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Foreword

Revenue management has been successfully applied to service-oriented industries
for a long time. In the more recent past, besides these classical application areas, it
has been introduced to other production and logistics processes as well.

For the automobile industry so far, only a few revenue management models have
been developed but practically none for its used car sector. Being a sector with
suitable prerequisites and a low profit margin, this is a promising application area
for price-based revenue management. As used cars are “individual” and “durable”
goods – unlike seat or room bookings –, a different approach is necessary with
“dynamic pricing” as the main control strategy. A somewhat similar problem can
only be found in the real estate sector.

Thus, a conceptual framework of an appropriate revenue management model
based on dynamic pricing must be developed. Using current and historical mar-
ket data, the price-response function has to be estimated which then can serve as the
basis for determining the optimal dynamic pricing strategy.

For two central components of this framework, optimization and estimation, in-
novative approaches are proposed.

Based on results from Control Theory, different possible models are suggested
and extensively evaluated. Finally, a stochastic discrete-time model is identified as
the most appropriate. With this, it is possible to develop iterative algorithms to deter-
mine the optimal pricing strategy even for problems without closed-form solution.

For estimating the specific demand function for a specific type of used car, meth-
ods from Survival Analysis are introduced, based on available market data and eval-
uated, with an accelerated failure time model resulting as the most fitting.

The conceptual work, the development of the model, the software implementa-
tion, and its evaluation based on practical data provide various valuable results for
this area of research.



vi Foreword

The proposed comprehensive dynamic pricing model (data, demand, estimation,
optimization, pricing etc.) provides new theoretical insight for the revenue manage-
ment in the used car sector.

But besides these contributions to theory, the results are also of great practical
value. Being developed in close cooperation with experts from practice, this frame-
work has already been implemented in software, thoroughly evaluated and success-
fully applied to real-world data.

With its novel modeling and algorithmic concepts as well its strong economic
results, this contribution will be of interest to both researchers and practitioners
alike.

Prof. Dr. Ulrich Tüshaus
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J(x,u,t) Objective function for the deterministic control problem
n(t) State variable at time t for the stochastic control problem
p(t) Price at time t representing the control variable for the optimal control

problem of a used car retailer
T Terminal time of a system for the optimal control problem
u(t) Control variable at time t for the optimal control problem
V (n,t) Value function for the stochastic optimal control problem
V (x,t) Value function for the deterministic optimal control problem
x(t) State variable at time t of a system for the deterministic optimal con-

trol problem

Symbols for Survival Analysis

β Vector of covariates
x Vector of regression coefficients
σ Scale parameter on error term W in AFT models
di Number of events at time t(i)



xviii Nomenclature

Dxy Somers’ rank correlation index for assessing the discriminatory power
F(t) Cumulative distribution function
f (t) Probability distribution function
H(t) Cumulative hazard function
h(t) Hazard function
L(β ) Likelihood function for the accelerated failure time model
l(β ) Natural log of the likelihood function for AFT models
PL(β ) Partial likelihood function for the Cox proportional hazards survival

model
pl(β ) The natural logarithm of the partial likelihood function
ri Total number of individuals exposed to risk at time t (i)

R2
N Nagelkerke’s index for assessing the discriminatory power

S(t) Survival function
W Error term in the accelerated failure time model

Abbreviations

AFT Accelerated failure time
AIC Akaike information criterion
ASEAN The Association of Southeast Asian Nations
BIC Bayesian information criterion
DDP Deterministic dynamic program
DOP Degree-of-overpricing
DSDP Discrete-time stochastic dynamic program
HJB Hamilton-Jacobi-Bellman equation
KM Kaplan-Meier
OCP Optimal control problem
PO Number of previous owners
SDP Stochastic dynamic program
TOM Time-on-market
VDA Verband der Automobilindustrie



Chapter 1
Introduction

Economic questions involve thousands of
complicated factors which contribute to a certain result.

It takes a lot of brain power and
a lot of scientific data to solve these questions.

THOMAS EDISON

(1847–1931)

1.1 Motivation

In recent years, revenue management has experienced tremendous growth in a num-
ber of different industries, most notably in the aviation, hospitality and rental car
industries. With its expansion from service-oriented industries to other sectors, the
development and application of associated techniques widened as well from capac-
ity control and dynamic pricing to more sophisticated approaches. The implemen-
tation of revenue management techniques has prevented bankruptcy at a number of
companies and has changed the business process in whole branches.

In contrast, the use of revenue management within the automobile industry is still
in its infancy, with very few exceptions. This fact is surprising since the automobile
industry can be characterized as a low profit margin sector, where small improve-
ments in revenue can lead to significant changes in profit. In addition, it is one of
the most important industries in terms of contributing to the total global turnover
and regarding the number of jobs, where in Germany, one out of seven jobs depends
on this sector. Analyzing the current economic state of the automobile industry in
the developed countries however, it must be ascertained that the branch is faced by
overcapacity, cost pressure, and low profitability. The used car sector is affected the
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most, where the global tendencies are amplified by excess supply in day registra-
tions, car rental buy-backs, and by the impact of the rebate war with new vehicles.

In this context, the primary objective of this book is to develop a framework to
optimize the profit of a used vehicles retailer. Besides the development of optimiza-
tion algorithms, there is a particular emphasis on the task of estimating individual
price response functions for durable goods such as used vehicles. The objective of
this research is multifaceted. First, the automobile industry is fundamentally as-
sessed according to the adaptability of revenue management techniques. Second,
professional price management within the used car sector is a major challenge for
retailers wanting to increase their profitability. In this regard, different algorithms
are necessary to determine optimal pricing strategies for the inventory of used ve-
hicles. And third, a framework estimates individual demand by applying survival
analysis, as the demand function plays a decisive role in any revenue management
optimization algorithm.

1.2 Outline and Research Contribution

The remainder of this work is organized as follows. In chapter 2, the concept of rev-
enue management is introduced in general. The automobile industry, with the used
car sector in particular, is fundamentally assessed for the adaptability of revenue
management techniques. Then, the used car sector is analyzed in more detail for the
development of sector-specific revenue management techniques, since it promises
the most potential for profit enhancement. This chapter concludes by presenting an
integrated revenue management framework to determine optimal pricing strategies
for used car retailers.

The revenue management module contains two core components: optimization
and demand forecasting. In chapter 3, the optimization module is addressed, where
pricing models are derived from stochastic control theory with the used car re-
tailer in mind. There are several approaches differing between continuous-time and
discrete-time models as well as between continuous price regions and finite price
sets. This chapter concludes by extending the dynamic pricing model in order to
address requirements of retailers in practice.

Survival analysis is proposed as an approach to estimate individual price response
functions in chapter 4. The concept of time duration market data is introduced to
obtain information about the quoting history of individual used vehicles displayed
by a retailer.

The conclusions from chapter 4 regarding survival analysis become apparent in
the next chapter by model identification and selection on a used car dataset obtained
from a market study conducted within the German used car sector.
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Chapter 6 merges the different modules and demonstrates the concept of the in-
tegrated revenue management program on a selected example. In addition, the mon-
etary and organizational aspects are explained.

In chapter 7, the book concludes with possible areas of future research.



Chapter 2
Revenue Management and the Automobile
Industry

I believe that yield management is the single most
important technical development in transportation management

since we entered the era of airline deregulation in 1979.

ROBERT CRANDALL

Former president of American Airlines

In this chapter, the revenue management concept is introduced with regard to the
automobile industry. Its application within the used car sector provides a framework
for retailers who wish to determine optimal pricing strategies.

Introducing the general concepts of revenue management in section 2.1, sec-
tion 2.2 presents an analysis of the German automobile industry and identifies the
used car sector as the segment with the most potential for profit enhancement. In
section 2.3, revenue management is analyzed in the context of the automobile in-
dustry. Section 2.4 discusses challenges of price-based revenue management in the
used car sector. This chapter concludes with determining profit-maximizing pricing
strategies for used car retailers.

2.1 Concept of Revenue Management

2.1.1 Definition of Revenue Management

In recent years, an increasing number of companies have recognized the importance
of revenue management for its ability to enhance sales and profitability. However, it
is difficult to define the term revenue management and its understanding in the aca-
demic world. An extensive number of nomenclatures can be found dealing with the
concept of revenue management. These concepts possess certain nuances in their
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meaning and positioning to each other or are explicitly used in certain areas. The
terms ‘yield management’ (the traditional term in the aviation industry), ‘pricing
and revenue management’, ‘pricing and revenue optimization’, ‘revenue process
optimization’, ‘demand management’ and ‘perishable-asset revenue management’
are considered synonymous. Furthermore, one can observe a chronological devel-
opment of the usage and definition of these terms and their underlying concepts.

Revenue management has its origins in the aviation industry during the late 1960s
and early 1970s. There, the term yield management referred to the yield or return per
seat in an airplane. Various academic papers related to the aviation industry show
this development:

The objective of yield management is to maximize passenger revenue by selling the right
seats to the right customers at the right time (yield management definition by American
Airlines in the American Airlines Annual Report 1987, p. 22).

Whether an airline calls it yield management or, more appropriately, revenue management,
efforts to manage the revenue mix of passengers carried involve both pricing and seat in-
ventory control (Belobaba 1989, p. 183).

Belobaba (1987, p. 63) reasoned that yield management involves two major com-
ponents, pricing and inventory control, since the yield from the airline perspective
is a function of the price that the airline charges for various service options, and
the number of seats sold at each price. With the expansion of yield management
techniques into other industries, the concept of yield management itself evolved,
and the new term ‘revenue management’ was used instead. Wirtz, Kimes, Theng,
and Patterson (2003, p. 217) define revenue management as a sophisticated form
of supply and demand management that balances pricing strategies with inventory
management. And Cross (1997) stated that it focuses the organization on maximiz-
ing profitability by forecasting consumer behavior at the micro-level and control
inventory availability at each price level.

However, the term revenue management is misleading, since it encompasses far
more than revenue as Pinchuk (2002, p. 283) pointed out. Instead, revenue manage-
ment is more accurately reflected by the term profit optimization since the objective
is to optimize profit over just increasing revenue or lowering cost. Yet, to be consis-
tent with the academic terminology, we adhere though to the commonly accepted
notion of revenue management as described by Talluri and van Ryzin (2004):

Definition 2.1 (Revenue Management). Revenue management is a technique to
determine the optimal price of products and services, with the objective to maxi-
mize associated expected profits generated by sale. It involves detailed forecasting
of demand behavior and sophisticated mathematical modeling.

From a strategic point of view, revenue management is concerned with differ-
ent categories of demand-management decisions 1, namely structural, pricing and

1 Talluri and van Ryzin (2004, p. 2) refer to demand-management decisions as the situation where
demand and its characteristics are estimated as a basis managing demand by price and capacity
control.
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quantity decisions. In addition, it can be distinguished between quantity-based and
price-based revenue management, where the former uses inventory-allocation de-
cisions for managing demand, and the latter applies prices as the primary control
variable.

Recapitulating, due to the expansion of revenue management to sectors next to
the aviation industry, it is getting more difficult to find a general definition for this
management science, as Stuhlmann (2000, p. 222) pointed out. In addition, Kimms
and Klein (2005, p. 5) note that it is even more difficult to assess for which frame-
work or industry a certain definition can be applied. Consequently, in their article
they present and discuss specific frameworks and instruments for certain industries.

This section gives a brief introduction to the science of revenue management.
For an in-depth discussion we refer the reader to the following research literature.
McGill and van Ryzin (1999) provide a survey reviewing the history of revenue
management and a bibliography of relevant academic publications. Tscheulin and
Lindenmeier (2003) present key elements of the revenue management problem and
give a detailed summary in terms of the bibliography of work in this research area. In
the book The Theory and Practice of Revenue Management, Talluri and van Ryzin
(2004) provide an excellent presentation of the technical aspects of revenue manage-
ment with mathematical and modeling approaches. Lastly, Kimms and Klein (2005)
form a general and industry-independent definition of the prerequisites of revenue
management by analyzing several industries.

2.1.2 The History of Revenue Management

Revenue management origins from the aviation industry of the late 1960s and early
1970s through the research of capacity management decisions (cf. Lieberman 2004,
p. 92). Up to that time, research into reservations control was focused on over-
booking, in which the calculations depended on the probability of the number of
passengers who showed up for boarding at flight time. In this context, the work of
Rothstein (Rothstein 1971, 1974) should be mentioned.

However, the beginning of revenue management (or yield management as it was
called in the aviation industry at that time) was marked by Littlewood’s rule. In the
early 1970s, airlines began to offer restricted airline fares to gain revenue from seats
that would otherwise be empty. The problem was to determine the number of seats
that should be reserved for late full fare bookings versus discount fare bookings. In
1972, Kenneth Littlewood, an employee of the British Overseas Airways Corpora-
tion (a predecessor of British Airways) described in an article (Littlewood 1972) the
application of mathematical models for this problem. He proposed that discount fare
bookings should be accepted as long as their revenue value exceeded the expected
revenue of future full fare bookings (cf. McGill and van Ryzin 1999, p. 233). He
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laid the groundwork for a number of controlling models through the description of
forecast procedures and turnover control.

One of the first companies that applied yield management techniques was British
Overseas Airways Cooperation by offering early bird rebates for customers who
booked tickets at least twenty-one days before takeoff. Several other airlines fol-
lowed, but the most noticeable and successful adoption has to be credited to Amer-
ican Airlines. Prior to 1978, the aviation industry in the United States was heavily
regulated by the U.S. Civil Aeronautics Boards, which kept fares sufficiently high
in order to guarantee the airlines a reasonable return on their investment. With the
passing of the Airline Deregulation Act in 1978, the board loosened control over
commercial aviation and thus, the passenger airline industry was exposed to the free
market. One of the first airlines to be founded after the deregulation was PeopleEx-
press. Based on a significant lower cost structure, PeopleExpress was able to offer
fares up to 70 percent below the prices of major airlines, attracting a significant
number of price-sensitive customers and thereby damaging the profits of major air-
lines. American Airlines itself reacted to the Airline Deregulation Act by launching
a new pricing scheme in 1978 with American Super-Saver fares. American Airlines
restricted the number of discount seats sold on each flight by a fixed amount with
a combination of purchase restricted and capacity-controlled fares. Through this
new pricing scheme, they revised the program according to the demand for different
flights on different days, requiring a different allocation of discounted fares. Thus
in January 1985, American Airlines announced its Ultimate Super-Saver Fares pro-
gram and within one year, PeopleExpress went bankrupt and was sold to Texas Air
for less than 10 percent of the market value it had been worth a year before (Phillips
2005, p. 121).

Up to that time however, yield management was still defined rather narrowly
and its applications concentrated on capacity management and overbooking, and
little was done in the area of dynamic pricing. Still, prices for single classes were
generally assumed as fixed and the managers had to decide when to open or close a
certain class depending on the demand, but they did not yet have the control to set
dynamic prices for these tickets. But with the work of Belobaba (Belobaba 1987,
1989) and the success of American Airlines among others, interest in quantity-based
yield management expanded and spread to other industries. With the increase of
interest beyond the aviation industry, the term’s use changed and the expression
‘revenue management’ was established, since it was more acceptable to executives
outside the airline industry. At the same time, the scope of the research expanded and
began to include price-based decisions as well as inventory control-based decision
supports. During the 1990s, the expansion of interest in revenue management led
to a broadening of the theory to areas where the opportunities to turn theory into
practice faced greater implementation challenges. Here, worth mentioning is the
development of incorporating dynamic pricing strategies, especially in form of price
markdowns within the retail industry.
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Today, revenue management techniques are applied in many different industries,
such as automobile rental, lodging and gastronomy, passenger railways, internet
service providers and cruising lines. A more extensive discussion of the history of
revenue management can be found in Smith, Leimkuhler, Darrow, et al. (1992),
Cross (1995), McGill and van Ryzin (1999), and Talluri and van Ryzin (2004),
among others.

2.1.3 Industry-Specific Applications of Revenue Management

As already mentioned, the success of revenue management in the aviation industry
stimulated the development of similar systems in other areas of the service indus-
try and even beyond. This subsection gives an overview of its adoption in specific
industries. Table 2.1 lists industries to which revenue management methods are ap-
plied and gives examples of corresponding research articles.

Two industries which incorporate revenue management most heavily are aviation
and lodging. Through the use of specialized software, airlines monitor seat reserva-
tions and react accordingly, for example by offering discounts when the seats would
otherwise be vacant. Hotels apply revenue management in the same way by calcu-
lating rates and sales restrictions to maximize the return for the property. Another
successful use of revenue management is the car rental industry. First applied in
the early 1990s by major companies in the United States, the car rental industry
possesses similar characteristics as the airline industry. Retailing has been a re-
cent adopter of revenue management techniques. The industry is characterized by
volatile and uncertain demand, short selling periods according to the season, rela-
tively long production and distribution lead times, and relatively inflexible supply
(cp. Talluri and van Ryzin 2004, p. 16). There, the consumer electronics, fashion ap-
parel, and toy retail industries are particularly suitable for the application of revenue
management.

In sum, revenue management has experienced tremendous growth since its in-
troduction in the aviation industry, and its techniques and methods are applied to
an increasing set of business areas. In the future, many industries and sectors will
be candidates for revenue management, as the discussion of beneficial conditions in
the next section will confirm.

2.1.4 The Revenue Management Framework

This subsection describes a general revenue management framework by introducing
its key components. The basic revenue management process consists of four com-
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Industry Sector References Example

Aviation Passage Smith, Leimkuhler, Darrow, et al.
(1992), Cross (1995)

Yield management at American
Airlines

Air Cargo Kasilingam (1996) Implementation of cargo revenue
management at American Airlines

Tourism Lodging Kimes (1989), Bitran and
Mondschein (1995), Bitran and
Gilbert (1996), Donaghy,
McMahon-Beattie, and McDowell
(1997), Jones (1999)

Implementation at Marriott
International Inc.

Gastronomy Kimes, Chase, Choi, Lee, and
Ngonzi (1998), Kimes, Barrash,
and Alexander (1999), Kimes
(1999)

Implementation at 100-seat
restaurant.

Cruising Lines Ladany and Arbel (1991)
Car Rental Carroll and Grimes (1995),

Geraghty and Johnson (1997)
Adoption at Avis Rent A Car,
National Car Rental, and Hertz
Car Rentals

Ticketing Courty (2000)

Others Retailing Shoemaker and Subrahmanyan
(1996), Smith and Achabal (1998),
Mantrala and Rao (2001),
Heching, Gallego, and van Ryzin
(2002)

Pricing optimization at Northern
Group Retail and Old Navy

Railways Strasser (1996), Ciancimino,
Inzerillo, Lucidi, and Palagi
(1999), Krämer and Luhm (2002)

Implementation at Deutsche Bahn

Manufacturing Harris and Pinder (1995), Elimam
and Dodin (2001), Defregger and
Kuhn (2003)

Adoption in steel and aluminum
industry

Energy Sector Valkov and Secomandi (2000) Adoption in natural gas industry

Table 2.1: Industry-specific adoptions of revenue management

ponents: data collection, demand forecasting, optimization, and controlling. Figure
2.1 outlines the framework and the process flow within a general system. In step
one, business data is collected to extract information on historical prices and de-
mand, customer purchases as well as internal and external conditions. In this stage
it may be important to collect information about demand that was not satisfied. This
case can occur when demand is sporadic and only a small number of products are
sold (see Orkin 1988, p. 56). In stage two, demand is forecasted by estimating pa-
rameters for a specific demand model. Here, a widespread approach is to apply a
time-series forecast to determine demand based on known past events. In addition,
this component identifies customer segments as well as the potential impact by com-



2.1 Concept of Revenue Management 11

Data Collection
Demand

Forecasting
Optimization Control

Revenue Management Module

Fig. 2.1: Elementary components of the revenue management system, following Tscheulin and
Lindenmeier (2003, p. 631)

petitors. Based on this information, sub-markets can be defined according to their
size. Specific characteristics and mechanisms also have to be established to prevent
arbitrage across segments (cp. Harris and Peacock 1995, p. 39). The optimization
in stage three represents the core component of each revenue management system.
Here, the aim is to find the best set of controls for price and capacity. Based on
the information gathered in the demand estimation stage, prices and the allocation
of capacity can be determined for each sub-market by applying optimization mod-
els. In the last step, responses to the optimized control are measured systematically
using a transaction-processing system.

2.1.5 Conditions for the Application of Revenue Management

In the following subsection, we discuss beneficial characteristics for the successful
adoption of revenue management. These conditions can be classified into three sep-
arate categories: motivating and demand characteristics, defining the requirements
for a specific industry or branch of industry, and the category of company-specific
conditions. A more detailed discussion of the conditions for adopting revenue man-
agement techniques can be found in Kimes (1989), Weatherford and Bodily (1992),
Harris and Peacock (1995), Friege (1996), Klein (2001), Wirtz, Kimes, Theng, and
Patterson (2003), Talluri and van Ryzin (2004), and Kimms and Klein (2005).

The application of revenue management techniques is appropriate when the fol-
lowing motivating characteristics are fulfilled by an industry:

Lack of flexibility in capacity The flexibility of capacity is limited given that
companies cannot add additional capacity to satisfy demand in the short run.
More precisely, since capacity can in most cases be increased, high costs are as-
sociated with the addition of an incremental unit of capacity. Often the term ‘rel-
atively fixed capacity’ is found in the literature, but as Kimms and Klein (2005,
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p. 7) notice, the usage of this abstract term might be problematic. An example
of the lack of flexibility in capacity is illustrated by the hotel industry. Once all
rooms in a hotel are occupied, additional rooms cannot be added without gener-
ating substantial costs and time.

High ratio of fixed to variable costs The marginal costs of selling an additional
unit of inventory are small in relation to the marginal costs associated with an in-
crease of capacity. Thus, adding capacity is expensive for a company, but selling
another unit of inventory is relatively inexpensive (cf. Kimes 1989, p. 350). A
high ratio of fixed to variable costs yields large contribution margins and entices
companies to decrease prices, attracting additional incremental business (cp. Har-
ris and Peacock 1995, p. 40). Marginal costs are relatively low for selling a hotel
room that is available, but the costs of increasing the capacity of the hotel are
substantially higher.

Perishable inventory In the literature, inventory perishability is noted as a key
factor distinguishing service from manufacturing industries. In case of the for-
mer, where capacity is represented by services, inventories are completely per-
ishable. Capacity is only available within a certain time frame. After the expira-
tion of the time period, the salvage value of capacity is substantially smaller or
even zero. For example, if seats in an airplane or rooms in a hotel are not sold
until the date of service, potential revenue is lost.

Following Harris and Peacock (1995, p. 40), these motivating characteristics en-
courage a company to apply revenue management, but external demand conditions
and internal conditions also enable a company to apply revenue management.

Customer heterogeneity A company is able to divide a specific market based on
the heterogeneity of customers’ purchase behavior, their willingness to pay, and
variations in their preferences for different products as well as different purchase
behaviors over time. Consequently, price discrimination can be applied. Thus, an
airline can discriminate between a time-sensitive business traveler and a price-
sensitive leisure customer by asking higher prices as more time elapses.

Fluctuating, uncertain demand Fluctuating and uncertain demand can depend
on seasonality or market shocks. It becomes more difficult for a company to
make pricing and capacity decisions when demand varies over time and future
demand is uncertain. In such circumstances, it is even more important to apply
sophisticated revenue management techniques since the potential for losses based
on inferior decisions increases. For example, during low demand periods, the
number of discounted air fares increases, and during periods of high demand the
number of discount tickets will be limited in order to increase profitability.

Management can support the adoption of revenue management techniques by com-
pany-specific conditions:

Data and Information System Infrastructure Talluri and van Ryzin (2004, p. 15)
conclude that revenue management techniques tend to be better suited to indus-
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tries where data information systems are already employed. This requires the
use of historical sales databases to collect, store and process demand data. For
example, in 1985, PeopleExpress was not capable of confirming seat requests
from late-booking business travelers due to inadequate reservation and capacity-
allocation systems.

Staff and Management Commitment For successful implementations of a rev-
enue management system it is essential to have the commitment of the staff in-
volved with these techniques. This can be achieved by careful planning and train-
ing of the employees. Furthermore, the incentive system has to be adjusted to
incorporate these methods. For instance, in the past sales-persons were rewarded
by the number of sales they made, but with the implementation of a revenue man-
agement system, they would be rewarded by the amount of profit they generate.
Even more important is the support of top management. They have to commu-
nicate the necessity and relevance of these new systems so that all employees
understand their importance to the success of the company.

In summary, there are three categories of conditions beneficial for the adoption of
revenue management. The first two categories, namely motivating characteristics
and demand characteristics, deal with the industry-specific level, whereas the latter
category defines company-specific conditions suitable for the use of revenue man-
agement techniques.

Certain industry branches are better suited than others, especially in the aviation
and tourism industry. Among the existing industries where revenue management is
already applied, one can observe that no prototypical model for the application and
implementation exists. Rather, as Lieberman states, the root concepts are the same,
but the applications and the techniques differ widely (Lieberman 1993, p. 34). Thus,
the decision to apply revenue management techniques depends on the specific cir-
cumstances of the company and the industry branch in which it is found. In the
end, it comes down to a cost-benefit analysis for each individual company, where
management assesses potential benefits versus potential costs and risks associated
with the process. Following Talluri and van Ryzin (2004, p. 17), once the technol-
ogy and the methodology mature within a specific industry branch, the majority of
companies will benefit from revenue management.

The automobile industry, although an important global sector, is still in an early
stage of applying revenue management systems. Thus, the objective of the following
sections is to assess the automobile industry as a potential sector for the application
of revenue management techniques, focusing the examination on the German used
car sector and analyzing it with regard to the adaptability of revenue management.



14 2 Revenue Management and the Automobile Industry

2.2 The Automobile Industry

2.2.1 State of the Global Automobile Industry

Today, the automobile industry, often thought of as one of the most global of all
industries, is in the middle of a dramatic transformation. The automobile industries
in the Triad regions (the United States of America and Canada, Japan, and Western
Europe) are faced with overcapacity, cost pressure and declining profitability. The
stagnating production and sale in these regions is a contrast to the growth of the in-
dustry in the rest of the world, with a considerable part of this rapid growth concen-
trated in a small number of developing countries, including Latin America (mainly
Brazil and Mexico), the Association of Southeast Asian Nations (ASEAN)2, East-
ern Europe, China and India. These regions are not only sources of low-cost labor,
but also represent growing markets themselves.

There are several major trends in the global automobile market. The world’s
largest automobile manufacturers continue to invest into production facilities in
emerging markets to reduce production costs. In addition, a trend to expand in over-
seas markets and establish global alliances such as Renault with Nissan can be seen.
And lastly, the increasing global competition among the global manufacturers has
led to an accelerated process of consolidation within the industry (cp. Hiraoka 2001,
p. 15).

Considering these trends, the automobile industry faces several challenges. Global
overcapacity is thought by many executives to exceed ten percent, ranging from six
to eight million vehicles in total. The globalization trend exacerbates this problem
on an even larger scale. Furthermore, the market appears to be fragmenting into ever
finer segments and vehicle manufacturers must offer products that meet the needs of
these niches. Finally, cost pressure, declining profitability and the expense of vari-
ous products have forced manufacturers to look downstream for new ways to create
and capture value, that is by participating more extensively in the stream of post-
assembly transactions relating to the vehicle (cf. Brandstad, Williams, and Rodewig
1999, p. 3).

The leading issue in the automobile industry is product quality, but the secondary
issue is cost reduction. With competitive pressure felt across the global industry,
companies are beginning to think about opportunities for future cost savings. In a
survey of KPMG, innovation in manufacturing and materials as well as outsourcing
are seen to be the greatest source of cost savings (see Achterholt and Schmid 2007,

2 The Association of Southeast Asian Nations or ASEAN was established on 8 August 1967 in
Bangkok and today consists of the five original Member Countries, namely, Indonesia, Malaysia,
Philippines, Singapore, and Thailand as well as Brunei Darussalam, Vietnam, Lao PDR, Myanmar,
and Cambodia.
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p. 7)3. According to executives however, computer modeling is the third most im-
portant factor in the future. Following this estimate, these kinds of computer models
are developed in the subsequent chapters of this work to approach the challenges in
the automobile industry.

2.2.2 The German Automobile Industry

The automobile industry has become Germany’s most important sector after more
than doubling its revenue over the last ten years, and increasing its global market
share from 12 percent to 19 percent. In 2005, it contributed 18 percent to the total
turnover of German’s industries (with 236 billion euro of 1.2 trillion euro) and has
increased the number of employees by 21 percent over the last ten years, with 1.4
million employees. In total, one out of seven industry jobs is part of the automobile
sector in Germany.

The car passenger market is, by the number of new and used registrations, the
most important branch of the German automobile industry (the other is the com-
mercial vehicle sector). In 2005, the car passenger market slowed for the fifth year
in succession, largely caused by the private passenger car segment which decreased
by 27 percent since 1999. Operative margins of German manufacturers are only 2.5
percent, which is significantly lower compared to Asian manufacturers with 5.7 per-
cent. In addition, the sector in Germany is faced with cost constraints, in particular
driven by a significant increase in prices for raw materials. For instance, prices for
important metals such as aluminum, copper or lead showed increases of more than
10 percent from 2004 to 2005, and even more than 50 percent for steel products (cp.
VDA 2006, p. 36).

In summary, the automobile industry, with the passenger market as the most im-
portant segment, is Germany’s key industrial sector. Being the third largest manu-
facturer worldwide, the German passenger market is faced with overcapacity, cost
pressure, and low profitability.

2.2.3 Segmentation of the German Passenger Car Market

The German car passenger market can be divided into four sections: new car sales,
financial services, parts sales, and the used car market. In 2004, it generated 160
billion euro in revenue with 4.1 billion euro in profit. This corresponds to a compa-
rably low profit margin of approximately 2.5 percent. For the last seven years, the

3 Findings of KPMG’s annual automobile survey, which was based upon the interviews of 140
senior executives at vehicle manufacturers and automobile suppliers worldwide.
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German car market has been characterized by shrinking net profit margins, since
excess manufacturing capacity is being forced into the market globally, leading to
expensive rebate wars. Thus, in 2004, the average list price discount was almost 16
percent and even 30 percent for the premium sector, matching U.S. discount levels
for the first time (cf. Mercer 2005, p. 4).

Revenue in 2004

Profit in 2004

New vehicles

Parts sales

Financial services

Used vehicles

Fig. 2.2: Comparison of revenue and profit in the German automobile industry for the year 2004,
source: Mercer (2005)

A comparison of revenue and associated profit margin uncovers the problems of
the German car market, shown in Figure 2.2. The new vehicles segment accounts
for almost half of the German automobile industry’s revenue, but is responsible
for only approximately five percent of the industry‘s profits in 2004, translating
to profit margins for this segment of less than one percent (according to Mercer
(2005), revenue for the new vehicle sector was 79 billion euro in 2004 with 0.2
billion euro in profit). On the other hand, financial services and parts sales together
account for 19 percent of the industry’s revenue (29 billion euro in 2004), but with
3.9 billion euro they are responsible for 94 percent of the industry’s profits. The
weakest business segment however, with the most potential for profit enhancement,
is the used car market. Although accounting for 32 percent of the industry’s revenue
(52 billion euro), only a marginal profit of 0.03 billion euro was generated in 2004.
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To avoid further operating losses and even financial bankruptcies, retailers must find
ways to generate revenue growth in conjunction with significant profit margins of at
least two to four percent within the used car business.

In the following sections, the focus is on the used car sector, since it shows the
most potential for profit enhancement. Current price management approaches, po-
tential for improvement, and better pricing mechanism are discussed.

2.2.4 The German Used Car Market

2.2.4.1 General Conditions of the German Used Car Market

The used car market covers all sales of second-hand cars, including private sales,
rental and leasing disposals, manufacturer and corporate disposals, and other remar-
keted sales4 (Datamonitor 2005, p. 2).

The German used car market is highly fragmented, with private sellers account-
ing for nearly half of all used car sales. After a five-year period of negative com-
pound growth rates from 2000 to 2004, the number of sold used vehicles remained
stable in 2005, but revenue increased significantly by 6.2 percent, amounting to 55.4
billion euro (Schönleber 2006, p. 40).

Historically, the German used car market has consisted of three business sub-
segments: new car dealers, used car dealers, and the private market. The private
segment was the most active in 2005 with 3.1 million transactions (47 percent). New
car retailers generated 2.5 million transactions (27 percent), and used car retailers
accounted for a further 26 percent.

Focusing on the professional dealer, there are three different means through
which to sell vehicles within the used car sector. The first segment consists of rental
and leasing disposals, which have shown a consistent growth of volume in recent
years. There, the amount of vehicles and prices are fixed and predictable, since deal-
ers are generally committed to taking back leased vehicles for a fixed price and at
a fixed date. Secondly, car dealers accept trade-ins in order to sell a new car. The
price for the trade-ins is negotiable, though in many cases it is inflated for stimulat-
ing sales. The number of cars can be assumed to be fixed however, since a trade-in
occurs isochronously with the disposal of a new car. And lastly, a dealer can buy
according to the market. Here, the number of vehicles and prices can both be deter-
mined by the dealer.

In summary, the used car sector has only limited options for controlling capacity
according to the market. Practically, the size of the total market for cars is limited

4 Remarketed sales are defined as sales of vehicles by a business which has utilized the vehicles
as part of their business operations or used the vehicles to generate profit and therefore includes
disposals and sales through franchised and independent dealers.
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since a dealer has to trade in a used vehicle in order to sell a new one. Thus, the
disposal of used cars through professional retailers has to be regulated by the price.

2.2.4.2 Challenges and Opportunities in the Used Car Market

As shown before, the used car market generates the lowest profit margins with nearly
zero percent in 2004. The above mentioned global tendencies toward model variety
and overproduction have affected the used car sector as well. The excess supply in
day registrations and leasing disposals negatively impacts the residual value devel-
opment of used vehicles. Residual value reductions lead to higher expenses with the
return of leasing vehicles. The necessity of a re-evaluation of the vehicles results
in higher future leasing rates. Furthermore, they influence the pricing for new cars
(particularly in comparison to day-registrations) and tarnish the brand image in the
medium and long run. Another major challenge within the German used car market
is generated by competition. With the beginning of the block exemption regulation
in October 2005, car manufacturers can no longer assign exclusive sales territories.
Now, dealership chains and international dealers are able to expand into the Ger-
man market, whereas traditional, authorized dealerships lose market shares. Last
but not least, liquidity represents a serious problem for a large part of the traditional
retailers. Their inventories hold a large number of used vehicles, which ties up a
large amount of liquid assets. Due to tightened regulations regarding credits, this
weakness leads to further financial problems for the retailer.

As mentioned before, leasing and rental disposals account for a significant num-
ber of the retailer’s used car portfolio. Leasing and rental companies can order ve-
hicle configurations that promise higher market values after disposal. The retailer’s
portfolio will then become more attractive, more used cars will sell and eventually
the market value for used vehicles in general stabilizes, supporting the sale of new
cars as well. Second, used vehicles have to be upgraded and maintained to increase
their quality rating. Furthermore, used car retailers can achieve higher profit mar-
gins by offering attractive auxiliary services for their customers such as customized
warranties on maintenance contracts. These increase customer loyalty.

A last and, in context of this work, central approach for improving profits is
the professionalism of revenue management by applying more sophisticated pricing
strategies to the sale process of used vehicles. Often, retailers use a static pricing
strategy and do not change the original price afterward, even if it is significantly
higher than the current market value and the used vehicle does not sell. Alternatively,
asking prices are too far below the market price and the vehicles sell very quickly,
but miss the potential profit of a higher asking price. Therefore, the next section
examines the status of revenue management in the automobile industry in general,
whereas in section 2.4 current pricing strategies applied by retailers are analyzed for
potential in profit enhancement.
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2.3 Revenue Management in the Automobile Industry

In this section, the concept of revenue management is introduced to the automobile
industry. First, current applications in practice are described and, then, an analysis of
desirable and beneficial conditions is carried out to determine whether the industry
is suitable for revenue management techniques.

2.3.1 Current Applications of Revenue Management

The adoption of revenue management techniques is still in its infancy in the auto-
mobile industry compared to other branches, especially in service-driven industries
such as aviation or lodging. In the practice-oriented literature, sporadically some
examples can be found, but theoretical-focused papers are rare in this area.

This fact is all the more surprising since the automobile industry is a low profit
margins industry, where small increases in revenue can lead to significant changes
in profit. In this setting, pricing is one of the most important and complex marketing
components, with a multitude of alternatives for differentiation. The brand of the
vehicle has a significant value in the purchase decision process. This complexity of-
fers potential for improvement as well as significant risks (refer to Al-Sibai, Möller,
and Hofer 2004a, p. 351).

Only a few examples for the adoption of revenue management techniques into
the automobile industry can be found in publications. Hofer, Ebel, and Al-Sibai
(2004) describe the challenge of strategic price positioning of new models and pro-
pose a decision-support model for determining the initial list price in the introduc-
tory phase of a new vehicle. Engelke (2004) analyzes the pricing of options for a
new vehicle and identifies significant potential for increased profits. He proposes
conjoint measurements for determining individual willingness-to-pay as a basis for
optimal pricing of options. Lastly, Al-Sibai, Möller, and Hofer (2004b) analyze the
impact of customer incentive programs on the distribution of new vehicles. They
conclude that in many cases, the enhancement of the standard equipment of a model
affects the distribution more positively than a price reduction.

Although these documents describe the application of revenue management in
the automobile industry, the most noticeable and comprehensive adoption can be
found at the Ford Motor Company. Ford Motor Company was the first automaker
to adopt revenue management in its industry sector. In late 2001, pricing specialist
Lloyd E. Hansen was promoted to vice president at Ford, at that time the only one
heading a revenue management unit. He announced a revenue management strategy
as a vital part of the company’s turnaround plans after Ford lost $6.4 billion over
two years due to quality problems, productivity issues, outdated portfolio of models,
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and $25 billion in unfunded pension and health care liabilities (cp. Banham 2003,
p. 72).

Hansen introduced a revenue management system consisting of three technology
tools. First, a marketing response tool analyzed transaction prices per vehicle taking
into account the range of different incentive programs offered. Thus, the company
and its retailers were able to project the effect of different incentive programs on
sales, determining the best program in each market. Second, a package optimizer
was able to determine the car with the best selection of features most likely to ap-
peal to consumers in a particular market. And third, Ford adopted a new ordering
system for car dealers that optimizes inventory, based on profit margins, customer
preferences, and customers’ willingness to pay.

As a result, the new revenue management system contributed some $260 million
to Ford’s $896 million profit in the first quarter of 2003, according to Welch (2003,
p. 38). Furthermore, retail incentive spending per vehicle was $900 less than at rival
automakers in the U.S. market, and revenue per unit increased by $699. Ford’s vice
president of revenue management, Lloyd Hansen, summarized the application of
these new strategies as follows (from Banham 2003, p. 69):

‘Revenue Management has the most leverage in industries with low profit margins. That’s
what makes it so critical in the auto industry, where pretax profit margins have historically
averaged only about three percent. If better pricing tools and processes can improve revenue
by just one percent, and raise historical margins to four percent, button-line profits would
grow by 33 percent.’

2.3.2 Assessment of the Automobile Industry

In the following section, the suitability for the adoption of revenue management
techniques within the automobile industry is analyzed. Since the industry is made
up of a number of fundamentally different branches, this assessment focuses on
the used car sector, since this sector was identified as the one with the most poten-
tial for profit enhancement. Based on the characteristics given in section 2.1.5, the
used car industry is ranked relative to its support for revenue management as low,
medium or high on each of the conditions. The results are summarized in Table 2.2.
Considering the first category of beneficial characteristics, namely motivating con-
ditions, the used car sector provides a good environment for revenue management
techniques. The capacity of a retailer is somewhat inflexible, since used vehicles are
heterogeneous goods based on the various factors such as engine, mileage and age,
as well as a combination of options. Thus, it is almost impossible for a retailer to
obtain two identically used vehicles, only roughly similar ones. Used vehicles do
not perish like an airplane seat that is lost after the flight has taken off, but their
market value significantly decreases over time as age is an important characteristic
for determining a car’s selling price. From another perspective, profit decreases by
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Category Condition Remark Support

Motivating
conditions

Lack of flexibility
in capacity

Retailers offer only a limited number of identical
vehicles. Furthermore, used cars are unique in
terms of their characteristics such as mileage, age,
and built in options.

high

High ratio of fixed
to variable costs

Depending on the model, the cost to add another
vehicle of the same type can be significantly higher
than the costs associated with the sale.

medium

Perishable
inventory

Vehicles do not become worthless like plane seats
or hotel rooms. However, they age, tie up capital,
and decrease in value since age is an important
characteristic for the determination of the market
value.

medium

Demand
conditions

Customer
heterogeneity

The used car sector can be segmented by different
criteria such as customer, product, channel, and
time.

high

Fluctuating,
uncertain demand

Demand can vary by season, by stage of model
cycle, or by general economic conditions.

high

Company-
specific
conditions

Data and
Information System

Given the existing enhanced information
technology structure of major car retailer chains,
the automobile industry provide an good
environment for necessary databases.

medium

Staff and
Management
Commitment

Given the fact that retailers are not accustomed to
using algorithms for pricing their goods, there
might a reluctance toward revenue management
systems. Furthermore, reward systems are
necessary.

medium

Table 2.2: Assessment of the suitability of revenue management for the used car sector as a branch
of the automobile industry

costs associated with maintenance, servicing, and financing (the opportunity cost of
capital). Therefore, longer display times of used vehicles result in decreasing profits
(or increasing losses), whereas actual profit margins are already at a very low level,
generating additional pressure on the retailer to sell the used vehicle within a short
period of time.

The used car sector is characterized by customer heterogeneity and fluctuating,
uncertain demand. This demand for used vehicles depends on the overall economic
conditions and varies with the season and stage of the model cycle.

Last, internal conditions are indispensable for revenue management. Within the
used car sector, it is important to get sufficient sponsorship and support by executive
leadership. Given the fact that used car retailers do not use algorithms for pricing
their vehicles, there might be reluctance toward a new revenue management system.
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Recapitulating, the used car sector is a good area for the application of revenue
management techniques. The capacity of retailers is often limited, demand is un-
certain and variable, inventory ages, and the sector is segmented across different
dimensions. Furthermore, the infrastructure of information systems as for collect-
ing, analyzing, and applying data needed to forecast demand and optimize control
sets is implemented in most cases.
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2.4 Price-Based Revenue Management in the Used Car Sector

Section 2.2.4 identified the issue of professional price management as a major chal-
lenge for retailers of used vehicles. In this section, current approaches of used car
pricing are described and analyzed to reveal potential for profit enhancement in the
used car sector and, thus, provide the basis for the development of more sophisti-
cated pricing algorithms. This section concludes with an outline of the approach of
determining optimal pricing strategies for a used car retailer.

2.4.1 Selling Process of Used Vehicles

The sale of used vehicles is characterized by a complex relationship and a large
number of variables. This and the present economic situation are responsible for the
fact that only a few retailers can still earn a profit in this sector. In illustration 2.3,
the individual steps of the process of selling used cars are displayed chronologically.
First, a retailer begins with evaluating the used vehicle offered to him. Based on the
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Disposal

Optical

Conditioning

and Reparation

Presentation for
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Cycle

Management

Core Sectors for
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Fig. 2.3: Selling process in used car retailing, source: expert interviews with used car retailers

expected profit calculation, the dealer decides whether or not to buy the vehicle. As
mentioned before, the dealer often is not in the position to decide, but has to accept
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vehicles (e.g. leasing disposals or trade-ins). Then, the car must be repaired and
conditioned to take it in stock for sale. At this stage, the dealer must decide where
and how the vehicle is displayed in his showroom or exhibition space. The follow-
ing sub-processes are summarized under the concept of revenue management. They
consist of inventory management, sales promotion (i.e. advertising), price manage-
ment, and the actual sale. Lastly, the sales process is completed by the commission
system, the controlling, the after sales segment, and the customer life cycle man-
agement to establish long-standing customer loyalty. This way it ensures follow-up
business for the retailer.

The sub-processes inventory management, sales promotion, price management,
and the actual sale form the main area for revenue management in the used car sec-
tor. They should not however be regarded separately from the total sales process.
The used-car retailer interacts primarily at these stages with the customer through
marketing instruments such as sales promotion and supports the customer with ex-
pert advice. In this context, the communication of the asking price plays a significant
if not the most important role within the marketing mix, since only price determines
the monetary amount a customer must give to obtain the vehicle. Thus, the decision
about the ‘right’ pricing strategy is crucial for the success of the used-car retailer.

2.4.2 Analysis of Current Pricing Strategies

The initial price positioning and the adaptation of the price of a used vehicle is the
most important decision made by a used car retailer. The value of the vehicle must
be determined and factors like current demand, global and regional trends as well as
seasonality and life cycle of the model must be considered. Finally, all these factors
must be restricted to supply and demand functions.

A commonly used price management strategy is described here, but it should
be noted that this is one of the better procedures within the used car sector. The
majority of the dealers use less developed methods, so the optimization potential
will be even greater there.

A common process of determining a pricing scheme for a used vehicle is sepa-
rated into three steps: first, estimating an approximate market value; second, assess-
ing the current market conditions and third, formulating a pricing policy, beginning
with the initial price positioning and followed by price adjustments according to the
current market condition.

Step one, estimating the current market value is done by using general market
price lists provided by DAT and Schwacke5, as well as monitoring real time sales
at the site of the used car retailer. This step leaves room for uncertainties and intu-

5 Both DAT and Schwacke are service providers of data collection and market analysis. Based on
mathematical models, they determine reference lists of used vehicle valuations.
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ition often plays an important role in estimating. In the second step, the process of
evaluating the current market conditions, car dealers monitor proposals of similar
vehicles offered by competing retailers and thus, get a good impression of the size
and condition of the specific market for this vehicle.

The last step is the definition of the price strategy. First, an initial positioning is
carried out in such a way that the asking price is situated in the upper 50 percent
quantile of the vehicle’s market identified in step 2. Subsequently, the asking price
for the vehicle is adjusted every 30 days and decreases successively until, after ap-
proximately 60 days, it reaches the average market price. Should the vehicle not
sell after 90 days, the price would be reduced into the lower 30 percent quantile
(see Figure 2.4). Based on the findings from expert interviews, the average time on
market of used vehicles is 60 days (cp. Wuppermann 2003, p. 71).
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Fig. 2.4: Example of a commonly used pricing strategy for a used vehicle. The specific boxplots
correspond to the population of similar vehicles offered at that time and the red line out-
lines an actual pricing strategy of a used car retailer, source: based on an expert interview
with a used car retailer

Similar price policies are also used by other dealers. One alternative strategy
is the usage of relative price steps (here depending on the market value as in the
Schwacke list). A Ford dealer described his strategy as follows during an interview
(cf. Wuppermann 2003, p. 237): up to the 30th day, the market price plus 15 percent
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is requested. For the next 30 days he asks for the market price plus 5 percent, up
to 90th day the wholesale price according to the Schwacke list plus his preparation
expenses. From the 91th on to the 120th day the wholesale price only and beyond
that point in time, he will accept his own purchase price. Compared to the previ-
ous pricing scheme, the retailer here does not position the asking price in relation
to the actual sub-market of the offered vehicle. Instead, he determines an average
market value for the car and uses it as the basis for his pricing strategy by adding or
subtracting a relative percental amount. Thus, he will achieve a decreasing pricing
step function as the retailer in the previous example, however unconditioned on the
current market environment for the specific vehicle.

The above-mentioned pricing strategies already use in part information about
supply and demand. They promise higher profits than normal waiting tactics and,
therefore, can be considered as first attempts for the application of revenue manage-
ment techniques in the used car sector. Nevertheless, weaknesses appear in the abil-
ity for reproduction of the procedure according to different market circumstances.
Furthermore, the problem of traceability arises since the question of how and why
exactly a certain price strategy is used cannot be justified clearly. In addition, op-
erational calculations are missing, which support the target mark for the optimal
average time on market (see for example Wuppermann 2003, p. 67). Also possible
connections between asking prices and retail prices and the relation between asking
prices and time on market must be considered.

The pricing scheme can be classified as a standard intuitive approach applied by a
wide range of car dealers. As a general rule, these car dealers perform better than the
industry’s average and thus, provide a good benchmark for comparison with more
sophisticated pricing techniques, which are developed in the forthcoming chapters.

2.4.3 Potential for Improvement

The past sections illustrated that the used car sector generates only marginal profits
and shows the most potential for increased profit. To utilize the existing profit oppor-
tunities, especially in the pricing management, retailers require more sophisticated
pricing strategies in automobile sales. In the following subsection, the potential for
improvement is roughly demonstrated by the time on display and the number of
price changes for a passenger sub-market.

In a sales study of medium-class passenger cars for the period of the year 2006,
we analyzed the time on market, the respective price changes as well as the final
price of sale for over 50,000 vehicles (please refer to section 5.2 for a detailed de-
scription of the mentioned market study). One of the findings was that the majority
of all vehicles were sold without a price change during the whole offer phase, and
only around 20 percent of all vehicles in this study experienced two or more price
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alignments, stated in Figure 2.5(a). Furthermore, analysis of the vehicles’ time on

0 1 2 3 4 5 6 7−18

Nummber of price changes

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(a) Number of price changes until sale

Vehicle’s time on market

D
en

si
ty

0 50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

(b) Distribution of time on market

Fig. 2.5: Analysis of the potential for profit improvement regarding the number of price changes
until a sale is made and the distribution of time on market of a used car

market revealed the use of non-optimal pricing strategies by numerous car retail-
ers. Vehicles were offered below their market value, and thus, were sold very fast,
reflected by the high fraction of vehicles with market times less than ten days in
Figure 2.5(b). An optimal pricing strategy would have balanced price and expected
time on market by suggesting a higher price at the beginning of the offer period
and reducing the price successively over time. Another area for profit enhancement
can be identified on the other extreme. Vehicles were offered for prices significantly
higher than their actual market values and consequently, these cars were not sold at
all, recognized by the higher bar at times of around 300 days at the right tail of Fig-
ure 2.5(b). Here, car dealers failed to recognize these shortcomings by not adjusting
the price accordingly, and the cars were in the retailer’s inventory for a long period
(up to 300 days which corresponds to the total period of the market study), tying up
capital and generating costs along with the depreciation of the vehicle. In the above
mentioned study, more than six percent of vehicles offered at the beginning of the
observation were not sold by the end of the study and more than half of this sample
was still offered for the same price. By applying better pricing strategies, car dealers
could reduce the time on market and realize higher selling prices at the same time.

These are only two examples to point out significant deficits in the pricing pro-
cess for used passenger cars. Although these examples represent extremes, most
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of the profit potentials lie in between. To identify the full potential, a price-based
revenue management strategy is developed in the subsequent chapters.

2.4.4 Outline of the Approach

The present chapter is concluded by outlining the concept of a price-based revenue
management method. Focusing on used car retailers as the target group, the objec-
tive for this procedure is to maximize expected profit from the sale of one or several
used vehicles under the influence of internal and external factors.

Following the description of the general revenue management framework in sec-
tion 2.1.4, the present paper focuses on the two core components of the process,
namely estimation of demand and optimization. Figure 2.6 shows the concept of the
revenue management method. In light of the profit maximization problem of a used
car retailer, the optimization module consists of several algorithms for determing
optimal strategies under specific conditions. In chapter 3, deterministic and stochas-
tic solutions are derived with regard to a continuous price region in addition to a
discrete price set, enabling the retailer to adopt an appropriate revenue management
system. Critical to the success of a revenue management system is the demand esti-
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Fig. 2.6: Model of a price-based revenue management technique for a used car retailer

mation module. This work proposes the adoption of survival analysis for estimating
individual demand functions, illustrated in chapter 4. There, the individual demand
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functions, determined on the basis of the estimate of the vehicles’ market values,
are modeled by parametric and semi-parametric survival functions to analyze the
effects of variables such as the asking price and serve as input for the optimization
module.

The proposed techniques can support retailers in establishing better and more
profitable pricing strategies, including assigning an initial asking price and the ad-
justment of price over time. Furthermore, the program can be an early-warning sys-
tem, alarming the retailer as to the point when a used vehicle has been displayed too
long with the same asking price.
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2.5 Summary

The German automobile industry is caught in an oligopolistic environment on ac-
count of the saturated markets of the Triad. Based on the stagnating markets, man-
ufacturers are trying to generate growth at the expense of their competitors by the
extension of the model palette and engine range. This and other components inten-
sify price competition and lead to further shrinking profit margins. In summary, the
industry is trapped in the predicament between consumption lull and growing Asian
competition, rising expenses and overcapacity, and an greater price competition un-
der shrinking profit margins.

The used car sector cannot free itself from these conditions. On the contrary,
compared to the new vehicle, financial service, or spare parts and service sectors,
almost no manufacturer profits from the used car sector. If losses from the used car
business continue, many dealers and subsidiaries will be confronted with existential
problems. None the less, in recent years, the used car market has been a release
valve for automakers’ overstock.

Based on these facts, used car retailers are obliged to reform the process of sell-
ing used cars to increase profits and reduce losses. Besides other process steps such
as purchasing or bundling with other services, pricing offers the greatest window of
opportunity for potential profit. One promising approach is to set prices of the used
vehicles, incorporating internal as well as external factors to maximize expected
profit. This way, a price-based revenue management method consists of two core
components, namely the optimization and the demand estimation module. Whereas
chapter 4 deals with the demand estimation module, the subsequent chapter concen-
trates on the optimization module and presents different profit-maximizing pricing
algorithms.



Chapter 3
Modeling the Price-Based Revenue Management
Problem

There are two fools in every market;
one asks too little, one asks too much.

Russian Proverb

The objective of this chapter is to address the optimization module of the price-
based revenue management program. Optimal pricing strategies are derived for a
used car retailer by applying stochastic optimal control theory and dynamic pro-
gramming techniques to maximize expected profit.

3.1 Introduction

3.1.1 Statement of the Dynamic Pricing Problem

A used car retailer faces the challenge of determining a pricing strategy that max-
imizes the expected profit for a specific used vehicle. The dealer in particular is
interested in determining the best initial asking price in addition to plotting it over
the selling horizon. Internal and external factors influence this non-trivial task, in
which the most important factors are supply and demand.

There are numerous pricing strategies for this price control problem. A simple but
widespread approach is cost-based pricing, in which all cost variables add up to the
wholesale price plus a profit margin. A temporary price adaptation occurs only un-
systematically however, with the consequence that the time in stock can accumulate
up to several months and even years. A more sophisticated strategy aims at reducing
the average time on market by a dynamic price management. Here, a market price
(or market value, respectively) is determined depending on the time elapsed. Such a
pricing mechanism might propose a listing price equivalent to the market value plus
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ten percent for the first 30 days, then reducing the asking price to the market value
plus five percent for the next 30 days and so forth. Although this strategy promises
better results, it does not identify the optimum asking price for each time period,
but applies rules of thumb regarding the pricing points and their duration. It does
not take into account internal factors such as the remaining inventory of the retailer
or the current market demand. Therefore, more sophisticated pricing strategies are
needed to increase the profits of used car retailers.

In general, the dealer is faced with the dilemma of a low selling price versus a
vehicle’s long time in stock. If he asks for an unrealistically high price, the vehicle
will remain unsold, generating high current expenses (for example, stand expenses
and capital allocation expenses). On the other hand, if he asks for a relatively low
retail price, the time on market will drastically decrease, but the dealer might lose
profit by forfeiting a possibly higher attainable retail price. Thus, a pricing strategy
has to determine the optimal set of prices that consider retail price and the cost
associated with the time in stock by maximizing expected profit for a given time
period.

The issue of optimal dynamic pricing is influenced by a number of factors. One
of the most important criteria is capital allocation. A vehicle displayed by the dealer
must be purchased, either self-financed with company capital or by credit. Instead
of purchasing the car, the capital related to the vehicle could be invested in the capi-
tal market where it would gain a certain income return (the so-called capital cost of
opportunity). Thus, cash flows generated by the sale of the vehicle have to be dis-
counted by applying the car retailer’s discount rate to account for the cost of capital.
Another element are the expenses connected with the duration of the vehicle’s dis-
play in the retailer’s showroom. The vehicle must be regularly cleaned, maintained
and repaired to keep it in good condition. All variable costs can be summarized as
holding inventory costs associated with a specific vehicle.

Nevertheless, the determining criterion for the dynamic pricing function is the
demand of the potential customers. The development of optimization algorithms
in this chapter is undertaken assuming perfect knowledge about customer demand
with regard to its functional form. The successive chapter presents a framework for
estimating individual prices based on survival analysis.

3.1.2 Literature Review

In revenue management, techniques and strategies can be separated into two broad
sections, namely quantity-based and price-based revenue management. The ques-
tion of which approach to apply depends on the firm’s ability to vary quantity or
price in response to changes in market conditions. In quantity-based revenue man-
agement research, the main focus lies on the allocation of limited capacity to dif-



3.1 Introduction 33

ferent demand classes under the assumption that demand can be segmented into
multiple classes. In contrast, the term dynamic pricing as an integral part of price-
based revenue management summarizes instruments of price control. If prices are
viewed as variable and can be controlled on a continuous basis, then product prices
can be set so as to maximize profit.

In the present chapter, the case of the single-product dynamic pricing problem
with a finite stock of items and stochastic demand is considered. Due to the evo-
lution of information technologies and the resulting availability of extensive data,
academic interest into dynamic pricing has exploded over the last three decades, re-
flected by the increasing number of publications. A simple strategy to the problem
of pricing a good is the single-price approach. Lazear (1986) considers a two-period
model assuming a retailer with a single unit and a population of potential buyers
whose valuation for the product is unknown. Feng and Gallego (1995) consider a
two-price model with prices in both periods fixed and the only decision is when to
switch from one to the other.

In contrast to periodic pricing policies, dynamic-price models are characterized
by continuous price functions or, for a given set of allowable prices, by the time
between two price changes. A landmark paper on dynamic pricing was published
by Kincaid and Darling (1963), where the authors derived optimality conditions for
a continuous-time model with demand assumed as a Poisson process and fixed in-
tensity. Similarly, Gallego and van Ryzin (1994) consider the problem of pricing
a given inventory in a continuous-time formulation. Demand is modeled as a con-
trolled homogeneous, time-fixed Poisson process with an intensity rate. Bitran and
Mondschein (1997) propose a periodic pricing review policy where prices are re-
vised at a set of times, but generalize demand by modeling it as a non-homogeneous
Poisson process.

Another approach to the single-product problem assumes a finite set of prede-
termined prices from which the retailer chooses. Feng and Xiao (2000) provide a
systematic analysis of the pricing policy for the problem with a finite set of prices,
and Zhao and Zheng (2000) study the case in which demand is modeled as a non-
homogeneous, time-dependent Poisson process. For a more in-depth discussion on
dynamic pricing, refer to the articles by Elmaghraby and Keskinocak (2003), Bitran
and Caldentey (2003), and McGill and van Ryzin (1999).

3.1.3 Outline

The remainder of this chapter is organized as follows. In section 3.2, we define
the basic deterministic, continuous-time model of a profit-maximizing car dealer by
introducing the concepts of optimal control theory and dynamic programming. We
finish this section by extending the deterministic model to the case where the state
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of the system is stochastic. Concentrating on the stochastic optimization problem in
the remainder of the chapter, section 3.3 introduces the approach of discretizing the
time horizon and states an algorithm for determining optimal prices, while section
3.4 describes the case when the price region is restricted to a finite set of discrete
price points. In section 3.5 we extend the case to include discounting, inventory
costs and values associated with the terminal state. Finally, the complete model for
the single-product dynamic pricing problem is presented in section 3.6.
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3.2 Basic Continuous-Time Model

In the subsequent section, the basic finite continuous-time pricing problem for a
used car retailer is modeled by the optimal control theory. Optimal control theory
was developed to find ways to control a dynamic system and can be seen as an
extension of the classical calculus of variations. The control which maximizes a
certain revenue function is called the optimal control. It can be derived by applying
the maximum principle, first published by the Russian mathematicians Pontryagin,
Boltyanskij, Gamkrelidze, and Mishchenko (1962). In this article, they analyzed a
calculus of variations problem with constrained control variables and proved the
maximum principle for these kind of problems. Pontryagin’s maximum principle
permits the decoupling of the dynamic problem over time using so-called adjoint
variables into a series of problems, each of which holds at a single instant of time.
The solution of the instantaneous problems is shown to give an optimal solution.

3.2.1 Statement of the Basic Control Problem

First, we describe the optimization problem as a deterministic standard end con-
strained problem within the context of optimal control theory. We begin by defining
the optimal control problem in general to derive the optimal control problem of a
profit-maximizing dealer afterward.

Consider a system whose state at time t is characterized by x(t), also defined
as the state variable of the system at time t ∈ [0,T ], where T > 0 is the terminal
time for the system under consideration. Furthermore, assume that the state of the
system can be controlled and let u(t) be the control variable of the system at time
t. In addition, assume that the rate of change of the state variable x(t) depends on
t and u(t), with the initial inventory known as the initial state at time 0, x(0) = x 0.
Thus, the evolution of x(t) can be described by the controlled differential equation,
known as the state equation,

ẋ(t) = g[x(t),u(t),t], x(0) = x0, (3.1)

where ẋ(t) is a commonly used notation for dx(t)/dt. Here, g is assumed to be a
known and continuously differentiable function. The control variable u(t) is piece-
wise continuous and constrained to the set of possible values Ω(t), hence

u(t) ∈ Ω(t), t ∈ [0,T ]. (3.2)

If the initial value x0 of the state variable is known, that is the initial inventory, as
well as the values of the control variable u(t) over the whole time interval [0,T ],
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equation (3.1) can be integrated to obtain the values of x(t) over the considered time
interval (both are referred to as control and state trajectory, respectively).

Let J(x,u,t) be the quantitative measure of the performance of the system over
time, also known as the objective function. In other words, the objective function
collects the revenue from selling the products over the available selling period [t,T ],
and can be noted by

J(x,u,t) =
∫ T

t
f [x(s),u(s),s]ds, (3.3)

where f (x(s),u(s),s) is assumed to be a known and continuously differentiable
function. It can be considered as the instantaneous profit rate measured in currency
units per time units.

Thus, the optimal control problem is formulated as follows. Among all the pairs
(x(t),u(t)) that obey the state equation in (3.1) (so-called admissible pair) and sat-
isfy the control constraints in (3.2), find that one that is the optimal pair (x,u),
which maximizes the objective function in (3.3). More formally, the optimal control
problem can be stated as

V (x,t) = max
u(s)∈Ω(s)

{∫ T

t
f [x(s),u(s),s]ds

}
(3.4)

subject to
ẋ(t) = g[x(t),u(t),t], x(0) = x0,

where V (x,t) = J(x∗,u∗,t) is the so-called value function or optimal objective func-
tion. After introducing the main concepts, we will define the continuous-time opti-
mal control problem for a profit-maximizing car dealer.

Definition 3.1 (Optimal Control Problem). Let x(0) = x0 be the available initial in-
ventory of a dealer, p(t) be the price at time t, and the term d(p(t)) be the demand
at a given time t. There are T periods and t indices the periods with the time in-
dex running forward. The dealer’s objective is to determine a pricing strategy that
maximizes the total revenue or the total profit under consideration of expenses, re-
spectively. The control variable, price p(t), is a piecewise continuous function of
time and constrained to the set of possible values Ω p(t). Then, the optimal control
problem (OCP) of a profit-maximizing used car retailer can be stated as

V (x,0) = max
p(t)∈Ωp(t)

{∫ T

0
p(t)d(p(t))dt

}
(3.5)

subject to
ẋ(t) = −d(p(t)), x(0) = x0.
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Following Gallego and van Ryzin (1994, p. 1003), several mild assumptions on
the demand function d(p,t) are considered. Let r(p(t),d(t),t) = p(t)d(p(t)) be the
revenue rate for the optimal control problem of a profit maximizing used car re-
tailer. Then, we assume that the revenue rate is continuous, bounded and concave,
where the latter is based on the standard economic assumption that the marginal
revenue is decreasing in output. Furthermore, we assume that the revenue rate has a
unique maximizer defined by p∗ = p : r(p(t),d(t),t) = maxp≥0 r(p(t),d(t),t) and
that there exists a unique correspondence between prices and demand so that a
unique inverse p(d(t)) exists.

3.2.2 Dynamic Programming Approach

In this subsection, the finite-horizon dynamic program is formed corresponding to
the preceding definition of the optimal control problem. First, the main concepts of
dynamic programming are introduced and then the dynamic program for a profit-
maximizing car dealer is defined.

Dynamic programming is a general method for solving discrete and continuous-
time optimization problems and was first formalized by Bellman (1957). In his book,
he stated the basic idea of dynamic programming, called the principle of optimality,
as follows. An optimal policy has the property that whatever the initial conditions
and control variables over some initial period, the control chosen over the remaining
period must be optimal for the remaining problem, with the result based on the early
decisions taken to be the initial condition.

In the following, sufficient conditions on the objective function are stated by
applying the principle of optimality and considering what happens over a small
increment of time Δ t. The derived partial differential equation, also known as the
Hamilton-Jacobi-Bellman (HJB) equation1, is the fundamental element in optimal
control theory and central to the development of the dynamic pricing models in this
chapter.

Theorem 3.1. Consider the dynamic optimization problem specified by equation
(3.4). The corresponding Hamilton-Jacobi-Bellman equation is given by

−∂V (x,t)
∂ t

= max
u(t)∈Ω(t)

{
f [x(t),u(t),t]+

∂V (x,t)
∂x

g[x(t),u(t),t]
}

(3.6)

with the boundary conditions

V (x,T ) = 0 ∀x and V (0,t) = 0 ∀t. (3.7)

1 Named after the mathematicians William Rowan Hamilton, Carl Gustav Jacob Jacobi and Richard
Bellman.
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Proof. The HJB equation is derived following Sethi and Thompson (2000, p. 28).
By the principle of optimality, the change of the objective function J(x,u,t) consists
of two parts. First, the incremental change in J from t to t +Δ t, given by the integral
of the instantaneous profit rate f (x(t),u(t),t) from t to t +Δ t, and second, the value
function V (x(t + Δ t),t + Δ t) at time t + Δ t. Note that the objective function of the
optimal control problem was given in (3.4) by

V (x,t) = max
u(s)∈Ω(s)

{∫ T

t
f [x(s),u(s),s]ds

}
.

Then, the principle of optimality is derived as follows. First, the integral of the
objective function is divided into two subintervals by applying a small increment Δ t
and yielding

V (x,t) = max
u(s)∈Ω(s)

{∫ t+Δ t

t
f [x(s),u(s),s]ds+

∫ T

t+Δ t
f [x(s),u(s),s]ds

}
.

Using the dynamic programming principle, it can be argued that the control function
u(t) has to be optimal for the problem beginning at time t + Δ t in state x(t + Δ t),
which itself depends on state x(t) and on the control function chosen over the period
s ∈ [t,t + Δ t]. Thus,

V (x,t) =

max
u(s)∈Ω(s)
s∈[t,t+Δ t]

⎡
⎢⎣∫ t+Δ t

t
f [x(s),u(s),s]ds+ max

u(s)∈Ω(s)
s∈[t+Δ t,T ]

{∫ T

t+Δ t
f [x(s),u(s),s]ds

}⎤
⎥⎦ ,

which can be restated by the recursive form

V (x,t) = max
u(s)∈Ω(s)
s∈[t,t+Δ t]

{∫ t+Δ t

t
f [x(s),u(s),s]ds+V (x[t + Δ t],t + Δ t)

}
(3.8)

with the boundary conditions

V (x,T ) = 0 ∀x and V (0,t) = 0 ∀t,

since the scrap value at terminal time T is defined as zero. Similarly, the value func-
tion where the state variable equals zero is defined as zero, too. The fact that optimal
strategies satisfy this equation is called Bellman’s principle of optimality. Next, the
integral in (3.8) can be estimated by f [x(t),u(t),t]Δ t, since the instantaneous profit
rate f (x(t),u(t),t) is a continuous function and the control u(t) can be considered
as constant over the very small time increment Δ t. Hence,
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V (x,t) = max
u∈Ω(t)

{ f [x(t),u(t),t]Δ t +V(x[t + Δ t],t + Δ t)} . (3.9)

Further, assume that the value functionV is a twice continuously differentiable func-
tion of its arguments and expand the second term on the right side by Taylor’s theo-
rem, obtaining

V (x,t) = max
u(t)∈Ω(t)

{
f [x(t),u(t),t]Δ t +V(x,t)+

∂V (x,t)
∂ t

Δ t +
∂V (x,t)

∂x
ẋ]

}
+ σ(Δ t),

(3.10)

where σ(Δ t) denotes a collection of higher-order terms in Δ t. Subtracting V (x,t)
on both sides, dividing by Δ t and substituting ẋ = g[x(t),u(t),t] gives

0 = max
u(t)∈Ω(t)

{
f [x(t),u(t),t]+

∂V (x,t)
∂ t

+
∂V (x,t)

∂x
g[x(t),u(t),t]

}
+σ(Δ t). (3.11)

Letting Δ t → 0 and dropping V (x,t), since it does not depend on the control u(t),
finally yields

−∂V(x,t)
∂ t

= max
u(t)∈Ω(t)

{
f [x(t),u(t),t]+

∂V (x,t)
∂x

g[x(t),u(t),t]
}

(3.12)

with the boundary conditions

V (x,T ) = 0 ∀x and V (0,t) = 0 ∀t.

The HJB equation in conjunction with the boundary conditions characterizes the
optimal solution to the control problem.

Now, based on the introduction of Bellman’s principle of optimality and the state-
ment of the sufficient condition by the HJB equation as the central result in optimal
control theory, the deterministic dynamic program for the optimal control problem
in (3.5) is defined.

Definition 3.2 (Deterministic Dynamic Program). Consider the dynamic optimiza-
tion problem of a retailer specified by (3.5), where V (x,t) denotes the optimal rev-
enue to go. Then, the deterministic dynamic program for a used car dealer can be
formed by the associated principle of optimality

V (x,t) = max
p(s)∈Ωp(s)
s∈[t,t+Δ t]

{∫ t+Δ t

t
p(s)d(p(s))ds+V(x[t + Δ t],t + Δ t)

}
(3.13)

and by the corresponding HJB equation
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−∂V (x,t)
∂ t

= max
p(t)∈Ωp(t)

{
p(t)d(p(t))− ∂V (x,t)

∂x
d(p(t))

}
(3.14)

with the boundary conditions

V (x,T ) = 0 ∀x and V (0,t) = 0 ∀t.

We refer to to this model as the deterministic dynamic program (DDP) of a profit-
maximizing used car retailer.

3.2.3 Stochastic Dynamic Program for the Intensity Control
Problem

In the preceding subsections, the optimal control problem and the corresponding
dynamic program of a profit-maximizing car retailer are defined by assuming that
the state variables of the system were known with certainty. Now, the model is ex-
tended by considering a problem of controlling a dynamic system where the state of
the system over time is a stochastic process. More precisely, assume that the state
of the system may be described as a point process. This is motivated by the fact that
the actual demand process for selling a good is stochastic and may be modeled as a
non-homogeneous Poisson process. Another stream of research assumes a so-called
Ito stochastic differential equation as the state equation by introducing a stochastic
process, also known as a Wiener process2. For further discussions on this approach,
refer for example to Kamien and Schwartz (1981, p. 243).

Following the first mentioned approach, consider the univariate point process
N(t) defined on a measurable space. Let Ω be a set of admissible controls, and for
each control u∈Ω associate a probability such that N(t) admits the intensity λ (u,t).

Now, consider the stochastic objective function

J(n,u,t) = E
∫ T

t
f [n,u(s),s]ds, (3.15)

where the function E takes the expected value and for each n ∈ N+, N(t) admits an
intensity λ (u,t). Then, the optimal solution of the maximizing problem

V (n,t) = sup
u(t)∈Ω(t)

E
∫ T

t
f [n,u(s),s]ds, (3.16)

can be denoted by u∗, where V (n,t) = J(n,u∗,t) is the value function. It is known
that for this kind of model a non-randomized Markovian policy exists that is opti-

2 The stochastic process obeys what is called Brownian motion or white noise.
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mal with n as the state variable of the decision process. A sufficient condition for
optimality can be stated by the stochastic Hamilton-Jacobi-Bellman equation.

Theorem 3.2. Consider the stochastic dynamic optimization problem specified by
(3.16). Then, the stochastic Hamilton-Jacobi-Bellman equation for intensity-control
problems is given by

−∂V (n,t)
∂ t

= sup
u(t)∈Ω(t)

{ f [n(t),u(t),t]+ λ (u,t) [V (n−1,t)−V(n,t)]} (3.17)

with the boundary conditions

V (n,T ) = 0 ∀n and V (0,t) = 0 ∀t. (3.18)

Proof. For the proof of the theorem, refer to Brémaud (1981, ch. VII).

There is a profound discussion and justification of (3.17) in journals about the
intensity control of point processes, for instance in Gihman and Skorohod (1979).

In the following section, we apply the theory of stochastic intensity control
and the stochastic Hamilton-Jacobi-Bellman equation to the problem of a profit-
maximizing used car retailer. Assume that the customers arrive according to a non-
homogeneous Poisson process. Then, the actual demand process given a certain
pricing policy is a non-homogeneous Poisson process with the intensity d(u,t). As-
sume that for any price p the intensity d(u,t) is piecewise continuous in t. Further-
more, let the inventory n be the state variable. Then, the dynamic program is as
follows.

Definition 3.3 (Stochastic Dynamic Program for Intensity Control). Consider the
dynamic optimization problem of a used car retailer specified by (3.5), where V (x,t)
denotes the optimal revenue to go. Then, the stochastic dynamic program for a
profit-maximizing car dealer with the value function

V (n,t) = sup
p(t)∈Ωp(t)

E

{∫ T

0
p(t)d(p(t))dt

}

can be formulated by the corresponding stochastic Hamilton-Jacobi-Bellman equa-
tion

−∂V (n,t)
∂ t

= sup
p(t)∈Ωp(t)

{d(p(t)) [V (n− 1,t)−V(n,t)+ p(t)]} (3.19)

with the boundary conditions

V (n,T ) = 0 ∀n and V (0,t) = 0 ∀t.

We refer to to this model as the stochastic dynamic program (SDP) of a retailer.
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The sufficient condition expressed in (3.19) can be intuitively explained. Con-
sider the case where the stochastic Hamilton-Jacobi-Bellman equation is satisfied at
p(t) = p∗(t) and restate the equation as follows:

1
d(p∗(t))

∂V (n,t)
∂ t

+ p∗(t) = V (n,t)−V(n−1,t). (3.20)

Here, the term V (n,t)−V (n− 1,t) denotes the marginal expected revenue for the

nth item at time t. The term ∂V(n,t)
∂ t measures the marginal loss in revenue due to the

elapse of time multiplied by the expected amount of time to reduce the inventory by
one unit, whereas p∗(t) states the gross revenue of selling one item at time t. Thus,
the left side of the equation can be interpreted as the net revenue of selling one item
for price p∗(t), which, at the optimum, is equal to the expected marginal revenue of
the nth item.

3.2.4 Closed Form Solutions

Considering the stochastic dynamic program for a profit-maximizing retailer, it is
quite difficult to obtain an exact solution for arbitrary demand functions d(p(t)).
Gallego and van Ryzin (1994, p. 1005) state a closed form solution for the demand
function d(p) = ae−α p, where the arbitrary parameters a > 0 and α > 0 are given.

Following Gallego and van Ryzin (1994), assume without loss of generality that
α = 1 holds for the exponential demand function by simply changing price units
to p′ ← α p. Then, it can be shown that the maximum of the revenue function
r(p(t),d(t),t) = p(t)d(p(t)) can be found at d ∗ = a

e and corresponds to the opti-
mum price p∗ = p(d∗) = 1. Stadje (1990, p. 178), among others, derived the solu-
tion for this optimization problem with the following closed expression for the value
function

V (n,t) = log

(
n

∑
i=0

(d∗t)i 1
i!

)
,

whereas the optimal price path is given by p∗
t (x) = V (x,t)−V(x−1,t)+ 1.

Example 3.1. Consider the case where demand follows a time-homogeneous Pois-
son process and is given by the exponential demand function d(p) = 0.2e −0.0001p

(a = 0.2, α = 0.0001). The selling horizon is assumed to be T = 20. Consequently,
the value function can be stated as

V (n,t) = log

(
n

∑
i=0

(
ae−1t

)i 1
i!

)
.



3.2 Basic Continuous-Time Model 43

Figure 3.1(a) shows the optimal price paths for different inventory levels n =
1,2,3,4,5, where the dashed line corresponds to the minimum price p min = 10,000.
Note that the optimal prices are decreasing in time and in the level of inventory.
These effects can be explained by the fact that with fewer periods to offer, there are
fewer chances to sell the object. Thus, the asking price must be adjusted accordingly
to increase the probability of a sale. Regarding the negative impact of the level of
inventory on the optimal path of asking prices, a similar argument can be made. The
probability of selling all objects by the end of the selling period decreases with the
level of inventory and, therefore, the asking price must be reduced to increase the
chance of selling a unit.
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(b) Exemplary optimal pricing strategy

Fig. 3.1: Examples for optimal price paths of continuous stochastic dynamic program using a ex-
ponential demand function (a = 0.2, α = 0.0001). The left figure plots optimal price
paths for different inventory levels, whereas the right figure states the optimal strategy for
a given demand process

In the case that the inventory contains n = 5 units, a sample path of the optimal
price for the continuous-time model is given in Figure 3.1(b), including the corre-
sponding graph of the time-dependent inventory. Note that the optimal price path
features discrete positive jumps every time a sale occurs, whereas afterward, the
optimal price diminishes until another sale can be observed.
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3.3 Stochastic Discrete-Time Model

3.3.1 Statement of the Discrete-Time Control Problem

In the preceding section, we introduced the concepts of optimal control and dynamic
programming and extended the model in which the state of the system is a stochastic
point process. Closed form solutions for these optimal problems are found only for
some specific demand functions d(p(t)).

Nevertheless, in terms of existing solutions for stochastic continuous-time dy-
namic programs, one thread of literature deals with discretizing the time horizon.
Here, the time interval [0,T ] is divided into S subintervals of length Δ t, and a finite
difference equation is used to estimate the sufficient conditions.

Keeping in mind that the stochastic Hamilton-Jacobi-Bellman equation for intensity-
control problems was given by

−∂V (n,t)
∂ t

= sup
u(t)∈Ω(t)

{ f [n(t),u(t),t]+ λ (u,t) [V (n−1,t)−V(n,t)]} ,

substitute the partial derivative ∂V (n,t)/∂ t by the discrete expression (V (n,t +
Δ t)−V (n,t))/Δ t. Then, the discrete Hamilton-Jacobi-Bellman equation can be
stated as follows:

− V (n,t + Δ t)−V(n,t)
Δ t

=

sup
u(t)∈Ω(t)

{ f [n(t),u(t),t]+ λ (u,t) [V (n,t)−V(n−1,t)]} . (3.21)

Note that the number of time intervals S = T/Δ t should be much larger that the
expected demand

∫ T
0 λ (u,t)ds of the observed time interval [0,T ]. In the following

paragraph, the discrete-time stochastic dynamic program for a profit-maximizing
retailer is defined.

Definition 3.4 (Discrete-Time Stochastic Dynamic Program for Intensity Control).
Consider the dynamic optimization problem of a retailer specified by equation (3.5),
where V (x,t) termed the optimal revenue to go. Note that for the stochastic optimal
control problem, the state variable is denoted by n, the number of similar used ve-
hicles in stock. Then, the stochastic dynamic program for a profit-maximizing used
car retailer with a selling horizon of S = T/Δ t subintervals and the value function

V (n,t) = sup
p(t)∈Ωp(t)

E

{
S

∑
0

p(t)d(p(t))

}
(3.22)
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can be formulated by the corresponding discrete-time stochastic Hamilton-Jacobi-
Bellman equation

−V(n,t + Δ t)−V(n,t)
Δ t

= sup
p(t)∈Ωp(t)

{d(p(t)) [V (n−1,t)−V(n,t)+ p(t)]} (3.23)

with the boundary conditions

V (n,S+ 1) = 0 ∀n and V (0,t) = 0 ∀t.

Refer to this model as the discrete-time stochastic dynamic program (DSDP)
of a profit-maximizing used car retailer. Note that the boundary conditions for the
discrete-time control problem differs from the continuous-time model, where the
value function at terminal time T was defined as zero, leading to V (n,T ) = 0.

3.3.2 Solution Algorithm

In this subsection, a solution for the discrete-time stochastic dynamic program stated
in definition 3.4 will be developed, assuming that demand is given by a differentiable
distribution function.

Let V (n,t) denote the optimal expected profit for a dealer with an inventory of n
items, which obeys the sufficient condition stated by the stochastic Hamilton-Jacobi-
Bellman equation in (3.19). Normalizing the small increment of time to Δ t = 1, S
can be replaced by the terminal time T and the corresponding Bellman equation can
be formulated by

V (n,t) = V (n,t + 1)+ max
p(t)∈Ωp(t)

{d(p(t)) [p(t)−ΔV(n,t + 1)]} (3.24)

with the boundary conditions V (n,T + 1) = 0 for all n and V (0,t) = 0 for all t, and
where ΔV (n,t + 1) = V (n,t + 1)−V(n− 1,t + 1) is the marginal expected revenue
of the nth item. Note that both the inventory level n and the time period t are integer
variables. Assuming a differentiable demand function d(p(t)), the optimal pricing
policy must obey the necessary and sufficient conditions stated in the following
theorem.

Theorem 3.3. Let the demand function d(p(t)) be continuously differentiable and
strictly decreasing on Ω p(t) and consider the discrete-time stochastic dynamic op-
timization problem specified by definition 3.4. Then, the optimal pricing policy at a
time t for an inventory n has to obey the necessary condition given by

p = − d(p(t))
d′(p(t))

+ ΔV (n,t + 1). (3.25)



46 3 Modeling the Price-Based Revenue Management Problem

The necessary condition has a unique solution corresponding to the optimal price
when the term −d(p(t))2/d′(p(t)) is decreasing in p.

Proof. See Bitran and Mondschein (1993, p. 26).

At the optimum, it is necessary that marginal revenue equals marginal oppor-
tunity cost. Here, term p + d(p(t))/d ′(p(t)) described the marginal revenue, and
ΔV (n,t + 1) the expected opportunity cost of selling the nth item in the future con-
ditioned on not selling it at time t.

There are a number of demand functions which fulfill the necessary conditions
and for which an optimum solution is found. For instance, the exponential and the
Weibull distribution belong to this class of functions (cp. Bitran and Mondschein
1997, p. 69).

The solution of the discrete-time algorithm follows recursively. At first, the con-
sidered time horizon is divided into T subintervals of the length Δ t. The algorithm
begins at time t = T (the end of the considered time period) and with a capacity
of n = 1. Applying the boundary conditions V (0,T ) = 0 and V (n,T + 1) = 0, the
equation in (3.25) can be simplified to

p =
d(p(T ))
d′(p(T ))

. (3.26)

After solving the differential equation and calculating the corresponding expected
optimal revenue V (1,T ), the algorithm can be continued by determining the optimal
price for previous subintervals up to the time t = 0. Based on these results for n = 1,
optimum price strategies for capacities of n = 2,3, . . . ,N can be determined using
the same procedure. In the following, an example demonstrates the approach using
the Weibull distribution as the demand function.

Example 3.2. Assume that demand for an object such as a used vehicle follows a
two-parameter Weibull distribution, a continuous probability distribution with the
probability density function

f (x;β ,η) =
β
η

(
x
η

)β−1

e−(x/η)β
,

where β > 0 is the shape parameter and η > 0 is the scale parameter. Let the shape
parameter be β = 10 and the scale parameter be η = 10,450. The Weibull distribu-
tion is a versatile distribution that obtains a variety of characteristics of other types
of distributions based on the value of its parameters. For example, with a shape pa-
rameter of 3.25, the distribution appears similar to the standard normal distribution,
and with β = 1 the Weibull distribution reduces to the exponential distribution.

The left graph in Figure 3.2 displays the shape of the probability density function
for the stated example. Furthermore, consider an inventory of n = 5 identical used
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vehicles and a selling horizon of 20 weeks. Here, the choice of weeks instead of days
as the time unit is motivated by the fact that multiple price changes within a day are
rarely observed for used vehicles. In fact, prices are often changed only once during
the course of a week. The right graph in figure 3.2 shows the path for an optimal
pricing strategy and its corresponding inventory level for a particular outcome of the
demand process. Note that similar to the example for the continuous-time model, the
price path decreases until a sale occurs, where the path performs an upward jump
and diminishes further until another sale is made.
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Fig. 3.2: Example of an optimal price path for a discrete-time stochastic dynamic program utiliz-
ing a Weibull distribution (β = 10, η = 10,450) and an initial inventory of n = 5. The
left figure shows the corresponding probability density function, whereas the right figure
states the optimal strategy for an arbitrary demand process
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3.4 Finite Price Sets

The derivation and analysis of solution procedures for a continuous set of prices is
of great interest in the research community. Nevertheless, in most cases it misses
the needs of the practitioners in real applications. Instead, companies often restrict
prices to a small finite set due to strategic reasons, such as pricing according to the
market competition. Furthermore, psychological reasons might explain a discrete
pricing strategy as well. In practice, prices close to convenient whole amounts of
monetary units are often used since they are familiar to customers, easy to under-
stand and often form psychological thresholds for potential customers (Talluri and
van Ryzin 2004, p. 193).

Besides, it might be difficult to implement models based on continuous price
sets, as stated by Zhao and Zheng (2000, p. 383). When prices are chosen from
a continuous set, the optimal pricing strategy changes continuously over time as
well. Such a policy is not only difficult to implement, it is even harder to convince
operators and customers of their usefulness. Mathematically, it might be hard, if
not impossible, to calculate the optimal pricing strategy in closed form when prices
are chosen from a continuous set. Consequently, in the following section the price
region is discretized and restricted to a finite set of discrete price points.

Formally, let the control variable p(t) be constrained to a finite number of M
discrete prices

p(t) ∈ Ωp(t), Ωp(t) = {p1, . . . , pM} , (3.27)

where we assume that p1 > .. . > pM. Equivalently, the demand function d(p(t))
can be discretized, where d(pi,t) denotes the demand at time t when applying the
price pi.

3.4.1 Solution for Continuous-Time Models

In the following subsection, we will describe a procedure proposed by Zhao and
Zheng (2000, p. 384) to obtain the optimal pricing policy for a continuous-time
model. Assume that the optimal pricing strategy p(n,t) decreases in t, that is the
more time left, the higher the optimal price. Then, for fixed inventory n, the optimal
pricing strategy p(n,t) is a decreasing step function in t with at most k− 1 steps,
where k is the number of allowed prices. Furthermore, the time horizon can be
divided into k subintervals, where the optimal price p(n,t) = p i is applied. Some of
the subintervals might lead to an empty set, and thus, the price p i will not be part of
the optimal pricing strategy.

The algorithm to calculate the optimal pricing strategy follows a recursive setup
starting from terminal time t = T and an inventory of n = 0, where V (0,t) = 0
and V (n,T ) = 0 hold. Due to the boundary conditions, for an inventory level of
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n = 1 the value function V (n,t) can be computed as well as the different time points
t j(n) up to which each price p j is applied as the optimal price. Now, based on the
known V (n−1,t), the value function V (n,t) for the preceding inventory levels can
be obtained. Given an inventory of n = N items and a selling horizon of t = T , the
algorithm of Zhao and Zheng (2000) can be characterized as follows.

Step 1: Initialization Set the temporary time variable to s = T , the temporary
variable for the marginal revenue to ΔV = 0, the temporary inventory level to n =
1 and let the number of allowed prices be given by the variable M, assuming that
p1 > .. . > pM . Furthermore, the index variable k equals the number of possible
prices M increased by one, hence, k = M + 1. Note that the inventory level n is
kept constant as long as the temporary time variable s is greater than zero. Then,
the procedure is repeated again for the next inventory level until the given level
N is achieved.

Step 2: Determination of optimal price at time s− Find the highest price pi, that
is, find the smallest index i, that satisfies the following expression

max
i<k

{d(pi) [V (n− 1,s)−V(n,s)+ pi(s)]} .

Then, set k = i. Note that the applied expression is the right side of the corre-
sponding Hamilton-Jacobi-Bellman equation.

Step 3: Determinating value function V (n,t) at s− Find V (n,t), the solution of
the Hamilton-Jacobi-Bellman equation

−∂V (n,t)
∂ t

= d(pk) [V (n−1,t)+V(n,t)+ pk] (3.28)

for the optimal price pk, under consideration of the boundary conditionsV (0,t)=
0, V (n,T ) = 0 and V (n,s) = V (n−1,s)+ ΔV .

Step 4: Determination of optimal subinterval tk(n) Find the smallest time t = s
that satisfies the following expression

V (n,t)−V(n−1,t) = min
j<k

d(p j,t)p j −d(pk,t)pk

d(p j,t)−d(pk,t)
.

Then, set tk(n) = s and ΔV = V (n,s)−V(n−1,s).
Step 5: Recursion If s > 0, then go to Step 2, else repeat the procedure while

n < N.

In the first step, the procedure is initialized by setting the temporary variables for
time to the terminal time, the marginal revenue to zero and the number of allowed
prices to the given length of the price set increased by one. In the second step, the
optimal price at the current time s is determined and the price index k is adjusted,
accordingly. In agreement with the proposition that the optimal pricing strategy is a
decreasing step function in t, the optimal current price p k corresponds to the smallest
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price index that satisfies the HJB equation since the price set is given in descend-
ing order. In the next step of the algorithm, the value function at the current time s
is determined by solving the corresponding differential equation for the HJB equa-
tion. However, the differential equation can be solved analytically for a few demand
functions only, such as the exponential or the Weibull distribution. Otherwise, a nu-
merical solution of the differential equation has to be found, for example by apply-
ing the Runge-Kutta method. Then, it must be determined for how long the current
price remains optimal; hence, the time tk at which the optimal price strategy has to
be adjusted. The optimal time tk for price pk is found by a line search algorithm,
where the left hand side of the equation in the fourth step increases in t, whereas the
right hand side decreases in t. If the determined optimal time t k is greater than zero,
the algorithm is continued at the second step and the current optimal price is cho-
sen from the remaining prices. Otherwise, the algorithm is calculated for the next
inventory level until the given level N is reached.

Independently from this work, Feng and Xiao (2000) derived optimality condi-
tions for the problem with a finite set of predetermined prices from which the retailer
can choose. In addition, they showed that there is a maximum subset of prices, such
that the revenue rate increases with the price and that the optimal price at any time
belongs to this subset (referred to as the maximum concave envelope).

In the following example, we apply the algorithm of Zhao and Zheng on a profit-
maximizing problem of a used car retailer.

Example 3.3. Consider a used car retailer with an inventory of n = 1. Demand is
assumed to be a time-homogeneous Poisson process with an intensity rate follow-
ing a Weibull distribution with a shape parameter of β = 10 and a scale parame-
ter of η=10,450. Furthermore, let the selling horizon be T = 20 units. Two differ-
ent price sets are applied, the first one consisting of prices as multiples of 1,000
(Ω 1000

p (t) = {0,1000,2000, . . .}) and the second one consisting of prices as mul-
tiples of 500 (Ω 500

p (t) = {0,500,1000,1500, . . .}). Then, the objective of a profit-
maximizing retailer is to determine the optimal price and its duration as the asking
price until the next optimal price is chosen.

In Figure 3.3, the optimal price paths for both price sets are given. Regarding the
first price set, the optimal pricing strategy would start with asking a price of 12,000
and, in case of no sale, would reduce the price after 0.81 time units to a price of
11,000. Since the second price set offers more prices to choose from, an optimal
pricing strategy based on this price set would start asking for 11,500 before reduc-
ing the price to 11,000 after 6.95 time units. Both graphs roughly follow the same
course, with the second pricing strategy at a more detailed path. Interestingly, the
expected revenue for the second pricing strategy based on the wider price set gen-
erates only 0.3 percent more than the first pricing strategy, with V2(1,0)=11,007.59
compared to V1(1,0)=10,969.82.
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Fig. 3.3: Optimal price paths of continuous-time stochastic dynamic program for two finite price
sets utilizing a Weibull distribution (β = 10, η=10,450) and an inventory of n = 1

3.4.2 Solution for Discrete-Time Models

The previous subsection presented an algorithm to obtain an optimal pricing policy
for a continuous-time model under certain assumptions. However, if one of these as-
sumptions does not hold, the standard approach of discretizing the time horizon can
be followed. The basic principles were already stated in subsection 3.3.1 and a so-
lution method for a continuously differentiable demand function with a continuous
set of prices was proposed.

Often, the assumptions on the demand function cannot be fulfilled, but the price
region can be restricted to a small discrete set. Then, a simplified algorithm based
on the one proposed by Zhao and Zheng (2000) can be applied. There, the partial
derivative ∂V(n,t)

∂ t in step three for the determination of the value function V (n,t) can
be substituted by the discrete expression (V (n,t + Δ t)−V (n,t))/Δ t, yielding the
following differential equation for calculating the value function

−V (n,t + Δ t)−V(n,t)
Δ t

= d(p(t)) [V (n− 1,t)−V(n,t)+ p(t)]. (3.29)

Although the algorithm provides the potential to adjust prices on a small time inter-
val, in practice, multiple price changes within a day are rarely observed by used car
retailers. Instead, used car dealers often adjust prices only once during the course
of a week. Therefore, the following example of a stochastic discrete-time control
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problem utilizes a finite price set and uses weeks as the time unit instead of shorter
intervals such as minutes or days.

Example 3.4. Assume that demand for a specific used vehicle follows a two-parameter
Weibull distribution with a shape parameter of β = 10 and a scale parameter of
η=15,767. Furthermore, consider an inventory of n = 1 vehicle of the aforemen-
tioned type and let the selling horizon be 20 weeks. Given these assumptions,
four different pricing strategies with different price sets are compared in the fol-
lowing example. More precisely, consider four different finite price sets contain-
ing multiples of 100, 250, 500, and 1,000 euro, thereby defining the possible
price region to Ω 100

p (t) = {0,100,200, . . .}, Ω 250
p (t) = {0,250,500, . . .}, Ω 500

p (t) =
{0,500,1000, . . .} and Ω 1000

p (t) = {0,1000,2000, . . .}.
Figure 3.4 displays the progression of the different optimal pricing strategies over

the course of 20 weeks. In general, the graphs follow roughly the same path, starting
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Fig. 3.4: Optimal price paths of discrete-time stochastic dynamic program for different finite price
sets with multiples of 100, 250, 500, and 1,000 euro utilizing a Weibull distribution (β =
10, η=15,767) and an inventory of n = 1

with an initial asking price between 17,000 and 17,500 euro and closing the selling
horizon with asking prices of 13,000 and 12,500 euro. Note that due to the limited
number of possible asking prices, the optimal pricing strategy based on the price set
containing multiples of 1,000 euro recommends its first price adjustment not until
after 14 weeks and experiences only three price changes in total.



3.4 Finite Price Sets 53

However, a comparison of the different expected profits associated with the re-
spective optimal pricing strategies reveals only marginal differences between each
price set. As expected and given in Table 3.1, the strategy using the price set of mul-
tiples of 100 euro achieves the highest expected profit. However, it generates only
0.4 percent more profit than the worst pricing strategy with multiples of 1,000 euro.

Price Set Expected Value V (1,0)

Ω 1000
p (t) 16735.6

Ω 500
p (t) 16782.1

Ω 250
p (t) 16797.0

Ω 100
p (t) 16801.6

Table 3.1: Comparison of expected revenues generated by the optimal price paths for different
finite price sets with multiples of 100, 250, 500, and 1000 euro utilizing a discrete-time
stochastic dynamic program with a Weibull distribution (β = 10, η=15,767) and an
inventory of n = 1
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3.5 Extensions of the Basic Problem

In the previous sections, the basic concepts of optimal control theory were intro-
duced together with the definitions of the corresponding problems for a profit-
maximizing car retailer. In the succeeding part, several extensions of the basic prob-
lem are examined. First, the current value formulation is stated to discount cash
flows over the time horizon. The second extension allows the revenue function to
include a time-dependent cost term. Third, an additional function is included within
the optimality criterion representing the value associated with the terminal state.
Successively, the complete model is defined including all three extensions.

3.5.1 Current Value Formulation

In the used car sector, one of the most important cost drivers is summarized by
the term opportunity cost of capital, since a displayed vehicle can be easily worth
several tens of thousands of euro and the corresponding costs can amount to a re-
markable value. In this setup, the concept of the time value of money can be applied
by calculating the net present value of the expected cash flow, since cash flows in
different time periods cannot be directly compared.

To obtain the net present value, expected future cash flows are discounted by
the rate of return determined by comparable investment alternatives presented to the
retailer. The rate of return is often referred to as the discount rate or opportunity cost
of capital. In case of the car retailer, assume that a displayed vehicle is financed by
debts, thereby equaling the discount rate to the interest of the debt.

Mathematically, the cost of capital can be modeled either in discrete-time or in
continuous-time formulation. Let r denote the annual rate of interest. Then, the dis-
crete discount factor is given by

β =
1

1+ r
,

and defines the number by which a future cash flow to be received at the next period
has to be multiplied to obtain the current value. In continuous-time, the discount
factor can be derived by taking the limit

lim
n→∞

(
1+

rt
n

)n
= ert .

Considering the discounted cash flows, the stochastic optimal control problem de-
fined in 3.3 can be extended as follows.
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Definition 3.5 (Stochastic Dynamic Program with Discount Rate). The value func-
tion for a profit-maximizing used car retailer with discounted cash flows can be
defined as

V (n,t) = sup
p(t)∈Ωp(t)

E

{∫ T

0
e−rt p(t)d(p(t))dt

}
(3.30)

and the corresponding sufficient condition for optimality given by the stochastic
Hamilton-Jacobi-Bellman equation is

−∂V (n,t)
∂ t

= sup
p(t)∈Ωp(t)

{
d(p(t))

[
V (n,t)−V(n−1,t)+ e−rt p(t)

]}
(3.31)

with the boundary conditions

V (n,T ) = 0 ∀n and V (0,t) = 0 ∀t.

To analyze the effect of the cost of capital by discounting the future expected
cash flows, the example in 3.2 is modified by using different rates of interest.

Example 3.5. Consider the example in 3.2, where a used car retailer had an inven-
tory of n = 1, the selling horizon was T = 20 and demand was assumed to be time-
homogeneous Poisson process with an intensity rate following a Weibull distribu-
tion with a shape parameter of β = 10 and a scale parameter of η=10,450. Optimal
prices are not restricted by a given price set, but can be chosen from a continuous
price region. In Figure 3.5(a), optimal price paths are compared for different rates
of interest, namely 0, 1, 2 and 5 percent. Note that these are rates per time period
and are chosen for demonstration purposes only. In a real-world example, rates of
interest would be much lower when applied on time units of ‘day’ or ‘week’. The
graphs in Figure 3.5(a) suggest that higher interest rates result in lower optimal ask-
ing prices considering a specific time t. A higher interest rate penalizes an expected
cash flow in the more distant future and supports a cash flow generated early in the
course of time. Thus, the probability of a sale in the early periods is increased by
lowering the asking price in comparison to a case with lower interest rates. This
assessment is supported by a plot of the expected profit as a function of the interest
rate in Figure 3.5(b). Here, higher interest rates correspond to lower expected profit
values since cash flow generated in later time periods is penalized.

3.5.2 Inventory Costs

In all previous models, strictly speaking we maximized total expected revenue in-
stead of expected profit since we did not include any cost terms. Therefore, we will
introduce a linear holding cost term c(n) that is charged on existing inventory n. At
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Fig. 3.5: Optimal price paths of continuous-time stochastic dynamic program for different interest
rates utilizing a Weibull distribution (β = 10, η = 10,450) and an inventory of n = 1

time t, the existing level inventory is denoted by n = n(t). Let c(n,t) be the inventory
cost associated with an existing capacity of n items at time t. Then, the stochastic
optimal control problem with cost term can be stated as follows.

Definition 3.6 (Stochastic Dynamic Program with Cost Term). The value function
for a profit-maximizing car retailer with linear inventory costs c(n,t) charged on
existing inventories can be defined as

V (n,t) = sup
p(t)∈Ωp(t)

E

{∫ T

0
[p(t)d(p(t))− c(n,t)] dt

}
(3.32)

and the corresponding sufficient condition for optimality given by the stochastic
Hamilton-Jacobi-Bellman equation is

−∂V(n,t)
∂ t

= sup
p(t)∈Ωp(t)

{d(p(t)) [V (n,t)−V(n− 1,t)+ p(t)− c(n,t)]} (3.33)

with the boundary conditions

V (n,T ) = 0 ∀n and V (0,t) = 0 ∀t.

In the following section, the effect of different levels of cost on the optimal price
path and expected profit are analyzed.

Example 3.6. Consider the assumptions from the previous example regarding the
basis model. Here, the setup is extended by a linear cost term with cost per time
period of 0, 25, 50 and 100 monetary units. Similarly to the analysis of the effect of
the interest rate, higher cost terms lead to flatter optimal price paths since cash flows
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generated in later time periods are penalized by an associated cost term. Therefore,
it is more advantageous to increase the probability of a sale in earlier time periods
by decreasing the corresponding asking price. Consequently, the expected profit
decreases with higher cost terms, as stated in the Figure 3.6(b).
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Fig. 3.6: Optimal price paths of continuous-time stochastic dynamic program for different cost
terms utilizing a Weibull distribution (β = 10, η = 10,450) and an inventory of n = 1

3.5.3 Values Associated with Terminal State

In economic optimization problems, often an additional function will be included
within the optimality criterion representing the value associated with the terminal
state. This function is called the scrape value function or salvage value function, and
is needed so that the solution will make ‘good sense’ at the end of the time horizon.
For example, a used car that is not sold at the end of the optimization period has a
certain value that is not equal to zero, and hence, the usage of a salvage value is in
order.

Let S(n(T ),T ) be the salvage value of a terminal state n(T ) at terminal time T .
Then, the stochastic optimal control problem from 3.3 can be restated as follows.

Definition 3.7 (Stochastic Dynamic Program with Salvage Value). The value func-
tion for a profit-maximizing car retailer with a salvage value function S(n(T),T )
can be defined as

V (n,t) = sup
p(t)∈Ωp(t)

E

{∫ T

0
[p(t)d(p(t))] dt + S(n(T),T )

}
(3.34)
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and the corresponding sufficient condition for optimality given by the stochastic
Hamilton-Jacobi-Bellman equation is

−∂V (n,t)
∂ t

= sup
p(t)∈Ωp(t)

{d(p(t)) [V (n,t)−V(n−1,t)+ p(t)]} (3.35)

with the boundary conditions

V (n,T ) = S(n,T ) ∀n and V (0,t) = 0 ∀t.

An analysis of different levels for the salvage value illustrates the effect on the
optimal price path and the corresponding expected profit.

Example 3.7. Carrying on with the assumptions from the previous example, in ad-
dition consider four different values at the terminal state T = 20, namely 0, 2500,
5000 and 7500. The determined optimal price paths in the left graph of Figure 3.7
show that the level of the salvage value influences the price path, especially at the
end of the selling horizon. With few increments of time left to sell the object, the
chance of not selling increases and, thus, the probability of drawing on the salvage
value increases as well. However, the retailer can request a higher price for the vehi-
cle, since not selling the object would result in a higher price (i.e. the salvage value).
This effect diminishes as more selling time is left, noted by the left tail of the opti-
mal price paths. Consequently, higher salvage values also result in higher expected
profits, since they influence the last cash flow for the terminal state.
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3.6 The Complete Model

The chapter is concluded by defining the complete dynamic pricing model for the
profit-maximizing car retailer, incorporating the cost of capital, inventory holding
costs and the value associated with the terminal state.

Definition 3.8 (Complete Stochastic Dynamic Program). The value function for
a profit-maximizing used car retailer with discounted cash flows, linear inventory
costs c(n,t) and a salvage value of S(n(T),T ) can be defined as

V (n,t) = sup
p(t)∈Ωp(t)

E

{∫ T

0
e−rt [p(t)d(p(t))− c(n,t)] dt + e−rT S(n(T ),T )

}
(3.36)

and the corresponding sufficient condition for optimality given by the stochastic
Hamilton-Jacobi-Bellman equation is

−∂V (n,t)
∂ t

= sup
p(t)∈Ωp(t)

{
d(p(t))

[
V (n,t)−V(n− 1,t)+ e−rt (p(t)− c(n,t))

]}
(3.37)

with the boundary conditions

V (n,T ) = 0 ∀n and V (0,t) = 0 ∀t.

An optimal pricing strategy for a used car retailer can be derived by one of
the several approaches presented in this chapter. Applied in an actual market sit-
uation, a discrete-time procedure will most likely prove to be the most realistic
and most appropriate choice. This assessment is based on several reasons. First,
a continuous-time formulation implicates continuously changing prices, as already
stated in this chapter, and, thereby, generates costs associated with each price
change. Furthermore, customers might not accept continuously changing prices.
And lastly, discrete-time models are easier to formulate, to implement and to ex-
ecute. For example, a retailer could determine optimal prices based on a weekly
basis, thereby only adjusting prices once a week at most.

Another realistic and recommended constraint is the adoption of a finite price
set, thereby reducing the number of possible asking prices. This approach is ad-
vantageous in several ways. First, the application of a finite price set decreases the
complexity of the mathematical models, especially for procedures that do not pro-
vide closed form solutions. And second, the decision for a finite price is also based
on findings in marketing studies, which conclude that some prices are more appeal-
ing to customers than others. Thus, prices close to convenient, whole amounts or
marginally below are more familiar to customers and provide a higher incentive to
buy the product.
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In sum, all these procedures may determine optimal pricing strategies for a profit-
maximizing used car retailer, given that the specific assumptions are met. In con-
sideration of the above stated arguments however, a discrete-time finite price set
approach is proposed for the application in practice and will be applied in the sub-
sequent chapters.
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3.7 Summary

In this chapter, the price-based revenue management problem for a profit-maximizing
used car retailer was defined with a focus on selling individual durable goods. Af-
ter introducing the deterministic, continuous-time model, the stochastic version was
derived describing the state of the system by a point process and modeling the state
equation as an Ito stochastic differential equation. Continuing with this approach, a
closed form solution was stated. However, this is only possible for a limited num-
ber of specific demand functions, such as the exponential distribution. To overcome
these obstacles, the considered time interval was divided into subintervals and algo-
rithms were presented dealing with discrete-time problems.

Up to that point, the stated models determined optimal price paths by using a
continuous price region, thereby allowing the optimal price to change with each sin-
gle subinterval of time. Another thread of model approaches was associated with the
set of possible prices. Here by contrast, the models restricted the choice of possible
prices to a finite set and determined an optimal policy based on this subset of prices,
considering both continuous-time and discrete-time models. The chapter concluded
by extending the price-based revenue management problem to factors important in
practice, such as discounting future cash flows, incorporating cost associated with
existing inventory, and considering a salvage value of an object at the end of the
selling horizon.



Chapter 4
Survival Analysis: Estimation of the
Price-Response Function

The height of ability consists in knowing the price of things.

FRANCOIS DE LA ROCHEFOUCAULD

French Writer (1613–1680)

In the previous chapter, dynamic pricing models were developed to determine
optimal pricing strategies for a profit-maximizing used car retailer. The analysis of
these models clearly revealed the importance of the demand function and its func-
tional form to the application of the optimization module. However, the identifica-
tion of an adequate functional form and the estimation of its parameters poses great
challenges for both researchers and practitioners, especially for products traded in-
frequently such as used vehicles. Therefore, the following chapter presents a con-
ceptual framework for estimating individual demand functions by applying survival
analysis with special regard to the used car sector and its particular characteristics.

Beginning with an introduction into the fundamentals of reservation prices and a
discussion on different approaches retrieving them, section 4.1 further identifies the
potential for the application of survival analysis in estimating customers’ responses
to price variations. Section 4.2 focuses on the basic concepts of survival analysis,
on the different forms of regression models and finally on determining influential
variables for estimating price response functions.
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4.1 Reservation Price and Price Response Function

Economists and marketing researchers rely on measures of consumers’ willingness-
to-pay in estimating demand and in designing optimal pricing strategies (cp. Werten-
broch and Skiera 2002, p. 228). Developing pricing algorithms, researchers often
ignore the complicated task of estimating customers’ response to the offered pric-
ing strategies. Mostly, the functional form of the demand function is assumed to
be given or known, respectively, and sometimes even chosen in a mathematically
tractable way (in terms of the discussed algorithm). But especially for practitioners,
the success of the application of a theoretical pricing algorithm depends heavily on
data processing and collecting, on data pre-processing and cleaning, and ultimately
on an adequate functional form for demand.

4.1.1 The Reservation Price Concept

Price plays a significant role as one element of the marketing mix, since it deter-
mines the amount a customer must sacrifice to acquire a product or service. 1 Fur-
thermore, price is distinguished from other marketing devices by the force and speed
it has on sales, and by the shortness of time it takes to change it.

In this context, knowledge about customers’ reservation prices is the key in-
formation used to develop rational and optimal pricing strategies. Following Jedidi
and Zhang (2002, p. 1352), a consumer’s reservation price for a specific product
or service is the price at which the consumer is indifferent toward either buying or
not buying a given product considering the alternatives available to the consumer.
Balderjahn (2003, p. 389) defines the reservation price as the maximum price a
consumer is willing to pay for a certain product. Since the reservation price is an
upper limit of the acceptable price range, it corresponds directly with the perceived
value of the product. Figure 4.1 illustrates the conceptual framework for the reser-
vation price approach. A customer assesses a product’s perceived value (measured
in monetary units) and, in a particular purchase situation, compares this value with
the current price asked by the supplier2. Assuming rational behavior, the customer
selects from several competing products the offer with the highest customer surplus,
that is, the greatest difference between perceived value and price. This is also known
as the principle of maximization of customer surplus.

Consumer research literature provides two main approaches for explaining the
impact of prices on consumer decisions (see Bettman, Luce, and Payne 1998,
p. 187). Rational choice theory assumes a rational decision maker with well-defined

1 Simon (1989, p. 1) defines the price of a product or service as the number of monetary units a
customer has to pay to receive one unit of that product or service.
2 For a discussion of the asking price and its different roles please refer to section 4.4.1.
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Fig. 4.1: Framework of the reservation price concept within a particular purchase situation

stable preferences. The rational decision maker assigns a utility to each option in a
known choice set and has the ability to determine which option will maximize the
received value, and thus selects accordingly. In contrast, the information-processing
approach assumes that the decision maker has limitations on his capacities for pro-
cessing information and limited rationality. He has no well-defined preferences and
may construct them on the spot when making a choice.

Having information about customers’ reservation prices (or their willingness to
pay), one can derive the price response functions necessary for the development
of optimal pricing strategies. Simon (1989, p. 14) differentiates between an indi-
vidual and an aggregated level to explain the concept of price response functions.
At an individual level, a customer faces two possible situations: the ‘binary case’,
where he buys one unit at most (e.g. durable goods) and the ‘variable quantity-case’,
where the customer buys several units depending on the price (e.g. many nondurable
goods).

In the following section, we concentrate on the binary case, where the customer
buys the good if the price is less than the product’s perceived value, and the reser-
vation price (or the maximum price) is equal to the product’s value.
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4.1.2 Classification of Estimation Methods

There are numerous techniques and methods for measuring and estimating price
responses, which can be classified using different criteria. Balderjahn (2003) cate-
gorized methods based on the degree of aggregation, distinguishing between indi-
vidual and aggregated willingness-to-pay. Nagle and Hogan (2006) apply a matrix
consisting of two dimensions, one being the conditions of measurement and the
other being the variable measured, whereas Breidert (2006) distinguishes between
observations and surveys as the main classes for estimation methods.

Based on the classification of Sattler and Nitschke (2003), we organize the var-
ious techniques for estimating price sensitivity into three classes: market data (re-
vealed preferences), stated preference data, and purchase experiments, as stated in
Figure 4.2. One way to estimate the willingness-to-pay is to analyze market data,
generated by past sales data or by experimentally-controlled experiments. Given
the ability to track sales transactions under realistic marketing-mix conditions, past
sales data enable marketers to analyze trends and predict future demand. However,
sales data are frequently available only at an aggregated level and thus, conceal
possible individual price differences. Furthermore, data about demand that is not
satisfied is often not collected at all. Consequently, the reduction in price varia-
tion allows only limited explanation regarding the willingness-to-pay estimates. By
applying laboratory purchase experiments to vary prices systematically, these prob-
lems can be prevented, but these experiments are quite time and financially cost
intensive (cp. Nagle and Hogan 2006, p. 282). Another class of instruments used
to measure price sensitivity is known as stated preference data, which can be dis-
tinguished between direct and indirect surveys. In direct surveys, test persons are
asked to state how much they are willing to pay for a certain product whereas in
indirect surveys, some sort of rating or ranking procedure of different products is
applied (compare Breidert 2006, p. 40). The most successful methodology in market
research is choice-based conjoint analysis, designed to determine trade-offs among
product features or attributes including price (Wertenbroch and Skiera 2002, p. 229).

In contrast, purchase experiments attempt to simulate the realism of in-store ex-
periments avoiding high financial and time allocations. One popular type of pur-
chase experiment is represented by the Vickrey auction, where bidders submit writ-
ten bids without knowing the bid of the other people in the auction. The highest
bidder wins, but pays only the second highest bid price. Thus, in a Vickrey auction
each bidder maximizes her expected utility by revealing her true valuation. An-
other subclass of purchase experiments is lotteries, with the Becker, DeGroot, and
Marschak’s (1964) procedure as the most established mechanism.

In the next subsection, we elaborate on these methods by focusing the interest
on market data approaches since the most effective way to conduct a price-response
analysis is by using non-experimental data.
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4.1.3 Further Discussion of Non-Experimental Market Data
Methods

Often companies’ marketers face the situation where market data on past sales
and prices are readily available and the process of collection and preparation is
already integrated within the existing data warehouse module of an enterprise re-
source planning system. Generally, marketing literature distinguishes between three
types of past sales data to estimate price response functions: panel data, store scan-
ner data, and historical sales data. Subsequently, these estimating techniques will be
described with the scope of extending to the needs of the used car sector.

Panel Data Panel data consist of individual purchase information from different
households, where each household keeps a daily record of products purchased
and prices paid. Thus, price variation is observed at an individual level. The setup
of panel data however is expensive and may not adequately represent the market
(cp. Nagle and Hogan 2006, p. 284).

Store Scanner Data An alternative source of sales data may be derived from au-
diting price transactions and sales at individual stores. Using scanners to generate
the data, one can observe responses to short-term price variations. Thus, scanner
data have become a major source of information on price response, especially
within the retail industry (cp. Nagle and Hogan 2006, p. 287).
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Historical Sales Data Due to the increasing use of database systems, historical
sales and price data are often available at a relatively low cost. Historical sales
data however are frequently available only at an aggregate level, and thus conceal
individual price differences. Consequently, the reduction in price variation allows
only limited explanation regarding the estimate of willingness-to-pay. Therefore,
Sattler and Nitschke (2003) assess historical data as not feasible for estimating
price response function due to the missing price variation.

Market data therefore offer a cost-conservative and easy method for estimating
price responses at an aggregate level.

4.1.4 Time Duration Market Data

Many industry sectors are characterized by few and infrequent transactions, which
makes it difficult to develop feasible data sets based only on historical sales data.
Furthermore, sales data only provide information about a specific point in time,
disregarding data at the time of offer.

One approach would be to extend the method of market data by incorporating the
quote history of a product. When price offer history is combined with sales success
data and price adjustment information, it is possible to estimate the probability at
which a sale is likely. It can also determine the decline in the probability in a sale
as prices increase, and vice versa (cp. Nagle and Hogan 2006, p. 287). Thus, this
approach is a specific form of estimating the price response function and in the fol-
lowing section will be named time duration market data according to the application
within time duration models.

Definition 4.1 (Time Duration Market Data). Time duration market data can be
classified as a non-experimental market data method, as it includes information
about past sales and corresponding sales prices. In addition to the information of the
product and its characteristics, data is collected regarding the chronological course
of the supplier’s asking price. Thus, not only the time duration of a sale, but also the
information that a particular good has not been sold for the offered price is utilized.

In consequence, with the application of time duration market data, an offered
good does not only generate one data set with its disposal, but also a number of
different data sets every time a price is adjusted. This increases the data base for
estimating price response functions significantly. This fact is all the more important
for sectors that are characterized by infrequent transactions, such as the used car
market.

Real estate economics is one of the few areas where time duration market and
listing price data are explicitly incorporated in estimating demand. There, search
theory is used to explain the matching process of the time required to bring together
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a seller of a heterogeneous product with an appropriate buyer. The seller tries to
maximize the discounted present value of the realized profits from sale by choosing
an appropriate listing price, whereas the buyer searches among available products
for the good that maximizes the utility provided by the good (cp. Anglin, Rutherford,
and Springer 2003, p. 96).

Although several papers in real estate economics incorporate time duration mar-
ket data into the search theoretic context, information about price changes during the
product’s marketing period is typically missing from data. Instead, only the most re-
cent asking price and the corresponding time duration on market are considered. To
our knowledge, only Knight (2002) presents a study where price revision informa-
tion is incorporated in the data. Thus, one of the main results in this chapter is the
development of a framework to estimate price response functions by applying in-
formation about price adjustments and their associated time on market, particularly
with regard to the used car sector.

4.1.5 Application to the Used Car Sector

A used car retailer faces the trade-off between a too much time for selling the vehi-
cle versus a too low of a price eventually received. Setting the asking price too high,
the retailer discourages potential buyers and decreases the probability of encounter-
ing a buyer, thus risking having the vehicle on the market for an overly long time.
Conversely, by setting the asking price too low, a quick sale might occur, but at the
expense of lost potential profit with a better pricing strategy.

Standard search theory postulates a direct relationship between asking price and
time-on-market, since the listing price may influence the rate at which buyers inspect
a vehicle. Furthermore, the asking price acts as a signal to potential buyers as an
upper bound of the seller’s reservation price (Horowitz 1992).

To analyze the relationship between the asking price of a vehicle and the cus-
tomers’ response in the form of probability of sale, the collection of time duration
market data is necessary. This information should include internal data such as the
original list price, the asking price, the status of sale, the final selling price, and ex-
ternal data (such as market conditions, market size of comparable vehicles and the
rank of the asking price in comparison to vehicles of the same market).

In the next section, the concept of survival analysis is introduced to estimate
the probability of a vehicle’s sale depending on a given set of internal and external
variables.
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4.2 Survival Analysis

4.2.1 Introduction

Individual market data on durable goods such as vehicles or assets indicate that these
commodities spend a comparatively long time on the market before they are sold.
The data are often limited, where standard regression methods cannot estimate the
probability of a sale. Survival analysis is an excellent approach for analyzing these
issues. The following section introduces the basic concepts of survival analysis and
presents several models to determine explanatory variables. These techniques and
models are applied to estimate price response functions for the used car sector on
the basis of data provided by the sales study further described in section 5.2.

Survival analysis examines and models the time it takes for events to occur (in
this context, the term ‘failure’ is often used). Such events might include the failure
of components, the death of patients, or workers securing jobs after unemployment.
The distribution of such survival times is intrinsically interesting, but attention more
commonly focuses on the relationship between survival and one or more predictors,
usually termed as explanatory variables or covariates in the survival analysis lit-
erature (Oakes 2001, p. 99). The central concept of statistical methods in survival
analysis is based on the conditional probability of an event taking place (e.g., the
probability of an individual leaving unemployment in the tenth week given that he
or she has been unemployed for nine weeks, (see Kiefer 1988, p. 648)).

In this chapter, the used car sector is considered as an environment for the ap-
plication of survival analysis. There, the vehicles are displayed with an associated
asking price by the retailer. In this setting, the time until the disposal occurs, includ-
ing possible price alignments, constitutes this particular vehicle’s survival time on
the market. Furthermore, not only is the time observed until the car is sold, but also
the factors affecting the survival time. That is, they are explanatory variables that
help explain the observed survival times. These factors might include the price of-
fered, the market value, the attributes of the vehicle, and external market conditions.

4.2.1.1 History

The origins of survival analysis can be traced back to the early work on mortality
by John Graunt, who introduced the concept of ‘life tables’ in his book Natural and
Political Observations on the Bills of Mortality in 1662 (Graunt 1662; Sutherland
1963). The modern era of survival analysis started at the beginning of the twenti-
eth century with studies on durability of industrial devices. During World War II,
the reliability of military equipment became a critical issue and the term ‘lifetime
analysis’ came to be used by industrial reliability engineers. In the post-war period,
methods of reliability were applied to the study of survival time for cancer patients
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and cancer researchers coined the term ‘survival analysis’. Around this time, two
landmark papers for the development of modern survival analysis were published,
in which Kaplan and Meier (1958) formalized the product-limit estimator, and Cox
(1972) introduced the proportional hazards model.

In the past five decades, survival analysis has become one of the most frequently
used methods for analyzing data in various disciplines. Examples include survival
times of patients in clinical trials (biomedical sciences), the lifetime of machine
components (industrial engineering), and the duration of unemployment or dura-
tions of strikes in economics.

4.2.1.2 Censoring and Truncation

A special feature related to survival analysis arises from the fact that only some
individuals experience the event, and subsequently, survival times are unknown for
a subset of the sample. Such incomplete observation of the failure time is called
censoring (Cox and Oakes 1985, p. 5). Possible censoring schemes include right
censoring, where all that is known is that the individual is still alive at a given time,
or left censoring, when all that is known is that the individual has experienced the
event of interest prior to the start of the study.3 Figure 4.3 illustrates the occurrence
of right censoring. Here, individual 1 and 4 are examples for non-censored subjects
since the observation starts after the beginning of the study and the subjects expe-
rience the event (such as a sale of a used vehicle) before the end of the study. In
contrast, individual 2 is withdrawn from the study and, thus, subject to censoring
(i.e. the survival time is set to the elapsed time up to the end of the study). Regard-
ing individual 3, it experiences the event (assuming that it occurs) beyond the end of
the market study, but only the duration up to the end of the study is recorded. Again,
the survival time is underestimated compared to the actual time to event. Lastly,
although individual 5 experiences its event within the study period, the complete
duration is unknown since its starting time is located before the beginning of the
study. The situations for individual 2, 3 and 5 are known as right censoring.

A second feature of survival data is truncation, which is due to a sampling bias
that dictates that only individuals whose lifetimes lie within a certain interval [YL,YR]
can be observed. Again, cases can be subdivided into left truncation, where an event
is observed if its lifetime is greater than a truncation variable YL, and into right
truncation, where the measurement is less than a truncation variable YR.

Note that the appearance of censoring and truncation results in the need for spe-
cial methods of analysis, because standard statistical methods are not applicable to
survival times.

3 For a comprehensive discussion on censoring and truncation, see Klein and Moeschberger (2003,
p. 55).
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Fig. 4.3: Examples for right-censored data. The dashed lines correspond to the beginning and the
end of the market study. The diamond signals a withdrawal of the subject from the study,
whereas the arrow illustrates the fact that the survival time is right censored.

4.2.1.3 Requirements and Goals of Survival Analysis

Cox and Oakes (1985, p. 1) define three basic requirements for the application of
survival analysis. A time origin must be unambiguously defined, a scale for mea-
suring the passage of time must be agreed upon, and the meaning of failure must be
entirely clear. Kleinbaum (1996) states three basic goals of survival analysis: 1) the
estimation and interpretation of survival and hazard functions from survival data,
2) the comparison of survival and hazard functions, and 3) the assessment of the
relationship of explanatory variables to survival time.

Each of these three statements plays an important role in the forthcoming analy-
sis. The first two are needed to cluster the survival data into subgroups via compar-
ison of individual survivor functions. However, the main focus is on the assessment
of the explanatory variables, using different mathematical modeling approaches,
such as the semi-parametric Cox model or parametric regression models.

4.2.1.4 Assessing the Used Car Sector

To our knowledge, the automobile industry in general and the used car sector in par-
ticular have not yet been scrutinized with survival analysis methodology, at least not
in academic papers published before 2006. This is somewhat astonishing, because
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this industry sector provides excellent conditions in terms of information systems to
generate, store, and process market data.

According to the requirements defined by Cox and Oakes (1985, p. 1), the used
car sector is an ideal field for survival analysis. Consider the case where a used
vehicle is displayed by a car retailer for sale. The time origin for the analysis starts
with the first day of offering the vehicle for a certain price. At that point, one of
three circumstances can occur: 1) the car is sold (at the asking price), and the case
of failure (failure to survive on the market) appears; 2) the vehicle is not sold, but
still offered for the current asking price; or 3) the vehicle is not sold for the asking
price, and the retailer adjusts the price according to a pricing strategy. In this case,
the generated data set is censored and a new data set starts with a new time origin.
The scale for measuring the passage of time is measured in days for all data sets,
because price changes rarely occur during the daytime.

The objective of this chapter is to provide a framework for determining individual
price response functions. Within this scope, the main interest in survival analysis can
be found in the assessment of the relationship of explanatory variables to survival
time. More specifically, the influence of the asking price on the time on market of
a specific vehicle is analyzed. Apart from this, other internal and external variables
are considered as well as their relationship to survival time. The used car sector is
selected as the backdrop, since it features excellent conditions for the application of
survival analysis.

4.2.2 Basic Concepts and Notation

In this subsection, we consider a homogeneous population of individuals and intro-
duce the basic mathematical terminology and notation for survival analysis.

4.2.2.1 Distributions of Failure Time

The survival time is a non-negative random variable measuring the time until some
specific event. This event might be a failure, a response to treatment with medicines
or even death. Survival data can be generally described in terms of two related func-
tions, namely the survival function, which is the probability that an individual sur-
vives from the time origin to a specific time t, and the hazard function (which is also
called the hazard rate), which is the chance that an individual during observation at
time t experiences the event in the next instant.

Let T be a random non-negative variable from a homogeneous population. The
relationship between the probability distribution function f (t) and the cumulative
distribution function F(t) is then defined as
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F(t) = P(T < t) =
∫ t

0
f (u)du, (4.1)

where F(t) can be interpreted as the probability that an individual does not survive
beyond the time t. For a continuous random variable T , the survival function S(t) is
a non-increasing function in t with the value of 1 at the origin and 0 at infinity. It is
defined as

S(t) = P(T > t) =
∫ ∞

t
f (u)du = 1−F(t). (4.2)

Thus, the probability density function f (t) can be calculated as

f (t) = − d
dt

S(t). (4.3)

Another representation of the distribution of survival time is the hazard function
(also known as the conditional failure rate, the inverse of the Mill’s ratio and the
hazard rate)

h(t) = lim
Δ→0

Pr[(t ≤ T < t + Δ t)|T ≥ t]
Δ t

=
f (t)
S(t)

, (4.4)

which assesses the instantaneous risk of failure at time t, conditional on survival to
that time. Blossfeld, Hamerle, and Mayer (1986) describe the hazard function as the
central concept for the analysis of survival data. A related term is the cumulative
hazard function H(t), defined as

H(t) =
∫ t

0
h(u)du = − lnS(t). (4.5)

When T is a continuous random variable, the survival function S(t) can be rear-
ranged to

S(t) = exp[−H(t)] = exp

[
−

∫ t

0
h(u)du

]
. (4.6)

The cumulative hazard function is interpreted as the number of events that would
be expected for each individual by time t if the event were a repeatable process
and is used as an intermediate measure for estimating the hazard function h(t) (see
Clark, Bradburn, Love, and Altman 2003, p. 234). The functions representing the
survival data are mathematically equivalent and, consequently, either of them can
be the basis of statistical analysis.

Example 4.1 (Hazard and cumulative hazard function). In a study examining the
used car market in Germany from December 2005 to September 2006, asking prices
were collected for specific model types. Each new asking price represented a new
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data set and was censored in the case when no sale occurred or the asking price was
changed. Figure 4.4 shows the estimated hazard and cumulative hazard function for
model ‘J-1’. Of specific interest is the hazard function, where the decreasing plot
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Fig. 4.4: Hazard and cumulative hazard function for time-on-market data for vehicle model ‘J-1’
in the period of January to September 2006 along with pointwise 95 percent confidence
intervals for the cumulative hazard function

can be interpreted as follows. In the beginning of the offer phase, the likelihood of
a sale (that is, of a failure to survive on the market) is higher and decreases as time
passes. After being on the market for approximately 150 days, the hazard rate is
constant over the remaining period. The estimate of the cumulative hazard function
is extended by 95 percent pointwise confidence intervals.

4.2.3 Estimation of the Survivor Function

Dealing with real data, often the issue arises that data has to be grouped or clustered
to provide more extensive samples for successive modeling and, thus, feature higher
significance for the findings. More precisely, in the setup of the used car sector, it is
of interest to find model types that follow the same characteristics in terms of sur-
vival and hazard rate. Then, types with similar survival functions can be analyzed as
one sample providing higher explanatory power. The approach is to identify these
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correlations by comparing estimated survival functions before any parametric mod-
eling is conducted.

Therefore, in the first subsection basic estimators for the survival function and the
cumulative hazard function are introduced. In the second subsection, test statistics
are described that make a weighted comparison between estimated survival func-
tions of different samples. These test statistics represent the basis for clustering
given data into sub-samples.

4.2.3.1 Nonparametric Methods

Nonparametric estimation of survival or distribution functions provide a useful way
of analyzing unordered univariate survival data (see Lawless 1982, p. 71). Thus, it is
possible to analyze survival data without any parametric assumption about the form
of the underlying distribution.

Kaplan-Meier Estimator

The standard non-parametric estimator of the survival function from observed sur-
vival times was proposed by Kaplan and Meier (1958). An important advantage of
the Kaplan-Meier (KM) method (also known as the Product Limit Estimator) is the
extension of the estimate to censored data.

Let the observed times until an event from a sample of a population of size N
be t(1) ≤ t(2) ≤ . . . ≤ t(N). Then, the probability of not experiencing the event at
time Ŝ(t(i)) is given by the probability of surviving past the previous failure time,

Ŝ(t(i−1)), multiplied by the conditional probability of surviving past time t (i), given

survival to at least time t(i). The latter can be represented by the term (1− di
ni

), with di

as the number of events (e.g. death) at time t (i) and ri the total number of individuals
exposed to risk at time t(i). Referring to the used car sector, the risk set ri contains
all vehicles that are offered and not sold, yet. Then, the KM estimate of the survival
function is defined as

Ŝ(t(i)) = Ŝ(t(i−1))
(

ri −di

ri

)

= ∏
i:t(i)<t

(
1− di

ri

)
. (4.7)

Since the probability of failure between two successive events is assumed to be zero,
the estimated survival is a step function with jumps at times of observed events.
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Nelson-Aalen Estimator

While the KM estimator can also be used to estimate the cumulative hazard function,
an alternative approach is to estimate the cumulative hazard directly, first proposed
by Nelson (1972) and further derived by Aalen (1978). The Nelson-Aalen estimator
is defined by the term

Ĥ(t(i)) =
i

∑
j=1

d j

r j
. (4.8)

The estimated cumulative hazard is the sum of the hazards at all failure times up to
time t(i) and can be interpreted as the expected number of failures per unit at risk.

Klein and Moeschberger (2003) identified two primary uses of the application of
the Nelson-Aalen estimator in survival analysis. First, it can be used to assess a para-
metric model by plotting the transformed estimator in a way that the graph should be
approximately linear if the underlying parametric model is correct. And secondly,
the estimator provides a simple estimate of the hazard rate h(t). In addition, Bres-
low (1972) suggested estimating the survival function based on the Nelson-Aalen

estimator as Ŝ(t(i)) = eĤ(t(i)).

Example 4.2 (Nonparametric estimation of survival function). Continuing with the
market study introduced in example 4.1 and considering the data examining the used
car market in Germany, two estimators of the survival function are compared for
model ‘J-1’. Figure 4.5 compares the two estimators on the survival data along with
95 percent confidence intervals for the Kaplan-Meier, where a difference between
the Kaplan-Meier and the Nelson-Aalen estimator is barely noticeable. Note that
the survival functions are defined only up to 300 days, the largest of the observation
times. Furthermore, the plot shows that the estimated survival functions, although
decreasing, do not go down to zero at the end of the study. This appearance is based
on the fact that right censoring has occurred within the data since not all vehicles
were sold at the end of the study and prices were changed during the observation.
This leads to this specific data set and beginning a new one with the new asking
price.

4.2.3.2 Hypothesis Testing Comparing Survival Estimators

Hypothesis testing for the equality of the survival function of two or more groups
is a common requirement in survival analysis. Within the scope of this work, these
test statistics are applied to make statements about possible clustering of populations
within a given data set. Therefore, methods are presented testing the null hypothesis
that there is no statistically significant difference between the analyzed populations
in the probability of an event at any time point. Following Klein and Moeschberger
(2003, p. 191) the set of hypotheses for K populations and their associated hazard
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Fig. 4.5: Kaplan-Meier (solid) and Nelson-Aalen (dashed) estimate for the time-on-market data set
of model ‘J-1’, along with pointwise 95 percent confidence intervals for Kaplan-Meier.
Note that the difference of both estimates is barely observable

rates is formally given by

H0 : h1(t) = h2(t) = . . . = hK(t), for all t ≤ τ, versus

H1 : at least one of the hazard rates is different for some t ≤ τ (4.9)

with τ as the longest time in the study. The alternative hypothesis rejects the null
hypothesis if at least one of the populations differs from the others at some time.
Let di j be the observed events at time ti in the jth population out of ri j at risk, and
di = ∑K

j=1 di j as well as ri = ∑K
j=1 ri j be the total number of events and the total

number at risk at time ti. The test statistic is based on the Nelson-Aalen estimator
and basically calculates for each group, at each event time, the number of events
one would expect since the previous event if there were no difference between the
groups. The difference to the observed number of events is then multiplied by a
weight function Wj(ti) and summed up over all event times. Defining a class of
weight functions where the common weight is shared by each group, thus W j(ti) =
W (ti), the test statistic is given by
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Zj(τ) =
D

∑
i

W (ti)
[

di j − ri jdi

ri

]
, j = 1, . . . ,K. (4.10)

The value of the test statistic is compared to a χ 2 distribution with (D−1) degrees
of freedom, where D is the number of groups.

A variety of different weight functions can be found in the literature, with the log-
rank test (Peto, Pike, Armitage, Breslow, Cox, Howard, Mantel, McPherson, Peto,
and Smith 1977) as the most widely used method for comparing survival functions
with a common weight function of W (t) = 1. Another choice of the weight function
is W (ti) = ri, based on the generalization of the Kruskal-Whitney-Wilcoxon test
(Gehan 1965) and the generalization of the Kruskal-Wallis test (Breslow 1970).
Therefore, the test statistic is also known as the Breslow test. Finally, Tarone and
Ware (1977) proposed a weight function of W (t i) =

√
ri, which gives more weight

at points with the most data.

Example 4.3 (Test statistic comparing two vehicle models). In example 4.1, a market
study examining the used car market in Germany was introduced. Now, the ques-
tion whether there is a difference in the probability of a sale for two populations
arises, namely vehicles from the new model line (solid graph) and vehicles from the
previous model line. Table 4.1 summarizes different test statistics applying different
weight functions.

Test Statistic Weight Function W (ti) χ2 p-Value

Log-rank test 1.0 335.16 0.000
Breslow test ri 260.95 0.000
Tarone-Ware test

√
ri 298.99 0.000

Table 4.1: Test statistics for two-sample tests

Figure 4.6 shows the estimated survival functions for the two populations. Here
the curves appear to be significantly different, with the new model’s probability of
survival on the market always higher than for the previous model, a fact supported by
the test statistics given in Table 4.1 with p-values of zero to three decimal places for
all tests. Keeping in mind that the survival on the market corresponds to the circum-
stance that the vehicle is not sold, the comparison of the model’s survival estimators
allows the conclusion that used vehicles belonging to the previous model are sold
with a higher probability than used vehicles from the new model. Although coun-
terintuitive on the first glance, the assessment might be explained by the fact that
asking prices for used vehicles from the previous model are lower with regards to
the vehicles’ estimated market value than for vehicles belonging to the new model.
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Fig. 4.6: Estimated survival function for the new model line (solid) versus the previous model line
(dashed)

However, the used Nelson-Aalen estimator is a non-parametic estimation method
and does not include the asking price as an explanatory variable.
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4.3 Parametric Regression Modeling

The previous sections introduced the basic idea of survival analysis, including the
definition of the hazard and survival function, the construction of nonparametric es-
timators and tests for differences between groups. This section reviews parametric
regression models which are used to analyze the effect on failure time by explana-
tory variables.

Klein and Moeschberger (2003, p. 45) stated that one challenge in dealing with
survival data is that of adjusting the survival function to account for concomitant
information (also referred to as covariates or explanatory variables). Furthermore,
it is of interest to ascertain the relationship between failure time and explanatory
variables. Therefore, allowing survival to be assessed with respect to several factors
simultaneously might improve the overall accuracy and offers an explanation of the
effect for individual factors.

Basically, approaches to modeling covariate effects are divided into two classes,
namely proportional-hazard models (including the semi-parametric Cox model) and
fully parametric regression models and secondly, accelerated failure time models
(also known as location-scale models for logT ). Both approaches are discussed in
the forthcoming section.

4.3.1 The Cox Proportional Hazards Model

4.3.1.1 Introduction and Notation

The Cox proportional-hazards regression model was introduced in an seminal paper
by Cox (1972), and is one of the most commonly used approaches for analyzing
survival data. The model examines the relationship between survival, expressed by
the hazard function and a set of covariates. The Cox model is a sub-class of the
proportional hazards family, which is characterized by the property that different
individuals have hazard functions proportional to each other. Thus, the hazard func-
tion of T , given x, can be written in the form

h(t|x) = h0(t)g(x′β ), (4.11)

where T is a nonnegative variable representing survival time and x = (x 1,x2, . . . ,xq)′
a q× 1 vector of covariates (also known as explanatory variables) associated with
the survival time. The term h0(t) can be interpreted as the baseline hazard function,
and both, h0 and g(·) may involve unknown parameters. Treating the baseline haz-
ard function as nonparametrically, Cox (1972) proposed a particular proportional
hazards model of the form
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h(t|x) = h0(t)ex′β , (4.12)

where β = (β1, . . . ,βq)′ represents a vector of regression coefficients. It is called
a semi-parametric model due to the fact that a parametric form is assumed for the
covariates while the baseline hazard is treated non-parametrically. The model is
also considered a proportional hazard since the ratio of two individuals with fixed
covariate vectors xi and x j is constant over time:

h(t|xi)
h(t|x j)

=
h0(t)exi

′β

h0(t)exj
′β =

exi
′β

exj
′β .

The Cox model is essentially a multiple linear regression of the logarithm hazard
on the covariates x with the baseline being the intercept term that varies over time.
The covariates are multiplied on the hazard with regard to the key assumption of the
proportional hazards model (cp. Bradburn, Clark, Love, and Altman 2003, p. 432).

Equivalently, one can formulate the Cox model in terms of the regression coef-
ficients and the survivor function S(t|x). Then, the survivor function arising from
(4.6) equals

S(t|x) = exp

[
−

∫ t

0
h0(u)ex′β du

]
= [S0(t)]

ex′β
, (4.13)

with the baseline survivor function S0(t) = exp[−H0(t)].

4.3.1.2 Estimation of Regression Parameters

One goal of survival analysis is to make an inference about the influence of the co-
variates by estimating the relating coefficients. Taking censoring into consideration,
one approach would be to maximize the likelihood function for the observed data
simultaneously with respect to the regression coefficients and the baseline survivor
function (cp. Lawless 1982, p. 345).

A more attractive approach of estimation represents the method of partial likeli-
hood due to Cox (1972), where the likelihood function does not depend upon h 0(t).
Following the elaboration in Klein and Moeschberger (2003, p. 232), the partial
likelihood for the case of no ties between the event times can be motivated from
the probability Pri that a subject experiences an event at time ti with covariates x(i),
given one of the subjects in the risk set r(ti) experiences an event at the same time
ti:

Pri =
Pr[individual dies at ti | survival to ti]

Pr[one death at ti | survival to ti]

=
h0(ti)e

x(i)
′β

∑ j∈r(ti) h0(ti)exj
′β .
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The partial likelihood is formed by multiplying these probabilities over all distinct
failure times d:

PL(β ) =
d

∏
i=1

h0(ti)ex(i)
′β

∑ j∈r(ti) h0(ti)exj
′β

=
d

∏
i=1

ex(i)
′β

∑ j∈r(ti) exj
′β . (4.14)

The natural log of Cox’s partial likelihood pl(β ) = lnPL(β ) can then be derived to

pl(β ) =
d

∑
i=1

{
x(i)

′β − ln ∑
j∈r(ti)

exj
′β

}
. (4.15)

Using the score vector s(β )=
(

∂
∂β1

PL(β ), . . . , ∂
∂βq

PL(β )
)′

by taking the derivatives

with respect to β , the partial maximum likelihood estimates are found by solving the
set of q equations s(β ) = 0. This can be done numerically by using iterative methods
such as the Newton-Raphson technique (see Therneau and Grambsch 2000, p. 40).

A comprehensive discussion for the extension of partial likelihood formulation
when ties are present is found in Klein and Moeschberger (2003, p. 237). There,
three ways of constructing partial likelihoods are suggested, including the Breslow
approximation (Breslow 1974), the Efron approximation (Efron 1977) and the ex-
act partial likelihood function (Cox 1972). The exact partial likelihood function in-
volves permutations that may be time-consuming to compute. Harrell (2001, p. 467)
presents three commonly used algorithms for computing the partial likelihood in
consideration of the ties. The Breslow approximation derives a satisfactory approx-
imate log likelihood function when the number of ties is relatively small, whereas
the Efron estimate is significantly more accurate than the Breslow one. It is very
close to the exact partial likelihood, unless the proportion of ties is extremely large.
In section 5.3.1, different methods of dealing with tied data are applied estimating
the regression coefficients for a Cox model.

4.3.1.3 Example for Adopting the Cox Model to The Used Car Problem

This section concludes with the adoption of the Cox model to the profit-maximizing
problem of a used car retailer. More precisely, in the following subsection there is
an example determining the explanatory variables for the survival of a used vehi-
cle on the market assuming the semi-parametric functional form of a Cox model.
Based on the determined covariates and the corresponding coefficients, section 4.4
illustrates the process of estimating individual price response functions on the basis
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of a survival model as the input variable for calculating optimal pricing strategies
developed in chapter 3.

This example uses data from a market study where the course of the asking prices
and final sales were monitored over a period of ten months. The study and its find-
ings are discussed in more detail in the next chapter. Here, the data are only used to
illustrate the estimate of a Cox proportional hazards model.

Example 4.4 (Adoption of a Cox Proportional Hazards Model). In section 5.2, a
market study is presented of 4,564 vehicles within the German used car market.
The primary outcome variable is represented by time-on-market (TOM) of a used
vehicle and, thus, characterizes its survival. The factors considered in the follow-
ing survival analysis are degree-of-overpricing (‘DOP’), size of the relative market
(‘market size’), the position within this market based on the relative asking price
(‘quantile’), the number of previous owners (‘po’), and the age of the vehicle in
weeks (‘age’) (refer to section 5.2.1 for a more in-depth discussion of the variables).

Assume that the relationship of the asking price relative to the market value of
the vehicle (denoted as ‘DOP’) plays a significant role in explaining the vehicle’s
time on market. The results of the semi-parametric proportional hazards regression
is stated in Table 4.2 along with an ‘analysis of variance’ table describing the esti-
mated standard error, the relative risk of the effects and the univariate Wald test with
its corresponding p-value. The relative risk, given by the exponent exp(b) of the co-
efficient b, represents the difference of one unit in the covariate values, whereas the
univariate Wald test infers about single coefficients.

Variable Coefficient Std. Error Wald χ2 Degrees of
Freedom

p-Value Relative Risk

DOP −5.1258 0.284 325.05 1 < .0001 0.006
Market size −0.0045 0.001 38.35 1 < .0001 0.996
Quantile −0.4829 0.119 16.36 1 0.0001 0.617
PO 0.0194 0.035 0.31 1 0.5790 1.020
Age −0.001 0.001 16.82 1 < .0001 0.999

Table 4.2: Analysis of variance table for a Cox model fitting the used car example including the
variables DOP, market size, quantile, po, and age, utilizing the Efron method for han-
dling ties

The fit of the Cox proportional hazards model in Table 4.2 suggests that all re-
gression coefficients are statistically significant with the exception of the variable
‘number of previous owners’ (po), where the corresponding p-value of the Wald
test is p = 0.5790. The degree-of-overpricing (DOP) is the most important variable,
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as indicated by the large Wald χ 2-value. Each one unit change in DOP is associ-
ated with a change of 0.006 in the relative risk of leaving the market. Therefore,
based on the regression we can conclude that higher asking prices and thus higher
degrees-of-overpricing lead to a decreased risk of leaving the market. Consequently,
the expected time-on-market will increase for a used vehicle. On the contrary, lower
asking prices and, consequently, a lower DOP will cause a reduction in the expected
time-on-market of a used vehicle.

4.3.2 Accelerated Failure Time Models

4.3.2.1 Introduction and Notation

Referring to Cox and Oakes (1985, p. 51), the accelerated failure time (AFT) model
represents the primary competitor to the proportional hazards model. It relates co-
variate linearly to the logarithm of the failure time (Kalbfleisch and Prentice 1980,
p. 32).

As before, let T be the nonnegative survival time and x = (x 1,x2, . . . ,xq)′ be a
q× 1 vector of covariates (also known as explanatory variables) associated with
the survival time. In this setting, the components of x may represent continuous
variables, dichotomous or categorial characteristics as well as time-dependent vari-
ables.

Assuming constant covariates, the AFT model is written mathematically as an
ordinary regression model with the natural logarithm of survival time T of the form

Y = lnT = −x′β + σW, W
iid∼ S0(·), (4.16)

with β as the vector of regression coefficients, σ as a scale parameter, S 0(·) as a
known baseline survivor function, and W as an error term with a suitable distribution
independent of x. The name of the AFT model is justified by the fact that the effects
of identified covariates accelerate or decelerate the time scale.

Assume that all covariates are equal to zero. Then, the error term σW can be
viewed as a reference distribution for x = 0, and will be translated to the time scale
by defining T0 = eσW . Let S0(t) denote the survival function when the covariate
vector x = 0, that is

S0(t) = P(T0 > t) = P(eσW > t). (4.17)

Including now the covariates x and keeping in mind that they have a multiplicative
relationship on survival time, the survival function of the accelerated failure time
model is defined as
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S(t|x) = P(T > t|x) = P(Y > ln t|x)
= P(−x′β + σW > ln t|x)
= P(eσW > tex′β |x)
= S0[tex′β ]. (4.18)

The last expression is interpreted as the probability that an individual characterized
by the covariates x will be alive at time t is equal to the probability that a reference
object will be alive at time tex′β . Thus, the effect of the explanatory variables in
the original time scale is to accelerate or decelerate the time scale by ex′β . Based
on the defined survivor function, one can derive the hazard function in terms of the
baseline hazard h0:

h(t|x) = h0[tex′β ]ex′β . (4.19)

Mostly, the AFT model is applied as a parametric model, where the baseline sur-
vivor function S0 (or the distribution of the error term W , respectively) is taken
from some parametric class of distribution and the parameters to estimate, besides
the regression parameters β , are those of the selected distribution. For example, if
the baseline function is assumed to follow a standard normal distribution, then the
survival time will follow the log-normal distribution.

In the parametric case, the AFT model is named after the distribution of the
survival time. Table 4.3 presents often applied parametric AFT models and their
corresponding error term distributions.

Distribution of Error Term W Distribution of Survival Time T

Extreme value (1 parameter) Exponential
Extreme value (2 parameters) Weibull
Normal Log-normal
Logistic Log-logistic
Log-gamma Gamma

Table 4.3: Typical distributions and corresponding AFT models

4.3.2.2 Estimation of Regression Parameters

The standard approach for the estimate of the influence of explanatory variables
is to maximize the likelihood function for the observed data simultaneously with
respect to the regression coefficients and the baseline survivor function. Assuming
that data is only subject to right-censoring and that censoring times are independent
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of survival time, data can be represented by the tuple (Ti,δi), where δ represents the
censoring indicator. The term δ indicates whether an event occurs at time T (δ = 1)
or not. Thus, if Ci is the time an individual left the study, the observed time equals
min(Ti,Ci).

For a parametric model with x as the vector of covariates and β as the corre-
sponding vector of regression coefficients, the probability function is defined as

f (t|x,β ) = h(t|x,β )S(t|x,β ),

and the survival function as

S(t|x,β ) = exp

[
−

∫ t

0
h(u|x,β )du

]
,

respectively. Then, the likelihood function can be derived by

L(β ) =
n

∏
i=1

f (ti|xi,β )δi S(ti|xi,β )1−δi

=
n

∏
i=1

h(ti|xi,β )δi S(ti|xi,β )

=
n

∏
i=1

h(ti|xi,β )δi exp

[
−

∫ ti

0
h(u|xi,β )du

]
. (4.20)

The natural logarithm of the likelihood function l(β ) = lnL(β ) can then be written
as

l(β ) =
n

∑
i=1

(
δi lnh(ti|xi,β )−

∫ ti

0
h(u|xi,β )du

)
. (4.21)

Other accelerated failure time models can be found in the literature, including a
method proposed by Buckley and James (1979) and semi-parametric AFT models.
In the case of the semi-parametric estimation, the baseline survivor function is un-
known and estimated non-parametrically. This class of models has not been widely
used, due to the complicated estimate procedures, but an overview can be found in
Wei (1992). Bagdonavicius and Nikulin (2004) assess the AFT model as a good
choice when the survival time distribution class is to be known. Nevertheless, the
AFT models have some shortcomings, such as the restricting assumption of the error
term. Furthermore, the effect of the regression variables is assumed to be constant
and multiplicative on the time scale, whereas in the proportional hazards model it
acts multiplicatively on the hazard function for T .
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4.3.2.3 Example for Adopting the AFT Model to the Used Car Problem

The illustration of the accelerated failure time model is concluded by its adoption
to a used car dataset. To fit the parametric model, in the following example the log-
logistic distribution is assumed as a model for survival data. The hazard rate for this
distribution is hump-shaped; it initially increases and then decreases.

Example 4.5 (Adoption of a Accelerated Failure Time Model). Here, the dataset
from the Cox model in example 4.4 will be re-examined employing the log-logistic
AFT model using the main effects of degree-of-overpricing (‘DOP’), size of the rel-
ative market (‘market size’), the position within this market based on the relative
asking price (‘quantile’), the number of previous owners (‘po’), and the age of the
vehicle in weeks (‘age’).

Assume that the survival time t follows a log-logistic distribution. Then, the sur-
vival function, where time is modeled directly, is given by

S(t) = [1+ λ tα ]−1 (4.22)

with the corresponding hazard rate

h(t) = αλ tα−1[1+ λ tα ]−1. (4.23)

Note that the hazard rate of the log-logistic AFT model increases initially and, then,
decreases with time. Transforming survival time by taking the natural logarithm
Y = ln(T ) and considering a vector of covariates where λ is replaced by exp(x ′β ),
the survival function is given by

S(t|x) =
[

1+ exp

(
log(t)− x′β

σ
)
)]−1

(4.24)

with α = 1/σ .
In Table 4.4, the coefficient estimates, corresponding standard errors, Wald χ 2

and p-values for the estimated AFT model utilizing a log-logistic distribution for
survival time are given. The results confirm the findings from fitting the Cox model;
all variables are statistically significant, with the exception of the ‘number of pre-
vious owners’. The regression further acknowledges that ‘degree-of-overpricing’ is
the most important variable in estimating the survival time.

4.3.3 Summary

This section reviewed parametric regression models to analyze the effects on failure
time by explanatory variables. The Cox proportional hazards model and the accel-
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Variable Coefficient Std. Error Wald χ2 p-Value

(Intercept) −3.4104 0.353
DOP 5.9168 0.333 315.80 < .0001
Market size 0.0044 0.001 37.97 < .0001
Quantile 0.4384 0.134 10.68 0.0011
PO −0.0434 0.039 1.22 0.2686
Age 0.0013 0.001 20.46 < .0001
Log(Scale) −0.2701 0.016

Table 4.4: Analysis of variance table for an AFT model utilizing a log-logistic distribution

erated failure time model were presented and adapted to a used car dataset. Based
on this foundation, the question of how an individual price response function can be
estimated utilizing survival analysis models arises. The following section answers
this question, whereas the forthcoming chapters apply the stated theory to the data
from a market study including the processes of model selection and model building.
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4.4 Estimation of the Price Response Function

The objective of the present chapter is to develop methods for estimating the price
response function and to determine optimal pricing strategies in the used car market.
Since this industry is characterized by few and infrequent transactions, the method
of time duration market data was proposed to benefit from information about the
asking price history of the used vehicle. Thus, not only the knowledge about a sale
but especially the information about the decline of a sale by a potential customer
is incorporated into the modeling of demand for a certain durable good such as a
used vehicle. Next in this chapter, survival analysis is introduced as an approach to
model price response functions by estimating a used car’s duration on the market
until it has been sold. Parametric regression models are described in order to make
inferences about the explanatory variables and their effect on the survival of used
vehicles.

In this section, the actual process of estimating an individual price response func-
tion of a used vehicle is illustrated. The price response function represents the basis
for the optimization algorithm and is therefore one of the most critical parts of the
price-based revenue management application.

To be able to estimate customers’ responses to prices and price changes by ana-
lyzing survival times, there has to be a significant relationship between asking prices
and time-on-market. This section starts by motivating and describing the relation-
ship among the asking price of a durable good, its time-on-market, and the prob-
ability of a sale. However, the asking price cannot be directly incorporated within
survival regression as a significant covariate due to the problem of comparing and
clustering heterogeneous goods such as used vehicles.

Therefore, the variable ‘degree-of-overpricing’ is introduced as an abstract mea-
sure for a vehicle’s asking price relative to its market value and the estimation of
the market value of used vehicles is illustrated by applying hedonic price modeling.
Based on these calculations, a survival model can be regressed on given data and the
expected survival for an individual used vehicle can be estimated. Assuming that the
degree-of-overpricing ratio is identified as an explanatory variable and thereby the
asking price as part of the ratio, a function can be derived capturing the dependence
between asking prices and probability of a sale, known as a price response function.

4.4.1 Relationship between Asking Price and Time on Market

The primary goal of a profit-maximizing used car retailer is to sell the vehicle for
as high a price as possible and as quickly as possible. While these are two separate
objectives, they are closely related through the asking price of the retailer, since
the asking price affects the time period required to find a buyer (cp. Yavas and



4.4 Estimation of the Price Response Function 91

Yang 1995, p. 347). Despite the importance of asking prices in the used car sector,
academic literature does not focus much on the function of asking prices in the
automobile market. However, real estate economics face similar issues regarding
the role of listing prices, and the relationship between the asking price and duration
on the market has been an objective of several academic papers.

In a heterogeneous market such as the used vehicle sector, potential buyers have
different preferences for specific features in a vehicle and, therefore, valuate an of-
fered car differently. In such a market, the asking price occupies several roles: first, it
provides a signal of the seller’s reservation price. Second, it serves as an upper limit
for the seller’s reservation price since it is perceived as the price the seller is willing
to accept. Third, it influences the rate at which offers arrive. Standard search theory
theorizes that sellers willing to wait longer increase the probability of encountering
a buyer with a high reservation price. However, goods that remain unsold on the
market for an overly long time period may become stigmatized, because potential
buyers regard the long duration as evidence for some defect. This effect is known as
‘negative herding’ (see Taylor 1999). And lastly, the asking price can be interpreted
as a signal for the quality of the offered product, since in some situations customers
tend to prefer higher-priced goods when price is the only information available. For
a more in-depth discussion of the price-quality relationship, please refer for example
to (Monroe 1979, p. 41), (Simon 2003, p. 604) or (Völckner 2006, p. 473).

Therefore, the choice of the asking price influences the arrival rate of buyers
as well as the distribution of bids received from potential buyers. Setting a high
price relative to its value reduces the buyer arrival rate and thus extends duration
on the market of a durable good (cf. Knight 2002, p. 215). On the other hand, if
the asking price is substantially lower than the expected asking price (serving as
a proxy for the vehicle’s market value), then a prospective buyer is more likely
to visit the retailer and to bargain over the vehicle. Hence, a critical element in
modeling individual price response functions (by estimating the duration on the
market) represents the term of the actual asking price related to the expected market
value. For the forthcoming analysis, the ratio of both values is defined as the ‘degree-
of-overpricing’ (DOP), and the hypothesis is supported that vehicles with a smaller
DOP will sell faster than vehicles with a higher DOP. To analyze the influence of
the degree-of-overpricing on the probability of a sale, the expected market value of
a used vehicle has to be determined.

4.4.2 Hedonic Pricing: Estimation of Expected Market Value

In the subsequent section it was hypothesized that the relationship between asking
price and market value of a specific car in part explains its survival time on the
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market. A critical part in the corresponding survival analysis is estimating the market
value of used vehicles before they are traded.

In contrast to used vehicles, pricing of new vehicles is relatively straight-forward.
Each model vehicle can be associated with a basic model and a corresponding orig-
inal list price. For each additional piece of equipment and configuration, such as
metallic paint, leather or air conditioning, a surcharge is added, determined by a
price list. Accumulating all extras, the total price based on the price list is fixed for
each individual car, and the only difference between actual sales prices for identi-
cal vehicles can occur in the process of negotiation between the car dealer and the
customer. Although theoretically countless possibilities of combinations for a car
and its configuration exist, finally each vehicle is associated with a total list price.
In comparison to new vehicles, determining the market value for used cars is signif-
icantly more complex, since there are a number of new dimensions to be added. As
a durable good, a used vehicle is characterized by its age, its mileage and its over-
all condition, just to name a few examples. In addition to the presence of different
characteristics, each potential customer might possess individual utility functions
and therefore value each of the characteristics of a used vehicle differently. Con-
sequently, a used car with a given set of basal factors (such as mileage, age, and
number of previous owners) and an additional set of options (such as air condition-
ing or hi-fi systems) might be valued differently by different potential customers.

A major stream in research literature suggests valuing a durable good’s individ-
ual components to determine its total value. Within this market study, hedonic price
modeling is applied as one of the most promising approaches 4. Hedonic pricing hy-
pothesizes that each good can be looked upon as a bundle of attributes and that a
function relationship exists between these attributes and the price of a good. The
development of hedonic pricing theory is closely connected to the estimation of
assets, with Haas (1922) and Wallace (1926) as the first researchers developing he-
donic models for estimating the value of farmland. Court (1939) developed the first
hedonic price index for automobiles, but in the following decades studies in asset
economics influenced the development of hedonic pricing theory with the papers of
Lancaster (1966) and Rosen (1974) as the most important ones. However, only little
attention was paid to the automobile industry by academics in terms of hedonic pric-
ing theory, with Griliches (1961) and Berry, Levinsohn, and Pakes (1995) as two of
the few examples. For a more in-depth discussion of hedonic price modeling, refer
to Follain and Jimenez (1985), Sheppard (1999), or Malpezzi (2002).

Generally, the hedonic model can be stated as:

Value of good = f (basal characteristics, external factors),

where the estimated value of a durable good such as a used vehicle is a function
of its basal characteristics and external factors such as the state of the economy.

4 Other pricing models are repeat sales price indices and hybrid indices (cp. Malpezzi 2002, p. 6).
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For estimating the value of a used vehicle, several different functional relationships
can be assumed with the linear and the semi-logarithmic form as two basic models,
whereas the translog functional form and the Box-Cox form represent the founda-
tion for more complex models.

Within the context of this study, market value for a used vehicle is estimated
assuming the semi-logarithmic form

lnV = x′β ,

with lnV as the natural log of the vehicle’s value, β as the vector of coefficients and
x as the vector of the vehicle’s characteristics.

4.4.3 Estimation of the Expected Survival Functions

The previous subsections established and justified the relationship between the ask-
ing price of a used vehicle, its duration on the market and the probability of its sale,
where the ‘degree-of-overpricing’ was identified as a critical element relating these
factors. Indispensable for regressing a survival model is the estimate of the expected
market value for each subject, carried out by hedonic price modeling introduced in
the last subsection.

Based on these elements, a survival model can be adapted to a given dataset
by identifying explanatory variables and estimating the corresponding coefficients.
Keeping in mind that the objective of this chapter is to determine individual price
response functions for used vehicles, this subsection describes the estimation of
individual expected survival for a vehicle with a given set of characteristics. Under
certain assumptions, a functional form can be derived capturing the dependence
between covariates and the expected survival of a vehicle for a specific survival time.
In this case, it is possible to establish a functional connection between the asking
price and the probability of a sale as a key element for an optimization module of a
price-based revenue management system.

Consider the Cox proportional hazards model stated in section 4.3.1. Here, the
estimation of the expected survival function is based on Breslow’s estimator for the
baseline cumulative hazard rate H0(t). Let t1 < t2 < · · · < tD denote distinct event
times and di be the number of events at time ti. Then, Breslow’s estimator is given
by

Ĥ0(t) = ∑
ti≤t

1

∑ j∈r(ti) exj
′β

for the case where at most one event at any time occurs. Its extension to the case of
tied data with di events at a given time can then be stated as
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Ĥ0(t) = ∑
ti≤t

di

∑ j∈r(ti) exj
′β

with r(ti) as the set of all individuals who are still under study at a time just prior
to ti. Using the estimate of the baseline survival function, Ŝ0(t) = exp[−Ĥ0(t)], the
estimate of the survival function for an individual with a covariate vector x = x 0 can
be derived to

Ŝ(t|x = x0) =
[
Ŝ0(t)

]ex0
′β

. (4.25)

Example 4.6 (Estimation of an Individual Price Response Function). Based on the
dataset from the market study mentioned in example 4.4, for the purpose of sim-
plicity a Cox proportional hazards model is analyzed. It is assumed that the variable
‘degree-of-overpricing’ is the only explanatory variable affecting the survival on the
market, or in other words, the probability of a vehicle’s sale. Recall that the variable
‘degree-of-overpricing’ represents the quotient of the asking price of a specific used
vehicle and its market value estimated by hedonic pricing.

The results of the Cox regression are given in Table 4.5 along with the analysis
of variance. Based on the regression results, Breslow’s estimator extended for han-

Variable Coefficient Std. Error Wald χ2 Degrees of
Freedom

p-Value Relative Risk

DOP −5.6151 0.207 734.5 1 < .0001 0.004

Table 4.5: Analysis of variance table for a simple Cox model fitting the used car example including
the variables DOP utilizing the Breslow method for handling ties

dling ties in the dataset can be utilized to determine the expected survival function.
Note that for each survival time t, a distinct survival function with a corresponding
baseline survival function exists. For example, the estimates for a survival time of
t = 7 days are plotted in Figure 4.7. The left graph displays the expected survival
for different values of ‘degree-of-overpricing’ over the course of the offer period.
Clearly, increasing the offering time of a vehicle results in the increase of the prob-
ability of its sale. The right graph analyzes the survival probability for the survival
time at t = 7, examining the relationship between asking price and the probability
of a sale in more detail. Here, the question of how the probability of survival up to 7
days is influenced by the asking price is answered, expressed by the variable ‘DOP’.
Higher values of ‘DOP’ result in higher probabilities of survival, which in reverse
implies that higher asking prices result in lower probabilities of a vehicle’s sale.

In contrast, the estimation of expected survival for accelerated failure time mod-
els follows the standard approach of regression by estimating the influence of the
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Fig. 4.7: Plots of estimated survival probability with regard to different pre-defined values of DOP
(left figure) and at time t = 7 (right figure) for a Cox proportional hazards model

explanatory variables. For example, when survival time follows a log-logistic distri-
bution, the estimate of the survival function based on maximum likelihood estimates
of the covariate vector β can be derived to

Ŝ(t|x) =
[

1+ exp

(
log(t)− x′β

σ
)
)]−1

(4.26)

with α = 1/σ (compare (4.24)).
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4.5 Summary

In this chapter, survival analysis is applied to estimate individual price response
functions with regard to the used car sector. After proposing time duration market
data as a technique to extract information from price quote histories, the concept of
survival analysis is introduced. To identify and model the effects of explanatory vari-
ables on the survival of used cars and thereby to model the probability of a sale, two
approaches for parametric regression models are discussed, namely the Cox propor-
tional hazards model and the accelerated failure time model. The chapter concludes
with the presentation of a procedure to estimate expected survival based on a fitted
Cox model and, thereby, estimating the individual price response function since the
asking price was included in the Cox model as the only explanatory variable.

Having introduced the concept of survival analysis for estimating individual de-
mand functions, the next chapter analyzes market data from the German used car
sector and validates selected survival models as a basis for the application of the
complete optimization module in chapter 6.



Chapter 5
Validation of the Survival Analysis Approach: a
Case Study within the Used Car Market

There is hardly anything in the world
that someone cannot make a little worse and sell a little cheaper,

and the people who consider price alone
are that person’s lawful prey.

JOHN RUSKIN

(1819–1919)

The objective of the present chapter involves applying survival analysis for es-
timating individual price response functions. Based on an extensive market study
concerning the German used car sector, several models introduced in the previous
chapter are fitted to the datasets and their applicability on predicting survival is de-
termined, thereby estimating individual sales probabilities of used vehicles.

5.1 Introduction

In the previous chapter, survival analysis was used to estimate individual price re-
sponse functions for used vehicles. Hypothesizing that the sale of a used vehicle is
influenced by internal factors such as the asking price as well as external factors
like the market conditions, one way to determine these relationships is to assume
a vehicle’s time on the market until a sale occurs as the dependent variable. Then,
the influence of explanatory variables such as the asking price can be assessed us-
ing survival analysis regression. Different models were introduced, including Cox
proportional hazards models and accelerated failure time models as two categories
of parametric regression modeling.

In this chapter, methods and models stated in the previous chapter are applied
on a dataset from a study conducted in the German used car market with the scope
of determining explanatory variables and their effect on the failure time of used
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vehicles. Here, the failure of a used car on the market translates to a sale of the
vehicle. Then, based on a fitted model, survival of a specific used vehicle, or the
probability of its sale, can be estimated with regard to its characteristics and the
given market conditions. Furthermore, the survival regression model can be used to
determine optimal pricing strategies of a used car retailer, if the asking price has a
significant influence on the survival of a used car.

In section 5.2, the market study regarding the German used car market is de-
scribed and the process of model building is illustrated. Section 5.3 selects and fits
a Cox proportional hazards model on the dataset including an assessment of its ad-
equacy. Afterward, an accelerated failure time model is identified, and the fitted
model assessed and validated. In section 5.5, the model that best fits the data is ex-
tended by restricted regression splines to incorporate possible non-linearity in the
covariates. The chapter is concluded in section 5.6 by a presentation and discussion
of the final extended survival model that best fits the data from the market study.

The calculations and plots in this chapter were performed with the R software (R
Development Core Team 2006), using the Design and Hmisc library, written by
Frank E. Harrell (Harrell 2005, 2007) as well as the Survival library, written by
Terry Therneau (Therneau and Lumley 2006).
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5.2 Used Car Study

The automobile industry is characterized by sophisticated data and information sys-
tems. Although innumerable amounts of data are generated and stored, information
about the development of individual asking prices in the used car sector is not avail-
able and neither are academic studies regarding the analysis of these quote histories.
This study fills this ap and investigates the relationship between asking prices, ve-
hicles characteristics, external market conditions and the probability of a vehicle’s
sale.

In a market study from December 2005 to September 2006, the German used
car market was analyzed with a focus on authorized dealerships of a specific major
German car manufacturer. Daily data were collected to obtain information regarding
vehicles’ individual characteristics and listing prices and to determine whether a car
was sold or not. Over the course of the market study, more then 300,000 vehicles
were observed, with the majority positioned in the medium and premium sector. In
this period, the German economy appeared to be in a significant economic upswing,
benefiting from the strong growth of the global economy. Similarly, market condi-
tions in the German used car sector have been affected by increased revenue and
a stable number of vehicles selling after a five-year period of negative compound
growth rates (cp. Schönleber 2006, p. 51).

In the following section, we concentrate our analysis on a specific volume model
in the compact class segment, referred to as model ‘J-1’, where to date more than
one million units have been sold worldwide. The first generation of model ‘J-1’ was
introduced in the late 1990s and a second generation appeared in 2004. The current
model is available as a three- or five-door hatchback, but the predecessor was only
offered as a five-door hatchback. Within the used car market study, 59,549 vehicles
of type ‘J-1’ are analyzed, generating 94,828 data sets, since each price change is
treated as a separate data point. The subsequent analysis consists of a subgroup of
the complete data set, reflecting vehicles from the first generation with a gasoline
engine of 1600 cubic centimeter capacity.

5.2.1 Dataset and Descriptive Statistics

The dataset of used cars consisting of type ‘J-1’ includes 4,564 vehicles, of which
2,544 have been sold until the end of the analysis period. The earliest observations
are for vehicles offered in December 2005, whereas the market study was finished in
September 2006. Vehicles not sold at that time are considered censored (right cen-
soring). Table 5.1 presents a summary of descriptive statistics for the data. The vari-
able ‘time-on-market’ (TOM) denotes the time from the beginning of the offering
period until the asking price is changed or the vehicles are sold or withdrawn from
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the market. Thus, if the vehicle’s asking price is changed, a new data is generated.
Recognizing this fact, the average TOM for all observations is 34 days, although the
average total time for selling a vehicle is 48 days.

Quantiles of Variable Distribution

Variable n unique mean .05 .10 .25 .50 .75 .90 .95

TOM 4564 187 33.84 2.0 3.0 8.0 21.0 41.0 69.0 102.8
DOP 4564 4555 1.091 0.95 0.98 1.03 1.09 1.15 1.21 1.25
Market size 4564 173 24.7 3 4 6 11 23 66 128
Quantile 4564 1110 0.39 0.071 0.100 0.182 0.344 0.571 0.750 0.833
Age (in weeks) 4564 397 209.4 95.0 113.3 131.0 181.0 267.0 361.0 393.0
Original price 4564 1298 20271 18025 18450 19262 20109 21134 22359 23153
Previous owners 4564 6 1.466

Table 5.1: Descriptive statistics for observed vehicles of type ‘J-1’

One of the critical elements for this analysis is the degree-of-overpricing (DOP),
measured as the percentage ratio of the actual asking price and the expected market
value given the observable characteristics of the vehicle. For a short discussion of
determining the expected market value, refer to the subsequent section 4.4.2. In the
upcoming analysis hypothesize that vehicles with smaller DOP sell faster than ve-
hicles with higher DOP since prospective buyers are less likely motivated to inspect
an offered vehicle featured with a higher relative asking price and bargain over the
final selling price.

To caption magnifying effects by niche markets, the variable ‘market size’ gives
the number of vehicles which are similar to the observed one. Here, a similar vehicle
is defined as follows: the type and model of the car must be the same, the mileage
has to be within plus or minus ten thousand kilometers, and the age has to be plus
or minus two months with regard to the considered vehicle.

Since the expected market value determined by the hedonic model often only
captures mid- to long-term trends, there is another compound variable to make state-
ments about short-term changes. More precisely, the offered vehicles are ranked
within the constructed markets by their relative asking prices. In this context, the
relative asking price is defined as the quotient of the asking price with its original
listing price, and, thus, provides the ability to compare heterogeneous vehicles by
their relative asking prices. After ranking the vehicles, the vehicle-specific quantiles
can be calculated (noted as ‘quantile’). It is advantageous to apply this variable since
it can explain situations in which a vehicle might be overpriced, but when compared
to vehicles in the same market segment, it is one of the lowest priced due to the fact
that the majority of similar cars are offered at a higher price. This would be char-
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acterized by a small quantile value such as 0.1 for the vehicle; consequently, the
probability to sell this vehicle should be higher than for vehicles with higher asking
prices.

Note that all variables are considered time-invariable, determined at the begin-
ning of the period under observation. A specific used vehicle, its market size, degree-
of-overpricing, its ranking within the market and its age as calculated for the first
day of its appearance in the dataset are considered. Once the asking price of the
vehicle is updated, its corresponding variables are updated as well.

5.2.2 Model Building

5.2.2.1 Model Building and Selection Process

One objective of this chapter is to identify variables and how they effect the prob-
ability of a used vehicle’s sale. The scope is to be able to predict the distribution
of time to a vehicle’s sale from a list of explanatory variables. In this context, the
question is how to incorporate these variables in a model and compare different
modeling approaches with the objective to find the one best fitting the dataset.

The model building and selection process used in this paper is based on an ap-
proach suggested by Box, Jenkins, and Reinsel (1994, p. 16). The Box-Jenkins
model building strategy is primarily an iterative method of identifying a possible
useful model from a general class of models and consists of four main stages: se-
lection of a general class of models, model specification, parameter estimation, and
diagnostic checking. The model building and selection approach based on the Box-
Jenkins procedure is summarized in Figure 5.1. In the first stage of the process, a

Selection of

General Class of

Models

Identification of

Tentative Model

Estimation of

Parameters in

Tentative Model

Checking

Adequacy of

Tentative Model

Usage of Model

for Estimating

Survival

yes

no

Model Selection Process

Fig. 5.1: Stages of the model building process adapted from the Box-Jenkins approach

useful class of models is selected for determining explanatory variables in predicting
the survival of a used vehicle. As general classes the following ones are considered
in this chapter: the Cox proportional hazards models, the accelerated failure time
models and the extended models for both classes. In the second stage, subclasses
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of the general models are identified for fitting the given dataset from the market
study. The exponential and log-logistic distribution are examples for different sub-
classes in the general class of accelerated failure time models. Criteria for selecting
a tentative model are discussed in the following sub-section. In the third stage, the
tentative model selected in the previous stage is fitted to the observed data with esti-
mated parameters. Finally, diagnostic checks assess the model’s adequacy regarding
functional form and predictive ability. The iterative process is repeated until an ad-
equate model is found, which then can be applied on the objective of estimating the
survival of used vehicles for a given set of characteristics.

5.2.2.2 Selection Criteria

In published articles, there are two main categories of selection strategies. The first
category consists of all-subset strategies with different optimization criteria such as
the Akaike information criterion (AIC) or the Bayesian information criterion (BIC).
These strategies use the error sum of squares to measure of the goodness of fit
and a penalty term for model complexity. The second category is represented by
sequential procedures such as forward and stepwise selection or backward elimina-
tion. Starting from a null model or from a full model, at each step a new variable is
added or deleted until a pre-specified selection level (so called p-value) is reached
(see for example Sauerbrei 1999). The p-value as the selection level can be derived
using different techniques to make an inference about a subset of the coefficients.
These techniques are also called local tests, in contrast to global tests, which make
an inference about the coefficient vector β in a global sense. There are three main
test procedures. The Wald test is based on the estimators standardized by use of the
information matrix, the likelihood ratio test uses the maximized likelihood itself,
and the score test applies the first derivatives of the log likelihood (for a detailed
description, refer to Klein and Moeschberger 2003, pg. 429).

The application of standard significance testing for selecting variables for a
model is controversial, as it only indirectly addresses the issue of whether a variable
is sufficiently important to be included in the model (see for example Kuha 2004).
Therefore, the results determined by the sequential procedures based on hypothesis
testing are verified applying all-subset strategies with penalized criteria. Here, the
task is to find a model that would best reflect reality given the data recorded and,
thus, to minimize the loss of information. In addition, the selection is penalized by
the number of parameters included in the model.

We use the AIC as an information-theoretic selection strategy as well as the BIC,
also known as Schwarz’s information criterion, as a Bayesian model selection strat-
egy. These criteria are defined as
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AIC = −2logPL(β̂ )+ 2k, (5.1)

BIC = −2logPL(β̂ )+ 2logn, (5.2)

where PL(β̂ ) is the maximized partial likelihood function, k the number of free
parameters in the model, and n the number of observations. For further discussions
on these topics, please refer to Burnham and Anderson (2002, 2004), among others.
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5.3 Cox Model

In this section, the Cox proportional hazards model estimates explanatory variables
with the coefficients influencing the probability of a vehicle’s sale for the ‘J-1’ used
car dataset. Different variable selection strategies are applied with different selec-
tion criteria. Also, different computing algorithms determine the partial log likeli-
hood since the used car data set contains tied data. After evaluating assumptions of
the proportional hazards model and the functional form of the covariates, the final
model is assessed regarding replication stability, selection bias, and an overopti-
mistic estimate of the predictive value of the model.

5.3.1 Model Identification

In section 4.3.1, the Cox proportional hazards model was introduced by its charac-
teristic survival function

S(t|x) = [S0(t)]
ex′β

, (5.3)

with the baseline survivor function S0(t) = exp[−H0(t)] and its corresponding haz-
ard function

h(t|x) = h0(t)ex′β . (5.4)

The coefficients of explanatory variables can be determined by deriving the maxi-
mum estimates for Cox’s log partial likelihood:

pl(β ) =
d

∑
i=1

{
x(i)

′β − ln ∑
j∈r(ti)

exj
′β

}
. (5.5)

Note that the partial likelihood for the Cox model is developed under the assump-
tion of continuous data, thereby assuming distinct failure times d. However, the ac-
tual used car data set contains multiple tied events, given that the time is recorded
daily. In subsection 4.3.1.2, three different approaches incorporating tied data within
the partial log likelihood function were addressed, namely the Breslow approxima-
tion, the Efron approximation and the exact partial log likelihood function. In the
following, all three different methods are applied to determine the coefficients of
explanatory variables for the regression of the ‘J-1’ used car dataset. The primary
outcome variable that is used to assess prognostic quality is the ‘time-on-market’
(TOM). The factors considered are ‘degree-of-overpricing’ (DOP), size of the rel-
ative market (‘market size’), the position within this market based on the relative
asking price (‘quantile’), the number of previous owners (‘po’), and the age of the
vehicle in weeks (‘age’).
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The following Table 5.2 states the comparison of the three different approaches
to handle ties using the ‘J-1’ used car dataset. The estimated results are fairly typical
for a dataset with a significant amount of tied data, especially at the left tail of the
survival time. The results for the different approaches are fairly similar with regard

Regression Coefficients

Algorithm DOP Market size Quantile po Age

Breslow −5.0474 −0.0044 −0.4816 0.0196 −0.0011
Efron −5.1258 −0.0045 −0.4828 0.0194 −0.0011
Exact −5.2715 −0.0045 −0.4675 0.0203 −0.0011

Table 5.2: Comparison of tied data methods for vehicles of type ‘J-1’

to the coefficients of the variables market size, po and age, but differ significantly
for the predictors ‘degree-of-overpricing’ and quantile. The Efron approximation is
chosen for the forthcoming modeling since its estimate is feasible even with large
tied datasets and close to the exact log likelihood function. However, the application
of the exact partial log-likelihood function should be considered for further model-
ing approaches.

Based on the Efron approximation of the log likelihood function, the selection
process of explanatory variables for the ‘J-1’ used car dataset continues. Two dif-
ferent selection strategies are carried out to confirm the results, namely sequential
procedures with pre-defined selection levels and all-subset strategies with different
optimization criteria. First, sequential procedures are applied with a pre-specified
selection level for the explanatory variables. For the application of sequential pro-
cedures on the used car dataset, a selection level of p = 0.05 is defined for the elim-
ination and the re-inclusion of explanatory variables. The calculated results were
the same for executing forward and stepwise selection as for backward elimination.
Table 5.3 summarizes the parameter estimates including the p-values for the Wald
test. The variable ‘po’ (number of previous owners) was not included at all stages
since its p-value of p = 0.576 (for the model in step four, similar results in the other
steps) provides strong indication that this term can be dropped from the model and
that the probability of a sale does not depend on the number of previous owners.

A drawback of standard significance testing for selecting variables for a model is
that it only indirectly addresses the issue of whether a variable is sufficiently impor-
tant to be included in the model. Therefore, we apply another category of selection
strategy on the dataset, namely all-subset strategies with different optimization cri-
teria. Table 5.4 summarizes the model selection process using the AIC as the opti-
mization criterion. Confirming the selection strategy based on significance testing,
the variable ‘po’ (number of previous owners) is excluded from the final model.
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Step Variable Coefficient Standard Error Wald χ2 p-Value Exp(B)

1 DOP −5.540 0.207 717.387 0.000 0.004

2 Market size −0.003 0.001 20.637 0.000 0.997
DOP −5.500 0.205 722.638 0.000 0.004

3 Market size −0.004 0.001 38.274 0.000 0.996
DOP −5.784 0.212 740.996 0.000 0.003
Age −0.001 0.000 26.498 0.000 0.999

4 Market size −0.004 0.001 38.160 0.000 0.996
DOP −5.059 0.283 318.506 0.000 0.006
Quantile −0.482 0.119 16.267 0.000 0.618
Age −0.001 0.000 17.308 0.000 0.999

Table 5.3: Forward selection procedure for ‘J-1’ used car dataset, utilizing likelihood ratio test for
significance testing and Efron approximation for handling ties

Note that the model with the lowest AIC is to be chosen as the ‘best’ among all
models specified for the data. Similar results were achieved applying the BIC as

Model Excluded AIC

Start S ∼ DOP + market size + quantile + po + age 38049

Step 1 S ∼ DOP + market size + quantile + age po 38047
S ∼ DOP + market size + po + age quantile 38063
S ∼ DOP + market size + quantile + po age 38064
S ∼ DOP + quantile + po + age market size 38090
S ∼ market size + quantile + po + age DOP 38351

Step 2 S ∼ DOP + market size + age quantile 38061
S ∼ DOP + market size + quantile age 38063
S ∼ DOP + quantile + age market size 38089
S ∼ market size + quantile + age DOP 38352

End S ∼ DOP + market size + quantile + age 38047

Table 5.4: Fitted model based on Akaike information criterion for ‘J-1’ used car dataset

the selection criterion, supporting the decision to exclude the variable ‘number of
previous owner’ from the model.

Summarizing the model selection process, the final fitted Cox proportional haz-
ards model consists of the explanatory variables degree-of-overpricing, market size,
quantile, and age. These results were confirmed applying both all-subset strategies
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and sequential procedures with a pre-specified selection level. In the next section,
the adequacy of assuming a Cox proportional hazards model will be assessed with
regard to regression assumptions and proportional hazards assumptions.

5.3.2 Adequacy Checking of the Cox Model

The Cox proportional hazards model makes assumptions on the functional form of
the covariates and on the independence of time of the relative hazard. Both cate-
gories of assumptions are tested in the forthcoming subsection for the fitted Cox
model based on the ‘J-1’ used car dataset.

5.3.2.1 Evaluating Regression Assumptions

In its basic setup, the Cox model applied to the used car dataset assumes that the
relationship between predictors and the log hazard function should be linear, and
in absence of interaction terms the predictors should operate additively (cp. Harrell
2001, p. 418). Hence, the adequacy of these assumptions is checked and the correct
functional form for the covariates is explored. Therneau and Grambsch (2000, p. 87)
suggest a simple approach of plotting the martingale residuals from a null model
against each covariate separately and superimposing a smoothed fit of the scatter
diagram. In this context, a null model is one with a coefficients vector of β̂ = 0.
A martingale residual is a slight modification of the Cox-Snell residual and can be
interpreted as the difference over time of the observed number of events minus the
expected number of events under the assumed Cox model. Thus, it represents an es-
timate of the excess number of events seen in the data but not predicted in the model
(cf. Klein and Moeschberger 2003, p. 334). A smoothed-fitted plot for each covari-
ate gives an indication of the correct functional form to explain the effect of this
covariate on survival. If the plot is linear, the assumption of linearity is confirmed
and no transformation of the variable is needed. Figure 5.2 illustrates the application
of the martingale residual plot for the ‘J-1’ used car dataset. Here, a Cox model with
a null vector of coefficients is fitted and the martingale residuals are plotted along
with a LOWESS smooth1. A LOWESS smooth that is approximately linear implies
that the regression slope is a good estimate of change throughout the time period
used for trend analysis, whereas curves indicate short-term fluctuations within the
time period. The smoothed curve for the covariate ‘degree-of-overpricing’ decreases
only slightly up to values of about 0.9, but the decrease is sharper up to values of
about 1.3, where the slope changes again. This analysis suggests that customers are

1 A smooth curve plot where each smoothed value is given by a weighted linear least squares
regression and is intended to show the natural trend of the center of mass of the data.
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Fig. 5.2: Plot of martingale residuals and LOWESS smooth for degree-of-overpricing, market size,
quantile, and age for ‘J-1’ used car dataset

more price-sensitive when the asking price is roughly similar to the vehicle’s market
value. Here, a change in asking price has a stronger impact on the chance of sell-
ing a vehicle. However, where the asking price differs significantly from the market
values, a change in the asking price does not change the probability of a sale with
the same attitude as in the region around the market value.

A more advanced approach is stated by Grambsch, Therneau, and Fleming
(1995), which extended the basic martingale method to address both linear and non-
linear relationships, applying a Poisson regression approach. Sophisticated model-
ing tools are already developed for Poisson residuals and can be used to determine
appropriate functional forms for the effect of the covariates on survival. Figure 5.3
illustrates the main-effects plots for each covariate, including upper and lower twice-
standard-error curves. The martingale residuals are examined by non-parametric
smooths fitting the scatterplots of residuals against the covariates of interest, where
the smooths are generated using a Poisson regression implementation of the general-
ized additive model. Table 5.5 summarizes the significance tests of non-linearity of
the smoothed curves applying a score test for each of the non-parametric terms. Note
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Term Degrees of
Freedom for
Linear
Component

Degrees of
Freedom for
Nonparametric
Component

χ2 p-Value

s(DOP) 1 3 33.992 < 0.001
s(market size) 1 3 7.405 0.060
s(quantile) 1 3 12.160 0.007
s(age) 1 3 24.158 < 0.001

Table 5.5: Significance test for non-linearity in the Cox model using the Poisson approach for ‘J-1’
used car dataset

that all covariates show a significant curvature based on the test of non-linearity.
The plots support this assessment graphically for all covariates. For instance, the
shape of the smoothed curve for ‘quantile’ decreases up to values of approximately
0.4, and then slightly rises again. Furthermore, the smooth curve for the covariate
‘degree-of-overpricing’ confirms the evaluation based on martingale residuals, in
which the dependence of the covariate on survival can be separated into three subin-
tervals. Summarizing, further analysis must be carried out regarding all explanatory
variables in order to identify parametric families of functions that approximate the
curves.

5.3.2.2 Evaluating Proportional Hazards Assumptions

The regression analysis for the used car Cox model relies on the proportionality
of hazard rates of individuals with distinct values of a covariate (cf. Klein and
Moeschberger 2003, p. 337). More precisely, the relative hazard for any two sub-
jects should be constant and independent of time and should hold individually for
each covariate in the model. Therefore, graphical and analytical techniques verify
the proportional hazards assumption in this section.

In other academic papers, numerous methods are found for the evaluation. For
example, a simple graphical test is given by looking at the survival curves for each
level of a variable. The curves should steadily drift apart if the proportional hazard
assumption holds (cp. Therneau and Grambsch 2000, p. 127). A comprehensive
discussion on techniques to verify the proportional hazards assumption is found in
Harrell (2001, p. 483), among others.

In this analysis, we follow an approach proposed by Therneau and Grambsch
(2000, p. 130) and extend the Cox model by a time-dependent coefficient. Then, a
method is applied for graphing the proportional hazards assumption based on scaled
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Fig. 5.3: Assessing functional form utilizing Poisson approach for degree-of-overpricing, market
size, quantile, and age for ‘J-1’ used car dataset

Schoenfeld residuals2 and according to each predictor in the fitted model. Plotting
the scaled Schoenfeld residuals over time, a nonzero slope of a fitted line for the plot
is evidence against the proportional hazards assumption. Furthermore, a formal test
for significance is derived assessing the correlation with time of the time-dependent
coefficient. Table 5.6 summarizes the ‘correlation with time’ test statistics for the ‘J-
1’ used car dataset. Here, column ‘ρ’ represents the Pearson product-moment cor-
relation between the scaled Schoenfeld residuals and the time scale. The other two
columns give the test statistics with the corresponding p-value (refer to Therneau
and Grambsch (2000, p. 134) for the mathematical equations). We used a logarith-
mic time scale since the data set is characterized by long-tailed survival distribu-
tions. The largest test statistics for non-proportionality are observed for the covari-
ates ‘age’ and ‘degree-of-overpricing’. The corresponding residual plots including

2 The Schoenfeld residual is defined as the covariate value for the individual that failed minus its
expected value. Instead of a single residual for each individual, there is a separate residual for each
individual for each covariate (Schoenfeld 1982).
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Covariate ρ χ2 p-Value

DOP 0.0546 7.1627 7.444 ·10−3

Market size 0.0092 0.2088 6.477 ·10−1

Quantile 0.0112 0.3204 5.714 ·10−1

Age 0.0819 16.7367 4.294 ·10−5

GLOBAL 29.5421 6.066 ·10−6

Table 5.6: Significance test regarding proportional hazards assumption for ‘J-1’ used car dataset

a spline smooth and 90 percent confidence intervals (dotted lines) are shown in Fig-
ure 5.4. There, the slightly positive correlation with time can be seen graphically for
both covariates by examining the smoothed fits of the residual plots. In the remain-
ing part of this section, we ignore possible effects based on non-proportionality and
revert to this problem in section 5.5 by considering spline regression for modeling
the influence of covariates.

5.3.3 Internal Validation of the Cox Model

Earlier subsections introduced the ‘J-1’ used car dataset and developed a fitted Cox
proportional hazards model including the selection of adequate predictor variables
and the evaluation of the model assumptions. In the following part, the determined
Cox model is validated with regard to predictive accuracy to assess the likely per-
formance of the model on a new series of objects and, thus, testing the applicability
with real data.

In general, two major aspects of predictive accuracy are often considered, namely
calibration and discrimination (cf. Steyerberg, Harrell, Borsboom, Eijkemans, Ver-
gouwe, and Habbema 2001, p. 775). Discrimination is the model’s ability to sepa-
rate subjects’ outcomes and, thus, distinguish low-risk subjects from high-risk sub-
jects. Calibration, or reliability, refers to the ability of the model to make unbiased
estimates of the outcome by assessing whether predicted probabilities agree with
observed probabilities.

Several different types of validation can be identified, namely apparent valida-
tion, internal validation and external validation. For testing the predictive accuracy,
apparent validation applies to a dataset that was used for model development. It
can only provide a first impression of the model’s performance since testing is per-
formed on the same dataset and, thus, apparent validity will be optimistic. More
reliable types of validity are methods derived from internal data. Here, the model is
assessed by using only one set of subjects. A subset of the original dataset is sam-
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Fig. 5.4: Scaled Schoenfeld residuals testing the Proportional hazards assumption of Cox model
for ‘J-1’ used car dataset, where a nonzero slope of the fitted line is evidence against the
proportional hazards assumption

pled for model development and another subset (or the rest of the original dataset,
respectively) is used for model testing. Finally, external validation refers to testing
a final model developed with one set of subjects on another set of subjects.

In this section, internal validation methods are applied for assessing the predic-
tive accuracy of the ‘J-1’ used car dataset. Many different validation techniques
can be found in other studies, with data-splitting and resampling methods being the
most cited. Data-splitting separates the dataset into a training sample for model de-
velopment and test sample for model validation. Although easy to implement, the
method requires larger samples since it reduces the complete sample size and does
not validate the final model, but only a model built on the training set (cf. Harrell
2001, p. 92). To overcome these obstacles, resampling methods validate the model
in the subsequent sections. Resampling methods refer to model validation by using
random subsets of the original data with permutation, cross-validation and boot-
strapping as the most noticeable techniques. In this analysis, validation is based on
the bootstrap approach, a simulation technique for studying properties of statistics
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without the need to have the infinite population available. The use of the bootstrap
involves taking random samples with replacement from the original dataset, where
each random sample has the same number of observations as the original dataset.
Here, some of the original subjects may be omitted from the random sample and
some may be sampled more than once. Then, the model is repeatedly fitted in the
bootstrap sample and the performance of each sub-model is evaluated on the origi-
nal sample. The estimate of the likely performance of the final model on future data
is then estimated by the average of all the indices computed on the original sample
(for further discussions on bootstrapping, confer Efron 1981; Efron and Tibshirani
1993).

In the following, the fitted Cox model for the ‘J-1’ used car dataset will be eval-
uated regarding model discrimination and model calibration.

5.3.3.1 Validation of Model Discrimination

As stated above, discrimination assesses the model’s ability to separate subjects hav-
ing low responses from subjects having high responses. In terms of survival analysis,
it can be quantified by the measure of the index c, the probability of concordance
between predicted and observed survival and, thus, can be interpreted as the pro-
portion of all pairs of subjects whose survival time can be ordered such that the
subject with the higher predicted survival is the one who in reality survived longer
(cp. Harrell 2001, p. 493). A value of c = 0.5 stands for random prediction, a value
of c = 1 for a perfectly discriminating model and a value of c = 0 shows that the
‘opposite’ predictor has perfect discriminatory power. Equivalently, one can apply
Somers’ Dxy rank correlation using the relationship of Dxy = 2(c− 0.5) and, thus,
rescale the index to 0 for random prediction.

Another index assessing the discriminatory power is provided by Nagelkerke’s
R2

N (Nagelkerke 1991). This index can assess how well a model compares to a ‘per-
fect’ model and ranges from 0 to 1. It is useful for quantifying the predictive strength
of a model and is defined as

R2
N =

1− exp(−LR/n)
1− exp(−L0/n)

,

where L0 is the −2log likelihood for a model that has no predictive information (that
is, the worst model), and LR is the difference between L0 and the -2 log likelihood
of the fitted model. The latter can be interpreted as the global log likelihood ratio
statistic for testing the importance of all predictors in the model. Attention should
be paid to the fact that often maximum values of 1 cannot be achieved. Generally,
values of 0.2 to 0.4 indicate very strong discrimination power of the model.

Before assessing the ‘J-1’ used car dataset for discriminatory power, the boot-
strap technique is used to penalize the Cox model for possible overfitting. The
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bootstrap estimates for 200 repetitions are stated in Table 5.7. The column ‘Orig-
inal Sample’ describes the estimate for the original dataset, the ‘Training Sample’
column refers to the average estimate from the training samples of the bootstrap
method and the ‘Test Sample’ column describes the estimate when applying the
bootstrap model to the original sample. For the fitted Cox model, the optimisms
added to the estimates are relatively small, keeping the biased-corrected estimates
almost unchanged compared to the biased estimates. Thus, only a moderate amount
of overfitting can be detected from the analysis. The apparent Somer’s rank correla-

Index Original Sample Training Sample Test Sample Optimism Corrected Index

Dxy −0.3353 −0.3359 −0.3346 −0.0013 −0.3340
R2

N 0.1590 0.1603 0.1583 0.0020 0.1570
Slope 1.0000 1.0000 0.9880 0.0120 0.9880

Table 5.7: Bootstrap estimates of discrimination accuracy of Cox model utilizing B = 200 repeti-
tions for the ‘J-1’ used car dataset

tion index Dxy is -0.3353 and the bias-corrected index is Dxy = −0.334, suggesting
that the model has some predicting power in comparison with the theoretical value
of Dxy = 0, with which a model would make only random predictions. Assessing
the Nagelkerke’s R2

N , the value of R2
N = 0.1570 is comparable to values of other sur-

vival analysis studies with similar setups and suggests that some predictive ability
is provided by the fitted Cox model. Note that the last index, the calibration slope,
was added to the table due to convenience; however, the index is discussed in the
forthcoming paragraph of model calibration.

5.3.3.2 Validation of Model Calibration

In the following section, model calibration for the ‘J-1’ used car dataset is validated.
As stated before, calibration refers to the reliability of predicted values; that is, the
question of to what extent predicted values agree with observed values. The basis
for this assessment are bias-corrected estimates derived from bootstrap sampling, as
explained in the previous section. Verweij and Van Houwelingen (1993) proposed
the estimate and application of a global shrinkage factor, which reduces the bias of
parameter estimates caused by model building through shrinking each regression
coefficient. Similarly, Miller, Langefeld, Tierney, Hui, and McDonald (1993) moti-
vated the usage of a ‘calibration slope’, i.e. the slope of the linear predictor, which is
identical to the shrinkage factor as noted by Steyerberg, Harrell, Borsboom, Eijke-
mans, Vergouwe, and Habbema (2001, p. 775). The calibration slope can be inter-
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preted as the only regression coefficient in a logistic model with the linear predictor
as the only covariate. Thus, values close to 1 may indicate that hardly any overfitting
occurred. Applied on the ‘J-1’ used car dataset, the bias-corrected calibration slope
has a value of 0.988, indicating that almost no overfitting can be observed in the
dataset.

Next, the fitted and bias-corrected model is validated for calibration accuracy by
analyzing the difference between Cox predicted survival probability and observed
values represented by Kaplan-Meier survival estimates (cf. Harrell 2001, p. 493).
This analysis can only be carried out at fixed survival times t and is done for 7-
day, 14-day, 30-day, and 60-day survival. To construct these calibration curves, the
original sample is stratified on n intervals of predicted survival at time t. Then, for
each interval the average survival probability is estimated based on the fitted Cox
model, and subsequently compared with the corresponding Kaplan-Meier estimate
at time t, stratified by intervals of estimated survival probability. For the ‘J-1’ used
car dataset, bootstrapping with B = 200 repetitions is used to obtain bias-corrected
estimates. Furthermore, the original sample is stratified with subsets of approxi-
mately 250 subjects per interval of predicted survival. Thus, 18 subsets are created.
The estimated calibration curves for 7-day, 14-day, 30-day, and 60-day survival, in-
cluding their 95 percent confidence intervals for the Kaplan-Meier estimates, are
shown in Figure 5.5. There, dots represent apparent calibrations for an interval and
crosses are the bias-corrected calibrations. Note that the difference between both
is negligible for almost all estimates. The calibration plots have to be read as fol-
lows. Ideally, if predicted values and observed values agree over the whole range of
probabilities, the plot would follow the dotted line. Only bootstrap calibration for
30-day survival shows some evidence of calibration power, where the estimated plot
follows roughly the predicted dotted line. Bootstrap calibrations for earlier survival
times (here, 7-day and 14-day survival) identify differences between predicted and
observed values represented by Kaplan-Meier estimates. Here, survival is signifi-
cantly better than predicted, whereas bootstrap calibration for 60-day suggests that
observed values are worse than predicted survival.

In summary, the Cox proportional hazards model fitted on the ‘J-1’ used car
dataset reveals some serious drawbacks with regard to its calibration power as well
as to its ability to predict the survival of used vehicles. Reasons for these issues
might be the non-linearity of the explanatory variables and the presence of non-
proportionality of the hazard rates, both suggesting that the adequacy of the assumed
Cox model cannot be verified and should be further analyzed to improve the model
estimating survival of used vehicles.
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Fig. 5.5: Bootstrap validation of calibration curves for fitted Cox model based on the ‘J-1’ used car
dataset

5.4 Accelerated Failure Time Model

In the previous section, we derived results from the multivariate analysis of the Cox
proportional hazards model in order to capture the relationship between the distri-
bution of survival time of a vehicle on the market and the values of explanatory vari-
ables for the ‘J-1’ used car dataset. Evaluating the proportional hazards assumption
identified two covariates, namely ‘DOP’ and ‘Age’, where the impact of the vari-
able changed significantly over time. An alternative to the Cox proportional hazards
model was presented in section 4.3.2 involving parametric modeling of the hazard
function in form of the accelerated failure time models. Therefore, in this section
parametric accelerated failure time models are applied on the ‘J-1’ used car dataset.
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5.4.1 Model Identification

Recall that the survival function of the accelerated failure time model was defined
generally as

S(t|x) = S0[tex′β ], (5.6)

assuming that the baseline survivor function S0 adequately describes the form of the
distribution of survival time, and that the factor ex′β models the variation in the scale
of the distribution. Furthermore, the natural logarithm of survival time Y = ln(T ) is
modeled linearly for Y

Y = −x′β + σW, W
iid∼ S0(·). (5.7)

In the following section, a number of different theoretical distributions for the
baseline survival function S0 are applied, namely the exponential, Weibull, normal,
log-normal, and log-logistic distribution. Table 5.8 summarizes the statistical dis-
tributions including their probability density function f (t), their survivor function
S(t), and the corresponding hazard function h(t).

Distribution Density Function f (t) Survivor Function S(t) Hazard Function h(t)

Exponential λ exp(−λ t) exp(−λ t) λ
Weibull αλ tα−1 exp(−λ tα) exp(−λ tα) αλ tα−1

Normal
exp

[
− 1

2

( t−μ
σ

)2
]

(2π)0.5 σ
1−Φ

[
t −μ

σ

]
f (t)
S(t)

Log normal
exp

[
− 1

2

(
lnt−μ

σ

)2
]

t (2π)0.5 σ
1−Φ

[
ln t −μ

σ

]
f (t)
S(t)

Log-logistic αλ tα−1[1+λ tα ]−2 [1+λ tα ]−1 αλ tα−1[1+λ tα ]−1

Table 5.8: Parametric distributions and their corresponding characteristics employed in fitting the
‘J-1’ used car dataset

Corresponding to these underlying distributions, the accelerated failure time
(AFT) models determine important prognostic factors associated with the survival of
a used vehicle on the market, thereby estimating the probability of a sale. Identical
to the Cox model, possible factors to consider for model selection are degree-of-
overpricing, market size, quantile, number of previous owners, and age in weeks.
Furthermore, both categories of selection strategies are applied on the AFT models,
namely sequential procedures based on a pre-specified selection level and all-subset
strategies with penalized criteria. The results of the selection process are stated in
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Table 5.9. Both strategies lead to similar results and include ‘DOP’, ‘market size’,
‘quantile’, and ‘age’ as explanatory variables for all AFT models except for the nor-
mal model. In addition to these four variables, the normal-distributed model include
‘po’ as a fifth covariate.

Model Log Likelihood AIC

Exponential −12413 24836
Weibull −12405 24821
Normal −14801 29616
Log normal −12318 24647
Log-logistic −12309 24630

Table 5.9: Comparison of parametric AFT models derived on the basis of the ‘J-1’ used car dataset

To select an appropriate parametric accelerated failure time model for further
analysis, the decision is based on the Akaike information criterion, where the model
with the smallest AIC is selected. Table 5.9 suggests that the log-logistic distribution
provides the best fit to the ‘J-1’ used car dataset, although the AIC of the log normal
model is almost as small as the log-logistic AIC. Based on these results, in the sub-
sequent paragraphs the log-logistic AFT model is considered and further analyzed
with regard to its appropriateness and its discrimination and calibration power to
compare it with the Cox proportional model developed in the previous section.

5.4.2 Assessment of Model Fit for the Log-Logistic Distribution

In the last subsection, the log-logistic AFT model was selected as the distribution
providing the best fit to the ‘J-1’ used car dataset. In this subsection, the appro-
priateness of this model is verified, including general adequacy of the log-logistic
distribution and the functional form of the covariates.

5.4.2.1 Adequacy Checking of Log-Logistic AFT Model

The considered AFT model assumes that the baseline survival function S 0 follows
a log-logistic distribution. Graphical checks are applied rather than formal statis-
tical tests since these tests tend always to reject a given model for large samples.
These graphical checks do not prove that the parametric model is correct, but rather
serve as a means for rejecting clearly inappropriate models. Harrell (2001, p. 434)
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proposes a graphical verification of the distributional assumption by plotting the
estimated survival function of standardized residuals. To obtain more stringent as-
sessments, residuals can be stratified by important variables as well as quantiles of
these variables along with the theoretical log-logistic distribution. The assumption
regarding the underlying distribution should be rejected when the plots do not follow
the theoretical distribution plot. In Figure 5.6 the thick plot represents the theoreti-
cal log-logistic distribution and the residuals are stratified by ‘DOP’, ‘market size’,
‘quantile’, and ‘age’ as well as by two quantiles of the continuous variables. The

Residual

S
u
rv

iv
a
l
P

ro
b
.
s
tr

a
ti
fi
e
d

b
y

D
O

P

−8.0 −5.2 −2.4 0.4 3.2 6.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Residual

S
u
rv

iv
a
l
P

ro
b
.
s
tr

a
ti
fi
e
d

b
y

M
a
rk

e
t
S

iz
e

−8.0 −5.2 −2.4 0.4 3.2 6.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Residual

S
u
rv

iv
a
l
P

ro
b
.
s
tr

a
ti
fi
e
d

b
y

Q
u
a
n
ti
le

−8.0 −5.2 −2.4 0.4 3.2 6.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Residual

S
u
rv

iv
a
l
P

ro
b
.
s
tr

a
ti
fi
e
d

b
y

A
g
e

−8.0 −5.2 −2.4 0.4 3.2 6.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 5.6: Kaplan-Meier estimates of distributions of normalized, right-censored residuals from fit-
ted log-logistic AFT model for ‘J-1’ used car dataset in comparison with the theoretical
log-logistic distribution

fit for all covariates follows roughly the theoretical distribution plot, suggesting that
the log-logistic distribution is indeed appropriate and should not be rejected.
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5.4.2.2 Analyzing the Functional Form of Incorporated Covariates

The current formulation of the fitted log-logistic AFT model assumes the linear-
ity and additivity of incorporated predictors. The adequacy of these assumptions is
checked and the correct function form of predictors’ influence is assessed in this
subsection. Comparable to the assessment of the Cox model, a plot of the residuals
from a null model against each covariate is applied and a smooth fit of the scatter
diagram is included for displaying the correct functional form of the covariate. In
contrast to the Cox model, where martingale residuals were used for the plot, here
deviance residuals are plotted to obtain the correct functional form of the covari-
ates. Martingale residuals3 give a measure of the excess number of events seen in
the data, but not predicted by the model. The usage of deviance residuals applied in
the following plot is an attempt to make the martingale residuals more symmetric
about 0. Figure 5.7 shows the plot of the deviance residuals from a fitted log-logistic
null model against each covariate. The smoothed fits of the scatter plots indicate
that all covariates act non-linearly on the survival time of a used vehicle. Note that
similar results were obtained assessing the Cox model, although the slopes of the
smoothed fits of the Cox model had reverse effects due to the functional form of the
Cox proportional hazards model. The analysis of the ‘degree-of-overpricing’ shows
the non-linearity of a covariate’s effect. Here, the smoothed fit demonstrates linear-
ity for values smaller than approximately 0.8, greater than 1.15 and in between this
interval. Further analysis regarding the non-linearity of covariates and incorporating
regression splines are in section 5.5.

5.4.3 Internal Validation of the Log-Logistic AFT Model

After fitting the log-logistic accelerated failure time model to the ‘J-1’ used car
dataset and checking the appropriateness of the underlying distribution, the log-
logistic model is validated with regard to its predictive accuracy.

5.4.3.1 Validating Discrimination Accuracy of Log-Logistic AFT Model

Before assessing the discrimination accuracy of the fitted log-logistic model, the
bootstrap resampling approach is applied with B = 200 repetitions to penalize the
model for possible overfitting. Judging from the results contained in Table 5.10,
only a small amount of overfitting can be detected (identified by the ‘Optimism’

3 Klein and Moeschberger (2003, p. 397) point out that the derivation of the martingale residual
does not hold for parametric models, but the name carries through since they are similar in form to
those of the Cox model.
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Fig. 5.7: Plot of deviance residuals and LOWESS smooth against each covariate of log-logistic
AFT model for ‘J-1’ used car dataset

column). An estimate of future predictive discrimination on similar used vehicles is

Index Original Sample Training Sample Test Sample Optimism Correction

Dxy 0.3359 0.3370 0.3352 0.0018 0.3341
R2

N 0.1641 0.1648 0.1634 0.0014 0.1627
Intercept 0.0000 0.0000 0.0074 −0.0074 −0.0074
Slope 1.0000 1.0000 0.9981 0.0019 0.9981

Table 5.10: Bootstrap estimates of discrimination accuracy utilizing B = 200 repetitions for fitted
log-logistic AFT model based on ‘J-1’ used car dataset

given by Somer’s Dxy rank correlation. The apparent correlation index D xy is 0.3359,
only slightly better than the bias-corrected value of D xy = 0.3341. Both reveal the
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discrimination power of the model. Assessing the further discrimination indices of
the log-logistic AFT model, Nagelkerke’s bias-corrected index R 2

N = 0.1627 sug-
gests that the model possesses some predictive ability, similar to the Cox model and
comparable to index values of other survival analysis studies with the same amount
of censoring and tied data.

5.4.3.2 Validating Calibration Accuracy of Log-Logistic AFT Model

The calibration accuracy of the bias-corrected log-logistic model is validated by an-
alyzing the difference between predicted survival probability by the AFT model and
the observed values estimated by Kaplan-Meier survival estimates. The calibration
slope in Table 5.10 with a value of 0.991 indicates that almost no overfitting can be
observed after estimating the log-logistic AFT model. To get bias-corrected calibra-
tion curves, the bootstrap resampling method is applied with B = 200 repetitions,
where the subjects of the dataset are stratified by their survival estimates into 18
groups of approximately 250 subjects per interval. This analysis can only be car-
ried out at fixed survival times t and is done for 7-day, 14-day, 30-day, and 60-day
survival. The estimated calibration curves are presented in Figure 5.8, where dots
represent apparent calibrations for an interval and crosses display bias-corrected cal-
ibrations. Furthermore, 95 percent confidence intervals for Kaplan-Meier estimates
are added. The bootstrap calibration appears to validate well for all four predicted
survival times except for the smallest interval groups for predicted 7-day and 14-
day survival as well as several intervals at predicted 60-day survival. These plots
suggest that although the calibration validates well for most intervals, the analysis
of non-linear covariates might better capture their effects on survival. This is further
discussed in the next section.

Recapitulating, parametric accelerated failure time models provide a good fit for
estimating the survival of the ‘J-1’ used car dataset, with the log-logistic distribution
considered as the best fitted model. Internal validation suggested the applicability
of the log-logistic model with regard to predicting survival of used vehicles on the
market. However, analysis of the adequacy of the log-logistic model revealed some
non-linearity in the explanatory variables. Therefore, the next section introduces
more complex functional forms to overcome these obstacles.
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Fig. 5.8: Bootstrap validation of calibration curves for fitted log-logistic AFT model based on the
‘J-1’ used car dataset

5.5 Spline Regression Extended Model

In the previous sections, two different survival time models were developed based
on the ‘J-1’ used car dataset. First, the Cox proportional hazards model and its ex-
planatory variables were determined, followed by the log-logistic model as the ac-
celerated failure time model that best fitted the data. The functional form analysis
of the covariates showed significant non-linearity relationships for both approaches.
In this section, the relationship between predictors and survival is estimated without
assuming linearity by applying regression splines. After choosing between the Cox
and the log-logistic model as the best suitable for estimating survival of the ‘J-1’
used car dataset, the selected model is extended by regression splines as a flexible
fitting function for exploring non-linear relationships. Finally, the extended model
is validated regarding discrimination and calibration accuracy.
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5.5.1 Model Selection for Spline Regression Extension

Fitting the used car dataset, in the previous sections two different approaches were
proposed with the derivation of a Cox proportional hazards model and a log-logistic
accelerated failure time model. For estimating the best survival model of used vehi-
cles on the market, in this section results from both models are first compared and
then, the appropriate model is selected on the basis of minimum Akaike information
criterion.

Model Log Likelihood AIC Bias-Corrected R2
N

Cox PH −19019 38047 0.1570
Log-logistic −12309 24630 0.1627

Table 5.11: Comparison of Cox PH model and log-logistic AFT model derived from ‘J-1’ used car
dataset

The results summarized in Table 5.11 suggest that it might be more appropriate to
use the log-logistic accelerated failure time model. The Akaike information criterion
for the log-logistic AFT model is smaller than for the Cox model, confirmed by
the log likelihood of both models. In addition, Nagelkerke’s R 2

N provides further
evidence for choosing the AFT model. But even more important are the validations
of the models’ calibration accuracy. The plots were shown in the corresponding
subsections and demonstrate a significant difference at 7-day, 14-day, and 60-day
survival in favor of the log-logistic model. Therefore, the log-logistic AFT model is
chosen and extended by spline regression in the subsequent section capturing non-
linear effects of explanatory variables.

5.5.2 Regression Splines

The concept of splines originated from drafting techniques of using a thin, flexible
strip called a spline to draw smooth curves through a set of points. Splines are piece-
wise polynomial functions that join points called knots and allow the regression line
to change direction abruptly. They are fitted essentially by adding restricted dummy
variables to the regression equation. The simplest setup is a linear spline function,
where the x-axis is divided into different intervals, for example with endpoints a, b,
and c. Then, the piecewise linear spline function is given by

f (x) = β0 + β1x+ β2(x−a)+ + β3(x−b)+ + β4(x− c)+, (5.8)
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where

(u)+ =
{

u, u > 0,
0, u ≤ 1,

(5.9)

and a, b, and c are referred to as knots (cp. Harrell 2001, p. 18). In most settings,
linear spline functions do not approximate relationships very well, and piecewise
polynomials of higher order are necessary. Common polynomials used in practice
are cubic splines, which are made to be smooth at the knots by forcing the first and
second derivatives of the function to agree there. A cubic spline function with k
knots is given by

f (x) =
3

∑
i=0

βix
i +

k

∑
j=1

β(i+ j)(x− t j)3
+, (5.10)

where the k knots are given as t j, j = 1, . . . ,k. Both presented forms of spline fit
are called regression splines. Often, a disadvantage of these spline functions is the
behavior before the first and after the last knot. Therefore, restricted cubic splines,
also called natural splines, are applied, which obey the constraint of linearity beyond
the range of the knots.

Usually, the knots are placed at the quantiles of a predictor’s marginal distribu-
tion, although the placement of the knots can be part of the estimate. However, in
restricted cubic spline regression the goodness of fit does not depend on the location
of the control points, but much more on the choice of the number of knots. There-
fore, in the subsequent development of the log-logistic AFT model, restricted cubic
splines with fixed knots are applied to model the functional form of explanatory
variables for the ‘J-1’ used car dataset.

5.5.3 Model Development

Estimates of the basic log-logistic accelerated failure time model in section 5.4 sug-
gest non-linearity in several explanatory variables. To overcome these issues, re-
stricted cubic splines are applied for fitting the model to the ‘J-1’ used car dataset.

The fitting of restricted cubic splines in covariates to the survival data is illus-
trated exemplarily by the ‘DOP’ variable. Here, restricted cubic splines with k = 3,
4, 5 and 6 equally spaced knots in terms of quantiles between 0.05 and 0.95 are
compared to the linear model. Based on the Akaike information criterion (AIC), the
results stated in Table 5.12 suggest that a model with k = 4 knots represents the best
fit to the used car dataset. The other continuous explanatory variables are expanded
similarly by restricted cubic splines to describe non-linear relationships. Table 5.13
summarizes different combinations of spline expanded covariates with their corre-
sponding log-likelihood and AIC indices. Note that each spline regression model
stated in the table is fitted by using the optimal number of knots based on the AIC
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Knots k Log Likelihood AIC

0 −12309 24630
3 −12305 24624
4 −12299 24613
5 −12298 24615
6 −12298 24617

Table 5.12: Spline regression extended log-logistic AFT model with different number of knots for
‘DOP’. The model with 4 knots represents the best fit among the proposed ones.

index for each model (similar to the procedure described for variable ‘DOP’). An
analysis of log likelihood and AIC reveals that the expansion with restricted cu-
bic splines results in a better fit, with the exception of the variable ‘market size’.
Thus, the best log-logistic accelerated failure time model incorporates the covari-
ates ‘DOP’, ‘quantile’ and ‘age’ with restricted cubic splines, whereas the ‘market
size’ covariate is added linearly to the regression.

Model Log Likelihood AIC

DOP, market size, quantile, age (all linear) −12309 24630
market size, quantile, age, spline in DOP −12299 24613
market size, age, spline in (DOP and quantile) −12293 24605
age, spline in (DOP, market size and quantile) −12293 24607
market size, spline in (DOP, quantile and age) −12238 24511

Table 5.13: Analysis of different spline regression extended log-logistic AFT models. The model
with restricted cubic splines in ‘DOP’, ‘quantile’ and ‘age’ represents the best fit.

5.5.4 Validation of the Extended Log-Logistic Model

After expanding the explanatory variables with restricted cubic splines, the fitted
log-logistic AFT model has to be validated regarding to discrimination and calibra-
tion accuracy. In addition, comparisons are made between the linear log-logistic and
the extended model in terms of improvements in important indices.
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5.5.4.1 Discrimination Accuracy of Extended Log-Logistic AFT Model

Consistent with the validation of former models, the bootstrap resampling approach
is conducted with B = 200 repetitions to penalize for possible overfitting. The opti-
mism indices displayed in Table 5.14 suggest that only a small amount of overfitting
can be detected, although the values increased compared to the results of the linear
log-logistic AFT model in Table 5.10. For instance, the optimism subtracted from
Somer’s Dxy rank correlation index increased from 0.0018 to 0.0055 and similar
results can be assessed for the other indices.

Somer’s Dxy rank correlation index provides an estimate for future predictive
discrimination on similar used vehicles. A bias-corrected value of D xy = 0.3542
gives evidence for discrimination power of the model and is greater than the lin-
ear log-logistic model’s index with Dxy = 0.3341. This conclusion is confirmed by
Nagelkerke’s R2

N indices for the different models. Here, the Cox model has a value of
R2

N = 0.1570 and the linear log-logistic AFT model a value of R 2
N = 0.1627, whereas

the regression spline extended log-logistic AFT model provides a Nagelkerke index
of R2

N = 0.1844.

Index Original Sample Training Sample Test Sample Optimism Correction

Dxy 0.3597 0.3630 0.3575 0.0055 0.3542
R2

N 0.1899 0.1926 0.1871 0.0055 0.1844
Intercept 0.0000 0.0000 0.0469 −0.0469 0.0469
Slope 1.0000 1.0000 0.9866 0.0134 0.9866

Table 5.14: Bootstrap estimates of discrimination accuracy using B = 200 repetitions for regres-
sion splines extended log-logistic AFT model based on the ‘J-1’ used car dataset

It can therefore be ascertained that although overfitting increased compared to the
fitted Cox model and to the linear log-logistic AFT model, discrimination accuracy
increased also significantly.

5.5.4.2 Calibration Accuracy of Extended Log-Logistic AFT Model

The calibration curves for the linear log-logistic AFT model suggest potential for
enhancing model building due to some misfits at the tails of the calibration curves
(compare Figure 5.8 for log-logistic AFT model). Even more potential for improve-
ment was revealed by the calibration validation of the Cox model, where only the
predicted 30-day survival plot suggested good calibration accuracy.
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In conformation with the former analysis, validation of calibration accuracy for
the regression spline expanded log-logistic AFT model is based on bias-corrected
calibration curves by applying bootstrapping with B = 200 repetitions and strati-
fication of the dataset’s subjects by their survival estimates into 18 groups of ap-
proximately 250 subjects per interval. Conducted at the fixed 7-day, 14-day, 30-day,
and 60-day survival, the analysis compares the difference between survival proba-
bilities predicted by the extended log-logistic AFT model and the observed values
estimated by Kaplan-Meier survival values for the ‘J-1’ used car dataset. The cali-
bration curves for the extended log-logistic AFT model in Figure 5.9 clearly expose
its improved calibration accuracy compared to the Cox model and the linear log-
logistic AFT model.
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Fig. 5.9: Bootstrap validation of calibration curves for regression splines extended log-logistic
AFT model based on ‘J-1’ used car dataset

The previous sections applied the Cox proportional hazards model and the log-
logistic model as the accelerated failure time model best fitting the ‘J-1’ used car
dataset. In this section, both approaches were compared based on Akaike informa-
tion criteria and the bias-corrected Nagelkerke’s index R 2

N , whereas the log-logistic



5.5 Spline Regression Extended Model 129

model was chosen to be extended by spline regression. Here, the final fitted model
incorporated the explanatory variables ‘DOP’, ‘quantile’, and ‘age’ with the help of
restricted cubic splines and the covariate ‘market size’ added linearly to the model.
In comparison with the previous models, overall discrimination and calibration ac-
curacy increased significantly. Finally, the predictive ability of estimating survival
improved by comparing predicted survival with observed survival at different times.
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5.6 Presentation of the Extended Log-Logistic Model

In this section, the final restricted cubic spline extended log-logistic accelerated fail-
ure time model for the ‘J-1’ used car dataset is presented and interpreted by analyz-
ing the effect of each covariate. The final model consists of four predictors, namely
the degree-of-overpricing (DOP), the size of the market for similar vehicles (market
size), the ranking of the subject within this market (quantile), and the age of the ve-
hicle measured in weeks, whereas all variables are transformed by restricted spline
regression with the exception of ‘market size’.

First, the effect of each predictor is analyzed and interpreted, plotting a graph of
the relationship between each predictor and the log survival time. In Figure 5.10, the
y-axis states the log survival time for each predictor when the other predictors are
set to reference values as stated below each single graph. Furthermore, 95 percent
confidence intervals are included (dotted lines) and rug plots are added representing
the data density of each covariate. Note that predicted values have been centered so
that predictions at predictor reference values are zero.

Comparing the effects of all four predictors, clearly the ‘degree-of-overpricing’
exerts the highest influence on the log survival time due to the steepest slope. Pre-
vious analysis of the functional form already revealed the non-linearity of the vari-
able’s effects on survival, which is confirmed by the plot in Figure 5.10. Generally,
higher values of ‘DOP’ result in higher log survival times, whereas a relatively long
survival time of a used vehicle can be interpreted as a low probability of its sale.
Consequently, higher probabilities of a vehicle’s sale are demonstrated by lower
survival times and vice versa. Recall that the ‘degree-of-overpricing’ represents a
quotient of the vehicle’s asking price and its estimated market value. Since the latter
is retained unchanged, ‘DOP’ is varied only by modifying the asking price and, thus,
‘DOP’ serves as a proxy for the relative asking price of the used vehicle. Coming
back to the effect of ‘DOP’ on log survival time, the plot can be roughly separated
into three subintervals characterized by different slopes. Up to values for ‘DOP’
of around 1.05, the model extended by restricted cubic spline regression suggests
a linear relation between the variable and the log survival time. In the region be-
tween 1.05 and 1.2, the slope steepens, whereas for values greater than 1.2, the
slope is similar to the first subinterval. The analysis of this curve progression sug-
gests that customers are more price sensitive in price regions where the asking price
is slightly higher than the vehicle’s market value. Here, a change in the asking price
has a stronger impact on the probability of selling the vehicle than in the other two
subintervals. However, at the tails where the asking price differs significantly from
the market values, a change in the asking price does not change the probability of a
sale with the same attitude as in the region around the market value.

The plot of the ’market size’ as a predictor on log survival time reveals that a
greater number of similar vehicles offered at the same time results in higher log sur-
vival times, although the graph’s slope is relatively flat indicating that the influence
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Fig. 5.10: Effect of each predictor on log survival time for ‘J-1’ used car dataset

of the predictor is low in comparison to the remaining covariates. Next, analyzing
the effect of the variable ’age’ on log survival uncovers a general positive interre-
lation between both parameters. However, non-linearity of the variable’s effect on
log survival can be observed from the plot with an increase up to approximately 150
weeks, an slight decrease up to values of around 250 weeks and again an increase
from there on. One explanation for this behavior might be the fact that the variable
‘age’ has a significant impact on the transaction price when the vehicle is still per-
ceived as good as new, but for vehicles with an age between three and five years, it
plays only a secondary role in the prediction of its time on market.

Another interesting curve progression is given by the effects plot for the ‘quan-
tile’ variable. Here, the position of the vehicle’s relative asking price compared to
similar vehicles is ranked within this set and expressed by its quantile. Observing
the shape of the smoothed curve for ‘quantile’, the plot shows an increase up to
values of approximately 0.4, and then a slight decrease. Intuitively, the progression
suggests that a vehicle with an asking price relatively low in comparison to simi-
lar vehicles offered at the market should experience a higher probability of a sale.
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However, this is only true for the bottom region of this market. In the medium range
of offered vehicles, the rank plays no significant role. Here, the probability of a sale
does not depend on the vehicle’s pricing position within the according market. Con-
trarily, an asking price positioned at the upper end of the ranking results in smaller
log survival times and, consequently, in higher sales probabilities. This behavior
might be explained by the fact that customers associate a higher asking price with
higher overall quality and better general condition of the vehicle. Thus, the asking
price serves as a proxy for the unobserved characteristics of the vehicle and justifies
the relatively high asking price compared to similar vehicles on the market.
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5.7 Summary

In this chapter, a market study concerning the German used car sector was pre-
sented and analyzed. Based on a selected dataset, two general classes of paramet-
ric survival models, namely Cox proportional hazards and accelerated failure time
model, were fitted and analyzed with regard to its applicability on predicting sur-
vival functions and thereby estimating individual sales probability. The log-logistic
failure time model was selected to be extended by restricted cubic spline regressions
since the functional form analysis of the covariates showed significant non-linearity
relationships. Validating the discrimination and calibration power of the extended
survival model, the following analysis exposed the variable ‘degree-of-overpricing’
as the most influential predictor on the survival probability of a used vehicle. Since
the ‘DOP’ acts as a proxy for the asking price based on the definition of ‘DOP’ as
the quotient of the asking price of a used vehicle and its market value, a functional
relationship between the probability of a vehicle’s sale and its asking price is devel-
oped, considering other significant factors such as the market size or the position of
the asking price within the market.

Due to the estimate of individual demand functions by applying survival anal-
ysis, the most important input parameter for the price-based revenue management
program is extracted. Thus, the next chapter demonstrates the complete idea of the
revenue management approach for a profit-maximizing used car retailer and pro-
vides a ‘proof-of-concept’ including the identification of profit potential through
the revenue management program.



Chapter 6
Computational Analysis: Proof of Concept

If it is a miracle, any sort of evidence will answer,
but if it is a fact, proof is necessary.

MARK TWAIN

(1835–1910)

The objective of the present chapter is to verify the concept of the price-based
revenue management program with regard to profit-maximizing used car retail-
ers. After describing the complete revenue management module in section 6.1, the
framework is applied to a chosen used vehicle in section 6.2. In section 6.3, the
general potential for profit enhancement is estimated by analyzing an extensive in-
dependent dataset and comparing the discounted profit of observed sales with the
corresponding expected profits determined by the revenue management program.

6.1 General Description of the Revenue Management Program

In the previous chapters, the application of a price-based revenue management pro-
gram was developed with a focus on the used car sector. Before the revenue manage-
ment module is applied on the dataset of a used vehicle, the revenue management
program should be outlined. Figure 6.1 illustrates the general setup of the price-
based revenue management program. Whereas the revenue management module is
the core element of the program and consists of two major components, namely
the optimization component and demand forecasting component, the program also
includes corresponding input and output modules. Since both core components, op-
timization and demand forecasting, rely on current and historical data, a crucial part
represents data analysis including the collection, cleaning, processing and analysis
of information, which is carried out in the input module. For example, to model
individual survival functions as a basis for predicting individual demand, historical
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Fig. 6.1: Model of a price-based revenue management program for a used car retailer

data of used vehicles offered in the past is needed with regard to the vehicles’ char-
acteristics and their asking price paths. Additionally, the estimate of optimal pricing
strategies for a current used vehicle depends on the vehicle’s characteristics, internal
market information regarding for example the retailer and external market data such
as the current market conditions. Consequently, the design and implementation of
a professional data analysis structure is crucial for the success of the price-based
revenue management program.

The output module should be adapted to the needs of its user, the used car re-
tailer. Based on the determination of optimal pricing strategies, the program should
calculate these price paths and carry out price adjustments after confirmation by the
retailer. Furthermore, information about expected revenue for different scenarios
can be used to confirm a chosen pricing strategy, supported by additional sensitiv-
ity analysis. In a more passive way, the program might be applied to support the
decision process of a used car retailer by alerting him at the point when the cur-
rent pricing strategy is no longer optimal and an adjustment should be considered.
In summary, both the input and output module are important for the success of the
price-based revenue management program, but the core component is represented
by the revenue management module.
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6.1.1 The Optimization Module

In chapter 3, dynamic pricing models were developed to determine optimal pric-
ing strategies for a profit-maximizing used car retailer. Several approaches were
followed, distinguishing between deterministic and stochastic treatment, between
continuous-time and discrete-time, and between finite and continuous price region.
Analyzing the requirements of car retailers in practice, a stochastic discrete-time
model with a finite price set might be the best model to select. Consequently, the
example conducted in the following section will use this model for determining an
optimal pricing strategy.

6.1.2 The Demand Forecasting Module

In practice, the estimating and forecasting of demand represents the most important
though also the most critical and complex component of any revenue management
method. In the presented revenue management module, survival analysis was pro-
posed as a way to estimate the probability of a vehicle’s sale and to analyze its
predictors. Confirming the hypothesis that the quotient of asking price and market
value of a specific vehicle (denoted as ‘degree-of-overpricing’) plays a significant
role in explaining the probability of a sale, an interrelationship was established be-
tween the asking price of a used vehicle and the chance to sell it on the market,
given the internal and external factors affecting the sale. Concurring with the vehi-
cle’s market value by the application of hedonic price modeling, individual demand
functions can be derived as a prerequisite for the optimization module.
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6.2 Case Study for a Selected Used Vehicle

In this section, the application of the revenue management module is demonstrated
on a specifically selected used vehicle. First, the individual price response function
is estimated by survival analysis and hedonic price modeling. Second, an optimal
pricing strategy for a profit-maximizing used car retailer is determined on the ba-
sis of the estimated demand function. Then, this is compared with the observed
outcome of the vehicle. Furthermore, this demonstration serves as a case for the
procedure applied in the subsequent section, where a comprehensive dataset from a
market study is analyzed according to its profit enhancement by applying dynamic
pricing through the revenue management module. Note that the estimation of the
individual price response functions is based on a database generated by the market
study presented in section 5.2 with a total of 94,828 datasets from 59,549 vehicles
covering a time period from December 2005 to September 2006. In the subsequent
section however, an independent test is conducted by applying an external dataset of
1,816 vehicles from a time interval of October 2006 to December 2006. In the opti-
mization module, a stochastic discrete-time model with a finite price set is applied,
where optimal prices should be updated on a weekly basis. Consequently, expected
survival functions are estimated for a survival time of t = 7 days.

6.2.1 Description of a Selected Example

To demonstrate the revenue management approach, an specific used vehicle is se-
lected from the external dataset gathered by the mentioned market study in chapter
5. The object belongs to model ‘J-1’ and features the following basal characteris-
tics: at the time of its first offering, the used car was 275 weeks old with a reading
of 52,000 kilometers. The specific market for similar vehicles consisted of a total of
14 vehicles. These used cars were the same model with an age in the range of plus
or minus two months, with an odometer reading of plus or minus 10,000 kilometers.
Furthermore, the original price of the vehicle was 19,209.60 euros.

6.2.2 Estimation of the Individual Price Response Function

The first step in the revenue management process is determining the individual de-
mand function, serving as a prerequisite for the optimization module. As already
discussed in great detail previously, survival analysis is applied to reveal the re-
lationship between the asking price of the used vehicle and its sale probability.
In the present case, a log-logistic accelerated failure time model extended by re-
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gression splines is considered for the survival analysis. This is consistent with the
findings in chapter 5, where the spline regression log-logistic AFT time model was
revealed to be the best fit for the given dataset. Furthermore, the variable ‘degree-
of-overpricing’ is selected as the only explanatory variable, focusing the analysis
exclusively on the relationship between the asking price and the probability of a
sale. Besides this, the decision is supported by the comparison of the variables’
contribution in predicting survival time for the final spline regression extended log-
logistic AFT model of chapter 5. Although the final model consisted of the four
predictors ‘DOP’, ‘market size’, ‘quantile’ and ‘age’, Figure 6.2 reveals that ‘DOP’
is by far the strongest contributor in predicting survival time utilizing the Wald χ 2

statistics. Consequently, a spline regression extended log-logistic AFT model with
’degree-of-overpricing’ as the only covariate is considered in the subsequent analy-
sis.

χ2 −  df

50 100 150 200 250 300

DOP  

AGE  

MARKETSI  

QUANTIL  

Fig. 6.2: Contribution of variables in predicting survival time of the final spline regression ex-
tended log-logistic AFT model from chapter 5 utilizing the Wald χ2 statistics

To estimate the individual demand function for the selected used vehicle, the
log-logistic AFT model is fitted to the corresponding subset of the market study.
This dataset contains 4,564 records of the same model as the selected example ve-
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hicle. As mentioned before, the predictor ‘DOP’ for the log-logistic AFT model is
extended by regression splines. Thus, the optimal number of knots must be deter-
mined. Based on the Akaike information criterion, the results in table 6.1 suggest
that a model extended by restricted cubic splines with k = 4 knots for the covariate
‘DOP’ represents the best fit to the given dataset.

Knots k Log Likelihood AIC

0 −12309 24630
3 −12305 24624
4 −12299 24613
5 −12298 24615
6 −12298 24617

Table 6.1: Spline regression extended log-logistic AFT model for assessing the optimal number of
knots for ‘DOP’

Next, the log-logistic AFT model is estimated and the corresponding results of
the regression are given by table 6.2 along with an ‘analysis of variance’ table de-
scribing the estimated standard error, the relative risk of the effects and the univari-
ate Wald test with its corresponding p-value. As expected, the analysis suggests that
the covariate ‘degree-of-overpricing’ is statistically significant in explaining the sur-
vival of a used vehicle. Note that for each knot a coefficient is estimated. However,

Variable Coefficient Standard Error Z Statistics p-Value

(Intercept) −2.456 0.6390 −3.84 < .0001
rcs(DOP, 4)DOP 5.312 0.6467 8.21 < .0001
rcs(DOP, 4)DOP’ 8.075 2.3247 3.47 < .0001
rcs(DOP, 4)DOP” −33.656 8.2708 −4.07 < .0001
Log(scale) −0.268 0.0163 −16.39 < .0001

Table 6.2: Analysis of the variance table for the regression of the log-logistic AFT model fitting
the used car dataset (‘J-1’ using restricted cubic splines with 4 knots on the variable
‘DOP’)

the fitted coefficients are not particularly meaningful, since they do not correspond
to the y-coordinates of the control points. Therefore, Figure 6.3 visualizes the effect
of the predictor ‘DOP’ on the log survival time. Supporting the conclusions in sec-
tion 5.6, the plot suggests that higher values of ‘DOP’ result in higher log survival
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Fig. 6.3: Effect of the predictor ‘DOP’ on log survival time for the fitted log-logistic AFT model

times and, thus, in higher probabilities of survival on the market. Consequently,
higher ‘DOP’ values lower the chance of selling a particular vehicle. In addition,
the plot can be roughly separated into three subintervals characterized by different
slopes. This indicates that customers are more price sensitive where the asking price
is slightly higher than the vehicle’s market value.

The fitted log-logistic AFT model for estimating the individual expected survival
function is given by

S(t|x) = P(T > t|x)

=
[

1+ exp

(
log(t)− x′β

0.765
)
)]−1

where

x′β = −2.456+ 5.312DOP+ 85.338(DOP−0.946)3
+

−355.675(DOP−1.051)3
+ + 344.565(DOP−1.120)3

+

−74.228(DOP− 1.254)3
+
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and (a)+ = a if a > 0, 0 otherwise. In the subsequent analysis, expected survival is
estimated for the 7-day survival, since the optimization module assumes that prices
are only updated on a weekly basis. Bearing in mind that the predictor ‘degree-of-
overpricing’ represented a quotient of the vehicle’s asking price and its estimated
market value, ‘DOP’ is varied only by modifying the asking price. The estimated
market value remains unchanged. Thus, the expected market value has to be esti-
mated for the fitted individual price response function within the optimization mod-
ule.

6.2.3 Estimation of Market Value Applying Hedonic Price
Modeling

In section 4.4.2, hedonic price modeling was presented to estimate the market value
of a used vehicle based on the idea that its value can be determined by looking upon
it as a bundle of attributes and valuing each attribute separately. Regarding the un-
derlying functional form, a semi-logarithmic model of the form lnV = x ′β is applied
to estimate the market value of the used vehicle. For identifying the hedonic pricing
model, sequential selection procedures with pre-specified selection levels are cho-
sen. For elimination and re-inclusion of an explanatory variable, a selection level of
p = 0.05 is defined. Table 6.3 summarizes the final semi-logarithmic hedonic pric-
ing model, which shows similar results for forward and stepwise selection as well
as for backward elimination. Applying the fitted semi-logarithmic hedonic pricing

Non-Standardized Standardized

Variable Coefficient b Standard Error Coefficient B T p-Value

Constant 8.878 0.014 641.332 ¡0.001
Age (in days) −0.001 0.000 −0.477 −58.188 < 0.001
List price 0.001 0.000 0.371 59.125 < 0.001
Mileage −0.001 0.000 −0.318 −50.652 < 0.001
Date of sale 0.001 0.000 0.070 11.200 < 0.001

Table 6.3: Estimated coefficients for determining a vehicle’s market values using semi-logarithmic
hedonic price modeling

model on the given used car example, a market value of V =8,506 euros is predicted
for the given set of characteristics.

Based on these results, the individual demand function can be determined on the
basis of both the fitted regression spline extended log-logistic AFT model and the
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hedonic pricing model for the market value estimation. A visualization of the corre-
sponding demand function in dependence of the asking price is shown in Figure 6.4.
Here, the plotted function can be divided into subintervals with different character-
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Fig. 6.4: Plots of selected vehicle’s estimated demand function at time t = 7 for the regression
spline extended log-logistic AFT model

istics. Up to an asking price of about 5,000 euros, the demand is constantly marginal
below one. Then, the sale’s probability decreases with the asking price, following a
linear relationship up to values of about 8,000 euros, where any further progression
results in a reduction of the probability. For asking prices higher than 15,000 euros,
demand approaches zero.

6.2.4 Determination of the Optimal Pricing Strategy

After determining the price response function for the used car example, the opti-
mal pricing strategy is derived for a profit-maximizing used car retailer. In previous
sections, it was concluded that a stochastic discrete-time model with a finite price
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set would best address the requirements of a retailer. Thus, the present problem is a
discrete-time stochastic dynamic program under consideration of a finite price set.

Assume that two different finite price sets contain multiples of 250 euros and
100 euros respectively, thereby defining the possible price region to Ω 250

p (t) =
{0,250,500,750,1000, . . .} and Ω 100

p (t)= {0,100,200,300, . . .}. Furthermore, con-
sider a time scale observed in units of weeks, weekly costs of 10 euros per existing
vehicle and a rate of interest of r = 0.2 percent per week, corresponding to a annual
rate of 10.95 percent. The selling horizon is defined as 20 weeks, based on assess-
ments from used car retailers and professionals within the automobile sector. The
salvage value associated with the terminal state is set to zero, thereby choosing a
conservative approach for the optimization module. Given the set of characteristics
described in subsection 6.2.1, the predicted market value of the used vehicle is 8,506
euros.

The objective of the dynamic pricing algorithm is to maximize the expected profit
by determining optimal prices in each period, thereby constructing an optimal price
path. Applying the stochastic discrete-time model to the first finite price set with
multiples of 250, the optimal price path is shown in Figure 6.5. Here, the retailer
should start offering the selected car for 10,250 euross. If the vehicle is not sold dur-
ing the first two weeks, the asking price should be reduced to 9,750 euros, remaining
there for another week in case of no sale. Over the course of the offering period, the
vehicle’s price decreases successively, thereby increasing the probability of a sale. If
the vehicle is not disposed at the end of the offer phase, then listed at 5,500 euros, it
is assumed to gain no salvage value, for instance by selling it to secondary markets
overseas. Therefore, it supports an optimal pricing strategy that will sell the used
vehicle with a high probability within the selling horizon.

Additionally, a second pricing path is included in the figure for comparison with
the second finite price set containing only multiples of 100 euros. Here, the second
finite-based strategy follows roughly the first strategy, although prices are adjusted
in shorter time intervals. Even more interesting is a comparison of expected profit
of the associated price paths. Remarkably, the first proposed strategy with multi-
ples of 250 euros generates a negligible 0.03 percent less profit than the second
price strategy with price set Ω 100

p (t), with an expected profit of 8,768 euros for the
first, and 8,771 euros for the latter mentioned. Considering the outcome of the two
approaches, we conclude that the optimal price within a single time period is not
important, but the identification of an appropriate pricing strategy over the course
of the complete selling horizon.
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Fig. 6.5: Optimal pricing strategy for a finite price set (solid line) in comparison to the continuous-
price strategy (dashed line) for the considered used vehicle

6.2.5 Comparison of Expected versus Observed Revenue

Completing the demonstration of the price-based revenue management approach
applied on the selected example, the results of the optimization are compared with
the actual sale. In reality, the retailer started at a price of 10,449 euros for the selected
vehicle. During the next 27 weeks the car was not sold, but the asking price was kept
at 10,449 euros. In week 28, the list price was reduced to 7,950 euros, and one week
later, a customer bought the vehicle. The actual price path is shown in Figure 6.6. To
compare the actual profit obtained by the retailer with the expected profit determined
by dynamic pricing, all cash flows have to be discounted back to its present value at
the beginning of the offer period. Assuming the same rate of interest (0.2 percent per
week) and weekly cost of existing inventory (10 euros per week) as in the previous
section, the net present value of the actual sale equals 7,221 euros.

However, the optimal price strategy determined by the stochastic discrete-time
model with a finite price set of multiples of 100 euros generated an expected profit
of 8,771 euros, thereby increasing profit by 21.5 percent. Clearly, this enhancement
is based on the fact that the actual pricing strategy overestimated the vehicle’s mar-
ket value and that the retailer refused to adjust the asking price accordingly after
observing the prevailing market circumstances.

For a more reliable assessment of the potential in profit enhancement in associ-
ation with the price-based revenue management program, the next section analyzes
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Fig. 6.6: Actual price path chosen by the retailer for the considered used vehicle. The dotted line
represents the market value estimated by hedonic price modeling

an extensive additional sample of the dataset generated by the German used car
market study.
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6.3 Assessment of Potential for Profit Enhancement

In chapter 2, the used car sector was identified as the sector with the most poten-
tial for profit improvement within the German automobile industry, as scarcely any
manufacturer gains a positive contribution to the operating result from the used car
sector. Besides other approaches to the problem, dynamic pricing offers the great-
est opportunity for retrieving potential profit. The objective of this section is to
quantify the potential in profit enhancement by applying the price-based revenue
management program developed in this thesis to an extensive dataset of used vehi-
cles. First, the setup of the experiment is explained. Then, similar to the example in
section 6.2.5, the net present values of observed sales are calculated and the corre-
sponding expected profit under the application of the revenue management program
is determined. Finally, both discounted profits and expected profits are compared for
the complete dataset and conclusions about the potential are established.

6.3.1 Calculation of Discounted Profit for Observed Sales

A market study regarding the German used car sector was described in chapter 5
and data from December 2005 to September 2006 were used to estimate individual
demand functions. In this section an external set of data is gathered from the study
with used vehicles offered by used car retailers between October and December
2006. All selected vehicles belong to the model ‘J-1’ and experienced a sale to
a customer up to the end of the observation in July 2007. The complete dataset
consists of 1,816 entries and serves as the foundation for the forthcoming analysis.

Similar to the calculation for the example vehicle in section 6.2, the concept of
net present value is applied to compare cash flows occurring at different time periods
with each other. Concluding on the basis of several experts interviews, the weekly
cost of a retailer is assumed to amount to 10 euros per existing vehicle and the rate of
interest is supposed to be r = 0.2 percent per week, corresponding to a annual rate of
10.95 percent. Note that since the sample contains only objects that have been sold,
the respective analysis is somewhat distorted. More precisely, objects that have not
been sold are not included in the assessment of profit enhancement. In most cases,
an unsold can be examined due to an inappropriate pricing strategy by the retailer,
where the asking price does not correspond to its market value. There is however
potential for increased profit, given by the fact that these vehicles were not sold at
current market conditions and therefore, are not part of this analysis. Consequently,
the achieved results serve only as a conservative estimate and actually leave room
for even higher profit margins in practice.

Table 6.4 summarizes the analysis of the discounted cash flows associated with
actual sales of vehicles from the considered dataset. The average net present value
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amounts to 14,641.45 euros, with an estimated standard deviation of 3,623.88 euros.

N Min. Max. Mean Mean Std. Error Std. Dev. Var.

NPV 1,816 4,072.22 28,260.90 14,641.45 85.039 3,623.88 13,132,488

Table 6.4: Descriptive statistics for net present value associated with profit from observed sales

In the next step, the corresponding values of expected profit applying the price-
based revenue management program are calculated.

6.3.2 Determining Expected Profit Applying Optimal Pricing
Strategies

To compare the price-based revenue management program with the outcome of ac-
tual pricing schemes in practice, expected profit is calculated applying the discrete-
time stochastic dynamic model under consideration of a finite price set, similar to
the selected example previously stated. More precisely, similar to the analysis for
the selected example, the price region is restricted to multiples of 100 euros with
Ω 100

p (t) = {0,100,200,300,400, . . .}, the price is determined on a weekly basis and
the selling horizon is considered to be twenty weeks, that is, after this time period
the used vehicle has to be sold for the salvage value, only. Furthermore, assume
that the salvage value associated with the terminal state is set to zero. Note that
the first assumption was chosen in accordance with findings from expert interviews,
whereas the latter reflects the conservative approach of the present analysis, since
section 3.5.3 demonstrated that higher salvage values would result in higher ex-
pected profits.

On the basis of a separate analysis, the data was clustered into subgroups, dif-
ferentiating between specific model types and engine sizes. Applying hypothesis
tests for the equality of the survival function of two or more subgroups introduced
in subsection 4.2.3.2, these subgroups are joined together for further calculations in
case there is no significant difference in the probability of a sale for two considered
populations. Eventually, fourteen subgroups are composed of the initial dataset and
a demand function is estimated separately for each subset. Then, for each subset a
log-logistic AFT model extended by regression splines for ‘degree-of-overpricing’
as the only explanatory variable is fitted the datasets. Then, the corresponding ex-
pected survival function is estimated as a basis for the individual price response
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functions. Note that since optimal prices are determined on a weekly basis, the
probability of survival is of interest at the time t = 7 days and, thus, the baseline
survival function has to be estimated accordingly.

For each object within the selected dataset, the expected profit is calculated on the
basis of the determined optimal pricing strategy, applying the discrete-time stochas-
tic dynamic model under consideration of a finite price set. Respectively, the re-
quired individual demand function for a used vehicle is constructed corresponding to
the log-logistic AFT survival model of the subgroup with which the considered ob-
ject can be associated. The results of these calculations are given in Table 6.5. Here,

N Min. Max. Mean Mean Std. Error Std. Dev. Var.

Exp. Profit 1,816 6,107 30,236 15,312.03 84.391 3,596.29 12,933,307

Table 6.5: Descriptive statistics for expected profit from the vehicles’ sales utilizing discrete-time
stochastic dynamic model under consideration of a finite price set

the average expected profit determined by the optimal pricing strategy is 15,312.03
euros with a standard deviation of 3,596.29. Both the variance and the standard
deviation are smaller than the values for the discounted profit associated with the
actual sale of the considered vehicle. One reason for this observation might be that
negotiating partners sometimes behave irrationally. Customers might buy a vehicle
for a price in excess of its market value and retailers might sell a car below value.
Therefore, the range of prices for the same product is much wider when determined
by the optimal pricing algorithm.

6.3.3 Comparison and Analysis

After separately determining the observed profits expressed in net present values
and the expected profits estimated by the discrete-time stochastic dynamic model,
both calculations are compared individually and analyzed to identify the potential
for profit enhancement by applying the dynamic pricing program. The descriptive
statistics of the comparison are shown in Table 6.6. For a total of 1,816 objects in
the dataset, the average difference between expected profit generated by applying
the optimal pricing strategy and the net present value of the actual sale amounts to
670.59 euros. With an average net present value of 14,641.45 euros for all actual
sales, the surplus by the price-based revenue management program is equivalent
to an enhancement of 4.6 percent. A more in-depth analysis by subgroups reveals
that the optimal pricing strategy is superior for all subsets. Two subgroups, namely
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Type N Mean Mean Std. Error Std. Deviation Variance

1 120 174.33 98.75 1,081.71 1,170,099
2 66 421.77 141.04 1,145.85 1,312,983
3 147 769.63 80.85 980.24 960,877
4 21 585.24 262.21 1,201.59 1,443,827
5 113 864.38 96.55 1,026.36 1,053,414
6 7 1,574.01 139.98 370.35 137,162
7 182 573.36 108.40 1,462.37 2,138,512
8 456 795.76 70.85 1,512.88 2,288,804
9 363 530.31 65.83 1,254.18 1,572,976
10 178 771.55 123.15 1,642.98 2,699,368
11 1 1975.10
12 100 893.71 122.90 1,228.98 1,510,397
13 46 776.68 228.29 1,548.34 2,397,371
14 16 673.71 568.19 2,272.76 5,165,440

Total 1816 670.59 32.09 1,367.34 1,869,609

Table 6.6: Descriptive statistics of comparison between expected profit determined by the optimal
pricing strategy and the net present value of actual sales. The analysis is subdivided
according to types and engine sizes utilizing a cluster analysis.

group 6 and 11, feature an average expected profit enhancement of more than 1,000
euros per vehicle. This observation can be explained by the fact that the subgroups
consist of only 7 and 1 vehicles respectively, which are of a more exclusive type
in terms of engine, interior and exterior equipment. Furthermore, subgroup seven
is characterized by a significantly lower standard deviation and variance due to the
limited number of records within the respective samples.

In summary, the analysis of monetary impacts identified a significant potential
for profit enhancement by applying optimal pricing strategies. The increase in profit
compared to observed sales averages approximately 4.6 percent for the observed
dataset, thereby increasing profit margins within the used car sector by a multiple
of current profits. Even more remarkable is an analysis of the total potential for en-
hancement. Adding the expected profit over all vehicles within the analyzed dataset,
a total amount of 1,217,785 euros for 1,816 vehicles could have been gained by the
involved retailers if they had used optimal pricing strategies. Furthermore, translat-
ing the potential increase in profit to all vehicles examined during the year 2006
within the market study, the total of over 50,000 offered vehicles belonging to the
same model would hold a medium double-digit million euro sum in potential profit.

Besides the positive monetary impacts, the price-based revenue management pro-
gram implicates operational, tactical, and strategic benefits. On an operational level,
the revenue management program can help retailers by monitoring the inventory
and indicating the appropriate amount of time on the market. In a more passive
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approach, the program can only suggest price adjustments, but not perform them.
Considering the tactical level, besides the proposition of optimal pricing strategies,
executive vendors are freed by a price-based revenue management program from the
task of determining prices. Especially the issue of information gathering and data
preparation with regard to deriving asking prices without the help of a program is
time consuming and distracts the retailer from his principal duty, consultation and
guidance of customers. At the strategic level, the management of a used car retail-
ing company does benefit from the revenue management program not only with the
pricing strategy, but also by identifying such profit potential within the selling pro-
cess and adjacent business areas. The program can be used to recommend types of
vehicles that promise higher than average profit margins.
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6.4 Summary

This chapter demonstrated the concept of the price-based revenue management pro-
gram and identified significant potential for profit enhancement for its application
within the used car sector. An extensive dataset was analyzed, comparing the dis-
counted profit of observed sales and the corresponding expected profits determined
by the revenue management program. The dynamic pricing approach achieved sig-
nificantly higher profits than the actual sales strategy applied on the observed vehi-
cles and, thus, promises an increase in profit margins. There are not only financial
incentives with the application of the revenue management program, but also man-
agerial benefits at an operational, tactical and strategic level.



Chapter 7
Conclusions and Further Directions

The final chapter identifies possible extensions within this work and areas for future
research activities in section 7.1 and summarizes the main findings of the book in
section 7.2.

7.1 Directions for Future Research

The work in the present book was related to a number of different research ar-
eas with the main focus put on the interaction of survival analysis, hedonic price
modeling and optimal control theory. Hence, several interesting directions of future
research can be identified. Concerning the development of the optimization module,
three extensions are outlined in the following.

Variable final time In the present paper, optimization problems were restricted
to the case where the selling horizon was assumed to be fixed. However, for
some real-world problems it might be of interest to determine the final time op-
timally, along with the optimal price path. In comparison with the standard fixed
final time problem, the variable final time problem is extended by an additional
unknown variable.

Group demand models In practice, often the inventory of used car retailers con-
tains types of vehicles which are not identical but only similar to each other, such
as cars from the same class of models but different manufacturers. Then, instead
of considering the disposal of a single item of a given number, an extended model
is required to incorporate group demand.

Competition An important extension for any real-world implementation of a rev-
enue management program is competition. In the existing models, the retailer is
assumed to act as a monopolist, but the incorporation of competition would make
a model much more realistic and, thus, more appealing to practitioners.
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Regarding the demand forecasting module, various fields of research are affected
by this work, including hedonic price modeling for estimating the market value of a
object and survival analysis to predict demand by estimating the survival probability
on the market. Hence, several extensions and directions for further research can be
pointed out.

Time-dependent variables The presented demand models account for only a
limited number of predictors to identify and select an appropriate survival model
for estimating demand. In addition, selected predictors, such as the market value
or the size of the specific market, were restricted to time-independent values.
However, in practice, the explanatory variables might vary with time and there-
fore should be treated as time-dependent in the survival analysis. Also, future
studies should incorporate additional internal and external factors to better rep-
resent actual market demand forces.

Multiple events per subject In the developed survival models, we assumed that
an object within the dataset was either sold to a customer or the price was ad-
justed accordingly. In the latter case, a new data object was generated, thereby
accepting that the underlying data set consisted of objects with only one event
per subject. However, to identify depended variables based on the course of the
price quoting history, it might be advantageous to treat these quoting histories as
interrelated datasets with multiple events per subject.

Simultaneous estimation of market value and survival In the presented mod-
els, the market value of an object and its probability of sale were estimated sepa-
rately. There might be circumstances in practice in which both the time on market
as a proxy of the probability of sale and the market value influence each other. In
this case, the execution of simultaneous estimates might be appropriate. Further-
more, in addition to the semi-logarithmic regression model, more sophisticated
approaches can be applied to estimate the market value of a used vehicle. One
such approach could be estimating using neural networks.

We believe that the proposed framework cannot only provide a basis for further
research in dynamic pricing and individual demand estimation, but it can serve as a
prototype for testing the revenue management program at used car retailers’ sites.



7.2 Summary 155

7.2 Summary

In the present book, the application of revenue management techniques to the au-
tomobile industry was conducted by developing a dynamic pricing program for the
used car sector. Assessing the automobile industry as suitable for revenue manage-
ment, the used car sector was identified as a segment promising significant potential
for increased profit since the segment generates only marginal contributions to the
operating results of automobile companies. The analysis performed within the scope
of this work revealed that used car retailers should reform their pricing processes by
establishing professional pricing management procedures in order to increase profits
or at least reduce losses.

In this work, a price-based revenue management framework was developed for
retailers to maximize their profits by determining optimal pricing strategies for used
vehicles. Using stochastic control theory, different models and corresponding algo-
rithms were derived, incorporating both theoretical and practical requirements by
considering continuous- and discrete-time models as well as restricting the price
region to a finite set.

To estimate individual price response functions, a promising approach for the
automobile industry was followed in applying survival analysis. A new category
of market data was introduced with the time duration type to use information not
only about the sale of a good but also about the price quoting history as well. The
assumption of using survival analysis to estimate individual demand functions was
based on the hypothesis that the asking price of an offered vehicle influences the
probability of its sale. Hence, a functional relationship between the asking price and
the probability of a sale was established, serving as a proxy for predicting demand
for the vehicle. This assumption was confirmed within this work.

The model selection and validation process regarding the determination of suit-
able survival analysis models and, thus, price response functions, was conducted
experimentally by evaluating data from a market study in the German used car mar-
ket. The configuration of this market study comprised the collection and analysis
of price quoting histories over the course of a ten-month period. On the basis of
this data, the accelerated failure time model, extended by regression splines, was
selected as the best parametric model for the estimation of used cars’ sales proba-
bilities.

A case study was undertaken to reveal the potential of the presented price-based
revenue management approach with regards to profit enhancement. The general con-
cept of the program was demonstrated by taking a used vehicle and estimating the
corresponding demand function by survival analysis, the market value by hedonic
price modeling and, finally, determining the optimal pricing strategy by stochastic
control theory. An evaluation of an extensive sample of 1,816 used vehicles uncov-
ered the potential for an increase in profitability by 4.6 percentage points on the
basis of revenue by applying the presented price-based revenue management pro-
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gram, with a total expected profit amounting to 1,217,785 euros for all analyzed
vehicles.

Even more remarkable is a translation of the potential increase in profit of all ve-
hicles examined during the year 2006 within the market study, which would amount
to a medium double-digit million euros sum in potential profit for a total of over
50,000 vehicles offered. Taking into consideration that the profit margins in the used
car sector amount to less than one percent, the identified enhancement translates to
an increase in profit by a multiple of actual profits. On basis of these findings, the de-
veloped price-based revenue management framework can support used car retailers
to reform their selling process in the future, leading to reduced losses and increased
profits.
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