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Foreword

I don’t believe in the existence of a complex systems theory as such and, so 
far, I’m still referring to complex systems science (CSS) in order to describe 
my research endeavours. In my view, the latter is constituted, up until now, 
by a bundle of loosely connected methods and theories aiming to observe—
from contrasted standpoints—these fascinating objects of research called 
complex adaptive systems. Nearly 40 years after Von Bertalanffy’s General 
System Theory (1968) and Jacques Monod’s Chance and Necessity (1971), 
it is fair to look back and to try to assess how much remains to be said about 
these complex adaptive systems. After all, Prigogine’s Order out of Chaos 
(1984) already demonstrated that future wasn’t entirely predictable in a his-
tory-contingent world. Nearly at the same period, Maturana and Varela’s 
Tree of Knowledge (1987) questioned the closure of biological systems and 
proposed a challenging theory of autopoieitic systems, oddly left aside by 
CSS’s mainstream research. Later on, Holland’s Hidden Order (1996) set out 
the terminology associated with and the characteristics of complex adaptive 
systems, still in use nowadays. More recently, Watts’s Six Degrees (2004) 
epitomized current assumptions of network theorists asserting that a system’s 
structure and organization—most of the time—dictate its functional proper-
ties. What remains from these influential contributions are a heterogeneous 
corpus of partly conflicting theories and a disparate set of tools and methods. 
Furthermore, too often complex systems science lends itself to criticism when 
it trades its artificial complex adaptive systems for natural (i.e., actual) ones. 
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Computer-based simulations, regardless of their expected accuracy, aren’t 
the reality, there are just metaphoric representations; “the world as it might 
be, not the world as it is” according to Holland himself.
So, yes, much remains to be said about complex adaptive systems (CAS). 
Altogether, we need to better our understanding of natural CAS and to im-
prove analytical capacities of artificial CAS. Both aspects need to be dealt 
with cautiously in order to avoid ill-fated circularities that have sometimes 
characterized research out of in-vitro simulations or artificial society experi-
ments. It is indeed an understated challenge to design a computer metaphor 
that describes a given reality independently of the hypothetical processes 
to be tested. Flawed designs often result in logical tautologies whereby the 
model always verifies the assumptions. Another challenge consists in the 
reconciliation between system-wide and individual-centred representations 
of CAS. This task is anything but trivial as technical limitations and epis-
temological differences have contributed to the divide. Technically, latest 
hybrid simulation platforms provide the means to couple agent-based mod-
elling with dynamical systems modelling or network-oriented simulations. 
But epistemological differences on internationality, for example, need to be 
dealt with in a same way biology has progressively dealt with the tension 
between Lamarckism and Darwinism on evolution.
In this context, the present ouvrage comes at its time. The carefully se-
lected chapters cover the latest theoretical developments on natural CAS 
and innovative ways to improve the analytical capacities of artificial CAS. 
Traditional concepts of complex systems science are re-visited: what is emer-
gence? Can we explain the emergence of creativity in natural CAS? How 
does emergent specialization improve artificial CAS’s design? Likewise, 
essential characteristics of social CAS are scrutinized: How do information 
flows influence the complexity of social systems? Can we propose a robust 
ontological foundation for social simulations? Finally, this book invites us 
into an interdisciplinary journey through biological evolution, neo-classical 
economics, system thinking and social sciences, using CSS as its Arian’s 
thread. Intelligent complex adaptive systems (ICAS) will emerge from this 
interdisciplinary cross-fertilization combined with technological advances. 
They will provide powerful analytical capacities, supported by a reunified 
and holistic vision on complex adaptive systems. They will help us to build 
what I will have to call, finally, a complex systems theory.

Pascal Perez
Associate	Professor,	Research	School	of	Pacific	&	Asian	Studies,	Australian	
National University 
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Preface

Our world is a large, integrated system of systems. These systems, whether 
they are ecological, social, or financial, are complex and constantly adapt to 
their environment. Many of them are essential for our very existence. Be-
ing so complex, and because of the intensive interactions among the system 
components, they cannot be fully understood by isolating their components or 
applying simple cause and effect reasoning. These systems, however, can be 
examined by looking for patterns within their behaviour. Intelligent complex 
adaptive systems (ICAS) research uses systemic inquiry to build multi-dis-
ciplinary representations of reality to study such complex systems. 
Because the use of ICAS is prevalent across a number of disciplines, papers 
describing ICAS theory and applications are scattered through different 
journals and conference proceedings. It is, therefore, important to have a 
book that broadly covers the state-of-art in this highly evolving area. There 
has been a strong interest among researchers regarding the publication of 
this book. Forty-nine submissions were received. All papers went through 
rigid peer review by at least three reviewers and only 23 were accepted for 
publication, an acceptance rate of just under 50%. Because of size constraints, 
these papers are published two volumes. This book focuses on the theoreti-
cal side of ICAS while its sister book Applications of Intelligent Complex 
Adaptive Systems emphasises the techniques and applications. These two 
volumes cover a broad spectrum of ICAS research from discussion of general 
theory and foundations to more practical studies of ICAS in various artificial 
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and natural systems. It is important to highlight that a significant portion of 
contributions come from the social sciences. This will, we believe, provide 
readers of these books with extremely valuable diverse views of ICAS, and 
also clearly demonstrates the wide applicability of ICAS theories. 

Intelligent.Complex.Adaptive.Systems

The study of ICAS draws richly from foundations in several disciplines, 
perhaps explaining in part why ICAS research is so active and productive. 
These diverse fields that contributed to the formation of ICAS included the 
genetic algorithm (Holland, 1975) and cellular automata (Gardner, 1970, 
von Neumann, 1966) in computer sciences, evolution and predator-prey 
models (Lotka, 1925) in biology, and game theory (von Neumann & Mor-
genstern, 1944) in economics. 
Researchers of ICAS are interested in various questions, but these can be 
summarised as to how to describe complex systems, and how to describe the 
interactions within these systems that give rise to patterns. Thus, although 
researchers from different backgrounds may have very different approaches 
to the study of ICAS, it is the unique properties of ICAS systems, such as 
nonlinearity, emergence, adaptivity and modularity that form the centre of 
inquiries. Many of these properties will be thoroughly explored in these two 
volumes. It is the complexity of ICAS systems which means that although a 
variety of techniques which have been employed to study ICAS, computer 
simulations have become important and widely used. These simulations 
involve several important computing techniques that may interest readers 
of these books. 

• Evolutionary computation (EC) is a highly active field of research 
inspired by natural evolution. Essentially, EC models the dynamics 
of a population of distinctive entities such as chromosomes in genetic 
algorithms or programs in genetic programming. Thus, while EC has 
been used as a simplified model to study ICAS, it is also an ICAS itself 
having wide applicability for solving scientific and engineering prob-
lems. 

• Cellular automata (CA), and related techniques such as Boolean net-
works, are common techniques in ICAS. The behaviour of entities that 
respond to the environment is defined as rules or other forms. Each 
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entity can interact with adjacent ones. The topology of adjacency can be 
defined in various ways depending on the focus of the research. CA and 
related techniques have been widely used to study important properties 
of ICAS such as emergence. 

• Multi-agent systems (MAS) are systems composed of several autono-
mous agents. These agents may use a belief-desire-intention model or 
other mechanisms to guide their behaviour, respond to the environment, 
or communicate and interact with other agents. The concept of MAS 
model can be directly applied to study a number of ICAS systems. More 
often, a computer simulation of MAS is used to understand correspond-
ing ICAS. 

ICAS research has applications across numerous disciplines. As we are sur-
rounded by complex systems, and indeed are ourselves a complex system, 
applications are everywhere. In this preface, we have no intention of provid-
ing a compete list of applications of ICAS, although some of the chapters do 
survey ICAS applications in a particular field, but we do wish to highlight 
the following subjects that are covered by this book and its sister volume. 
Because human society is a complex system, comprising a large number of 
autonomous individuals and entities that are connected by various layers of 
networks, it has been the one of the major fields of applications of ICAS 
research. As explained in a number of excellent chapters, significant research 
has been conducted into how disease, information, belief, language, and in-
novation propagate and diffuse in society. 
Economics and finance are also the focuses of applied ICAS research. The 
economic and financial interactions among the entities of modern society, 
either at individual or institutional level, are vital to its existence. ICAS has 
been used to study these interactions and to understand the dynamics that 
underpin them. 
Management can also been understood and further explored with ICAS 
concepts and methodologies that provide both a novel perspective and an 
exciting new set of tools. Besides applications to general management, these 
two books also have chapters dedicated to specific management applications 
such as military transformation. 
And finally, ICAS has been widely used in science and engineering. Complex 
systems exist almost everywhere in the natural world, from the complex 
dynamics of the weather to important ecological systems. ICAS plays an 
important role in understanding these systems. Furthermore, it is well known 
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that the robustness and reliability of an ICAS system is partially due to the 
fact that there is usually no centralised control system. This idea has been 
explored in solving engineering problems.  

Audience

Researchers working in the field of ICAS and related fields such as machine 
learning, artificial intelligence, multi-agent systems, economy, finance, man-
agement, international relations, and other social sciences should find this 
book an indispensable state-of-art reference. Because of its comprehensive 
coverage, the book can also be used as complementary readings at the post-
graduate level.

Organisation

The diversity of backgrounds within ICAS research provides the deep well 
of intellectual resources, which has allowed ICAS research to continue thriv-
ing. This diversity of backgrounds leads to a blurring of boundaries when 
categorising ICAS studies, a feature that should be seen as one of the unique 
characteristics of this field of research and one that need not be regarded as a 
problem. In organising a book, however, divisions are necessary. Thus, our 
organisation of this book into four sections on general theories, importance 
concepts, and perspectives in computing and the social sciences is only meant 
to provide the audience with a simple reference to make the book more ac-
cessible. The interdisciplinary nature of ICAS means that many articles might 
fit into multiple sections.
Two chapters in the general theories section seek the core of complex adaptive 
systems (CAS) and provide an alternative top-down method called “method 
of systems potential” rather than conventional “agent-based modelling” to 
study CAS. The first chapter by Wallis seeks to identify the core of CAS 
theory. To achieve this, it introduces innovative methods for measuring and 
advancing the validity of a theory by understanding the structure of theory. 
Two studies of CAS theory are presented. These show how the outer belt 
of loosely connected concepts support the evolution of a theory while, in 
contrast, the robust core of a theory, consisting of co-causal propositions, 
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supports validity and testability. The tools presented in this chapter may be 
used to support the purposeful evolution of theory by improving the validity 
of ICAS theory.
In the second chapter by Pushnoi et al. emergent properties of CAS are 
explored by means of “agent-based modelling” (ABM) and compared to 
results from method of systems potential (MSP) modelling. MSP describes 
CAS as a holistic system whereas ABM-methodology considers CAS as set 
of interacting agents. The authors argue that MSP is a top-down approach, 
which supplements the bottom-up modelling by ABM. Both ABM and MSP 
exhibit similar macroscopic properties such as punctuated equilibrium, sud-
den jumps in macro-indices, cyclical dynamics, superposition of determin-
istic and stochastic patterns in dynamics, fractal properties of structure and 
dynamics, and SOC-phenomenon. ABM demonstrates these properties via 
simulations of the different models whereas MSP derives these phenomena 
analytically.
In the second section of this book on important concepts, two chapters seek 
to understand modularity, hierarchy, complexity, and emergence in the con-
text of ICAS. Cornforth et al. provide an in-depth discussion of modularity, 
ubiquitous in CAS. Modules are clusters of components that interact with 
their environment as a single unit and, when they occur at different levels, 
form a hierarchy. Modularity occurs widely in natural and artificial systems, 
in the latter where it is used to simplify design, provide fault tolerance and 
solve difficult problems by decomposition. Modular and hierarchic structures 
simplify analysis of complex systems by reducing long-range connections, 
thus constraining groups of components to act as a single component. Net-
work theory, widely used to understand modularity and hierarchy, can make 
predictions about certain properties of systems such as the effects of critical 
phase changes in connectivity.
In the study by Standish, investigation of important concepts in CAS is 
continued. The term complexity is used informally both as a quality and as 
a quantity. As a quality, complexity relates to our ability to understand a 
system or object—we understand simple systems, but not complex ones. On 
another level, complexity is used as a quantity when we talk about something 
being more complicated than another. This chapter explores the formalisa-
tion of both meanings of complexity during the latter half of the twentieth 
century.
The third section of this book features four chapters on the use of modern 
computing techniques to study the emergence of creativity, emergent spe-
cialisation, information bottleneck to central processing in adaptive systems 
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and the role of barriers to information flows in the robustness of complex 
systems. 
Creativity has been a difficult concept to define and its exact relationship 
with intelligence remains to be explained. In the first of the four chapters on 
computing techniques, Thórisson presents a theory of natural creativity and 
its relation to certain features of intelligence and cognitive faculties. To test 
the theory, the author employs simulated worlds of varying complexity that 
are inhabited by creatures with a genetically evolving mental model. Plan-
making strategies are compared between creatures in each world. This shows 
that creative behaviours are governed by the world’s structural coherence and 
complexity. The theoretical framework presented in this chapter may serve 
as a foundation and tool to improve our understanding of natural creativity 
and to help develop creative artificially intelligent systems.
Nilsson contributes the second study on computing perspectives, considering 
sensory information bottlenecks in adaptive systems. Such bottlenecks are 
an inevitable consequence when a complex system adapts by increasing its 
information input. Input and output bottlenecks are due to geometrical limits 
that arise because the area available for connections from an external surface 
always exceeds the area available for connections to an internal surface. 
Processing of the additional information faces an internal bottleneck. As 
more elements increase the size of a processor, its interface surface increases 
more slowly than its volume. Such bottlenecks had to be overcome before 
complex life forms could evolve. Based on mapping studies, it is generally 
agreed that sensory inputs to the brain are organized as convergent-divergent 
networks. However, no one has previously explained how such networks can 
conserve the location and magnitude of any particular stimulus. The solution 
to a convergent-divergent network that overcomes bottleneck problems turns 
out to be surprisingly simple and yet restricted. 
In the current information age, a high premium is placed on the widespread 
availability of information, and access to as much information as possible is 
often cited as a key to making effective decisions. While it would be fool-
ish to deny the central role that information flow has in effective decision 
making processes, in the chapter by Richardson, the equally important role 
of barriers to information flows in the robustness of complex systems are 
explored. The analysis demonstrates that, for simple Boolean networks, a 
complex system’s ability to filter out certain information flows is essential 
if the system is not to be beholden to every external signal. The reduction of 
information is as important as the availability of information.
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Specialisation is observable in many complex adaptive systems and is thought 
to be a fundamental mechanism for achieving optimal efficiency. In the final 
chapter on computing perspectives, Nitschke et al. present a survey of col-
lective behaviour systems designed using biologically inspired principles 
in which specialization emerges as a result of system dynamics, and where 
emergent specialization is used as a problem solver or means to increase 
task performance. The authors argue for developing design methodologies 
and principles that facilitate emergent specialization in collective behaviour 
systems.
In this book’s final section, three chapters provide insight into emergence 
in multi-agent systems in the social sciences, and the application of ICAS 
theories in international relations and economic systems. Dessalles et al. pro-
vide a survey of concept of emergence from both a conceptual and a formal 
perspective, and discuss the notions of downward/backward causation and 
weak/strong emergence. They pay particular attention to the formal defini-
tions introduced by Müller and Bonabeau, which are operative in multi-agent 
frameworks and are derived from both cognitive and social points of view.
In the second social sciences chapter, Alker provides a study on ontological 
reflections on peace and war. Responding to a question by Hiroharu Seki 
about Hiroshima ontologies, the author reviews thinking about the ontological 
primitives appropriate for event-data making, accessing high-performance 
knowledge bases, and modelling ICAS used by researchers on war and peace. 
It cautions against “Cliocide,” defined as of the “silencing” or symbolic 
killing of collective historical-political or historical-disciplinary identities 
and identifying practices by historical or discipline deficient “scientific” 
coding practices. He proposes that more intelligent multi-agent models in 
the “complex, adaptive systems” tradition of the Santa Fe Institute should 
include the socially shared memories of nations and international societies, 
including their identity-redefining traumas and their relational/migrational/
ecological histories of community-building success and failure. Historicity 
in an ontologically distinctive sense of the “time ordered self-understandings 
of a continuing human society” is still a challenge for the computationally 
oriented literature on war and peace. 
In the final chapter of this book, Potts et al. discuss a classic allocation 
problem. The substitution relation between two primary carriers of complex 
rules—agents and institutions—is a function of the relative costs of embed-
ding rules in these carriers, all subject to the constraint of maintaining overall 
system complexity. This generic model is called the allocation of complex-
ity, which they propose as a bridge between neoclassical and complexity 
economics.
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Conclusion

This book and its sister volume bring together prominent ICAS researchers 
from around the globe who provide us with a valuable diverse set of views 
on ICAS. Their work covers a wide spectrum of cutting-edge ICAS research, 
from theory to applications in various fields such as computing and social 
sciences, and provides both comprehensive surveys on some topics and 
in-depth discussions on others. This offers us a glimpse of the rapidly pro-
gressing and extremely active field that is ICAS research. More importantly, 
because of the interdisciplinary background of the contributors, these books 
should facilitate communications between researchers from these different 
fields and thus help to further enhance ICAS research. Thus, we hope that 
these books may help to raise the profile of the contribution that complex 
adaptive systems can make toward better understanding of the various criti-
cal systems around us. In doing so, this work should encourage both further 
research into this area and also the practical implementation of the results 
derived from this area.
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Chapter.I

From.Reductive.to.Robust:
Seeking.the.Core.of.Complex.

Adaptive.Systems.Theory

Steven E. Wall�s, Independent Consultant, USA

Abstract

This chapter seeks to identify the core of complex adaptive systems (CAS) 
theory. To achieve this end, this chapter introduces innovative methods for 
measuring and advancing the validity of a theory by understanding the 
structure of theory. Two studies of CAS theory are presented that show how 
the outer belt of atomistic and loosely connected concepts support the evo-
lution of a theory; while, in contrast, the robust core of theory, consisting 
of co-causal propositions, supports the validity and testability of a theory. 
Each may be seen as being derived from differing epistemologies. It is hoped 
that the tools presented in this chapter will be used to support the purposeful 
evolution of theory by improving the validity of intelligent complex adaptive 
systems (ICAS) theory.



�   Wall�s

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

What is the Core of CAS Theory?

Where other chapters in this book may use intelligent complex adaptive 
systems (ICAS) theory as a framework to understand our world, we strive in 
this chapter to understand theory, itself. Through this process, the reader will 
gain a new perspective on the theory that is applied elsewhere in this book. 
To gain some perspective on ICAS, we will study the literature of complex 
adaptive systems (CAS) as developed in the field of organizational theory. 
As such, this chapter may be of interest to those discussing organizational 
theory and organizational change, multi-agent systems, learning methods, 
simulation models, and evolutionary games. 
CAS theory originated in the natural sciences as a tool for understanding non-
linear dynamics (Kauffman, 1995) and has gained popularity in organizational 
studies through the efforts of many authors (i.e., Axelrod & Cohen, 2000; 
Brown & Eisenhardt, 1998; Gleick, 1987; Stacey, 1996; Wheatley, 1992). 
As CAS expanded into this discipline, every author seems to have placed a 
personal mark by revising CAS for interpretation and publication. Indeed, 
in researching the literature, 20 concise, yet different, definition/descriptions 
of CAS theory were found. 
Within these 20 definitions, “component concepts” were identified. For ex-
ample, Bennet & Bennet (2004) note (in part) that a CAS is composed of a large 
number of self-organizing components. The concepts of “self-organization” 
and “large number of components” may be seen as conceptual components 
of CAS theory as described by those authors. These conceptual components 
might also be thought of as the authors’ “propositions.” It is important to 
note that among the 20 definitions, no two contained the same combination 
of component concepts. This raises a serious question: When we talk about 
CAS theory, are we really talking about the “same thing?” After all, if one 
author states that a CAS may be understood through concepts “a, b, and c” 
while another author states that the relevant concepts are “c, e, and f,” there 
may be some conceptual overlap but there are also inherent contradictions.
In the social sciences, this issue has been of concern for decades. In one at-
tempt to make sense of the issue, theory has been described as consisting of 
a “hard core” of unchanging assumptions, surrounded by a more changeable 
“protective belt” (Lakatos, 1970). When a theory is challenged, a theorist may 
rise to defend it with a new proposition that changes the belt, but presumably 
leaves the core intact. Phelan (2001) suggests that complexity theory has its 
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“hard-core assumptions;” however, among the 20 definitions discussed here, 
there is no one concept that is held in common by all of the authors. If there 
is no concept, or set of concepts, held in common, where then is the core of 
CAS theory? Motivated by this apparent lack of commonality, we seek to 
identify the core of CAS theory. 
A Chinese proverb states, “The beginning of wisdom is to call things by their 
right names.” (Unknown, 2006, p. 1). The difficulty of engaging in conversa-
tions with imprecise definitions was famously illustrated when Plato called 
man a “featherless biped.” He was forced to add, “with broad flat nails” in 
response to Digenes, who arrived with a plucked bird, proclaiming “Here is 
Plato’s man.” (Bartlett, 1992, p. 77). We may speculatively ask if it was the 
atomistic nature of Plato’s definition that left it so open to misinterpretation. 
In short, we must wonder how we can know what we are talking about, if 
the name keeps changing. In contrast to Plato’s rapidly evolving definition, 
Newton’s laws (e.g., F=ma) have proved effective, and unchanged, for cen-
turies. 
As scholars, of course, we are continually engaged in the discovery (or social 
construction, depending on your view) of understandings and definitions. 
And yet, we need some level of shared understanding of existing concepts, 
so we may communicate effectively as we work to understand new concepts. 
In short, as scholars, we might see the increasing clarity and stability of our 
definitions as an indicator of “progress” in a given field. We dig the clay, 
form it into paving stones, place them in front of us, and walk on them to 
find more clay. In this chapter, we will suggest some tools for identifying 
the milestones along our shared road. 
Central to the exploration presented in this chapter, we must ask, “Is it pos-
sible to ascertain the legitimacy of a theory through its structure?” Dubin 
(1978) suggests that there are four levels of efficacy in theory; and these 
levels do reflect the structure of the theory. They are: (1) presence /absence 
(what concepts are contained within a theory). (2) Directionality (what are the 
causal concepts and what are the emergent concepts within the theory). (3) 
Co-variation (how several concepts might impel change in one another). (4) 
Rate of change (to what quantity do each of the elements within the theory 
effect one another). Parson and Shills note four similar levels of systemization 
of theory—moving toward increasing “levels of systemization” (Friedman, 
2003, p. 518). Reflecting the validity of these assertions, Newton’s formulae 
might be seen as residing at the highest level because it is possible to identify 
quantitative changes in one aspect (e.g., force) from changes in other aspects 
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(e.g., mass & acceleration). Such a high level of understanding has been long 
sought in the social sciences but has, as yet, remained elusive. One goal of 
this chapter is to advance CAS theory along this scale—and identify how 
further advances might be enabled for similar forms of theory. 
To find the core of a theory, two studies are presented in this chapter. One 
study is based on content analysis (essentially, looking at the words used 
by the authors as reasonable representations of the concepts that they are 
conveying). The second study uses a more traditional narrative analysis. 
The first study is a reductive look at CAS theory—focusing on the axiomatic 
propositions of the authors. This method will be seen as adding to the outer 
belt. The second study focuses on the relational propositions of CAS theory. 
This method suggests that there is a core to CAS theory. However, it also 
shows that the core (based on the current state of CAS theory) has only a 
limited internal integrity. A path for developing a more robust CAS theory 
is then suggested. The process of developing a robust theory is expected to 
provide great benefits to scholars (based on the successful use of Newton’s 
robust formulae).
Due to limitations of space, the studies in this chapter will be focused on the 
level of “concept” (with concepts presented as they are named by the authors 
and as they may be generally understood by most readers) and theory (as a 
collection of concepts). These studies will generally avoid the sub-concept 
level of interpretation and what might be called a post-theory level of ap-
plication and testing. 
The next section includes a relatively linear and reductive analysis of the 
concepts of CAS theory. This process might be seen as a thought experi-
ment—a cognitive construction that represents the creation of new definitions 
in an ad-hoc manner. 

A.Reductive.Study.of.CAS.Theory

In this section, we engage in the development of new theory where theory 
might be seen as a collection of concepts. This process identifies the range of 
concepts in CAS theory and develops new versions of that theory. The new 
versions of CAS theory created here may be seen as newly evolved defini-
tions. Although such definitions may be tentatively used to identify various 
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perspectives of CAS theory, they may also be seen as adding to the outer 
belt of theory rather than clarifying the core. 
We begin with a review of literature. Searches of the ProQuest database yielded 
nearly 100 articles in academic journals where CAS theory was discussed 
in the context of a human organization. Within those articles, 13 were found 
to contain concise (less than one page) definitions of CASs. Additionally, 
those journals (and other sources) suggested other scholarly publications. 
Promising books were reviewed and seven additional concise definitions 
were found. In all, this study (although not exhaustive) found 20 relatively 
concise definitions of CASs. Concise definitions were used so that the study 
could cover as much ground as possible. It is also assumed that a concise 
definition includes the most important aspects of each author’s version of the 
theory. It is also expected that a sample of this size will provide a sufficient 
representation of the body of theory. 
Although the authors’ definitions are not listed for reasons of space, this 
study uses concise definitions from Ashmos, Huonker, and McDaniel (1998), 
Axelrod et al. (2000), Bennet et al. (2004), Brown et al. (1998), Chiva-Gomez 
(2003), Daneke (1999), Dent (2003), Harder, Robertson, & Woodward (2004), 
Hunt & Ropo (2003), Lichtenstein (2000), McDaniel, Jordan, & Fleeman, 
(2003), McGrath (1997), McKelvey (2004), Moss (2001), Olson & Eoyang 
(2001), Pascale (1999), Shakun (2001), Stacey (1996), Tower (2002), Yel-
lowthunder & Ward (2003).
In the process previously described, the study deconstructed each definition 
into the authors’ propositions, or component concepts. For example, Daneke 
describes a CAS as, “A simulation approach that studies the coevolution of a 
set of interacting agents that have alternative sets of behavioral rules” (Daneke, 
1999, p. 223). The concepts describing the CAS here would be coevolution, 
interaction, agents, and rules. While another reader might develop a different 
list, it is expected that such lists would be substantively similar to the one 
developed here where a total of 26 concepts were identified, consisting of: 

Agent, non-linear/unpredictable, levels, co-evolutionary, adaptive, agents 
evolve, far from equilibrium/edge of chaos, self-organizing, many agents, 
interrelated/interacting, goal seeking, decision-making, emergence/surprise 
happens, act in rules/context of other agents and environment, simple rules, 
permeable	boundaries,	evolves	 toward	fitness,	boundary	 testing,	 iterative	
process, agents are semi-autonomous, evaluate effectiveness of decisions/
results,	self-defining,	identity,	morality,	irreversible,	time.
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This list might be seen as representing the whole of CAS theory from an 
atomistic perspective. It should be noted that at this “survey” stage, no 
component appears to be more “important” than another and no component 
seems to be closer to the core than any other. 
Of the 20 publications, three could clearly be seen as the “most cited” (each 
having been cited by hundreds instead of tens, or fewer). Between them, there 
are six concepts used by at least two of the three, including: 

Co-evolutionary, many agents, interrelated/interacting, goal seeking, emer-
gence/surprise happens, simple rules.

This focus on what might be considered the “authoritative” versions essentially 
creates a new definition of CAS theory built on the shared conceptual com-
ponents of the authors. However, it should be noted that this new definition 
has lost some conceptual breadth when compared to the whole body of CAS 
theory. Moving from one form of popularity to another, the following is a list 
of those six concepts that seemed most popular among the 20 definitions:

Non-linear/unpredictable, co-evolutionary, many agents, interrelated/inter-
acting, goal seeking, emergence surprise happens.

Again, a new definition of CAS theory has been created with a new focus. 
Again, the conceptual components have shifted—both in comparison to the 
whole body of CAS concepts and in comparison to the authoritative ver-
sion. 
Additionally, while most authors identified themselves as scholars, others 
identified themselves as scholar-practitioners. Those whose affiliations were 
uncertain were left out of this ad-hoc, demonstrative study. The five concepts 
most commonly described by those authors who identified themselves as 
scholars were: 

Non-linear/unpredictable, self-organizing, many agents, interrelated/inter-
acting, emergence/surprise happens.
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Among those who identified themselves as scholar-practitioners, the four 
most popular concepts used were:

Non-linear/unpredictable, many agents, interrelated/interacting, goal seek-
ing.

There are obvious limitations to this ad-hoc study. However, a number of 
insights and benefits become apparent here. First, that this study creates a 
comprehensive view of the concepts within a body of theory. Of course, in 
this study, that view is limited to the level of the concepts, rather than delving 
deeper, which is another possible level of exploration. Second, that each group 
of concepts suggests those specific concepts that might be most appropriate 
for a given application or area of research. In a sense, each group of concepts 
might be viewed as a “school of thought” for CAS theory within its specific 
venue. Importantly, this brief study essentially began with 20 definitions 
and generated four more. The number of theories in the outer belt was easily 
increased, yet we do not seem to have increased our understanding of the 
core. Our lack of core insight may be related to the form of analysis, or the 
type of data used. Importantly, we approached the data as lists of concepts 
and rearranged them into new lists. Each attempt to identify a new perspec-
tive resulted in a new list. As with the broader survey (the first list), each 
subsequent list has no discernible core. 
The analysis presented in this section has served to demonstrate some strengths 
and weaknesses of a reductive form of study. In the next section, we look 
at alternative approaches to the ordering of conceptual components and, in 
the section following, we apply those ordering ideas to clarify the structure 
of CAS theory.

 
Looking.at.the.Structure.of.Theory

Drawing on Southerland, Weick (1989) discusses theory as, “an ordered set 
of assertions” (p. 517). If a theory is defined (in part) as consisting of ordered 
assertions, it begs the question of just how well ordered those assertions 
might be. By “ordered,” we might understand those assertions to be arranged 
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alphabetically, by apparent importance, or any number of possible methods. 
This “disposition of things following one after another” (Webster’s, 1989, 
p. 1013) do not seem to add much to our understanding of theory, however. 
It is not clear, for example, that a theory might be considered more valid if 
the assertions are in alphabetical order instead of ordered (for example) by 
the year each concept was added to the literature. However, based on that 
simple interpretation of order, there would seem to be no epistemological 
preference between ordering the assertions by their historical appearance in 
the literature, by the first letter in the concept, or ordering the assertions by 
the apparent importance ascribed to them by an author. 
By ordered, therefore, it may be that Weick was implying something more 
significant than a list. A more useful (or at least an alternative) epistemo-
logical validity, therefore, might be developed by looking at the assertions 
or propositions of a theory as being “interrelated,” where the propositions 
might be seen as, “reciprocally or mutually related” (Webster’s, 1989, p. 
744). With such a view, a body of theory might be seen as a kind of system 
and, “…any part of the system can only be fully understood in terms of its 
relationships with the other parts of the whole system.” (Harder et al., 2004, 
p. 83, drawing on Freeman). It seems, therefore, that every concept within 
a theory would best be understood through other concepts within that body 
of theory. Significantly, this perspective seems to fit with Dubin’s (above) 
assertion that theories of higher efficacy have explanations and concepts that 
are co-causal. 
To briefly compare and contrast levels of interrelatedness, we might say that 
the lowest level of relationship may be found in some jumble of random 
concepts. A higher level of interrelatedness might be seen in a book where 
an author describes concepts (thus causing each to exist in closer relation-
ship with others). Other authors have used a wide variety of methods for 
increasing relatedness such as placing them in a list (as above), a flow-chart 
showing a cycle (e.g., Nonaka, 2005, for social construction), a matrix (e.g., 
Pepper, 1961, for metaphors), or a combination of lists and flows to create a 
meta-model (e.g., Slawski, 1990). With each increasing level of relatedness, 
a given reader might understand a concept in relationship with other con-
cepts, and so find new insights based on the relatedness between concepts. 
In short, an increasingly systematic relationship might be viewed as having 
increasing relatedness. One example of a systemic theory may be seen in 
Wilber’s integral theory of human development (e.g., Wilber, 2001). In his 
theory, Wilber describes four quadrants that represent categorizations of 
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insights from numerous disciplines. Wilber claims that each of these quad-
rants is co-defined by the others—in essence, that no quadrant can be fully 
understood except in relation to the other three. This claim suggests a high 
degree of relatedness. 
Another way to look at interrelatedness might be seen in the concept of “re-
flexive.” Hall (1999) suggests that some forms of inquiry represent a “third 
path” of inquiry that is primarily neither objective, nor subjective; rather it 
is essentially reflexive, where meaning is created in a socially constructed 
sense. In contrast to reflexive forms used in the sense of the interaction 
between individuals, however, the second study of this chapter looks at re-
flexive analysis in the sense that suggests a relationship within, or between, 
the concepts of CAS theory.
Combining the idea of relatedness with the idea of theory having a tight core 
and a loose belt, we might see the concepts in the core as being more closely 
interrelated than the belt. For example, the above reductive study of CAS 
produced definitions with low levels of interrelatedness, as might be found 
in the loosely defined belt of a theory, because the new theories are presented 
essentially as lists of concepts. 
In addition to the concept of relatedness, another important concept for this 
chapter is that of “robustness.” Wallis (2006a) explored a number of interpre-
tations of this term. Following insights developed from Hegel and Nietzsche, 
Wallis settled on an understanding of robustness that might be familiar to 
those working in the natural sciences, where a robust theory is one where its 
dimensions are “co-defined.” An example of this would be Newton’s law of 
motion (F=ma) where each aspect (e.g., mass) may be calculated, or under-
stood, in terms of the other two (e.g., force and acceleration). 
It is very important to differentiate between theories whose structure might 
be seen as robust, and theories whose structure might be understood as an 
ordered list. For example, a list of assertions might be understood as an 
atomistic form of theory and might be represented abstractly as “A” is true. 
“B” is true. “C” is true. In contrast, the propositions of a robust theory might 
be seen as Changes in “A” and “B” will cause predictable changes in “C.” 
Changes in “B” and “C” will cause predictable changes in “A.” And, changes 
in “C” and “A” will cause predictable changes in “B.” The interrelatedness 
of concepts in a robust theory suggests that the theory may be validated from 
“within” the theory. 
In this book and elsewhere (e.g., Richardson, 2006), the concept of robust-
ness is used to describe the stability of a network experiencing external per-
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turbations. A system that is completely unstable would have a robustness of 
zero, while a perfectly stable system would be assigned a robustness of one. 
While it could be legitimately argued that no system can have its measure of 
robustness at the extreme ends of the scale (zero, or one), this chapter will 
use zero and one as approximations to facilitate discussion.
An understanding of perturbations might be used to determine what might 
be called the “dynamic robustness” of a system of theory by identifying the 
ratio of stable concepts to changing concepts. In this two-step process, one 
first identifies the concepts contained in each form of the theory and assigns 
each a numerical value based on the component concepts. Next, the ratio 
between the two (earlier and later) versions of the theory is taken. If the two 
theories are identical, the robustness will be equal to “unity” (or one). If the 
two theories have no concepts in common, they will have a robustness of 
zero. For example, if theory “A” has four distinct concepts (a, b, c, d) and 
subsequently evolves into theory “B” with four concepts (c, d, e, f,), we may 
see theory A and B together as having a total of six concepts (a, b, c, d, e, f) 
with only two concepts held in common (c, d). This relationship suggests that 
in the process of evolving from theory A to theory B, the theory exhibited 
a robustness of 0.33 (two divided by six). Of course, such measures might 
only be considered valid when the concepts themselves are unambiguous. 
This method may be seen as responding to Hull’s (1988) deep discussion 
on the evolution of theory—and providing a tool to aid in the mapping of 
that evolution. 
If we look at each author’s influence on CAS theory as a perturbation, CAS 
theory may be seen as having a low level of robustness. For example, Yel-
lowthunder et al. (2003) describe a CAS using four concepts drawn from 
Olson et al. (2001) who used those four in addition to three additional con-
cepts. This change suggests a robustness of 0.57 (the result of four divided 
by seven). Other times, CAS does not fare even that well. Dent (2003) states 
that he drew his conceptualization of CAS from Brown et al. (1998). How-
ever, between the six concepts listed by Dent and the eight concepts listed by 
Brown et al., there are only two concepts that clearly overlap. This suggests 
a low robustness of 0.14 (the result of two divided by fourteen). In contrast, 
Newton’s formula of force (F=ma) may be seen as having a robustness of 
one as the formula is unchanged in any non-relativistic application. The 
widespread use of Newton’s formula may suggest that theories of greater 
robustness are more useful (and may have more predictive power) than 
theories of less robustness. 
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While low robustness may be seen as enabling “flexibility” (where a theory 
changes and evolves with rapidity), it may also be seen as an indicator of 
confusion or uncertainty. It recalls our original question as to the core of 
CAS theory and suggests that axiomatic, atomistic, or reductive definitions 
(e.g., theories with concepts that are structured as lists) have shown too much 
flexibility to provide an adequate representation of the core. In the following 
section, we analyze the body of CAS theory to identify more robust relation-
ships between the concepts.

Investigating.Relational.Propositions

In this section, we investigate the relational propositions described by the 
authors of the above 20 concise definitions to identify the core of CAS theory, 
where that core may be seen as shifting CAS theory toward Dubin’s (1978) 
second level of theory efficacy (where concepts are directionally causal). 
In this process, as with the reductive study, we deconstructed each of the 
concise definitions into propositions. Rather than use all of the available 
conceptual components, however, those statements that were essentially 
axiomatic are left out. For example, Bennet et al. (2004) state, “There are 
some basic properties common to many complex adaptive systems. Examples 
are some level of self-organization, nonlinearity, aggregation, diversity, and 
flow” (p. 26). Those concepts would be considered axiomatic or atomistic. 
In contrast, their statement that, “The term complex system means a system 
that consists of many interrelated elements with nonlinear relationships that 
make them very difficult to understand and predict” (p. 26) may be seen as 
a relational proposition because nonlinear relationships are seen to cause 
unpredictability. 
Of the few relational propositions, the first is Stacey (1996) who states that 
agents follow rules (or schemas) in their interactions to improve on their 
behavior. This proposition shows that there is some relationship between 
the agents, their schemas, behaviors, and the subsequent improvement in 
behavior. Many authors echo this same general idea. 
Axelrod et al. (2000) note that varied schemas (situational decision-mak-
ing rules) differentiate, or provide variety, among agents. Agents are also 
differentiated by geography (differences in physical and conceptual space). 
These agents interact with one another (and with tools) in an essentially evo-
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lutionary process that might be seen as being based on the agent’s fit with the 
environment. In that process, the agents are changed through changes in their 
schemas. Changes might be seen as increasing or decreasing the similarity of 
those agents. Similarly, Shakun (2001) states that agents take actions to reach 
goals. In this conversation, goals may be seen as generally similar to schemas 
as both seem to have some influence over the actions of the agents. 
McDaniel et al. (2003) also suggest that agents interacting over time leads 
to self-organization. Time may be seen as important, although most authors 
include it only implicitly. Moss (2001) notes that members (agents) self-or-
ganize toward more stable patterns of activity. This may be seen as generally 
similar to the process of agents interacting to cause self-organizations—with 
the added idea that the process of self-organizing causes more stable patterns 
of activity. These stable patterns of activity are a result of common frames of 
reference, an idea that seems generally similar to rules or schemas as noted 
above. 
Other authors (e.g. Bennet et al., 2004; Hunt et al., 2003) start from generally 
the same position—that the components (which might be seen as agents) of 
a CAS interact. However, according to these authors, the interactions lead to 
uncertainty. Dent (2003) also agrees and adds that the interaction is to find fit. 
Dent then notes the results of the agentic interactions may be seen as causing 
change (that may be thought of as a form of uncertainty). 
Somewhere between, or combining, these camps, Harder et al. (2004) state 
that varied agents interact to maintain a system (homeostasis, in their words) 
rather than create a new system. However, their description of homeostasis 
is described by terms such as “dynamic equilibrium,” “constant change,” 
and “adaptation.” Thus, it seems that the authors are suggesting that agents 
do not change—so much as they enable their CASs to interact, change, and 
evolve. 
Pascale (1999) notes that the process of agents engaged in interaction will 
lead to more “levels” of organization. This idea of levels might be seen 
as conceptually similar to Axelrod et al.’s description of the geographic 
differentiation of agents (physically and/or conceptually). Additionally, it 
does not seem as though the creation of a new level of organization should 
be significantly different (within the context of this conversation) than the 
creation of a “new” system. It simply seems that this particular new orga-
nization is one that is already nested in an existing one. A larger difference 
between Pascale’s version and that of other authors is that Pascale states that 
the agents are “shuffled” by the larger system. 
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Drawing on Dooley, Olsen & Eoyang (2001) note that agents evolve over time 
to reach fitness. Again, we may note the explicit surfacing of the temporal 
aspect of CASs that many authors leave tacit. Also, where most relational 
statements discuss agents interacting to achieve fitness, these authors might 
be seen as leaving the step of interaction as tacit. In both versions, however, 
agents do tend toward fitness. 
Finally, Chiva-Gomez (2003) draws on Stacey to note that CASs that are 
closer to the edge of chaos (EOC) will experience more self-organization. 
This concept of EOC might be considered synonymous with “bounded in-
stability,” which Stacey describes as a balance between formal and informal 
systems. More broadly, EOC might also be described as the boundary be-
tween stability and ambiguity. In developing the OEC concept, Stacey (1996) 
notes Kauffman, Wolfram, Gell-Mann, and Langton among his influences. 
Seen from the perspective of the present conversation, Kauffman’s (1995) 
description of bounded instability may be understood as occurring where the 
number of agents approximates the number of interactions. If there are too 
many agents, and insufficient interactions, chaos reigns. On the other hand, 
if there are few agents and many interactions, stability prevails. Therefore, 
it seems reasonable that we may integrate the EOC concept with the other 
co-causal statements above because the EOC may be understood as a ratio 
between the number of agents and their interactions. 
Generally speaking, there appears to be considerable overlap between many 
of the previous causal propositions. Specifically, many authors discuss the 
existence of agents (including parts), schemas (that may be seen as including 
goals, rules of interactions), interactions (that may include communication, and 
also implicitly or explicitly assumes the passage of time), and fit (including 
evolutionary tests of success). Additionally, it may be seen that the fit test is 
based on the existence of an external environment (although that environment 
may be seen as one or more other agents). There are a variety of changes that 
may result from a fit test including adaptation, change in interaction, change 
in schemas, increasing uncertainty, increasing certainty, self-organization, 
and the maintenance of existing organization. Also, as change is seen as a 
“general” result, change may also be seen to alter agents.
Looking at the concepts in their causal relationship, we may define the core 
of CAS theory as agents, with schemas, interacting over time. The results 
of those interactions are maximized at the EOC and are subject to a fit test 
with the environment. The result may be changes in schemas, changes in 
interactions, the creation or maintenance of larger systems, increased stability 



��   Wall�s

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

and increased instability. Finally, the status of the EOC may be changed by 
the creation of new agents, schemas, or CASs. This definition is represented 
graphically in Figure 1. 
Each arrow represents causal direction, where one aspect of CAS theory 
will have an effect on another. As the concept of non-linear dynamics is an 
important aspect of CAS theory and complexity theory (e.g., Dent & Holt, 
2001; Lichtenstein, 2000), it may be worth noting that the relationship between 
the causal aspects of this definition of CAS theory seems to support the idea 
of a non-linear or non-deterministic structure. This view is in contrast to an 
atomistic list of conceptual components. 
The presented definition surfaces additional challenging questions. These 
questions might be seen as stemming from potentially contradictory state-
ments by the authors. For example, Axelrod et al. note that changes occur at 

Figure 1. Relationship between causal concepts
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the level of the schema while Moss suggest that change occurs at the level 
of interactions. These should not, however, be seen as mutually exclusive. 
Instead, we might ask, “How much change will occur?” Then we might ask, 
“Where will that change occur?” For example, if a group of individuals self-
organize into a corporation to take advantage of a new business opportunity, 
how much change is seen from the perspective of the business environment 
(with the inception of a new entity) compared to how much change is seen by 
the agents (as they organize themselves into new relationships and interac-
tions), and how much change might be seen as occurring at the level of the 
schema of those individuals? 
The structure of this model does not seem to be “perfectly” causal, however, 
in at least three areas. First, time (along with agents and change) enable the 
occurrence of interactions. However, nothing seems to “cause” (or alter) 
time. Therefore, time seems to be seen as an atomistic concept. To become 
more fully robust, this model should identify what causes (and alters) time 
or/and its perceived passage. Second, schemas seem to be caused by change, 
alone. Such a linear relationship would seem to suggest that any change in 
schemas would create a corresponding change in agents. This relationship 
would suggest that the concept of schemas might be bypassed. Alternatively, 
the concept of schemas might be enhanced by adding causal influences. Fi-
nally, while the EOC seems to control the “quantity” of change, the variety 
of possible “forms” of change is still open to interpretation. Similarly, the 
environment seems to be changed only by change (another linear relation-
ship, like schemas). However, the environment may represent numerous 
CASs—each with their own nested agents and schemas.
Although this model has left out many component concepts of CAS theory, 
the closely related nature of the included aspects suggest that it may be a 
good representative for the core of CAS theory. That is because that causal 
model more closely meets Dubin’s requirement for stage two of efficacy of 
theory, while the reductive models only reach stage one. In the next section, 
we compare three models of CAS theory. 

Comparisons.and.Insights

Drawing on Davidson and Layder, Romm (2001) suggests that research-
ers use “triangulation” (multiple research methods to reduce subjectivity 
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in research). Thus far, we have presented two forms of analysis. A third 
form of analysis of the same data set may be found in Wallis (2006a) where 
reflexive dimensional analysis (RDA) was used to understand CAS theory 
as consisting of five related conceptual dimensions. Developed by Wallis 
(2006b) from grounded theory and dimensional analysis, RDA is a method 
for the investigation of a body of theory. 
Looking at the broad range of concepts in CAS theory, the previous reduc-
tive study has the benefit of including all concepts of the body of CAS 
theory—presented as a list of atomistic concepts. The RDA version also 
purports to include all the concepts of CAS theory; however, it presents those 
concepts as “enfolded” so that concepts not directly represented by the theory 
might be understood indirectly by combining the dimensions of the theory. 
For example, the concept of “evolution” (not directly represented) might be 
understood as “change” over “time” (both of which are directly represented 
in the model). In contrast to either of the above methods, the causal model 
leaves out concepts that are considered to be axiomatically atomistic (although 
those concepts may be seen as still existing in the belt). This suggests some 
benefits and detriments to each method. Where the atomistic/reductive ap-
proach might be more complete, the RDA version might be understood as 
more abstract (and so has the opportunity to be applied to a wider variety of 
systems) and more parsimonious (where aspects are related by the minimum 
number of laws possible, per Dubin).
Comparing the flexibility of these forms of theory (setting aside their common 
requirement for scholarly justification), it seems that reductive forms enable 
the easy addition or removal of concepts, essentially adding or removing them 
from the list. In contrast, forms of theory that are reflexively structured (RDA 
and causal) are not so easily altered. For example, referring to Figure 1, if 
we were to remove the concept of interactions, our understanding of other 
concepts would be imperiled. Time would become “disconnected” from the 
model, agents would become linearly causal to change (thus eliminating the 
concept of EOC), and agents would go straight to fit test without interactions 
(a wholly unsatisfactory description). 
In short, it seems that the reductive (and less integrated) forms of theory are 
more easily changed and therefore may be seen as more easily manipulated 
or evolved by theorists. That, in turn, suggests that the closer we get to a 
fully robust form of theory, the more difficult it will become to make further 
progress. The next few decades, therefore, may see the evolution of compet-
ing very-nearly robust theories. Those theories may then be tested (in real 
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world and computer modeling venues). Then too, each version of theory may 
find its own specific niche (e.g., one model may be applied to organizations, 
another to individuals, and a third to schemas).
Additionally, the reductive study suggests a technique for identifying which 
concepts within a general body of theory might be more closely connected 
with a given focus (e.g., scholarly version of CAS). The RDA and causal 
versions, in contrast, are both highly integrated so that the researcher is 
encouraged (almost required) to utilize all of the concepts for any given 
analysis. In the causal model depicted in Figure 1, for example, a researcher 
focusing on interactions would be impelled to describe how those interactions 
are changed by changes in agents, change, and time. Additionally, the causal 
relationships would suggest that the researcher describe how changes in the 
interactions aspect altered the EOC and the fit test. In a sense, this creates a 
road map that might be of benefit to researchers and students alike.
Shifting our focus to the core, we should note that the core concepts of the 
RDA version of CAS are (atomistically) interactions, agentness, change, levels 
of difference, and time. The causal version of CAS may be represented as 
schemas, agents, interactions, time, fit test, change, EOC, and environment. 
The two models hold in common the concepts of change, interactions, and 
time. In the RDA version, the schemas, agents, and environment of the causal 
version might be explained as agentness seen at different levels. Both of these 
models suffer from understanding time as an atomistic concept. Where time 
enables change (for example), nothing enables time. This could seem to be 
a relatively innocuous concept; however, the concept of “flow” (Csikszent-
mihalyi, 1991) suggests that the idea of time, especially as a subjective rep-
resentation of productivity, may be an important area for investigation. The 
RDA version leaves the idea of agents (and other forms of systems) loosely 
defined based on the idea that it is the observer who determines what the 
system “is.” The causal version leaves the concept of Levels relatively tacit, 
seemingly accepting that there are three levels of systems (which may be 
broadly understood as schemas, agents, and environment). Similarly, there are 
differences within each causal concept (there are different forms of change, 
a variety of agents, and schemas include a variety of rules). 
In contrast to what might be called the “dynamic” measure of robustness 
discussed previously in this chapter (where we quantified the level of robust-
ness of a theory as it evolved between authors), we might apply here a more 
“static” measure of robustness. Static robustness might be applied to quan-
tify the internal integrity of the structure of a body of theory and so provide 
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a point of comparison between the two views of the core. Alternatively, it 
may be used to differentiate between core and belt concepts within a body 
of theory. A measure of robustness may be achieved by comparing the total 
number of aspects within the theory to the number of aspects that are both 
causal and emergent. On one end of that scale, a theory that simply lists its 
component concepts, without identifying how the concepts were related to 
one another would have a robustness of zero. On the other end of the scale, a 
fully robust theory (e.g., Newton’s F=ma) might have three dimensions, each 
of which is both causal and emergent, and therefore would have a robustness 
of one (3 / 3 = 1). By “emergent,” it is important to note that a given concept 
must be understood in relation to two or more other concepts, as in Newton’s 
model. If changes in one concept were to be determined directly by only one 
other concept, that change would be seen as linear, and so adding little to 
the model. For example, if we were to say that changes in the environment 
cause changes in the agent that cause changes in the schema, we might as 
well say that changes in the environment cause changes in the schema. If, on 
the other hand, there is something about the agent that ameliorates, filters, 
or accentuates, the changes from the environment, we may then say that the 
changes in the environment and the effect of the agent result in changes to 
the schema.
In the previous reductive study, all lists have robustness of zero (e.g., 0 / 29 
= 0). In the RDA CAS model, there are a total of five dimensions (agentness, 
levels, change, time, and interactions). However, of those five, only three are 
both emergent and causal (agentness, interactions, and levels). Therefore, we 
might understand this form of the theory as having a static robustness of 0.6 
(3 / 5 = 0.6). In contrast, the causal version presented in this chapter contains 
eight concepts – only five of which may be seen as both causal and emergent 
providing a robustness of 0.625 (5 / 8 = 0.625). In short, the causal version 
may be seen as an improvement over the RDA version and this chapter serves 
as an example of theory-advancement towards a robust core.
Shifting to the relatively non-robust aspects, we see that time appears in 
the causal model to be atomistic. Schemas and environment are seen as 
linear/determinant. In the causal model, it seems that the more important 
area for investigation are the concepts of time, environment, and schema. 
Understanding how those concepts may be understood as emerging from 
two or more other concepts within the core should indicate how the model 
might be rearranged to make sense from a robust perspective. For example, 
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the multiple levels of this model (including schema, agents, and environ-
ment) may each be seen, in some sense, as a CAS. That may indicate the 
opportunity to create a model where each level is represented by that same 
(simpler) model. Such repetition of simpler models might, in turn, allow 
the elimination of some redundancies from the model. Indeed, until such an 
investigation is undertaken, those linear components of an otherwise robust 
model might be seen as existing somewhere between the belt and the core 
in an intermediate, or connecting zone. 
Finally, based on Dubin’s list (where increasing relatedness suggests higher 
efficacy of theory) and Weick’s inference (that propositions should be ef-
fectively ordered, or interrelated), it may be suggested that increasing ro-
bustness suggests a higher level of epistemological validity of a theory. In 
general, however, it is important that the causal core may be seen as being 
derived from a different epistemological validity than the loosely related 
list of concepts that comprises the belt. Where the belt may find validation 
from any one of a wide range of research methodologies and points of view, 
the core finds validation only in the relationship between its own concepts. 
This is a significant epistemological shift that suggests a rich opportunity 
for additional study. 

Will CAS and/or ICAS Theory Survive?

In this chapter, 20 concise versions of CAS theory were found in the disci-
pline of organizational theory. The conceptual components were identified 
for each theory and subjected to two forms of analysis. The first, a reductive 
study, was beneficial in the identification of concepts representing the range 
of CAS theory, for linking specific concepts within the body to specific uses 
of the theory, and the creation of additional versions of CAS theory. Each 
additional definition was seen as adding to the outer belt of the theory rather 
than clarifying the core. The second study focused on the causal statements 
found within the body of CAS theory and identified the core of CAS theory 
by identifying relationships between those concepts. It is suggested that by 
focusing on causal relationships, we may be able to accelerate the evolution 
of CAS theory. 
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This chapter suggests that the flexibility of loosely connected forms of theory 
may support the spread of that theory through the social sciences. However, 
the very flexibility that allows CAS theory to grow may also obscure the 
core. The lack of core, in turn, may limit the effectiveness of that theory in 
application. Another significant contribution of this chapter is the creation of 
specific measures of robustness as tools for examining theory. These include 
measures of dynamic robustness (as an indicator of the evolution and stability 
of a theory as it passes between authors), and static robustness (a numerical 
indicator of how well co-defined a theory may be). The more static robustness 
a theory has, the more it may be considered to be part of the core.
Will CAS theory survive? Or, will it join the 90% of social theory that rises 
rapidly only to disappear just as quickly (Oberschall, 2000)? This chapter 
represents a significant step toward a new understanding of theory (in general) 
and CAS theory (in particular). If CAS theory is to retain its validity and even 
gain credibility in the face of the next wave of theory (that will, undoubtedly, 
arrive), it seems that it must develop a robust core. In an important sense, a 
robust theory might be seen as possessing epistemological justification, not 
from external testing, but internally, as the understanding of each aspect of 
the core is tested against the other aspects of the model. Conversations on the 
structure and construction of theory are likely to continue, and even increase, 
as our understanding of theory-creation increases. Measures of theory-robust-
ness would seem to provide useful tools for advancing that conversation. 
Looking to achieve a more optimal future of CAS theory, investigations 
should first clarify the causal relationships suggested in this chapter. With 
a fully robust version of CAS, the next step should be to test that model in 
the field and through computer modeling to clarify (or deny) relationships 
suggested by the co-defined aspects. Additionally, the “inter-testability” of 
the core aspects hints that such a model might be falsifiable in the Popperian 
sense. For example, if the model pictured in Figure 1 were to experience a 
change in interactions that did not result in a change in the fit test, the model 
would be disproved. This would, of course, open the door to improving the 
model (Popper, 2002). Then too, if everything observable may be explained 
in terms of the robust aspects, then each application in the field becomes a 
test of the theory, and we have another opportunity to accelerate the evolu-
tion of CAS theory through practice. 
This chapter has focused on CAS theory, but what about its close cousin ICAS? 
While this book may, or may not, contain all concepts related to ICAS theory, 
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it certainly provides a cross-section of that theory. As such, the reader may 
apply the insights and techniques presented in this chapter as he or she reads 
other chapters. That way, the reader may identify the full breadth of concepts 
for ICAS theory. Similarly, within each chapter, the reader may find an em-
phasis on those concepts specifically related to that particular area of study 
and so suggest a “school of thought” within ICAS. Finally, the reader may 
range between the chapters seeking causal relationships between concepts, 
and so develop a robust model of ICAS theory. Each of these opportunities 
suggests how the reader might develop an alternative point of view that may 
be useful for further study and developing new insights. 
In conclusion, we have presented three major insights that may support 
theory development and the progress of ICAS theory. First, a robust form of 
theory provides the best description of a solid core of a theory and so avoids 
the growing belt of loose concepts that obscures it. Second, it is possible 
and desirable to measure a theory’s level of robustness and by so doing, to 
measure the progress of that theory. A corollary here is that measuring the 
progress of a theory opens the door to advancing that theory in a more rapid 
and purposeful way. Finally (although less deeply explored), robust theories 
may provide a path to more effective analysis and application. As the data 
for developing the core came from the belt, it should be noted that no core 
is possible without a belt. This suggests that both belt and core, with their 
separate epistemological justifications, are necessary to the advancement of 
theory.
Shifting to an evolutionary perspective, CAS might be seen as a recently 
evolved (and rapidly evolving) “species” of theory—derived from its fecund 
progenitors in systems theory and complexity theory. As a relatively recent 
species, it is well adapted to fit its niche as an insight-generator for theorists. 
Theorists, theory, and this book (as a representative of the conversation) 
may then be understood as three species—all engaged in a co-evolutionary 
process. This co-evolutionary process, in turn, suggests the opportunity to 
improve ourselves by accelerating the evolution of CAS. In the sense of an 
evolutionary landscape, this book might be seen as a path leading CAS off 
of the plains (inhabited by herds of “big-belt” theories) and up the slope of 
Mt. Kilimanjaro.
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Chapter.II

Method.of.Systems.
Potential.as.“Top-Bottom”.

Technique.of.the.
Complex.Adaptive.Systems.

Modelling
Gr�gor�� S. Pushno�, St. Petersburg, Russ�a

Gordon L. Bonser, Cal�forn�a, USA

Abstract

Emergent properties of complex adaptive systems (CAS) are explored by 
means of “agent-based modelling” (ABM), which are compared with results 
from modelling on the basis of the method of systems potential (MSP). MSP 
describes CAS as a holistic system whereas ABM-methodology considers 
CAS as set of interacting “agents.” It is argued that MSP is a “top-bottom” 
approach, which supplements ABM “bottom-up” modeling of CAS. Adap-
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tive principles incorporated into CAS at the level of a holistic system exploit 
Lamarck’s ideas about evolution, while the adaptive rules incorporated in 
the	inner	structure	of	CAS	reflect	Darwin’s	ideas.	Both	ABM	and	MSP	ex-
hibit the same macroscopic properties: (1) “punctuated	equilibrium”;	(2)	
sudden jumps in macro-indices;	(3)	cyclical	dynamics;	(4)	superposition	of	
deterministic and stochastic patterns in dynamics; (5) fractal properties of 
structure and dynamics; (6) SOC-phenomenon. ABM demonstrates these 
properties via simulations of the different models whereas MSP derives these 
phenomena analytically.

Introduction

Traditionally, in modeling the complex adaptive systems (CAS), multi-
agent modelling approach (MAM) is used. The complex adaptive system is 
modelled as a multitude of “agents” interacting with each other in line with 
certain rules of adaptive behaviour. Setting the rules of the “agents’” adap-
tive behavior, the researcher has a possibility to trace, using the computer, 
the behaviour of the system with time. Lately tremendous experience has 
been gained in the study of macroscopic properties of such systems. As far 
as these properties cannot be derived from the agents’ properties, they are 
often called the “emergent properties of the system.” It has been found that 
dissimilar MAM-models show the same set of macroscopic emergent proper-
ties when being modeled on the computer.

Universal.Emergent.Properties:
• Punctuated equilibrium. 
• Self-organised criticality.
• Superposition of deterministic and stochastic patterns in macroscopic 

dynamics.
• Discontinuous cycles.
• Catastrophic jumps.
• Self-affine dynamics of macro-indices.
• Power law for avalanche-size distribution.
• Perpetual renewal of configuration.
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• Creation of hierarchical fractal-like structure in course of evolution.
• Episodic sudden reconfigurations of CAS-structure.   

(*)

It is notable that the closer the model is to its real prototype, the more pre-
cise the intelligent “agents” reproduce the behaviour of real CAS agents, 
the clearer and more definitely these general macroscopic properties of the 
models are displayed. This appears to imply that the emergent properties (*) 
of the system do not depend on its internal structure or on specific features 
of the “agent’s” adaptive behaviour in a specific model, but rather are in-
herent in CAS as a holistic system. This chapter shall attempt to prove that 
the emergent properties of CAS may be explained proceeding from general 
regularities observed in the evolutionary process.
Multi-agent modelling reveals the emergent properties by means of simula-
tion. Within the framework of МАМ-platform these properties emerge as 
unpredictable aggregated macroscopic effects of interaction of a multitude 
of “agents.” Multi-agent modelling is a method of studying CAS on a “bot-
tom-up” basis, starting from the interaction of a multitude of “agents” to 
revealing the emergent properties of the integral system.
The departure point of our analysis of the integral complex adaptive system 
is an ensemble of interacting agents. The nature of such systems supposes 
the existence of some universal adaptive mechanisms effective at the level 
of the integral system. The existence of simple and universal mechanisms 
of adaptation acting at the level of integral systems has been a subject of 
discourse with many authors.
Gell-Mann (1994, p. 17), Holland (1995), Arthur, Durlanf, and Lane (1997, 
pp. 2-3), and McMillan (2004, p. 103) all note that the system is adaptive 
if it (1) is permanently renewed at all levels, (2) organises a multi-level hi-
erarchical structure within itself, (3) draws information from the surround-
ing environment, (4) uses this information in its adaptive activity, and (5) 
adjusts itself proceeding from the efficiency of resultant gain. One may say 
that CAS accumulates the useful adaptive experience through the process of 
adaptive activity and applies the gained experience as a means of continued 
survival.
It is assumed for this analysis that some universal rules of evolution can be 
formulated in respect to integral systems. These rules describe the aggregate 
macroscopic effect of agent’s interactions within the system under consid-
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eration. This approach will be called the “method.of.systems.potential” 
(MSP).
These adaptive mechanisms are effective at the level of the integral system. 
They may therefore be called macroscopic mechanisms of adaptation. They 
are working in any CAS. Therefore they may be called universal mechanisms 
of adaptation. As far as any CAS comprises a multitude of smaller-scale 
complex adaptive systems (modules or agents), the universal macroscopic 
adaptive mechanisms (UMAM) function in each of these CA-sub-systems. 
Thus, UMAM function at different levels of CAS, within each of its sub-
systems.
The effect of UMAM within CAS may be formalised within the framework 
of some logical and mathematical scheme. The key notions are:

1. “Adaptive potential of the system”: The aggregated ability of CAS to 
adequately respond to the challenges of the external world, 

2. “Conditions for realisation of adaptive potential”: The aggregate fac-
tors contributing to (or preventing) the exploitation (employment) of 
the “adaptive potential,” 

3. “Efficiency of CAS”: The relationship between the exploited “adaptive 
potential” and the accumulated one.

“Adaptive potential” and “conditions of realisation” are fundamental terms 
of MSP. These values describe the global steady state of CAS as ensembles 
of interacting agents. They play the role of “thermodynamic” potentials for 
these ensembles. “Adaptive potential” and “conditions for its realisation” are 
two constituents of “useful experience” accumulated in a CAS. 
If the adaptive abilities of an agent are greater, the fitness of this agent is 
greater. “Adaptive potential” of CAS as a whole is the measurement of ag-
gregated adaptive abilities of whole agents within the ensemble. The fitness 
of each agent is dependent upon both features of agent itself and from inter-
agent interactions. “Adaptive potential” is accumulating within the operative 
memory and functions of agents via learning and training. Mutations fix 
accumulated “potential” as information coded in the genetic structure.
So long as any CAS consists of complex adaptive sub-systems, the definition 
of “adaptive potential” of comprehensive CAS depends upon the definition 
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of the “adaptive potential” of sub-systems (modules or agents). The lowest 
level of real CAS structure is unknown, but we can define “adaptive potential” 
of CAS under consideration as the sum of “adaptive potentials” of its sub-
systems, additionally taking into account inter-sub-systems interaction.
The term “conditions of realisation” is the second “thermodynamic potential” 
of ensembles of interacting agents. Each agent is limited in it’s choice of adap-
tive behaviour. Interaction with other agents and the influence of environment 
restrict the region of adaptive search for each agent in its fitness landscape. 
Its adaptive rules leads to some local peak in the fitness landscape, although 
other higher peaks in his fitness landscape can exist as a rule. Restrictions 
in behaviour of agents produced via the sum of agent-agent interactions are 
working as conditions contributing to (or preventing) the search for optimal 
(highest) peak within the fitness landscape. “Conditions of realisation” 
characterises at the macroscopic level of CAS the aggregate effects of agent 
interactions on the success of an agent’s adaptive search.
“Adaptive potential” is exploited in full if each agent is positioned at the 
top of the attractive fitness peak in its fitness landscape. It can be said that 
“adaptive potential” is exploited partially if some agents are not positioned on 
these peaks. Efficiency of adaptive search within an ensemble of interacting 
agents can be described at the macroscopic level as being exploited per an 
available “adaptive potential” ratio.
MSP postulates three universal macroscopic adaptive mechanisms (UMAM) 
of CAS work:

1. The accumulation of useful experience (“adaptive potential” and “condi-
tions of realisation”) in CAS takes place driven by the adaptive search of 
agents within an ensemble. This is the process of learning, training and 
fixation of useful experience via mutations. Mathematically this process 
can be described as reinforcing feedback process: “MSP-potentials” 
(“adaptive potential” and “conditions of realisation”) → “adaptive.ac-
tivity” (adaptive search of agents) → increment in “MSP-potentials.” 
(P.1)

2. CAS is capable of maintaining some macroscopic steady state on account 
of agent-agent interactions. This property can be described mathemati-
cally as the stabilizing.feedback: temporal equilibrium → deviation 
from this equilibrium → recovery of temporal equilibrium. Macroscopic 
steady state of CAS is setted by means of MSP-variables: “potential,” 
“conditions” and “efficiency.” (P.2)
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3. Finally MSP postulates that CAS is capable of controlling distribution 
of “conditions of realisation” between the sub-systems within a CAS. 
This property is used by CAS as a means for the maximal realisation 
(employment) of accumulated potential. (P.3)

The mechanism (P.3) applied to each CA-sub-system creates multi-level 
hierarchical fractal-like structure within comprehensive CAS.
MSP assumes that the previously listed MSP-mechanisms (P.1-P.3) are work-
ing in any real CAS. Attempting to formalise these mechanisms leads to a 
new (MSP) platform of CAS-modelling, an intelligent CAS constructed on 
MSP postulates (P.1-P.3). MSP is the “top-down” technique of CAS model-
ling from the integral system to its sub-systems (modules and agents). The 
previously listed adaptive mechanisms are working within each sub-system. 
In order for each CA-sub-system in comprehensive intelligent CAS operating 
on the basis of UMAM-rules (P.1-P.3) necessary impose some restrictions 
on agents’ (modules) behaviour. Laws of behaviour of agents are contained 
implicitly in MSP-equations formalizing (P1-P.3) applied to each CA-sub-
system. Evolution of sub-systems (modules and agents) in comprehensive 
CAS is the process by means by which whole levels in CAS structure satisfy 
requirements of MSP-postulates (P.1-P.3).
The remainder of this chapter is structured in the following way. Section II 
contains a brief overview of some results from multi-agent modelling. It is 
demonstrated using concrete examples that very dissimilar МАМ-models 
display one and the same macroscopic properties (*). Section III is devoted to 
the discussion of how MAM and MSP platforms can be incorporated. Section 
IV introduces the principal positions of MSP-platform within CAS modelling. 
Section V contains some results of MSP-modelling and comparisons with 
results of MAM-modelling. The Conclusion.contains some ideas of how an 
integrated МАМ-MSP platform for CAS modelling can be constructed1.

Brief.Overview

With the advent of advanced computers, it became possible to track the 
dynamics of many MAM-models. The results proved to be unexpected with 
consequent outcomes that could not be predicted in advance. CAS does not 
contain anything but the “agents” interacting according to certain rules; how-
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ever, the summary results of such interactions proved to be unpredictable. 
The system as a whole showed new, unexpected properties—the so-called 
“emergent” properties.
Kauffman and Johnsen (1991) found that three regimes of macroscopic dy-
namics are possible in their model: chaos, stagnation, and a so-called “edge of 
chaos.” “Edge of chaos” is the optimal regime of CAS development. Within 
this regime, the process of permanent qualitative renewal of the system takes 
place. The extinctions of unfit species create similar avalanche-like processes. 
The power law for frequency distribution of avalanche-sizes indicates that 
“edge of chaos” is a critical state for an ensemble consisting of interacting 
agents. This model displays dynamics of punctuated equilibrium character-
ised by long periods of gradual changes followed by short periods of sudden 
reconfigurations. However, no mechanism of spontaneous organisation of 
the critical state is found in this model.
This drawback was eliminated in the Bak and Sneppen (1993) model of an 
ecosystem where the critical state is the attractor and the model shows SOC-
phenomenon. The dynamics in this model has longer periods of relatively 
minor and slow qualitative changes, which are interrupted by the bursts of 
feverish activity at all levels. Evolution within this model turns out to be a 
two-stage process comprising first of a phase of slow, smooth changes in the 
system. This is followed by drastic reconfigurations of qualitative renewal—the 
punctuated equilibrium phenomenon.
These two properties of CAS-dynamics (SOC-phenomenon and punctuated 
equilibrium) are reproduced in many MAM-models (Amaral & Mayer, 1999; 
Sole, Bascompte, & Manrubia, 1996a; Sole & Manrubia, 1996b).
di Collobiano (2002) with colleges analysed the fossil records and concluded 
that the collected data indicate the existence of the following macroscopic 
properties within the ecosystems of the Earth.

1. Punctuated.equilibrium: The lengthy smooth periods of species de-
velopment are interrupted by short periods of mass-scale extinction of 
some species and emergence of new ones (op. cit., p. 31).

2. The power law of frequency distribution of unfit species extinctions 
against the size of extinctions (Figure 2.6 in op. cit., p. 27) occurs.

3. There exists a delay in recovering biodiversity after mass-scale extinc-
tion of species (op. cit., p. 32).
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 These observations are evidence of the existence of discontinuous cycles 
within the dynamics of real ecosystems, namely: (1) The growth in 
diversity of species, followed by (2) a sudden catastrophe and extinc-
tion of a number of species, then (3) a period of delay in origination 
of new species, concluding with (4) a rapid recovery and extension of 
biodiversity.

4. Finally, analysis of phylogenetic trees shows the presence of hierarchi-
cal structures with fractal properties (Figure 2.2 in op. cit., p. 18).

As far as the ecosystem of the Earth is the real CAS, the properties revealed 
during the study of this CAS must have properties that reproduce an intel-
ligent CAS closely resembling reality.
Among the multi-agent models imitating the dynamics of economic and 
social CAS, there are some models within which the phases of smooth 
changes radically differ in macro-characteristics before and after the proc-
ess of reconfiguration. In such models the bursts of activity work similar to 
a CAS switching from one work mode to another, these two work modes 
alternating.
For instance, Hommes’s (2002) model of financial markets displays the char-
acteristics of the four-phase cycle. The phase of high volatility is replaced 
after the burst of reconfiguration (switching) by a phase of low volatility. 
After a new reconfiguration, the process repeats itself. The length of phases 
is not constant, but their alternation is strictly regular. Consequently, this 
model displays the dynamics of stochastic discontinuous cycles consisting 
of two stages, those being the gradual change in the macro-index and two 
catastrophe-like switches of the system from one work mode to another.
Epstein’s Model of Civil Violence (2002) also shows stochastic discontinuous 
cycles in a so-called tension index (Epstein, 2002, Figure 8, p. 7247). The 
leaps are caused by avalanche-like transitions of agents from the inactive 
state (patience) to an active state (rebellion) and vice versa. As soon as the 
tension index exceeds the critical threshold, the system makes a catastrophic 
leap to a new equilibrium state.
Kephart (2002) noticed that very dissimilar multi-agent models of market 
economies demonstrate the presence of identical dynamic properties—the 
leaps and cyclic nature of changes in macro-indices. He called these cycles 
in market economies “price war cycles.” He stressed that the reason for such 
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dynamics does not lie in the specificity of particular models, but rather is a 
fundamental characteristic of market economies.

“…we have analyzed and simulated several different market models. Several 
phenomena appear to be quite generic: not only are they observed in many 

different scenarios, but their root causes appear to be very basic and general” 
(Kephart,	2002;	p.	7210).

Within the phase of smooth changes in the macroscopic state of the system, 
the agent’s interaction results in the growth in instability of the current equi-
librium. At some point disruption occurs and a new equilibrium is reached; 
but it comes at the expense of reconfiguration (qualitative renewal) within 
the whole system. The reorientation of agents onto new peaks of fitness 
(profit) landscapes will be in the form of an avalanche. As a result, a new 
configuration emerges with other structures of fitness landscapes and new 
agent positions within its landscapes. 

“Typical price trajectory consists of linear drops punctuated by sharp discon-
tinuities up or down. These discontinuities coincide with quick shifts by all 
sellers to a new set of product parameters... Although the intuitive explana-
tions for the sudden price or price/product discontinuities differ considerably 
across the various models, there is a generic mathematical principle that 

explains why this behavior is so ubiquitous and provides insight into how 
broadly it might occur in real agent markets of the future. Mathematically, 
the phenomenon occurs in situations where	the	underlying	profit	landscape	
contains multiple peaks. Competition among sellers collectively drives the 
price vector in such a way that each seller is forced down a peak in its profit	
landscape, although its individual motion carries it up the peak. At some 
point,	a	seller	will	find	it	best	to	abandon its current peak and make a dis-
continuous jump to another peak in its landscape. This discontinuous shift in 
the price vector suddenly places all other sellers at a different point in their 

own	profit	landscapes.	If	the	next	seller	to	move	finds	itself near a new peak 
in its landscape, it will make an incremental shift in its price and hence in 
the price vector; otherwise, it will respond with yet another radical shift” 

(Kephart,	2002;	p.	7211).
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Many well-known simple models (“sand pile” (Bak, Tang, & Wiesenfeld, 
1987), “percolation” (Henley, 1989), “forest-fire” (Drossel & Schwabl, 1992)) 
imitating SOC-phenomenon contain some mechanism by means of which the 
increase in instability of the current configuration triggers episodic avalanche-
like processes of reconfiguration of the system under consideration.
Sudden reconfigurations in MAM-models can be interpreted at the macro-
scopic level as catastrophes of the integral CAS evolution. Sornette (2002) 
notes that: 

“We live on a planet and in society with intermittent dynamics rather than 
a state of equilibrium… Evolution is probably characterised by phases of 
quasistasis interrupted by episodic bursts of activity and destruction” (p. 
2522).

Interrelation.Between.MAM.and.MSP.Platforms.of.
CAS.Modelling

MAM-MSP interrelation is similar to interrelation between statistical molecu-
lar physics and thermodynamics. Both MAM and MSP describe one and the 
same reality—complex adaptive systems (CAS). MAM attempts to explain 
how peculiarities of inner microscopic structure of the system (properties of 
agents and behavioural rules) generate the system’s macroscopic properties. 
MSP attempts to find some general regularity in macroscopic properties and 
dynamics of ensembles consisting of inter-acting agents. As inter-molecu-
lar interaction and motion of molecules in statistical physics produce some 
macroscopic properties of matter, which can be described in thermodynamic 
terms just-as-inter-agent interaction and behaviour of agents produce some 
regularity in macroscopic properties of the CAS as a whole. 
We propose in this essay to apply Jean-Baptiste.Lamarck’s.laws of evolu-
tion in order to validate macroscopic regularities of CAS. These regularities 
are the properties of ensembles of inter-acting adaptive agents. Each variable 
in MSP-platform of CAS-modeling describes some property of an integral 
system (an ensemble of interacting agents) irrespective of details of inter-
agent interactions in the system. MSP-potentials (“adaptive potential” and 
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“conditions for realisation”) play the role of thermodynamic potentials of a 
system consisting of many interacting agents.
The MAM-platform is based on the concept of a “fitness landscape.” Fitness 
function describes the ability of agents to survive in perpetually change-
able environments. If the fitness value is larger, the adaptive abilities of the 
agent are higher. Therefore, the value of the fitness value depends directly 
on adaptive abilities of the agent localised in a definite position in a fitness 
landscape. The adaptive abilities of agents manifest themselves via the rate 
of growth in size of an ensemble of agents disposed in a definite position 
in a fitness landscape. Each position in a fitness landscape corresponds to 
the definite genotype of an agent. Mutations in genotype are interpreted as 
movement of an agent in a fitness landscape. 
The motion in the fitness landscape directed to fitness peak can be interpreted 
as an agent’s adaptive search the “best” position in a fitness landscape. An 
agent uses some criterion in order to choose the “fittest” position in fitness 
landscape. As a rule, an agent tends maximise fitness-value via the mutation 
process. Criterion of adaptive search depends on properties of the agent and 
its “vision.” Learning agents are capable of correcting criterion of adaptive 
search in accordance with prior experience. If the “vision” of the agent is 
wider, the criterion of adaptive search is more complicated. Agents in real 
CAS have as a rule a very wide “vision” and thus very complex criterion of 
adaptive search.
Consider an intelligent CAS in which agents are similar to real (“living-like”) 
agents in a real CAS. It means that we will consider agents that have almost 
unlimited “vision.” Moreover, these agents are capable of correcting criterion 
of adaptive search using the whole historical experience of its evolution in 
the fitness landscape.
“Unlimited vision” of a life-like intelligent agent is the agent’s ability to esti-
mate “fitness” of each position in it’s fitness landscape taking into account the 
possible losses along a path to this position, and making the best choice.
The change in size of the ensemble of agents moving along a definite path 
depends on fitness values at each point on this path. The possible loss in 
population size on the way to a position decreases the appeal of this position. 
Only when losses in population on the way to a fitness position exceed some 
threshold value does this position become inaccessible to the agent.
Losses in population of ensemble along the way toward fitness peak consist 
of two parts: (1) decrement in population on account of small fitness-values 
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along the path and (2) decrement in population on account of non-optimal 
mutations at each point of this path.
The previously stated, a new magnitude which characterises influence of two 
factors may be introduced: (1) fitness value of a definite position in a fitness 

Figure 1. Construction of a complex adaptive system according to MSP-ap-
proach

Notes: Two feedback loops describe the process of adaptation in CAS at the macroscopic 
level. The positive feedback (reinforcing feedback process) ensures the accumulation of “use-
ful experience” (“adaptive potential” and “conditions of its realization”) in a System. The 
negative feedback (“regulating mechanism”) stabilizes the temporary equilibrium state of a 
System by means of redistribution of “potential” between realized (exploited) and unrealized 
(unexploited) parts. Degeneration of “potential” and “conditions” on account of random 
destructive	perturbations	of	a	System	is	the	consequence	of	entropy	influence.
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landscape and (2) the possible losses (costs) in population size on the path 
to this position. This will be called magnitude “preference.”
Preference-value of the definite position in a fitness landscape depends di-
rectly on fitness value of this position and depends inversely on losses along 
the cost-minimizing path leading to this position (Figure 2).
The adaptive search of an agent consists of the following steps.

1. The agent estimates “costs” (losses) of all-possible paths leading each 
point in a fitness landscape.

2. The agent chooses a cost-minimizing path for each point of the fitness 
landscape. 

3. The agent estimates the “preference” in each point in the fitness land-
scape.

4. The agent chooses the “best future position” having the maximal prefer-
ence-value. This position becomes the “attractive peak” for the agent 
under consideration.

5. Agent shifts into a new position in the fitness landscape along a cost-
minimizing path leading to this attractive peak.

The agent, owing to mutations, moves step-by-step along a cost-minimizing 
path leading to an “attractive peak.” The agent recur the procedure of adaptive 
search at each step. This mechanism of adaptive search in a fitness landscape 
can be specified by the constriction of the agent’s “vision” and definition in 
details of cost- and preference-functions.
As the agent approaches, the attractive peak losses decrease. The position 
and the height of this peak are changeable. After the agent culminates this 
peak, it keeps in this position in the landscape for some time even though 
other higher peaks exist in its fitness landscape. An agent can’t reorient onto 
another peak because such a choice is burdened by higher losses in population 
size on the path towards any new peak. Attainability of the new fitness peak 
depends on the losses (cost of attainment) on the path to this peak (Figure 
2). Until the adaptive search of the agent takes place in the nearest fitness 
peak region the agent evolves gradually.
The point at which preference-value is calculated is the point within “geno-
type space.” The “adaptive potential” of this agent is the value of the prefer-
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ence-function calculated at the point within the range of possibilities in the 
fitness landscape, which represents the highest attainable point (fitness peak) 
possible within the range of potential values (Figure 2).

Figure	2.	Interrelation	between	MAM	and	MSP	platforms	of	CAS-model-
ling

Notes: Fitness-value characterizes the rate of growth of agent’s population posed in the 
definite	place	of	fitness	landscape.	“Losses”	are	equal	to	decrement	in	this	rate	of	growth	due	
to	non-optimal	mutations	on	the	path	of	agents	to	the	definite	position	in	fitness	landscape.	
Preference-value	is	fitness-value	minus	losses.	The	current	fitness-value	is	index	of	“realized	
potential”.	The	preference-value	at	the	top	of	fitness	peak	is	index	of	available	“potential”.	
Reorientation	of	an	agent	onto	a	new	fitness	peak	(“level	of	catastrophe”)	takes	place	if	
the preference-value at the top of a new peak is equal or larger than preference-value at 
the	top	of	the	old	fitness	peak.
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The quantity of losses along the way toward an attractive peak determines 
the “conditions of realisation” of adaptive potential. The “losses” along a 
path are larger as the “conditions of ascent” to the top become harder. Losses 
along the cost-minimizing path depend directly on the length of this path. 
Therefore, an agent’s “adaptive potential” and “conditions of realisation” 
increases when the agent approaches the top of its adaptive peak.
The current fitness value of an agent can be interpreted as the agent’s “realised 
(employed) adaptive potential.” The value of realised potential is lesser than 
the value of adaptive potential at each point of a cost-minimizing path.
Each position of an agent in fitness landscape corresponds to the definite 
value of “realised adaptive potential” (the current fitness value), the “adaptive 
potential” in full (the value of the preference-function at the point of attractive 
peak) and “the conditions of realisation” (the function- formalizing influence 
of the possible losses along the path toward peak) (Figure 2).
Movement of an agent in a fitness landscape consists of two stages: (1) the 
gradual approach toward the top of an attractive fitness peak and then (2), a 
sharp and sudden reorientation onto the new fitness peak..As the agent ap-
proaches the fitness peak, his gain (increment in preference-value at the point 
of attractive fitness peak) tends to zero. From the other hand, the gain from 
re-orientation onto a new fitness peak increases because the preference-value 
at the point of this new peak grows (Figure 2). Agents perpetually correct 
estimations of possible future gains in the process of searching for its next 
position in the fitness landscape.
The position of an agent near the current attractive fitness peak is inherently 
unstable. Growth of an agent’s population localised near the definite fitness 
peak is the direct consequence of the high fitness-value in neighbourhood of 
this peak. Since the different agent’s populations are in competitive interac-
tion, the growth of populations will decrease the height of each attractive 
fitness peak in each fitness landscape (Figure 3)..As a consequence of this 
a new “best” position in a fitness landscape arises as either a first or last in-
stance. An agent discovers a new point of maximum of preference-function 
in a fitness landscape only when the decrement of the current attractive peak 
height becomes large enough. Only when the new attractive peak is found 
will an agent abandon the prior peak.
“Punctuated equilibrium” phenomenon arises as a consequence of the insta-
bility of an agent’s equilibrium position near a fitness peak. Reorientation 
of an agent onto a new fitness peak generates avalanche-like processes of 
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reorientation in the ensemble of interacting agents. This is stage of CAS re-
configuration. A new structure of fitness landscapes is formed at this point. 
This is chaos-like process by which some new CAS structure emerges. At 
the macroscopic level, this is reminiscent of a catastrophe in the complex 
adaptive system’s evolution.

Method.of.Systems.Potential

So, the “adaptive potential,” Φ, the “conditions of realisation,” U, and the 
“realised portion of adaptive potential,” ΦR, are the basic variables by which 
MSP fixes the macroscopic state of CAS.

Figure	 3.	Dynamics	 of	 preference-values	 in	 the	 changeable	 fitness	 land-
scape

Notes:	As	the	height	of	fitness-peak	A	diminishes	a	new	attractive	fitness	peak	B	arises.
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The adaptation processes lead to the accumulation of adaptive potential and 
conditions of realisation in the system. This process takes place through 
the adaptive activity at all levels of the CAS-structure, and in all of its sub-
systems. The useful experience (potential and conditions) of CAS is not 
concentrated at some particular place within the system, but is dispersed 
around all of its constituents.
MSP postulates the presence of three universal macroscopic adaptive mecha-
nisms (UMAM) in any real CAS (P.1-P.3).
Intelligent CAS imitating the effect of these adaptive mechanisms will be 
called MSP-systems.
Many researchers (di Collobiano, 2002, p. 31; Lewontin, 1972) insisted that 
Darwinism was not sufficient for understanding the process of evolution. The 
previously listed properties (*) cannot be explained by Darwin’s the theory 
of natural selection and accumulation of mutation alone.
The MSP-platform of CAS-modelling is based methodologically on the 
principles of evolution as offered by Jean-Baptiste Lamarck. He formulated 
three macroscopic evolutionary mechanisms: (1) reinforcement of adaptive 
abilities in use, (2) extinction of unused adaptive abilities, and (3) inherent 
striving of organisms for perfection.
As it often happens in the history of science, these two doctrines—Darwin-
ism and Lamarckism—reflect	different	aspects	of	one	evolutionary	process. 
Struggle for survival and mutations, that is, the concept of Darwinism, are 
presented as the basis of the theory of fitness landscapes and multi-agent 
modelling. Lamarck’s laws of evolution are effective at the level of integral 
CAS. Selection and mutations at the level of a multitude of interacting agents 
result in CAS developing as an integral whole, just like Lamarck supposed; 
the system’s used macroscopic adaptive abilities develop, while the unused 
ones die off. The interrelation between Lamarckism and Darwinism is the 
relation of between the properties of CAS as a united integral system and the 
properties of the same CAS as a multitude of interacting agents. Darwinism 
describes evolution at the micro-level, the level of interacting agents; La-
marckism describes evolution at the macro-level, that of integral systems.
The adaptive potential of CAS consists of two parts: the portion of potential 
realised in adaptive activity, ΦR, and the non-realised portion of potential, 
ΦD.
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Φ  = ΦR + ΦD.        (1)

Lamarck’s evolutionary laws regulate the dynamics of these two constituents 
of adaptive potential.

Lamarck’s.First.Law

Adaptive abilities which are applied in adaptive activities of the system 
develop and strengthen.

Exploited	adaptive	abilities	→	adaptive	activity	→	increment	in	exploited	
adaptive abilities.

The first of Lamarck’s laws can be formalised as reinforcing feedback pro-
cess:

R RaΦ = ⋅Φ ; a > 0       (2)

where a is the rate of growth of the realised portion of potential.

Lamarck’s.Second.Law3.

The adaptive abilities that are not applied in adaptive activities of the system 
are degenerate.

Unused	adaptive	abilities	→	impossibility	of	their	use	in	current	activity	→	
gradual degradation of unused adaptive abilities.

The second of Lamarck’s laws can be formalised as follows:

D DdΦ = − ⋅Φ ; d > 0.       (3)
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where d is the rate of degradation of unexploited abilities. This law reflects 
the action of principle of entropy in CAS.
The.adaptive.activity of an MSP-system is a process of application (exploita-
tion; employment) of adaptive potential. The connection of adaptive activity 
with the potential, the conditions of realisation and the realised portion of 
potential is determined in MSP with the help of two postulates.
Let A be adaptive activity of a MSP-system in a unit of time.

The.First.Postulate.of.Adaptive.Activity

The adaptive activity of a MSP-system is the source of increment in potential 
and conditions of realisation:

c A+Φ = ⋅  – Increment in potential on account of activity.

U q A+ = ⋅  – Increment in conditions on account of activity.
c > 0, q > 0.

Other sources of increase in potential and conditions of realisation in MSP-
system are possible as well. For instance, these values may grow or decrease 
on account of external impacts on the system from it’s interaction with other 
systems. Note that these special cases may be organically included in the 
general scheme.

The.Second.Postulate.of.Adaptive.Activity.

The exploited potential of MSP-system is larger; therefore, the adaptive 
activity of the system is larger.

A = µ · ΦR; µ > 0.       (4)

As far as the adaptive activity of MSP-system is the employment of the ex-
ploited portion of potential, this postulate is likely to invariably be true for 
relevant choices of units of measurement of activity and the potential.
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The.current.macroscopic.state,.S,.of the MSP-system is an ordered set 
of MSP-variables: (1) potential, Φ, (2) conditions of realisation, U, and (3) 
realised portion of potential, ΦR:

S ↔ (Φ; U; ΦR).

a.  The first adaptive mechanism (Lamarck’s laws) sets the current equi-
librium state of the MSP-system and the laws governing it’s change.

“Potential,” Φ, and “conditions of realisation,” U, increase with adaptive 
activity	of	a	MSP-system	and	decrease	as	a	consequence	of	the	influence	of	
the entropy principle.

Mathematically this statement may be represented as follows:

increment  on  account  of decrement  on  account  of
entropyadaptive  activity

decrincrement  on  account  of
adaptive  activity

                    

                    

c A d

U q A U

Φ = ⋅ − ⋅Φ

= ⋅ − Λ ⋅



 





ement  on  account  of
entropy











– Stock-flows balance equations
         (5)

Multipliers c;d;q;Λ are the rates of the change in the potential and in the 
conditions as a result of adaptive activity of the MSP-system and the effect 
of entropy.
Differentiating the left and the right parts (1), using Lamarck’s laws (2) and 
(3) and taking (4) into consideration, it is not difficult to derive three equa-
tions for the three variables Φ, U and ΦR:

( )
decrement  on  account  ofincrement  on  account  of entropyadaptive  activity

increment  on  account  of
adaptive  activity

                    

               

R

R

a d d

U

Φ = + ⋅Φ − ⋅Φ

= ⋅Φ − Λ ⋅











decrement  on  account  of
entropy

     U











– Stock-flows balance equations
         (6)
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R RaΦ = ⋅Φ  – Lamarck’s first law.     (7)

ν = q · μ, a + d = c · μ.       (8)

The second of Lamarck’s laws describes the degradation of potential and con-
ditions due to the influence of entropy. Call parameters a;ν;Λ;d evolutionary 
parameters of MSP-systems. They characterise evolutionary properties of the 
system as an integrated whole. Equations (6)-(7) may be solved analytically 
if the evolutionary parameters are constant values. Only this simplest case 
is considered in this essay.
Figure 1.presents schematically how CAS is constructed at the macroscopic 
level within MSP-platform of CAS-modelling. MSP-systems accumulate 
their adaptive potential and conditions of realisation (useful experience) 
through the channel of adaptive activity and lose them through the channel 
of entropy. Adaptive activity is input-flow. The effect of entropy results in 
output-flow. The equations representing the balance between the stocks and 
flows describe the dynamics of potential and the conditions of realisation.
Equations (6)-(7) do not take into account stochastic perturbations of MSP-
systems.
The above stated, the following definitions might be introduced.
Density.of.conditions.in MSP-system, z, is the quantity of conditions per 
unit of potential.

Uz ≡
Φ .         (9)

Efficiency of the MSP-system, R, is the rate of exploitation of accumulated 
adaptive potential. Efficiency equals realised potential per entire potential 
ratio:

RR Φ
≡

Φ .        (10)

The following equations respecting density of conditions, z and efficiency 
R, can be derived from equations (6)-(7):
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( ) ( )1R

R

R a d R
R

Φ Φ
= − = + ⋅ −

Φ Φ

  

.      (11)

( ) ( )z U a d R d
z U z

Φ  = − = − + ⋅ + − Λ Φ  

 



.    (12)

The following ordinary differential equation follows from equations (11)-
(12):

( )( ) ( ) ( ) ( )1 0zR a d z R d z a d R R ′ ⋅ − + ⋅ ⋅ + − Λ ⋅ − + ⋅ ⋅ − =  .  (13)

The solution of this equation determines trajectory of a MSP-system in the 
plane (z;R).
Temporary.equilibrium.states.of a MSP-system.correspond to points on 
the path (13) in the plane (z;R). Each pair (z;R) corresponds to a definite ray 
running through the point of origin in the space (Φ; U; ΦR).
According to (11)-(12), the MSP-system having the constant evolutionary 
parameters approaches asymptotically to the point in which efficiency has 
maximal value R = 1. Let z0 be the density of conditions in this point of 
maximal efficiency. As a consequence of (11)-(12), this value equals:

0z
a

=
+ Λ .        (14)

State (z0; R = 1) is the global equilibrium state of an MSP-system. Equilib-
rium conditions ( ) ( )0 0 0R z z z= =

  are fulfilled at this point. It is evident that 
a MSP-system collapses into its global equilibrium state and remains for an 
indefinite time if perturbations of the MSP-system are absent.
What happens to the system if we consider the real situation and take the 
existence of random perturbations of the system into consideration? Such 
perturbations may be represented by the effect of external perturbation fac-
tors or fluctuations of evolutional parameters.
Under the influence of such perturbations, the MSP-system deviates from the 
equilibrium trajectory (13). The system’s dynamics in the plane (z;R) is the 
superposition of random wandering on deterministic processes, (11)–(12). 
As a result, the system approaches toward a point (z0;R = 1). After that, it 
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wanders around this point, moving aside following the perturbations and 
returning according to the equations of deterministic process (11)–(12). Such 
behaviour is very far from the typical picture of real evolutionary process.
The reason for this is that we have not taken into account the system’s ability 
to maintain (stabilise) its temporal equilibrium state.

b. . The.second.adaptive.mechanism describes the ability of a CAS to 
stabilise the temporal equilibrium state. This mechanism is based on the 
ability of the system to control the efficiency of system’ performance 
through a reduction or extension of the scope of adaptive activity. The 
effect of this mechanism may be formalised as a loop of stabilising 
negative feedback. Consequently, another equation should be added to 
equations (6)-(7).

The.process.of.stabilisation.of.temporal.equilibrium.state.is as follows:

Deviation	from	temporal	equilibrium	→	effect	of	stabilising	mechanism	→	
return to original temporal equilibrium state.

Stabilizing feedback is represented as regulating mechanism in Figure.1. 
Suppose that the system has gone off its trajectory (13) as the result of a 
perturbation. What will be the process of its return into the initial temporal 
equilibrium state? Answering this question requires understanding which of 
the variables the system is able to control: 

Uz =
Φ

 or RR Φ
=

Φ
. Stabilisation is 

effective only when the process takes place quickly. Neither the potential, Φ, 
nor the conditions of realisation, U, may be changed quickly in response to 
random perturbations of the system. These are inertial values. Consequently, 
the value 

Uz =
Φ

 is not controlled by the system. The value ΦR is the only 
variable which is liable to efficiently control an MSP-system. The MSP-sys-
tem may react operatively to random perturbations reducing or increasing 
the efficiency RR Φ

=
Φ

, thus shifting its state upwards or downwards along 
the axis R in the plane (z;R). It is this process which stabilises the temporal 
equilibrium state of an MSP-system.
The ability of the system to stabilise its temporal equilibrium is one of the 
fundamental properties of any real CAS. For example, stabilisation in living 
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systems is known as the process of homoeostatic and psychological self-regula-
tion. Stabilisation in the economic system takes place via market mechanisms 
of demand-supply-price or investment-savings interdependence.
The choice of mathematical form of the stabilising mechanism in general is 
not universal. The equation should be of the following type:

( ); ;dR H R z
dt

= .       (15)

Function H(R;z;χ) depends on values z and χ as parameters. This function 
satisfies the following conditions:

H(RE; z) = 0; H(R > RE; z) < 0; H(R < RE; z) > 0   (16)

( ); ;
0

ER z

H
R

∂
<

∂
; RE = R(z).      (17)

RE is the value of efficiency in the point of the path (13) having abscissa z.
Assume that parameter χ does not change. Consider the simplest case of the 
equation (15), so-called anti-gradient law:

( ) ( );
;R

W R zdR K K W R z
dt R

∂
′= − ⋅ = − ⋅

∂
; K >> 0.     (18)

The. “stabilizing. function”. W(R;z) determines the stability properties of 
the MSP-system’s temporary equilibrium state. The temporary equilibrium 
states (z;RE(z)) correspond to the extreme points of function W(R;z) subject 
to a fixed z:

( ); 0R EW R z′ = .         (19)

Points of minimum (maximum and inflection) of the stabilizing function, 
W(R;z), correspond to stable (unstable) temporal equilibrium states of an 
MSP-system. The path of temporal equilibrium states (13), R(z), is a locus 
of minimum points of the stabilising function W(R;z) subject to a fixed z.
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According to (12) parameter z is changing in with the course of time. If, 
having some critical value z, the number of roots, RE(z), in the equations 
(19), change (for example, two different roots of equation (19) merge into 
one root), then the character of stability in the temporal equilibrium state 
changes at this value z. The following chapter will show that there are two 
critical values of the parameter z in MSP-systems with constant evolution-
ary parameters.

c... The.third.adaptive.mechanism describes the ability of a CAS to maxi-
mise the employed portion of adaptive potential on account for optimal 
distribution of “conditions” between its sub-systems. This mechanism 
creates the structure within MSP-system.

The effect of the third adaptive mechanism may be described mathematically 
as a conditional extremum problem. Consider an MSP-system consisting of N 
sub-systems having potentials Φk and conditions Uk; k = 1;...;N. The aggregate 
potentials and conditions of the comprehensive MSP-system is equal to:

1

N

k
k=

Φ = Φ∑ .         (20)

1

N

k
k

U U
=

= ∑ .        (21)

When the multipliers are introduced, γk, which characterise the distribution 
of “conditions” among sub-systems:

Uk = γk · U, 
1

1
N

k
k=

=∑ .       (22)

The conditional extremum problem can be formulated as follows:

ΦR → max,

subject to given Φ, { } 1

N
k k=

Φ , U.
Consider Lagrange’ function:



Method of Systems Potent�al as “Top-Bottom” Techn�que of the CAS Modell�ng   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

( )1 2
1 1

; ; ;...; 1N

N N
k

k k
k kk

L R U U
= =

    
= Φ ⋅ ⋅ + ⋅ ⋅ −     Φ    

∑ ∑  (23)

where λ – is Lagrange’s multiplier.

Solution of the equations 0
k

L∂
=

∂
 gives us the following result:

( ) ( )
 k

k
k

Z kUZ Z

dR z
R z Const

dz = =Φ

′= = =     (24)

Thus, the distribution of “conditions” between agents (sub-systems) in a 
comprehensive system is optimal if the tangents to the points of path (13) in 
which agents (subsystems) are disposed parallel to each other.
In other words, the condition (24) splits the ensemble of sub-systems (agents) 
into several groups. The number of groups will be equal to a number of dif-
ferent points of a path (13) in which the tangents to the path are parallel. If 
the path has no two differing points with parallel tangents, then all the sub-
systems will have the same state. The ensemble will develop as an integral 
whole. If the path has several different points at which the tangents are paral-
lel, then the ensemble will split into several cells creating a structure in the 
comprehensive MSP-system. If some cells in their turn are MSP-systems, 
then the structure of the second level is possible, and so forth.

In.Summary

Dynamics of the MSP-system is the result of the actions of three universal 
macroscopic adaptive mechanisms (UMAM):

a.  The first adaptive mechanism describes the processes of the accu-
mulation of the useful experience (potential and conditions) within the 
MSP-system. This mechanism determines the dynamics of the current 
state of the system.
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( )
decrement  on  account  ofincrement  on  account  of entropyadaptive  activity

increment  on  account  of
adaptive  activity

                    

               

R

R

a d d

U

Φ = + ⋅Φ − ⋅Φ

= ⋅Φ − Λ ⋅











decrement  on  account  of
entropy

     U











   (E1)

 R RaΦ = ⋅Φ         (E2)

. Equation.of.trajectory.of.temporary.equilibrium.states.of.a.MSP-
system:

. ( )( ) ( ) ( ) ( )1 0zR a d z R d z a d R R ′ ⋅ − + ⋅ ⋅ + − Λ ⋅ − + ⋅ ⋅ − =  . (E3)

. Equations.of.the.change.of.the.temporary.equilibrium.state.of.a.
MSP-system:

 ( ) ( )1R

R

R a d R
R

Φ Φ
= − = + ⋅ −

Φ Φ

  

.      (E4)

 ( ) ( )z U a d R d
z U z

Φ  = − = − + ⋅ + − Λ Φ  

 



    (E5)

b.  The.second.adaptive.mechanism describes the reaction of the MSP-
system to the effect of external perturbations. This mechanism works 
as stabilizing feedback.

. Equation.of.stabilizing.feedback:

 ( ) ( );
;R

W R zdR K K W R z
dt R

∂
′= − ⋅ = − ⋅

∂
; K >> 0.   (E6)

c... The.third.adaptive.mechanism.explains the ability of the system to 
optimally distribute conditions between the sub-systems:

 
( ) ( )

 k
k

k

Z kUZ Z

dR z
R z Const

dz = =Φ

′= = =     (E7)
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This adaptive mechanism is responsible for the generation of the many-level 
hierarchical structure of a MSP-system.
Note that the rules of sub-systems interaction can’t be stated arbitrarily. Laws 
of interaction at the micro-level (between the sub-systems) must have the 
condition of coordinated universal mechanisms of adaptation (E1)-(E7) at all 
levels of the global system Hence these rules are the conditions necessary for 
the coordination of equations (E1)-(E7) made for each of the sub-systems. 
Thus, the local properties of the system are interwoven with its global prop-
erties. The laws of the behaviour of sub-systems are implicitly contained in 
equations (E1)-(E7).

MSP-Systems.with.Fixed.Evolutionary.Parameters

The equation (E3) can be solved analytically if MSP-system has a constant 
evolutionary parameters. The trajectory of the temporal equilibrium states 
R(z) (13), consists of two branches (Figure 4):

Upper evolutionary branch: z(–)(R): z = z0 · R – C(–) · R–χ · (1 – R)1+χ; 
         (25)

Subject to z < z0 · R;

Lower evolutionary branch: z(+)(R): z = z0 · R + C(+) · R–χ · (1 – R)1+χ; 
         (26)

Subject to z > z0 · R;

C(–) > 0; C(+) > 0;

0z
a

≡
+ Λ

; 
d

a d
Λ −

≡
+ ; 1

a
Λ

− < < .      (27)
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To specify the constants C(–) and C(+), it is necessary to set two initial positions 
of the MSP-system: one at the upper evolutionary branch and the second at 
the lower evolutionary branch. The efficiency of the MSP-system grows with 
time according to the logistic law:

( ) ( )
1

1 a d tR t
b e− + ⋅=

+ ⋅ ; 
( )
( )

1 0
0

R
b

R
−

≡ .      (28)

The sign of parameter.χ.determines the shape of function R(z) (Figure 4)..
MSP-systems having positive and negative values χ have the different dy-
namic and structural properties.

The.First.Type.of.MSP-Systems: χ > 0

The points of minimum of stabilizing function W(R;z) lie on the upper evo-
lutionary branch and on the lower part of the lower evolutionary branch. 

Figure	4.	Efficiency	of	adaptation,	R(z),	as	the	function	of	“density	of	condi-
tions”	in	MSP-system	with	fixed	evolutionary	parameters
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These are points of stable temporal equilibrium of MSP-system. The points 
of maximum for the function W(R;z) lie on the upper part of the lower evolu-
tionary branch (Figure 4). These are points of unstable temporal equilibrium 
states of MSP-system.
Supposing, at the initial moment the system was at the point 2 (Figure 5)..It 
will move along the lower evolutionary branch until it reaches point 3. While 
it is approaching this point, the depth of the potential well W(R;z) in which 
the system is situated will decrease (Figure 7). However, this means that the 
stability of temporal equilibrium state of the MSP-system is falling as it ap-
proaches point 3. This is the bifurcation point of stabilizing function W(R;z) 
at which the minimum point of the function W(R;z) is transformed into a 
point of inflection (Figure 7). A similar discourse can be made with respect to 
point 1 at which the points of maximum and minimum stabilizing of function 
W(R;z) converge as well, and the depth of potential well vanishes. At points 

Figure 5. Discontinuous evolutionary cycle of MSP-system	with	fixed	evo-
lutionary parameters in the plane (z;R)
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1 and 3 the MSP-system, following any small perturbation, will move from 
the upper (lower) branch to the lower (upper) branch (Figure 7).
Consequently, there are two critical points at which the temporal equilib-
rium state of the MSP-system becomes unstable. In these points the system 
makes a leap from one evolutionary branch to another. Dynamics of an 
MSP-system	subject	to	χ	>	0.is a sequence of discontinuous cycles (Figure 
6, 9, 10, and 12).
Each evolutionary.cycle, 1 → 2 → 3 → 4 (Figure 5) consists of two cata-
strophic jumps and two stages of the gradual motion of the MSP-system along 
either lower or upper evolutionary branches. For proper characterisation of 
these four phases of the cycle, it is convenient to use the names borrowed 
from the business cycle theory: (1) jump downwards—“crisis,” (2) jump 
upwards—“revival,” (3) the stage of the gradual development along the lower 
evolutionary branch—“depression” and (4) stage of the gradual development 
along the upper evolutionary branch—“prosperity.” Our intuition suggests 

Figure 6. Discontinuous evolutional cycle of MSP-system	with	fixed	evo-
lutionary parameters as function of time (perturbations of the System are 
very small)
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that this is not just an analogy but that in reality the business cycle as such 
is based on the evolutionary cycle of the economic CAS.
Instability of the current state of the MSP-system increases in during the 
evolutionary cycle. MSP-systems tend toward the global equilibrium (z0; 
R = 1) but this is an unstable equilibrium. This is the unstable attractor of 
a MSP-system. Consequently, dynamics of the MSP-system having χ > 0.
demonstrates “self-organised instability” phenomenon introduced in the 
chapter (Sole et al., 2002).
The leaps occurring in the critical points of the function W(R; z) are the 
evidence of mathematical catastrophe. The surface of the catastrophe is 
determined by means of the condition:

( ); ; 0RW R z′ =         (29)

Figure 7 shows the surface W(R;z) and the movement of the system around 
this surface. At points z0 and z1 the MSP-system, under the influence of the 

Figure	7.	Discontinuous	evolutionary	cycle	of	MSP-system	with	fixed	evolution-
ary parameters as motion round the surface of stabilizing function W(R;z)
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stabilising adaptive mechanism (E6), “rolls” the system into a new the tem-
poral equilibrium state. In these points, the efficiency of the MSP-system 
changes stepwise on account of a reduction (crisis) or an extension (revival) 
of the realised portion of potential.
The simplest approximation of a stabilizing function is four-degree poly-
nomial:

( ) ( ) ( ) ( )0 1 2,RW R z C R R R R R R′ = ⋅ − ⋅ − ⋅ −

( ) ( ) ( )
4 3 2

0 1 2 0 1 2 0 1 2 1 2; ; ; ; ; ;
4 3 2

R R RW R z A R R R B R R R R R R R C C
 

= − ⋅ + ⋅ − ⋅ ⋅ ⋅ + ⋅ 
 

A(R0; R1; R2) = R0 + R1 + R2; B(R0; R1; R2) R0 · R1 + R1 · R2 + R0 · R2 
         (30)

C1 and C2 > 0 are some constants.
Points (z; R0;1;2) lie on the evolutionary branches:

z = z(–) (R2); z = z(+) (R0;1)      (31)

The evolutionary cycles may be divided into the three large groups: Expan-
sion cycles (“potential” and “conditions,” which increase in the long-term 
(Figure 14, upper-right and upper-left insets). Contraction cycles (“potential” 
and “conditions” which decrease in the long-term - Figure 14, lower-right and 
lower-left insets). And third, closed cycles (where the changes in “potential” 
and “conditions” in the long-term are limited).
The results of modelling with the use of equations (E3) - (E6) and (30) are 
presented in Figures 9-14. These figures demonstrate that the length of the 
cycle and its different phases are quite sensitive to any small perturbations 
to the MSP-system. This follows directly from the fact that the stability of 
the system’s position on evolutionary branch falls while it is approaching the 
points of bifurcation of the stabilising function, and the probability of skip-
ping to the other evolutionary branch grows (Figure 8). The very moments 
of transition that determine the length of different phases of the evolutionary 
cycle depend on casual factors affecting the MSP-system.
The probability of jumping from the upper evolutionary branches to the lower 
branch depends on the average strength of random perturbations (Figure 8). 
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In the case of small perturbations, the time of the system’s life on the upper 
branch is protracted. The system mounts nearly to the very crest of the up-
per branch, before transitioning downward. The probability density function 
for the events of the fall from the upper branch to the lower one has, as a 
“density of conditions” function, a peak-like form (Figure 15, 16). With the 
growth of perturbations, this peak shifts toward lower values of “density of 
conditions.” The probability density function for the events of the system’s 
shifting from the lower to the upper branch has a form of a peak localised 
in the vicinity of the critical point z1. With the growth of perturbations this 
peak widens and its tail rises up (Figures 15-17).
The probability density of events of skipping from one branch to the other 
represents a summary distribution of events of falling downwards and 
jumping upwards. In the case of small perturbations within the system, this 
resulting distribution has a “two-hump” form (Figure 15). The first “hump” 

Figure	8.	Interrelation	of	stochastic	and	deterministic	patterns	in	dynamics	
of MSP-system
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Figure 9. Sequence of irregular discontinuous evolutionary cycles of MSP-
System	with	fixed	evolutionary	parameters.	The	following	values	of	parameters	
were	used	in	simulation:	a	=	0.08;	d	=	0.02;	Λ	=	0.12;	v	=	0.6;	z0	=	3;	χ	=	
1; C(–)	=	0.05;	σ	=	0.5

Figure	10.	Dynamics	of	the	efficiency	of	MSP-System	with	constant	evolu-
tionary	parameters:	a	=	0.0735;	Λ	=	0.1265;	v	=	0.6;	z0	=	3;	χ	=	1;	C

(±) = 
0.05.	Stochastic	perturbations	of	MSP-System	are	modeled	as	PDF	having	
σ	=	0.5
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Figure 11. Dynamics of “potential” of MSP-System with constant evolution-
ary	parameters.	This	is	the	same	simulation	as	in	Figure	10.

Figure	12.	Simulation	for	the	MSP-system	with	weakly	fluctuating	evolution-
ary parameters
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Figure	13.		Dynamics	of	“potential”	of	MSP-system	having	the	fluctuating	
evolutionary	parameters	(the	same	simulation	as	in	Figure	12)

Figure	14.	Some	simulations	of	dynamics	of	MSP-system	having	fluctuating	
evolutionary parameters
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corresponds to the peak of events created by the fall from the upper branch 
down to the lower branch. The second “hump” matches the peak of leaps 
from the lower branch to the upper branch. With the growth of the system’s 
perturbations, the “two-hump” distribution is transformed into a distribution 
close to the power law (Figures 15-19).
As far as each leap is a catastrophe of qualitative renewal of the system, 
which is accompanied by avalanche-like processes of reconfiguration, the 
power law of frequency distribution for movement from one branch to the 
other (Figure 19), shows that some critical state is being established in the 
MSP-system. As soon as the average value of external perturbations exceeds 
some threshold value, the two-peak-like distribution of fall-events (crises) and 
upheavals-events (revivals) (Figure 15) superimposed upon each other (Figure 
16) form a power-like law of probability distribution (Figure 17-19). 
That is, the MSP-system, with its growth in perturbations, spontaneously 
transforms into a critical state, demonstrating the SOC-phenomenon. Each 
jump corresponds to some avalanche-like process of system’ reconfigura-

Figure 15. Non-cumulative frequency distribution of catastrophic jumps as 
the function of “density of conditions” subject to minor perturbations of the 
MSP-System; z1	=	2;	z0	=	3



��   Pushno� & Bonser

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

tion. The number of agents engaged within this process depends directly on 
the difference between values of efficiency before and after the jump. Let 
ΔRmax and ΔRmin are maximal and minimal values for this difference. If the 
value of constants C(+) and C(–) tend to zero then ΔRmax → 1 and ΔRmin → 0. 
Consequently, the power law for frequency distribution of avalanche-sizes 
may take place within an unlimited range of avalanche-scales. Figure 19 il-
lustrates the linear law within the limited region of avalanche-scales. As the 
constants C(+) and C(–) are diminish this region is broadened and the system 
demonstrates criticality (the power law of frequency of distribution against 
avalanche-size within a region of very different scales).
The four-phase discontinuous cycles in which the phases of smooth growth of 
the system’s efficiency alternate with leaping from one evolutionary branch 
to the other realise a regime of punctuated equilibrium. The very moments 
of quick transition and the smooth development phase length depend on the 
effects of random perturbations and are therefore random values.

Figure 16. Non-cumulative frequency distribution of catastrophic jumps as 
the function of “density of conditions” subject to moderate perturbations of 
the MSP-System; z1	=	2;	z0	=	3
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Figure	17.	Non-cumulative	frequency	distribution	of	catastrophic	jumps	as	
the function of “density of conditions” subject to large perturbations of the 
MSP-system; z1	=	2;	z0	=	3

Figure	18.	Non-cumulative	frequency	of	jumps	against	the	value	of	jump,	
Rupper(z) – Rlower(z)
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Finally, the path of equilibrium states (13) in the MSP-systems with χ > 0 
does not have two different points in which the tangents are parallel. There-
fore, the adaptive mechanism (E7) will concentrate the ensemble of similar 
sub-systems (agents) in the neighbourhood of one and the same point of the 
evolutionary branch. The ensemble will move as an integral whole, synchro-
nously falling into a crisis phase and in the same way synchronously rising 
upwards at the revival phase.

The.Second.Type.of.MSP-System: χ < 0

Function W(R;z) in this case may be modelled by a polynomial of fourth 
order with one point of inflection and one point of minimum.

( ) ( ) ( )2
0 1,RW R z C R R R R′ = ⋅ − ⋅ − , C > 0    (32)

Figure 19. Non-cumulative frequency of jumps against the value of jump, 
Rupper(z) – Rlower(z), in logarithmic scale
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The path of temporal equilibrium (13) has a multitude of pairs of different 
points in which the tangents are parallel. The condition of optimality (E7) 
may be satisfied here in two different points at once, for instance, at points 
1 and 2, as shown in Figure 20. This means that adaptive mechanism (E7) 
splits an ensemble of similar MSP-systems with χ < 0 into two classes: (1) 
the class of sub-systems located at the point 1 of the upper branch (“lower 
class”) and (2) the class of sub-systems located at the point 2 of the lower 
part of the lower evolutionary branch (“upper class”) (Figure 20). In other 
words, the adaptive mechanism (E7) forms in MSP-systems with χ < 0 a 
cell (class) structure. Points of minimum of the stabilizing function W(R;z) 
subject to fixed z coincide with the positions of classes 1 and 2. This is the 
simplest variant of class-structure. Evolutionary parameters in real CAS are 
changeable values as a rule. Real paths of the temporal equilibrium states are 
far more complex curves. As a consequence the adaptive mechanism (E7) is 
capable of forming far more complex cell-structures via the decomposition of 

Figure	20.	Catastrophe	of	chaotic	restructuring	in	the	MSP-system	having	
χ	<	0
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the ensemble of interacting agents into many classes (cells). Agents of each 
cell are situated in its own potential well of the stabilising function W(R;z). 
The stability of the class-structure depends on the deep of potential well of 
stabilizing functions in the points where classes are disposed. 
The position of cells on the path of the temporary equilibrium states can 
change slowly in course of evolution. Therefore, the stability of class-struc-
ture can change as well. Consider the simplest case of MSP-system having 
constant evolutionary parameters. Figure 20 illustrates a situation in which 
shift of class positions along the equilibrium path leads to a catastrophe of 
restructuring. At some critical value zc ≈ z0, the stabilising function is trans-
formed into a level, broad potential well.
If for some reason the efficiency of “upper” class 2 shifts downwards, and 
the efficiency of “lower” class 1 shifts upwards, and the condition (E7) is 
true for every moment of time, then, having such a shift, the instability of 
the class structure will grow, as the depth of potential wells of the function 
W(R;z) in which the classes are placed decreases. The “agents” of one class 
will, because of some perturbations, leave their potential well and “wander” 
around the area near the critical value zc.
The growing number of “wanderings” is a sign of initial stage of MSP-sys-
tem reconfiguration. The further development in this direction results in the 
complete loss of stability in the class structure. The “agents” of both classes 
fall off their potential wells and wander chaotically round the bottom of this 
potential well. Collapse of the class structure takes place. This is the catastrophe 
of system restructuring. The old structure is destroyed and the system now 
searches for a new combination of parts which will form into one structured 
whole. This reconfiguration takes place according to the scheme: “disinte-
gration—chaotic wandering—new assemblage into an integral whole.” The 
process ends by the formation of a new class structure.
How can these properties of MSP-systems manifest themselves in prac-
tice? 
Assume that each “agent” in a real CAS is the element of two MSP-systems 
simultaneously. Being constituents of one and the same integral CAS; all 
agents are carriers of the general systemic properties of the comprehensive 
big system. As agents having a certain rank within the complex multi-level 
hierarchical structure of CAS, agents differ from each other. 
The first type of systemic interrelations is described by way of an MSP-system 
with χ > 0. All agents are disposed in one and the same point on the path (13) 
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of the MSP-system having χ > 0. Hence, all agents have one and the same 
state within the frame of this MSP-system. This phenomenon is known as 
coherence. CAS is capable innately predicting the coherent behavior of all 
agents.
The second type of systemic interrelation (structural aspect) is described as 
the MSP-system with χ < 0. Many-scale hierarchical structure exists within 
any CAS. Class structure in society and administrative structure of corpora-
tions are formed as the direct result of the struggle of agents for “conditions” 
of survival. Distribution of power and the control over means of subsistence 
in society create class structure. This process can be described by means of 
MSP-terminology as the optimal distribution of “conditions” directed to 
maximisation of useful output at the level of an integral system.
One and the same.process of qualitative renewal of CAS (reconfiguration) 
shows itself both as a catastrophic leap within MSP-system having χ > 0 and 
as a catastrophic restructuring of an MSP-system having χ < 0..Both plans 
of systemic interrelations are of great importance for the solution of the 
task of effective adaptation of CAS. The mode of best adaptation for CAS 
is often called the state of “edge of chaos.” It is possible to enumerate the 
three properties of MSP-systems by which the process of adaptation becomes 
most effective.

1.. SOC-phenomenon within of MSP-system having χ > 0. The transition 
into the critical state takes place spontaneously, as soon as the average 
value of perturbations exceeds some threshold. The process of qualitative 
renewal at the level of the integral system takes the form of an evolu-
tionary cycle. The crisis stage is a manifestation of a reconfiguration in 
the ensemble of interacting agents.

2. Perpetual renewal of structure within of MSP-system having χ < 0. 
If cells of the structure are posited close to the boundary of the unsta-
ble domain of the stabilizing function, then the composition of cells is 
permanently renewed.

3.. There.exists.an.optimal.interrelation.between.the.structural.and.
integral.properties.of.the.system, where the development proves to 
be most flexible and effective. 

The adaptation of the system is most effective when the structure is renovated 
as a result of small crises. The other extreme is a rigid structure, which is 
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renewed rarely at all levels; this process is accompanied by a catastrophic 
global crisis in the system.
These three conditions of the “edge of chaos” solve one and the same task 
of renewing of the system, using the most optimal path.
A certain proportion must exist between introduction of innovations and 
preservation of the routines, conditioning the optimal pace of renewal of the 
system. CAS in the “edge of chaos” mode strives to find this optimal ratio 
between the intensity of innovations and preservation of the routine, when 
adaptation proves to be most flexible and effective (Zinchenko, 2006).

Conclusion

Thus, the previously mentioned emergent properties of CAS (*) discovered 
within of MAM-platform of CAS-modelling are reproduced in the MSP-plat-
form. Thus there exists a deep, inherent relationship between the МАМ and 
MSP platforms of CAS-modelling. The combination of these two different 
directions within the framework of one approach should make it possible 
to advance considerably the understanding of properties and dynamics of 
CAS. 
Following is a way in which it would be possible to organically synthesise 
МАМ and MSP platforms. 
The MSP-agent.is determined by its position within the class structure in the 
MSP-system with χ < 0. This position may be coded as sequence of symbols 
(virtual genome). Development of an MSP-system consists of a sequence 
of reconfigurations (evolutionary cycles). Each reconfiguration is a change 
in the structure and consequently of the positions of MSP-agents within this 
structure. MSP-agents pass from one position within the MSP-structure into 
another position. This process can be described as the movement of MAM-
agents in a fitness landscape. Consequently, it is possible to organically unite 
МАМ and MSP platforms into a new more advanced technique of CAS-
modelling. The development of such unified MAM-MSP platform is a very 
difficult task, but realisation of this task may result in large benefits5.
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Endnotes

1 This paper confines itself to the most important items of the analysis, 
referring Pushnoi’ (2003; 2004a; 2004b; 2004c; 2005) sources for ad-
ditional details.

2 Sign “dot” above a variable means time derivative and sign “touch” 
means derivative respect to some variable.

3 This numeration does not coinside with Lamarck’s (1809) numeration 
of Laws of Evolution from His book “Philosophie zoologique.”

4 This is Jacobi’s ordinary differential equation. See for example equation 
1.250 in Kamke (1971).

5 Author thanks all participants of inter-disciplinary scientific forum 
“Socintegrum”: http://www.socintegrum.ru for remarks concerning 
MSP-approach.
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Chapter.III

Modularity.and.Complex.
Adaptive.Systems
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Dav�d G. Green, Monash Un�vers�ty, Austral�a

Abstract

Modularity is ubiquitous in complex adaptive systems. Modules are clusters 
of components that interact with their environment as a single unit. They 
provide the most widespread means of coping with complexity, in both natural 
and artificial	systems.	When	modules	occur	at	several	different	levels,	they	
form a hierarchy. The effects of modules and hierarchies can be understood 
using network theory, which makes predictions about certain properties of 
systems such as the effects of critical phase changes in connectivity. Modular 
and hierarchic structures simplify complex systems by reducing long-range 
connections, thus constraining groups of components to act as a single com-
ponent. In both plants and animals, the organisation of development includes 
modules,	such	as	branches	and	organs.	In	artificial	systems,	modularity	is	



��   Cornforth & Green

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

used	to	simplify	design,	provide	fault	tolerance,	and	solve	difficult	problems	
by decomposition. 

Introduction

What is Modularity?

A train consists of an engine and carriages. A tree consists of branches and 
leaves. Trains and trees, like innumerable other systems, are built from mod-
ules. Modularity is a structural property of systems that arises when a system 
is composed of self-contained groups of elements that behave as a single unit. 
Complex systems often contain modules, which increase predictability and 
simplify control. Modules can usually be identified by the pattern of connec-
tions which are stronger and more numerous within modules than between 
modules. Modularity has the effect of isolating elements and processes from 
one another, and constraining their interactions. Modules isolate functionality 
into units that are both reliable and reusable. Complicated problems can be 
approached by dividing into smaller problems to reduce the combinatorial 
complexity. The formation of modular structures is a crucial mechanism in 
the emergence of order in many complex systems. Therefore, modularity is 
fundamentally related to the adaptive nature of many complex systems.
The human body provides an example of a natural complex system that 
contains a hierarchy of modules. Each cell in the body is a module; the cell’s 
internal component parts and processes are isolated from those of other cells. 
The cells themselves are not a homogenous collection. Instead, groups of 
cells are specialised and clustered together to form modules. These modules 
are recognisable as organs, such as the liver, the heart, and the lungs, as well 
as muscles, nerves, and so on. Each organ, or module, can be identified with 
a particular function. The interaction between these modules is well defined. 
For example, the heart and kidneys do not interact directly. They perform 
specialized functions connected with another entity—the blood. One organ is 
responsible for movement of blood around the body. The other is involved in 
maintenance of the chemical composition of the blood. The use of modules 
in a complex biological system allows cells to operate in an efficient way, 
by concentrating on one group of activities. 
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Modules are the most common mechanism for dealing with complexity, 
not only in natural systems, but also in artificial systems as diverse as or-
ganisational structures and the design of electronic products. A television is 
a complex system of electronic components. Such consumer products are 
now manufactured in modules using subsystems or circuit boards that can 
be easily replaced. Modularity simplifies the tasks of design and repair. The 
same advantages are apparent, for example, in traditional Japanese architec-
ture, where room sizes are determined by combinations of rice mats called 
tatami, measuring three feet by six feet (a little less than one metre by two 
metres). The use of modules allows a reduction in complexity in almost any 
context where a system is composed of many interacting parts. Of course, 
the organisation of a system into modules involves a cost of implementing 
an increased infrastructure. For example, an effort is required to change the 
known, working design of a non-modular television to the modular version. 
But once in place, the new design has advantages and allows a trade-off in 
effort verses efficiency. 
Modularity plays a key role in complex adaptive systems. In a system that 
is changing, the ability to form modules conveys several advantages. First, 
modules simplify the process of adaptation by reducing the range of con-
nections. This makes the outcome of any change more predictable and less 
prone to errors. In a complex structure, the richness of connections means 
that changes often lead to unexpected and sometimes disastrous results. 
Complex adaptive systems can avoid such problems by forming modules. 
Secondly, modules tend to be stable structures. So forming modules provides 
a way of fixing adaptations, thus ensuring that desirable features are retained. 
Thirdly, modules provide convenient building blocks, so making it possible 
to create large robust systems quickly and easily. We shall see examples of 
these effects in later sections. 

What is a Hierarchy?

A related concept is hierarchical structure, where a system is composed of 
modules that are themselves composed of smaller modules. A hierarchy can 
have any number of such levels. The human body has a hierarchy begin-
ning with modules such as the heart, lungs, and kidneys. These modules 
are composed of smaller structures; for example, the kidney is composed of 
nephrons. These are in turn composed of cells, and cells are composed of 
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organelles. Like modularity, hierarchical structure seems to be an integral 
feature of biological systems. The study of modularity in natural systems 
gives many insights that can be applied in artificial systems. So hierarchies 
appear in organisational structures, there are hierarchies in knowledge, such 
as the DEWEY catalogue system, and hierarchical structures in manufac-
tured systems. Another example is a power distribution system comprising 
power stations, local distribution switchyards, suburban transformers, and 
residential dwellings. The unifying principle is efficiency and the reduction 
of complexity. 

Networks.and.Modularity

Networks and graphs are commonly used to represent the structure of com-
plex systems. A network is a system of interconnected entities. An example 
is a social network where people are the entities, and they are connected to 
each other by relationships such as family relationships or friendships. More 
generally, a network is usually described in terms of nodes, which are the 
entities, and links, which are the relationships between entities. A graph is a 
simple mathematical structure that consists of vertices, or points, to represent 
the nodes and uses edges to represent the  links that join pairs of nodes. A 
network is a graph in which the nodes and/or edges have attributes. 
Networks occupy a central position in complexity theory because they un-
derlie both the structure and behaviour of every complex system (Green, 
2000). In formal terms, we can obtain a network from the structure of any 
system by mapping its elements to network nodes and the relationships (or 
interactions) between elements to edges of the network. Likewise, we can 
obtain a network from the behaviour of a system by representing all possible 
states of the system as network nodes, and representing transitions between 
states as edges of the network. These mappings provide a rigorous way of 
representing complex structures and behaviour as networks. The implica-
tion is that certain properties of complex systems (e.g., criticality) emerge 
as consequences of the underlying network. 
Graph theory provides a useful tool for analysing modular and hierarchical 
structures in complex systems (Figure 1). The graph in Figure 1(a) represents 
a system with seven components. Such a graph could represent a system of 
interconnected components in many diverse contexts, for example, cities 
connected by roads, or manufacturing workstations connected by the flow 
of products and raw materials. In contrast, the graph shown in Fig. 1(b) is 
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clearly divided into two sections or modules. The number of connections 
within each module is relatively high, whereas the number of connections 
between the modules is low.
Some basic properties of a graph (Bollobas, 1998) are as follows:

• The degree of a vertex is the number of edges meeting at that vertex.
• A sparse graph has relatively few edges.
• A directed graph has connections that apply in one direction only.
• A path is a sequence of consecutive edges. A pair of consecutive edges 

shares one vertex.
• The length of a path is the number of consecutive edges in the path.
• The diameter of a graph is the maximum length that can be found by 

considering the shortest path between every pair of vertices. The diam-
eter is finite only for connected graphs.

• A connected graph is one in which every vertex is connected to every 
other by at least one path. A connected graph with n nodes has at least 
n-1 edges, and its largest possible diameter is also n-1.

• A fully connected graph is one in which every vertex is connected directly 
to every other. The diameter of a fully connected graph is 1. In a fully 
connected graph with n vertices, the number of edges is n(n-1)/2.

(a) (b)

Figure 1. A simple graph (a) and a modular graph (b)
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• A cycle is a closed path, that is, any pair of edges in a cycle shares a 
vertex.

The distribution of the degree of vertices in a graph will determine its prop-
erties. This is not constant across the graphs shown in Figure 1, as some 
vertices are highly connected, while others have only one connection. Certain 
distributions of the degree of vertexes have important properties, as we will 
see later. 

Random Graphs and Networks

A random graph is a graph in which the edges are distributed at random 
among pairs of vertices. This type of graph is least likely to contain mod-
ules, as it has a homogenous structure. The properties of such graphs were 
investigated thoroughly by Paul Erdös and Alfred Renyi in the 1950s and 
60s. In a random graph the probability of any vertex having a given degree 
approximates a Poisson distribution, with average degree z = (n-1)p, where p 
is the probability of a edge between two vertices and n is the total number of 
vertices in the graph. As the value of z increases, a phase transition is reached 
where the graph rapidly becomes connected (Erdös & Renyi, 1960). The phase 
transition also applies in the reverse situation where links are progressively 
removed from a network until catastrophic fragmentation occurs. This has 
implications for example in the fault tolerance of communications networks. 
The average length l of a path between any two vertices is given by:

z
nl

log
log

=

This means that the average path length can be relatively small even in very 
large networks. In communications networks it is desirable to minimise the 
length of path that a message must travel between vertices (which are com-
puters), as each edge traversed increases the propagation time for signals, 
and increases the probability of errors. Also, the presence of cycles in such 
graphs translates to fault tolerance in communication networks: there are 
alternative paths for messages to take. Random graphs do not represent the 
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way natural and artificial systems are organised. Natural systems tend to 
show greater clustering, that is, vertices are grouped together into clusters or 
modules. Natural networks are more accurately represented by the models 
explained in the next two sections.

Scale Free Networks

A scale free network is a network in which the probability of any vertex hav-
ing a given degree follows a power law (Albert & Barabasi, 2000; Barabasi, 
Albert, & Jeong, 1999, 2000; Barabasi, Ravasz, & Vicsek, 2001). A few nodes 
have many connections, while most nodes have few connections. The vari-
able patterns of connectivity form cliques or modules of highly connected 
nodes, with a smaller number of connections between modules. They are 
highly tolerant to random attack, but not so tolerant to targeted attack. That 
is, if a node is removed at random, the graph is largely unaffected, but if a 
node with high connectivity is removed, the graph may become fragmented. 
This implies that the Internet, which forms a scale free network, is vulnerable 
to attacks on specific servers, such as malicious attacks by hackers. It also 
explains the high degree of robustness exhibited by many complex systems: 
individual nodes can be removed without removing the connected property 
of the network. However, unlike the catastrophic fragmentations occurring 
in random graphs, scale free graphs remain connected even when a large 
fraction of edges is removed.

Small World Networks

A small-world network is sparse, highly clustered, and has low diameter 
(Watts, 1999; Watts & Strogatz, 1998). These networks consist of a regular 
lattice (a tessellation of vertices with uniform connections, for example a 
grid) with a number of links added between pairs of vertices chosen at ran-
dom. Such graphs seem to reproduce the “small world” phenomenon seen in 
social networks, where only a short path is required to link any two people. 
Such models have implications in many areas, particularly where geography 
constrains the interaction between agents, such as in the epidemiology of 
disease and the evolution of ecosystems. The probability of vertices having 
a given degree follows an exponential distribution.
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Trees

A tree is a connected graph with no cycles. Trees are good models of hi-
erarchical systems, for example, the army with its different levels of rank 
and rigid route for command and communication. The top level of a tree is 
a single node known as the root node. Terminal nodes (those nodes with no 
branches descending from them) are called leaves. A tree is called balanced 
if each node has the same number of branches descending from it. A subtree 
is a subset of nodes that form a tree. Every non-terminal node in a tree forms 
the root of at least one subtree. A hierarchy is a directed graph that forms a 
tree, and in which all nodes fall on paths leading away from (or to) a single 
node, which is called the root of the tree. In a family tree, the descendants 
of a single individual form a hierarchy. 
Information flow in trees can proceed only from one level to another, as 
there are no peer connections. As a tree has no cycles, it affords no fault 
tolerance: there is only one path connecting any two nodes, and therefore a 
tree is vulnerable to attack. The removal of a single node anywhere results 
in the tree being divided into two trees. On the other hand, trees have the 
advantage of providing the smallest diameter for a given number of verti-
ces. The maximum number of steps between any two nodes in a regular tree 
with L-layers is given by 2(L-1), and L is proportional to the logarithm of 
the number of nodes. 

Network Modules 

Because of their universal nature (see the start of 2.3), networks provide a 
convenient way to define modules mathematically. Within a network, a module 
is a connected set of nodes that is richly connected internally, but has only 
minimal connections to the rest of the network. In Figure 1(b), for instance, 
there are two modules with only a single edge between them. 
The previous definition of a network module is necessarily imprecise. Systems 
are not necessarily all modular, or non-modular: they can have degrees of 
modularity. This degree can be measured by the modularity coefficient M. 
Various ways of measuring modularity have been proposed (e.g., Muff, Rao, 
& Caflisch, 2005; Newman & Girvan 2004). The most obvious approach is 
to compare the richness of links within and between modules. 
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For a known set of modules, the above ratio can be calculated explicitly. 
However, a different approach is needed if a measure is needed to identify 
emerging modules. One approach is to measure the degree of clustering 
(Watts et al., 1998). For any node i in a network of N nodes, the degree of 
local clustering is given by the ratio between the number of edges Ei that exist 
between its ki neighbours and the maximum possible number of links ki(ki-
1)/2. The clustering coefficient C of the entire network is then given by 
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and the values of C range from 0 to 1. Pimm (1980) proposed a direct measure 
of modularity (or “compartmentalisation”) by looking at modularity about 
pairs of nodes. For any pair of nodes i and j, the local modularity mij is the 
ratio between the number of neighbours the nodes share in common and their 
total number of neighbours, The modularity of the entire network is then the 
average of this ratio taken over all pairs of nodes:
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again with values ranging from 0 to 1. 

Modularity.in.Mathematics

The idea of building blocks (modules) in mathematics probably began in 
prehistoric times with the custom of using fingers for counting. Having ticked 
off a set of objects with the fingers of one hand, it is convenient to refer to 
that set collectively as (say) a “hand” or “fist.” The person doing the counting 
could then enumerate larger sets by counting off the number of fists present. 
An abstraction of this idea is the practice of making a mark for each object 
and scoring a line through each set of five marks. The ultimate expression 
of this approach to counting is the decimal place system in which each digit 
represents entire sets of different size. The number 351, for instance, means 
3 sets of 100, plus 5 sets of 10, plus 1 more individual. 
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Equivalence Relations

An equivalence relation is a pattern that classifies sets of objects as being 
related. For example, gender classifies all males as equivalent to one another 
and all females as equivalent to one another. An equivalence relation parti-
tions a set of objects into disjoint subsets or classes. That is, different classes 
do not overlap. The following mapping of words

cat  noun  eat  verb  fat  adjective
mat  noun  sit  verb  wide  adjective

defines a classification of words into their syntactic categories, making nouns 
equivalent to one another, and likewise for verbs and adjectives. 

Set Theory and Logic

In any system, modules are subsets of the entire system, composed of ele-
ments. These subsets can be defined by logical statements (Figure 2). In 
Predicate Calculus, a domain D is a set of objects and an atomic predicate 
P(x) is a statement about an element x in D. For instance, if the domain is 
the set of people in a village, and P(x) denotes the statement “person x is 
female”, then P defines a subset of people in the village (i.e. all women) 
for which the statement is true. Combining atomic predicates using logi-
cal operators such as AND, OR and NOT makes it possible to define more 
complex statements. 

Classification

Identifying modules from observational data is the province of data classifica-
tion. Here the problem is to divide a data set into groups of similar things, or 
modules. One example is the division of living things into groups including 
families, genera, and species. Another example is the division of custom-
ers of a telecommunications company into groups for targeted marketing. 
Methods of classification can be divided into rule-based and distance-based 
approaches. 
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Rule-based methods identify rules that partition a set of objects according to 
particular properties or features. Some examples were shown earlier under 
equivalence relations. Perhaps the best-known methods are decision trees. 
A decision tree is set of rules that are arranged in the form of a tree graph. 
The leaf nodes are outputs (categories in this case). The other nodes contain 
rules that take the form of logical tests “IF statement A is true THEN follow 
branch 1 ELSE follow branch 2.” Perhaps the best-known examples are 
taxonomic keys for identifying plants and animal species. 
Distance-based methods seek to form groups by comparing measures of 
distance or similarity between pairs of individuals. A typical measure is Eu-
clidean distance d(x,y) between objects x and y. For instance, if the objects 
are (say) survey sites in a landscape, then the attributes might be numbers of 
different species found at that site, or environmental parameters. 
Algorithms that automatically generate clusters or modules from data are 
known as clustering algorithms, and take two possible approaches. Divisive 
algorithms carve a set into finer and finer partitions. Agglomerative algo-

Figure	2.	A	Venn	diagram	showing	various	subsets	associated	with	two	predi-
cates P(x) and Q(x). The regions represent subsets of elements. The numbers 
refer	to	regions	defined	by	the	compound	predicates:	(1).	~(P(x)	OR	Q(x));	
(2).	P(x)	&	Q(x);	(3).	P(x)	OR	Q(x)
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rithms link together different groups in a series of steps until all items are 
joined into one group. At each step, the algorithms link together whichever 
pair of groups (or individuals) show the least net separation, according to 
the distance measure being used. This procedure leads to a tree with one leaf 
node per individual in the set. 

Modularity.in.Natural.Systems

Modularity plays a fundamental role in all living systems, from ecosystems 
down to the cell. The prevalence of the cell in living things stems from its 
effect of concentrating all the ingredients needed to replicate the genome in 
one place. Prior to the evolution of the cell, it was probably difficult to obtain 
conditions under which genomic material could replicate at a sufficiently 
high rate. In multi-cellular organisms, groups of cells interact with one an-
other, and exchange energy, raw products and information. Cells are linked 
by well-defined common communication channels: for example, hormones 
carried by the blood. They are also linked by the cell membrane dividing 
adjacent cells, through which things can pass. Evolution has resulted in highly 
complex organisms, and the ability of natural systems to employ modularity 
may help to explain how such systems arose. The modular nature of life is 
illustrated by the fact that a cell can die and be replaced without affecting 
the organism.

Modularity.in.the.Genome

Modularity plays a part in evolution at several different levels of organisa-
tion. At the molecular level, genetic modules promote stability of inherited 
characters. Chromosomes themselves are interchangeable sets of characters. 
Modular structure is also apparent in proteins. The key structural elements, 
known as motifs, are short sequences of amino acids that convey particular 
functional properties (Bairoch, 1993).
Modularity is determined by growth processes and appears to be reflected in 
the organisation of the genes that are involved. In the genome, functionally 
related genes tend to cluster together in self-contained modules that code 
for particular structures. The best-known examples are the genes that con-
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trol gender, which are concentrated on the X and Y chromosomes. During 
development, genetic modules are turned on and off by controller genes. For 
example, the so-called “eyeless gene” controls the genes that lead to devel-
opment of the eye. Experiments have shown that if it is made inactive, then 
extra eyes can form on the antennae, wings and legs of fruit	flies	(Halder, 
Callerts, & Gehring, 1995). The Hox genes appear to control modules that 
determine the basic body plan of individuals (Cohen, 2001). 
One of the most fundamental forms of modularity is overall body plan. The 
animal designs that exist today all appeared during the Cambrian explosion 
(Gould, 1989). In Arthropods, for instance, the basic design is a head fol-
lowed by a number of segments with legs. The number of segments varies 
from three in insects to dozens in millipedes. 

The.Hierarchy.of.Biological.Taxonomy

Biological taxonomy was created to assist in the identification and categorisa-
tion of organisms. There are between two and ten million species of plants, 
animals, and micro-organisms either known or assumed to exist. Collectively 
these form a complex system, with interactions in the form of evolutionary 
descent. In order to simplify the description of species, taxonomy was intro-
duced in the 18th century by Swedish botanist Karl von Linné. Taxonomists 
divide all living things into categories, or modules, at seven different levels: 
kingdom, phylum, class, order, family, genus, and species. 
Taxonomic hierarchies are really models of evolutionary change. All species 
within a given genus, for instance, are descended from a common ances-
tor. However, “missing links” and other incomplete information make the 
system imperfect. The platypus, for instance, is a fur-bearing, egg-laying, 
duck-billed creature, which caused confusion for early taxonomists because 
its features suggested that it belonged to several different groups (mammals, 
reptiles, birds). 
Plant and animal species consist of reproductively isolated groups of organ-
isms and therefore constitute the basic modules of macroevolution. The 
genetic modules that control body plans define the major phyla. They are 
now essentially fixed: no new animal phyla have appeared since the early 
Cambrian. However, the other levels of taxonomic organisation all mark 
major refinements in animal design.



��   Cornforth & Green

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Modularity.in.Plants

Plants make extensive use of modularity. While animals have a fixed number 
of parts, plants have open-ended development. Leaf morphology displays 
recurring patterns, which are self-similar at different scales (Lindenmayer, 
1968). The fractal nature of plant structure is well known. The sub-lobes of 
many leaves are quite similar in shape to the larger lobes on the same leaf. 
Serrations on sub-lobes are often similar in shape to the large lobes. This self-
similarity is a reflection of the fact that plant growth consists of repetition of 
modules, like a computer program. This process has been described in models 
called Lindenmayer systems (Lindenmayer, 1968). In such models, a simple 
grammar defines transitions between symbols. For example, a symbol for a 
stem may be replaced by a symbol for a stem and two symbols for a leaf. Such 
models show how simple rules can produce structure with self-similarity, and 
they have produced structures strikingly similar to plant forms.
Along the circumference of a growing plant shoot, cells exchange chemical 
messages depending on the gradient of concentration of hormones in the cell. 
Such interactions may be described by differential equations, as in the model 
proposed by the mathematician Alan Turing (1952). The solutions give rise 
to standing waves around the shoot. If the hormone is a growth hormone, 
then parts of the shoot begin to grow faster than other parts. These parts be-
come the new shoots. The number of shoots that arise from the old shoot is 
therefore a number fixed by the parameters of diffusion between cells, and 
the mutual effects of the concentrations.
Plants are so reliant on modular structures that insects have evolved to take 
advantage of them. Some insects are able to induce the formation of galls by 
disturbing the growth sequence of the plants using chemical agents. Galls, 
consisting of stunted leaves, serve as a food source or as protection for insect 
larvae.

Modularity.in.Embryogenesis

The pattern of early growth, or embryogenesis, is the same for nearly every 
vertebrate. The body plan is modular, and these modules can be recognised 
very early in the process. For example, the body plan for all organisms is 
based on bilateral symmetry. The fertilised cell divides many times. At some 
time, a distinction is made between the head and the tail. These are the first 
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modules to develop. Then the nervous system develops, and the other inter-
nal organs. Each cell must become a member of a large collection of cells, 
forming an organ. In single celled organisms, the cell is very complicated, 
as one cell must do everything. In larger organisms, cells can specialise and 
reap the benefits in efficiency. Although each cell contains the full genetic 
code for every function of the organism, it chooses to switch off the majority 
of function in order to concentrate on its chosen function. 
 
Modularity.in.Language

Language has a hierarchical structure. Human speech consists of sentences, 
words, and various parts of speech. These are some of the modules used to 
simplify language. In written language, a book forms a hierarchical struc-
ture, as it is divided into chapters, paragraphs, sentences, words, and letters. 
Words are divided into various categories, such as verbs, nouns, and so on. 
The indigenous Dyirbal people of Australia have four categories of noun, 
one of which has been described as “women, fire, and dangerous things” 
(Lakoff, 1987). It is not necessarily the case that all these things have a 
common feature, but that they are related by links made from experiences 
or from religious beliefs.
As language is so modular, it is not surprising that the equipment to decode 
it is also modular in structure. Neuroscientists have described the brain as 
modular in the sense of being composed of cells and layers of cells to divide 
the processing. There is evidence to suggest that language is the function of 
a specific part of the human brain (Bates, 1994). Modules deal exclusively 
with a particular information type. Such modules include face recognition 
in humans and other primates, echo location in bats, or fly detection in the 
frog. Such modules may be innate (genetically predetermined) or learned 
as a result of interaction with the environment. There is evidence to suggest 
that these modules retain plasticity, so that rewiring is possible in the event 
of damage.
One way to get an insight into the structure of language, and how it may be 
decoded is to attempt to build a machine to understand language. Such ma-
chines are normally constructed by writing a special computer program, and 
supplying the language to the computer as digitised stream of letters or as a 
digitised audio signal. Many examples have shown that the ability of models 
to extract meaning is enhanced by the introduction of modular designs. These 
typically focus on dividing speech into phonemes.
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Modularity.in.Social.Structure

In a social context, modules appear as social groups. The formation of social 
groups depends on the richness of interactions within the group. Primates 
typically form core groups with mean size of 30 to 40 individuals, which 
is maintained through the use of grooming behaviour (Dunbar, 1996). The 
development of language in humans allows us to form larger groups with a 
mean of 100 to 150. In turn, these larger groups allow greater communica-
tion and cohesion through social gossip. The importance of cooperation as 
an evolutionary strategy is well documented.
Patterns of connection and information exchange in society are varied. Some 
individuals, such as community leaders, exert a strong influence upon many 
others. Some sections of society make use of hierarchies, for example in 
organisational structures. For these reasons, a scale-free network is a good 
model of social interactions. 

Modularity.in.Artificial Systems

As modularity is so pervasive in natural systems, it is not surprising that it is 
also very common in artificial systems, since the same issues of complexity 
arise, and modularity is able to provide the same answers in different con-
texts. Although these systems are not self-adaptive, they undergo a process 
of development as technical knowledge and skills increase over time.

Modularity.in.Software.Engineering

As the complexity of programming tasks has risen, the need has grown for 
some way of managing the complex interactions between program instruc-
tions. Modularity has provided that answer for a significant part of the history 
of programming, and more recently has been refined in the object oriented 
paradigm.
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The Language Hierarchy

Modern programming development software is designed to make program-
ming easier, by incorporating modularity into the process. A typical integrated 
development environment (IDE) has features that can create code for a visual 
component such as a button. When the programmer selects a button from a 
range of components, the button is displayed on the screen and skeleton code 
is automatically generated. That code is compiled into assembler code, which 
represents instructions of the microprocessor on which the program will run. 
These primitive instructions describe processes in terms of the movement 
of data between memory and internal registers of the microprocessor, for 
example. Many of these assembler instructions are interpreted by the micro-
processor into the sequence of steps required to perform these operations at 
the level of the electronic circuits in the microprocessor. This is termed the 
micro code. These different levels of code form a hierarchy, starting from 
the instruction by the programmer to create a button, down through several 
levels of code to the actions performed by electronic circuits in terms of high 
and low levels of voltage.

Structured Programming

The earliest programming languages used statements like goto to direct the 
flow of program control. However, as the size and complexity of programs 
increased, this type of flow control led to programs that were error-prone 
and very difficult to read, interpret and debug. The introduction of structured 
techniques was a great advance, as programs could be divided into modules, 
called subprograms, subroutines, procedures, or functions. This allowed 
complex programs to be divided up into manageable chunks, so provid-
ing the programmer with the ability to develop programs of arbitrary size. 
Solutions to large and complex problems could now be built from modules. 
To be successful, this approach requires modules to be small, have a clear 
and simple semantics, and be as independent as possible of the context. The 
key to managing complexity was the limitation of the number and type of 
interactions between modules. The concept of modularity in programming 
has since expanded in several ways.
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The Object-Oriented Paradigm

Several aspects of modularity are highlighted in the application of object-
oriented languages. This paradigm introduces modularity in two different 
contexts, modularity of objects, and modularity of classes. 
The whole-part hierarchy extends the concepts of structured programming by 
considering a program to be composed of a number of interacting objects. The 
object-oriented paradigm increases the control the programmer has over the 
encapsulation of instructions, and adds more control over the encapsulation 
of data also. This is known as information hiding, where the internal design 
of a module is hidden from the outside world. This is, in effect, a way of 
limiting the number of connections between modules. In this way, changes 
in the internal design of the modules have little effect outside that module. 
Information hiding includes the hiding of the internal states, or data, as 
well as the hiding of state transition rules, or the internal algorithms. In this 
paradigm, the solution to a problem is seen in terms of interacting modules, 
called objects. These objects store their internal state in variables, and pos-
sess instructions that are carried out in response to signals from other objects. 
The connections between modules are limited by hiding interval variables, 
and by strongly defining the type of information that may be passed between 
objects in response to signals. Interval variables that are explicitly declared 
as private are invisible from outside the object, and cannot be examined by 
other objects. Internal instructions are divided into modules called methods, 
which are invisible outside the object. Information transfer is limited to data 
that can be transferred to the object when a method is invoked, and returned 
from the object when a method terminates. The type of data must be explicitly 
declared. Figure 3 illustrates these relationships for the structure of a book 
using a UML diagram (Larman, 1998). A Book object is a whole object that 
is composed of various parts, including Frontmatter, Body, and Annexes. In 
turn, the Body of a book is a whole whose parts are the book’s chapters.
A different kind of object network is the Genspec Hierarchy (general/specific). 
This is based on the concept of inheritance, where the design of a class is 
based on another class. A sub class inherits the properties of the super class. 
For example, a Book (Figure 4) is based on a higher-level class called Pub-
lication, from which it inherits the properties: Title, Date, and Publisher. 
Likewise, a Novel is based upon the Book class, from which it inherits the 
properties: Author and ISBN.
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Implications of Object-Oriented Programming

The question of how to choose the breakdown of modules involves two costs. 
The cost of having too many modules rests on the difficulty of interfacing 
all the modules. The cost of having too few modules rest on the difficulty of 
developing large modules, since these may be relatively complex. Modern 
software development methods include a trade-off between these two costs. 
It suggests that a similar trade-off exists in the formation of modular systems 
in nature.
The object-oriented paradigm has permeated programming in recent times. 
This is surely due to its success as a means of simplifying code, allowing 
more efficient code generations and decreasing programming errors. How-
ever, this efficiency comes at the price of a tree structure, which is liable to 
display the problem of brittleness. This can occur when a phenomenon is 
encountered that does not fit into the hierarchy. This problem is often known 
as the Platypus Effect, after the animal of the same name that could not easily 
be fitted into the existing biological taxonomy.

Figure	3.	A	whole-part	UML	class	diagram	for	the	structure	of	a	book
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Modularity.and.the.Internet

The Internet is organized as a hierarchy of domains. Computers within an 
organisation, for instance, all communicate with a gateway hub, which in 
turn exchanges data with a domain controller, and so on. This hierarchy is 
reflected in the Internet Protocol (IP), which assigns unique numbers to each 
computer. So an IP number such as 123.456.789.012 would refer to machine 
012 within domain 789. The advantage of a hierarchy is that provides an 
efficient compromise between total connectivity and path length. No mes-
sage needs to pass through more than six intermediate computers to reach 
its destination. Uniform resource locators (URL), which address item on the 
World Wide Web, achieve the same result for Web pages. 
The computer network has been shown to have a distribution of connection that 
follows a power law: it is a scale-free network (Albert et al., 2000; Barabasi 
et al., 2000). Some computers are highly connected—these are the servers, 
gateways and routers. Others have relatively few connections, sometimes only 
one. Servers are grouped together within organisations, and form modules that 
roughly follow the pattern of organisations. Gateways connect the organisa-

Figure	 4.	 A	Genspec	 class	 hierarchy	 relating	 different	 types	 of	 publica-
tions
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tion level network to the outside world, and these gateways in turn form a 
larger network that may represent a city. Cities are linked by larger capacity 
microwave or cable links. This computer network forms a hierarchy.

Modularity.and.Fault.Tolerance

The interest in living things as analogues for artificial systems has led to the 
consideration of modularity for fault-tolerance. In a living thing, cells can 
become defective and die without harming the existence of the organism. 
Genes that are crucial to the survival of the organism are duplicated in the 
genetic code. Fault tolerance is applied by ensuring an overlapping division 
of labour between different modules, as well as different conditions apply-
ing where possible.
In the previous example, the World Wide Web provides information in a 
distributed fashion. If any one computer fails, it is very likely that the in-
formation is available somewhere else. A critical feature of this system is 
that the servers are geographically distributed, so that they are not subject to 
the same conditions. If a power failure occurs in one place, only the servers 
located there will fail.
The new discipline of Embryonics (Mange, Sipper, Stauffer, & Tempesti, 
2000) promises more fault tolerant machines, which are built from adaptive 
modules. Each module has a specification like a genetic code, and parts of 
this are turned on or off, depending on the required function of the module. 
Modules communicate with their peers to perform some collective task, and 
are able to sense a faulty neighbour and take over its function. If this system 
was in use in robot controllers, for example, any fault could be quickly iso-
lated without human intervention and the corresponding costly shutdown of 
an assembly line could be avoided.

Modularity.in.Manufacturing

Modularisation can be found in manufacturing processes of all kinds, as the 
ability to make complex systems out of simpler parts reduces costs, allows 
easier repair, provides more flexibility of production, and encourages innova-
tion in product development. This is driven by uncertainty in the level of de-
mand, rapidly changing technology, and the increased demand for customized 
products. Modularity is closely related to the use of standards. Manufactured 
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systems are not self-adaptive as some of the preceding examples, as they 
rely on a global design process. Nevertheless, they illustrate the application 
of modularity in robust design and therefore shed some light on modular-
ity as used by natural systems. Modularity in manufacturing arises in three 
contexts: products, processes, and resources.

Product Modularisation

Product modularisation allows products to be assembled from standard, 
common parts. This increases the volume of the standard parts, so reducing 
costs, and also allows quicker design work. For example, the water pump is 
a small, assembled component of a car engine. The same water pump can be 
used on many different engines. Not only does this save production costs, as 
the volume of water pump production is increased, but it simplifies engine 
design. A new engine needs only to conform to the specified interface for the 
water pump. This interface is described in terms of its physical dimensions, its 
capacity for pumping water, and its requirement in terms of input rotational 
energy. As long as the new engine satisfies these specifications, the pump will 
work with the new engine. In this way, assembled components can be shared 
by many different production lines. This reduces the number of different parts 
that have to be manufactured and held in stores, thus reducing complexity of 
the manufacturing process. Product development time and cost is reduced 
by the availability of many modules with well-known properties, which can 
be used as building blocks to assemble a new product. The use of modular 
components also reduces quality problems, as a module can be thoroughly 
tested once, then can be incorporated into many designs.

Process Modularisation

Process modularisation identifies processes that produce standard sub 
components, and other processes that add customisations. Processes can be 
seen as collections, or modules, of operations performed. For example, the 
manufacturing of a motorcar will follow many common processes to build 
the basic car, but these may be followed by customisation processes such 
as installation of air conditioning or central locking. Process modules can 
be re-sequenced so that the processes common to many products are carried 
out first, while the customisation processes are carried out last. The latter 
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processes may even be delayed until specific orders are received. By modu-
larizing processes, the manufacturing can be simplified.

Resource Modularisation

Resource modularisation identifies and exploits modules within resources, 
such as staff and workstations. Production teams are commonly composed 
of a number of people, often with diverse skills, who collectively form a unit 
responsible for certain tasks within the manufacturing process. For example, 
in a factory producing motorcars there may be an engine team, or a wiring 
team. Resources such as workstations may be formed into modules. For 
example, a collection of workstations may form a resource module where 
engine assembly is carried out.

Modularity.in.Electronic.Appliances

Modularity has had a huge impact upon electronic engineering, and has fa-
cilitated the widespread availability of cheap consumer products. At the dawn 
of electronics, designers who wished to construct an electronic appliance 
such as a radio had a number of individual components available to them. 
The design of an appliance meant working from first principles to decide on 
a satisfactory arrangement of these components to make the working radio. 
This was a major effort involving skilled engineers, and consequently took 
time and money. A major innovation in electronics design was the invention 
of the integrated circuit, where a commonly used module was fabricated on 
a single chip. This meant that a substantial part of the finished product could 
be made using these sub-systems, and consequently a large part of the design 
effort could be dispensed with. Engineers were freed from low-level design, 
and so attention could be given to the design of more complex systems.

Modularity and Fault-Finding

The traditional approach to fault finding in electronic circuits is to trace the 
signal until it disappears or goes outside its normal behaviour. This is time 
consuming and requires a highly trained engineer, and specialist equipment. 
The alternative approach is to locate the module containing the fault, and 
replace the whole module. This works by a careful design of modules, which 
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means that each function is associated with a particular module. When the 
fault occurs, the module known to be responsible for that function is replaced. 
Alternatively, modules can be replaced in turn until the fault is rectified. 
This approach allows much quicker and cheaper repairs, and more economic 
manufacturing of the equipment.

Modularity.in.Artificial Complex Adaptive Systems

The recognition of modular structures within the vertebrate brain have inspired 
research into modular neural networks, where part of a problem is solved by 
a small network, then other networks are added an their outputs combined 
in some way. It is necessary to partition the problem into modules, but this 
can be done in some case using clustering algorithms, In other cases, such as 
robot controllers, a hierarchical partition is evident in the form of legs, joints 
etc. Neural network controllers can be developed in modules as each part of 
the mechanism is added to build the robots body. Genetic algorithms can be 
used to optimise the organisation and interactions between modules.
An artificial chemistry is a model composed of molecules and reactions between 
them. They have been used extensively to study the origins of life, including 
self-organisation. They can be used to model the growth and development 
of network structures in evolving complex adaptive systems.
Genetic programming uses a tree based model to evolve computer programs 
or complex rules that form solutions to a problem. The crossover operator is 
able to copy, move or swap whole sub-trees that form modules of code.

Adaptive.Processes.Leading.to.Modularity

The usefulness of modularity prompts the question of how such modularity 
arises, and how it persists. Various adaptive mechanisms contribute to modu-
larity in different contexts. Some of these mechanisms are described next.
Aggregation arises when the autonomous nature of individuals (which tends 
to produce disjunctive behaviour) is overcome by connections that serve to 
homogenise behaviour. This can lead to individuals coming to the same states, 
or updating their states at the same time. Synchrony (see below) is therefore 
a possible mechanism for aggregation. To become modular, the aggregation 
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must produce sub populations within a large population. If all autonomy is 
lost, all of the individuals participate in a homogenous collective, rather than 
forming modules.
For example, in a forest fire, a tree or a small section of forest can be con-
sidered as an individual. The possible states of an individual are unburnt, 
burning, or burnt. Material that is more flammable is likely to change from 
unburnt to burning faster than other material. The different areas that ignite 
also differ in the length of time they will burn, and therefore in their prob-
ability of igniting neighbouring vegetation. This will lead in turn to pockets 
of fire and pockets of unburnt vegetation within the burning forest. These 
pockets are modules that are caused by the interaction between areas of dif-
ferent vegetation.
Segregation arises when external constraints are imposed on a complex sys-
tem, splitting it into parts. This type of modularity is caused by conscious 
design or physical boundaries. An example of conscious design is the design 
of an automobile engine. The interface between engine and gearbox is tightly 
controlled. Minor changes to the engine will not require a redesign of the 
gearbox, even though these modules are intimately connected. The interface 
is fixed, meaning that the connectivity between modules is restricted. Physical 
boundaries play a role in the model of speciation proposed by Charles Darwin 
(1859). He observed that groups of finches become separated due to physical 
barriers such as separate islands. They consequently experienced different 
evolutionary paths, and became distinct species, unable to interbreed. The 
connectivity was reduced by the physical separation, then environmental 
pressures reinforced the new pattern of connections.
Synchrony refers to the extent to which individuals are able to participate in 
shared activities. Such participation can lead to the formation of groups, or 
modules. A recent model of this process shows that modules can form due to 
clustering of elements that are nearly in synchronisation (Cornforth, Green, & 
Newth, 2005). This model uses a modified one-dimensional cellular automata, 
where each cell has its own rate of update, which can be influenced by the 
neighbouring cells (Figure 5a). After some time (Figure 5b), groups of cells 
synchronise and produce discrete bands of different patterns, representing 
modules of cells. This does not happen when all cells are synchronised, as in 
the standard cellular automata model (Figure 5c). In electrical circuits, global 
synchronisation by “crosstalk” is a problem that must be avoided. The abil-
ity to synchronise sub groups of individuals provides a possible mechanism 
for emergent modularity, a type of self-organisation often observed in real 
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life systems, such as ant colonies and other social animals. The strength of 
temporal connections affects the possibility of synchronisation, so in turn 
may determine the maximum size of such systems.
Positive reinforcement is the tendency for an inclination towards some goal 
to produce a stronger tendency in the same direction, either through direct 
or indirect means. An example of this is Hebbian Learning (Hebb, 1949), 
where the synaptic connection between two brain cells that are stimulated 
together is strengthened. This makes it more likely that the same two brain 
cells will be co-stimulated, which further strengthens the connection. The 
phenomenon of positive reinforcement is very common in many natural and 
artificial systems. A further example is Turing’s model of developing shoots, 

Figure	5.	Selected	 images	produced	by	 the	state	activation	of	a	modified	
one-dimensional Cellular Automaton model over time. The cells are organ-
ised as a horizontal row with the two ends connected (to form a loop). Time 
goes vertically downwards. The two possible states of each cell are shown 
as black and white. Cells are initialised with a random state at the start of 
the simulation, at the top of section (a). At a later stage, in section (b), some 
cells have synchronised, producing distinct regions. The image in section 
(c) represents the same model without the ability to synchronise groups of 
cells. This is the standard cellular automata model, where all cells are in 
synchrony. These images were produced using on-line software from VLAB 
(Green,	2006)

(a) (b) (c)
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where the concentration of hormones is eventually maximised in one part of 
the growing shoot (Turing, 1952). In a model of social systems, the connec-
tions between individuals holding similar views were strengthened, leading to 
the rapid polarisation of individuals into two groups (modules), representing 
opposite opinions (Stocker, Cornforth, & Green, 2003).
Co-selection refers to the fact that elements that are “close” in some sense may 
be selected together and therefore after some time these elements may only be 
found together. A good example is the phenomena of gene shuffling, which 
is believed to play a large part in the formation of clusters of genes. During 
reproduction, the genotype is subjected to deletion, copying and insertion 
of random segments of DNA. A recent model of gene shuffling showed that 
gene clustering is inevitable, and that it leads to modules of genes forming 
spontaneously (Green, Newth, Cornforth, & Kirley, 2001). 
Holland (1995) proposed a model for the emergence of modules in complex 
systems. This model included mechanisms by which agents could interact 
with each other via trading, fighting and mating. Agents were described by 
a genetic code that represented rules for their interaction, and were placed 
in an environment where necessary resources were scarce, so must compete 
for these resources. The addition of an adhesion tag to agents allowed them 
to “join forces” to create cartels or modules. The model was able to show the 
spontaneous formation of networks between agents, which excluded other 
agents and so came to resemble communities or artificial ecologies. 

Conclusion

Modules are ubiquitous in both natural and artificial systems. Modules are 
necessary for the development of structures, where some functionality can 
be isolated and protected from change, whilst still allowing other parts of 
a system to evolve. Modules allow design to be simplified, and allow us to 
understand the world by breaking down our perception of it into meaningful 
chunks. Modularity is fundamentally linked with mechanisms of adaptation in 
complex systems. How and why modules form is still the subject of intense 
research, but several mechanisms have been identified, including aggregation 
and segregation, and the role of synchrony and positive reinforcement.
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Chapter.IV

Concept and Definition of 
Complexity

Russell K. Stand�sh, UNSW, Austral�a

Abstract

The term complexity is used informally both as a quality and as a quantity. 
As a quality, complexity has something to do with our ability to understand 
a system or object—we understand simple systems, but not complex ones. 
On another level, complexity is used as a quantity when we talk about some-
thing being more complicated than another. In this chapter, we explore the 
formalisation of both meanings of complexity, which happened during the 
latter half of the twentieth century. 
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Introduction:.Is.Complexity.a.Quality.
or a Quantity?

 
The term complexity has two distinct usages, which may be categorised simply 
as either a quality or a quantity. We often speak of complex systems as being a 
particular class of systems that are difficult to study using traditional analytic 
techniques. We have in mind that biological organisms and ecosystems are 
complex, yet systems like a pendulum, or a lever are simple. Complexity as 
a quality is therefore what makes the systems complex. 
However, we may also speak of complexity as a quantity—with statements 
like a human being being more complex than a nematode worm, for example. 
Under such usage, complex and simple systems form a continuum, charac-
terised by the chosen complexity measure. 
Edmonds (1999) performed a comprehensive survey of complexity measures 
as part of his PhD thesis, however it has not been updated to include mea-
sures proposed since that time. However, it remains the most comprehensive 
resource of complexity measures available to date. 
The aim of this chapter is not to provide a catalogue of complexity measures, 
but rather to select key measures and show how they interrelate with each 
other within an overarching information theoretic framework. 

Complexity.as.a.Quantity

We have an intuitive notion of complexity as a quantity; we often speak of 
something being more or less complex than something else. However, cap-
turing what we mean by complexity in a formal way has proved far more 
difficult, than other more familiar quantities we use, such as length, area, 
and mass. 
In these more conventional cases, the quantities in question prove to be de-
composable in a linear way (i.e., a 5 cm length can be broken into 5 equal 
parts 1 cm long) and they can also be directly compared—a mass can be 
compared with a standard mass by comparing the weights of the two objects 
on a balance. 
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However, complexity is not like that. Cutting an object in half does not leave 
you with two objects having half the complexity overall. Nor can you easily 
compare the complexity of two objects, say an apple and an orange, in the 
same way you can compare their masses. 
The fact that complexity includes a component due to the interactions between 
subsystems rapidly leads to a combinatorial explosion in the computational 
difficulty of using complexity measures that take this into account. Therefore, 
the earliest attempts at deriving a measure simply added up the complexities 
of the subsystems, ignoring the component due to interactions between the 
subsystems. 
The simplest such measure is the number of parts definition. A car is more 
complex than a bicycle because it contains more parts. However, a pile of 
sand contains an enormous number of parts (each grain of sand), yet it is 
not so complex since each grain of sand is conceptually the same, and the 
order of the grains in the pile is not important. Another definition used is 
the number of distinct parts, which partially circumvents this problem. The 
problem with this idea is that a shopping list and a Shakespearian play will 
end up having the same complexity, since it is constructed from the same set 
of parts (the 26 letters of the alphabet—assuming the shopping list includes 
items like zucchini, wax, and quince, of course). An even bigger problem 
is to define precisely what one means by “part.” This is an example of the 
context dependence of complexity, which we will explore further later. 
Bonner (1988) and McShea (1996) have used these (organism size, number 
of cell types) and other proxy complexity measures to analyse complexity 
trends in evolution. They argue that all these measures trend in the same way 
when figures are available for the same organism, hence are indicative of an 
underlying organism complexity value. This approach is of most value when 
analysing trends within a single phylogenetic line, such as the diversification 
of trilobytes. 

Graph.Theoretic.Measures.of.Complexity
 
Since the pile of sand case indicates complexity is not simply the number 
of components making up a system, the relationships between components 
clearly contribute to the overall complexity. One can start by caricaturing the 
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system as a graph—replacing the components by abstract vertices or nodes 
and relationships between nodes by abstract edges or arcs. 
Graph theory (Diestel, 2005) was founded by Euler in the 18th century to 
solve the famous Königsberg bridge problem. However, until the 1950s, only 
simple graphs that could be analysed in toto were considered. Erdös and Ré-
nyi (1959) introduced the concept of a random graph, which allowed one to 
treat large complex graphs statistically. Graphs of various sorts were readily 
recognised in nature, from food webs, personal or business contacts, sexual 
relations, and the Internet amongst others. However, it soon became apparent 
that natural networks often had different statistical properties than general 
random graphs. Watts and Strogatz (1998) introduced the small world model, 
which has sparked a flurry of activity in recent years to measure networks 
such as the Internet, networks of collaborations between scientific authors 
and food webs in ecosystems (Albert & Barabási, 2002). 
Graph theory provides a number of measures that can stand in for complexity. 
The simplest of these is the connectivity of a graph, namely the number of 
edges connecting vertices of the graph. A fully connected graph, however, 
is no more complex than one that is completely unconnected. As connectiv-

Figure 1. Various graph theoretic measures for a simple graph. The spanning 
trees are shown in the dashed box.

nodes = 5
connectivity=6/25
cyclomatic no. = 2
spanning trees=4
height (depth)=2

Spanning Trees
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ity increases from zero, a percolation threshold is reached where the graph 
changes from being mostly discontinuous to mostly continuous. The most 
complex systems tend to lie close to the percolation threshold. Another graph 
measure used is cyclomatic number of a graph, basically the number of in-
dependent loops it contains. The justification for using cyclomatic number 
as a measure of complexity is that feedback loops introduce nonlinearities 
in the system’s behaviour that produce complex behaviour. 
Related to the concept of cyclomatic number is the number of spanning trees 
of the graph. A spanning tree is a subset of the graph that visits all nodes but 
has no loops (i.e., is a tree). A graph made up from several disconnected parts 
has no spanning tree. A tree has exactly one spanning tree. The number of 
spanning trees increases rapidly with the cyclomatic number. 
The height of the flattest spanning tree, or equivalently the maximum number 
of hops separating two nodes on the graph (popularised in the movie six de-
grees of separation—which refers to the maximum number of acquaintances 
connecting any two people in the world) is another useful measure related 
to complexity. Networks having small degrees of separation (so called small 
world networks) tend to support more complex dynamics than networks 
having a large degree of separation. The reason is that any local disturbance 
is propagated a long way through a small world network before dying out, 
giving rise to chaotic dynamics, whereas in the other networks, disturbances 
remain local, leading to simpler linear dynamics. 

Offdiagonal.Complexity.

Recently, Claussen (2007) introduced a complexity measure called offdiagonal 
complexity that is low for regular and randomly connected graphs, but takes 
on extremal values for scale-free graphs, such as typically seen in naturally 
occurring networks like metabolic and foodweb networks, the internet, the 
World Wide Web and citation networks. The apparent ubiquity of the scale-
free property amongst networks we intuitively associate as complex (New-
man, 2003) is the justification for using offdiagonal complexity, the other 
advantage being its computational practicality. 
To compute offdiagonal complexity, start with the adjacency matrix
 
gij = 1  if i and j are connected, gij = 0 otherwise   (1)
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Let i be the node degree of i, and let cmn, m ≤ n, be the number of edges 
between all nodes i and j with node degrees m =  (i), n = (j): 
  

, ( ) , ( )
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The offdiagonal complexity is defined by a Boltzmann-Gibbs entropy-like 
formula over the normalised diagonal sums: 
 

lnn noffdiag
n

c a a= −∑       (4)

For regular lattices, each node has the same link degree, so cmn  is diagonal, 
an = δn0 and Coffdiag=0. 
For random graphs, most edges will connect nodes with similar link degree 
(the characteristic link degree scale), so cmn will have a mostly banded struc-
ture, and an→0 as n increases. This leads to small non-zero values of the 
offdiagonal complexity. 
Scale free networks have a power law distribution of link degree, which 
leads to the cmn matrix having a wide spread of entries. In the case of all an 
being equal, offdiagonal complexity takes its maximum value as equal to 
the number of nodes. 

Information.as.Complexity

The single simplest unifying concept that covers all of the preceding consid-
erations is information. The more information required to specify a system, 
the more complex it is. A sandpile is simple, because the only information 
required is that it is made of sand grains (each considered to be identical, even 
if they aren’t in reality), and the total number of grains in the pile. However, 
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a typical motorcar requires a whole book of blueprints in its specification. 
Information theory began in the work of Shannon (1949), who was concerned 
with the practical problem of ensuring reliable transmission of messages. 
Every possible message has a certain probability of occurring. The less likely 
a message is, the more information it imparts to the listener of that message. 
The precise relationship is given by a logarithm: 
 

2logl p= −         (5)

where p is the probability of the message, and I is the information it contains 
for the listener. The base of the logarithm determines what units information 
is measured in—base 2 means the information is expressed in bits. Base 256 
could be used to express the result in bytes, and is of course equivalent to 
dividing equation (5) by 8. 
Shannon, of course, was not so interested in the semantic content of the 
message (i.e., its meaning), but rather in the task of information transmis-
sion so instead considered a message composed of symbols xi drawn from 
an alphabet A. Each symbol had a certain probability p(xi) of appearing in a 

Figure	2.	Diagram	showing	the	syntactic	and	semantic	spaces.	Two	different	
messages, having meanings A and B, can each be coded in many equivalent 
ways in syntactic space, represented by the sets A and B, The information 
or complexity of the messages is related to the size it occupies in syntactic 
space by formula (5)

 

B 

Message A Message B 

A 

L2 Semantic Layer

B is more complex (or has greater 
information than A, because the 
set B is smaller than A.

L1 Syntactic Layer
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message—consider how the letter “e” is far more probable in English text 
than the letter “q.” These probabilities can be easily measured by examining 
extant texts. A first order approximation to equation (5) is given by: 
 

1

1 2 21
1

) ( ) log  ( )( n i i
i

n
p x p xI x x x

=
≈ ∑      (6)

This equation can be refined by considering possible pairs of letters, then pos-
sible triplets, in the limit converging on the minimum amount of information 
required to be transmitted in order for the message to be reconstructed in its 
original form. That this value may be considerably less that just sending the 
original message in its entirety is the basis of compression algorithms, such as 
those employed by the well-known gzip or PKzip (aka WinZip) programs. 
The issue of semantic content discouraged a lot of people from applying this 
formalism to complexity measures. The problem is that a message written in 
English will mean something to a native English speaker, but be total gib-
berish to someone brought up in the Amazon jungle with no contact with the 
English speaking world. The information content of the message depends on 
exactly who the listener is! Whilst this context dependence appears to make 
the whole enterprise hopeless, it is in fact a feature of all of the measures 
discussed so far. When counting the number of parts in a system, one must 
make a decision as to what exactly constitutes a part, which is invariably 
somewhat subjective, and needs to be decided by consensus or convention 
by the parties involved in the discussion. Think of the problems in trying 
decide whether a group of animals is one species of two, or which genus they 
belong to. The same issue arises with the characterisation of the system by a 
network. When is a relationship considered a graph edge, when often every 
component is connected to every other part in varying degrees. 
However, in many situations, there appears to be an obvious way of parti-
tioning the system, or categorising it. In such a case, where two observers 
agree on the same way of interpreting a system, then they can agree on the 
complexity that system has. If there is no agreement on how to perform this 
categorisation, then complexity is meaningless 
To formalise complexity then, assume as given a classifier system that can 
categorise descriptions into equivalence classes. Clearly, humans are very 
good at this—they’re able to recognise patterns even in almost completely 
random data. Rorschach plots are random ink plots that are interpreted by 
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viewers as a variety of meaningful images. However, a human classifier 
system is not the only possibility. Another is the classification of programs 
executed by a computer by what output they produce. Technically, in these 
discussions, researchers use a universal turing machine (UTM), an abstract 
model of a computer. 
Consider then the set of possible binary strings, which can be fed into a 
UTM U as a program. Some of these programs cause U to produce some 
output then halt. Others will continue executing forever. In principle, it is 
impossible to determine generally if a program will halt or continue on in-
definitely. This is the so called halting problem. Now consider a program 
p that causes the UTM to output a specific string s and then halt. Since the 
UTM halts after a certain number of instructions executed (denoted (p) ) 
the same result is produced by feeding in any string starting with the same   
bits. If the strings have equal chance of being chosen (uniform measure), 
then the proportion of strings starting with the same initial (p) bits is 2- (p). 
This leads to the universal prior distribution over descriptions s, also known 
as the Solomonoff-Levin distribution: 
 

( )

{ : ( ) }
( ) 2 p

pU p s
P s −

=
= ∑        (7)

The complexity (or information content) of the description is given by equa-
tion (5), or simply the logarithm of (7). In the case of an arbitrary classifier 
system, the complexity is given by the negative logarithm of the equivalence 
class size 
 

2 2( ) lim  log   log ( , )
s

C x s N s x
→∞

= −     (8)

where N is the size of the alphabet used to encode the description and ω(s,x)  
is the number of equivalent descriptions having meaning x of size s or less 
(Standish, 2001). 
It turns out that the probability P(s) in equation (7) is dominated by the short-
est program (Li & Vitányi, 1997, Thm 4.3.3), namely 
 

2( ) log ( )K s P s C+ ≤       (9)
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(log2 P(s)<0 naturally) where C is a constant independent of the description 
s. K(s) is the length of the shortest program p that causes U to output s, and 
is called the Kolmogorov complexity or algorithmic complexity. 
An interesting difference between algorithmic complexity, and the general 
complexity based on human observers can be seen by considering the case of 
random strings. Random, as used in algorithmic information theory, means 
that no shorter algorithm can be found to produce a string than simply saying 
“print ...”, where the ... is a literal representation of the string. The algorith-
mic complexity of a random string is high, at least as high as the length of 
the string itself. However, a human observer simply sees a random string as 
a jumble of letters, much the same as any other random string. In this latter 
case, the equivalence class of random strings is very large, close to Ns, so the 
perceived complexity is small. Thus the human classifier defines an example 
of what Gell-Mann calls effective complexity (Gell-Mann, 1994), namely a 
complexity that has a high value for descriptions that are partially compress-
ible by complex schema, but low for random or obviously regular systems. 
A good introduction to information theoretical concepts for complex systems 
studies can be found in Adami (1998). 

Information.Theoretic.Graph.Complexity.

In an attempt to bridge the information theoretic approach to complexity with 
graph theoretical approaches, Standish recently introduced a coding scheme 
for which practical (though still NP-hard) algorithms exist for calculating 
the size of the equivalence class of descriptions (Standish, 2005). The in-
tention is to use this method with networks that have a meaning or function 
attached, such as metabolic networks, or food webs. A randomly constructed 
food web will collapse fairly quickly under ecosystem dynamics to a much 
smaller stable food web, so random or regular networks will tend to have a 
lower complexity value. 
However, when applied to abstract networks, it leads to a perverse result that 
regular networks have the high complexities, and the completely connected 
network has maximal complexity. This effect can be ameliorated by introduc-
ing a compressed complexity measure, which reduces the complexity measure 
of regular networks, and is closer to a Turing complete syntactic language. 
Unfortunately, there is no computationally effective algorithm known for 
calculating this compressed complexity measure. 
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Computational.Complexity.and.Logical.Depth

Algorithmic complexity takes no account of the time required to execute 
the shortest algorithm. An almanac of tide charts and Newton’s equations 
of motion plus law of gravity for the Earth-Moon-Sun system contain the 
same information, yet the almanac contains the information in a more useful 
form for the maritime sailor, as it requires less work to determine when the 
tides occur. Computational complexity and logical depth are two concepts 
designed to address the issue of a description’s value. 
Computational complexity is defined as the execution time of the algorithm. 
Since this is highly dependent on what operations are available to the pro-
cessor, usually only the scaling class of the algorithm is considered as the 
input size is increased. Algorithms may scale polynomially, which means the 
execution time increases as some power of the problem size (t α ns), or may 
scale faster than this (e.g., exponentially: t α ns), in which case they have 
nonpolynomial complexity. The class of polynomial algorithms is called P, 
and the class of nonpolynomial algorithms for which the solution can be 
checked in polynomial time is called NP. It is known that all NP algorithms 
can be transformed into any other by means of a polynomially preproces-
sor, but it is unknown whether or not P=NP (i.e., whether it is possible to 
transform any nonpolynomial algorithm into a polynomial one). This issue 
is of great importance, as certain public key encryption schemes depend on 
nonpolynomial algorithms to ensure the encryption scheme cannot be cracked 
within a practical amount of time. 
Bennett’s logical depth (Bennett, 1988) is the execution time of the most 
highly compressed representation of an object, relative to some reference 
machine. It is meant to be a measure of the value of the object—the almanac 
of tide tables has a high value of logical depth compared with the equations 
of motion that generate it. 
In terms of the observer-based complexity notions introduced in §4, assume 
that the observer has a limited amount of computing resources. Perhaps e is 
only prepared to spend 5 minutes computing the information, and prior to the 
widespread availability of electronic computers this meant that the almanac 
was not equivalent to the equations of motion, since it requires more than 5 
minutes to compute the tidal information from the equations of motion via 
manual paper and pencil techniques. Since the almanac is inequivalent to the 
equations of motion in this context, it is clear that the almanac has greater 
complexity in this context. 
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Occam’s.Razor

The practice of preferring a simpler theory over a more complex one when 
both fit the observed evidence is called Occam’s Razor, after William de 
Occam: 

Entities should not be multiplied unnecessarily. 

What is not widely appreciated, is that this strategy is remarkably success-
ful at picking better theories. Often, when tested against further empirical 
evidence, the simpler theory prevails over the more complex. A classical 
example of this sort of thing is Einstein’s General Theory of Relativity. The 
key field equations of general relativity are really quite simple: 
 

8G T=         (10)

Of course unraveling what these equations means for a specific instance in-
volves a nontrivial amount of 4-dimensional tensor calculus, so the general 
relativity computations have high logical depth. Einstein proposed the equa-
tions in this form because they seemed the most “beautiful”: there were a 
large number of alternative formulations that fitted the data at the time. One 
by one, these alternative formulations were tested empirically as technology 
developed through the 20th century, and found wanting. 
However, by what criteria is a particular theory more simple than another. 
Goodman (1972) developed a theory of simplicity to put the practice of 
Occam’s Razor on a more rigorous footing. His idea was to formalise the 
theories into formal logic predicates, and then count the number of primitive 
clauses required to encode the theory. 
Solomonoff (1964) developed the concept of algorithmic information com-
plexity in the 1960s as a way of explaining why Occam’s razor works. He 
considered the set of all possible descriptions and computed the probability 
distribution that a particular description would be generated by a program 
picked at random by the reference machine. His work had some technical 
problems that were solved by Levin (1974), which led to the universal prior 
distribution (7). Basically, simple descriptions have a much higher probability 
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than more complex ones, thus Occam’s razor. The same behaviour is true of 
the arbitrary classifier system at equation (8) (Standish, 2004). 
While the world is expected to be remarkably simple by the previous argu-
ments, it is also logically very deep (1010 years of runtime so far!). This appears 
to be the result of another poorly understood principle called the Anthropic 
Principle. The Anthropic Principle states that the world must be consistent 
with our existence as intelligent, reasoning beings (Barrow & Tipler, 1986). 
So while Occam’s razor says we should live in the simplest of universes, 
the Anthropic Principle says it shouldn’t be too simple, as a certain level of 
complexity is required for intelligent life. The simplest means of generating 
this level of complexity is by accruing random mutations, and selecting for 
functional competence (i.e., Darwinian evolution). 

Complexity.as.a.Quality:.Emergence

It is often thought that complex systems are a separate category of systems 
to simple systems. So what is it that distinguishes a complex system, such 
as a living organism, or an economy, from a simple system, such as a pair 
of pliers? This question is related to the notorious question of What is Life?, 
however may have a simpler answer, since not all complex systems are liv-
ing, or even associated with living systems. 
Consider the concept of emergence (Fromm, 2004; Holland, 1997). We in-
tuitively recognise emergence as patterns arising out of the interactions of 
the components in a system, but not implicit in the components themselves. 
Examples include the formation of hurricanes from pressure gradients in the 
atmosphere, crashes in stock markets, flocking behaviour of many types of 
animals and of course, life itself. 
Let us consider a couple of simple illustrative examples that are well known 
and understood. The first is the ideal gas, a model gas made up of large num-
bers of non-interacting point particles obeying Newton’s laws of motion. A 
thermodynamic description of the gas is obtained by averaging: 

temperature.(T).
 is the average kinetic energy of the particles; 
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pressure.(P) 
 is the average force applied to a unit area of the boundary by the particles 

colliding with it; 
density.( ).
 is the average mass of particles in a unit volume; 

The ideal gas law is simply a reflection of the underlying laws of motion, 
averaged over all the particles: 
 
P  α T         (11)

The thermodynamic state is characterised by the two parameters T and .. The 
so-called first	law	of	thermodynamics is simply a statement of conservation 
of energy and matter, in average form. 
An entirely different quantity enters the picture in the form of entropy. 
Consider discretising the underlying phase-space into cubes of size hN, (N 
being the number of particles) and then counting the number of such cubes 
having temperature T and density , ω (T, , N ). The entropy of the system 
is given by 
 

( , , ) ln ( , , )BS T N k T N=      (12)

where kB is a conversion constant that expresses entropy in units of Joules 
per Kelvin. One can immediately see the connection between complexity 
(eq. 8) and entropy. Readers familiar with quantum mechanics will recognise 
h as being an analogue of Planck’s constant. However, the ideal gas is not a 
quantum system, and as h → 0, entropy diverges! However, it turns out that 
in the thermodynamic limit (N → ∞), the average entropy S/N is independent 
of the size of h. 
The second law of thermodynamics is a recognition of the fact that the sys-
tem is more likely to move a state occupying a larger region of phase space, 
than a smaller region of phase space, namely that ω (T, , N ) must increase 
in time. Correspondingly entropy must also increase (or remain constant) 
over time. This is a probabilistic statement that only becomes exact in the 
thermodynamic limit. At the syntactic, or specification level of description 
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(i.e., Newton’s laws of motion), the system is perfectly reversible (we can 
recover the system’s initial state by merely reversing the velocities of all the 
particles), yet at the semantic (thermodynamic) level, the system is irrevers-
ible (entropy can only increase, never decrease). 
The property of irreversibility is an emergent property of the ideal gas, as 
it is not entailed by the underlying specification. It comes about because 
of the additional identification of thermodynamic states, namely the set of 
all micro-states possessing the same temperature and density. This is extra 
information, which in turn entails the second law. 
The second example I’d like to raise (but not analyse in such great depth) is 
the well known Game of Life introduced by Conway (1982). This is a cel-
lular automaton (Wolfram, 1984), in this case, a 2D grid of cells where each 
cell can be one of two states. Dynamics on the system is imposed by the rule 
that the state of a cell depends on the values of its immediate neighbours at 
the previous time step. 
Upon running the Game of Life, one immediately recognises a huge bestiary 
of emergent objects, such as blocks, blinkers, and gliders. Take gliders for 
example. This is a pattern that moves diagonally through the grid. The human 
observer recognises this pattern, and can use it to predict the behaviour of 
the system with less effort than simulating the full cellular automaton. It is a 
model of the system. However, the concept of a glider is not entailed by the 
cellular automaton specification, which contains only states and transition 
rules. It requires the additional identification of a pattern by the observer. 
This leads to a general formulation of emergence (Standish, 2001). Consider 
a system specified in a language L1, which can be called the specification, or 
syntactic layer (see Figure 2). If one accepts the principle of reduction, all 
systems can ultimately be specified the common language of the theoreti-
cal physics of elementary particles. However, an often believed corollary 
of reduction is that this specification encodes all there is to know about the 
system. The previous two examples shows this corollary to be manifestly 
false. Many systems exhibit one or more good models, in another language 
L2, which can be called the semantic layer. The system’s specification does 
not entail completely the behaviour of the semantic model, since the latter 
also depends on specific identifications made by the observer. In such a case, 
we say that properties of the semantic model is emergent with respect to the 
syntactic specification. 
The concept of “good” model deserves further discussion. In our previous 
two examples, neither the thermodynamic model, nor the glider model can be 
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said to perfectly capture the behaviour of the system. For example, the second 
law of thermodynamics only holds in the thermodynamic limit—entropy 
may occasionally decrease in finite sized systems. A model based on gliders 
cannot predict what happens when two gliders collide. However, in both of 
these cases, the semantic model is cheap to evaluate, relative to simulating 
the full system specification. This makes the model “good” or “useful” to 
the observer. We don’t prescribe here exactly how to generate good models 
here, but simply note that in all cases of recognised emergence, the observer 
has defined a least one semantic and one syntactic model of the system, and 
that these models are fundamentally incommensurate. Systems exhibiting 
emergence in this precise sense can be called complex. 
A school of thought founded by Rosen holds that complex systems cannot 
be described by a single best model as reductionists would assume, but 
rather has a whole collection of models that in the limit collectively describe 
the system (Rosen, 1991). That such systems exist, at least formally, is as-
sured by Gödel’s incompleteness theorem (Hofstadter, 1979), which shows 
that number theory is just such a system that cannot be captured by a finite 
specification. He further argues mechanical systems (those that have a finite 
specification such as the examples I have previously given) can never be 
complex, since the specification contains all there is to know about the sys-
tem. However, he implicitly assumes that all models must be perfect (i.e., 
in perfect correspondence with the underlying system), rather than merely 
good as I do here. This constitutes a straw man argument, and leads him to 
the false conclusion that mechanical systems (e.g., computer simulations) 
can never exhibit emergence. The two examples previously presented, which 
are perfectly good mechanical systems, are counter-examples to this claim. 
Furthermore, the definition of complex systems presented here is known 
to be non-empty, a fact not known of Rosen’s definition since no physical 
counterpart to Gödel’s incompleteness theorem is known. 

Conclusion

When connoting a quality, complexity of a system refers to the presence 
of emergence in the system, or the exhibition of behaviour not specified in 
the systems specification. When connoting a quality, complexity refers to 
the amount of information needed to specify the system. Both notions are 
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inherently observer or context dependent, which has lead to a disparate col-
lection of formalisations for the term, and has lead to some despairing of the 
concept being adequately formalised. This would be a mistake, as within a 
given application, the meaning can be well defined. 
An additional difficulty is the combinatorial size of the underlying syntactic 
space, which can lead to the intractability of computing complexity. Further-
more, the details of the syntactic layer may be inaccessible, for example the 
absence of historical genetic data in the study of evolution from the fossil 
record. So being able to establish easy to measure proxies for complexity is 
often important, and many proposals for complexity are of this nature. 
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Key.Terms.

Algorithmic.Complexity: Length of shortest program capable of generating 
the description (also known as Kolmogorov complexity). 

Anthropic.Principle: The statement that the properties of the universe must 
be such as to permit our existence as human observers. 

Cellular.Automaton: A grid of cells, each of which can be in a finite number 
of states. The states of each cell depend only on the states of a neighbour-
hood of cells at the previous timestep, known as a transition rule. 

Church-Turing.Thesis:.The proposition that all computable functions can 
be computed on a Turing machine. 

Classifier System: A system that classifies a set of objects into a discrete set of 
classes. Formally equivalent to a map into the set of whole numbers. 

Complexity.(Quality):.The quality of possessing emergent properties. 
Complexity. (Quantity): The amount of information a particular system 

represents to the observer. 
Computational.Complexity:.The computational cost of executing an al-

gorithm. 
Emergence:.The phenomenon of emergent properties. 
Emergent.Properties:.Properties of a system at the semantic level that are 

not entailed at the syntactic level. 
Entail:.To logically imply something. 
Entropy: Logarithm of number of syntactic states equivalent to a given 

semantic state. It is related to information (I) by S+I=Smax where Smax is 
the maximum possible entropy of the system. 

Equivalence.Class: A set of objects that are equivalent under some mapping, 
i.e., { : ( ) ( ')} 'x e x e x x= ∃ .

Game.of.Life: A well known cellular automaton, with two states per cell, 
and a particular transition rule. 
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Graph.Theory: Mathematical theory of objects consisting of atomic nodes 
linked by connections called edges. 

Gödel.Incompleteness.Theorem: No finite set of axioms can prove all pos-
sible true theorems of number theory. 

Information:.The amount of meaning in any description; formally given 
as the logarithm of the proportion of syntactic space occupied by the 
description. 

Link.Degree:.The number of edges a node has in a graph. 
Logical.Depth:.Execution time of the most compressed representation of 

an object. 
Newton’s.Laws.of.Motion:.Laws of ideal point particles: the acceleration 

a particle experiences is proportional to the force acting on it, which 
is a function of the positions and velocities of the particle and the en-
vironment. 

Occam’s.Razor: A statement of the practice of preferring a simpler theory 
over a more complex one. 

Scale.Free: A scale free distribution has infinite mean. A power law dis-
tribution is a common scale free distribution. A scale free process is a 
stochastic process obeying a scale free distribution. 

Second.Law.of.Thermodynamics: Entropy can only increase, or remain 
constant in a closed system; it can never decrease. 

Semantic.Level.(or.Space):.The space of meanings for any description. 
Syntactic.Level.(or.Space): The language in which a description is speci-

fied: letters of the alphabet, genetic code, laws of theoretical physics, 
as appropriate. 

Turing.Machine: A formal model of a computation. 
Universal.Turing.Machine: A formal model of a computer. Is capable is 

simulating any Turing Machine with appropriate input. 



Section III

Computing Perspectives
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Chapter.V

Emergence.of.Creativity:
A.Simulation.Approach

Hrafn Thorr� Thór�sson, Reykjavík Un�vers�ty, Iceland

Abstract

This chapter presents a theory of natural creativity and its relation to cer-
tain features of intelligence and cognitive faculties. To test the theory we 
employ simulated worlds of varying complexity, inhabited by creatures with 
a genetically-evolving mental model. Plan-making strategies are compared 
between creatures in each of these worlds. The results show that creative 
behaviors are governed by the world’s structural coherence and complex-
ity.	In	light	of	the	results	we	present	a	new	definition	of	creativity,	propose	a	
theory for why creativity evolves in nature, and discuss creativity’s relation 
to perception, goals, logic, understanding, and imagination. Creativity has 
been	a	difficult	concept	to	define	and	its	exact	relationship	with	intelligence	
remains to be explained. The theoretical framework presented is proposed 
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as a foundation and tool for furthering understanding of natural creativity 
and	to	help	develop	creative	artificially	intelligent	systems.

Introduction

Creativity is an important capability of humans. It gives us power beyond 
the reach of any other intelligent system known and separates us from the 
rest of the animal kingdom. Through creativity, the human race has learned 
to build complex technology far beyond that of any other species on this 
planet (Figure 1). Although creativity is an enormously important aspect 
of our existence, few artificial intelligence (A.I.) studies have been directly 
aimed at understanding the general underlying structure, or nature, of creativ-

Figure 1. Architectural constructs are perhaps not considered prime examples 
of creative output, yet are based on numerous creative insights without which 
they would not exist. Compared to some of the structures considered very 
creative in the animal kingdom, such as bird nests or ant-hills,  the difference 
of  creative capacity is obvious.
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ity. The emphasis in A.I. studies has so far mainly been on building logical 
systems and it seems that creativity has for the most part been considered a 
side-product of logic.
Often associated with genious, creativity has thus been a highly visible part 
of human civilization—creative individuals set new standards and goals for 
humanity by pioneering physical constructions and scientific concepts. Al-
though prime examples of creativity are generally extraordinary, it is quite 
obvious that creativity is also at work when it comes to the more mundane, 
such as plumbing, planning the route to your workplace, or finding a way to 
pour coffee when one hand is holding a telephone and the other a cat. Any 
plan to manipulate our environment or fulfill our goals is created in accor-
dance to specific circumstances, whether the plan is to portray a woman on 
canvas or avoid spilling your coffee on your cat. 
Creativity affects many features of intelligence (particularly in humans), 
making it very difficult to formally define as a concept; one cannot say that 
creativity is defined only by the novelty of the phenomena it produces, for it 
must be logical to some extent as well; randomness is generally not considered 
creative. It is also subtly erroneous to state that something is creative if it is 
novel and logical—because the logicality of a novel act is closely tied with 
that of the goal it belongs to, and thus an act can be extremely creative and 
logical within the confines of its goal’s illogicality. To complicate things even 
more, intentionality of a creative act is a determining factor of its validity—we 
wouldn’t normally perceive a person as creative if a certain action of theirs 
had led to a coincidental discovery of a new scientific concept (although such 
events may of course occasionally happen).
In light of the vast spectrum of human creative capabilities, noteworthy at-
tempts at computational replication are often governed by an anthropocentric 
viewpoint, pushing research away from associating creativity with that of 
less capable animals that might provide us with a better understanding of 
the innate nature of its underlying mechanisms. An overemphasis on human 
capabilities may well be partially to blame for the fact that a wholesome 
definition and explanation of creativity has not yet reached a general con-
sensus. In this chapter, we introduce a new simulation model consisting of 
virtual creatures within emergent environments and propose new methods 
with which we can begin exploring how creativity can be defined and identi-
fied in simpler animals.
The chapter is organized as follows: We begin by reviewing the background 
of creativity studies in various scientific disciplines. We then state our hy-
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potheses in more detail and describe a simulation framework created for 
exploring how creativity exhibits itself in agents evolving within emergent 
environments. Then we describe an experiment based on the platform, and 
discuss the results. After which we discuss the theory in detail, in light of the 
experimental results and concepts of emergence, providing a new definition 
of creativity. We end the chapter with future research possibilities.

Background

Although some progress has clearly been made in research on creativity over 
the last 20 years, the concept has remained extremely hard to define and un-
derstand. By 1988, over 50 different definitions of creativity had already been 
proposed (Taylor, 1988). A common thread among many of them is a primary 
distinction between creativity displayed in an artifact (evaluated by society), 
and processes that might result in a creative product (Gero, 1996), or artifact 
(e.g., poems, paintings, architecture, music). The characteristics of creative 
artifacts are generally considered to be (1) novelty, (2) unconventionality or 
unexpectedness, and (3) value of the product (value to whom remains un-
defined). These have often been the pillars from which creative artifacts are 
evaluated (Boden, 2004; Gero, 1996; Liu, 1996; Wiggins, 2006). However, 
there exist no empirical evaluation methods for creativity or creative prod-
ucts, exploring processes by identification of the resulting products remains 
difficult. Another common view of human creativity is seeing it as merely a 
recombination of old ideas, which deserves special attention here. The idea 
has received significant opposition, especially in that it does not capture the 
entire spectrum of human creativity. Boden (1995) has argued that: 

“Creative	‘novelties’	are	of	significantly	different	types—the	most	interesting	
of which lie beyond combination-theory. Many creative ideas are surprising 
not because they involve some unusual mix of familiar ideas, but in a deeper 
way. They concern novel ideas which not only did not happen before, but 
which—in a sense that must be made clear (and which combination-theory 
cannot	express)—could	not	have	happened	before”	(p.	124).	
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Moreover, combination-theorists do not explain how novel combinations come 
about in the first place. While recombinations can contribute to creativity, 
there is more to the story.
Creativity affects behavior to such a high degree that it’s been hard to discern 
the differences and correlations of creativity and intelligence. Runco’s (2004) 
review of creativity research covering the past 20 years mentions many pro-
cesses studied in cognitive sciences that relate to creativity: 

“Basic cognitive processes that have been studied include memory (Pollert, 
Feldhusen,	Van	Mondfrans,	&	Treffinger,	1969),	attention	 (Martindale	&	
Greenough,	1973),	and	knowledge	(Mumford,	Mobley,	Uhlman,	Palmon,	&	
Doares, 1991, Rubenson & Runco 1995). Cognitive research has also focused 
on	tactics,	strategies,	metacognition	(Adams,	1980,	Root-Bernstein,	1988,	
Runco,	1999c),	and	intellectual	skills	...”	(p.	667).

Considering the high number of cognitive features that creativity has been 
associated with, it has been suggested—and indeed seems likely—that 
creativity is not a specific mechanism of the brain but rather an aspect of 
human intelligence in general (Boden, 2004)..Humans are extremely com-
plicated machines, and admittedly more so than other animals. However, 
if creativity is tightly coupled with intelligence it must be considered that 
creativity is also evident in the intelligence of simpler animals and that the 
tendency to associate creativity with (extraordinary) human abilities may 
have been overemphasized. Crows have exhibited an ability to bend strings 
of wire into various shapes to use as tools for retrieving food from places 
that are difficult to get to (Weir & Kacelnik, 2006). Research indicates that 
this ability is not coincidental, and that the crows did not solve problems by 
repeating previously learned actions, but by generating new plans to solve 
each specific problem. We can assume, if creativity is a phenomenon evident 
in all intelligences, that its evolutionary roots are tightly related to planning 
mechanisms (e.g., as used by the crow to retrieve food). All non-reactive 
animals have some mechanisms for dynamic planning, and as such it could 
be that creativity shares common evolutionary roots in all animals (we’ll 
come back to this issue later).
Some attempts have been made to explain the origins of creativity in terms 
of evolution (most of which are presented in relation to human creativity), 
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and it has been suggested that exploring creativity’s evolutionary roots might 
give us a holistic picture of how and why it emerges in relation to other 
processes (Gabora, 2005; Thórisson, 2004). Carruthers (2002) has proposed 
that the function of the extensive creative play of children, also evident in 
the behavior of other mammalians where the young engage in pretend-play 
such as hunting and fighting, is to train the young in imaginative thinking 
for use in adult activities. Again, we see attempts to explain creativity in the 
context of mammals. If we could study creativity in simpler animals, even 
such as insects, perhaps the pursuit would become easier. 
Despite simple nervous systems, insects apply different strategies to identify 
landmarks, detect objects, and plan courses of action. They are not mere 
reflex machines, but use memory, evaluation, and perceptual mechanisms, 
including the detection of geometric shapes and route-segmentation, to 
function in their environment depending on previous experience (Collet & 
Collet, 2002; Giurfa & Menzel, 1997). Some might find it difficult to envi-
sion that creativity has anything to do with insects and as such there have 
been no attempts to shed light on creativity in terms of simpler animals than 
mammals. However, exploring the general concept of cognition in animals 
lower in the phylogenetic tree has gained some attention in recent years (van 
Duijn, Keijzer, & Franken, 2004). Godfrey-Smith (2001) recently proposed 
that cognition evolved to cope with environmental complexity and Maturana 
and Varela (1973) introduced theories of the origins of cognition with the 
concept of autopoiesis; a network of component-processes that perpetually 
generate themselves. Autopoiesis provides support for theory proposed in 
this chapter, and is discussed in more detail later. 
Exploring cognitive mechanisms in animals, especially insects, is hard because 
they cannot tell us what they are thinking. Complex processes of intelligence 
cannot be readily explored in natural animals and neither can the evolution 
of the mechanisms involved. The methods offered by artificial intelligence 
present optional approaches to gaining a detailed understanding of intel-
ligence (Thórisson, 2004). An added benefit of such research is (sometimes 
unexpected) practical uses of the resulting technologies for various purposes. 
But creating simulated environments and organisms with sufficient realism to 
be considered valid is no simple task. The environment and organisms must 
capture realistic features essential to the specific questions studied without 
excluding possible contributing factors, which are present in the correspond-
ing natural systems.
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Cellular automata (CA) are discrete, dynamical systems, which have been 
used frequently in research on artificial life (ALife), in which the emergent 
organization of the cells themselves result in agent-like behavior. The works 
of Antony, Salzberg, and Sayama (1998, 2004) are good examples of these 
kinds of artificial life simulations. The lifeforms which emerge are primi-
tive—allowing a very limited spectrum of association with higher functioning 
organisms. This is because most approaches limit the whole system to a CA 
framework, explicit rules governing everything. In CA-based ALife research, 
the term “agent” generally used to refer to a cell encompassing complex 
internal processing. The interactions of such cells constitute multi-agent 
simulations. The model presented in this chapter must not be confused with 
such ALife experiments, as it consists of preprogrammed agents modeled 
after natural insects, and uses cellular automata only to produce landscape 
with emergent properties. While CA-based ALife simulations are mainly 
concerned with investigating the emergent behavior of interacting agents, we 
are exploring notions of how emergent environments affect creative aspects 
of intelligence on onto- and phylogenetic levels.

A.Simulation.Approach.to.Analyzing.Creativity

The primary hypotheses of interest here are that the evolution of creativity 
mechanisms are directly related to the complexity/diversity of emergent 
environments, and that the underlying mechanisms of creative behavior are 
essentially the same in all creatures, despite the obvious human advantages 
mentioned above. We propose the theory that creativity is evolution’s answer 
to perceptually apparent unpredictability. This is different from some hypo-
thetical or “actual” unpredictability—the discussion here revolves around 
unpredictability from the standpoint of the creature.

H1:  An increase in environmental diversity will result in a larger set of 
distinct behavioral patterns (plans).

H2:  If the world is too complex, there will be no persistent structure evident 
in the composition of plans. Creative capabilities of all creatures are 
bound by rules inherent in the environment where they evolve.
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More precisely, the previous hypotheses depend on (a) the number of indi-
vidual components in the environment and their interactions, (b) the creatures’ 
ability to perceive their environment, and (c) the creatures’ set of operators 
which can be applied to modify their behavioral pattern (in particular, to 
make plans).
Creatures inhabiting a simple, closed, and static world would tend to evolve 
to become completely robotic due to predictability of the environment; if an 
environment is very simple the cognitive system of the creatures require little 
effort to survive. In a complex world, where events in the environment are 
not evident entirely by observation of the current situation, evolution must 
provide organisms with a mechanism to predict in uncertain situations. With 
the increase of interacting components in the environment, more complex 
cognitive efforts are thus required to produce and assess reactions to the 
current situation. 
Earth’s environment is governed by rules that can be traced down to a sub-
atomic level, resulting in its emerging attributes such as land and sea, water 
circulation, and ecosystems. As creatures evolve in worlds governed by these 
rules, their plan-making mechanisms come to reflect them. If a particular world 
should on the other hand be random-based, a creature’s planning ability might 
produce more diversity, but there would be no logic as to when or where the 
plans are applied. This makes it important to measure the complexity of the 
world in addition to the diversity of the creatures. 
We propose to measure the structural complexity by the use of cellular au-
tomata where, through simple interacting rules, complex overall behavior 
emerges (see World). The fact that there are general rules in the environment, 
many of which are independent of (perceived) scale, indirectly lends support 
for the proposed hypotheses.
Creativity’s roots, according to this line of thought, derive from interactions 
between the environmental structures: If the interactions of these structures are 
not obvious (to the organism), perceivable, and very repetitive, creatures must 
evolve an ability to internally represent and link unobvious causations—thus 
providing them with greater capabilities to produce diverse behavior in response 
to the diversity of the environment. Another reason for such a requirement 
is that visual cues may appear once it is too late for the creatures to react, 
supporting the evolution of a mechanism capable of predicting possible sce-
narios before they actually occur (imagination). Cognitive mechanisms must 
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therefore be adept at predicting the environment—and in parallel keeping 
plans created for survival logical and relative to those predictions.
We will now describe a framework and an experiment created for exploring 
the hypotheses. Then we will explore their deeper theoretical support.

Simulation.Framework

In the present framework the creatures are still at the evolutionary stage of 
relative reactiveness—they depend solely on visual cues in the environment 
to initiate a plan. However, the plans themselves directly serve as a prediction 
of the environment and are sufficient to produce results which support or 
refute the main hypotheses. The framework rests on the theory that creativity 
is a product of certain environmental characteristics that manifest themselves 
in organisms as they evolve in that environment. It purports that creativity is 
evolution’s answer to a perceptually apparent unpredictability of emergent 
environments (H1), and that creativity and logic co-evolve as imposed by 
the causal-relationship between levels of organization in emergent structures 
(H2). To explore these notions through means of computer simulations, we 
have devised a program for simulated worlds that exhibit emergent proper-
ties, and creatures that are able to sense and act in these worlds. The world is 
composed of cellular automata, the creatures of genetically-controlled cogni-
tive faculties (Thórisson, 2004). Each individual creature learns and exhibits 
intelligent behavior during its lifespan with the use of primitive associative 
memory, pattern recognition, and planning. Thus, evolution does not effect 
the creation of plans directly, but modifies the wiring of the creatures’ learning 
mechanism, who in turn dictates which methods are used to generate plans. 
Let us emphasize that evolution is perturbing a single mental model1, not 
constructing new ones. This is important as we’re not attempting to evolve 
new mental components but observing how evolution makes use of readily 
available components, depending on different environmental contexts. The 
simulation is turn-based (updates once for every 50 steps of the creature). 
The creatures are run one at a time to simplify the simulation2.
As we argue that creativity is an aspect of intelligence in general (Boden, 
2004), in context with the environment in which the intelligence operates, it 
can not be measured explicitly at this point. Rather, we observe what types 
of behavior the creatures exhibit, how they contribute to our perception of 
creativity, and what kind of mechanisms are used to produce them. The 
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observation provides support for our explanation and new definition of cre-
ativity, independent of any particular cognitive mechanism (see theoretical 
discussion).

The World

Cellular automata (cf. Wolfram, 2002) have frequently been used in artificial 
life (ALife) research where the cells are programmed to organize themselves 
to form patterns which behave like creatures (Antony et. al, 1998). The world 
in our framework is a classical cellular automaton with cells made to represent 
physical phenomena such as rocks, earth, and grass (see screenshots later 
in this section). This approach differs from other work on cellular automata 
in that the creatures that inhabit the world are separate entities with prepro-
grammed cognitive systems (they are not cells), and interact with the world’s 
cells via perception and motor abilities.
Cellular automata was chosen because of its similarities with natural envi-
ronment emergence, and because of the ease of quantifying environmental 
complexity. As discussed earlier, the Earth’s environment is composed of 
emergent structures produced by the interactions of its constituent subcompo-
nents. This effect is captured by cellular automata as the interactions of cells 
results in emergent structures in a similar manner. Very complex behavior 
can be produced by the use of simple rules such as those used in this experi-
ment while at the same time keeping the world logical in terms of general 
behavior since the state of an individual cell is dependent on its own state 
and/or surrounding neighbors.
The cellular automata worlds in this experiment are 2D, 100x100 squares 
wrapped around to form an infinite plane with a repeating pattern; if a creature 
walks off the edge of the screen, it enters the world again on the opposing 
side. In the complex dynamic world used in this experiment, the cells in the 
simulation are dependent upon 25 of their surrounding cells. Each time the 
world updates, every one of the 10,000 cells looks at the 25 surrounding 
neighbors and calculate their next state according to given rules—resulting 
in 250,000 cell checks each time the world turns. The world is set to step 
at 1/50 steps of the creatures. By varying the rules and number of different 
kinds of cells, the diversity of the environment can easily be measured since 
the variation of cells and the number of their rules constitute the worlds 
complexity/diversity. The rules are not sensitive to neighbor positions, only 
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quantity and lifetime. Adding rules to the components of the world increases 
the dynamism of the simulation, but this must not be confused with increased 
speed or, alternately, less time to think for the creatures: The simulation is 
turn-based (updates once for every 50 steps of the creature), and as such, 
increasing dynamism of the environment only results in the environmental 
structures becoming more varied and complex. Cognition is always allowed 
to run its full course before the next turn.
The world’s complexity is quantified by counting the number of component 
types (cell types) and the number of rules these components abide. Complex-
ity measurement is defined as:

Qc = Pi * C

where C represents the number of component types perceivable by the creatures 
and Pi represents the number of rules pertaining to these cells. A rule is defined 
as any rule or set of rules that causes a state transition for a cell under some 
condition or conditions. This can be taken as an approximate estimate of the 
complexity of a world because each rule represents a potential for structural 
change. While this method can certainly be improved upon, it provides us 
with an indication of the potential complexity of the environment.

Creatures

The artificial species should be designed to bear a resemblance to natural 
insects found on earth, this information is based on the research of Collet 
et al. (2002). The simulation of insect memory and navigational abilities 
has been tried successfully using a physical LEGO robot (Chan & Wyeth, 
1999) and other physical robots (Möller, 2000). The methods are similar to 
those employed in this framework: Insects use image matching to associate 
visual cues with actions to navigate to and from nest and food sources3. The 
method for associative learning and cognitive apparatus used here is a sim-
plified version of the one applied in the LEGO robot (see perception cortex 
and episodic memory).
We assume that the physical properties of our artificial cognitive system 
have already evolved to an insect-like state, having primitive memory and 
perceptual abilities, along with a system for the creature to be “aware” of 
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the consequences of its actions (loss or gain of energy after execution). The 
creatures’ cognitive system is divided into several parts, their physical body 
comprising a (a) vision system, (b) mobility, (c) a mouth for feeding, and 
finally a (d) mental apparatus for interpreting visual information and generate 
plans. The cognitive system’s components are depicted in Figure 2. The visual 
information allows them to form memories, which then serves as the basis of 
forming repeatable plans that enable them to interact with their environment. 
The plans are composed of primitive actions, such as go-forward, turn-left, 
turn-right, and eat (see details in Plan Composer). The creatures have a single 
goal: To survive as long as possible by finding, recognizing and consuming 
food and passing their genes on to their offspring. In our simulation, green 
cells (grass) provide the creature with energy if eaten. Eating brown cells has 
no effect, and eating gray cells causes a reduction of energy. Only the fittest 
creatures, those that survive the longest in each generation, are allowed to 
reproduce. Inheritance of cognitive mechanisms is achieved using simple 
genetic algorithms. The genes (see Control Network) of a new individual are 
mutated at birth to produce diversity in each successive generation.
We will now continue with a detailed description of each part of the artificial 
creatures’ cognitive system.

Perception Cortex

The perception cortex deciphers visual information in the form of quantities 
of colors and registers which part of the visual field a dominant color is if 

 

Figure	2.	The	perception-action-loop	of	 the	agents	created	 in	 the	project	
(Numbers trace the order of events)
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there is any color more evident than others. The visual field of the creature is 
rectangular; tuned to perceive a 7x7 grid of cells. When the cortex receives 
input it begins interpretation by registering the number of each distinct colors 
it perceives. The visual field is split into four zones, each one marked for its 
dominant color. The zone which contains the most dominant color overall 
is marked as the dominant zone. Number of colors, dominant zone, and the 
dominant color serve as input to the control network (see section on Control 
Network) during plan creation.

Decision Cortex

The decision repertoire consists of mediating information between all the 
cortices, keeping a track of current processes, and initiating new processes. 
The cortex shares the responsibility of creating a new plan with the control 
network (see below), whether to modify old plans or to create a new one 
completely from scratch.
During each discrete step in the simulation the decision cortex assesses 
the status of the creature and its perceptual input and decides which action 
should be taken. While there is a plan is being executed, each primitive action 
executed by the motor cortex is routed to memory (plans are sequences of 
primitive actions), the score of the action is calculated and associated with the 
current perceptual input. The score of a plan or primitive action is determined 
by the energy loss/gain before and after its execution. The second mode is 
if there is no current plan executing: If a plan execution was finished in the 
last step, its total score is calculated and sent to memory. Next a request is 
sent to the episodic memory for a recollection of similar situations (see the 
next section) and to the control network to create a new plan depending on 
the situation. To sum up, the decision cortex is responsible for

a.  Calculating the score of a plan that just finished executing.
b.  Requesting a memory search in episodic memory.
c.  Routing the perceptual input and physical actions to memory for stor-

age.
d.  Requesting a new plan from plan composer.
e.  Sending new proposed plans or actions to the motor cortex.
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Episodic Memory

The episodic memory is the storage area for all perceptual input, the crea-
tures’ actions, and the consequences of those actions. Memories include a 
particular visual field, the plan that was associated with the perceptual input, 
the score—in particular the energy expenditure, which was registered during 
the execution of the plan, along with a normalized plan score.
During each step, the decision cortex sends a message to the episodic memory 
to find all memories that the creature might have of similar situations. The 
procedure is as follows:
Find all similar memories by first rating them along three semi-independent 
feature dimensions:

1.  Image.Matching.(dimension.one): The visual field in general: Com-
pare each cell of the current visual field to each patch of a particular 
memory M. Similarity scoring is incremented with each cell that cor-
responds precisely to a cell in the same location in memory M relative 
to the creature (thus, if a cell in the upper left-hand corner is green, and 
the upper-left hand cell in memory M is green, the memory gets a point 
for similarity). This score is normalized, so the increment for each cell 
that’s identical is 1 divided by the total number of cell in the visual field. 
The final score is the sum of all identical cells.

2.  Dominant.Zone.Similarity. (dimension. two): Compare the current 
visual fields dominant color and the zone the dominant color is mostly 
evident in to all memories. The score is Boolean.

3.  Patch.in.Front.of.Mouth.(dimension.three): Compare the patch in 
front of the creature’s mouth to that same patch in all existing memo-
ries. This is similar to the zone similarity scoring—if the current patch 
in front of the mouth corresponds to that same patch in a memory, the 
similarity is turned on (again, 1.0 or 0.0).

For each of these features, the memories are arranged according to each 
feature’s similarity score. The plan associated with each memory (there is 
either a plan or a primitive action associated with each memory) is retrieved 
for the top three memories—one for each dimension. Plan scores (energy 
payoff) are normalized by the following equation: 
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Sf = 1 / Sp(Smax – Smin)

where Sf is final score, Sp is the original plan score, Smax is the maximum 
plan score of any plan retrieved from memory, and Smin is the minimum 
score for any plan retrieved from memory. The normalized plan scores of 
memories in the sorted dimensional arrays are multiplied by the similarity 
measurement of the memories, providing a “winner” with regards to similar-
ity and plan score.

Control Network

The control network is the part of the program that gets passed on and mu-
tated between generations; it holds the creature genome, which constitutes a 
set of control boxes and the connections between them. The control network 
is made up of 70 boxes, which consist of two inputs I1 and I2, an output O 
and an operator, which determines what to do with the inputs received. The 
types of boxes in the control network are:

• Static. boxes have a fixed output that stays constant throughout the 
lifetime of an individual. 

• NOR boxes.or “Not OR” boxes return 1 if both inputs are zero.
• NAND.boxes or “Not AND” boxes always return 1 except if both inputs 

receive numbers.
• Input.gate.boxes return I1 as output only if the value of I2 is more than 

zero.

Each of the boxes serves as a node in the control network. Outputs from the 
boxes are connected to none, some, or all of the other box inputs. The exact 
routing of the control box inputs and outputs is determined entirely during 
reproduction of the creatures. That is, the creatures’ genetic configuration is 
responsible for using these connections to activate plan composition mecha-
nisms. There are four instances of each kind of box in a control network 
except for static boxes, which are 16. For each box, a total of four possible 
connection configurations are possible. Each of the 30 boxes can receive two 
inputs. There are no initial connections between control boxes for the first 
generation in all worlds, and the initial outputs of static boxes are set to zero. 
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After the first generation, all settings of control boxes and their connections 
are changed by mutation. Following the terminology introduced by Holland 
(1998), which covers natural and artificial adaptive systems, we can describe 
the adaptive process of the control network.
The powerset of control box configurations and connections in the network is 
denoted α. We denote a specific control box configuration A as a set of pos-
sible configurations of connections between them: A = {ai1, ai2, ... aiki}. 
The combinations of control boxes and their connections are defined by the 
adaptive plan τ which uses the mutation operator Ω between generations. The 
criterion for comparison of τ is µ—the age a creature reaches by using plan-
making mechanisms (which are in turn controlled by the particular adaptive 
plan). The set of structures (control network configurations) attainable by 
the adaptive plan is represented by the following equation:

α = A1ХA2 Х… An = ∏ni=1Ai

Since the environment, E, selects over time, which control boxes survive 
between generations, an evolving, adaptive plan is defined over time by a 
particular environment E. This is depicted in Figure 3; the big box represents 

 

Figure	3.	Adaptive	processes	after	Holland	(1998).	A(n)	denotes	a	specific	
configuration	of	the	control	network.
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α which contains all structures attainable by the adaptive plan τ, which is 
decided by the environment E using µ. The adaptive plan produces a trajec-
tory through α, which are specific configurations of the connections between 
control boxes, connections to the plan composer (see next section) and the 
output of the static boxes (a number between 1 and 30).
On every step during execution, the control network receives a request from 
the decision cortex for updating its outputs. The outputs feed into the plan 
composer and set control parameters as the creature decides how to plan its 
actions. There are three main ways for planning the next step, as explained 
in the next section.

Plan Composer

The plan composer creates plans from sequences of primitive actions (go-for-
ward, turn-left, turn-right, do-nothing and eat). During each simulation step, 
the plan composer receives instructions from the control network regarding 
what to do and specifically how to do it. The instructions are in the form of 
integers from the control network inputs into the plan composer. They are 
deciphered by simple logic gates. The methods that the plan composer can 
use to create the next plan are the three methods:

a. Create a new plan from scratch.
b. Combine halves of two old plans.
c. Mutate an old plan (randomly change primitive actions of an older 

plan).4

During plan-making, the creatures can either create a new plan from scratch 
or use one of the other two options. When creating a new plan from scratch, 
the plan composer randomly selects the length of the plan and how many 
instances of each primitive action it should include. With random distributions 
of actions, the other two methods, combine halves and mutate, become very 
important as they provide a much more controllable way of making sensible 
plans. Also, by using combine, mutate and using an old plan unmodified, the 
development of an individual will become more evident as the creature is 
bound to use the methods on plans that have provided good results (memo-
ries are organized by score, see Episodic Memory). Note that in order to use 
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methods b and c, the creature has to have created at least one random plan 
from which it can build a modified plan.
The use of a random mechanism to produce new plans is a matter of conve-
nience and deserves some discussion. It is not our claim that creativity is a 
random process. On the contrary, we propose that creativity is an aspect of 
intelligence, independent of any particular cognitive mechanism. The main 
concern is to have a mechanism, which generates new plans from scratch, 
using other means than recombinations of previous plans. This allows us 
to compare and contrast the evolutionary incentive to produce completely 
new plans (regardless of the method of production) as opposed to relying on 
experience. Exactly how such novelty-producing mental components work 
on higher levels of natural intelligence, such as the human level, is another 
matter and not the focus of this chapter.

Experiment.

In the experiment, we use three versions of the world. Simple (Es), which 
is made up of stripes alternating green and gray (Figure 4). Green is grass 
(food), gray is rock, and brown is mud (if the creature eats a green cell, the 
cell turns brown). Es has Qc = 3. Simple Dynamic (Esd) is the same as Es 
with the seemingly small change that the stripes change regularly from gray 

Figure	4.	A	screenshot	of	a	simple	(Qc	=	3)	and	simple	dynamic	world	(Qc	
=	9);	100x100	cells
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to green and green to gray, increasing the world’s Qc to 9. Update frequency 
of Esd is every 50 steps. Both Es and Esd reset for each new individual. The 
third world, Complex Dynamic (Ecd) presents more landscape-like structures; 
Qc = 18 in Ecd (Figure 5). Ecd begins with initial random placement of cells, 
but is updated 500 times to eliminate the initial randomness before creatures 
are introduced to the world.
Each generation is made up of 100 creatures (Ng = 100), natural selection is 
implemented by sorting the creatures according to age; the top ten individuals 
(C1, C2 … C10) are selected as the basis for the next generation. The selec-
tion criteria for inheritance, µ, is the creatures’ age reached. The creatures’ 
only goal is to survive. Having a single goal simplifies comparison between 
the different worlds and plans. Because the creatures only have one goal, all 
plans that the creature creates are geared towards reaching that goal. And thus, 
coming up with alternative plans for reaching a goal is a form of creativity.

Results.and.Interpretation

The results show a high similarity between simple (Es) and simple dynamic 
(Esd) environments in the creatures planning behavior. In both environments, 

Figure	 5.	A	 screenshot	 of	 a	 complex	 dynamic	world,	Qc	=	18;	 100x100	
cells
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the creatures used all of their available mechanisms for plan creation (create-
new-plan from scratch, mutate-old-plan, and combine-old-plans). Figures 6 
and 7 show the average use of the three mechanisms for plan creation over 
the lifetime of the creatures in each of the 100 generations (see section on 
creatures for details about the mechanisms). While the creatures are producing 
new plans from scratch relatively often, they compensate for plan randomness 
by using the other mechanisms. The creatures evolving within these simple 
worlds are maintaining a balance between innovation and logic: creating new 
and untried plans as well as learning from their previous experiences by using 
and combining plans that have proven efficient and useful.
In terms of the proposed hypotheses, it would not have been surprising to see 
more difference in the results of the two worlds. Looking at the two simple 
worlds only, the main hypothesis, that an increase in environmental diversity 
results in a larger set of plans, is not clearly supported or disproved. The 
similar results might be due to structural likenesses between the two worlds. 
When compared to the results from the complex dynamic world (Ecd), how-
ever, the hypothesis is clearly supported. Figure 8 shows the average use of 

 

Figure 6. Es. average use of create new plan (circles), mutate old plan (boxes) 
and	combine	old	plans	(triangles)	X-Axis:	generation	10-100;	Y-Axis:	0-30
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Figure	7.	Esd.	average	use	of	create-new-plan	 (circles),	Mutate-old-plan	
(boxes)	and	combine-old-plans	 (triangles)	X-Axis:	generation	10-100;	Y-
Axis:	0-25

 

Figure	8.	Ecd.	average	use	of	 create-new-plan	 (circles),	mutate-old-plan	
(boxes)	and	combine-old-plans	(triangles)	X-Axis:	generations	10-100;	Y-
Axis:	0-20
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the plan-making mechanisms over the 100 generations. With Qc = 18, the 
creatures resorted to using the creation mechanism (creating a new plan from 
scratch every turn), while leaving the other mechanisms relatively unused. 
The plans and behavior of the creatures was therefore very diverse but the 
lack of learning from previous experiences resulted in their plans maintaining 
no logicality5. The creatures had shorter lifespans in more complex worlds 
and could therefore not use the plan-making mechanisms as often. In Es the 
creatures’ average age reached is 28; in Esd it is 25 and in Ecd it is 21.
Figure 9 shows an example of how the creatures’ plan maintains logicality 
by eating only the food (green) while skipping the rock-lines (gray) which, 
if eaten, result in a substantial loss of energy. Similarly, Figure 10 shows a 
creature having turned to eat a row of food in a consecutive manner. Such 
behavior would not have been possible were it not for the fact that the crea-
tures in Es and Esd were using the mechanisms that build on previous expe-
rience. In the Ecd (Complex Dynamic Environment), the creatures showed 
little logicality in their behavior due to their frequent usage of the random 
plan-making mechanism (Figure 11 shows a creature within the Ecd). To 
find food in Ecd is not as simple as finding food in Es and Esd—the agents 
have to produce behavior that allows them to cope with the complexity of 
their environment. The agents work relatively mechanically in Es and Esd 

 

Figure 9. A creature (black) in an Es world, eating only the food (light gray), 
bypassing the  rocks 
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because the visual cues are few and provide accurate accounts of what will 
happen if the agents execute a certain plan. If the agents encounter a gray 
cell-structure (a stripe) in Es, they can depend on the fact that if they use the 
plan “move forward once, then eat” they will gain energy, as the cell they will 
eat is guaranteed to be green (food). However, in Ecd, the green structures’ 
behavior is much more diverse, and hence harder to predict. This difference 
of environments are comparable to those of bacteria and insects in the sense 
that insects partain to environments of much higher diversity.
In summary, the results strongly suggest that creativity is governed by en-
vironmental complexity, and that structural coherence dictates logicality 
of produced plans. Particularly, agents whose cognitive system evolve in 

 

 

Figure	10.	A	creature	(black)	in	Es	eating	a	row	of	food	(light	gray)	consecu-
tively.	The	image	has	been	enlarged.	The	screenshot	shows	10x6	cells.

Figure 11. A creature (black) in Ecd lurks behind a gray rock formation, away 
from	the	food	(light	gray).	The	screenshot	shows	31x17	cells.
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overly complex worlds tend to create diverse (random) plans, but simple 
ones impose plans that maintain novelty and diversity without venturing into 
randomness—supporting the stated hypothesis.

Theoretical.Discussion

We argue that a coherent explanation of the different processes and mecha-
nisms of creativity must be done in terms of self-organization and emergence. 
As creativity relies on many cognitive functions, we must incorporate those 
functions and discuss their origins. 
Cognition is rarely associated with the behavior of reactive organisms. As 
noted by van Duijn et al. (2006), anthropocentric interpretations of cognition 
introduce a dichotomy between reactive/inflexible organisms and reflective 
cognizers. An anthropocentric view has also been prevalent throughout re-
search on creativity. Alternative theories to popular views of cognition have 
been proposed, explaining cognition from a simpler and more mechanical 
viewpoint. In 1973, biologists Varela and Maturana introduced the concept of 
autopoiesis as a redefinition of life. Their explanation is especially relevant 
to the concept of emergence and complex systems as it presents a bridge 
between structurally automatic systems and cognitive systems. In the words 
of Varela and Maturana (1973), an autopoietic system is: 

“...	a	machine	organized	(defined	as	a	unity)	as	a	network	of	processes	of	
production (transformation and destruction) of components which: (i) through 
their interactions and transformations continuously regenerate and realize the 
network of processes (relations) that produced them; and (ii) constitute it (the 
machine) as a concrete unity in space in which they (the components) exist 
by specifying the topological domain of its realization as such a network.” 
(p. 78). 

A popular example of an autopoietic system is a biological cell. The cell’s 
components are molecules, interactions are chemical reactions and the cell 
membrane the physical boundary that forces reactions into an entity distin-
guishable from the external environment (Beer, 2004). Computer simula-
tions of autopoietic cellular structures have been created where proto-cells 
emerge from a digital primordial soup, gradually gaining in complexity to 
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form membranes, in many ways similar to those observed in natural systems 
(Madina, Ono, & Ikegami, 2003). 
Although the concept of autopoiesis remains somewhat controversial (Beer, 
2004; van Dujin et al., 2006), it can help us explain the origins of creativity 
in a unifying manner. While admittedly there is a gigantic leap from auto-
poietic systems such as a biological cell to an insect-like agent such as those 
used here, the methods that organisms (or autopoietic systems) can use to 
maintain their structure can be generalized to the identification	of	a	potential	
threat to its organization and responding appropriately; a perception-action 
coupling. van Duijn et al. (2006) have claimed in relation to autopoiesis, that 
minimal cognition is a dynamic and adaptive sensorimotor process, and have 
noted that although bacteria have no nervous system, molecular sensorimo-
tor mechanisms of most bacteria closely resemble some of the functional 
sensorimotor features of nervous systems. This allows us to generalize the 
cognitive functions of organisms at different levels of complexity as different 
means of maintaining the perception-action coupling6.
The following is a proposal for a new definition of creativity and a framework 
for how the different concepts of cognition co-evolve with the phenomena. 
We will then proceed to explain how these concepts are interralated in terms 
of emergence and autopoiesis.

1. Creativity is an agent’s ability to vary and adapt processes in order 
to fulfill its goals. Processes can be internal (mental functions), or an 
externalization of internal processes (physical actions and interactions 
with the environment), where an agent is a living (autopoietic) structure, 
be it organic or artificial. Creativity can be exhibited without explicit 
understanding of the environment or goals, and the diversity of prod-
ucts or artifacts produced through creative processes are limited by the 
physical attributes of the agent. Creativity is an aspect of intelligence as 
a holistic system, independent of any particular cognitive mechanism.

2. Logicality is an organism’s ontogenetic ability to produce actions which 
are coherent with the organisms goals and structural organization of the 
environment. Environmental organization imposes itself on organisms 
as they evolve and is reflected in logical behavior.

3. Insanity is the inverse of logicality, resulting in behavior which is not 
applicable to the context in which they are realized, failing to fulfill the 
agents’ goals and are consequently “illogical” or “nonsensual.”
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4.  Imagination is an organism’s mechanism for modelling its environment 
internally to predict a turn of events. When creatures gain in organizational 
complexity along with the environment, reactive mechanisms become 
insufficient to predict the environment. This becomes an impetus for 
other, more complex mechansisms to evolve. In particular the ability 
to represent the environment as a mental simulation.

The previous definitions include several concepts of intelligence and cogni-
tion, mainly: (a) perception and action, (b) goals, (c) logic and insanity, (d) 
understanding, and finally (e) imagination or internal representations. We 
will now proceed to explain these concepts and their relationships in more 
detail.
To explain how an	organism	can	fulfill	goals, we must establish what goals 
are. It can be said that autopoietic systems’ preservation of structure is an 
implicit goal, realized by the environment-agent coupling. The interactions 
that maintain an organisms organization, thereby allowing it to maintain 
identity as one, are conditions internal mechanisms of the organism aim to 
preserve. It is more than possible that this basic principle is the foundation 
from which continued complexity of hierarchical organization can emerge. 
Gradually, these systems organize a multileveled hierarchy of processes which 
constitute what we perceive as, for example, insects. Goals are consequently 
always evident as particular conditions of the environment. At higher levels 
of complexity (insect level, for example), organisms seek out these condi-
tions by producing plans—whether they are instinctive or reflective. In other 
words, goals are conditions which allow an organism to persist7. Intention-
ality, in this sense, becomes the intellectual process of understanding these 
conditions and how they relate to the agent.
To explain logic’s relationship with creativity, we must explore how envi-
ronmental complexity affects goal-oriented behavior. The environment is 
constituted by emergent structures of varying complexity; the agents depend 
on visual cues from this environment to produce actions in order to preserve 
their structure. In our simulation, the agents “predict” the environment by 
generating random actions to begin with, and, over a lifetime learn to associ-
ate the correct actions to each perceptual stimuli. When the world becomes 
more complex, it has two major implications for the agents: The diversity of 
perceptual stimuli greatly increases, meaning that the domain of plans with 
which the agents can associate perceptual cues increases. Secondly, as the 
environment is not highly repetitive, the agents must produce behavior to meet 
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this diversity; different plans apply to different problems (or multiple plans 
can apply to the same problem). This was clearly demonstrated in the results 
of our experiment. With respect to this relationship between the environment 
and plans, it can be stated that the plans are reflecting the architecture of the 
environment. Over time, evolution provides the agents with mechanisms to 
produce plans, without direct control over the plans themselves. Over the 
lifetime of individual agents, these mechanisms are fine-tuned to match the 
specific circumstance and reflect the environment more accurately. If the 
plans are not coherent with the specific circumstance they are presented in, 
they are illogical or irrational; they fail to comply with the agent’s goals. It 
can consequently be stated that logic is bound in the coherence of the plans 
(behavior) and the goals (or environmental conditions) that the plans are 
intended to fulfill.
At this point we’ve established that plans are predictions, as well as reflec-
tions, of environmental organization. Even though organisms are not very 
advanced, the correlation between environmental organization, goals, and 
behavior imply that the organisms’ cognitive system has an (implicit) un-
derstanding of the environment. In our experiment, however, they have no 
internal mechanism to understand, which presents an obvious evolutionary 
disadvantage; without an internal representation, the cause for a complex 
emergent structure’s behavior is perceptually invisible and unpredictable to the 
organism. In other words, the cognitive mechanism has to experimentally try 
out different kinds of plans in order to become more adept at fulfilling goals. 
An internal representation of an emergent structure’s constituent components 
and their interactions would be needed to accurately predict its behavior8.
From an evolutionary perspective it can be assumed that, with increased 
complexity, natural organisms evolve more advanced methods of prediction, 
allowing them to represent structures internally and simulate or imagine 
environmental events. An internal representation of an emergent structure 
enables a deeper understanding of that structure, and hence, a more accurate 
prediction and increased chance of survival. Understanding can be equated 
with that of explanation (Baas & Emmeche, 1997). Using the simulation 
of this chapter as an example, we can explain that a brown cell turns green 
because it has a certain number of green neighbors surrounding it. Moving 
up a level of complexity, we can explain the group behavior of the cells by 
reference to the function of each individual cell, and so forth. If the agents in 
our simulation would be capable of understanding why (or in what context) 
the food appears (green cells)—they could predict the overall behavior of 
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the structures that emerge (and decrease the number of random plan genera-
tions). Instead of wasting energy following the food, for example, they could 
intentionally select a spot to sit down and wait for the arm of a spiral to come 
to them (a creative solution).
Following this line of thought, it is more than likely that mechanisms of 
internal representations adopt the emergent properties of the environment. 
Imagination, human’s most valued creative posession, is possibly an advanced 
simulator of emergent phenomena. Such spontaneous generation of new (and 
surprising) ideas, from components or ideas that otherwise did not appear 
to present any novelty, has been noted in research as similarities between 
creativity and emergence (Gero, 1996; Liu, 1996).

Future.Trends

Advances in computer science are enabling simulations of increasingly 
complex systems. With such powerful tools at hand, it is only natural that we 
continue developing methods for exploring the potential origins and nature of 
intelligence. There are many aspects of creativity which remain unexplored; 
the premise of this chapter is creativity in its most primitive forms, leaving 
out questions of how mechanisms of more advanced organisms contribute 
to, and affect overall, creative abilities. 
Explaining and exploring cognition in terms of simpler organisms is gain-
ing support in the scientific community, and our experiments suggest that 
this might provide us with a better foundation for explaining high-level 
intelligence as complex systems. We believe the same applies to creativity. 
The emphasis should be on exploring how more advanced mechanisms of 
cognition are related to creativity, and how such relationships are brought 
about by evolution.
It is important to start attempting the unification of various aspects of intel-
ligence; we have spent the last decades dissecting and separating the mecha-
nisms involved and now it is time to put the pieces back together and explain 
how they work in unison. Complex systems simulations are an imperative 
for studying how creative functions of organisms are interrelated and, should 
emergence prove as crucial to this explanation as we propose, they are close 
to indispensable.
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Conclusion

We presented an explanation for the hypotheses that creativity is evolutions 
answer to environmental complexity and that logic and creativity co-evolve 
as dictated by emergent, structural coherence. Using emergence and autopoi-
eses as a foundation, we defined creativity—presenting a unifying framework 
for the related cognitive concepts of perception and action, goals, logic and 
insanity, understanding and imagination. The theoretical arguments are in 
their initial stages, but offer much potential for further investigation and 
experimentation, especially in terms of computer simulations.
Relatively complex creatures are presented in the chapter’s described experi-
ment, which evolve within worlds with emergent environmental properties. 
The creatures were modeled after natural insects, utilizing essential cognitive 
mechanisms such as visual perception, memory and planning mechanisms, 
which was important for explaining and defining the concept of creativity. 
Cellular automata proved useful for simulating environmental emergence 
and quantifying the complexity of emergent worlds.
The artificial creatures in the experiment showed increased diversity of 
behavior in overly complex worlds, maintaining little or no logicality as to 
when plans were applied. The results support our hypotheses, suggesting 
that environmental complexity and organization affects the evolution of 
creativity to a high degree.
Future work using the simulation framework in this chapter will involve im-
provements of the creatures’ cognitive system, and (a) increasing the gene pool 
and number of generations in each simulation run (it is not uncommon that 
similar experiments run thousands of generations), (b) trying more types of 
worlds of different complexity levels. We also note that the custom cognitive 
architecture used here might possibly be too limited to allow the creatures 
to adapt to worlds of high complexity, and that more robust solutions, such 
as artificial neural networks, might offer a better solution.
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Endnotes

1 See section on Control Network in this chapter & Figure 3 in Thórisson 
(2004), figure not reproduced here.

2 Creature interactions would add another dimension of complexity to 
the world.

3 This method of insect associative-memory is often referred to as the 
“snapshot hypothesis.”

4 In prior simulations, we included a mechanism for using an old plan 
unmodified. However, this did not change the overall results in our 
experimentation (see Results & Interpretation).
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5 Note that we speak of logicality and not of efficiency, as plans can 
potentially be logical but still inefficient.

6 This generalization is sufficient for what is discussed here; At higher 
levels of complexity, there are quite possibly additional factors to con-
sider.

7 Primitive cognitive systems can fulfill goals without direct knowledge or 
understanding that they are doing so, such as the agents in this chapter’s 
simulation.

8 Note that even without the ability to visualize turn of events, a basic 
mechanism to produce actions that correlate with the environment serves 
the same purpose at a more primitive level.
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Chapter.VI

Solving.the.Sensory.
Information.Bottleneck.to.

Central.Processing.in.
Adaptive.Systems

Thomy N�lsson, Un�vers�ty of Pr�nce Edward Island, Canada

Abstract

Information bottlenecks are an inevitable consequence when a complex system 
adapts by increasing its information input. Input and output bottlenecks are 
due to geometrical limits that arise because the area available for connec-
tions from an external surface always exceeds the area available for connec-
tions to an internal surface. Processing of the additional information faces 
an internal bottleneck  As more elements increase the size of a processor, its 
interface surface increases more slowly than its volume. These bottlenecks 
had to be overcome before more complex life forms could evolve. Based on 
mapping studies, it is generally agreed that sensory inputs to the brain are 
organized as convergent-divergent networks. However, no one has previously 
explained how such networks can conserve the location and magnitude of 
any particular stimulus. The solution to a convergent-divergent network that 
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overcomes bottleneck problems turns out to be surprisingly simple and yet 
restricted.   

Introduction

To improve adaptation to the environment by adding sensors, complex sys-
tems need to import the additional information without overcrowding their 
processors with more connecting pathways. Any interface between an external 
surface and the surfaces of inside structures always faces a potential bottleneck 
due to geometry. The external surface can always extend more finite paths 
than can be accommodated by the surface of an internal structure. Biological 
systems cannot overcome this bottleneck simply by using smaller connecting 
pathways because smaller dendrites and axons conduct nerve impulses more 
slowly. More information is useful only if it is also timely. 
Adaptation by accessing more information produces bottleneck problems 
that do not end once the inputs have been internalized. A slightly different 
geometrical constraint now comes into play. The surface area available for 
connecting one structure to another grows with the square of each structure’s 
linear dimensions, while the space for elements within a structure increases 
with the cube of those dimensions. This can create intraprocessor bottlenecks. 
Animals reduce this problem by structuring their processors as sheets. How-
ever, they can not avoid the consequences of additional information requiring 
additional processing elements. Larger brains result in longer distances over 
which to send information from region to region. The need for information 
that is timely requires larger internal pathways, which add to the intraproces-
sor bottleneck problem since space is limited. 
Finally, achieving a greater variety of behaviors on the basis of the additional 
information may require a greater number of processor outputs to control a 
greater number of external effectors. The system now faces a third bottleneck 
that is the reverse of the problem encountered by importing more information. 
At a more general level, all three types of bottlenecks can be considered as 
a single problem of how to connect one set of elements to another set using 
fewer connecting paths than the number of elements. Until a solution to this 
fundamental bottleneck problem was found, the evolution of more complex 
biological systems was stalled.  
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The evolution of a convergent-divergent organization of animal sensory sys-
tems is generally acknowledged to solve the input bottleneck. This solution 
uses spatial multiplexing to convey information from many receptors with 
only a fraction as many nerve fibers.  Yet there appears to be no explanation 
of how such systems can keep track of which receptor is stimulated. This 
chapter explains how that is possible.
Neural networks modeled on ordinary computer spreadsheets show how 
convergent-divergent organizations of sensory systems can solve the general 
bottleneck problem simply by dendritic and axonal branching. They conserve 
source location without using tags or feedback. They also convey source 
magnitude and are damage tolerant. Trial-and-error modelling suggests that 
there is only one basic branching solution for a linear array of sources, and it 
is limited to an 8-to-1 convergence. Another solution exists for two-dimen-
sional source arrays, and it is limited to a 16-to-1 convergence.  
Hopefully presenting these solutions will lead either to a proof that there is 
only one basic method for each type of array and its corresponding limit, or 
to other branching solutions. As is, these solutions may contribute to a better 
understanding of how information is transmitted in sensory and cognitive 
systems and to solving information bottlenecks in other complex systems. 
Implications of these convergent-divergent networks for the evolution of 
intelligence in biological systems and some possible technical applications 
are discussed.  

The.Problem

When all else fails, Uncle Remus’ Brer Rabbit can always escape Brer Fox by 
running through the briar patch (Harris, 1955). Brer Fox would be shredded 
trying to follow. Real rabbits may not be as smart as Brer Rabbit is portrayed 
in these children’s stories, but they share a sensory processing advantage. 
Motion pictures of rabbits running through bushes reveal them bobbing and 
twisting to dodge the branches. Evidently they have a fine sense of touch that 
is rapidly employed. Their survival depends on this ability.  
Weddell, Taylor, and Williams (1955) found rabbits a most convenient spe-
cies for studying the peripheral tactile sensory system. The large ears could 
be transilluminated for in vivo microscopic examination of the sensory and 
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neural structures. They found that a square centimeter of skin had some 2000 
sensory hair cells. This should give rabbits a fine sense of touch. However, 
a moment’s reflection reveals a serious problem. The entire ear would have 
about 1/2 million hair cells. How could rabbits get all those nerve fibers from 
the ear, not to mention the rest of their body, into a tiny brain and still have 
room for some neurons to process the information?
Conceivably, it would be possible using very fine unmyelinated nerve fibers 
to transmit the information. However, it is not enough to get the informa-
tion to the brain. It must get there fast to be effective. Table 1 illustrates this 
problem. Small unmyelinated dendrites and axons conduct nerve impulses so 
slowly that a rabbit running at 20 km/hr would travel nearly a meter before 
the touch information reached its brain. Large, fast-conducting axons could 
get the information there before the rabbit has travelled a centimeter, but the 
diameter of 100,000 such fibers would exceed 30 cm. It is not possible for 
rabbits to provide each hair with a suitable pathway of its own to the brain. 
This problem is resolved by Weddell et al.’s (1955) finding that there were 
only about 6,500 myelinated dendrites entering the ear. Physiological record-
ings from these dendrites revealed that each was connected to some 80 hair 
cells. Yet this convergent organization leads to another problem: How can 
the brain then tell which hair gets bent? Obviously there has to be some way 
or there would be no advantage to having all those hairs.
The means to an answer was revealed as further examination found that each 
hair was in fact connected to four dendrites from separate neurons. Since this 

FIBER
TYPE

DIAMETER
OF SINGLE 

FIBER

DIAMETER 
OF 100,000

FIBERS 

IMPULSE 
SPEED DELAY

DISTANCE 
TRAVELLED
@ 20 km/hr

(:m) (cm) (m/sec) (sec) (cm)
SMALL: 0.5 1 0.5 0.15 83
LARGE: 20 >30 90 0.002 <1

Table	1.	Diameter	of	a	nerve	bundle	required	to	carry	a	nerve	fiber	for	each	
of	the	100,000	hairs	on	a	rabbit’s	ear,	and	how	far	a	rabbit	would	travel	at	
20	km/hr	during	the	delay	between	when	a	hair	is	touched	and	the	informa-
tion	reaches	its	brain—for	small	and	large	nerve	fibers.
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divergence of information from each receptor reduces the overall convergence 
from 80-to-1 to 20-to-1, the divergence must be necessary. A clue to the role 
of divergence arises from their observation that the dendrites connected to any 
given hair cell followed diverse routes to exit the ear. Weddell et al. suggest 
that divergent paths avoid cross-talk between fibers responding at the same 
time. Brown et al. (2000) find that cats have a similar convergent-divergent 
organization of their peripheral tactile system.  Continuation of this conver-
gent-divergent organization into the somatosensory cortex is related to spatial 
acuity of cats (Brown, Koerber, & Millecchia, 2004) and to the fine grain 
of somatosensory receptive fields in monkeys (Rausell, Bickford, Manger, 
Woods, & Jones, 1998). Thus, the brain must somehow use the responses 
in many divergent fibers to determine which hair gets bent despite the high 
degree of peripheral convergence.
The problem is not peculiar to the tactile system. The human eye has over 
100 million photoreceptors, but the optic nerve has only some 1.2 million 
axons (Polyak, 1957). Even in the fovea where there is a one-to-one ratio of 
receptors to ganglion cells, there is both convergence of several receptors 
connecting to a single ganglion cell and divergence of each receptor con-
necting to several ganglion cells (Dacey, 2004). Nevertheless, visual acuity 
can equal and even be finer than the width of a single receptor (e.g., Blake 
& Sekuler, 2006). 

Background

Convergent-Divergent.Networks
 
To solve the information bottleneck, a convergent-divergent organization of 
neural branching is generally acknowledged as a fundamental property of 
most sensory systems (e.g., Guyton, 1991; Rosenzweig, Breedlove, & Wat-
son, 2005; Uttal, 1973). In the periphery, convergence predominates with 
the number of receptors greatly exceeding the number of afferent pathways. 
Once sensory information passes the thalamus, a predominantly divergent 
organization of connections from these pathways to many cortical neurons 
restores receptor specificity. Figure 1 illustrates the general concept of a 
convergent-divergent system. Upon reaching the cortex, information con-
veyed by a convergent-divergent sensory system somehow indicates which 
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receptor was the source. It is certainly not obvious how convergent-divergent 
branching reveals the source, and the acknowledgments do not explain how 
this can happen. 
How can receptor location be maintained through the bottleneck of a few 
connecting fibers? Any general answer pertaining to biological systems must 
recognize that all nerve impulses are the same regardless of the initiating 
source. While temporal patterns of nerve impulse trains could encode receptor 
specificity, this seems an unlikely solution to the bottleneck problem since 
temporal patterns are needed to carry qualitative information such as magnitude 
of receptor response. It is also possible that feedback loops could be used to 
decode which receptor is active as suggested by Goldberg, Cautwenberghs, 
and Andreou (2001). However, reliance on feedback would delay using the 
information and require more connections to the periphery. 
This chapter explains how convergent-divergent encoding and decoding 
can transmit information from many receptors across a fractional number 
of connecting paths simply by using certain neural branching patterns and 

Figure 1. The general concept of a convergent-divergent information trans-
mission system. Many information inputs are provided to some type of con-
vergent encoder, which processes the information and sends it along a few 
connecting pathways. A distant divergent decoder spreads the information 
from the pathways to as many outputs as there are sources. The information 
from any particular input goes to an output corresponding to that source. 
(copyright by author, printed with permission)
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connecting weights. Such nets passively achieve a form of spatial multiplex-
ing without either adding information to identify the sources or waiting for 
feedback confirmation. 

Conserving.Input.Location.

Compacting information from many “receptors” simply by connecting them 
to a single “afferent neuron” would make it impossible to tell which receptor 
was being stimulated. Convergence must be accompanied by divergence to 
conserve receptor identity. Both types of branching are evident in the af-
ferent connections of the retina and lateral geniculate nucleus of the visual 
(Reid & Usrey, 2004) and tactile (Brown et al., 2000) sensory systems. The 
key is a neural branching pattern that has a different number of connections 
or branch weights between each receptor and two or more afferent neurons. 
Physiologically, different weights can be achieved by the number of dendritic 
branches and by the number of pre- and post-synaptic structures within a 
single synapse. Weighted branching can produce different response levels in 
two or more afferent fibers depending on which receptor is stimulated.  
Now consider the divergence of connections from the afferent nerve fibers 
to a larger set of “cortical neurons” that correspond to individual receptors. 
That divergence must be accompanied by some convergence so that each 
afferent fiber connects to more than one cortical neuron. Otherwise, all 
cortical neurons connected to the same afferent fiber would have the same 
output—nothing would be accomplished by the divergence. Both convergent 
and divergent branching is evident in connections from the lateral geniculate 
to the visual and somatosensory cortex (Alonso & Swadlow, 2005). Mirroring 
the branching pattern for convergent encoding, each cortical neuron receives 
a different number of branches from each afferent fiber. This produces a dif-
ferent response strength in a cortical neuron depending on which afferent 
fibers are active.
In response to stimulation of a single receptor input, the output of such con-
vergent-divergent systems is more complex than what is produced when each 
receptor has its own pathway. Divergence results in many cortical neurons 
responding to stimulation of a single receptor. Convergence results in a dif-
ferent cortical response strength depending on which receptor is activated. 
With the correct branching organization, the cortical neuron with the maxi-
mum response will be the one whose location corresponds to the location of 
the stimulated receptor. 
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Conserving.Input.Strength

The ability of convergent-divergent branching networks to also transmit the 
magnitude of an input is essential to convey what has happened as well as 
where something has happened (e.g., Sheth & Shimojo, 2002). Neurons must 
convey stimulus strength by temporal patterns of impulses—typically firing 
faster to stronger stimuli. Since branching solutions just use multiplication 
and summation, doubling the stimulus strength not only doubles the output 
response but also doubles the difference between the maximum response 
and the next strongest response. Thereby convergent-divergent systems can 
conserve both receptor identity and stimulus magnitude.

Solution

A solution to the bottleneck problem occurred spontaneously in response to 
a student’s question about the general convergent-divergent organization of 
sensory pathways. Intuitively, I sketched on the blackboard a simple linear 
array of inputs connected by a 2 and 1 branching pattern to the same number 
outputs with one pathway for every two receptors. Stimulating one receptor 
and counting the number of active intersections leading to each output pro-
duced a maximum at a location that corresponded to the input location. That 
went well, so I added “sketch an example” to my notes. Thinking that any 
symmetrical pattern of convergent and divergent branching would work, it 
seemed unnecessary to be more specific. A few years later, I sketched a pat-
tern, but was embarrassed to find it did not work. Trying to get a branching 
pattern that would work, revealed that symmetry was not sufficient. Indeed 
many tedious sketches produced only one pattern that did work. 
Some years after that I programmed this pattern in MicroSaint (1985). It 
worked but ran too slowly to be practical either for demonstration or fur-
ther study. When classroom computer projectors became available, I made 
probability demonstrations for my statistics course using QuattroPro 4 
(1987) spreadsheets. Could a convergent-divergent network be modeled on 
something as simple as a spreadsheet? Yes, and this enabled testing many 
configurations. Remarkably, there did seem to be only one basic pattern for 
successful convergent-divergent networks. Had something this basic not 
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been discovered previously? Presented at a meeting of the Association for 
Mathematical Psychology (Nilsson, 2002), the model raised interested com-
ments which suggested the solution was indeed novel. 
Preparing a figure to explain the linear array model for this chapter, led to the 
idea to try making a convergent-divergent model that would handle inputs 
arrayed over a 2-dimensional surface. This would provide a more realistic 
solution to the sensory bottleneck problem encountered in the tactile and 
visual systems. The solution to a convergent-divergent system that operates 
on a 2-dimension array of inputs requires a 3-dimensional neural network. 
It will be easier to understand how this model works by first considering the 
principles of its operation using a model that operates on a linear array of 
inputs and outputs.   

Linear.Array.Model

Basic Operation

To see how a convergent-divergent network can work just by branching 
weights, consider a linear array of n inputs with n/2 connections to a linear 
array of n outputs. Figure 2 shows how 8 input cells B, C, ..., I of such a 
network can send information to 8 output cells, B,’ C,’ ... I,’ using 4 con-
necting pathways, BC-BC,’ DE-DE,’ FG-FG,’ and HI-HI.’ There are twice 
as many input cells as convergent cells BC, DE, ... HI. Each input cell sends 
two branches to the nearest convergent cell and a single branch to the next 
nearest convergent cell. Each output cell receives two branches from its 
closest divergent cell and a single branch from the next closest divergent 
cell. That is all that is required.
In Figure 2, the different number of branches between cells is literally indi-
cated by single or double paths. Each branch independently conveys the full 
value of the response strength in its originating cell, which lies to the left in 
the diagram. (Subsequently it will be necessary to refer to the strength of such 
connections as “weights” to simplify explanation.) The strength of the response 
in any cell is the sum of what is received from the incoming branches. Thus 
convergent cells DE and FG have the values 2 and 1 respectively. These 
values are directly transmitted over the connecting pathways to divergent 
cells DE’ and FG.’ Because output cell E’ receives two inputs of 2 from 
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Figure	2.	Schematic	for	a	linear	array	of	inputs	and	outputs	with	a	two-to-
one and one-to-two convergent-divergent system. It sends information along 
half as many connecting pathways as there are inputs and outputs. Entering 
a value of 1 into input	cell	E	produces	the	values	0,	2,	4,	5,	4,	2,	1,	and	0	
at outputs B,’ C,’ D,’ E,’ F,’ G,’ H’ and I’ respectively. The output with the 
largest response corresponds to the input that received the information. The 
comparison network only passes on the output with the maximum value, which 
in this example is the “5” from E.’ Each path from a cell represents a neural 
branch that conveys the value in that cell. Note that some cells such as E and 
DE	are	connected	by	double	lines	-	thus	DE	has	the	value	of	2	since	it	has	
two branches from E each of which conveys E’s value of 1. Note: lines that 
cross remain independent. (copyright by author, printed with permission) 
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DE’ plus an input of 1 from FG’ it has the strongest output, 5. The location 
of this maximum output at E’ corresponds to the location of the input cell E 
which received the stimulus.
Implementing the previous on a spreadsheet requires viewing matters from a 
different perspective. It is not possible for two or more cells in a spreadsheet to 
“send” their contents to a third cell and expect to find the sum of their contents 
in that cell. Rather the third cell must be programmed to add the contents of 
the two “sending” cells. This results in a subtle but critical change in creat-
ing the convergent part of the network. From the perspective of information 
flow, branching from the input cells is always asymmetrical: two branches to 
the nearest convergent cell and one branch to the next-nearest. Yet from the 
perspective of the convergent cell where the mathematical operation resides, 
the incoming branching is always symmetrical: two branches from each of 
the two closest inputs and one branch from each of the two next-furthest in-
puts. The opposite occurs in the divergent section. Here the divergent cells 
“send” a symmetrical pattern of branches to the output cells. However, the 
formulas in the output cells require an asymmetrical summation from the 
nearest and next-nearest divergent cell.

Winner-Take-All Economics
 
Once a convergent-divergent system has achieved a distribution of output 
responses with a maximum at a certain cell that corresponds to the input, the 
system has achieved its task of overcoming the information bottleneck. From 
the topography of the maxima in such distributions, various simple and more 
complex receptive fields can be assembled to achieve the sensory processing 
for lines, edges, spatial frequency, etc. A general output of such distributions 
could suffice in principle to having transmitted the location and magnitude 
of the stimulus. However, an output that consisted only of the maxima would 
simplify the subsequent processing to produce cortical receptive fields and 
reflex arcs. That can be achieved by connecting the convergent-divergent net-
work outputs to a comparison network that emits only the maximum output 
at its location. Such a network is readily obtained by lateral inhibition that 
produces a winner-take-all effect over a range that may be related to atten-
tion processes (Maass, 2000). This is illustrated by the right hand comparison 
network in Figure 2. Each cell in that layer produces an output if its value 
exceeds the value of its neighboring cells. (The indicated calculation, “IF 
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(B‘(A’...C’), B, 0)” represents the logic using minimal space. However, in 
QuattroPro the “” operation must be replaced by “=@MAX.”)       

Response Magnitude and Tolerance

In the spreadsheet model, input and output magnitude are represented as 
numbers. Figure 2 shows that an input value of “1” at E produces a maximum 
output of “5” at E.’ Simple arithmetic along the branches shows that an input 
of “2” produces a maximum output of “10”; an input of “3” produces an 
output “15”; etc. Not only is the maximum output proportional to the input 
by a factor of “5,” the difference between the maximum output and the next 
largest output equals the input. This shows that the convergent-divergent 
branching network can directly transmit an input’s magnitude as well as its 
location. 
Convergent-divergent networks are damage tolerant. In the example of Figure 
2, if either of the two active connecting pathways, DE-DE’ or FG-FG,’ are 
disabled, a maximum still appears at outputs that are close to the output that 
corresponds to the location of the input. With an input “1” at E, disabling 
DE-DE’ produces two output maxima of “2” at F’ and G’; disabling FG-FG’ 
produces maxima of “4” at D’ and E.’ Networks with more layers of con-
vergent and divergent branching (see below) are more tolerant of disabled 
connecting paths since they activate more paths for any given input.
 
More Convergence

Instead of connecting the convergent cells BC, DE ..., HI to divergent cells 
BC,’ ..., HI’ as shown in Figure 2, they could function as input cells to a 
second layer of convergent cells which one might label BCDE, FGHI, etc. 
This together with a corresponding second layer of divergent cells, BCDE,’ 
FGHI,’ ..., produces a convergent-divergent network with one connecting 
pathway for every four inputs and outputs. Likewise adding a third layer of 
convergent and divergent cells produces an 8-to-1 convergence ratio. See 
Figure 3. The effect of such cascaded layers can also be merged into single 
convergent and divergent layers with an equivalent, broader pattern of 
weighted branches. Because the resulting schematic needs to be large and is 
difficult to interpret even with colored paths to indicate the various number 
of branches, a figure to illustrate this possibility was not feasible. 
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Can any number, x, of convergent and divergent layers be cascaded to achieve 
2x convergence ratios? No. Adding a fourth or more set of layers does not 
work. The output cell with the maximum response ceases to correspond with 
the input cell that is stimulated. The error patterns are predictable in terms of 
where the input stimulus occurs, but using that information still leaves some 
ambiguity and begs the purpose of the network.  

Figure	3.	Three	layers	of	convergent	and	of	divergent	cells	can	be	cascaded	
to	produce	an	8-to-1	convergence	and	still	conserve	stimulus	location	and	
magnitude. (copyright by author, printed with permission)
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Other Patterns and Limits?

Other than combinations of the binary, 2 and 1 branching pattern described 
above. I could not find another basic convergent-divergent pattern that cor-
rectly transmitted the location of an input. For example, there seem to be 
no solutions that produce 3-to-1, 5-to-1 or other even but not power-of-2 
convergence ratios such as 6-to-1. Nor could I find any variation of 2 and 1 
branching that overcame the limit of an 8-to-1 convergence. Perhaps someone 
will either prove me wrong or find a general explanation for why only the 
previous pattern works and its inherent limit.

Acuity

Explanation so far has involved only a single input into the convergent-di-
vergent network. When two or more inputs occur simultaneously, the results 
depend on the distance between the inputs and the convergence ratio. The 
2/1 convergence network shown in Figure 2 can accurately locate two inputs 
of equal strength as long as they are separated by four cells. Smaller gaps 
produce one or two maxima at outputs between those that correspond to the 
inputs. The triple convergence-divergence network shown in Figure 3 with 8-
to-1 convergence does not accurately locate two inputs until they are 16 cells 
apart. Clearly networks that achieve accurate convergence and divergence 
simply by branching, do so at the expense of ability to resolve simultaneous 
inputs. (How this liability may be bypassed is discussed later.) 

2-Dimensional.Arrays

Basic Model

To model a convergent-divergent neural network that would operate on an 
array of inputs spread over a surface, I initially copied a spreadsheet version 
of Figure 2 to every other page in a 3-dimensional spreadsheet program, 
QuattroPro12. The convergent and divergent calculations were moved to 
the in-between pages and connections to input and output cells extended to 
both adjacent sheets. This proved awkward. So instead I placed the inputs as 
an input array on one page, the convergent calculations on the next page, 
the connecting pathways on a 3rd page, the divergent calculations on a 
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4th page, and the outputs along with comparison network calculations as an 
output array on a 5th page. (It can all be done on just two pages, one for 
convergent calculations and one for the divergent, but having additional pages 
for inputs, pathways and outputs was easier to follow.) Figure 4 illustrates 
this organization for a convergent-divergent network operating on a sheet of 
inputs with a single level of convergent and divergent calculations.
It was immediately evident that the 2 and 1 branching used for linear arrays 
was no longer appropriate. Each input cell now has four adjacent convergent 
calculation cells to which it must “send” branches. To make the closest and 
next-closest branching weights inversely proportional to their distance required 
three weights that could no longer be simple whole numbers. Pythagoras’ 
theorem was used to calculate the vector lengths or “Euclidian distance,” and 
the reciprocal of that distance became the weight for that connection. 
(There is no “distance” between sheets. Decreasing the branch weights in pro-
portion to distance-squared does not work. Therefore, the spread of information 
in these neural networks is not analogous to a radiant effect. This indicates 
that convergent-divergent networks involve a selective branching structure 
as opposed to a simple spreading of the branches, which would produce a 
radiant-like reduction in terms of branch density as distance increased.) 
As shown for the convergent cells on Page	2 of Figure 4, the response 
from each input cell is multiplied by one of these branching weights and 
summed with the results from the other input cells connected to a given 
convergent cell. It is easier to visualize the weights from the perspective of 
the convergent cell because they are spatially symmetrical and the same for 
all convergent cells. Figure 5 shows the weights of the branches from the 
sixteen input cells that send branches to each convergent cell. Note how a 
third weight of 0.24 is required for the next-closest set of input cells C4, I4, 
C11, and I11 located at the corners of the twelve cells surrounding four cells 
closest to the convergent cell at F7.
On Page	3, the convergent cell locations become the connecting pathways 
between the peripheral input array cells and the central processor that lies 
beyond the output array cells that form the limits of the convergent-diver-
gent transmission model. The weights of the branches from these pathways 
to the output array cells on Page 5 look the same as the weights shown in 
Figure 5. The difference is that the centrally located pathway at F7 would be 
connected to output array cells at C4, E4, G4, ..., I11. However, this sym-
metric branching pattern can not be implemented in the spreadsheet model 
since spreadsheet cells can not “send” their contents to other cells. 
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Figure	4.	How	a	neural	network	for	a	two-dimensional	array	of	inputs and 
outputs	with	single	degree	of	4	to	1	convergence	and	1	to	4	divergence	was	
modeled	on	five	spreadsheet	pages.	Except	for	the	input cells on Page 1, each 
active cell is connected to cells on the previous page by neural branches that 
have	various	weights	such	as	the	indicated	values	0.71,	0.34,	etc.	used	in	the	
convergent and divergent calculations	on	Pages	2	and	4.	These	weights	reduce	
the strength of what is received from the branch’s source cell. Stimulating the 
input	cell	at	location	G8	on	Page	1	produces	a	maximum	response	at	location	
G8	on	Page	4.	In	each	indicated	cell	on	Page	5	an	“IF”	function	outputs	the	
response	value	of	the	corresponding	cell	on	page	4	if	that	value	is	larger	than	
any of its neighbors.  Page 1 and Page 5 are only connected by the pathways 
shown	on	Page	3.	(copyright	by	author,	printed	with	permission)	
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The divergent cells on Page	4 of the network in Figure 4 operate by add-
ing the contents from their two closest and two second closest connecting 
pathways. The branches from each of these pathways require three different 
weights so that the contribution from each pathway is inversely proportional 
to its distance from the output cell. See Figure 6. With respect to output G8 
in the upper illustration, the branch from its closest pathway, F7, has a weight 
of 0.71; the two next closest pathways, F11 and J7, are weighted 0.32; and 
the furthest, J11, is weighted 0.24. Note that the weight of branches from 
each of these pathways varies depending on which output is receiving their 
branches. This is shown in the lower illustration for output I10. 

Figure 5. The weights used by convergent calculation	cells	on	Page	2	of	
Figure	4	 for	branches	 from	Page	1	 inputs	 to	Page	3	connecting pathways 
(shown shaded). The indicated weights are those used by convergent	cell	F7	
for branches from inputs	C4,	C6,	...,	I10	to	pathway	F7.	The	weight	for	each	
branch is the reciprocal of that input’s distance to the pathway. (Consider 
Page	2	to	have	zero	thickness.)	Every	convergent cell uses the same weights 
for its inputs. (copyright by author, printed with permission)
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Figure 6. Weights used by the divergent calculation	cells	on	Page	4	of	Figure	
4	for	neural	branches	from	the	connecting paths	(shown	shaded)	on	Page	3	to	
the outputs on Page 5. There are four sets of asymmetrical weights depend-
ing on an output cell’s position with respect to its nearest pathway. The upper 
diagram shows the weights for output E6 of the branches from the adjacent 
pathway	F7	and	the	three	other	pathways	(B3,	F3,	and	B7)	that	surround	F7.	
The lower diagram shows the weights for output	G8.	(copyright	by	author,	
printed with permission)
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Similar to the linear array model, the 2-dimensional output array of a conver-
gent-divergent network is a distribution of response values across the array. 
Only the maximum value of that distribution corresponds to the location of 
an input. Figure 7 shows the distribution of values in the output array prior 
to any comparative processing when a “1” has been entered at input G8. 
The maximum value in this array correspondingly occurs at output G8. The 
values in other output cells decrease in proportion to their distance from 
this location.

Figure	7.	The	distribution	of	output	values	across	a	portion	of	the	2-dimen-
sional output array	on	Page	5	of	Figure	4	prior	to	the	winner-take-all	calcu-
lations in response to an input value of “1” entered at input	G8	on	Page	1.	
Note	that	the	maximum	value,	0.76,	occurs	at	output	G8,	which	corresponds	
to the location where the “1” was entered in the input array. Only connect-
ing pathways	F7,	J7,	F11,	and	J11	contribute	to	these	outputs	according	to	
their distance from each output cell as shown in the upper part of Figure 6. 
(copyright by author, printed with permission) 
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As illustrated in Figure 4, a 3-dimensional neural net can transmit information 
from a sheet of input cells along one-quarter as many connecting pathways 
as the number of inputs and accurately represent in its output array which 
input was stimulated and the magnitude of that input. The cost of achiev-
ing this compressed transmission is that additional processing is needed to 
identify which output has the information that specifically corresponds to 
the input. Subsequent winner-take-all calculations such as the “IF(G8 (C4...
K12), G8, 0)” shown at output G8 on Page 5 of Figure 4 are needed at each 
output to isolate the location and value of the output cell having the largest 
value - in this example 0.76 at location G8.     
 
Some Further Properties

As with the linear array model, greater convergence is possible by adding 
more layers of convergent-divergent branching before and after the connecting 
paths. On Page	2 of Figure 4, instead of having the branches from the input 
cells go directly to the connecting pathways, their destination can be cells 
with a second set of similar convergent calculation cells which then branch 
to the pathways. This double convergence uses only one-quarter as many 
pathways as the network in Figure 4. This results in a 16-to-1 convergence. 
A comparable doubling of the divergent cells in Page	4 still conserves input 
location and magnitude. 
A third layer of convergent and divergent cells on Page	2 and Page	4 would 
produce 64-to-1 convergence. However, errors now appear in localizing the 
input. Changing the branching weights changes where the errors occur with 
respect to the center and periphery of a 64 cell unit matrix of output cells. 
As weights are changed, errors appear in the center of this matrix before they 
disappear in the periphery. This suggests that there is no solution. Sixteen-
to-one convergence appears to be the practical limit for a 3-dimensional 
branching network operating on a sheet of inputs and outputs. 
As could be expected, the spatial acuity of these 2-dimensional networks is 
closely related to the degree of convergence. The single degree 4-to-1 net-
work shown in Figure 4 will locate two simultaneous inputs down to a gap 
of 4 input cells. A second set of convergent and divergent cells will locate 
two inputs down to a gap of 14 cells.    
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Emerging.Insights

Biological.Implications

The 16-to-1 convergence obtainable simply by neural branching enables a 
substantial reduction of neural pathways needed to transmit information from 
many sources while maintaining the origin and magnitude of the information. 
Sensory systems such as the rabbit somatic system studied by Weddell et al. 
(1955) have a convergent ratio of 20-to-1 which is similar to the 16-to-1 ratio 
obtainable with the above branching model. Such savings in overall pathway 
size would also be applicable to major intracortical tracts which also must 
present bottlenecks to the flow of information between cortical areas. The 
neural branching evident at each end of such tracts seems capable of sup-
porting a convergent-divergent organization (Bullier, 2004). Though these 
pathways also seem to involve feedback, that may serve other purposes such 
as refining and modifying the transmitted information rather than ensuring 
its accuracy. 
Modelling these convergent-divergent systems may appear a daunting task 
and lead one to wonder how they could ever be achieved precisely enough 
biologically. In practice, once the basic branching pattern is defined, the rest 
is simply a matter of large scale copying easily done on spreadsheets. A gene, 
Pax6, has been found to not only initiate the development of eye structures 
(Kozmik, 2005), but also produces a topographic network of central con-
nections (Vanderhaeghen & Polleux, 2004). The operation of this gene has 
been traced back to Coelenterates (jellyfish)—the simplest animals having 
a visual system (Nilsson, 2004). This suggests that all visual systems share 
a common origin dating back to the Precambrian era. While a parallel or-
ganization of individual receptor nerve fibers seems to have been adequate 
for simple animals, at some evolutionary point visual and tactile systems 
with multitudes of receptors and larger, more complex bodies must have 
encountered the bottleneck problem of how to convey all that information 
into a central nervous system. Then it is likely that a convergent-divergent 
variation of earlier parallel pathway systems was found adaptive.
However, more complex animals that adapted a convergent-divergent system 
faced a problem not present in parallel systems. In response to a single input, 
convergent-divergent networks produce a distribution of outputs that vary 
in magnitude. In the previous models, a layer of comparison calculations 
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was added at the output layer to emit only the maximal output, which cor-
responds to the input. Neural network implementation of such calculations 
use lateral inhibition to achieve a “winner-take-all” effect (Maass, 2000). A 
single-input-to-single-output system would facilitate obtaining the reflex-arc 
learning of classical conditioning models such as those proposed by Sher-
rington, Pavlov, and Hebb (Hebb, 1949) that seem realizable with long-term 
potentiation effects (Bliss & Collingridge, 1993). Therefore, convergent-di-
vergent sensory transmission may have provided the impetus for developing 
information comparison networks. 
Convergent-divergent comparison networks could be capable of much more 
than facilitating reflex arcs. The combination of multiple interconnected in-
formation pathways with inhibitory comparison processing is similar to the 
networks proposed by Pribram (1991) to achieve holographic information 
processing which shares many properties associated with consciousness. 
Adding memory to such circuits can produce recognition systems (Deutsch, 
1967; Eich, 1985; McLeod, Plunkett & Rolls, 1998). Might the convergent-
divergent organization of the visual system have been the basis for evolving 
more complex information processing? Vertebrates are unique in having a 
visual nervous system that is part of their central nervous system. In mam-
mals, the visual system develops in the neural tube prior to the forebrain. 

Technological.Possibilities
 
Branching solutions to spatial multiplexing seem applicable to electronic, 
optical, and even hydraulic information systems. Wire, optical fibers, beams, 
or pipes are information transmission media that are readily branched, and 
the detection and measurement of maxima in these media does not seem 
difficult. Multiplexing by means of branching directly in these media may 
prove advantageous to operations that must continuously adapt to changing 
conditions. Here are some specific application possibilities:

1. Like animal sensory systems, microcomputing circuits encounter bottle-
necks whenever information has to be passed from one component to 
the next. Temporal multiplexing is presently used to overcome such 
bottlenecks. An ability to also incorporate spatial multiplexing could 
reduce the bottleneck problem by an additional factor of 16. This would 
seem important to enabling computing components to handle more 
information.
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2. Temporal multiplexing incurs a penalty of reducing operating speed by 
the multiplexing factor. For example, if an information transmission 
path has to be switched 4X to send the entire message, the final rate at 
which the complete information can be used is reduced by a factor of 
4. Spatial multiplexing operates immediately. It does not need to take 
time out to break down a message into chunks for sequential transmis-
sion followed by reassembly. Therefore spatial multiplexing would 
be advantageous over temporal multiplexing to increase the speed of 
information processing.

3. Spatial multiplexing can handle analog information directly. The relative 
strength of the output is proportional to that of the input. While tempo-
ral multiplexing can in principle also handle analog signals, switching 
introduces transients, which distort analog signals. 

4. The analog ability of spatial multiplexing would, in principle, enable it 
to work with any kind of information media: optical, hydraulic, acous-
tic, pneumatic. This suggests that spatial multiplexing could be directly 
applied in non-electronic control systems—for example to transmit 
hydraulic operations to a multitude of actuators along a few hydraulic 
lines.   

Spatial.and.Temporal.Tradeoffs
 
The major drawback to saving transmission paths by branching is the dif-
ficulty in handling more than one input simultaneously without unacceptable 
loss of spatial acuity. Since this problem has been resolved in the complex 
sensory systems of vertebrates, this may not be as severe a problem as it first 
appears. Notwithstanding inescapable neural conduction latency, the tempo-
rally discrete nature of neural impulses is smoothed by the combination of 
asynchrony of individual neural responses and variations in neural conduc-
tion speed. Multiplexing achieved by branching is continuous and does not 
require processing time. This can be a critical advantage when coherency is 
required for information processing (Cotterill, 1988). Continuous transmission 
systems can be considered to have infinite temporal resolution. The common 
wisecrack, “God invented time to prevent everything from happening at 
once.” has significance here. Strictly speaking, no two things probably ever 
happen at exactly the same time. Thus a system that can transmit information 
continuously need not lack spatial acuity after all. 
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Conclusion

The bottleneck problem of how to transmit information from many sources 
without an overwhelming number of connecting pathways is common to most 
complex systems that seek more information to adapt to their environment. 
The problem is compounded in biological neural systems where transmission 
delays interact with pathway diameter and system size (Ringo, Doty, Demeter, 
& Simard, 1994). Unsolved, this bottleneck places severe restrictions on the 
viable size and complexity of adaptive systems.
Two biologically inspired neural network models for a convergent-divergent 
organization of an information transmission system have been presented. They 
enable information from many inputs to be transmitted along a fractional 
number of connecting paths while conserving which input was the source of 
the information. They solve the bottleneck problem using certain branching 
patterns or weights of the connections to and from the paths that transmit 
information from inputs to outputs. Their branching pattern makes them 
more tolerant of component failure than parallel transmission systems. The 
continuous operation of these models enables them to maintain the magnitude 
of the input and minimize transmission delays.
The inherent lack of complexity in how the elements of these models operate 
shows that spatial multiplexing can be achieved by neural networks that are 
as simple as models by McLeod et al. (1998) that are capable of learning and 
recognition. Adding these convergent-divergent transmission principles to the 
front-end of such cognitive models will enable future designers of complex 
adaptive systems to more realistically maximize their information handling 
abilities. These principles can also solve the need for biological modelling 
of how information from many sources can be economically transmitted 
from one region to another within a brain (Karbowski, 2003) and also from 
a brain to operate a large number of effectors such as individual muscle cells 
(Prescott, 2007). 
In summary, solving the sensory information bottleneck has revealed the fol-
lowing nine general principles and a tenth speculative principle that enable 
complex adaptive neural systems to use more information:

1. Obtaining more information from the environment requires connecting 
more sensors to the central processor. Processing the additional infor-
mation requires a larger processor. Using the information may involve 
sending more information to control behavior.  
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2. To be useful, the information must arrive promptly. This becomes more 
difficult as neural systems get larger and information must travel fur-
ther. 

3. Biological neural systems are constrained by a tradeoff between con-
ductor size and information conduction speed. Larger neurons conduct 
more rapidly, can support more branches, but take up more space than 
smaller neurons. 

4. Central processing of information is advantageous over distributed 
processing because it facilitates rapid integration and comparison of 
information from diverse sources, including memory, by reducing the 
distances information must travel. 

5. At some point in increasing the number of information pathways and 
consequent growth of system size, the number of information path-
ways that can enter a central processor faces a bottleneck due to space 
limitation in how many connections are possible at the surface of the 
processor. Faster biological pathways exacerbate this space limitation 
by being larger. 

6. Similar bottlenecks exists within a processor when large amounts of 
information need to be rapidly conveyed from one region to another 
and when large amounts leave the processor to control behavior. 

7. These bottlenecks can be solved by certain convergent-divergent branch-
ing organizations of the neural pathways. These organizations enable 
information from many sources to be conveyed by fewer connections 
while conserving the origin and magnitude of the transmitted informa-
tion. (Biologically, the required additional branching is readily obtained 
as larger neurons are used to ensure promptness.) 

8. Unlike parallel transmission systems where information from each source 
is contained within a single pathway, convergent-divergent information 
networks distribute information from each source across many pathways 
that also carry information from other sources.

9. Economical use of this distributed information may require the addi-
tion of comparison networks that identify the location and value of the 
distribution’s maximum which identifies the original input in terms of 
a particular neural element. This facilitates combining the information 
from several inputs to form specialized elements such as receptive 
fields.  It also facilitates channelling an input into reflex arcs and other 
behaviors.
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10. (speculative). Modest modification of the “blueprint” for building 
comparative convergent-divergent information transmission networks 
may be combined with memory to produce recognition, learning, and 
consciousness.      
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Chapter.VII

Complexity,.Information,.
and.Robustness:

The.Role.of.Information.
“Barriers”.in.Boolean.Networks

Kurt A. R�chardson, ISCE Research, USA

Abstract

In this supposed “information age,” a high premium is put on the widespread 
availability of information. Access to as much information as possible is often 
cited as key to the making of effective decisions. While it would be foolish 
to	deny	the	central	role	that	information	and	its	flow	has	in	effective	deci-
sion-making processes, this chapter explores the equally important role of 
“barriers”	to	information	flows	in	the	robustness	of	complex systems. The 
analysis demonstrates that (for simple Boolean networks at least) a complex 
system’s	ability	to	filter	out	(i.e.,	block)	certain	information	flows	is	essential	
if it is not to be beholden to every external signal. The reduction of informa-
tion is as important as the availability of information.
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Introduction

In the information age, the importance of having unfettered access to infor-
mation is regarded as essential—almost a “right”—in an open society. It is 
perhaps obvious that acting with the benefit of (appropriate) information to 
hand results in “better” actions (i.e., actions that are more likely to achieve 
desired ends), than acting without information (although incidents of “infor-
mation overload” and “paralysis by (over) analysis” are common). From a 
complex systems perspective there are a variety of questions/issues concerning 
information, and its near cousin knowledge, that can be usefully explored. For 
instance, what is the relationship between information and knowledge? What 
is the relationship between information, derived knowledge, and objective 
reality? What information is necessary within a particular context in order to 
make the “best” choice? How can we distinguish between relevant information 
and irrelevant information in a given context? Is information regarding the 
current/past state of a system sufficient to understand its future? Complexity 
thinking offers new mental apparatus and tools to consider these questions, 
often leading to understanding that deviates significantly from (but not neces-
sarily exclusive of) the prevailing wisdom of the mechanistic/reductionistic 
paradigms. These questions may seem rather philosophical in nature, but 
with a deeper appreciation of the nature of information and the role it plays 
in complex systems and networks, we can begin to design more effective 
and efficient systems to facilitate (rather than merely manage) information 
creation, maintenance, and diffusion. 
The science of networks has experienced somewhat of a renaissance in 
recent years with the discovery of particular network topologies, or ar-
chitectures, in natural and human systems. These topologies include both 
small-world (Watts & Strogatz, 1998) and scale-free networks (Barabási 
& Albert, 1999). Barabási (2001) has shown that the World Wide Web has 
a scale-free architecture, which essentially means that it has relatively few 
high-connected nodes (i.e., nodes containing many inputs and outputs) and 
relatively many low-connected nodes (i.e., nodes containing few inputs and 
outputs). However, there are significant limitations to network representa-
tions of real world complex systems. Barabási (2001) himself says that “The 
advances [in network theory] represent only the tip of the iceberg. Networks 
represent the architecture of complexity. But to fully understand complex 
systems, we need to move beyond this architecture and uncover the laws 
that govern the underlying dynamical processes, such as Internet traffic…”  
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Boolean network modeling is a relatively simple method to facilitate this 
move beyond mere architecture. Although the networks considered herein 
have random topologies (rather than scale-free or small-world) the model-
ing of such simple dynamical networks allows researchers to explore, albeit 
in a limited fashion, the emergent underlying dynamical processes of real 
systems such as the Internet.
In this chapter, I would like to examine one particular aspect of complex 
dynamical networks: How barriers to information and its flow are essential 
in the maintenance of a coherent functioning organization. My analysis 
will be necessarily limited. A very specific type of complex system will be 
employed to explore the problem, namely, Boolean networks. And, a rather 
narrow type of information will be utilized: a form that can be “recognized” 
by such networks. Despite these and other limitations, the resulting analysis 
has applicability to more realistic networks, such as human organizations, 
and useful lessons can be gleaned from such an approach. We shall see that 
such an approach may offer the possibility of complementing mechanistic 
approaches to the design of information systems—in which the most im-
portant characteristics are engineered—with approaches that allow certain 
characteristics to emerge from the interaction of the information system’s 
components. The chapter begins with an introduction to Boolean networks 
and certain properties that are relevant to the analysis herein.

Boolean.Networks:.Their.Structure.and.
Their.Dynamics

Given the vast number of papers already written on both the topology and 
dynamics of such Boolean networks, there is no need to go into too much 
detail here. The interested reader is encouraged to look at Kauffman (1993) 
for his application of Boolean networks to the problem of modeling genetic 
regulatory networks. A short online tutorial is offered by Lucas (2006), but 
the basics are provided herein.
A Boolean network, which is a particularly simple information system, is 
described by a set of binary gates Si={0,1} interacting with each other via 
certain logical rules and evolving discretely in time. The binary gate represents 
the on/off state of the “atoms” (or, “agents”) that the network is presumed 
to represent. So, in a genetic network, for example, the gate represents the 
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state of a particular gene. The logical interaction between these gates would, 
in this case, represent the interaction between different genes. The state of 
a gate at the next instant of time (t+1) is determined by the k inputs or con-
nectivity m

ij
S  (m=1,2,…,k) at time t and the transition function fi associated 

with site i: 

( )1 2( 1) ( ), ( ), , ( )k
i i ij j ji iS t f S t S t S t+ = 

There are 2k possible combinations of k inputs, each combination producing 
an output of 0 or 1. Therefore, we have 22 k

 possible transition functions, or 
rules, for k inputs. For example, if we consider a simple network in which 
each node contains 2 inputs, there are 22=4 possible combinations of input 
- 00, 01, 10, 11 - and each node can respond to this set of input combina-
tions in one of 22

2

=16 different ways. Figure 1 illustrates a simple example. 
The figure shows not only an example network (a), but also its space-time 
evolution (b) and its phase space attractors (c) which will be discussed next. 
Figure 1d shows the sixteen different Boolean functions that can be created 
from two inputs.
The state, or configuration, space for such a network contains 2N unique states, 
where N is the size of the network (so for the simple example shown, state 
space contains 64 states). Because state space is limited in size, as the system 
is stepped forward it will eventually revisit a state it has visited previously. 
Combine this with the fact that from any state the next state is unique (although 
multiple states may lead to the same state, only one state follows from any 
state), then any Boolean network will eventually follow a cycle in state space. 
As a result, state space (or phase space) is connected in a non-trivial way, 
often containing multiple attractors each surrounded by fibrous branches of 
states, known as transients. Figure 1c shows the state space attractors, and 
their associated basins, for the particular Boolean network shown in Figure 
1a. The transition functions for each node were chosen randomly, but did 
not include the constant rules 0 (0000), or 15 (1111) as these force the node 
to be input-independent nodes with constant transition functions that do not 
change from their initial state.
Figure 1c shows the two attractors for this particular example: one period-
3 attractor basin containing 56 states, and a single period-2 attractor basin 
containing the remaining eight states (a total of 25=64 states). In this example, 



Complex�ty, Informat�on, and Robustness   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Figure 1. A simple Boolean network (a) shows the set-up of a particular 
network	with	N=6.	Each	node	is	numbered	0	thru	5.	The	binary	sequences	
in between the square brackets represent the Boolean function for each node. 
Note	that	nodes	2	and	5	are	connected	to	themselves.	(b)	shows	the	space-
time diagram for the evolving network. Each column shows the evolution of 
a particular nodes, and each row shows the overall network state at a par-
ticular	time-step.	In	this	case	the	network	was	seeded	at	t=0	with	a	random	
sequence. After an initial settling down period, the sequence converges of 
a	period-3	cycle.	(c)	shows	the	two	state	space	attractors	that	characterize	
this	particular	network:	a	period-3	(p3)	and	a	period-2	(p2).	(d)	shows	all	
the sixteen Boolean logic functions that can be constructed from two inputs 
depicted in the standard way with both look-up tables and machine state 
diagrams. In this study the two rules CONTR. (contradiction) and TAUT. 
(tautology) are excluded.
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only five states actually lie on attractors and the remaining 59 lie on the tran-
sient branches that lead to these four cycle states. When a Boolean network 
is simulated, it is usually seeded with an initial random configuration. As the 
network is stepped forward one time-step at a time, there is an initial settling 
down period (sometimes referred to as the relaxation time) before the system 
converges onto a particular attractor. There are often many different routes to 
a particular attractor, and these are represented by the branching structures 
(or, transient branches) shown in Figure 1c. This relaxation period might be 
compared to the settling down period in human systems that occurs when a 
new strategy is implemented and people take time to find their place in the 
new strategy before the overall system stabilizes in one particular direction 
or another. Of course, this relatively stable period may only be temporary as 
adjustments to strategy are made in response to changing requirements often 
triggered by particular environmental conditions. 
Figure 2a is another way of visualizing how state space is connected. Each 
shade of grey represents one of the two attractor basins that together char-
acterize state space. The figure comprises a grid with state 000000 at the 
uppermost left position and state 111111 at the lowermost right position. It 
shows, for example, that the 8 states that converge on the period-2 attractor 
are distributed in four clusters, each containing two states. This particular 
representation is called a destination map, or phase space portrait, and we 
can see that even for small Boolean networks, the connectivity of state space 
is non-trivial. Figure 2b is a destination map for an N=15, k=2 Boolean 
network (whose state space is characterized by four attractors: 2p2, 2p3), to 
illustrate how quickly the complexity of state space connectivity, or topology, 
increases as network size, N, increases. The boundaries between different 
shades are known as separatrices, and crossing a separatrix is equivalent to 
a move from one attractor basin into another (adjacent) attractor basin (i.e., 
if the system is pushed across a separatrix then there will be a qualitative 
change in dynamic behavior—this is also known as bifurcation).
It is all well and good to have techniques to visualize the dynamics that results 
from the Boolean network structure (and rules). But how are a network’s 
structure and its dynamics related? It is in the consideration of this question 
that we can begin to explore the role of information flows in such systems.
The potentially complex dynamics that arise from the apparently simple 
underlying structure is the result of a number of interacting structural feed-
back loops. In the Boolean network modeled to create the images in Figure 
1, there are seven interacting structural feedback loops: two period-1, two 
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period-2, two period-3, and one period-5, or 2P1, 2P2, 2P3, 1P5 for short. 
The P5 structural loop in this case is: Node 0 → 4 → 3 → 2 → 1 → 0. It is 
the flow (and transformation) of information around such structural loops, 
and the interactions between different loops (or, inter-loop connectivity) 
that results in the two state space attractors in Figure 1c; 1p1, 1p3 for short 
(here I use “P” for structural, or architectural, loops and “p” for state, or 
phase space loops, or cycles). The number of structural P-loops increases 
exponentially (on average) as N increases, for example, whereas the number 
of state space p-loops increases (on average) in proportion to N (not N  as 
Kauffman (1993) reported, which was found to be the result of sampling 
bias, Bilke & Sjunnesson (2002).
For networks containing only a few feedback loops, it is possible to develop 
an algebra that can relate P-space to p-space, that is, it is possible to construct 
some very simple and robust rules that relate a network’s architecture to its 
function much in the same way as it is rather trivial (when compared to com-

Figure	2.	The	destination	maps	for	(a)	the	network	depicted	in	Figure	1a	
(N=6,	 k=2),	 and	 (b)	 a	 particular	N=15,	 k=3	network	 (the	 grid	 showing	
individual states is not included for clarity)

(a)                                                   (b)
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plex nonlinear dynamical systems) to build serial computers with particular 
functionality. However, as the number of interacting p-loops increases this 
particular problem becomes intractable very quickly indeed, and the devel-
opment of a linking algebra (i.e., rules) utterly impractical.
Sometimes the interaction of a network’s P-loops will result in state space 
(p-space) collapsing to a single period-1 attractor in which every point in state 
space eventually reaches the same state. Sometimes, a single p-loop will result 
whose period is much larger than the size of the network—such attractors are 
called quasi-chaotic (and can be used as very efficient and effective random 
number generators). Most often multiple attractors of varying periods result, 
which are distributed throughout state, space in complex ways.
Before moving on to consider the robustness of Boolean networks, which 
will then allow us to consider the role information barriers play in network 
dynamics, it should be noted that state space, or phase space, can also be 
considered to be functional space. The different attractors that emerge from 
a network’s dynamics represent the network’s different functions. For ex-
ample, in Kauffman’s analogy with genetic regulatory networks, the network 
structure represents the genotype, whereas the different phase space attractors 
represent the resulting phenotype, each attractor representing a different cell 
type. Another example might be in team dynamics in which the modes of 
forming, storming, norming, and performing are each represented in state 
space by a different attractor. A further example might be in computer network 
operations. Here again, different operational modes, including both stable 
and unstable (e.g., a crash) modes can be considered as different state space 
attractors. An appreciation of a system’s state space structure tells us about 
the different responses a system will have to a variety of external perturba-
tions (i.e., it tells us which contextual archetypes the system “sees” and is 
able to respond to).

Dynamical.Robustness

The dynamical robustness of networks is concerned with how stable a par-
ticular network configuration, or operational mode, is under the influence 
of small external signals. Most information systems will exhibit a range of 
qualitatively different modes of operation. Only some of those modes will 
be desirable, and others (like system wide crashes) will be undesirable. An 
understanding of a system’s dynamical robustness provides insights into which 
modes are most likely (i.e., which ones dominate state space), and how easily 
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the system’s behavior can be “pushed”—deliberately or not—into a differ-
ent mode. In Boolean networks, we can assess this measure by disturbing an 
initial configuration (by flipping a single bit/input, i.e., reversing the state of 
one of the system’s nodes) and observing which attractor basin the network 
then falls into (after some relaxation period). If it is the same attractor that 
follows from the unperturbed (system) state then the state is qualitatively 
stable when perturbed in this way. An average for a particular state (or, system 
configuration) is obtained by perturbing each bit in the system state, or each 
node, and dividing the number of times the same attractor is followed by the 
network size. For a totally unstable state the robustness score would be 0, 
and for a totally stable state the robustness score would be 1. The dynamical 
robustness of the entire network is simply the average robustness of every 
system state in state space. This measure provides additional information 
concerning how state space is connected in addition to knowing the number 
of cyclic attractors, their periods, and their weights (i.e., the volume of state 
space they occupy). By way of example, the average dynamical robustness 
of the network depicted in Figure 1a is 0.875 which means the network is 
qualitatively insensitive to 87.5% of all possible 1-bit perturbations.

More on Structure and Dynamics: Walls of 
Constancy,.Dynamics.Cores,.and.Modularization

As we have come to expect in complex systems research, there is always 
more to the story than what at first meets the eye. This is also the case for 
the relationship between network structure and dynamics. Although infor-
mation flows (and is transformed) around the various structural networks, 
certain logical couplings “emerge” that force particular nodes into one state 
or another, keeping them in that state for as long as the network is simulated. 
In other words, once the network is initiated/seeded and run forward, after 
some seemingly arbitrary transient period (the relaxation time) some nodes 
cease to allow information to pass. These “fixed.” or “frozen” nodes effec-
tively disengage all structural feedback loops that include them—although 
these structural loops still exist, they are no longer able to cycle information 
continuously around them. As such we can refer to them as non-conserv-
ing information loops; information that is placed onto such loops will flow 
around the loop until a frozen node is reached, after which the information 
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Figure	3.	The	process	of	modularization in complex networks
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flow is blocked. A number of such nodes can form walls of constancy through 
which no information can pass, and effectively divide the network up into 
non-interacting sub-networks (i.e., the network is modularized). This process 
is illustrated in Figure 3.

Nodes/Loop.Types

The process is actually more complicated than what is depicted in Figure 3. 
When the occurrence of “frozen” nodes is examined more closely we find 
that some nodes are not frozen in all the different operational modes (attrac-
tors). As such, we can distinguish between four different types of informa-
tion loop:

1.. Type1: Those that contain frozen nodes (that are frozen to the same 
state, 0 or 1) in all modes of operation (attractors);

2.. Type.2:.Those that contain the frozen nodes in all modes of operation, but 
the frozen state may differ from one mode of operation to another;

3.. Type.3:.Those that contain frozen nodes in some modes of operation, 
but may be active (i.e., contain no frozen nodes) in other modes—these 
act as non-conserving loops in some contexts, but as conserving loops 
in other contexts);

4.. Type.4:.Those that contain no frozen nodes in any modes of operation 
(i.e., information conserving loops).

Given that it is the existence of frozen nodes, or not, that determines whether 
an information loop is Type 1, 2, 3, or 4, we can also label nodes as Type 1, 
2, 3, or 4 also. Throughout the rest of this chapter when we talk of frozen 
nodes, or non-conserving information loops, we are only concerned with 
Type 1 as these do not contribute to the gross characteristics of state space 
at all. But before moving on to consider the role of Type 1 nodes/loops at 
length I’d like to briefly mention the role of Types 2 and 3.
Assuming a particular network contains all types of nodes/loops, when the 
system is following different attractors, different sets of nodes/loops will be 
“active.” As we shall see below, only the dynamic core (which comprises 
all types except Type 1 nodes/loops) contributes to the number and period 
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of attractors in state space.  However, the allocation of node/loop type is a 
global one in that we must consider the behavior of all nodes and loops in 
all modes of operation. If we consider the behavior of all nodes and loops in 
only one particular mode then each node becomes either frozen or not, and 
each loop becomes either conserving or non-conserving (i.e., Types 2 and 
3 are effectively either Types 1 or 4 at the local attractor level). As a result, 
there exists another level of modularization. The modularization process pre-
viously discussed is the result of the emergence of only Type 1 nodes/loops 
and as such the modules identified in this way are the largest in size, but the 
fewest in number (because every operational mode—attractor type—is con-
sidered). However, for particular modes, there may be additional nodes that 
are frozen (and therefore a greater number of non-conserving loops) and so 
certain modules may actually divide (“modularize”) further. In this localized 
scenario, although the static structure of the network (i.e., the pre-simulated 
structure) is the same in all modes of operation, the emergent dynamic struc-
ture is (potentially) different for each state space structure (attractor). Allen 
(2001) introduced the term structural attractor, which seems to be the same 
as the emergent dynamic structure discussed here. The relationship between 
structural attractors and state space attractors is complex (as one might expect). 
For example, the same structural attractors may account for different state 
space attractors (although in the case of Boolean networks I would expect 
those different state space attractors to be the same in most respects, such 
as period for example).
I will not explore the role of Type 3 and Type 4 nodes/loops further herein, 
but I suspect that the key to understanding the dynamics of (discrete) complex 
networks at both the global (state space wide) and local (for particular state 
space attractors) levels is through an understanding of how these different 
types form and interact.

The.Emergence.of.a.Dynamic.Core

The identification of “frozen” nodes is non-trivial (and even “non-possible”) 
before the networks are simulated. Although the net effect is the same as as-
sociating a constant transition function (i.e., contradiction or tautology) with 
a particular node, the effect “emerges” from the dynamic interaction of the 
structural feedback loops (and is often dependent on initial conditions). It is 
a rare case indeed that these interactions can be untangled and the emergent 
frozen nodes identified analytically beforehand.
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As previously mentioned, these “frozen” nodes (Type 1) do not contribute 
to the qualitative structure of state space, or network function. A Boolean 
network characterized by a 1p3, 1p2 state space, like the one considered pre-
viously, will still be characterized by a 1p3, 1p2 state space after the (Type 
1) frozen nodes are removed. In this sense, they don’t appear to contribute 
the network’s function—they do block the flow of information, but from this 
perspective have no functional role. Another way of saying this is that, if we 
are only concerned with maintaining the qualitative structure of state space 
(i.e., the gross functional characteristics of a particular network) then we need 
only concern ourselves with information conserving loops; those structural 
feedback loops that allow information to flow freely around the network. 
This feature is illustrated in Figure 4 where the state space properties of a 
particular Boolean network, and the same network after the non-conserving 
information loops have been removed (i.e., the network’s “reduced” form), 
are compared. Although the transient structure (and basin weight) is clearly 
quite different for the two networks, they both have the same qualitative 
phase space structure: 2p4.
The process employed to identify and remove the non-conserving loops is 
detailed in Richardson (2005a). As network size increases, it becomes increas-
ingly difficult to determine a network’s state space structure. As such reduction 
techniques are not only essential in facilitating an accurate determination, 
but also in research that attempts to develop a thorough understanding of the 
relationship between network structure and network dynamics (as, already 
mentioned, only information conserving structural loops contribute to the 
network’s gross functional characteristics). Reduction techniques basically 
sample state space and identify, which nodes are frozen to the same state (0 
or 1) in all attractors (see the previous definition of Type 1 nodes). These 
nodes, and nodes that have no outgoing connections (and any connections 
associated with these nodes), are removed from the network description to 
form a “reduced” version. Another way of saying this is that all non-con-
serving information loops are identified and deactivated. What remains after 
this reduction process is known as the network’s dynamic core. A dynamic 
core contains only information conserving loops. The majority of (random) 
Boolean networks comprise a dynamic core (which may be modularized) 
plus additional nodes and connections that do not contribute to the asymp-
totic dynamics of the network (i.e., the qualitative structure of state space).  
A full description of a system’s dynamic core is the smallest description of 
the system that still contains the essence of what that system’s function is: 
all other structure is superfluous. 
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Figure	4.	An	example	of	(a)	a	Boolean	network,	and	(b)	its	reduced	form.	
The nodes, which are made up of two discs feedback onto themselves. The 
connectivity and transition function lists at the side of each network repre-
sentation are included for those readers familiar with Boolean networks. 
The graphics below each network representation show the attractor basins 
for	each	network.	The	state	spaces	of	both	networks	contain	two	period-4	
attractors, although it is clear that the basin sizes (i.e., the number of states 
they each contain) are quite different. The window located at the top-middle 
of	the	figure	illustrates	how	different	rules	are	applied	(in	the	two-input	case).	
The different combinations of the two-input, A and B, are mapped to outputs, 
O.	In	the	example	given	(which	is	for	rule	[0110])	the	“rule	table”	shows	
that if both A and B or zero or one, then the next state (O) of the node that 
has	A	and	B	as	inputs,	will	be	0.	This	is	the	essence	of	how	Boolean	networks	
are stepped forward in time.

(a)                                                                (b)
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If we consider a clock: at the heart of most clocks found in the home there is 
some kind of time-keeping mechanism and another mechanism that represents 
the time kept to observers of that clock. Of course, these mechanisms are 
often surrounding by fancy cases and other sub-systems designed for aesthetic 
reasons, or to protect the main mechanisms from external influence. We could 
regard the central time-keeping mechanisms as this particular system’s dy-
namic core, with the other frills and flourishes largely being irrelevant if our 
concern is with the time-keeping functionality of the clock. It should be noted 
though that in this example, the existence of modules, sub-systems, barriers, 
etc. are engineered into the system and that the dynamic core is trivial to 
identify (once a particular functional perspective is chosen). In the Boolean 
networks considered in this study, the existence of modules, sub-systems, 
barriers, etc. emerges through the nonlinear interaction of the various system 
components, and so details of their existence cannot (normally) be determined 
beforehand. It is likely that in real world networks such as the World Wide 
Web (WWW) some of the structure will be hard-wired (designed) into the 
network, and other structures (which may not be easily identified) emerge.
Another way of thinking about a complex network’s dynamic core is in the 
process of modeling itself. Complex systems are incompressible (e.g., Cil-
liers, 1998; Richardson, 2005b). This statement simply asserts that the only 
complete model of a particular complex system is the system itself1. This is, 
however, quite impractical, especially when considering systems such as the 
WWW or a natural ecology. Instead of regarding our models as efforts to 
represent a system in its entirety we can say, using the language developed 
above, that the aim of any modeling process is to find an adequate representa-
tion of a system’s dynamic core (i.e., those processes that are central to the 
functionality of the system).

The.Role.of.Non-Conserving.(Structural).
Information.Loops

As the gross state space characteristics of a Boolean network and its dynamic 
core (or, reduced form) are the same (i.e., in this sense, they are functionally 
equivalent), it is tempting to conclude that (Type 1) non-conserving infor-
mation loops—information barriers—are irrelevant. If this were the case then 
it might be used to support the widespread removal of such “dead wood” 
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from complex information systems (e.g., human organizations). The history 
of science is littered with examples of theories which once regarded such 
and such a phenomena as irrelevant, or “waste,” only to discover later on 
that it plays a very important role indeed. The growing realization that “junk 
DNA” (DNA being probably the most intricate information system known 
to us, other than the brain perhaps) is not actually junk is one such example. 
What is often found is that a change of perspective leads to a changed as-
sessment. Such a reframing leads to a different assessment of non-conserving 
information loops. Our limited concern, thus far herein, with maintaining a 
qualitatively equivalent state space structure in the belief that a functionally 
equivalent network is created, supports the assessment of non-conserving 
information loops as “junk.” However, this assessment is wrong when ex-
plored from a different angle.
There are at least two roles that non-conserving information loops play in 
random Boolean networks:

1. The process of modularization, and;
2. The maximization of robustness.

Modularization.in.Boolean.Networks

We have already briefly discussed the process of modularization. This pro-
cess, which we might label as an example of horizontal emergence (Sulis, 
2005) was first reported by Bastolla and Parisi (1998). It was argued that the 
spontaneous emergence of dynamically disconnected modules is key to un-
derstanding the complex (as opposed to ordered and quasi-chaotic) behavior 
of complex networks. So, the role of non-conserving information loops is to 
limit the network’s dynamics so that it does not become overly complex, and 
eventually quasi-chaotic (which is essentially random in this scenario: when 
you have a network with a high-period attractor of say 1020—which is not 
hard to obtain—it scores very well indeed against all tests for randomness. 
One such example is the lagged Fibonacci random number generator).
In Boolean networks, the resulting modules are independent of each other, 
so the result of modularization, is a collection of completely separate sub-
systems. This independency is different from what we see in nature, but the 
attempt to understand natural complex systems as integrations of partially 
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independent and interacting modules is arguably a dominant theme in the life 
sciences, cognitive science, and computer science (see, for example, Callebaut 
& Rasskin-Gutman, 2005). It is likely that some form of non-conserving, 
or perhaps “limiting,” information loop structure plays an important role 
in real world modularization processes.  Another way of expressing this is 
organization is the result of limiting	information	flow.
The concept of modularization (which is an emergent phenomenon) appears to 
be similar to Simon’s (1962) concept of near decomposability. In his seminal 
paper “The Architecture of Complexity,” Simon developed his theory of nearly 
decomposable systems, “in which the interactions among the subsystems are 
weak, but not negligible” (p. 474). Simon goes on to say:

“At least some kind of hierarchic systems can be approximated successfully 
as	nearly	decomposable	systems.	The	main	theoretical	findings	from	the	ap-
proach can be summed up in two propositions: (a) in a nearly decomposable 
system, the short run behavior of each of the component subsystems is ap-
proximately independent of the short-run behavior of the other components; 
(b) in the long run, the behavior of any one of the components depends in 
only	an	aggregate	way	on	the	behavior	of	the	other	components”	(p.	474).

The process of modularization previously described is slightly different, but 
complementary. Near decomposability suggests that complex systems evolve 
such that weakly interacting subsystems emerge that, on sufficiently short 
timescales, can be considered as independent from each other (although it says 
little about the dynamic processes that lead to this state). This phenomenon is 
clearly observed in Boolean networks, except that in these particular complex 
systems, the emergent subsystems (modules) are completely independent of 
each other—information does not flow from one subsystem to another. If 
there were no communications with the system’s environment then we could 
simply consider these independent subsystems in isolation. However, we shall 
see in the following discussions on dynamical robustness that the “padding” 
between these subsystems—the (Type 1) non-conserving information loops, 
or frozen nodes—plays an important role in the overall system’s (the network 
of subsystems) dynamics in the face of external “interference.” (It should be 
noted that, although the emergent modules discussed here are independent, 
in larger modules sub-modules may emerge that can indeed be viewed as 
weakly interacting subsystems. Near decomposability and modularization 
are related, but not in a trivial way.)
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Dynamic.Robustness.of.Complex.Networks

Dynamic robustness was previously defined in a slightly different way, as 
the stability of a network’s qualitative behavior in the face of small external 
signals. In this section, we will consider the dynamic robustness of an en-
semble of random Boolean networks and their associated “reduced” form to 
assess any difference between the two.
To do this comparison, the following experiment was performed. 106 random 
Boolean networks with N=15 and k =2 (with random connections and random 
transition functions, excluding the two constant functions) were constructed. 
For each network, its dynamic core was determined using the method detailed 
in Richardson (2005a). The average dynamical robustness was calculated for 
both the (unreduced) networks and their associated dynamic cores. The data 
from this experiment is presented in Figure 5, which shows the relationship 
between the unreduced and reduced dynamic robustness for the 106 networks 
considered. The black points shows the average value of dynamic core (or, 
reduced) robustness for various values of unreduced robustness. On average, 
the dynamic robustness of the reduced networks is typically of the order of 
20% less than their parent (unreduced) networks. Of course, the difference 
for particular networks is dependent on specific contextual factors, such as 
the number of non-conserving information loops in the (unreduced) networks 
(the extent of the dynamic core, in other words). This strongly suggests 
that the reduced networks are rather more sensitive to external signals than 
the unreduced networks. In some instances the robustness of the reduced 
network is actually zero meaning that any external signal whatsoever will 
result in qualitative change. This generally only occurs in networks, which 
have small dynamic core sizes compared to the network size. What is also 
interesting, however, is that sometimes the reduced network is actually more 
robust than the unreduced network. This is a little surprising perhaps, but not 
when we take into account the complex connectivity of phase space for these 
networks. This effect is observed in cases when there is significant change in 
the relative attractor basin weights as a result of the reduction process and/or 
a relative increase in the orderliness of state space.
In complex systems research it is important to consider the process of av-
eraging data (and adding error bars extending a certain number of standard 
deviations). The data in Figure 5a is clearly multi-modal and as such, one 
has to take care in interpreting the physical meaning of the average.  The 
different shades of grey in Figure 5 indicate the number of data points that 
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Figure 5. Data histograms of the dynamical robustness data collected. (a) 
all data, with black points showing the overall average, (b) data associated 
with	a	dynamic	core	size	of	15,	(c)	14,	(d)	13,	(e)	12,	(f)	11,	(g)	10,	(h)	9,	(i)	
8,	(j)	7,	(k)	6,	(l)	5,	and	(m)	4.	Data	for	dynamic	core	sizes	of	3,	2,	and	1	are	
not included
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fall into a particular data bin (the data is rounded down to 2 decimal places 
leading to 100 data bins). So the darkest grey regions contain many data 
points (> a10 where a is the relative frequency of the data, a = 2.4 in this case) 
and the lightest grey regions contain only one (or a0) data point. If we had 
blindly calculated the average values and attempted to interpret its mean-
ing, we would have missed the importance of dynamic core size completely. 
Figures 8b-8m show only the data for particular sizes of dynamic core. This 
helps considerably in understanding the detailed structure of Figure 8a. The 
various diagonal “modal peeks” relate to networks with different dynamic 
core sizes, and the different horizontal structures correlate with networks 
containing smaller dynamic cores which can have only limited values of 
dynamic robustness (i.e., as the size of the dynamic core decreases the data 

Figure 6. A data histogram showing the relationship between the number 
of structural feedback loops in the unreduced networks, and the number of 
active structural loops in their dynamic cores. The black points represent 
the average number of structural loops in dynamic core.
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appears more discrete and as the core size increases the data appears more 
continuous).
Further analysis was performed to confirm the relationship between network 
structure, dynamic core structure, and state space structure. This included 
comparing the number of structural feedback loops in the overall network 
to the number of (information conserving only) loops in network’s dynamic 
core. Figure 6 shows the data for all 106 (N=15, k=2) networks studied with 
all dynamic core sizes superimposed on each other. The data indicates that 
on average the dynamic core of a network has between 30% and 60% fewer 
structural feedback loops; all of them information conserving loops. On 
average only 42% of all structural feedback loops contribute to the (global) 
functionality of a particular network. It should of course be noted though 
that this proportion is strongly dependent upon dynamic core size. In the 
next section, we shall consider the implications of this in terms of state space 
characteristics and dynamic robustness.

State.Space.Compression.and.Robustness

In Boolean networks, each additional node doubles the size of state space. 
In fact, in any discrete system (or any system that can be approximated as 
discrete), when an additional node is added, the size of state space is increased 
by a factor equal to the total number of states that the additional node can 
adopt. So in a human system, like a team for example, the addition of an extra 
member will increase state space by a factor equal to the number of different 
responses that the additional member exhibits when operating in that particular 
system. This needn’t result in the appearance of new state space structures 
(attractors), but the volume of state space is greatly increased. So even if 
“frozen” nodes contribute nothing to the qualitative structure of state space 
(which I shall now refer to as first	order	functionality), they at least increase 
the size of phase space. As an example, the phase space of an N=20 network 
is 1024 times larger than an N=10 network. Thus, node removal significantly 
reduces the size of phase space. As such, the chances that a small external 
signal will inadvertently target a sensitive area of state space, i.e., an area 
close to a separatrix, therefore pushing the network toward a different attrac-
tor, are significantly increased: a kind of qualitative chaos. This explains why 
we see the robustness tending to decrease when non-conserving information 
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loops are removed: the (emergent) buffer between the system and the outside 
world—the system’s environment—has been removed. 
Prigogine said that self-organization requires a container (self-contained-
organization). Non-conserving information loops function as a kind of 
container. So it seems that, although non-conserving information loops do 
not contribute to the long term behavior of a particular network, these same 
loops play a central role as far as the dynamical stability is concerned. Any 
management team tempted to remove 80% of their organization in the hope 
of still achieving 80% of their yearly profits (which is sometimes how the 
80:20 principle in general systems theory is interpreted in practice) would 
find that they had created an organization that had no protection whatsoever 
to even the smallest disturbances from its environment—it would literally 
be impossible to have a stable business.
It should be noted that the non-conserving information loops do not act as 
impenetrable barriers to external signals (information). These loops simply 
limit the penetration of the signals into the system. For example, in the case 
of a modularized network, the products of incoming signals may, depending 
on network connectivity, still be fed from a non-conserving information loop 
onto information conserving loops for a particular network module. Once 
the signals have penetrated a particular module, they cannot cross over into 
other modules (as the only inter-modular connections are via non-conserv-
ing loops). As such, it would seem that non-conserving loops may play an 
information distribution role.
It should also be noted that even though a particular signal may not cause 
the system to jump into a different attractor basin, or bifurcate, it will still 
push the system into a different state on the same basin. The affect of signals 
that end-up on non-conserving information loops is certainly not nothing. 
So, although the term information “barriers” is used herein, these barriers 
are semi-permeable.

Balancing.Response.“Strategies”.and.
System.Robustness

Figure 7 shows a data histogram for the number of state space attractors vs. 
(unreduced) dynamic robustness. The plot shows that the robustness decreases 
rapidly initially as the number of state space attractors increases. Remem-
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bering that the number of state space attractors can also be regarded as the 
number of contextual archetypes that a system “sees,” we see that versatility 
(used here to refer to the number of qualitatively different contexts a system 
can respond to, or is sensitive to) comes at the cost of reduced dynamic ro-
bustness assuming the same resources are available. Considered in this way 
robustness and versatility are two sides of the same coin. We would like for 
our systems to be able to respond to a wide variety of environmental contexts 
with minimal effort, but this also means that our systems might also be at 
the mercy of any environmental change. A system with only one state space 
attractor doesn’t “see” its environment at all, as it has only one response in 
all contexts, whereas a system with many phase space attractors “sees” too 
much—there is a price to pay for being too flexible. 
This is only the case though for fixed resources, that is, given the same resources 
a system with few state space attractors (modes of operation) will be more 
robust than a system with a greater number. This is because, on average, the 
system with more state space attractors will have a larger dynamic core and 
so the buffering afforded by non-conserving loops will be less pronounced. 
It is a trivial undertaking to increase phase space by adding nodes that have 

Figure	7.	A	data	histogram	showing	the	relationship	between	the	number	of	
state	space	attractors	(which	is	also	related	to	network	flexibility/versatility)	
and the (unreduced) dynamical robustness. The black points represent the 
average dynamic robustness for increasing numbers of phase space attrac-
tors (the greyscaling is scaled using an,	where	a	=	2.4	and	n	is	an	integer	
between	0	and	10	inclusive).
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inputs but no outputs, or “leaf” nodes (which is equivalent to adding con-
nected nodes that have a constant transition function)—we might refer to 
this as a first-order strategy. This certainly increases the size of phase space 
rapidly, and it is a trivial matter to calculate the effect such additions will 
have on the network’s dynamical robustness (i.e., the increased dynamical 
robustness will not be an emergent property of the network). Increasing the 
robustness of a network (without changing the number, period and weight of 
phase space attractor basins) by adding connected nodes with non-constant 
transition functions is a much harder proposition. This is because of the new 
structural feedback loops created, and the great difficulty in determining 
the emergent “logical couplings” that result in “frozen” nodes, which turn 
structural information loops (that were initially conserving) into non-con-
serving loops. It is not clear at this point in the research whether there is any 
preference between these two strategies to increase dynamical robustness, 
although the emergent option is orders of magnitude harder to implement 
than the other, and will likely change functionality. 
One key difference between the straightforward first-order strategy and the 
more problematic (second-order) emergent strategy is that the first-order 
enhanced network would not be quantitatively sensitive to perturbations on 
the extra (buffer) “leaf” nodes (i.e., not only would such perturbations not 
lead to qualitative change (a crossing of a separatrix, or a bifurcation), but 
the position on the attractor cycle that the system was on when the node was 
perturbed (i.e., cycle phase) would also not be affected)—there would be no 
effect on dynamics whatsoever. This is because the perturbation signal (in-
coming information) would not penetrate the system further than the “leaf” 
node, as by definition it is not connected via any structural (non-conserving 
or conserving) feedback loops: they really are impenetrable barriers to in-
formation. If the emergent strategy was successfully employed, the incom-
ing signals would penetrate and quite possibly (at most) change the cycle 
phase (i.e., quantitative (but, again, not qualitative) change would occur). 
Either one of these response traits may or may not be desirable depending 
on response requirements.

Conclusion

From the analysis presented herein, it is clear that non-conserving informa-
tion loops—information barriers—play an important role in a network’s 
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global dynamics: they are not “expendable.” They protect a network from 
both quantitative and qualitative (quasi) chaos. Quantitative chaos is resisted 
by the emergent creation of modules—through the process of modulariza-
tion—which directly reduces the chances of state space being dominated by 
the very long period attractors associated with quasi-randomness in Boolean 
networks. Whereas qualitative chaos—the rapid “jumping” from one attrac-
tor basin to another in response to small external signals—is resisted by the 
expansion of state space, which reduces the possibility of external signals 
pushing a system across a state space separatrix (i.e., into another mode of 
operation).
Much more effort will be needed to fully understand the design and operating 
implications of this research for real world information systems. In one sense, 
Boolean networks are at the heart of all technology based systems—comput-
ers are themselves very complicated Boolean networks. However, these sorts 
of (complicated) Boolean networks do not usually have architectures that 
contain the many nonlinear interacting feedback loops that the (complex) 
Boolean networks discussed herein have. Complicated Boolean networks, 
such as computers, generally process information serially, whereas complex 
Boolean networks can process information in parallel. In fact, there is consid-
erable research being performed that considers complex Boolean networks as 
powerful parallel computers (see for example, Mitchell, 1998). It may well 
be that the sort of research presented here has little impact on the design of 
engineered systems such as computers and technology-driven information 
nodes as these are generally hard-wired not to exhibit emergent behavior. It is 
in the area of soft-wired systems, perhaps, that this research may offer some 
insight. For example, although the individual components of the Internet are 
hard-wired, the way in which its global architecture is developing is through 
emergent processes. Recent advances in network theory provide powerful 
tools to understand the static structure (architecture) of complex networks 
such as the WWW. But, equally powerful dynamical tools will be needed to 
understand the dynamic structure of the WWW which is likely quite different. 
There is clearly someway to go to fully understand what abstract concepts 
such as non-conserving information loops, or “frozen” nodes, refer to in real 
world information systems, but such research is beginning to provide us with 
the language and tools to facilitate our understanding of the structural and 
state space dynamics of a wide range of complex information systems like the 
Internet, the WWW, or even large decision networks to mention just a few.
Another useful avenue of further research may come by considering the 
“activity” of each node. In this chapter, we could have defined “frozen” 
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nodes as those with an activity of zero (i.e., their state does not change with 
time). The remaining nodes will have different activity levels (e.g., a node 
that changes state on every time step (a period-2 node) would have activity 
1). The dynamic core structure of a particular network (containing non-in-
teracting modules) is found by removing all nodes with activity 0. However, 
different structures will be revealed if the “activity threshold for removal” is 
varied from 0 to 1. In this way, researchers would find further modularization, 
although modules (sub-structure) found this way would not be completely 
independent (the weakly interacting modules of Simon’s “nearly decomposable 
systems” perhaps); systems of interacting sub-systems (with varying degrees 
of interaction strength) within the same system would be found, which would 
provide further insight into the relationship between emergent structure and 
function. Furthermore, it is possible that such an “activity threshold” analysis 
would be easier to apply to real world systems than the analysis performed 
herein, which is only concerned with a zero activity threshold.
To conclude, I would suggest that “barriers” (both impenetrable and semi-
permeable) to information flow play a central role in the functioning of all 
complex information systems. However, the implications (and meaning) of 
this for real world systems is open to many different interpretations. At the 
very least it suggests that “barriers” to information flow should be taken as 
seriously as “supports” to information flow (although, paradoxically, a good 
“supporter” is inherently a good “barrier”!). This may seem obvious given 
the dual role of all types of boundary—that is, to keep in and keep out, or to 
enable and disable—but this change in focus offers, perhaps, an interesting 
counterpoint to the emerging cultural perspective that suggests that having 
as much information as possible can only be a good thing.
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Endnote

1 Of course there is no such thing as a complete model. Models, by their 
very nature, are always, incomplete. The importance of the concept of 
incompressibility is to highlight that simplifications of complex systems 
can often lead (but not necessarily so) to understanding that is qualitatively 
incomplete. Contrast this situation to that of complicated systems (i.e., 
systems that comprise many components that may also be related via 
nonlinear interactions but without the connectivity profile (topology)) 
that would lead to the multiple nonlinear and interacting feedback loops 
that distinguish complex systems—for which simple representations 
(models) can always be constructed that are qualitatively complete.
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Abstract

Specialization is observable in many complex adaptive systems and is thought 
by	many	to	be	a	fundamental	mechanism	for	achieving	optimal	efficiency	
within organizations operating within complex adaptive systems. This chapter 
presents a survey and critique of collective behavior systems designed using 
biologically	inspired	principles.	Specifically,	we	are	interested	in	collective	
behavior systems where specialization emerges as a result of system dynamics 
and where emergent specialization is used as a problem solver or means to 
increase task performance. The chapter presents an argument for developing 
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design methodologies and principles that facilitate emergent specialization 
in collective behavior systems. Open problems of current research as well as 
future research directions are highlighted for the purpose of encouraging the 
development of such emergent specialization design methodologies.

Introduction

Specialization is observable in many complex adaptive systems1 and is thought 
by many to be a fundamental mechanism for achieving optimal efficiency 
within certain complex adaptive systems. In complex ecological communi-
ties, specializations have evolved over time as a means of diversifying the 
community in order to adapt to the environment (Seligmann, 1999). Over 
the course of evolutionary time, specialization in biological communities 
has assumed both morphological (Wenseleers, Ratnieks, & Billen, 2003) 
and behavioral forms (Bonabeau, Theraulaz, & Deneubourg, 1996). For ex-
ample, morphologically specialized castes have emerged in certain termite 
colonies (Noirot & Pasteels, 1987), and honeybees dynamically adapt their 
foraging behavior for pollen, nectar, and water as a function of individual 
preference and colony demand (Calderone & Page, 1988). The consequence 
of such specializations is that labor is efficiently divided between special-
ized castes2 and individuals for the benefit of accomplishing group tasks. In 
such a sense, specialization can be viewed as an adaptive mechanism in a 
complex adaptive system.
Many artificial complex adaptive systems that exhibit collective behavior have 
used design principles, which draw their inspiration from examples of spe-
cialization in nature. Such examples include complex ecological communities 
such as social insect colonies (Bonabeau et al., 1996; Bonabeau, Sobkowski, 
Theraulaz, & Deneubourg, 1997; Calderone et al., 1988; Noirot et al., 1987; 
Seligmann, 1999; Wenseleers et al., 2003) biological neural networks (Baev, 
1997), multi-cellular organisms (Hawthorne, 2001), economies of a nation, 
companies, corporations, and other business organizations (Abdel-Rahman, 
2001; Ng & Yang, 1997; Resnick, 1997). Such biologically inspired design 
principles are especially prevalent in multi-robot (Potter, Meeden, & Schultz, 
2001) swarm intelligence (Bonabeau, Dorigo, & Theraulaz, 1998) and arti-
ficial life systems (Nishimura & Takashi, 1997) where it is highly desirable 
to replicate the success of biological collective behavior systems.
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Suppositions.of.Specialization

Given empirical evidence offered by research in both biological collective 
behavior systems, and biologically inspired artificial collective behavior 
systems3, two key observations can be stated.

• Specialization that assumes either behavioral or morphological forms 
is often present in biological systems that exhibit collective behavior.

• In biological systems that exhibit collective behavior, specialization 
is beneficial in that it increases the efficiency of the system, or allows 
collective behavior tasks to be solved that could not otherwise be solved 
by individuals within the system. 

Given these observations, one can formulate the assumption that specialization 
is beneficial in biological inspired artificial complex adaptive systems that are 
designed to solve certain types of collective behavior tasks. Examples of such 
types of collective behavior tasks are presented in section Collective Behavior 
Tasks and Specialization. In order for this assumption to be proved, this chapter 
proposes the need to develop emergent behavior design methodologies4. Such 
methodologies would dictate design and engineering principles for creating 
an artificial complex adaptive system capable of solving collective behavior 
tasks that require or benefit from specialization. Ideally, such methodologies 
would result in the production of artificial complex adaptive systems that 
yield emergent yet desired forms of specialization. As in biological systems, 
this emergent specialization could then be harnessed and used by the system 
for the benefit of either increasing task performance, or solving certain col-
lective behavior tasks, that could not otherwise be solved.

Chapter.Goal.and.Motivation:.Specialization.as.a.Problem.
Solver

The chapter’s scope is a survey and critique of collective behavior systems 
designed using biologically inspired design principles that use emergent 
specialization to solve collective behavior tasks. Such design principles in-
clude self-organization, learning, and evolution (Brooks, 1990). This chapter 
presents an argument for utilizing emergent behavioral specialization as a 
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problem solver in biologically inspired artificial complex adaptive systems. 
Such utilization would be advantageous given the numerous real world ap-
plications where specialization is beneficial. Examples of such applications 
are presented in the section Collective Behavior Tasks and Specialization. 
This chapter’s motivation is similar to that cited for the organic computing 
research endeavor (Müller & Sick, 2006). Organic computing has recently 
achieved some success in investigating the notion of defining and measur-
ing concepts such as emergence and self-organization in large distributed 
complex adaptive systems. The key idea is to utilize emergent phenomena 
for the benefit of solving tasks in organic computing systems. An organic 
computing system is a technical system, which adapts dynamically to the 
current conditions of its environment. It is self-organizing, self-configuring, 
self-repairing, self-protecting, self-explaining, and context-aware (Müller et 
al., 2006). Initial research in this area displays great promise, and includes 
exploiting emergent functionality at the hardware level of visual micropro-
cessors for image recognition tasks (Komann & Fey, 2007), self-organizing, 
and self-stabilizing role assignment in sensor and actuator networks (Weis, 
Parzyjegla, Jaeger, & Mühl, 2006), and self-organization of job scheduling 
and distribution of jobs over nodes in a network (Trumler, Klaus, & Ungerer, 
2006).

Chapter.Scope:.Behavioral.Specialization

Another important issue is which type of specialization5 should be instituted 
for the benefit of a collective behavior system. We have elected to only survey 
research literature concerned with behavioral specialization. The decision to 
adopt this focus was based on the discovery that with relatively few exceptions 
(section: Types of Specialization) the majority of research concerning the use 
of emergent specialization for improving task performance is restricted to 
simulated systems. This is so, given the obvious engineering challenges and 
inherent complexity of dynamically creating morphologically specialized ro-
bots and computer components, that represent effective solutions to emerging 
challenges in a physical task environment (Parker & Nathan, 2006; Pfeifer, 
Iida, & Gomez, 2006; Watson, Ficici, & Pollack, 1999b). Figure 1 presents the 
scope of the chapter within the dimensions of emergent versus non-emergent 
phenomena and behavioral versus morphological specialization.
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Types.of.Specialization

Specialization in collective behavior systems has been studied from many 
different perspectives (Bongard, 2000; Bryant & Miikkulainen, 2003; Blumen-
thal & Parker, 2004b; Campos, Theraulaz, Bonabeau, & Deneubourg, 2001; 
Haynes & Sen, 1996b; Nolfi et al., 2003b; Stone & Veloso, 2002; Whiteson, 
Kohl, Miikkulainen, & Stone, 2003), and is thus often defined in accordance 
with the goals of researchers conducting the study. Within collective behav-
ior literature, specialization is either studied as an emergent property of the 
system, or is explicitly pre-programmed into the systems components. With 
notable exceptions such as Funes, Orme, and Bonabeau (2003), there are few 
examples of research that successfully specifies, a priori, what exactly the 
behavior of system components should be, in order to produce a specifically 
desired, yet emergent collective behavior.

Figure 1. Types of specialization in biologically inspired collective behavior 
systems.	The	top	left-hand	side	quadrant	defines	the	scope	of	this	chapter.	
Specifically,	adaptive	systems	that	use	heterogeneous	or	homogenous	design	
approaches with the aim of deriving emergent behavioral specialization for 
solving collective behavior tasks. See section: Types of Specialization for 
details.
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Non-Emergent.Specialization

Non-emergent specialization is that which is explicitly pre-specified to be 
apart of the design of system components and global behavior of a system. 
Such approaches are either static, or utilize learning algorithms so as to 
ascertain which type of behavioral specialization, selected from a given set, 
is most appropriate for solving a given task. Such approaches are useful for 
solving collective behavior tasks that require specialization, where the degree 
of specialization required can be sufficiently described a priori (Arkin & 
Balch, 1999; Balch, 2002a, 2002b).

Emergent.Specialization

Emergent specialization is that which emerges from the interaction of system 
components in response to a dynamic task that requires varying degrees, or 
different types of specialization, in order to effectively accomplish. Such 
approaches have become popular in collective behavior task domains where 
one does not know, a priori, the degree of specialization required to optimally 
solve the given task (Gautrais, Theraulaz, Deneubourg, & Anderson, 2002; 
Luke & Spector, 1996; Murciano & Millan, 1997a; Murciano, Millan, & 
Zamora, 1997b; Potter et al., 2001; Stanley, Bryant, & Miikkulainen, 2005b; 
Theraulaz, Bonabeau, & Deneubourg, 1998b; Waibel, Floreano, Magnenat, 
& Keller, 2006). The section Heterogeneous vs. Homogenous Design of 
Emergent Specialization elaborates upon such emergent specialization design 
approaches.

Morphological.vs..Behavioral.Specialization

It is possible to further categorize specialization into two distinct classes: 
morphological (Martinoli, Zhang, Prakash, Antonsson, & Olney, 2002; Zhang, 
Martinoli, & Antonsson, 2003) and behavioral (Bonabeau et al., 1997; Li, 
Martinoli, & Mostafa, 2002).
The term morphological specialization is applicable to situated and em-
bodied agents, operating in simulated or physical task environments, with 
embodiment (sensors and actuators) structured so as to yield an advantage 
in accomplishing the task (Watson et al., 1998a, 1999b, 2002). Examples of 
morphological specialization include the evolution of optimal arrangements 
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of sensors and actuators in the design of simulated automobiles (Martinoli et 
al., 2002; Zhang et al., 2003), evolution of agent morphologies and controllers 
for various forms of motion in simulated environments (Sims, 2004), evolu-
tion of physical electric circuits for control (Thompson, Harvey, & Husbands, 
1996), and evolving robot morphology for accomplishing different forms of 
physical motion (Lipson & Pollack, 2000).
The term behavioral specialization is applicable to agents with behaviors that 
are advantageous for accomplishing specific types of tasks (Balch, 2002a, 
2002b; Nolfi & Floreano, 2000; Nolfi & Parisi, 1997). Examples of behav-
ioral specialization include the use of machine learning methods that activate 
certain behaviors with a particular frequency as a response to dynamically 
arising tasks (Gautrais et al., 2002).

Collective.Behavior.Methods.for.Specialization

There is some agreement among researchers as to the methods for special-
ization that are appropriate for particular collective behavior tasks. Figure 2 
illustrates a categorization of such methods, which are briefly detailed in the 
following. The categories illustrated in Figure 2 are by no means exhaustive, 
but rather several examples that have recently received particular research 
attention.

Figure	2.	Collective	behavior	methods	of	specialization.	See	section:	Col-
lective Behavior Methods for Specialization for details.
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Division.of.Labor.Methods

The use of behavioral threshold and division of labor methods have been 
investigated within the context of ant-based (Deneubourg, Goss, Pasteels, 
Fresneau, & Lachaud, 1987) and resource allocation (Bonabeau et al., 1997) 
methods. Such methods typically utilize feedback signals given to agents of 
the same caste (Kreiger & Billeter, 2000) in order to encourage the emer-
gence of specialization for a specific task. Many variations of these methods 
exist (Bonabeau & Theraulaz, 1999; Bonabeau et al., 1996, 1997, 1998; 
Deneubourg et al., 1987; Robson & Traniello, 1999; Theraulaz, Gervet, & 
Semenoff, 1991; Theraulaz, Goss, Gervet, & Deneubourg, 1991), including 
those that use evolutionary algorithms (Tarapore, Floreano, & Keller, 2006; 
Waibel et al., 2006), and reinforcement learning models (Murciano et al., 
1997a, Murciano et al., 1997b) in order to derive threshold values. The goal 
of such models is typically to optimize global task performance. Such meth-
ods are appealing as their evolutionary dynamics and emergent properties 
can usually be described with a mathematical representation and the results 
of such models are thus typically amenable to a mathematical analysis (Wu, 
Di, & Yang, 2003).

Mathematical,.Economic,.and.Game.Theory.Methods

Linear, non-linear, and dynamic methods based in mathematical, economic, 
and game theory (Axelrod, 1984; Solow & Szmerekovsky, 2004) have many 
applications for resource assignment problems in business. For example, the 
maximum matching algorithm developed by Edmonds (1965) was designed 
to determine the maximum number of people that can be assigned to tasks 
in such a way that no person is assigned to more than one task. Thus, it is 
assumed that each person specializes in performing at most one task. Such 
methods are advantageous as results can be subject to a formal analysis. 
However, they are limited by their abstract nature, and assume that the task 
domain can be mathematically or otherwise formally represented.

Cooperative.Co-Evolution.Methods

Cooperative co-evolution methods have been implemented both in the context 
of modified genetic algorithms, for example, Cooperative Co-evolutionary 
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Genetic Algorithms (Potter & DeJong, 2000), and in the context of neuro-
evolution methods, for example, Enforced Sub-Populations (ESP) (Gomez, 
1997). In both cases, the genotype space is decomposed into a set of sub-
populations, where each generation, the evolutionary process selects the best 
performing genotype components from each sub-population so as to construct 
a complete genotype as a solution. Decomposition of the genotype space 
into sub-populations, genotype construction from multiple sub-populations, 
and genotype to phenotype mapping depends upon the approach used. For 
example, the ESP method encodes separate neurons as genotype components 
to be distributed between sub-populations, where the composition of neurons 
encodes a complete neural network. Advantages of such methods include 
their versatility, and applicability to a broad range of complex, continuous, 
and noisy task domains. Also, the representation of the genotype space as a 
set of sub-populations provides a natural representation for many collective 
behavior tasks, and often effectuates the derivation of specialized phenotypes. 
A key disadvantage of such approaches is slow derivation of viable solu-
tions in complex task domains due to inherently large search spaces. Also, 
the genotype representations that produce desired results can typically not 
be easily interpreted.

Reinforcement.Learning.Methods

There exists a certain class of reinforcement learning methods that provide 
periodic feedback signals to agent groups attempting to accomplish a collec-
tive behavior task (Sutton & Barto, 1998). A reinforcement signal is either 
local or global. Local reinforcement signals are calculated by, and given to 
a single agent, or a caste, upon task accomplishment. Global reinforcement 
signals are calculated by and given to the entire agent group at the end of 
a reinforcement learning trial (Li, Martinoli, & Yaser, 2004). The main 
advantage of reinforcement learning approaches is that agents are able to 
effectively operate in complex and noisy environments, with incomplete 
information. However, approaches that utilize only a global reinforcement 
signal, do not typically effectuate specialization in the group, even if task 
performance could be increased with specialized agents (Li et al., 2002, 2004). 
Approaches that utilize local reinforcement signals have been demonstrated 
as being appropriate for deriving specialized agents (Li et al., 2004), however 
such approaches suffer from the credit assignment problem (Grefenstette, 
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1995; Sutton et al., 1998), which potentially leads to sub-optimal collective 
behavior solutions.

Heterogeneous.vs..Homogenous.Design.of.
Emergent.Specialization

In collective behavior research, approaches to designing emergent special-
ization usually adopt either homogeneous or heterogeneous methods for 
designing system components. Homogeneous approaches utilize a single 
agent behavior for every agent in a group of agents. Agent behavior may be 
encoded as one genotype representation, or in some cases simply defined 
by a given set of parameters, which are copied for each agent in the group 
(Quinn, Smith, Mayley, & Husbands, 2003). Heterogeneous approaches utilize 
different behaviors for each agent in a group of agents. The set of different 
behaviors is sometimes encoded as different populations of genotypes, as in 
the case of cooperative co-evolutionary genetic algorithms (Parker, 2000). 
Alternatively, different agent behaviors may simply be represented as dif-
ferent sets of parameters (Campos et al., 2001).
Designing emergent specialization has been studied via specifying homogene-
ity vs. heterogeneity within both the genotypes and phenotypes of individual 
agents as well as entire agent groups. Specialization is often closely associated 
with, and sometimes synonymous with, heterogeneity in collective behavior 
systems (Balch, 1998; Potter et al., 2001). Heterogeneity can be hardwired 
or plastic, and may assume either behavioral (Bryant et al., 2003; Noirot et 
al., 1987; Whiteson et al., 2003), or morphological (O’Riain, Jarvis, Alex-
ander, Buffenstein, & Peeters, 2000; Schultz & Bugajska, 2000; Zhang et 
al., 2003) forms. Plastic heterogeneity is when a group adapts its degree of 
heterogeneity as a function of environment and task constraints, where as, 
hardwired heterogeneity is when the degree of heterogeneity in the group 
remains static (Li et al., 2002). 
Certain researchers have attempted to outline generalized guidelines as 
when to use either homogeneous or heterogeneous design approaches. For 
example, Balch (1998) suggested that collective behavior task domains 
where all individuals are able to perform the task, such as collective gather-
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ing, are particularly suited for homogeneous design. Whilst, task domains 
that explicitly require complementary roles, such as RoboCup soccer, are 
more suitable for heterogeneous approaches. However, such guidelines, as 
with studies of specialization, are usually defined according to the goals and 
perspectives of the researcher. Hence, one can readily find examples of when 
homogeneity and heterogeneity have been used in a manner incongruent to 
any given set of design principles or guidelines.

Homogeneous.Approaches

In homogeneous approaches, specialization is typically studied at the group 
level since emergent specialization depends upon the local interactions of 
cloned behaviors. At the genotype level, the key advantage of a homogeneous 
approach is that the search space size is kept minimal since an algorithm need 
only optimize a single behavior. At the phenotype level, homogeneous groups 
are potentially more adaptive than heterogeneous groups at coping with the 
loss of group members. Also, homogenous groups typically have greater 
flexibility in coordinating behaviors so as to produce an effective collective 
behavior (Stone & Veloso, 1999). The key disadvantage of such approaches 
is that system homogeneity, either at the genotype or phenotype level, does 
not facilitate specialization, so it is likely that such collective behavior sys-
tems will converge to a non-specialized solution, even if specialization is 
advantageous in the given task domain.

Heterogeneous.Approaches

Heterogeneous approaches typically study emergent specialization at either 
the local (agent) or global (entire group) level. The key advantage of hetero-
geneity is that it encourages and facilitates emergent specialization, both at 
the individual and group level. The key disadvantage of heterogeneous ap-
proaches is that the search space is usually (for complex tasks) prohibitively 
large comparative to homogeneous approaches, since many different agent 
behaviors need to be optimized or otherwise adapted for task accomplish-
ment.
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Collective.Behavior.Tasks.and.Specialization

In the design of collective behavior systems, it remains an open research 
question as to which task domains are most appropriately solved using spe-
cialization. However, there is some agreement amongst researchers that if the 
task can be naturally decomposed into a set of complementary sub-tasks then 
specialization is often beneficial for increasing collective task performance 
(Arkin, 1998; Arkin et al., 1999; Balch, 2002a; Balch, 2002b). The following 
list enumerates several categories of such collective behavior task domains. 
Each of these task domain categories mandates some degree of collective 
behavior, where specialization is beneficial for improving task performance. 
In subsequent sections, specific research examples selected from each of 
these categories are briefly examined.

• Collective.Gathering (Bonabeau et al., 1998; Perez-Uribe, Floreano, 
& Keller, 2003).

• Collective.Construction (Murciano et al., 1997a, 1997b; Theraulaz & 
Bonabeau, 1995).

• Collective.Resource.Distribution.and.Allocation (Bonabeau et al., 
1996, 1997; Campos et al., 2001; Theraulaz et al., 1998a, 1998b).

• Multi-Agent.Computer.Games (Bryant et al., 2003), (Stanley & Miik-
kulainen, 2002; Stanley et al., 2005b).

• RoboCup.Soccer (Luke, Farris, Jackson, & Hendler, 1998; Luke et al., 
1996; Stone et al., 1999.

• Predator-Prey.and.Collective.Herding.Behaviors (Blumenthal et al., 
2004b), (Blumenthal & Parker, 2004a, 2004c; Luke et al., 1996; Potter 
et al., 2001).

• Moving.in.Formation.and.Cooperative.Transportation.Tasks (Kube 
& Bonabeau, 1999; Nolfi et al., 2003b; Quinn et al., 2003).

Collective.Gathering

Collective gathering is a task domain characterized by the social insect 
metaphor. That is, collective gathering tasks seek to emulate the success and 
efficiency of social insects in gathering resources. Collective gathering tasks 
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have been studied in the context of both physical multi-robot systems (Kreiger 
et al., 2000; Mataric, 1997) and simulated multi-robot systems (Ijspeert, 
Martinoli, Billard, & Gambardella, 2001), as well as more abstract artificial 
life simulations (Bongard, 2000; Deneubourg, Theraulaz, & Beckers, 1991; 
Perez-Uribe et al., 2003). The collective gathering task domain requires that 
a group of agents search for, collect, and transport resources in the environ-
ment from their initial locations to some particular part of the environment. 
Such gathering tasks typically require that the group of agents allocate their 
labor efforts to particular sub-tasks so as to derive a collective behavior that 
maximizes the quantity of resources gathered6. Collective gathering tasks 
are typically viewed as optimization problems and have been traditionally 
studied with mathematical or otherwise analytical methods (Bonabeau et al., 
1996; Gautrais et al., 2002; Theraulaz et al., 1998a).

Learning Behavioral Specialization for Stick Pulling

The research of Li et al. (2004) addressed the important issue of attempting to 
specify the concepts of heterogeneity and specialization in a formal definition, 
so as emergent heterogeneity and specialization7 would be measurable within 
the larger context of collective behavior and distributed systems research. In 
a case study that compared centralized and distributed learning methods, the 
authors qualitatively measured the diversity and specialization of a simulated 
multi-robot system given a stick-pulling task that mandated specialized and 
cooperative behavior. One research goal was to investigate the impact of 
diversity, in the form of heterogeneity in behaviors, upon emergent special-
ization and in turn the impact of specialization on task performance.
In all experiments, the authors presented a learning method that effectively 
operated within a multi-robot simulator, where specialization emerged as a 
function of task constraints and environmental conditions regardless of whether 
local or global reinforcement signals were used. The authors’ explanation for 
this result was that if behavioral diversity (heterogeneity) is beneficial to task 
performance, then the learning method facilitates emergent specialization as 
a means of taking advantage of this behavioral diversity. 
The key criticism of this research is the dependency between emergent 
specialization and the learning method used, and consequently the methods 
applicability to more generalized optimization tasks. Results supported 
a hypothesis that if behavioral diversity in a group was beneficial to task 
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performance, then specialization was likely to emerge and increase ac-
cordingly with behavioral diversity and task performance.  However, these 
results largely depended upon the type of learning method, the model of 
the task environment, robot controller parameters that defined membership 
to a caste, and the task related parameters that the learning method sought 
to optimize. Thus, the degree to which emergent specialization depended 
upon the underlying adaptation process remains an open question. Also, the 
system designer needed to select task environment parameters for the learn-
ing method. This cast doubt upon the possibility of applying the learning 
method to more complex and dynamic task environments, where pertinent 
task environment parameters that the learning method would require in order 
to encourage diversity, specialization, and increased task performance, could 
not be identified a priori.
Furthermore, the number of castes composing a group was determined by the 
system designer and not by the adaptive process. Experiments that analyzed 
emergent caste formation would be necessary in order to effectively ascer-
tain the relationship between heterogeneity, specialization, and collective 
behavior task performance. An adaptive process where a particular number 
of castes emerge in response to simulation environment and task constraints 
would make such a process applicable to complex task environments where 
task challenges dynamically arise.

Collective.Construction

Collective Construction is a task domain characterized by the social insect 
metaphor. That is, collective construction tasks seek to emulate the success 
and efficiency of social insects in gathering resources. Collective construction 
tasks have mainly been studied in the context of artificial life simulations 
(Bonabeau, Theraulaz, Arpin, & Sardet, 1994; Murciano et al., 1997a, 1997b; 
Theraulaz & Bonabeau, 1995. Collective construction is typically viewed as 
an extension of the collective gathering task, in that it requires the agents to 
construct a particular structure, with gathered resources, at a home area of 
the environment. Specialization is typically required for building complex 
structures from many different types of component resources.
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Reinforcement Learning for Specialization in Collective Construction

Murciano et al. (1997a) and Murciano et al. (1997b) applied reinforcement 
learning (RL) methods to a group of homogeneous agents operating in a 
discrete simulation environment. A collective gathering task mandated that 
individual agents derive specialized behavior in order to then derive an op-
timal collective behavior.
The authors used a RL method that independently modified action selection 
parameters within the controller of each agent. The RL method used either 
global or local RL signals so as to effectuate the learning of specialized 
behaviors. Behavioral specialization took the form of an agent learning to 
consistently select one action from a set of possible actions. The global RL 
signal measured group performance, and the local RL signal measured indi-
vidual performance. The global RL signal was given at the end of a RL trial, 
where the signal was equal for all agents in the group. The local RL signal 
was given to individual agents, where the signal was calculated in terms of 
the agents own successes or failures. Murciano et al. (1997b) conducted 
experiments that tested the impact of local versus global RL signals upon 
the learning of specialized behaviors in a homogenous group of agents with 
no communication. The goal of these experiments was for agents to special-
ize via learning to gather specific object types so as to construct complex 
objects. Thus, when agents interacted an effective collective gathering and 
construction behavior emerged. Group task performance was measured as 
the number of complex objects assembled in a given RL trial. In the same 
experimental setup (Murciano et al., 1997a) conducted experiments that 
utilized only global RL signals for the purpose of facilitating emergent spe-
cialization within a homogeneous group of communicating agents. The task 
of individual agents and the group was to maximize the number of objects 
gathered over the course of a RL trial. The goal of experiments was for agents 
to specialize to different behaviors so as communication would facilitate the 
collective gathering of an optimal number of objects.
One criticism of the research of Murciano et al., (1997b), and Murciano et 
al. (1997a) derives from the use of RL signals in effectuating specialized 
behavior. Experimental results indicated that a global RL signal success-
fully motivated emergent specialization, given the assumption that all agents 
contribute equally to the task, and the signal was translated so as it could be 



��0   N�tschke, Schut, & E�ben

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

meaningfully interpreted by each agent in a homogenous group. This casts 
doubt upon the applicability of global RL signals to heterogeneous groups. 
Likewise, the applicability of local RL signals was not tested in complex task 
domains that provided more realistic simulations of multi-robot systems. 
The possibility of applying the RL method to facilitate specialization in 
continuous simulation and physical task domains seems unlikely given the 
sparse reinforcement limitations of global RL signals and the noisy nature 
of local RL signals (Sutton et al., 1998) that inhibit learning. One aim of 
the research was to demonstrate that specialization emerges as a function 
of task constraints on the environment and agent group, irrespective of the 
type of reinforcement signal used. Achieving scalability in the learning of 
behavioral specialization is especially prevalent for tasks that require an in-
creasing degree of heterogeneity, and complexity in collective behavior, as a 
response to dynamically emerging task challenges. However, the scalability 
of the RL method as a mechanism for encouraging behavioral specializa-
tion remains unclear since only two group sizes (10 and 30 agents), and a 
discrete environment of one size (54 x 54 grid cells) was tested. Also, the 
impact of more dynamic versions of the simulation environment upon the 
RL algorithm, were not tested. That is, only one redistribution of objects, 
during given RL trials, was tested.
Finally, the RL method assumed that the given task environment could be 
abstracted to the form of a multi-objective function which could be opti-
mized. In this case the function was represented as a set of agent affinities 
that determined an agent’s propensity to adopt particular behavioral roles. 
This severely limited the applicability of the RL method to more general and 
complex task environments.

Collective.Resource.Distribution.and.Allocation

In a series of research endeavors inspired by social insects (Bonabeau et al., 
1996, 1997; Campos et al., 2001; Theraulaz et al., 1998a, 1998b), studied 
emergent specialization using response threshold methods in simulations 
of homogenous agent groups that were implemented within the context of 
mathematical frameworks.
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Division of Labor for Dynamic Task Allocation

Theraulaz et al. (1998a) extended a previous formalization for the regulation 
of division of labor (Bonabeau et al., 1996) in simulated social insect colonies 
so.as to include a reinforcement learning process. A formal variable response.
threshold method was implemented for purpose of facilitating emergent.spe-
cialization in the form of division of labor. The authors highlighted.similarities 
between their results and observations made within biological.social systems 
where specialist workers were dynamically allocated based.upon sub-task 
demand within a collective behavior task (O’Donnell, 1998).

Division of Labor for Dynamic Flow Shop Scheduling

Campos et al. (2001) introduced a division of labor method and applied it 
as a.method for assigning resources within a dynamic flow shop scheduling 
task..The task entailed assigning trucks to paint booths in a factory, where 
trucks.moved along an assembly line at a given pace. The color of a truck 
was.predetermined by customer order. Three minutes was needed to paint 
a truck,.but an additional three minutes was required if the color of a paint 
booth was.to be changed for the truck. There was also a cost associated with 
paint.changeover for a booth. A division of labor method was applied to 
minimize.the number of such changeovers. Such paint fit-and-finish tasks 
are traditional bottleneck problems that can significantly reduce production 
throughput and thus require optimal solutions (Morley & Ekberg, 1998).

Division of Labor as a Function of Group Size

Gautrais et al., (2002) implemented a variable response threshold method 
to.demonstrate that increasing agent group size and demand for tasks gener-
ated.specialized agents. As with previous research (Bonabeau et al., 1996; 
Theraulaz et al., 1998a, 1998b), the response threshold method.provided each 
agent in a group with an internal threshold for activating a.particular behavior. 
Each agent’s response threshold was influenced by the.level of demand for a 
particular task, and agents allocated themselves so as to.satisfy demand for 
these tasks. The authors’ main conclusion was that their.response threshold 
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method demonstrated emergent specialization to be.function of group size 
in the given resource allocation task, where group sizes.exceeding a criti-
cal threshold value contained specialized agents, and group.sizes below the 
critical threshold value contained only unspecialized agents..These findings 
were corroborated by similar findings in empirical theoretical.biology stud-
ies (Robson et al., 1999).

Division of Labor Methods for Collective Resource Distribution and 
Allocation: Comments

Such response threshold methods represent a very simple, yet powerful, self-
regulating feedback system that assigns the appropriate numbers of agents 
to different tasks. It is obvious that the study of such biologically inspired 
formalizations of specialization are worthy of future research attention given 
their applicability to a broad range of optimization tasks including dynamic 
scheduling and resource allocation. The methods of Bonabeau et al. (1997), 
Campos et al. (2001), Gautrais et al. (2002), and Theraulaz et al. (1998a) were 
prevalent in that they eloquently demonstrated how behavioral specialization 
emerged as a result of self-regulating task assignment and accomplishment, 
for which there exists a large amount of corroborating biological literature and 
empirical evidence (Chen, 1937a, 1937b; Deneubourg et al., 1987; O’Donnell, 
1998; Robson et al., 1999; Theraulaz, Gervet, & Semenoff, 1991).
The main appeal of this set of research examples was their successful modeling 
of specialized behavior in the form a set of equations. These equations were 
successfully applied as a method for regulating the specialization of agents 
to specific tasks, in order to optimally accomplish a collective behavior task. 
However, in many cases the adaptive nature of response threshold regulation 
was never tested for more than one group or environment size, and more 
than two tasks. Also, the removal of specialized agents to test the adapta-
tion process was limited to two agents. This was an important aspect of the 
adaptive nature of response thresholds, since if task allocation becomes too 
dynamic, or oscillatory, it is conceivable that the advantages of specialization 
could be lost as an agent spends all of its time switching between tasks, and 
consequently never dedicates enough time to accomplish a given task.
In each case, a simple set of experiments illustrated the importance and 
necessity of utilizing models of biological social behavior as a step towards 
understanding such social behavior, and then applying the underlying 
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techniques, namely response thresholds, as a means of designing problem 
solving methods for optimization tasks. The main advantage of division of 
labor methods is their eloquence and simplicity of formal specification. Also, 
such methods yield results that are amenable to a mathematical or formal 
analysis. However, such methods are also limited to task domains that can 
be completely represented via the mechanics of a mathematical method. 
This makes the contributions of such methods limited to optimization tasks 
that can be formally represented, or to supporting empirical results evident 
in related biological literature.

Multi-Agent.Computer.Games

The application of biologically inspired methods to multi-agent computer 
games (Fogel, Hays, & Johnson, 2004; Laird & vanLent, 2000) has recently 
achieved particular success and gained popularity. For example, there has been 
particular research interest in the creation of adaptive interactive multi-agent 
first-person shooter games (Cole, Louis, & Miles, 2004; Hong & Cho, 2004; 
Stanley et al., 2005b), as well as strategy games (Bryant et al., 2003; Revello 
& McCartney, 2002; Yannakakis, Levine, & Hallam, 2004) using artificial 
evolution and learning as design methods for agent behavior. However, the 
study of specialized game playing behaviors, in teams of agents, has received 
relatively little research attention. Specialization is beneficial since it is often 
necessary for teams of agents to formulate collective behavior solutions in 
order to effectively challenge a human player, where an increasingly difficult 
level of agent performance is expected as game time progresses.

Legion-I: Neuro-Evolution for Adaptive Teams

Bryant et al. (2003) utilized the Enforced Sub-Populations (ESP) neuro-
evolution method (Gomez, 1997) for the derivation of collective behavior 
in a multi-agent strategy game called Legion-I. The research hypothesis was 
that a team of homogeneous agents, where agents were capable of adopting 
different behavioral roles would be advantageous in terms of task perfor-
mance, comparative to heterogeneous groups, composed of agents with static 
complementary behaviors. These experiments highlighted the effectiveness 
of the ESP method for deriving a dynamic form of emergent behavioral 



���   N�tschke, Schut, & E�ben

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

specialization motivated by division of labor. Results supported the hypoth-
esis that for the Legion game, a homogenous team, where individuals could 
dynamically switch between specialized behaviors was effective. However, 
the analysis of emergent specialization was only at a behavioral level, so one 
could not readily ascertain the relationship between behavioral specialization 
and the evolved genotypes responsible for such behaviors. This would make 
an exploration of the mechanisms responsible for emergent specialization 
resulting from division of labor problematic. The task environment used a 
discrete simulation environment popular in multi-agent strategy games, but 
this was not sufficiently complex or dynamic in order to adequately test and 
support suppositions stating the advantages of behavioral specialization in 
homogenous teams. Also, the task performance of homogenous groups was 
not compared with heterogeneous groups. Valuable insight into the capabilities 
of homogenous versus heterogeneous agent groups for facilitating emergent 
specialization, could be gained by a comparison between groups represented 
by one neural controller, versus each agent within a group being represented 
by a different neural controller.

NERO: Neuro-Evolution of Augmenting Topologies

Stanley et al. (2005b), Stanley, Bryant, Karpov, and Miikkulainen, (2006), 
and Stanley, Bryant, and Miikkulainen (2005a) introduced a neuro-evolution 
method for the online evolution of neural controllers that operated in the 
context of an interactive multi-agent computer game called Neuro-Evolving 
Robotic Operatives (NERO). NERO is a first-person perspective shooter 
game, where a human player competes with teams of agents, and agents 
compete against each other. The rtNEAT neuro-evolution method was used 
for evolving increasing complex agent neural controllers using a process 
known as complexification. This was an extension of the Neuro-Evolution of 
Augmenting Topologies (NEAT) method (Stanley et al., 2002) that operated 
using online evolution. The authors demonstrated the effectiveness of the 
rtNEAT method for dynamically adapting agent controllers within a team 
playing against other agent teams or a human player in real time. Agent 
game playing behavior became increasingly sophisticated over successive 
generations as a result of changing neural network topological structure as 
well as evolving network connection weights. As an extension of the NEAT 
method, rtNEAT used online evolution to yield impressive results in terms of 
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facilitating effectively competitive collective behaviors in the game playing 
time of NERO. The NEAT and rtNEAT methods successfully implemented 
a speciated representation of the genotype space, and a distance measure 
for genotype similarities, that provided a clear method for relating observed 
behaviors with a given set of genotypes.
However, the specialized controllers evolved were primarily determined by 
a training phase of NERO. Agent teams evolved specializations that were 
suitable for a given environment. Given that simulation environments were 
the same for both training and a subsequent battle phase, it remains unclear 
how suitable evolved teams would be for generalized collective behavior 
games. The true potential and beneficial nature of the rtNEAT method for 
evolving specialized behaviors in an online evolutionary process, for pur-
pose of increasing team task performance, was not tested in other simulated 
multi-robot task domains. In realistic collective behavior tasks where the 
environment is dynamic and its structure and layout are not known a priori, 
training phases would only be partially effective since controllers trained in 
a simulation of the environment would simply be representing a best guess 
behavior. Currently, it remains unclear if rtNEAT could be successfully applied 
to collective behaviors tasks where there is a significant disparity between 
a training simulation and a subsequent actual simulation (called the battle 
phase in NERO). Such an issue is especially prevalent if online evolution of 
controllers is to eventually be applied for accomplishing multi-robot tasks, 
with time and energy constraints, in dynamic and complex physical task 
environments.

RoboCup.Soccer

A distinct relation to multi-agent game research is RoboCup (Kitano & Asada, 
2000). RoboCup is a research field dedicated to the design and development 
of multi-robot systems for the purpose of playing a robotic form of soccer. It 
is widely recognized as a specific test bed for machine learning algorithms, 
and engineering challenges (Noda & Stone, 2001). The very nature of the 
RoboCup game demands the existence of several types of behavioral spe-
cialization, in the form of different player roles. Such behaviors must be 
complementary and able to interact in such a way so as to produce a desired 
global behavior. That is, a team strategy that wins the game in a competitive 
scenario. Several researchers have focused on machine learning, evolutionary 
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computation, and neuro-evolution methods that derive task accomplishing 
collective behaviors within groups of two or three soccer agents. Although, 
specialized behaviors of individual soccer agents was either specified a priori 
or was derived in simplistic game scenarios (Hsu & Gustafson, 2001, 2002; 
Luke et al., 1998; Matsubara, Noda, & Hiraki, 1996; Stone et al., 1998, 
1998b, 2002; Whiteson et al., 2003. Each of these research examples has 
been critiqued elsewhere (Nitschke, 2005).

Pursuit-Evasion

Pursuit-evasion is a collective behavior task that is commonly used within 
artificial life research to test both non-adaptive (typically game theoretic) and 
adaptive (typically learning and evolution) methods for agent controller design. 
The task requires that multiple pursuer agents derive a collective behavior 
for the capture of one or more evading agents (Haynes & Sen, 1996a). The 
investigation of emergent specialization remains a relatively unexplored area 
of research in the pursuit-evasion domain (Luke et al., 1996), the collective 
herding variation (Potter et al., 2001), as well as more traditional predator-
prey systems (Nishimura et al., 1997).

Evolving Pursuit-Evasion Behavior with Hexapod Robots

Blumenthal et al. (2004a, 2004b, 2004c) expanded previous work via com-
bining a punctuated anytime learning (Blumenthal & Parker, 2006; Parker, 
2000) method with an evolutionary algorithm within a co-evolution scenario. 
Although not the main research focus, this work addressed the issue of using 
morphological differences in agents in order to effectuate the derivation of 
behavioral specialization, and consequently a collective prey-capture behavior. 
The co-evolution scenario operated within a simulated multi-robot system of 
five hexapod robots where the goal was to derive an effective prey-capture 
behavior within four predator robots, and a predator-evasion behavior within 
one prey robot. This study effectively illustrated the derivation of prey-cap-
ture behavior based upon specialized behaviors that utilized differences in 
simulated hexapod robot morphology. Such as, the least maneuverable robot 
adopting a passive defensive position, whilst the fastest and most maneuver-
able robots adopted proactive pursuit behaviors. 
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However, the morphological differences between the robots were simple, 
leading one to speculate that a higher degree of complexity in specialized 
behavior may have emerged if differences in sensors and controller structure 
were included along with a greater disparity in actuator capabilities. Also, the 
prey was always initially placed at the center of the simulation environment, 
which made it easier for predators to form an effective prey capture behavior, 
and influenced the types of prey-capture behaviors that could emerge. Though 
not explicitly stated as a being a goal of this research, a valuable contribution 
to this research, would have been a methodological study that described a 
mapping or set of principles linking types of sensor and actuator capabilities 
to resulting forms of emergent behavioral specialization. Such a study could 
potentially form the basis of multi-robot system design methodologies that 
use evolution and learning mechanisms that capitalize on morphology in 
order to produce desired collective behaviors for solving a given task.

Evolving Herding Behavior in a Multi-Robot System

The research of Potter et al., (2001) investigated the evolution of homogeneous 
vs. heterogeneous controllers within a simulated multi-robot system that 
was given a collective herding task. A group of Nomad 200s were simulated 
within the TeamBots simulator (Balch, 1998). The research hypothesis was 
that as task difficulty increased, heterogeneity and specialization become 
essential for successful task accomplishment. Heterogeneity was defined 
as the number of different behaviors one robot could select from, as well 
as the number of behaviors in the group. This hypothesis was tested with 
experiments that introduced a predator into the environment. The goal was 
to encourage the emergence of specialized defensive behaviors in addition to 
herding behaviors. Experiments effectively illustrated that emergent behav-
ioral specialization, for the benefit of collective behavior task performance, 
could be facilitated in a heterogeneous team of agents. Furthermore, results 
supported a hypothesis that constructing a collective behavior task such that 
multiple behaviors are required, increases the need for heterogeneity, and in 
turn specialization. However, the inducement of emergent specialization via 
increasing the number of behaviors required, and not simply task complexity, 
was only investigated within a single case study. 
The key criticism lies in the comparison of homogenous and heterogeneous 
groups for deriving collective herding behaviors.  Particularly, it is unclear 
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why the authors opted to use only two genotype populations to represent a 
group of three shepherds in the heterogeneous design approach. The impact of 
homogeneity and heterogeneity on emergent specialization was not validated 
with larger groups of shepherds. Also, only one increment in the complexity 
of the task environment was tested. That is, the addition of the predator to the 
collective herding task. Complete validation of the authors’ hypothesis that 
specialization emerges not as a consequence of task complexity, but rather as 
a result of the number of behaviors required to solve the task, would require 
several comparative case studies. Such studies would need to test tasks of 
varying degrees of difficulty versus tasks that require numerous complementary 
and potentially specialized behaviors. Such a comprehensive study would 
yield a valuable contribution to ones understanding of the relation between 
heterogeneous and homogenous design approaches, task performance, task 
complexity, and emergent specialization.

Moving.in.Formation.and.Cooperative.Transportation.
Tasks

Certain collective behavior research endeavors, mainly in the fields of artificial 
life and multi-robot systems, have aimed to model and reproduce various forms 
of social phenomena that are observable in biological systems (Reynolds, 
1987; Zaera, Cliff, & Bruten, 1996). Coordinated movement and cooperative 
transport is sometimes studied within the context of a gathering task, and 
has been studied separately in both physical and simulated environments. 
Cooperative transport is inspired by biological prey retrieval models, which 
present many examples of the value of specialization, such as the pushing vs. 
pulling behaviors exhibited in stigmatic coordination that allows several ants 
to transport a large prey (Kube et al., 1999). Such inspiration was used by the 
research of Dorigo et al. (2004) and Nolfi, Baldassarre, and Parisi (2003a), 
which described the evolution of coordinated motion, and self-assembly in 
a simulated multi-robot system for the purpose of cooperatively transporting 
objects. Similarly, the research of (Nolfi et al., 2003a) described the evolution 
of particular group formations in a simulated multi-robot system, which al-
lowed efficient forms of coordinated group movement across an environment 
towards a light or sound source. The research of Baldassarre, Nolfi, and Parisi 
(2003), Dorigo et al. (2004), and Nolfi et al. (2003a) has been reviewed in 
related work (Nitschke, 2005), and is thus not described here.



Emergent Spec�al�zat�on �n B�olog�cally Insp�red Collect�ve Behav�or Systems   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Future.Directions

Consequent of the literature reviewed, we deem the most viable future re-
search direction to be the development of structured and principled emergent 
behavior design methodologies. From a broad range of methods that utilize 
emergent specialization for solving collective behavior tasks, a lack of a 
unifying set of design principles (methodologies) that link the workings of 
each of these methods, was highlighted. Such design methodologies would 
provide definitions and measures of specialization, and allow researchers to 
construct collective behavior systems that facilitate desired forms of emergent 
specialization that solve given tasks. If emergent specialization is to be utilized 
as a problem solver in systems that are designed using biologically inspired 
principles such as evolution and learning, then the concept of specialization 
must be defined, so as it can be identified and used in a problem solving 
process. In order to validate design methodologies that identify, measure, 
and harness emergent specialization as a problem solving tool in artificial 
complex adaptive systems, several considerations must be made.

1. Given the disparate and disjoint nature of biologically inspired and col-
lective behavior research, validation of emergent specialization design 
methodologies would be experimental, and not necessarily constructed 
from a set of mathematical or otherwise theoretical suppositions that 
are proved.

2. Such methodologies would need to encapsulate the various types of 
specialization that benefit particular types of collective behavior tasks. 
These types would be identified through extensive experimentation.

3. Such methodologies would need to use specialization that can be iden-
tified and categorized, either dynamically by the design method, or a 
priori by a human designer. Importantly, dynamic identification of the 
type and degree of specialization required for a given task by a method 
would greatly increase the applicability of the method. That is, such 
a method would by applicable to complex task environments where 
specific task challenges dynamically arise in the environment and the 
exact nature of tasks cannot be described ahead of time.

Hence, if emergent specialized behavior is to be used as a means of deriv-
ing solutions to complex and dynamic task challenges in both simulated and 
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physical collective behavior systems8 then future research is obliged to look 
towards addressing the considerations delineated herein.

Conclusion

In drawing conclusions for this chapter, it is important to note that the chapter’s 
goal was not to present an exhaustive list of research relating to emergent 
specialization, but rather to identify and present a set of pertinent research 
examples that use biologically inspired design approaches for the purpose of 
facilitating emergent behavioral specialization. Such research examples were 
selected based upon results that indicated emergent behavioral specialization 
as being beneficial for solving collective behavior tasks.
The binding theme of the chapter argued, that the majority of collective 
behavior research is currently analyzed and evaluated from empirical data 
gathered and emergent behavioral specialization observed, without analytical 
methods for identifying the means and causes of emergent specialization. An 
obvious reason for this is that the use of biologically inspired concepts such 
as evolution, self-organization, and learning as design methods is still in a 
phase of research infancy. Consequently, emergent specialization derived 
using such biologically inspired design concepts is currently constrained 
to simple forms. Given this general evaluation of prevalent literature, we 
identified several unresolved issues that inhibit the development of biologi-
cally inspired design methodologies that synthesize emergent specialization 
in solving collective behavior tasks.

1. It was evident that many researchers deem the simulation of collective 
behavior systems to be an effective approach for investigating emergent 
behavioral specialization, given that simulations provide a convenient 
means for studying the conditions under which specialization emerges. 
For example, the effects of parametric changes can be observed in a 
relatively short space of time. However, with notable exceptions, such 
as SwarmBots (Dorigo et al., 2004), the identification and transference 
of mechanisms motivating emergent specialization observed in simula-
tion to counter-part algorithms operating in physical collective behavior 
systems such as multi-robot systems, is not yet plausible. In the case of 
SwarmBots (Dorigo et al., 2004), a simple task environment made the 
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transference to a physical environment possible, and emergent special-
ization was not necessarily a problem solver for dynamic challenges in 
the environment, but rather a solution to a given task that was emergent 
but not necessarily desired.

2. In the pertinent research examples reviewed, the complete potential 
of biologically inspired design, and the advantages of emergent spe-
cialization were not always effectively exploited. For example, many 
collective behavior systems, with notable exceptions such as division 
of labor methods applied to optimization tasks (Bonabeau et al., 1997), 
were simply attempting to synthesize emergent specialization, or to 
demonstrate the veracity of concepts such as self-organization, learn-
ing, and evolution for deriving novel agent behaviors. Such concepts 
were rarely applied to methods that derived emergent specialization as 
a means of increasing task performance or accomplishing unforeseen 
challenges in collective behavior tasks.

3. There is currently no standardized benchmark or research test-bed for 
testing, interpreting, evaluating, and classifying emergent specialized 
behavior. RoboCup was included as an honorable mention in the chap-
ter, given that it provides an effective platform for testing and evaluat-
ing various forms of collective and individual behavior, emergent or 
otherwise, implemented either within an agent simulator or a physical 
multi-robot system. That is, collective behavior is simply evaluated 
within a competitive game scenario, so collective behavior performance 
is determined according to the evaluation criteria of the game. Another 
exception is collective gathering and dynamic scheduling in distributed 
systems, which can be represented as optimization tasks. In this case, 
standardized benchmarks exist in the form of performance results yielded 
by classical adaptive approaches. This makes the results of biologically 
inspired and classical methods to such tasks comparable. However, with 
exceptions such as Bonabeau et al. (1997) and Theraulaz and Bonabeau 
(1995) many optimization tasks do not benefit from the use of emergent 
behavioral specialization. Thus, the testing, interpretation, and evalua-
tion of emergent specialized behavior within the context of collective 
behavior systems, is currently conducted according to the performance 
benchmarks of the researcher’s own experimental simulation platform. 
This means that the experimental results can only be compared within 
the context of their own simulation environment. The development of 
emergent specialization design methodologies that could be equally ap-
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plied to physical collective behavior systems would remove this critical 
constraint.

Given these open research issues, one may conclude that if the notion of 
emergent specialization as a problem solver for collective behavior tasks is 
to gain any maturity and credibility, then collective behavior systems must 
be built upon proven emergent specialization design methodologies. Ideally, 
such methodologies must be proven for convergence to desired forms of 
collective behavior (achieved as a consequence of emergent specialization), 
scalable and transferable to a counterpart situated and embodied collective 
behavior task environments.
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Endnotes

1  Examples of complex adaptive systems include social insect colonies, 
biological neural networks, traffic jams, economies of a nation, as well 
as industrial infrastructures such as energy and telecommunications 
networks (Resnick, 1997). We deem complex adaptive systems to be a 
subset of complex systems where autonomous software (simulated) or 
physically embodied (robots) agents operate in order to solve a given 
task.

2 The terms task, activity, role, and caste are defined as follows. Task: 
what has to be done; Activity: what is being done; Role: the task as-
signed to an individual within a set of responsibilities given to a group 
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of individuals; Caste: a group of individuals specialized in the same 
role (Kreiger et al., 2000).

3  The terms collective behavior system and artificial complex adaptive 
system are used interchangeably throughout the chapter. Both refer to 
distributed systems where specialization emerges as a property of a 
collective behavior dynamics.

4  We distinguish methodologies from methods. We assume the latter to be 
the actual algorithm, which is implemented for the purpose of solving 
a specific task. Where as, we assume the former to be a set of design 
principles for designing methods.

5  Various definitions for numerous types of specialization have been 
proposed across a broad range of disciplines. In The Wealth of Nations, 
(Smith, 1904) Adam Smith described economic specialization in terms 
of division of labor. Specifically stating that in industrialism, division 
of labor represents a qualitative increase in productivity, and regarded 
its emergence as the result of a dynamic engine of economic progress. 
Smith viewed specialization by workers as leading to greater skill and 
greater productivity for given tasks, which could not be achieved by 
non-specialized workers attempting to accomplish those same tasks.

6  The allocation of agent labor within a group of agents is analogous 
to resource allocation which derives from economic and game theory 
studies (Axelrod, 1984). Such studies attempt to derive methods that 
efficiently allocate a limited amount of resources so as to accomplish a 
given task with the highest degree of performance possible.

7  Heterogeneity, and hence behavioral diversity, was defined as the number 
of castes in the group, and specialization was the part of diversity that 
was required to increase task performance.

8  Such a case has been envisioned for swarm robotic systems (Beni, 
2004).
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Abstract

This	chapter	provides	a	critical	survey	of	emergence	definitions	both	from	
a conceptual and formal standpoint. The notions of downward/backward 
causation and weak/strong emergence are specially discussed for applica-
tion to complex social system with cognitive agents. Particular attention is 
devoted	to	the	formal	definitions	introduced	by	Müller	(2004)	and	Bonabeau	
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and	Dessalles	(1997),	which	are	operative	in	multi-agent	frameworks	and	
make sense from both cognitive and social point of view. A diagrammatic 
4-Quadrant	approach	allows	us	to	understand	complex	phenomena	along	
both interior/exterior and individual/collective dimensions.

Introduction

The concept of “emergence,” first discussed in philosophy, is also widely 
used in complex adaptive systems literature especially in computer sciences 
(Holland, 1998) and related fields (multi-agent systems, artificial intelli-
gence, artificial life...) as well as in physics, biology, and cognitive sciences. 
Particular applications are the social and human sciences, and consequently 
the design of “artificial society” or “agent-based computational economics” 
(ACE) framework by means of multi-agent systems (MAS). For instance in 
a pioneering book on artificial society and multi-agent simulations in social 
sciences, Gilbert and Conte (1995) put the emphasis on emergence as a key 
concept of such an approach: “Emergence is one of the most interesting is-
sues to have been addressed by computer scientists over the past few years 
and has also been a matter of concern in a number of other disciplines from biology 
to political science” (op.cit. p. 8). More recently, comprehensive discussion of 
emergence issues can be found in Gilbert (2002) and Sawyer (2001a, 2004, 
2005) for the social science and Sawyer (2002a) for the psychology. In eco-
nomics, ACE put also the emphasis on the question of emergence (see e.g., 
Axtell, Epstein, & Young, 2001; Epstein, 1999, 2006; Tesfatsion, 2002a, 
2002b; Tesfatsion & Judd, 2006). In all these works, cognition and societies 
are viewed as complex systems.
The present chapter discusses the impact of emergence on both “downward” 
and “upward” effects, with applications to the social sciences. MAS allow us 
to formalize in a single framework both bottom-up and top-down processes. 
In multi-agent frameworks, properties of the “whole” system result from 
the collective interactions between the parts (agents) by upward causation 
(bottom-up process, compatible with methodological individualism); but, 
to some extent, agents may be constrained by the whole top-down process, 
compatible with holism or structuralism methodological point of view. This 
downward effect may arise by means of the social dimension of beliefs 
(Phan & Ferber, 2007) through the agents’ perception of social phenomena 
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or through structural properties of the agents’ social environment. Such a 
downward determination is mainly—but not only—associated to cognitive 
agents (Castelfranchi, 1998a-b). The process through which the macro-level 
emerging social structure “feedbacks” into the micro-level by re-shaping 
the “elementary” agents’ behaviors is also called “immergence” by (Gilbert, 
1995, 2002).
This chapter provides in first section a critical survey of emergence defini-
tions in literature and exhibits the common structure of the remaining issues. 
Section 2 introduces and discusses the significance of formal definitions of 
emergence, with a special attention for those of (Müller, 2004; Bonabeau 
et al., 1997). These formal definitions are operative for modeling complex 
artificial societies using multi-agent oriented programming (Ferber, 1999) 
and make sense from both cognitive and social point of views (Dessalles & 
Phan, 2005). Complementary features related  to complexity are introduced, 
like detection and cognitive hierarchy. Finally, the last section proposes to 
highlight the whole process of emergence in the cognitive and social con-
text using a comprehensive framework, the 4-Quadrant approach, which 
allows an “integrative” understanding of complex phenomena at the light 
of multi-agent oriented design in both an interior/exterior dimension and an 
individual/collective dimension.

Some.Conceptual.Issues.on.Emergence

The notion of emergence has several meanings. In the vernacular language, 
emergence denotes both a gradual beginning or coming forth, or a sudden 
uprising or appearance; to emerge also means to become visible; for example, 
emergence may denote the act of rising out of a fluid. This latter sense is 
close to its Latin roots, where emergere is the opposite of mergere: to be 
submerged. In what follows, we relate the “act of rising out” to the arising of 
some phenomenon from a process, and note the fact that to become visible 
presupposes some observer.
The common sense of emergence is therefore linked to the meaning of a pro-
cess that produces some phenomenon that might be detected by an observer. 
In the field of science, emergence was used by Newton in optics. By the 19th 
century, the word “emergent” was introduced into the fields of biology and 
philosophy. In the latter, emergentism has a long history, from Mill’s chapter: 
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“Of the composition of causes” in System of Logic (Mill, 1843), Lewes’ dis-
tinction between “resultant” and “emergent” effects (Lewes, 1875); Morgan 
(1923) and Broad (1925), to the contemporary debates about the philosophy 
of mind around “the mind—body problem.” (For a synthesis, see among 
others: McLaughlin (1992, 1997); Van de Vijver (1997); Emmeche, Koppe, 
and Stjernfelt (1997); Clayton and Davies (2006); Kistler, 2006). Classical 
definition is given by Broad (1925):

“The emergent theory asserts that there are certain wholes, composed (say) 
of constituents A, B, and C in a relation R to each other; that all wholes 
composed of constituents of the same kind as A, B, and C in relations of the 
same kind as R have certain characteristic properties; that A, B, and C are 
capable of occurring in other kinds of complex where the relation is not of 
the same kind as R; and that the characteristic properties of the whole R(A, 
B, C) cannot, even in theory, be deduced from the most complete knowledge 
of the properties of A, B, and C in isolation or in other wholes which are not 
of	the	form	R(A,	B,	C)”	(Broad,	1935,	Chapter	2,	underlined	by	us).

As underlined, British emergentism rejects reductionism: the properties of 
the “whole” cannot be deduced from the properties of the parts. Several of 
them consider emergence also from an ontological standpoint, coupled with a 
layered view of nature. For ontological emergentism, the world is constituted 
of hierarchically layered structures, or “levels of organization.” Lewes (1875) 
places emergence at the interface between such levels of organization. Each 
new layer is a consequence of the appearance of novel qualities, with an in-
creasing complexity. “Emergent laws are fundamental; they are irreducible 
to laws characterizing properties at lower levels of complexity, even given 
ideal information as to boundary conditions. Since emergent features have 
not only same-level effects, but also effects in lower levels, some speak of the 
view’s commitment to downward causation” (Campbell, 1974; also quoted 
by O’Connor et al., 2006). Although our main concern is downward causa-
tion, the philosophical position adopted here is more pragmatic, and deals 
with epistemic emergentism more than ontological one. As a consequence, 
our hierarchy of levels, and more generally our ontological commitment is 
relative to a given epistemological stance.
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Epistemic,.Ontological,.and.Methodological.Background

In numerous contemporary views of emergence (Kistler, 2006; O’Connor & 
Hong, 2006,), this concept of an epistemological category is referring to the 
limits of human knowledge of complex systems. According to O’Connor et 
al. (2006), “emergent properties are systemic features of complex systems 
that could not be predicted (..) from the standpoint of a pre-emergent stage, 
despite a thorough knowledge of the features of, and laws governing, their 
parts.” In addition, macroscopic patterns resulting from an emergent phenom-
enon could not be reduced1. In the past decades, a wide variety of definitions 
of epistemological emergence have been proposed. Although many of these 
definitions deal with non-reducibility, some of them are compatibles by some 
ways with reducibility. As a consequence, the answer to the question: “what 
is an emergent phenomenon?” depends on the concept of emergence one 
invokes. A broad definition of emergent property as been proposed by Teller 
(1992): “a property is emergent if and only if it is not explicitly definable in 
terms of the non-relational properties of any of the object’s proper parts” 
(p. 140-141, underlined by us). This allows us to have some distance with 
more “canonic” conditions of emergentism such as novelty, unpredictability, 
and naturalistic hierarchy of layers. Then, it is possible to use the simple 
two-level framework of organization (micro/macro) as only a methodologi-
cal one, linked with some epistemological stance. In this framework, Bedau 
(1997, 2002) distinguishes “two hallmarks” of how macro level emergent 
phenomena are related to their micro level bases:

1. Emergent phenomena are dependent on (constituted by, and generated 
from) underlying process. 

2. Emergent phenomena are (somehow) autonomous from underlying 
process (Bedau 1997, p375).

Our approach of emergence is mainly locally epistemical, methodological, 
and “organizational” (Van de Vijver 1997) (i.e., related with a specific context 
of knowledge and specific tools (multi-agent systems). The corresponding 
ontology is then methodologically driven, and relative to a specific formal-
ism: the framework of knowledge of multi-agent oriented programming. 
Furthermore, we	define	emergence	as	a	phenomenon	relative	to	an	observer: 
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our concept of emergence is related to a particular framework of observation. 
This point of view excludes all forms of Platonicism or other strong forms 
of “scientific realistic” commitment2: scientific knowledge is not viewed as 
the “mirror of the nature.” This epistemic point of view avoids numerous 
questions addressed by the so-called “orthodox emergentism” in the debate 
about “non reductionist physicalism.”
According to Van de Vijver (1997), from the organizational point of view on 
emergence, the hierarchy of levels does not necessarily correspond to some 
“real” hierarchy in the “real world,” but characterizes a locally relevant (from 
some academic field point of view for instance) conceptual organization of 
the world (here artificial world) in terms of:

1. An abstract closed system (the object of the study, or target system).
2. A discussion about the empirical/technical/conceptual relevance of such 

a point of view.
3. A discussion about the relevance of the properties, ontologies, etc., 

related to the corresponding system (entities, levels of organization, 
relations).

4. Both discussions must be related to the goal of the scientific process.

In this pragmatic view, each type of explanation has its own goal, relevance, 
and limits (Clark, 1996) and must be related to a specific scientific project. In 
such an approach, both conceptual and operational models in general—and 
multi-agent models in particular—can be viewed as mediators between theory 
and empirical evidences (Morgan & Morrison, 1999). As such, “models are 
both means to and source of knowledge” (Morgan et al., 1999, p. 35). Fur-
thermore, as Minsky (1965) said, “to an observer B, an object A* is a model 
of an object A to extend that B can use A* to answer questions that interest 
him about A.” Then, the model can be viewed as a specific technology in the 
process of learning and inquiry for knowledge, “to answer questions.” This 
pragmatic point of view on the emergence discussed hereafter is consequently 
contextual to the project of investigating complex social phenomena with 
cognitive agents by means of both complex adaptive systems methodology 
and multi-agent system modeling.
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The.Varieties.of.Emergence:.Purpose,.Meaning,.and.Stakes

According to the usual characterization of complex systems, the properties 
of the “whole” complex (social) system cannot be reduced to the properties 
of the parts. It results therefore also from the relations between parts and, in 
some cases, from some irreducible macro causal power from the “whole” (i.e., 
downward causation). We notice that the relational properties, which structured 
the system, are neither at the level of the whole nor at the level of the parts, 
while being constitutive of both. The nature (and possible reducibility) of 
such a downward causation is one of the main debates in the field of emergent 
phenomena. As said previously, the answer to these questions depends on the 
definition of emergence one uses. Some authors have proposed to distinguish 
different kinds of emergence, as for example “nominal,” “weak,” and “strong” 
emergence for Bedau (1997, 2002), or “weak,” “ontological,” and “strong” 
emergence3 for Gillett (2002a-b). For Bedau, the broader (weaker) form of 
emergence is called “nominal.” Nominal emergence concerns the existence 
of some macro-property that cannot be a micro property. Each level has its 
specific distinct role and properties: “macro-level emergent phenomena are 
dependent on micro-level phenomena in the straightforward sense that wholes 
are dependent on their constituents, and emergent phenomena are autonomous 
from underlying phenomena in the straightforward sense that emergent prop-
erties do not apply to the underlying entities” (Bedau, 2002). Under this latter 
condition, strong emergence is the opposite of nominal emergence, as in this 
case, emergent properties have irreducible causal power on the underlying 
entities: “macro causal powers have effects on both macro and micro levels, 
and macro to micro effects are termed downward causation” (Bedau, 2002) 
Weak emergence is a subset of nominal emergence for which the emergent 
phenomenon is not easy to explain, according to Simon: “given the proper-
ties of the parts and the law of their interactions, it is not a trivial matter to 
infer the properties of the whole” (Simon, 1996, p. 184, quoted by Bedau, 
2002) Accordingly, for Bedau (2002), weakly emergent phenomena are those 
which need to be simulated, to be revealed: “Assume that (a macro-state) P is 
a nominally emergent property possessed by some locally reducible system 
S. then P is weakly emergent if P is derivable from all of S’s micro facts but 
only by simulation.” According to the non-trivial dimension (surprising) 
of emergent phenomena, the need for simulation seems to be a transitory 
epistemic criterion only. If in a context of discovery, computer simulation 
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reveals some new emerging patterns, this is not a sufficient condition to have 
no other way forever. Later justification by some explanatory formalism is 
a possible outcome. Thus, a surprising (weak) emergent phenomenon could 
become a simple nominal emergent one.  
Stephan (2002a, 2000b) distinguishes different degrees in novelty, reducibility, 
and predictability. He proposes an interesting discussion on the difference 
between weak and strong forms of emergence in a larger framework, using 
the difference between “synchronic” and “diachronic” emergentism (see 
also Rueger, 2000a). The former postulates that a macroscopic emergent 
phenomenon can be explained by the current (synchronic) interactions of the 
interrelated microscopic entities. In other words, the center of interest is the 
relationship between the interacting entities and the whole system resulting 
from these entities and their relationship. In diachronic emergentism, on the 
other hand, the emergent phenomenon occurs across time by means of se-
quential adaptation of microscopic entities. The center of interest is now the 
evolution of both micro and macro structures, and not only the occurrence 
of a particular structure. As underlined by Stephan (2002b) synchronically 
emergent properties include also diachronically emergent ones, but not 
conversely.
For instance, in a Wolfram one-dimensional network of automata (1984), a 
specific configuration of the network emerges at each step from the value 

Figure 1. Emergence of Sierpinsky’s triangular structures within 
the diachronic diagram of the Wolfram network of automata 
Source	Amblard	&	Phan	(2006,	p.	277;	2007)
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of the automaton and the structure of their relations at the previous steps 
(synchronic emergence). In some cases, identified by both Wolfram and 
Langton (1984), the existence of an attractor drives the system towards a 
particular stable configuration (fixed point, cycle). In some others cases, 
called by Langton (1989) “the edge of Chaos,” the evolution of the states of 
the systems, from step to step, generates a particular structure, such as the 
Sierpinsky’s triangular structures (Figure 1). This structure is only observable 
from a diachronic perspective, and results from the succession of synchronic 
emergence of macrostructures due to the local interaction of microstructures 
(namely, the automaton) within the specific one-dimensional nearest-neighbor 
interaction.
For Stephan (2002a) the weaker version of emergentism (weak emergence) 
can be characterized by three features. First, following the physical monism 
thesis, only physical entities can bear the emergent properties or structures. 
Secondly, emergent properties or structures are attributes of the system it-
self, and cannot be attributed to some system’s part. Thirdly, the principle of 
synchronic determination implies that all properties of the system nomologi-
cally depend on its micro-structures, namely, the parts and their relations. 
Stephan underlines that this latter thesis of synchronic determination can be 
understood as a stronger version of mereological supervenience. In mereo-
logical supervenience, the system’s properties supervene on its parts and their 
relations, but this does not imply their dependence on its micro-structures 
(Stephan, 2002a, p. 80). 
Numerous emergentists refer to debates about reductionism as well as about 
the so-called mind-body problem, discussing in particular the notion of 
supervenience introduced by Davidson (1970, 1980) and discussed by Kim 
(1992, 1993, 1995, 1999) from the point of view of emergence. Superve-
nience is a relation that can be summarized in a slogan form, by the sentence: 
“there cannot be an A-difference without a B-difference.” For application to 
individually-related properties, this idea means that two individuals cannot 
differ in M-properties without also differing in N-properties. The strongest 
form (useful here) of supervenience asserts: “A family of properties M 
strongly supervenes on a family N of properties if and only if, necessarily, 
for each x and each property F in M, if F(x) then there is a property G in N 
such that G(x) and necessarily if any y has G it has F (Kim 1993, p. 65; see 
also the distinction between weak and strong form of individual superve-
nience in the possible world modal framework, same book). According to 
McLaughlin (1997), it is possible to define emergence from this strong form 
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of supervenience: “If P is a property of W, then P is emergent if and only if 
(1) P supervenes with nomological  necessity, but not with logical necessity, 
on properties the parts of W have taken separately or in other combinations; 
and (2) some of the supervenience principles linking properties of the parts 
of W with W’s having P are fundamental laws” (p. 39). The two important 
features are the nomological (but non logical) necessity, and the notion of 
“fundamental law,” which means that it is not metaphysically necessitated 
by any other laws of W. As underlined by McLaughlin and Bennett (2006), 
this definition of emergence involves synchronic supervenience. This could 
be problematic and requires at least a convenient concept of reduction (Kim, 
1999, 2006) since if “everyone agrees that reduction requires supervenience” 
(McLaughlin & Bennett 2006), the converse is false. In particular, non re-
ductive materialism rejects the reducibility argument and asserts that mental 
properties are not reducible to physical ones. This kind of emergentist argu-
ments used in the mind-body debate has been re-used for the methodological 
debate in the social sciences between holism and individualism.
Stephan (2002a, 2000b) claims that numerous formal approaches to com-
plex systems, connectionism, and cognitive science can be related to weak 
emergentism. In this chapter, the possibility for MAS to encompass such a 
limitation is precisely a major question of interest. This means that the strong 
emergence directly addresses the questions of downward causation and reduc-
ibility. We do not discuss in this paper all the questions raised by Stephan. 
When addressing the classical debate about methodological individualism 
versus holism in the social sciences4, we do not need to discuss the question 
of reduction to the material basis of human (and social) behavior.

Figure	2.	Irreducibility	and	novelty	in	emergent	phenomenon	(adapted	from	
Stephan	2002b)
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Hence, we restrict ourselves to a very simplified two-level framework where 
individuals are the basic entities at the first level, and where one wonders 
how some “social entities” may have any “existence.” According to our dis-
cussion on the two dimensions of the so-called strong emergence (namely: 
downward causation, reducibility), the nature of social facts will depend on 
the effective class of emergence that we consider. From this limited point of 
view, in order to summarize this two-level problem we introduce in Figure 2a 
cross perspective on synchronic/diachronic-weak/strong emergence, adapted 
from Stephan (2002b) without the case of unpredictability).
To sum up, while both downward causation and irreducibility are generally 
considered by philosophers as necessary conditions for strong emergence, 
the definition of weak emergence depends on the author and remains unclear. 
While irreducibility seems to be a necessary condition for British emergentism, 
for Stephan (2002ab) reducibility corresponds to the case of weak emergence. 
Then, relevant questions are: what is the criterion and framework of reference 
to have a clear account of irreducibility and downward causation.

Irreducibility.and.Downward.Causation:.A.Synthetic.View

As weak emergence deals with upward causation and reductionism, (Bedau 
2002; Gillet 2002b) relate emergence to the question of downward causa-
tion or “macro-determinism.” Strong forms of downward causation are 
widely advocated by Sperry (1969, 1986, 1991) to deal with the mind-brain 
interactions, and by Campbell (1974) to deal with hierarchically organized 
biological systems. According to the downward causation, the behavior of 
the parts (down) may be determined by some properties or behavior of the 
whole (top). For instance, parts of the system may be restrained by some act 
in conformity with the rules given at the system level. Causation would come 
“downward” in conformity with a holistic principle rather than “upward,” 
according to reductionism. The existence of irreducible downward causation 
is sometimes used to discriminate between weak and strong emergence. 
Bedau (2002) introduces a notion of “weak downward causation” in order 
to keep the idea of emergent causal power from the whole upon the parts: 
“emergent phenomena without causal powers would be mere epiphenomena” 
(Bedau, 2002). Although we do not agree with the metaphysical commitment 
of Bedau, his arguments in favor of “weak downward causation” are appre-
ciably persuasive. As pointed out by Kim (1992, 1999), the general form of 



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

downward causation effects can be respectively incoherent, inconsistent with 
the law of micro entities, and excluded by some micro effects. The “exclu-
sion” argument concerns the cases where the emergent macro causation can 
be derived from the causal power of the micro constituents. This is effectively 
the case for numerous emergent phenomena in complex adaptive systems 
such as sand piles, snow avalanches and so on. In all models of statistical 
mechanisms, the law of the emergent macro level can be derived from the 
law of the elements and their interactions. As pointed out by Kim, weak 
downward causation has paradoxical consequences. “If these considerations 
are correct, higher-level properties can serve as causes in downward causal 
relations only if they are reducible to lower-level properties; the paradox is 
that if they are so reducible, they are not really ‘higher level’ any longer” 
(Kim 1999, p. 33). This problematic situation can be avoided by two means. 
First, in all that cases, Bedau (2002) claims that there is no worry with weak 
downward causation, because the sequence of causal effects is diachronic: 
“Higher-level properties can causally influence the conditions by which they 
are sustained but this process unfolds over time. The higher-level properties 
arise out of lower level conditions, and without this lower level conditions, 
the higher level properties would not be present.” Second, both Bedau and 
Kim acknowledge the relevance and the autonomy of the higher level from 
a causal point of view in the case of an explanatory standpoint (Bedau) or a 
“conceptual interpretation” (Kim): “we interpret the hierarchy of levels of 
concepts and descriptions, or levels within our representational apparatus, 
rather than levels of properties and phenomena in the world. We can then 
speak of downward causation when a cause is described in terms of higher-
level concepts, or in a higher level language, higher in relation to the concepts 
in which its effects are represented. On this approach, then, the same cause 
may be representable in lower-level concepts and languages as well, and a 
single causal relation would be describable in different languages” (Kim 
1999, p. 33). This point of view is nothing but our “organizational” pragmatic 
approach of emergence, a step in the process of knowledge.

Emergence.as.Perceptive,.Cognitive,.and.Social.
Phenomenon:.Looking.at.Social.Facts.in.a.New.Light

The respective role of social structures and individual action is a fundamental 
issue in social theory. The relevant questions are “does structure determine 
action or action determine structure? Or is it a bit of both? (Hollis, 1994, p. 



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

6). From the structural standpoint, individual action is externally constrained 
by some holistic principles. For instance, the Rules of Sociological Method 
of Durkeim (1895) is generally presented as a paradigmatic holistic point 
of view, since social facts, taken “as things,” are external to individuals 
and external observer have no direct access to those external things. On the 
contrary, from the individualist standpoint, society is nothing but the result 
of the individuals’ actions. Accordingly, for methodological individualism, 
social phenomena must be stated by means of actions and interaction between 
individuals. This does not mean necessarily that individuals are the only 
relevant level for the social facts. Thus, Udehn (2001) distinguishes strong 
methodological individualism, for which all social phenomena must be reduced 
to the individual’s behavior (e.g., Popper, 1966) and weak methodological 
individualism, for which autonomous institutions and social structures can 
shape the individual’s behavior, even if social facts must be taken into ac-
count in individuals concepts. 
Despite the commitment for the promotion of methodological individualism 
by several sociologists (Boudon, 1998, 2006; Coleman, 1990; Elster, 1989, 
1998), sociologists are often viewed as unrepentant holists. Then, accord-
ing to Granovetter (1985), the mainstream sociologists’ approach would be 
“over-socialized” (related mainly to downward effects) while the economists’ 
approach would be “under-socialized” (related mainly to upward effects). 
Nevertheless, both approaches have been more sophisticated and are often 
mixed (Hollis, 1994). Numerous scholars have proposed various forms of 
“sophisticated” methodological individualism, and the non-reductive argu-
ment (of the social level to the individual) is a key condition for emergence. 
Among these scholars, Sawyer (2001a, 2004, 2005) uses the notion of super-
venience to identify “emergent social properties,” which “cannot be reduced 
to an explanation in terms of individuals and their relationships.” Sawyer 
(2002b, 2003) calls non reductive individualism (NRI) this dualism at mid-
way between individualism and holism: “NRI holds to a form of property 
dualism in which social properties may be irreducible to individual proper-
ties, even though social entities consist of nothing more than mechanisms 
composed of individuals” (Sawyer, p. 266) According to the discussion on 
non-reductive physicalism, Sawyer argues that both multiple realizability 
and wild disjunction are necessary and sufficient conditions for emergence of 
non reducible social properties. Multiple realizability appears when a single 
social property can be generated by several micro-level mechanisms. This 
argument is a common objection to methodological individualism (Kincaid, 
1996, Zahale, 2003). Wild disjunction appears when these mechanisms are 
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not meaningfully related. Sawyer’s claims have been criticized. For Bunge 
(2004), the notion of supervenience is less clear than the notion of emergence, 
in particular in the case of diachronic emergence relative to a given system. 
If emergence is defined as the rising out of a qualitative novelty, this new 
property appears “at some point in the development or the evolution of the 
system.” In contrast, supervenience “does not use the concept of system and 
levels of organization” (Bunge, 2004, p. 377-78). This diachronic dimension 
of social emergent has been underlined by Archer (1995) for whom social 
structures emerged in the past from actions of agents; continue to exert effects 
in the present. As a consequence the only pertinent concept of emergence is 
diachronic (see also Manzo, 2007). As underlined previously, if the non-re-
ducibility argument is problematic in a synchronic context (and by extension 
the related downward causation) this is not the case in a diachronic context. 
Then, on the one hand, in a diachronic perspective with reification, non reduc-
tive emergence is less problematical. On the other hand, Sawyer’s criticism 
against Archer’s arguments is less relevant in a socio-cognitive framework, 
as suggested for instance by Castelfranchi (1998a, 1998b, 2000).
Bunge (1977b, 1979) proposes an individually-based systemic concept for 
social analysis, in which both individual and collective take place. According 
to Bunge, a systemic society is “a system of interrelated individuals, i.e. a 
system, and while some of its properties are aggregation of properties of its 
components, others derive from the relationship among the latter” (Bunge, 
1979, p. 13-14). According to Lewes (1879) the first relation (aggregation) 
describes resultant effects, and characterizes methodological individual-
ism, and allows reductionism. The second relation is typically systemic, 
and characterizes emergentism, where bottom up properties emerge from 
the relations between the system’s components, and are not possessed by 
any component of the whole. More specifically, Bunge defines resultant and 
emergent properties5 as follows:

“Let P ∈ p(x) be a property of an entity x ∈ S with composition C(x) ⊃{x}. 
Then P is a resultant of hereditary property of x iff P is a property of some 
component y ∈ C(x) of x other than x; otherwise, P is an emergent or Gestalt 
property of x. That is:

1. P is a resultant of hereditary property of x =df P ∈ p(x) & (∃y)(y ∈ C(x) 
& y ≠ x & P ∈ p(y))
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2.	 P	is	an	emergent	or	Gestalt	property	of	x	=df P ∈ p(x) & (y) ¬ (y ∈ C(x) 
& y ≠ x & P ∈	p(y))”	(Bunge,	1977b,	Definition	2.16	p.	97).

Where ¬ is the basic symbol for negation. In addition, postulate 2.19 (Bunge, 
1977b, p. 98) distinguishes reducible properties (eliminable in favor of micro-
based properties) from no-reducible but analyzable or explainable. Reducibil-
ity entails analyzability, but the converse is false. “There is epistemological 
novelty in the formation of attributes representing emergent (ontological) 
novelty” (id.). But the explanation of emergent phenomena does not involve 
the elimination of ontological novelty. Bunge’s systemism can be analyzed 
in both ontological and methodological perspectives.
In the ontological perspective, systemic collectivity is neither a set of indi-
viduals nor a supra individual entity transcending its members, but a system 
of interconnected individuals. There are global properties, some of these 
properties are resultant (reducible) some others are emergent from individual 
interactions (non-reducible). For Bunge, systemic society cannot act on its 
members, but members of a group can act severally on an individual. Finally, 
“social change is a change in the social structures of society—hence a change 
at both societal and individual levels” (Bunge, 1979, p. 16). The systemic 
framework introduced by Bunge is an interesting first step to encompass both 
monist individualism and holism. But there are also some intrinsic limitations. 
Significantly, several examples of Bunge are taken from natural science, not 
from human and social sciences. Pure Bungian agents have limited cognitive 
capacity and a lack of “social intelligence” (Conte, 1999). However, these 
limitations also appear with many models of emergence in artificial society 
as underlined by Sawyer (2004, p 265). The emergence is viewed only as a 
bottom-up process, without effective downward causation (see for instance 
the paradigmatic models of Schelling (1969, 1978) and Axtell et al. (2001) 
and their account by Dessalles et al. (2005) and Dessalles, Gallam, and Phan 
(2006)). In the following, we introduce new formal frameworks that allow 
us to encompass these limitations either with cognitive epistemic agents or 
with less cognitive, behavioral ones. The following example suggests how 
simple modification of information in the environment of individuals could 
feedback from top to down, through a specific mediator.
The case of a traffic jam, quoted by Bedau (2002) is a very interesting one 
for the discussion of the macro to micro relationship. Traffic jams arise in 
particular configuration of the micro constituents, and they are caused by 
the composition of such micro determinants. The process of traffic jam is 
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then reducible in principle to (and can be simulated from) the behavior of 
the basic entities (the cars) in a specified environment. If we pay more at-
tention to the cognitive and social dimension of this problem, traffic jams 
can arise because each individual does not have enough information in order 
to be spontaneously (from the bottom up) coordinated  with the others in 
the use of limited capacity of traffic. In some highway infrastructures this 
worry has been encompassed by the use of an external information system 
that transmits messages to the car drivers about traffic. This results often in 
a better coordination and in the decrease in traffic jams, as the drivers do 
not act myopically, but take into account this information on the possible 
occurrence (emergence) of a traffic jam at the macro level to modify their 
own behavior at the micro level.
This example underlines the fundamental difference between complex in-
teractive systems with reactive agents and systems with cognitive ones. In 
the former, in the case corresponding to weak emergence all the causality is 
reducible to the micro elements. In the latter, the existence of some social 
mediator, able to support feedback effect from the macro level to the micro 
can develop some autonomous properties and causal effects upon the micro 
behavior that cannot be directly reducible to micro causation. This could be 
modeled by means of reification of these social mediators, which makes sense 
from a social point of view (Phan et al., 2007, and section 3 on 4-Quadrants 
below). The generation of such mediators, from the bottom up can be viewed 
as a “weak emergent” phenomena, but the reification of some social repre-
sentation of this emergent pattern and the feedback effect from this social 
object to the individual behavior can be viewed as a qualitative change in the 
model (or a shift from a model to another, at a different level, according to 
Bonabeau et al. (1997), that is certainly the strongest form of emergence than 
those addressed by Bedau. Indeed, in the larger new qualitatively different 
model, the “unsurprised” re-emergence of a previously reified phenomenon 
can be viewed as a weak emergent phenomenon on the one hand; but from 
the point of view of the lower level model—before reification—that is a 
strong emergent one. The following formal definition of emergence allows 
us to explain this question more precisely. In this chapter, we do not address 
these questions directly, as we limit ourselves to discussing social behaviors 
in artificial societies; but the opposition downward versus upward causation 
proves to be a central one in the field of social sciences.
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Formal Definitions of Emergence

The present chapter is an attempt to integrate them into one single framework, 
in which the “whole” is a collective of cognitive agents (according to meth-
odological individualism), while the agents are to some extent constrained 
by the whole (downward causation), by means of the “social dimension” 
of their belief, their perception of social phenomena, or by some structural 
properties of the collective as well6. For this purpose, we rely on the dis-
tinction introduced by Labbani, Müller, and Bourjault (1996) and Ferber, 
Labbani, Müller, & Bourjault (1997) and developed by Müller (2004) in the 
field of multi-agent systems, between “weak” and “strong” emergence. The 
latter refers to a situation in which agents are able to witness the collective 
emergent phenomena in which they are involved, which opens the road for 
both upward and downward causation.
In ACE (Epstein, 2006; Tesfatsion & Judd, 2006) and computational social 
sciences (Gilbert, 2007), emergence is strongly related to the “Santa Fe Ap-
proach to Complexity” (SFAC). In accordance with descriptive emergentism, 
SFAC calls emergence the arising at the macro level of some patterns, struc-
tures and properties of a complex adaptive system that are not contained in 
the properties of its parts. Interactions between parts of a complex adaptive 
system are the source of both complex dynamics and emergence. An interest-
ing part of the emergence process concerns the forming of some collective 
order (coherent structures or patterns at the macro level) as a result of the 
agents’ interactions within the system’s dynamics. For the observer (i.e. the 
computational social scientist) this collective order makes sense by itself and 
opens up a radically new global interpretation, because this does not initially 
make sense as an attribute of the basic entities.
In this chapter, our concern is about formal models of emergence in MAS 
with cognitive and social agents. Therefore, we deal mainly with formal 
definitions of emergence, operative for MAS. Formally, in MAS, emergence 
is a central property of dynamic systems based upon interacting autonomous 
entities (agents). As previously mentioned, the knowledge of entities’ attri-
butes and rules is not sufficient to predict the behavior of the whole system. 
Such a phenomenon results from the confrontation of the entities within a 
specific structure of interaction, which is neither at the level of the whole 
system nor at the level of the entities, but constitutive of both. Accordingly, 
a better knowledge of the generic properties of the interaction structures 
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would make it easier to have better knowledge of the emergence process (i.e., 
morphogenetic dynamics). From this point of view, to denote a phenomenon 
as emergent does not mean that it is impossible to explain or to model the 
related phenomenon. For this reason Epstein, 1999) uses the word “genera-
tive” instead of “emergent” in order to avoid a philosophical debate about 
emergence.

Some Definitions of Emergences.in.Complex.Systems

Various attempts have been made to define emergence in an “objective” way. 
Some definitions refer to self-organization (Varela, Thompson & Rosch, 
1991), to entropy changes (Kauffman, 1990), to non-linearity (Langton, 
1990), to deviations from predicted behavior (Cariani, 1991a; Rosen, 1977, 
1978, 1985) or from symmetry (Palmer, 1989). Other definitions are closely 
related to the concept of complexity (Bonabeau, Dessalles, & Grumbach, 
1995a, 1995b; Cariani, 1991b; Kampis, 1991a, 1991b). 
In statistical mechanics (Galam, 2004), as well as for models in economics or 
social sciences having the same structure than models of statistical mechan-
ics7, emergence may be related to an order parameter which discriminates 
between at least two phases, each one with a different symmetry associated 
respectively to a zero and a non-zero value of the order parameter. Each 
problem has its own specific order parameter8.
For instance, in the Ising model, where individual spins take their values in 
{- 1, + 1}, the order parameter is the magnetization M, given by the sum of 
all spin values divided by their total number. When M=0, the state is para-
magnetic (i.e., disordered in the spin orientations) while long range order 
appears as soon as M ≠ 0. A majority of spins are then oriented to either -1 
or +1, and an order is likely to emerge. Two ordered phases are thus possible 
in theory, but only one is effectively achieved. The order parameter provides 
a “signature” for the emergent phenomenon.
Although these definitions make use of concepts borrowed from physics 
and information science, they all involve inherently contingent aspects, as 
the presence of an external observer seems unavoidable. Even a change in 
entropy supposes that an observer be able to assess the probability of vari-
ous states.
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Emergence.as.a.Phenomenon.Related.to.an.Observer

The unavoidable presence of an observer does not preclude, however, the 
possibility of extending the definition of emergence to include non-human 
observers or observers that are involved in the emerging phenomenon. In our 
quest for “strong emergence,” we wish to assign the role of the observer to 
elements of the system itself, as when individuals become aware of phenom-
ena affecting the whole society. This kind of self-observation is only possible 
because what is observed is a simplified state of the system. Emergence deals 
precisely with simplification.
Ronald and Sipper (2001) introduce a new approach called “emergent engi-
neering” in order to have a controlled concept of the previously mentioned 
concept of “surprise.” This approach opposes the classical engineered auto-
mation, based on unsurprising design, and the biologically inspired automa-
tion system, which allows the possibility of “unsurprising surprise.” Many 
engineered emergent systems are based on this concept (e.g., Vaario, Hori, 
& Ohsuga, 1995). We do not deal directly with emergent engineering, but we 
discuss the framework used by this author based on a specific formal test of 
emergence, previously presented in Ronald et al. (1999). This test of emergence 
involves two functions, which can be assumed by the same individual or by 
two different persons: (1) a system designer and (2) a system observer. An 
emergent phenomenon can be diagnosed by combining the three following 
conditions (Ronald et al., 2001, p. 20)

1.. Design: The system has been constructed by describing local elementary 
interactions between components (e.g., artificial creatures and elements 
of the environment) in a language L1.

2.. Observation: The observer is fully aware of the design, but describes 
global behavior and properties of the running system, over a period of 
time, using a language L2.

3.. Surprise: The language of design L1 and the language of observation 
L2 are distinct, and the causal link between the elementary interactions 
programmed in L1 and the behaviors observed in L2 is non-obvious to 
the observer- who therefore experiences surprise. In other words, there 
is a cognitive dissonance between the observer’s mental image of the 
system’s design stated in L1 and his contemporaneous observation of 
the system’s behavior stated in L1.
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The question is then how easy it is for the observer to bridge the gap between 
L1 and L2. The authors use artificial neural network classifiers to evaluate this 
gap. Within this framework, an “unsurprising surprise” can be defined as an 
“expected” surprise. This question is exemplified later, within the (Bonabeau 
et al., 1997) framework of emergence as reduction of complexity within the 
observation system.
The framework of Ronald et al. (1999) and Ronald et al. (2000) together with 
Forrest’s definition of emergent computation (Forrest, 1990) allow Müller 
(2004) to define emergence in SMA as occurring between two organization 
levels, distinguishing the process itself and the observation of that process. 
The process concerns the evolution of a system formed by entities in interac-
tion using a language L1. These interactions may generate observable epiphe-
nomena. At the observation level, epiphenomena are interpreted as emerging 
through specific calculation using another language L2. Finally, emergence 
is defined as a particular relationship between the two languages where L2 
is not compositionally reducible to L1 in the sense of Bunge (1977a). For 
Müller, weak emergence arises when the observer is external to the system. 
This account is stronger than the notion of weak emergent phenomenon in 
the sense of Bedau (1997, 2002) by adding to the necessity of simulating, the 
intrinsic irreducibility of the two description languages. Strong emergence 
arises when the agents involved in the emerging phenomenon are able to 
perceive it. In this latter configuration, the identification of epiphenomena 
by agents interacting within the system involves a feedback from the obser-
vation to the process. There is a coupling between the process level and the 
observation level through the agents because the agents are using both L1 
and L2. This form of strong emergence is thus immanent in such a system. In 
order to avoid misinterpretation, we call “M-Strong” the strong emergence 
in the sense of Müller (2004).
To summarize, if there is M-Strong emergence, the system becomes reflexive, 
through the mediation of the agents.

1. Agents are equipped with the capacity to observe and to identify a 
phenomenon in the process, which represents the evolution of the sys-
tem in which they interact. This capacity of observation and the target 
of such observation must then be sufficiently broad to encompass the 
phenomenon as a global one.

2. The agents describe this epiphenomenon in a “language” other than the 
one used to describe the process
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3. The identification of an “emergent” epiphenomenon by the agents in-
volves a change of behavior, and therefore a feedback from the level of 
observation to the process.

This category of m-strong emergence is important to model artificial societies 
(Castelfranchi, 1998a, 1998b; Gilbert, 1995). This is the case also even if 
there is a mix of strong and weak emergence in most multi-agent based social 
simulation (Drogoul & Ferber, 1991; Drogoul, Ferber, & Cambier, 1994).

Learning.and.“Intrinsic.Emergence”

Crutchfield (1994), Bersini (2004), and Philemotte & Bersini, 2005a, 2005b) 
propose to consider an alternative definition of emergence, called “intrinsic 
emergence.” They suggest to characterize emergence as an autonomous 
increase in the system’s computational capabilities. Such a definition is 
supposed to be more “objective,” as a natural way to avoid the presence of 
an external observer in charge of detecting emergence. (Philemotte et al., 
2005a) implemented a situation of intrinsic emergence. In their system, a 
cellular automaton is evolved through a genetic algorithm (GA) until it is 
able to perform some arithmetic operations on a limited set of operands. As 
usual for cellular automata, the rules, which for each cell, decide of its next 
state, take as input the previous state of neighboring cells. In Philemotte et 
al.’s system, a second genetic algorithm is in charge of simplifying inputs for 
each cellular automaton by limiting the number of neighboring cells actually 
taken into account, so as to make the learning task easier for the first GA. 
Intrinsic emergence is claimed to occur whenever the second GA is able to 
isolate a relevant portion of the neighboring input and thus to significantly 
improve the learning efficiency of the overall system. Philemotte and Ber-
sini were able to observe such sudden improvements when the two genetic 
algorithms cooperate.

Emergence.as.a.Complexity.Drop

In Bonabeau et al. (1997), emergence is defined as an unexpected complex-
ity drop in the description of the system by a certain type of observer. Such 
a definition is claimed to subsume previous definitions of emergence, both 
structural (dealing with levels of organization) and epistemological (dealing 
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with deviation from some model’s predictions). In each case, the observer is 
able to detect a structure, such as the presence of relations between parts of 
the system, or some form of behavior like a characteristic trajectory. Struc-
tural emergence occurs whenever a collection of similar elements turns out 
to be more structured than anticipated. This augmentation of structure can 
be characterized by a decrease of complexity.

E = Cexp – Cobs         (1)

Here, E stands for the amplitude of the emergence; Cexp is the expected 
structural complexity and Cobs the structural complexity actually observed. 
Structural complexity is defined as the algorithmic complexity relative to a 
given set of structural descriptors. In order to use algorithmic complexity 
to describe finite systems, we abandon the generality of the concept as it 
was defined by Kolmogorov, Chaitin, and Solomonov (Li & Vitanyi, 1993), 
considering that the description tools are imposed by the observer and not 
by a generic Turing machine. We define the relative algorithmic complexity 
(RAC) of a system as the complexity of the shortest description that a given 
observer can give of the system, relative to the description tools available 
to that observer. Emergence occurs when RAC abruptly drops down by a 
significant amount.
For our purpose here, we must restrict the definition. We consider a specific 
class of observers in order to get closer to what human observers would 
consider as emergence. Following Leyton (2001), we impose the observer’s 
description tools to be structured as mathematical groups. The observer may 
be considered as being a “Leyton machine,” for which any structure is ob-
tained through a group-transfer of other structures (Leyton, 2001). Any level 
of organization that can be observed has operational closure and is structured 
as a group, and the only structures that can be observed are the invariant of a 
group of operations. Moreover, the observer is supposed to have hierarchical 
detection capabilities. This means that all elements of the system that the 
observer can consider have themselves a group structure. 
For structural emergence to occur, it is important that there be an unexpected 
complexity decrease. This may happen either because the detection of the 
higher structure was delayed, as when one needs time to recognize a Dal-
matian dog in a pattern of black and white spots. It may also happen when 
adding a new observable that, instead of increasing the overall complexity 
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of the system for the observer; it paradoxically decreases it (Bonabeau et 
al., 1997).
Emergent phenomena are naturally described in two-level architecture (Figure 
3). In such a framework, objects at the two levels make sense only because 
some observer is able to detect them. The detected object at the upper level is 
composed of objects of the first level. Correspondingly, the upper level detector 
is triggered by the activity of lower level detectors. The system’s complexity, 
defined as the minimal description that can be given of its state, drops down 
by a significant amount when an upper-level detector becomes active, as its 
activity subsumes the activity of several lower-level detectors.
Let us call s the emerging phenomenon, {di} the set of lower-level detec-
tors and D the higher-level detector. Before emergence occurs, the expected 
complexity may be written:

C(s & {di}) = Σi C(di) + C(s|{di})

The notation C(a|b) means the complexity of a when the description of b is 
available. If s designates a pattern of black and white patches, the{di} may 
refer to the detection of black patches. In this case, C(s|{di}) is zero, as the 
scene is entirely described once the{di} are. Let us suppose that a new detec-
tor is taken into account. The expected complexity becomes:

Cexp = C(s & D & {di})

binary sensorsobjects concepts

Q1

P1 P1
P1

P1 P1
P1

 

Figure	3.	Parallelism	between	hierarchies:	level	of	description,	level	of	ob-
servations (detectors), and conceptual level (association concepts-detectors) 
(source:	Dessalles	et	al.,	2005)
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Suppose the scene is described using D first. Then, the actual complexity 
becomes:

Cobs = C(D) + Σi C(di|D) + C(s|D & {di})    (2)

Most of the time, Cobs = Cexp, which means that the complexity of the new 
detector compensates what is gained by using it. In our example, dividing 
the pattern into four regions and describing each region in turn would pro-
vide no complexity decrease. If, however, D subsumes some of the di, then 
C(di|D) becomes small or even zero, and Cobs gets smaller than Cexp. This is 
when emergence occurs. 
In our example, D may be the shape of a Dalmatian dog. Many of the black 
and white patches become predictable as soon as the dog’s shape is recog-
nized. This sudden upper-level pattern recognition decreases the overall 
complexity according to the preceding formula, giving rise to computable 
amplitude of emergence. 
Note that formulas (1) and (2) make a prediction that is not acknowledged 
in most models of emergence. The emerging characteristic must be simple. 
The simpler it is, the more significant is the emergence. In formula (2), it 
is important that C(D) be small, as a large value would ruin the emergence 
effect. In our example, a Dalmatian dog constitutes a familiar shape that has 
therefore low complexity. 
This requirement that the emerging property be simple seems to be verified 
in all examples to be found in the literature. This statement may be surprising 
at first sight. On certain occasions, emergence seems to involve an increase 
rather than a decrease of complexity. Examples such as phase transition or 
bifurcation into chaos come to mind. In such cases, however, what is remark-
able and simple is not the resulting state, but the point of bifurcation. If phase 
transitions were fuzzy (e.g., if the transition from water to ice was progres-
sive between +10°C and –10°C) emergence would be much less obvious. 
We note also that taking a higher-level detector D into account undoubtedly 
makes things more complicated, as it increases the observational hierarchy. 
This price paid to complexity is taken into account by the term C(D) in (2). 
Emergence only occurs when this term is more than compensated by the low 
value of the other terms of Cobs.
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Relationship.with.Others.Concept.of.Emergence

We may wonder how the preceding definition of emergence as a complexity 
shift relates to other definitions reviewed in this chapter. As shown in Deguet, 
Demazeau, and Magnin (2006), the change of description language invoked 
by Müller or by Ronald et al. amounts to taking new detectors into account. 
This language change is captured by D in the preceding formula. The ‘non-
obvious’ character of the behavior described in the upper-level language, as 
invoked by Ronald et al., corresponds in our framework to the unexpected 
complexity shift.
Philemotte and Bersini’s notion of “intrinsic” emergence also relates to the 
previous definition. Their definition is original, and is not limited to the 
description of structural patterns. We may call it behavioral emergence, as 
the criterion for emergence is a discontinuity in performance rather than a 
discontinuity in structural complexity. We may, however, ask what is emerg-
ing in Philemotte and Bersini’s two-level GA-based cellular automaton. 
If the general definition of intrinsic emergence is restricted to describing 
some discontinuity in efficiency, then the answer is that nothing emerges. 
In their particular experiment, however, a relevant input filter can be said to 
emerge. For some definition of complexity, indeed, intrinsic emergence is 
well described by definition (1). The measure of complexity to be considered 
here is the size of the relevant search space. When systematically ignoring 
a portion of the input, the second GA dramatically reduces the space where 
the first GA will find an efficient rule for the cellular automaton. This presup-
poses, however, that the input filter does not exclude convenient solutions. If 
complexity is set to a maximal value when no adequate rule is learned, then 
intrinsic emergence can be said to correspond to a complexity drop. Note, 
however, that intrinsic emergence, contrary to structural emergence, does 
not rely on the complexity of structure (e.g., the complexity of hierarchical 
group structure, but relies on learning efficiency which directly correlates 
with the size of the filtered search space).
Definition (1) may be also applied to cases of diachronic emergence. The 
fact that a given structure can only be detected by comparison between suc-
cessive states of the system may be merely ignored when considering com-
plexity shifts. Structure and thus unexpected simplicity is discovered in the 
set of successive time slices. Diachronic emergence, according to definition 
(1), occurs whenever the complexity of this set turns out to be simpler than 
anticipated.
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Quadrants:.An.Integrative.View.of.
Multi-Agent.Systems

In order to give a comprehensive view of emergence in MAS it is necessary 
to understand the various perspectives and components that make a MAS, 
and thus to use an integrative view of MAS (Ferber, 2007, 2007b, Phan et al., 
2007), which is inspired from those of Wilbert (2000). This diagrammatic 
framework is designed in order to provide a two-dimensional heuristic de-
scription of the complex relationship within social systems.

The.4-Quadrant.Framework

The 4-Quadrant approach resides in a decomposition into two axis: individual 
vs. collective perspectives on the one hand, and interior (i.e. mental states, 
representations) vs. exterior (i.e., behavior, objects, organizations) perspec-
tives on the other hand. These two axis taken together provide a four-quadrant 
map where each quadrant must be seen as a perspective in which individuals, 
situations and social systems, as well as the architectural design of artificial 
society may be  described and discussed as it is shown on Figure 4.
The upper half of the diagram is related to the individual aspects of the MAS 
(i.e., agents), whereas the lower half is dedicated to its collective aspects 
(i.e., societies of various form and size). The left half is related to the interior 
aspects, which reside only in the view of agents, and the right half is about 
exterior (i.e., manifestations of the behavior and traces in the environment, 
which may be seen by an outside observer). The I-I (interior-individual, upper 
left) quadrant, is about emotions, beliefs, desires, intentions, of an individual 
(i.e., about its mental states, its subjectivity). The E-I (exterior-individual, 
upper right) quadrant describes physical bodies, concrete objects, and also 
behaviors of individuals. The I-C (interior-collective, lower left) is about 
shared knowledge and beliefs, collective representations, ontologies, social 
norms, and represents the inter-subjective part of individuals, what could 
be called the noosphere. The E-C (exterior-collective, lower right) is about 
material or formal social structures such as institutions and organizations (i.e., 
collective forms and structures of groups and systems) what could be called 
the sociosphere. According to this decomposition, it is clear that emergence 
may appear either on the internal side or on the external side. If emergence is 
seen as a construction going from the individual to the collective level, and 
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downward causation as constraints going from the collective to the individual 
level, the 4-Quadrant map shows that emergence may appear either on the 
internal or the external side. On the internal side, collective representations, 
general concepts and ideas, arise from external beliefs and goals. As such 
elements of the noosphere, which result from the composition of individual 
representations and beliefs, act as constraints for the beliefs, objectives, and 
way of thinking of individual agents. It is as if things could only be thought 
through the paradigms and representations of the collective level. On the 
external side, social structures, which result from the activities of agents, 
act as constraints for their possible behavior.

Representation of Weak Emergent Phenomena

Fundamental questions about the emergence properties in weak emergent 
phenomena need to be explained. We claim that the presence of an external 
observer being able to discern an emergent phenomenon and level of orga-

Figure	4.	The	4-Quadrant	map	(adapted	from:	Ferber	2007,	2007b,	Phan	
et	al.	2007)
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nization is unavoidable. Accordingly, who is this observer? From the point 
of view of social sciences, what does the higher level of organization consist 
in? For whom does this level make sense?
To understand the emergent phenomenon, we need to introduce an observer 
(i.e., another agent), which sees a multi-agent system from an outside position. 
In the weak form of emergence, the observer is an agent that stands outside 
of the system, and thus outside of the four quadrants (Figure 5). As such, its 
observation shows a reduction of complexity when the system is seen from 
the E-I quadrant or from the E-C quadrant. The arrow in the figure between 
these two quadrants shows both a new structural pattern of organization, 
which arise from interactions of the individual level, and the conceptual 
simplification, which comes from a more abstract level of analysis.
An example of weak emergence is given by aggregation mechanisms, such 
as the one described by Schelling in its model of segregation (Schelling 
1969, 1978). Schelling’s aim was to explain how segregationist residential 
structures could spontaneously occur, even when people are not segregation-
ist themselves. The absence of a global notion of segregationist structures 
(like the notion of ghettos) in the agent’s attributes (preferences) is a crucial 
feature of this model. Agents have only local preferences concerning their 
preferred neighborhood, but the play of interactions generates global segre-
gation (Figure 6).
Agents choose their area in relation to the colors of their neighborhood. 
Though agents may be weakly segregationist (each agent would stay in a 
neighborhood with up to 62.5% of people with another color), segregation 

Figure 5. Weak emergence (emergence of structure) seen from an (external) 
observer point of view
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occurs spontaneously: in Figure 6a, no agent wishes to move, but this is an 
unstable equilibrium. A slight perturbation is sufficient to induce an emer-
gence of local segregationist patterns (Figure 6b and 6c).
Local interactions are sufficient to generate spatial homogeneous patterns. 
Spatial segregation is an emerging property of the system’s dynamics, while 
not being an attribute of the individual agents. Sometimes, local integrated 
(non-homogeneous) patterns may survive in some niches. But such integrated 
structures are easily perturbed by random changes, while homogeneous struc-
tures are more stable (frozen zones). Complementary theoretical developments 
on Schelling’s model of segregation can be found in the growing literature 
on this subject (see Dessalles et al., 2005 for further references). Indepen-
dently of the question of the empirical relevance of Schelling’s model, this 
pioneering work is generally viewed as a paradigmatic example of the first 
generation of agent-based models, producing macro-social effects from the 
bottom-up (Amblard & Phan, 2007). Figure 7 represents Schelling’s model 
in the 4-Quadrant perspective: individual behaviors (E-I quadrant) based on 
simple preference choices (I-I quadrant) result in a global pattern, the emer-
gence of ghettos (E-C quadrant) as an external observer (e.g., researcher, 
experimentalist) could seen.

Figure 6. Original (checkerboard) Schelling Model (Source : Source: 
http://www-eco.enst-bretagne.fr/~phan/complexe/schelling.html	 and	 Phan	
(2004a))

(a) fully integrated 
population equilib-

rium

(b) discontented 
agents are crossed

(c)	convergence	after	4	
iterations
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M-Strong.Emergence.from.the.4-Quadrant.Point.of.View

Among fundamental questions raised by emergence in the social field,  the 
problem of the existence of some “social entities” (or “social objects”) is of 
great importance for the modeling of artificial society, in particular for the 
so-called “immergence” (Gilbert, 1995).
M-strong emergence, from the standpoint of Müller, can be seen as a process 
in which agents are able to observe and consider the situation from both an 
individual and collective point of view. M-strong emergence arises when 
global structures and/or abstract entities are considered by individuals to 
determine their individual behavior.
In Schelling’s model, agents do act according to a simple preference rule, 
which only considers the status of their neighborhood. Let us suppose now 
that they possess a sense of “membership.” Each agent (grey or black) thinks 
that it is a member of a community (grey or black) and that newcomer must 
join their community and live close to agents of their own “color.” Let us 
also suppose that there is some kind of penalty if an agent does not follow 
that rule. Situations as this one is characteristic in human population, see 
for instance the Capulet and Montaigu conflict in Romeo and Juliet. This 

(I-I)

(I-C)

(E-C)

(E-I)

A ghetto as a
simple set of agents

(I-I)

(I-C)

(E-C)

(E-I)(I-I)

(I-C)

(E-C)

(E-I)

A ghetto as a
simple set of agents

A ghetto as a
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Figure	7.	The	methodological	individualist	approach:	Weak	emergence	of	
ghettos in Schelling’s model of segregation
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restriction imposes a downward causation (or immergence) relation: each 
agent is constrained by its membership to its own community, the global level 
reacting back to the agent level. A new agent has to “choose its own camp” 
and cannot go freely to a specific location.
Segregation and ghettos will appear, but this time as a result of explicit mem-
bership internalized by agents. The overall situation may be depicted as in 
Figure 8, where each agent has a representation of being a member of its com-
munity. The “grey” and “black” community is then reified in the I-C quadrant 
as collective ideas and concepts, resulting in an m-strong emergence.
From the 4-Quadrant point of view emergence is not a straightforward 
transition from the individual to the collective level: all quadrants are 
deeply interconnected. Thus, an important issue in emergence would be to 
dynamically relate weak and m-strong emergence using the interconnection 
of the four quadrants. We have seen that Schelling’s model produces a weak 
emergence, but that agent behaviors based on community membership result 
in an m-strong emergence. But very often, in empirical social phenomena, 
both emergences occur. First a weak emergence appears producing a collec-
tive structure, which is then observed by agents. These observations, added 
to communications between agents, produces collective ideas or concepts, 
which are then used by agents for their subsequent behavior, resulting in an 
M-strong emergence.

Figure	8.	M-Strong	emergence	(emergence	of	structure)	seen	from	both	an	
agent and an (external) observer point of view
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If we trace the dynamics of the whole process, we have the following cycles 
of dependence, which take place between the four quadrants:

a.. I-I..E-I: Transformation of individual representations into individual 
behaviors in (E-I) (only given here as a bootstrap process)

b.. E-I..E-C: Weak emergence as creation of new collective patterns in 
(E-C)

c.. E-I.×.E-C..I-I: Cognitive individual observe collective patterns in 
(E-C) and subjectively represent or categorize individual’s behavior 
(E-I) by subsumption under some collective category or structure in 
(I-I). 

d.. I-I.×.E-I.×.E-C..I-C: Emergence of new collective (public) repre-
sentation (idea, concept, category...) through communication between 
agents driving to reification of individuals’ beliefs in (I-C).

e.. I-I.×.I-C.×.E-C..E-I: Individual behaviors in (E-I) constrained by 
individual (I-C) and collective representation (I-C) and by social and 
organizational structures (E-C) as well.

f. Go to (b) in a recursive loop, in order for the whole process to con-
tinue.

Individuals’ mind is at the origin of their behavior. Interactions between 
these behaviors produce emergent phenomena at the collective level (a). 
These behaviors together will possibly result in a collective structure (weak 
emergence) (b). Then, if agents have a sufficient level of cognition to be 
able to observe and represent they will subjectively categorize individual’s 
behavior by subsumption under a category or structure within the internal-
individual quadrant (I-I) (c). Furthermore, if these agents can communicate 
about these categories / representations, then a new collective representation 
(idea, concept, category...) will appear in the interior-collective quadrant 
(I-C) (d) (Steels 2006).The collective representation will then be used to 
constrain the agent behaviors, in a downward causal link (e). The whole 
process continues with (b) thus forming a loop from the external individual 
level (E-I) to the external collective level (E-C) and back to E-I, through the 
various individual and collective representations.
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Conclusion

The reflexivity meditated by the agents’ “consciousness” and/or “aware-
ness” appears to be a determinant characteristic that distinguishes systems 
involving human agents from systems made of non-conscious or material 
entities. Within agents, it is interesting to distinguish a hierarchy in the cog-
nitive capacity of agents, from reactive agent to epistemic agent9 (Bourgine, 
1993; Phan, 1995). If a reactive agent cannot be considered as an observer 
of its environments, both behavioral and epistemic agents have the cognitive 
capability to process available information and can be viewed as observers 
of the process in which they take part. In this process a behavioral observer 
only takes into account some visible characteristics of its environment, while 
an epistemic observer “models” and simulates in some way this process. Ac-
cordingly, behavioral and epistemic agents can contribute to strong emergence 
through consciousness. By contrast, a reactive agent has no consciousness 
and contributes only indirectly to strong emergence, which is mediated by 
the environment (Labbani et al., 1996). The general socio-cognitive process 
briefly introduced here should be augmented and detailed to form a better 
understanding of the m-strong emergence process which arises in complex 
social systems. Emerging phenomena in a population of agents are expected 
to be richer and more complex when agents have enough cognitive abilities 
to perceive the emergent patterns or when the structures of the collective 
can detect emergent phenomena and feedback on the agent’s level. Such 
feedback loops between emerging collective patterns and their individual 
components allow us to have more sophisticated design of agents in artificial 
societies. This requires complementary developments, like those discussed 
in Phan et al. (2007) on the ontological status of “social belief,” or like the 
notion of “social intelligence” presented by Conte (1999) as a property of 
socially situated agents, and more generally like in all the works initiated by 
Castelfranchi and Conte and co-authors since 1995. 

Acknowledgment

The authors acknowledge Jean Pierre Müller for valuable remarks and others 
intellectual contributions, Alexandra Frénod for significant corrections on the 



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

original draft, as well as the ANR program “Corpus” for financial support of 
the project “CO-SMA-GEMS.” Finally, we thank also anonymous referees 
for valuable remarks on a previous version of this chapter. Denis Phan is a 
CNRS member.

References

Amblard, F. & Phan, D. (2007). Multi-agent models and simulation for 
social and human sciences. Oxford: The Bardwell-Press. Forthcoming 
in September, translated from part of: Amblard F. Phan D. dir. (2006). 
Modélisation et simulation multi-agents, applications pour les Sciences 
de l’Homme et de la Société, Londres, Hermes-Sciences & Lavoisier, 
with new Chapters).

Archer, M. S. (1995). Realist social theory: The morphogenetic approach. 
NY: Cambridge University Press.

Archer, M. S. (1998). Social theory and the analysis of society, in May & 
Williams (Eds.) Knowing the Social World, Buckingham-Open Uni-
versity Press.

Axtell, R., Epstein, J. M., & Young, H. P. (2001). The emergence of classes 
in a multi-agent bargaining model. In Durlauf, & P. Young (Eds.), Social 
dynamics, (pp. 191-212). Cambridge, MA: The MIT Press.

Baas, N. A. (1994). Emergence, hierarchies, and hyperstructures. In C. G. 
Langton (Ed.), A life III, Santa Fe Studies in the Sciences of Complexity, 
Proc. (Vol. XVII, pp. 515-537. Redwood City, CA, Addison-Wesley.

Baas, N. A., & Emmeche, C. (1997). On emergence and explanation. Intel-
lectica,	25, 67-83 

Beckermann, A., Flohr, A. H., & Kim, J., (1992). Emergence or reduction? 
Essays on the Prospects of Nonreductive Physicalism. Berlin & New 
York: Walter de Gruyter.

Bedau, M. A. (2002). Downward causation and the autonomy of weak emer-
gence. Principia, 6-1 June, special issue on Emergence and Downward 
Causation, 5-50.

Bedau, M. A. (1997). Weak emergence, Noûs, 31, Supplement: Philosophical 
Perspectives, 11, Mind, Causation, and World, 375-399.



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Bersini, H. (2004). Whatever emerges should be intrinsically useful, in Ar-
tificial life 9, (pp. 226-231) Cambridge Ma.,The MIT Press.

Bonabeau, E., & Dessalles, J. L. (1997). Detection and emergence. Intel-
lectica,	25, 89-94.

Bonabeau, E., Dessalles, J. L., & Grumbach, A. (1995a). Characterizing 
emergent phenomena (1): A critical review. Rev. Int. Syst. 9, 327-346.

Bonabeau, E., Dessalles, J. L., & Grumbach, A. (1995b). Characterizing 
emergent phenomena (2): A conceptual framework. Rev. Int. Syst. 9, 
347-369.

Boudon, R. (2006). Are we doomed to see the homo sociologicus as a ra-
tional or as an irrational idiot? In J. Elster, O. Gjelsvik, A. Hylland, & 
K. Moene (Eds.), Understanding choice, explaining behavior. Essays 
in the Honour of O. J. Skog (pp. 25-42) Oslo, Unipub Forlag, Oslo: 
Academic Press.

Boudon, R. (1998). Social mechanisms without black boxes. In Hedström and 
Swedberg (Eds.), Social mechanisms: An analytical approach to social 
theory (pp. 172-203). Cambridge, MA: Cambridge University Press.

Bourgine, P., (1993). Models of autonomous agents and of their co-evolu-
tionary interactions; Entretiens Jacques Cartier, Lyon.

Bunge, M. (2004). Clarifying some misundetstandings about social systems 
and their mechanisms. Philosophy of the Social Sciences, 34(2), 371-
281.

Bunge, M. (1979). A system Concept of Society: Beyond Individualism and 
Holism, Theory and Decision, 10(1/4) January 13-30.

Bunge, M. (1977a). Emergence and the mind. Neuroscience 2, 501-509
Bunge, M. (1977b). Treatise on basic philosophy. III: Ontology: The furniture 

of the world. Dordrecht: Reidel.
Broad, C. D. (1925). The mind and its place in nature. London: Routledge 

& Kegan Paul
Campbell, D. T. (1974). Downward causation in hierarchically organized bio-

logical systems. In Ayala & Dobzhansky (Eds.), Studies in the philosophy 
of biology: Reduction and related problems. London: Macmillan.

Cariani, P. (1991a). Adaptivity and emergence in organisms and devices, 
World Futures 31, Gordon & Breach Science Publishers, 49-70.



��0   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Cariani, P. (1991b). Emergence and artificial life. In Langton, Taylor, Farmer, 
& Rasmussen (Eds.), Artificial Life II. (pp. 775-797) Santa Fe Institute 
Studies in the Sciences of Complexity Proceedings Vol. X, Redwood 
City, Ca., Addison-Wesley.

Castelfranchi, C. (2000). Through the agents’ minds: Cognitive mediators 
of social action. Mind & Society, 1(1), 109-140, March.

Castelfranchi, C. (1998a). Simulating with cognitive agents: The importance 
of cognitive emergence. In R. Conte, J. Sichman, & N. Gilbert (Eds.), 
Multi-Agent Systems and Agent-Based Simulation, Lecture Notes in 
Computer Science (Vol. 1534, pp. 26-44), Berlin, Springer.

Castelfranchi, C. (1998b). Emergence and cognition: Towards a synthetic 
paradigm in AI and cognitive science. In H. Coelho (Ed.), Proceed-
ings of the 6th	Ibero-American	Conference	on	AI:	Progress	in	Artificial	
Intelligence,	 Lecture	Notes	 in	Computer	 Science	 1484, (pp. 13-26), 
London, Springer.

Clark, A. (1996). Happy coupling: Emergence and explanatory interlock. 
In M. Boden (Ed.), The	philosophy	of	artificial	 life.	Oxford: Oxford 
University Press.

Clayton, P., & Davies, P. (2006). The re-emergence of emergence. Oxford: 
Oxford University Press.

Coleman, J. S. (1990). Foundations of social theory. Cambridge, MA: Har-
vard University Press.

Conte, R. (1999). Social Intelligence Among Autonomous Agents, Compu-
tational, and Mathematical Organization Theory, 5, 202-228.

Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London: 
UCL Press.

Crutchfield. (1994). Is anything ever new? Considering emergence. In Cowan 
& Melzner (Eds.), Integrative themes. Volume XIX of Santa Fe Institute 
Studies in the Sciences of Complexity, Reading, Ma., Addison-Wesley 
Publishing Company.

Davidson, D. (1970). Mental events. In L. Foster & J. W. Swanson (Eds.), 
Experience and theory. London: Duckworth.

Davidson, D. (1980). Actions and events. Oxford: Clarendon.
Deguet, J., Demazeau, Y., & Magnin, L. (2006). Elements about the emer-

gence issue a survey of emergence definitions. To appear in ComPlexUs, 



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

International Journal on Modelling in Systems Biology, Social, Cognitive 
and Information Sciences, Karger, Basel, Spring 2006.

Dennett, D. C. (1996). Kinds of minds. NY: Brockman.
Dessalles, J. L., & Phan, D. (2005). Emergence in multi-agent systems: 

Cognitive hierarchy, detection, and complexity reduction part I: Meth-
odological issues. In P. Mathieu,  B. Beaufils, & O. Brandouy (Eds.), 
Agent-based methods in finance, game theory, and their applications, 
(pp. 147-159), Lecture Notes in Economics and Mathematical Systems, 
Vol. 564, Berlin, Springer.

Dessalles, J. L., Galam, S., & Phan, D. (2006). Emergence in multi-agent 
systems part II: Axtell, Epstein and Young’s revisited, 12th International 
Conference on Computing in Economics and Finance,,June 22-25, 2006, 
Limassol, Cyprus

Drogoul, A., & Ferber, J. (1991). A behavioral simulation model for the 
study of emergent social structures. European	Conference	on	Artificial	
Life, Paris.

Drogoul, A., Ferber, J., & Cambier C. (1994). Multi-agent simulation as 
a tool for analysing emergent processes in societies. Proceedings of 
Simulating Societies Symposium, University of Surrey, Guildford, 1992. 
Re-published in N. Gilbert & J. Doran (Eds.), Simulating societies: 
The computer simulation of social phenomena, (pp. 127-142) Londres: 
UCL Press.

Durkeim, E. (1895). Les règles de la méthode sociologique, trad. by W.D. 
Halls. The rules of the sociological method. New York: The Free Press, 
1982.

Durlauf, S. N. (2001). A framework for the study of individual behavior and 
social interactions. Sociological	Methodology,	31(1), 47-87, January.

Durlauf, S. N. (1997). Statistical mechanics approaches to socioeconomic 
behavior. In Arthur, Durlauf, & Lane (Eds.), The economy as an evolv-
ing complex system II, Santa Fe Institute Studies in the Sciences of 
Complexity, Volume XXVII, Redwood City, CA, Addison-Wesley.

Elster, J. (1989). Nuts and bolts for the social sciences. Cambridge MA: 
Cambridge University Press.

Elster, J. (1998). A plea for mechanism. In P. Hedstrom & R. Swedberg (Eds.), 
Social mechanisms. An analytical approach to social theory (pp. 45-73). 
Cambridge, MA: Cambridge University Press.



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Emmeche, C., Koppe, S., & Stjernfelt, F. (1997). Explaining emergence-
towards an ontology of levels. Journal for General Philosophy of Sci-
ence, 28, 83-119.

Epstein, J. M. (2006). Generative social science: Studies in agent-based 
computational modeling. Princeton University Press.

Epstein, J. M. (1999). Agent-based computational models and generative 
social science. Complexity,	4(5), 41-60.

Ferber, J. (2007a). Towards an integrative view of multi-agent systems. 
Forthcoming.

Ferber, J. (2007b). Multi-agent concepts and methodologies. In F. Amblard & 
D. Phan (Eds.), Multi-agent models and simulation for social and human 
sciences. Oxford: The Bardwell-Press (forthcoming in September).

Ferber, J. (1999). Multi-agent systems. Reading, MA: Addison Wesley.
Ferber, J., Labbani, O., Müller, J. P., & Bourjault, A. (1997). Formalizing 

emergent collective behaviors: Preliminary report. International Work-
shop on Decentralized Intelligent and Multi-Agent Systems (pp. 113-
122), St. Petersburg.

Forrest, S. (1990). Emergent computation: Self-organizing, collective, and 
cooperative phenomena in natural and artificial computing networks. 
Introduction to the Proceedings of the 9th Annual CNLS Conference in 
Emergent Computation (pp. 1-11). Cambridge, MA: MIT Press.

Galam, S. (2004). Spontaneous symmetry breaking and the transition to 
disorder in physics. In P. Bourgine & J. P. Nadal (Eds.), Cognitive eco-
nomics, an interdisciplinary approach (pp. 157-168). Berlin-Heidelberg: 
Springer-Verlag.

Galam, S., Gefen, Y., & Shapir, Y. (1982). Sociophysics: A mean behavior 
model for the process of strike. Mathematical Journal of Sociology, 9, 
1-13.

Gilbert, N. (2007). Computational social science: Agent-based social simula-
tion. In F. Amblard & D. Phan (Eds.), Multi-agent models and simulation 
for social and human sciences. Oxford: The Bardwell-Press (forthcom-
ing in September).

Gilbert, N. (2002). Varieties of emergence. Paper presented at the Agent 
2002 Conference: Social Agents: Ecology, Exchange, and Evolution, 
Chicago.



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Gilbert, N. (1995). Emergence in social simulations. In N. Gilbert & R. 
Conte. op.cit. p. 114-156.

Gilbert, N., & Conte R. (1995). Artificial societies: The computer simulation 
of social life. London: UCL Press.

Gillett, C. (2002a). The varieties of emergence: Their purposes, obligations, 
and importance. Grazer Philosophische Studien, 65, 89-115.

Gillett, C. (2002b). Strong emergence as a defense of non-reductive physical-
ism: A physicalist metaphysics for “downward” determination. Prin-
cipia, 6(1) June, special issue on Emergence and Downward Causation, 
83-114.

Granovetter, M. S. (1985). Economic action and social structure: The problem 
of embeddedness. American Journal of Sociology, 91, 481-510.

Holland, J. H. (1998). Emergence from chaos to order. Readings, MA: Helix 
Books Addison-Wesley.

Hollis M. (1994). The philosophy of social science. Cambridge, MA: Cam-
bridge University Press, (revised and updated version 2002).

Kampis, G. (1991a). Self-modifying systems in biology and cognitive science. 
Pergamon Press.

Kampis, G. (1991b). Emergent computations, life, and cognition. World 
Futures 31, Gordon & Breach Science Publishers, p. 33-48.

Kauffman, S. (1990). The sciences of complexity and “origin of order.” PSA: 
Proceedings of the Biennal Meeting of the Philosophy of Sciences As-
sociation, Vol II Symposia and Invited Papers (pp. 299-322). 

Kim, J. (2006). Emergence: Core ideas and issues. Synthese, 151(3), 347-
354.

Kim, J. (1999). Making sense of emergence. Philosophical Studies, 95, 3-
36.

Kim, J. (1995). Emergent properties. In Honderich (Ed.), The Oxford Com-
panion to Philosophy (pp. 224). Oxford University Press.

Kim, J. (1993). Supervenience and mind. Cambridge, MA: Cambridge Uni-
versity Press.

Kim, J. (1992). Downward causation. In Beckermann, Flohr & Kim, Eds., 
op cit.. 119-138

Kincaid, H. (1996). Philosophical foundations of the social sciences. Cam-
bridge, MA: Cambridge University Press.



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Kincaid, H. (1986). Reduction, explanation, and individualism. Philosophy 
of	Science,	53(4) December, 492-513.

Kistler, M. (2006). New Perspectives on Reduction and Emergence in Phys-
ics, Biology and Psychology. Special issue of Synthese, 151/3.

Klee, R. L. (1984). Micro-determinism and concepts of emergence. Philoso-
phy of Science, 51(1), 44-63.

Labbani, O., Müller, J. P., & Bourjault, A. (1996). Describing collective 
behaviors in Workshop ICMAS, 09-13 December, Kyoto, Japan

Langton, C. (1989). Computations at the edge of chaos: Phase transitions 
and emergent computation. Physica	D,	42, p. 12-37

Langton, C. G. (1984). Self-reproduction on a cellular automaton. Physica 
D,	10, 135-144.

Li, M., & Vitanyi, P. M. B. (1993). An introduction to Kolmogorov complexity 
and its applications. New York, Berlin: Springer-Verlag.

Lewes, G. H. (1875). Problems of life and mind. Rinehart & Winston.
Leyton, M. (2001). A generative theory of shape. New York: Springer Ver-

lag.
Manzo, G. (2007). Progrès et ‘urgence’ de la modélisation en sociologie, du 

concept de “modèle générateur” et sa mise en oeuvre, L’Année Soci-
ologique, 2007, 57(1) forthcoming

McLaughlin, B. P. (1997). Emergence and supervenience. Intellectica,	25, 
25-43.

McLaughlin, B. P. (1992). The rise and fall of British emergentism. in Beck-
ermann, Flohr & Kim, op cit.. 49-93.

McLaughlin, B., & Bennett, K. (2006).  Supervenience. In E. N. Zalta (Ed.), 
The Stanford Encyclopedia of Philosophy (Fall 2006 Edition). Retrieved 
from http://plato.stanford.edu/archives/fall2006/entries/supervenience

Mill, J. S. (1843). System of logic. London: Longmans, Green, Reader, and 
Dyer.

Minsky M. L. (1965). Matter, mind, and models. Proceedings of IFIP Con-
gress (pp. 45-49), Spartan Books, Wash. D.C. Reprinted in Semantic 
Information Processing MIT press, 1969.

Morgan, C. L. (1923). Emergent evolution. London: Williams & Norgate.
Morgan, M. S., & Morrison, M. (1999). Models as mediators. Cambridge, 

MA: Cambridge University Press.



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Müller, J. P. (2004). Emergence of collective behavior and  problem solv-
ing. Engineering Societies in the Agents World IV, The 4th International 
Workshop ESAW-2003, Revised Selected and Invited Papers, (pp. 1-20) 
LNAI 3071 Springer Verlag.

Nagel, E. (1961). The structure of science. New York: Harcourt, Brace, and 
World.

O’Connor, T., & Hong Y. W. (2006). Emergent properties,” E.N. Zalta (Ed.),The 
Stanford Encyclopedia of Philosophy (Winter 2006 edition), http://plato.
stanford.edu/archives/win2006/entries/properties-emergent.

Palmer, R. (1989). Broken  Ergodicity. In  Lectures  in  the  Sciences of 
Complexity, D. Stein, Ed.  Volume 1, Santa Fe Institute Studies in  the 
Sciences of Complexity, Reading, Ma., Addison-Wesley.

Phan, D. (2004a). From agent-based computational economics towards 
cognitive economics. In P. Bourgine, & J. P. Nadal (Eds.), Cognitive 
economics, An interdisciplinary approach (pp. 371-398). Berlin-Hei-
delberg: Springer-Verlag.

Phan, D. (2004b). Hierarchy of cognitive interactive agents and statistical 
mechanics: How object oriented programming highlights the connec-
tion. In Coelho, Espinasse, & Seidel (Eds.), The 5th Workshop on Agent 
Based Simulation, Lisbon, Portugal (pp. 69-76)  Erlangen, San Diego, 
SCS Pub. House.

Phan, D., & Feber, J. (2007). Thinking the social dimension of the artificial 
world: Ontological status of collective beliefs. International Transac-
tions on Systems Science and Applications, Special issue on “Emergent 
intelligence over networked agents,” forthcoming. in 2007.

Phan, D., & Semeshenko, V. (2007). Equilibria in models of binary choice 
with heterogeneous agents and social influence. European Journal of 
Economic and Social Systems, forthcoming.

Phan, D., Gordon, M. B., & Nadal, J. P. (2004). Social interactions in eco-
nomic theory: An insight from statistical mechanics. In P. Bourgine, & 
J. P. Nadal (Eds.), Cognitive economics, An interdisciplinary approach 
(pp. 225-358). Berlin-Heidelberg: Springer-Verlag.

Philemotte, C., & Bersini, H. (2005a). Intrinsic emergence boost adaptive 
capacity. In GECCO ‘05: Proceedings	 of	 the	 2005	 Conference	 on	
Genetic and Evolutionary Computation (pp. 559-560) New York, NY, 
USA, ACM Press.



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Philemotte, C., & Bersini, H. (2005b). Co-evolution of effective observers 
and observed multi-agents system. Advances	in	Artificial	Life,	The	8th 
European	Conference,	ECAL	2005, Canterbury, UK, September, Pro-
ceedings. (pp. 785-794) Volume 3630 of Lecture Notes in Computer 
Science, Springer.

Poincaré, H. (1902). La science et l’hypothèse, Paris, Flamarion. Trad. Sci-
ence and Hypothesis, New York, Dover Publications 1952

Putnam, H. (1981). Reason, truth, and history. Cambridge, MA: Cambridge 
University Press.

Ronald, E., & Sipper, M. (1999). Surprise versus unsurprised: Implication of 
emergence in robotics. Robotics	and	Autonomous	Systems,	37, 19-24.

Ronald, E., Sipper, M., & Capcarrère, M. S. (2001). Design, observation, 
surprise! A test of Emergence. Artificial	Life,	5, 225-239.

Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical, and 
methodological foundations. New York: Pergamon Press.

Rosen, R. (1978). Fundamentals of measurement and representation of 
natural systems. North Holland.

Rosen, R. (1977). Complexity as a system property. International Journal 
of	General	Systems,	3, 227-232.

Rueger, A. (2000a). Physical emergence, diachronic, and synchronic. Syn-
these,	124, 297-322.

Rueger, A. (2000b). Robust supervenience and emergence. Philosophy of 
Science,	67, 466-489.

Sawyer, R. K. (2005). Social emergence: Societies as complex systems. 
Cambridge University Press.

Sawyer, R. K. (2004). The mechanisms of emergence. Philosophy of the 
Social Sciences, 34(2), 260-282, June.

Sawyer, R. K. (2003). Nonreductive individualism, Part II: Social causation. 
Philosophy	of	the	Social	Sciences,	33(2), 203-224

Sawyer, R. K. (2002a). Emergence in psychology: Lessons from the history 
of non-reductionist science. Human	Development,	45(2), 1-28.

Sawyer, R. K. (2002b). Nonreductive individualism, Part I: Supervenience and 
wild disjunction. Philosophy	of	the	Social	Sciences,	32(4), 537-559.



Emergence �n Agent-Based Computat�onal Soc�al Sc�ence   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

Sawyer, R. K. (2001a). Emergence in sociology: Contemporary philosophy of 
mind and some implications for sociological theory. American Journal 
of		Sociology,	107(3), 551-585.

Sawyer, R. K. (2001b). Simulating emergence and downward causation in 
small groups. In Moss & Davidsson (Eds.), Multi agent based simula-
tion (pp. 49-67). Berlin, Springer-Verlag.

Schelling, T. S. (1978). Micromotives and macrobehavior. NY: W.W. Norton 
and Co.

Schelling, T. S. (1969). Models of segregation. American Economic Review, 
Papers and Proceedings, 59(2), 488-493.

Simon, H. A. (1996). The	science	of	 the	artificial. Cambridge, MA: MIT 
Press.

Sperry, R. W. (1991). In defense of mentalism and emergent interaction. 
Journal	of	Mind	and	Behavior,	12, 221-245

Sperry, R. W. (1986). Discussion: Macro- versus micro-determinism (A 
response to Klee). Philosophy	of	Science,	53(2), 265-270.

Sperry, R. W. (1969). A modified concept of consciousness. Psychological 
Review,	76, 532-536

Steels, L. (2006). Experiments on the emergence of human communication. 
Trends	in	Cogn.	Sciences,	10(8) 347-349.

Stephan, A. (2002a). Emergentism, irreducibility, and downward causation. 
Grazer Philosophiche Studien, 65, 77-93

Stephan, A. (2002b). Emergence. In Nadel (Ed.), Encyclopedia of Cognitive 
Science (Vol. 1, (pp. 1108-1115). London: Macmillan.

Teller, P. (1992). A contemporary look at emergence. In Beckermann, Flohr, 
& Kim, Eds., op cit. 139-153

Tesfatsion, L. (2002a). Economic agents and markets as emergent phenomena. 
Proceedings of the National Academy of Sciences U.S.A., 99, Suppl. 3, 
7191-7192

Tesfatsion L. (2002b). Agent-based computational economics: growing 
economies from the bottom up. Artificial	Life,	8(1), 55-82.

Tesfatsion, L., & Judd, K. L. (2006). Handbook of computational econom-
ics.	Vol.	2:	Agent-Based	Computational	Economics. Amsterdam, New 
York: Elsevier North-Holland.



���   Dessalles, Ferber, & Phan

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Tuomela, R. Methodological Individualism and Explanation, Philosophy of 
Science, 57, 133-140.

Udehn, L. (2001). Methodological individualism: Background history and 
meaning. New York: Routledge.

Van de Vijver, G. (1997). Emergence et explication. Intellectica,	25, 7-23.
Varela, F., Thompson, E., & Rosch E. (1991). The embodied mind. MIT 

Press.
Vaario, A, Hori, K., & Ohsuga, S. (1995). Towards evolutionary design of 

autonomous systems. The International Journal in Computer Simula-
tion, 5, 187-206.

Wilbert, K. (2000). A theory of everything: An integral vision for business, 
politics, science, and spirituality. Boston, MA: Shambhala Publica-
tions, Inc.

Wolfram, S. (1984). Universality and Complexity in Cellular Automata », 
Physica D. N°10.

Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 
43, 99.

Zahale, J. (2003). The individualism-holism debate on intertheoretic reduction 
and the argument from multiple realization. Philosophy of the Social 
Science,	33(77), 99.

Endnotes

1 For O’Connor and Hong (2006), the contemporary discussion on 
epistemological emergence as a non-reductionist concept relies on the 
discussion on Nagel (1961, p. 366-380 “The doctrine of emergence”). 
The latter is in fact widely based on the British version of emergentism, 
with Broad and Mill.

2 For mathematical Platonicists, mathematical entities exist independently 
of the human observer. The strong form of “scientific realist” is also 
called “metaphysical realism” by Putnam (1981). This reject does not 
imply a relativist position. Our position is compatible for instance with 
the “internal realism” of Putnam (1981) as well as with more anti-rela-
tivist positions such as the “structural realism” of Poincaré (1902) and 
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Worrall (1989)—see Varenne, Phan “epistemology in a nutshell” in 
Amblard & Phan, (2007).

3 See Fromm, in this book, for another typology of emergent phenom-
enon.

4 For a recent debate including the supervenience/reduction dimension 
discussed here, see Kinkaid (1986) and Tuomela (1990).

5 “Energy is a resultant or hereditary property in the sense that it is pos-
sessed by every parts of a thing (...) Unlike holism, we regard emergents 
as rooted in the properties of the components, hence as explainable in 
terms of the latter, through not by reduction to them. For example, tem-
perature is explainable as average kinetic energy of the molecules, but 
this does not exemplify reduction because averages, through computed 
from individual values alone, are collective properties.” (Bunge, 1977b  
p. 97-98)

6 For a discussion of both perspectives in the social sciences from a 
“median” emergentist point of view, see the antagonists contributions 
of Archer (1998) and Sawyer (2001a) 

7 See for instance Durlauf (1997, 2001), Phan, Gordon, and Nadal (2004), 
Phan and Semeshenko (2007), and the pioneering work of Galam, Gefen, 
and Shapir (1982).

8 Remark that several authors consider irreducibility as a necessary 
condition of emergence. Accordingly, numerous phenomena studied 
by the statistical mechanics are not viewed as emergent. For instance, 
for Bunge (1977), the temperature does not emergent from molecular 
movements because it could be reducible to the average energy within 
the system.

9 An important feature is the availability of the inferior level of cognition 
for higher-level agents: an epistemic agent can behave sometimes like 
a behavioral agent or like a reactive agent.
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Chapter.X

Ontological Reflections on 
Peace and War1

Hayward R. Alker, Un�vers�ty of Southern Cal�forn�a & 
Watson Inst�tute, Brown Un�vers�ty, USA

Abstract

Responding to a provocative question by Hiroharu Seki about Hiroshima 
ontologies, this chapter reviews related thinking about the ontological 
primitives appropriate for event-data making, accessing high-performance 
knowledge bases, and modeling intelligent complex adaptive systems of use 
to researchers on war and peace. It cautions against “Cliocide,”	defined	
as of the “silencing” or symbolic killing of collective historical-political 
or historical-disciplinary identities and identifying practices by historical 
or	discipline	deficient	“scientific”	coding	practices.	It	proposes	that	more	
intelligent multi-agent models in the “complex, adaptive systems” tradition 
of the Santa Fe Institute should include the socially shared memories of na-
tions	and	international	societies,	including	their	identity-redefining	traumas	
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and their relational/migrational/ecological histories of community-building 
success and failure. Historicity in an ontologically distinctive sense of the 
“time ordered self-understandings of a continuing human society” is still a 
challenge for the computationally oriented literature on war and peace.

Introduction.
  
Faced with the challenge to honor the late Hiroharu Seki, whom I knew and 
have admired for several decades, I was at first not sure what would be an 
appropriate appreciation of his significant, wide-ranging career. The theme 
of ontologies relevant to researchers interested in peace and war finally 
crystalized in my mind followed hearing him speak from the audience at a 
recent International Studies Association meeting. Politely, but insistently, 
he asked a distinguished panel of scholars (I paraphrase): how can you put 
Hiroshima ontology into your approach to international relations? At a panel 
where epistemological and ontological pluralism was a central issue, and 
before an inter-disciplinary professional group where socially constructed 
international relationships have been a hot topic2, his remark was both highly 
appropriate and particularly challenging. 
Seki’s difficult but powerful insistence deserves sustained reflection. I see 
his injunction as closely related to the development of a collective sense 
of history as a basis for both an international society of states and a global 
society of individuals having the capacity to direct themselves towards a 
better future, away from horrifying pasts, toward a world where Hiroshimas, 
Auschwitzs, and Chernobyls never reoccur. In other words, Seki appeared 
to be trying to discover how can a powerful, shared sense of history and 
tradition, of prohibitions and morally preferable possibilities, be developed, 
shared, and deeply transmitted to future generations. I think he had in mind 
their culturally transmitted, phenomenological, and ontological ways of see-
ing and encoding reality, as well as their more consciously reflected upon 
norms and practices.
To pay homage to Professor Seki, I have decided to make some earlier 
thoughts along similar lines more widely available. First, I shall recall briefly 
the international relations simulation world of the 1960s, which Hiroharu 
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Seki and I both inhabited, and where we first met through the courtesy of 
Harold Guetzkow. Then, I shall reflect further on the absence of morally 
powerful lessons easily connected to, or embodied within, the way behav-
ioral scientists have represented specific, singular international events like 
Hiroshima or Auschwitz. How is this kind of intelligence embodied into our 
complex adaptive systems models? Where, for example, in formally modeled 
accounts of international relations, are the triggers for the tragic (or comic!) 
meanings of many classical historians, or the ironical historical sensitivity 
characteristic of many modern and some post-modern thinkers?3 And what 
about the data we develop to calibrate or test such models? Do not simple 
quantifications of horrifying international events like these obfuscate, or tend 
to erase from our consciousness, the complicated socio-historical identifica-
tions, expectations, roles and networks normally binding together a national 
or international society’s members? 
Current adaptive systems models popular in political science and international 
relations have no or almost no symbolic memories; typically their past-in-
voking mechanisms are structurally similar to first order Markov processes4. 
Surely, the human history of peace and war, of freedom and domination, of 
community, nation, state or international systems formation and dissolution 
has more to offer than that! I shall suggest “event data” coding practices5 for 
greatly reducing the inadvertent complicity with such horrible events, which 
their oversimplified, reality hiding, “naturalizing” scientific codifications,/ 
quantifications as “event data” tend to suggest. I shall follow the practice of 
contemporary computer scientists in treating “ontologies” for such “event data” 
as humanly respecifiable linguistic primitives used for artificial knowledge 
representation and retrieval systems.6 Next, attempting to help fulfill Profes-
sor Seki’s belief in the promise of international simulations, I shall reflect on 
my several visits to a citadel of complex adaptive systems theory, the Santa 
Fe Institute. I shall show how a better sense of historical connectivities, or of 
trauma-avoiding historicities (a concept to be defined below), might inform 
a recent ecological research program on adaptive, multi-agent systems,7 a 
research program attempting to incorporate international issues. Finally, as 
a challenge to future modelers of intelligent complex adaptive systems, I 
speculate about the future of more intelligently modeled international crisis 
research, inspired by the recent computationally-oriented writings of Gavan 
Duffy, Brian Cantwell Smith, and Thomas Schmalberger. 
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Putting More War and Peace into
Our.Models’.Ontologies

In the late 1960s,—when Professor Seki and I were both associated with 
Harold Guetzkow’s simulated international processes project—I made my 
first investigation of phenomenological and ontological possibilities in more 
or less computerized international simulations.8 In what then I might have 
referred to as a study of the “face validity” of different simulated worlds, 
my investigative strategy was comparatively to attempt to represent the 
consequences of an accidental, rather than an intentional, nuclear explosion 
in three different simulated worlds. 
But even a hypothetical, gamed exploration of the implications of an ambigu-
ously caused9 Cold War nuclear accident at a clandestine Soviet test site in 
Polunochnoe, proved beyond the representational capacities of skilled formal 
modelers at that time. Professor Lincoln Bloomfield’s non-computerized Politi-
cal Military Exercise evidenced much more realistically suggestive possibilities 
for escalation and creative conflict containment than the formalized or partly 
formalized models Ronald Brunner and I investigated. The crucial gamed 
results of Bloomfield’s imaginative scenario generate difficulties in the U.S. 
government’s communication, for verification purposes during a crisis situa-
tion, with submerged submarines.    These difficulties could not be adequately 
represented within either Guetzkow’s own Inter-Nation Simulation (INS) or 
a hugh, Defense Department’s TEMPER computer simulation. Guetzkow’s 
“man-machine” INS combined human role players with computational de-
cision environments, abstracted actors, and relationships too far above the 
important particulars of international history. It treated nations as abstract 
entities named “Bingo,” “Erga,” etc. Similarly, the major fully computerized 
simulation at the U.S. Department of Defense’s Joint War Games Agency in 
the late 1960s, TEMPER, couldn’t represent “unintentional actions” well; it 
also regionalized international threats implausibly. Fulfilling treaty obliga-
tions, European NATO members sent troop reinforcements to the continental 
United States in the middle of the TEMPER-simulated Polunochnoya crisis! 
Seki’s ontological challenge was already a relevant issue, although the devel-
opers of TEMPER thought historically in categories linked most directly to 
the Cold War rather than to the costs of victory and defeat in World War II. 
A look at event data research in subsequent decades would reveal, I believe, 
persistent versions of related representational conundrums.10 
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How.not.to.Commit.Cliocide.in.
Event-Data.Coding.Practices11.

As methodologically restated in Alker’s “Emancipatory Empiricism: Toward 
the renewal of empirical peace research,12” yesterday’s computational tools 
and data-making practices rarely have the avoidance of specific major inter-
national traumas (which actually occurred much earlier and might recur today 
or in the future) as their central, codifiable reality. Our “realistic” scientific 
procedures have long been in danger of being captured by the often ugly, 
frequently recurring but probably not eternal realities of “Power Politics” that 
we as scholars of the successes and failures of the Westphalian state system 
must try faithfully to represent, as well as to transcend. 
What are the “events” that the event-data specialist tries replicably, and 
hopefully validly, to encode? Webster’s Third New International Dictionary 
illustrates it’s first definition of “event” as “something that happens” by citing 
Wordsworth—“this day’s event has laid on me the duty of opening my heart.” 
Reflect on his indictment—in a poem entitled “The Thorn”—of science (and 
art) unreflective about the influences of its originating experiences:

Our meddling intellect 
Misshapes the beauteous forms of things. 
We murder to dissect. 
Enough of science and of art. 
Close up these barren leaves. 
Come forth and bring with you 
A heart that watches and receives. 

Whether beauty or ugliness is our subject, the naturalistic search for quantified 
scientific replicability can butcher specifically situated traumas or ecstacies. 
We must learn from Wordsworth.
Two themes derive from these reflections on the ways in which we fail 
scientifically to encode the partly shared, socio-historical significances of 
Hiroshima, Auschwitz, and other traumatic events shaping the internal and 
relational identities and international “destinies” of particular nations or 
peoples. First, I will briefly discuss the “high politics” of disciplinary birth, 
renewal, death and transfiguration. In this domain paradigmatic, disciplin-
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ary, and interdisciplinary wars have sometimes been directed more or less 
consciously against humanistic history, radical political economy, transna-
tional/international sociology, peace research, the cultural self-understand-
ings of conquered nations, and even the social reality of “power politics.” 
None of these orientations adequately comprehends the complexities of 
international history.
The second theme concerns the ways International Relations special-
ists operationally address “event data.” It concerns how they might 
better include both socio-cultural and political-economic historicities, 
including the recognition of distortive effects of their own disciplinary 
historicity, in their work. This new, merged research direction, now sig-
nificantly, but never completely, operationalizable with contemporary 
multi-perspective procedures13, should help slow or reverse our disci-
plinary descent from analytical “accident” to “malfeasance” to symbolic  
”silencing” or “Cliocide.” By “historical/disciplinary Cliocide,” I mean the 
more or less premeditated “analytical and/or symbolic killing” of socio-his-
torically shared achievements and failures, including the replicable traumas 
and the people-defining, semi-historical “hero stories” of societal collectivities 
and transnational disciplines. The culprits?: solipsistic, individualistic, one-
sided, asocial, scientistic, phenomenologically insensitive and ontologically 
impoverished story-telling and data-making perspectives and procedures. 

The.Historicity.of.International.Events.and.Scholarship.
  
According to Webster, then, events are things that happen, activities or experi-
ences, noteworthy occurrences or happenings; they are thus pieces of history. 
International events are then events that are international in some respect, 
pieces of international history noteworthy from perhaps several domestic or 
international perspectives (usually those of journalists). International event 
data are replicable codifications of these pieces of historical experience, 
generated from particular international relations scholarly vantage points. 
But, we must ask, what are the boundaries of an event, what are the con-
nections (at any instant, and through time), and how do they affect the kind 
of event it is, or that we, or others, describe it to be? How can we better 
delineate the ways events contain, overlap, inter-relate, interpenetrate, fold 
back upon, cumulate, or subsume each other? Our scholarly impoverishment 
in ontologically conceiving or phenomenologically representing history’s 
“essence,” its historicity (or, more generally, its connectivity) is evident in 
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the small number of ways most complex adaptive systems modelers of war 
and peace conceive and represent historical international processes. And by 
the extent to which historicity is usually naturalistically defined as a kind of 
“path dependence” based on the model of sampling from urns of marbles 
without replacement.
Let us look at the issue of historical connectivity, or historicity, in somewhat 
more detail. Some refer to the Pelopponesian War as an event; similarly others 
refer to World War I or II separately, the latter being argued to have started in 
1931 (Manchuria), 1935 (Ethiopia), 1939 (Poland), or 1941 (Pearl Harbor). 
But classical historians recognize that, just as world systems theorists are 
having us rethink the ultimate separability of the First and Second World Wars 
of this century, Thucydides was both insightful and correct to treat as one war 
two periods of sustained hostilities interrupted by a long, but uneasy peace. 
The meaning and significance of the later events in both wars—in particular, 
as attempts to fulfill, redefine, or overturn earlier policies or settlements (i.e., 
positively or negatively judged precedents)—is so colored by the earlier pe-
riod of fighting that it is appropriate to say the earlier events are contained in, 
or constitutive of the later ones. Together these episodes constitute a single 
event, a larger unity. Here is a conception of historicity—the time ordered 
self-understanding of a continuing human society14—that further and more 
deeply explicates Seki’s difficult conception of “Hiroshima ontology.” 
We can summarize and extend the present discussion with Table 1. Reaching 
back into recent philosophical and historiographic writings, and toward the 
technically advanced fields of (computational) linguistics gives at least nine 
overlapping, but alternative versions of “historicity.” 
One may well ask, must any historical particular always be defined in terms 
of everything it is connected to? Which perspectives concerning an event—at 
least including significant contemporary participants—do not belong in its 
adequate codification? Behavioral codings by one professor’s graduate students 
debatably assume (and allow limited statistical tests for) conceptual univer-
salism. But the diversity, multiplicity and richness of multiple perspectives 
concerning war boundaries is already powerfully suggested, inter alia, by 
the continentally distinct initial dates for World War II previously given. As 
recent American history, and the diplomatic Bluebooks of World War I fame 
make clear, sharply different versions of events, from different individual, 
organizational, national or transnational perspectives, are intriguingly, but 
differentially constitutive of their noteworthiness. Overlapping, changing, as 
well as opposed, regionalisms15 seem a better empirical starting point for the 
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Table 1. Nine ways of conceptualizing and/or operationalizing historicity 
(Source:	Most	importantly,	Alker,	1996,	p.	184-206,	213-215,	297-302,	321-
328,	and	386-393)

1. The Brian Arthur-Paul David-Robert Keohane-Stephen Krasner literature 
on cybernetic, path-dependent, probabilistic (urn selection) historical 
processes; 

2. Weiner-inspired cybernetic discussions of nonergodic development; 
3. Jon Elster’s rewrites of electro-magnetic hysteresis (defined by Webster 

as “the influence of the previous history or treatment of a body on its 
subsequent response to a given force or changed condition”).

4. The philosophical-political traditions of practical argumentation begun 
by Thucydides’ pre-Socratic teachers and distilled in recent technical-
philosophical literatures by Nicholas Rescher, Ronald Loui and Douglas 
Walton on practical and/or dialectical argumentation; 

5. Derivation-dependent parsing, already clearly illustrated in Chomsky’s 
Syntactic Structures and also visible in the context-sensitive rewrite rules 
of text linguistics; 

6. The artificial intelligence literature on non-monotonic reasoning: non-
monotonic reasoning has the historically suggestive properties: theses are 
tentative & reversible; axiomatic presumptions may change in the course 
of arguments; thus previously derived conclusions can be invalidated; 

7. The self-compiling and self-modifying capacities of computer procedures 
or programs written in the lexically scoped SCHEME dialect of LISP, 
programs which have the additional property of “transparent historicity,” 
process traceability back to original definitions and contexts of defini-
tion;

8. The ethnomethodological/phenomenological literature on scientific 
development and “members’ time”;

9. Hegel’s phenomenologically inspired discussions of Reason and Spirit 
in History, Vico’s and Marx’s variants of historicism, and Heidigger and 
Marcuse’s ontological discussions of historicity, from which Olafson’s 
previously cited, analytically much clearer conception of historicity partly 
derives.
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boundaries, parties, and issues making up some of the more complex wars 
of the present (and other) centuries. We need critically and constructively to 
rethink the bases for excluding from critical, comparative, scientific analyses 
ab initio certain nationalities, traditions or paradigms of research in the dif-
ficult, multi-disciplinary field of international relations research. 
Part of the historical significance or noteworthiness of international events 
arises from the larger events, processes, histories or which they are seen to 
be part. Contemporaries can give significance to the events of their times in 
terms of larger (but debatable) historical constructs—Thucydides’ account 
of Athens’ imperial rise and tragic fall, Aristophanes proto-feminist indict-
ments of the destructiveness of male Athenian economic greed come to mind. 
Historicist Soviet versions of the triumph of Socialism are now obviously bad 
history compared to those interpretations of specific recent events consistent 
with the large theme of the rise of global capitalism. But at what point, and 
why, should such internal, identity-constitutive connections to larger, debat-
able historical happenings be ignored?
In our scientific codifications of significance, we must remember that distances 
and historical projects are measured differently, with different degrees of 
universality and timelessness. From a multi-disciplinary perspective, is not 
the genre of classical authors’ writings indicative of a multi-faceted approach 
to truths of various sorts? Aristophanes’ entered his plays into the Athenian 
competition, presumably describing them as “comic fictions”; but they serve 
as evidence for feminists and Marxists of economic and gender differences 
neglected by “Realist” analyses. And although Thucydides’ scientific “his-
tory” obviously can be distinguished from crowd-pleasing morality plays, 
that doesn’t destroy Raymond Aron’s claim that Thucydides wrote art and 
science simultaneously, or the Classical reading of this history as a tragic 
morality play about the arrogance of power.16 
What “unbiased science” can legitimately discard the evidence presented 
by any of these perspectives? Ironic criticism has been a mainstay of pro-
gressive, critical, modern thought. Must we try to denude our language of 
its morally based critical power? Supposedly in the interests of analytical 
clarity, logical positivism tried to do so, but failed. Shouldn’t a deeper ap-
preciation of how language works be a better guide? The particular kind of 
event connectivity that most concerns us here was referred to above with 
terms like “socio-historical,” “historical sociality,” or the “historicity” of 
international events. Among philosophers of social science and historians, 
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“historicity” has been a concept developed to delineate both a very precious, 
distinctive, and central feature of human socio-cultural evolution and of a set 
of humanistic disciplines (history, rhetoric and dialectic, etc.) substantively 
and methodologically distinctive from the natural sciences. 
Admitting that further historical investigation of this argument is required, 
I suggest tentatively that the relative lack of attention to the conceptual and 
representational issues raised by this focus has several roots. It is linked both 
to the “logical positivist” or “behavioral scientific” origins of early events data 
research methodologies, to a resistant unfamiliarity of most International Rela-
tions researchers with these professional-identity-challenging issues, and/or 
to their lack of expert awareness of operationally relevant, but demanding, 
alternative representational approaches like those in Table 1. More will be 
said next about the paradoxical possibility that more technically sophisticated 
representational/codification practices—those described within a paradigm of 
“conversational computing”17—can give us more humanistically defensible 
empirical research practices. 
The historicity of events takes place through what phenomenologists refer 
to as the intentional (in the double senses of “object-constituting” and pur-
posive), the extensional (referential) and the intensional (“meaning constitu-
tive”) dimensions of meaning, and the interpretive ways groups of citizens 
and scholars recognize and define the events’s existence. It takes place, one 
might say metaphorically, when a social group’s “past” is born (i.e., it be-
comes accessible to them in a temporal, but necessarily clock-like, fashion). 
Following Olafson, as articulated in Table 1, we defined “historicity” as the 
socially shared self-temporalization of their collective experiences among 
members of a continuous human society of some kind. Harold Lasswell, for 
example, clearly called for the empirical tracking of the demands, expectations 
and identifications that are part of these in such historicities. To summarize 
his views, for better or worse we are embedded in historical configurations 
which are characterized by the existence of a large number of comprehensive 
symbols in the name of which people kill or die.18 
A second class of nationally and transnationally shaped historicities should 
also be mentioned: those of disciplinary societies of international relations 
scholars, including the overlapping professional groupings of historians, 
war researchers, and peace researchers. Among such “inter-disciplines,” 
key symbol configurations, research-orienting concepts and their changing 
interpretations are central embodiments of professional “historicities.” 
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The connections of socio-political and disciplinary historicities are compli-
cated. Indeed, widely but incompletely shared concepts, paradigms of theory 
and practice, and specialized symbols and languages reflect and help constitute 
national, transnational and international self-identifications, understood both 
historically and in disciplinary ways. To cite a Communitarian, a Realist and 
a Radical/Marxist theorist, recall the notion of historicity implicit in Karl 
Deutsch’s theory of pluralistic security communities, Hedley Bull’s histori-
cal accounts of the expansion of the “anarchical society” around the globe, 
or Lenin’s ideas about the revolutionary historicity of national Communist 
parties and Socialist Internationals in the age of imperialism19. 
When it is not practically or technically necessary to do so, to ignore the 
collaborative and/or antagonistic historicities just referred to is definitionally 
or methodologically to bias, to distort, to “silence” the multiple meanings 
imbedded within international historical reality. To codify or measure such 
events in a correspondingly partial, unconnected fashion is to sever, cut off, 
dismember or even “quantitatively butcher” essentially qualitative histories in 
the good name of science. It is to destroy the transnational and international 
historicities out of which international political community and world order 
might eventually grow. 

Operationalizing.Historicity.in.Event.Data.Research
  
Event data research attempts to apply scientifically justifiable and replicable 
procedures to the categorical or quantitative measurement of relevant news-
paper accounts. It is a response, so far of limited but still urgent practical 
utility, to the need to address the great majority of historical materials, which 
are themselves qualitative in nature.20 Having spent several decades research-
ing the issues of humanistic interpretation and explanation of the practice 
and transcendence of “Power Politics,” I believe that we need still further to 
develop much farther qualitative ways of modeling collective human inten-
tions, interpretations, and differentially shared precedential memories.
A practical variant of Seki’s ontological question still remains: How can in-
ternational event data researchers be more deeply sensitive to the economic, 
cultural and political historicities in terms of which social groups give meaning 
to their collective experiences, in the name of which their typical members 
are willing to kill, to die, or to be killed? The regulative ideal I suggest for 
such work is develop computerized representations of socially significant 
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events that simultaneously contain or reference most or all of their external 
and internal (identity constituting) relations, their inter- and inner-connec-
tions, and the cooperative and conflictful historicities giving them social and 
scholarly significance. 
What are these relationships? Where can they be found? I have argued: 
search through human memories and their documentary external stabilizers, 
look at the constitutive conversations, the scholarly debates, the meaningful 
interactions, the social discourses and even the “negotiated silences” where 
the events become, remain, cease to be socially, culturally, economically 
or politically significant, either historically or scientifically. Because of the 
way it emphasizes historic interconnections, and includes the history of its 
generation, utilization and transformation, the relevant data set would look 
like a well organized, and transparent human memory. Additional research 
might try to fill in missing intentions, search for more holistic historical pat-
terns, paralleling the ways that our own passionate or relatively detached 
intellects dissect and rewrite the past. 
The very large role of natural language representations (which include and 
can generate quantifications where appropriate) is itself noteworthy. Data 
analyses according to different paradigmatic codifications and more richly 
comparable than mere numbers. Historical narratives written from differ-
ent participant or scholarly perspectives provide levels of information and 
modalities of interpretive coherence not naturally representable as statistical 
coefficients or dynamically changing, differently colored, grid boundaries. 
When episode histories and codebooks can be treated as applicable precedents 
or case-redefining procedures, conversationally reflective modes of case- or 
explanation-based reasoning21 and data analysis can more fully parallel the 
unsilenced conversational practices of emancipatory dialogical relations. The 
linking of freedom, critical rationality and the responsible pursuit of larger 
human goals goes back at least to Thucydides’ history. 
This idealized sketch shows several ways in which the historical context of 
particular events can be treated as part of that event, without the data ana-
lyst becoming, as Harold Guetzkow might say, “data bound.” Histories of 
event citations in precedential scholar/practitioner texts or speeches would 
augment existing data sets. Evidence on the various ways in which practical 
historians or scholars construct their pasts would also grow. Evidence on 
multiple historical and scholarly temporalizations would allow empirically 
grounded, constructive characterizations of the shared historicity of social 
events and social scientific practice. Thus the sociality of shared, opposed, 
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or coordinated perspectives and practices would be social facts within the 
data set, rather than statistically problematical realities. 
Starting with work at MIT, and continuing at MIT and Syracuse, Gavan Duffy 
and John Mallery developed a RELATUS text analysis computer system 
for computationally parsing, storing, or retrieving, and analyzing different 
narrative accounts; they saw the need to extend these procedures to herme-
neutic, conversational and historical contexts of application,22 which can be 
organized in terms of different theoretical or socio-historical perspectives. 
Measurements corresponding to codebook definitions or revisions can be 
reconstituted into the descriptive sentences from which they were initially 
derived. Replicable, non-quantitative representations for catching elements 
of the past in the present are beginning to appear. Historicity, potentially, 
exists within a symbiotic network of human experts and their recursively 
structured computer programs. 

Incorporating.Political.Histories.into.Adaptively.
Intelligent.Multi-Agent.Ecological.Models

I have extended Seki’s concern with the phenomenological and ontological 
dimensions of a deep commitment to the avoidance of nuclear war destruc-
tion like Hiroshima to include genocides like that exemplified by Auschwitz. 
And I have argued that such concerns can be treated as specific historicities. 
Can this way of thinking be scientifically extended to include the avoidance 
of ecological devastation? Can such precedential historicities be included 
at the foundational/ontological level in other research programs than those 
International Relations has normally concerned itself with? 
Coincident with the age’s concern with better understanding and promoting 
“sustainable development,” I now want to discuss ecologically oriented mod-
els, and the need to put sharable human histories, with their trauma-avoiding 
lessons, into them. As Professor Seki would want us to do, I assert here, and 
try to exemplify, the continuing need for interdisciplinary researchers on war 
and peace to bridge gaps, to connect war and peace practices and possibili-
ties, to the issues of contemporary concern. As the previous pages should 
have made apparent, the ontological and representational issues of putting 
shared human consciousness, memories and moral choices within ecological 
models is not a trivial one. 
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The need to historicize ecological modeling practices in a peace-relevant way 
arose in my mind at an exciting April 1994 workshop which I attended at the 
Santa Fe Institute in New Mexico (SFI).23 There were at least three major 
thematic convergences, pregnant with further research implications, evident 
to me by the end of (or shortly after) my participation in the Crude Look at 
the Whole (CLAW) Workshop. Here is a brief sketch of them. 

Lateral.Pressure.Theory.Meets.Adaptive.Multi-Agent.
Modeling

The joint presentations of John Holland and Joshua Epstein were a wonderful 
kick-off for the seminar. As I soon learned, these were mere introductions to 
a style of adaptive, multi-agent, grid-based, ecologically inspired modeling 
that is a central thematic unity of the work at the SFI24. My background in 
elementary artificial life simulations and Holland’s genetic algorithms meant 
that I was not totally surprised by either presentation, but the interdisciplinary 
synthesis of elements of geography, biology, demography, economics and 
sociology in Epstein’s stunningly effective visual presentation was very impres-
sive. The spatialization of social processes emergent from the interactions of 
autonomous, message passing agents recalled writings by Schelling, Bremer 
and Mihalka, Cusack and Stoll, and Duffy25 on power political interactions 
on territorial grids. Some of this literature was unfamiliar to SFI scholars. 
And, driven by the concern for improving the peace relevance of the social 
ontologies used in inter-disciplinary futures oriented work, I engaged with 
these authors. 
It was my impression that the Epstein-Axtell model had much simpler, but 
more social scientifically interesting bio-social foundations. But, I found 
Holland’s ECHO system (with its evocations of Burks, Axelrod, Cohen and 
Holland—Michigan BACH) elegant and visually suggestive, with a deeper 
grounding in evolutionary ecology. The coloring of different Prisoner’s 
Dilemma players on a spatial grid gave very nice “cooperative” results of 
the emergent sort one has come to expect from SFI. Holland’s and Murray 
Gell-Mann’s26 emphasis on the minimally complex “cartoon-like” character 
of such formalizations/visualizations was entirely in the spirit of what I took 
to be a heuristic exercise. Holland’s recognition of the modular character of 
genetic selection processes within selection processes recalled as well the 
Leibnizian ontology (monads within monads...) informing the Rapoport/DT 
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Campbell/Boulding/Simon hierarchies of knowing/adapting processes I 
learned from the General Systems Yearbook many years ago.27 
The initial convergence of Epstein’s artificial histories of life on his simulated 
sugarscape with Choucri-North lateral pressure accounts of the demographic-
technological-resource-using growth, intersection and conflict of nations was 
stunning. Choucri and North’s econometric analyses of processes leading 
up to World War I and their work on the imperialistic and nonimperialistic 
ways that Japan expressed its “lateral pressure” before and after World War 
II came immediately to mind.(Choucri & North, 1975; Choucri, North, & 
Yamakage, 1992). And the demographic-technological-territorial profiles in 
(Choucri, 1993)28 (which correspond roughly to different population densities 
differently located on Epstein’s sugarscapes) all fit Epstein-Axtell’s story 
extremely well. The best evidence of a closeness of fit came when Robert 
North and Joshua Epstein started talking about a common problem: how to 
build hierarchical social structures into their expansionary stories. A kind 
of class structure seemed to appear on Epstein’s video screen, as in North’s 
sociologically and empirically grounded theorizing.
But there was a divergence, too, which I was puzzling about until I later 
heard Thomas Homer-Dixon speak at MIT in a seminar on environmental 
stress, migration and violence. Homer-Dixon has a chapter in Global Accord, 
a major research project underway, and considerable notoriety from Robert 
D. Kaplan’s Malthusian look at Third World development prospects.(Kaplan, 
1994) He passed out two papers, one summarizing his project’s research 
findings, and the second discussing the “ingenuity” necessary to avoid the 
violence-provoking ecological disasters in the making reported on in that 
summary29. He is not the fatalistic pessimist Kaplan makes him out to be; on 
the other hand, he insists that real changes (“adaptations”) have to be made 
if environmentally focused degenerations are not to occur with increased 
frequencies. 
The first divergence troubling me was one of modeling styles. Unlike Epstein 
or Holland, Choucri has used either econometric modeling and nonlinear, 
feedback laden, Systems Dynamics formulations. Territorial concepts figure 
in Choucri-North theories, and data-based models for separate countries are 
the norm, but territory is not explicitly represented in her models. Structural 
adaptation and environmental degradation are nicely handled by her non-
linear feedback loops (whose dynamics are so easily graphed by Systems 
Dynamics/STELLA software), but there are no message-passing autonomous 
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agents in her models; she and Rothenberg and most other modelers in their 
style are using econometrics or Systems Dynamics, not object-oriented 
programming.  
The missing link was migration! If Choucri and North were to model their 
processes of lateral expansion on territorial grids, and these territorial grids 
were to be like Epstein’s sugarscapes, they would capture a new set of emer-
gent interaction possibilities. Ironically, some of Homer-Dixon’s best slides 
were of highly polluting sugar or prawn plantations located on low level 
flatlands at the foot of, or in between, Philippine mountains where much 
poorer farmers held on to their degraded, non-terraced, much less attractive 
production possibilities, or from which these farmers migrated to highly pol-
luted city slums in increasing numbers. Obviously a later version of Epstein’s 
software should have resource rich sugar spots on flatlands near the harbors, 
not way up in the mountains. Various groups could migrate, trade and talk 
among themselves and with others, not just view their unequally limited 
horizons, etc. Message passing could also be used as a control process, to 
calculate systems wide environmental limits processes as well (simulating 
global warming, nonrenewable resource elimination, etc.) The resource rich 
“high points” of his societies/civilizations would historically have been river 
basins. A real shift to a more socially complex, historically adaptive multi-
agent simulation modeling style might well result. 

Modeling.Historicity.on.the.Sugarscapes.of.Life

A growing impression throughout the meeting was that much of what I have 
been working on as a modeler over the last 20 years could conceptually and 
technically be fitted into what I called “volume 2” of Epstein-Axtell’s project. 
Object-oriented LISP routines could be imbedded in Epstein’s object-oriented 
PASCAL programs to explore new domains. This was a “pregnant conver-
gence” of projects par excellence. It would also help improve upon Choucri 
style modeling, and transform it into the artificially intelligent SCHEME/LISP 
style of modeling that allows historicity-rich process representations30. 
Let me further try to set up this line of thought by first emphasizing a diver-
gence. The mechanisms featured in Holland’s genetic algorithms (reviewed 
in Mitchell, 1996) and Epstein’s models are “low down” on the Lovejoy/
Boulding/Campbell Great Chain of Being/Acting/Knowing mentioned 
above. Specifically, collectively, socially, humans have evolved memory-rich, 
language-rich, imagination-rich, organization-rich modes of problem-solv-
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ing—firms, universities, markets, nations, and even science itself—whose 
mechanisms/processes/ capacities/ tendencies are not well represented in 
either Holland’s or Epstein-Axtell’s models. To put it bluntly, there is some 
sociology, no cultural anthropology, no politics, no law, and no science in 
Epstein’s models. There are blue-dot-consuming “fights” on his sugarscapes, 
but not the “games,” and certainly none of the “debates” that Rapoport wrote 
so well about (Rapoport, 1960). 
As previously explicated, I think of the discovery of historicity as the birth 
of the “time ordered, [collective] self-understanding of a continuing human 
society.” Nations socialize their children into the exploits of their founding 
heroes and great transitional actors, and the evils of their age old enemies, 
with powerful effects: Le Pen is citing Joan of Arc to argue for throwing out 
the foreigners, the Bosnian Serbs are still throwing out the Turks! A lot of 
“projecting” of domestic enemies on to international antagonists relies on 
this shared kind of “mythical” understanding. And since Auschwitz and Hi-
roshima, many are trying to create a new, anti-nuclear-war and anti-genocidal 
historicity for world society. 
Now the operational implication for Epstein, volume 2, of such kinds of 
thinking would be to allow each of his actors individually and collectively, 
to have memories of past interactions, so that the above kinds of historicity 
could be represented and their developments studied. There would be both 
forgetting, and sharing of such memories. The “middle classes” higher up 
on the sugarscapes could develop shared “understandings” of the kinds of 
interactions one typically has with those lower down the sugarscapes, or across 
the valleys. Color coding of actors in such memories could have emergent 
effects like Holland showed us. Even without mimicking complex natural 
language capabilities of the Chomskyan sort, ethnic groups, classes, and ter-
ritorially structured states could be modeled, and their memories imperfectly 
shared. Cultures, stereotypes, histories would be part of the sugarscape world. 
Principles of political and territorial organization could be suggested, and 
the identities, loyalties, and understandings typically associated with them 
could be crudely, but suggestively modeled. A higher level of organizational/
jurisdictional/responsibility boundaries could be identified (in a LISP-like 
way on territorial grids) allowing for the “tragedies of the commons” style 
ecology/security dynamics mentioned in the Santa Fe discussions. Historical 
bases for imagining new collective responses to these challenges could also 
be represented, and searched for, if memories were allowed different kinds 
of empathetic, recreative ingenuity. 
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Obviously, the past paragraph requires much elaboration and much new 
research before it is filled out. But I would like to signal here a strong con-
vergence between the programming styles of contemporary MIT artificial 
intelligence programming and that of Epstein, Holland, and other Santa 
Fe researchers. Together they suggest what a new generation of intelligent 
complex adaptive systems might look like. The key metaphor is the Piaget-
Pappert-Minsky one: the society of mind works by having differently capable, 
nearly autonomous agents, which have their own computational capacities and 
also pass messages to each other. Hierarchical aspects of “thinking” abound 
as well, but in flexible and sometimes ad hoc ways. Memory (“k-lines”) is 
also important, but limited. Minsky’s (1996) book presciently and correctly 
conveys the programming style of some of his most illustrious students 
(Winston, Hewitt, Sussman, Winograd, Stallman, Haase, Mallery, etc.) The 
extension of this complex, merged style of modeling to the social domain is 
very incomplete, but nonetheless promising.31 

Effective.Scenario.Making.Need.not.be.Model.Based

A third convergence at Santa Fe was, I think, not fully anticipated. When 
I publicly repeated a private suggestion that our future thinking would be 
scenario based, not model generated, a problem arose. What was the point of 
modeling, anyway? One of our members correctly anticipated that scenario-
based future explorations would themselves generate model-based exercises, 
not vice versa. With his own considerable experience in advising decision 
makers, Dr. Zhenghua Jiang’s accounts of the ways he presented different 
scenarios in between best and worst possible cases generally supported the 
view that modeling and future thinking could be symbiotically related. But 
again we would not be able to derive the future from our models, or all rel-
evant alternatives.32 
The convergence of the practice of the workshop to such anticipations was 
nearly exact. Thus Brian Arthur’s worries about North-South style class 
conflicts, or subnational/transnational dual economies focused our think-
ing nicely. Nathan Keyfitz has written about a global middle class—itself a 
model sketch developed in demographic, yet non-Malthusian, reaction to the 
limits to growth debate (Keyfitz, 1977). Murray Gell-Mann added brave new 
worlds style class/race politics to this scenario. We could add the increased 
or decreased legitimization of genocide and nuclear war. Nonetheless, the 
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heuristic role of the sugarscapes models could clearly be seen. Alternatives 
to the Keyfitz-Arthur-Gell-Mann scenario developed further in the conver-
sation; ideas for specialized, model-based research were generated. Even a 
range of possible actor classes in the scenarios explored in CLAW’s final 
report were identified. 
None of the previous convergences can be taken for granted. None of the 
ideas previously sketched is fully fleshed out. Each is somewhat dependent 
on the others. Nonetheless, I think these three convergences are sufficiently 
exciting to suggest that they imply new areas for future work, new areas of 
collaboration in the social sciences domain, new ways of moving intelligent 
complex adaptive systems research closer to the global realities of war and 
peace. This is a line of thinking which Professor Seki has already begun 
explore. I hope others will continue to do so, because I believe historicity-
rich modeling traditions better allow global citizens to learn from, and teach 
about, the lessons of Hiroshima, Auschwitz, and Chernobyl as well. 

Toward.Better,.Still.Revisable,.Ontologies

To help fulfill the emancipatory promise of research on achieving peace, the 
operational concepts embodied in our intelligent complex adaptive systems 
models need to be more intelligently constructed, working from richer ontolo-
gies of historical representational possibilities33. Simulations with affectively 
encoded, symbolically represented memories need to contain ways of rec-
ognizing the practices constituting such past realities while at the same time 
containing the possibility of transcending those realities through revisions in 
their reality-codifying practices. As Hiroharu Seki has argued concerning the 
significance of the end of the Cold War, we “should include our political will 
[,..our] moral leadership as one of the most significant variables....[W]ithout 
the preference of ontology to epistemology or without the preference of sub-
jectivity to objectivity...we can not start the road towards solving any kind 
of the global problematique.”(Seki, 1996) Our ontologies of the real, the 
possible, the desirable and the awful, the necessary and the impossible must 
be revised to make such progressive development possible. I see Professor 
Seki as someone trying to redress the balance in a world of social scientists 
too committed to less adequate naturalistic ontologies. 
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Up until this point, except concerning the meaning of historicity, I have 
used, but avoided detailed discussions of, ontological issues of primarily a 
philosophical or metaphysical sort. 
Unfortunately, many social scientists are embroiled rather unprofitably in an 
epistemological/ ontological debate between materialistic “realists,” “ideal-
ists,” and “constructivists” regarding essences and phenomenal appearances, 
ontologies and epistemologies, natural and social realities. Some participants 
in such debates might attempt, with some success, philosophically to unravel 
and criticize the language of “ontologies” with which I have structured the 
present discussion. But my focus here has been more operational, pointed 
toward the design of historicity-friendly, war and peace relevant event rep-
resentations and intelligent complex adaptive systems. Therefore, let me 
suggest briefly some exciting new directions in social scientific research 
grounded in more sophisticated conceptions of social reality than much of 
the existing literature of International Relations, ontological conceptions 
with which I feel positively identified. These were completed or published 
since the first version of this text was written, yet they speak directly to the 
main points I have made. 
For example, Gavan Duffy has proposed reconstructing event data analysis 
using the philosophical insights from W. V. O. Quine, Nelson Goodman, 
and Hilary Putnam. He accepts Putnam’s notion of “internal realism” as a 
preferred alternative to either a “copy” or a “correspondence” theory of truth, 
and rejects both a copy theory or a constructivist theory of world-making. 
Metaphorically, both the mind and the world jointly make up themselves. 
Each person cognitively encodes a version of the world, which no one can 
identify as “objective truth,” in the copy theory sense. “For internal realists, 
we each believe our versions right only in the sense and to the extent that 
they cohere with our other ideas. These include our conceptual constructs, 
our internalized norms, our perceptual fields, our life-experiences, and even 
our mental models of the world versions that those with whom we sociate 
disclose to us in discursive and practical action” (Duffy, 1996, p. 148f). Duffy 
then goes on to suggest principals for a representationally sophisticated, yet 
scientifically replicable, computational hermeneutics, based significantly on 
his years working with John Mallery and others in the development of the 
RELATUS system. 
In a remarkably similar vein, the philosophical computer scientist Brian 
Cantwell Smith has proposed a middle ground between materialist and ide-
alist metaphysics, a ground conceived of at least partly in terms of revisable 
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computational ontologies, the sustained metaphor of this present discussion. 
He suggests a philosophy of presence governed by: 

symmetrical realism: a commitment to One world, a world with no other, 
a world in which both subjects and objects…are accorded appropriate 
place…[T]hat	world	is	depicted	as	one	of	cosmic	and	ultimately	ineffable	
particularity:	a	critically	rich	and	all-enveloping	deictic	[situation	referring]	
flux…[which]	sustains	complex	processes	of	registration:	a	form	of	interac-
tion,	subsuming	both	representation	and	ontology…[But]	registration	[has]	
metaphysical zest: the fact that all distinctions and stabilities—empirical, 
conceptual, categorical, metaphysical, logical—are taken not, at least not 
necessarily,	and	not	in	the	first	instance,	to	be	“clear	and	distinct,”	sharp,	
or in any other way formal, but instead to be, or at least potentially to be, 
wily, critical, obstreperous, contentious, and in general richly eruptive with 
fine	structure	(Smith,	1996,	p.	347f).

Here is a world uniting phenomenologies and ontologies, with plenty of room 
for moral imperatives, political and ontological differences, and inter-sub-
jectively shareable historical learning, a world that Smith is suggesting we 
replicably explore with computationally facilitated symbolic procedures. 
Finally, I call to my reader’s attention to an impressive (yet horror filled), 
phenomenologically sophisticated, LISP-encoded account of many the 
overlapping and intersecting political worlds of what Russians usually call 
“The Caribbean Crisis” and Americans call “The Cuban Missile Crisis.” 
Schmalberger suggests that this crisis “was about humiliation, prestige 
and leadership. It was a drama played before the world in which deception 
commonly used to enhance one’s own prestige at the expense of the other, 
threatened to destroy the face of the protagonists.”(Schmalberger, 1998, p. 5) 
Without reducing these interactions to causal models, Schmalberger provides 
text-based, phenomenologically grounded reconstructions of 66 conversa-
tion-like “turns” in the crisis, and analyzes this sequence counterfactually, 
generating alternative possible scenarios which lead the historically minded 
to many sobering reflections about the rationalistic self-misunderstandings 
of the key players. 
These counterfactual reconstructions of the political process help facilitate 
deep learning about what brought the world the closest it has come to nuclear 
war since Hiroshima and Nagasaki. They suggest ways of behaving that 
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should become part of the historicities of international and world society. 
Social and scientific international learning regarding nuclear war avoidance 
requires such historicities. If the next generation of International Relations 
scholars and intelligent complex adaptive systems modelers can build further 
on these fine ontological contributions to an ecologically sustainable, nuclear-
war avoiding future, Professor Seki and I should be content. 
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Endnotes

1 I wish to dedicate this essay to the memory of Professor Hiroharu Seki, 
late of Ritsumeikan University. Without holding them responsible for 
their contents, I would like to acknowledge the contributions to these 
reflections of a sabbatical visit to the Santa Fe Institute (SFI), and related 
conversations with W. Brian Arthur, Robert Axelrod, Nazli Choucri, 
Joshua Epstein, Murray Gell-Mann, John Holland, Stuart Kauffman, 
Christopher Langton, George Lakoff, Melanie Mitchell, and Thomas 
Ray. Not at the SFI, Thomas Schmalberger has also been a great inspira-
tion. An earlier version of this essay was SFI Working Paper 99-02-011, 
which in turn was an expanded rewrite of (Alker, 1997)

2 One of the broader and more thoughtful treatments of constructivism 
in the war/peace context is Hopf (1998). For a British variant of social 
constructivism, see Tim Dunne’s excellent historical-analytical account 
(Dunn, 1998). For a continentally oriented discussion of ontological 
themes reminiscent of some of the issues raised during SFI workshops 
on economics and cognition see Dallmayr (1991). An excellent recent 
modeler’s treatment of social constructivism, relying heavily on Georg 
Simmel, is Cederman and Daase (2003).The recent ontological turn in 
IR theory is best articulated in White (2006).

3  A relevant, simplified rehearsal of the classical plot structures in 
contemporary historical accounts is (Knutsen, 2002); on post-modern 
ironic sensibilities see especially (Lyotard, 1984). In a discussion of the 
corrupted, nightmarish consequences of the Enlightenment’s “narrative 
of reason, knowledge and freedom,” Jim George suggests we “connect 
the ascent of the modern, rational subject with the experiences of Hi-
roshima and Auschwitz.” (George, 1996, p. 54) Without denying the 
connections—John von Neumann fits into both narratives—I should state 
my view that the Enlightenment’s scientific and political contributions, 
although flawed, are far too important and valuable to be summarily 
dismissed. 
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4 For example, I cite from an exemplary study by one of the best contem-
porary complex adaptive systems modelers in International Relations 
today: “…[A] variable-sized grid constitutes the core of the model… 
[T]he main simulation loop contains five phases…As in my previous 
models, the logic of execution is quasi-parallel with double buffering… 
To achieve quasi-parallel execution, the list of actors is scrambled each 
time structural change occurs. The actors keep a memory of one step 
and thus make up a very complex Markov-like process…” (Cederman, 
2001, p. 493). A similar analysis could be made of the first complex 
adaptive systems model featured (a multi-colored rectangular checker-
board-like grid on the front cover, no less) in the American Political 
Science Review: (Lustick, Miodownik, & Eidelson, 2004). 

5 Event data are typically nominal, ordinal or interval scale “measurements” 
of the kind or degree of cooperation or conflict between two parties, 
based on media accounts. For a scientifically respectable review and 
extension of this literature see Merritt, Muncaster, and Zinnes (1993) 

6 “The first and most intellectually taxing task when building a large 
knowledge base is to design an ontology.” From Cohen et al. (1998, p. 
26). Sylvan and Thorson (1992) agree on the importance on ontologi-
cal issues, arguing that different ontologies can be more important than 
“options analysis” in determining decision-making possibilities in the 
Cuban Missile Crisis.

7 Adaptive, multi-agent modeling in International relations is usually said 
to start with Bremer and Mihalka (1977). But this book also contains 
a more intelligent, empirically corroborated, memory-rich, geographi-
cally structured, adaptive, multi-agent predecessor of Cederman’s and 
Duffy’s more recent work: Bennett & Alker (1977). This article, based 
on Bennett’s prize-winning thesis, might be said to pioneer “intelligent 
complex adaptive systems” in International Relations. Robert Axelrod 
and his student Lars-Erik Cederman are also rightly seen as pioneers in 
this style of International Relations modeling. See Axelrod (1997) and 
Cederman (1997). The most important recent theoretical refinement of 
this literature, paralleling the Bennett-Alker chapter in several respects, 
is: Lars-Cederman and Daase (2003). 

8  Alker, Jr., H. R. & Brunner, R. D. (1969). More elaborated descrip-
tions of, and bibliographic citations to, the TEMPER, INS and Political 
Military Exercise simulations are given in that article.
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9 The “post-structuralist/post-modern” discussion of ambiguous, mis-
leading, simulated international events by Baudrillard and Virilio was 
introduced into academic International Relations in Der Derian and 
Shapiro (1989) and Der Derian (1991, 1998).

10 See the contributions to Merritt, Muncaster, and Zinnes, op. cit., and 
the historically enriched proposals in Alker, Gurr, and Rupesinghe 
(2001).

11 This section presents, in abbreviated and revised form, the substance of 
my provocatively entitled memo (Alker, 1987). Because no direct acts 
of violence are committed by such deficient coding practices, and the 
premeditations involved are not usually murderous, I would now retitle 
that memo and here propose for such a retitling the terms: “Cliocide” 
(and a related adjective “Cliocidal),” etymological references to the 
killing of the mythical Goddess of History, Clio. See the text below for 
a fuller definition of the “silencing” or symbolic killing of collective 
historical-political or disciplinary identities and identifying practices 
by historical- or discipline- deficient “scientific” coding practices.

12 See chapters 5 (“Can the end of Power Politics...”) and 10 (“Emancipa-
tory Empiricism”) of (Alker, 1996).

13 See Alker (1996, passim), Schmalberger (1998), and Alker, Gurr, and 
Rupesinghe (2001).

14 The relevant citation for this conception of historicity is Olafson (1977), 
which also richly reviews alternative conceptions of what sometimes is 
called “the essence of history.” Further discussion of this seminal, partly 
Heidiggerian, partly Marcusian reformulation is contained in Chapter 
11 of Alker (1996).

15 The importance of regional contexts of meanings—and the relevance of 
covariance and regional factor analyses for multiplicatively reformulating 
relevant operational hypotheses and conceptual indicators—is an often 
neglected component of contemporary statistical training in International 
Relations. See Alker (1966). The study of regional security complexes 
has recently been improved upon in Buzan and Waever (2003).

16 Sources for these interpretations can be found in Alker (1996, Chapter 
1).

17 A clarification of this ontological perspective and some earlier thoughts 
on informational and historical ontologies are offered in Alker (1988). 
See also the pioneering discussions in (Duffy, 1994). Reconstructing the 
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metaphorical (and hence not metaphysically necessary) bases of much 
ontological thinking about human affairs is a principal achievement of 
Lakoff and Johnson (1999). 

18 Although I can’t find an exact source, this summarizing text is doubtless 
inspired by Harold Lasswell (1950). See especially his Chapter 1: The 
configurative analysis of the world value pyramids; Chapter 2: Nations 
and Classes: The symbols of identification; and Chapter 3: The Balanc-
ing of Power: The expectation of violence.

19 See Karl W. Deutsch et al. (1957), Bull (1977), and Roig (1980).
20 Besides the various articles in Duffy (1994), there are several practically 

oriented efforts within Political Science and International Relations to 
get increased purchase on the voluminous body of daily newspaper ac-
counts. For a thoughtful but modest effort to use linguistically-informed 
methods of event characterization, see Gerner, Schrodt, Francisco, and 
Weddle (1994). More ambitiously, see the description and analysis of 
the U.S. Central Intelligence Agency’s State Failures project published 
by its statistical critics: (King & Zeng, 2001).

21 An excellent, Artificial Intelligence-inspired paper on such conversa-
tional modalities of practical reasoning is Sylvan, Ostrom, and Gannon 
(1994). 

22 The chapters by Mallery and Duffy in Duffy, ed., op. cit., are the most 
relevant discussions of related procedures. See also Alker, Duffy, Hur-
witz, and Mallery (1991); and the more dialogically oriented Duffy, 
Frederking, and Tuckner (1998). 

23 The rest of this section recasts a memo prepared originally in April 1994 
for the “Crude Look at the Whole” project at the Santa Fe Institute, 
and reported on previously in Alker 1997. It’s original title was “Some 
Pregnant Convergences Observed at the CLAW Workshop.” Both its 
composition and my visit to SFI were centered around the working out 
of my concern with war-avoiding historicities, the most central “redis-
covery” of my earlier research, as represented and further developed 
in Alker (1996) and Alker and Fraser (1996). The most relevant, acces-
sible books of these speakers are Holland (1995) and Epstein and Axtell 
(1996). 

24 If an ECHO model is completed through the use of the SWARM 
modeling platform developed at SFI by Christopher Langton and his 
associates, or the REPAST modeling platform Cederman now prefers, 



��0   Alker

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

this may argue for trying to introduce richer historical capacities into 
ECHO rather than the Epstein-Axtell “Sugarscape” model. See Alker 
and Fraser (1996) for more details.

25 Besides the Bremer and Mihalka work cited in End Note 8, see Cusack 
and Stoll (1990, 1994) and Duffy (1994). Of course, also see the earlier 
versions of Schelling (2006).

26 A good over all introduction to Gell-Mann’s vision of SFI research is 
Gell-Mann (1994).

27 See the discussion and references in Alker (1996, p. 98-100).
28 Other relevant citations to Choucri and her collaborators are included 

in this volume’s Bibliography.
29 The book length development of this later argument is Homer-Dixon 

(2000).
30 For example, see Schmalberger (1998). An overview and demonstrative 

run of this simulation is available on http://www.usc.edu/dept/LAS/ir/
cis/cews/html_pages/Dangerous_Liaisons/index.html.

31 At some levels of linguistic, social, and historical complexity, such 
mergers become too complex to handle. Then, moving to the intelligent, 
adaptive modeling of symbolic cognition becomes a possible alternative. 
In this regard Cohen, Morgan, and Pollack (1990) and Gordon (2004) 
come readily to mind. But also review Duffy and Mallery’s M.I.T. 
work on RELATUS, Bennett’s War of the Pacific simulation, and the 
Cusack-Stoll and Duffy remodelings of Bremer and Mihalka’s early 
“Machiavelli in Machina.”

32 The related SFI sponsored volume is Hammond (1998). 
33 It is interesting in this regard that Cederman’s excellent complex adap-

tive systems model of the coming of the democratic peace identified in 
End Note 5 does not explicitly model the more complex processes of 
community building and community disintegration, focusing rather on 
forceful conquests and calculated alliance behaviors.
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Abstract

This chapter isolates a classic allocation problem in the substitution relation 
between two primary carriers of complex rules—agents and institutions—as 
a function of the relative costs of embedding rules in these carriers, all sub-
ject to the constraint of maintaining overall system complexity. We call this 
generic model the allocation of complexity, which we propose as a bridge 
between neoclassical and complexity economics.
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Introduction

The market economy is an excellent example of an intelligent complex adap-
tive system. Economists, however, have largely failed to develop theoretical 
frameworks based upon this insight and have instead persisted with a time-
less equilibrium-based analysis. The exception to this has been the work of 
the Austrian economists (such as Friedrich Hayek) and evolutionary econo-
mists (such as Joseph Schumpeter). In this chapter, we propose a novel way 
of analyzing the complexity of self-organization in economic systems that 
draws upon the key model of the equilibrium-based neoclassical framework 
in terms of a comparative static framework for analysis of the allocation of 
rules between different classes of carrier. We start by assuming complexity 
(i.e., that evolutionary forces maintain complexity in open systems) and 
then analyze the distribution of state-space equilibria under different relative 
costs/prices of embedding rule-complexity in different carrier systems, such 
as agents or institutions. 
The outcome is an allocation of complexity. Changes in relative prices, as 
caused by technological, institutional, or financial innovation, say, will ef-
fect the position of the equilibria in carrier-space. We may, therefore, study 
how change in the cost of embedding rules conditions the evolution of the 
complexity of an economic system. The upshot is a framework for arraying 

Figure 1. The allocation of complexity model of rules in agents and institutional 
carriers as a function of the relative price of embedding isocomplexity 
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economic forces over the different dimensions of economic evolution. This 
enables us to study the effects of relative price changes on the dynamics of 
economic evolution. The use of complexity as a conservational concept (and 
its derivative, a convexity argument) may, we suggest, prove expedient for 
further theoretical and conceptual development of economic analysis. The 
generic graphical model, which we propose as a possible bridge between 
neoclassical and complexity economics is as such:
In modern evolutionary economics (Dopfer, Foster, & Potts, 2004a, Dopfer 
& Potts, 2007), an economic system is conceptualized as a system of meso 
units, with each meso unit the population of actualizations (or carriers) of a 
generic rule. Economic evolution is then defined as a process of change in 
the meso population of rules. The micro-meso-macro analytical framework 
reveals the underlying structure of economic evolution as a meso trajectory, 
and frames analysis of this process in terms of micro and macro domains. 
However, no account has yet been given of the economic nature of the 
complexity in this process, and, in particular, of the allocation problem of 
rules over carriers. What, in other words, are the “economics” of economic 
evolution? Evolutionary economists normally emphasize complementarity 
and connective structure (e.g., Potts, 2000). But here we propose that eco-
nomic evolution can also be considered in terms of substitution and relative 
prices. This is achieved by recasting the prime dimensioning of analysis in 
terms of the comparative rule-complexity of agents and institutions, or, more 
generally, of “carriers.” 
The economic system is a rule-system and the economic process is a rule-
process. From this premise, we may then isolate a classic allocation problem 
in the substitution relation between two primary carriers of complex rules—
agents and institutions—as a function of the relative costs of embedding rules 
in these carriers, all subject to the constraint of maintaining overall system 
complexity. The allocation of complexity problem is, therefore, defined as 
analysis of changes in the relative costs of rule embedding in different carriers 
(agent and the environment) on the (allocative) distribution of complexity 
between them. Our fundamental premise is that complexity is carried in two 
fundamental classes of carrier—agents and institutions—and that difference 
in the cost of embedding rules in each determines the equilibrium allocation 
of complexity. 
A framework of comparative statics, familiar to all students of economics, 
may thus be used to analyze the distribution of complexity carried by an 
economic system and how this changes as an evolutionary process. Section 
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2 introduces the relationship between rules and complex systems; Section 3 
discusses the idea of complexity as a solution concept; Section 4 represents 
this in terms of the allocation of complexity problem; Section 5 completes 
the framework with the construct the relative price of complexity; Section 
6 concludes. 

Rules.and.Complex.Systems

The economic system is a complex rule-system. The conceptualization of 
generic rule evolution is set out in Dopfer and Potts (2004b), and the micro-
meso-macro framework is presented in Dopfer et al. (2004a) and Dopfer et 
al. (2007). A rule is a generic idea: a meso unit is then defined as a generic 
rule and the population of.carriers of the rule. Beneath the surface phenomena 
of production and exchange, there lies the deep structure of knowledge as a 
complex system of generic rule populations; this is the abstract reality of the 
economic system as a complex structure of knowledge. Our question then 
arises: what determines the structure of this knowledge base of differentially 
embedded rules?  
Economic evolution is the creative-destructive process of the origination 
and embedding of new rules and the displacement of others. This is analyti-
cally defined as a process of (generic) meso coordination and change along a 
“meso trajectory” of origination, adoption, and retention that occurs as a new 
technology (i.e., a generic rule) enters and changes the knowledge base of the 
economic order. The meso-centered analytical framework allows us to model 
economic evolution as the self-transformation of a complex rule-system. It 
links together evolutionary economic analysis of population dynamics and 
structural change—or agent learning and emergence of institutions—into a 
unified framework. By connecting population and statistical arguments to-
gether with arguments about complex structure, it provides a foundation for 
analysis of evolutionary processes as based on the coordination of complex 
systems. It is both ontologically and analytically coherent. Yet the generic 
meso-based model leaves the economics of this process unnecessarily, we 
think, unstated. Specifically, a basic assumption of the micro-meso-macro 
framework of economic evolution is that rules are embedded in the eco-
nomic system in carriers. Yet Dopfer et al. make no attempt to tease out the 
specific form in which they are embedded, or to account for the operational 



The Allocat�on of Complex�ty �n Econom�c Systems   ���

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission     
of IGI Global is prohibited.

economic forces that effect the allocation of rule complexity over different 
classes of carriers. 
We propose, then, that the allocation of complexity framework can be used 
to analyze the rule substitution processes interior to a meso trajectory. A rule 
can be carried or, equivalently, embedded, in different ways: which is to say 
that the complexity of the economic system can manifest in various structural 
forms.3 A technology, for example, could be embedded largely in the cognitive 
abilities of human agents, or largely in commodities or institutions. Smarter 
agents enable the same level of complexity to be achieved in a simpler en-
vironment, and a “smarter” environment may achieve the same with simpler 
agents. For example, the generic rules of bookkeeping and accounting could 
be embodied in accountant’s heads, as it were, or in interactive software, or 
in some convex combination of the two carrier forms. But what determines 
the equilibrium allocation at a point in time, or the path an evolutionary tra-
jectory of technology adoption will take? What determines this distribution, 
in other words, of rule complexity over classes of carrier?4

The allocation of complexity problem concerns the distribution of the popula-
tion of a generic rule over different classes of carrier as a function of relative 
cost of adoption and embedding of the rule. Rules carried exclusively in one 
class of carrier are, obviously, not subject to the allocation of complexity 
problem. But, if carried in this way, they are also unlikely to be generic eco-
nomic rules in the first place. Following Dopfer (2004) and Foster (2006), 
we plainly recognize that economic systems are human-centric (a method-
ologically individualist stance) in that they are composed of structures of 
knowledge (generic rules) that may be carried in agents or embedded in the 
institutional environment to which the agent is subject. 
Economists, along with social scientists and philosophers, have traditionally 
drawn a sharp duality between rules carried in the mind or as behavior (by 
subjects) from rules carried in organizations of matter-energy (e.g., a physi-
cal technologies or commodities) or organizations of people (e.g., a firm or 
household). In the framework proposed here, these alternative carrier classes 
are conceptualized in a continuous substitution relation along the line of 
constant complexity (the isocomplexity function).
The agent-environment dichotomy is also a fundamental construct in com-
plex systems analysis, including the definition of open and closed systems 
and of concepts such as feedback. But we suggest that an allocation prob-
lem—that is, an economic problem—emerges only when choice over where 
rules are embedded also exists. This is not the case for biological systems 
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whose agents—genes, organs, butterflies, etc.—are constrained completely 
by their environment, precisely because these agents cannot exercise generic 
choice over the rule-composition of their environment. While it is plain that 
perhaps most organisms build some rules into their environment (e.g., bees 
nests, beaver dams, etc.), economic agents build complexity into their en-
vironment to an extent orders of magnitude greater (Raine, Foster, & Potts, 
2006). Indeed, as Foster (2006) explains, such higher-order complexity is 
an effective definition of an economic system. 
Although the science of economics relies fundamentally on the notion of 
human choice, we posit that the proper analysis of economic systems (or 
other human-based emergent complex systems, be they social, political or 
cultural) must rest on the recognition that human agents have the unique 
capacity to externalize rules by sometimes choosing to embed them in their 
environment.5 It is the systemic consequences of such rule-embedding choices 
that we herein seek to illuminate. We suggest, in turn, that this hybrid meth-
odology offers a useful way of unpacking a key mechanism in economic 
evolution. Our starting axiom, then, is that an economic system is a complex 
natural-artificial system of high-order complexity that is most immediately 
manifest in the variety of structural forms that a rule can be carried. The al-
location of complexity problem thus arises as economic forces (and not just 
technological considerations) effect the equilibrium distribution of generic 
rules over classes of carriers.  
Rules, in general, are fungible with respect to carriers, of which there are many 
types and classes. For ease of exposition and analytic parsimony, however, 
we shall presume just two classes of carrier: agent and environment. We 
shall assume that the complexity of a generic rule can be decomposed over 
these two carrier classes. Within this, and in order to allow dimensionality, 
each carrier class can assume varying levels of complexity. An agent, for 
instance, can be very simple or highly complex. The environment is also pre-
sumed to vary in complexity between states of being very simple and highly 
complex. While these two dimensions are clearly defined on a qualitative 
metric, we have in mind a quantitative metric based on an entropy measure 
of complexity in terms of energy or information processing as operation-
ally “computed/processed” by the rule system (Raine et al., 2006). We thus 
infer (indeed axiomitize) a computational ontology of economic knowledge 
(Mirowski, 2007; Potts & Morrison, 2007).
The set of all combinations of a generic rule over carriers is mapped by what 
we call “carrier-space.” The allocation of complexity is of a generic rule over 
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carrier space. At a point in time, the complexity of a generic rule is carried 
in one part by the complexity of the agent in terms of its generic inheritance, 
generic learning, and operational acquisition, and in the other part by the 
complexity of the environment in terms of institutions, technology, and capi-
tal. Economic evolution is the process of change in the generic rules of the 
economic system: but where do these changes operationally manifest, and 
why? What, in other words, is the economic explanation for the allocation 
of the structure of knowledge over different carrier forms? 
This question has general significance to the study of all intelligent complex 
adaptive systems, and we should not be at all surprised to find that economic 
systems, considered abstractly, offer insight into the nature of such systems. 
An economic system is a complex system of knowledge (or generic rules, 
in the language of our theory) composed of both rational and imaginative 
agents that live by and grow in wealth to the extent that they can off-load 
knowledge into the environment. Indeed, the nature and causes of the wealth 
of nations can reasonably be summarized as the extent to which we have been 
able to embed ideas and knowledge into the environment as technologies, 
capital, and institutions. Yet this is always an ongoing process from which 
every new idea (generic rule) begins as an idea in an individual’s mind. A 
technology, indeed, is the name we give to such an idea that has completed 
the trajectory of adoption and retention into many agent carriers (as a meso 
trajectory). But this process has multiple equilibrium outcomes along a con-
tinuum of carrier configurations. Our question, thus, is on the determinants 
of this distribution.   

  
Assume.Complexity

Along with a specific understanding of the economic system as a rule-system, 
our theory is also based on a specific analytical assumption about the nature 
of complexity as a solution concept. Complexity is a partial region of the 
potential state-space of a system, and is therefore a property that a system 
may or may not have. A system may occupy one of many positions in the 
state-space continuum, yet only some of these states are complex. What is 
interesting about these states is that complexity seems to be an attractor. 
This point has been made by Kauffman (1993) and others (e.g., Potts, 2000, 
2001) in relation to the balance of forces of variation and selection, and by 
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Prigogine (2005) and others (e.g., Allen, 1998; Foster, 2006; Schneider & Kay, 
1994) in relation to the second law of thermodynamics. As the deep forces of 
energy mechanics in closed systems work to maintain an equilibrium state, 
the deep forces of open system thermodynamics and evolution seem to work 
to maintain complexity. The founders of the theory of fully connected market 
systems (e.g., Walras, Edgeworth et al.) saw fit to suppose the long-run state 
of the competitive economic system is general equilibrium, which became, 
in turn, the starting place for standard economic analysis. In contrast, we ar-
gue that the competitively maintained long-run state of a partially connected 
open-market economic system is general complexity, which is assumed to 
be a general solution concept for an open system.6

This is why we “assume complexity,” and therefore allow a differential 
distribution of complexity over classes of carriers of a generic rule. Both 
Kauffman’s hypothesis of “evolution toward complexity” and the Kay and 
Schneider hypothesis of “complex systems maximally degrading energy” 
both refer to deep forces that maintain a state of complexity in an open sys-
tem process. There is mounting evidence that real world economic systems 
exhibit small world and scale-free properties,7 which thus reinforces the role 
of complexity as a structural attractor in the state-space of a system. There 
are, of course, many reasons that a system will not be complex, such as to 
lock-in important structural features in the short run. But when this happens, 
flexibility or adaptive potential is lost somewhere, which tends to eventu-
ally impact on the long run prospects of the generic rule. In an open system, 
where there is always change in the flows of energy and information from 
the environment, and where the environment itself is subject to change, we 
should expect that the basic meso structure of an economic system will be 
structurally complex. Economic systems are complex because, in essence, 
they could not have evolved if composed otherwise (see Simon, 1969). The 
forces that determine the allocation of this complexity should be of signifi-
cant concern not just to economists, but to all students of intelligent complex 
adaptive systems.    

The.Allocation.of.Complexity

In consequence, the embedding dimensions of generic rules (i.e. technology 
or knowledge) is a much neglected dimension of economic analysis. The al-
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location of complexity framework seeks then to fill this gap by proposing a 
decomposition of the distribution of rule complexity between rules embedded 
in agents and rules embedded in the institutional environment. Both agents 
and institutions are, in this sense, carriers of rules. 
The complexity of an economic system C(R) is distributed across the com-
plexity of agents C(AR) and the complexity of the environment of institutions 
C(IR) as such: 

C(R) = C(AR) + C(IR)

Agent rules thus refers to the cognitive, behavioral, and interactive capabilities 
and actions of an economic agent. Economic agents are therefore rule-using 
and rule-making carriers (Dopfer, 2004; Potts, 2003). Examples of agent rules 
include skills, habits, routines, capabilities, and other instances of generic 
rule-behavior. These rules will have a measure of complexity. 
Institutional rules, in turn, are the artificial (or artifactual) environment of the 
economic agent, and consist of the set of meso rules the agent is connected to. 
Examples include contracts, capital, commodities, organization, institutions, 
and so forth. These rules will also have a measure of complexity. Generic 
economic rules are therefore variously carried by agent and institutional rules 
in some convex combination. This maps the complexity measure we shall 
call an isocomplexity function, or isocomp. 
The allocation of complexity across rule-carriers assumes a 2-d rule-space 
we call carrier space. Any system of rules R will be distributed between 
agents (AR) and institutional environment (IR).8 Consider Figure 2 in which 
the carrier dimensions of the agent and the environment are represented along 
orthogonal axes of increasing rule complexity. Each point in generic carrier-
space represents a hybrid generic rule-system across agents and institutions 
at varying levels of carrier complexity.9  
The generic nature of carrier-space is conceptualized as such. Point A has 
high complexity in the institutional environment and low complexity of 
agents. This might be an economic system in which there is a high degree 
of organization in the environment, with each agent specialized, but not 
very complex otherwise. A fascist or dictatorial state would be an example, 
as would a beehive. Point B has the same overall systemic complexity in 
the generic rule (i.e., has the same problem-solving capabilities—but this is 
achieved with less institutional complexity compensated for by greater com-
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plexity in agents capabilities (learned rules)). This might be represented by 
a well-educated population in a more rudimentary environment (e.g., Japan 
after WWII, or Russia after the collapse of communism). Point C continues 
along this overall complexity invariance function, and might represent highly 
capable agents in a very primitive environment (as in the reality TV show 
Survivor, or Western businesses expanding into emerging markets). Point D 
corresponds to simple agents in a simple environment (human prehistory) 
and point E corresponds to complex agents in a complex environment (e.g., 
a modern first-world economy). Points F and G correspond to mostly unin-
habited possibilities.
A map of complexity equivalent rule substitution in carrier space is called 
an isocomplexity function. For example, contour lines of isocomplexity are 
traced in meso space in the C(R) level of complexity in ABC and in the C(R′) 
level of complexity in FEG in Figure 2. The same measure of aggregate 
complexity can be achieved in various ways: either with highly complex 
agents in a simple environment or simple agents in a highly complex envi-

Figure	2.	The	carrying	capacity	of	rule-systems	by	the	complexity	of	agents	
and environment is mapped in meso space. ABC and FEG are a convex 
maps	(isocomp	curves)	of	constant	complexity	in	meso	rules	C(R)	and	C(R′)	
allocated over two classes of rule carriers C(IR) and C(AR). Isocomp curves 
have similar properties to indifference curves. 
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ronment; or some convex combination of the two. An isocomp represents 
the distribution of carrier-equivalent computational complexity about a meso 
unit that we presume to be convex in its equilibrium distribution. Convex-
ity and complexity are thus aligned as equivalent statements of the same 
static/dynamic point. 
A shift along an isocomp represents a change in the relative efficiency of 
carriers of a rule, and so leading to a rule being carried more by institu-
tions rather than agents, as in Figure 2 with a shift from C to A, or E to F. 
This represents the process of institutional embedding. By substituting rule 
complexity from the agent to the environment enables simpler agents to 
solve the same problems as they embed rules deeper in the environment. 
The entrepreneur-led processes of market-making or infrastructure building 
are classic examples of this, as is the role of mass advertising or education. 
A shift along an isocomp is complexity invariant at the system level, but 
re-allocates complexity from one class of carrier to another. This will invari-
ably be accompanied by structural change at the agent, firm, industry, and 
economy-wide level. 
A shift in the isocomp, say from the locus of points though ABC to those 
running through FEG in Figure 2, represents an increase in the aggregate 
complexity of the rule-system. Such emergent complexity is, in fact, a neces-
sary process in generic economic evolution as mandated by the second law 
of thermodynamics applied to an open system (Raine et al., 2006). Increased 
energy throughput is achieved through increased complexity. But there are 
many ways this can happen and without further consideration it is unclear 
what the distributive effect will actually be on the generic allocation of com-
plexity between agents and institutions. 
Three possibilities from point B are previously illustrated. An evolutionary 
meso trajectory B to E preserves the distribution of complexity, while a trajec-
tory from B to F represents an institution-dominated growth of complexity, 
and one from B to G represents an agent-dominated growth of complexity. 
But what will happen is yet undetermined. All we can say is that a shift in an 
isocomp, say from C(R) → C(R′), represents an increase in the complexity 
of the aggregate rule system in consequence of the growth of opportunities 
created by the growth of knowledge. 
A shift along an isocomp curve is meso complexity preserving. A shift in the 
isocomp curve corresponds to increased overall energy-transformation and/or 
information processing or problem solving by an increase in the complexity 
of the generic rules of both agents and institutions. The growth of knowledge 
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and the growth of economic systems are but two sides of the same problem 
of the allocation of complexity.10 The normal direction of economic evolu-
tion is to increase both the complexity of institutions and agents as an overall 
increase in the energy or information throughput of the system. This will 
tend to correspond to an increase in the state of knowledge of the economic 
system. In general, the dynamical path of economic evolution can be traced 
out in this meso space. 
But, without some notion of relative costs or prices of complexity under 
different allocative conditions, a generic trajectory is undetermined. The 
energy-complexity framework tells us the general direction upon which we 
should expect things to happen, but there is as yet no choice theory in this 
argument. For that, we need to consider the implications of a budget constraint 
on the allocation of complexity.  

 
The.Relative.Price.of.Complexity

We may introduce relative prices, or relative costs,11 into this framework 
by considering the relative price of carrying a generic rule as considered 
variously in terms of an agent or in terms of the agent’s environment. As 
argued above, the existence condition of a generic rule is that it is always 
able to be substituted between agent and environment, and vice versa. We 
now suppose that the equilibrium outcome will be in proportion to the cost 
(relative generic and operational price) of embedding complexity in the agent 
or environment respectively. 
The relative price of complexity between institutions and agents is given 
by the budget line C(I)–C(A). The slope of the budget line is given by the 
relative costs of carrying complexity (PI/PA). A steep budget line means that 
institutional carrier costs are relatively lower than agent carrier costs, making 
it better to carry complexity of rules in institutions rather than in agents. A 
flatter budget line means that agents carry the rule relatively more efficiently 
than institutions. A fall in the absolute cost of complexity, in both agents and 
institutions, shifts the budget line outward. An increase in the absolute cost 
of complexity shifts the budget line inwards. Figure 3 illustrates a shift in 
the carrying costs of complexity to make agent carriers relatively cheaper 
than institutions. 
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A pivot in the “budget line” as illustrated in Figure 3 might be caused by 
a change in the relative efficiency (or efficacy) of rule-carriers, but a shift 
outward of the budget line as in Figure 4 would be caused by an absolute 
change in the efficiency and efficacy of rule carriers. Both sorts of change 
are induced by new rules, and what specifically happens will depend on the 
particular character of the novel generic rule and its relation to other rules. For 
example, the introduction of a new generic rule in the form of an improvement 
in technology, or market infrastructure, or agent skills will probably change 
both the relative costs of embedding and the absolute costs of embedding. 
Nevertheless, our analytical framework separates the two components of 
relative and absolute price changes. An absolute shift corresponds to a new 
rule enabling a higher level of aggregate complexity overall, and therefore 
energy throughput, but without changing the underlying carrying costs. This 
defines an outward shift of the budget constraint to a higher isocomp curve. 
A suitable example would be the introduction of PCs or mobile phones, both 

Figure	3.	A	shift	 in	 the	budget	 line	 for	carrying	complexity.	A	 fall	 in	 the	
complexity of institutions is compensated for by a rise in the complexity of 
agents

PA 

C(A) ' 

C(I) ' 

B 

A I 

C(I) 

A 

Complexity of 
Institutions 

Complexity of Agents 

0 

Isocomp curve 

C(A) 



���   Potts, Morr�son, & Clark

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

of which require more complex institutional support, and, in their early days 
at least, increased agent complexity. 
The set of different possible trajectories an evolving economic system may 
trace out can therefore be analyzed in terms of different relative costs of 
carrying complexity in agents and institutions. In Figure 4, we decompose 
the comparative statics of this process into the conventional microeconomic 
notions of income and substitution effects. Beginning at point E, a fall in the 
carrying cost of agent complexity induces a shift of the equilibrium to point 
F. The substitution effect is represented by E–D and the income effect from 
D–F. The decomposition technique of income and substitution analysis may 
provide analytical insight in a number of ways. For example, by indicating 
the full magnitude of the uncompensated substitution (E–D) as distinguished 
from the relative shift in overall complexity, we might better understand 
how to structure industrial transitions and the sort of agent and institutional 
support required. 
This same sort of analytical reasoning may also be applied to the manage-
ment of change in businesses, as about the balance between centralizing 

Figure	4.	Income	and	substitution	effects	traced	out	by	different	relative	costs	
of carrying complexity. A reduction in the relative carrying cost of complexity 
in agents induces a shift in overall complexity. This can be decomposed into 
an income effect and a substitution effect.
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and decentralizing such a process of rule substitution, as say the process 
of adaptation to a new market or technology. Substitution effects therefore 
measure the cost of change, and income (or wealth) effects measure the gain 
from change. Of course, without formal elucidation of the analytical mean-
ing of a complexity measure, these concepts are still somewhat conjectural. 
But they do hint at the possibility of a complexity-based welfare analysis of 
evolutionary economic processes.
There are other aspects of this framework we might explore. For example, 
Figure 5 illustrates how we may represent the dynamical path of a complex 
evolving system by constructing this as a meso trajectory of relatively con-
stant complexity embedding. This forms, as mapped through 0BD, an evo-
lutionary “contract curve” of system coordination.12 The connection of this 
to the Schumpeterian notion of a trajectory should be obvious to scholars of 
evolutionary economics. Allocation of complexity theory therefore offers a 
method for analyzing evolutionary economic processes at the level of rule 
substitution between classes of carriers as a function of the relative price of 
doing so. In this way, rule complexity is allocated between carrier dimensions 

Figure 5. A shift out in the budget line for carrying complexity along a meso 
trajectory. The introduction of a new meso rule that is agent-institution 
neutral corresponds to a shift out in the budget line and therefore to a new 
tangency condition on a higher isocomp (from B to D). 
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as a function of the relative price of embedding said rule complexity into each 
carrier dimension. Complexity goes where incentives tell it to go.

Conclusion

This chapter has sought to advance the theory of complex adaptive systems 
through consideration of a prime open-system economic dimension: namely, 
the allocation of generic rule complexity over different classes of carriers. 
What we argued was essentially that a standard neoclassical economic analy-
sis of relative prices in the context of continuous substitution can provide 
a useful method for the analysis of an important economic dimension the 
behavior of an intelligent complex adaptive system, namely the allocation of 
generic complexity over carrier-space. We have proposed a comparative static 
methodology for analysis of economic evolution that, following Dopfer et al. 
(2004) and Dopfer et al. (2007), is conceptualized as a generic rule process. 
The basic ontological building block of this view is a meso unit: a generic 
rule and its population of carriers. Economic evolution is defined within this 
framework as an increase in the rule complexity of an economic system. But, 
in our view, the essential economic question is: complexity where? When 
knowledge grows, where does it accumulate?
Allocation of complexity theory is a way of analyzing the allocation problem 
inherent in this set-up, namely between changes in complexity in agents and 
changes in complexity in the economic environment in terms of continuous 
substitution along an isocomplexity function in terms of the relative price of 
adoption and retention. According to our theory, then, when the relative price 
of adoption and retention changes, so the equilibrium allocation of complex-
ity will shift. And while we emphasize the foundational importance of this 
analytic concept to the study of economic evolution, we also wish to draw 
attention to the significance of this generic allocation concept in the evolution 
of all complex adaptive systems, intelligent ones especially: for what is intel-
ligence, but the proper balance of dynamic engagement? Just as evolutionary 
biology foists a genotype/phenotype distinction on evolutionary social science, 
evolutionary economics has a generic distinction between classes of carriers 
of generic rules. Variously, each new idea or technology is best carried in 
the human mind, or as a pure technology, or some convex combination. The 
analytic difference, we suggest, is the allocation of complexity.
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Endnotes

1 Special thanks to participants at Organizations, innovation and com-
plexity – New perspectives on the knowledge economy, NEXUS–CRIC 
Workshop, University of Manchester, 9–10 Sept 2004, and especially 
B Rosewell and P Ormerod,  as well as those at Shifting boundaries: 
Governance, competence and economic organization in the knowledge 
economy, Bristol Business School, 2–3 Sept 2004, especially N Foss, N 
Kay and B Nooteboom. Also, special thanks to K Bruce, R Ramlogan, 
JS Metcalfe, K Dopfer, and J Foster. 

2 The views expressed in this paper are his own and do not necessarily 
reflect the opinions of Suncorp.

3 Earl and Potts (2004) have recently illustrated how choice itself can 
be considered in this way when decision complexity leads boundedly 
rational consumers to outsource decision rules to market environments. 
Their ‘market for preferences’ concept can be viewed as an allocation 
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of rule complexity problem, when the rules are inputs into a decision 
heuristic conceived along an isocomp. See also Earl and Potts (2001) 
on the allocation of complexity with respect to the design of shopping 
environments.

4 One might reasonably suppose that the answer to this question is trans-
actions costs, in the Ronald Coase or Oliver Williamson. Isocomplexity 
theory is more aligned with Coase’s original version about alternative 
coordinating institutions rather than Williamson’s development of the 
idea into statements about bargaining games, etc. We suggest that iso-
complexity theory provides a more general theory of this process, by 
taking into account the costs of embedding rules in a system, as well 
as the ongoing costs of using them. Isocomplexity theory deals with 
systems costs generally, an of which transaction costs are a subset.  

5 This is also called exosomatic evolution. It is a broader concept than 
what Richard Dawkin’s calls memes. See Dopfer and Potts (2007) for 
general discussion.

6 A further way of treating complexity, recently proposed by Foster (2006), 
is with the notion of an economic system as being 4th order complex 
(dissipative physiochemical systems are 1st order complex, biological 
systems are 2nd order complex, social systems are 3rd order complex). 
The emergence of higher order complexity turns on the emergence of 
new ways of acquiring and using energy through ever more complex 
systems of knowledge and interaction. An economic system is 4th order 
complex in that agents must not only form mental models of the environ-
ment (3rd order) but also of each other mental models. This is apparent 
in such things as contracts and other market institutions.    

7 See Ormerod (2006).
8 The algebraic properties of meso space derive from the set-theoretic 

conception of the carrier dimensions. It is unclear to us whether it is 
reasonable to assume these to be real valued. It would certainly be 
convenient. At the risk of unhinging the analysis before it starts, let us 
make that a point for mooting.

9 We immediately rule out corner solutions by assuming that there is no 
such thing as an economic system purely made of agents, and similarly, 
no such system purely made of environment. An economic system is 
a system of economic systems, and each economic system consists of 
a non-zero combination of both agents and institutions. All economic 
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rules are embedded in both agents and institutions and are fungible 
between.  

10 See Hayek (1960), Shackle (1972), Loasby (1999).
11 Because each point on an isocomp corresponds to the steady state of a 

general equilibrium under competitive conditions (and so extensions to 
this framework arrive under conditions of imperfect competition), then 
each set of relative prices, under duality conditions, also corresponds 
to the set of relative costs. 

12 This raises a number of analytic questions. What, for example, is the 
nature of the factors that determine relative cost of embedding, or the 
manner in which complexity is structured in an aggregate system? Does 
the network classification of the system matter (i.e., does the shape of 
the isocomp depend upon whether we are dealing with a small world or 
scale-free network?) Does the distribution of complexity over a popula-
tion of agents matter?
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