.MAPIFolder
Set fldContacts = gnspNameSpace.GetDefaultFolder(olFolderContacts)

 On Error Go
 ' Use the InitializeOutlook procedure to initialize global Application and NameSpace object variables, if necessary.
 If golApp Is Nothing Then
 If InitializeOutlook = False Then
 MsgBox "Unable to initialize Outlook Application " & "or NameSpace
 Exit Function
 End If
 End If
 Set golApp = New Outlook.Application

) Set objNewMail = golApp.CreateItem(olMailItem
 With objNewMail
 For Each varRecip In astrRecip
 .Recipients.Add varRecip
 Next varRecip
 blnResolveSuccess = .Recipients.ResolveAll
 For Each varAttach In astrAttachments
 .Attachments.Add varAttach
 Nex
 .Subject = strSubject
 .Body = strMessage
 If blnResolveSuccess Then

d If
With

 CreateMail = True
CreateMail_End:
 Exit Function
CreateMail_Err:
 CreateMail = False
 Resume CreateMail_End
End Function

The preceding procedure also illustrates how to use a MailItem object's Recipients and Attachments properties to return the
respective collection objects and then add one or more recipients or attachments to a mail message.

You use the Application object's GetNameSpace method to instantiate an object variable represen
Currently, Outlook supports the "MAPI" m
the GetNameSpace method to create a NameSpace object

If Outl
mail services startup setting is set to Prompt for a profile to be used. Startup settings are on the Mail Services tab of the
Options dialog box (Tools menu). You can use the NameSpace object's Logon method to specify a profile programmatically.
Profiles are stored in the Windows registry under the \HKEY_CURRENT_USER\Software\Microsoft\Windows Messaging
Subsyste

C

 85

You ca using the name of the folder. For example, the following procedure returns a
reference whose name is specified in the strFolderName argument:

e to initialize global Application and NameSpace object variables, if necessary.
 Is Nothing Then

 End
 Set f
 If Er
 Se
 Else
 ' N
 Se

dividual Outlook
tems, or both.

Sub Ge er)

 Dim strItemType As String

er.Folders
jItem)

reateDate, "mmmm dd, yyyy hh:mm am/pm") _
 & vbTab & "Subject: '" & strSubject & "'" & vbCrLf

older to the Immediate window. Note that

subset of items in a folder, you use the Restrict method, which returns a collection of objects that
or example, the following procedure uses the Restrict method to
he name supplied in the strLastName argument:

n also return a reference to any folder by
 to the folder in the current user's mailbox

Function GetFolderByName(strFolderName As String) As Outlook.MAPIFolder
 ' This procedure illustrates how to return a MAPIFolder object representing any folder in the mailbox folders
 ' collection whose name is specified by the strFolderName argument.
 Dim fldMain As Outlook.MAPIFolder
 On Error Resume Next
 ' Use the InitializeOutlook procedur
 If golApp
 If InitializeOutlook = False Then
 MsgBox "Unable to initialize Outlook Application or NameSpace object variables!"
 Exit Function
 End If

 If
ldMain = gnspNameSpace.Folders(GetMailboxName()).Folders(strFolderName)
r = 0 Then
t GetFolderByName = fldMain

ote: The most likely cause of an error here is that the folder specified in strFolderName could not be found.
t GetFolderByName = Nothing

 End If
End Function

The NameSpace object has at least two top-level folders representing all public folders and the user's mailbox. The preceding
procedure uses the GetMailboxName procedure to return the name of the mailbox folder.

hen you return a reference to a folder in the user's mailbox, that folder might contain additional folders, inW
i

tFolderInfo(fldFolder As Outlook.MAPIFold
 ' This procedure prints to the Immediate window information about items contained in a folder.
 Dim objItem As Object
 Dim dteCreateDate As Date
 Dim strSubject As String

 Dim intCounter As Integer
 On Error Resume Next
 If fldFolder.Folders.Count > 0 Then
 For Each objItem In fldFold
 Call GetFolderInfo(ob
 Next objItem
 End If
 Debug.Print "Folder '" & fldFolder.Name & "' (Contains " & fldFolder.Items.Count & " items):"
 For Each objItem In fldFolder.Items
 intCounter = intCounter + 1
 With objItem
 dteCreateDate = .CreationTime
 strSubject = .Subject
 strItemType = TypeName(objItem)
 End With
 Debug.Print vbTab & "Item #" & intCounter & " - " & strItemType & " - created on " _
 & Format(dteC
 & vbCrLf & vbTab
 Next objItem
End Sub

The GetFolderInfo procedure examines a folder for subfolders and calls itself recursively until there are no subfolders
remaining. It then prints information about the items contained in the folder or subf
the objItem object variable is declared by using the Object data type so that the procedure can work with any Outlook item.

To work with a single item or
match the criteria specified in the method's single argument. F
create a collection of Outlook ContactItem objects that match t

Function GetItemFromName(strLastName As String, Optional strFirstName As String = "", _
 Optional strCompany As String = "") As Boolean
 ' This procedure returns an Outlook ContactItem that matches the criteria specified in the arguments passed to the procedure.
 Dim fldFolder As Outlook.MAPIFolder
 86

 Dim objItemsCollection As Object
 Dim objItem As Object
 Dim strCriteria As String
 Dim objMatchingItem As Object

GoTo GetItem_Err
e InitializeOutlook procedure to initialize global Application and NameSpace object variables, if necessary.

older = gnspNameSpace.GetDefaultFolder(olFolderContacts)

 Set objItemsCollection = fldFolder.Items.Restrict(strCriteria)
llection.Count > 0 Then

ection
 Set objMatchingItem = gnspNameSpace.GetItemFromID(objItem.EntryId)
 objMatchingItem.Display

 GetItemFromName = True

n

 using operators such as And, Or, and Not. For example, the following sample returns all the mail items
unread and marked as highly important:

im itmItems As Outlook.Items
strCrit d [Importance] = High"
Set fld

Note
The NorthwindContacts.dot sample file also illustrates how to c ect contact information from a database so that the user can
insert name and address informati

 On Error
 ' Use th
 If golApp Is Nothing Then
 If InitializeOutlook = False Then
 MsgBox "Unable to initialize Outlook Application or NameSpace object variables!"
 Exit Function
 End If
 End If
 Set fldF
 If Len(strLastName) = 0 And Len(strFirstName) = 0 Then
 If Len(strCompany) > 0 Then
 strCriteria = "[Company] = '" & strCompany & "'"
 End If
 Else
 strCriteria = IIf(Len(strFirstName) = 0, "[LastName] = '" & strLastName & "'", _
 "[LastName] = '" & strLastName & "' AND [FirstName] = '" & strFirstName & "'")
 End If

 If objItemsCo
 If objItemsCollection.Count = 1 Then
 For Each objItem In objItemsColl

 Exit Function
 Next objItem
 Else
 GetItemFromName = False
 Exit Function
 End If
 End If
 GetItemFromName = True
GetItem_End:
 Exit Functio
GetItem_Err:
 GetItemFromName = False
 Resume GetItem_End
End Function

When you are using the Restrict method, you use Outlook field names within brackets to specify criteria for a search. You can
join multiple criteria by
sent in the last seven days that are

Dim fldMail As Outlook.MAPIFolder
D

eria = "[SentOn] > '" & (Date - 7) & "' And [UnRead] = True An
Mail = gnspNameSpace.GetDefaultFolder(olFolderInbox)

Set itmItems = fldMail.Items.Restrict(strCriteria)

This line illustrates how to return all the Outlook ContactItem items that contain a value in the Business Address field:

Set objContacts = fldContacts.Items.Restrict("[BusinessAddress] <> '" & strZLS & "'")

The NorthwindContacts.dot sample file is a Microsoft®Word template that retrieves contacts from the Outlook Contacts folder
and then displays the contacts in a UserForm. When the user selects a contact from the form, the contact name and address
information is inserted in an address block in a letter.

oll
on into a letter.

 87

Understanding the Explorer and Inspector Objects

The Explorer object represents what you would recognize as the Microsoft® Outlook® user interface. For example, when you
open Outlook, you are working in the Outlook Explorer object. A window that contains a specific Outlook item, such as a mail
message or a contact, is an Outlook Inspector object.

You can open these objects programmatically and display items for the user. You can also use the ActiveExplorer and
ActiveInspector methods of the Application object to return a programmatic reference to the Explorer or Inspector object that
the user is currently working with.

If you want to use Microsoft® Visual Basic® for Applications (VBA) to add, remove, or manipulate command bars in Outlook,
you start with a reference to the Explorer or Inspector object that contains the command bar you want to use and then use the
object's CommandBars property to return a reference to the object's CommandBars collection. For example, the following code
illustrates how to get a reference to the CommandBars collection for the active Explorer object:

Dim cbrExplorerBars As CommandBars
Set cbrExplorerBars = ActiveExplorer.CommandBars

Note
You can use the GetExplorerInfo and GetInspectorInfo procedures to see sample code that uses the Explorer and Inspector
objects to get information about what is displayed in the active Outlook Explorer and Inspector objects, including information
about built-in and custom comman ion you can get from an Explorer
object.

Information Returned by the GetExplorerInfo Procedure

d bars. The following figure illustrates the kind of informat

Understanding VBA in Outlook

Developers have wanted to use Microsoft® Visual Basic® for Applications (VBA) in Microsoft® Outlook® since Outlook
was first released. Outlook supports both the VBA language and the Visual Basic Editor found in all other Office applications.

Outlook supports a single VBA project that is associated with a particular user and a running instance of the application. The
other Microsoft® Office XP applications (except Microsoft® FrontPage®) let you associate a VBA project as code behind an
individual Office document. Because Outlook has no document similar to the ther Office applications, VBA code is
ssociated only with the application.

ote
he closest thing to a "document" in Outlook is an Outlook item (for example, a mail message, an appointment item, or a task).

As in p Scripting Edition (VBScript) to write code behind an Outlook item.

e C:\Windows\Application Data\Microsoft\Outlook subfolder.
tation and Microsoft Windows NT Server. The VbaProject.OTM file is stored in

tlook subfolder.
You e erties, and events available
thro t cess messages, add custom
com n
Basic Ed s it is being developed and tested. You can access the Visual Basic Editor just as you do in

asic Editor.

o
a

N
T

revious versions of Outlook, you use Visual Basic

The Outlook VBA project is stored in a file named VbaProject.OTM in the following locations:

• Microsoft Windows. If user profiles have been set up for multiple users, VbaProject.OTM is stored in the
C:\Windows\Profiles\UserName\Application Data\Microsoft\Outlook subfolder. If user profiles have not been set up,
VbaProject.OTM is stored in th
• Microsoft Windows NT Works
the C:\Winnt\Profiles\UserName\Application Data\Microsoft\Outlook subfolder.
• Microsoft Windows 2000. The VbaProject.OTM file is stored in the C:\Documents and
Settings\UserName\Application Data\Microsoft\Ou

 us VBA in Outlook to customize the application by working with the objects, methods, prop
ugh he Outlook object model. For example, you can add code to application-level events to pro
ma d bar controls to call custom VBA procedures, or create Component Object Model (COM) add-ins by using the Visual

itor to debug the add-in a
any other Office application, by pointing to Macro on the Tools menu, and then clicking Visual B

 88

Understanding Events in Outlook

rosoft® Outlook®, and you work with each class differently. The first class of events
pplication-level events. Because these events are associated with the application itself, or

folders or the Outlook Bar, you can use Microsoft®Visual Basic® for

re associated with a particular Outlook item. For example, an Outlook
ard, and Send. As in previous versions of Outlook, you use Visual Basic

e within the item itself to handle these item-level events.

There are two classes of events in Mic
supported in Outlook represents a
with top-level objects within the application, such as
Applications (VBA) code to handle these events.

The second class represents item-level events that a
MailItem object has events such as Open, Close, Forw
Scripting Edition (VBScript) cod

Application-Level Events

When you create a new Microsoft® Visual Basic® for Applications (VBA) project in Microsoft® Word or Microsoft®Excel,
the project contains, by default, a class module bound to the application's current document. For example, Word creates a

Excel creates a module for the ThisWorkbook object. In Microsoft® Outlook®,
 VBA project contains a class module called ThisOutlookSession,

n object. As a result, all application-level events are available to you in the Visual
ct drop-down list.

vents associated with the Application object that you can use to run custom VBA procedures. For example, you
mize the Outlook workspace or to create or display custom

bars or command bar controls. You could use the NewMail event procedure to call custom procedures that
dling incoming mail. These events are somewhat self-explanatory, and you can get complete

 searching the Microsoft Outlook Visual Basic Reference Help index for the name of the event.

module for the ThisDocument object and
because you use VBA to work with the application, the
which is pre-bound to the Outlook Applicatio
Basic Editor Procedures drop-down list when you click the Application object in the Obje

There are six e
could use the Startup event to call custom procedures to custo
command
implement your own rules for han
documentation for each event by

Item-Level Events

Working
creating
keyword r in another class module) for each object you want to work with. Second, you
mus d he event procedure that you want to run when the

e object variables that you have created.

strates how to create an object variable that represents the Outlook Bar in the

tlookBarPane

n the previous example, the variable name appears in the Object drop-down list
le from the Object list, you can select the object's available

ple, the OutlookBarPane object shown earlier exposes the
upSwitch and BeforeNavigate events.

 Sub opbOutlookBar_BeforeNavigate(ByVal Shortcut As OutlookBarShortcut, Cancel As Boolean)

End Sub

tartup()

ft Outlook Visual Basic Reference Help index for the
ic for the OutlookBarPane object shows that the object is
ookBar" to identify the object within the collection.

r certain form events, your program cannot assume that events will occur in a particular order, even if they appear to
 which Outlook calls event handlers might change depending on other events

r the order might change in future versions of Outlook.

 information about the objects, methods, and properties in the Outlook object model by using Microsoft
c Reference Help.

 with the event procedures exposed by Microsoft®Outlook® objects (other than the Application object) is identical to
event procedures in the other Office applications. First, you must declare an object variable by using the WithEvents
 in the ThisOutlookSession module (o

t ad the Microsoft® Visual Basic® for Applications (VBA) code to t
event occurs. Finally, you must initialize th

For example, the following VBA code illu
ThisOutlookSession module:

Dim WithEvents obpOutlookBar As Outlook.Ou

re an object variable as shown iWhen you decla
in the class module's Code window. When you select this variab

ures by using the Procedure drop-down list. For examevent proced
BeforeGro

Private
 If Shortcut.Name <> "Inbox" Then
 Msgbox "Sorry, you only have permission to access the Inbox."
 Cancel = True
 End If

Now you need to initialize the object variable. You can do this in two places: in the Application object's Startup event
procedure, so that the variable is always available, or in a custom procedure you create for the purpose of initializing object
variables. The following code shows how to initialize the object variable by using the Startup event procedure:

Private Sub Application_S
 Set opbOutlookBar = Application.ActiveExplorer.Panes("OutlookBar")
End Sub

To determine how to instantiate an object variable, search the Microso
name of the object you want to work with. For example, the Help top
a member of the Panes collection and also that you use the string "Outl

Order of Events
Except fo
be called in a consistent sequence. The order in
that might occur, o

Note
You can get more
Outlook Visual Basi

 89

Working with Microsoft PowerPoint Objects

ffice applications, you begin automating Microsoft® PowerPoint® by using the Application object.
From the Application object, you can open an existing Presentation object or create a new presentation. Each Presentation

lide objects and each Slide object can contain Shape objects that represent text, graphics, tables,

plications (VBA) code to work with

resentation.

t Slides
ccess an existing

resentation.

ode to work with Microsoft® PowerPoint®, you begin
bject is created for you. If you

ication object variable and then
icrosoft® Office applications (except Microsoft® Outlook®), there can

nt. This single instance of the Application object can contain any number of open

As with other Microsoft® O

object contains one or more S
and other items found on a slide.

In This Section

Understanding the PowerPoint Application Object
Use the Application object to get started writing Microsoft® Visual Basic® for Ap
PowerPoint.

Working with the Presentation Object
Use a PowerPoint template, a presentation saved with a .pot extension that contains master slides and might contain regular
slides, to apply a consistent look to an entire p

Working with PowerPoin
Use the Slides collection returned by the Slides property of the Presentation object to add new slides to or a
slide in a p

Working with Shapes on Slides
Understand how to refer to a Shape object on a slide.

Understanding the PowerPoint Application Object

When you write Microsoft® Visual Basic® for Applications (VBA) c
with the Application object. If you are writing VBA code within PowerPoint, the Application o

tion, you first create a PowerPoint Applare automating PowerPoint from some other applica
create an instance of PowerPoint. Unlike the other M
be only one instance of PowerPoint running at a time. If an instance of PowerPoint is running and you use the New keyword or
the CreateObject or GetObject function to instantiate a PowerPoint object variable, that object variable will point to the
currently running instance of PowerPoi
Presentation objects.

 90

Figure 1. Microsoft PowerPoint Object Model (page 1)

Figure 2. Microsoft PowerPoint Object Model (page 2)

 91

Figure 3. Microsoft PowerPoint Object Model (page 3)

Microsoft PowerPoint's Application object has properties you can use to access shared Office components such as command
bars an pplication object has properties that return the currently active presentation or
window

d the Office Assistant. In addition, the A
, or information about the printer.

Information Returned by the Application object properties

 92

Working with the Presentation Object

When you are working with Microsoft® PowerPoint® objects through Microsoft® Visual Basic®for Applications (VBA), you
typically work with a Presentation object and the slides it contains. You use a PowerPoint template-a presentation saved with

aster slides and might contain regular slides-to apply a consistent look to an entire presentation. a .pot extension that contains m

Working with Open Presentations

You create a reference to an open presentation in
ct as a memb

 two ways: by using the Application object's ActivePresentation property or
er of the Presentations collection. There are three ways you can access a

sentations collection:
s file name.

g of the Window object that contains the presentation.
value. Microsoft® PowerPoint® presentations are indexed in the order in which

e different ways to set a reference to an open presentation:

ains the presentation.

by accessing a Presentation obje
Presentation object through the Pre

• By using the presentation'
• By using the Caption property settin
• e presentation's index By using th

they are opened.

The following examples illustrate th

Dim prsPres As PowerPoint.Presentation
' Use the ActivePresentation property.

resentation Set prsPres = ActiveP
' Use the presentation's file name.
Set prsPres = Presentations("PowerPointTools.ppt")
' Use the Caption property setting of the Window object that cont
Set prsPres = Presentations("PowerPointTools")
' Use the presentation's index value in the collection.
Set prsPres = Presentations(1)

Working with Existing Presentations

You use the Presentations collection's Open method to open a presentation saved to disk and create a reference to that
e same time. The following example opens the PowerPointTools.ppt presentation:

pen("c:\opg\Samples\CH05\PowerPointTools.ppt")

presentation at th

Dim ppApp As PowerPoint.Application
Dim prsPres As PowerPoint.Presentation
Set ppApp = New PowerPoint.Application
Set prsPres = ppApp.Presentations.O
With prsPres
 ' Code to manipulate presentation and its ' contents goes here.
End With

Creating a New Presentation

There are two ways you can create a Microsoft® PowerPoint® presentation:
 Open method of the Application object. You can use any file format recognized by PowerPoint in the

e argument. For example, if the FileName argument specifies a Microsoft® Word document
e will be converted to a new presentation with a slide representing each paragraph that has

 style in the document.
e Presentations collection's Add method. For example:

)

o add and format slides in the new presentation.

Add and Open methods accepts a Boolean value that specifies whether the Window object

• By using the
Open method's FileNam
in outline view, the outlin
the Heading 1

• By using th

Dim ppApp As PowerPoint.Application
Dim prsPres As PowerPoint.Presentation
Set ppApp = New PowerPoint.Application
With ppApp
 Set prsPres = .Presentations.Add(msoFalse
 With prsPres

e t ' Code her
 End With

 End With

Note
The WithWindow argument of the
that contains the presentation will be visible. (The default is True.) Although the Auto List Members drop-down list for the
Add method's WithWindow argument contains five enumerated constants, you should use only the msoTrue or msoFalse
constants.

When you use Microsoft® Visual Basic®for Applications (VBA) to create a new presentation, it exists in memory, but will
not be saved to disk until you use the Presentation object's SaveAs method. (Use the Save method to save changes to a
presentation that has already been saved to disk.) The following procedure creates a new Presentation object and immediately
saves the presentation by using the name supplied in the strPresName argument. It then returns the new Presentation object to
the calling procedure.

 93

Function PPTCreatePresentation(ppApp As PowerPoint.Application, strPresName As String) As PowerPoint.Presentation
 ' This procedure illustrates how to use the SaveAs method to save a new presentation as soon as it is created.
 ' Note that in this example, the new Presentation object is not visible.
 On Error GoTo PPTCreate_Err
 Set PPTCreatePresentation = ppApp.Presentations.Add(msoFalse)
 If InStr(strPresName, "\") = 0 Then
 strPresName = "c:\" & strPresName
 End If
 PPTCreatePresentation.SaveAs strPresName
PPTCreate_End:
 Exit Function
PPTCreate_Err:
 Select Case Err
 Case Err <> 0
 Set PPTCreatePresentation = Nothing
 End Select
 Resume PPTCreate_End:
End Function

Formatting a Presentation

You use a Microsoft®PowerPoint® template to apply a consistent look to an entire presentation. A PowerPoint template is a
presentation saved with a .pot extension that contains master slides and might contain regular slides. To see the difference,

. For example, the following sample code applies the Fireball.pot
ctive presentation:

osoft office\templates\presentation designs\fireball.pot"

lso use Microsoft® Visual Basic®for Applications (VBA) to create or manipulate master slides directly. Each

yLogo.bmp image to the background of the title master slide:

ActivePresentation.TitleMaster _ .Sh
 Left:=100, Top:=200, Width:=400,

compare the master-slide-only templates found in C:\Program Files\Microsoft Office\Templates\Presentation Designs with the
templates found in C:\Program Files\Microsoft Office\Templates\Presentations. Templates that contain slides typically include
boilerplate text that you can replace with your own text to make a custom presentation.

Master slides specify the basic layout and formatting for the title slide in a presentation as well as regular slides, handouts, and
notes. When you use the ApplyTemplate method, you specify the template that contains the master slides, which include the
layout and formatting you want to apply to your presentation
template to the currently a

With ActivePresentation
 .ApplyTemplate FileName:="c:\program files\micr
End With

You can a
Presentation object has a property that returns the available master slide that contains the formatting you want to use. You use
the Presentation object's TitleMaster, SlideMaster, HandoutMaster, and NotesMaster properties to return a Slide object that
represents the master slide you want to work with. Any changes you make to the layout or formatting of a master slide are
applied to all slides of the specified type in the current presentation. For example, the following sample adds the
Compan

apes.AddPicture(Filename:="c:\CompanyLogo.bmp", _
Height:=300)

The master properties are useful when you want to apply changes to all slides based on a master, rather than applying changes
one slide at a time. If you have an image or other formatting you want to appear on all slides in a presentation, make the
change to the appropriate master slide.

Running a Slide Show from a Presentation

You use properties of the SlideShowSettings object to specify how you want a slide show to appear and which slides to include
 use the SlideShowSettings object's Run method to start the slide show. You access the SlideShowSettings

he Presentation object's SlideShowSettings property. These objects and properties are most useful if you want
oint®presentation from another Microsoft® Office application. For example, the

nt presentation. The slide show runs automatically, and when it is finished, it returns the focus to the

Format the presentation and set the slide show timings.
With p
 .App

 End With
 ' Run the slide show, showing each slide once, and then end th show and close the presentation.
 With .SlideShowSettings

in the show. You
object by using t
to create and run a Microsoft® PowerP
following code is from the PresentationView sample procedure, and it is used in Microsoft® Word to take a Word outline and
display it as a PowerPoi
Word document from which the macro was run.

Set prsPres = ppApp.Presentations.Open(strOutlineFileName)
'

rsPres
lyTemplate strTemplate

 With .Slides.Range.SlideShowTransition
 .AdvanceTime = intShowSlide
 .AdvanceOnTime = msoTrue

e

 94

 .AdvanceMode = ppSlideShowUseSlideTimings
 .ShowType = ppShowTypeSpeaker

1
res.Slides.Count

un.View
eShowDone

king with PowerPoint Slides

int®presentation (with the exception of some templates) is a collection of slides. Each slide can
nclude animation effects. The Presentation object has a Slides property that returns the

llection is used to add new slides to or access an existing slide in a presentation. Each slide is
bject.

 .StartingSlide =
 .EndingSlide = prsP
 Set objCurrentShow = .R
 Do Until objCurrentShow.State = ppSlid
 DoEvents
 Loop
 End With
End With

Wor
Every Microsoft® PowerPo
contain text or graphics and might i
Slides collection. The Slides co
represented in the collection by a Slide o

Working with the Slides Collection

You primarily use the Slides collection to add new slides to a presentation or to access a specific slide within a presentation.
You use the Slides collection's Add method to add a new slide to a collection. You use arguments of the Add method to specify
the location of the slide in the Slides collection and to specify the slide's layout. The following example shows how you would

f the current Slides collection:

.Slide

vePresentation
d(.Slides.Count + 1, ppLayoutBlank)

hat can be converted to slides, to a presentation by using the Slides collection's
u could create a new presentation that used the opening and closing slides from a

 used a Word outline to create the slides that make up the body of the presentation:

pplication
 PowerPoint.Presentation

p
res = .Presentations.Add

pPresentations.pot"
tline.doc", 1

 a slide within the collection, you use the Slides collection's FindBySlideID method. Each slide in a PowerPoint
on has a SlideID property that is a Long Integer value that uniquely identifies the slide regardless of its location in the

g Integer
 the SlideID property:

) As PowerPoint.Slide
e whose SlideID property value matches lngID. If no match is found, the return value of the

bjects

add a new blank slide to the end o

Dim sldNewSlide As PowerPoint
Dim lngLastSlideAdded As Long
With Acti
 Set sldNewSlide = .Slides.Ad
 With sldNewSlide
 ' Add code to set properties of the slide here.
 lngLastSlideAdded = .SlideID
 End With
End With

You can add existing slides, or data t
InsertFromFile method. For example, yo
company presentation template and then

Dim ppApp As New PowerPoint.A
Dim prsPres As
With ppAp
 Set prsP
 With prsPres
 .ApplyTemplate "c:\corp\cor

omFile "c:\PPTOu .Slides.InsertFr
 End With
End With

To locate
presentati
Slides collection. When you add to or delete slides from a collection, a slide's index value might change, but its SlideID
property will always be the same. The first code sample in this section illustrates how to save the SlideID property to a variable
so that it might be used again to locate the slide. The following sample shows how to locate a slide by using the Lon
value representing

Function FindSlide(lngID As Long
 ' This procedure returns the slid
 ' procedure is = Nothing.
 On Error Resume Next
 Set FindSlide = ActivePresentation.Slides.FindBySlideID(lngID)

nction End Fu

Working with Slide O

t, Microsoft® PowerPoint® names slides by using the convention Sliden, where n is a number representing the
cation of the slide at the time it was added to the Slides collection. You can specify your own name for a slide by setting the

Slide o

There are four ways to access a Slide object in the Slides collection:

B
lo

y defaul

bject's Name property.

 95

• By using an index value representing the location of the slide in the Slides collection.
• By using the slide's name.
• By using the slide's SlideID property with the Slides collection's FindBySlideID method.
• By using the SlideIndex property of the SlideRange object from the PowerPoint Selection object to return the

dex property in this manner might return an error, if more than one

 to return the third Slide object in the current presentation and a way to return

dex value.
Slide = ActivePresentation.Slides(3)

tion.Slides("Slide3")
e FindBySlideID method, where lngSlide3 contains the SlideID property for the third slide.

ows how to determine if a single slide is currently selected.
w.Selection.SlideRange.Count = 1 Then

lide = ActivePresentation _
indow.Selection.SlideRange.SlideIndex)

rk with a group of Slide objects, perhaps to apply consistent formatting to the slides, you can use the Slides
 method. The Range method returns a SlideRange object representing one or more Slide objects in a

 the Range method without an argument, the method returns a SlideRange object that contains all the Slide objects in

s to include in the SlideRange object returned
ument is a single integer, the method returns a SlideRange object for the Slide object whose index

ple, the following sample returns a SlideRange object representing the third slide in the

urrSlide As PowerPoint.SlideRange
et sldCurrSlide = ActivePresentation.Slides.Range(3)

In addition to using the Index arg ® for Applications (VBA) Array

strates how to use the Array function to return a SlideRange object that is a collection of specific named
tation:

 ' Set properties common to all slides in this collection.
End W

ly consists of one
ts. Whether a slide contains a picture, a title, text, an OLE object, an AutoShape, a diagram, or other

currently selected slide; however, using the SlideIn
slide is selected.

The following code sample illustrates three ways
elected slide: the currently s

Dim sldCurrentSlide As PowerPoint.Slide
' Using the slide's in
Set sldCurrent
' Using the slide's name.
Set sldCurrentSlide = ActivePresenta
' Using th
Set sldCurrentSlide = ActivePresentation.Slides.FindBySlideID(lngSlide3)
' Using the SlideIndex property to return the currently selected slide.
' This sample sh
If ActiveWindo
 Set sldCurrentS
 .Slides(ActiveW
End If

If you want to w
s Range

o
collection'
presentation.

If you use
a presentation.

You use the Range method's Index argument to specify one or more Slide object
by the method. If the arg
value matches the integer. For exam
current presentation:

Dim sldC
S

ument, you can also use the Microsoft® Visual Basic
function as an argument to the Range method in order to return a SlideRange object containing multiple Slide objects. The
Array function uses a comma-delimited list of values to be included in the array. When used as an argument to the Range
method, the comma-delimited list should contain the index values or names of the slides you want to include in the SlideRange
object returned by the method. The following sample shows how to use the Array function to return a SlideRange object
containing the first four slides with even-numbered index values:

Dim sldCurrSlides As PowerPoint.SlideRange
Set sldCurrSlides = ActivePresentation.Slides.Range(Array(2,4,6,8))

The next sample illu
slides in a presen

Dim sldCurrSlides As PowerPoint.SlideRange
Set sldCurrSlides = ActivePresentation.Slides.Range(Array("CostOfGoods", "SalesTotals", "Benefits", "Forecast"))

ith sldCurrSlides W

ith

Note
You can also use the Array function as an argument to the Range method for a Shapes collection in order to return a collection
of specified Shape objects as a ShapeRange object.

Working with Shapes on Slides

 PowerPoint® presentation consists of a collection of slides, a PowerPoint slide typicalJust as a Microsoft®
or more Shape objec
content, everything on the slide is a Shape object.

You can refer to a Shape object on a slide in two ways:

 96

• By using the value of the shape's index in the collection of shapes on the slide. A shape will have an index value equal
 in the Shapes collection at the time it was added to the collection.

e shape. You can specify the name of a Shape object by setting its Name property. By default,
ame of a shape at the time it is added to a slide. The naming convention is shapetype n, where

apetype is the type of shape added and n is a number representing 1 plus the number of shapes on the slide when the
rrent shape was added. For the first shape added to a slide, n = 2. To find out more about the types of shapes

ual Basic®for Applications (VBA) Array function.

Adding Shapes to Slides

to its position
• By using the name of th

PowerPoint sets the n
sh
cu
available in PowerPoint, search the Microsoft PowerPoint Visual Basic Reference Help index for "Shapes collection
object."

To work with multiple shapes on a slide, you use the Range method of the Shapes collection. The Range method returns a
ShapeRange object containing the shapes specified in the method's argument. If no Index argument is supplied, the Range
method returns a ShapeRange object containing all the shapes on a slide. To specify multiple shapes, you can use the
Microsoft® Vis

Typically, you use the Add method of a collection object to add an item to the collection. For example, to add a slide to a
Microsoft® PowerPoint® presentation, you use the Presentation object's Slides collection's Add method. However, adding
shapes to a slide is a little different. The PowerPoint object model provides a different method for each shape you can add to a
slide. For example, the following sample inserts a new slide at the end of the current presentation and uses two methods of the
Shapes collection to add shapes to the slide. The AddTextEffect method is used to add a WordArt shape and the AddTextbox
method is used to add a text box shape:

Sub AddTestSlideAndShapes()
 ' Illustrate how to add shapes to a slide and then center the shapes in relation to the slide and each other.
 Dim sldNewSlide As PowerPoint.Slide
 Dim shpCurrShape As PowerPoint.Shape
 Dim lngSlideHeight As Long
 Dim lngSlideWidth As Long
 With ActivePresentation
 ' Determine height and width of slide.
 With .PageSetup
 lngSlideHeight = .SlideHeight
 lngSlideWidth = .SlideWidth
 End With
 ' Add new slide to end of presentation.
 Set sldNewSlide = .Slides.Add(.
 With sldNewSlide
 ' Specify a background color for the slide.
 .ColorScheme = ActivePresentation.ColorSchemes(3)
 ' Add a WordArt shape by usin

 Set shpCurrShape = .Shapes.
 "Familiar Quotations", "Tahoma", 42, msoFalse, msoFalse, 100, 100)

 ' Locate the WordArt shape at the middle of the slide, near the top.
 With shpCurrShape
 .Left = (lngSlideWidth - .Width) / 2
 .Top = (lngSlideHeight - .Height) / 8
 End With
 ' Add a Textbox shape to the slide and add text to the shape.
 Set shpCurrShape = .Shapes _
 .AddTextbox(msoTextOrientationHorizontal, 100, 100, 500, 500)
 With shpCurrShape
 With .TextFrame.TextRange
 .Text = "'If not now, when? If not us, who?'" & vbCrLf & "'There is no time like the present.'" _
 & vbCrLf & "'Ask not what your country can do for you, " & "ask what you can do for your country.'"
 With .ParagraphFormat
 .Alignment = ppAlignLeft
 .Bullet = msoTrue
 End With
 With .Font
 .Bold = msoTrue
 .Name = "Tahoma"
 .Size = 24
 End With
 End With
 ' Shrink the Textbox to matc

extFrame.TextR
Frame.TextRange.BoundHeight

Slides.Count + 1, ppLayoutBlank)

g the AddTextEffect method.
AddTextEffect(msoTextEffect16, _

h the text it now contains.
ange.BoundWidth .Width = .T

 .Height = .Text

 97

 .Left = (lngSlideWidth - .Width) / 2
 .Top = (lngSlideHeight - .Height) / 2
 End With

g Shapes on Slides

 End With
 End With
End Sub

Positionin

ct method (illustrated in the AddTestSlideAndShapes procedure shown earlier in
 to Slides"), you specify values for the Left and Top properties of the shape (the height and width of the shape

he text it contains). In other cases (as with the AddTextbox method, also illustrated in the
ust specify values for the Shape object's Left, Top, Width, and Height properties.

 and width of shapes are specified in pixels. The default slide size is 720 pixels wide and 540 pixels high. The center
 pixels from the left edge of the slide and 270 pixels from the top of the slide. You can center any shape

 by using the Presentation object's PageSetup property to return a PageSetup object, and then use the PageSetup
ideWidth properties. This technique is also illustrated in the AddTestSlideAndShapes procedure

When you add a shape to a slide, the method you use typically requires you to specify values to establish the dimensions of the
shape. In some cases, as with the AddTextEffe
"Adding Shapes
is determined by t
AddTestSlideAndShapes procedure), you m

The height
of a slide is 360
horizontally by using the formula (SlideWidth - ShapeWidth) / 2. You can center any shape vertically by using the formula
(SlideHeight - ShapeHeight) / 2. You can programmatically specify or determine the height and width setting for the slides in a
presentation
object's SlideHeight and Sl
shown earlier.

To position one or more shapes on a slide either in relation to the slide or to other shapes on the slide, you can use the Align or
Distribute methods of a ShapeRange object.

Working with Text in a Shape

Much of what you do with shapes on slides involves adding or modifying text. In addition to the Textbox shape, many other
Shape objects can contain text. For example, you can add text to many of the AutoShape Shape objects.

Frame object. You can determine if a shape
ame by using the Shape object's HasTextFrame property. Each TextFrame object has a HasText

ame contains text.

tRange property you use to return a TextRange object. You use the TextFrame object's Text
e. You use the properties and methods of the TextRange object to work

oint® shape.

 the PowerPoint user interface, but is not available programmatically.
nge object, the default text is replaced with the text you

ntains text but does not use the TextFrame or TextRange objects. The TextEffect property

xtEffectFormat object's Text
 a WordArt shape. For example, the following code changes the text of an existing

rrent presentation:

ct.Text
ext) <= Len(strExistingText) Then

 make sure the new text is not longer than the existing text. This step is required because a

 WordArt shape, then delete it and replace it with a new WordArt shape that uses the same properties as the old

All shapes that support text have a TextFrame property you can use to return a Text
supports the use of a text fr
property you can use to determine if the text fr

The TextFrame object has a Tex
property to specify or determine the text within a fram
with the text associated with a Microsoft® PowerP

Note
Placeholder shapes contain default text that is visible from

et the Text property of a Placeholder shape's TextRaWhen you s
specify.

There is one Shape object that co
returns a TextEffectFormat object that contains the properties and methods used to work with WordArt shapes. You add
WordArt shapes to a slide by using the Shapes collection's AddTextEffect method. The text of the WordArt shape and the
location of the shape are specified in the arguments to the AddTextEffect method. You use the Te
property to read or change the text in

e cuWordArt shape on the first slide of th

With ActivePresentation
t = .Slides(1).TextEffe strExistingTex

 If Len(strNewT
 .Slides(1).TextEffect.Text = strNewText
 End If
End With

Note that this code checks to
WordArt shape does not automatically resize itself to accommodate new text. Alternatively, you could capture the properties of
the existing
shape.

Working with Microsoft Project Objects

With the Microsoft® Project 2000 object model, you can build powerful custom applications easily. Microsoft® Visual
Basic® Applications Edition programming system extends the Visual Basic programming style to access Project project-

guage across applications makes it possible
ored in a project, as well as all the interface commands in the macro language found in Project.

planning software!Vsupplied objects. In addition, the Visual Basic programming style is extended to access a Microsoft®
Excel spreadsheet, Microsoft® Word word processing, the Microsoft® Access database management system, and the
Microsoft® PowerPoint® presentation graphics program. This common macro lan
for access to schedule data st

 98

In This Section

Understanding the Project Object Model
ct object contains summary informatioEach Proje

a collection
n, tasks, and resources. The Project object represents an individual project or

 the Project Application Object
project objects are accessed through the Application object.

ct Object Model
contains all Microsoft® Project objects. Each Project object contains summary information, tasks, and

e Project object represents an individual project or a collection of projects. In addition, Project objects are parent
nd Calendars collections.

 of projects.

Understanding
The Application object is the top of the hierarchy. All

Understanding the Proje
The Application object
resources. Th
objects of Windows, Tasks, Resources, a

Figure 1. Microsoft Project Object Model

e Application property ActiveProject, by referring to the project's index value or by

ct Properties

Project objects can be referenced using th
naming the project:

Sub ProjectRefs()
MsgBox ActiveProject
MsgBox Projects(1).Name
MsgBox Projects("Project1").ProjectStart
End Sub

Project Obje

Fields in the project summary task record can be browsed or edited using Project object properties. The following examples
return information from these fields. After running the macro, review the information on the Schedule tab in the Tools Options
dialog box.

Sub ProjectProperties()
MsgBox ActiveProject.ActualCost
MsgBox ActiveProject.Author
 99

MsgBox ActiveProject.AutoLinkTasks

views, tables, and filters. Make sure to run the following procedure from a task
w:

ctCurrentProperties()
tView

ActiveProject.AutoLinkTasks = False
End Sub

Other propertie
ie

s are useful for returning active
or resource v

Sub Proje
MsgBox ActiveProject.Curren
MsgBox ActiveProject.CurrentTable
MsgBox ActiveProject.CurrentFilter
End Sub

Project Object Methods

The Tasks method returns a task or tasks in a Project object. To iterate through tasks try the following two routines:

Sub TaskDisplay()

urces method returns a resource or resources in a Project object:
eDisplay()

ring

$(13) & Chr$(10)

derstanding the Project Application Object

bject.
 represent the common command functionality of the user interface. These methods are used for the

 Application object is the parent of the Cell, Project, Selection, and Window objects, as well as

emplate file:

ileOpen Name:="LANSUB.MPT"

sing the Application object to refer to Project objects is optional when writing macros. This returns the same result as the
previous example:

To move the active cell, use one of the following options, SelectCellDown, SelectCellRight, SelectCellLeft, SelectCellUp, or
SelectColumn.

Dim i As Integer
Dim t As Variant
For i = 1 To ActiveProject.Tasks.Count

 MsgBox ActiveProject.Tasks(i).Name
Next i
For Each t In ActiveProject.Tasks
MsgBox t.Name
Next t
End Sub
The Reso
Sub ResourceNam
Dim r as Variant
For Each r in ActiveProject.Resources
MsgBox r.Name
Next r
End Sub

The TaskViewList, TaskTableList, TaskFilterList, ResourceViewList, ResourceTableList, and ResourceFilterList methods
return available views, tables, and filters in a project. The following example displays a list of available task views:

Sub ListViews()
Dim strViewList As St
Dim i As Integer
NL = Chr
strViewList = "Task Views:" & NL
For i = 1 To ActiveProject.TaskViewList.Count
strViewList = strViewList & ActiveProject.TaskViewList(i) & NL
Next i
MsgBox strViewList
End Sub

Un
The Application object is the top of the hierarchy. All Microsoft® Project objects are accessed through the Application o
Application object methods
basic Project commands. The
the Projects and Windows collections.

For example, to open a new project from a t

Sub Tester()
Application.F
End Sub

U

Sub Tester()
FileOpen Name:="LANSUB.MPT"
End Sub

 100

Sub Tester()
For I = 1 To 10
SelectCellRight I
SelectCellDown I
SelectCellLeft I
SelectCellUp I
Next I
SelectColumn
End Sub

Application object properties describe the Project environment. These properties are used to manage settings in the Options
and Leveling dialog boxes. Although not all properties are editable, many are:

Sub TitleBarExam
MsgBox Applica

ple()
tion.ActiveWindow

PM is Cool"

g with Microsoft Publisher Objects

Application.ActiveWindow.Caption = "C
End Sub

Workin
Microsoft® Publisher, you treat

ublisher as a collection of Visual Basic objects, where each object has methods and properties that either return Publisher's
state o el is the entire interface you see — all of the Publisher functionality is
somew encapsulates the functionality of Publisher in an easy-to-browse,

ibrary interpreting, error handling,

®
ow, and to get to the rest of the Publisher object model. In addition, COM

add-ins can attach to the Application object.

Every time you write Microsoft® Visual Basic® for Applications (VBA) code in Publisher or write code to automate Publisher
from some other application, you begin with the Application object. From the Application object, you can access all the other
objects exposed by the application, as well as properties and methods unique to the Application object itself.
Application Object

When you write Microsoft® Visual Basic® for Applications (VBA) code that calls into
P

r cause Publisher to do something. The object mod
here in the tree of exposed objects. This nicely

standard way, so anyone who has programmed (for example) Microsoft® Word has a good chance of understanding Publisher.
It provides an object-oriented face to Publisher. A number of concepts and technologies make it possible for Publisher to
respond to Visual Basic, including: IDispatch, reference counting, object creation, type l
lifetime management, and collection enumeration.

In This Section

Understanding the Publisher Application Object
Use properties or methods of the Application object to control or return the Microsoft® Publisher application-wide attributes,
to control the appearance of the application window, and to get to the rest of the Publisher object model.

Understanding the Publisher Application Object
Use properties or methods of the Application object to control or return the Microsoft Publisher application-wide attributes,
to control the appearance of the application wind

Represents the Microsoft Publisher application. The Application object includes properties and methods that return top-level
objects. For example, the ActiveDocument property returns a Document object.

Using the Application object

Use the Application property to return the Application object. The following example displays the application name.

Sub ShowAppName()
 MsgBox Application.Name
End Sub

Remarks
When using Visual Basic for Applications in Microsoft Publisher, all of the properties and methods of the Application object
can be used without the Application object qualifier. For example, instead of typing Application.ActiveDocument.PrintOut,
you can type ActiveDocument.PrintOut. Properties and methods that can be used without the Application object qualifier are
considered "global." To view the global properties and methods in the Object Browser, click <globals> at the top of the list in
the Classes box. When accessing the Publisher object model from a non-Publisher project, all properties and methods must be
fully qualified.

 101

Figure 1. Microsoft Publisher Object Model (page 1)

Figure 2. Microsoft Publisher Object Model (page 2)

 102

Figure 3. Microsoft Publisher Object Model (page 3)

Assistant Object
istant. Represents the Microsoft Office Ass

Figure 4. Assistent Object

Assistant object. There isn't a collection for the Assistant object; only one Assistant
isible

Using the Assistant Object
Use the Assistant property to return the
object can be active at a time. Use the V property to display the Assistant, and use the On property to enable the Assistant.

FileName
Remarks

Assistant is Rocky. To select a different Assistant programmatically, use the property. The following
e Assistant.

The default
example displays and animates th
With Assistant
 .Visible = True
 .Animation = msoAnimationGreeting
End With

Balloon Object
Represents the balloon where the Office Assistant displays information. A balloon can contain controls such as check boxes
and labels.

Using the Balloon Object
Use the NewBalloon property to return a Balloon object. There isn't a collection for the Balloon object; only one balloon can

ded. For more

Use the Show

be visible at a time. However, it's possible to define several balloons and display any one of them when nee
information, see "Defining and Reusing Balloons" later in this topic.

 method to make the specified balloon visible. Use the Callback property to
t remain visible while a user works in the applicat

 run procedures based on selections
from modeless balloons (balloons tha ion). Use the Close method to close

loonTypeBullets

modeless balloons.

The following example creates a balloon that contains tips for saving entered data.

With Assistant.NewBalloon
 .BalloonType = msoBal
 .Icon = msoIconTip
 .Button = msoButtonSetOk
 .Heading = "Tips for Saving Information."
 .Labels(1).Text = "Save your work often."
 .Labels(2).Text = "Install a surge protector."

 103

 .Labels(3).Text = "Exit your application properly."

objects you've already created by assigning the object to a variable and displaying the variable when
hat they can be reused.

et balloon2 = Assistant.NewBalloon
balloo
balloo

alloon2.Show
alloon1.Heading = "First balloon, new heading"

balloon1.Show

BalloonCheckBoxes Object

 .Show
End With

Defining and Reusing Balloons
You can reuse balloon
you need it. This example defines balloon1 and balloon2 separately so t

Set balloon1 = Assistant.NewBalloon
balloon1.Heading = "First balloon"
S

n2.Heading = "Second balloon"
n1.Show

b
b

Represents a check box in the Office Assist member of the BalloonCheckBoxesant balloon. The BalloonCheckBox object is a
ollection.

Using the BalloonCheckBox
Use the CheckBoxes property to return the BalloonCheckBoxes collection.

Use CheckBoxes(index), where index is a number from 1 through 5, to return a single BalloonCheckBox object. You can
specify up to five check boxes (and five labels) per balloon; each check box appears when a value is assigned to its Text

c

property. If you specify more than five check boxes, a run-time error occurs.

The following example creates a balloon with a heading, text, and three region choices. When the user selects one or more
check boxes and then clicks OK, the specified procedure or procedures are called.

With Assistant.NewBalloon
 .Heading = "Regional Sales Data"
 .Text = "Select your region"
 For i = 1 To 3
 .CheckBoxes(i).Text = "Region " & i
 Next
 .Button = msoButtonSetOkCancel
 .Show
 If .CheckBoxes(1).Checked Then
 runregion1
 End If
 If .CheckBoxes(2).Checked Then
 runregion2
 End If
 If .CheckBoxes(3).Checked Then
 runregion3
 End If
End With

You cannot add check boxes to or remove check boxes from the BalloonCheckBoxes collection after the balloon has been
displayed.

BalloonLabel Object

Represents a label in the Office Assistant balloon. The BalloonLabel object is a member of the BalloonLabels collection.

Using the BalloonLabel Object

Use Labels(index), where index is a number from 1 through 5, to return a BalloonLabel object. There can be up to five labels
on one balloon; each label appears when a value is assisgned to its Text property.

The following example creates a balloon that asks the user to click the label corresponding to his or her age.

With Assistant.NewBalloon
 .Heading = "Check Your Age Group."
 .Labels(1).Text = "Under 30."
 .Labels(2).Text = "30 to 50."
 .Labels(3).Text = "Over 50."
 .Text = "Which of the following " & .Labels.Count & " choices apply to you?"

 104

 .Show
End With

Remarks
Balloon check boxes display the user's choices until he or she dismisses the balloon. You can use balloon labels to return a
number corresponding to the user's choice in the Select method as soon as the user clicks the button beside the label. To pass
values to the Select method based on the user's choice, you must have the balloon type be set to msoBalloonTypeButtons.

Document Object

Represents a publication. Since Microsoft Publisher works with only one publication at a time, there is no Documents
collection.
Using ActiveDocument

Use the ActiveDocument property to refer to the current publication. This example adds a table to the first page of the active
publication.

Sub NewTable()
 With ActiveDocument.Pages(1).Shapes
 .AddTable NumRows:=3, NumColumns:=3, Left:=72, Top:=300, Width:=488, Height:=36
 With .Item(1).Table.Rows(1)
 .Cells(1).TextRange.Text = "Column1"
 .Cells(2).TextRange.Text = "Column2"
 .Cells(3).TextRange.Text = "Column3"
 End With
 End With
End Sub

You could also write the above routine using a reference to the ThisDocument module. This example uses a ThisDocument
reference instead of ActiveDocument.

Sub PrintPublication()
 With ThisDocument.Pages(1).Shapes
 .AddTable NumRows:=3, NumColumns:=3, Left:=72, Top:=300, Width:=488, Height:=36
 With .Item(1).Table.Rows(1)
 .Cells(1).TextRange.Text = "C
 .Cells(2).TextRange.Text = "Column2"
 .Cells(3).TextRange.Text = "Column3"
 End With
 End With
End Sub
ActiveDocument Property

Returns a D

olumn1"

ocument object that represents the active publication. If there are no documents open, an error occurs.

expression.ActiveDocument
expression Required. An expression that returns one of the objects in the Applies To list.

This example allows the user to assign a file name to the active publication and save it with the new file name. The file name,
along with other text, is then inserted after the currently selected text.

Sub NewsLetterSave()
 Dim strFileName As String

 ' Assign the explicit file name to a variable.
 strFileName = "NewsLetter3.pub"
 Publisher.ActiveDocument.SaveAs strFileName
 ' Insert the file name and supporting text after selected text.
 Selection.TextRange.Collapse pbCollapseEnd
 Selection.TextRange = " This publication has been saved as " & strFileName
End Sub

Selection Object

Represents the current selection in a window or pane. A selection represents either a selected (or highlighted) area in the
publication, or it represents the insertion point if nothing in the publication is selected. There can only be one Selection object
per publication window pane, and only one Selection object in the entire application can be active.

Using the Selection Object

Use the Selection property to return the Selection object. If no object qualifier is used with the Selection prope y, Microsoft
Publisher returns the selection from The following example copies the
current selection from the active publicatio

rt
 the active pane of the active publication window.

n.
 105

Sub CopySelection()
 Sele
End Su

e()
e Then

e publication.

.TextFrame.TextRange

b

ction.ShapeRange.Copy
b

The following example determines what type of item is selected and if it is an autoshape, fills the first shape in the selection
with color. This example assumes there is at least one item selected in the active pubication.

Sub SelectedShap
 If Selection.Type = pbSelectionShap
 Selection.ShapeRange.Item(1).Fill.ForeColor _
 .RGB = RGB(Red:=200, Green:=20, Blue:=255)
 End If
End Sub

The following example copies the selection and pastes it into the first shape on the second page of the activ

Sub CopyPasteSelection()
 Selection.TextRange.Copy
 With ActiveDocument.Pages(2).Shapes(1)
 .Collapse Direction:=pbCollapseEnd
 .InsertAfter NewText:=vbLf
 .Paste
 End With
End Su

Working with Microsoft Visio Objects

Microsoft® Visio® products provide a sophisticated toolset for information technology p
manage complex enterprise-level systems.

rofessionals who design, model, and

ritten in Microsoft® Visual Basic® for Applications (VBA), or other computer
rate the functionality of the Visio applications simply by using its objects. VBA

 to write your programs.

lication are related to each other, along with each object's properties (data), methods (behavior), and
d the program's object model. In the Visio object model, most objects correspond to items you can see and select
er interface. For example, a Shape object represents a shape in a drawing.

he objects accessible to other

m) creates instances of the objects and sets their properties or invokes

ject model represents the objects, properties, methods, and events that the Visio engine exposes

ject model represents the objects, properties, methods, and events that the Visio engine exposes
ation. More important, it describes how the objects are related to each other.

pond to items you can see and select in the Visio user interface. For example, a Shape object
g page that you can select with the pointer tool-a shape, a group, a guide, or an object
bedded, or imported into a Visio drawing.

instance of the Visio application. Microsoft® Visual Basic®for Applications (VBA) code runs
and accesses the objects it requires. An external program runs outside an instance of the Visio

 Visio application or accesses an instance of Visio that is running, and then it accesses the Visio

t a collection of other objects. A collection contains zero or more objects of a specified type. For
ject represents one open document in an instance of Visio; the Documents collection represents all of

 the instance.

Automation is a means by which a program w
languages that support automation, can incorpo
is incorporated in Visio, so you are not required use a separate development environment

The way objects in an app
events, is calle
in the Visio us

In automation, the application that provides the objects (such as the Visio application) makes t
applications, and provides the properties and methods that control them.

The application that uses the objects (such as your progra
their methods to make the objects serve the application.

In This Section

Understanding the Visio Object Model
The Microsoft® Visio® ob
through automation.

Understanding the Visio Application Object
The Application object is a property of the Microsoft® Visio® global objects, so you can access any of the Application
object's properties by referencing directly the Application property of the Visio global object.

Understanding the Visio Object Model
The Microsoft® Visio® ob
through autom

Most objects in the model corres
can represent anything on a Visio drawin

 is linked, emfrom another application that

Visio objects reside in an
within an instance of Visio
application, so it starts the
object it needs.

Some objects represen
example, a Document ob
the documents that are open in

 106

Figure 1. Microsoft Visio Object Model
Using Visio Object Types
You can take advantage of the Visio type library to write code more effectively. By using Visio object types declared in the
type library, you can declare variables as specific types, such as Visio.Page, which is illustrated in the following code:
Dim pagObj As Visio.Page
This example uses Visio to inform the program that it is referencing Visio object types in the Visio type library, and it uses

agObj variable is a Page object. Here are a few more object types:
 Documents collection

Page to inform the program that the p
Dim docsObj As Visio.Documents 'A
Dim docObj As Visio.Document 'A Document object
Dim shpsObj As Visio.Shapes 'A Shapes collection
Dim shpObj As Visio.Shape 'A Shape object
Dim mastObj As Visio.Master 'A Master object
Getting and Releasing Visio Objects

 by declaring an object variable, navigating through the object modelYou get an object
to control, and ass

 to get a reference to the object you want
igning the reference to the object variable. After you have a reference to an object, you can get and set the

Declare a Visio object type as defined in the Visio type library. Use the Set statement to assign the
riable.

have properties whose values refer to other objects. You can use
ct model to get to the object you want to control.

llection. Most often, you

values of its properties or use methods that cause the object to perform actions.
The following are some guidelines for getting and releasing Visio objects:
 Declare object variables
reference to the object va
 Access Visio objects through properties Most Visio objects
these properties to navigate up and down the layers of the obje
 Refer to an object in a collection A collection is an object that represents objects of a particular type. You can get a reference
to a particular object in the collection. The Item property returns a reference to an object in the collection.
 Iterate through a collection A collection's Count property returns the number of objects in the co
will use the Count property to set the limit for an iteration loop.
 Release an object An object in a collection is released automatically when the program finishes running or when all object
variables referring to that object go out of scope.

 107

 Use compound object references You can concatenate Visio object references, properties, and methods in single statements
as you can with Microsoft® Visual Basic® for Applications (VBA) objects. However, simple references are sometimes more

ich must obtain a reference to the Microsoft® Visio® Application object by creating it or
 Visual Basic® for Applications (VBA) project executes in a running instance of Visio.

Dim docsObj As Visio.Documents

Set appVisio = CreateObject("visio.application")
Set docsObj = appVisio.Documents
Set docObj + docsObj.Item(1)

Dim c
Dim doc
Set docs
Set O
Example
Exa
Dim doc
Set dicO

You mig
referenci
reference y-the global object is implied. The third example is the most direct method of
accessing the Documents collection from a VBA Project.
The fol of code for commonly used properties of the Visio global object.
Set doc

ject is available only when you are writing code in the VBA project of a Visio document.

Word Objects

efficient, even if they require more lines of code.
 Restrict the scope and lifetime of object variables You can prevent invalid references by restricting the scope and lifetime
of an object variable. For example, when your program resumes execution after giving control to the user, you can release
certain objects and retrieve them again to make sure that the objects still are available and your program has references to the
objects in their current state.

Understanding the Visio Application Object

Unlike a stand-alone program, wh
getting it, code in a Microsoft®
Therefore, you are not required to obtain a reference to the Application object. The Visio engine provides the global object,
which represents the Visio instance. In addition, the Visio engine provides the ThisDocument object, which represents the
Visio document associated with your project.

The global object represents the instance and provides more direct access to certain properties. The properties of the Visio
global object are not prefixed with a reference to an object.

The Application object is a property of the Visio global objects, so you can access any of the Application object's properties by
referencing the Application property of the Visio global object directly.

The following are three examples of code that get the first document in a Documents collection-all three use different syntax.

Example 1 creates an Application object. Typically, this code is used when writing an external program:
Example 1
Dim appVisio As Visio.Application

Dim docObj As Visio.Document

Example 2 uses the Application property of the Visio global object:
Example 2

 do sObj As Visio.Documents
Obj As Visio.Document
Obj = Application.Documents

doc bj = docsObj.Item(1)
 3 directly accesses the Documents property of the Visio global object:

mple 3
Obj As Visio.Document
bj + Documents.Item(1)

ht have noticed in examples 2 and 3 that Application and Documents are not preceded by an object. When you are
ng any property or method of the Visio global object, you are not required to declare a variable for the global object or
 it as the preceding object of a propert

lowing are some of examples
Obj = ActiveDocument

Set pagObj = ActivePage
Set WinObj = ActiveWindow
Note
The Visio global ob

Working with Microsoft

 is part of the document. When you are
d all Document objects are contained in

lection. Because each Document object is based on a template, each document has an

cument has a Sections collection of one or more sections, and
llection that contains the headers and footers for the section. In addition, some or all of
 certain formatting attributes set, and paragraphs might have built-in or custom styles

In Microsoft® Word, the fundamental working object is a document and everything
using VBA to work with Word, a Document object represents an open document, an
the Application object's Documents col
AttachedTemplate property.

A document is a collection of characters arranged into words, words are arranged into sentences, sentences are arranged into
paragraphs, and so on. Therefore, each Document object has a Characters collection, a Words collection, a Sentences
collection, and a Paragraphs collection. Furthermore, each do
each section has a HeadersFooters co
the text in the document might have
applied.

 108

In This Section

Understanding the Word Application Object
Objects Understanding Application-Level

Learn about the Application object and other objects that affect Word.
The Document Object
Create or open documents, and add them to the Documents collection.
Working with Document Content
Work with objects contained in the Document object.

Understanding the Word Application Object

Figure 1. Microsoft Word Object Model (page 1)

 109

Figure 2. Microsoft Word Object Model (page 2)

 110

Figure 3. Microsoft Word Object Model (page 3)

Figure 4. Microsoft Word Object Model (page 4)

 111

Figure 5. Microsoft Word Object Model (page 5)

Figure 6. Microsoft Word Object Model (page 6)

 112

Understanding Application-Level Objects

ion object itself and its properties, methods, options (displayed in the Options dialog
xes in Word-in other words, these are objects that can affect more than one document at a

nipulated independent of the currently active Document object.

ject
d by the application as well as properties and methods unique to the Application object itself.

he Settings in the Options Dialog Box
se the Options, View, and Dialog options.

ng your own VBA procedure in place of a built-in procedure.

Application-level objects are the Applicat
box), as well as the built-in dialog bo
time or are accessed and ma
In This Section
Working with the Application Ob
Access all the other objects expose
Working with t
Learn how to u
Working with Word Dialog Boxes
Create your own custom dialog boxes by using the functionality of one of the Word built-in dialog boxes.
Modifying Built-in Commands
Customize the behavior of Word by runni

Working with the Application Object
Every time you write VBA code in Word, or write code to automate Word from some other application, you begin with the
Application object. From the Application object, you can access all the other objects exposed by the application as well as
properties and methods unique to the Application object itself.

Note
If you are working in Word, the Application object is created for you, and you can use the Application property to return a
reference to the Word Application object. If you are automating Word from some other application, you must create a Word
Application object variable and then create an instance of Word.

To access properties and methods of the Application object, you use the following syntax:
Application.PropertyName
Application.MethodName (arg1, arg2, argN)

You can
App t
-or-
ObjectN

 access child objects of the Application object by using the following syntax:
lica ion.ObjectName

ame

Note
n property in this context because these objects are global. You do not have to use the Applicatio

Working with the Settings in the Options Dialog Box

The Options dialog box contains many settings that let you customize the way Word looks and behaves. You can v
u

iew this
 use the
ect that

ns dialog box that contains the setting you want to manipulate.

s that represent items in the Options dialog box. For example, the Options object's
s equivalent to the Typing replaces selection setting on the Edit tab of the Options dialog

ay to identify which properties of the Options object represent settings on a tab in the Options dialog box is
g and then examine the property settings Word records. For example, the Print tab of the

s. Two settings (Print PostScript over text and Print data only for forms) apply
re properties of the Document object. The remaining settings represent properties of

 macro that records a change to a setting on the Print tab would create, in part, the following list of
bject properties:

kground = True
alse

s = False

 True

dialog box by clicking Options on the Tools menu. To programmatically access the settings in this dialog box, yo
 View object of a Window object. You can also access these settings through the Dialog objOptions object or the

represents the tab in the Optio

Using the Options Object
The Options object contains many propertie
ReplaceSelection property setting i
box. The easiest w
to record a macro that changes a settin
Options dialog box contains fourteen setting
only to the active document and are therefo
the Options object. A
Options o
With Options
 .UpdateFieldsAtPrint = False
 .UpdateLinksAtPrint = False

ray = "Use printer settings" .DefaultT
ac .PrintB

 .PrintProperties = F
 .PrintFieldCode
 .PrintComments = True
 .PrintHiddenText = True
 .PrintDrawingObjects =
 .PrintDraft = False
 .PrintReverse = False
 .MapPaperSize = True
End With

 113

If you change the settings of Options object properties, make sure you return each setting to its original value when you are
finished. Many of these properties are global application-level settings, and you might be making changes that the user would

ettings to their original state.
lean
ean

nts As Boolean

ies
s = .PrintFieldCodes

nts = .PrintComments
dden = .PrintHiddenText

t.

 . in
 En
End Sub

The e
code am
displaye
? Active

Note tha
necessar

You
execute ping replaces selection check

not want persisted. The following example illustrates how to return Options object properties to their original settings when a
procedure that changes those properties ends:
Sub PrintAllDocInfo()
 ' This procedure illustrates how to use the Options object to change certain settings, print a document, and then
 ' return the s
 Dim blnProps As Boo
 Dim blnFields As Bool
 Dim blnComme
 Dim blnHidden As Boolean
 With Options
 ' Save the existing property settings.
 blnProps = .PrintPropert
 blnField
 blnComme
 blnHi
 ' Set properties to True and print documen
 .PrintProperties = True
 .PrintFieldCodes = True
 .PrintComments = True
 .PrintHiddenText = True
 Application.PrintOut
 ' Return properties to original settings.
 .PrintProperties = blnProps
 .PrintFieldCodes = blnFields
 .PrintComments = blnComments

Pr tHiddenText = blnHidden
d With

Using the View Object and the Dialog Object
Vi w object lets you determine or specify all the attributes of a Window object. For example, you can run the following
 s ple from the Immediate window in the Microsoft® Visual Basic® Editor to determine whether hidden text is

d in the current document:
Window.View.ShowHiddenText

t although many of the View object properties map directly to settings in the Options dialog box, they do not
ily map to settings on the View tab of that dialog box.

 use the Dialogs collection to access a Dialog object that represents a tab in the Options dialog box. For example, if you
the following code from the Immediate window, it prints the current setting for the Ty

box on the Edit tab of the Options dialog box:
? CBool(Dialogs(wdDialogToolsOptionsEdit).ReplaceSelection)

Working with Word Dialog Boxes

You can create your own custom dialog boxes by using UserForms, but before you do, you should determine whether you

n property. For example, you can run the following code from

alogToolsSpellingandGrammar)

.ShowAll)

could simply appropriate the functionality of one of Word's more than two hundred built-in dialog boxes.

From VBA, you access any of Word's built-in dialog boxes through the Dialogs collection. The Dialogs collection is a global
object, so you can reference it without specifying the Applicatio
the Immediate window to return the number of dialog boxes in the Dialogs collection:
? Dialogs.Count

To work with a particular dialog box, you create an object variable declared As Dialog and use one of the wdWordDialog
constants to specify the dialog box you want to reference. For example, the following code creates a reference to the Spelling
and Grammar dialog box:
Dim dlgSpell As Dialog

Set dlgSpell = Dialogs(wdDi

When you instantiate a Dialog object variable in this way, you can easily determine or specify the various dialog box settings.
When you refer to one of these settings in VBA, you can reference it as a property of the dialog box. For example, you can
refer to the All setting on the View tab of the Options dialog box by using the ShowAll property:

MsgBox "The 'All' setting on the View tab is currently set to " & CBool(Dialogs(wdDialogtoolsOptionsView)
Dialog box properties are typically set from the user interface by using check box controls, combo box controls, or text box
controls. Check box controls contain the value 1 when they are selected and 0 when they are not selected. Combo box controls

 114

cont t
value rep

You also
box from
button, a
control h
Show m
box
user o
dialog b

Modifyi

ain he index value of the item selected, beginning at 0 for the first item in the control. Text box controls contain a String
resenting the text in the control.

 have control over how a dialog box is displayed and when changes to settings take effect. When you display a dialog
 the Word user interface and change a setting, the change usually takes effect as soon as you click the dialog box's OK
lthough some dialog box settings take effect immediately. When you use VBA to display a dialog box, you can
ow the dialog box behaves by using either the Dialog object's Show method or its Display method. If you use the

ethod, the dialog box behaves just as it does when Word displays it. The Display method simply displays the dialog
 and you must use additional VBA code to take further action in response to any selections made in the dialog box by the
. B th methods also return a value representing whether the user clicked OK, Cancel, Close, or some other button in the

ox.

ng Built-in Commands

One simple but very powerful method you can use to customize the way Microsoft® Word works is to run your own VBA
procedure in place of a built-in procedure. Doing this lets you customize the behavior of Word in any way you can imagine.

d then detect whether a user made certain selections from a Word dialog box.

ustomize Keyboard dialog box, which
e built-in procedure in the Commands list. For example, in the following figure, you can see that Word
rocedure whenever a user clicks Save As on the File menu.

log Box

There is no limit to the kinds of things you can do and the kinds of built-in behaviors you can change. You could save
documents created by using your custom template to a different directory than documents created by using Normal.dot. You
could modify the File New command to create custom document properties for every new document. You could display your
own custom dialog box instead of the Word dialog box normally displayed in response to a menu command. You could also let
the built-in command run an

The first thing you have to do is figure out which procedure Word runs to perform a built-in action. This is easy to do for all
built-in menu commands. If you press ALT+CTRL+PLUS SIGN (+) on the numeric keypad (not the PLUS SIGN on the
keyboard) and then click the menu item you want to investigate, Word displays the C
shows the name of th
runs the FileSaveAs p

The Customize Keyboard Dia

There are three ways you can substitute your own procedure for a built-in Word procedure:

• In any standard module, create a VBA procedure that uses the same name as the procedure you want to replace. For
example, if you create a procedure named FileSaveAs, Word will run your procedure instead of the built-in
FileSaveAs procedure whenever the built-in procedure would normally be called.

• Create a module and name it by using the name of the built-in command you want to replace. Then add a subroutine
named Main() to the module and add your custom code to that procedure.

• Create a new procedure by using the Macros dialog box. To do this, point to Macro on the Tools menu, and then click
Macros. In the Macros dialog box, click Word Commands in the Macros in list. The Macro name list will then display

n Word procedures. You can learn something about what these procedures do by clicking a
cription box at the bottom of the dialog box. When

 use the Macros in list to select the template or
re. Then click the Create button to create a new VBA procedure that uses the

the hundreds of built-i
procedure name in the list and reading its description in the Des

e command you want to modify, click it and thenyou locate th
document in which to save the procedu

e name as the built-in command. sam

The Document Object

The Document object is just below the Application object in Word's object model and is at the heart of Word programming.
When you open a new document from the user interface, you create a new Document object. Each document you create or
open is added to the Documents collection, and the document that has the focus is called the active document.

 115

In This Section
Working with the Document Object
Create or open documents and add them to the Documents collection.
Opening, Creating, Saving, and Closing New Documents
Create and manipulate new documents by using the Documents collection's methods.

Working with the Document Object

You can reference a Document object as a member of the Documents collection by using either its index value (where 1 is the
first document in the collection) or its name. In addition, you can use the ActiveDocument property to return a reference to the
document that currently has the focus. For example, if a document named Policies.doc is the only open document, the
following three object variables will all point to Policies.doc:

c")
Set T

You wil
given do

 using the Documents collection's Add method or Open method. The following example
se the ActiveDocument property to add an address to the document that currently has the focus:

dress:="The MOD Team" & vbCrLf & "One Microsoft Way" & vbCrLf _
, ReturnAddress:= "One Happy Customer" & vbCrLf & _

ith

xample illustrates how to create an instance of a Document object variable by using the Documents collection's
od. After the Document object variable is set, the code calls the procedure from the prior example to add an

env pe
Dim doc
Set docP

s:=True

d by using the Open method or the document created by using the Add method will also be the currently
d by the ActiveDocument property. If you want to make some other document the active document,

ng, Saving, and Closing New Documents

Dim docOne As Word.Document
Dim docTwo As Word.Document
Dim docThree As Word.Document
Set docOne = Documents(1)
Set docTwo = Documents("Policies.do

doc hree = ActiveDocument

l rarely refer to a document by using its index value in the Documents collection because this value can change for a
cument as other documents are opened and closed. Typically, you will use the ActiveDocument property or a

iable created byDocument object var
ushows how you can

Sub AddOPGAddress()
 With ActiveDocument
 .Envelope.Insert Ad
 & "Redmond, WA 98052"
 "77 Pine Bough Lane" & vbCrLf & "Any Town, USA 12345"
 End W
End Sub
The next e
Open meth

elo and then the envelope and the document are printed. Finally, the document is closed and all changes are saved.
Policy As Word.Document
olicy = Documents.Open("c:\my documents\policies.doc")

With docPolicy
 Call AddOPGAddress
 .Envelope.PrintOut
 .PrintOut
 .Close SaveChange
End With
Note
The document opene
active document represente
use the Document object's Activate method.

g, CreatiOpenin

thod to open an existing document. The FileName argument can include the full
e file or the file name alone. If the file specified in the FileName argument does not include the full path to the
 Word looks for the document in the current directory. If Word can't find the file by using the file path and file name

ocuments collection's Add method. The Add method can accept up to two optional

t template:

s.Add

h the new document.

You use the Documents collection's Open me
path to th
document,
specified in the FileName argument, an error occurs.

Instead of using a hard-coded path and file name, you can use the FileSearch object to make sure the file exists before trying to
open it. You can also create a Dialog object that represents the File Open dialog box and use it to let the user select the file
name to use as the FileName argument of the Open method.

You create a new document by using the D
arguments. You use the Template argument to specify the template on which to base the new document. If you leave this
argument blank, the new document is based on the Normal.dot template. The NewTemplate argument is a Boolean value that
specifies whether to create the new document as a template. The following example creates a new document based on the
Normal.do

Dim docNew As Word.Document
Set docNew = Document
With docNew
 ' Add code here to work wit
End With
 116

The method you use to save a document depends on whether the document is new or has already been saved. To save an
cument, you use the Document object's Save method. To save a new document, you use the Document object's
thod and specify a file name in the method's FileName argument. If you use the Save method on a new document,

ment a name.

 new document as soon as it is created by using the Add method and the SaveAs method together as

t and you do not
ges argument, Word prompts the user to save changes. To prevent this prompt from appearing, use either
anges or the wdSaveChanges built-in constant in the Close method's SaveChanges argument. To close all

nce, use the Documents collection's Close method and either the wdDoNotSaveChanges or the
ant in the SaveChanges argument.

 with, most of the tasks you'll want to perform with VBA will involve working with the
document or manipulating the objects contained in the document. Documents contain words, sentences, paragraphs,

trols, images, shapes, hyperlinks and more. All of these objects are available to

o accomplish much of this work are the Range object and the Selection object.

g, defining, determining the location of, and working with text in a Range

ing how to use its Type property to get information about the state of the current

ookmarks
 or as a container for text in a document.

ts
pecify what you want to use to replace the

existing do
SaveAs me
Word displays the Save As dialog box to prompt the user to give the docu

You can also save
follows:

a

Documents.Add.SaveAs FileName:="c:\my documents\fastsave.doc"
Set docNew = Documents("fastsave.doc")

If you use the Documents.Add.SaveAs syntax, you will not be able to set a Document object variable at the same time you use
the Add method. Instead, you can refer to the newly created document by using the ActiveDocument property or by using the
document's name in the Documents collection, as shown in the preceding example.

To close a document, you use the Document object's Close method. If there are changes to the documen
specify the SaveChan
the wdDoNotSaveCh
open documents at o
wdSaveChanges const

Working with Document Content
When you have a document to work
text in the
sections, headers and footers, tables, fields, con
you through VBA.

The starting point for much of what you do to the contents of a document will be to specify a part of the document and then to
do something to it. This might involve, for example, adding or removing text or formatting words or characters. The two
objects you will use t

In This Section
The Range Object
Understand the Range object, including creatin
object.
The Selection Object
Learn about the Selection object, includ
selection.

The Selection Object vs. the Range Object
cts. Compare and contrast the Selection and Range obje

Working with B
Use bookmarks to mark a location in a document

The Find and Replacement Objec
Loop through a document looking for some specific text, formatting, or style, and s
item you found.

The Range Object

A Range object represents a contiguous area in a document, defined by a starting character position and an ending character
an be as small as the insertion point or as large as the entire document. It can also be, but does

ented by the current selection. You can define a Range object that represents a different area than
lection. You can also define multiple Range objects in a single document. The characters in a Range object

, such as spaces, carriage returns, and paragraph marks.

ject.

ject is similar to a Word bookmark in that they both define a specific area within a document. However, unlike a
ts only so long as the code that creates it is running. In addition, when you insert text at the end

 Redefining a Range

g an object variable of type Range and then instantiating that variable by using
nge property of another object, such as a Character, Word, Sentence, or
eates two Range objects that both represent the second sentence in the

position. The contiguous area c
not have to be, the area repres
the current se
include nonprinting characters

Note
ented by the current selection is contained in the Selection obThe area repres

A Range ob
bookmark, a Range object exis
of a range, Word automatically expands the range to include the new text. When you insert text at the end of a bookmark,

ord does W not expand the bookmark to include the new text.

Creating, Defining, and

You typically create a Range object by declarin
either the Document object's Range method or the Ra

g code crSelection object. For example, the followin
active document.

 117

Public Sub GetRangeExample()
nge method and the Range property both return the same characters.

angeMethod As Word.Range

hod = .Range(.Sentences(2).Start, .Sentences(2).End)
entences(2)

a of a document, you use the method's Start argument to specify the
ld begin and you use the End argument to specify where the range should end. The first

tion 0. The last character position is equal to the total number of characters in the
ermine the number of characters in a document by using the Characters collection's Count property. As

ple, you can also use the Start and End properties of a Bookmark, Selection, or Range object to
 and End arguments. You can set the Start and End arguments to the same number. In this case,

or redefine the contents of a Range object by using the object's SetRange method. You can specify or redefine the
range by using the Range object's Start property or its MoveStart method. Likewise, you can specify or redefine the

roperty or its MoveEnd method.

ent. At each step in the
ained in the range is printed to the Immediate window.

 use various properties and methods to redefine the contents of a Range object.
rocedure.

veDocument.Content

ange now contains " & .Characters.Count & " characters."
entences(1).End

nge Start:=0, End:=ActiveDocument.Paragraphs(1).Range.End
.Count & " characters."

nd Unit:=wdParagraph, Count:=1
rint "The range now contains " & .Characters.Count & " characters."

You can also redefine a Range object by using the object's Find property to return a Find object. The following example
illustrates the use of the Find property to locate text within the active document. If the text is found, the Range object is
automatically redefined to contain the text that matched the search criteria.

With rngRangeText.Find
 .ClearFormatting
 If .Execute(FindText:=strTextToFind) Then
 Set RedefineRangeExample2 = rngRangeText
 Else
 Set RedefineRangeExample2 = Nothing
 End If
End With

Many Word objects have a Range property that returns a Range object. You use an object's Range property to return a Range
object under circumstances where you must work with properties or methods of the Range object that are not available from
the object itself. For example, the following code uses the Range property of a Paragraph object to return a Range object that is
used to format the text in the first paragraph in a document:

Dim rngPara As Range
Set rngPara = ActiveDocument.Paragraphs(1).Range
With rngPara
 .Bold = True

 ' This example shows how the Ra
 Dim rngR
 Dim rngRangeProperty As Word.Range
 With ActiveDocument
 If .Sentences.Count >= 2 Then
 Set rngRangeMet
 Set rngRangeProperty = .S
 End If
 End With
 Debug.Print rngRangeMethod.Text
 Debug.Print rngRangeProperty.Text
End Sub

When you use the Range method to specify a specific are
character position where the range
character in a document is at character posi

 shou

document. You can de
shown in the preceding exam

t

specify the Range method's Start
you create a range that does not include any characters.

You can set
start of a
end of a range by using the Range object's End p

The following example begins by using the Content property to create a Range object that covers the entire contents of a
document. It then changes the End property to specify that the end of the range will be at the end of the first sentence in the
document. It then uses the SetRange method to redefine the range to cover the first paragraph in the document. Finally, it uses
the MoveEnd method to extend the end of the range to the end of the second paragraph in the docum
example, the number of characters cont

Public Sub RedefineRangeExample1()
 ' This procedure illustrates how to
 ' See also the RedefineRangeExample2 p
 Dim rngSample As Range
 Set rngSample = Acti
 With rngSample
 Debug.Print "The r
 .End = ActiveDocument.S
 Debug.Print "The range now contains " & .Characters.Count & " characters."
 .SetRa
 Debug.Print "The range now contains " & .Characters
 .MoveE
 Debug.P
 End With
End Sub

 118

 .ParagraphFormat.Alig
 .Font.Name = "Arial"

r example, the following code
text within a Range object, then changes it and displays the new text, and finally restores the original text:

to a document
raphs.

t paragraph in the active document plus
e strNewText variable includes a paragraph

k removed when the orginal text was replaced.

tring

xt = "Now is the time to harness the power of VBA in Word." & "This text is replacing the original text in the first " _
sing only the Text property " & "of the Range object!" & vbCrLf

KOnly, "This is the original text."

 MsgBox .Text, vbOKOnly, "This is the new text inserted in paragraph 1."
 .Text = strOriginalText
 MsgBox "The original text is resto

n use the Range object's StoryType property to determine where the range is located. Stories are distinct areas of a

e of the 11 story types. For example, if you add footnotes, Word adds a Footnotes story. If you add
ments story to the document.

Range object representing each story in a document. For example, the following code
Main Text story and the Comments story:

s Word.Range
d.Range

ainText = ActiveDocument.StoryRanges(wdMainTextStory)
ments = ActiveDocument.StoryRanges(wdCommentsStory)

 Range

e object's InsertBefore or InsertAfter methods to add text to an existing Range object. In fact, there is an
ert," that you can use to manipulate a Range object.

bines the Range object's InsertBefore and InsertAfter methods with the Text property.
e much of the work you will do when manipulating text

InRange procedure when you must add text to a Range object. In other words, the procedure is
n you want to programmatically make any changes to existing text in a Word document.

nment = wdAlignParagraphCenter

End With
After you identify the Range object, you can apply methods and properties of the object to modify the contents of the range or
get information about the range. You use the Range object's StoryType property to determine where in the document the Range
is located.

Working with Text in a Range Object

You use a Range object's Text property to specify or determine the text the range contains. Fo
first displays the

Public Sub ChangeTextSample()
 ' This procedure illustrates how to use the Range object's Text property to copy and paste text in
 ‘ while maintaining the original parag
 ' When the rngText variable is instantiated, it includes all of the text in the firs
 ‘ the paragraph mark at the end of the paragraph. Note how the new text in th
 ‘mark (vbCrLf) to replace the mar
 Dim rngText As Range
 Dim strOriginalText As S
 Dim strNewText As String
 strNewTe
 & "paragraph. This is all done u
 Set rngText = ActiveDocument.Paragraphs(1).Range
 With rngText
 MsgBox .Text, vbO
 strOriginalText = .Text
 .Text = strNewText

red."
 End With
End Sub

In this example, the Range object's Text property is used to specify the text that appears in the document.

Determining Where the Range Is Located

You ca
document that contain text. You can have up to 11 story type areas in a document, representing areas such as document text,
headers, footers, footnotes, comments, and more. You use the StoryRanges property to return a StoryRanges collection. The
StoryRanges collection contains Range objects representing each story in a document.

A new Word document contains a single story, called the Main Text story, which represents the text in the main part of the
document. Even a blank document contains a character, a word, a sentence, and a paragraph.

You do not expressly add new stories to a document, but rather, Word adds them for you when you add text to a portion of the
document represented by on
comments, Word adds a Com

You use the Range property to return a
prints the text associated with the

Dim rngMainText A
Dim rngCommentsText As Wor
Set rngM
Set rngCom
Debug.Print rngMainText.Text
Debug.Print rngComments.Text

Inserting Text in a

You use the Rang
entire class of methods, with names that begin with "Ins

It's useful to have a procedure that com
Having such a procedure creates a single place to handl
programmatically.

You can call the InsertText
useful whe

 119

The InsertTextInRange procedure uses one required arguments and two optional argument. The strNewText argument contains

(strNewText As String, Optional rngRange As Word.Range, Optional intInsertMode _
place) As Boolean

 text specified by the strNewText argument into the Range object specified by the rngRange
gument. It calls the IsLastCharParagraph procedure to' strip off trailing paragraph marks from the rngRange object.

tCharParagraph(rngRange, True)
 With rngRange
 Select Case intInsertMode

 .InsertAfter strNewText
ase 2 ' Replace text in range.

 used to strip off any final paragraph marks before inserting text in the range. The

nderstanding Paragraph Marks

When sents a Character, Word, or Sentence object, and that object falls at the end of a
paragraph cally included within the range. The Range object also includes all additional

ces(3)

ject refers to the last sentence in the first paragraph, that paragraph mark (and any
ded in the range. If you then set the Text property of this object to a text string
d second paragraphs in the document would be deleted.

VBA code that manipulates text in a Word document, you must account for the presence of a paragraph mark
re two basic techniques you can use to account for paragraph marks when you are cutting and pasting text

h mark (represented by the vbCrLf constant) in the text to be inserted in the document. This
angeTextSample procedure shown in "Working with Text in a Range Object"

the text you want to add to the Range object specified in the rngRange argument. The intInsertMode optional argument
specifies how the new text will be added to the range. The values for this argument are one of three custom enumerated
constants that specify whether to use the InsertBefore method, the InsertAfter method, or the Text property to replace the
existing range text.

Public Function InsertTextInRange
 As opgTextInsertMode = Re
 ' This procedure inserts
 ' ar
Call IsLas

 Case 0 ' Insert before text in range.
 .InsertBefore strNewText
 Case 1 ' Insert after text in range.

 C
 .Text = strNewText
 Case Else
 End Select
 InsertTextInRange = True
 End With
End Function

Note
The IsLastCharParagraph procedure is
IsLastCharParagraph procedure is discussed earlier.

U

you create a Range object that repre
, the paragraph mark is automati

subsequent empty paragraph marks. For example, in a document where the first paragraph consists of three sentences, the
following code creates a Range object that represents the last sentence in the first paragraph:
Set rngCurrentSentence = ActiveDocument.Senten

Because the rngCurrentSentence Range ob
additional empty paragraph marks) will be inclu

paragraph mark, the first anthat didn't end with a

When you write
in your text. There a
in Range objects:

• Include a new paragrap
technique is illustrated in the Ch .

nge object. The following code sample shows how to change the contents
ark. The example uses the Chr$() function with character code 13

t a paragraph mark.

astCharParagraph(ByRef rngTextRange As Word.Range, Optional blnTrimParaMark As Boolean = _
) As Boolean

ure accepts a character, word, sentence, or paragraph Range object as the first argument and returns True

r(strLastChar, Chr$(13)) = 0 Then

ngTextRange.Start + rngTextRange.Characters.Count - 1

• Exclude the final paragraph mark from a Ra
e object to exclude the final paragraph mof a Rang

to represen

Function IsL
 False
 ' This proced
 ' if the last character in the range is a paragraph mark, and False if it is not. The procedure also accepts an optional
 ' Boolean argument that specifies whether the Range object should be changed to eliminate the paragraph mark if it
 ' exists. When the blnTrimParaMark argument is True, this procedure calls itself recursively to strip off all trailing
 ' paragraph marks.
 Dim strLastChar As String
 strLastChar = Right$(rngTextRange.Text, 1)
 If InSt
 IsLastCharParagraph = False
 Exit Function
 Else
 IsLastCharParagraph = True
 If Not blnTrimParaMark = True Then
 Exit Function
 Else
 Do
 rngTextRange.SetRange rngTextRange.Start, r

 120

 Call IsLastCharParagraph(rngTextRange, True)
 L
 En

ple, the Count property of the Range object's Characters collection is used to redefine the Range object's end point.

oop While InStr(rngTextRange.Text, Chr$(13)) <> 0
d If

 End If
End Function

In this exam

The Selection Object

When you use the Word user interface to work with a document, you typically select (highlight) text and then do something to
the text, such as formatting it, typing new text, or moving it to another location. The Selection object represents the currently
selected text in a Word document. The Selection object is always present in a document; if no text is selected, it represents the
insertion point. Unlike the Range object, there can only be one Selection object at a time. You can use the Selection object's
Type property to get information about the state of the current selection. For example, if there is no current selection, the
Selection object's Type property returns wdSelectionIP. The Type property will return one of nine different values represented
by the wdSelectionType enumerated constants.

You access a Selection object by using the Selection property. This property is available from the Application, Window, and
Pane objects. However, because the Selection property is global, you can refer to it without referencing another object first. For
example, the following sample code illustrates how you use the Selection property to get information about the currently
selected text:

Sub SelectionCurrentInfo()
 Dim strMessage As String
 With Selection
 If .Characters.Count > 1 Then
 strMessage = "The Selection object in '" & ActiveDocument.Name & "' contains " & .Characters.Count & " characters, " _
 & .Words.Count & " words, " & .Sentences.Count & " sentences, and " & .Paragraphs.Count & " paragraphs."
 MsgBox strMessage
 End If
 End With
End Sub

The Selection Object vs. the Range Object

In many ways, the Selection object is similar to a Range object. The Selection object represents an arbitrary portion of a
, sentences, paragraphs, and other objects in a Word document. The

at when you use the Range object, it's not necessary to first select the text. In addition, there can only be
e, but the number of Range objects you can create is unlimited.

d the Range object have many common methods and properties, and it is easy to return a Range object
ction object from a Range object. However, most things you can do with a Selection

ons for this:
h a task.

es not incur the overhead associated with Word having to move or change the
e document.

ion, you can do much more with a Range object than you can with a Selection object:
 what the user has selected in the document. Practically speaking,

ou could save the original selection by using a Range object variable, manipulate the Selection object
en use the saved Range object's Select method to display the original selection, but there is

rely a good reason to show the user that the selection is changing. Some WordBasic developers relied on changing
the selection to indicate to the user that the code is still running (and the machine has not locked up). But this is not

 An operation that takes a long time to execute should signal its progress
 messages to the status bar.

he Selection and Range objects have many methods and properties in common-for
rty discussed in "Working with Text in a Range Object"193

document. It has properties that represent characters, words
main difference is th
one Selection object at a tim

The Selection object an
from a Selection object or to create a Sele
object, you can do even faster with a Range object. There are two main reas

• The Range object typically requires fewer lines of code to accomplis
• Manipulating a Range object do

selection "highlight" in the activ

In addit
• You can manipulate a Range object without changing

y
programmatically, and th
ra

the right way to convey information to a user.
by using a progress meter or by posting status

• You can maintain multiple Range objects in your code, and, where necessary, store those objects in a custom
Collection object. You cannot do these two things by using only the Selection object.

When it comes to manipulating text, t
example, all the InsertName methods and the Text prope . However,
the Selection object has a unique set of methods for manipulating text. These are the TypeText, TypeParagraph, and
TypeBackspace methods. You use these methods to enter or rem ext and insert paragraph marks in a Selection object. To
get the results you expect, there are a few things you must understand about the TypeName methods.

ction property is True, using any of the TypeName methods results in the currently selected text being
replaced. When the ReplaceSelection property is False, the TypeText and TypeParagraph methods behave just as the

ove t

With the exception of the InsertParagraph and InsertFile methods, which remove selected text, the InsertName methods let you
work with a selection without deleting existing text. In contrast, the TypeName methods might delete existing text, depending
on the value of the Options object's ReplaceSelection property.

When the ReplaceSele

 121

InsertBefore method: The text or paragraph mark is inserted at the beginning of the current selection. When the
ReplaceSelection property is False, the TypeBackspace method behaves the same as the Collapse method of a Range or

pseStart constant is specified in the Direction argument. The Collapse method collapses a
ting point and ending point are the same.

Selection object when the wdColla
range or selection so that its star

Working with Bookmarks

In many ways, a Bookmark object is similar to a Selection or Range object in that it represents a contiguous area in a document.
 ending position, and it can be as small as the insertion point or as large as the entire document.

 a Selection or Range object because you can give the Bookmark object a name and
s running or when the document is closed. In addition, although bookmarks are
 by setting the View object's ShowBookmarks property to True.

n in a document or as a container for text in a document. The following examples

ould use bookmarks to mark areas in a document that will contain data supplied by the user or obtained from an
outside data source. For example, a business letter template might have bookmarks marking the locations for name

om the user or from a database and then insert it in
e correct locations marked by bookmarks. When a location is marked, navigating to that location is as simple as

avigating to the bookmark. You can determine if a document contains a specific bookmark by using the Bookmarks

tains boilerplate text that you must modify in certain circumstances, you could use

e the Range object's InsertBefore
d, or Text property to add or modify the text within a bookmark.

sociated with adding or changing text through VBA code, working with bookmarks can
stom applications created in Word.

s collection's Add method. You specify where you want the bookmark to be
 a Range or Selection object in the Add method's Range argument. When you use the InsertBefore

ethod, or the Text property, a Range object automatically expands to incorporate the new text. As
 examples, a bookmark does not adjust itself as easily, but making a bookmark as dynamic as a

re method to add text to a bookmark, the text is added to the start of the bookmark
or example, if you had a bookmark named CustomerAddress on the

owBookmarks property is set to True)

owing VBA code:

nge = ActiveDocument.Bookmarks("CustomerAddress").Range
"1234 Elm Drive #233" & vbCrLf

t expect, the bookmark expands to include the additional address information:

e #233
eattle, WA 12345]

Now suppose you want to use the InsertA ark that contains the street address, and

#233]
5

are of it, and the solution is quite easy. The
n and Range objects together. The second

 bookmarks that you must know: When you add a bookmark to a document in which the

It has a starting position and an
However, a Bookmark object differs from
it does not go away when your code stop
normally hidden, you can make them visible

You use bookmarks to mark a locatio
illustrate these uses:

• You c

and address information. Your VBA code could obtain the data fr
th
n
collection's Exists method. You display a location marked by a bookmark by using the Bookmark object's Select
method. When a bookmark is selected, the Selection object and the Bookmark object represent the same location in
the document.

• If you have a document that con
VBA code to insert different text in these specified locations depending on whether certain conditions were met. You
can use a Bookmark object's Range property to create a Range object, and then us
method, InsertAfter metho

When you understand the subtleties as
a powerful way to enhance your cube

You add a bookmark by using the Bookmark
located by specifying
method, the InsertAfter m
you will see in the next few
range is a simple exercise.

When you use the Range object's InsertBefo
and the bookmark expands to include the new text. F
following text (the brackets appear when the Sh

[Seattle, WA 12345]

you could add the street address to this bookmark by using the foll

Dim rngRange As Word.Range
Set rngRa
rngRange.InsertBefore

As you migh

[1234 Elm Driv
S

fter method to add text to the end of a bookm
you want to add the city, state, and zip code information by using this code:

Dim rngRange As Word.Range
Set rngRange = ActiveDocument.Bookmarks("CustomerAddress").Range
rngRange.InsertAfter vbCrLf & "Seattle, WA 12345"

Note that when you use the InsertAfter method to add text to the end of a bookmark, the bookmark does not automatically
expand to include the new text:

[1234 Elm Drive
Seattle, WA 1234

This behavior could create problems if you were unaware of it. But now you are aw
first part of the solution results from the benefits achieved when you use the Selectio
part results from another aspect of
bookmark already exists, the original bookmark is deleted (but not the text it contained) when the new bookmark is created.

 122

The following sample code uses the InsertAfter method to add text to the end of the CustomerAddress bookmark. It then uses
 it uses the

dd method to add a new bookmark that has the same name as the original bookmark and then uses
ecify the location of the bookmark:

ddress").Range

 .InsertAfter vbCrLf & "Seattle, WA 12345"
 .Sele
End W

tself is deleted. The solution to this problem is the same

the Range object's Select method to create a Selection object covering all the text you want to bookmark. Finally,
Bookmarks collection's A
the Selection object's Range property to sp
Dim rngRange As Word.Range
Set rngRange = ActiveDocument.Bookmarks("CustomerA
With rngRange

ct
ith

ActiveDocument.Bookmarks.Add "CustomerAddress", Selection.Range
If you use the Range object's Text property to replace the entire contents of a bookmark, you run into a similar problem: The
text in the bookmark is replaced, but in the process, the bookmark i
solution we used for the InsertAfter method in the preceding example. You insert the new text, use the Range object's Select
method to select the text, and then create a new bookmark that has the same name as the original bookmark.

The Find and Replacement Objects

Among the most frequently used commands in the Word user interface are the Find and Replace commands on the Edit menu.

document looking for some specific text, formatting, or style. To
ecify what you want to use to replace the item you found, you use the Replacement object, which you can access by using

the Re

utBox("Enter the text you want to find.", "Find Text")

gBox "The text could not be located."

 to account for this change in the definition of the Range object can cause
ugging headaches. The following code sample illustrates how the Range object is redefined:

(3).Range

er the text you want to find.", "Find Text")
b

as found. As a result, the Range object has been redefined and now covers the text: "

These commands let you specify the criteria for what you want to locate. They are both really the same thing, with the Replace
command's functionality being just an extension of the Find command's functionality. In fact, you might have noticed that Find,
Replace, and Go To appear on different tabs of the same dialog box-the Find and Replace dialog box.

Much of the VBA code you write in Word involves finding or replacing something in a document. There are several
techniques you can use to locate text or other elements in a document, for example, using the GoTo method or the Select

ethod. Typically, you use the Find object to loop through a m
sp

placement property of the Find object.

The Find object is available from both the Selection object and the Range object; however, it behaves differently depending on
whether it is used from the Selection object or the Range object. Searching for text by using the Find object is one of those
situations where the Selection and Range objects can be used together to accomplish more than either object can its own.
The following list describes differences between the behavior of the Range object and the Selection object when you are
searching for an item in a document:

• When you are using the Selection object, your search criteria are applied only against the currently selected text.
• When you are using the Selection object, if an item matching the search criteria is found, the selection changes to

highlight the found item, as illustrated by the following example, which uses the Find object to search within the
currently selected text:

With Selection.Find
 .ClearFormatting
 strFindText = Inp
 If Len(strFindText) = 0 Then Exit Sub
 .Text = strFindText
 If .Execute = True Then
 MsgBox "'" & Selection.Text & "'" & " was found and is now highlighted."
 Else
 Ms
 End If
End With

• When you are using the Find object off of the Range object, the definition of the Range object changes when an item
matching the search criteria is found. Failing
all kinds of deb

Dim rngText As Word.Range
Dim strToFind As String
Set rngText = ActiveDocument.Paragraph

h rngText.Find
s

Wit
 .ClearFormatting
 strToFind = InputBox("Ent
 If Len(strToFind) = 0 Then Exit Su
 .Text = strToFind

ue Then If .Execute = Tr
 MsgBox "'" & strToFind & "'" & " w
& rngText.Text
 Else
 MsgBox "The text could not be located."
 End If
End With
 123

Regardless of whether you are using the Find object with the Range object or the Selection object, you must account for the
 the object when the search is successful. Because the object itself might point to different text each time

his and you might also have to keep track of your original object so
 it when the search has been completed.

 by setting properties of the Find object. There are two ways to set these properties. You
vidual properties of the Find object and then use the Execute method without arguments. You can also set the
 the Find object by using the arguments of the Execute method. The following two examples execute identical

le 1: Using properties to specify search criteria.

 from the criteria from a previous search before specifying the criteria for a new search. The Find
atting method. When you are performing a find and replace

learFormatting

eWith

All

stances of the Search Criteria

ou use the Execute method as shown in the preceding examples, the search stops at the first item that matches the

 Dim strSearchFor As String
 Dim i
 If (Se

ances of the selected text."

changes that occur to
the search is successful, you might have to account for t
that you can return to

Specifying and Clearing Search Criteria

You specify the criteria for a search
can set indi
properties of
searches:
Examp
With Selection.Find
 .ClearFormatting
 .Forward = True
 .Wrap = wdFindContinue
 .Text = strToFind
 .Execute
End With
 Example 2: Using Execute method arguments to specify search criteria.
With Selection.Find
 .ClearFormatting
 .Execute FindText:=strToFind, Forward:=True, Wrap:=wdFindContinue
End With

The Find object's search criteria are cumulative, which means that unless you clear out the criteria from a previous search, new
criteria are added to the criteria used in the previous search. You should get in the habit of always using the ClearFormatting
method to remove formatting
object and the Replacement object each has its own ClearForm
operation, you must use the ClearFormatting method of both objects, as illustrated in the following example:

With Selection.Find
 .C
 .Text = strToFind
 With .Replacement
 .ClearFormatting
 .Text = strReplac
 End With
 .Execute Replace:=wdReplace
End With

Finding All In

When y
specified criteria. To locate all items that match the specified criteria, use the Execute method inside a loop, as shown in the
following example:

Public Sub SearchAndReturnExample()
 ' This procedure shows how to use the Execute method inside a loop to locate multiple instances of specified text.
 Dim rngOriginalSelection As Word.Range
 Dim colFoundItems As New Collection
 Dim rngCurrent As Word.Range

ntFindCounter As Integer
lection.Words.Count > 1) = True Or _

 (Selection.Type = wdSelectionIP) = True Then
 MsgBox "Please select a single word or part or a word. " & "This procedure will search the active document for " _
 & "additional inst
 Exit Sub
 End If
 Set rngOriginalSelection = Selection.Range
 strSearchFor = Selection.Text
' Call custom procedure that moves the insertion point to the start of the document.
 Call GoToStartOfDoc
With Selection.Find
 .ClearFormatting
 .Forward = True
 .Wrap = wdFindContinue
 .Text = strSearchFor
 .Execute
 124

 Do While .Found = True
 intFindCounter = intFindCounter + 1

.Range, CStr(intFindCounter)

 With

n this document." & vbCrLf & _
YesNo) = vbYes Then

dItems

ounter + 1

tion.Select

e a Collection object to store the matching items as Range objects. In this
all matching items, but you could use the same technique to work with the

ms as a group.

o replace one item with another, you must specify a setting for the Replace argument of the Execute method. You can specify
 either the Text property of the Replacement object or the ReplaceWith argument of the Execute

ng this technique, use a zero-length string ("") as the replacement item. The following
nstances of the text specified by the strFind argument with the text specified in the strReplace argument:

s String)
alse

ect

dReplaceAll, ReplaceWith:=strReplace

ction object before you

 Dim rngStartMarker As Word.Range
 Dim

 Set rn nge

& strToFind & "'" & " was found and is currently highlighted. Click OK to restore your original selection."

ot found."

 colFoundItems.Add Selection
 .Execute
 Loop
End
 rngOriginalSelection.Select
If MsgBox("There are " & intFindCounter & " instances of '" & rngOriginalSelection & "' i
 vbCrLf & "Would you like to loop through and display all instances?", vb
 intFindCounter = 1
 For Each rngCurrent In colFoun
 rngCurrent.Select
 MsgBox "This is instance #" & intFindCounter
 intFindCounter = intFindC
 Next rngCurrent
End If
 rngOriginalSelec
End Sub

The preceding example also illustrates how to us
 the user is given the option of viewing example,

d itefoun

Replacing Text or Other Items

T
the replacement item by using
method. To delete an item by usi
example replaces all i

Sub ReplaceText(strFind As String
 = F

, strReplace A
 Application.ScreenUpdating

t.Sel ActiveDocument.Conten
 With Selection.Find

 .ClearFormatting
= True .Forward

 .Wrap = wdFindContinue
 FindText:=strFind, Replace:=w .Execute

 End With
End Sub

Restoring the User's Selection After a Search

In most cases, when you finish a search operation, you should return the selection (or the insertion point if there was no
previous selection) to where it was when the search began. You do this by saving the state of the Sele
begin a search, and then restoring it when the search is completed, as shown in the following example:

Sub SimpleRestoreSelectionExample()

strToFind As String

gStartMarker = Selection.Ra
 strToFind = InputBox("Enter the text to find.", "Find Text")
 With Selection.Find
 .ClearFormatting
 .Text = strToFind
 If .Execute = True Then
 MsgBox "'"
 Else
 MsgBox "'" & strToFind & "'" & " was n
 End If
 End With
 rngStartMarker.Select
End Sub

 125

3. WORKING WITH SHARED OFFICE COMPONENTS

includes a set of shared objects available in all Office applications that help you search for files, use the
ssistant, manipulate command bars, read and write document properties, read and write script, and hook add-ins to

e application. Because these objects are shared among all Office applications, it is easy to write code that uses these
ation from within any Office application or custom Office application.

 create custom toolbars and menu bars in code,
he user's actions.

ction

 Office Assistant
properties of the Office Assistant object to programmatically control the Office Assistant.

rosoft® Office application or custom application you

ent.

el worksheet, a Microsoft® PowerPoint® slide, a

ponents

Microsoft® Office
Office A
your Offic
objects and that will run without modific

You can use these objects to customize the appearance of your application,
custom file searches, or customize the Office Assistant to respond to tperform

In This Se

Referencing Shared Office Components
Return a reference to a shared component object by using the appropriate properties.

Working with the FileSearch Object
Programmatically access the functionality of the Office File Open dialog box.

Working with the
Use the objects, methods, and

Working with Command Bars
Write code to manipulate command bars that can be used in any Mic
develop.

Working with Document Properties
Use document properties to create, maintain, and track information about a Microsoft® Office docum

Working with Scripts
Access script, or insert script into a cell or range in a Microsoft® Exc

rd Selection object. Microsoft® Word document, or Wo

Referencing Shared Office Com

t® Office application includes accessor properties that provide access to the shared Office components. For
y returns a reference to the Assistant object, the FileSearch property returns a

ct, and the Scripts property returns a reference to the Scripts collection. From within any Office
component object by using the appropriate accessor property; you do not

se the New keyword to create an object variable that references the shared Office component.

®FrontPage®, and Microsoft® Outlook®, include a reference to
default. Before you can work with shared Office components in Access, FrontPage,

nce to the Microsoft Office XP object library.

 with an object, you must either set an object variable to the object you want to
property. For example, the following code fragments illustrate using the

earch, Assistant, and CommandBars accessor properties are used) to access various
ce components.

cation.FileSearch
 .NewSearch

 .LookI
 .File

Every Microsof
example, an Office application's Assistant propert
reference to the FileSearch obje
application, you can return a reference to a shared
have to u

Note
® Access, MicrosoftAll Office applications, except Microsoft

ice XP object library by the Microsoft Off
or Outlook, you must first manually set a refere

As with any object model, before you can work
work with or use the host application's accessor
accessor property (in these cases, the FileS
shared Offi

With Appli

n = "C:\My Documents"
Name = "*.doc"

 If .Execute() > 0 Then
 ' Work with found files here.
 End If
End With
Dim objAssistant As Assistant
Set objAssistant = Application.Assistant
With objAssistant
 .On = True
 .Visible = True
 .Animation = msoAnimationCharacterSuccessMajor
End With
Dim cbrCustomBar As CommandBar
Set cbrCustomBar = Application.CommandBars(strCBName)
With cbrCustomBar.Controls(strCtlName)
 .Enabled = Not .Enabled
End With

 126

Note
To set a reference to a shared Office component from outside an Office application, you must still use the accessor property of

® application,
erty to return a

th wdApp.FileSearch

with the FileSearch Object

an Office application. For example, to set a reference to the FileSearch object from a Microsoft® Visual Basic
h propyou could set a reference to the Microsoft® Word Application object and then use the Word FileSearc

reference to the FileSearch object. For example:

Dim wdApp As Word.Application
Set wdApp = New Word.Application
Wi
…..
End With

Working

functionality of the Office File Open dialog box, including
is available from the Open dialog box. You can use the objects,

iles or collections of files based on criteria you supply.

use Fast Find indexes to speed up its searching capabilities.

atures.

sulation in a class module.

code fragment illustrates how to use an application's FileSearch property to return a reference to the FileSearch
e the FileSearch object is shared among all Microsoft® Office applications, this code will work without

 With fsoFileSearch
 .NewSearch
 .LookIn = "c:\"

riteria and
od to carry out the search for the specified files. The Execute method returns the number of files found, and

al parameters that make it possible for you specify the sort order, the sort type, and whether to use only
dFiles property to return a reference to the FoundFiles object

ious searches; otherwise, the new search criteria

ty to specify what directory to begin searching in and the SearchSubFolders property to specify
hether the search should extend to subfolders of the directory specified in the LookIn property. The FileName property

suppor fications.

For more information about using the methods and properties of the FileSearch object, search the Microsoft Office Visual
Basic Reference Help index for "FileSearch object."

The FileSearch object exposes a programmatic interface to all the
g box, which the features found in the Advanced Find dialo

methods, and properties of the FileSearch object to search for f

Note
If Microsoft Fast Find is enabled, the FileSearch object can

In This Section

The Basics of File Searching
Understand the methods and properties of file searching.

Using Advanced File-Searching Features
Learn about some more complex file-searching fe

Creating Reusable File-Search Code
Learn why the FileSearch object is a great candidate for encap

The Basics of File Searching

The following
object. Becaus
modification from within any Office application:

Function FindFile(strFileSpec As String)
 Dim fsoFileSearch As FileSearch
 Set fsoFileSearch = Application.FileSearch

 .FileName = strFileSpec
 .SearchSubFolders = False
 If .Execute() > 0 Then
 For Each varFile In .FoundFiles
 strFileList = strFileList & varFile & vbCrLf
 Next varFile
 End If
 End With
 MsgBox strFileList
End Function

The FileSearch object has two methods and several properties you can use to build custom file-searching functionality into
your custom Office applications. The previous example uses the NewSearch method to clear any previous search c
the Execute meth
also supports option
saved Fast Find indexes to perform the search. You use the Foun
that contains the names of all matching files found in your search.

Note
You must use the NewSearch method to clear any search criteria from prev
will be added to the existing search criteria.

You use the LookIn proper
w

ts wildcard characters and a semicolon-delimited list of file names or file-type speci

 127

Using Advanced File-Searching Features

You get programmatic access to the advanced features of the FileSearch object by using its PropertyTests collection. These
features correspond to the options available in the Advanced Find dialog box, which is available through the Office File Open
dialog box.

The Advanced Find Dialog Box

The PropertyTests collection contains the criteria for a file search. Some of these criteria might have been specified by
properties of the FileSearch object itself while others must be added to the PropertyTests collection by using its Add method.

In the following example, one of the file-search criteria added to the PropertyTests collection corresponds to the Contents
setting in the Property box and another corresponds to the includes words setting in the Condition box in the preceding figure.

Set fsoFileSearch = Application.FileSearch
With fsoFileSearch
 .NewSearch
 .FileName = strFileName

FoundCombo.AddItem "No Matching Files Located!"

 Office applications. This makes the

es file-searching capabilities.

h Criteria

 .LookIn = strLookIn
 .SearchSubFolders = blnSearchSubDir
 .PropertyTests.Add "Contents", msoConditionIncludes, strFindThisText
 If .Execute(msoSortByFileName, msoSortOrderAscending, True) > 0 Then
 For Each varFile In .FoundFiles
 cboFoundCombo.AddItem varFile
 Next varFile
 Else
 cbo
 End If
 cboFoundCombo.ListIndex = 0
End With

Creating Reusable File-Search Code

Searching for files is something you might do repeatedly in any number of different
FileSearch object a great candidate for encapsulation in a class module that could be used in any Microsoft®Office application
that requir

Dialog Box Used to Gather Custom Searc

 128

The Find Office Files dialog box is s
documents" directory. Code behind t

hown immediately after executing a search for files with an ".xls" extension in the "c:\my
he Find Matching Files command button uses a global variable named objFileInfo to call

Variant

blFilesFound.Caption = CStr(objFileInfo.MatchingFilesFound) & " Matching Files Found:"

 ' This function returns an array of files that match the criteria specified by the SearchPath and SearchName properties. If the
 ' Sea
 Dim i

okIn = p_strPath

th the Office Assistant

the GetFileList method of the custom clsGetFileInfo class as follows:

Sub UpdateFileList()
' If the file-search specifications are valid, update the files contained in the form's combo box with a current list of matching
files.
 Dim varFoundFiles As Variant
 Dim varFile As

 varFoundFiles = objFileInfo.GetFileList
 If IsArray(varFoundFiles) Then
 With Me
 .cboMatchingFiles.Clear
 For Each varFile In varFoundFiles
 .cboMatchingFiles.AddItem varFile
 Next varFile
 .cboMatchingFiles.ListIndex = 0
 .l
 End With
 Else
 MsgBox "No files matched the specification: '" & Me.txtFileSpec & "'"
 End If
End Sub

The class contains several properties used to set the properties of the FileSearch object. It also exposes the GetFileList method
that returns an array containing all files that match the specified criteria.

Public Function GetFileList() As Variant

rchSubDirs property is set to True, the search includes subdirectories of SearchPath.
ntFoundFiles As Integer

 Dim astrFiles() As String
 Dim fsoFileSearch As FileSearch

 Set fsoFileSearch = Application.FileSearch
 With fsoFileSearch
 .NewSearch
 .Lo
 .FileName = p_strName
 .FileType = msoFileTypeAllFiles
 .SearchSubFolders = p_blnSearchSubs
 If .Execute(p_intSortBy, p_intSortOrder) > 0 Then
 p_intFoundFiles = .FoundFiles.Count
 ReDim astrFiles(1 To .FoundFiles.Count)
 For intFoundFiles = 1 To .FoundFiles.Count
 astrFiles(intFoundFiles) = .FoundFiles(intFoundFiles)
 Next intFoundFiles
 GetFileList = astrFiles
 Else
 GetFileList = ""
 End If
 End With
End Function

Working wi

 129

You can use the Office Assistant to animate characters that interact with your users, provide context-sensitive help, highlight
ation from users, or otherwise provide a "social" interface to your application that

stant character is drawn onscreen without an enclosing window that
to specific

 Assistant, the

 Control vs. the Office Assistant
of the Agent that are available only through the control.

imation you want to run, and display

 Balloon Objects
bject to enables the Assistant to communicate with and get feedback from users.

 Controls

d set its Callback property.

ft Agent ActiveX Control vs. the Office Assistant

 Microsoft Agent ActiveX control. Many of the Agent control's methods and properties are
exposed through the Assistant's object model. You can use the Agent control in Microsoft® Office applications, on Web pages,
or in any environment that supports Microsoft® ActiveX® controls.

There are some circumstances where you would use the Agent control instead of the Assistant object to provide Office
Assistant services:

You want to use features of the Agent that are available only through the control-for example, the Agent's speech-recognition
capabilities.

You want to use the Agent control in an Office application where the Assistant object is not available. For example, if you
have an Access run-time application on a machine that does not have Office installed, you can use the Agent control to provide
the full range of Assistant services without accessing the Assistant's object model.

You want to use the Agent to provide Assistant-like services on a Web page. The Agent control is added to HTML pages by
using the <OBJECT> tag and is manipulated by using script.

o the Assistant object and then accessing the properties and
the assistant do what you want. You can make the Assistant visible, move it to different

ight
 various Assistant properties that you should preserve. Any time you manipulate the Assistant, you should save the

e and unavailable, but the
letely turned off. In Office XP, the Assistant has an On property that affects whether the Assistant

g on the Visible property's setting.

to save the initial settings for the On and Visible properties, how to make the
n technique:

parts of your user interface, collect inform
many users find interesting and fun to use. The Office Assi
can interact with other elements of the application interface, pointing out controls or directing the user's attention
sections of a document.

You use the objects, methods, and properties of the Assistant object to programmatically control the Office
, and all the items inside the balloon. Office Assistant balloon

In This Section

Microsoft Agent ActiveX
Learn when to use features

Programming the Office Assistant
stant visible, move it to different locations on the screen, specify the anMake the Assi

Assistant balloons containing text and controls.

Working with
Use the Office Assistant Balloon o

Using Balloon
Understand how to use Balloon controls.

Modeless Balloons and the Callback Property
Create a modeless balloon, an

Microso
The Office Assistant is based on the

Programming the Office Assistant

Programming the Assistant is a matter of setting an object variable t
methods you must have to make
locations on the screen, specify the animation you want to run, and display Assistant balloons containing text and controls.

One important thing to remember when you programmatically manipulate the properties of the Assistant is that the user m
have set
properties that existed before you began and then restore those properties when you are finished. For example, if the user
normally has the Assistant turned off and you programmatically turn it on to perform some task, you should make sure you
turn it off when you are finished using it.

In previous versions of Microsoft® Office, the Assistant is either visible and available or not visibl
Assistant can never be comp
is available at all.

You use the Assistant's On and Visible properties to determine its initial state. When the On property is set to False, the Visible
property is False and any attempt to programmatically manipulate the Assistant (except for a call to the Assistant's Help
method) is ignored and no error is raised. When the On property is set to True, the Assistant will be either visible or hidden
dependin

Note
When the On property's value is changed from False to True, the Visible property is set to True.

The following example demonstrates how
Assistant visible, and a simple animatio

 130

Sub SimpleAnimation()
hows simple Assistant animation techniques. It calls the Wait procedure between animations to give the

 As Boolean

ssistantVisible Then

 = blnAssistantOn

nd Sub

utine that uses a custom class object to wait the number of
t. When you are stringing Assistant animations together, this procedure is

nother animation begins.

eName property specifies the animated character that is displayed when the Assistant is visible. Character
 addition, you can create your own character

ld be stored in the host application's folder or in the C:\Windows\Application
rosoft\Office\Actors subfolder; if multiple users work on the same machine and user profiles have been set up on the

r characters in the host application's folder or in the C:\Windows\Profiles\UserName\Application
tors subfolder. For more information about setting up user profiles, search the Microsoft®

user profiles."

er is displayed by setting the Assistant's FileName property to the name of the .acs file for the
ple, the following procedure changes the character to the name of the character specified in

ent:

er(strCharName As String) As Integer
the existing Assistant character to the character specified in the strCharName argument. The

 by using constants defined in the Declarations section of this module.

tion.Assistant

xit Function

n Data\Microsoft\Office\Actors subfolder. If your character files are located
iscussed here, you must set the FileName property by using the full path to the file.

 the user clicks OK, the same file-search sequence is executed again. If the
e property is ignored and no error occurs.

 ' This procedure s
animation time to complete.
 Dim blnAssistantVisible As Boolean
 Dim blnAssistantOn

 With Application.Assistant
 blnAssistantOn = .On
 blnAssistantVisible = .Visible
 If Not blnAssistantOn Then
 .On = True
 ElseIf Not blnA
 .Visible = True
 End If
 .Animation = msoAnimationCheckingSomething
 Call Wait(5000)
 .Animation = msoAnimationEmptyTrash
 Call Wait(7000)
 .Animation = msoAnimationCharacterSuccessMajor
 Call Wait(5000)
 If (Not blnAssistantOn) Or (Not blnAssistantVisible) Then
 .On
 .Visible = blnAssistantVisible
 End If
 End With
E

Note
ed in the previous example is a subroThe Wait procedure us

milliseconds specified in the procedure's argumen
 time to finish before arequired to give one animation

The Assi
files use

stant's Fil
an ".acs" extension, and several characters are supplied with Office. In

files by using the Microsoft Agent ActiveX control's character editor.

Characters you create shou
Data\Mic
machine, store you
Data\Microsoft\Office\Ac
Windows® Help index for "

You specify which charact
e. For examcharacter you want to us

the strCharName argum

Function ChangeCharact
 ' This procedure changes
procedure's return values are set

 With Applica
 If UCase(.FileName) = UCase(strCharName) Then
 ChangeCharacter = ASST_CHAR_SAMECHAR
 E
 End If
 .FileName = strCharName
 ChangeCharacter = ASST_CHAR_CHANGED
 End With
End Function

Note
If you are using a character supplied by Office, you are not required to include the full path to the .acs file you want to use.
When you set the FileName property, Visual Basic for Applications (VBA) will look for the file in the host application's folder
and then in the C:\Windows\Application Data\Microsoft\Office\Actors subfolder and, if it exists, in the
C:\Windows\Profiles\UserName\Applicatio
somewhere other than the three locations d
If the file cannot be found, a message is displayed. If
user clicks Cancel, the attempt to change the FileNam

 131

Working with Balloon Objects

nd get feedback from your users. Balloon objects
sible for you create a simple interface for user interaction. They are not designed to replace

 addition, Balloon objects can
ible at a time, but you can create

property. When you have created the new Balloon object,
 properties and then display it by using the Balloon object's Show method. The following two simple procedures

oon objects discussed so far. The TestCreateSimpleBalloon procedure creates two
g and Text properties. The procedure then creates the balSimple Balloon

Balloon procedure and passing in the heading and text strings. CreateSimpleBalloon sets
roperties for this balloon and then returns the new Balloon object to the calling procedure where it is

ethod.

ing

an

balloon."
inished reading this message, click OK to proceed." _

This text is red." & vbCrLf & "{cf 252}This text is blue." _
 0}This text has a {ul 1}word{ul 0} that is underlined." _

."
sible

SimpleBalloon(strMessage, strHeading)
le Then

 balSimple

(strText As String, strHeading As String) As Office.Balloon

 = strHeading

els or Checkboxes property,
objects are similar to option button controls.) You specify the text associated

The Assistant's Balloon object enables the Assistant to communicate with a
are designed to make it pos
complex dialog boxes.

Balloon objects can contain text that can be plain, underlined, or displayed in different colors. In
contain labels or check boxes, certain icons, and bitmaps. Only one Balloon object can be vis

on objects in code and use them when required. multiple Ballo

You create a Balloon object by using the Assistant's NewBalloon
you can set its
illustrate many of the features of Ball
formatted strings used to specify the balloon Headin
object by calling the CreateSimple
several other "default" p
displayed by using the Show m

Sub TestCreateSimpleBalloon()
lloon Dim balSimple As Ba

Message As Str Dim str
 Dim strHeading As String

ssistVisible As Boole Dim blnA

 strHeading = "This is a simple

 "When you have f strMessage =
 & vbCrLf & "{cf 249}

 "{cf & vbCrLf &
 & vbCrLf & "This text is plain

ication.Assistant.Vi blnAssistVisible = Appl
reate Set balSimple = C

If Not blnAssistVisib
 Call ShowAssistant
 End If
 With
 .Show
 End With
 Application.Assistant.Visible = blnAssistVisible
End Sub

Function CreateSimpleBalloon
 Dim balBalloon As Balloon

 With Application.Assistant
 Set balBalloon = .NewBalloon
 With balBalloon
 .BalloonType = msoBalloonTypeButtons

 msoButtonSetOK .Button =
 .Heading
 .Icon = msoIconTip
 .Mode = msoModeModal
 .Text = strText
 End With
 Set CreateSimpleBalloon = balBalloon
 End With
End Function

Note that the strMessage variable contains a string that includes embedded brackets such as {cf 252}, {cf 0}, {ul 1}, and {ul 0}.
You use the {cf value} brackets to specify the color of the text that follows the bracket. You use the {ul value} brackets to
specify where text underlining begins and ends. For more information about specifying text color and underlining text in
Balloon objects, search the Microsoft® Office Visual Basic Reference Help index for "Text property."

If you run the sample code, you will notice that the code stops executing while the Balloon object is displayed. This is because
the balloon's Mode property specifies that the balloon is modal. In addition, you can display modeless Balloon objects.

Using Balloon Controls

You add labels or check box controls to a Balloon object by using the Balloon object's Lab
respectively. (Note that label controls in Balloon

 132

with a label or check box by using the control's Text property. You specify a single control by using an index number between

al = .Show

f

easy to use."

e & "{cf 4}" & chkBox.Text & "{cf 0}" & "' and '"

ove the trailing "' and '" from strChoice.

oice = Left(strChoice, Len(strChoice) - 7)
 End If

ke a selection."

Balloons and the Callback Property

1 and 5, which represents the number of the label or check box control in the balloon. For example, the following sample
shows one way to use label controls in a Balloon object:

With balBalloon
 .Button = msoButtonSetNone
 .Heading = "Balloon Object Example One"
 .Labels(1).Text = "VBA is a powerful programming language."
 .Labels(2).Text = "Office is a great development environment."
 .Labels(3).Text = "The Assistant is cool!"
 .Labels(4).Text = "Balloon objects are easy to use."

tions:" .Text = "Select one of the following " & .Labels.Count & "Op
 ' Show the balloon.
 intRetV

 ' Save the selection made by the user.
 If intRetVal > 0 Then
 strChoice = "{cf 4}" & .Labels(intRetVal).Text & "{cf 0}"
 Else
 strChoice = ""
 End I
End With
Set balBalloon = Assistant.NewBalloon
With balBalloon
 .Text = "You selected option " & CStr(intRetVal) & ": '" & strChoice & "'"
 .Show
End With

Note that when the balloon is displaying label controls, you are not required to have OK or Cancel buttons, because the balloon
is dismissed as soon as any label control is selected, and the user can select only one control at a time. This is not the case
when you use check box controls. The user can select more than one check box before dismissing the balloon, so your code
should account for multiple selections. The next example shows one way to display check box controls and then identify the
selections made by the user:

With balBalloon
 .Button = msoButtonSetOK
 .Heading = "Balloon Object Example Two"
 .Checkboxes(1).Text = "VBA is a powerful programming language."
 .Checkboxes(2).Text = "Office is a great development environment."
 .Checkboxes(3).Text = "The Assistant is cool!"
 .Checkboxes(4).Text = "Balloon objects are
 .Text = "How many of the following " & .Checkboxes.Count & " statements do you agree with?"
' Save the selection made by the user.
 intRetVal = .Show
' Construct the string to display to the user based on the user's selections.
 For Each chkBox In .Checkboxes
 If chkBox.Checked = True Then
 strChoice = strChoic
 End If
 Next chkBox
 ' Rem
 If Len(strChoice) <> 0 Then
 strCh

End With
' Create new Balloon object and display the user's choices.
Set balBalloon = Assistant.NewBalloon
With balBalloon
 If intRetVal > 0 Or Len(strChoice) > 0 Then

 .Text = "You selected '" & strChoice & "'."
 Else

 .Text = "You didn't ma
 End If
 .Show
End With

Modeless

 133

When you display a modeless balloon, the user is able to use your application while the balloon is displayed. You specify that
e built-in constant msoModeModeless.

ou could use this property in a single generic callback procedure that is called from multiple modeless
 code, the sample contains a five-step tour of a Northwind Company spreadsheet that

alloons representing each step in the tour. All five Balloon objects name the
ch Balloon object uses a unique value in its Private
ue and the value of the button clicked by the user

 has called the procedure and which button was clicked. The Balloon objects that call
this procedure all specify a Private property by using a module-level constant (BALLOON_ONE, BALLOON_TWO, and so
on) that indicates in which step of the tour they are called. Each balloon has a Close button and either a Next button, a Back
button, or both, depending on the balloon's location in the tour. This single procedure is designed to handle all selections made

alloon, lngBtnRetVal As Long, lngPrivateBalloonID As Long)

_TWO))

lloon(CStr(BALLOON_THREE))

sBalloon(CStr(BALLOON_TWO))
OON_FOUR + BUTTON_NEXT

elessBalloon(CStr(BALLOON_FIVE))

)

ModelessBalloon(CStr(BALLOON_FOUR))

 button.
lloons = Nothing

ect

n and a great deal of programmatic control over how your users interact with the balloons
alloon object's properties and methods. You

king with Command Bars

a balloon is modeless by setting the Mode property to th

When you create a modeless balloon you must also set its Button property to something other than msoButtonSetNone and its
Callback property to the name of a procedure to call when the user clicks a button in the modeless balloon. The procedure
named in the Callback property must accept three arguments: a Balloon object, a long integer representing the button selected
(msoBalloonButtonType values or a number representing the button clicked when the BalloonType property is set to
msoBalloonTypeButtons), and a long integer representing the Balloon object's Private property.

You use the Private property to assign a value to a Balloon object that uniquely identifies it to the procedure named in the
Callback property. Y
balloons. For example, in the following
uses a collection of modeless b
BalloonCallBackProc procedure in their Callback property setting. Ea
property setting, and the BalloonCallBackProc procedure uses this val
(lngBtnRetVal) to identify which balloon

in all balloons:

Function BalloonCallBackProc(balBalloon As B
 ' This procedure is specified in the Callback property setting for all five balloons used in the Modeless
 ' Balloon Demo. These balloons are created in the AddBalloon procedure and stored in the mcolModelessBalloons collection.
 Const BUTTON_BACK As Long = -5
 Const BUTTON_NEXT As Long = -6

 ' Close current balloon.
 balBalloon.Close
 Select Case lngPrivateBalloonID + lngBtnRetVal
 Case BALLOON_ONE + BUTTON_NEXT
 ' User clicked first balloon, Next button.
 Call ShowModelessBalloon(CStr(BALLOON
 Case BALLOON_TWO + BUTTON_NEXT
 Call ShowModelessBa
 Case BALLOON_TWO + BUTTON_BACK
 Call ShowModelessBalloon(CStr(BALLOON_ONE))
 Case BALLOON_THREE + BUTTON_NEXT
 Call ShowModelessBalloon(CStr(BALLOON_FOUR))
 Case BALLOON_THREE + BUTTON_BACK
 Call ShowModeles
 Case BALL
 Call ShowMod
 Case BALLOON_FOUR + BUTTON_BACK
 Call ShowModelessBalloon(CStr(BALLOON_THREE)
 Case BALLOON_FIVE + BUTTON_BACK
 Call Show
 Case Else
 ' User clicked Close
 Set mcolModelessBa
 End Sel
End Function

This is just one example of the kinds of things you can do with modeless Balloon objects. You have a great deal of flexibility
over what you can do with a balloo
you create. You can use the Object Browser to get a complete listing of all the B
can use the Microsoft® Office Visual Basic Reference Help index to get more information about these properties and methods.

Wor

lable
bars object model. In Office applications, there are three kinds of CommandBar objects: toolbars,

op-up menus. Pop-up menus are displayed in three ways: as menus that drop down from menu bars, as

 to manipulate command bars
an do in a host application by

Microsoft®Office applications all share the same technology for creating menus and toolbars, and this technology is avai
to you through the command
menu bars, and p
submenus that cascade off menu commands, and as shortcut menus. Shortcut menus (also called "right-click menus") are
menus that appear when you right-click something.

Because the command bars object model is shared by all Office applications, you can write code
that can be used in any Office application or custom application you develop. Everything you c

 134

using the Customize dialog box you also can do by using Microsoft® Visual Basic® for Applications (VBA) code. In addition,
there are some things you can do only by using VBA code.

and Bar Information

and bar controls,

ation

ome cases, implements command bars in a different way. The primary difference is how and where each
.

you make changes to any of the built-in command bars in an Office application, information about those changes is

pecific file. One important result of this is that command bars cannot be shared between Office documents of

xception of Access, all Office applications store command bar information in specific locations, the path to which
er where the command bars are created. For

oft Access Command Bars

Understanding how to work with command bars in Office applications requires that you understand not only what they have in
common across all applications (the command bars object model) but also how they differ within each application.

In This Section

Understanding Application-Specific Comm
Learn how each Microsoft® Office application stores command bar information in a different location and, in some cases,
implements command bars in a different way.

Manipulating Command Bars and Command Bar Controls with VBA Code
Use objects, collections, properties, and methods to show, hide, and modify existing command bars and comm
as well as create new ones.

Understanding Application-Specific Command Bar Inform
Despite sharing a common object model, each Microsoft® Office application stores command bar information in a different
location and, in s
Office application stores custom command bars

Note
When
stored in the Windows registry on a per-user basis. Information about the visibility and location of built-in and custom
command bars is stored in the registry as well.

Each Office application stores its command bars either with the Office document that contains the command bars, or in an
application-s
different types although they can be shared among documents of the same type. You cannot create a command bar in
Microsoft® Word and then copy that command bar to a Microsoft® Access application and use it there.

With the e
depends on whether user profiles have been set up for multiple users on the comput
more information about setting up user profiles, search the Microsoft® Windows® Help index for "user profiles."

Micros

ars to be available.

ut them, for example their visibility and location, is stored in the Windows registry.

The command bars you create in Microsoft® Access are stored with the database in which they are created. If you want to
create command bars that are available to more than one database, you must create them in an add-in database and reference
that database from each database application where you want the command b

Built-in command bars and information abo

The location of information about command bars in an Access database is not dependant upon whether user profiles have been
set up for multiple users.

Microsoft Excel Command Bars

Microsoft® Excel makes it possible for you store command bars with an individual workbook or in the Excel workspace.
l.xlb is
 set up,

 the workspace to a workbook by using the Attach Toolbars dialog box (click Attach on the
ou cannot copy command bars to a workbook by using Microsoft® Visual

c® for Applications (VBA) code. After you have copied a command bar to a workbook, you can delete it from the
he Toolbars tab of the Customize dialog box or by using the Delete method of the

ogrammatically delete them from the
e removing only the workspace
t time your custom application

ar is modified by the user, the

r to a workbook or to delete a workbook command bar from a
from a workbook is to use the Delete button in the Attach Toolbars

x.

Workspace command bars are saved in a file named Excel.xlb. If user profiles have been set up for multiple users, Exce
files have not beenstored in the C:\Windows\Profiles\UserName\Application Data\Microsoft\Excel subfolder. If user pro

ows\Application Data\Microsoft\Excel subfolder. Excel.xlb is stored in the C:\Wind

You can copy command bars from
Toolbars tab of the Customize dialog box). Y
Basi
workspace by clicking Delete on t
CommandBars collection.

Note
When you open a workbook, Excel copies the workbook's custom command bars that do not already exist in the workspace to
the workspace. These copied command bars are not deleted from the workspace when you close your workbook. If you want
custom command bars to be available only when your workbook is open, you must pr
workspace when your workbook closes. When you delete a command bar in this fashion, you ar
copy, not the workbook copy. The workbook copy will be copied again to the workspace the nex
opens. If you do not delete the workspace copy and the workspace copy of the command b
workbook copy will not be recopied to the workspace when your workbook is reopened.

Note
You cannot use VBA to copy a workspace command ba

k. The only way to delete a custom command bar workboo
dialog bo

 135

Note
If a control on the workspace copy of the command bar calls code that exists in a workbook and the workbook is not open
when the control is used, the workbook is immediately opened and made visible.

Command bars that you create to distribute with a custom application should be stored in the application's workbook or
template.

Microsoft FrontPage Command Bars

In Microsoft® FrontPage®, you can create custom command bars that will be available in the FrontPage workspace. In other
lable and are not linked to a specific FrontPage-based web. FrontPage
RF. If user profiles have been set up for multiple users, CmdUI.PRF is

me\Application Data\Microsoft\FrontPage\State subfolder. If user profiles have not
ndows\Application Data\Microsoft\FrontPage\State subfolder.

ommand Bars

words, custom command bars are generally avai
command bars are saved in a file named CmdUI.P
stored in the C:\Windows\Profiles\UserNa
been set up, CmdUI.PRF is stored in the C:\Wi

Microsoft Outlook C

 the Outlook workspace in the Outcmd.dat file. If user profiles have been
ultiple users, the Outcmd.dat file is stored in the C:\Windows\Profiles\UserName\Application

\Outlook subfolder. If user profiles have not been set up, the Outcmd.dat file is stored in the

In Microsof
for m

t® Outlook®, command bars are stored in
set up
Data\Microsoft
C:\Windows\Application Data\Microsoft\Outlook subfolder.

Microsoft PowerPoint Command Bars

In Microsoft® PowerPoint®, custom com
ve been set up for mu

mand bars are stored only in the application workspace in a file named PPT.pcb. If
ltiple users, the PPT.pcb file is stored in the C:\Windows\Profiles\UserName\Application

\PowerPoint subfolder. If user profiles have not been set up, the PPT.pcb file is stored in the

oint presentation is running. Therefore, changes you make to PowerPoint
ble in the design-time environment.

Command Bars

user profiles ha
ata\MicrosoftD

C:\Windows\Application Data\Microsoft\PowerPoint subfolder.

Note
Command bars are not visible while a PowerP
ommand bars are limited to those that are availac

Microsoft Word

 have the option of storing that command bar in the Normal.dot
late, or in the currently active document. If the command bar is stored with the Normal.dot

y document, even if the document is based on a different template. If the command bar is
e document and that document is a template, the command bar will be available for any

on that template. If the command bar is stored with a document, it will be available only when that
en.

m command bars are stored in the Normal.dot file by default. If user profiles have been set up for multiple users,

 application documents are based. If you must have your command bars available to documents

, you
in to distribute your code.

 using the Customize dialog box, you specify where the command bar is
b of the Customize dialog box. When you create a custom command bar

ual Basic® for Applications (VBA) code, you specify where it is stored by using the
text property of the Application object.

and Bars and Command Bar Controls with VBA Code

odel exposes a wealth of objects, collections, properties, and methods that you can use to show,
ommand bars and command bar controls, and create new ones. In addition, you can specify a

ications (VBA) procedure to run when a user clicks a command bar button or to respond to
mand bar control. The following sections provide a broad overview of the kinds of
® Office applications and how to accomplish them.

When you create a command bar in Microsoft® Word, you
template, in a separate temp
template, it will be available to an

tly activstored with the curren
ted based document crea

 opdocument is

In Word, custo
this file is stored in the C:\Windows\Profiles\UserName\Application Data\Microsoft\Templates subfolder. If user profiles have
not been set up, the Normal.dot file is stored in the C:\Windows\Application Data\Microsoft\Templates subfolder. Command
bars created in other documents or in document templates are stored with that document or template.

When you create custom applications based on Word, it is typical to store your code in a custom document template so that the
code is available to documents created based on your template. You should also store any custom command bars in the
template on which your custom
based on more than one template, you can store them in a global template or add-in.

Note
It is not a good practice to store your code or command bars in a user's Normal.dot file. Many users or system administrators

 file fromprotect the Normal.dot file from modifications to prevent the file from being infected by a virus or to keep the
 you can never be sure that Normal.dot will be available for modificationsgrowing to an unreasonable size. Because

ld use your own custom template or add-shou

When you create custom command bars in Word by
stored by using the Save In box on the Commands ta
in Word by using Microsoft®Vis
CustomizationCon

Manipulating Comm
The command bars object m
hide, and modify existing c
Microsoft® Visual Basic® for Appl
events triggered by a command bar or com

do in your custom Microsoftthings you can

Note

 136

Many of the examples in this section refer to the "Menu Bar" CommandBar object. This is the name of the main menu bar in
Microsoft® Word, Microsoft® PowerPoint® and Microsoft® Access. The main menu bar in Microsoft® Excel is called
"Worksheet Menu Bar." To experiment with sample code that refers to the "Menu Bar" CommandBar object in Excel, simply

 Menu Bar." change the reference from "Menu Bar" to "Worksheet

Getting Information About Command Bars and Controls

Each Microsoft® Office application contains dozens of built-in command bars and can contain as many custom command bars
as you choose to add. Each command bar can be one of three types: menu bar, toolbar, or pop-up menu. All of these command

rols. To get a good understanding of the command bars
rols in an existing application.

rmation about any command bar and its controls:

 procedure prints (to the Debug window) information about the command bar specified in the strCBarName argument

_INVALID_CMDBARNAME As Long = 5

pplication.CommandBars(strCBarName)
" & CBGetCBType(cbrBar) & ")" & vbTab & "(" _

unction

e of a command bar as the only
following command from the Immediate window:

see a listing of all the controls and their control types on the Office Web built-in toolbar, as shown in the following

ntrols

bar types can contain additional command bars and any number of cont
bject modo el, it is often best to start by examining the various command bars and cont

You can use the following procedure to print (to the Debug window) info

Function CBPrintCBarInfo(strCBarName As String) As Variant
 ' This
 ' and information about each control on that command bar.
 Dim cbrBar As CommandBar
 Dim ctlCBarControl As CommandBarControl
 Const ERR

 On Error GoTo CBPrintCBarInfo_Err
 Set cbrBar = A
 Debug.Print "CommandBar: " & cbrBar.Name & vbTab & "(
 & IIf(cbrBar.BuiltIn, "Built-in", "Custom") & ")"
 For Each ctlCBarControl In cbrBar.Controls
 Debug.Print vbTab & ctlCBarControl.Caption & vbTab & "(" & CBGetCBCtlType(ctlCBarControl) & ")"
 Next ctlCBarControl
CBPrintCBarInfo_End:
 Exit F
CBPrintCBarInfo_Err:
 Select Case Err.Number
 Case ERR_INVALID_CMDBARNAME
 CBPrintCBarInfo = "'" & strCBarName & "' is not a valid command bar name!"
 Case Else
 CBPrintCBarInfo = "Error: " & Err.Number & " - " & Err.Description
 End Select
 Resume CBPrintCBarInfo_End
End Function

You call this procedure in the Visual Basic Editor's Immediate window by using the nam
argument. For example, if you execute the

? CBPrintCBarInfo("Web")

You will
figure.

Listing of Web Toolbar Co

When a control type is shown as "Popup," as with the Favorites control above, the control itself is a command bar. You can get
ommand bar by calling the CBPrintCBarInfo procedure and passing in the name of

 every command bar of any type in an application, you can use the PrintAllCBarInfo procedure.

a listing of the controls on a pop-up menu c
the pop-up menu as the strCBarName argument. For example:

? CBPrintCBarInfo("Favorites")

Note that the CBPrintCBarInfo procedure calls two other custom procedures to get the command bar type and the control type.
To get information about
 137

Not
To refer
represen
Controls
represen ntrol's location within the collection. All collections are indexed beginning with 1.

Creatin

e
 to a member of the CommandBars collection, use the name of the CommandBar object or an index value that
ts the object's location in the collection. The controls on a command bar are members of the CommandBar object's
 collection. To refer to a control in the Controls collection, use the control's Caption property or an index value that
ts the co

g a Command Bar

You n
code in a bars and pop-up menus by using
the t
menus.

You create ommandBars collection's Add method. The Add method creates a toolbar by

e)

tion.CommandBars.Add(Name:=strCBarName, Position:=msoBarPopup)
 bar, you still must add any controls that you want and set the command bar's Visible

d Showing a Command Bar

 ca create toolbars by using the Customize dialog box or by using Microsoft® Visual Basic® for Applications (VBA)
ny Microsoft® Office application. In Microsoft® Access, you also can create menu

Cus omize dialog box. However, in all other Office applications, you must use VBA code to create menu bars or pop-up

 a custom command bar by using the C
default. To create a menu bar or pop-up menu, use the msoBarMenuBar or msoBarPopup constant in the Add method's
Position argument. The following code sample illustrates how to create all three types of CommandBar objects:

Dim cbrCmdBar As CommandBar
Dim strCBarName As String

' Create a toolbar.
strCBarName = "MyNewToolbar"
Set cbrCmdBar = Application.CommandBars.Add(Name:=strCBarNam
' Create a menu bar.
strCBarName = "MyNewMenuBar"
Set cbrCmdBar = Application.CommandBars.Add(Name:=strCBarName, Position:=msoBarMenuBar)
' Create a pop-up menu.
strCBarName = "MyNewPopupMenu"
Set cbrCmdBar = Applica
After you have created a command
property to True.

Hiding an

 toolbar, you can specify
ion property. For example, the following code sample takes three

s: the name of a toolbar, a Boolean value indicating whether it should be visible or hidden, and a value matching an
 code also illustrates how

ure the specified command bar is a toolbar:

olbarShow(strCBarName As String, blnVisible As Boolean, Optional lngPosition As Long = msoBarTop) As

e value of the
t specifies where the command bar will appear on the screen.

rCmdBar As CommandBar

only toolbars.

ToolbarShow = False

sition = msoBarTop

w = True

 CBToolbarShow = False

You hide or show a toolbar by using the CommandBar object's Visible property. When you display a
where it will appear on the screen by using the Posit
argument
msoBarPosition constant specifying where on the screen the toolbar should be displayed. The sample
to use the CommandBar object's Type property to make s

Function CBTo
Boolean

pecified in the strCBarName argument according to th ' This procedure displays or hides the command bar s
 argument. The optional lngPosition argumenblnVisible

 Dim cb

 On Error GoTo CBToolbarShow_Err

mdBar = Application.CommandBars(strCBarName) Set cbrC
 ' Show
 If cbrCmdBar.Type > msoBarTypeNormal Then
 CB
 Exit Function
 End If
 ' If Position argument is invalid, set to the default msoBarTop position.
 If lngPosition < msoBarLeft Or lngPosition > msoBarMenuBar Then
 lngPo
 End If
 With cbrCmdBar
 .Visible = blnVisible
 .Position = lngPosition
 End With
 CBToolbarSho
CBToolbarShow_End:
 Exit Function

CBToolbarShow_Err:

 Resume CBToolbarShow_End
End Function

 138

You display a custom menu bar by setting its Visible property to True and setting the existing menu bar's Visible property to
False.

Copying a Command Bar

You must use Microsoft® Visual Basic® for Applications (VBA) code to copy an existing command bar. You create a copy of

y an existing command bar:

Function CBCopyCommandBar(strOrig , Optional blnShowBar As Boolean =
False) As Boolean

rror GoTo CBCopy_Err

 = CommandBars.Add(Name:=strNewCBName, Position:=msoBarMenuBar)

up)

Name:=strNewCBName)

CBarControl In cbrOriginal.Controls
 ctlCBarControl.Copy cbrCopy

 Next

 End If
 CBCopyCommandBar = True
CBCopy_End:
 Exit Function
CBCopy_Err:
 CBCopyCommandBar = False
 Resume CBCopy_End
End Function

This procedure will not work if you pass in the name of an existing command bar in the strNewCBName argument, because
that argument represents the name of the new command bar.

Note
If you copy a pop-up menu and set the blnShowBar argument to True, the pop-up menu will be displayed at the current
location of the mouse pointer. For more information about displaying pop-up menus, search the Microsoft Office Visual Basic
Reference Help index for "ShowPopup method."

Deleting a Command Bar

a command bar by creating a new command bar of the same type as the one you want to copy, and then use the
CommandBarControl object's Copy method to copy each control from the original command bar to the new command bar. The

llowing procedure illustrates how to use VBA to copfo

CBName As String, strNewCBName As String

 ' This procedure copies the command bar named in the strOrigCBName argument to a new command bar specified in the
strNewCBName argument.
 Dim cbrOriginal As CommandBar
 Dim cbrCopy As CommandBar
 Dim ctlCBarControl As CommandBarControl
 Dim lngBarType As Long

 On E
 Set cbrOriginal = CommandBars(strOrigCBName)
 lngBarType = cbrOriginal.Type
 Select Case lngBarType
 Case msoBarTypeMenuBar
 Set cbrCopy
 Case msoBarTypePopup
 Set cbrCopy = CommandBars.Add(Name:=strNewCBName, Position:=msoBarPop
 Case Else
 Set cbrCopy = CommandBars.Add(
 End Select
 ' Copy controls to new command bar.

 For Each ctl

 ctlCBarControl
 ' Show new command bar.
 If blnShowBar = True Then
 If cbrCopy.Type = msoBarTypePopup Then
 cbrCopy.ShowPopup
 Else
 cbrCopy.Visible = True
 End If

You can delete toolbars and menu bars from the Customize dialog box or by using Microsoft® Visual Basic® for Applications
(VBA). You can delete pop-up menus only by using VBA. Use the Delete method of the CommandBars collection to remove
an existing command bar from the collection. The following procedure illustrates one way to delete a CommandBar object:

Function CBDeleteCommandBar(strCBarName As String) As Boolean
 On Error Resume Next
 Application.CommandBars(strCBarName).Delete
End Function

 139

An error will occur if strCBarName is not the name of an existing command bar. The procedure uses the On Error Resume
Next statement to ignore this error because, if an error occurs, it means there is nothing to delete. In addition, it could mean
you tried to delete a built-in command bar, such as Standard, which cannot be deleted.

Preventing Users from Modifying Custom Command Bars

There might be circumstances when you want to make sure that users of your custom application cannot delete or disable your
custom command bars by using the Customize dialog box. The easiest, but least secure, way to keep users from modifying

stom command bars is to disable the command bars and make sure they are visible only when absolutely necessary.

e Customize dialog box. This

he Toolbar List pop-up command bar to provide access to built-in and custom
 the View menu or when you right-click

f
og box from either of these access points:

e

 constructed, you cannot disable any of its commands. The only way to
ire command bar.

ause you also can open the Customize dialog box by clicking Customize on the Tools menu, you will have to disable this
t access to your custom command bars. The following procedure illustrates how to

ustomization(blnAllowEnabled As Boolean)
events access to the command bars Customize dialog box according to the value of the

ustomize...").Enabled = blnAllowEnabled

th Personalized Menus

your cu
You disable a command bar by setting its Enabled property to False. You hide a command bar by setting its Visible property to
False. However, hiding a command bar does nothing to prevent users from getting to the bar through the Customize dialog box.

To completely restrict access to your custom command bars, you must restrict all access to th
dialog box can be accessed in three ways: by pointing to Toolbars on the View menu and then clicking Customize; by right-
clicking any command bar and then clicking Customize on the shortcut menu; and by clicking Customize on the Tools menu.

All Microsoft® Office applications use t
command bars. The Toolbar List command bar appears when you click Toolbars on
any command bar. If you set the Enabled property of the Toolbar List command bar to False as shown in the following line o
code, a user will not be able to open the Customize dial

CommandBars("Toolbar List").Enabled = Fals

Note
Because of the way the Toolbar List command bar is
disable commands on this command bar is to disable the ent

Bec
command as well to completely restric
disable all access to the Customize dialog box:

Sub AllowCommandBarC
 ' This procedure allows or pr
blnAllowEnabled argument.

ndBars("Tools").Controls("C Comma
 CommandBars("Toolbar List").Enabled = blnAllowEnabled
End Sub

Working wi

e a feature in Microsoft® Office XP that makes it possible for you see a collapsed subset of menu items
You specify whether personalized menus are enabled by pointing to Toolbars on the View menu,

 the Options tab, and then selecting the Always show full menus commands first check box.
n by default.

 menus.

enus for all command bars in an application or for individual command bars only. You can use
 whether personalized menus are on or off for all command

 a CommandBar object's AdaptiveMenu property to specify whether that object's menus are displayed as
enus.

l object's Priority property to specify whether a control on a menu will be visible when
us are on. When you add a custom CommandBarControl object to a command bar, it will be visible by

. If you set a control's Priority property to 1, the control will always be visible. If you set the Priority property to 0, the

u, but you must expand the menu to see it.

 menu is displayed.

lue of the blnState argument.
 On Error Resume Next

Personalized menus ar
that you use most often.
clicking Customize, clicking
Personalized menus are turned o

Note
The personalized menus feature does not apply to shortcut

You can turn on personalized m
the CommandBars collection's AdaptiveMenus property to specify
bars. You use
personalized m

You use a Co
personalized men

mmandBarContro

default
control will initially be visible but might be hidden by the host application if it is not used regularly. When a control is hidden,
it is still available on the men

The CommandBarControl object's IsPriorityDropped property specifies whether a control is currently displayed. When this
property is set to True, the control is hidden. Selecting a control that has its IsPriorityDropped property set to True changes the
property setting to False, which makes the control visible the next time its

The host application might change the IsPriorityDropped property setting if the control is not used again within a certain time
period. For more information about how long a control remains visible, search the Microsoft Office Visual Basic Reference
Help index for "IsPriorityDropped property."

The following procedure turns personalized menus on or off for all command bars or a single command bar according to the
value of the blnState argument:

Function SetPersonalizedMenuState(blnState As Boolean, Optional cbrBar As CommandBar = Nothing)
 ' This procedure sets the AdaptiveMenus property to the value of the blnState argument. If a CommandBar object is supplied
in the cbrBar argument, the AdaptiveMenu property for that command bar is set to the va

 140

 If cbrBar Is Nothing Then
 Application.CommandBars.AdaptiveMenus = blnState
 Else
 cbrBar.AdaptiveMenu = blnState
 End If
End Function

The following procedure changes the setting of the Priority property for a menu item:

 String)
rBar command bar control whose Caption property setting

 Bar Buttons

Function PromoteMenuItem(cbrBar As CommandBar, strItemCaption As
 ' This procedure changes the Priority property setting for the cb
 ' matches the value of the strItemCaption argument.
 Dim ctlMenuItem As CommandBarControl

 On Error Resume Next
 If cbrBar.AdaptiveMenu = False Then Exit Function
 Set ctlMenuItem = cbrBar.Controls(strItemCaption)
 With ctlMenuItem
 If .Priority <> 1 Then
 .Priority = 1
 End If
 End With
End Function

Working with Images on Command

 use these images on your own command bar
t contains the image. The values for the FaceId

m zero (no image) to the total number of button images used in the host application (typically a few
e available button images is to build a toolbar, add some buttons, and assign FaceId
 buttons display the image associated with the specified FaceId property value. For

ith values from 200 to 299, you would call CBShowButtonFaceIDs from the Immediate

display as shown in the following figure.

Every built-in command bar button has an image associated with it. You can
you know the FaceId property value of the built-in button thabuttons as long as

range froproperty
thousand). One easy way to browse th

. Theproperty values to those buttons
e button images wexample, to se

window in this way:

? CBShowButtonFaceIDs(200, 299)

And the button images would

A Collection of Built-in Toolbar Icons

You can see the value of the FaceId property for any image on the command bar by resting your mouse pointer on the image
until th

t ERR_CMDBAR_EXISTS As Long = 5

 Exit Sub
 End If

e value appears in the button's ToolTip.

Another way to copy the image from one command bar button to another is to use the FindControl method of the
CommandBars collection to determine the value of the FaceId property for the image you want to copy. Then, you can use the
CommandBarControl object's CopyFace and PasteFace methods to copy the image to a new control. The following sample
code illustrates how to use these methods to paste the icon associated with an existing command bar button to a new command
bar button.

Private Sub CBCopyIconDemo()
 ' This procedure demonstrates how to copy the image associated with a known toolbar button to a new toolbar button. This
example copies the image associated with the "Contents and Index" control on the Help menu to a new command bar control.
 Dim cbrNew As CommandBar
 Dim ctlNew As CommandBarControl
 Cons

 On Error Resume Next
 Set cbrNew = CommandBars.Add("TestCopyFaceIcon")
 If Err = ERR_CMDBAR_EXISTS Then
 Call CBDeleteCommandBar("TestCopyFaceIcon")
 Set cbrNew = CommandBars.Add("TestCopyFaceIcon")
 ElseIf Err <> 0 Then

 141

 On Error GoTo 0
 Set ctlNew = cbrNew.C ntrolBu
 Call CBCopyControlFa
 With ctlNew
 .PasteFace
 End With

 other custom procedures. The CBDeleteCommandbar procedure was discussed in the previous
bar if it already exists. The CBCopyControlFace procedure copies the image of the

e As String, strCtlCaption As String)
o copy the image associated with the control specified in the strCtlCaption

ontrol(msoControlButton, CBGetControlID(strCBarName, strCtlCaption))

mmandBar

r, place the insertion point (cursor) anywhere in the CBCopyIconDemo procedure and
e. Try changing the command bar name and control name to copy different images to the

ontrols.Add(msoCo tton)
ce("Help", "Contents and Index")

 cbrNew.Visible = True
End Sub

This procedure calls two
section and is used to delete the command
specified control to the Clipboard:

Function CBCopyControlFace(strCBarNam
 ' This procedure uses the CopyFace method t
argument to the Clipboard.
 Dim ctlCBarControl As

 CommandBarControl

 Set ctlCBarControl = CommandBars.FindC
 ctlCBarControl.CopyFace
End Function

The CBCopyControlFace procedure uses the CBGetControlID procedure as the Id argument for the FindControl method.
CBGetControlID returns the Id property for the specified control by using the following line:

CBGetControlID = Application.CommandBars(strCBarName).Controls(strControlCaption).ID

The CommandBar object also supports a FindControl method that searches for the specified control only on the Co
object itself.

To see these procedures working togethe
use the F8 key to step through the cod
new control.

Working with Command Bar Controls

Each CommandBar object has a CommandBarControls collection, which contains all the controls on the command bar. You
mmandBar object to refer to a control on a command bar. If the control is of the type

ntrols collection representing each control on the pop-up menu. Pop-up menu controls
second example below.

turns a reference to the New button on the Standard toolbar:

BarControl As CommandBarControl
mmandBars("Standard").Controls("New")

e returns a reference to the Macros... control on the Macro pop-up menu on the Tools menu on the "Menu Bar"

l As CommandBarControl
pplication.CommandBars("Menu Bar").Controls("Tools").Controls("Macro").Controls("Macros...")

ject refers to the main menu bar in Microsoft® Word, Microsoft® PowerPoint®, and
 bar in Microsoft® Excel is called "Worksheet Menu Bar." To experiment with sample

ommandBar object in Excel, simply change the reference from "Menu Bar" to "Worksheet

rol on a command bar, you can access all available properties and methods of that control.

use the Controls property of a Co
msoControlPopup, it also will have a Co
represent menus and submenus and can be nested several layers deep, as shown in the

In this example, the code re

Dim ctlC
Set ctlCBarControl = Application.Co

Here the cod
main menu bar:

Dim ctlCBarContro
l = ASet ctlCBarContro

Note
The "Menu Bar" CommandBar ob

enuMicrosoft® Access. The main m
rs to the "Menu Bar" Ccode that refe

Menu Bar."

Because each pop-up menu control is actually a CommandBar object itself, you also can refer to them directly as members of
the CommandBars collection. For example, the following line of code returns a reference to the same control as the previous
example:

Set ctlCBarControl = Application.CommandBars("Macro").Controls("Macros...")

When you have a reference to a cont

Note
When you refer to a command bar control by using the control's Caption property, you must be sure to specify the caption
exactly as it appears on the menu. For example, in the previous code sample, the reference to the control caption "Macros..."
requires the ellipsis (...) so it matches how the caption appears on the menu.

Adding Controls to a Command Bar

 142

To add a control to a command bar, use the Add method of the Controls collection, specifying which type of control you want
to create. You can add controls of the following type: button (msoControlButton), text box (msoControlEdit), drop-down list
box (msoControlDropdown), combo box (msoControlComboBox), or pop-up menu (msoControlPopup).

The following example adds a new menu to the "Menu Bar" command bar and then adds three controls to the menu:
Private Sub CBAddMenuDemo()
 ' Illustrates adding a new menu and filling it with controls. Also illustrates deleting a menu control from a menu bar.

named "Worksheet Menu Bar" rather than "Menu Bar".

arControl

ar"
enu Demo"

 use of the MsgBox function in the OnAction property setting will work only with command bars in
her Office applications, you call built-in VBA functions for the OnAction property setting. To call a

stom procedure that
 call that custom procedure in the OnAction property setting.

dMenuControl(cbrMenu, "Item 1", "=MsgBox('You selected Menu1 Control 1.')")
AddMenuControl(cbrMenu, "Item 2", "=MsgBox('You selected Menu1 Control 2.')")

 Call CBAddMenuControl(cbrMenu, "Item 3", "=MsgBox('You selected Menu1 Control 3.')")
 ' The menu should now appear to the right of th r. To see how to delete a menu from a menu bar,
press F8 to step through the remaining code.

dure calls three other procedures: CBAddMenu, CBAddMenuControl, and

 removes the menu created in the CBAddMenu procedure. CBAddMenu and

mand bar named in strCBarName.
 As CommandBar

rControl

 Err = 0
 End
 With cb

BAddMenuControl(cbrMenu As CommandBarControl, strCaption As String, strOnAction As String) As Boolean
tton control to the menu specified in cbrMenu and set its Caption and OnAction properties to the values specified

trol = .Controls.Add(msoControlButton)
trol

tion

 ' In Microsoft Excel, the main menu bar is
 Dim strCBarName As String
 Dim strMenuName As String
 Dim cbrMenu As CommandB

 strCBarName = "Menu B
 strMenuName = "Custom M
 Set cbrMenu = CBAddMenu(strCBarName, strMenuName)
 ' Note: The following
Microsoft Access. In the ot
built-in VBA function from a command bar control in the other Office applications, you must create a cu
uses the VBA function and
 Call CBAd
 Call CB

e Help menu on the menu ba

 Stop
 Call CBDeleteCBControl(strCBarName, strMenuName)
End Sub

Note that the CBAddMenuDemo proce
CBDeleteCBControl. CBAddMenu returns the new pop-up menu as a CommandBarControl object. In addition, if the
command bar specified by the strCBarName argument does not exist, CBAddMenu creates it. CBAddMenuControl adds a
button control to the menu created by CBAddMenu and sets the control's OnAction property to the code to run when the button
is clicked. CBDeleteCBControl just
CBAddMenuControl are shown below:

Function CBAddMenu(strCBarName As String, strMenuName As String) As CommandBarControl
 ' Add the menu named in strMenuName to the com
 Dim cbrBar
 Dim ctlCBarControl As CommandBa

 On Error Resume Next
 Set cbrBar = CommandBars(strCBarName)
 If Err <> 0 Then

 Set cbrBar = CommandBars.Add(strCBarName)

If
rBar

 Set ctlCBarControl = .Controls.Add(msoControlPopup)
 ctlCBarControl.Caption = strMenuName
 End With
 Set CBAddMenu = ctlCBarControl
End Function

Function C
 ' Add a bu
in the strCaption and strOnAction arguments.
 Dim ctlCBarControl As CommandBarControl

 With cbrMenu
 Set ctlCBarCon

arCon With ctlCB
 .Caption = strCaption
 .OnAction = strOnAc
 .Tag = .Caption
 End With
 End With
End Function

 143

You normally set the OnAction property to the name of a procedure to run when the button is clicked. In the example above,
OnAction property is set by using a string that contains the built-in VBA MsgBox function and the text to display

 the message box. When multiple command bar controls use the same OnAction property setting, you can use the
rmine which command bar button is calling the procedure. In

on, you can use Microsoft® Visual Basic® for Applications (VBA) code that executes in response to CommandBar and
rol events.

d bar control to a command bar by using the Id property of the built-in control. The
ique to add a built-in control to a command bar.

rDestBar As CommandBar, strCBarSource As String, strCtlCaption As String) As Boolean
specified in strCtlCaption from the strCBarSource command bar to the

ddBuiltInControl_Err
xist(strCBarSource) <> True Then

BAddBuiltInControl = False
tion

 cbrDestBar.Controls.Add ID:=CBGetControlID(strCBarSource, strCtlCaption)

uiltInControl_Err:
 CBAddBuiltInControl = False

InControl_End

e action the control will take when it is selected and, if applicable,
rol's image without its built-in action, you specify only the

s

her a command bar control appears on a command bar by using its Visible property. You specify whether a
pears enabled or disabled (grayed out) by using its Enabled property. For example, the following two

ld be used to toggle the Visible and Enabled properties of the named controls:

"Menu Bar").Controls("Edit").Enabled =
dBars("Menu Bar").Controls("Edit").Enabled

matting").Controls("Font").Visible = _
mandBars("Formatting").Controls("Font").Visible

ject refers to the main menu bar in Microsoft® Word, Microsoft® PowerPoint®, and
ccess. The main menu bar in Microsoft® Excel is called "Worksheet Menu Bar." To experiment with sample

 refers to the "Menu Bar" CommandBar object in Excel, simply change the reference from "Menu Bar" to "Worksheet

s Enabled property is False, the control appears on the command bar but is disabled and cannot

 Bar Control

sed to toggle the state of some part of an application from one condition to
lications, the Bold button and the Align Left button will appear pressed in or

an achieve this same effect with your
nState constants.

perty is read-only for built-in command bar controls.

g procedure shows how to explicit set the State property of a custom command bar button control:

String, strCtlCaption As String) As Boolean
 ' Set the State property of the strCtlCaption control on the strCBarName command bar. The State property is
 ' read-only for built-in controls, so if strCtlCaption is a built-i ntrol, return False and exit the procedure.
 Dim ctlCBarControl As CommandBarControl

 If ctlCBarControl.BuiltIn = True Then

however, the
in
ActionControl property and the Parameter property to dete
additi
CommandBarCont

You can add any built-in comman
following procedure illustrates a techn

Function CBAddBuiltInControl(cb
 ' This procedure adds the built-in control
 ' command bar specified by cbrDestBar.

 On Error GoTo CBA
 If CBDoesCBE
 C
 Exit Func
 End If

 CBAddBuiltInControl = True
CBAddBuiltInControl_End:
 Exit Function
CBAddB

 Resume CBAddBuilt
End Function

Note
When you specify a control's Id property, you also specify th

age that appears on the face of the control. To add a contthe im
FaceId property.

Showing and Enabling Command Bar Control

You specify whet
command bar control ap
lines of code cou

Application.CommandBars(
 Not Application.Comman
Application.CommandBars("For
 Not Application.Com

Note
The "Menu Bar" CommandBar ob
Microsoft® A
code that
Menu Bar."

When a command bar control'
be manipulated.

Visually Indicating the State of a Command

Many menu commands or toolbar buttons are u
ample, in Microsoft®Office appanother. For ex

not pressed in, depending on the formatting applied to text at the current selection. You c
 bar button controls by setting the State property to one of the msoButtocustom command

Note
roThe State p

The followin

Function CBCtlSetState(strCBarName As

n co

 On Error Resume Next
 Set ctlCBarControl = Application.CommandBars(strCBarName).Controls(strCtlCaption)

 144

 CBCtlSetState = False
 Exit Function
 End If
 If ctlCBarControl.Type <> msoControlButton Then
 CBCtlSetState = False
 Exit Function
 End If
 CtlCBarControl. State =
 If C.State = MsoButtonDown Then
 C.State = MsoButtonUp
 Else If C.State = MsoButtonUp Then
 C.State = MsoButtonDown
 Else
 'State is mixed, leave it

e = True

 End If
 If Err = 0 Then
 CBCtlSetStat
 Else
 CBCtlSetState = False
 End If
End Function

Working with Command Bar Events

You can use command bar event procedures to run your own code in response to an event. In addition, you can use these event
ures to substitute your own code for the default behavior of a built-in control. The CommandBars collection and the

e CommandBars collection supports the OnUpdate event, which is triggered in response to changes made to a
Microsoft®Office document that might affect the state of any visible command bar or command bar control. For

e selection in an Office document. You can use this event
and bar controls in response to actions taken by the user.

• exposes a Change event that is triggered when a user makes a selection from a
s method to take an action depending on what selection the user makes from a

bo box control on a command bar.

To expose these events, you must first declare an object variable in a class module by using the WithEvents keyword. The
andBars

coll io

Public W
Public W
Public W
Public W
Public W .CommandBarComboBox

When o
the Cod
clsCBarE
and F
class mo

 Office.CommandBarButton, CancelDefault As Boolean)

Click (ByVal Ctrl As Office.CommandBarButton, CancelDefault As Boolean)

proced
CommandBarButton and CommandBarComboBox objects expose the following event procedures that you can use to run code
in response to an event:

• Th

example, the OnUpdate event occurs when a user changes th
to change the availability or state of command bars or comm
Note
The OnUpdate event can be triggered repeatedly in many different contexts. Any code you add to this event that does
a lot of processing or performs a number of actions might affect the performance of your application.

• The CommandBarButton control exposes a Click event that is triggered when a user clicks a command bar button.
You can use this event to run code when the user clicks a command bar button.

 The CommandBarComboBox control
combo box control. You can use thi
com

following code, entered in the Declarations section of a class module, creates object variables representing the Comm
ect n, three command bar buttons, and a combo box control on a custom toolbar:

ithEvents colCBars As Office.CommandBars
ithEvents cmdBold As Office.CommandBarButton
ithEvents cmdItalic As Office.CommandBarButton
ithEvents cmdUnderline As Office.CommandBarButton
ithEvents cboFontSize As Office

 y u use the WithEvents keyword to declare an object variable in a class module, the object appears in the Object box in
e window, and when you select it, the object's events are available in the Procedure box. For example, if the
vents class module contained the previous code, you could select the colCBars, cmdBold, cmdItalic, cmdUnderline,

 cbo ontSize objects from the Object drop-down list and each object's event procedure template would be added to your
dule as follows:

Private Sub colCBars_OnUpdate()
 ' Insert code you want to run in response to selection changes in an Office document.
End Sub

Private Sub cmdBold_Click (ByVal Ctrl As Office.CommandBarButton, CancelDefault As Boolean)
 ' Insert code you want to run in response to this event.
End Sub
Private Sub cmdItalic_Click (ByVal Ctrl As
 ' Insert code you want to run in response to this event.
End Sub

Private Sub cmdUnderline_
 ' Insert code you want to run in response to this event.

 145

End Sub

Private Sub cboFontSize_Change (ByVal Ctrl As Office.CommandBarComboBox)

ombo box.

 the event occurs.

 to a built-in command button, you can set the Click event's
nt the button's default behavior from occurring. This behavior is useful if you are

is

have added code to the event procedures, you create an instance of the class in a standard or class module and use
ent to link the control events to specific command bar controls. In the following example, the InitEvents

Option Explicit
Dim clsCBClass As New clsCBEvents

Sub InitEvents()
 Dim cbrBar As Office.CommandBar

 Set cbrBar = CommandBars("Formatting Example")
 With cbrBar
 Set clsCBClass.cmdBold = .Controls("Bold")
 Set clsCBClass.cmdItalic = .Controls("Italic")
 Set clsCBClass.cmdUnderline = .Controls("Underline")
 Set clsCBClass.cboFontSize = .Controls("Set Font Size")
 End With
 Set clsCBClass.colCBars = CommandBars
End Sub

When the InitEvents procedure runs, the code you placed in the command bar's and command bar controls' event procedures
will run whenever the related event occurs.

Working with Document Properties

 ' Insert code you want to run when a selection is made in a c
End Sub

You add to the event procedures the code that you want to run when

Note
If you set the variable for a command bar control object
CancelDefault argument to True to preve
developing an add-in and want code to run instead of, or in addition to, the application code that runs when a built-in button
clicked.

After you
the Set statem
procedure is used in a standard module to link clsCBarEvents object variables to specific command bar controls on the
Formatting Example toolbar:

Every file created by a Microsoft® Office XP application supports a set of built-in document properties. In addition, you can
add your own custom properties to an Office document either manually or through code. You can use document properties to
create, maintain, and track information about an Office document such as when it was created, who the author is, where it is
stored, and so on. In addition, when you save an Office document as an HTML file, all of the document properties are written
to the HTML file within <XML> tag pairs. This makes it possible for you to use document properties to track or index files
according to properties you specify, regardless of what format you use to save the file.

Note
Office uses the term "document" to represent any file created by using an Office application.

You can view and set built-in and custom document properties by clicking Properties on the File menu. (In Microsoft® Access,
click Database Properties on the File menu.)

In This Section

Document Properties in Microsoft Access, Microsoft FrontPage, and Microsoft Outlook
Understand document properties in Microsoft® Office XP applications.

Working with the HTMLProject Object
Determine the current state of an Office document, access individual HTMLProjectItem objects, and save current projects and
documents.

Document Properties in Microsoft Access, Microsoft FrontPage, and Microsoft Outlook

Microsoft® Access does not use the DocumentProperties collection to store the built-in and custom properties displayed in its
Database Properties dialog box. You can access these properties by using Data Access Objects (DAO) in an .mdb-type
database and in a SQL database. For more information about database properties, search the Microsoft Access Visual Basic
Reference Help index for "database properties."

The Document Properties Dialog Box

 146

Microsoft® FrontPage® also does not use the DocumentProperties collection to store the built-in and custom properties
perties dialog box (File menu). In FrontPage, built-in and custom properties are stored in the

® Outlook®does not provide a Document Properties dialog box from the File menu as the other Microsoft® Office

document. For an example that prints all built-in and custom document properties for an Office

ples.xls file.

ote
The BuiltInDocumentProperties property returns operties that might apply only to certain Office
applications. If you try to return the value of these text, an error occurs. The sample code shows

termine the value of a built-in document property. The GetBuiltInProperty
s an Office document object (Workbook, Document, or Presentation) and a property name and returns the

roperty, if available:

 value of the built-in document property specified in the strPropName argument for the Office

 Dim varValue As Variant

 Const ERR_BADPROPERTY As Long = 5
 Const ERR_BADDOCOBJ As Long = 438
 Const ERR_BADCONTEXT As Long = -2147467259

 On Error GoTo GetBuiltInProp_Err
 Set prpDocProp = objDoc.BuiltInDocumentProperties(strPropname)
 With prpDocProp
 varValue = .Value
 If Len(varValue) <> 0 Then
 GetBuiltInProperty = varValue
 Else
 GetBuiltInProperty = "Property does not currently have a value set."
 End If
 End With
GetBuiltInProp_End:
 Exit Function
GetBuiltInProp_Err:
 Select Case Err.Number

displayed in its Page Pro
MetaTags and Properties collections of a WebFile object.

Microsoft
applications do.

You access the DocumentProperties collection by using the BuiltInDocumentProperties and CustomDocumentProperties
properties of an Office
document to the Immediate window, see the PrintAllDocProperties procedure in the modDocumentPropertiesCode module in
the ExcelExam

N
 a collection that contains pr

properties in the wrong con
how to trap this error and continue to identify all the properties that are valid in a given context.

The following code sample shows how to de
procedure accept
value of the built-in p

Function GetBuiltInProperty(objDoc As Object, strPropname As String) As Variant
 ' This procedure returns the
 ' document object specified in the objDoc argument.
 Dim prpDocProp As DocumentProperty

 147

 Case ERR_BADDOCOBJ
 GetBuiltInProperty = "Object does not support BuiltInProperties."
 Case ERR_BADPROPERTY
 GetBuiltInProperty = "Property not in collection."
 Case ERR_BADCONTEXT
 GetBuiltInProperty = "Value not available in this context."
 Case Else
 End Select
 Resume GetBuiltInProp_End:
End Function

Note
For a complete list of built-in document properties, search the Microsoft Office Visual Basic Reference Help index for
"DocumentProperty object."

You can determine the value of an existing custom document property by using the same techniques as those illustrated in the
previous code example. The only difference is that you would use the Office document's CustomDocumentProperties
collection to return the DocumentProperty object you were interested in.

You use the Add method of the CustomDocumentProperties collection to add a custom DocumentProperty object to the
DocumentProperties collection. When you add a custom property, you specify its name, data type, and value. You can also link
a custom property to a value in the Office document itself. When you add linked properties, the value of the custom property
changes when the value in the document changes. For example, if you add a custom property linked to a named range in a
Microsoft® Excel spreadsheet, the property will always contain the current value of the data in the named range.

The following procedure illustrates how to add both static and linked custom properties to the DocumentProperties collection.
It is essentially a wrapper around the Add method of the DocumentProperties collection that includes parameter validation and
deletes any existing custom property before adding a property that uses the same name.

Function AddCustomDocumentProperty(strPropName As String, lngPropType As Long, Optional varPropValue As Variant =
"", Optional blnLinkToContent As Boolean = False, Optional varLinkSource As Variant = "") As Long
 ' This procedure adds the custom property specified in the strPropName argument. If the blnLinkToContent argument is
True, the custom property is linked to the location specified by varLinkSource.
 ' The procedure first checks for missing or inconsistent input parameters. For example, a value must be provided unless the
property is linked, and when you are using linked properties, the source of the link must be provided.
 Dim prpDocProp As DocumentProperty

 ' Validate data supplied in arguments to this procedure.
 If blnLinkToContent = False And Len(varPropValue) = 0 Then
 ' No value supplied for custom property.
 AddCustomDocumentProperty = ERR_CUSTOM_LINKTOCONTENT_VALUE
 Exit Function
 ElseIf blnLinkToContent = True And Len(varLinkSource) = 0 Then
 ' No source provided for LinkToContent scenario.
 AddCustomDocumentProperty = ERR_CUSTOM_LINKTOCONTENT_LINKSOURCE
 Exit Function
 ElseIf lngPropType < msoPropertyTypeNumber Or _
 lngPropType > msoPropertyTypeFloat Then
 ' Invalid value for data type specifier. Must be one of the
 ' msoDocProperties enumerated constants.
 AddCustomDocumentProperty = ERR_CUSTOM_INVALID_DATATYPE
 Exit Function
 ElseIf Len(strPropName) = 0 Then
 ' No name supplied for new custom property.
 AddCustomDocumentProperty = ERR_CUSTOM_INVALID_PROPNAME
 Exit Function
 End If
 Call DeleteIfExisting(strPropName)
 Select Case blnLinkToContent
 Case True
 Set prpDocProp = ActiveWorkbook.CustomDocumentProperties
 .Add(Name:=strPropName, LinkToContent:=blnLinkToContent, Type:=lngPropType, LinkSource:=varLinkSource)
 ActiveWorkbook.Save
 Case False
 Set prpDocProp = ActiveWorkbook.CustomDocumentProperties. _
 Add(Name:=strPropName, LinkToContent:=blnLinkToContent, Type:=lngPropType, Value:=varPropValue)
 End Select
End Function

Note

 148

When you programmatically add a custom property to the DocumentProperties collection and the property is linked to a value
in the underlying Office document, you must use the document's Save method, as illustrated previously, before the property
value will be reflected correctly for the new DocumentProperty object.

Working with the HTMLProject Object

The HTMLProject object is the top-level object representing the HTML code in a Microsoft® Office document. It is the
equivalent of the top-level project branch in the Microsoft Script Editor Project Explorer when it contains an Office document.
The HTMLProject object has properties you can use to determine the current state of an Office document and to access
individual HTMLProjectItem objects, and methods you can use to save the current project or document.

For example, you can tell if a document is currently opened in the Microsoft Script Editor and if the HTML code that exists in
the Script Editor is the same as what is contained in the document. If the HTML code is out of sync, you can programmatically
synchronize the HTML code before manipulating the document's contents. You can add HTML to a document
programmatically or load it from a file saved on disk. In addition, you can use the objects contained within the HTMLProject
object and their properties and methods to manipulate the HTML code or add script to the HTML code.

Note
The HTMLProject object is not available in Microsoft® Access, Microsoft® FrontPage®, or Microsoft® Outlook®. To
manipulate the HTML code in an Access DataAccessPage object, you use the object's Document property. To work with the
HTML code in a page in FrontPage, you use the HTML tab in the FrontPage design environment.

The HTMLProject object's HTMLProjectItems property returns a collection of all of the HTMLProjectItem objects in the
project. The default number of HTMLProjectItem objects in an Office application will depend on the kind of Office document
you are working with. The following table shows the default number of HTMLProjectItem objects in a new Office document.

Application Default number of HTMLProjectItem objects

Microsoft® Excel 5 items (Book, Tab, Sheet1, Sheet2, Sheet3)

Microsoft® PowerPoint® 2 items (SlideMaster, Slide1)

Microsoft® Word 1 item (Document Web Page)

You reference an HTMLProject object by using the HTMLProject property of an Office document. For example, the following
code illustrates how to return a reference to the top-level HTMLProject object in each Office application:

' Create Word reference:
Dim prjWord As Word.HTMLProjectItem
Set prjWord = ActiveDocument.HTMLProject

' Create PowerPoint reference:
Dim prjPPT As PowerPoint.HTMLProjectItem
Set prjPPT = ActivePresentation.HTMLProject
' Create Excel reference:
Dim prjXL As Excel.HTMLProjectItem
Set prjXL = ActiveWorkbook.HTMLProject

When you have created a reference to the HTMLProject object, you then use the HTMLProjectItems property to access
individual HTMLProjectItem objects. In the following example, the IsHTMLProjectDirty procedure can be used to determine
if the HTMLProject object in an Office document is "dirty" (contains changes). You use the blnRefreshProject argument to
specify whether to refresh, or synchronize, the HTML code with the source Office document.

Function IsHTMLProjectDirty(objOffDoc As Object, blnRefreshProject As Boolean) As Boolean
 ' This procedure determines if the HTMLProject object in the document represented by the objOffDoc argument
 ' is dirty and, if so, refreshes the project according to the value of the blnRefreshProject argument.
 Dim prjProject As HTMLProject

 On Error GoTo IsHTMLDirty_Err
 Set prjProject = objOffDoc.HTMLProject
 With prjProject
 ' The Office document will be locked as soon as any changes are made to the HTML code in the document.
 If .State = msoHTMLProjectStateDocumentLocked Then
 IsHTMLProjectDirty = True
 If blnRefreshProject = True Then
 ' Merge the changes to the HTML code with the underlying Office document.
 .RefreshDocument
 End If
 Else
 IsHTMLProjectDirty = False
 149

 End If
 End With
IsHTMLDirty_End:
 Exit Function
IsHTMLDirty_Err:
 Select Case Err
 Case Is > 0
 IsHTMLProjectDirty = False
 Resume IsHTMLDirty_End
 End Select
End Function

You could use the preceding procedure to determine the state of any Office document by using the ActiveWorkbook,
ActivePresentation, or ActiveDocument property in the first argument.

When you have a reference to an HTMLProjectItem object, you can work directly with the HTML code in the document by
using the object's Text property. For example, you can run the following code from the Immediate window to print all of the
HTML code in a Word document:

? ActiveDocument.HTMLProject.HTMLProjectItems(1).Text

You can change the HTML code in an Office document by using the LoadFromFile method or by setting the Text property to
the HTML code you want to use. The following example illustrates how to replace the HTML code in a Word document with
the HTML code contained in a file on disk:

ActiveDocument.HTMLProject.HTMLProjectItems(1).LoadFromFile = "c:\MyHTMLFile.htm"

Often, you will want to leave the existing HTML code in a document unchanged, but you will want to insert additional HTML
code or script to give the document additional functionality when viewed in a Web browser. In the following example, the
AddHTMLAndScriptExample procedure inserts within the first section of a Word document HTML code that includes
formatted text, a command button, and script that executes when the command button is clicked. The formatted text and
command button are contained in text returned by the GetText procedure and the script that executes when the command
button is clicked is returned by the GetScript procedure. The InsertHTMLText procedure inserts the HTML code and script in
an existing document just after the location specified by the procedure's second argument.

Sub AddHTMLAndScriptExample(objOffDoc As Object)
 Dim itmPrjItem As HTMLProjectItem
 Dim strNewText As String
 Dim strNewScript As String
 Dim strNewHTML As String

 strNewText = GetText()
 strNewScript = GetScript()
 Set itmPrjItem = objOffDoc.HTMLProject.HTMLProjectItems(1)
 With itmPrjItem
 strNewHTML = .Text
 Call InsertHTMLText(strNewHTML, "<div class=Section1>", strNewText & vbCrLf & strNewScript)
 .Text = strNewHTML
 End With
End Sub

Working with Scripts

You can use the Scripts collection and the Script object to programmatically access script, or insert script into a cell or range in
a Microsoft® Excel worksheet, a Microsoft® PowerPoint® slide, or a Microsoft® Word document or Word Selection object.
In addition, if you use a Microsoft® Office application to open an HTML page, any script contained in that page will be
available through the Scripts collection.

Every Script object that is inserted in an Office document includes a Shape object of the type msoScriptAnchor. In Excel and
PowerPoint, these shapes are added to the Worksheet or Slide object's Shapes collection. In Word, these shapes are added to a
document's InLineShapes collection.

If you want to write script in a document you create in an Office application, use the Microsoft Script Editor. On the other hand,
if you want to add script to an Office document programmatically, from an add-in for example, use the objects, properties, and
methods of the script object model discussed here.

In This Section

Understanding Script Object Properties
Learn how to access Script objects and add them to documents.

Adding and Removing Script from a Document
 150

Add script to and remove script from a document by using the Scripts collection's Add and Delete methods.

Understanding Script Object Properties

The Scripts collection contains all the Script objects in a Microsoft®Office document. A Script object represents a <SCRIPT>
tag pair, its attribute settings, and all the text contained between the tag pair. An Office document or an HTML page can
contain several script blocks and each script block can contain any number of procedures. For example, the following HTML
code contains three script blocks. The first block initializes an array representing the days of the week, the second block
contains a procedure that executes when the page loads, and the third block contains the WriteDay and WriteDate procedures
that create a part of the text that is displayed on the page itself.

<HTML>
<HEAD>
<TITLE>Developing Office Developer Applications</TITLE>
<SCRIPT LANGUAGE="VBSCRIPT" ID="scrDayArray">
<!--
 Option Explicit
 Dim arrDays(6)
 Dim strDay
 arrDays(0) = "Sunday"
 arrDays(1) = "Monday"
 arrDays(2) = "Tuesday"
 arrDays(3) = "Wednesday"
 arrDays(4) = "Thursday"
 arrDays(5) = "Friday"
 arrDays(6) = "Saturday"
-->
</SCRIPT>

<SCRIPT LANGUAGE="VBSCRIPT" ID="scrShowDay">
<!--
 Option Explicit
 Function ShowDayMessage()
 Dim intDay
 Dim strDayOfWeek
 intDay = WeekDay(Date())
 strDayOfWeek = arrDays(intDay - 1)
 MsgBox "Today is " & strDayOfWeek
 Call WriteDay(strDayOfWeek)
 Call WriteDate()
 End Function
-->
</SCRIPT>
</HEAD>

<BODY ONLOAD="ShowDayMessage()">
<H2>Developer Office Developer VBA and Workflow Solutions:</H2>
<H3>Shared Office Components</H3>
<HR>

<DIV ID=DayText>
<!-- Day and date text is inserted here. -->
</DIV>

<SCRIPT LANGUAGE="VBSCRIPT" ID="scrWriteDay">
<!--
 Option Explicit
 Function WriteDay(strDay)
 DayText.innerText = "Today is " & strDay
 End Function
 Function WriteDate()
 Dim strDay
 Dim strNum
 strDay = Day(Date())
 If Len(strDay) = 2 Then
 If left(strDay, 1) = 1 Then
 strNum = 0

 151

 Else
 strNum = Right(strDay, 1)
 End If
 Else
 strNum = strDay
 End If
 Select Case CInt(strNum)
 Case 1: strDay = strDay & "st"
 Case 2: strDay = strDay & "nd"
 Case 3: strDay = strDay & "rd"
 Case else: strDay = strDay & "th"
 End Select
 DayText.innerText = DayText.innerText & ", the " & strDay & " day of the month."
 End Function
-->

PT>
</BODY>
</HTML>

Listing of Various Script Properties

</SCRI

You access a Script object within the Scripts collection by using either the index for the object within the collection, or the
value of the object's ID attribute. If a <SCRIPT> tag has an ID attribute, the value of that attribute becomes the value of the
Script object's Id property. If the <SCRIPT> tag does not have an ID attribute setting, an index value is the only way to locate
the Script object within the Scripts collection.

When a document that contains script is opened in an Office application, script blocks are added to the Scripts collection in the
order in which they appear in the document. When you add a Script object to a document, the new object is added at the end of
the collection of Script objects, regardless of the value of the object's Location property. However, when the document is
closed and reopened, that same script will appear in the Scripts collection in the order in which it appears in the document.

Because a Script object's index position within the Scripts collection can change between the time the object is added and the
time the document is saved and reopened, it is never a good idea to try to locate a specific Script object within the Scripts
collection by using its index position in the collection. Instead, you should make a habit of specifying an Id property value
when creating a Script object and using that Id property value to locate the Script object within the Scripts collection. It is
useful to use the index when you are looping through all the Script objects in a document, however.

Note
If a <SCRIPT> tag in a document uses the same ID attribute as another <SCRIPT> tag, the Scripts collection will contain only
the first Script object that uses the duplicate ID attribute. Any other tags that use the same ID attribute will not be included in
the collection.

The Script object's Location property returns a long integer representing an msoScriptLocation constant that specifies whether
the script is located in the <HEAD> element or the <BODY> element of the HTML code. If you do not specify a value for this
argument, the default location is within the <BODY> element. Similarly, the Language property returns a long integer
representing an msoScriptLanguage constant that specifies the LANGUAGE attribute of the <SCRIPT> tag. If you do not

 152

specify a value, the default is Microsoft® Visual Basic® Scripting Edition (VBScript), except in Microsoft® Access, where it
is Microsoft® JScript®.

Note
The Script object's ScriptText property returns everything between the <SCRIPT> tags, but not the <SCRIPT> tags themselves.
You must account for this when you are using the Script object's Add method to programmatically add your own script to a
document.

Adding and Removing Script from a Document

You add script to a document by using the Scripts collection's Add method. The Add method uses optional arguments that
make it possible for you specify the script's location, language, ID attribute, additional <SCRIPT> tag attributes, and the script
to be contained within the <SCRIPT> tags. The Add method also automatically generates HTML comment tags (<!- and ->)
around your script, so browsers that do not recognize script can ignore it. If you use the Add method without specifying any of
the method's arguments, you create an empty <SCRIPT> tag pair that looks similar to this:

<SCRIPT ID="" LANGUAGE="VBScript">
<!--….->
</SCRIPT>

You use the Anchor argument of the Add method to specify where the Script object should be located in a document.

• In Microsoft® Word, if you do not specify a value for the Anchor argument, the Script object is inserted at the current
location of the insertion point (cursor). In addition, you can add a Script object to a Selection object or an
InLineShape object. When you specify a Selection object in the Anchor argument, the Script object is inserted at the
end of the Selection object. When you specify an InLineShape object in the Anchor argument, the Script object is
inserted before the paragraph marker for the paragraph that is the anchor point for the shape. You cannot add a Script
object to a Range object in Word.

• In Microsoft® Excel, if you do not specify a value for the Anchor argument, the Script object is inserted in the
currently active cell. You can also add a Script object to a Range object by specifying the Range object in the Anchor
argument. You cannot add a Script object to a Shape object in Excel. If you do specify a Shape object in the Anchor
argument, the argument is ignored and the Script object is inserted in the currently active cell.

• In Microsoft® PowerPoint®, you can only add a Script object to a Slide object. If you specify a Shape object in the
Anchor argument, the argument is ignored and the Script is inserted in the specified Slide object.

Note
To see the Shape objects that are inserted when script is added to an Office document, point to Macro on the Tools menu, and
then click Show All Script. The Show All Script is not on the menu by default; you must add it from the Customize dialog box
on the Tools menu.

The following procedure uses the Scripts collection's Add method to add a <SCRIPT> tag pair and some Microsoft® Visual
Basic ® Scripting Edition (VBScript) code to the <HEAD> element of the current Word document:

Function AddScriptToDocumentDemo()
 ' This procedure illustrates how to use the Scripts collection to add VBScript code to an Office document.
 Dim strScriptCode As String
 Dim scrArrayScript As Script
 On Error Resume Next
 Set scrArrayScript = ActiveDocument.Scripts("scrDayArray")
If Err = 0 Then Exit Function ' The script is already in the document so no need to add it again.
 strScriptCode = vbTab & "Option Explicit" & vbCrLf & vbTab _
 & "Dim arrDays(6)" & vbCrLf & vbTab _
 & "arrDays(0) = " & """Sunday""" & vbCrLf & vbTab _
 & "arrDays(1) = " & """Monday""" & vbCrLf & vbTab _
 & "arrDays(2) = " & """Tuesday""" & vbCrLf & vbTab _
 & "arrDays(3) = " & """Wednesday""" & vbCrLf & vbTab _
 & "arrDays(4) = " & """Thursday""" & vbCrLf & vbTab _
 & "arrDays(5) = " & """Friday""" & vbCrLf & vbTab _
 & "arrDays(6) = " & """Saturday"""
With Application.ActiveDocument
 .Scripts.Add Location:=msoScriptLocationInHead, Language:=msoScriptLanguageVisualBasic, ID:="scrDayArray", _
 ScriptText:=strScriptCode
End With
End Function

You can remove all the script and <SCRIPT> tags from a document by using the Scripts collection's Delete method. You
remove a single script from the Scripts collection by using the Script object's Delete method.

 153

4. GETTING THE MOST OUT OF VISUAL BASIC FOR APPLICATIONS

As a developer, your goal is to write code that's fast, efficient, easy to read and maintain, and if possible, reusable. To do so,
you must have a solid working knowledge of Microsoft® Visual Basic® for Applications (VBA)-what features the language
includes and what you can do with it.

As you develop applications, you'll find that there are a number of operations that you must perform repeatedly-parsing a file
path, for example, or returning all the files in a directory. Rather than rewriting these routines every time you require them, you
can begin building an arsenal of procedures that solve common problems. This section gives you a head start by providing
functions that perform some often-required operations on strings, numbers, dates and times, files, and arrays. It also explains
the key aspects of each procedure and covers fundamental VBA programming issues so that you can continue to expand your
code arsenal yourself. You can use these procedures not only in VBA code but also in Visual Basic Scripting Edition
(VBScript) code in HTML documents.

In This Section

Working with Strings
Understand how to get information from strings.

Working with Numbers
Learn how to use numeric values and data types in Microsoft® Visual Basic® for Applications (VBA).

Working with Dates and Times
Manipulate date values in Microsoft®Visual Basic® for Applications (VBA), and understand how VBA stores date values
internally.

Working with Files
Understand the Microsoft Scripting Runtime object library, and work with drives, folders, and files as objects.

Understanding Arrays
Use arrays when you must store a number of values of the same type, but you don't want to create individual variables to store
them all.

Tips for Defining Procedures in VBA
Define a Function or Sub procedure, and use the options available to you to make your code more extensible or more flexible.

Optimizing VBA Code
Understand how to streamline your Microsoft® Visual Basi® for Applications (VBA) code to streamline your memory
requirements.

Working with Strings

Data structures composed of a sequence of alphanumeric characters, strings are basic in concept, but getting the information
you require from them can be a different story.

In This Section

Comparing Strings
Compare strings to determine whether they contain equivalent characters and how they differ if they do not match.

Calculating String Length
Determine the length of a string using the Len function to parse its contents.

Searching a String
Search strings to find out whether they contain a particular character or group of characters by using the InStr or InStrRev
functions.

Returning Portions of a String
Learn how to parse the string to be able to work with part of a string's contents.

Working with Strings as Arrays
Quickly turn once-lengthy string-manipulation procedures into just a few lines of code.

Finding and Replacing Text Within a String
Find and replace all occurrences of a substring within a string using the Replace function.

Converting Text in a String from One Case to Another
Use the Microsoft® Visual Basic® for Applications (VBA) StrConv function to convert text in a string from one case to
another.

Working with String Variables
Understand how to dimension a variable, assign a value to it, and output that variable as part of a string.

 154

Comparing Strings

You can compare strings to determine whether they contain equivalent characters and how they differ if they do not match.
When you compare two strings, you're actually comparing the ANSI value of each character to the value of the corresponding
character in the other string. You can specify whether you want to make comparisons case-sensitive or whether you want to
ignore the case and simply compare the strings' characters.

Specifying the String-Comparison Setting for a Module

The Option Compare statement determines how strings are compared within a module. There are three settings for the Option
Compare statement:

• Option Compare Binary Strng comparisons are case-sensitive. Option Compare Binary is the default string-
comparison setting for all the Microsoft® Office applications except Microsoft® Access, for which Option Compare
Database is the default.

• Option Compare Text Strng comparisons are case-insensitive. To make case-insensitive string comparison the default
method for a module, add this statement to the module's Declarations section.

• Option Compare Database Strng comparisons depend on the sort order for the specified locale; the default sort order
is case-insensitive. The Option Compare Database setting is available only for Access databases. Note that when you
create a new module in Access, the Option Compare Database statement is automatically inserted in the module's
Declarations section. If you delete the Option Compare Database statement, the default string-comparison setting for
the module is Option Compare Binary.

Note
If you're writing code in Access that you might want to export to another Microsoft® Visual Basic® for Applications (VBA)
host application, you should explicitly specify string comparisons as binary or text-based in the line that performs the
comparison. Because the Option Compare Database setting is available only in Access, the code will not compile when you
import it into another application unless you remove this setting. If you have explicitly specified the string-comparison method
for each line that performs comparisons, you can export the code and be confident that string comparisons will continue to
work as expected after you remove the Option Compare Database setting.

Tip
To change the sort order for a database, click Options on the Tools menu, click the General tab, and then change the New
Database Sort Order setting. After you change this setting, any new database you create will perform text comparisons based
on the new sort order; changing this option has no effect on existing databases.

Comparing Strings by Using Comparison Operators

Because you're actually comparing ANSI values when you compare two strings, you can use the same comparison operators
that you would use with numeric expressions-greater than (>), less than (<), equal to (=), and so on. In addition to these
numeric comparison operators, you can use the Like operator, which is specifically for use in comparing strings, including
strings that contain wildcard characters.

Using Comparison Operators

When you use comparison operators such as the greater than (>) and less than (<) operators to compare two strings, the result
you get depends on the string-comparison setting for the module. Consider the following example:

"vba" > "VBA"

If the string-comparison setting is Option Compare Binary, the comparison returns True.

When Microsoft® Visual Basic® for Applications (VBA) performs a binary text comparison, it compares the binary values for
each corresponding position in the string until it finds two that differ. In this example, the lowercase letter "v" corresponds to
the ANSI value 118, while the uppercase letter "V" corresponds to the ANSI value 86. Because 118 is greater than 86, the
comparison returns True.

If the string-comparison setting is Option Compare Text, "vba" > "VBA" returns False, because the strings are equivalent apart
from case.

In a Microsoft® Access database, if the string-comparison setting is Option Compare Database and the New Database Sort
Order option is set to General (the default setting), the string comparison is case-insensitive and the example returns False.

Using the Like Operator

You can perform wildcard string comparisons by using the Like operator. The following table shows the wildcard characters
supported by VBA.

Wildcard Represents Example

* Any number of characters t* matches any word beginning with "t."

? Any single character t??t matches any four-letter word beginning and ending with "t."

 155

Any single digit (0-9) 1#3 matches any three-digit number beginning with "1" and ending with "3."

[charlist] Any single character in
charlist

[a-z] matches any letter that falls between "a" and "z" (case-sensitivity depends on
Option Compare setting).

[!charlist] Any single character not in
charlist

[!A-Z] excludes the uppercase alphabetic characters (case-sensitivity depends on
Option Compare setting).

You can use the Like operator to perform data validation or wildcard searches. For example, suppose you want to ensure that a
user has entered a telephone number in the format nnn-nnn-nnnn. You can use the Like operator to check that the entry is valid,
as the following procedure does:

Function ValidPhone(strPhone As String) As Boolean
 ' This procedure checks that the passed-in value is a valid, properly formatted telephone number.
 ValidPhone = strPhone Like "###-###-####"
End Function

This procedure compares characters in a string to make sure that certain positions contain numeric characters. To return True,
all characters must be digits between 0 and 9 or hyphens, and the hyphens must be present at the correct position in the string.

Overriding the Default String-Comparison Setting

To perform a string comparison within a procedure and override the string-comparison setting for the module, you can use the
StrComp function. The StrComp function takes two strings as arguments, along with a compare argument, which you can use
to specify the type of comparison. The possible settings for the compare argument are vbBinaryCompare, vbTextCompare, and
(in Microsoft® Access) vbDatabaseCompare. If you omit this argument, the StrComp function uses the module's default
comparison method.

The following table lists the possible return values for the StrComp function.
If Then StrComp returns

string1 < string2 -1

string1 = string2 0

string1 > string2 1

string1 Or string2 Is Null Null

For example, running the following code from the Immediate window prints "1", indicating that the ANSI value of the first
character in the first string is greater than the ANSI value of the first character in the second string:

? StrComp("vba", "VBA", vbBinaryCompare)

On the other hand, if you specify text-based string comparison, this code prints "0", indicating that the two strings are identical:

? StrComp("vba", "VBA", vbTextCompare)

Other Microsoft® Visual Basic® for Applications (VBA) string functions that perform string comparison also provide a
compare argument that you can use to override the default string-comparison setting for that function call. For example, the
InStr and InStrRev functions both have a compare argument.

Calculating String Length

Often you must know the length of a string to parse its contents. You can use the Len function to calculate the length of a
string:

Dim lngLen As Long
lngLen = Len(strText)

When Microsoft® Visual Basic® for Applications (VBA) stores a string in memory, it always stores the length of the string in
a long integer at the beginning of the string. The Len function retrieves this value and is therefore quite fast.

The Len function is useful when you must determine whether a string is a zero-length string (""). Rather than comparing the
string in question to a zero-length string to determine whether they're equivalent, you can simply check whether the length of
the string is equal to 0. For example:

If Len(strText) > 0 Then
 ' Perform some operation here.
End If

 156

Searching a String

When you must know whether a string contains a particular character or group of characters, you can search the string by using
one of two functions. The traditional candidate for this job is the InStr function, which you can use to find one string within
another. The InStr function compares two strings, and if the second string is contained within the first, it returns the position at
which the substring begins. If the InStr function doesn't find the substring, it returns 0.

The InStr function takes an optional argument, the start argument, in which you can specify the position to begin searching. If
you omit this argument, the InStr function starts searching at the first character in the string.

The newest version of Microsoft® Visual Basic® for Applications (VBA) includes a function called InStrRev, which behaves
in the same way as the InStr function, except that it begins searching at the end of the string rather than at the beginning. As
with the InStr function, you can specify a starting position for the InStrRev function; it will search backward through the string
beginning at that point. If you know that the substring you're looking for probably falls at the end of the string, the InStrRev
function might be a better option. For example, the InStrRev function makes it easier to parse a file path and return just the file
name.

Note
Both the InStr and InStrRev functions return the same value when they locate the same substring. Although the InStrRev
function begins searching at the right side of the string, it counts characters from the left side, as does the InStr function. For
example, calling either the InStr or InStrRev function to search the string "C:\Temp" for the substring "C:\" returns 1. However,
if the substring appears more than when, and you haven't specified a value for the start argument, the InStr function returns the
position of the first instance and the InStrRev function returns the position of the last instance.

The following procedure counts the occurrences of a particular character or group of characters in a string. To call the
procedure, you pass in the string, the substring that you're looking for, and a constant indicating whether the search should be
case-sensitive. The CountOccurrences procedure uses the InStr function to search for the specified text and return the value of
the position at which it first occurs; for example, if it's the third character in the string, the InStr function returns 3. The
procedure increments the counter variable, which keeps track of the number of occurrences found, and then sets the starting
position for the next call to the InStr function. The new starting position is the position at which the search text was found, plus
the length of the search string. By setting the start position in this manner, you ensure that you don't locate the same substring
twice when you're searching for text that's more than one character in length.

The possible constant values are specified by the built-in enumerated constants in vbCompareMethod, which groups the three
VBA string-comparison constants (vbBinaryCompare, vbDatabaseCompare, and vbTextCompare). If you declare an argument
as type vbCompareMethod, VBA lists the constants in that grouping when you call the procedure. This is a convenient way to
remember what values an argument takes. In addition, you can define your own enumerated constants and use them as data
types.

Function CountOccurrences(strText As String, strFind As String, Optional lngCompare As VbCompareMethod) As Long
 ' Count occurrences of a particular character or characters. If lngCompare argument is omitted, procedure performs binary
comparison.
 Dim lngPos As Long
 Dim lngTemp As Long
 Dim lngCount As Long
 ' Specify a starting position. We don't need it the first time through the loop, but we'll need it on subsequent passes.
 lngPos = 1
 ' Execute the loop at least once.
 Do
 ' Store position at which strFind first occurs.
 lngPos = InStr(lngPos, strText, strFind, lngCompare)
 ' Store position in a temporary variable.
 lngTemp = lngPos
 ' Check that strFind has been found.
 If lngPos > 0 Then
 ' Increment counter variable.
 lngCount = lngCount + 1
 ' Define a new starting position.
 lngPos = lngPos + Len(strFind)
 End If
 ' Loop until last occurrence has been found.
 Loop Until lngPos = 0
 ' Return the number of occurrences found.
 CountOccurrences = lngCount
End Function
Calling this function from the Immediate window as follows returns "3":
? CountOccurrences("This is a test", "t", vbTextCompare)

 157

Returning Portions of a String

To work with part of a string's contents, you must parse the string. You can use the InStr or InStrRev function to find the
position at which to begin parsing the string. When you've located that position, you can use the Left, Right, and Mid functions
to do the job. The Left and Right functions return a specified number of characters from either the left or right portion of the
string. The Mid function is the most flexible of the parsing functions-you can specify a starting point anywhere within the
string, followed by the number of characters you want to return.

Note
Some of the Microsoft® Visual Basic® for Applications (VBA) string functions come in two varieties, one that returns a string,
and one that returns a string-type Variant value. The names of the functions that return a string include a dollar sign ("$"); for
example, Chr$, Format$, LCase$, Left$, LTrim$, Mid$, Right$, RTrim$, Space$, Trim$, and UCase$. The functions that
return a string-type Variant value have no dollar sign; for example, Chr, Format, LCase, Left, LTrim, Mid, Right, RTrim,
Space, Trim, and UCase. The string-returning functions are faster; however, you'll get an error if you call them with a value
that is Null. The functions that return a string-type Variant value handle Null values without an error. Code examples in this
section use the string-returning functions where appropriate.

The following procedure parses a file path and returns one of the following portions: the path (everything but the file name),
the file name, the drive letter, or the file extension. You specify which part of the string you want to return by passing a
constant to the lngPart argument. The lngPart argument is defined as type opgParsePath, which contains custom enumerated
constants declared in the modPublicDefs module in VBA.mdb.

Note that this procedure uses the InStrRev function to find the last path separator, or backslash (\), in the string. If you used the
InStr function, you'd have to write a loop to make sure that you'd found the last one. With the InStrRev function, you know that
the first backslash you find is actually the last one in the string, and the characters to the right of it must be the file name.

Function ParsePath(strPath As String, lngPart As opgParsePath) As String
 ' This procedure takes a file path and returns the path (everything but the file name), the drive letter, or the file extension,
depending on which constant was passed in.
 Dim lngPos As Long
 Dim strPart As String
 Dim blnIncludesFile As Boolean
 ' Check that this is a file path. Find the last path separator.
 lngPos = InStrRev(strPath, "\")
 ' Determine whether portion of string after last backslash contains a period.
 blnIncludesFile = InStrRev(strPath, ".") > lngPos
 If lngPos > 0 Then
 Select Case lngPart
 Case opgParsePath.FILE_ONLY ' Return file name.
 If blnIncludesFile Then
 strPart = Right$(strPath, Len(strPath) - lngPos)
 Else
 strPart = ""
 End If
 Case opgParsePath.PATH_ONLY ' Return path.
 If blnIncludesFile Then
 strPart = Left$(strPath, lngPos)
 Else
 strPart = strPath
 End If
 Case opgParsePath.DRIVE_ONLY ' Return drive.
 strPart = Left$(strPath, 3)
 Case opgParsePath.FILEEXT_ONLY ' Return file extension.
 If blnIncludesFile Then
 ' Take three characters after period.
 strPart = Mid(strPath, InStrRev(strPath, ".") + 1, 3)
 Else
 strPart = ""
 End If
 Case Else
 strPart = ""
 End Select
 End If
 ParsePath = strPart
ParsePath_End:
 Exit Function
End Function
Calling this function as follows from the Immediate window returns "Test.txt":
? ParsePath("C:\Temp\Test.txt", opgParsePath.FILE_ONLY)

 158

Working with Strings as Arrays

It might be hard to believe, but some of the most exciting features in Microsoft® Visual Basic®for Applications (VBA) in
Microsoft® Office XP are the functions for working with strings as arrays. These functions can turn once-lengthy string-
manipulation procedures into just a few lines of code. And in many cases, they're faster than using loops and string-parsing
techniques to work with the contents of a very large string.

The Split Function

The Split function takes a string and converts it into an array of strings. By default, it divides the string into elements by using
the space character as a delimiter, so that if you pass in a sentence, each element of the array contains a word. For example, if
you pass this string to the Split function

"This is a test"

you'll get an array that contains the following four elements:

"This"
"is"
"a"
"test"
You can specify that the Split function split the string based on a different delimiter by passing in the delimiter argument.

When you've split a string into an array, it's easy to work with the individual elements. The Split function sizes the array for
you, so you don't have to worry about maintaining the array's size.

The following example uses the Split function to count the number of words in a string. The procedure takes a string and
returns a long integer indicating the number of words found. Because the string is divided into elements at the space between
each word, each element of the resulting array represents a word. To determine the number of words, you simply must
determine the number of elements in the array. You can do this by subtracting the lower bound from the upper bound and
adding 1.

Function CountWords(strText As String) As Long
 ' This procedure counts the number of words in a string.
 Dim astrWords() As String
 astrWords = Split(strText)
 ' Count number of elements in array -- this will be the number of words.
 CountWords = UBound(astrWords) - LBound(astrWords) + 1
End Function

The Join Function

After you've finished processing an array that's been split, you can use the Join function to concatenate the elements of the
array together into a single string again. The Join function takes an array of strings and returns a concatenated string. By
default it adds a space between each element of the string, but you can specify a different delimiter.

The following procedure uses the Split and Join functions together to trim extra space characters from a string. It splits the
passed-in string into an array. Wherever there is more than one space within the string, the corresponding array element is a
zero-length string. By finding and removing these zero-length string elements, you can remove the extra white space from the
string.

To remove zero-length string elements from the array, the procedure must copy the non-zero-length string elements into a
second array. The procedure then uses the Join function to concatenate the second array into a whole string.

Because the second array isn't created by the Split function, you must size it manually. It's easy to do, however-you can size it
initially to be the same size as the first array, then resize it after you've copied in the non-zero-length string elements.

Function TrimSpace(strInput As String) As String
 ' This procedure trims extra space from any part of a string.
 Dim astrInput() As String
 Dim astrText() As String
 Dim strElement As String
 Dim lngCount As Long
 Dim lngIncr As Long
 astrInput = Split(strInput) ' Split passed-in string.
 ReDim astrText(UBound(astrInput)) ' Resize second array to be same size.
 lngIncr = LBound(astrInput) ' Initialize counter variable for second array.
' Loop through split array, looking for non-zero-length strings.
 For lngCount = LBound(astrInput) To UBound(astrInput)
 strElement = astrInput(lngCount)
 If Len(strElement) > 0 Then
 astrText(lngIncr) = strElement ' Store in second array.

 159

 lngIncr = lngIncr + 1
 End If
 Next
' Resize new array.
 ReDim Preserve astrText(LBound(astrText) To lngIncr - 1)
 TrimSpace = Join(astrText) ' Join new array to return string.
End Function
To test the TrimSpace procedure, try calling it from the Immediate window with a string such as the following:
? TrimSpace(" This is a test ")

Tip
To see the elements in each array while the code is running, step through the procedure, and use the Locals window to view the
values contained in each variable.

The Filter Function

The Filter function searches a string array for all elements that match a given text string. The Filter function takes three
arguments: a string array, a string containing the text to find, and a constant specifying the string-comparison method. It
returns a string array containing all the matches that it finds.

You can use the Filter function to determine whether a particular element exists in an array. An example, the
ConvertToProperCase procedure, appears in Converting Strings.

When working with the Filter function, you might notice that it returns a particular element even if only part of the element
matches the search text. In other words, if your search text is the letter "e," and the array you're searching contains the element
"test," the array returned by the Filter function will contain the element "test."

Given this behavior, you might be tempted to use the Filter function to rewrite the CountOccurrences procedure shown earlier
in this section. Before doing so, bear in mind that the CountOccurrences procedure counts every occurrence of a particular
character in a string, even if there is more than one occurrence in a word. When you are using the Filter function, on the other
hand, you can count an occurrence only once per element, even if the character occurs twice within a single element in the
array.

Replacing Text Within a String

Microsoft® Visual Basic® for Applications (VBA) provides another function, the Replace function, which makes it easy to
find and replace all occurrences of a substring within a string. The Replace function takes up to six arguments: the string to be
searched, the text to find within the string, the replacement text, what character to start at, how many occurrences to replace,
and a constant indicating the string-comparison method. You don't even have to write a loop to use the Replace function-it
automatically replaces all the appropriate text for you with one call.
For example, suppose you want to change the criteria for an SQL statement based on some condition in your application.
Rather than re-creating the SQL statement, you can use the Replace function to replace just the criteria portion of the string, as
in the following code fragment:

strSQL = "SELECT * FROM Products WHERE ProductName Like 'M*' ORDER BY ProductName;"
strFind = "'M*'"
strReplace = "'T*'"
Debug.Print Replace(strSQL, strFind, strReplace)
Running this code fragment prints this string to the Immediate window:
SELECT * FROM Products WHERE ProductName Like 'T*' ORDER BY ProductName;

Wildcard Search and Replace

The Replace function greatly simplifies string search-and-replace operations, but it doesn't make it possible for you to perform
wildcard searches. Here's another place where the Split and Join functions come in handy.

The ReplaceWord procedure shown below takes three mandatory arguments: a string to be searched, the word to find within
the string, and the replacement text. When you call this procedure, you can include wildcard characters in the string that you
pass for the strFind argument. For example, you might call the ReplaceWord procedure from the Immediate window with these
parameters:
? ReplaceWord("There will be a test today", "t*t", "party")
The procedure splits the strText argument into an array, then uses the Like operator to compare each element of the array to
strFind, replacing the elements that match the wildcard specification.
Function ReplaceWord(strText As String, strFind As String, strReplace As String) As String
 ' This function searches a string for a word and replaces it. You can use a wildcard mask to specify the search string.
 Dim astrText() As String
 Dim lngCount As Long
 astrText = Split(strText) ' Split the string at specified delimiter.
 ' Loop through array, performing comparison against wildcard mask.
 160

 For lngCount = LBound(astrText) To UBound(astrText)
 If astrText(lngCount) Like strFind Then
 ' If array element satisfies wildcard search, replace it.
 astrText(lngCount) = strReplace
 End If
 Next
 ReplaceWord = Join(astrText) ' Join string, using same delimiter.
End Function

Converting Text in a String from One Case to Another

To convert text in a string from one case to another, you can use the Microsoft® Visual Basic®for Applications (VBA)
StrConv function. The StrConv function converts a string to lowercase, uppercase, or proper case (initial capital letters). It
takes a string and a constant that specifies how to convert the string. For example, the following code fragment converts a
string to proper case:
Debug.Print StrConv("washington, oregon, and california", vbProperCase)
Running this code prints the following text to the Immediate window:
Washington, Oregon, And California
Note
The StrConv function performs other string conversions as well. For example, it converts a string from Unicode to ANSI, or
vice versa. For more information about the StrConv function, search the Visual Basic Reference Help index for "StrConv
function."
Most likely, you'll be about three-fourths satisfied with this result-you probably want "washington," "oregon," and "california"
to be capitalized, but not "and." The word "and" is a minor word that isn't capitalized according to grammatical convention,
unless it's the first word in the sentence. Unfortunately, VBA doesn't know which words to convert and which to leave alone,
so it converts everything. You must manually write code to handle the cases you don't want capitalized.
If you want VBA to omit the minor words, you can define those words in a file or a table, and perform a comparison against
the file or table when you convert each word. The following procedure, ConvertToProperCase, does just that-it takes a string,
splits it into individual words, compares each word against a list in a text file, and converts all non-minor words to proper case.
The ConvertToProperCase procedure calls another procedure, the GetMinorWords procedure. This procedure reads a text file
containing a list of minor words and returns an array of strings containing each word in the text file. The ConvertToProperCase
procedure then uses the Filter function to compare each word in the string to be converted against the list of words contained in
the array of minor words. If a word doesn't appear in the list, then it's converted to proper case. If it does appear, it's converted
to lowercase.

Function ConvertToProperCase(strText As String) As String
 ' This function takes a string and converts it to proper case, except for any minor words.
 Dim astrText() As String
 Dim astrWords() As String
 Dim astrMatches() As String
 Dim lngCount As Long
 astrWords = GetMinorWords ` ' Return array containing minor words.
 astrText = Split(strText) ' Split string into array.
 ' Check each word in passed-in string against array of minor words.
 For lngCount = LBound(astrText) To UBound(astrText)
 ' Filter function returns array containing matches found. If no matches are found, upper bound of array is less than
 ' lower bound. Store result returned by Filter function in a String array, then compare upper bound with lower bound.
 astrMatches = Filter(astrWords, astrText(lngCount))
 If UBound(astrMatches) < Lbound(astrMatches) Then
 ' If word in string does not match any word in array of minor words, convert word to proper case.
 astrText(lngCount) = StrConv(astrText(lngCount), vbProperCase)
 Else
 ' If it does match, convert it to lowercase.
 astrText(lngCount) = StrConv(astrText(lngCount), vbLowerCase)
 End If
 Next
 ConvertToProperCase = Join(astrText) ' Join the string.
End Function

The ConvertToProperCase procedure calls the GetMinorWords procedure, which opens the text file that contains the list of
minor words, gets a string containing all the words in the list, splits the string into an array, and returns the array.
GetMinorWords calls another procedure, the GetLikelyDelimiter procedure, which finds the first likely delimiter character in
the text file.

Note
To call the ConvertToProperCase procedure, you must set a reference to the Microsoft Scripting Runtime object library.

 161

Working with String Variables

Almost any application uses strings that contain variables in some form or another; you dimension a variable, assign a value to
it, and output that variable as part of a string. If you must output a string that contains multiple variables, it can often be a
painstaking process adding all of the quote characters and concatenation operators in the right places.

For example, the following code contains several string variables:
Dim Fname As String, Lname As String
Dim varAge As Variant, varDate as Variant
Fname = "John"
Lname = "Doe"
varAge = 42
varDate = "August 15"
TextBox1.Text = Fname & Lname & " will be " & varAge & " od on " & varDate & " of this year."
In the preceding example, it would be easy to leave out a quotation mark character or space or to misplace a concatenation
character. The result would be a compile-time error, and finding your mistake could prove especially difficult in a long string.

The String Editor add-in, included in Microsoft®Office XP Developer, greatly simplifies the process of formatting complex
strings such as SQL statements or scripts. Using the String Editor, you can simply enter your string as straight text, then mark
any string variables within the string. On completion, the String Editor will automatically format the string for you, inserting
all of the necessary quotes and other formatting characters.

To insert a formatted string into your code
1. Select an insertion point in the Code Editor where you want to add a string.
2. From the Add-Ins menu, select String Editor .

Note
The String Editor menu item is only available when the VBA String Editor add-in is loaded.

3. Type the string into the String Editor. For example:
Fname Lname will be varAge od on varDate of this year.

4. For each variable within the string, select the variable, and click the Toggle String button on the String
Editor toolbar.Each selection will be marked as a variable and color-coded blue in the String Editor.

5. Click the Update button to insert the formatted string into your code with all of the necessary formatting characters.�

The following table shows some examples of the formatting applied by the String Editor.

In the String Editor Resulting code

The dog is happy. "The dog is happy."

The dog is happy. "The dog is " & vbNewLine & "happy."

The strAnimal is happy. "The " & strAnimal & " is happy."

The dog is happy. vbTab & "The dog is happy."

"The dog is happy" Chr$(34) & "The dog is happy" & Chr$(34)

Working with Numbers

Almost every procedure you write in Microsoft® Visual Basic® for Applications (VBA) uses numeric values in some way.
For optimal performance and efficiency, and for accuracy in calculations, it is important to understand the different numeric
data types and when to use which.

In This Section
The Integer, Long, and Byte Data Types
Understand the three data types in Microsoft® Visual Basic® for Applications (VBA) that can represent integers-the Integer,
Long, and Byte data types.
The Boolean Data Type
Use the Boolean data type to specify True or False.
The Floating-Point Data Types
Specify extremely small or large numbers using the Single and Double data types.
The Currency and Decimal Data Types
Use these scaled integer data types when you cannot afford rounding errors and you do not require as many decimal places as
the floating-point data types provide.
Conversion, Rounding, and Truncation
Learn about the functions that help you covert, round, and truncate decimals.

 162

Formatting Numeric Values
Format numbers using the following Microsoft® Visual Basic® for Applications (VBA) functions: FormatNumber,
FormatCurrency, FormatPercent, and Format.
Using the Mod Operator
Determine whether two numbers divide evenly or how close they come to dividing evenly using the Mod operator, which
divides two numbers and returns the remainder.
Performing Calculations on Numeric Arrays
Understand how to perform mathematical functions on a variable set of numbers.

The Integer, Long, and Byte Data Types

Three data types in Microsoft® Visual Basic® for Applications (VBA) can represent integers, or whole numbers: the Integer,
Long, and Byte data types. Of these, the Integer and Long types are the ones you are most likely to use regularly.

The Integer and Long data types can both hold positive or negative values. The difference between them is their size: Integer
variables can hold values between -32,768 and 32,767, while Long variables can range from -2,147,483,648 to 2,147,483,647.
Traditionally, VBA programmers have used integers to hold small numbers, because they required less memory. In recent
versions, however, VBA converts all integer values to type Long, even if they are declared as type Integer. Therefore, there is
no longer a performance advantage to using Integer variables; in fact, Long variables might be slightly faster because VBA
does not have to convert them.
The Byte data type can hold positive values from 0 to 255. A Byte variable requires only a single byte of memory, so it is very
efficient. You can use a Byte variable to hold an Integer value if you know that value will never be greater than 255. However,
the Byte data type is typically used for working with strings. For some string operations, converting the string to an array of
bytes can significantly enhance performance.

The Boolean Data Type

The Boolean data type is a special case of an integer data type. The Boolean data type can contain True or False; internally,
Microsoft® Visual Basic® for Applications (VBA) stores the value of True as -1, and the value of False as 0.
You can use the CBool function to convert any numeric value to a Boolean value. When another numeric data type is
converted to a Boolean value, any nonzero value is equivalent to True, and zero (0) is equivalent to False. For example,
CBool(7) returns True, and CBool(5 + 2 - 7) returns False, because it evaluates to CBool(0).
The following procedure determines whether a number is even. The procedure uses the Mod operator to determine whether a
number can be divided by 2 with no remainder. If a number is even, dividing by 2 leaves no remainder; if it is odd, dividing by
2 leaves a remainder of 1:

Function IsEven(lngNum As Long) As Boolean
 ' Determines whether a number is even or odd.
 If lngNum Mod 2 = 0 Then
 IsEven = True
 Else
 IsEven = False
 End If
End Function

Another way to write this procedure is to convert the result of an expression to a Boolean value and then use the Not keyword
to toggle its value, as shown in the following example. If the lngNum argument is odd, then it must be nonzero; converting
lngNum to a Boolean value yields True. Because the procedure must return False if the value is odd, using the Not keyword to
toggle the Boolean value gives the correct result.
Function IsEven(lngNum As Long) As Boolean
 ' Determines whether a number is even or odd.
 IsEven = Not CBool(lngNum Mod 2)
End Function

Note that the revised IsEven procedure condenses a five-line If...Then statement into a single line of code. If you are using an
If...Then statement to set a value to True under one condition and to False under another, as the IsEven procedure does, you
can condense the If...Then statement by modifying its condition to return True or False. However, the revised procedure might
be somewhat harder to understand.

The Floating-Point Data Types

Microsoft® Visual Basic®for Applications (VBA) provides two floating-point data types, Single and Double. The Single data
type requires 4 bytes of memory and can store negative values between -3.402823 x 1038 and -1.401298 x 10-45 and positive
values between 1.401298 x 10-45 and 3.402823 x 1038. The Double data type requires 8 bytes of memory and can store
negative values between -1.79769313486232 x 10308 and -4.94065645841247 x 10-324 and positive values between
4.94065645841247 x 10-324 and 1.79769313486232 x 10308.

 163

The Single and Double data types are very precise-that is, they make it possible for you to specify extremely small or large
numbers. However, these data types are not very accurate because they use floating-point mathematics. Floating-point
mathematics has an inherent limitation in that it uses binary digits to represent decimals. Not all the numbers within the range
available to the Single or Double data type can be represented exactly in binary form, so they are rounded. Also, some numbers
cannot be represented exactly with any finite number of digits-pi, for example, or the decimal resulting from 1/3.

Because of these limitations to floating-point mathematics, you might encounter rounding errors when you perform operations
on floating-point numbers. Compared to the size of the value you are working with, the rounding error will be very small. If
you do not require absolute accuracy and can afford relatively small rounding errors, the floating-point data types are ideal for
representing very small or very large values. On the other hand, if your values must be accurate-for example, if you are
working with money values-you should consider one of the scaled integer data types.

The Currency and Decimal Data Types

The two scaled integer data types, Currency and Decimal, provide a high level of accuracy. These are also referred to as fixed-
point data types. They are not as precise as the floating-point data types-that is, they cannot represent numbers as large or as
small. However, if you cannot afford rounding errors, and you do not require as many decimal places as the floating-point data
types provide, you can use the scaled integer data types. Internally, the scaled integer types represent decimal values as
integers by multiplying them by a factor of 10.

The Currency data type uses 8 bytes of memory and can represent numbers with fifteen digits to the left of the decimal point
and four to the right, in the range of -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

The Decimal data type uses 12 bytes of memory and can have between 0 and 28 decimal places. The Decimal data type is a
Variant subtype; to use the Decimal data type, you must declare a variable of type Variant, and then convert it by using the
CDec function.

The following example shows how to convert a Variant variable to a Decimal variable. It also demonstrates how using the
Decimal data type can minimize the rounding errors inherent in the floating-point data types.

Sub DoubleVsDecimal()
 ' This procedure demonstrates how using the Decimal data type can minimize rounding errors.
 Dim dblNum As Double
 Dim varNum As Variant
 Dim lngCount As Long
 For lngCount = 1 To 100000 ' Increment values in loop.
 dblNum = dblNum + 0.00001
 ' Convert value to Decimal using CDec.
 varNum = varNum + CDec(0.00001)
 Next
 Debug.Print "Result using Double: " & dblNum
 Debug.Print "Result using Decimal: " & varNum
End Sub

The procedure prints these results to the Immediate window:
Result using Double: 0.999999999998084
Result using Decimal: 1

A Note About Division

Any time you use the floating-point division operator (/), you are performing floating-point division, and your return value will
be of type Double. This is true whether your dividend and divisor are integer, floating-point, or fixed-point values. It is true
whether or not your result has a decimal portion.

For example, running the following code from the Immediate window prints "Double":
? TypeName(2.34/5.9)

So does this code, even though the result is an integer:
? TypeName(9/3)

Because all floating-point division returns a floating-point value, you cannot be certain that your result is accurate to every
decimal place, even if you are performing division on Decimal or Currency values. There will always be an inherent possibility
of rounding errors, although they are likely to be small.

If you are dividing integers, or if you do not care about the decimal portion of the result, you can use the integer division
operator (\). Integer division is faster than floating-point division, and the result is always an Integer or Long value, either of
which requires less memory than a Double value. For example, running this code from the Immediate window prints "Integer":

? TypeName(9\3)

 164

Conversion, Rounding, and Truncation

When you convert a decimal value to an integer value, Microsoft® Visual Basic® for Applications (VBA) rounds the number
to an integer value. How it rounds depends on the value of the digit immediately to the right of the decimal place-digits less
than 5 are rounded down, while digits greater than 5 are rounded up. If the digit is 5, then it is rounded down if the digit
immediately to the left of the decimal place is even, and up if it is odd. When the digit to be rounded is a 5, the result is always
an even integer.

For example, running the following line of code from the Immediate window prints "8," because VBA rounds down when the
number immediately to the left of the decimal is even:
? CLng(8.5)

However, this code prints "10," because 9 is odd:
? CLng(9.5)

If you want to discard the decimal portion of a number, and return the integer portion, you can use either the Int or Fix function.
These functions simply truncate without rounding. For example, Int(8.5) returns 8, and Int(9.5) returns 9. The Int and Fix
functions behave identically unless you are working with negative numbers. The Int function rounds to the lower negative
integer, while the Fix function rounds to the higher one.

For example, the following code evaluates to "-8":
? Fix(-8.2)

Using the Int function, on the other hand, yields "-9":
? Int(-8.2)

Note
The Int and Fix functions always return a Double value. You might want to convert the result to a Long value before
performing further operations with it.

VBA includes a new rounding function called Round, which you can use to round a floating-point or fixed-point decimal to a
specified number of places. For example, the following code rounds the number 1.2345 to 1.234:
? Round(1.2345, 3)

Although the Round function is useful for returning a number with a specified number of decimal places, you cannot always
predict how it will round when the rounding digit is a 5. How VBA rounds a number depends on the internal binary
representation of that number. If you want to write a rounding function that will round decimal values according to predictable
rules, you should write your own.

Formatting Numeric Values

Microsoft®Visual Basic® for Applications (VBA) provides several functions that you can use to format numbers, including
the FormatNumber, FormatCurrency, FormatPercent, and Format functions. Each of these functions returns a number
formatted as a string.

The FormatNumber function formats a number with the comma as the thousands separator. You can specify the number of
decimal places you want to appear. For example, calling the following code from the Immediate window prints "8,012.36":
? FormatNumber(8012.36)

The FormatCurrency function formats a number with a dollar sign, including two decimal places by default. Calling this code
from the Immediate window prints "$10,456.45":
? FormatCurrency(10456.45)

The FormatPercent function formats a number as a percentage, including two decimal places by default. For example, calling
this code from the Immediate window prints "80.00%":

? FormatPercent(4/5)

If you must have finer control over the formatting of a number, you can use the Format function to specify a custom format.
For example, to display leading zeros before a number, you can create a custom format that includes placeholders for each
digit. If a digit is absent, a zero appears in that position. The following procedure shows an example that returns a formatted
string complete with leading zeros:

Function FormatLeadingZeros(lngNum As Long) As String
 ' Formats number with leading zeros.
 FormatLeadingZeros = Format$(lngNum, "00000")
End Function

For more information about creating custom formats, search the Visual Basic Reference Help index for "Format function."

 165

Using the Mod Operator

The Mod operator divides two numbers and returns the remainder. It is useful when you must determine whether two numbers
divide evenly, or how close they come to dividing evenly. The Mod operator always returns an Integer or Long value, even
when you divide floating-point or fixed-point numbers.

For example, the IsFactor procedure takes two arguments, a number and a potential factor, and returns True if the second
argument is indeed a factor of the first. The procedure uses the Mod operator to determine whether one value divides evenly
into the other.

Function IsFactor(lngNum As Long, lngFactor As Long) As Boolean
 ' Determines whether one number is a factor of another number.
 IsFactor = Not CBool(lngNum Mod lngFactor)
End Function

Performing Calculations on Numeric Arrays

Many mathematical functions operate on a variable set of numbers. For example, you can take the median, or middle value, of
a set of any size. Because you will not know how many numbers the set will contain while you are writing code to find the
median, you cannot create a procedure with a set number of arguments. Instead, you can use a dynamic array to store an
indeterminate number of values and perform an operation on them.

The following procedure takes a parameter array and returns the median of the values in the array. A parameter array
encompasses a variable number of arguments that are passed to a procedure as an array. The ParamArray keyword specifies a
parameter array, which must be defined as type Variant.

The Median procedure calls another procedure, IsNumericArray, which determines whether the array contains any non-
numeric elements before the Median procedure attempts to find the median. It then calls the QuickSortArray procedure, which
sorts the array. Finally, it determines whether the array contains an even or odd number of elements. If the number of elements
is odd, the middle element in the sorted array is the median. If the number of elements is even, the median is the average of the
two midmost elements.

Function Median(ParamArray avarValues() As Variant) As Double
 ' Return the median of a set of numbers.
 Dim lngCount As Long
 Dim varTemp As Variant
 varTemp = avarValues() ' Store array in temporary variable.
 If IsNumericArray(varTemp) Then ' Check whether array is numeric.
 ' Determine how many elements are in array.
 lngCount = UBound(varTemp) - LBound(varTemp) + 1
 QuickSortArray varTemp ' Sort the array.
 ' Determine whether array contains an odd or even number of elements.
 If IsEven(lngCount) Then
 ' If even, need to find the two middle elements and return the average of their values.
 ' Remember we're working with a zero-based array!
 Median = (varTemp(lngCount / 2 - 1) + varTemp(lngCount / 2)) / 2
 Else
 Median = varTemp(Int(lngCount / 2)) ' If odd, need to find the middle element.
 End If
 Else
 Median = -1 ' Return -1 if array isn't numeric.
 End If
End Function

To test the Median procedure, try calling it with an even set of numbers, then with an odd set of numbers, as follows:

? Median(45, 67, 23, 89, 52, 101)

To make sure it is working properly, you can check it against the Excel Median worksheet function. Note that the Excel
Median function can take no more than 30 arguments, while the procedure shown here can take any number of arguments.

You could also modify this procedure to take an array, rather than a parameter array. The parameter array is somewhat easier
to test in isolation, but a procedure that takes an array might be more practical for use within your code. For example, you
might have a procedure that fills an array with numeric data from a data source, which you then can pass to the Median
procedure to determine the median of the set of numbers, without having to pass each value as an argument to the procedure.

The strategy shown here for finding the median also works for other operations that take an indeterminate number of values,
such as finding the average or standard deviation, or performing other statistical calculations.

 166

Working with Dates and Times

Microsoft® Visual Basic® for Applications (VBA) provides a data type for storing date and time values, the Date data type.
Convenient as the Date data type is, manipulating date values in VBA can still be tricky. To easily work with dates, you must
understand how VBA stores date values internally.

In This Section
The Date Data Type
Store date and time values by using the Date data type.
Getting the Current Date and Time
Three functions in Microsoft® Visual Basic® for Applications (VBA) can tell you exactly when it is: the Now, Date, and Time
functions.
Formatting a Date
Use predefined formats to format a date, or create a custom format for a date.
Date Delimiters
Understand how to indicate to Microsoft® Visual Basic®for Applications (VBA) that a value is a date.
Assembling a Date
Break down dates into component parts-day, month, and year-to perform a calculation on one element, and then reassemble the
date.
Getting Part of a Date
Get information about a date, such as what quarter or week it falls in or what day of the week it is.
Adding and Subtracting Dates
Learn how to add and subtract intervals to given dates.
Calculating Elapsed Time
Use functions to calculate the time that has elapsed between two dates, and present that time in the desired format.

The Date Data Type

Microsoft® Visual Basic® for Applications (VBA) provides the Date data type to store date and time values. The Date data
type is an 8-byte floating-point value, so internally it is the same as the Double data type. The Date data type can store dates
between January 1, 100, and January 1, 9999.
VBA stores the date value in the integer portion of the Date data type, and the time value in the decimal portion. The integer
portion represents the number of days since December 30, 1899, which is the starting point for the Date data type. Any dates
before this one are stored as negative numbers; all dates after are stored as positive values. If you convert a date value
representing December 30, 1899, to a double, you'll find that this date is represented by zero.
The decimal portion of a date represents the amount of time that has passed since midnight. For example, if the decimal portion
of a date value is .75, three-quarters of the day has passed, and the time is now 6 P.M.
Because the integer portion of a date represents number of days, you can add and subtract days from one date to get another
date.

Getting the Current Date and Time

Three functions in Microsoft® Visual Basic® for Applications (VBA) can tell you exactly when it is: the Now, Date, and Time
functions. The Now function returns both the date and time portions of a Date variable. For example, calling the Now function
from the Immediate window returns a value such as this one:
2/23/98 6:16:47 PM

The Date function returns the current date. You can use it if you do not have to know the time. The Time function returns the
current time, without the date.

Formatting a Date

You can use predefined formats to format a date by calling the FormatDateTime function, or you can create a custom format
for a date by using the Format function.
The following procedure formats a date by using both built-in and custom formats:
Sub DateFormats(Optional dteDate As Date)
 ' This procedure formats a date using both built-in and custom formats.
 ' If dteDate argument has not been passed, then dteDate is initialized to 0 (or December 30, 1899, the date equivalent of 0).
 If CLng(dteDate) = 0 Then
 dteDate = Now ' Use today's date.
 End If
 ' Print date in built-in and custom formats.
 Debug.Print FormatDateTime(dteDate, vbGeneralDate)

 167

 Debug.Print FormatDateTime(dteDate, vbLongDate)
 Debug.Print FormatDateTime(dteDate, vbShortDate)
 Debug.Print FormatDateTime(dteDate, vbLongTime)
 Debug.Print FormatDateTime(dteDate, vbShortTime)
 Debug.Print Format$(dteDate, "ddd, mmm d, yyyy")
 Debug.Print Format$(dteDate, "mmm d, H:MM am/pm")
End Sub

Date Delimiters

When you work with date literals in your code, you must indicate to Microsoft® Visual Basic® for Applications (VBA) that a
value is a date. If you do not, VBA might think you are performing subtraction or floating-point division.

For example, if you run the following fragment, the value that VBA assigns to the Date variable is not April 5, 1998, but 4
divided by 5 divided by 98. Because you are assigning it to a Date variable, VBA converts the number to a date, and prints
"12:11:45 AM" to the Immediate window:

Dim dteDate As Date
dteDate = 4 / 5 / 98
Debug.Print dteDate

To avoid this problem, you must include delimiters around the date. The preferred date delimiter for VBA is the number sign
(#). In addition, you can use double quotation marks, as you would for a string, but doing so requires VBA to perform an extra
step to convert the string to a date. If you rewrite the fragment as follows to include the date delimiter, VBA prints "4/5/98" to
the Immediate window:

Dim dteDate As Date
dteDate = #4/5/98#
Debug.Print dteDate

Assembling a Date

To work with a date in code, you sometimes must break it down into its component parts-that is, its day, month, and year.
When you have done this, you can perform a calculation on one element, and then reassemble the date. To break a date into
components, you can use the Day, Month, and Year functions. Each of these functions takes a date and returns the day, month,
or year portion, respectively, as an Integer value. For example, Year(#2/23/98#) returns "1998."

To reassemble a date, you can use the DateSerial function. This function takes three integer arguments: a year, a month, and a
day value. It returns a Date value that contains the reassembled date.

Often you can break apart a date, perform a calculation on it, and reassemble it all in one step. For example, to find the first
day of the month, given any date, you can write a function similar to the following one:

Function FirstOfMonth(Optional dteDate As Date) As Date
 ' This function calculates the first day of a month, given a date. If no date is passed in, the function uses the current date.
 If CLng(dteDate) = 0 Then
 dteDate = Date
 End If
 FirstOfMonth = DateSerial(Year(dteDate), Month(dteDate), 1) ' Find the first day of this month.
End Function

The FirstOfMonth procedure takes a date or, if the calling procedure does not pass one, uses the current date. It breaks the date
into its component year and month, and then reassembles the date using 1 for the day argument. Calling this procedure with the
dteDate argument #2/23/98# returns "2/1/98".

The following procedure uses the same strategy to return the last day of a month, given a date:

Function LastOfMonth(Optional dteDate As Date) As Date
 ' This function calculates the last day of a month, given a date. If no date is passed in, the function uses the current date.
 If CLng(dteDate) = 0 Then
 dteDate = Date
 End If
 ' Find the first day of the next month, then subtract one day.
 LastOfMonth = DateSerial(Year(dteDate), Month(dteDate) + 1, 1) - 1
End Function

Microsoft® Visual Basic® for Applications (VBA) also provides functions that you can use to disassemble and reassemble a
time value in the same manner. The Hour, Minute, and Second functions return portions of a time value; the TimeSerial
function takes an hour, minute, and second value and returns a complete time value.

 168

Getting Part of a Date

The previous section showed how to return the year, month, and day from a date. You can get other information about a date as
well, such as what quarter or week it falls in, or what day of the week it is.

The Weekday function takes a date and returns a constant indicating on what day of the week it falls. The following procedure
takes a date and returns True if the date falls on a workday-that is, Monday through Friday-and False if it falls on a weekend.

Function IsWorkday(Optional dteDate As Date) As Boolean
 ' This function determines whether a date falls on a weekday. If no date passed in, use today's date.
 If CLng(dteDate) = 0 Then
 dteDate = Date
 End If
 Select Case Weekday(dteDate) ' Determine where in week the date falls.
 Case vbMonday To vbFriday
 IsWorkday = True
 Case Else
 IsWorkday = False
 End Select
End Function

In addition to the individual functions that return part of a date-Year, Month, Day, and Weekday-Microsoft® Visual Basic®
for Applications (VBA) includes the DatePart function, which can return any part of a date. Although it might seem redundant,
the DatePart function gives you slightly more control over the values you return, because it gives you the option to specify the
first day of the week and the first day of the year. For this reason, it can be useful when you are writing code that might run on
systems in other countries. In addition, the DatePart function is the only way to return information about what quarter a date
falls into.

Adding and Subtracting Dates

To add an interval to a given date, you must use the DateAdd function, unless you are adding days to a date. As mentioned
earlier, because the integer portion of a Date variable represents the number of days that have passed since December 30, 1899,
adding integers to a Date variable is equivalent to adding days.

By using the DateAdd function, you can add any interval to a given date: years, months, days, weeks, quarters. The following
procedure finds the anniversary of a given date; that is, the next date on which it occurs. If the anniversary has already
occurred this year, the procedure returns the date of the anniversary in the next year.

Function Anniversary(dteDate As Date) As Date
 ' This function finds the next anniversary of a date. If the date has already passed for this year, it returns the date on which
the anniversary occurs in the following year.
 Dim dteThisYear As Date
 dteThisYear = DateSerial(Year(Date), Month(dteDate), Day(dteDate)) ' Find corresponding date this year.
 ' Determine whether it's already passed.
 If dteThisYear < Date Then
 Anniversary = DateAdd("yyyy", 1, dteThisYear)
 Else
 Anniversary = dteThisYear
 End If
End Function

To find the interval between two dates, you can use the DateDiff function. The interval returned can be any of several units of
time: days, weeks, months, years, hours, and so on.

The following example uses the DateDiff function to return the day number for a particular day of the year. The procedure
determines the last day of the last year by using the DateSerial function, and then subtracts that date from the date that was
passed in to the procedure.

Function DayOfYear(Optional dteDate As Date) As Long
 ' This function takes a date as an argument and returns the day number for that year. If the dteDate argument is omitted, the
function uses the current date.
 ' If dteDate argument has not been passed, dteDate is initialized to 0 (or December 30, 1899, the date equivalent of 0).
 If CLng(dteDate) = 0 Then
 dteDate = Date ' Use today's date.
 End If
 ' Calculate the number of days that have passed since December 31 of the previous year.
 DayOfYear = Abs(DateDiff("d", dteDate, DateSerial(Year(dteDate) - 1, 12, 31)))
End Function

Calling this procedure with the value of #2/23/98# returns "54."

 169

Calculating Elapsed Time

You can use the DateAdd and DateDiff functions to calculate the time that has elapsed between two dates, and then, with a
little additional work, present that time in the desired format. For example, the following procedure calculates a person's age in
years, taking into account whether his or her birthday has already occurred in the current year.

Using the DateDiff function to determine the number of years between today and a birthdate does not always give a valid result
because the DateDiff function rounds to the next year. If a person's birthday has not yet occurred, using the DateDiff function
will make the person one year older than he or she actually is.

To remedy this situation, the procedure checks to see whether the birthday has already occurred this year, and if it has not, it
subtracts 1 to return the correct age.

Function CalcAge(dteBirthdate As Date) As Long
 Dim lngAge As Long
 If Not IsDate(dteBirthdate) Then dteBirthdate = Date ' Make sure passed-in value is a date.
 If dteBirthdate > Date Then dteBirthdate = Date ' Make sure birthdate is not in the future. If it is, use today's date.
 ' Calculate the difference in years between today and birthdate.
 lngAge = DateDiff("yyyy", dteBirthdate, Date)
 ' If birthdate has not occurred this year, subtract 1 from age.
 If DateSerial(Year(Date), Month(dteBirthdate), Day(dteBirthdate)) > Date Then lngAge = lngAge - 1
 CalcAge = lngAge
End Function

Working with Files

With the advent of the Scripting Runtime object library, you can work with drives, folders, and files as objects.

In This Section

The Microsoft Scripting Runtime Object Library
Understand the Scripting Runtime Object Library, and learn how to set a reference to it.

Returning Files from the File System
Use the FileSystemObject to work with drives, folders, and files in the file system.

Setting File Attributes
Use the File object and Folder object to read or set file or folder attributes.

Logging Errors to a Text File
Use objects to write to a text file, return an object that refers to a new or existing file, and use methods to open it for input or
output.

The Dictionary Object
Understand the features of the Dictionary object-the Exists method, the CompareMode property, the Key property, and the
RemoveAll method.

The Microsoft Scripting Runtime Object Library

When you install the Office XP applications, one of the object libraries installed on your system is the Scripting Runtime
object library. This object library contains objects that are useful from either Microsoft® Visual Basic® for Applications
(VBA) or script, so it is provided as a separate library.

The objects in the Scripting Runtime library provide easy access to the file system, and make reading and writing to a text file
much simpler than it is in previous versions.

By default, no reference is set to this library, so you must set a reference before you can use it. If Microsoft Scripting Runtime
does not appear in the References dialog box (Tools menu), you should be able to find it in the Windows system directory as
Scrrun.dll.

The top-level objects in the Scripting Runtime object library are the Dictionary object and the FileSystemObject object. To use
the Dictionary object, you create an object variable of type Dictionary, then set it to a new instance of a Dictionary object:

Dim dctDict As Dictionary
Set dctDict = New Dictionary

To use the other objects in the Scripting Runtime library in code, you must first create a variable of type FileSystemObject, and
then use the New keyword to create a new instance of the FileSystemObject, as shown in the following code fragment:

Dim fsoSysObj As FileSystemObject
Set fsoSysObj = New FileSystemObject

You can then use the variable that refers to the FileSystemObject to work with the Drive, Folder, File, and TextStream objects.

 170

The following table describes the objects contained in the Scripting Runtime library.

Object Collection Description

Dictionary Top-level object. Similar to the VBA Collection object. Use this to store data key item pairs.

Drive Drives Refers to a drive or collection of drives on the system.

File Files Refers to a file or collection of files in the file system.

FileSystemObject Top-level object. Use this object to access drives, folders, and files in the file system.

Folder Folders Refers to a folder or collection of folders in the file system.

TextStream Refers to a stream of text that is read from, written to, or appended to a text file.

Returning Files from the File System

When you have created a new instance of the FileSystemObject, you can use it to work with drives, folders, and files in the file
system.

The following procedure returns the files in a particular folder to a Dictionary object. The GetFiles procedure takes three
arguments: the path to the directory, a Dictionary object, and an optional Boolean argument that specifies whether the
procedure should be called recursively. It returns a Boolean value indicating whether the procedure was successful.

The procedure first uses the GetFolder method to return a reference to a Folder object. It then loops through the Files collection
of that folder and adds the path and file name for each file to the Dictionary object. If the blnRecursive argument is set to True,
the GetFiles procedure is called recursively to return the files in each subfolder.

Function GetFiles(strPath As String, dctDict As ScriptingDictionary, Optional blnRecursive As Boolean) As Boolean
 ' This procedure returns all the files in a directory into a Dictionary object. If called recursively, it also returns all files in
subfolders.
 Dim fsoSysObj As FileSystemObject
 Dim fdrFolder As Folder
 Dim fdrSubFolder As Folder
 Dim filFile As File
 Set fsoSysObj = New FileSystemObject ' Return new FileSystemObject.
 On Error Resume Next
 Set fdrFolder = fsoSysObj.GetFolder(strPath) ' Get folder.
 If Err <> 0 Then ' Incorrect path.
 GetFiles = False
 GoTo GetFiles_End
 End If
 On Error GoTo 0
 For Each filFile In fdrFolder.Files ' Loop through Files collection, adding to dictionary.
 dctDict.Add filFile.Path, filFile.Name
 Next filFile
 If blnRecursive Then ' If Recursive flag is true, call recursively.
 For Each fdrSubFolder In fdrFolder.SubFolders
 GetFiles fdrSubFolder.Path, dctDict, True
 Next fdrSubFolder
 End If
 GetFiles = True ' Return True if no error occurred.
GetFiles_End:
 Exit Function
End Function

You can use the following procedure to test the GetFiles procedure. This procedure creates a new Dictionary object and passes
it to the GetFiles procedure.

Sub TestGetFiles()
 ' Call to test GetFiles function.
 Dim dctDict As ScriptingDictionary
 Dim varItem As Variant
 Set dctDict = New Dictionary ' Create new dictionary.
 ' Call recursively, return files into Dictionary object.
 If GetFiles(GetTempDir, dctDict, True) Then

 171

 For Each varItem In dctDict ' Print items in dictionary.
 Debug.Print varItem
 Next
 End If
End Sub

You can also use the Office FileSearch object to find a file or group of files. The FileSearch object has certain advantages in
that you can search subfolders, search for a particular file type, or search the contents of a file by simply setting a few
properties.

On the other hand, the Microsoft Scripting Runtime object library makes it possible for you to work with individual files or
folders as objects that have their own methods and properties.

Setting File Attributes

The File object and Folder object provide an Attributes property that you can use to read or set a file or folder's attributes, as
shown in the following example.

The ChangeFileAttributes procedure takes four arguments: the path to a folder, an optional constant that specifies the attributes
to set, an optional constant that specifies the attributes to remove, and an optional argument that specifies that the procedure
should be called recursively. You can specify many attributes by using any logical combination of the file attributes.

If the folder path passed in is valid, the procedure returns a Folder object. It then checks to see if the lngSetAttr argument was
provided. If so, it loops through all the files in the folder, appending the new attribute or attributes to each file's existing
attributes. It does the same for the lngRemoveAttr argument, except in this case it removes the specified attributes if they exist
for files in the collection.

Note
The following code does not handle the case of setting the attributes to Normal or zero (0). If you want to set the attribute to
Normal, you must use lngRemoveAttr for all the attributes.

Finally, the procedure checks whether the blnRecursive argument has been set to True. If so, it calls the procedure for each file
in each subfolder of the strPath argument.

Function ChangeFileAttributes(strPath As String, Optional lngSetAttr As FileAttribute, Optional lngRemoveAttr As
FileAttribute, Optional blnRecursive As Boolean) As Boolean
 ' This function takes a directory path, a value specifying file attributes to be set, a value specifying file attributes to be
 ' removed, and a flag that indicates whether it should be called recursively. It returns True unless an error occurs.
 Dim fsoSysObj As FileSystemObject
 Dim fdrFolder As Folder
 Dim fdrSubFolder As Folder
 Dim filFile As File
 Set fsoSysObj = New FileSystemObject ' Return new FileSystemObject.
 On Error Resume Next
 Set fdrFolder = fsoSysObj.GetFolder(strPath) ' Get folder.
 If Err <> 0 Then ' Incorrect path.
 ChangeFileAttributes = False
 GoTo ChangeFileAttributes_End
 End If
 On Error GoTo 0
' If caller passed in attribute to set, set for all.
 If lngSetAttr Then
 For Each filFile In fdrFolder.Files
 filFile.Attributes = filFile.Attributes Or lngSetAttr
 Next
 End If
' If caller passed in attribute to remove, remove for all.
 If lngRemoveAttr Then
 For Each filFile In fdrFolder.Files
 filFile.Attributes = filFile.Attributes - lngRemoveAttr
 Next
 End If
' If caller has set blnRecursive argument to True, then call
 ' function recursively.
 If blnRecursive Then
 ' Loop through subfolders.
 For Each fdrSubFolder In fdrFolder.SubFolders
 ' Call function with subfolder path.
 ChangeFileAttributes fdrSubFolder.Path, lngSetAttr, lngRemoveAttr, True
 Next
 172

 End If
 ChangeFileAttributes = True
ChangeFileAttributes_End:
 Exit Function
End Function

Logging Errors to a Text File

The Scripting Runtime object library simplifies the code required to read from and write to a text file. To use the new objects
to write to a text file, you return a file object that refers to a new or existing file, and then use the OpenAsTextStream method
to open it for input or output. The OpenAsTextStream method has an IOMode argument, which you can set to indicate whether
you want to read from the file, write to it, or append to it.

The OpenAsTextStream method returns a TextStream object, which is the object you use to work with the text in the file. To
read a line, for example, you can use the TextStream object's ReadLine method; to write a line, you can use the WriteLine
method. When you're finished working with the file, you can use the Close method to close it.

The following procedure logs an error to a text file. It takes two arguments: an ErrObject argument, which is a reference to the
Err object that contains the current error, and an optional strProcName argument, which specifies the procedure in which the
error occurred.

The LogError procedure writes to a text file in the Microsoft®Windows® Temp folder. To determine where the Windows
Temp folder is, it calls another procedure, the GetTempDir procedure. This procedure makes a call to the Windows application
programming interface (API) to determine the Temp folder. Windows cannot boot without a designated Temp folder, so you
can be certain that the Temp folder will always be available.

The LogError procedure is meant to be used to log multiple errors. The first time the procedure is called, no log file exists, so it
must create one. On each subsequent call, the procedure must open the existing log file. The simplest way to do this is to look
for the name of the file that you're expecting, and if it is not there, handle the error and create the file.

Unfortunately, when the procedure is first called and the error occurs, the existing information in the Err object is cleared and
the information for the new error takes its place. Because there is only one Err object available in Microsoft® Visual Basic®
for Applications (VBA), the error information that you passed to the procedure is lost when a new error occurs. Therefore, the
first thing that the procedure does is to store the error number and description of the error in variables.

When the procedure has a reference to the text file (APP_ERROR_LOG), it opens it for appending, and then writes the error
information to the file line by line.

Sub LogError(errX As ErrObject, Optional strProcName As String)
 ' This procedure logs errors to a text file. It is used in this section to log synchronization errors.
 ' Arguments: errX: A variable that refers to the VBA Err object.
 Dim fsoSysObj As FileSystemObject
 Dim filFile As File
 Dim txsStream As TextStream
 Dim lngErrNum As Long
 Dim strPath As String
 Dim strErrText As String
 Set fsoSysObj = New FileSystemObject
 lngErrNum = errX.Number ' Store error information.
 strErrText = errX.Description
 errX.Clear ' Clear error.
 strPath = GetTempDir ' Return Windows Temp folder.
 If Len(strPath) = 0 Then GoTo LogError_End
 On Error Resume Next
 ' See if file already exists.
 Set filFile = fsoSysObj.GetFile(strPath & APP_ERROR_LOG)
 ' If not, then create it.
 If Err <> 0 Then Set filFile = fsoSysObj.CreateTextFile(strPath & APP_ERROR_LOG)
 On Error GoTo 0
 ' Open file as text stream for reading.
 Set txsStream = filFile.OpenAsTextStream(ForAppending)
 ' Write error information and close.
 With txsStream
 .WriteLine lngErrNum
 .WriteLine strErrText
 If Len(strProcName) > 0 Then .WriteLine strProcName
 .WriteLine Now
 .WriteBlankLines 1
 .Close

 173

 End With
LogError_End:
 Exit Sub
End Sub

To try the LogError procedure, you can call the following procedure. This procedure suspends error handling, then uses the
Raise method of the Err object to force an error. It then passes the Err object to the LogError procedure, along with the name of
the procedure that caused the error.

Sub TestLogError()
 ' This procedure tests the LogError function.
 On Error Resume Next
 ' Raise an error.
 Err.Raise 11
 ' Log it.
 LogError Err, "TestLogError"
End Sub

The Dictionary Object

The Dictionary object is a data structure that can contain sets of pairs, where each pair consists of an item, which can be any
data type, and a key, which is a unique String value that identifies the item. The Dictionary object is similar in some ways to
the VBA Collection object; however, the Dictionary object offers certain features that the Collection object lacks, including:

• The Exists method. You can use this method to determine whether a particular key, and its corresponding item, exist
in a Dictionary object. The Exists method makes it simpler and more efficient to search a Dictionary object than to
search a Collection object.

• The CompareMode property. Setting this property specifies the text-comparison mode for the Dictionary object, so
that you can search for a key in either a case-sensitive or case-insensitive manner. By default, it is set to
BinaryCompare, which means that the Exists method will return True only if it finds a binary match. There is no way
to specify a text-comparison mode for a key that retrieves an item from a Collection object.

• The Key property. This property enables you to return the key for a particular item in the dictionary. An item in a
Collection object also has a key, which you can use to retrieve that item; however, there is no way to retrieve the key
itself.

• The RemoveAll method. This method removes all items in the Dictionary object. A Collection object, on the other
hand, has no method for removing all items at once, although setting the Collection object to Nothing has the same
effect.

The primary advantage of the Dictionary object over the Collection object is the fact that it is easier to search a Dictionary
object for a given item. Despite this advantage, the Dictionary object does not replace the Collection object entirely. The
Collection object is useful in some situations where the Dictionary object is not. For example, if you're creating a custom
object model, you can use a Collection object to store a reference to a custom collection, but you cannot use a Dictionary
object to do this.

For more information about the Dictionary object, see the VBScript documentation on the Microsoft Scripting Technologies
Web site at http://msdn.microsoft.com/scripting/default.htm

Understanding Arrays

Arrays make it possible for you to refer to a series of variables by the same name and to use a number (an index) to tell them
apart. This helps you create smaller and simpler code in many situations, because you can set up loops that deal efficiently with
any number of cases by using the index number. Arrays are useful when you must store a number of values of the same type,
but you do not know how many, or you do not want to create individual variables to store them all.

For example, suppose you must store a numeric value for every day of the year. You could declare 365 separate numeric
variables, but that would be a lot of work. Instead, you can create an array to store all the data in one variable. The array itself
is a single variable with multiple elements; each element can contain one piece of data.

You can use loops, together with a couple of special functions for working with arrays, to assign values to or retrieve values
from the various elements of an array.

In This Section
Creating Arrays
Understand how to create two types of arrays in Microsoft® Visual Basic® for Applications (VBA)-fixed-size arrays and
dynamic arrays.
Arrays and Variants
Learn how a Variant variable can store an array.
Assigning One Array to Another
Assign one array to another if two dynamic arrays have the same data type.
 174

Returning an Array from a Function
Call a procedure that returns an array and assign it to another array.
Passing an Array to a Procedure
Declare an array in one procedure, and then pass that array to another procedure to be modified.
Sorting Arrays
Understand how to sort an array, which is an iterative process that requires a complex algorithm.
Using the Filter Function to Search String Arrays
Search a string array if you simply must know whether an item exists in the array by using the Filter function.
Using a Binary Search Function to Search Numeric Arrays
Learn how the binary-search algorithm performs efficient searching on a sorted array-whether numeric or string.
Searching a Dictionary
Use object programming constructs, such as For Each...Next and With...End With statements, to work with the Dictionary
object.

Creating Arrays

You can create two types of arrays in Microsoft®Visual Basic® for Applications (VBA)-fixed-size arrays and dynamic arrays.
A fixed-size array has a fixed number of elements, and is useful only when you know exactly how many elements your array
will have while you're writing the code. Most of the time you'll create dynamic arrays.

Arrays can be of any data type. The data type for an array specifies the data type for each element of the array; for example,
each element of an array of type Long can contain a Long value. The following code fragment declares an array variable of
type Long:
Dim alngNum() As Long

Note
You do not have to include the parentheses when you refer to an array variable, except when you declare it, resize it, or refer to
an individual element. However, you might want to include the parentheses everywhere to make it clear that the variable is an
array.
When you have declared a dynamic array variable, you can resize the array by using the ReDim statement. To resize the array,
you provide a value for the upper bound, and optionally, for the lower bound. The upper and lower bound of an array refer to
the beginning and ending indexes for the array.
You must specify the upper bound for the array when you resize it. The lower bound is optional, but it is a good idea to include
it, so that it is obvious to you what the lower bound of the array is:
' This array contains 100 elements.
ReDim alngNum(0 To 99)

If you do not include the lower bound, it is determined by the Option Base setting for the module. By default, the Option Base
setting for a module is 0. You can set it to 1 by entering Option Base 1 in the Declarations section of the module.
If you are using the ReDim statement on an array that contains values, those values might be lost when the array is resized. To
ensure that any values in the array are maintained, you can use the Preserve keyword with the ReDim statement, as follows:
ReDim Preserve alngNum(0 To 364)

Resizing an array with the Preserve keyword can be slow, so you want to do it as infrequently as possible. A good way to
minimize use of the Preserve keyword in your code is to estimate the amount of data you require to store and size the array
accordingly. If an error occurs because you have not made the array large enough, you can resize it within the error handler as
many times as necessary. When you're through working with the array, if it is larger than you require, you can resize it to make
it just large enough to contain the data it currently has.

Arrays and Variants

A Variant variable can store an array. For example, the following code fragment assigns an array of type String to a Variant
variable:

Dim astrItems(0 To 9) As String
Dim varItems As Variant
varItems = astrItems

When a static array is initialized, or when a dynamic array is redimensioned, each element is initialized according to its type.
In other words, String type elements are initialized to zero-length strings, Integer and Long type elements are initialized to zero
(0), and Variant type elements are initialized to Empty. The point is that in the preceding example, it is not necessary to fill the
array to work with it. By simply declaring an array of ten elements as type String, we've created an array containing ten zero-
length strings.

An array of type Variant can store any data type in any of its elements. For example, a Variant type array can have one element
of type String, one element of type Long, and another of type Date. It can even store a Variant variable that contains another
array.

 175

A Variant type array can also store an array of objects. If you know that an array will store only objects, you can declare it as
type Object rather than as type Variant. And if you know that an array of objects will contain only one type of object, you can
declare the array as that object type.

Tip
You might want to consider using a Collection or Dictionary object to store groups of objects in a single variable, rather than
creating an array of objects. The advantage to using an array over a Collection or Dictionary object is that it is easy to sort. But
if you're storing objects, you probably do not care about the sort order. Because a Collection or Dictionary object resizes itself
automatically, you do not have to worry about keeping track of its size, as you do with an array.

Assigning One Array to Another

If two dynamic arrays have the same data type, you can assign one array to another. Assigning one array to another of the same
type is quick because the first array is simply pointed to the memory location that stores the second array.

For example, the following code fragment assigns one string array to another:
Dim astr1() As String
Dim astr2(0 To 9) As String
astr1 = astr2

Note
This type of assignment works only for arrays of the same type. The two arrays must both be dynamic arrays, and they must be
declared as the exact same type: if one is type String, the other must be type String. It cannot be type Variant or any other data
type. If you want to assign one array's elements to an array of a different type, you must create a loop and assign each element
one at a time.

Returning an Array from a Function

The previous example assigned one array variable to another. Based on this example, you might guess that you can also call a
procedure that returns an array and assign that to another array, as in the following code fragment:
Dim astr1() As String
astr1 = ReturnArray

To return an array, a procedure must have a return value type of the array's data type, or of type Variant. The advantage to
declaring a procedure to return a typed array versus a Variant value is that you are not required to use the IsArray function to
ensure that the procedure indeed returned an array. If a procedure returns a value of type Variant, you might want to check its
contents before performing array operations.
The ReturnArray procedure prompts the user for input and creates an array of the resulting values, resizing the array as
required. Note that to return an array from a procedure, you simply assign the array to the name of the procedure.
Function ReturnArray() As String()
 ' This function fills an array with user input, then returns the array.
 Dim astrItems() As String
 Dim strInput As String
 Dim strMsg As String
 Dim lngIndex As Long
 On Error GoTo ReturnArray_Err
 strMsg = "Enter a value or press Cancel to end:"
 lngIndex = 0
 strInput = InputBox(strMsg) ' Prompt user for first item to add to array.
 If Len(strInput) > 0 Then
 ReDim astrItems(0 To 2) ' Estimate size of array.
 astrItems(lngIndex) = strInput
 lngIndex = lngIndex + 1
 Else
 ' If user cancels without adding item, don't resize array.
 ReturnArray = astrItems
 GoTo ReturnArray_End
 End If
 ' Prompt user for additional items and add to array.
 Do
 strInput = InputBox(strMsg)
 If Len(strInput) > 0 Then
 astrItems(lngIndex) = strInput
 lngIndex = lngIndex + 1
 End If
 Loop Until Len(strInput) = 0 ' Loop until user cancels.
 ' Resize to current value of lngIndex - 1.

 176

 ReDim Preserve astrItems(0 To lngIndex - 1)
 ReturnArray = astrItems
ReturnArray_End:
 Exit Function
ReturnArray_Err:
 ' If upper bound is exceeded, enlarge array.
 If Err = ERR_SUBSCRIPT Then ' Subscript out of range
 ReDim Preserve astrItems(lngIndex * 2) ' Double the size of the array.
 Resume
 Else
 MsgBox "An unexpected error has occurred!", vbExclamation
 Resume ReturnArray_End
 End If
End Function

When you call a procedure that returns an array, you must take into account the case in which the returned array does not
contain any elements. For example, in the preceding ReturnArray procedure, if you cancel the input box the first time that it
appears, the array returned by the procedure contains no elements. The calling procedure must check for this condition. The
best way to do this is to define a procedure such as the following one, which takes an array and checks the upper bound. If the
array contains no elements, checking the upper bound causes a trappable error.
Function IsArrayEmpty(varArray As Variant) As Boolean
 ' Determines whether an array contains any elements. Returns False if it does contain elements, True if it does not.
 Dim lngUBound As Long
 On Error Resume Next
 ' If the array is empty, an error occurs when you check the array's bounds.
 lngUBound = UBound(varArray)
 If Err.Number <> 0 Then
 IsArrayEmpty = True
 Else
 IsArrayEmpty = False
 End If
End Function

Note
The VBA Split and Filter functions can also return an array that contains no elements. Checking the upper or lower bounds on
an array returned by either of these procedures does not cause an error, however. When the Split or Filter function returns an
array containing no elements, the lower bound of that array is 0, and the upper bound is -1. Therefore, to determine whether the
returned array contains any elements, you can check for the condition where the upper bound of the array is less than the lower
bound.

Passing an Array to a Procedure

You can declare an array in one procedure, and then pass the array to another procedure to be modified. The procedure that
modifies the array does not have to return an array. Arrays are passed by reference, meaning that one procedure passes to the
other a pointer to the array's location in memory. When the second procedure modifies the array, it modifies it at that same
memory location. Therefore, when execution returns to the first procedure, the array variable refers to the modified array.

Sorting Arrays

Sorting an array is an iterative process that requires a fairly sophisticated algorithm. An example of a common sorting
algorithm, the QuickSort algorithm. The QuickSort algorithm is explained in thorough detail in the Visual Basic Language
Developer's Handbook by Ken Getz and Mike Gilbert (Sybex, 2000)-a good place to start if you're looking for more
information about sorting arrays.

In brief, the QuickSort algorithm works by using a divide-and-sort strategy. It first finds the middle element in the array, then
works its way from the rightmost element to the middle, and from the leftmost element to the middle, comparing elements on
both sides of the middle value and swapping their values if necessary. When this part of the sort is complete, the values on the
right side are all greater than those on the left, but they're not necessarily in order. The procedure then looks at the values on
the left side by using the same strategy-finding a middle value and swapping elements on both sides. It does this until all the
elements on the left side have been sorted, and then it tackles the right side. The procedure calls itself recursively and continues
executing until the entire array has been sorted.

Using the Filter Function to Search String Arrays

The Filter function makes it easy to search a string array if you simply must know whether an item exists in the array. The
Filter function takes a string array and a string containing the search text. It returns a one-dimensional array containing all the
elements that match the search text.

 177

One potential disadvantage of using the Filter function to search an array is that it does not return the index of the elements of
the array that match the search text. In other words, the Filter function tells you whether an element exists in an array, but it
does not tell you where.

Another potential problem with using the Filter function to search an array is that there is no way to specify whether the search
text should match the entire element or whether it only must match a part of it. For example, if you use the Filter function to
search for an element matching the letter "e," the Filter function returns not only those elements containing only "e," but also
any elements containing larger words that include "e."

The following procedure augments the capabilities of the Filter function to search an array and returns only elements that
match exactly. The FilterExactMatch procedure takes two arguments: a string array to search and a string to find. It uses the
Filter function to return an array containing all elements that match the search string, either partially or entirely. It then checks
each element in the filtered array to verify that it matches the search string exactly. If the element does match exactly, it is
copied to a third string array. The function returns this third array, which contains only exact matches.

Function FilterExactMatch(astrItems() As String, strSearch As String) As String()
 ' This function searches a string array for elements that exactly match the search string.
 Dim astrFilter() As String
 Dim astrTemp() As String
 Dim lngUpper As Long
 Dim lngLower As Long
 Dim lngIndex As Long
 Dim lngCount As Long
 astrFilter = Filter(astrItems, strSearch) ' Filter array for search string.
 lngUpper = UBound(astrFilter) ' Store upper and lower bounds of resulting array.
 lngLower = LBound(astrFilter)
 ReDim astrTemp(lngLower To lngUpper) ' Resize temporary array to be same size.
 ' Loop through each element in filtered array.
 For lngIndex = lngLower To lngUpper
 ' Check that element matches search string exactly.
 If astrFilter(lngIndex) = strSearch Then
 astrTemp(lngCount) = strSearch ' Store elements that match exactly in another array.
 lngCount = lngCount + 1
 End If
 Next lngIndex
 ReDim Preserve astrTemp(lngLower To lngCount - 1) ' Resize array containing exact matches.
 ' Return array containing exact matches.
 FilterExactMatch = astrTemp
End Function

Using a Binary Search Function to Search Numeric Arrays

The Filter function works well for searching string arrays, but it is inefficient for numeric arrays. To use the Filter function for
a numeric array, you have to convert all of the numeric elements to strings, an extra step that impairs performance. Then you
must perform string-comparison operations, when numeric comparisons are much faster.

Although it is more involved, the binary-search algorithm performs efficient searching on a sorted array-whether numeric or
string. The binary-search algorithm divides a set of values in half, and determines whether the value being sought lies in the
first half or the second half. Whichever half contains the value is kept, and the other half is discarded. The remaining half is
then again divided in half, and the process repeats until the algorithm either arrives at the sought value or determines that it is
not in the set. Note that the array must be sorted for this algorithm to work.

For an in-depth discussion of the binary-search algorithm, see the Visual Basic Language Developer's Handbook by Ken Getz
and Mike Gilbert (Sybex, 2000).

Searching a Dictionary

Strictly speaking, a Dictionary object is not an array, but it is similar. Both are data structures that can store multiple values.
The Dictionary object has certain advantages over an array: you can use object programming constructs such as For
Each...Next and With...End With statements to work with it, and you do not have to worry about sizing it, as you do an array.

If you use a Dictionary object instead of an array to store a set of data, you can check whether a particular item exists in the
dictionary by calling the Exists method of the Dictionary object and passing it the key for the item you want. However, the
Exists method does not provide any information regarding where the item is within the dictionary or how many times it occurs.

An advantage of using the Exists method with a Dictionary object, rather than using the Filter function with an array, is that the
Exists method returns a Boolean value, while the Filter function returns another array. If you are not required to know how
many times the search item occurs, using the Dictionary object might simplify your code.

 178

Tips for Defining Procedures in VBA

When you are defining a Function or Sub procedure, you have options available to you that can make your code more
extensible or more flexible. The following sections discuss how to extend your procedures by using optional arguments, using
parameter arrays to pass a variable number of arguments, and passing arguments by value and by reference.

In This Section

Using Optional Arguments
Add functionality without updating all the code that calls those procedures by adding optional arguments to user-defined
procedures.
Using Parameter Arrays
Pass an array of arguments to a procedure by using a parameter array.
Passing Arguments by Value or by Reference
Understand the difference between passing arguments by value and passing arguments by reference when you define a
procedure.

Using Optional Arguments

Optional arguments are arguments that are not required for a procedure to be compiled and run. Many built-in functions and
methods take optional arguments. Adding optional arguments to user-defined procedures is a way to add functionality without
updating all the code that calls those procedures. In addition, if you declare arguments that are not always required as optional,
you can minimize resource use by passing only those arguments that are necessary for a given procedure call.

To define an optional argument in a user-defined procedure, use the Optional keyword. You can have as many optional
arguments as you want, but when you denote one argument as optional, any arguments that follow it in the argument list must
be optional also, as shown in the following procedure definition:

Function SomeProc(strRequired1 As String, strRequired2 As String, Optional lngOpt1 As Long, Optional blnOpt2 As Boolean)
Within the body of the procedure, you must have a way to check whether the optional argument was passed in. In many cases,
if an optional argument has not been passed in, you might want it to have a default value. If the calling procedure does not
provide a value for an optional argument, the optional argument is automatically initialized in the same way it would be if it
were a variable-string arguments are initialized to a zero-length string, numeric arguments to zero (0), Boolean arguments to
False, and so on.

You can override this default initialization by providing a different default value for the optional argument in the procedure
definition. The value you provide becomes the default value when the calling procedure fails to pass a value for the optional
argument. The following procedure definition sets the default value for an argument of type Long to 1 and for an argument of
type Boolean to True:

Function SomeProc(strRequired1 As String, strRequired2 As String, Optional lngOpt1 As Long=1, _
 Optional blnOpt2 As Boolean=True)

As you can see, an argument of any data type except Variant always will have a value, and it might not be possible to
determine within the procedure whether the value was passed in or whether it is the default value. If you must know whether
the argument was passed in, define the optional argument as type Variant. Then, use the IsMissing function within the
procedure to determine whether the argument has been passed in, as shown in the following procedure:

Sub TestIsMissing(varTest As Variant)
 If IsMissing(varTest) Then
 Debug.Print "Missing"
 Else
 Debug.Print varTest
 End If
End Sub

The IsMissing function works only with the Variant data type; because any other data type always will have a default
initialization value, the IsMissing function will return False regardless of whether a value has been passed for the argument.

Using Parameter Arrays

You can pass an array of arguments to a procedure by using a parameter array. The advantage to using a parameter array is you
are not required to know at design time how many arguments will be passed to a procedure-you can pass a variable number of
arguments when you call it.

To define a parameter array, use the ParamArray keyword followed by an array of type Variant, as shown in the following
procedure definition:

Function SomeProc(ParamArray avarItems() As Variant)
A parameter array always must be an array of type Variant, and it always must be the last argument in the argument list.

 179

To call a procedure that includes a parameter array, pass in a set of any number of arguments, as shown here:
? SomeProc("red", "yellow", "blue", "green", "orange")

Within the body of the procedure, you can work with the parameter array as you would with any other array.

Passing Arguments by Value or by Reference

When you define a procedure, you have two choices regarding how arguments are passed to it: by reference or by value. When
a variable is passed to a procedure by reference, Microsoft® Visual Basic®for Applications (VBA) actually passes the
variable's address in memory to the procedure, which can modify it directly. When execution returns to the calling procedure,
the variable contains the modified value.

When an argument is passed by value, VBA passes a copy of the variable to the procedure. Then, the procedure modifies the
copy, and the original value of the variable remains intact; when execution returns to the calling procedure, the variable
contains the same value that it had before being passed.

By default, VBA passes arguments by reference. To pass an argument by value, precede the argument with the ByVal keyword
in the procedure definition, as shown here:

Function SomeProc(strText As String, ByVal lngX As Long) As Boolean

If you want to denote explicitly that an argument is passed by reference, you can preface the argument with the ByRef
keyword in the argument list.

Passing by reference can be useful as long as you understand how it works. For example, you must pass arrays by reference;
you will get a syntax error if you try to pass an array by value. Because arrays are passed by reference, you can pass an array to
another procedure to be modified, and then you can continue working with the modified array in the calling procedure.

Optimizing VBA Code

There are many tips for optimizing your Microsoft®Visual Basic® for Applications (VBA) code, such as streamlining your
code to conserve memory resources, creating object variables when you must refer to an object more than once within a
procedure, minimizing concatenation operations, and so on.

In This Section
Declaring Variables
Streamline your memory requirements and speed up performance when you are using variables.
Mathematical Operations
Learn how to speed up operations on numbers.
String Operations
Understand how to enhance the performance of string operations.
Loops
Determine how to save resources when you are executing loops.

Declaring Variables

The following points provide suggestions for ways to streamline your memory requirements and speed up performance when
you are using variables:

• To conserve memory resources, always declare all your variables with specific data types. When you declare a
variable without a specific data type, Microsoft® Visual Basic® for Applications (VBA) creates a variable of type
Variant, which requires more memory than any of the other data types.

• Be aware of how much memory each data type requires and what range of values it can store. Always use a smaller
data type if possible, except in the case where using a smaller data type will force an implicit conversion. For example,
because variables of type Integer are converted to variables of type Long, it makes sense to declare variables that will
store integer values as type Long instead of as type Integer.

• Avoid using floating-point data types unless you must have them. Although it is larger, the Currency data type is
faster than the Single data type, because the Currency data type does not use the floating-point processor.

• If you refer to an object more than once within a procedure, create an object variable and assign to it a reference to the
object. Because the object variable stores the object's location in memory, VBA will not have to look up the location
again.

• Declare object variables as specific types rather than as type Object, so you can take advantage of early binding.

Mathematical Operations

The following points provide suggestions for ways to speed up operations on numbers:

 180

• When performing division on integers, use the integer division operator (\) rather than the floating-point division
operator (/), which always returns a value of type Double regardless of the types of the numbers being divided.

• Keep in mind that any time you use a Single or Double value in an arithmetic expression with integer values, the
integers are converted to Single or Double values, and the final result is a Single or Double value. If you are
performing several operations on a number that is the result of an arithmetic operation, you might want to explicitly
convert the number to a smaller data type.

String Operations

The following points provide suggestions for ways to enhance the performance of string operations:

• Minimize concatenation operations when you can. You can use the Mid function on the left side of the equal sign to
replace characters within the string, rather than concatenating them together. The drawback to using the Mid function
is that the replacement string must be the same length as the substring you are replacing.

Dim strText As String
strText = "this is a test"
Mid(strText, 11, 4) = "tent"
Debug.Print strText

• Microsoft® Visual Basic® for Applications (VBA) provides a number of intrinsic string constants that you can use to
replace function calls. For example, you can use the vbCrLf constant to represent a carriage return/linefeed
combination within a string, rather than using Chr(13) & Chr(10).

• String-comparison operations are slow. Sometimes, you can avoid them by converting a character in the string to an
ANSI value. For example, the following code checks whether the first character in a string is a space:

If Asc(strText) = 32 Then

The previous code is faster than the following:
If Left(strText, 1) = " " Then

Loops

The following points provide suggestions for ways to save resources when you are executing loops:
• Analyze your loops to see whether you are repeating memory-intensive operations needlessly. For example, are there

any variables that you can set outside the loop, rather than within it? Are you performing a conversion procedure each
time through the loop that could be done outside the loop?

• Consider whether you must loop only until a certain condition is met. If so, you might be able to exit the loop early.
For example, suppose you are performing data validation on a string that should not contain numeric characters. If
you have a loop that checks each character in a string to determine whether the string contains any numeric characters,
you can exit the loop as soon as you find the first numeric character.

• If you must refer to an element of an array within a loop, create a temporary variable that stores the element's value
rather than referring to it within the array. Retrieving values from an array is slower than reading a variable of the
same type.

 181

5. ADD-INS, TEMPLATES, WIZARDS, AND LIBRARIES

Creating a Microsoft® Office XP application is about enhancing and extending powerful applications that you and other users
already have on your desktops. You can take advantage of the features in Microsoft® Word, Microsoft® Excel, Microsoft®
PowerPoint®, Microsoft® Access, Microsoft® FrontPage®, and Microsoft® Outlook®, as well as all the time and resources
Microsoft has invested in developing and testing these applications, to build an application quickly and easily that meets users'
requirements without requiring a lot of training and support.

One way to provide users with a custom application is to build an add-in. An add-in extends an application by adding
functionality that is not in the core product itself. If you are a frequent user of Excel or Access, you might already be familiar
with some of the add-ins that these applications include. For example, the Linked Table Manager in Access is an add-in that
was built in Microsoft® Visual Basic® for Applications (VBA).

You can create two different types of add-ins: Component Object Model (COM) add-ins and application-specific add-ins.
COM add-ins can work in more than one of the Office XP applications.

The other type of add-in you can create is an application-specific add-in. You can create application-specific add-ins in Office
XP, as well as in previous versions of Office. An application-specific add-in works in only one application.

Another way to distribute a custom Office application is to create a template. A template provides the user with a basis for
creating a new document. For example, a Word template might include the basic layout for a report that an employee can use
to create a new document with the same layout and simply fill in the new information.

In addition to the add-ins and templates mentioned earlier, you also can create two specialized kinds of add-ins: wizards and
code libraries. Wizards are add-ins, and they help users through a complex process step-by-step. Code libraries are add-ins in
which you can store frequently used procedures and generic code. By setting a reference to a code library, you can call
procedures stored within that library from your current VBA project.

In This Section

What Is a COM Add-in?
Extend the functionality of your Microsoft® Office-based applications without adding complexity for the user.

Building COM Add-ins for the Visual Basic Editor
Customize your development environment and work with components in a Microsoft® Visual Basic®for Applications (VBA)
project from code.

Building COM Add-ins for Office Applications
By building COM add-ins, you can extend the functionality of your Microsoft® Office-based applications without adding
complexity for the user.

Building Application-Specific Add-ins
Add functionality to Microsoft®Office XP applications by creating application-specific add-ins.

Creating Templates
Learn how to give users a framework within which to complete common tasks by using templates.

Creating Wizards
Understand how to create a wizard to walk users through a series of steps to create a new document, spreadsheet, presentation,
database, or Web application and to deliver an application is that is easy to use.

What Is a COM Add-in?

A COM add-in is a dynamic-link library (DLL) that is specially registered for loading by the Microsoft® Office XP
applications. You can build COM add-ins with any of the Office applications in Office XP Developer. In addition, you can
create COM add-ins with Microsoft® Visual Basic® or Microsoft® Visual C++®. For more information about these tools, see
the Microsoft Developer Network (MSDN®) Web site at http://msdn.microsoft.com/

Note
A COM add-in also can be a Microsoft® ActiveX® .exe file for Visual Basic. However, DLLs generally provide better
performance than .exe files.

COM add-ins use the Component Object Model that makes it possible for you to create a single add-in that is available to one
or many of the Office applications-Microsoft® Word, Microsoft® Excel, Microsoft® Access, Microsoft® PowerPoint®,
Microsoft® Outlook®, Microsoft® FrontPage®, or even the Visual Basic Editor. By developing COM add-ins, you can extend
the functionality of your Office-based applications without adding complexity for users.

COM Add-ins vs. Application-Specific Add-ins

In the previous and current versions of Microsoft® Word, Microsoft® Excel, Microsoft® Access, and Microsoft®
PowerPoint®, you can use Microsoft® Visual Basic® for Applications (VBA) to create add-ins specific to each of those
applications. For example, you can create an add-in for Word that builds a custom report from a selected database and another

 182

add-in for Excel that performs a similar task. You save the Word add-in as a Word template file (*.dot), and the Excel add-in
as an Excel add-in file (*.xla). Despite the fact that the add-ins share common code, you have to create separate add-ins to add
functionality to both applications.

Note
Microsoft® Outlook® and Microsoft® FrontPage® do not provide any way to create application-specific add-ins by using
VBA.

A COM add-in, on the other hand, can share some add-in functionality and code across applications. The COM Add-in project
contains a component for each application in which it will run and is registered for each application. Usually, a COM add-in
contains some code that is common across all applications and some that is specific to each application. For example, if you
build a COM add-in to create a custom report in Word or Excel from a database, the code that accesses the database and
retrieves a set of data can be shared. When you have retrieved the data, you must work with the Word object model to write the
data to Word and with the Excel object model to write the data to Excel.

The following table lists both types of add-ins and their file extensions.

Add-ins File extensions Available to

Word add-ins (application-specific) .dot, .wll, .wiz Word only

Excel add-ins (application-specific) .xla, .xll Excel only

PowerPoint add-ins (application-specific) .ppa, .pwz PowerPoint only

Access add-ins (application-specific) .mda, .mde Access only

Exchange Client extensions (application-specific) .dll Outlook and Microsoft® Exchange clients only

COM add-ins .dll Word, Excel, Access, PowerPoint, Outlook, and FrontPage

COM add-ins and application-specific add-ins also differ in terms of how the user views and installs available add-ins. In all
Microsoft® Office XP applications, the COM Add-Ins dialog box displays the available COM add-ins.

Viewing the List of Available COM Add-ins

By default, there is no menu item or toolbar button to display the COM Add-ins dialog box, but you can easily display it.

To add a menu item or toolbar button for the COM Add-ins dialog box

1. In the Microsoft® Office XP application, click Customize on the Tools menu.
2. Click the Commands t ab.
3. In the Categorie s list, click Tools .
4. In the Commands list, click COM Add-ins You might have to scroll through the list to find it.
5. Drag the COM Add-ins command to a toolbar or a menu.
6. Close the Customize dialog box.

Note
In Microsoft®Outlook®, you can access the COM Add-Ins dialog box if you click Options on the Tools menu, click
the Other tab, and then click Advanced Options . In the Advanced Options dialog box, click COM Add-Ins .

When you click the COM Add-Ins toolbar button or menu item, the COM Add-Ins dialog box appears, showing the list of
available COM add-ins. You can load (connect) or unload (disconnect) an add-in by selecting the check box next to it. Loading
a COM add-in loads it into memory, so you can work with it. Unloading an add-in removes it from memory; you cannot use
the add-in until you load it again.

You can add a new COM add-in to the list by clicking Add and locating the add-in. Clicking Add and selecting an add-in that
does not appear in the list registers the add-in DLL if it is not registered already and adds the add-in to the list of available
COM add-ins for an Office XP application.

To remove a COM add-in from the list, select it, and click Remove. Removing an add-in deletes the registry key that contains
the name and load behavior of the add-in. The registry contains information about a COM add-in in two places. As with any
other DLL, the add-in's DLL is registered as a unique object on the system. Additionally, information about the add-in is
placed in another section of the registry to notify Office applications that the add-in exists. This section is deleted when you
remove an add-in from the list. The DLL itself remains registered, and if you add the add-in to the list again, the add-in's
informational section is re-created in the registry.

Note
You can add only DLLs that are COM add-ins to the list of available add-ins in the COM Add-Ins dialog box. Moreover, only
add-ins registered for the application you are working in can be registered. For example, if you are working in Microsoft®
Access, you cannot add a COM add-in that is registered only for Microsoft® Word and Microsoft® Excel. In addition, you can

 183

create COM add-ins for the Microsoft® Visual Basic® Editor. Loading and unloading a COM add-in for the Visual Basic
Editor is slightly different from doing so for COM add-ins in the host application's user interface.

Viewing Available Application-Specific Add-ins

Application-specific add-ins appears in various dialog boxes depending on which application you are using. In Microsoft®
Word, this is the Templates and Add-Ins dialog box; in Microsoft® Excel and Microsoft® PowerPoint®, it is the Add-Ins
dialog box; in Microsoft® Access, it is the Add-In Manager.

Each dialog box has buttons to add or remove add-ins from the list of application-specific add-ins, and a check box to indicate
whether the add-in is loaded. As with COM add-ins, the application-specific add-in must be loaded into memory before it can
be used.

Building COM Add-ins for the Visual Basic Editor

By creating COM add-ins for the Microsoft® Visual Basic® Editor, you can customize your development environment and
work with components in a Visual Basic for Applications (VBA) project from code. For example, you can build a code wizard
that walks a programmer through a series of steps and then builds a procedure, or you can build a code analyzer that
determines how many times and from where a procedure is called.

When you create a COM add-in for the Visual Basic Editor, it appears in all instances of the Visual Basic Editor. You cannot,
for example, create a COM add-in that appears only in the Visual Basic Editor in Microsoft® Word; it will also appear in the
Visual Basic Editor in Microsoft® Access, Microsoft® Excel, Microsoft® PowerPoint®, Microsoft® FrontPage®, and any
other VBA host applications on the computer where the COM add-in DLL is registered.

Note also that you can create multiple add-ins in a single DLL. Each add-in designer in the Add-in project represents a separate
add-in. For example, you can create a single DLL that contains a suite of add-ins for developers, and the developers can load
just the add-ins they want to use.

To control the Visual Basic Editor from the code inside an add-in, you use the Microsoft Visual Basic for Applications
Extensibility library. This object library contains objects that represent the parts of a VBA project, such as the VBProject
object and the VBComponent object. The top-level object in the VBA Extensibility library object model is the VBE object,
which represents the Visual Basic Editor itself. For more information about the object model, use the Object Browser.

Note
Do not confuse the VBA Extensibility library with the IDTExtensibility2 library. Although their names are similar, the VBA
Extensibility library provides objects that you can use to work with the Visual Basic Editor from an add-in while it is running,
and the IDTExtensibility2 library provides events that are triggered when the add-in is connected or disconnected. In addition,
do not confuse the VBA Extensibility library with the Microsoft Visual Basic 6.0 Extensibility library, which is used for
creating add-ins in Microsoft Visual Basic.

Creating COM Add-ins in Office Developer

You can create your own COM add-ins in Microsoft®Visual Basic® for Applications (VBA) with Microsoft® Office XP
Developer. You do not require external development tools, such as Microsoft® Visual C++® or Microsoft® Visual Basic®, to
create COM add-ins.

You can use Add-In Designers to create COM add-ins for use in VBA or any Office application. For example, you might
create an add-in tool to format and print code that could be shared with other developers, or you might create an add-in for
Microsoft® Excel to calculate tax rates that could be shared with Office users.

COM add-ins created with Office Developer are packaged as dynamic link libraries (DLL files) and are registered so that they
can be loaded by Office XP applications.

To add an Add-In Designer to your project
1. From the File menu, select New Project .
2. In the New Project dialog box, select Add-In Project.
3. An Add-In Designer will be added to your project.

The Add-In Designer provides several properties that can be set to define the attributes of your add-in, including Name,
Description, and Load Behavior. It also provides several events that can be used to add code, such as OnConnection,
OnStartupComplete, and OnDisconnection.

The actual code for your COM add-in depends on what you want the add-in to do, as well as which application the add-in is for.
Each of the applications that can use COM add-ins exposes its extensibility structure using its object model; you can view the
object model for your particular application in the Object Browser.

To package the COM add-in as a DLL in VBA

After you have written and debugged your code, you can make your add-in into a DLL.
• From the File menu, select Make projectname.dll.

Note

 184

This will create the COM add-in, add the appropriate registry entries, and make the COM add-in available for use in your
Office host.

Creating a COM Add-in for the Visual Basic Editor

For the most part, creating a COM add-in for the Microsoft® Visual Basic® Editor is similar to creating one for a
Microsoft®Office XP application. COM add-ins for the Visual Basic Editor also includes the add-in designer or a class module
that implements the IDTExtensibility2 library.

One key difference to note is that the initial load behavior setting for a COM add-in for the Visual Basic Editor differs from
that of a COM add-in for an Office application. A COM add-in for the Visual Basic Editor can have one of two initial load
behaviors: None, meaning that the add-in is not loaded until the user loads it, or startup, meaning that the add-in is loaded
when the user opens the Visual Basic Editor.

To create a COM add-in using Visual Basic for Applications in the Visual Basic Editor
1. Create a new Add-in project, select Visual Basic for Applications IDE in the Application box, and then select VBE

6.0 in the Application Version box. Set the initial load behavior for the add-in to either None or Startup.
2. Set a reference to the Microsoft Visual Basic for Applications Extensibility 5.3 library in file Vbe6ext.olb.

Note
If the object library does not appear in the list of available references, you can browse for it in C:\Program
Files\Common Files\Microsoft Shared\VBA\VBA6, the default installation directory. The name of the library as it
appears in the Object Browser is VBIDE.

3. The OnConnection event procedure passes in the Application argument, which contains a reference to the instance of
the Visual Basic Editor in which the add-in is running. You can use this object to work with all other objects in the
VBA Extensibility library. Create a public module-level object variable of type VBIDE.VBE , and assign the object
referenced by the Application argument to this variable.

4. Within the OnConnection event procedure, you can optionally include code to hook the add-in's form up to a
command bar control in the Visual Basic Editor. You can work with the Visual Basic Editor's command bars by using
the CommandBars property of the VBE object.

5. Build any forms or other components to be included in the project.
6. Place a breakpoint in the OnConnection event procedure, and then select Run Project from the Run menu.
7. In a Visual Basic for Applications (VBA) host application, such as Microsoft® Excel, open the Visual Basic Editor,

select Add-In Manager on the Add-Ins menu, and select your add-in from the list. Select
the Loaded/Unloaded check box to load the add-in, if it is not set to load on startup.

8. Debug the add-in. When you have debugged it to your satisfaction, chose Stop Project from the Run menu, end the
running project, and make the add-in's DLL by clicking Make projectname.dll on the File menu.

Note
To test and debug the add-in, you must open another instance of the Visual Basic Editor to see it. The add-in does not appear in
the instance of the editor that you are using to create it.

You can use the same strategies to distribute COM add-ins for the Visual Basic Editor as you use to distribute COM add-ins
for the Office XP applications.

Working with the Microsoft Visual Basic for Applications Extensibility Library

The Microsoft® Visual Basic® for Applications (VBA) extensibility library provides objects that you can use to work with the
Visual Basic Editor and any VBA projects that it contains. From an add-in created in Visual Basic 6.0, you can return a
reference to the VBE object, the top-level object in the VBA Extensibility library, through the Application argument of the
OnConnection event procedure. This argument provides a reference to the instance of the Visual Basic Editor in which the
add-in is running.

The VBProject object refers to a VBA project that is open in the Visual Basic Editor. A VBProject object has a
VBComponents collection, which in turn contains VBComponent objects. A VBComponent object represents a component in
the project, such as a standard module, class module, or form. Because a VBComponent object can represent any of these
objects, you can use its Type property to determine which type of module you are currently working with.

For example, suppose you have a variable named vbeCurrent, of type VBIDE.VBE, which represents the instance of the Visual
Basic Editor in which the add-in will run. The following code fragment prints the names and types of all components in the
active project to the Immediate window:

Dim vbcComp As VBIDE.VBComponent
For Each vbcComp In vbeCurrent.ActiveVBProject.VBComponents
 Debug.Print vbcComp.Name, vbcComp.Type
Next vbcComp

A VBComponent object has a CodeModule property that returns a CodeModule object, which refers to the code module
associated with that component. You can use the methods and properties of the CodeModule object to manipulate the code in
that module on a line-by-line basis. For example, you can insert lines by using the InsertLines method, or perform find and
replace operations by using the Find and Replace methods.

 185

To work with command bars in the Visual Basic Editor, use the CommandBars property of the VBE object to return a
reference to the CommandBars collection.

For more information about working with the VBA Extensibility library, search the Visual Basic Reference Help index for
"VBProject object."

Building COM Add-ins for Office Applications

Because Microsoft® Office XP applications support the Component Object Model (COM) add-in architecture, you can use the
same tools and installation file formats (a Microsoft® ActiveX® .dll or .exe) to develop add-ins for all Office applications. By
building COM add-ins, you can extend the functionality of your Office-based applications without adding complexity for the
user.

You can also create add-ins for Office Developer and for the Microsoft®Visual Basic® Editor. You can make such add-ins
available to or from any application that supports Visual Basic for Applications (VBA), including applications other than
Office.

In This Section

Working with Add-in Designers
Create and register your COM add-in with an add-in designer.

Specifying Load Behavior
Load (connect) the add-in, and make it available to the user; or unload (disconnect) the add-in, so it cannot be run.

Writing Code in the Add-in Designer
Begin writing code in the designer's class module when you have specified general information for a COM add-in in the add-in
designer.

Hooking a COM Add-in Up to a Command Bar Control
Integrate your COM add-in (if it has a user interface) with the host application in some way, so the user can interact with it.

Debugging a COM Add-in
Load and use the COM add-in from within a Microsoft® Office XP application to test and debug it.

Making the DLL
Turn your COM add-in into a DLL when you have finished debugging it.

Distributing COM Add-ins
Install all the files necessary to distributing your COM add-in to other users on each user's system and register the add-in.

COM Add-ins and Security
Specify security settings for Microsoft® Office XP applications in the Office XP Security dialog box.

Working with Add-in Designers

An add-in designer is a file included with the template project that helps you create and register your COM add-in. You can
create a COM add-in without including an add-in designer, but the add-in designer simplifies the process of creating and
registering the add-in. You can use an add-in designer to specify important information for your COM add-in: its name and
description, the application in which it is to run, and how it loads in that application.

Similar to forms in a Visual Basic project, an add-in designer (shown in the following figure) has a user interface component
and an associated class module. The user interface component is never visible to the user when the add-in is running, however;
it is visible only to the developer at design time. You can think of the add-in designer as a sort of dialog box where you specify
settings for an add-in.

The Add-in Designer (Example)

The class module contains the events that occur when the add-in is loaded or unloaded. You can use these events to integrate
the add-in into the application.

When you create the add-in DLL, Visual Basic 6.0 uses the information you have given to the add-in designer to properly
register the DLL as a COM add-in. Visual Basic 6.0 writes the add-in's name, description, and initial load behavior setting to
the registry. The add-in's host application reads these registry entries and loads the add-in accordingly.

Creating COM Add-ins for Multiple Applications

Each add-in designer in your project creates an add-in that can run in only one application. To create a COM add-in that is
available to more than one application, you create a new add-in designer for each application that you want to use the add-in
and then customize the add-in designer for each application.

For example, suppose that you want to create an add-in for Microsoft® Word and Microsoft® PowerPoint® that creates an
organizational chart from a table in a database and inserts the chart into the document or slide. You would begin by making
sure there is an add-in designer for Word and one for PowerPoint.

 186

To create a new Add-in project
1. From the File menu in Microsoft®Visual Basic® Editor, click New Project , and then click Add-in Project . The

first add-in designer in the Add-in project appears.
2. Change the add-in designer's Name property setting in the Properties window. It might be helpful to indicate in the

name of the add-in designer which designer goes with which application. For example, the add-in designer for
Microsoft®Excel in the Image Gallery project is named dsrImageExcel.

3. Enter the appropriate information in the General and Advanced tabs of the add-in designer. Select the application
that you want the add-in designer to work with on the General tab. For details, see "Configuring an Add-in
Designer."

4. To add code to the add-in designer, open the View menu, and click Code .

To add another add-in designer to the Add-in project
1. Open the Insert menu, and click Components .
2. On the Designers tab, select Addin class , and click OK .
3. Open the Insert menu, and click Addin Class .

To make a DLL file for the Add-in project
1. Save the Add-in project.
2. Open the Fil menu, and click Make projectname.DLL (the default is AddInProject1.DLL).
3. In the Make Project dialog box, select the desired DLL name and location.
4. Click the Options button to open the Project Properties dialog box if you want to assign a specific version number,

add version information, or specify a DLL base address. After you have entered the information, click OK to close
the Project Properties dialog box.

5. Click OK on the Make Project dialog box to make the DLL file.

Configuring an Add-in Designer

To create your add-in, you first must fill out the options on the General tab of the add-in designer. The following table explains
each option.

Option Description

 Addin Display Name

The name that will appear in the COM Add-ins dialog box in a Microsoft® Office XP application.
The name you supply should be descriptive to the user. If the name is to come from a resource file
specified in the Satellite DLL Name box on the Advanced tab, it must begin with a number sign (#),
followed by an integer specifying a resource ID within the file.

 Addin Description

Descriptive text for a COM add-in, available from Microsoft® Visual Basic® for Applications
(VBA) in the Description property of the COMAddIn object. If the description is to come from a
resource file specified in the Satellite DLL Name box on the Advanced tab, it must begin with a
number sign (#), followed by an integer specifying a resource ID within the file.

 Application The application in which the add-in will run. This list displays applications that support COM add-
ins.

 Application Version The version of the application in which the add-in will run.

 Initial Load Behavior The way that the add-in loads in the application. The list of possible settings comes from the registry.
Common used behaviors include Startup and On Demand.

 Addin is command-
line safe (does not put
up any UI)

Does not apply to COM add-ins running in Office XP applications.

The Advanced tab of the add-in designer makes it possible for you to specify a file containing localized resource information
for the add-in and to specify additional registry data. The following table describes the options available on the Advanced tab.

Option Description

 Satellite DLL Name The name of a file containing localized (translated) resources for an add-in; the file must be
located in the same directory as the add-in's registered DLL.

 Registry Key for Additional
Add-in Data The registry subkey to which additional data is to be written.

 Add-in Specific Data The names and values to be stored in the registry subkey. Only String and DWORD type
values are permitted.

 187

Working with Host Application Object Models

There are a few things to keep in mind as you add forms and other components to your COM add-in. First, your COM add-in is
similar to a separate application running inside a Microsoft® Office XP application. Therefore, you must set references to any
object libraries you want to work with from within the COM Add-in project. If your add-in will be run in more than one
application, you can use the OnConnection event procedure to determine which application your add-in is currently running in
and then selectively run code that works with that application's objects.

To figure out which application the add-in is currently running, use the object supplied by the Application argument of the
OnConnection event procedure. Assign this object variable to a global object variable. In the code that interacts with the host
application, check to see which application you are working with, and use that application's object model to perform the task.

A DLL is loaded into memory only once, but each application that accesses the DLL gets its own copy of the DLL's data,
stored in a separate space in memory. Therefore, you can use global variables in a COM add-in without worrying about data
being shared between two applications that are using the COM add-in at the same time. For example, the Image Gallery
sample add-in can run simultaneously in Microsoft® Word, Microsoft® Excel, and Microsoft® PowerPoint®. When Word
loads the add-in, the OnConnection event occurs and a reference to the Word Application object is stored in a global variable
of type Object. If Excel then loads the add-in, the OnConnection event occurs and a reference to the Excel Application object
is stored in a global variable of type Object but in a different space in memory. Within the code for the add-in, you can use the
If TypeOf...End If construct to check to which application's Application object the variable points.

' Global object variable, declared in modSharedCode module.
Public gobjAppInstance As Object
Private Sub cmdInsert_Click()
 ' Insert selected image. Check which object variable has been initialized.
 If TypeOf gobjAppInstance Is Word.Application Then
 ' Insert into Word.
 Word.Selection.InlineShapes.AddPicture FileName:= img(mlngSel).Tag, LinkToFile:=False, SaveWithDocument:=True
 ElseIf TypeOf gobjAppInstance Is Excel.Application Then
 gobjAppInstance.ActiveSheet.Pictures.Insert img(mlngSel).Tag
 ElseIf TypeOf gobjAppInstance Is Powerpoint.Application Then
 gobjAppInstance.ActiveWindow.Selection.SlideRange.Shapes.AddPicture _
 FileName:=img(mlngSel).Tag, LinkToFile:=msoFalse, SaveWithDocument:=msoCTrue, Left:=100, Top:=100
 End If
End Sub

Specifying Load Behavior

When a COM add-in has been properly registered, it is available to whatever applications are specified in the add-in designers
that the project contains. The registered COM add-in display name appears in the COM Add-in dialog box; if it does not, click
Add to browse for the add-in and add it to the list.

Selecting the check box next to an add-in in the COM Add-ins dialog box loads (connects) the add-in and makes it available to
the user; clearing the check box unloads (disconnects) the add-in, and it cannot be run.

As the developer, you specify the default setting for when a COM add-in should be loaded. You do this in the Initial Load
Behavior list in the add-in designer.

Note
Users can change this setting later by using the Add-in Manager.

You can specify that an add-in be loaded in one of the following ways:
• Only when the user loads it in the COM Add-ins dialog box, or when Microsoft®Visual Basic®for Applications

(VBA) code loads it by setting the Connect property of the corresponding COMAddIn object.
• Every time the application starts.
• The first time the application starts, so that it can create a toolbar button or menu item for itself. After that, the add-in

is loaded only when the user requests it by clicking the menu item or button.

The following table describes the different settings for the Initial Load Behavior setting.

Initial Load
Behavior
setting

Behavior

None The COM add-in is not loaded when the application boots. It can be loaded in the COM Add-ins dialog box
or by setting the Connect property of the corresponding COMAddIn object.

Startup The add-in is loaded when the application boots. When the add-in is loaded, it remains loaded until it is
explicitly unloaded.

 188

Load on
Demand 1

The add-in is not loaded until the user clicks the button or menu item that loads the add-in, or until a
procedure sets its Connect property to True. In most cases, you will not set the initial load behavior to Load
on Demand directly; you will set it to Load at Next Startup Only, and it will be set automatically to Load on
Demand on subsequent boots of the host application.

Load at Next
Startup Only 1

After the COM add-in has been registered, it loads as soon as the user runs the host application for the first
time. The next time the user boots the application, the add-in is loaded on demand-that is, it does not load
until the user clicks the button or menu item associated with the add-in, or through the COM Add-in dialog
box.

Command
line/Startup Add-in loads either when specifically invoked from a command-line parameter, when Visual Basic starts.

Command line Add-in loads only when specifically invoked from a command-line parameter.

1 Not available to add-ins developed using VBA.

Writing Code in the Add-in Designer

After you have specified general information for a COM add-in in the add-in designer, you can begin writing code in the
designer's class module. To view the add-in designer's class module, right-click the add-in designer in the Project Explorer, and
then click View Code on the shortcut menu.

Code that is in the add-in designer handles the add-in's integration with the host application. For example, code that runs when
the add-in is loaded or unloaded resides in the add-in designer's module. If the add-in contains forms, the add-in designer might
contain code to display the forms.

Implementing the IDTExtensibility2 Library

A COM add-in has events that you can use to run code when the add-in is loaded or unloaded, or when the host application has
finished starting up or is beginning to shut down. To use these events, you must implement the IDTExtensibility2 library,
which provides a programming interface for integrating COM add-ins with their host applications. When you implement the
IDTExtensibility2 library within a class module, the library makes a set of new events available to the module. You must have
these events to control your COM add-in.

Using the Add-in project in Microsoft® Visual Basic® for Applications (VBA) implements the IDTExtensibility2 library for
you in the add-in designer's class module. If you are creating the COM add-in from scratch in Visual Basic 6.0, use the
following procedure:

To manually implement the IDTExtensibility2 library in Visual Basic 6.0
1. Set a reference to the library by clicking References on the Project menu and then selecting the check box next

to Microsoft Add-in Designer . If this library does not appear in the list, you can add it by clicking Browse and
finding the file Msaddndr.dll. By default, this file is located in the C:\Program Files\Common Files \Designer
subfolder.

2. In the Declarations section of the add-in designer's class module, add the following code:
Implements IDTExtensibility2

3. In the Code window, click IDTExtensibility2 in the Object box. This adds the template for the procedure to
the OnConnection event.

4. Create event procedure templates for the four remaining event procedures by clicking them in the Procedure dialog
box in the Code Window.

5. Add code or a comment to each of the five event procedures.
Note
You must include the event-procedure template for each event provided by the IDTExtensibility2 interface. If you omit any of
the event procedures, your project will not compile. If you are not adding code to an event-procedure template, it is a good idea
to add a comment; a single apostrophe (') is sufficient.

Working with the IDTExtensibility2 Event Procedures

The IDTExtensibility2 library provides five events that you can use to manipulate your add-in and the host application:
OnConnection, OnDisconnection, OnAddInsUpdate, OnStartupComplete, and OnBeginShutdown. The following sections
describe each of these event procedures.

The OnConnection Event

The OnConnection event occurs when the COM add-in is loaded (connected). An add-in can be loaded in one of the following
ways:

• The user starts the host application and the add-in's load behavior is specified to load when the application starts.
• The user loads the add-in in the COM Add-ins dialog box.
• The Connect property of the corresponding COMAddIn object is set to True. For more information about the

COMAddIn object, search the Microsoft® Office Visual Basic Reference Help index for "COMAddIn object."

 189

The OnConnection event procedure takes four arguments, described in the following table.

Argument Type Description

Application Object Provides a reference to the application in which the COM add-in is currently running.

ConnectMode Custom
Long A constant that specifies how the add-in was loaded.

AddInInst Object A COMAddIn object that refers to the instance of the class module in which code is currently
running. You can use this argument to return the programmatic identifier for the add-in.

Custom() Variant
An array of Variant type values that provides additional data. The numeric value of the first element
in this array indicates how the host application was started: from the user interface (1), by embedding
a document created in the host application in another application (2), or through Automation (3).

The constants for the ConnectMode argument are grouped in the ext_ConnectMode enumeration. These constants are
described in the following table.

Constant Description

ext_cm_AfterStartup Add-in was loaded after the application started, or by setting the Connect property of the corresponding
COMAddIn object to True.

ext_cm_External Does not apply to building COM add-ins for Microsoft® Office XP applications.

ext_cm_Startup Add-in was loaded on startup.

If you are building a COM add-in that will run in more than one host application, you might find that you call the same code
from each add-in designer's OnConnection event. For example, you might create a new command bar button in the
OnConnection event procedure in the same way within each add-in designer. If so, it is more efficient to create a public
procedure in a standard module and call it from within the OnConnection event procedure for each add-in designer than to
include the same code in each add-in designer.

The following example shows the OnConnection event procedure. The OnConnection event procedure calls the
CreateAddInCommandBarButton procedure in the modSharedCode module. This procedure creates a new command bar
button and returns a reference to it. The OnConnection event procedure then assigns this reference to a private event-ready
variable of type CommandBarButton.

' Event-ready variable declared in add-in designer's module.
Private WithEvents p_ctlBtnEvents As Office.CommandBarButton
Private Sub IDTExtensibility2_OnConnection(ByVal Application As Object,
 ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, ByVal AddInInst As Object, custom() As Variant)
 ' Call shared code to create new command bar button and return a reference to it. Assign reference to event-ready
CommandBarButton object declared with WithEvents within this module.
 Set p_ctlBtnEvents = CreateAddInCommandBarButton(Application, ConnectMode, AddInInst)
End Sub

' Public function in modSharedCode module.
Public Function CreateAddInCommandBarButton(ByVal Application As Object, _
 ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode,
 ByVal AddInInst As Object) As Office.CommandBarButton
 ' This procedure assigns a reference to the Application object passed to the OnConnection event to a global object variable.
It then creates a new command bar button and returns a reference to the button to the OnConnection event procedure. The
advantage to putting this code in a public module is that if you have more than one add-in designer in the project, you can call
' this procedure from each of them rather than duplicating the code.
 Dim cbrMenu As Office.CommandBar
 Dim ctlBtnAddIn As Office.CommandBarButton

 On Error GoTo CreateAddInCommandBarButton_Err
 ' Return reference to Application object and store it in public variable so that other procedures in add-in can use it.
 Set gobjAppInstance = Application
 ' Return reference to command bar.
 Set cbrMenu = gobjAppInstance.CommandBars(CBR_NAME)
 ' Add button to call add-in from command bar, if it doesn't already exist.
 ' Constants are declared at module level. Look for button on command bar.
 Set ctlBtnAddIn = cbrMenu.FindControl(Tag:=CTL_KEY)

 190

 If ctlBtnAddIn Is Nothing Then
 ' Add new button.
 Set ctlBtnAddIn = cbrMenu.Controls.Add(Type:=msoControlButton, Parameter:=CTL_KEY)
 ' Set button's Caption, Tag, Style, and OnAction properties.
 With ctlBtnAddIn
 .Caption = CTL_CAPTION
 .Tag = CTL_KEY
 .Style = msoButtonCaption
 ' Use AddInInst argument to return reference to this add-in.
 .OnAction = PROG_ID_START & AddInInst.ProgId & PROG_ID_END
 End With
 End If
 ' Return reference to new commandbar button.
 Set CreateAddInCommandBarButton = ctlBtnAddIn

 CreateAddInCommandBarButton_End:
 Exit Function
CreateAddInCommandBarButton_Err:
 ' Call generic error handler for add-in.
 AddInErr Err
 Resume CreateAddInCommandBarButton_End
End Function

The CreateAddInCommandBarButton procedure first performs a critical step: it assigns the object passed to the procedure in
the Application argument to a public module-level object variable. This object variable persists as long as the COM add-in is
loaded, so any other procedures in the module can determine in what application the add-in is currently running.

A public module-level variable declared in a standard module in a COM add-in remains in existence from the time the add-in
is loaded to the time it is unloaded.

This procedure also contains code that creates a new menu item on the Tools menu of the host application the first time the
add-in is loaded. Before creating the new menu item, the procedure checks to see whether the item already exists. If the item
does exist, the procedure returns a reference to the existing menu item rather than creating a new one. The OnConnection event
procedure then assigns the reference returned by the CreateAddInCommandBarButton procedure to a variable (p_ctlBtnEvents)
that has been declared by using the WithEvents keyword, so that the menu item's Click event procedure will be triggered when
the user clicks the new menu item.

The OnDisconnection Event

The OnDisconnection event occurs when the COM add-in is unloaded. You can use the OnDisconnection event procedure to
run code that restores any changes made to the application by the add-in and to perform general clean-up operations.

An add-in can be unloaded in one of the following ways:
• The user clears the check box next to the add-in in the COM Add-ins dialog box.
• The host application closes. If the add-in is loaded when the application closes, it is unloaded. If the add-in's load

behavior is set to Startup, it is reloaded when the application starts again.
• The Connect property of the corresponding COMAddIn object is set to False.

The OnDisconnection event procedure takes two arguments, described in the following table.

Argument Type Description

RemoveMode Custom
Long A constant that specifies how the add-in was unloaded.

custom() Variant
An array of Variant type values that provides additional data. The numeric value of the first element
in this array indicates how the host application was started: from the user interface (1); by embedding
a document created in the host application in another application (2); or through Automation (3).

The following table lists the available constants for the RemoveMode method, which are grouped in the
ext_DisconnectionMode enumeration.

Constant Description

ext_dm_HostShutdown Add-in was unloaded when the application was closed.

ext_dm_UserClosed Add-in was unloaded when the user cleared the corresponding check box in the COM Add-ins dialog
box or when the Connect property of the corresponding COMAddIn object was set to False.

 191

The following code shows the OnDisconnection event procedure that calls the RemoveAddInCommandBarButton procedure
located in the modSharedCode module. If the user unloads the add-in, the add-in's menu command is deleted; otherwise, it is
maintained for the next time the user starts the application:

Private Sub IDTExtensibility2_OnDisconnection(ByVal _
 RemoveMode As AddInDesignerObjects.ext_DisconnectMode, custom() As Variant)
 ' Call common procedure to disconnect add-in.
 RemoveAddInCommandBarButton RemoveMode
End Sub

Function RemoveAddInCommandBarButton(ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode)
 ' This procedure removes the command bar button for the add-in if the user disconnected it.
 On Error GoTo RemoveAddInCommandBarButton_Err
 ' If user unloaded add-in, remove button. Otherwise, add-in is being unloaded because application is closing; in that case,_
 ‘ leave button as is.
 If RemoveMode = ext_dm_UserClosed Then
 On Error Resume Next
 ' Delete custom command bar button.
 gobjAppInstance.CommandBars(CBR_NAME).Controls(CTL_NAME).Delete
 On Error GoTo RemoveAddInCommandBarButton_Err
 End If

RemoveAddInCommandBarButton_End:
 Exit Function
RemoveAddInCommandBarButton_Err:
 AddInErr Err
 Resume RemoveAddInCommandBarButton_End

End Function

The OnStartupComplete Event

The OnStartupComplete event occurs when the host application completes its startup routines, in the case where the COM add-
in loads at startup. If the add-in is not loaded when the application loads, the OnStartupComplete event does not occur-even
when the user loads the add-in in the COM Add-ins dialog box. When this event does occur, it occurs after the OnConnection
event.

You can use the OnStartupComplete event procedure to run code that interacts with the application and that should not be run
until the application has finished loading. For example, if you want to display a form that gives users a choice of documents to
create when they start the application, you can put that code in the OnStartupComplete event procedure.

The OnBeginShutdown Event

The OnBeginShutdown event occurs when the host application begins its shutdown routines, in the case where the application
closes while the COM add-in is still loaded. If the add-in is not loaded when the application closes, the OnBeginShutdown
event does not occur. When this event does occur, it occurs before the OnDisconnection event.

You can use the OnBeginShutdown event procedure to run code when the user closes the application. For example, you can
run code that saves form data to a file.

The OnAddInsUpdate Event

The OnAddInsUpdate event occurs when the set of loaded COM add-ins changes. When an add-in is loaded or unloaded, the
OnAddInsUpdate event occurs in any other loaded add-ins. For example, if add-ins A and B both are loaded currently, and
then add-in C is loaded, the OnAddInsUpdate event occurs in add-ins A and B. If C is unloaded, the OnAddInsUpdate event
occurs again in add-ins A and B.

If you have an add-in that depends on another add-in, you can use the OnAddInsUpdate event procedure in the dependent add-
in to determine whether the other add-in has been loaded or unloaded.

Note
The OnStartupComplete, OnBeginShutdown, and OnAddInsUpdate event procedures each provide only a single argument, the
Custom() argument, which is an empty array of Variant type values. This argument is ignored in COM add-ins for Office XP
applications.

Hooking a COM Add-in Up to a Command Bar Control
If your COM add-in has a user interface, it must be integrated with the host application in some way, so the user can interact
with it. For example, the user interface for your COM add-in most likely includes a form. At some point, code in the add-in
must be run to display the form.

 192

One way to integrate your add-in with an application's user interface is to include code in the OnStartupComplete event
procedure that creates a new command bar control (toolbar button or menu item) in the host application. When your add-in is
loaded, the user can click the button or menu item to work with the add-in. You can use the OnConnection event procedure,
but it does not guarantee that the command bar object has been loaded.

Similarly, you can add code to unload your add-in in the OnBeginShutdown event procedure or the OnDisconnection event
procedure.

The critical aspect of integrating an add-in through a command bar control is the process of setting up the event sink. You must
create a command bar control that is event-ready, so its Click event is triggered when the user clicks the control. You can use
the WithEvents keyword to create an event-ready command bar control.

If you set the load behavior for your add-in to Load at Next Startup Only, you also must set the OnAction property for the
command bar control. If you do not set the OnAction property, the add-in will load the first time the application starts. The
next time you start the application, however, the load behavior for the add-in will be set to Load on Demand, and the command
bar control that you have created for the add-in will not load the add-in unless the OnAction property has been set.

Even if your add-in is not demand-loaded, it is a good idea to set this property in your code, in case you later change the load
behavior for the add-in. The syntax for setting the OnAction property for a COM add-in is:

ctlButton.OnAction = "!<ProgID>"

where ctlButton is the CommandBarButton object and ProgID is the programmatic identifier for the add-in. The programmatic
identifier is the sub key that is created for the add-in in the Microsoft® Windows® registry. Each add-in designer or class
module that implements the IDTExtensibility2 library in the COM Add-in project adds its own programmatic identifier to the
registry, beneath the AddIns sub key for the host application in which it will run. The programmatic identifier for a COM add-
in consists of the name of the project followed by the name of the add-in designer or class module. For example, the
programmatic identifier for the ImageGallery add-in for Microsoft® Word is ImageGallery.dsrImageWord.

To return the programmatic identifier for an add-in, you can use the AddInInst argument that is passed to the OnConnection
event procedure. This argument provides a reference to the add-in designer or class module in which code is running currently.
The AddInInst argument is an object of type COMAddIn, which has a ProgId property that returns the programmatic identifier.
Note that you must concatenate the !< and > delimiters before and after the programmatic identifier string to properly set the
OnAction property.

Note
If your add-in will run in Word, you also must set the Tag property for the CommandBarButton object to a unique String value.
This makes sure the command bar button will respond to the Click event and load the add-in for each new document window
that the user opens. Because the Tag property provides you with additional information about the control, it is a good idea to
set the Tag property for a command bar button that loads a COM add-in in any host application.

Creating a Command Bar Control

In some cases, you might want to provide access to your add-in through a menu command.

To create a command bar control that displays the add-in's form
1. In the add-in designer's module, use the WithEvents keyword to declare a module-level variable of

type CommandBarButton. This creates an event-ready CommandBarButton object.
2. In the same module, create the Click event procedure template for the CommandBarButton object by clicking the

name of the object variable in the Object box and then clicking Click in the Procedure dialog box.
3. Write code within the event-procedure template to open the form when the Click event occurs.
4. In the OnConnection event procedure, check to see whether the command bar control already exists, and return a

reference to it if it does. If it does not exist, create the new command bar control, and return a reference to it. You
must check whether the command bar control exists, so you do not create a new control each time your code runs.

5. When you create the new command bar control, set the Tag property for the CommandBarButton object to a unique
string. This is necessary only for COM add-ins running in Microsoft® Word, but it is recommended for COM add-ins
running in any host application.

6. When you create the new command bar control, set the OnAction property for the command bar control if the COM
add-in is to be demand-loaded. If you fail to set the OnAction property, the command bar button will load the add-in
the first time the application starts, but it will not load the add-in when the application is closed and reopened.

7. Within the OnConnection event procedure, assign the reference to the command bar control to the event-
ready CommandBarButton object variable.

8. Add code to the OnDisconnection event to remove the command bar control when the add-in is unloaded.
Note
The add-in designer in the COM add-in template project includes code that performs all these steps to create a menu item on
the Tools menu. By default, the template project has a reference set to the Microsoft® Office XP object library, so you can
work with Office command bars.

Debugging a COM Add-in

 193

When you are developing a COM add-in in Microsoft® Visual Basic® for Applications (VBA), you can debug the add-in by
putting the project into run mode. With the project in run mode, you can load and use the COM add-in from within a
Microsoft® Office XP application to test and debug it by using any of the Visual Basic debugging tools.

To debug a COM add-in in the Visual Basic Editor
1. Open the Add-in project in Visual Basic Editor
2. Place any desired breakpoints, Stop statements, or watches in the code.
3. On the Run menu, click Run Project. This compiles your project, alerting you to any compilation errors, and then

puts the project into run mode.
4. Open the intended host application for the COM add-in. If you have set the add-in's load behavior to Startup or Load

at Next Startup Only , the add-in loads as soon as you start the application. If the add-in's load behavior is set
to None or Load on Demand , open the COM Add-ins dialog box, and select the check box next to your add-in to
load it.

When the add-in loads, the OnConnection event occurs. You can now enter break mode in the Add-in project in the Visual
Basic Editor and debug the code.

Making the DLL

After debugging your COM add-in to your satisfaction, you can package it as a DLL. If you created your COM add-in using
Microsoft® Office XP Developer, it is already a .dll. However, if you created it in Microsoft® Visual Basic® Editor, you must
create the .dll. To create the .dll in Visual Basic, click Make projectname.dll on the File menu. The Make Project dialog box
appears; note that you can enter a name for the DLL that is different from the suggested name. The process of making the DLL
registers it on the local machine.

When you make the DLL in the Visual Basic Editor, the information in the add-in designer is used to add a sub key to the
Windows registry, indicating which applications can host the add-in. The COM add-in then appears in the COM Add-ins
dialog box in those applications for which it is registered.

Add-in Registration

Before you can use a COM add-in in a Microsoft® Office XP application, the add-in DLL must be registered, just as any other
DLL on the computer. The DLL's class ID is registered beneath the \HKEY_CLASSES_ROOT subtree in the registry. The
DLL can be registered on a user's computer by using a setup program, such as those created by the Packaging Wizard or by
running the Regsvr32.exe command-line utility that is included with Microsoft® Windows®. Adding a COM add-in by using
the COM Add-ins dialog box also registers the DLL-if it was created with Microsoft® Visual Basic® 6.0.

Registering the DLL beneath the \HKEY_CLASSES_ROOT subtree informs the operating system of its presence, but
additional information must be added to the registry for the add-in to be available to an Office XP application. This is the
information that you can specify in the add-in designer-the add-in's name, description, target application, target application
version, and initial load behavior. The add-in designer makes sure this application-specific information is written to the correct
place in the registry at the same time that the add-in DLL is registered. The COM Add-ins dialog box displays the information
contained in the subkey for the corresponding Office XP application.

This subkey must be added to the following registry subkey, where appname is the name of the application in which the add-in
will run:

\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Office\appname\AddIns

The new subkey itself must be the programmatic identifier of the COM add-in, which consists of the name of the project
followed by the name of the class module or add-in designer. For example, the registry subkey for the Image Gallery add-in for
Microsoft® Word would be ImageGallery.dsrImageWord.

The following table describes the entries that you can add beneath this subkey. Only the LoadBehavior entry is required; the
others are optional.

Name Type Value

Description String Name to appear in COM Add-ins dialog box

FriendlyName String String returned by Description property

LoadBehavior DWORD Integer indicating load behavior: 0 (None), 3 (Startup), 9 (Load on Demand), or 16 (Load At Next
Startup Only)

Distributing COM Add-ins

If you are planning to distribute your COM add-in to other users, you must install all the necessary files on each user's system
and register the add-in. How you do this depends on the environment in which you are developing the add-in.

 194

Distributing COM Add-ins Created with Office Developer

If you are developing in Microsoft® Office XP Developer, the easiest way to distribute a COM add-in is to create a setup
program for the add-in. The user can install and register the add-in by running the setup program.

Before you can create the setup program, you must compile the COM Add-in Project to a DLL.

To create the setup program, run the Packaging Wizard on the Add-in project, which was compiled to DLL. The Packaging
Wizard will create a setup program that installs and registers the add-in DLL and any other necessary files but not the code.

Distributing COM Add-ins Created with Visual Basic 6.0

If you are developing in Microsoft® Visual Basic® 6.0, the easiest way to distribute a COM add-in is to include the add-in
designer in the Add-in project and then create a setup program for the add-in. The user can install and register the add-in by
running the setup program.

To create the setup program, run the Visual Basic 6.0 Package and Deployment Wizard on the Add-in project. When the user
runs the setup program, all the files required for the add-in to run will be copied to the user's computer and registered.

For more information about using the Visual Basic 6.0 Package and Deployment Wizard, see the documentation included with
Visual Basic 6.0.

COM Add-ins and Security

You can specify security settings for Microsoft® Office XP applications in the Office XP Security dialog box, available by
pointing to Macro on the Tools menu and then clicking Security. The Security Level tab includes a check box, Trust all
installed add-ins and templates. If this box is selected, Office XP applications will load all COM add-ins, application-specific
add-ins, and templates in trusted folders without checking to see whether they have valid digital signatures from trusted
sources.

If this check box is not selected, the Office XP application checks to see whether the add-in or template has been signed
digitally by a trusted source before loading it. If it has, the add-in will be loaded under any security level. If it has not been
signed, if it has not been signed by a trusted source, or if the signature has been invalidated, the add-in will not load under high
security. Under medium security, users will be warned that the add-in might not be safe. Under low security, the add-in will
load and run without prompting the user.

To digitally sign a COM add-in DLL, you must obtain a digital certificate from a certificate authority, and you must run the
Signcode.exe utility included with the Microsoft Internet Client Software Development Kit (SDK) on the COM add-in DLL. A
digital certificate identifies the developer of a component as a trusted source. For more information about digitally signing a
DLL, search the Microsoft Developer Network (MSDN®) Web site, at http://msdn.microsoft.com/ , for "digital signing."

You can use the COMAddIn object and the COMAddIns collection to control COM add-ins from Microsoft® Visual Basic®
for Applications (VBA) code that is running within the host application. For example, you can load an add-in
programmatically when a user clicks a button to access a particular feature; or, you can load an add-in from VBA when you
open an application through Automation.

The Office XP object library supplies the COMAddIn object and the COMAddIns collection. The Application object for each
Office XP application-Microsoft(Word, Microsoft® Excel, Microsoft® PowerPoint®, Microsoft® Access, Microsoft®
FrontPage®, and Microsoft® Outlook®-has a COMAddIns property, which returns a reference to the COMAddIns collection.
For any application, the COMAddIns collection contains only those COM add-ins that are registered for that application. The
COMAddIns collection in Excel, for example, contains no information about COMAddIn objects in Word.

The Connect property of a COMAddIn object sets or returns the load status of the add-in. Setting this property to True loads
the add-in, while setting it to False unloads it.

The ProgId property returns the name of the registry subkey that stores information about the COM add-in. The registry
subkey takes its name from the COM add-in's programmatic identifier, which consists of the name of the Add-in project
followed by the name of the add-in designer or class module that is actually supplying the add-in for a particular application.
For example, when it is properly registered, the Image Gallery sample add-in for Excel has the following value for its ProgId
property:

ImageGallery.dsrImageExcel

The name of the Add-in project is ImageGallery, and the name of the add-in designer for the Excel version of the add-in is
dsrImageExcel.

You can use an add-in's ProgId property value to return a reference to the add-in from the COMAddIns collection, as shown in
the following code fragment, which prints the current value of the Excel Image Gallery COM add-in's Connect property:

Debug.Print Excel.Application.COMAddIns("ImageGallery.dsrImageExcel").Connect

You can use the COMAddIn object and COMAddIns collection to get information about available COM add-ins from code
running in an Office XP application. You can also use it to load and unload add-ins from code running in the add-in host
application, or from code that is performing an Automation operation on the host application from another application.

 195

If you are concerned about the performance of your application, you might want to load an add-in only at certain times. You
can control this by loading and unloading it through VBA code.

The following code uses Automation to launch Word from another application, such as Excel, and load the Image Gallery add-
in. To run this code from another application, remember to first set a reference to the Word object library.

Function LoadWordWithImageGallery() As Boolean
 ' Loads Word and connects Image Gallery add-in. If Image Gallery add-in is not available, procedure fails silently and_
 ‘ returns False.
 Dim wdApp As Word.Application
 Dim cmAddIn As Office.COMAddIn

 ' Create instance of Word and make visible.
 Set wdApp = New Word.Application
 wdApp.Visible = True
 ' Return reference to COM add-in, checking for error in case it doesn't exist.
 On Error Resume Next
 ' Set reference to COM add-in by using its ProgId property value.
 Set cmAddIn = wdApp.COMAddIns("ImageGallery.dsrImageWord")
 If Err.Number = 0 Then
 ' Connect add-in.
 cmAddIn.Connect = True
 ' Perform other operations here.
 LoadWordWithAddIn = True
 Else
 ' Return False if error occurred.
 LoadWordWithAddIn = False
 End If
 ' Enter break mode here to verify that add-in is loaded.
 Stop
 ' Quit Word.
 wdApp.Quit
 Set wdApp = Nothing
End Function

Building Application-Specific Add-ins

For some solutions, creating an application-specific add-in is easier and more convenient than building a COM add-in.

In This Section

Word Add-ins
Add functionality to a Microsoft® Word solution by creating a Word-specific add-in.

Excel Add-ins
Build a Microsoft® Excel add-in to add tools or commands to a user's Excel environment.

PowerPoint Add-ins
Build a Microsoft® PowerPoint® add-in to provide additional functionality to users while they are developing or running a
PowerPoint slide presentation.

Access Add-ins
Build add-ins for Microsoft® Access to help users manage and analyze their databases.

Adding and Removing Command Bars for Word, Excel, and PowerPoint Add-ins
Include code to display or to create the command bar and control when the add-in loads and to hide or to remove the command
bar and control when it unloads.

Controlling Word, Excel, and PowerPoint Add-ins from Code
Use Microsoft® Word, Microsoft® Excel, and Microsoft® PowerPoint® AddIn objects and the AddIns collections to control
the behavior of application-specific add-ins from Microsoft® Visual Basic® for Applications (VBA).

Securing an Access, Excel, PowerPoint, or Word Add-in's VBA Project,
Protect your code and prevent users from changing it by setting a password for the add-in Microsoft® Visual Basic® for
Applications (VBA) project.

Word Add-ins

You can add functionality to a Microsoft® Word solution by creating a Word-specific add-in (also sometimes referred to as a
global template). Add-ins are good for adding generic functionality to the Word environment. For example, you might create a

 196

Word add-in that contains common tools for working with Word documents. The user can use any of these tools with his or her
documents by clicking the toolbars and menu commands that the add-in provides.

To see a list of currently available Word add-ins, click Templates and Add-Ins on the Tools menu. The currently loaded add-
ins appear checked in the Global templates and add-ins list in the Templates and Add-Ins dialog box.

Although Word add-ins and Word templates both have the .dot file extension, they contribute functionality to a Word
document in different ways. An add-in is a supplemental program that adds custom commands or custom features to an
application. A template is a special kind of document that provides boilerplate text, custom styles, and macros for shaping a
final document.

Creating a Word Add-in

You should create an add-in when:
• Your solution does not require boilerplate text or custom styles.
• You want to make some functionality available to any document the user creates, through toolbar buttons, menu

commands, or macros.

To create a Word add-in
1. Create a Microsoft® Word document. Then, from the File menu, select Save As , and select Word Document

Template in the Save as Type box.
2. From the Tools menu, select Macro , and then select Visual Basic Editor .
3. From the File menu, select New Project, and then select Add-In Project.
4. Specify the new add-in, and add code that creates a new toolbar with buttons that call your code when they are clicked.
5. From the Debug menu, select Compile ProjectName.
6. If you want, you can protect the project from viewing, as described in Securing an Access, Excel, PowerPoint, or

Word Add-in's VBA Project.
7. Save the template as type Document Template with the .dot extension.

To change the default path for templates
1. In Word, from the Tools menu, select Options.
2. In the Options dialog box, select the File Locations tab.
3. From the File types list, select User templates , and then click Modify.

Note
If you want the add-in to load automatically when you start Word, save the add-in to the Word Startup folder. In addition,
you can modify the default location for workgroup templates in the Options dialog box. Workgroup templates are templates
that you share on a network with other users.

Loading a Word Add-in

You can load an add-in manually, automatically, or programmatically.

To load a Microsoft® Word add-in manually, select Templates and Add-Ins from the Tools menu, and then select the check
box next to the template's name in the Global templates and add-ins list.

Note
If the add-in does not appear in the list, click Add to locate it. When an add-in is loaded, it is available to each new document
that is created until you clear the check box in the Global templates and add-ins list in the Templates and Add-Ins dialog box.

To load a Word add-in automatically, save the template file in the Word Startup folder on your computer.

To load a Word add-in programmatically, you can try one of the two following methods.
• Call the Add method of the AddIns collection and pass in the add-in file name. By default, the Add method adds the

add-in to the AddIns collection, if it is not there already, and loads the add-in. If the add-in is in the AddIns collection,
it will appear in the Global templates and add-ins list in the Templates and Add-Ins dialog box. To add the add-in to
the collection without loading it, pass in False for the optional Install argument.1.

• Set the Installed property of the corresponding AddIn object to True. When you try to set this property, an error will
occur if the add-in has not been added to the collection already.

If an error occurs in a loaded add-in, you cannot debug the add-in code while it is loaded or view or modify its project. To view
or change the code that is in the add-in project, open it directly in Word.

Running Code when a Word Add-in Is Loaded or Unloaded

To run code automatically when an add-in is loaded, create a Sub procedure named AutoExec in a standard module in the Add-
In project. Any code within this procedure runs when the add-in is loaded. To run code when an add-in is unloaded, add a Sub
procedure named AutoExit. If you close and reopen Microsoft® Word while an add-in is loaded, the AutoExec procedure runs
when you reopen Word.

Note
The Document_Open event procedure does not run when a document is loaded as an add-in. It runs only when the document is
opened directly in Word.

 197

Excel Add-ins

You can build a Microsoft® Excel add-in to add tools or commands to a user's Excel environment. To load an Excel add-in,
click Add-Ins on the Tools menu, and select the add-in from the list, or browse to find it if it does not appear in the list.

When the add-in has been loaded, any toolbars or menu items that it includes appear in Excel. An add-in remains loaded until
the user unloads it or until Excel is closed, so tools in the add-in are available to all open workbooks. When the user closes
Excel, the add-in is unloaded. It will be reloaded when Excel is opened only if the add-in is saved to the XLStart folder.

Several characteristics distinguish an Excel add-in from a typical workbook file:
• An add-in has the file extension .xla to indicate that it is an add-in.
• When you save a workbook as an Excel add-in, the workbook window is made invisible and cannot be viewed. You

can use the invisible workbook and worksheets for storing calculations or data that your add-in requires while it is
running.

• Users cannot use the SHIFT key to bypass events that are built into the add-in. This feature makes sure any event
procedures you have written in the add-in will run at the proper time.

• Excel messages (alerts) are not displayed by code running in an add-in. In a standard workbook file, messages appear
to verify that the user wants to perform an operation that might result in data loss, such as deleting a worksheet or
closing an unsaved workbook file. In an add-in, you can perform such operations without the messages being
displayed.

Creating an Excel Add-in

You create a Microsoft® Excel add-in by creating a workbook, adding code and custom toolbars and menu items to it, and
saving it as an Excel add-in file.

To create an Excel add-in
1. Create a new workbook, add code to it, and create any custom toolbars or menu bars.
2. On the File menu, click Properties . In the DocumentName Properties dialog box, click the Summary tab, and then

use the Title box to specify the name for your add-in, as you want it to appear in the Add-Ins dialog box.
3. Compile the Add-In project by clicking Compile Project on the Debug menu in the Visual Basic Editor.
4. If you want, you can protect the project from viewing as described in Securing an Access, Excel, PowerPoint, or

Word Add-in's VBA Project.

5. Save the add-in workbook as type Excel add-in, which has the extension .xla.
Note
When you are creating an Excel add-in, pay close attention to the context in which your code is running. When you want to
return a reference to the add-in workbook, use the ThisWorkbook property, or refer to the workbook by name. To refer to the
workbook that is open in Excel currently, use the ActiveWorkbook property, or refer to the workbook by name.

When you have saved the add-in, you can reopen it in Excel to make changes to the project. The saved add-in no longer has a
visible workbook associated with it, but when you open it, its project is available in the Microsoft® Visual Basic® Editor.

Saving the add-in workbook as an Excel add-in sets the IsAddIn property of the corresponding Workbook object to True.

You can debug an Excel add-in while it is loaded. When you load an add-in, its project appears in the Solution Explorer in the
Visual Basic Editor. If the project is protected, you must enter the correct password to view its code.

Loading an Excel Add-in

You can load a Microsoft® Excel add-in in one of three ways:
• Manually Select the check box next to the name of the add-in in the Add-Ins dialog box on the Tools menu.
• Automatically when Excel starts Save the add-in to the ..\ \Excel\XLStart subfolder. You can change the location of

the XLStart subfolder on the General tab of the Options dialog box (Tools menu).
• Programmatically Use the Add method of the AddIns collection to add the add-in to the list of available add-ins,

and then set the Installed property of the corresponding AddIn object to True.

For example, the following procedure loads an add-in by first checking whether it is in the AddIns collection and adding it if it
is not. Then, the procedure sets the add-in's Installed property to True. To call this procedure, pass in the path and file name of
the add-in that you want to add:

Function Load_XL_AddIn(strFilePath As String) As Boolean
 ' Checks whether add-in is in collection, and then loads it. To call this procedure, pass in add-in's path and file name.
 Dim addXL As Excel.AddIn
 Dim strAddInName As String

 On Error Resume Next
 ' Call ParsePath function to return file name only.
 strAddInName = ParsePath(strFilePath, FILE_ONLY)
 ' Remove extension from file name to get add-in name.
 strAddInName = Left(strAddInName, Len(strAddInName) - 4)
 ' Attempt to return reference to add-in.

 198

 Set addXL = Excel.AddIns(strAddInName)
 If Err <> 0 Then
 Err.Clear
 ' If add-in is not in collection, add it.
 Set addXL = Excel.AddIns.Add(strFilePath)
 If Err <> 0 Then
 ' If error occurs, exit procedure.
 Load_XL_AddIn = False
 GoTo Load_XL_AddIn_End
 End If
 End If
 ' Load add-in.
 If Not addXL.Installed Then addXL.Installed = True
 Load_XL_AddIn = True
Load_XL_AddIn_End:
 Exit Function
End Function

Running Code Automatically when an Excel Add-in Is Loaded or Unloaded

To run code automatically when a Microsoft(Excel add-in is loaded, you have two choices:
• Create a Sub procedure named Auto_Open in a standard module in the Add-In project. Any code within this

procedure runs when the add-in is loaded. To run code when an add-in is unloaded, add a procedure named
Auto_Close.

-or-
• Add code to the add-in workbook's Open event procedure. The code in this procedure also runs when an add-in is

loaded, and it runs before the Auto_Open procedure runs.

Keep in mind that if you want an add-in to load automatically when Excel starts up, you must save it in
the ...\Microsoft\Excel\XLStart subfolder. If the add-in is not saved in this folder, it is not loaded when Excel starts.

PowerPoint Add-ins

Microsoft® PowerPoint® add-ins are similar to Microsoft® Excel add-ins. You build a PowerPoint add-in to provide
additional functionality to users while they are developing or running a PowerPoint slide presentation. In most cases, the user
works with your add-in by clicking a toolbar button or menu item that you have included with the add-in.

Creating a PowerPoint Add-in

To create a Microsoft® PowerPoint®add-in, you create a new presentation and add code and custom toolbars. Then, you save
your presentation as both a presentation file (.ppt) and a PowerPoint add-in (.ppa).

To create a PowerPoint add-in
1. Create a new presentation and add code to its Microsoft® Visual Basic® for Applications (VBA) project, and create

any custom toolbars or menu bars.
2. When you have tested and debugged the code, compile the project by clicking Compile VBAProject on

the Debug menu.
3. If you want, you can protect the project from viewing as described in Securing an Access, Excel, PowerPoint, or

Word Add-in's VBA Project.
4. Save the project as a PowerPoint presentation, with the extension .ppt, and then save the project as a PowerPoint add-

in, which has the extension .ppa. By default, PowerPoint add-ins are saved to the same folder as Excel add-ins-
..\Microsoft\Addins subfolder. This folder is where PowerPoint looks for add-ins when you browse for a new add-in
in the Add-Ins dialog box (Tools menu).

Note
When you save the project as a PowerPoint add-in, you can no longer view the VBA project, not even in break mode, nor can
you view the slides associated with it.

Therefore, you also should save your PowerPoint add-in as a standard presentation, in case you must make changes to it and
resave it as an add-in.

Loading a PowerPoint Add-in

You can load a Microsoft®PowerPoint® add-in in any of the following ways:
• Manually Click Add-Ins on the Tools menu. The Available Add-Ins list displays the available add-ins; you can add

add-ins to the list by clicking Add New and locating the add-in file. Any add-in that is loaded currently has an "x"
next to its name. To unload an add-in, select it, and click Unload. You can use an add-in only when it is loaded.

• Automatically when PowerPoint starts Set the AutoLoad property of the AddIn object to True in the Microsoft®
Visual Basic® Editor The next time you start PowerPoint, the add-in is loaded, and the Loaded property is set to True.

• Programmatically Set the Loaded property of the corresponding AddIn object to True.

 199

Running Code Automatically when a PowerPoint Add-in Is Loaded or Unloaded

To run code automatically when an add-in is loaded, create a Sub procedure named Auto_Open in a standard module in the
Add-In project. Any code within this procedure runs when the add-in is loaded. To run code when an add-in is unloaded, add a
procedure named Auto_Close.

If you close Microsoft® PowerPoint® while an add-in is loaded, the Auto_Open procedure will run when you reopen
PowerPoint, because the add-in is reloaded on startup.

Access Add-ins

You can build add-ins for Microsoft® Access to help users manage and analyze their databases. Access includes several add-
ins, which are written in Microsoft® Visual Basic® for Applications (VBA). For example, the Linked Table Manager is an
add-in that handles the updating of linked tables when the database containing the source tables is moved or renamed. The
wizards included with Access are also add-ins.

Access add-ins have the file extension .mda or .mde. A user can open an .mda file and look at the code, unless you have
secured the modules by using either user-level security or project-level security. When you create an .mde file, however, all
VBA source code is removed. The .mde contains only compiled VBA code, which cannot be viewed by the user. Creating
an .mde file is therefore the best way to secure your code, if you are concerned about protecting your source code. For more
information about .mda and .mde files, search the Microsoft Access Help index for "MDE files."

When you write code that will run in an Access add-in, use caution when referring to the current database. If you want to refer
to the add-in database in which code is currently running, use the CodeProject or CodeData object to return a reference to this
database. If you want to refer to the database that is currently open in Access, use the CurrentProject or CurrentData object.

Creating Menu Add-ins for Access

The simplest Microsoft® Access add-in is a menu add-in. A menu add-in calls a procedure in another database, perhaps a
database that is serving as a code library. For example, a simple menu add-in might call a procedure that generates a report
containing information about the various objects in the current database, such as the date they were created and their
descriptions. Menu add-ins appear when you point to Add-Ins on the Tools menu.

To create a menu add-in
1. Add a subkey to the registry that specifies the name of the file containing the procedure and the name of the procedure

itself. Menu add-ins are listed beneath the following subkey in the registry:
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\Access\Addins\Menu add-ins

2. To specify the command that should appear on the Add-Ins submenu of the Tools menu, create a new subkey beneath
the Add-In's subkey. For example, naming this subkey &Analyze Database Objects would result in a command
named Analyze Database Objects on the Add-Ins submenu.

3. To hook up the menu command to the add-in, add two entries (in this case, String values) beneath the command's
subkey, one named Expression and one named Library . Set the value of the Library entry to the path and file name
of the database that contains the procedure that provides an entry point to the add-in. Set the value of
the Expression entry to the name of the procedure itself. For example, if the procedure is
named AnalyzeDatabaseObjects and it resides in a database named CodeLib.mda , you would set these entries as
follows:

Expression: "=AnalyzeDatabaseObjects()"
Library: "C:\Windows\Application Data\Microsoft\AddIns\CodeLib.mda"

After you have added these keys, the new add-in command will appear on the Add-Ins submenu of the Tools menu the next
time you open Access.

Note
If you must distribute your Access menu add-in to users, create an installable add-in, so the add-in is properly registered on
users' machines.

Creating Installable Add-ins for Access

You can create add-ins that the user can load (install) or unload (uninstall) by using the Add-In Manager. The Add-In Manager
can load the following types of add-ins:

• Menu add-ins, such as those described in Creating Menu Add-ins for Access.
• Object wizards, which help the user create a new table, query, form, data access page, or report. Microsoft® Access

includes a number of built-in object wizards, which are available in the New Table, New Query, New Form, New
Data Access Page, and New Report dialog boxes. An object wizard that you create also will appear in one of these
dialog boxes.

• Control wizards, which help the user to add either an Access control or a Microsoft® ActiveX® control to a form,
report, or data access page. A control wizard runs only if the Control Wizards tool in the toolbox is depressed. When
this button is depressed, clicking a control in the toolbox and dropping it onto a form, report, or data access page
launches the wizard that is associated with that control.

 200

• Builders, which help the user to set a property for an object in the database-usually through a dialog box. When a
builder is available for a particular property, the Build button (the small button with the ellipsis [...]) appears next to
that property's name in the property sheet.

To load or unload one of these add-ins, the Add-In Manager relies on the presence of a table within the add-in, called the
USysRegInfo table. The USysRegInfo table provides information that the Add-In Manager writes to the registry. Access uses
this registry information to launch the add-in in response to an action taken by the user.

Note
The USysRegInfo table is a system table and usually is hidden. To view system tables, click Options on the Tools menu, click
the View tab, and then select the System objects check box.

You must create the USysRegInfo table; it is not created for you automatically when you create a new .mda file. The
USysRegInfo table must contain the four fields described in the following table.

Field Field type Description

Subkey Text The name of the subkey that contains the registry information for the add-in

Type Number The type of value to create beneath the subkey: subkey (0), String (1), or DWORD (4)

ValName Text The name of the registry entry to be created

Value Text The value to be stored in the registry entry defined by the ValName field

Each record in the USysRegInfo table describes a subkey or value that is to be added to the registry for a particular add-in. The
table can contain information for multiple add-ins.

For each add-in, the USysRegInfo table must contain a minimum of three records: one to create the subkey for the add-in, one
to add the Library entry, and one to add the Expression entry. Note that these are the same values required to create a menu
add-in, as described in the previous section. You can add other records to store additional values in the registry. For example,
you might add a record that creates a registry entry that indicates where a bitmap file required by the add-in is stored.

In the Subkey field, you can use the HKEY_CURRENT_ACCESS_PROFILE\AddInType\AddInName string to create the
new registry entry. The Add-In Manager uses this string to determine the location on the user's machine of Access-specific
information in the registry, so Access can create the entry for the add-in in the appropriate place. If the user started Access with
the /profile command-line option, this string makes sure the registry entry is created beneath the specified Access user profile;
otherwise, the entry is created under the
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\2002\Access\AddInType subkey in the registry. For more
information about starting Access from the command line with the /profile option, search the Microsoft Access Help index for
"user profiles."

Note
A user profile that you use to start Access from the command line is not the same thing as a user profile that is defined for
logging on to the operating system. An Access user profile applies only to Access, and only when you start Access from the
command line. A user profile defined for the operating system applies to every application on the system and is used to
maintain system data for individual users.

You can also use the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\2002\Access\AddInType string to specify
that the registry entries for the add-in always should be created under this registry subtree and that Access user profiles are to
be ignored. Note that in this case you must include the full registry path to the add-in's subkey.

Sample USysRegInfo Table

Adding and Removing Command Bars for Word, Excel, and PowerPoint Add-ins

If the user runs tools in your add-in by clicking a command bar control (toolbar button or menu item), you can include code to
display or to create the command bar and control when the add-in loads and to hide or to remove the command bar and control
when it unloads. Although it might seem to be more effort, creating and destroying the command bar from within your code
gives you greater control over when the command bar is displayed than only storing the command bar in the add-in file.

 201

 202

To create the command bar when the add-in is loaded, add code to the procedure that runs when the add-in is loaded:
AutoExec for Microsoft® Word, or Auto_Open for Microsoft® Excel and Microsoft® PowerPoint®.

Note
These code examples do not show error handling. For example, the procedures do not handle the case when another add-in
might have a command bar with the same name.

First, check whether the command bar already exists. If it does not, create it and add a button that runs a Sub procedure, as
shown in the following example:

Private Const CBR_INSERT As String = "Insert Info Wizard"
Private Const CTL_INSERT As String = "Insert Info"

Sub AutoExec()
 Dim cbrWiz As CommandBar
 Dim ctlInsert As CommandBarButton

 On Error Resume Next
 ' Determine whether command bar already exists.
 Set cbrWiz = CommandBars(CBR_INSERT)
 ' If command bar does not exist, create it.
 If cbrWiz Is Nothing Then
 Err.Clear
 Set cbrWiz = CommandBars.Add(CBR_INSERT)
 ' Make command bar visible.
 cbrWiz.Visible = True
 ' Add button control.
 Set ctlInsert = cbrWiz.Controls.Add
 With ctlInsert
 .Style = msoButtonCaption
 .Caption = CTL_INSERT
 .Tag = CTL_INSERT
 ' Specify procedure that will run when button is clicked.
 .OnAction = "ShowForm"
 End With
...Else
 ' Make sure the existing commandbar is visible
 cbrWiz.Visible = True
 End If
End Sub

To delete the command bar when the add-in is unloaded, add code to the procedure that runs when the add-in is unloaded:
AutoExit for Word, or Auto_Close for Excel and PowerPoint. The following procedure deletes the command bar created in the
previous example:

Sub AutoExit()
 On Error Resume Next
 ' Delete command bar, if it exists.
 CommandBars(CBR_INSERT).Delete
End Sub

Controlling Word, Excel, and PowerPoint Add-ins from Code

Microsoft® Word, Microsoft® Excel, and Microsoft® PowerPoint® all have an AddIns collection that contains AddIn objects
that correspond to application-specific add-ins. You can use these AddIn objects and the AddIns collections to control the
behavior of application-specific add-ins from Microsoft® Visual Basic® for Applications (VBA).

Note that the AddIns collection and the COMAddIns collection are two separate collections. Both are returned by a property of
the Application object: the AddIns property for application-specific add-ins, and the COMAddIns property for COM add-ins.
However, the Microsoft® Office XP object library provides the COMAddIns collection, while the AddIns collection is part of
the host application's object model.

Although the AddIn objects and the AddIns collections for Word, Excel, and PowerPoint are similar, they each have different
properties and methods. For example, each AddIn object has a read/write property that you can set to load or unload the add-in.
In Word and Excel, this is the Installed property; in PowerPoint, it is the Loaded property.

The following code displays information about PowerPoint add-ins in a message box:

Sub DisplayPptAddins()
 ' This procedure displays information about add-ins currently registered and/or loaded in PowerPoint. To determine which
 ' add-ins are registered, VBA looks for add-ins in the registry.

 203

 Dim lngNumAddIns As Long
 Dim addPpt As AddIn
 ' Used to build the dialog box.
 Dim strPrompt As String
 Dim strRegistered As String
 Dim strLoaded As String
 Dim strTitle As String

 ' Get the total number of add-ins.
 lngNumAddIns = PowerPoint.AddIns.Count
 Select Case lngNumAddIns
 Case 0
 ' No add-ins registered.
 strTitle = "No add-ins"
 strPrompt = "You currently have no PowerPoint" & " add-ins registered."
 Case 1
 ' One add-in registered.
 strTitle = "One add-in Registered"
 strPrompt = addPpt.FullName
 Case Is > 1
 ' Set up the title for the dialog box.
 strTitle = lngNumAddIns & " add-ins Registered"
 ' Determine which add-ins are loaded and/or registered.
 strLoaded = "Loaded: " & vbCrLf
 strRegistered = vbCrLf & "Registered: " & vbCrLf
 ' Loop through the AddIns collection.
 For Each addPpt In PowerPoint.AddIns
 ' Check Loaded property.
 If addPpt.Loaded = msoTrue Then
 strLoaded = strLoaded & addPpt.FullName & vbCrLf
 Else
 strRegistered = strRegistered & addPpt.FullName & vbCrLf
 End If
 Next addPpt
 ' Combine the loaded add-ins list with registered
 ' add-ins list.
 strPrompt = strLoaded & strRegistered
 End Select
 ' Display the dialog box.
 MsgBox strPrompt, vbInformation, strTitle
End Sub

For more information about using the AddIn object and AddIns collection, search the VBA host application's (Word, Excel, or
PowerPoint) Visual Basic Reference Help index for "AddIn Object" and "AddIns collection."

Securing an Access, Excel, PowerPoint, or Word Add-in's VBA Project

If you want to protect your code and prevent users from changing it, you can set a password for the add-in's Microsoft® Visual
Basic® for Applications (VBA) project.

To set the project password
1. Click VBAProject Properties on the Tools menu in the Visual Basic Editor.
2. On the Protection tab, select the Lock project for viewing check box.
3. Enter a password, and confirm it.

Creating Templates

In some cases, your application might require you to give users a framework within which to complete common tasks. A
template can provide such a framework. Within a template, you can include boilerplate text and graphics, custom styles,
toolbars and menu items, macros, and Microsoft® Visual Basic® for Application (VBA) code.

In This Section

Word Templates
Create custom word-processing applications, and take advantage of the power of Microsoft® Word to create nicely formatted
invoicing, reporting, and form letter applications easily.

Excel Templates

 204

Use a Microsoft® Excel template when you want to distribute a custom spreadsheet application that has an Excel user interface
component.

PowerPoint Templates
Use a Microsoft®PowerPoint® template when you must have a custom application for building presentations.

Access Templates
Create default templates for the forms and reports stored in a database, so when you create a new form or report, it is based
automatically on the default template.

Word Templates

Microsoft®Word is ideal for creating custom word-processing applications. You can take advantage of the power of Word to
create nicely formatted invoicing, reporting, form letter applications, and so on.

Every Word document has an associated Microsoft® Visual Basic® for Applications (VBA) project. However, code you write
in one document is not available easily to other documents. If you are creating an application in Word, it makes sense to create
a custom document template and distribute that template to your users. That way, a number of different documents can call the
code in the template. The same holds true for custom styles, toolbars, and recorded macros.

To further illustrate the advantages of packaging code in a template, consider the New event for a Word Document object. This
event occurs when you create a new document from a template. The Document_New event procedure itself must reside in the
template project; there is no reason to use it in a regular Word document (.doc file), because you cannot create a new document
from another document.

The Normal Template

The Normal template (Normal.dot) is loaded automatically when you start Microsoft® Word. By default, new documents are
based on the Normal template. Even if you attach another template to a document, any styles, text, AutoText entries, command
bars, recorded macros, or code included in the Normal template are available to any document open in Word. If you look at the
Project Explorer in the Microsoft® Visual Basic® Editor, you will see that the Normal template always appears.

Although you can customize the Normal template, it is not always the best way to distribute an application to users, because
replacing their own Normal template might inconvenience them. They will lose any custom settings or macros they might have
created. Moreover, many users and system administrators restrict access to the Normal template, so you might not be able to
replace or modify it anyway.

A better way to distribute applications is to create either a custom document template or an add-in (global template) that can be
loaded in addition to the Normal template. Which one should you use? If you want to build an application that makes it
possible for users to create new documents based on an existing document and that can include text and custom styles, use a
custom document template. If you want to add toolbars, menu commands, or macros that are available to every document the
user opens, create an add-in. After an add-in is loaded, it is available to every document the user opens until the add-in is
unloaded.

Custom Document Templates

One way to build an application in Microsoft® Word is to create a custom template on which a user bases new documents. The
template that is attached to a document is specified in the Document template box in the Templates and Add-ins dialog box
(Tools menu). A document can have only one document template. Even when a document template is attached to a document,
however, the Normal template remains loaded.

You should create a custom document template when:
• Your application requires that some boilerplate text or fields be included in the document when it is created.
• You want to make custom styles available to each document the user creates.
• Your application includes custom toolbars or menus the user can use while working with documents based on the

template.
• You want to call Microsoft® Visual Basic® for Applications (VBA) procedures in the template from code running in

a document that is based on the template.

Custom document templates are good for ensuring that all users have a consistent set of styles and tools for working on a
particular project. For example, if your team is writing a book, you can create a document template the writers use as the basis
for each section.

Creating a Custom Document Template

To create a custom document template, click New on the File menu, select General Templates from the templates menu, then
click the General tab, click Blank Document, and then select Template under the Create New section.

Note
By default, custom command bars are saved in Normal.dot. To save a command bar with a custom document template, create
the command bar by clicking Customize on the Tools menu, clicking the Toolbars tab, and then clicking New. In the New
Toolbar dialog box, click the document template's name in the Make toolbar available to list.

 205

Creating a New Document Based on a Word Template

To create a new document based on your custom template, click New on the File menu to open the New dialog box. Your
template should appear on the General tab or on one of the other tabs if you saved it in a subfolder of the Templates folder.
Click the template, and then click OK.

In addition, you can attach a custom template to an existing document. Doing so will not add any text that is in the template to
your document, but any code, styles, and toolbars in the template will be available to your document. On the Tools menu, click
Templates and Add-ins, and then click Attach to find and attach your document template.

If you look at the VBA project for a document that has a custom document template attached, you will see that three projects
appear in the Project Explorer in the Visual Basic Editor: the document's project, the custom template's project, and the Normal
template's project. You can write code in any of these projects. In addition, you can call a procedure in the Normal template or
in the custom template from a procedure in the document's project.

Note
When you create a document based on a template, that template appears in the document's References folder in the Project
Explorer. If you open the References dialog box by clicking References on the Tools menu, you will see that the template
appears selected in the list of available references. Attaching a template to a Word document sets a reference to the template's
VBA project, making the code that is in that template available to any procedure in the document.

Word Document Templates vs. Word Add-ins (Global Templates)

Microsoft® Word add-ins and document templates both have the same file extension, the .dot extension. In fact, you can use a
template as an add-in or an add-in as a template.

The best way to use a Word template is as the basis for new documents. For example, you might create an invoicing template
that employees could use to create customer invoices. When users create a new document based on the template, some of the
information is available to them already-the name of your company, the date, and so on. All they must do is enter the customer
name and the items purchased.

An add-in, on the other hand, provides custom tools that employees can use to work with all of their Word documents, similar
to the custom features provided in the UsefulTools.dot add-in. When you load an add-in, it remains loaded for each document
opened in Word until you explicitly unload it.

The following table summarizes the similarities and differences between Word templates and add-ins:

Custom document template Add-in

A document template has the .dot file extension. An add-in has the .dot file extension.

You can attach only one template to a document. (The
Normal template always is loaded whether or not there is an
attached template.)

You can load multiple add-ins at the same time.

A template is attached to a document at the time the
document is created or after the document is created by
clicking the Attach button in the Templates and Add-ins
dialog box (Tools menu) and selecting the template.

An add-in is loaded by selecting the corresponding check box in
the Global templates and add-ins list in the Templates and Add-
ins dialog box.

A template can be used by any document, but it must be
attached to each individual document. When loaded, an add-in is available to all documents.

A template adds toolbar buttons, menu items, macros, styles,
or boilerplate text to a specific document.

An add-in adds toolbar buttons, menu items, or macros to the
Word environment. It does not display any boilerplate text or
contain any custom styles.

The attached template can be accessed from VBA by using
the AttachedTemplate property of a Document object.
Templates are available in the Templates collection. The
Templates collection contains the Normal template, the
attached template (if any), and any loaded add-ins.

Add-ins in the Global templates and add-ins list, whether loaded
or not, can be accessed from VBA through the Word AddIns
collection. In addition, add-ins can be accessed through the
Templates collection.

A reference to the template's VBA project is set
automatically when you attach a template to a document.
Therefore, you can call procedures in the template's project
from the document's project.

No reference is set to an add-ins' VBA project when it is loaded.
Therefore, although you can call procedures in the add-in project
through toolbars, menu items, or macros, you cannot call
directly a procedure in an add-ins' project from code running in a
document unless you explicitly set a reference to the add-ins'
project.

 206

Excel Templates

Microsoft® Excel templates differ from Microsoft® Word templates in that when you create a new workbook based on a
template, your workbook is really a copy of that template. In Word, creating a document based on a template loads two
Microsoft® Visual Basic® for Applications (VBA) projects-one for the template and one for the document.

Use an Excel template when you want to distribute a custom spreadsheet application that has an Excel user interface
component. For example, you might create a reporting template that is formatted in a standardized fashion, with embedded
graphics, so any reports users create with the template have the same look.

To create a new Excel template, create a new workbook and add the elements you want to include in the template, such as code,
custom dialog boxes, custom worksheet and chart layouts, toolbars, and recorded macros. Save the template file in the
C:\Windows\Application Data\Microsoft\Templates folder with the .xlt extension; if user profiles are being used, save the
template in the C:\Windows\Profiles\UserName\Application Data\Microsoft\Templates folder.

Excel includes sample templates that you can install to familiarize yourself with how templates work and to get ideas for
creating your own templates.

PowerPoint Templates

As with a Microsoft® Excel template, when you create a new Microsoft® PowerPoint® presentation based on a template, the
new presentation is a copy of the template. Only one Microsoft® Visual Basic® for Applications (VBA) project is loaded for
the new presentation, but it includes all the components you have defined in the presentation template.

Use a PowerPoint template when you must have a custom application for building presentations. A presentation template
makes it easy for your users to build attractive slide presentations and saves them time laying out the presentation or looking
for the right graphics. You can include content in the template, such as information about departmental contacts, for example,
or placeholders for quarterly sales information in a financial presentation. In addition, you can include instructions that guide
the user in completing the presentation.

PowerPoint includes a number of custom templates you can use and modify. The templates that appear on the Design
Templates tab of the General Templates menu contain only formatted backgrounds. The templates that appear on the
Presentations tab also contain text and placeholders for information, navigation buttons, and instructions for completing the
presentation.

To create a PowerPoint template, create a new presentation, add any text, graphics, buttons, toolbars, custom dialog boxes, and
code, and save the presentation in the C:\Windows\Application Data\Microsoft\Templates folder; if user profiles are being
used, save the template in the C:\Windows\Profiles\UserName\Application Data\Microsoft\Templates folder.

To create a new presentation based on your custom template, run PowerPoint, and click New on the File menu. Select your
template in the New Presentation dialog box, and then click OK.

Access Templates

Templates in Microsoft® Access are different from templates for any other Microsoft® Office XP application. Instead of
creating a template for a database (.mdb) file, you can create default templates for the forms and reports stored in a database.
This means, when you create a new form or report, it is based on the default template automatically. You can create a template
for a form or a report in one of two ways:

• Create the form or report that you want to be the template, and save it with the name Normal to replace the default
template.

-or-
• Create the form or report that you want to be the template, and save it with whatever name you want. On the Tools

menu, click Options, click the Forms/Reports tab, and then type the name of your template in the Form Template or
Report Template box.

Note
Access saves the settings for the Form Template and Report Template options in your Access workgroup information file, not
in your user database (the .mdb file). When you change an option setting, the change applies to any database you open or
create. To see the name of the template that is used currently for new forms or reports, click Options on the Tools menu, and
then click the Forms/Reports tab.

To use your templates in other databases, copy or export the templates to them. If your templates are not in a database, Access
uses the Normal template for any new forms and reports you create. However, the names of your templates appear in the Form
Template and Report Template options in every database in your database system, even if the templates are not in every
database.

Creating Wizards

A wizard is a template or add-in that walks a user through a series of steps to create a new document, spreadsheet, presentation,
database, Web application, or some object within any of those applications. Typically, when users launch a wizard, they are

 207

presented with a series of information-gathering forms, and when they have entered all the necessary information in a form, the
wizard creates the new component or completes a task.

The advantages of using a wizard to deliver an application are that it is easy to use and that you can include detailed
instructions on each frame of the wizard. For example, Microsoft® Word includes a Letter wizard that gathers information
from the user and then creates a new letter based on that information. The wizard saves the user from having to lay the letter
out correctly, as well as from having to think about where the information is placed in the final document. The Word letter
templates provide the same result as the Letter wizard, but the user has to figure out where each bit of information in the letter
goes and navigate around the document to insert it.

In This Section

Common Characteristics of Wizards
Understand how the way you choose to create a wizard depends on the level of complexity of your wizard, which application
or applications you want it to run, and how you want to distribute it to your users.

Word Wizards
Create an application-specific wizard for Microsoft® Word, or use wizards that Word includes optionally.

Excel Wizards
Understand that a Microsoft® Excel wizard is a template or add-in.

PowerPoint Wizards
Use the Auto Content wizard, which automatically generates a presentation with generic content based on information the user
entered in the wizard.

Access Wizards
Create a table, query, form, or report wizard that can be integrated into the Microsoft® Access user interface.

Common Characteristics of Wizards

You can create a wizard by using any of the following:
• A Microsoft® Word, Microsoft® Excel, or Microsoft® PowerPointr® template
• A Word, Excel, PowerPoint, or Microsoft® Access application-specific add-in
• A COM add-in for Microsoft® Office XP applications or for the Microsoft® Visual Basic® Editor

What you choose depends on the level of complexity of your wizard, which application or applications in which you want it to
run, and how you want to distribute it to your users. A template or application-specific add-in is the simplest application. A
COM add-in might be more complex, because the add-in DLL and any dependent files must be properly registered on the
user's computer.

Some other common characteristics of wizards include:
• A form or set of forms that gathers information from the user and that appears when the user launches the wizard
• Navigation buttons (such as the standard Next, Previous, Cancel, and Finish buttons) that make it possible for the user

to move back and forth between pages
• The ability to launch the wizard either from a command bar control or by creating a new document based on the

wizard
• An optional special file extension

As you can see, wizards do not significantly differ from add-ins or templates.

Tip
Rather than creating a new form for each page of your wizard, you can create a multi-page control on a form, with a unique
control layout on each page. Then, when the user clicks the Next or Previous button, move the focus to the appropriate page.
This way, you are not required to re-create the form background and buttons for each page of the wizard. Also, you do not
have to manage the opening and closing of multiple forms.

Word Wizards

Microsoft® Word includes several wizards that are installed optionally; the Letter wizard, the Memo wizard, and the Resume
wizard are a few examples. These files have the extension .wiz, but they are Word templates. You can open them in Word and
view their VBA projects.

To create an application-specific wizard for Word, first create a Word template that contains any boilerplate text, plus the
wizard forms and code. The wizard should include code that displays a form as soon as the user launches the wizard.

Next, determine how users will launch the wizard. If they will launch the wizard from a command bar control, you can add the
control programmatically from code running in a Word add-in.

To design a wizard that is launched from a command bar control
1. Add the AutoExec procedure to a standard module in the wizard's project, and include the code to create the control

in that procedure.

 208

2. In the code that creates the control, set the control's OnAction property to the name of a procedure in the wizard
project that displays the starting form for your wizard.

3. Add the AutoExit procedure, and include code to remove the control when the wizard is unloaded, so the user does
not see the control unless the wizard is loaded.

4. Load your wizard as an add-in.

If the user will launch the wizard by creating a new document, you are not required to have a command bar control, nor the
AutoExec nor AutoExit procedures.

To design a wizard that is launched by creating a new document
1. In the wizard's VBA project, open the ThisDocument module.
2. Create the Document_New event procedure by clicking Document in the Object box and New in the Procedure box.
3. Within this event procedure, call the procedure that displays the wizard's starting form.
4. Copy the wizard template to the C:\Windows\Application Data\Microsoft\Templates folder, or if user profiles are

being used, to the C:\Windows\Profiles\UserName\Application Data\Microsoft\Templates folder, and change the file's
extension to .wiz. Confirm this change when Windows prompts you to do so.

When users create a new document by clicking New on the File menu, they will see your wizard displayed in the New dialog
box. Clicking the wizard and then clicking OK creates a new document and runs the Document_NewEvent procedure, which
displays the wizard's starting form.

Excel Wizards

A Microsoft® Excel wizard is a template or add-in. No special file format indicates that an Excel file is a wizard. To create an
Excel wizard, follow the guidelines discussed in Excel Templates and Excel Add-ins.

PowerPoint Wizards

Microsoft® PowerPoint® includes the Auto Content wizard, which automatically generates a presentation with generic content
based on information that the user entered in the wizard. Unfortunately, you cannot view the Microsoft® Visual Basic®for
Applications (VBA) project associated with the Auto Content wizard, because it is saved as a PowerPoint add-in.

The presentations created by the Auto Content wizard are based on the presentation templates included with PowerPoint. You
could create a new presentation based on one of these templates and achieve the same result. Again, the advantage to using the
wizard is that it enters some of the information into the presentation for you.

To create a custom PowerPoint wizard, follow the instructions for building a PowerPoint add-in described in PowerPoint Add-
ins. Remember to save your presentation as a .ppt file in case you must re-create the add-in.

If you want the user to be able to create a new presentation based on your wizard, copy the wizard to the
C:\Windows\Application Data\Microsoft\Templates folder, or if user profiles are being used, to the
C:\Windows\Profiles\UserName\Application Data\Microsoft\Templates folder, and change its extension to .pwz. When users
click New on the File menu in PowerPoint, they can click your wizard in the New Presentation dialog box, and then click OK
to launch the wizard and create a new presentation.

Access Wizards

A Microsoft® Access wizard is an add-in that can be integrated into the Access user interface. You can create a table, query,
form, or report wizard, which appears in the list of options in the New Table, New Query, New Form, or New Report dialog
box. For example, you can design a wizard to help users build complex queries, such as update queries.

In addition, you can create control wizards, which are launched when users create new controls on a form or report. Users can
disable control wizards by toggling the state of the Control Wizards tool in the toolbox.

You can add a USysRegInfo table to a wizard database and use the Add-in Manager to install wizards. The registry subkeys
you must create to register a wizard, however, are different from those you create to register an add-in.

	Start
	1. Office Objects and object models
	Integrated office solusions development
	Objects, collections and objects models
	Office application automation

	2. Working with office applications
	MS Access Objects
	MS Excel Objects
	MS FrontPage Objects
	MS Outlook Objects
	MS PowerPoint Objects
	MS Project Objects
	MS Visio Objects
	MS Word Objects

	5. Add-ins, templates, wizards and libraries
	4. Getting the most out of VBA
	3. Working with shared components

