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Preface

Materials can be divided into metals and nonmetals. The characteristic feature
of metals like copper and aluminum is a high electrical and thermal conductiv-
ity, while nonmetals such as phosphor and sulfur are insulators. The electrical
conductivity varies over many orders of magnitude, from 106 Ω−1 m−1 for
typical metals down to 10−20 Ω−1 m−1 for almost ideal insulators. However,
a sharp separation between metals and insulators is in general not possible.
For instance, semiconducting materials such as silicon and germanium fill the
conductivity domain between metals and insulators. Their electrical conduc-
tivity is dependent on temperature and, in addition, can be varied strongly by
doping the material with donor or acceptor atoms. A famous example is the
sharp insulator-to-metal transition measured in Si:P at temperatures below
0.1K and donor concentrations of about 3.8× 1018 cm−3 phosphor atoms [1].

Furthermore, materials may exist in both states: carbon is metallic as
graphite and insulating as diamond. A fascinating quantum effect is observed
at low temperatures: some materials even loose their electrical resistivity and
become superconductors. Therefore, the questions What is a metal? and When
does a metal transform into a nonmetal? are of fundamental interest and re-
lated to many aspects of modern physics and chemistry. We refer the inter-
ested reader to the very nice introduction into this diverse topic given by
Edwards [2].

This book offers a collection of reviews on nonmetal-to-metal (or metal–
insulators or Mott transitions) in very different physical systems, from solids
with a regular periodic structure via disordered fluids and plasmas, finite metal
clusters up to exotic nuclear and quark matter. The surprising similarity in
the behaviour of these very diverse systems is due to the complex many-body
nature of the respective interactions, which drives the transition and entails a
non-perturbative treatment. Therefore, the Mott transition can be regarded
as a prominent test case for methods of non-perturbative many-body physics.
This book aims to give an overview on the current status of the theoretical
treatment of Mott transitions and new experimental progress and findings
in these fields as well.
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In his original work, Mott [3] initiated the detailed discussion of metal–
insulator transitions with an analysis of the critical screening length required
to trap an electron around a positive ion in a solid from which he derived the
relation n1/3aB = 0.2. This famous Mott criterion has been very successful in
describing metal–insulator transitions in various ordered systems, for example
solids and doped semiconductors. Then Hubbard [4] introduced his today well-
known and intensively studied model such that interactions between electrons
are accounted for only when they are on the same site – via the repulsive
Hubbard U term. Considering disordered systems, Anderson [5] could show
that at a certain degree of disorder all electrons will be localized and the
system becomes non-conducting.

These basic models contain important physical effects such as screening,
repulsive on-site electron–electron interactions and disorder in a clear con-
ceptual way and were, therefore, studied extensively. Details can be found in
earlier reviews on this topic [6–9]. In real physical systems, we have to treat
all relevant correlation and quantum effects to account for finite temperatures
and thus thermal excitations and, where applicable, to include the influence
of disorder as well. The simultaneous occurrence of correlations and disorder
and their mutual interplay is of major importance in this context as has long
been stressed by Mott. The construction and evaluation of respective Mott–
Hubbard–Anderson-type models is one of the most challenging problems of
many-body physics, see for example [10, 11].

The transition from a non-conducting to a conducting state in, for example
electron–ion systems is connected with a change in the electronic wave func-
tion from being localized on a single atom or at few sites to a delocalized state.
Landau and Zeldovich proposed already in 1943 that this electronic transi-
tion could introduce additional lines of first-order transitions in the phase
diagram of the fluid state [12]. Their prediction has stimulated precise mea-
surements of the liquid–vapour phase transition in metallic fluids such as
mercury up to the critical point, see [13]. A new interpretation of data for the
combined liquid–vapour and metal-to-nonmetal transition in mercury is given
in Chap. 2. Furthermore, this electronic transition may have a strong impact
on the high-pressure phase diagram of, for example hydrogen as the simplest
and most abundant element [14, 15]. Extreme states of matter, that is pres-
sures of several megabar and temperatures of many thousand Kelvin, occur
in the interior of giant planets in our solar system as well as in extrasolar
giant planets, which have been detected in great number. A better under-
standing of their formation processes, their current structure and evolution is
intimately related to the high-pressure equation of state and the location of
phase transition lines in fluid hydrogen–helium mixtures, see also Chap. 4.

It is obvious that the energy spectrum of electron–ion states, which con-
tains in general a series of bound states at discrete, negative energies as
well as a continuum of scattering states at positive energies, plays a cen-
tral role for the understanding of the metal–nonmetal transition. The energy
spectrum can be calculated by solving effective two-particle Schrödinger or
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Bethe–Salpeter equations, which contain the correlation and quantum effects
in a strongly coupled system via a perturbative treatment, or within improved
self-consistent schemas such as the GW approximation, see [16–18]. In partic-
ular, the properties of bound states (formation, life time and dissolution) have
been studied extensively in partially ionized plasmas as function of density
and temperature.

Bound states in Coulomb systems are atoms (excitons) in electron–ion
(electron–hole) plasmas and fluids. This concept can be generalized to nuclear
matter where deuterons or alpha particles as found in neutron stars or in
heavy ion collisions are bound states composed of nucleons that interact via
effective nucleon–nucleon potentials. Bound states occur also in quark matter
as diquark (e.g. pi-meson) or three-quark states (nucleons). The transition to a
quark–gluon plasma can then be interpreted as the dissolution of all respective
multi-quark states, similar to the transition from a partially to a fully ionized
electron–ion or electron–hole plasma. Driving force is in all cases an increase
in pressure or density. Thus, the original concept of Mott has found wide
applications beyond traditional Coulomb systems, and the respective Mott
transition is intensively studied.

In the following chapters, we present reviews on the Mott transition in
these various systems, which will address the specific questions as well as
the general problems. We start in Chap. 1 with a description of quantum
phase transitions in strongly correlated one-dimensional electron–phonon sys-
tems and a detailed discussion of the models of Luttinger, Peierls and Mott.
A new inspection of the metal–nonmetal transition in fluid mercury is given
in Chap. 2, which has revealed a non-congruent nature for the first time. This
might have consequences also for other predicted first-order phase transitions
such as the hypothetical plasma phase transition in warm dense matter (see
Chaps. 3 and 4), various phase separations in dusty plasmas, or the exotic
phase transitions in neutron stars (see Chaps. 6 and 7). Various aspects of
the Mott effect in dense fluids and plasmas have been treated up to now,
but Pauli blocking as a direct quantum statistical effect is a novel topic and
will be discussed in Chap. 3 within a chemical model. The metal–insulator
transition in dense hydrogen is of primary importance for modeling interiors
of Jupiter-like giant planets. A confrontation of advanced chemical models
with quantum molecular dynamics simulations within a strict physical pic-
ture is performed in Chap. 4. The so far hypothetical plasma phase transition
is discussed both in Chap. 3 and in Chap. 4. Metal–insulator transitions can
also be induced in small metal clusters by irradiation with intense and short
laser pulses. The highly effective energy deposition by resonance absorption,
the various ionization processes (tunnel, field, impact) and the subsequent
Coulomb-driven cluster explosion process are described in Chap. 5. The Mott
effect in nuclear matter is reviewed in Chap. 6 within a cluster mean-field
approximation. For instance, the formation of a two-nucleon quantum con-
densate is observed. The properties of the condensate are strongly influenced
by the bound states immersed in the dense medium, that is by the Mott
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effect. A quantum field theory for the understanding of the phase diagram
of exotic quark matter is outlined in Chap. 7. The crossover between Bose–
Einstein condensation of diquark bound states and condensation of diquark
resonances is discussed in close relation to the usual Mott effect.

At this point, we express our greatest respect to the enormous and pio-
neering work of Sir Nevil Mott. Without his outstanding contributions, our
knowledge of fundamental interaction and correlation effects in various fields
of physics would be much poorer today. His work has inspired many physi-
cists worldwide, among them also theory groups in Germany, especially in
Rostock, Greifswald and Berlin, who have developed new concepts based on
Mott’s ideas for the metal–insulator transition in fluids and plasmas as well
as in nuclear and quark matter. Therefore, it was self-evident to celebrate
Mott’s 100th birthday on 30 September 2005 at the University of Rostock by
dedicating an International Workshop to the subject of Nonmetal–Insulator
Transitions in Solids, Liquids and Plasmas; participants of the meeting are
shown in Fig. 1. The contributions to this book are mainly based on lectures
given on that occasion or were invited afterwards:

Fig. 1. Participants of the International Workshop in Rostock on the occasion of
Mott’s 100th birthday on 30 September 2005 (from left to right): F. Hensel, B. Holst,
D. Semkat, N. Nettelmann, A. Kietzmann, A. Kleibert, J. Adams, A. Bechler,
M. French, T. Fennel, R. Egdell, K.-H. Meiwes-Broer, T. Döppner, W. Ebeling,
J. Berdermann, T. Bornath, H. Reinholz, W.-D. Kraeft, V. Schwarz, H. Stolz,
R. Ludwig, G. Röpke, R. Redmer, A. Weiße and D. Kremp.
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• P.P. Edwards (Oxford): Phase Separation in Metal–Ammonia Solutions:
Was Mott, or was Ogg Correct?

• R. Egdell (Oxford): Electron Spectroscopy and Metal-to-Nonmetal Tran-
sitions in Oxides

• H. Stolz (Rostock): Mott Effect and Bose–Einstein Condensation in Dense
Exciton Systems

• G. Röpke (Rostock): Mott Effect in Nuclear Matter: Formation of
Deuterons at Finite Temperature and Density

• W. Ebeling (Berlin): On Coulombic Phase Transitions
• F. Hensel (Marburg): Electronic Transitions in Liquid Metals
• K.-H. Meiwes-Broer (Rostock): Metal–Insulator Transitions in Expanding

Clusters
• R. Redmer (Rostock): Metal–Nonmetal Transition in Dense Plasmas

We thank all contributors to this book for the careful preparation of their
manuscripts. Finally, the project could be finished successfully and we thank
all authors for their patience and for staying tuned to the project until the
end. We thank Peter Edwards for his interest and the continuing support.

We thank the Deutsche Forschungsgemeinschaft (DFG) for support within
the SFB 652, especially for the organization of the Workshop in 2005. Finally,
we thank the Spinger-Verlag for supporting our project and, especially,
Mr. Balamurugan Elumalai for the excellent mentoring of the edition of
this book.
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Luttinger, Peierls or Mott?
Quantum Phase Transitions in Strongly

Correlated 1D Electron–Phonon Systems

Holger Fehske and Georg Hager

Abstract. We analyse the complex interplay of charge, spin, and lattice degrees
of freedom in one–dimensional electron systems coupled to quantum phonons. To
this end, we study generic model Hamiltonians, such as the Holstein models of
spinless fermions, the Holstein–Hubbard model and a Heisenberg spin-chain model
with magneto-elastic interaction, by means of an unbiased numerical density–matrix
renormalisation group technique. Thereby particular emphasis is placed on the
Luttinger–liquid charge–density-wave, Peierls–insulator Mott-insulator, and spin–
Peierls quantum phase transitions.

1.1 Introduction

The way a material evolves from a metallic to an insulating state is one of
the most fundamental problems in solid state physics. Apart from band struc-
ture and disorder effects, electron–electron and electron–phonon interactions
are the driving forces behind metal–insulator transitions in the majority of
cases. While the so-called Mott–Hubbard transition [1] is caused by strong
Coulomb correlations, the Peierls transition [2] is triggered by the coupling
to vibrational excitations of the crystal. Both scenarios compete in a subtle
way. As a result, quantum phase transitions (QPT) between insulating phases
become possible. Most notably this applies to quasi one-dimensional (1D)
materials like conjugated polymers, organic charge transfer salts, ferroelectric
perovskites, or halogen-bridged transition metal complexes, which exhibit a
remarkably wide range of strengths of competing forces [3, 4]. Moreover, 1D
systems are known to be very susceptible to structural distortions.

The challenge of understanding such a kind of metal–insulator or
insulator–insulator QPT has stimulated intense work on generic microscopic
models of interacting electrons and phonons. In this respect, the 1D Holstein–
Hubbard model is particularly rewarding to study [5–10]. It accounts for a
tight-binding electron band, a local coupling of the charge carriers to optical
phonons, the energy of the phonon subsystem in harmonic approximation,
and an intra-site Coulomb repulsion between electrons of opposite spin:
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Fig. 1.1. The 1D Holstein–Hubbard model (left panel) and the competing ground
states for the half-filled band case (right panel)

H = −t
∑

〈i,j〉σ
c†iσcjσ − gω0

∑

iσ

(b†i + bi)niσ + ω0

∑

i

b†ibi + U
∑

i

ni↑ni↓ . (1.1)

Here niσ = c†iσciσ, where c†iσ (ciσ) creates (annihilates) a spin-σ electron at
Wannier site i of a 1D lattice with N sites, and b†i (bi) are the corresponding
bosonic operators for a dispersionsless phonon with frequency ω0.

The physics of the Holstein1–Hubbard2 model is governed by three com-
peting effects: the itinerancy of the electrons (∝ t), their on-site Coulomb
repulsion (∝ U), and the local electron–phonon (EP) coupling (∝ g). As
the EP interaction is retarded, the phonon frequency (ω0) defines a further
relevant energy scale (see Fig. 1.1). This advises us to introduce besides the
adiabaticity ratio, ω0/t, two dimensionless coupling constants

u = U/4t and g2 = εp/ω0 or λ = εp/2t . (1.2)

Both Holstein and Hubbard interactions tend to immobilise the charge
carriers. Therefore, Peierls insulator (PI) or Mott insulator (MI) states are
expected to be favoured over the metallic state, at least for the half-filled
band case (

∑
i,σ niσ = Nel = N) and at zero temperature. Strictly speaking,

this holds in the adiabatic limit (ω0 = 0) for ‘U -only’ (Hubbard model) and
‘λ-only’ (Peierls model) parameters. For the more general Holstein–Hubbard
model, the situation is much less obvious. Clearly a large phonon frequency
will act against any static ordering. If insulating phases exist nevertheless,
their ground-state properties will depend on ω0 and on the ratio of Coulomb
and EP interactions u/λ. Likewise, the nature of the physical excitations
is puzzling as well. While one expects ‘normal’ electron–hole excitations in
the PI phase (U = 0), charge (spin) excitations are known to be massive
(gapless) in the MI state of the Hubbard model (λ = 0). Thus, varying the
1 The Holstein model [11] has been studied extensively as a paradigmatic model

for polaron formation in the low-density limit. For commensurate band fillings,
the coupling to the lattice supports charge ordering.

2 The Hubbard model [12], originally designed to describe ferromagnetism of tran-
sition metals, has more recently been used as the probably most simple model to
account for strong Coulomb correlation effects in the context of high-temperature
superconductivity.
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control parameter u/λ, a cross-over from standard quasi-particle behaviour to
spin-charge separation might be observed in the more general 1D Holstein–
Hubbard model.

The aim of this contribution is to affirm this physical picture and the
anticipated phase diagram of the 1D Holstein–Hubbard model. For these pur-
poses we adapt Lanczos exact diagonalisation (ED) [13], kernel polynomial
(KPM) [14] and density-matrix renormalisation group (DMRG) [15] methods
for EP problems (for an overview see [16, 17]). These numerical techniques
allow us to obtain unbiased results for all interaction strengths with the full
quantum dynamics of phonons taken into account.

1.2 Luttinger–Peierls Metal–Insulator Transition

To study the metal–insulator transition in 1D EP systems, we neglect, in
a first step, the spin degrees of freedom in (1.1). Even so, the resulting 1D
spinless fermion Holstein model,

H = −t
∑

〈i,j〉
c†i cj − gω0

∑

i

(b†i + bi)ni + ω0

∑

i

b†i bi, (1.3)

is, despite its seeming simplicity, not exactly solvable. It is generally accepted,
however, that the model exhibits a QPT from a metallic to an insulating phase
at half-filling (Ne = N/2) [18,19]. During the last two decades, a wide range of
analytical and numerical methods have been applied to map out the ground-
state phase diagram in the whole g –ω0 plane [18, 20–26], with significant
differences, especially in the low-frequency intermediate EP coupling regime.
In the adiabatic limit (ω0 → 0), the critical coupling λc(ω0) vanishes. In the
anti-adiabatic (ω0 →∞) strong EP coupling regime, the model can be trans-
formed to the exactly solvable XXZ model [18, 23], which shows a transition
of Kosterlitz–Thouless type.

Before we determine the metal–insulator phase boundary, let us charac-
terise the metallic and insulating phases themselves. According to Haldane’s
Luttinger liquid (LL) conjecture [27], an 1D gapless (metallic) system of inter-
acting fermions should belong to the Tomonaga–Luttinger universality class
[28,29]. As the Holstein model of spinless fermions is expected to be gapless at
weak couplings g, the system is described by (non-universal) LL parameters
uρ (charge velocity) and Kρ (correlation exponent).

In the following, we try to determine uρ and Kρ by large-scale DMRG cal-
culations. To leading order, the charge velocity and the correlation exponent
is related to the ground-state energy of a finite system with N sites

E0(N)
N

= ε0(∞)− π

3
uρ
2

1
N2

(1.4)

(ε0(∞) denotes the bulk ground-state energy density) and the charge
excitation gap
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Δc(N) = E±
0 (N)− E0(N) = π

uρ
2

1
Kρ

1
N

(1.5)

(here E±
0 (N) is the ground-state energy with ±1 fermion away from half-

filling n = Nel/N = 0.5). Note that the LL scaling relations (1.4) and
(1.5) were derived for the pure electronic spinless fermion model only [30].
A careful finite-size analysis shows, however, that they also hold for the case
that a finite EP is included [31]. Figure 1.2 shows the resulting LL param-
eters, exemplarily for two frequencies belonging to the adiabatic (upper left
panel) and anti-adiabatic (upper right panel) regimes. Interestingly, the LL
phase splits into two different regions: for small phonon frequencies, the effec-
tive fermion–fermion interaction is attractive (Kρ > 0), while it is repulsive
(Kρ < 0) for large frequencies. In the latter region, the kinetic energy (∝ uρ)
is strongly reduced and the charge carriers behave like (small) polarons. In
between, there is a transition line Kρ = 1, where the LL is made up of (al-
most) non-interacting particles. The LL scaling breaks down just at a critical
coupling gc(ω0/t), signalling the transition to the CDW (charge density wave)
state. We find, for example g2

c (ω0/t = 0.1) � 7.84 and g2
c (ω0/t = 10) � 4.41.

The middle panels of Fig. 1.2 prove the existence of CDW long-range order
above gc. Here the staggered charge structure factor

Sc(π) =
1
N2

∑

i,j

(−1)j〈(ni − n)(ni+j − n)〉 (1.6)

unambiguously scales to a finite value in the thermodynamic limit (N →∞).
Simultaneously, Δc(∞) acquires a finite value. In contrast, we have Sc(π)→ 0
in the metallic regime (g < gc). Note that such a finite-size scaling, in-
cluding dynamical phonons, is definitely out of range for any ED calcula-
tion. The CDW at strong EP coupling is connected to a Peierls distortion
of the lattice and can be classified as traditional band insulator and pola-
ronic superlattice in the strong-coupling adiabatic and anti-adiabatic regimes,
respectively.

The optical absorption spectra shown in the lower panels of Fig. 1.2 eluci-
date the different nature of the CDW for small and large adiabaticity ratios
in more detail. The regular part of the optical conductivity,3

σreg(ω) =
∑

m>0

|〈ψ0|ĵ|ψm〉|2
Em − E0

δ[ω − (Em − E0)], (1.7)

takes into account finite-frequency transitions from the ground state |ψ0〉 to
excited quasi-particle states |ψm〉 in the same particle sector.4 Importantly, the
current operator ĵ = it

∑
i(c

†
i ci+1−c

†
i+1ci) has finite matrix elements between

3 The evaluation of dynamical correlation functions like σreg(ω) can be carried out
by means of the very efficient and numerically stable ED-KPM algorithm [14].

4 In (1.7), σreg(ω) is given in units of πe2 and we have omitted an 1/N prefactor.
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Fig. 1.2. Basic properties of the 1D half-filled spinless fermion Holstein model:
Luttinger liquid parameters uρ and Kρ in the metallic region (top panels; the solid
lines in the right panel gives the asymptotic results for the XXZ model), finite-size
scaling of the charge structure factor Sc(π) below and above the metal–insulator
transition (middle panels), and optical response σreg(ω) in the CDW regime (lower
panels). See text for further explanation

states of different site-parity only. In the adiabatic region, the most striking
feature is the sharp absorption threshold and large spectral weight contained
in the incoherent part of optical conductivity. In the anti-adiabatic regime,
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the CDW is basically a state of alternate self-trapped polarons, which means
that the electrons are heavily dressed by phonons. As the renormalised band
dispersion is extremely narrow, finite-size gaps are reduced as well. Therefore,
Δopt read off from Fig. 1.2 yields the correct CDW gap.

Further information can be obtained from single-particle excitation spec-
tra. The T = 0 electron spectral function is related to the one-electron Green
function via

A(k, ω) = − 1
π

Im G(k, ω) = A+(k, ω) +A−(k, ω) , (1.8)

where

A±(k, ω) = − 1
π

Im lim
η→0+

〈
ψ0|c∓k

1
ω + iη ∓H c±k |ψ0

〉
, (1.9)

with c−k = ck, c
+
k = c†k. A

−(k, ω) [A+(k, ω)] describes [inverse] photoemis-
sion of an [injected] electron with momentum k and energy ω. The spectral
functions shown in Fig. 1.3 have been calculated by an elaborate dynamical
DMRG method [32,33]. As we are in the insulating CDW phase, we observe
a single-particle excitation gap at the Fermi momenta kF = ±π/2. Below and
above the gap, the spectrum shows broad multi-phonon absorption bands

-3 -2 -1 0 1 2 3
0

1

0

1

0

1 K=0

x10

x10

A
- (

k,
ω

),
 A

+
(k

,ω
)

K=±π/4

K=±π/2

ω/t

Fig. 1.3. Spectral functions A−(k, ω) (for electron removal, ω < 0) and A+(k, ω)
(for electron injection ω > 0) for the spinless Holstein model at half-filling (N = 10
with periodic boundary conditions (PBC)). The system is in the CDW (Peierls
insulating) phase (g = 4, ω0/t = 0.1). Note that only |k| ≤ π/2 is shown because
A(k ± π,ω) = A(k,−ω)
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whose maxima roughly follow a renormalised cosine tight-binding dispersion
in momentum space.

The T = 0 phonon spectral function is defined as

B(q, ω) = − 1
π

ImD(q, ω), (1.10)

with

D(q, ω) = lim
η→0+

〈
ψ0|x̂q

1
ω + iη −H x̂−q|ψ0

〉
(1.11)

for ω ≥ 0 and x̂q = N−1/2
∑

j x̂je
−i(jq). For the spinless fermion Holstein

model (1.3), B(q, ω) is symmetric in q, and we have a dispersionsless
bare propagatorD0(q, ω) = 2ω0/(ω2−ω2

0). EP interaction will renormalise the
phonon frequency, whereby D(q, ω) attains a q-dependence. To determine the
q-dependence of B(q, ω) for the infinite lattice, we exploit ED in combination
with cluster perturbation theory [26, 34]. The density plots shown in Fig. 1.4
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Fig. 1.4. Density plots of the CPT phonon spectral function B(q, ω), where panels
(a)–(d) correspond to the repulsive LL (ω0/t = 4, g2 = 0.5), polaron superlattice
(ω0/t = 4, g2 = 5), attractive LL (ω0/t = 0.4, g2 = 2.5), and band insulator
(ω0/t = 0.4, g2 = 5) regimes, respectively (taken from [26])
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summarise the differences between the anti-adiabatic and adiabatic regimes,
and between the LL and CDW phases of the spinless fermion Holstein model.
In the anti-adiabatic case, we observe two phonon signatures for all g > 0.
In the LL phase, the bare phonon mode hardens, whereas a second mode
becomes strongly over-damped near q = π [panel (a)]. Panel (b) reveals a
dispersionsless signal at ω = ω0, as well as the flat polaron band at ω ≈ 0 for
the polaronic CDW state. Quite differently, in the adiabatic case [panel (c)],
we see that renormalised phonon dispersion ω(q) softens with increasing EP
coupling, leading to a degeneracy of excitations with q = 0, π at gc. Above the
Peierls transition we find – in agreement with recent Monte Carlo simulations
[35] – that the soft q = π phonon mode splits into two branches with the
upper one hardening as the EP coupling increases further [panel (d)].5 Thus,
with increasing phonon frequency, we find a cross-over from a soft-mode (dis-
placive) to a central-peak-like (order-disorder-type) phase transition, similar
to the analysis of the spin–Peierls transition motivated by CuGeO3 [21] (cf.
Sect. 5.1).

Finally the phase diagram of the 1D Holstein model is presented in Fig. 1.5.
The regions where the system typifies as repulsive LL, attractive LL, pola-
ronic superlattice, or band insulator are indicated. While we observe a rather
smooth cross-over between different states within the metallic respectively in-

0.0 1.0 2.0 3.0 4.0
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1.0

10.0
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tic

ad
ia

ba
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ω
0 
/  t

Fig. 1.5. Ground-state phase diagram of the 1D half-filled Holstein model of spinless
fermions obtained by DMRG

5 The strong zero-energy absorption feature at π/2 is an artifact of the small cluster
size and the open boundary conditions used in the ED-CPT scheme.
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sulating ‘domains’, there is a true metal–insulator QPT between the LL and
the CDW phase. Three different methods were used to determine the phase
boundary. First we employ an optimised phonon diagonalisation method [24]
and look for an upturn of the charge structure factor in passing from LL to
CDW. The second DMRG-based method was inspired by work on the frus-
trated Heisenberg model and exploits a level crossing criteria between the
charge gap and the ‘one-photon’ excitation gap [23]. The third method rests
on a DMRG finite-size scaling of the charge structure factor (cf. Fig. 1.2). The
results basically agree and above all confirm that a finite critical EP coupling
is required to set up the CDW phase provided ω0 > 0.

1.3 Peierls–Mott Insulator–Insulator Transition

Now we include the spin degrees of freedom and ask for the effect of a finite
Coulomb interaction. The ground state of the pure Holstein model (U = 0) is a
Peierls distorted state with staggered charge order for g > gc(ω0) [36,37], that
is as in the Holstein model of spinless fermions, quantum phonon fluctuations
destroy the Peierls state for g < gc.

The charge structure factor, Sc(π) [cf. (1.6)], and spin structure factor,

Ss(π) =
1
N2

∑

i,j

(−1)j〈Szi Szi+j〉 with Szi =
1
2
(ni↑ − ni↓) , (1.12)

shown in Fig. 1.6 for the full Holstein–Hubbard model, indicate pronounced
CDW and weak SDW (spin density wave) correlations, provided u/λ < 1. In-
creasing the Hubbard interaction u at fixed EP coupling λ and frequency ω0,
the CDW correlations become strongly suppressed, whereas the spin struc-
ture factor at q = π is enhanced. To conclude about a possible existence of
charge and/or spin long-range order, one has to determine Sc(π) and Ss(π) for
different system sizes, followed by a finite-size scaling of the data. The size-
dependence of the DMRG results for Sc/s(π) is shown in the lower panels of
Fig. 1.6. In the PI phase, Sc(π) is almost constant and scales to a finite value,
indicating true CDW long-range order, whereas Ss(π) obviously scales to zero
as N →∞. By contrast, in the MI regime, our data provides strong evidence
for vanishing charge and also spin order in the thermodynamic limit. Conse-
quently, the PI exhibits CDW order, that is alternating empty and doubly oc-
cupied sites, while the MI is characterised by short-ranged anti-ferromagnetic
spin correlations (see Fig. 1.7).6

Figure 1.8 displays the (inverse) photoemission spectra for the Holstein–
Hubbard model, where

A±
σ (k, ω) =

∑

m

|〈ψ±
m|c±kσ|ψ0〉|2 δ[ω ∓ (E±

m − E0)], (1.13)

6 Here the staggered spin–spin correlations decay algebraically at large distances.
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and MI (right panel) regimes

CDW: true LRO

Peierls Insulator Mott Insulator

SDW : no LRO

U

g

Fig. 1.7. Schematic structure of Peierls and Mott insulating states
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Fig. 1.8. Spectral densities for photoemission (A−
σ (k, ω); dashed lines) and inverse

photoemission (A+
σ (k, ω); solid lines) in the k = ±π/2 sector of the half-filled

Holstein–Hubbard model. Data were obtained by applying our ED-KPM scheme.
Shown are typical results obtained for the case of a bipolaronic insulator (BPI), a
Peierls band insulator (BI), a system near the PI-MI quantum critical point (QCP),
and a Mott insulator (MI) (from top to bottom). The corresponding integrated den-
sities S±

σ (k, ω) =
∫ ω
∓∞ dω′A±

σ (k, ω′) are also indicated

with c+kσ = c†kσ and c−kσ = ckσ [cf. (1.9)]. To monitor a band splitting induced
by the Hubbard and Holstein couplings, we focus on the results at the Fermi
momenta kF = ±π/2 (PBC).7

The most prominent feature we observe in the PI regime is a finite gap at
k = ±π/2. At high phonon frequencies, the insulating behaviour is associated
with localised bipolarons forming a CDW state (BPI, upper panel). Because
of strong polaronic effects, an almost flat band dispersion with exponentially
small (electronic) quasi-particle weight results [6]. The dominant peaks in the
incoherent part of the (inverse) photoemission spectra are related to multi-
ples of the (large) bare phonon frequency. The situation changes if the phonon
frequency is small (adiabatic regime). Here, for the traditional BI, a rather
broad photoemission signature appears. Within these excitation bands, the
spectral weight is almost uniformly distributed, which is a clear indication of
the multi-phonon absorption and emission processes that accompany every

7 Spectra for the other allowed momenta of our eight-site system are given in [6].
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single-particle excitation in the PI. The line shape reflects the Poisson-like
distribution of the phonons in the ground state. Away from the Fermi mo-
menta, the lower and upper bands closely follow a (slightly renormalised)
cosine dispersion. If we enhance the Hubbard interaction at fixed EP coupling
strength, the Peierls gap weakens and finally closes at about (u/λ)c � 1,
which marks the PI-MI cross-over quantum critical point (QCP). This is the
situation shown in the middle panel. Approaching the QCP, the ground state
and the first excited state become degenerate. The QCP is characterised by
gapless charge excitations at the Fermi momenta but perhaps should not be
considered as metallic because the Drude weight in the case of a degenerate
ground state is ill-defined [38]. If the Hubbard interaction further increases,
Coulomb repulsion overcompensates the attractive on-site EP coupling and
the single-particle excitation spectrum becomes gapped again (lowest panel).
The Mott–Hubbard correlation gap almost coincides with the optical gapΔopt

determined by evaluating the regular part of the optical conductivity for the
same parameters. The form of the MI spectra is quite different from PI case.
Contrary to the PI phase in the MI regime, the lowest peak in each k sector is
clearly the dominant one. The dispersion of the lower (upper) Hubbard band
can be derived tracing the uppermost (lowest) excitations in each k sector.
As N goes to infinity for u � 1, the lower Hubbard band will be completely
filled, and consequently the system behaves as an insulator at T = 0.

The many-body charge and spin excitation gaps,

Δc = E+
0 (1/2) + E−

0 (−1/2)− 2E0(0) (1.14)
Δs = E0(1)− E0(0), (1.15)

can also be used to characterise the different phases of the Holstein–Hubbard
model. Here E(±)

0 (Sz) is the ground-state energy at half-filling (with Ne =
N ±1 particles in the sector with total spin-z component Sz). As we compare
ground-state energies calculating the charge and spin gaps, lattice relaxation
effects arising from different particle numbers are included. This is of course
not the case when determining the single-particle functions (1.9) or (1.13).
Obviously, the DMRG finite-size scaling presented in Fig. 1.9 for Δc/s sub-
stantiates our introductory discussion. Δc and Δs are finite in the PI and
will converge further as N → ∞. Compared to the BI phase, the finite-size
dependence of Δc and Δs is much weaker in the BPI phase because the small
bipolarons that emerge are rather localised objects. Both gaps seem to vanish
at the quantum phase transition point of the Holstein–Hubbard model with
finite-frequency phonons, but in the critical region the finite-size scaling is
extremely delicate. In the MI we found a finite charge excitation gap, which
in the limit u/λ� 1 scales to the optical gap of the Hubbard model, whereas
the extrapolated spin gap remains zero. This can be taken as a clear indication
for spin-charge separation.

So far we can summarise our findings by the schematic ground-state phase
diagram shown in Fig. 1.10.
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Fig. 1.9. DMRG finite-size scaling of spin- and charge-excitation gaps in the HHM
at λ = 0.35 and ω0/t = 0.1, where open boundary conditions were used. The
accessible system sizes are smaller at larger λ/u, where an increasing number of
(phononic) pseudo-sites is required to reach convergence with respect to the phonons.
The arrow marks the value of the optical gap Δopt for the Bethe ansatz solvable 1D
Hubbard model, which is given by Δopt/4t = u− 1 + ln(2)/2u in the limit of large
u > 1 [39]
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Fig. 1.10. PI-MI QPT in the strong coupling regime of the Holstein–Hubbard
model. For finite periodic chains with N = 4n, the MI-PI quantum phase transition
could be identified by a ground-state level crossing associated with a change in the
parity eigenvalue P = ± [40], where the site inversion symmetry operator P is
defined by Pc†iσP

† = c†N−iσ [41].
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1.4 On the Possibility of an Intervening Metallic Phase

Recently there has been some speculation that, despite the electron–electron
and EP interactions each separately favouring insulating phases, together
they can mediate an unexpected intermediate metallic state [5, 9]. Applying
a variable-displacement Lang–Firsov scheme, a rather intriguing behaviour in
the local magnetic moment and the renormalised hopping integral was found
in the CDW-SDW cross-over region and traced back to the appearance of a
metallic phase in the weak-coupling regime [5]. The intermediate phase has
been confirmed by a numerical study based on stochastic series expansion
quantum Monte Carlo with directed loops [9], where the slope of the finite-
size scaled charge and spin structure factors in the long-wavelength limit was
evaluated:

Kρ/σ = lim
q→0

1
πq

1
N

∑

j,k

eiq(j−k)〈(nj,↑ ± nj,↓)(nk,↑ ± nk,↓)〉.

Kρ/σ are the LL charge/spin correlation exponents. Kρ values greater
than 1 were taken as indication for dominant attractive superconducting cor-
relations (SC). The resulting ground-state phase diagram shows two different
sequences of phases as λ increases, either Mott–Peierls in the strong-coupling
region of large u (as in discussed in Sect. 3) or Mott–SC–Peierls in the weak-
coupling region of small u (see Fig. 1.11, upper column). At smaller phonon fre-
quencies ω0, the SC region shrinks. As it is numerically difficult to determine
the phase boundaries by exploiting the local magnetic moment, the effec-
tive hopping integral or Kρ/σ, we re-investigated the weak-coupling Holstein–
Hubbard model by calculating the charge and spin gaps, defined in (1.14) and
(1.15), respectively, as well as the two-particle excitation gap [42]

Δc2 = E2+
0 (0) +E2−

0 (0)− 2E0(0). (1.16)

This gap corresponds to the charge gap in a bipolaronic insulator and is an
upper limit for it in any other phase. Let us denote the (single-particle) charge
gap (1.14) by Δc1 in this section. Then, of course, one- and two-particle ex-
citation gaps should simultaneously open if we enter the PI and MI phases.
If the PI phase is a bipolaronic insulator (superlattice) rather than a tradi-
tional Peierls band insulator, mobile bipolarons may occur first in the dis-
solving process of the PI, as the λ/u ratio is lowered. Such a bipolaronic
metal/liquid phase will then be characterised by Δc2 = 0 but finite Δc1 (and
Δs). Adding/removing a single particle from the metallic bipolaron phase is
energetically costly because the bipolarons are (tightly) bound. A bipolaron
as a whole, however, can be added or removed without effort.

The left lower panel of Fig. 1.11 demonstrates that this scenario holds in
the anti-adiabatic (ω0/t = 5) weak-coupling regime. As the EP coupling gets
weaker, we enter a region where Δc1 > 0 but Δc2 → 0 (see, e.g. the data
for λ = 0.625). Δc2 stays zero as Δc1 vanishes at still smaller λ (u fixed),
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Fig. 1.11. Phase diagram of the Holstein–Hubbard model for weak couplings. The
left (right) panels belong to the anti-adiabatic (adiabatic) regime. The upper panels
are redrawn from Fig. 4 of [9], where the shaded areas show the extension of the in-
termediate metallic phase as determined from the behaviour of Kρ/σ. The middle
column panels display the finite-size scaling of spin, single-particle and two-particle
excitation gaps. The lower column shows the phase diagram obtained from our
DMRG calculation [42]. Here filled squares, open triangles down, and open triangles
up, denote the PI, bipolaronic metal and Luttinger-liquid metal phases, respectively.
The inset in the lower left panel gives the (N → ∞) extrapolated values of the one-
particle, two-particle and spin excitation gaps at u = 1. Note that Δc2 is twice as
large as Δc1 in the MI phase. For further explanation see text

until we enter the MI state. We note that the PI-metal phase boundary is
shifted compared to the results of [9], while the metal-MI transition line is the
very same. That is, taking Δc2 = 0 as a criterion for the instability of the PI
phase, we find an even larger region for the PI-MI intervening state. Second,
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within the metallic state, our data indeed suggests a cross-over between a
bipolaronic liquid (Δc2 = 0;Δc1 , Δs > 0) and a Luttinger liquid (Δc2 = Δc1 =
Δs = 0). The corresponding results for the adiabatic regime (ω0/t = 0.5)
are given in right lower panel of Fig. 1.11. Again we have strong evidence
for an intermediate metallic state. The region where bound mobile charge
carriers (bipolarons) exist, however, now is a small strip between the PI and
metal phases only, and expected to vanish if the adiabaticity ratio ω0/t goes
to zero.

1.5 Limiting Cases

1.5.1 Adiabatic Holstein–Hubbard Model

In the adiabatic limit ω0 = 0, the general Holstein–Hubbard Hamiltonian
(1.1) reduces to

H = Ht−U −
∑

i,σ

Δiniσ +
κ

2

∑

i

Δ2
i , (1.17)

where Ht−U constitutes the conventional Hubbard Hamiltonian. In addition,
the adiabatic Holstein–Hubbard model (1.17) includes the elastic energy of
the lattice with ‘spring constant’ κ. Within this so-called ‘frozen phonon’ ap-
proach,Δi = (−1)iΔ is a measure of the static, staggered density modulations
of the PI phase. For the adiabatic Holstein–Hubbard model a discontinuous
PI–MI transition is easily verified in the atomic limit t = 0, where Δ = 1/κ
for U < Uc = 1/κ and Δ = 0 for U > Uc. The first-order nature persists for
finite small t, that is in the strong coupling regime U , κ−1 � t. However, we
have demonstrated by an ED study that the transition is second order in the
weak coupling regime U , κ−1 � t [37]. This implies a continuous decrease of
Δ(U).

We summarise our previous findings in the phase diagram shown in
Fig. 1.12. In the Peierls BI phase for U < Uopt, the spin and charge exci-
tation gaps are equal and finite, and remarkably Δopt = Δc. Here Uopt marks
the point when the site-parity sectors become degenerate and the optical ab-
sorption gap Δopt disappears. At U = Uopt, Δopt = 0 but Δc = Δs > 0. For
U ≥ Us, the usual MI phase with Δopt = Δc > Δs = 0 is realised. For strong
coupling Uopt = Us holds. In weak coupling there exists an intermediate region
Uopt < U < Us in which all excitation gaps are finite. The CDW persists for
all U < Us. The site-parity eigenvalue is P = +1 in the PI and P = −1 in the
MI phase. It is natural to expect an additional ordering phenomenon in the
window Uopt < U < Us. Here a bond order wave (BOW) with a finite expec-
tation value of the staggered bond charge B = 1

N

∑
iσ(−1)i〈c†iσci+1σ + H.c.〉

is the natural candidate.
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Fig. 1.13. Structure of the Mott SDW and spin–Peierls phases

1.5.2 Spin–Peierls Model

In the preceding sections we have seen that the interaction of electronic and
vibrational degrees of freedom can lead to an instability of 1D metals towards
lattice distortion. A similar effect is observed in quantum spin chains (which
implement, in some sense, the t = 0 large U limit of the half-filled Hubbard
model), where the coupling to the lattice can cause a so-called spin–Peierls
transition from a spin liquid with gapless excitations to a dimerised phase
with an excitation gap (see Fig. 1.13). Experimentally such behaviour was first
observed in the 1970s for organic compounds of the TTF and TCNQ family
[43]. The topic regained attention after the discovery of the first inorganic
spin–Peierls compound CuGeO3 in 1993 [44]. The most significant feature
distinguishing this material from other spin–Peierls compounds is the high
frequency ω0 of the involved optical phonons, which is comparable to the
magnetic exchange interaction J .

As an archetypal model for this type of spin–Peierls system we consider
the anti-ferromagnetic Heisenberg chain coupled to optical phonons

H = J
∑

i

SiSi+1 + ω0

∑

i

b†ibi +Hsp, (1.18)
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where Si denote spin- 1
2 operators at lattice site i. For the spin–phonon

interaction one usually considers two simple forms

Hd
sp = gω0

∑

i

(b†i + bi)(SiSi+1 − Si−1Si), (1.19)

H l
sp = gω0

∑

i

(b†i + bi)SiSi+1. (1.20)

H with the first (difference) type of spin–phonon interaction (1.19) has been
studied with a large number of methods, including perturbation theory [45,46],
flow equations [47], ED [46] and DMRG [48,49]. The latter approach identified
the ground-state phase diagram displayed in Fig. 1.14 (left panel). All these
studies agree on the main finding that at ω0 > 0 the system undergoes a QPT
only for some finite value of g. The nature of the QPT from the gapless to
the dimerised phase is rather well understood: For finite phonon frequency
ω0 the spin–phonon coupling g leads to effective spin interactions beyond
nearest-neighbour exchange, that is the low energy physics is governed by a
frustrated Heisenberg model, which has a gapped ground-state at sufficiently
large frustration [50].

For the second (local) type of spin–phonon coupling (1.20), which applies
to CuGeO3, the precise location of the phase boundary has been determined
only quite recently by a high-performance, parallel version of the well-known
two-block finite-lattice DMRG algorithm [51] (see Fig. 1.14, right panel). To
detect the quantum phase transition from the gapless to the dimerised phase,
we used the established criterion of level-crossing between the first singlet and
the first triplet excitation.

1.6 Conclusions

In summary, we have addressed the metal–insulator and insulator–insulator
transition problem in 1D strongly coupled electron–phonon systems. The
generic features observed are relevant to several classes of low-dimensional
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materials. Applying numerical diagonalisation methods based on Lanczos,
density matrix renormalisation group and kernel polynomial algorithms, we
analysed the general Holstein–Hubbard model at half-filling and obtained, by
the use of present-day leading-edge supercomputers, basically exact results for
both ground-state and spectral properties in the overall region of electron–
electron/electron–phonon coupling strengths and phonon frequencies.

For the spinless Holstein model we found that for weak electron–phonon
couplings the system resides in a metallic (gapless) phase described by two
non-universal Luttinger-liquid parameters. Increasing the electron-phonon
coupling, a quantum phase transition to a Peierls insulating state takes place,
which is accompanied by drastic changes in the optical response of the system.

Of a similar type is a Heisenberg spin chain coupled to optical phonons,
which for increasing spin-lattice coupling undergoes a quantum phase transi-
tion from a gapless spin liquid to a gapped phase with lattice dimerisation.

For the more involved Holstein–Hubbard model, with respect to the metal,
the electron–electron interaction favours a Mott insulating state, while the
electron–phonon coupling is responsible for the Peierls insulator to occur.
True long-range (charge density wave) order is established in the Peierls
insulator phase only. The Peierls insulator typifies a band insulator in the
adiabatic weak-to-intermediate coupling range or a bipolaronic insulator for
non-too-anti-adiabatic strong-coupling. The optical conductivity signals that
the quantum phase transition between the Mott and Peierls insulator phases
is connected to a change in the ground-state site-parity eigenvalue (of finite
systems with PBC). While we found only one critical point separating Peierls
and Mott insulating phases in the strong-coupling regime, there is strong ev-
idence for an intervening metallic state in the weak-coupling regime. This is
in accordance with results obtained in the adiabatic limit (ω0 = 0), where
two successive transitions have been detected for weak couplings as well.
The Peierls-to-Mott transition scenario is corroborated by the behaviour of
the spin- and charge excitation gaps. From a DMRG finite-size scaling, we
found that the charge gap equals the spin gap in the Peierls insulator while
Δc > Δs = 0 in the Mott insulator, which proves spin–charge separation in
the latter state.

Note added in proof. After this work was submitted the Tomonaga–Luttinger–
liquid correlation parameterKρ has been determined for the half-filled spinless
fermion Holstein model by DMRG, exploiting the static charge structure in the
long–wavelength limit, Kρ = π limq→0+ [Sc(q)/q], with q = 2π/N (N → ∞),
rather than the leading–order scaling relations (1.4) and (1.5) [52]. While both
approaches give almost identical results for intermediate–to–large phonon fre-
quencies, the authors of Ref. [52] find Kρ < 1 also in the adiabatic regime,
which puts the subdivison of the metallic state into anattractive and repulsive
Luttinger liquid into question.



20 H. Fehske and G. Hager

Acknowledgements

We thank A. Alvermann, K.W. Becker, A.R. Bishop, F. Göhmann,
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The Metal–Nonmetal Transition in Fluid
Mercury: Landau–Zeldovich Revisited

Friedrich Hensel

Abstract. The paper reviews recent experimental results, which show that the
formation of a mixed phase of metallic and nonmetallic domains following the puta-
tive ‘Landau–Zeldovich first-order metal–nonmetal transition’ noticeably influences
the liquid–vapor transition of fluid mercury. An attempt is made to connect the
observable consequences of the mixed phase existence with the scenario of noncon-
gruent evaporation.

2.1 Introduction

An important open problem in the statistical mechanics of fluids is an
understanding of the interrelation of the metal–nonmetal transition and the
liquid–vapor phase transition in metallic systems. It is now 50 years since
Landau and Zeldovich [1] first called attention to this question, specifically
in relation to liquid mercury. While emphasizing that one cannot distinguish
metal (M) from nonmetal (NM) above the absolute zero of temperature, they
nevertheless proposed that electronic transitions could introduce additional
lines of first-order, that is, discontinuous electronic transitions in the phase
diagram of the fluid state. They suggested the three possible diagrams shown
in Fig. 2.1. Lines of first-order metal–nonmetal transitions might occur wholly
in the liquid (Fig. 2.1b) or vapor state (Fig. 2.1c) or, as a third possibility, the
transition might be an extension of the liquid–vapor pressure curve (Fig. 2.1a)
beyond the critical point into the supercritical state. Specifically for mercury,
Landau and Zeldovich [1] propose Fig. 2.1b with a triple point at the inter-
section of the liquid–vapor and the metal–nonmetal transition.

The problem that throughout the fluid range of mercury the electronic
structure can change discontinuously with temperature and pressure has stim-
ulated extensive experimental and theoretical efforts and the general subject
has been repeatedly reviewed in the literature [2–10]. A comprehensive review
of the available experimental and theoretical results is therefore unnecessary,
and I shall refrain from any attempt to cover the entire field. Instead, I have
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Fig. 2.1. Schematic pressure–temperature (p-T) phase diagrams proposed by
Landau and Zeldovich [1]: S = solid, L = liquid, G = gas, M = metal, NM = non-
metal. The critical point C.P. terminates the line of liquid–gas equilibrium. Dashed
curves indicate lines of proposed first-order M–NM transitions

selected for attention recent, partly unpublished, experimental results which
evidently show that the apparently continuous changes in the electric struc-
ture and transport properties of fluid mercury observed during the course of
the metal–nonmetal (M–NM) transition are connected with local microscopic
inhomogeneities in the electronic structure.

The renewed interest in this problem is mainly motivated by the exciting
progress in the search for density fluctuations inherent to the M–NM transition
in expanded fluid mercury, which has come from the recent small angle X-ray
scattering (SAXS) measurements of Inui et al. [11–13] and from very accurate
ultrasound velocity [14] and absorption [15, 16] measurements by Yao and
coworkers and by Kozhevnikov [17].

2.2 The Liquid–Vapor Phase Boundary of Mercury

The SAXS experiments on mercury under extreme conditions of temperature
and pressure in the vicinity of the critical point and the M–NM transition
were carried out on the high-energy X-ray diffraction beam line (BL04B2) at
SPring-8 in Japan [13]. Inui et al., were able to observe a change in the charac-
ter of the SAXS-intensity as the density of liquid mercury increases from the
critical region to higher densities where a continuous change from nonmetal-
lic to metallic behavior has been predicted. Analysis of the data employing
the usual Ornstein–Zernike plots shows that the long wavelength limit of the
scattering function S(0) and the correlation length ξ follow approximately
through the peak around the critical point, but with increasing density S(0)
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continues to decrease while ξ falls to a constant value, independent of temper-
ature, of about 5–6 Å, indicating fluctuations of different character, which Inui
et al. [13] ascribed correctly to fluctuations between insulating and metallic
regions on a length scale of intermediate-range order. However, the Ornstein–
Zernike analysis does not permit to truly separate the additional scattering
related to the M–NM transition from the critical scattering. Be that as it may,
the exciting observation of Inui et al. [13] stimulated Maruyama et al. [18] to
apply the reverse Monte Carlo [19] method and the Voronoi–Delaunay anal-
ysis [20] on the basis of the structure factors determined by X-ray diffraction
experiments by Tamura and Hosokawa [21] to characterize the intermediate-
range fluctuations in the M–NM-range. The model structure resulting from
the void analysis shows a well defined binary mixture of M- and NM-domains
with arbitrary sizes and shapes. The concentration of the M-domains increases
with increasing density and the spatial distribution of these domains resembles
micro- or better nanoemulsions, that is the system can be treated as a two-
density model. The assumption is then, that there is a matrix of density ρ1 in
which are embedded particles or domains of density ρ2. More generally, the
density in the system is either ρ1 or ρ2. If the two phases have sharp bound-
aries, there are general rules called the Porod law and the Porod invariant
[22]. And as a matter of fact, a new inspection of the SAXS-data [23] over the
density range from 3.5 g cm−3 to 11 g cm−3 covered by the experiment [11,12]
shows that the data are consistent with Porods theory of two-phase systems
[22]. In particular, in the liquid mercury density range between about 11 and
9 g cm−3, the coexistence of M nanodomains with a density of 10.7 g cm−3 and
NM-nanodomains with a density of 8.3 g cm−3 is obtained.

As pointed out by Landau and Zeldovich [1], a salient feature concerning
the M–NM transition in mercury is the possible occurrence of a first order
phase transition, characterized by a discontinuous change in density from
ρM to ρNM, that is there exists an interval in which the equilibrium state is
macroscopically phase-separated into regions of higher and lower than average
density. However, when long range Coulomb forces are taken into account,
this instability with macroscopic separation is frustrated due to electrostatic
energy cost. A Coulomb interaction precludes macroscopic phase separation:
consequently, the system can form intermediate phases ‘electronic micro- or
nanoemulsions,’ where domains of one phase (M) are embedded into the other
phase (NM). A large number of small domains would minimize the Coulomb
energy, but they cost too much surface energy. The distance between the
domains and their size are determined by minimizing a free energy, which
takes into account both the effects [24, 25].

It goes without saying that the finding of the formation of a nanoemul-
sion in fluid mercury for densities smaller than about 11 g cm−3 has implica-
tions for the interpretation of the phase behavior and the electronic transport
properties. In particular, liquid mercury can no longer be considered as a ho-
mogeneous one-component fluid for which the liquid–vapor phase boundary
in the pressure (p)–temperature (T) plane is represented by a single line, the
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vapor pressure curve. If it forms a binary mixture of M- and NM domains, the
general features of its liquid–vapor transition are known from the thermody-
namics of mixtures; that is, the two-phase region in the p–T-plane is no longer
a single line but a two-dimensional domain, whose boundary parameters de-
pend on the [NM]/[M] concentration ratio. Before turning to the discussion
of new results, it is inevitable that some steps of the previous reviews will be
retraced in order that the present account should not be unsystematic.

There used to be general agreement that the most significant experiments
relevant to the exploration of the relationship between the liquid–vapor and
metal–nonmetal transitions in fluid mercury are direct measurements of elec-
trical properties that signal the transformation from a metallic to a non-
metallic state. Data such as those of the electrical conductivity (see Fig. 2.2)
[26–30] clearly demonstrated that for fluid mercury there is no sharp (first-
order) electronic transition except across the apparent liquid–vapor phase
boundary, that is, the liquid–vapor phase separation tends to separate the
nonmetallic and metallic fluids. Near the apparent critical point the conduc-
tivity drops sharply, thus showing a strong effect of the incipient phase tran-
sition on the electronic structure. The close correlation between the behavior
of the density and that of the electrical conductivity (Fig. 2.2) convincingly
shows that the variation of elemental density is the dominant factor govern-
ing the metal–nonmetal transition. However, it has to be emphasized that in
practice very careful measurements are required to separate the ever present
effects of density and temperature in the apparent critical region. Part of the
difficulty arises because both the compressibility and also the pressure deriva-
tive of the electrical conductivity become very large in the critical region. This
means that small errors in pressure measurement will cause large density and
conductivity errors. Consequently, for a reliable correlation of the conductiv-
ity and density, precise temperature and pressure control is essential. This is
not easily achievable, because precise measurements of the properties of fluid
metals are notoriously difficult. This is immediately evident from the fact that
the critical point of mercury is near a temperature T =1,478◦C and a pres-
sure p= 1,673bar well beyond the range of standard experimental techniques
of condensed matter physics.

A serious additional experimental problem related to the determination
of the liquid–vapor phase boundary in mercury is that nearly all investiga-
tions – including the experimental data in Fig. 2.2 – are not concerned with
saturation conditions where both liquid and vapor are present in equilibrium.
Instead, the method usually employed was to heat a sample continuously at a
constant pressure until an abrupt change of the measured property (e.g., the
conductivity) signals that apparently the liquid boiled out of the cell at the
vaporization point. This is a very efficient method and the vapor pressure data
obtained in this way are very accurate and reproducible. However, it goes with-
out saying that the employment of this method by nearly all experimentalists
working on the determination of the liquid–vapor phase boundary of mercury
is based on the assumption that mercury forms a homogeneous one-component
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Fig. 2.2. DC electrical conductivity data for mercury at sub- and supercritical
temperatures as a function of pressure [26–29]

liquid; thus, ignoring the fact that the thermal equilibrium times in a mixture
liquid–vapor two-phase region are much longer than those of pure substances
for a given temperature distance ΔT from the transition [31]. There is only one
experiment described in the literature that was mainly concerned with sat-
uration conditions where both liquid and vapor were present in equilibrium
[32,33]. The authors of this work – also assuming that mercury is a homoge-
neous one-component liquid over the whole liquid range – pointed out that
their vapor pressure curve p(T) of mercury – measured under true equilibrium
conditions – has an unusual and probably unique form in that the logarithm
of the pressure (p) against the reciprocal temperature (1/T) plot showed a
relatively sharp change of slope at a temperature of 1,088◦C (1,361K) and a
saturated liquid density ρL =10.7 g cm−3. As mentioned earlier, the latter is
about the density at which the inspection [23] of the SAXS- data [11] shows
that liquid mercury starts to form a nanoemulsion.

Seen at glance from Fig. 2.3, the two experimentally determined curves BC
and SC (solid lines) do not intersect. The dashed line (see inset) is only an
attempt (assuming that the two curves approach each other) to compare the
phase behavior of mercury with well-known features from the theory of fluid
binary mixtures [34], that is cricondentherm Tmax, cricondenbar pmax, and
the critical point C.P., for which the composition of the two coexisting phases
is equal. The total vapor pressure within the two-phase region of mercury is
plotted as a function of density in form of isobars or isotherms, respectively, in
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Fig. 2.3. Pressure–temperature diagram of fluid mercury: two-dimensional two-
phase region for temperatures higher than T = 1, 088◦C is observed instead of
the standard p–T saturation curve; BC- boiling (liquid) conditions, C.P. critical
point; Tmax = cricondentherm, pmax = cricondenbar. As the critical point of binary
systems with variable composition is difficult to locate, we choose the location at
([NM]/[M])BC = ([NM]/[M]SC)

Figs. 2.4 and 2.5. The isothermic phase transition starts and finishes at differ-
ent pressures, while the isobaric phase transition starts and finishes at different
temperatures. The curves inside the two phase regions are not really straight
lines, and they should be simply considered as a guide to the eyes. They are
horizontal only for temperatures smaller than 1,088 ◦C or pressures smaller
than 458bar, respectively.

In Fig. 2.3, we displayed both vapor pressure branches: the pressure ob-
tained for slow evaporation [32,33] under true equilibrium conditions resulting
in the bubble or boiling curve, which we designate BC together with the pres-
sure obtained for nonequilibrium conditions when temperature or pressure
are changed with a finite rate [26]. The latter results in the saturation curve,
which we designate SC. The unusual form of the phase boundary has impli-
cations for the behavior of nearly all properties of mercury, which have not
been recognized in the past. The essential difficulty is that the effect is small.
This is immediately evident from the effect of isothermal evaporation on the
DC electrical conductivity σ, which has been measured at BC condition [32]
and SC-condition [26]. Figure 2.6 displays the effects of evaporation for the
two isotherms T =1,350◦C, and T = 1,400◦C. The differences in pressure for
SC- and BC-conditions are not large enough to be seen in a diagram as that
shown in Fig. 2.2. As the electrical conductivity under these conditions can
be well described [36], by the effective medium approach [35] we are able to
calculate the volume fraction φ of the metallic component at liquid BC- and
SC conditions. The values of φ are displayed in the plot of Fig. 2.6. Similar
effects are observed for evaporation at the isobar of 1,400bar (see Fig. 2.7).
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Fig. 2.4. Non-congruent pressure density diagram. For temperatures higher than
1,088◦C, the isothermal phase transition starts and finishes at different pressures.
The dashed lines are not measured curves but serve only as a guide for the eyes.
BC =boiling curve, SC =saturation curve; Tmax = cricondentherm. C.P. critical
point where ([NM]/[M])BC = ([NM]/[M])SC

The availability of electrical conductivity data at BC- and SC-conditions
permits us to calculate the volume fractions of the components by employing
the effective medium theory. Data for the volume fraction of the metallic
component are presented in Fig. 2.8 in the form of isobars as a function of
temperature. The difference in the volume fraction at liquid BC- and liquid
SC-condition is relatively large. The dashed line is based on the assumption
that the volume fractions for SC- and BC-condition is equal at the ‘apparent’
critical point.

The scenario is thus very similar to that of noncongruent phase transitions
highlighted by Iosilevskiy and colleagues [37–39] in relation to the evaporation
of uranium dioxide. The effect of the noncongruent phase transition is most
vividly seen in the shape of the liquid vapor coexisting curve. Figure 2.9 shows
an extension of the density–temperature plot of Fig. 2.5 over the whole liquid–
vapor coexisting range. The most remarkable feature is the strong deviation
from the empirical rule of rectilinear diameters of Cailletet and Mathias [40].
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Fig. 2.5. Noncongruent temperature density diagram. For pressures higher than
about 450 bar, the isobaric phase transition starts and finishes at different temper-
atures. The dashed lines are not measured curves but serve only as a guide for the
eyes. BC =boiling curve, SC =saturation curve, Tmax =cricondentherm

Fig. 2.6. Noncongruent pressure–electrical conductivity σ diagram for T =1,350◦C
and T =1,400◦C, φ is the volume fraction of the metallic component. The conduc-
tivity of the coexisting vapor is smaller than 10−3 ohm−1 cm−1

A remarkable wiggle is observed at about a temperature of 1,088◦C. It is
obvious that a law of corresponding states is not valid.

With the knowledge of the data in Figs. 2.4, 2.5 and 2.8, it is easy to calcu-
late different properties that are effected by noncongruent evaporation. As an
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Fig. 2.7. Noncongruent temperature–electrical conductivity σ diagram for
p= 1,400 bar, φ is the volume fraction of the metallic component. The conductivity
of the coexisting vapor is smaller than 10−3 ohm−1 cm−1

Fig. 2.8. Volume fraction φ of the metallic component at BC liquid and SC liquid
conditions. φ is calculated from the measured electrical conductivity employing the
effective medium theory [35]. The dotted line is an extrapolation assuming that φ
along the BC- and SC- curves becomes equal at C.P

example, we calculate for the density of 9.45 g cm−3 at the liquid BC-branch
different derivatives

(
∂ρ

∂T

)

BC

= 0.007
g

cm3K
;
(
∂p

∂φ

)

ρ,T

= 669 bar;
(
∂φ

∂ρ

)

p,T

= −0.4
cm3

g



32 F. Hensel

Fig. 2.9. Noncongruent evaporation of liquid mercury causes a pronounced wiggle
of the diameter ρd = (ρl + ρv)/2 at a temperature of about 1,088◦C with a skewing
toward higher densities

from which we now evaluate the pressure derivative
(
∂p
∂T

)

BC,ρ
of the

9.45 g cm−3 isochore close to BC-condition permitting variation of the com-
position φ as it occurs during bubble formation and the

(
∂p
∂T

)

BC,φ,ρ
, keeping

now the composition constant (the nonequilibrium fast measurement) from
the thermodynamic relation:

(
∂p

∂T

)

BC,φ,ρ

−
(
∂p

∂T

)

BC,ρ

=
(
∂φ

∂ρ

)

p,T

(
∂p

∂φ

)

ρ,T

(
∂ρ

∂T

)

BC

.

The calculated value for this difference is about 1.85barK−1.
This value is in very close agreement with the experimentally observed re-

sult [26, 32] displayed in Fig. 2.10, which is about 1.8 barK−1. Another effect
that most probably can be explained in terms of “noncongruent” evapora-
tion is the observation of “anomalous” wiggles in the ultrasound velocity c
as a function of pressure at constant temperature or alternatively as a func-
tion of temperature at constant pressure by Kobayashi et al. [14] at BC- and
SC-condition. Figures 2.11 and 2.12 display the effect of isobaric and isother-
mal “noncongruent” evaporation for the experimentally determined adiabatic
compressibility βS = 1/ρ · c2. The p–T coordinates observed by Kobayashi
et al., for BC- and SC-conditions are included in the inset of Fig. 2.3 (the open
circles and open triangles). They are surprisingly close to the vapor pressure
curves found in [26,32].

In conclusion, we regard the experimental observations presented above as
compelling evidence that the features of the liquid mercury evaporation for



2 The Metal–Nonmetal Transition in Fluid Mercury 33

Fig. 2.10. Comparison between the measured isochoric pressure derivates(
∂p
∂T

)
BC,φ,ρ

(lower curve) and
(
∂p
∂T

)
BC,ρ

(upper curve) asymptotically close to BC.

The two curves split into two branches for densities lower than 10.7 g cm−3 (see text)

Fig. 2.11. Figure displays the effect of noncongruent evaporation at constant tem-
perature on the adiabatic compressibility βS = 1/ρ · c2 at BC- and SC-conditions

temperatures higher than 1,088◦C resemble the “noncongruent-evaporation”
discussed by Iosilevskiy and colleagues [37–39]. This phenomenon may play an
important role for many scenarios of postulated first-order phase transitions
as those of the liquid–vapor transition in the high temperature uranium-oxide
system [37], the postulated hypothetical plasma phase transition in giant
planets [41], the phase separation in complex dusty plasmas which are
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Fig. 2.12. Figure displays the effect of “noncongruent” evaporation at constant
pressure on the adiabatic compressibility βS = 1/ρ · c2 at BC- and SC-conditions.

predicted to show gas, fluid, and mixed phases of dust grains [42,43], the for-
mation of “pasta” structures in compact stars following an exotic first-order-
phase transition [44], and the exotic phase transitions in neutron stars [45–47].
To our knowledge, the postulated noncongruence of hypothetical transitions
in dense ionized systems at extreme conditions of temperature and pressure
has never before been seen experimentally. If mercury is the first example for
which the long-sought-for effect has been experimentally studied, it may serve
as a model systems for simulating the transitions mentioned above for which
the outlook for reliable measurements is unfavorable.

References

1. L. Landau, J. Zeldovich, Acta PhysicoChim. USSR 18, 194 (1943)
2. F. Hensel, W.W. Warren Jr., Fluid Metals (Princeton University Press,

Princeton, NJ, 1999)
3. H. Endo, Progr. Theor. Phys. Suppl. 72, 100 (1982)
4. N.E. Cusack, in The Metal Non-Metal Transition in Disordered Systems, ed. by

L.R. Friedmann, D.P. Tunstall, (Scottish University, Edinburgh, 1978) pp. 3
5. F. Hensel, H. Uchtmann, Ann. Rev. Phys. Chem. 40, 61 (1989)
6. V.A. Alekseev, I.T. Iakubov, Phys. Rep. 96, 1 (1983)
7. F. Hensel, Adv. Phys. 44, 3 (1995)
8. F. Hensel, Phil. Trans. Roy. Soc. Lond. 356, 97 (1998)
9. P.P. Edwards, R.L. Johnston, F. Hensel, C.N.R. Rao, P.P. Tunstall, Solid State

Phys. 52, 229 (1999)
10. F. Yonezawa, T. Ogawa, Prog. Theo. Phys. Suppl. 72, 1 (1982)
11. M. Inui, K. Matsuda, D. Ishikawa, K. Tamura, Y. Ohishi, Phys. Rev. Lett. 98,

185504 (2007)



2 The Metal–Nonmetal Transition in Fluid Mercury 35

12. M. Inui, K. Matsuda, K. Tamura, D. Ishikawa, J. Cryst. Soc. Jpn. 48, 76 (2006)
13. M. Inui, K. Matsuda, K. Tamura, SPring-8 Research Frontiers, (Springer, Japan,

2007) p. 68
14. K. Kobayashi, H. Koyikawa, Y. Hiejima, T. Hoshino, M. Yao, J. Non-cryst.

Solids 353, 3362 (2007)
15. H. Kohno, M. Yao, J. Phys. Condens. Matter 13, 10293 (2001)
16. H. Kohno, M. Yao, J. Phys. Condens. Matter 11, 5399 (1999)
17. V. Kozhevniokov, Fluid Phase Equilib. 185, 315 (2001)
18. K. Mayurama, H. Endo, H. Hoshino, F. Hensel, Phys. Rev. B. 80, 014201-1

(2009)
19. R.L. McGreevy, J.Phys. Condens. Matter 13, R877 (2001)
20. S.L. Chan, S.R. Elliott, Phys. Rev. B 43, 4423 (1991)
21. K. Tamura, S. Hosokawa, Phys. Rev. B 58, 9030 (1998)
22. G. Porod, Kolloid-Z. 124, 83 (1951)
23. W. Ruland, F. Hensel, J. of Appl. Cryst. (2009) (accepted)
24. E. Nagaev, Physics of Magnetic Semiconductors (MIR, Moscow, 1983)
25. E. Nagaev, A.I. Podelschikov, V.E. Zilbewarp, J.Phys. Condens. Matter 10,

9823 (1998)
26. W. Götzlaff, Dissertation, University of Marburg, 1988
27. F. Hensel, E.U. Franck, Ber. Bunsenges. Phys. Chem. 70, 1154 (1966)
28. I.K. Kikoin, A.R. Sechenkov, Phys. Met. Metallogr. 24, 74 (1967)
29. F.E. Neale, N.E. Cusack, J. Phys. E Sci. Instrum. 10, 609 (1977)
30. M. Yao, H. Endo, J. Phys. Soc. Jpn. 51, 966 (1982)
31. G.R. Brown, H. Meyer, Phys. Rev. A 6, 1578 (1972)
32. S.R. Hubbard, R.G. Ross, J. Phys. C Solid State Phys. 16, 6921 (1983)
33. S.R. Hubbard, R.G. Ross, Nature 295, 682 (1973)
34. J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures (Butterworth,

London, 1982)
35. M.H. Cohen, J. Jortner, Phys. Rev. Lett. 30, 695 (1973)
36. F. Hensel (to be published)
37. I. Iosilevskiy, E. Yakub, C. Ronchi. Int. J. Thermophys. 22, 1253 (2001)
38. I. Iosilevskiy, V. Gryaznov, E. Yakub, C. Ronchi, V. Fortov, Contrib. Plasma

Phys. 43, 316 (2003)
39. I. Iosilevskiy, E. Yakub, G. Hyland, C. Ronchi, Trans. Am. Nucl. Soc. 81, 122

(1999)
40. L. Cailletet, E.C. Mathias, Compt. Rendus Acad. Sci. 102, 1202 (1886)
41. D. Saumon, G. Chabrier, W.B. Hubbard, J.I. Lunine, in Strongly Coupled

Plasma Physics, ed. by M.H. van Horn, S. Ichimaru (University of Rochester
Press, USA, 1993), p. 111

42. K. Avinash, Phys. Plasma. 8, 2601 (2001)
43. G. Joyce, M. Lampe, G. Gauguli, Phys. Rev. Lett. 88, 095006 (2002)
44. T. Marujasma, T. Tatsumi, T. Endo, S. Chiba, arXiv: nucl-th/060507v2 (2006)
45. H. Heiselberg, M. Hjorth-Jensen, arXiv: astro-ph/9802028v1 (1998)
46. N.K. Glendenning, Phys. Rep. 342, 393 (2001)
47. N.K. Glendenning, Phys. Rev. C 47, 2733 (1988)



3

The Influence of Pauli Blocking Effects
on the Mott Transition in Dense Hydrogen

W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, and G. Röpke

Abstract. We investigate the effects of Pauli blocking on the properties of hydrogen
at high pressures. In this region recent experiments have shown a transition from
insulating behavior to metal-like conductivity. To describe this transition, several
effects have to be taken into account, an important one is the quantum character of
the electrons. As electron states can only be occupied once (Pauli blocking), atomic
states need more phase space than available at high densities, and bound states
disintegrate subsequently (Mott effect). We calculate the energy shifts due to Pauli
blocking and discuss the Mott effect solving an effective Schrödinger equation for
strongly correlated systems. Additionally, we include corrections due to polarization
effects. The ionization equilibrium is treated on the basis of an advanced chemical
approach based on the assumption that the system is a gas-like mixture of chemical
species. We calculate the Pauli shifts by variational methods and discuss corrections
due to polarization. Results for the ionization equilibrium in the region 5,000 <
T [K] < 15,000, 0.1 < ρ[g cm−3] < 1 are presented, where the transition from a
neutral hydrogen gas to a highly ionized plasma occurs. We show that the transition
to a highly conducting state is softer than predicted in earlier work.

3.1 Introduction

The physical properties of dense hydrogen is a topic that was raised in the past
by many authors, starting with Wigner, Huntington, Abrikosov, and others
[1, 2]. Of special interest is the transition of hydrogen to a highly conducting
phase, which is considered to be a type of Mott transition. It is well known
and will also be illustrated in this volume that the Mott transition has charac-
teristic features that are apparent for each relevant substance and also has a
variety of specific aspects. In this contribution, we study the effects of Pauli’s
exclusion principle in dense hydrogen as the simplest representative of dense
matter. Previous studies on dense hydrogen within advanced chemical models
included several hypothetical assumptions about the character of the high-
density phase [3–10]. Many questions remained open, in particular about the
nature of the highly conducting, possibly even superconducting state.
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Although metalization of solid hydrogen near T = 0K has not been clearly
verified so far for pressures of up to 300GPa [11], metallic-like features have
been observed in shock-compression experiments using a two-stage light gas
gun on fluid hydrogen and deuterium at Mbar pressures (1 Mbar=100GPa)
and finite temperatures [11–13]. Metal-like conductivities have been observed
around 140GPa and 3,000K [12]. Furthermore, significant discrepancies be-
tween the Hugoniot curves derived from laser-driven shock-wave experiments
[11, 13] and theoretical equations of state such as the Sesame tables [3] have
been found in the Mbar region where fluid hydrogen shows probably a larger
compressibility than predicted. Other very recent experiments were able to
reach that region as well and provided detailed information on the EOS and
the conductivity in the Mbar region [14]. Both findings, the transition to
metallic-like behavior and the increased compressibility, change our present
understanding of the behavior of hydrogen at ultra-high pressures. It is rel-
evant for models of planetary (see [15] and references therein) and stellar
interiors [16] as well as for inertial confinement fusion studies [17].

In the present work, we show that one of the most important effects leading
to the destruction of bound states like atoms and molecules is Pauli blocking.
Because of the Pauli exclusion effect, the free electrons in the plasma cannot
penetrate into the interior of atoms and molecules as the bound states are
already occupied by the atomic electrons. At high densities this leads to an
enormous pressure acting on the neutrals, which will finally be ionized. Several
approaches to incorporate this effect will be discussed, starting from perturba-
tion theory as well as finding variational solutions of effective wave equations,
including Pauli blocking terms. Polarization effects will be included as well.

The effective energy levels of hydrogen, which depend on density and
weakly also on temperature, are introduced into the thermodynamic functions
within the chemical picture. To calculate the ionization/dissociation equilib-
rium, we use the thermodynamic variational principle: minimization of the
free energy with respect to the composition. This approach which is in prin-
ciple equivalent to the standard method based on Saha equations has some
advantages and may lead to additional information in special cases.

Recently, we derived an expression for the free energy of dense hydrogen
[18–20] in the framework of the chemical picture. Using Saha equations, the
degree of ionization α and the degree of dissociation β as well as the isothermal
equation of state (EOS), the hugoniots and the isentropes were calculated.
Pauli blocking was taken into account by the concept of excluded volume,
which is based on the idea of space occupation by atoms and molecules. Here,
it will be shown that a more fundamental approach based on an effective
Schrödinger equation leads to important modifications of earlier results. We
show here that a more advanced treatment of Paul blocking effects, based on
effective Schrödinger equations given in Sect. 3.2, is of essential influence for
the theoretical predictions in the region of high densities. The consequences
for ionization and dissociation are discussed in Sect. 3.3, and conclusions with
respect to the general picture of a transition to highly conducting matter are
drawn in Sect. 3.4.
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3.2 Bound States in a Plasma

3.2.1 Generalized Beth–Uhlenbeck Equation

The microscopic origin of the concept of excluded volume is the Pauli prin-
ciple, which is due to the anti-symmetrization of fermionic wave functions.
One of the consequences is a contribution to the effective interaction between
composite particles and has to be taken into account if a chemical picture
is introduced. As an example, the short-range repulsion between atoms or
molecules is caused by Pauli blocking of electron orbitals having parallel spin.
We focus on the interaction between hydrogen atoms and free electrons. In
most of earlier work, the concept of excluded volume in coordinate space has
been applied to treat that problem [5, 8–10, 18–20]. Here, we present a mi-
croscopic treatment based on the underlying Pauli exclusion principle. The
extension to effective interactions between other components of the chemical
picture is straightforward, but will not be studied here.

A systematic quantum statistical approach to the equation of state can
be given based on the self-energy Σc and the related spectral function Ac

(c = e, p), starting, for example, from the normalization condition for the
total density of the elementary constituents in terms of the spectral function

nc(β, μe, μp) =
1
Ω

∑

1

∫ ∞

−∞

dω
2π

fc(ω)Ac(1, ω), (3.1)

where 1 = {p1, σ1} denotes momentum and spin, fc(ω) = [exp(βω − βμc) +
1]−1 is the Fermi distribution function. We take periodic boundary conditions
with respect to the normalization volume Ω, leading to discrete values of the
momentum p, and the transition from the sum to an integral can be performed
as usual in quantum statistics. The spectral function

Ac(1, ω) =
2ImΣc(1, ω − i0)

(ω − p2
1/2mc − Σc(1, ω))2 + (Im Σc(1, ω − i0))2

(3.2)

is related to the self-energy Σc(1, z) defined in the complex z plane. This way,
approximations in the equation of state are traced back to approximations for
the self-energy, which can be evaluated at the complex Matsubara frequencies
using diagram techniques. Note that thermodynamic potentials are obtained
from the equation of state (3.1) by relations such as an expression for the
pressure p and the free energy density f .

p(T, μ) =
∫ μ

−∞
n(β, μ′) dμ′, f(T, n) =

∫ n

0

μ(β, n′)dn′. (3.3)

The chemical picture is rederived if a cluster expansion of the self-energy is
performed and the bound-state parts of the few-particle T-matrices occurring
in this cluster expansion are taken into account [8]. On the other hand, the
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low-density expansion of the equation of state is obtained if the two-particle
contributions to the self-energy are considered, which in general will contain
two-particle bound and scattering states. As long as ImΣc(1, ω − i0) can
be considered as small quantity, an expansion for the spectral function can be
performed, which gives in addition to the quasiparticle δ-like structure also
the contribution from the two-particle states. This way, the Beth–Uhlenbeck
formula [21] is derived, which provides an exact expression for the second
virial coefficient in terms of the two-particle bound state energy and phase
shifts.

Our starting point is the generalized Beth–Uhlenbeck formula [5, 21, 22],
which relates the densities of the constituent particles in the physical picture
to the chemical potentials, but includes medium effects on the mean-field level.
In particular, we have for the total electron density with given spin orientation
(we mark the spin orientation explicitly, but assume full degeneracy so that
n↑

e = n↓
e = ne/2)

n↑
e(β, μe, μp) =

1
Ω

∑

p

fe(Eqp(p)) +
2
Ω

bound∑

P,n

gep(EP,n)

+
2
Ω

∑

P,n

∫
dE
π
gep

(
P 2

2mp
+ E

)
d

dE

{
δP,n(E)− 1

2
sin[2δP,n(E)]

}
, (3.4)

where fe(Eqp(p)) is the Fermi distribution of electrons with the quasiparticle
dispersion relation Eqp(p) = p2/(2me) + ReΣe(p,Eqp(p)) and gep(EP,n) =
[exp(β(EP,n − μe − μp)) − 1]−1 denotes the Bose function for the electron–
proton states with total momentum P and internal quantum number n. The
spin degrees of freedom are treated explicitly. Disregarding hyperfine splitting
into singlet and triplet states, the summation over the spin of the proton gives
the factor 2. In general, also the electron–electron interaction channel should
be considered, which contributes to the scattering part of the second virial
coefficient. In contrast to the simple Beth–Uhlenbeck formula, the free single-
particle energy dispersion relation is replaced by the quasiparticle dispersion
relation. The two-particle bound state energies EP,n and scattering phase
shifts δP,n(E) contain medium effects to be discussed in the following subsec-
tion. The contribution sin[2δP,n(E)] avoids double counting of contributions,
which are already taken into account in the quasiparticle shift.

3.2.2 Effective Schrödinger Equation of Pairs

In the following we use Rydberg units with me/mp � 1,me = 1/2, h̄ =
1, e2/4πε0 = 2, so that the binding energies of the isolated hydrogen atom
are simply E0

P,n = P 2/2mp + E0
n, with E0

n = −1/n2, solving the ordinary
Schrödinger equation in momentum representation for the electron–proton
system after separating the center of mass motion
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p2φn(p)−
∑

q

V (q)φn(p+ q) = E0
nφn(p). (3.5)

With the Coulomb interaction V (q) = 8π/q2, we have the normalized wave
function for the ground state

φ1(p) =
8
√
π

(1 + p2)2
,

∑

p

|φ1(p)|2 =
∫

d3p

(2π)3
|φ1(p)|2 = 1. (3.6)

In accordance with the normalization conditions, (3.1) and (3.4), which re-
lates the density with the chemical potential, we have to consider a discrete
spectrum in momentum space and transform the summation into an integral,
and the periodicity volume is taken as Ω = 1.

Embedding the hydrogen atom in a plasma environment, the additional
interactions with the medium can be treated within a quantum statistical
approach introducing concepts such as the self-energy, dynamical screening,
and the spectral function given above. For these many-body quantities, spe-
cial approximations can be performed, which reflect different processes in the
plasma. This way, an effective wave equation has been derived [8, 23, 24],

p2ψn(p)−
∑

q

V (q)ψn(p+ q) +
∑

q

Hpl(q)ψn(p+ q) = Enψn(p). (3.7)

The center of mass motion P has been neglected, assuming the adiabatic
limit me/mp � 1. In general, the plasma Hamiltonian Hpl(q) will depend
also on P and on the energy if dynamical and retardation effects are taken
into account. The plasma Hamiltonian will shift the energy eigen values En =
E0
n+ΔEn and will modify the wave functions ψn(p). In particular, because of

the plasma interaction, the binding energies may merge with the continuum
so that the bound states disappear, if the influence of the plasma increases
with increasing density. This dissolution of bound states is called Mott effect
and has important consequences for the macroscopic properties of the plasma.

We select special contributions to the plasma Hamiltonian, which will mod-
ify the bound state properties:

Hpl(q) = HHartree +HFock +HPauli +HMW +HDebye +Hpolpot +HvdW + . . . .
(3.8)

The first three contributions are of first order with respect to the interac-
tion and determine the mean-field approximation, which is instantaneous in
time and contains no dynamic contributions:

∑

q

[
HHartree(q) +HFock(q) +HPauli(q)

]
ψn(p+ q)

=
∑

p′
V (0)[2fe(p′)− 2fi(p′)]ψn(p)−

∑

p′
V (p′ − p)fe(p′)ψn(p)

+
∑

p′
V (p′ − p)fe(p)ψn(p′). (3.9)
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These contributions are of similar structure and have to be considered si-
multaneously in consistent approximations. Notice that the electron–electron
interaction is repulsive (V (q)), and the electron–ion interaction is attractive
(−V (q)). The Hartree term contains the factor 2 due to spin summation (for
abbreviation, only the momentum is given in the Fermi distribution). This
contribution vanishes for neutral plasmas where the densities nc =

∑
p′ 2fc(p′)

compensate each other. The Fock term as well as the Pauli blocking term de-
scribe exchange terms and refer only to the interaction between particles of
identical species and spin. The origin of the Pauli blocking term is the phase
space occupation by free electrons according to the distribution function fe(p).
This phase space cannot be used to form a bound state so that in the atom
the interaction of the electron with the ion is blocked when the final state is
already occupied by a free electron with same spin orientation.

The following two terms of the plasma Hamiltonian are the Montroll–
Ward term giving the dynamical screening of the interaction in the self-energy
and the dynamical screening (Debye) of the interaction between the bound
particles. These contributions are related to the polarization function and
are of particular interest for plasmas due to the long-range character of the
Coulomb interaction. In a consistent description, both terms should be treated
simultaneously. We will not discuss these terms here in detail, see also [8, 23,
24], and give only some simple estimations below.

The last two contributions to the plasma Hamiltonian are of second or-
der with respect to the interaction. The polarization potential describes the
interaction of bound states with free charge carriers, and the van der Waals
contribution is due to the interaction between bound states, see [8, 25]. Here,
we will not discuss these terms in detail and give only some simple estimations
below.

3.2.3 Evaluation of the Mean-Field Energy Shift
of Bound States: Perturbation Theory

We first focus on the influence of the mean-field contributions to the effective
Schrödinger equation of pairs,

Enψn(p) = p2ψn(p)−
∑

q

V (q)ψn(p+ q)

+
∑

q

V (q) [fe(p)ψn(p+ q)− fe(p+ q)ψn(p)] . (3.10)

When the perturbation due to the plasma Hamiltonian is small, the shift
of the energy eigen values is obtained with the unperturbed wave functions as

En − E0
n = ΔEFock

n + ΔEPauli
n

= −
∑

p,p′
φ∗n(p)V (p′ − p)fe(p′)φn(p) +

∑

p,p′
φ∗n(p)V (p′ − p)fe(p)φn(p′). (3.11)
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Here, inserting the Schrödinger equation, the Pauli blocking term can be
rewritten as

ΔEPauli
n =

∑

p

φ∗n(p)(p2 − E0
n)fe(p)φn(p). (3.12)

A simple expression is found in the low-temperature, low-density limit,
where the Fermi distribution with the normalization

∑
p fe(p) = ne/2 is con-

centrated near p = 0. In the zero temperature limit, we have a Fermi sphere
with Fermi momentum pF = (3π2ne)1/3 � 1. The shift of the ground state
φ1(p), (3.6), results as

ΔEPauli
1 =

1
2
ne (−E0

1) |φ1(0)|2. (3.13)

Using Rydberg units, the dimensionless density of free electrons ne is given
in units of a3

B, and the ground state energy is E0
1 = −1. The Pauli blocking

shift is linear in the density

ΔEPauli
1 = 32πne. (3.14)

Similarly, the Fock term can be evaluated as

ΔEFock
1 = −128

∫ ∞

0

dp
1

(1 + p2)4
= −20πne. (3.15)

It compensates partially the Pauli shift so that the total shift is

ΔEFock
1 + ΔEPauli

1 = 12πne, (3.16)

which is shown in Fig. 3.1 as dashed–dotted line, indicating a rather steep
shift of the bound state energy.

Because of phase space occupation, the bound state energy is shifted and
may merge with the continuum of scattering states, indicating the dissolution
of bound states. Considering in (3.10) the continuum part of the spectrum
describing scattering states, only the Fock shift contributes to the energy
shift. The lowest energy in the continuum occurs at p = 0 and is shifted by
ΔEFock(p = 0) = −

∑
q V (q)fe(q) = −4pF/π = −4(3ne/π)1/3. However, the

two-particle continuum state can only be created at the Fermi momentum
as all states below pF are occupied. Thus the continuum of scattering states
begins at pF where we have in the zero temperature limit the Fock shift

ΔEFock(pF) = −
∑

p

V (p− pF)fe(p) = −2pF/π = −2(3/π)1/3n1/3
e (3.17)

shown also in Fig. 3.1.
Extrapolating these low-density results to higher densities, the ground

state disappears at a density that corresponds in first approximation to ne �
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Fig. 3.1. Density dependence of the effective energy of the ground state of hy-
drogen, low-temperature estimate (dashed–dotted line) according to (3.16) in com-
parison with the confined atom estimate (dotted line). The full line corresponds to
the variational approach. We have shown also the lowering of the continuum edge
according to (3.17) (dashed line)

0.015a−3
B = 1023 cm−3. This leads to an average distance of r0 � 2aB and is

below the Mott criterion. The Mott condition

r0 � aB,
4π
3
ner

3
0 = 1 (3.18)

expresses the idea that atoms are destroyed if the mean distance of the elec-
trons is equal or smaller than the Bohr radius.

We can also give another discussion of the Mott criterion, which is based on
an alternative estimate of the binding energy shift. To compare our expression
for the shift, we may take, for example, the confined atom model [8, 26, 27],
which assumes that the atom is embedded into a hard sphere with radius r0.
This assumption is based on the idea that the electrons form a kind of hard
wall around the atom. In first approximation, this theory gives the shift (in
Rydberg units)

ΔEca
1 = π2r−2

0 . (3.19)

Correspondingly, the energy would disappear at r0 � 3aB, that is, already at a
much smaller density (see also Fig. 3.1). Better estimates based on numerical
solutions of the Schrödinger equation give a value of about r0 � 2aB. Our first
estimate is of same order.

The confined atom model is closely related to the concept of excluded
volume, which assumes for each of the components a particular volume that
is not available for the other particles of the same species, so that the Pauli
blocking mechanism is introduced in an elementary way. At the same time,
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we also have a shift of the free electron energies due to the Pauli blocking by
electrons bound in atoms. Within the cluster mean-field approximation [8,28]
these shifts are given by self-energy shift due to bound states

ΔEPauli bl.
free electr.(p) =

∑

2,3

V (12, 12)|exg(E1)|ψ1(2, 3)|2

−
∑

2,1′,2′
g(E1)V (12, 1′2′)ψ1(12)ψ∗

1(1′2′). (3.20)

The Hartree contributions vanish because of charge neutrality, but the ex-
change contributions produce a shift of the single-electron energies.

It is possible to evaluate the Pauli blocking shift of the bound states for
arbitrary temperatures within perturbation theory. In the general case of ar-
bitrary temperatures and densities, the Fermi function cannot be simplified
and we have to evaluate the full integral numerically

ΔEPauli
1 =

32
π

∫ ∞

0

dp
p2

(1 + p2)3
fe(p). (3.21)

If we approximate the Fermi distribution by a Boltzmann distribution nor-
malized to the same density, we obtain an analytical expression

ΔEPauli
1 ≈ 32πneG(T/T0), (3.22)

where the function G(T/T0) expressing the temperature-dependence is
given by

G(x) =
1

x7/2

[√
x
(
1 +

x

2

)
−
√
π

(
1− x− x2

4

)
exp

(
1
x

)(
1− Erf

[
1√
x

])]

� 1
1 + 77 x/16

. (3.23)

Here T0 = 1 Ryd/kB = 157, 886K is the ionization temperature. In the asymp-
totic approximation T/T0 � 1 (i.e., for temperatures below 20,000K where
G(x) � 1) this leads back to the zero temperature expression for the shift
given above. A similar expression can also be given for the Fock term.

3.2.4 Evaluation of the Mean-Field Energy Shift
of Bound States: Variational Approach

According to our estimate, the effective binding energy would disappear at
ne � 0.01a−3

B . This is clearly too early, that is, at too low densities. The reason
is that perturbation theory tends to overestimate effects, that is, the shifts
are rather steep and the extrapolation up to the Mott density is questionable.
For the evaluation of the bound state energy over a large region of density
and temperature, we have to modify the wave function that will be performed
within a variational approach.
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In particular, we are interested in the Mott effect, describing the disso-
lution of the bound state at increasing density when the bound state en-
ergy merges with the continuum of scattering states. The Fock shift acts
for free states and bound states. We assume that the wave function changes
smoothly from the bound state to the continuum state near the Mott density.
Consequently, the Fock shift of the bound state and the continuum states
become identical there, and the bound state wave function becomes indistin-
guishable from the continuum states. Then, the binding energy, which is the
difference between the bound state energy and the continuum of scattering
states, is not depending on the Fock shift near the Mott density. To obtain
the Mott density, we can restrict us first to the Pauli blocking contribution.

To apply the Ritz variational approach, we have to symmetrize the
Hamiltonian in the effective wave equation (3.24) introducing the function
Ψn(p) = ψn(p)[1 − fe(p)]−1/2

[p2 +ΔFock
free electr.(p)]Ψn(p)−

∑

p′
[1− fe(p)]1/2V (p− p′)[1− fe(p′)]1/2Ψn(p′)

= EnΨn(p). (3.24)

We consider the zero temperature case and use the ansatz corresponding to a
variable Bohr radius,

Ψ0(p;α) =
8π1/2

α3/2

(
1 +

p2

α2

)−2

. (3.25)

In a more refined approach we take into account that no states below the
Fermi momentum are available to build the bound state,

Ψ(p;α) =
1
N

1
(1 + p2/α2)2

Θ(p− pF). (3.26)

Here α is a parameter that characterizes the occupation in the momentum
space. Our ansatz gives the ground state energy including the Pauli shift in
the zero temperature limit. With f = pF/α, the energy is calculated as the
sum of kinetic and potential energy,

E(pF, α) = α2
[
1 + 32 f3/N1

]
− 6α(Z1 + Z2)/N2

N1 = π
[
2f(3− 8f2 − 3f4) + 3(1 + f2)3π − 6(1 + f2)3 arctan(f)

]
,

Z1 = (1 + f2)[(1 + f2)2π2 − 4f(f2 − 1)π + 4f2],
Z2 = (1 + f2){4 arctan(f)[2f(f2 − 1)− (1 + f2)2π + (1 + f2)2 arctan(f)]},
N2 = π[3π(1 + f2)3 − 6(1 + f2)3 arctan(f) + 2f(3− 8f2 − 3f4)]. (3.27)

For given pF = (3π3ne)1/3, the minimum with respect to α yields an es-
timate for the ground state energy. As self-energy shifts are irrelevant for
the Mott condition, the bound states are dissolved when the ground state
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energy becomes zero. The evaluation of the binding energy (3.27) gives for
the Mott condition ne = 0.033, α = 0.77. The variational ansatz (3.26) can
be improved with Ψ(p;α) = N−1(1 + (p − pF)2/α2)−2Θ(p − pF) which gives
a better transition to the continuum states.

For exploratory calculations, we take the wave function (3.25) and change
the parameter α. First we estimate the energy shifts by the wave function
at zero momentum as in perturbation theory in the zero temperature, low
density case, which gives for the ground state energy

E1 ≈ min
α

E1(α) = min
α

(α2 − 2α+ [4π + (128/3)]ne/α
2). (3.28)

The shift of energy is in good agreement with the result obtained from (3.27).
As examples we show the energy curves for ne = 0, ne = 0.005a−3

B , and
ne = 0.0305a−3

B in Fig. 3.2, the latter density corresponding just to the disap-
pearance of the ground state energy. The shift of the binding energy as func-
tion of the density is also shown in Fig. 3.1. Within a better approximation,
we take the Fermi function in the zero temperature limit, fe(p) = Θ(pF − p),
and evaluate the Pauli blocking shift integrating over the wave function
Ψ0(p;α),

0 0.5 1 1.5 2 2.5
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R
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Fig. 3.2. Parameter dependence of the effective energy of the ground state including
shifts in Boltzmann approximation, calculated in variational approach, for different
electron densities. The minima correspond to the appropriate values of α. The zero
density corresponds to an isolated hydrogen atom. At the intermediate density, the
variational approach is already much lower than the perturbation theory (dashed
line). The highest density corresponds to situation where – within the present ap-
proximation – the ground state merges into the continuum
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ΔEPauli
1 ≈ 4π

(2π)3

∫ pF

0

dpp2

[
p2

α2
+ 1

]
ψ2

0(p)

=
4α2

π

⎡

⎢⎣
pF
α

(
p2F
α2 − 1

)

(
1 + p2F

α2

)2 + arctan
(pF

α

)
⎤

⎥⎦ , (3.29)

with the Fermi momentum pF
3 = 3π2n∗

e (all momenta are given in Rydberg
units).

We can also calculate the temperature dependence of the Pauli blocking
term. For this, we have to replace the zero-temperature Fermi function in the
interaction term by the finite temperature distribution. It can be seen that
the temperature dependence of the Pauli blocking term becomes week. Even
within the variational approach, the densities where the energy levels dis-
appear and consequently full ionization occurs are evidently still too low to
explain the observed effects.

3.2.5 Evaluation of the Mean-Field Energy Shift
of Bound States Including the Fock Term

The Fock term occurs in the Bethe–Salpeter equation as mean-field contri-
bution and is of the same order as the Pauli blocking term. Even if the Fock
term is not of primary importance for the disappearance of the bound state
energy, it has to be included in the total shift of bound and scattering states
to be consistent (so-called conserving approximations). Within perturbation
theory, in the zero temperature limit, we get after some transformations the
integral

ΔEFock
1 = −64

π2

∫ ∞

0

p dp
(1 + p2)4

∫ pF

0

k dk ln
(p+ k)
|p− k|

= −64
π2

∫ ∞

0

p dp
(1 + p2)4

[
pfp+

1
2
(p2

F − p2) ln
(p+ pF)
|p− pF|

]

= − 4
3π
p3
F

5 + 3p2
F

(1 + p2
F)2

, (3.30)

which reproduces in the low-density limit the value (−20πne) given above in
(3.15).

By summing up the linear Pauli and Fock contributions to the density
expansion of the shift of bound states, we find in the low-density limit a
positive term as shown above. Assuming that the temperature dependence
of the Fock shift is the same as that for the Pauli shift, we may define a
temperature dependent coefficient of the linear shifts by

ΔElin
1 � a′(T )ne with a′(T ) = 12πG

(
T

T0

)
. (3.31)
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For convenience of the numerical procedure in the later variational calcula-
tions of the free energy, we constructed an interpolation formula between the
Boltzmann and the zero temperature limits, (3.29) and (3.30), by taking into
account some points of numerical evaluations. We took the basic structure of
the asymptotes given by (3.29) and (3.30) and made a minimum of changes to
get the right steepness at ne = 0. As a result, we are proposing for the Pauli
shift the interpolation formula

ΔEPauli
1 =

4
π

[
pF(c(T )p2

F − 1)
(1 + c(T )p2

F)(1 + p2
F)

+ arctan(pF)
]
. (3.32)

This is nearly identical to the asymptotic representation, except that we had
to introduce a fit function

c(T ) =
1
3

(G(T )− 1) (3.33)

to provide the correct steepness at small densities. The Fock term is less easy.
Following the same strategy as above, we derive the interpolation formula

ΔEFock
1 = −20π

g
ln

(
1 + gne + kn2

e + ln3
e

)
(3.34)

with the fit parameters g = 261.65, k = 60,000, and l = 334,369.
A comparison of the density dependence according to the interpolations

introduced above with numerical estimates of the integrals is shown in Fig. 3.3
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Fig. 3.3. Results for the Pauli shift (full lines, stars) and the Fock shift (dashed
lines, diamonds) for the temperature T = 5,000 K. The interpolation formulae, based
on the asymptotic representations and the numerical evaluations (stars, diamonds),
are shown in comparison to the Boltzmann approximation (the cone defined by the
outer straight lines)
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for T = 5,000K. We see that the agreement with the data is for this temper-
ature quite reasonable. We mention that the temperature dependence in the
region of interest 5,000 < T [K] < 15,000 is quite weak.

3.2.6 Discussion of Further Contributions to the Shift

The remaining shifts are smaller and will be discussed here only qualitatively
on the basis of the data from literature. Let us first discuss the shifts con-
nected with screening effects. As known for the ground state of hydrogen, the
shifts due to screening in the self-energy and in the effective interaction com-
pensate in the leading order n1/2

e of density, in contrast to the scattering states
where only the self-energy acts. A detailed discussion of the contributions of
dynamical screening HMW(q) + HDebye(q) to the plasma Hamiltonian (3.8)
has been given elsewhere, see [23, 29]. From the Bethe–Salpeter equation, we
find by using perturbation theory

Δscr
1 � −(Z − 1)2

e2

2rD
−Bne + ·, (3.35)

where rD is the Debye screening radius. For hydrogen the first term propor-
tional to the root of the density disappears as Z = 1. These terms are rather
complicated and not completely known analytically up to now. This may
change in higher orders: it is known that the ground state energy decreases
slightly with the density. Inspecting the illustrations in [8], we find approx-
imately B � 20–30 for all shifts together. The more recent calculations by
Arndt et al. [30] which include dynamical effects give a smaller value B � 10
for the sum of all shifts. However, no specific results on the Pauli and Fock
shifts are given in these studies. Therefore, a more detailed comparison is dif-
ficult at present time. We rely on our own calculations and neglect here the
screening shifts. However, the shifts due to screening might be of the same
order as the shift due to polarization.

In a similar way as we have calculated the shifts discussed above, we may
also calculate the shift due to polarization of the atoms by free charges [25].
Within a semiclassical approach neglecting degeneracy we have in Rydberg
units

ΔEpolpot
1 = −27

2
ne

Rae

1
1 + f2

1 (Rae/rD)2
, (3.36)

where Rae is an effective minimal electron–atom distance and κ = 1/rD with a
numerical factor f1. As an estimate we use f1 = 2/3. The shift due to polariza-
tion effects, expressed by (3.36), leads to negative contributions to the energy
shifts and correspondingly to the free energy density. According to these esti-
mates, the contributions due to polarization might reduce the Pauli blocking
and Fock effects by about 20%. However, the Pauli blocking shift remains the
largest among all shifts. Therefore, we assume in the following that the Pauli
blocking shift determines the temperature and the density dependence.
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Fig. 3.4. Dependence of the total energy shift of the ground state of hydrogen
including Pauli and Fock contributions, according to (3.31), on the electron density
ne. The interpolation formula (full line) connects several points from the numerical
evaluation (stars)

In conclusion, we may say that in the region of interest the low-density
limits of the Pauli blocking and the Fock contribution are of special relevance.
We take both dominant terms into account. The polarization term that might
give a correction of about 20%, in the worst case scenario, was neglected in
the following calculations of the ionization equilibrium. The self-energy and
screening shifts (the terms proportional to V eff − V in the effective wave
equation), which might give additional corrections of about 10%, were also
neglected here. Another correction that possibly may shift the Mott density
to higher values is the improvement of the mean-field approximation, including
T-matrix contributions to the self-energy. Correlations between the atom and
the free electrons will reduce the Pauli blocking term.

3.3 Thermodynamic Functions and Ionization
Equilibrium of Hydrogen

3.3.1 The Chemical Picture

We construct the thermodynamic functions of hydrogen by using a chemi-
cal approach to the free energy, which recently was applied to temperatures
between 2,000 and 10,000K [18,19]. The effects of pressure dissociation, H2 ⇀↽
2H, and ionization, H ⇀↽ e + p, are taken into account so that the transition
from a molecular fluid at low temperatures and pressures through a partly
dissociated, warm fluid at medium temperatures of some thousand Kelvin to
a fully ionized, hot plasma above 10, 000K can be explained.
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Before we start with a discussion of the various contributions to the free
energy F (T, V,N), we have to say that any splitting of F is conditional. De-
pending on the picture we use, the contributions may change, but the total
free energy F should be invariant with respect to all possible models. Because
of the strong statement, we have to make sure that no physical effect, includ-
ing in particular the Pauli effects which we want to study here, should be
accounted for twice. We check this very carefully.

In a chemical picture, hydrogen consists basically of two main components,
the plasma (electrons and protons) and the neutral fluid consisting of compos-
ite particles or bound states (atoms and molecules). Correspondingly, the free
energy expression for a two-component system of neutral (Fnl) and charged
particles (Fpl) reads

F (V, T,N) = Fbs + Fnl + Fpl + Fint. (3.37)

The bound state contribution will be written here in the form

Fbs = N∗
aE

a
0 +N∗

mE
m
0 +N∗

akBT lnσ′(T ) +N∗
m lnσ′

m(T ), (3.38)

where the reduced atomic partition function of Brillouin–Planck–Larkin (ex-
cluding the ground state) is given by

σ′(T ) = 4 exp(βEa0 )
∑

n>0

[exp(−βEn)− 1 + βEn] . (3.39)

The molecular partition function has been discussed elsewhere [18]. Beyond
the bound state contributions, we have the usual free energy contributions
of the neutral gas Fnl and the plasma Fpl. The latter contributions are split
into an ideal and an interaction part and finally we have a contribution of
the interactions between the neutrals and the charges Fint. We remark that
the splitting into different terms is conditional within the chemical picture.
We have some freedom in splitting, but in any case double counting of con-
tributions has to be strictly avoided.

Basically, we concentrate here on the contributions of the energy shifts.
We approximate the shift of the atomic levels by the sum of Pauli–Fock terms
and polarization terms

ΔEa0 = ΔEPauli−Fock
0 + ΔEpolpot

0 . (3.40)

We assume that molecules are simply composites of two atoms, that is, the
shifts are additive:

ΔEm0 = 2ΔEa0 . (3.41)

Concentrating in this work on the influence of the atomic shifts, we will not
go into the details of the other contributions due to the neutrals and the
charged particles to the free energy, just making a few remarks. The plasma
term combines several results for the fully ionized plasma domain in the form
of a Padé approximation [6, 7, 31].
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The neutral gas contribution is given by expressions based on improved data
for the dense, neutral fluid calculated within a dissociation model [32, 33]. In
earlier work, we have performed classical Monte Carlo simulations for partially
dissociated, fluid hydrogen for a grid of temperature and density points in the
region of T = (2 − 10) × 103 K and � = (0.2 − 1.1) g cm−3. Effective pair
potentials of the exponential-6 form have been used to model the interactions
between the molecules and the atoms in the dense fluid. The dissociation
equilibrium H2 ⇀↽ 2 H has been solved taking into account the correlation
parts of the chemical potentials using fluid variational theory. The Monte
Carlo data for the interaction contribution can be interpolated accurately
within an eight-parameter fit with respect to density and temperature, leading
to an analytical expression for the free-energy density, see [18, 19, 34]. The
resulting pressure of the neutral component may be presented as

pnl =
1
2
(1 + β)nkBT + pint. (3.42)

Here n is the total proton density and β is the degree of dissociation of
molecules into atoms. The interaction part can be fitted by the following
polynom [19],

pint[GPa] = ρ2[2055− 2469ρ2 + 547.2ρ3 − 3.351
√
T + 3.882ρ

√
T ]

+ ρ2 ln ρ[688.2 + 2395ρ− 1.986
√
T ], (3.43)

where the temperature is given in K and the density in g cm−3, the pres-
sure is given in GPa. The free energy follows by integration. The degree of
dissociation is obtained by solving the (ideal) mass action law, which reads

β =
1

nKm

[
(1− 4nKm)1/2 − 1

]
, (3.44)

where Km is the mass action constant of the atom–molecule equilibrium. As
the fit (3.43) is quite soft, we have used the Carnahan–Starling expression for
hard spheres [35] at temperatures higher than 15,000K, with a soft transition
from the soft fit (3.43) to the relatively hard Carnahan–Starling expression.

The plasma contributions consist also of an ideal and an interaction term.
For example, we have for the free energy

Fpl = Fpl,id + Fpl,int. (3.45)

Taking full account of Pauli blocking effects, we write for the ideal term

Fpl,id(V, T,N) = NekBTz

(
NeΛ

3
e

2V ∗

)
. (3.46)

Here V ∗ is the volume available for the electrons. Basically, considering no
excluded volume effects, this is the total volume of the system, that is, V ∗ = V .
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Further, z(y) is the Fermi degeneracy function, which we approximate by a
formula constructed by Zimmermann [36]

z(y) = ln y − 1 + 0.1768y− 0.00165y2 + 0.000031y3, if y < 5.5, (3.47)
z(y) = 0.7254y2/3 − 2.0409y−2/3 + 0.85y−2, if y > 5.5. (3.48)

The interaction part of the plasma component is represented by the standard
Padé approximations developed in earlier work [6, 7, 31, 36]. We have calcu-
lated the chemical equilibrium between the charges and the neutrals (atoms
and molecules) by means of a numerical variational procedure based on direct
minimization of the free energy. We have used a program based on MATH-
EMATICA, which was presented in [37]. We show that Pauli blocking has a
strong influence on the thermodynamic properties. The present study is based
on the energy shifts, which is an alternative approach to the excluded volume
concept used in earlier work [18].

3.3.2 The Ionization Equilibrium

We consider a hydrogen plasma at fixed temperature T and proton den-
sity n. We take into account ionization H ⇀↽ p + e and dissociation processes
H2 ⇀↽ 2H. For simplicity, the formation of other species such as H+

2 and H−

will be neglected. The degrees of ionization and dissociation are defined by
the following expressions [18]:

α =
ni

ni + na + 2nm
,

βd =
na

na + 2nm
, βa =

na

ni + na + 2nm
, βm =

2nm

ni + na + 2nm
. (3.49)

The free energy has to be minimized with respect to these parameters within
a variational procedure. We note that βd is the degree of dissociation of
molecules into atoms, βa is the relative amount of protons bound in atoms,
and βm is the relative amount bound in molecules. Because of the balance
relation for the total proton density

n = ni + na + 2nm, (3.50)

we find the useful relations

βa = α(1 − βd), βm = (1− α)(1 − βd), βd =
βa

βa + βm
. (3.51)

In other words, only one of the parameters β is independent. We prefer here
to use α and βm and will make use of the simplex relation, α+βa +βm = 1. It
can be shown that atoms appear only in a rather narrow region of the density–
temperature plane. In large regions of the density–temperature plane we can
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assume βa = 0, so that α remains as the only free parameter. The condition
of neutrality requires that electron and ion densities are always equal, that is,
ne = ni = n.

We introduce the free energy per proton measured in units of kBT by

φ (T, n;x, y) =
F

kBTNp
. (3.52)

This basic quantity depends only on four independent parameters: tempera-
ture T and density n are given; the variational parameters are the degrees of
ionization and dissociation. We denote from now on the degree of ionization
by x and the degree of dissociation by y. The equilibrium composition follows
from the minimization procedure

δφ

δx
= 0,

δφ

δy
= 0, (3.53)

which yields the real degrees of ionization and dissociation

α = xmin, βk = ymin. (3.54)

Here βk stands for one of the three dissociation parameters introduced earlier,
and we are free in this choice. The density dependence of the degrees is repre-
sented in Fig. 3.5. We mention that the function φ (n, T ;x, y) provides us not
only with the physical value of the degrees that correspond to the minima,
but also with a dispersion around the minima [37] based on Onsager-type
relations.

We calculated the chemical equilibrium by means of a numerical varia-
tional procedure based on direct minimization of the free energy. The cal-
culus based on MATHEMATICA was first presented in [37]. We prefer here
the minimization of the free energy in comparison with the Saha approach
because of several numerical advantages. The results of the two approaches
(minimization and Saha approach) are similar in qualitative respect but differ
in details. Saha equations are a more explicit formulation of the minimum
condition. The Saha equation finds one concrete minimum located inside the
corner of the ionization/dissociation degrees. Minima at the boundaries, say
α = 1 or β = 0, cannot be found. The direct minimization of the free en-
ergy used here finds all existing minima, including multiple minima and those
at the boundaries. Further we mention that the iterative solution of Saha
equations, which are highly nonlinear, may lead to serious numerical insta-
bilities and convergence to spurious solutions. In particular, these difficulties
may appear if the Saha equation contains mixed nonlinearities with respect
to electronic and atomic densities in the exponent. Just this is the case for our
Pauli blocking effects. Therefore, we may consider the direct minimization of
the free energy as a more reliable method. It provides more information and
contains the solutions of the Saha equation as special cases.
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Fig. 3.5. Degree of ionization and degree of dissociation for temperatures T of
5,000 K (top), 10,000 K (middle), and 15,000 K (bottom) as function of the total
proton density (taking into account the energy shifts from Sect. 1 and Padé approx-
imation without polarization)
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Fig. 3.6. Degree of free protons and of protons bound in molecules at T = 10,000 K
for the transition region of the density. The percentage of protons bound in atoms
follows as the difference to 1 (simplex condition)

The transition density is between 1023 and 1024 protons cm−3. This means
that we are in the region around 0.5 g cm−3 for hydrogen and 1.0 g cm−3 for
deuterium. At 5,000K the transition occurs in the region of density around
n = 3.0 × 1023 cm−3. To illustrate what happens during this transition, we
have shown the behavior of α and βa (percentage of protons bound in atoms)
in Fig. 3.6. We see that the transition to full ionization is rather soft.

In principle, all thermodynamic functions may be calculated from the free
energy (3.37) by standard thermodynamic relations. For instance, the pressure
(isothermal EOS) and the entropy follow from

p(T,N/V ) = −∂F (V, T,N)
∂V

, (3.55)

S(T, V,N) = −∂F (V, T,N)
∂T

. (3.56)

Combining these two expressions we may get the usual EOS p = p(ρ, T )
as well as the isentropic (adiabatic) EOS p = p(s, T ), where ρ is the total
mass density and s = S/NkB the specific entropy per proton (N = Np –
total number of protons in the plasma including the protons bound in H and
in H2). In earlier work, we have calculated the isentropic EOS based on the
chemical picture [34, 38].
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3.4 Discussion and Conclusions

We contribute here to the theory of hydrogen at high pressures in the region
where a Mott transition has been predicted and where recent experiments
have shown a transition from insulating behavior to metal-like conductivity
[39–48]. To understand this transition, several effects have to be taken into
account. We concentrated here on so-called Pauli blocking effects expressing
the rule that states occupied by atomic electrons cannot be occupied by free
electrons with the same spin direction. This leads at high electron densities
to the destruction of atomic states, which need a relatively high amount of
phase space. We calculated the energy shifts due to Pauli and Fock effects.
On this basis we discuss the Mott transition by solving effective Schrödinger
equations for strongly correlated systems.

The ionization and dissociation equilibria are treated within an advanced
chemical approach based on the assumption that the system is a gaseous
mixture of chemical species. The theory for the components is based on ex-
pressions for the free energy developed recently to determine Hugoniot curves
and isentropes in dense hydrogen plasmas in the regions of partial dissoci-
ation and partial ionization. We have shown here that the effects resulting
from the Pauli exclusion of electrons from the interior of atoms has a major
influence in the high pressure region. We presented explicit calculations of the
ionization and dissociation equilibria in the region 5,000 < T [K] < 15,000,
0.1 < ρ[g cm−3] < 1. At higher temperatures we observe a transition from a
neutral hydrogen gas to a highly ionized plasma.

The standard chemical model was improved in the present work in several
respects. We replaced the standard excluded volume approximation used in
our earlier work by a more rigorous approach based on effective wave equa-
tions including symmetry effects, which were solved in several approximations
including perturbation theory and variational approaches. This allowed us to
include the interactions between electrons and neutrals in a more systematic
way. We calculated the shift of the ground state energy due to the effects of
Pauli exclusion, which prevent the electrons from penetrating into atoms [49].

This work concentrated primarily on hydrogen. To use the hydrogen EOS
for deuterium, mass scaling can be applied for the interpolation formula of the
interaction contributions, that is, it is assumed that the same particle num-
bers for hydrogen and deuterium lead to the same degree of dissociation and
to identical interaction contributions to the thermodynamic function of the
neutral fluid for a given temperature. Let us conclude with a methodological
remark: This work is based on the chemical picture. As well known, there
exist two variants of the chemical picture:

1. The calculations of the chemical equilibrium are based on the concept of
Saha-type equations, which are reformulations of the equilibrium condi-
tions for the chemical potentials of the species.

2. Alternatively, one can use a direct minimization of the free energy with
respect to the variations of the degrees of ionization/dissociation.
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Both methods are based on the same variational principle for the free energy of
the plasma. The results are similar in qualitative respect but differ in details.
Saha equations are a more explicit formulation of the minimum condition.
The Saha equation finds one concrete minimum located inside the corner of
the ionization/dissipation degrees. Minima at the boundaries, say α, β = 0 or
α, β = 1, cannot be found. The direct minimization of the free energy used
here finds all possible minima, including relative minima and those at the
boundaries. Therefore, we may consider the direct minimization of the free
energy used here as a more advanced description. It provides more information
and contains the solutions of the Saha equation as special cases [50].

Let us summarize the main physical results obtained in this work. The
Pauli blocking effects are quite essential for the ionization equilibria and
determine the transition to highly conducting states, which occur at den-
sities around 3× 1023 protons cm−3, in the region of 0.5 g cm−3 for hydrogen
and 1 g cm−3 for deuterium. The corresponding pressures are in the region of
0.8− 1.2× 1011 Pa, that is, around 1Mbar (1011 Pa = 1Mbar).
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Phys. Rev. B 59, 14–177 (1999)

19. D. Beule, W. Ebeling, A. Förster, H. Juranek, R. Redmer, G. Röpke, Contrib.
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22. M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. 202, 57 (1990)
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587 (1983); G. Röpke, in Aggregation Phenomena in Complex Systems, ed. by
J. Schmelzer et al., (Wiley-VCH, Weinheim, New York, 1999)

29. W. Ebeling, K. Kilimann, Z. Naturforschung 44A, 519 (1989)
30. S. Arndt, W.D. Kraeft, J. Seidel, phys. stat. sol. B 194, 601 (1996)
31. W. Stolzmann, W. Ebeling, Phys. Lett. A 248, 242 (1998)
32. A. Bunker, S. Nagel, R. Redmer, G. Röpke, Phys. Rev. B 56, 3094 (1997);
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4

Metal–Insulator Transition in Dense Hydrogen

Ronald Redmer and Bastian Holst

Abstract. We review state-of-the-art theoretical approaches to the metal–insulator
transition in dense hydrogen by comparing advanced chemical models with ab initio
simulation techniques as well as shock-wave experiments. Chemical models rely on
the effective interaction potentials between the different species and a proper cal-
culation of the density- and temperature-dependent partition functions. A common
feature of chemical models is the occurrence of a first-order phase transition at high
pressures, the plasma phase transition. Ab initio simulation techniques which avoid a
discrimination of electron states into bound and free states by starting from a strict
physical picture show up to now no clear signal of a first-order phase transition.
However, the metal–insulator transition as experimentally deduced from electrical
conductivity and the reflectivity measurements is very well reproduced.

4.1 Introduction

The transition from nonmetallic to metallic behavior has been studied in
various systems based on the pioneering ideas of Mott. This book aims to
review this effect that occurs in Coulomb systems such as fluids, plasmas,
and clusters up to nuclear matter and the quark–gluon plasma. The most
prominent example for such a transition is of course the simplest and the
most abundant element in nature – hydrogen. Metallization of solid hydrogen
at high pressures has been predicted by Wigner and Huntington [1] already in
1935 but not been verified yet. Numerous experimental and theoretical studies
were performed since then to reveal details of this electronic transition from
solid and liquid hydrogen to a conducting plasma state, see, for example, [2–4].

Experimental investigations of hydrogen at high pressures of several mega-
bar (1 Mbar=100GPa) can be performed with diamond anvil cells [5] or
dynamically by using strong shock waves generated by high explosives [6–
8], gas guns [9–11], high-power lasers [12–14], or magnetically launched flyer
plates [15,16]. The respective data for the equation of state (EOS), sound ve-
locity, electrical conductivity, and reflectivity along the single shock Hugoniot
curve or the isentrope in case of multiple shocks clearly indicate a transition
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from a nonconducting, molecular liquid at low temperatures and pressures
through a warm fluid at moderate temperatures of few electron volt and pres-
sures of about 1Mbar to a conducting fully ionized plasma at still higher
temperatures and pressures. The parameters of the transition region charac-
terize warm dense matter (WDM) where strong correlations and quantum
effects are important.

Some aspects of this nonmetal-to-metal transition are not clear yet. For
instance, chemical models that are reviewed in Sect. 4.3 usually predict that
this electronic transition is accompanied by a first-order phase transition with
a discrete jump in density and a corresponding heat of transition. Following
the ideas of Landau and Zeldovich [17] for the high-pressure phase diagram of
matter, the coexistence line between the nonconducting and conducting phase
of that plasma phase transition (PPT) including possible triple points and a
second critical point has been calculated in numerous chemical models, see,
for example [18–26]; see also Chap. 3.

On the other hand, ab initio path integral Monte Carlo (PIMC) and
quantum molecular dynamics (QMD) simulations usually indicate a contin-
uous transition without a thermodynamic instability [27, 28], see Sect. 4.4.1
for details. These methods are based on a strict physical picture and avoid
the definition of effective density- and temperature-dependent two-particle
potentials and cross sections such as the Debye or the polarization potential,
see [29]. However, because the particle number and simulation time is limited
in these ab initio approaches, we cannot exclude the existence of a PPT yet.
This discussion is even further enhanced as first experimental signatures of a
PPT were reported recently for deuterium [8] and quantum molecular dynam-
ics simulations showed that a liquid–liquid first-order phase transition can be
identified just in the region of the nonmetal-to-metal transition [30–32].

We aim to review here the nonmetal-to-metal transition in dense hydrogen
and deuterium based on new results for the EOS, the Hugoniot curve, as well
as the electrical conductivity and reflectivity, which are derived from chemical
models and large scale QMD simulations. The PPT is discussed in detail.
These new results have also a great impact on the state-of-the-art models for
planetary interiors for which the thermophysical properties of WDM in general
and of hydrogen–helium mixtures in particular are the basic input [33–37].

4.2 Mott Effect in Dense Plasmas

4.2.1 Theoretical Concept

The description of the nonmetal-to-metal transition in dense plasmas was ini-
tially based on the chemical picture that considers bound states such as atoms
H and molecules H2 out of the elementary particle electrons e and protons
p as new entities. Chemical models consider strong and long-living correla-
tions in form of bound states correctly, but require effective pair potentials
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for the interaction of the new species with all other particles to describe also
their interactions in a dense, partially ionized plasma consistently. Chemical
models are well founded as long as the bound states can clearly be defined,
which is usually the case at low to moderate densities. The thermophysical
properties of dense, partially ionized plasmas were elaborated successfully by
calculating the nonideality corrections to the EOS and the laws of mass action
as well as to the transport coefficients; see [29].

At high densities, the bound electrons are delocalized due to pressure ion-
ization (Mott effect), and a corresponding nonmetal-to-metal transition oc-
curs. Therefore, chemical models become highly questionable just in the region
of the nonmetal-to-metal transition because bound states, no longer exist from
a chemical perspective. However, the particles are strongly correlated in that
region so that instead of long-living bound states short-living, transient two-
particle states or even higher clusters may occur. A complex interplay between
screening effects, correlations, and disorder is expected in the transition re-
gion so that combined Mott–Hubbard–Anderson models have been developed
for that purpose [38, 39]. Chemical models interpolate qualitatively between
the limiting cases of a neutral gas or fluid at lower densities with almost no
ionization and a fully ionized plasma at high densities.

The first study of the Mott effect in dense plasmas within a consistent
physical picture was performed by Rogers, Graboske, and Harwood [40] by
solving the Schrödinger equation for the Debye potential numerically. They
found that at a critical (Mott) density κMottaB = 1.19 all bound states includ-
ing the 1s ground state disappear; κ = 1/RD is the inverse Debye screening
length. Zimmermann et al. [41] treated many-particle effects such as dynam-
ical screening, self-energy, Pauli blocking, and exchange interactions consis-
tently within a Greens function approach by deriving and solving an effective
wave or Bethe–Salpeter equation,

(H0
ep − z)Ψab = Hpl

ab(z)Ψab. (4.1)

The two-particle Hamilton operator for the unperturbed atom is denoted by
H0
ab, and the many-particle effects mentioned above are contained in a medium

or plasma contribution Hpl
ab. It was shown that the binding energies of the lo-

calized electrons in the medium remain almost constant due to strong cancela-
tion effects in Hpl

ab, and that the energy of the free continuum states is lowered
with the density according to ∼n1/2. These pioneering studies provided the
theoretical foundation for the much older, intuitive concept of lowering of the
ionization energy in dense plasmas, which is illustrated in Fig. 4.1. Further
work in this context is reviewed in [42].

However, strong correlations and quantum effects in WDM, especially
in the region of the Mott transition, cannot be treated adequately within per-
turbation theory so that more appropriate methods such as density functional
theory (DFT) have to be applied, see Sect. 4.4.1. In addition, one expects that
correlations and thermal effects broaden the bound state energies as well as
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−

Fig. 4.1. Schematic illustration of pressure ionization (Mott effect) in dense hydro-
gen plasmas. All binding energies vanish at a specific Mott density. Shown are the
hydrogen negative ion H− and the 1s ground state

the continuum edge so that no sharp transition will occur at finite tempera-
tures. This may not prevent the system from going through a thermodynamic
instability due to pressure ionization (Mott transition) as will be discussed
later

4.2.2 Experimental Signatures

The drastic increase of the ionization degree along the Mott transition leads
to strong changes of the thermophysical properties of the plasma. Besides
the possible instability in the EOS, which will be discussed later, the electri-
cal conductivity is affected strongest by this ionization transition. While for
low and high densities the Spitzer and Ziman formula apply, a minimum in
the electrical conductivity is expected for low temperatures at intermediate
densities, see [29, 42]. This behavior is illustrated in Fig. 4.2.

The Mott transition region is strongly correlated and can be accessed ex-
perimentally only by means of novel techniques. Iermohin et al. [43] were the
first to show that a minimum in the electrical conductivity exists in dense
metallic vapors, which were compressed adiabatically in shock tubes. Sin-
gle and multiple shock wave experiments were performed later for the mea-
surement of the electrical conductivity in warm dense hydrogen and deu-
terium [6, 11]. The Mott transition has now been identified clearly at about
0.6–0.7 g cm−3 in hydrogen; for deuterium a factor of two applies due to mass
scaling. The transition from a nonconducting molecular fluid to a conduct-
ing plasma has also been derived from reflectivity measurements along the
single-shock Hugoniot curve [44].

We show in the next sections that a correct description of the nonmetal-
to-metal transition in hydrogen and deuterium is only possible within a
strict physical picture. Chemical models may give reasonable results but rely
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Fig. 4.2. Isotherms for the electrical conductivity as function of the density in
hydrogen plasma as derived from a chemical model [23]. While the Spitzer theory
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strongly on the treatment of the nonidelity corrections. Therefore, the de-
velopment and application of ab initio approaches is inevitable to get more
insight into the complex physics along the Mott transition.

4.3 Advanced Chemical Models

4.3.1 Free Energy Model for the EOS of Dense Hydrogen

Considering warm dense hydrogen as a partially ionized plasma (PIP) in the
chemical picture, a mixture of a neutral component (atoms and molecules) and
a plasma component (electrons and protons) is in chemical equilibrium with
respect to dissociation and ionization. From an expression for the free energy
F (T, V,N) = F0+F±+Fpol of the neutral (F0) and charged particles (F±), the
equation of state (EOS) can be derived, see [45,46]. The first two terms consist
of ideal and interaction contributions and can be written as F0 = F id

0 + F int
0 ,

and F± = F id± + F int± . Fpol contains interaction terms between charged and
neutral components caused by polarization [47].

For the neutral subsystem, the EOS is determined within fluid varia-
tional theory (FVT) by calculating the free energy F int

0 (T, V,N) via the
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Gibbs–Bogolyubov inequality [48]. This method has been generalized to two-
component systems with a reaction [49–51] so that also molecular systems at
high pressure can be treated where pressure dissociation occurs, for example,
H2 ⇀↽ 2H for hydrogen. In chemical equilibrium, μH2 = 2μH has to be fulfilled,
and the number of atoms and molecules can be determined self-consistently
via the chemical potentials μc = (∂F/∂Nc)T . The effective interactions be-
tween the neutral species are modeled by exp-6 potentials, and the free energy
of a multicomponent reference system of hard spheres has to be known; for
details, see [49, 50, 52].

Efficient Padé approximations for the free energy developed by Chabrier
and Potekhin [53] were used to treat the charged component; see also [18,54].
The neutral component is in ionization equilibrium H ⇀↽ e+p with the charged
component and the degree of ionization is fixed by the relation μH = μe +μp.

4.3.2 Reduced Volume Concept

There is another interaction between the charged component and the neutral
fluid, because point-like particles cannot penetrate into the volume occupied
by atoms and molecules, which have a finite size. The result is a correction
in the description of the ideal gas of the charged component [55, 56] so that
the ideal free energy of protons and electrons F id± is finally dependent on the
reduced volume V ∗ = V · (1− η),

F id
± (T, V ∗, N) = N±kBT · f id,∗

± , (4.2)

instead of the volume, where η is the ratio of the volume that cannot be pen-
etrated by point-like particles with respect to the total volume. It depends on
hard sphere diameters, which result from FVT calculations self-consistently.
The free energy density f id,∗

± was calculated via Fermi integrals so that degen-
eracy effects are fully taken into account. For an easier handling of the EOS
data, for example, as input into planetary models, intersections of the pressure
isotherms were avoided by introducing a minimum diameter dmin. Starting at
low temperatures, it remains almost constant up to 15,000K, then it increases
up to 20,000K and remains constant again for higher temperatures. Results for
the diameter of the hydrogen atom derived from the confined atom model [57]
are within the range of this parameter.

The reduced volume concept yields drastic changes of the chemical poten-
tial of each component at higher densities, which leads to pressure ionization.
This is due to the fact that additional terms appear in the chemical potential
via the particle number derivative of the free energy, and thermodynamic
functions of degenerate plasmas are very sensitive to these changes in density.

The present model FVT+ is a generalization of earlier work [52], where
only ideal plasma contributions have been treated and includes all interaction
contributions to the chemical potentials in an advanced chemical model.
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4.3.3 Results for the EOS

The composition of hydrogen plasma as derived from FVT+ for two tempera-
tures is shown in Fig. 4.3. Hydrogen is an atomic gas at low temperatures (left)
and low densities. Molecules are formed at medium density due to the cor-
responding mass action law. In the high-density region, pressure dissociation
and ionization take place. The nonideality corrections to the free energy force
a transition from a molecular fluid to a fully ionized plasma. The formation
of molecules is suppressed and pressure ionization becomes the dominating
process at higher temperatures (right). Because of thermal ionization, a fully
ionized plasma is found at low densities and high temperatures.

To present thermal EOS data, pressure isotherms are shown in Fig. 4.4
over a wide range of temperatures and densities. The system behaves like a
neutral fluid at low densities. Nonideality corrections to the free energy of
the neutral subsystem lead to a nonlinear behavior of the isotherms between
densities of 10−3 and 10−1 g cm−3. A phase transition occurs at still higher
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Table 4.1. Theoretical results for the critical point of the hypothetical plasma phase
transition (PPT) in hydrogen, which was predicted by Zeldovich and Landau [17]
and Norman and Starostin [67]

Tc pc ρc

(103 K) (GPa) (g cm−3) Method Authors Reference

12.6 95 0.95 PIP Ebeling/Sändig (1973) [64]

19 24 0.14 PIP Robnik/Kundt (1983) [59]

16.5 22.8 0.13 PIP Ebeling/Richert (1985) [18,54,61]

16.5 95 0.43 PIP Haronska et al. (1987) [65]

15 64.6 0.36 PIP Saumon/Chabrier (1991) [20]

15.3 61.4 0.35 PIP Saumon/Chabrier (1992) [21]

14.9 72.3 0.29 PIP Schlanges et al. (1995) [22]

16.5 57 0.42 PIP Reinholz et al. (1995) [23]

11 55 0.25 PIMC Magro et al. (1996) [63]

20.9 0.3 0.002 Kitamura/Ichimaru (1998) [66]

16.8 45 0.35 PIP FVT+: Holst et al. (2007) [58]

densities which is treated by a Maxwell construction. The thermodynamic
instability vanishes with increasing temperatures, which fixes the critical point
at 16,800K, 0, 35 g cm−3, and 45GPa.

In Fig. 4.5, the critical points and the related coexistence lines as derived
from FVT+ and from other chemical models are compared. The critical point
of FVT+ lies within the range of most of the other predictions, which cover
temperatures between 15,000 and 20,000K. The resulting coexistence line of
FVT+ is, however, lower than most of the other results. The critical parame-
ters of various chemical models are summarized in Table 4.1.
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New shock-wave experiments [8] imply that a PPT occurs in deuterium at
a density of about 1.5 g cm−3 and at a coexistence pressure of about 1Mbar.
Each of these values is twice as high as derived from FVT+ and other chem-
ical models. Therefore, a more detailed analysis of this experiment and the
chemical models is needed.

4.4 Warm Dense Hydrogen in the Physical Picture

4.4.1 Quantum Molecular Dynamics Simulations

An efficient tool to describe warm dense matter within a strict physical pic-
ture are QMD simulations [28,30,68–76]. QMD simulations combine classical
molecular dynamics for the (heavy) ions with a quantum treatment for the
electrons within DFT, see [77]. This allows for a systematic treatment of cor-
relation and quantum effects. An alternative approach in this context is wave
packet molecular dynamics (WPMD) simulations, in which the electrons are
represented on a semiquantal level by wave packets [32, 78–82].

Besides the EOS data, a broad spectrum of physical properties of warm
dense hydrogen can be determined by QMD simulations. The electronic struc-
ture calculations within DFT yield the charge density distribution in the sim-
ulation box at every time step, and the molecular dynamics run gives valuable
structural information via the ion–ion pair correlation function. This is im-
portant for the identification and characterization of phase transitions such as
solid–liquid or liquid–plasma as well as for the nonmetal-to-metal transition.

The basis of DFT is given by the theorems of Hohenberg and Kohn [83]
and provides the electron density that minimizes the ground state energy of
the system. It has been proven that this density is a unique functional of the
effective potential Veff. To allow practical benefit, Kohn and Sham [84] derived
a computational scheme within this formalism, which solves the problem for
a fictious system of noninteracting particles that leads to the same electron
density. This scheme consists basically of solving the Kohn–Sham equations

[
− h̄2

2m∇2 + Veff(r)
]
ϕk(r) = εkϕk(r), (4.3)

Veff[�(r)] =
∫ �(r′)e2

|r−r′| dr′ −
∑N

k=1
Zke

2

|r−Rk| + VXC [�(r)].

The ab initio QMD simulations [28] were done within Mermin’s finite
temperature density functional theory (FT-DFT) [85], which is implemented
in the plane wave density functional code VASP (Vienna Ab Initio Simu-
lation Package) [86–88]. The projector augmented wave potentials [89] were
used and the generalized gradient approximation (GGA) using the parameter-
ization of PBE [90] was applied. Extensive test calculations were performed
and have shown that the EOS data are dependent on the plane wave cut-
off. A convergence of better than 1% is secured for Ecut =1,200 eV, which
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is in agreement with the results found already by Desjarlais [72]. This plane
wave cutoff was used in all actual calculations. The electronic structure cal-
culations were performed for a given array of ion positions, which are sub-
sequently varied by the forces obtained within the DFT calculations via the
Hellmann–Feynman theorem for each molecular dynamics step. This proce-
dure is repeated until the EOS measures are converged and thermodynamic
equilibrium is reached.

In a supercell with periodic boundary conditions, the simulations were
done for 64 atoms. The temperature of the ions was controlled by a Nosé ther-
mostat [91] and the temperature of the electrons was fixed by Fermi weighting
the occupation of bands [87]. The Brillouin zone was sampled by evaluating
the results at Baldereschi’s mean value point [92], which showed best agree-
ment with a sampling of the Brillouin zone using a higher number of k-points.
The density of the system was fixed by the size of the simulated supercell. To
minimize the statistical error due to fluctuations, the system was simulated
1,000–1,500 steps further after reaching the thermodynamic equilibrium. By
averaging over all particles and simulation steps in equilibrium, the EOS data
and pair correlation functions were then obtained .

In DFT calculations, the zero-point vibrational energy of the H2 molecules
is not included. The energy 1

2hνvib per molecule is added, which is very im-
portant, especially at low temperatures and for the calculation of an exact
initial internal energy for the reference state of the Hugoniot curve, which is
0.0855g cm−3 at 20K. To account for this quantum effect adequately for arbi-
trary temperatures, the fraction of molecules has to be derived, for example,
for all states along the Hugoniot curve. This can be done via the coordination
number

K(r) =
N − 1
V

∫ r

0

4πr′2g(r′) dr′, (4.4)

which is a weighted integral over the pair correlation function g(r) of the
ions. N denotes the number of ions and V the volume of the supercell in the
simulation. The doubled value of K at the maximum of the molecular peak
in g(r), which is found around r = 0.748 Å, is then equal to the fraction of
ions bound to a molecule and twice the amount of molecules in the supercell.

For several isotherms, the dissociation degree is calculated and the re-
sults are approximated by Fermi functions with two adjustable parameters.
The parameters are represented by temperature-dependent functions so that
the dissociation degree and, subsequently, the contribution of molecules to the
zero-point internal energy are determined for arbitrary temperatures. The re-
sults show that above 10,000K molecules can be neglected.

The resulting dissociation degree obtained by this method [28] is compared
with that given by Vorberger et al. [68] in Fig. 4.6 who counted all pairs of
atoms in a range of 1.8aB as atoms. Alternatively, the number of molecules
was reduced by counting only those pairs that are stable for longer than ten
vibrational periods. In all three cases, the amount of molecules is lower for
higher densities and the molecules disappear at higher temperatures due to



4 Metal–Insulator Transition in Dense Hydrogen 73

1000 2000 3000 4000 5000 6000 7000
T [K]

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.5
0.66

2 
N

H
2 / 

N
H

ρ [g/cm3]:

Fig. 4.6. Ratio of hydrogen molecules with respect to the total number of protons
for three densities [28]. Our coordination number method (solid) is compared with
the pair-counting method of Vorberger et al. [68] (dotted). Their result counting only
pairs with a lifetime longer than ten H2 vibrational periods is also given (dashed line)

thermal dissociation. This picture shows that the dissociation degree depends
strongly on the definition of the term molecule in the warm dense matter
region. The first method described here gives a smoother behavior of the dis-
sociation degree which starts at lower temperatures and is in between the
two cases described in [68] at higher temperatures. However, the consequence
of these difference is rather small for the EOS data, because in the physical
picture the dissociation degree is used only as a factor for the vibrational en-
ergy of the molecules, which itself is small compared to the internal energy
obtained by the QMD simulations.

4.4.2 Ab Initio EOS Data and Hugoniot Curve

The thermal EOS of warm dense hydrogen is shown in Fig. 4.7. The isotherms
of the pressure show a systematic behavior in terms of the density and tem-
perature. In contrast to the findings in the chemical picture, no instability
along the pressure isotherms (∂P/∂V )T > 0 is found, which would indicate a
first-order plasma phase transition (PPT).

Furthermore, the QMD data are, in Fig. 4.7, compared with the chemical
models FVT [58] and SCvH-i [33]. The EOS derived by Saumon et al. [33]
shows also a PPT (SCvH-ppt data set). The modified SCvH-i data set shown
here avoids the PPT by using an interpolation through the instability re-
gion. Therefore, both data sets can be used to study the influence of a PPT
on the interior models of giant planets such as Jupiter. Consistent chemi-
cal models yield the correct low-temperature and low-density limit and agree
with our QMD results there. A good agreement is also found in the high-
density limit where a nearly temperature-independent behavior characteristic
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of a degenerate plasma is found. At medium densities, the pressure isotherms
of FVT and SCvH-i lie well below the QMD data; the deviations amount
up to 25%.

Within the QMD results, a region with (∂P/∂T )V < 0, which has been
found previously [30, 68], is encountered. The isochore at rs = 1.75 given in
[68] is reproduced within the uncertainties of the simulations. The instability
region appears at pressures up to 200GPa at temperatures between 1,000
and 4,000K. It can be related to the rapid dissociation transition at such low
temperatures, which leads to a drastic increase of the electrical conductivity,
see Sect. 4.4.3. We note that a first experimental signature of an instability
has been found in this domain [8], and that recent WPMD simulations [32]
show an instability there. The acquisition of still more accurate EOS data for
warm dense hydrogen is absolutely essential to solve this challenging problem,
see also [31].

A fit the QMD results for the pressure P and the internal energy U by
expansions in terms of density ρ and temperature T to allow for a simple
processing of this ab initio data in hydrodynamic simulations [93] or planetary
physics [35]. Such a fit for their respective data was already given by Lenosky
et al. [94] and Beule et al. [62]. The pressure is split into an ideal and an
interaction contribution:

P = P id + P int =
ρkBT

mH
+ P int(ρ, T ). (4.5)

The QMD data for the pressure P given in kbar can be interpolated by the
following expansion for the interaction contribution:

P int(ρ, T ) = (A1(T ) +A2(T )ρ)A0(T ) , (4.6)

Ai(T )=ai0 exp

(
−

(
T − ai1
ai2

)2
)

+ ai3 + ai4T. (4.7)
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Table 4.2. Coefficients aik in the expansion for the pressure P int according to (4.6)
and (4.7)

i ai0 ai1 ai2 ai3 ai4

0 0.2234 2919.84 3546.67 1.94023 1.11316 × 10−6

1 14.7586 2117.98 4559.17 −17.9538 4.88041 × 10−4

2 −33.8469 2693.63 4159.13 70.582 −2.8848 × 10−4

Table 4.3. Coefficients bjk in the expansion for the specific internal energy u ac-
cording to (4.8) and (4.9)

j bj0 bj1 bj2 bj3 bj4

0 −33.8377 2154.38 3696.89 −300.446 1.77956 × 10−2

1 55.8794 3174.39 2571.21 56.222 −3.56234 × 10−3

2 −30.0376 3174.02 2794.39 87.3659 2.0819 × 10−3

3 5.57328 3215.51 2377.23 −13.1622 −3.84004 × 10−4

4 −0.3236 3245.48 2991.45 0.682152 2.19862 × 10−5

By a similar expansion, the QMD data for the specific internal energy u =
U/m given in kJ g−1 can be given:

u =
4∑

j=0

Bj(T )ρj , (4.8)

Bj(T ) = bj0 exp

(
−

(
T − bj1
bj2

)2
)

+ bj3 + bj4T. (4.9)

The expansion coefficients aik and bjk are given in Tables 4.2 and 4.3,
respectively.

The expansions (4.6) and (4.8) are valid within a density range from 0.5 to
5 g cm−3 between 500 and 20,000K and reproduce the original ab initio QMD
data within 5% accuracy. The expansions fulfill thermodynamic consistency
expressed by the relation

P − T
(
∂P

∂T

)

V

= −
(
∂U

∂V

)

T

(4.10)

within 15% accuracy, which is mainly due to the deviations of the fit functions
from the QMD data itself.

To compare with shock wave experiments, the principal Hugoniot curve
was derived from the QMD EOS data, which is a crucial measure for theoret-
ical EOS data and which is plotted in Fig. 4.8. It connects all possible final
states (ρ, P, u) of shock wave experiments according to the Hugoniot equation
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u− u0 =
1
2
(P + P0)

(
1
ρ0
− 1
ρ0

)
(4.11)

starting at the same initial conditions (ρ0, P0, u0). We compare with experi-
ments for deuterium, because most of the recent measurements have focused
on this isotope of hydrogen. Deuterium has a liquid density of 0.171 g cm−3,
which can be scaled by a factor of 0.5 to achieve the corresponding state in
the hydrogen EOS. The principal Hugoniot curve starts in the liquid with a
density of ρ0 = 0.0855g cm−3 at a temperature of 20K and an internal energy
of u0 = −314kJ g−1 . The initial pressure P0 can be neglected compared with
the high final pressure P .

Gas guns [95], magnetically launched flyer plates at Sandia’s Z ma-
chine [16], or high explosives (HE) [7] have been used to perform shock wave
experiments for deuterium. A maximum compression of 4.25 at about 50GPa
is indicated by these experiments.

Systematic deviations from these experiments show another series of laser-
driven experiments [96]. Especially, a maximum compression of 6 has been
reported at about 1Mbar. New laser-driven single shock compression experi-
ments indicate a maximum compression of 5 above 1Mbar [14]. According to
the unanimous evaluation of the shock-wave experimental data for molecular
liquids [11], the QMD data are compared in Fig. 4.8 only with the data sets
mentioned above. The clarification of the discrepancies between the various
experimental techniques remains a subject of further work.

Z-Pinch
Gas-Gun
Explosives

2.5 3 3.5 4 4.5 5
0

50

100

150

200

P
 [G

P
a]

Kerley 2003
FVT
PIMC
QMD Lenosky
QMD Desjarlais
QMD Holst et al.

Theories:

Experiments:

ρ/ρ0

Fig. 4.8. Principal Hugoniot curve for deuterium: results of the QMD simula-
tions [28] (solid line) are compared with previous QMD results of Lenosky et al. [97]
(dashed) and Desjarlais [72] (stars), PIMC simulations [100] (dotted), the model EOS
of Kerley [99] (dot–dot–dashed), and the chemical model FVT [49] (dot–dashed). Ex-
periments: gas gun [95] (diamonds), Sandia Z machine [16] (grey squares; grey line:
running average through the us-up data), high explosives [7] (black circles)
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To achieve fully converged results, a systematic increase of the cutoff
energy Ecut in QMD simulations from 500 [97] to 1,200 eV[72] was necessary.
The converged results are now in agreement with the experimental points. The
consideration of the zero-point vibrations of the molecules along the entire
Hugoniot curve yields a very good agreement of QMD data with the gas gun
experiments [95] especially for lower pressures. The maximum compression
of 4.5 of the calculated Hugoniot curve is slightly higher than the HE and
Z experiments indicate (about 4.25). Nevertheless, this is an agreement of
about 5% accuracy, which can be translated into an accuracy of about 1%
in the measured shock and particle velocity. This deviation is in the range of
the systematic errors of the experiments. The compression reaches the cor-
rect high-temperature limit as given by the PIMC simulations [98] where it
decreases with higher pressures and temperatures. For compression rates be-
tween 3 and 4, the QMD curve lies slightly below the experimental data, which
could be related to the known band gap problem of DFT in GGA. The slope
changes slightly due to dissociation of the molecules at a compression ratio of
3.5, which was also observed in similar calculations [30].

As a representative of advanced chemical models that lead to maximum
compressions well beyond 4.5 in general, the FVT curve [49] is plotted here.
The revised Sesame curve of Kerley [99] agrees with the experiments and shows
a maximum compression of 4.25, but the pressure there is slightly higher than
the QMD results.

4.4.3 Dynamic Conductivity

The starting point for the evaluation of the dynamic conductivity σ(ω) from
which the dielectric function ε(ω), the reflectivity, and the dc conductivity
can be extracted is the Kubo–Greenwood formula [101,102]:

σ(ω) =
2πe2h̄2

3m2ωΩ

∑

k

W (k)
N∑

j=1

N∑

i=1

3∑

α=1

[F (εi,k)− F (εj,k)]

× |〈Ψj,k|∇α|Ψi,k〉|2δ(εj,k − εi,k − h̄ω), (4.12)

where e is the electron charge and m its mass. The summations over i and j
run over N discrete bands considered in the electronic structure calculation
for the cubic supercell volume Ω. The three spatial directions are averaged by
the α sum. F (εi,k) describes the occupation of the ith band corresponding to
the energy εi,k and the wavefunction Ψi,k at k. The δ-function is broadened
with a Gaussian because a discrete energy spectrum results from the finite
simulation volume [71]. Integration over the Brillouin zone is performed by
sampling special k points [103], where W (k) is the respective weighting factor.
To reach a convergence of better than 10% accuracy, Baldereschi’s mean value
point [92] is used.

The dc conductivity, which follows in the static limit ω → 0 from the
dynamic conductivity σ(ω), is shown in Fig. 4.9. Our calculations along the
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Fig. 4.9. DC conductivity for hydrogen: QMD results along the Hugoniot curve [28]
are compared with single shock data of Nellis et al. [104]
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Fig. 4.10. Reflectivity for a wavelength of 808 nm along the Hugoniot curve of hy-
drogen: QMD results [28] are compared with experimental data of Celliers et al. [44]
and predictions of the chemical model FVT [46] using the COMPTRA code [105]
and QMD simulations of Collins et al. [70]

principal Hugoniot curve show a rapid increase of the dc conductivity, which is
in very good agreement with the single shock experiments of Nellis et al. [104].
At pressures higher than 40GPa, the QMD results indicate a metallic-like
conductivity, which is also apparent in the reflectivity, see Fig. 4.10.

From the frequency-dependent conductivity σ(ω), the optical properties of
the liquid can be derived, see (4.12). The imaginary part of σ(ω) is obtained
via the Kramers–Kronig relation:

σ2(ω) = − 2
π

P
∫

σ1(ν)ω
(ν2 − ω2)

dν, (4.13)
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P is the principal value of the integral. With the complex conductivity, the
dielectric function can be calculated directly:

ε1(ω) = 1− 1
ε0ω

σ2(ω), (4.14)

ε2(ω) =
1
ε0ω

σ1(ω). (4.15)

The square of the index of refraction, which contains the real part n and
the imaginary part k, is equal to the dielectric function. Defined that way, the
index of refraction is given by

n(ω) =

√
1
2

(|ε(ω)|+ |ε1(ω)|), (4.16)

k(ω) =

√
1
2

(|ε(ω)| − |ε1(ω)|), (4.17)

so that the reflectivity r can be calculated via

r(ω) =
[1− n(ω)]2 + k(ω)2

[1 + n(ω)]2 + k(ω)2
. (4.18)

In Fig. 4.10, the QMD results are compared with reflectivities measured
along the Hugoniot curve [44]. The agreement is excellent.

The change of the hydrogen reflectivity with pressure can be interpreted
as a gradual transition from a molecular insulating fluid through an atomic
fluid above 20GPa, where the atoms have strongly fluctuating bonds with
next neighbors [70] to a dense, almost fully ionized plasma with a reflectivity
of about 50–60% at high pressures above 40GPa. The chemical model [46]
shows the same behavior, but the abrupt increase of the reflectivity occurs at
a higher density. This shows the difficulties of chemical models in finding the
correct shifts of the dissociation and ionization energies as function of density
and temperature and, thus, the location of the nonmetal-to-metal transition.

4.5 Conclusion

We have reviewed experimental results and theoretical approaches for the
nonmetal-to-metal transition in warm dense hydrogen. Advanced chemical
models such as FVT+ or SCvH are able to describe the limiting cases, the
nonconducting dense fluid, and the fully ionized hot plasma, but have concep-
tual difficulties to describe the transition region where the binding energies
of atoms and molecules vanish, and a clear discrimination between bound
and free electrons is not possible, see Sect. 4.3. In this region, correlation and
quantum effects have to be treated consistently in the EOS and the respective
mass action laws by applying, for example, perturbation theory [29] or fluid
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variational theory [50]. Measured physical quantities such as the Hugoniot
curve [45,52,58] and the electrical conductivity [23,105] can be reproduced at
least qualitatively. The most striking feature of almost all chemical models is
the occurrence of a first-order phase transition as a consequence of the drastic
changes of the electronic properties in the transition region. The location of
the coexistence line and of a second critical point is sensitive with respect
to the approximations made for the nonideality corrections to the equation
of state. Alternatively, QMD simulations have been performed within a strict
physical picture. The resulting thermophysical quantities such as the EOS and
Hugoniot curve, reflectivity and conductivity are in very good agreement with
shock wave experiments [28], so that a consistent description of warm dense
hydrogen can now be given. Although no clear signs of a first-order phase
transition have been found so far, this issue remains a subject of ongoing re-
search. Especially, a region with (∂P/∂T )V < 0 has been found previously
in QMD simulations [28,30,68] at pressures up to 200GPa and temperatures
between 1,000 and 4,000K. It is related to the rapid, pressure-driven dissocia-
tion transition in the low-temperature fluid, which leads to a drastic increase
of the electrical conductivity, see Sect. 4.4.3. Note that first experimental sig-
natures of an instability have been found just in this domain [8], and that
recent WPMD simulations [32] show a pronounced instability there. There-
fore, the acquisition of still more accurate EOS data for warm dense hydrogen
is an essential prerequisite to reveal more details of the high-pressure phase
diagram of the simplest element in nature. This would also lead to improved
models for the interiors of solar and extrasolar planets, see [35].
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Resolving the Ion and Electron Dynamics
in Finite Systems Exposed to Intense

Optical Laser Fields

J. Tiggesbäumker, T. Fennel, N.X. Truong, and K.-H. Meiwes-Broer

Abstract. Clusters show an enhancement in the absorption when exposed to strong
optical laser pulses due to an efficient plasmon mediated energy transfer of radiation
into the system. This violent interaction transforms the small particle into a dense
and hot nanoplasma state. Electrons are efficiently accelerated in the interaction
with the laser field and preferentially emitted in the direction of the laser polariza-
tion axis at resonance. Corresponding Vlasov-simulations reveal a surface–plasmon
rescattering acceleration mechanism, creating ultrashort electron bursts. On the long
time scale, the complexes completely disintegrate and highly charged and energetic
atomic ions are emitted. The yield of ionized species can be further enhanced by
using pulse shaping in connection with a genetic feedback algorithm.

5.1 Introduction

In the past decade, the dynamical response of finite systems exposed to strong
laser pulses has become a topic in cluster and plasma physics as well as in
the general field of intense laser–matter interaction. The strong field exposure
of particles leads to the formation of a dense and high-temperature plasma
ball, where correlation effects dominate when probed at sub-relativistic laser
intensities (�1018 W cm−2). The finite size of this so-called nanoplasma intro-
duces several interesting features such as electron collisions with the cluster
mean field, whose diameter is of the order of nanometer. Moreover, the elec-
tron quiver amplitudes under such laser parameter conditions are comparable
to the geometrical extension of the cluster, thus each electron in principle
probes the whole plasma complex within one laser oscillation cycle. These
properties allow to investigate the strong field laser–matter interaction from a
point of view which differs from both atomic physics and solid state plasmas
and can thus lead to new insights into the dynamical processes. There is an-
other important feature: In strongly excited particles, one has to distinguish
between inner and outer ionization as depicted in Fig. 5.1, middle. Extreme
cluster ionization leads to an increase in the mean field potential. Thus, an
extra outer ionization barrier establishes, which can reach values of the order
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Fig. 5.1. Schematic view of the dynamics that leads to the formation of a
nanoplasma and the generation of energetic particles from the interaction of intense
laser pulses (1013–1016 Wcm−2) with clusters. The excitation of rare gas clusters
is considered here. Left: a partial initial ionization by the leading edge of the pulse
leads to an expansion of the cluster; middle: the nanoplasma is efficiently heated
mostly via resonance absorption. Note, that in contrast to atoms, the cluster has an
additional mean-field ionization barrier, which confines the plasma and suppresses
outer ionization; right: after the laser exposure the complex completely disintegrates
by Coulomb explosion, which also includes recombination

of kilo electron-volt. In addition, the strong Coulomb interaction between the
partially stripped cores lowers the interatomic ionization barrier. Hence, a
broad valence-like band is formed even in rare gas cluster systems. Electron
impact excitation of core levels, for example, therefore not necessarily lifts
the electron into the continuum but into delocalized states of the mean field
potential.

Most of the attention arises from the capability of clusters to absorb a
substantial fraction of energy from the laser field. This was to some extent
surprising and the results diver vastly from experiments on atoms under com-
parable atom density conditions. For example, in the early studies at the
Imperial College, an extinction coefficient of nearly unity was observed when
nanometer-sized rare gas clusters were exposed to 1016 Wcm−2 pulses deliv-
ered by an ultrashort laser system [1]. Pioneering work was performed by
Rhodes and co-workers who studied the X-ray emission from Xe clusters.
Strong evidence was found, that the radiation originates from bound–bound
transitions in hollow atoms [2]. The huge energy absorption by the systems
is not only reflected in the light emission but also in the generation of ener-
getic particles. Moreover, the cluster completely disintegrates and ions in high
charge states are emitted, see Fig. 5.1, right. For example, ion recoil energies as
high as 1MeV [3] and atomic charge states up q = 28 have been detected [4,5].
This has led to experiments where nuclear fusion reactions have been studied
in high-energy collisions of deuterium atoms from exploding clusters [6].

The Role of Collective Effects

From the theoretical side, the first attempt to describe the cluster response was
based on a plasma approach adapted to small particles, called the nanoplasma
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model [7]. Although the modeling is quite crude, a basic understanding of the
interaction could be achieved. Already in this Ansatz, an important parameter
was found to be the collective dipole resonance of the delocalized electron gas
confined to the cluster volume. As the system size is by far smaller than the
typical laser wavelength, only the dipole mode contributes to the absorption.
The corresponding resonance frequency, which can be calculated from the ion
background density, is well-known and called the Mie or “plasmon” resonance
ωMie [8]. In metallic particles ωMie is found to be in the ultraviolet. We note,
that in intense optical laser systems, the photon energy is fixed to due to
technical reasons to a central wavelength of λ = 800nm (h̄ωL = 1.55 eV), that
is, a change in the laser frequency to adapt ωL to ωMie is almost impossible
without a substantial loss in pulse intensity.

This leads to a special situation in clusters, bringing the time structure
of the ultrashort laser pulse into play, as has been proven in many different
experiments, see, for example, [9]. To illustrate how this mismatch could be
overcome, we briefly consider silver where the Mie plasmon energy is about
3.5 eV [10]. The value of ωMie stems from the ion background density nbg.
Thus, to drive ωMie towards ωL, nbg must be lowered, that is, the cluster
has to expand. Fortunately, the charging of the cluster by the leading edge
of the strong pulse leads to partial ionization of the system via optical field
ionization [11,12], see Fig. 5.1, left. Simply speaking, the laser field with peak
intensity I0 bends the outer potential barrier, and electrons near the Fermi
energy can tunnel through (tunnel ionization) or even directly escape from
the confining potential (barrier suppression ionization, BSI) within half a laser
cycle. This turns out to be the main ionization mechanism in an experiment
on atoms once with increasing laser field strength a Keldeysh parameter γ =√
EIP/2Up (EIP, electron binding energy; Up, ponderomotive potential) below

unity is attained [13]. As a rule of thumb, the value of the ponderomotive
potential can be calculated from Up = 9.33× 10−14 eV×I0 [Wcm−2](λ[μm])2.
We emphasize that this process depends only on the pulse intensity I0 but
not on the chosen laser field configuration, for example, the pulse duration.

In clusters, optical field ionization initiates an expansion of the ion struc-
ture, leading to a decrease of nbg, thus a red-shift of the resonance towards
the laser photon energy h̄ωL. Depending on the degree of initial charging, the
Coulomb-driven ion–ion separation takes a certain amount of time. For ex-
citations, for example, close to the atomic BSI threshold, the time scales
involved are picoseconds, which are large compared to typical laser pulse
widths (30–150 fs). Because of the almost complete concentration of oscillator
strength in the collective mode, the energy absorption is at a maximum near
the Mie resonance. To match both ωMie and ωL, that is, to profit from the
huge absorption capability delivered by the collective mode, it is advantageous
to increase the laser pulse duration. By doing this, a substantial fraction of
the laser energy can be transferred to the cluster due to the extended inter-
action time, which brings the system into resonance with the external excita-
tion. In summary, aside the pulse energy, which gives a crude estimate of the
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possible energy flux into the system, the pulse duration plays an important
role in the interaction. An amplitude- and phase-modulated pulse might even
be more efficient, and indeed by applying feedback optimized routines to tailor
the pulse envelope the system can be driven towards specific configurations,
that is, the generation of highly charged ions as first shown in the group of
Vrakking [14].

Some Examples

Without going into the details of experiment and simulation, we briefly discuss
typical results of our treatments, which test the evolution and contribution
of the plasmon in the ionization process. One experimental result is shown
in Fig. 5.2. In this study on small gold clusters, the pulse energy (EL) is
constant, whereas the pulse width t is tuned. Consequently, the pulse intensity
(EL/t) decreases for longer pulse durations. In the interaction, the cluster
disintegrates completely into atomic ions. On applying a short laser pulse of
140 fs only moderately charged ions (q ≤ 5) are produced. Adapting the pulse
conditions to attain an efficient coupling into the Mie resonance, that is, using
a longer pulse duration, the charge state of the ions further increases vastly
up to q = 15. For even longer pulses (t ≥ 750 fs), the distribution shifts back
to lower charge states. This can partly be attributed to the reduced peak
intensity. More precise, the lower initial ionization slows down the expansion,
the resonance condition is attained rather in the trailing edge and thus beyond
the laser pulse maximum, giving a lower degree of atomic ionization.

Again the key parameters strongly differ from the atomic case, where only
the intensity of the pulse drives the strength of the response. Evenmore at
comparable pulse intensities, the maximum charge states are found to be sub-
stantially higher with respect to atoms. We illustrate the magnitude of the
effect. To ionize atomic Xe to q = 20 an intensity of 1018 Wcm−2 is neces-
sary [16], whereas for XeN intensities more than three orders of magnitude
less are sufficient to generate similar atomic charge states [17], highlighting
the huge impact of the collective electron motion on the energy transfer into
the cluster. To emphasize the combined action of adapted pulse structure and
Mie plasmon absorption in the strong laser field regime, we have termed this
mechanism delayed plasmon enhanced ionization of clusters .

To check that the plasmon is indeed the main contributor in the ioniza-
tion of metallic clusters in a strong laser field, Vlasov calculations have been
performed using the first and second harmonic (SHG) of the optical laser
system, that is, 800 and 400nm pulses, see Fig. 5.3. In the simulation, two
pulses ((800 + 800) nm or (800 + 400) nm) are coupled into the system and
the resulting ionization of the cluster is evaluated as a function of the time
separation Δt of the pulses. The leading laser pulse is chosen to be unchanged
and differences in the ionization result only from the impact of the second
pulse. Using 400 nm probe pulses, the average charge state decreases with the
optical delay. However, with 800nm pulses, a distinct maximum is found at
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Fig. 5.2. Ionization of small gold clusters (AuN) irradiated by strong femtosecond
laser pulses (6.1×1015 Wcm−2 at 140 fs (FWHM)). For pulse durations of t = 450 fs
and 600 fs, the highest atomic charge states are achieved. Adapted from [15]

Δt = 250 fs. The observation, that a maximum in the dual-pulse delay scan
establishes only in the latter scenario is in accordance with an expansion of
the cluster, which drives the collective resonance towards longer wavelengths.
We note that the calculated plasmon energy of the sodium cluster in the initial
ground state is 2.84 eV, thus well above the photon energy of 1.55 eV (800 nm)
used for excitation. An expansion to a size of approximately two times the
initial radius is sufficient to initiate the matching condition between photon
energy and plasmon. Thus, the maximum in the dual-pulse delay scan can
be associated with plasmon-enhanced ionization, and Δt = 250 fs reflects the



90 J. Tiggesbäumker et al.

Fig. 5.3. Ionization of Na55 exposed to dual laser pulses of 4×1012 Wcm−2 but with
different laser wavelengths calculated with the Vlasov code. The simulation shows
an increase of the average ionization when only 800 nm pulses are applied, with a
maximum at an optical delay of 250 fs. No enhancement is obtained using subsequent
400 nm pulses. The photon energy as well as the delay dependence hint at a leading
role of plasmon absorptions in violent cluster excitations. Adapted from [18]

system expansion towards a critical radius, which can be calculated from the
Mie formula. For excitation with 400 nm (3.1 eV) postpulses, a blue shift of the
resonance towards shorter wavelengths is necessary instead. In principle, this
can be achieved by a strong initial cluster charging. The pulse intensity of the
leading pulse, however, is not sufficient to accomplish this and no maximum
establishes. Instead, the cluster expansion drives the plasmon energy of the
cluster in a direction away from the laser excitation energy, which is accom-
panied by a substantial drop in the absorption cross section of the collective
mode, reducing the charging efficiency.

In this section, we have demonstrated the contribution of collective effects
in the charging of clusters and the possibility to control the energy absorption
by adjusting the laser pulse. This can be taken as a starting point to further an-
alyze the ionization dynamics. Briefly, we first concentrate on the experimen-
tal procedure (Sect. 5.2) and the computational ansatz (Sect. 5.3) to study the
dynamical and nonlinear response of clusters irradiated by pulses from strong
ultrashort laser systems. The key results are summarized in Sect. 5.4, giving
insight into the ultrafast ionization dynamics. The experimental findings are
compared to those obtained from Vlasov molecular dynamics simulations to
identify the different mechanisms contributing in the charging process.
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5.2 Experimental Challenge

Compared to linear response experiments on clusters (see, for example, the
review by deHeer [19]), where large laser beam diameters (several millime-
ter) can normally be accepted, a tight focusing to some tens of micrometer
is necessary to attain intensities of 1013–1016 Wcm−2 in the interaction re-
gion. The corresponding field strengths are 108–1011 Vm−1. (Note, that these
values are on the order of the electric field strength in the hydrogen atom,
thus in a regime where the binding conditions are strongly modified by the
presence of the external perturbation.) Femtosecond pulses of high energy
(several milli-Joules) are thus necessary to allow for a detailed study of the
response of particles to strong laser pulse exposure. As an advantage, the ultra-
short pulses, in particular the dual-pulse method, enables us to investigate the
light-induced dynamics in real time. But the tight focusing of the laser beam
brings up a challenge: To have on average at least one particle in the interac-
tion volume, a dense cluster target is necessary, that is, 106 clusters per cm3.
Our experimental setup as used in Sect. 5.2 which fulfills this requirement is
shown in Fig. 5.4.

The method to form an intense beam of clusters depends on their com-
position. A high rate of particles can be delivered by a strong supersonic
expansion of pressurized and precooled gas atoms. Clusters are formed in
the adiabatic cooling process when streaming from the high-pressure region
before the nozzle exit into the low-pressure vacuum chamber. Supersonic ex-
pansion sources deliver particle densities of up to 1015 cm−3. However, this
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Fig. 5.4. Experimental setup for the investigation of the strong laser pulse interac-
tion with metal clusters. Atoms are brought into the gas phase using a magnetron
sputter process. The magnetron is located within an LN2-cooled tube and clusters
form by gas aggregation in a 1mbar mixture of helium and argon buffer gas. The
beams expand into vacuum though a nozzle (0.5–3.0 mm). Ion and electron emission
resulting from the interaction with the pulse can be analyzed by different time-of-
flight methods. In addition, a Thomson spectrometer enables for a simultaneous
analysis of energy and momentum of the ionic products
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value is achieved only close to the nozzle exit, where the gas load is too high
to allow for any operation of a particle detector. In addition, the mean free
path might be to small to suppress collisions with the buffer gas completely,
which is a strong requirement to extract reliable values like particle energy and
emission angle from the experiment. Cluster–cluster interactions might also
contribute (cluster–matter effect). Therefore, additional differential pumping
stages have to be included downstream the molecular beam axis, reducing the
particle density at the point of interaction simply by the geometrical effect of
the beam divergence.

Forming Clusters by Gas Aggregation

The beam intensity is further reduced when bare metal clusters are subject
of investigation. These are usually formed by either the gas aggregation
technique developed by Schulze et al. [20] and extended by the group of
Haberland [21] or in a pulsed stream of supersonic helium (Smaller-type
source) [22]. In the former types, an oven or a sputtering source is needed
whereas in the latter case nanosecond lasers or pulsed discharges [23] are
applied to bring the metal partly into the vapor phase. Particle growth pro-
ceeds via multiple collisions of metal atoms with the high density buffer gas
atoms (He, Ar). Thus, typically in experiments on metal particles, the result-
ing density is substantially reduced by orders of magnitude when compared to
sources producing rare gas clusters. In first studies, we have used the pulsed
arc cluster ion source (PACIS) [23] to perform the experiments [9]. In the
dual-pulse experiments, the source performance has to be stable over an ex-
tended period of time to guarantee good shot–shot target conditions during
the optical delay scan. For these studies, we use a home-built Haberland-type
of cw magnetron sputter source, which delivers a constant flux of particles,
see Fig. 5.4. The cluster size can be varied to a larger extend. Currently, clus-
ters having only a few atoms up to particles of up to 15nm (N ≈ 105) can
routinely be generated with a high flux. Recently, we were able to enhance
the performance of this type of source by using aerodynamic focusing, which
in principle allows also for a narrowing of the size distribution in the large
nanometer regime [24].

Forming Clusters in Helium Nanodroplets

We also take advantage of the pick-up technique to generate particles within
a cold and weakly interacting environment. In particular, we use 0.4K helium
nanodroplets to form metal as well as heavier rare gas clusters. This method
differs from the single step gas aggregation technique presented above as the
clusters are formed in two well-separated steps. First, the droplets are gen-
erated in a supersonic expansion of cold helium gas through a 5 μm nozzle
into vacuum. By choosing the temperature from 8 to 15K at the orifice, the
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average size (log-normal distribution) of the droplets can be varied in between
a thousand atoms up to several millions. This offers a broad tunability in the
initial size. Typical particle densities are up to 1015 droplets per cm3. Sec-
ond, the molecular beam transverses a cell containing vapor of the foreign
species. Because of the huge geometrical cross-section (σHe = (2.2 Å)×N1/3),
atoms from the vapor are caught effectively by the droplets and aggregate
within. The energy released in the cluster formation process leads to a slight
shrinking of the nanodroplet. As a rule of thumb, about 1,800 helium atoms
are evaporated per 1 eV of binding energy released in the aggregation. By
varying the density within the pick-up cell, the size distribution of the em-
bedded particles can be chosen almost at will. Using this method, clusters
with more than 2,000 atoms can be formed, as shown for magnesium and cad-
mium [25, 26]. The solid conditions where both initial droplet formation and
subsequent foreign particle generation take place and the simplicity in tuning
the individual source parameters make the pick-up technique a powerful and
versatile method to perform time-resolved studies with high resolution as well
as feedback controlled optimization experiments.

Particle Detection

In the interaction, the cluster disintegrates completely when exposed in the
central region of the laser focus. However, in the wings, the laser intensity
drops below the optical field ionization limit and multiphoton ionization also
contributes. Therefore, the ion signal is comprised of charged clusters, frag-
ments, and atoms in high charge states. By selecting ions originating from the
laser focus region only, usually no cluster fragments are detected anymore.
To determine the recoil energy of the atomic fragments, their time-of-flight
towards a detector is measured and thereon converted into kinetic energy. The
detection of the fragment mass and the ion charge state is accomplished by
mass spectrometry. We use a reflectron time-of-flight setup [27] to identify the
products. Figure 5.5 shows a typical charge state spectrum which originates
from the interaction of intense laser pulses with cadmium-cluster doped he-
lium droplets, see also Fig. 5.2. As in this contribution we are only interested
in the highly charged ion signal, the analysis concentrates on the lower m/q-
range. The yield of the Cdq+ strongly falls off with increasing charge state.
This partly resembles the intensity conditions within the laser focus, favoring
the detection of ions generated in the lower intensity wings of the focus, see
below. We note that the reflectron mode enables us to focus only a certain
ion energy onto the detector. Because of the setup, only the low-recoil energy
particles are mapped. More than likely, this underestimates the yield of the
higher charge states.

The electron energies are verified by time-of-flight measurements as well.
For the determination of the integral yield, a magnetic bottle type of instru-
ments [28] is used, whereas in the angular-resolved measurements, the inter-
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Fig. 5.5. Yield of highly charged cadmium ions generated in the interaction of CdN

enclosed in helium droplets with 350 fs laser pulses of 3.6 × 1013 Wcm−2. Adapted
from [18]

action chamber is magnetically isolated by Helmholtz coils and the detection
is performed only within a small solid angle. To determine the angular
dependence, the laser polarization is rotated.

Ultrafast Laser System

The device to generate pulses in the sub-50 fs regime consists of a Ti:sapphire
oscillator (KM Labs, MTS) and a flash lamp driven multipass amplifier
(Quantronix, Odin-II HE). The oscillator delivers pulses of 12 fs with a rate
of 94MHz and an energy of 4 nJ. The spectral width of the pulses is about
80 nm (FWHM). These pulses are coupled into the amplifier system. Using
the technique of chirped pulse amplification [29], the energy is increased up
to 2.5mJ with a reduced rate of 1 kHz. The initial pulse width is nearly main-
tained and bandwidth-limited pulses of 35 fs exit the output. Some of the
experiments are performed using simple modified pulses. For instance, by de-
tuning the distance of the gratings in the compressor the pulse is stretched. By
doing this, pulses having a width of up to several tens of picoseconds can be
generated easily. This method was used in the experiment shown in Fig. 5.2.

To map the dynamics in the interaction in more detail but maintaining
the pulse intensity, a Mach–Zehnder interferometer is used. This includes a
beam attenuator, which is introduced in one of the interferometer arms to
generate a pair of pulses of variable optical delay (Δt) and intensity ratio. As
in our experiments the subsequent pulse not only probes the dynamics but



5 Ion and Electron Dynamics in Finite Systems in Intense Laser Fields 95

also dominates the system response, we prefer to call this type of excitation
scheme dual-pulse technique instead of the more common term pump–probe,
where the second pulse usually introduces only a small perturbation.

In the control studies, we allow the pulse to self-optimize, giving only a
certain restriction, for example, generate the highest possible atomic charge
state. This attempt is known as feedback-controlled optimization and has led
for example, to the concept of coherent control [30, 31]. By introducing a
phase shift as well as an amplitude modulation on independent spectral parts
of the pulse, a modified pulse that might be more efficient to reach a given
goal than the initial pulse leaves the amplifier. The optimization procedure
takes advantage of the genetic evolution strategy. Because of the high output
energies of the amplifier system in our experiment, the pulse modulation has to
be performed between the seeder and the amplifier. Instead of a liquid crystal
device as used in many of these type of studies, we use an acousto-optical
programmable dispersive filter device (Dazzler, Fastlight) [32]. Collinear phase
matching between an RF acoustical and the infrared wave is used to flip the
polarization axis of different spectral components at will. Phase shifts of up
to 3 ps can be introduced in this way. However, this brings up the influence
of nonlinear effects in the amplifier. A one-to-one correspondence between
the input pulse from the Dazzler and the pulse coming out of the amplifier
is no longer fulfilled. In consequence, assigning a dynamical process in the
experiment to a given pulse structure delivered by the Dazzler needs a unique
determination of the pulse characteristics entering the interaction volume. In
our measurements, we use frequency-resolved optical gating (FROG) [33] to
determine the intensity and the phase information of the laser pulse. The
result of the pulse analysis that gives a high fitness in the experiment can
then be compared to simulations.

5.3 Computational Details

A theoretical description of cluster absorption and ionization in a strong laser
field requires suitable methods that allow to resolve the coupled and highly
nonadiabatic electron and ion dynamics. As a full quantum mechanical de-
scription is not feasible under these circumstances, simplified methods, rang-
ing from molecular dynamics up to quantum approaches based on the time-
dependent local-density approximation [34,35], have to be used. A particularly
challenging aspect for metal clusters is the presence of delocalized electrons
and the fermionic nature of the dynamics. Starting from a fully degenerate
state with complete Pauli blocking, the electronic system experiences highly
nonequilibrium conditions with significant Coulomb coupling and partial de-
generacy within the interaction process. As a result, also electron–electron
collisions (EEC), which require a quantum statistical treatment under these
conditions, can transiently become very important. Further, the highly non-
linear collective motion of electrons has to be incorporated self-consistently.
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Along this line, Vlasov and Vlasov–Uehling–Uhlenbeck (VUU) methods
are very appealing for the treatment of metal clusters in strong fields. These
semiclassical kinetic methods provide an approximate description of the
quantum dynamics without directly referring to wavefunctions [36]. In the fol-
lowing, a concise description of basic methodic aspects and corresponding
examples for the energy absorption and ionization of sodium clusters are
presented.

Semiclassical Vlasov and VUU Methods

The starting point is the semiclassical approximation of the electron dynamics
in the absence of EEC. On the mean-field level, the quantal time-evolution of
the electronic system can be described by the von Neumann equation

ih̄ ∂
∂tρ =

[
−h̄2

2m (∇2
r′ −∇2

r) + Veff(r′)− Veff(r)
]
ρ, (5.1)

where ρ = ρ(r, r′) is the one-body density matrix and Veff(r) is an effective
self-consistent potential containing interactions and external fields [36]. Using
the Wigner-transform

fw(r,p) = 1
(2πh̄)3

∫
d3qeipq̇ (5.2)

Equation (5.1) can be rewritten as a transport equation

∂
∂tfw + p

m∇rfw − 2
h̄fw sin

(
h̄
2

←−∇p ·
−→∇r

)
Veff(r) = 0, (5.3)

where fW(r,p) has the meaning of a one-body phase-space distribution, but
for the fact that it can be negative in some regions [37]. The semiclassical
limit (h̄ → 0) of (5.3) follows from expanding the sine in lowest order and
introducing a smoothed nonnegative distribution function f(r,p). This yields
the Vlasov equation

∂
∂tf + p

m · ∇rf −∇pf · ∇rVeff(r, t) = 0. (5.4)

Quantum effects are now solely contained in the effective potential and in the
initial conditions for the distribution function. The latter we determine from
the self-consistent Thomas–Fermi ground state according to

f0(r,p) = 2
(2πh̄)3Θ(pF(r) − p), (5.5)

where pF(r) =
√

2m[μ− Veff(r)] is the local Fermi momentum and μ the
chemical potential. Based on that, (5.4) describes the collisionless dynamics.
To incorporate binary EEC, (5.4) is complemented by an Uehling–Uhlenbeck
collision term [38], which results in the Vlasov–Uehling–Uhlenbeck equation

∂
∂tf + p

m · ∇rf −∇pf · ∇rVeff(r, t) = IUU. (5.6)
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The UU-collision integral reads

IUU(r,p) =
∫

dΩ dp1
|p− p1|

m

dσ(θ, |p− p1|)
dΩ

×
[
fp′fp′

1
(1− f̃p)(1− f̃p1)− fpfp1(1− f̃p′)(1− f̃p′

1
)
]

(5.7)

and represents a local gain–loss-balance for elastic electron–electron scatter-
ing (p,p1) ↔ (p′,p1

′) with the energy dependent differential cross section
dσ(θ, |prel|)/dΩ, where the scattering angle θ defines the deflection of the rel-
ative momentum vector, the local phase-space densities fp = f(r,p), and the
Pauli blocking factors in parenthesis as functions of the relative phase-space
occupation for paired spins f̃p = 4π3h̄3fp. Equations (5.6) and (5.7) describe
the dynamics including EEC. Note, because of the blocking factors, the col-
lision integral vanishes in the ground state, where the Vlasov description is
recovered as the limit for weak excitations. The evaluation of the UU-collision
integral requires the determination of scattering cross sections, which can
be obtained from quantum scattering theory. Assuming a screened electron–
electron interaction potential

Vsc(r) =
e

4πε0
e−r/rTF

r
, (5.8)

where rTF = ( π
3ne

)1/6
√
a0

2 is the Thomas–Fermi screening length for a fully
degenerate Fermi gas and ne is the electron density, the cross sections can be
computed by partial wave analysis. For details see [39].

Within the Vlasov or VUU dynamics, a self-consistent mean-field potential
of the form

Veff(r) =
∑

i

Vion(r −Ri(t)) + VHar + Vxc + E(t) · r (5.9)

is considered, containing the sum over the ion potentials for the present con-
figuration Ri(t), the electron Hartree potential VHar, the LDA exchange-
correlation potential Vxc from [40], and the laser field in dipole approx-
imation via the last term E(t) · r. The Hartree term and the exchange-
correlation potential are calculated from the actual total electron density
ne(r, t) =

∫
d3p f(r,p, t). To avoid the numerically expensive propagation of

strongly localized states, only valence electrons are treated explicitly in the
model, while the interaction with nuclei and core electrons is described by a
local pseudopotential for the sodium ions [41]. Classical motion is assumed
for the ions.

In this form, the semiclassical approximation is valid for strong electronic
excitations Eex � Δ and/or dense electronic energy levels εF � Δ, where Eex

is the excitation energy, εF is the Fermi energy, and Δ the single particle level
spacing. In particular, for sodium clusters the semiclassical method is well
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tested and predicts ground state geometries, optical spectra, and dynamics
close to results from quantal density-functional calculations for cluster sizes
N > 10 [35,42,43].

The Vlasov/VUU equation can be efficiently solved using the test particle
method, which was developed in nuclear physics [37]. The key idea is to sample
the continuous distribution function with a swarm of fractional particles and to
map the dynamics into classical equations of motion for the discrete samples.
A straightforward way of representation is

f(r,p, t) =
1
Ns

Npp∑

i

gr(r− ri(t))gp(p− pi(t)), (5.10)

with the positions ri and the momenta pi of the test particles and the smooth
weighting functions gr and gp in coordinate and momentum space. The pa-
rameter Ns sets the number of test particles per physical particle and defines
the total number of test particles Npp = N ·Ns. One possible choice for the
weighting are normalized gaussians

g(x) =
1

π3/2d3
e−x

2/d2 , (5.11)

where d is a numerical smoothing parameter. Using the test particle ansatz,
the mean-field part of the electron propagation reduces to classical motion for
the test particles according to

ṙi =
∂hppi
∂pi

=
pi
m

and ṗi = −∂h
pp
i

∂ri
= −

∫
Veff(r)∇rigr(r− ri)d3r

︸ ︷︷ ︸
fi

.

(5.12)
For the semiclassical treatment, a smooth phase-space distribution is essential
to suppress the tendency of classical thermalization, which requires a finite
width of the test particles in practice [44]. However, this must not be a general
shortcoming, as the width parameter can be used as a parameter to express a
semiclassical version of the uncertainty principle (this is related to the Husimi-
picture, see [45]).

As an intuitive example, the impact of resonant charging on the cluster
ionization is investigated for Na55 (see Fig. 5.6) using the Vlasov propagation
without electron–electron collisions [46]. The cluster response is simulated
for excitations with 50 fs linearly polarized gaussian pulses at h̄ωL = 1.54 eV
having a peak intensity of I0 = 4× 1012 Wcm−2 for various pulse delays Δt.
In the ground state, the semiclassical plasmon energy of the system is h̄ωo =
2.84 eV, which is well above the laser photon energy. At these laser parameters,
the highest cluster ionization occurs for a pulse delay of Δt ≈ 250 fs.

The leading pulse causes only a weak cluster ionization (c), as the excita-
tion is far off-resonant. This is also reflected in a small amplitude (a) of the
induced dipole moment as well as its small phase shift (b) with respect to the
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Fig. 5.6. Response of Na55 for dual-pulse laser excitation with I = 4 × 1012 W cm−2

at 800 nm and 250 fs optical delay using the Vlasov code described in the text. Shown
are the laser field envelope (grey) and the electron dipole amplitude (a), the phase
lag between laser field and dipole signal (b), the total cluster ionization (c), and
the root-mean-square radius of the ion distribution (d). Note that the dipole phase
angle passes π/2 as the rms-radius is close to the critical value Rc (dotted line) [46]

laser field. In response to the first pulse, the excited cluster starts to expand,
as can be seen from the increasing rms-cluster radius (d). A high degree of
ionization is obtained when the second pulse excites the collective mode of
the cluster at the critical cluster density. This value corresponds to a certain
cluster size and is indicated as dashed horizontal line in Fig. 5.6d. An applica-
tion of the second laser pulse near this critical value leads to an enhancement
in the cluster ionization when compared to the effect of the first one (Na35+

55

vs. Na5+
55 ). Strong resonant energy absorption from the second pulse is also

indicated by the high dipole amplitude and the π/2-transition of the phase
shift, c.f. (a) and (b).

The cluster response is modified when EEC is taken into account. The
result of a comparison of Vlasov- and Vlasov-VUU simulations is given in
Fig. 5.7. The response of different N (=13, 55, and 147) is calculated to show
the dependence on cluster size. Resonant collective excitations at optimal
pulse delays induce a pronounced enhancement in the energy deposition as well
as in cluster ionization. As the total absorption and ionization are comparable
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Fig. 5.7. Absorbed energy per atom (left) and ionization (right) as a function
of pulse delay for different cluster sizes (Na13, Na55, Na147). The results of the
Vlasov simulations are compared to calculations where electron-electron collisions
are additionally taken into account (Vlasov-VUU). Both pulses are identical (800 nm,
I = 8 × 1012 W cm−2, τ = 25 fs FWHM). Lines at the left side correspond to
excitation by the first pulse alone

for Vlasov and VUU, the effect of EEC on the coupling at resonance is small.
But the time scales of the dynamics are strongly affected, especially for larger
clusters.

From such simulations, the significance of resonance-enhanced charging
can be worked out. These are model studies on simplified systems (single active
electron per cluster atom), where the semiclassical method is a powerful tool
to obtain detailed insight into the microscopic dynamics in the laser-cluster
process.

5.4 Results and Discussion

5.4.1 Energetic Particle Emission

Ion Recoil Energy

A first and direct probe of the coupling efficiency of intense laser radiation
into clusters can be achieved via a measurement of the ion recoil energy. This
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Fig. 5.8. Normalized ion energy spectra of copper clusters (N∼1000) exposed to
strong laser pulses of constant fluence but different pulse durations (e.g., 1.8 ×
1016 Wcm−2 at 150 fs). The highest recoil energy is observed for the shortest pulses.
Stretched pulse excitation leads to a decrease in recoil energy. Inset: one example of
a time-of-flight spectrum from which the energy distribution is calculated. Adapted
from [15]

is simply done by determining the flight times of energetic ions from the point
of interaction to a particle detector located some tens of centimeters away.
The result of such an experiment is shown in Fig. 5.8, where copper clus-
ters produced by the magnetron gas aggregation source are exposed to 13mJ
pulses of different pulse duration. The energy spectra show broad distribu-
tions, which have maxima at low energies (several hundreds of electron-volt)
but extent up to values of 30 keV. The signal stems from cluster constituents
in different charge states, which are accelerated by the repulsive Coulomb po-
tential created in the ionization. These experiments have been performed on
nanometer-sized clusters and pulse intensities of about 1015 Wcm−2 at 150 fs.
Increasing the cluster size and exposure with more intense pulses, the maxi-
mum energy can increase up to mega electron volt, as shown in experiments
on rare gas clusters [4]. For PbN recoil energies up to 180keV have been ob-
served [47]. In general, a substantial absorption must have occurred to explain
the large recoil energy values, which greatly exceed typical energies obtained
in photofragmentation studies and even cluster fission experiments [48].

Several contributions influence the actual shape of the measured recoil en-
ergy distribution, which makes it difficult to extract dynamical information
of the ionization process. First, the focusing of the laser beam leads to a large
spread in the pulse intensities near the focus. This has an effect on the ioniza-
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tion of clusters located in different regions of the focus (focus volume effect).
As the effective volume of a given intensity increases with the distance to the
focus point, clusters located in this volume will mostly contribute to the yield,
provided that the process under study can take place. Thus in an extended
interaction zone, the actual contribution from the focus might be covered by
a large number of events from regions of lower intensity. We have recently
shown that this circumstance can be taken as an advantage. By introducing
a small slit in between the interaction point and the detector the intensity
dependence of the cluster charging can be studied easily by fine tuning the
lens position with respect to the slit. A more detailed analysis gives good esti-
mates for charge-resolved ionization intensity thresholds [49]. Second, clusters
of different size are probed simultaneously due to the statistical condensation
process. This might blur the information that could be extracted from the
spectra. For example, assuming a uniform charge state of the cluster atoms,
the Coulomb explosion will give different fragment ions recoil energy distri-
butions depending on cluster size [50]. This is a general complication, which
cannot easily be overcome without additional size selection. Both the focus
volume effect as well as the broad size distribution have to be taken into
account in each strong field experiment on clusters.

On the basis of these common considerations, we now return to the results
shown in Fig. 5.8. In the recoil energy measurements, one cannot distinguish
which ionization state contributes to the yield in different energy regions.
However, it is very likely that the highest charge states will give the most
energetic particles. In the measurements, different pulse durations are cho-
sen maintaining the pulse energy. Increasing the pulse width, one measures a
steady decrease in the maximum energy. We obtain this behavior also in our
recoil energy studies on other metal clusters [47]. At first sight, this observa-
tion contradicts the finding of the ion charge state measurements performed
under a similar laser parameter change, see, for example, the results shown
in Fig. 5.2. Clearly, the maximum in the coupling efficiency at a certain but
longer pulse duration – that is, relying on the outstanding contribution of
the collective dipole mode in the ionization yield – is not directly visible in
the recoil energy distributions. A crude estimate of the expected ion energy
from a charged cluster helps to clarify this apparent discrepancy. For a ho-
mogeneously charged particle, the final energy of the cluster ions from the
Coulomb explosion scales according to q2nbgr2 ∼ q2r2/3, where r is the initial
distance from the center, see, for example, [50]. For short pulse excitation, the
clusters are nearly instantaneously ionized and only weakly charged. The final
ion energy thus mainly results from the initial bulk-like atom density of the
particle. At resonance, higher ion charge states are generated. However, the
gain through ionization is more than compensated by the larger interatomic
distances as a result of the cluster expansion. The potential energy and thus
the ion recoil energy is reduced when compared to the first scenario. Therefore,
the energy spectrum may not be taken as an observable to monitor delayed
plasmon-enhanced ionization. Simultaneous measurements of charge state and
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energy of the ions are necessary to extract the details. In early attempts,
a Thomson spectrometer was used by us, see Fig. 5.4 for the experimental
setup. It turned out that it has to be operated by detecting only a rather
small solid angle to clearly resolve the different Thomson parabola. First en-
ergy and momentum resolved distributions of exploding silver clusters have
been extracted from the data [15]. We currently set up a new device based on
the original B-TOF design by Lezius et al. [4]. Our improved version of the
spectrometer in principle allows for a measurement of energy and momentum
of all ion fragments in each laser shot.

Electron Yield

In view of resolving the ionization dynamics from the energy spectrum, the
situation is much clearer when electrons are considered. The signatures in the
photoemission are supposed to map more directly the efficient heating of the
nanoplasma at resonance. A first estimate of the expected electron kinetic
energies can be obtained from the ponderomotive interaction of an electron
with a strong laser field. Because of the ponderomotive potential Up generated
by the laser field, an electron can gain kinetic energies of (3.17 Up+IP), where
IP is the atomic ionization potential. In atoms, electrons with kinetic energies
up to two times Up have been obtained [51]. The experiment on silver cluster
shows a broad distribution, which extents to much higher energies, see Fig. 5.9.
The yield as well as the maximum kinetic energy increases with the pulse
duration, solidifying the concept of a delayed plasmon-enhanced response. A
short pulse coupled into the clusters gives only values Ekin of 60 eV, in good
agreement with results obtained on atoms, whereas a stretched pulse results
in an increase in the maximum energy to values of more than 350 eV. Even
more, an enhanced maximum kinetic electron energy is observed under this
conditions, see Fig. 5.9, bottom. The shape of the electron energy distribution
hints at electron thermalization. We, however, see in the following that such
an interpretation is not sustainable when the spectra are further analyzed
with respect to their angular emission characteristics.

In summarizing this section, the characteristic pulse width dependence
obtained in the charge state distribution as well as in the electron energy
measurements supports the presence of a resonance to be responsible for the
efficient transfer of laser energy into clusters. In the next section we increase
the temporal resolution to resolve finer details.

5.4.2 Time-Resolved Studies

To map the excitation dynamics in more detail, it is advantageous to ap-
ply short dual-pulses in the excitation. In doing so, one is able to probe the
evolution of the system with high temporal resolution and under constant
intensity conditions. Thus, one can validate the following assumption: Can
the cluster charging distinctly be separated into (1) pre-ionization to initiate
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Fig. 5.9. Top: electron kinetic energy spectra (EKE) from Ag clusters irradiated
by strong femtosecond laser pulses of different durations but constant fluence (e.g.,
1.5×1015 Wcm−2 at 180 fs). The maximum electron energies are marked by arrows.
Bottom: the same as in the top figure, but depicting the maximum electron energy.
The pulse widths are tuned from 200 fs up to 11 ps. The line serves as a guide to the
eye only

the expansion followed by (2) a large energy transfer from the laser field into
the particle mediated by the huge absorption cross section of the plasmon?
Along this, line studies have been performed on bare and embedded silver
clusters. In a droplet experiment, we used dual-pulses and recorded the yield
of certain charge states as function of the optical delay. As a typical result,
the intensity of Ag5+ is shown in Fig. 5.10, left. Surprisingly, the yield of
Ag5+ is low when Δt is close to zero. More separating, the pulses in time
leads to a substantial increase of the signal. A maximum is obtained around



5 Ion and Electron Dynamics in Finite Systems in Intense Laser Fields 105

Fig. 5.10. Left: normalized yield of Ag5+ obtained in dual-pulse experiments on
silver clusters (mean size 40 atoms) embedded in helium droplets under different in-
tensity conditions. Right: Vlasov–MD-simulation of the average cluster charge state
in Na55 as function of the optical delay for three different laser intensities. Qualita-
tively, both studies exhibit similar trends. Adapted from [46]

Δt = 300 fs and a dual-pulse effect is clearly visible for optical delays of up
to 2 ps. Because of the excitation scheme, one immediately realizes that the
dynamics can indeed roughly be separated into a pair of single steps, namely
initial charging and delayed plasmon enhanced ionization. The impact of the
degree of ionization by the leading pulse is clearly visible in the optimal time
span (ΔtM) giving the highest ion yield. A higher pulse intensity results in a
stronger initial charging and thus accelerates the expansion. This shifts the
delay to smaller values, see the vertical line shown as a reference in the figure.
Similar findings are obtained in Vlasov simulations, Fig. 5.10, right. The opti-
mal delay determined in the strong field excitation of Na55 decrease by more
than a factor of two when, for example, doubling the pulse intensity. This is
accompanied by an enhanced average ionization of the cluster at resonance.

One can analyze the findings by comparing ΔtM for different charge states
as has been done on bare nanometer-sized silver particles [52]. These are
larger than the ones studied before and expand on a time scale of picosecond,
which originates from the lower degree of ionization (q/atom) in the initial
BSI process. Interestingly, ΔtM decreases with charge state q, see Fig. 5.11.
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This makes sense, as clusters that are probed at optical delays larger than
the time span to attain the resonance condition can only extract a lower
number of photons from the laser field, resulting in a reduced charge state
of the fragment ions. Again, the chosen pulse intensity has an influence on
ΔtM, that is, a three times higher pulse intensity (2.5× 1013 Wcm−2 → 8.0×
1013 Wcm−2) reduces ΔtM by about a factor of two. We note that similar find-
ings have been obtained also in experiments on clusters embedded in helium
droplets [18].

The strong dependence of the yield of the multiply charged ions on the
optical delay suggests similarities in the electron emission channel. Indeed,
the signal of the high ionic charge states and the maximum electron energy
as function of the optical delay are closely related. Figure 5.12 compares the
different particle emission channels. The dual-pulse result for Ag10+, which
was chosen here for the comparison, resembles the findings shown before. But
also the maximum electron energy behaves similar. Both find their maximum
at roughly the same optical delay. This behavior is also solid under a pulse
intensity variation. An increase in laser intensity shifts each curve in a similar
fashion. These findings imply that (1) electrons with high kinetic energies must
be present within the confining cluster potential. This has to be in the order
of kilo electron-volt to allow for an efficient electron impact excitation of core
electrons. Although there exits a huge outer ionization barrier, photoemission
is also energetic at similar conditions, which (2) hints at a strong acceleration
at resonance. In the following, the origin for the gain in energy by the electrons
is analyzed in more detail.



5 Ion and Electron Dynamics in Finite Systems in Intense Laser Fields 107

Fig. 5.12. Comparison of the dual-pulse yield of Ag10+ and maximum kinetic
electron in the interaction of strong optical laser pulses (2.5 × 1013 W cm−2 and
9.0×1013 W cm−2) with 4.5 nm (N ∼ 30,000) silver particles. Both signals are clearly
enhanced at the same optical delay, indicating that the electrons gain most of their
kinetic energy at plasmon-enhanced absorption conditions. Solid lines are guides to
the eyes only. Adapted from [52]

5.4.3 Directed Electron Emission

In the leading wing of the initial excitation some electrons are emitted, which
causes a confining potential for the remaining electrons (inner ionization).
Further ionization results in a deepening of the mean field potential, prevent-
ing the electrons more and more to overcome the outer ionization barrier, see
Fig. 5.1. At first sight, it thus seems quite surprising that the highest yield in
the multiply charged ions is accompanied by energetic electron emission. One
could argue, that the depth of the cluster potential of several kilo electron-
volt due to the high charging does not allow for the emission of energetic
electrons. Evenmore, if ionization is driven by thermal emission, an isotropic
pattern is expected. An angular-resolved study of the electron kinetic energy
characteristics helps to solve this issue.
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a b

Fig. 5.13. Angular-resolved photoemission from silver clusters (N ∼ 1,000) irradi-
ated by femtosecond dual-pulses (1013–1014 W cm−2). Left: in the dual-pulse setup,
energetic electrons are emitted preferentially in the direction of the laser polariza-
tion axis. The result of a single pulse experiment giving only low energy electrons as
well as a small asymmetry in the emission is shown for comparison. Right: electron
yield integrated over given energy windows for different optical delays Δt. A strong
increase in the asymmetry is obtained when the laser field couples resonantly to the
cluster. We note that the cluster size distribution is responsible for the shift in the
maximum and the decrease in the asymmetry. Adapted from [53]

To experimentally resolve a possible asymmetry in the emission, electrons
are detected only within a small solid angle perpendicular to the interaction
plane, spanned by the direction of cluster beam and laser pulse propagation
axis. Rotating a λ/2-plate, the laser polarization can be switched continuously
from parallel to perpendicular orientation with respect to the direction point-
ing towards the electron detector. The result of a such an angular-resolved
experiment is shown in Fig. 5.13, but concentrating only on the comparison
between parallel and perpendicular emission with respect to the polarization
axis. Almost no energetic electrons and also no clear asymmetry is present
when only a single laser pulse is exposed to the clusters. Feeding in the de-
layed pulse at resonance the asymmetry increases, which is accompanied by a
large difference in the energy of the electrons emitted in the direction of the
laser polarization axis compared to the perpendicular one [53]. As the emis-
sion turns out to be strongly directed, the aforementioned possible connection
of the high energy tail to a certain temperature of the strongly excited system
no longer holds. Instead, the strong asymmetry points to a different process,
which results in a preferential emission of energetic electrons along the laser
polarization axis. Note that the laser field defines the direction of the collec-
tive electron motion, which suggests that the plasmon is responsible for the
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Fig. 5.14. Simplified schematic view of the surface-plasmon assisted rescattering in
clusters (SPARC) process. The efficient acceleration at the Mie resonance is achieved
via the enhanced cluster polarization field. Within a few half-cycles of the laser field,
electrons gain kinetic energies in the cascade-like process. Adapted from [53]

strong and directed electron acceleration. It is worth to stress the many-body
aspect of the process, which differs strongly from single electron features in
the strong field excitation of atoms, like recollisions [54].

There are approaches that try to explain the acceleration of electrons in the
intense laser pulse interacting with small particles [53, 55, 56]. Modeling the
many-body dynamics using the Vlasov code reveals that some electrons that
are out of phase with the collective mode gain most of their energy within a
few cycles of the laser field. The impact of the laser-induced and resonance-
enhanced polarization potential turns out to be the dynamical mechanism that
accelerates the energy of the electrons. The crucial steps in the acceleration
are shown schematically in Fig. 5.14. We term the mechanism surface–plasmon
assisted rescattering in clusters (SPARC) [53]. Interestingly, the few-step ac-
celeration leads to an attosecond pulse train of energetic electrons. Even at
moderate pulse intensities of 1013 Wcm−2, peak field strengths of 35GeVm−1

are attained for Na147, which turns out to be five times larger than the cor-
responding laser field strength.

5.4.4 Control Experiments

The many different processes driving the system into a highly excited nano-
plasma state calls for a procedure that optimizes the excitation.
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Feedback algorithms are available, which in connection with pulse shapers
(liquid crystal arrays, acousto-optical modulators, and programmable disper-
sive filters or deformable mirrors), see, for example, [57] for more details,
can be used to modify laser pulses and to control the interaction. Prominent
examples are found in molecular physics, where adaptive control is used to,
for example, selectively break chemical bonds [58]. Here we apply the control
scheme to the strong nonlinear response regime. The concept that is used to
tailor the laser pulses was already described in Sect. 5.2. A control parameter
is extracted from the recorded mass spectra, for example, the yield of the
charge state under consideration is summed up and serves as a fitness value
in the optimization procedure.

In one approach, silver clusters embedded in helium nanodroplets are stud-
ied. In the control experiment, the yield of selected atomic charge states are
maximized. Ag10+ is chosen exemplarily (i.e., the yield of ions detected by
the mass spectrometer) to illustrate the power of the method. Figure 5.15
shows the result of an optimization where amplitude and phase of the pulse
are modified. We start with a short laser pulse of 70 fs which only gives a low
yield of multiply charged ions, Fig. 5.15, top. Modifying the pulse structure
using the pulse shaper, the yield of Ag10+ increases. In each generation, the
fitness function is calculated, and after several iterations this value levels out.

Fig. 5.15. Top: mass spectrum of highly charged ions (Agq+) resulting from the
interaction of short pulses (70 fs FWHM) with silver clusters (N ∼ 100) formed in
helium nanodroplets. Bottom: optimized signal using a genetic feedback algorithm
to enhance the yield of Ag10+. Compared to the short pulse excitation, the signal
enhances by more than one order of magnitude. The thinner lines originate from
helium clusters
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Typically we reach a plateau region after some tens of generations. In the
mass spectrum taken under optimized pulse structure conditions, the yield of
Ag10+ is clearly enhanced compared to the initial pulse configuration. The
corresponding laser pulse leading to the higher yield analyzed by SHG-FROG
shows a pulse that consists of two well-separated pulses. Finer details of the
coupling process have to be worked out in the near future and may help to
understand the strong field laser–matter interaction in small particles.

5.5 Conclusions

The interaction of strong optical laser pulses with metal clusters goes along
with significantly enhanced absorption cross sections when compared to
atoms. Because of the violent excitation, the particles completely disintegrate,
resulting in atomic ions with maximum recoil energies up 180keV. The yield
of ions in high charge states is significantly enhanced when stretched or dual-
pulses are used. The dependence of the highly charged ion yield on the pulse
width and the dual-pulse delay gives strong evidence for the dominant role of
the plasmon mode in the interaction. This is verified by Vlasov calculations
on small sodium clusters, which were taken as reference model systems. The
simulations give further insight into the details of the coupling dynamics and
have uncovered the contribution of the plasmon in the preferred emission of
energetic electrons in the direction of the laser polarization axis. Feedback
controlled pulse-shaping is applied to enhance the yield of multiply charged
species. In the near future, nanoplasmas might serve as pulsed sources for
highly charged ions, energetic electrons, and X-rays.
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53. Th. Fennel, T. Döppner, J. Passig, Ch. Schaal, J. Tiggesbäumker, K.-H. Meiwes-
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Mott Effect in Nuclear Matter

Gerd Röpke

Abstract. Nuclear matter consisting of protons and neutrons is an interesting
strongly interacting quantum system featuring many-body effects. The equation
of state (EoS) of nuclear matter at finite temperature and density with various
proton fractions is considered, in particular the region of medium excitation en-
ergy given by the temperature range T ≤ 30MeV and the baryon density range
ρB ≤ 1014.2 g cm−3. In this region (“warm and dilute asymmetric nuclear matter”),
the formation of few-body correlations, in particular bound clusters, has to be taken
into account. Based on a many-particle Green function approach, the medium modi-
fication of the clusters is described by self-energy and Pauli blocking effects, and the
cluster-mean field approximation is given. These medium effects lead to a shift of
the binding energies as well as a modification of scattering properties. Because of the
shift, bound states will merge with the continuum of scattering states at increasing
density and are dissolved (Mott effect). Results of the Mott effect for different nuclei
embedded in nuclear matter are given.

Thermodynamic properties are influenced by the formation and dissolution of
bound states. The nuclear matter EoS is considered within a generalized Beth–
Uhlenbeck approach. The connection with the Brueckner Hartree–Fock and Rela-
tivistic Mean-Field theory is outlined. Benchmarks such as virial expansion in the
low-density limit or the low-temperature limit are considered. An interesting effect
is the formation of a two-nucleon quantum condensate, showing the crossover from
Cooper pairing to Bose–Einstein condensation. Correlations in the condensate such
as quartetting are an interesting issue. The structure of the quantum condensate is
determined by the existence of bound states and the Mott effect.

The resulting thermodynamic properties, incorporating the Mott effect, are of
interest for heavy-ion collisions and astrophysical applications. The Mott effect is
also of relevance for the structure of finite nuclei, especially dilute excited states like
the Hoyle state of 12C.

6.1 Introduction

The equation of state (EoS), the composition, and the possible occurrence of
phase transitions in nuclear matter are not only the widely discussed topics
in nuclear theory [1], but also of great interest in astrophysics and cosmology.
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Experiments on heavy ion collisions, performed over the last decades, have
given new insight into the behavior of nuclear systems in a broad range of
densities and temperatures. The observed cluster abundances, their spectral
distribution, and correlations in momentum space can deliver information
about the state of dense, highly excited matter. In a recent review [2], con-
straints to the EoS have been investigated. Different versions have been consid-
ered in the high-density region, and comparison with the properties of neutron
star may discriminate between more or less reasonable equations of state.

We restrict ourselves to matter in equilibrium at temperatures T ≤ 30MeV
and baryon number densities nB ≤ 0.2 fm−3, where the quark substructure
and the excitation of internal degrees of freedom of the nucleons (protons
p and neutrons n) are not of relevance and the nucleon–nucleon interaction
can be represented by an effective interaction potential. In this region of the
temperature-density plane, we investigate how the quasi-particle picture will
be improved if few-body correlations are taken into account. The influence
of cluster formation on the EoS is calculated for different situations, and the
occurrence of phase instabilities is investigated. Derived from the full spectral
function, the concept of composition will be introduced as an approximation
to describe correlations in dense systems. Another interesting issue is the
formation of quantum condensates.

A quantum statistical approach to the thermodynamic properties of nu-
clear matter can be given using the method of thermodynamic Green func-
tions [3]. In general, within the grand canonical ensemble, the EoS nτ (T, μτ ′)
relates the particle number densities nτ to the temperature (T ) and the chem-
ical potentials μτ of protons (p) or neutrons (n), where the internal quantum
number τ can be introduced to describe besides isospin (p, n) also spin and fur-
ther quantum numbers. This EoS is obtained from the single-particle spectral
function, which can be expressed in terms of the self-energy. Then, thermo-
dynamic potentials such as the pressure p(T, μτ) or the density of free energy
f(T, nτ ) are obtained by integrations. From these thermodynamic potentials,
all other equilibrium thermodynamic properties can be derived. In particular,
the stability of the homogeneous system against phase separation has to be
considered.

The main quantity to be evaluated is the self-energy. Different approxi-
mations can be obtained by partial summations within a diagrammatic rep-
resentation. The formation of bound states is taken into account considering
ladder approximations [4], leading in the low-density limit to the solution
of the Schrödinger equation. The effects of the medium can be included in
a self-consistent way within the cluster-mean field approximation (see [5] for
references), where the influence of the correlated medium on the single particle
states as well as on the clusters is considered in first order with respect to the
interaction. As a point of significance, the single particle and the bound states
are considered on equal footing. Besides single-particle self-energy shifts of the
constituents, the bound state energies are also modified by the Pauli block-
ing due to the correlated medium. An extended discussion of the two-particle
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problem can be found in [6]. With a generalized Beth–Uhlenbeck formula,
not only the two-particle properties such as deuteron formation and scatter-
ing phase shifts have been used to construct a nuclear matter EoS, but also
the influence of the medium has been taken into account, which leads to the
suppression of correlations at high densities. Similarly, also three- and four-
particle bound states can be included [4], and also the medium-dependent
shift of the cluster binding energies was investigated, see [7].

If a singularity in the bosonic (even A) medium-modified few-body
T-matrix TA arises at energy that coincides with the corresponding chemical
potential Zμp + (A − Z)μn, then the formation of a quantum condensate is
indicated. Different kinds of quantum condensates have been considered in
nuclear matter [8, 9]. They become obvious if the binding energy of nuclei
is investigated [10]. Correlated condensates are found to give a reasonable
description of near-threshold states of nα nuclei [11]. The contribution of
condensation energy to the nuclear matter EoS would be of importance and
has to be taken into account not only in mean-field approximation but also
considering correlated condensates.

The EoS can be applied to different situations. In astrophysics, the rel-
ativistic EoS of nuclear matter was investigated recently [12] for supernova
explosions. If nuclei are considered as inhomogeneous nuclear matter, within a
local density approximation the EoS can serve for comparison to estimate the
role of correlations. In nuclear reactions a nonequilibrium theory is needed,
but within a simple approach such as the freeze out concept or the coalescence
model, the results from the EoS may be used to describe heavy ion reactions.

6.2 Single Particle Spectral Function and Self-Energy

A quantum statistical approach to nuclear matter at low densities and tem-
peratures can be given in the nonrelativistic case starting from a Hamiltonian

H =
∑

1

E(1)a†1a1 +
∑

121′2′
V (12, 1′2′)a†1a

†
2a2′a1′ , (6.1)

where we can use linear momentum, spin, and isospin to characterize the
single-nucleon state, {1} = {p1, σ1, τ1}, so that the kinetic energy is given by
E(1) = p2

1/2m1, while the interaction potential V (12, 1′2′) can be given in the
different spin and isospin channels. We also use the charge number Z1 = 1 for
protons (τ1 = p) and Z1 = 0 for neutrons (τ1 = n).

The basic problem of a many-particle approach to nuclear matter is the
lack of a first principle derivation of the interaction potential from QCD.
Instead, the potential can be introduced empirically reproducing measured
quantities of the two-particle system such as scattering phase shifts and bind-
ing energies. This way, standard parametrization for the nucleon–nucleon in-
teraction like the Bonn or Paris potentials has been introduced, and for the
sake of solution of the Schrödinger equation, the separable forms like PEST4
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are more appropriate [13]. Mention that local potentials can be represented by
a sum of separable potentials, so that both can be considered as equivalent.
Furthermore, they contain the full information about scattering phase shifts
in the parameter region of relevance.

Another remark refers to the nonrelativistic description. As long as rel-
ativistic effects can be neglected, the use of concepts like the Hamiltonian,
bound state wave functions, and scattering phase shifts allow for a systematic
treatment of correlations in the many-particle system. However, at densities
above saturation and temperatures comparable with the nucleon rest mass, a
relativistic description is indispensable.

A quantum statistical approach can be given using the Green function
formalism. The treatment of nuclear matter with finite temperature Green
functions, including the formation of bound states, has been given in [4, 6],
and the EoS for nuclear matter has been deduced. It is most appropriate to
start with the EoS for nucleon densities nτ (β, μp, μn) as a function of tem-
perature T = 1/(kBβ) and chemical potentials μτ for protons and neutrons,
respectively. With the spectral function A(1, ω;β, μp, μn), we have

nτ1(β, μp, μn) =
2
Ω

∑

p

1
2π

∫ ∞

−∞
f1,Z1(ω;β, μp, μn)A(1, ω;β, μp, μn) dω, (6.2)

where Ω is the system volume, and summation over spin direction is collected
in the factor 2. The Fermi function is f1,Z1(ω) = [exp(β(ω − μ1)) + 1]−1 and
depends on the inverse temperature β and the chemical potential μ1 = μp for
τ1 = p, that is, Z1 = 1, or μ1 = μn for τ1 = n, that is, Z1 = 0.

At this point, we consider the densities of both protons and neutrons
or, alternatively, the baryon density nB = (nn + np) and the asymmetry
of nuclear matter α = (nn − np)/(nn + np) as given parameters. In a further
evaluation, allowing for weak interaction, β equilibrium may be achieved which
is of interest, for example, for astrophysical applications. Besides the frozen
equilibrium where np, nn are fixed, we assume homogeneity in space as a
first step. For given T , Ω, and particle numbers Nτ = nτΩ, the minimum
of the free energy F = FΩ has to be found. This thermodynamic potential
follows from integration, for example, F(T, np, nn) =

∫ nn

0 μn(T, 0, n′
n) dn′

n +∫ np

0 μp(T, n′
p, nn) dn′

p. For stability against phase separation, the curvature
matrix Fτ,τ ′ = ∂F/∂nτ∂nτ ′|T has to be positive, that is, Tr [Fτ,τ ′ ] ≥ 0,
Det [Fτ,τ ′] ≥ 0.

The basic equations of a Green function approach to the EoS can be found
in different papers, see [6]. We give here only some final results. The spectral
function is related to the self-energy according to

A(1, ω) =
2ImΣ(1, ω − i0)

(ω − E(1)− ReΣ(1, ω))2 + (ImΣ(1, ω − i0))2
, (6.3)

where the imaginary part has to be taken for a small negative imaginary part
in the frequency.
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For the self-energyΣ, a cluster decomposition [4] is possible. The diagrams
are calculated as

Σ(1, zν) =
∑

A

∑

Ωλ,2...A

G
(0)
(A−1)(2, ..., A,Ωλ − zν)TA(1...A, 1′...A′, Ωλ) (6.4)

with the free (A− 1) (quasi-) particle propagator

G
(0)
(A−1)(2, ..., A, z) =

1
z − E2 − ...− EA

f1,Z2(2)...f1,ZA(A)
fA−1,ZA−1(E2 + ...+ EA)

(6.5)

and

fA,Z(E) = [exp((E − Zμp − (A− Z)μn)/kBT )− (−1)A]−1. (6.6)

The TA matrices are related to the A-particle Green functions

TA(1 . . . A, 1′ . . . A′, z) = VA(1 . . . A, 1′ . . . A′)
+VA(1 . . . A, 1′′ . . . A′′)GA(1′′ . . . A′′, 1′′′ . . . A′′′, z)VA(1′′′ . . . A′′′, 1′ . . . A′),

(6.7)

with the potential VA(1 . . . A, 1′ . . . A′) =
∑

i<j V (ij, i′j′)
∏
k =i,j δk,k′ , and

subtraction of double counting diagrams when inserting the T matrices into
the self-energy. The solution of the A-particle propagator in the low-density
limit is given by (we include the isospin quantum number Z in the internal
quantum number ν = Z, n)

GA(1 . . . A, 1′ . . . A′, z) =
∑

ν,P

ψA,ν,P (1 . . . A)ψ∗
A,ν,P (1′ . . . A′)

z − EA,ν,P
(6.8)

using the eigenvalues EA,ν,P and the wave functions ψA,ν,P (1 . . . A) of the
A-particle Schrödinger equation, P denotes the total momentum, and the
internal quantum number ν covers bound as well as scattering states.

The evaluation of the EoS in the low-density limit is straightforward. With

TA(1 . . . A, 1′ . . . A′, z) =
∑

ν,P

(6.9)

(z − E1 − ...− EA)ψA,ν,P (1 . . . A)ψ∗
A,ν,P (1′ . . . A′)(EA,ν,P − E1′ − ...− EA′)

z − EA,ν,P
we can perform the Ωλ summation in (6.4). We obtain the result

∑

Ωλ

1
Ωλ − zν − E2...− EA

(Ωλ − E1...− EA)(EA,ν,P − E1...− EA)
Ωλ − EA,ν,P

= fA−1(E2 + ...+ EA)
zν − E1

zν + E2 + ...+ EA − EA,ν,P

− fA(EA,ν,P )
E1 + ...+ EA − EA,ν,P

zν + E2 + ...+ EA − EA,ν,P
. (6.10)
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Taking ImΣ and integrating the δ function arising from the pole in the
denominator, we have the leading term in density given by

f1(EA,ν,P − E2 − ...− EA)fA−1(E2 + ...+ EA) = fA(EA,ν,P ).

Considering only the bound-state contributions, we have the result for the
EoS in the low-density, low-temperature limit

nB(β, μp, μn) = Ω−1
∑

A,ν,P

A fA,Z(EA,ν,P ), (6.11)

which is an ideal mixture of components obeying Fermi or Bose statistics.
In the classical limit, the integrals over P can be carried out, and one

obtains the mass-action law that determines the matter composition at given
temperature and total particle density. At low temperatures, quantum effects
become relevant. The most dramatic is Bose–Einstein condensation (BEC),
which occurs for the channels with even A when EA,ν,P−Zμp−(A−Z)μn = 0.
As the temperature is decreased from relatively high values toward zero, BEC
occurs first for those clusters with largest binding energy per nucleon. If we
take into account also the formation of α clusters in nuclear matter, the two-
particle (deuteron) binding energy per nucleon is 1.11MeV, while the four-
particle (α) binding energy per nucleon is 7 MeV. One therefore expects that
a quantum condensate of α particles is formed.

The Green function approach provides us with a systematic treatment
of interaction in nuclear matter. Thus, we can include the contribution of
scattering to the EoS. Furthermore, the properties of the bound states are
changed due to the influence of the medium as discussed later.

6.3 Two-Particle Contribution: Generalized
Beth–Uhlenbeck Formula and Virial Expansion

For the self-energy, appropriate approximations have to be performed. As a
trivial case, the free fermion gas approximation follows for vanishing self-
energy. Here we discuss first the inclusion of two-particle correlations as
given by the two-nucleon T matrix (or the so-called Brueckner G matrix)
[6]. We show how a self-consistent approach can be given, which includes
medium effects, so that not only the second virial coefficient is obtained in
the low-density limit, but also the fading of correlations at higher densities is
described.

In the so-called ladder approximation, which is known as the Bethe–
Goldstone equation, we have (see (6.7))

TL2 (12, 34, z) = V (1234) +
∑

5678

V (12, 56)G0
2(56, 78, z)TL2 (78, 34, z). (6.12)
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The propagator of the noninteracting pair within a dense medium reads

G0
2(12, 34, z) =

∫
dω
2π

∫
dω′

2π
1− f1,Z1(ω)− f1,Z2(ω

′)
ω + ω′ − z A(1, ω)A(2, ω′)δ13δ24,

(6.13)

where we took the full single-particle propagator as given by the spectral
function. As given earlier (6.5) in the quasiparticle approximation, the spec-
tral function becomes δ-like and the integrals over ω, ω′ can be performed. The
factor (1 − f1 − f1) (Feynman–Galitsky) results from the Matsubara sum. It
accounts for the Pauli principle, which forbids the scattering into final states
that are occupied by surrounding particles. In contrast to the Brueckner G
matrix, which has the Pauli blocking as (1 − f1)(1 − f1), the hole contribu-
tions are included. This is necessary, for example, to obtain the transition to
superfluidity, see Sect. 6.11.

Constructing the self-energy in the approximation ΣL
2 = TL2G, we have

(see [6])

ΣL
2 (1, z) =

∑

2

∫
dE
2π

A(2, E) [f1,Z2(E)(V (12, 12)− ex)

−
∫

dE′

2π
(ImTL2 (12, 12, E′ + i0)− ex)

f1,Z2(E) + f2,Z(E′)
E′ − E − z

]
.

(6.14)

To obtain the so-called chemical picture, an expansion with respect to
small imaginary part of the self-energy will be performed. Introducing the
quasiparticle energies according to

Equ(1) = e(1) = E(1) + v(1) ≈ v(1, p1 = 0) +
p2
1

2m∗
1

(6.15)

with v(1) = ReΣ(1, e(1)), we have

A(1, E) =
2πδ(E − e(1))

1− ((d/dz)ReΣ(1, z)|z=e(1)

−2ImΣ(1, E + i0)
d

dE
P

E − e(1)
. (6.16)

The spectral function consists of the δ-shaped contribution of free quasi-
particles and a correlation contribution. Expanding the denominator of the
first term and using the spectral representation of the self-energy [6], we ar-
rive at the decomposition nB(T, μp, μn) = nfree(T, μp, μn) + 2ncorr(T, μp, μn)
of the nucleon density as a function of chemical potential and temperature,
with

nfree(T, μp, μn) = Ω−1
∑

1

f1,Z1(E
qu(1)) (6.17)
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and

ncorr(T, μp, μn) = Ω−1
∑

12

∫
dE
2π

f2,Z(E)
∑

12

[1− f1,Z1(e(1))− f1,Z2(e(2))]

×
[
(Im T(12, 12, E + i0)− ex)

d
dE

P
e(1) + e(2)− E

− πδ(E − e(1)− e(2))
d

dE
(Re T(12, 12, E)− ex)

]
. (6.18)

Compared with the Brueckner–Bethe–Goldstone approach, the density con-
tribution of correlated pairs of quasiparticles ncorr(T, μp, μn) is new. As shown
in [6], it can be expressed in terms of on-shell T-matrix elements, which are
represented via generalized scattering phases affected by the nuclear medium
defined in the different two-particle channels τ specifying the spin-triplet
(isospin-singlet) channel τ =3S1 and the spin-singlet (isospin-triplet) chan-
nel τ =1S0. We give the final expression for the generalized Beth–Uhlenbeck
equation

ncorr(T, μp, μn) = 3Ω−1
∑

P>PMott
d

[f2,1(Econt(P ) + Ed(P ))− f2,1(Econt(P ))]

−
∑

P,τ

gτ

∫ ∞

0

dE
π

[
d

dE
f2,Zτ (Econt(P ) + E)

]
(δτ (E)− sin δτ (E) cos δτ (E)).

(6.19)

Here, Econt(P ;T, μp, μn) = P 2/4m+2v(P/2;T, μp, μn) denotes the continuum
edge for a pair with total momentum P . The medium dependent scattering
phase shifts δτ (E;T, μp, μn) in the channel τ , degeneration factor gτ , and the
medium dependent deuteron binding energy Ed(P ;T, μp, μn) follow from the
solution of the T-matrix (6.12), which also determines the medium-modified
bound state energies. The chemical potential μτ = μ1 + μ2 denotes the sum
of the chemical potentials of the nucleons in the channel τ . The in-medium
scattering phase shifts for the channel τ at the energy of relative motion E
follow from the T matrix for a given interaction as will be shown later on. The
minimum center of mass momentum of a proton–neutron pair above which
a deuteron-like bound state can be formed is denoted by PMott

d (T, μp, μn).
Details are given below in Sect. 6.7.

Before evaluating these expressions for a given nucleon–nucleon potential,
we present the ordinary Beth–Uhlenbeck equation. In the low-density limit, all
medium corrections to the single and two-particle properties can be neglected.
Furthermore, at fixed temperature, Fermi and Bose functions can be expanded
near the classical distribution if nBΛ

3/4� 1, where Λ = (2πh̄2/mkBT )1/2 is
the thermal wavelength of nucleons. The ordinary Beth–Uhlenbeck formula is
reproduced, with up to second order in the density
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nn =
2
Λ3

eμn/kBT +
4
Λ3

e2μn/kBT bn +
4
Λ3

e(μn+μp)/kBT bpn, (6.20)

np =
2
Λ3

eμp/kBT +
4
Λ3

e2μp/kBT bp +
4
Λ3

e(μn+μp)/kBT bpn. (6.21)

Taking the relative energy E, we have

bn = bp =
2

21/2πkBT

∫ ∞

0

e−E/kBT δ1S0(E) dE − 2−5/2, (6.22)

bpn =
3

21/2

[
e−Ed/kBT − 1 +

1
πkBT

∫ ∞

0

e−E/kBT δ3S1(E) dE
]

+
1

21/2πkBT

∫ ∞

0

e−E/kBT δ1S0(E) dE. (6.23)

This gives the EoS in the low-density limit

n
(0)
b (T, μp, μn) = n

(0)
free(T, μp, μn) + n(0)

corr(T, μp, μn), (6.24)

with
n

(0)
free(T, μp, μn) =

2
Λ3

[
eμp/kBT + eμn/kBT

]
, (6.25)

n(0)
corr(T, μp, μn) =

25/2

Λ3

{
− e2μp/kBT

8
− e2μn/kBT

8

+ 3
[
e(μp+μn−E(0)

d )/kBT − 1
]

+
∑

τ

gτ
πkBT

∫
e(μτ−E)/kBT δτ (E) dE

}
. (6.26)

which is the rigorous result for the second virial coefficient and has to be
considered as a low-density benchmark for the nuclear matter EoS. It should
be mentioned that the Brueckner Hartree–Fock and any other quasiparticle or
mean field approach cannot give the correct low-density limit for the deviation
from the ideal nucleon gas. In addition to the free quasiparticle gas, we have
to include the correlated part of the density, in particular the formation of
bound states.

An extensive discussion on the ordinary Beth–Uhlenbeck formula and re-
lated EoS has been given recently by Horowitz and Schwenk [14]. Input quan-
tities are the deuteron binding energy and the scattering phase shifts, which
are experimentally accessible, without introducing a potential and solving the
T-matrix equation. The generalized Beth–Uhlenbeck formula (6.19) derived
in [6], see also [4], contains in-medium modifications of the single-particle and
two-particle states in matter. It includes the Mott effect describing the disso-
lution of bound states at increasing nuclear matter density as discussed below.
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Furthermore, it describes degeneration and, in particular, the occurrence of
superfluidity at low temperatures. To obtain explicit results, we introduce
a nucleon–nucleon interaction potential and solve the T-matrix equation in
Sect. 6.5.

A phenomenological extension of the virial expansion has been proposed
by Horowitz and Schwenk [14] who considered not only the nucleon–nucleon
phase shifts, but also included further bound states such as α particles as
well as Triton’s and Helium 3 [15] and the scattering phase shifts between the
different clusters to obtain the corresponding higher order virial coefficients.
Although this cluster–virial expansion is not derived in a systematic way and
double counting has to be avoided, it reflects the chemical picture and may be
of use in the region where special clusters are dominating, such as α matter.
A systematic treatment of all clusters where the interaction between the clus-
ters is taken in mean-field approximation will be given in the following section.

6.4 Cluster Mean-Field Approximation

The Hartree–Fock approximation is the simplest approximation that takes the
interaction into account in first order. Thus, any correlation is neglected, and
we can introduce the concept of a mean field. Within the chemical picture
where bound states are considered as new species, to be treated on the same
level as free particles, a mean-field approach can be formulated by specifying
the Feynman diagrams that are taken into account when treating A-particle
cluster propagation [5]. The corresponding A-particle cluster self-energy is
treated to first order in the interaction with the single particles as well as with
the B-particle cluster states in the medium, but with full antisymmetrization
between both clusters A and B. We use the notation {A, ν, P} for the particle
number, internal quantum number (including proton number Z), and center
of mass momentum for the cluster under consideration and {B, ν̄, P̄} for a
cluster of the surrounding medium.

For the A-particle problem, the effective wave equation reads

[E(1) + . . . E(A) − EAνP ]ψAνP (1 . . . A)

+
∑

1′...A′

A∑

i<j

V Aij (1 . . . A, 1′ . . . A′)ψAνP (1′ . . . A′)

+
∑

1′...A′
V A,mf

nm (1 . . . A, 1′ . . . A′)ψAνP (1′ . . . A′) = 0, (6.27)

with V Aij (1 . . . A, 1′ . . . A′) = V (12, 1′2′)δ33′ . . . δAA′ . The effective potential
V A,mf

nm (1 . . . A, 1′ . . . A′) describes the influence of the nuclear medium on the
cluster bound states and has the form

V A,mf
nm (1 . . . A, 1′ . . . A′) =

∑

i

Δ(i)δ11′ . . . δAA′ +
∑

i,j

′
ΔV Aij (1 . . . A, 1′ . . . A′) ,

(6.28)
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with

Δ(1) =
∑

2

(V (12, 12)exf̃(2)−
∞∑

B=2

∑

ν̄P̄

∑

2...B

∑

1′...B′
fB(EBν̄P̄ )

×
m∑

i<j

V Bij (1 . . . B, 1′ . . . B′)ψBν̄P̄ (1 . . . B)ψ∗
Bν̄P̄ (1′ . . . B′) , (6.29)

ΔV A12(1 . . . A, 1′ . . . A′) = −
{

1
2
(f̃(1) + f̃(1′))V (12, 1′2′) +

+
∞∑

B=2

∑

ν̄P̄

∑

2̄...B̄

∑

2̄′...B̄′

fB(EBν̄P̄ )
B∑

j

V B1j (12̄′ . . . B̄′, 1′2̄ . . . B̄)

×ψ∗
Bν̄P̄ (22̄ . . . B̄)ψBν̄P̄ (2′2̄′ . . . B̄′)

}
δ33′ . . . δAA′ , (6.30)

f̃(1) = f1(1) +
∞∑

B=2

∑

ν̄P̄

∑

2...B

fB(EBν̄P̄ )|ψBν̄P̄ (1 . . . B)|2 , (6.31)

where (see (6.6))

fA(E, τ) = fA,Zτ (E) =
[
expβ(E − μτ )− (−1)A

]−1
. (6.32)

We note that within the mean-field approximation, the effective potential
V A,mf

nm remains energy independent, that is, instantaneous. The quantity f̃(1)
describes the effective occupation of state 1 due to free and bound states,
while exchange is included by the additional terms in ΔV A12 and Δ(1), thus
accounting for antisymmetrization.

The cluster mean-field may be viewed as a generalization of the ordinary
mean field, where in addition to the mean field produced by the single-particle
states, the mean field produced by clusters (bound states) is also taken into
account. The modification of bound-state energies as well as wave functions
can be evaluated in this approximation. We obtain an optimized set of states,
which may be of use in evaluating self-energies and spectral functions in a
consistent manner, as a prerequisite to evaluating correlation functions and
thermodynamic relations. Note that the cluster mean-field approximation,
which considers the interaction between the cluster A and B only in the lowest
order of interaction, can be extended to higher orders of interaction. Then,
we have to consider the complex of (A + B) nucleons as a new few-nucleon
system and have to calculate the quantum states solving the wave equation
for the (A+B) nucleon system.

Of course, the self-consistent solution of the cluster in a clustered medium
is a rather involved problem, which has not been solved until now. In partic-
ular, the composition of the medium has to be determined, and for this we
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need the energy shift of the different components (clusters of B nucleons) in
the medium. The energy shift of the respective cluster (B), in turn, has to be
evaluated solving the effective wave equation for the B-nucleon problem.

Referring back to the approximation sketched above in which the medium
is considered as uncorrelated, only the medium terms with f̃(1) survive. All
the higher-cluster distribution functions fB are neglected, but f̃(1) now de-
notes the Fermi distribution function for which the effective chemical potential
μ̃1 is determined as reproducing the total nucleon density,
Ω−1

∑
p1
f̃1(Equ(1)) = nτ1 . This normalization reflects that all nucleons,

bound or free, act as fermions and occupy phase space, resulting in Pauli
blocking and self-energy shifts. Clearly, this approximation is most appropri-
ate in that regions of the phase diagram where the contribution of clusters
to the total density is small, that is, at high temperatures and low densities.
This approximation is also suitable at densities above the Mott density, where
the correlations have been destroyed due to the Pauli blocking.

We discuss the cluster decomposition of the self-energy once more so
that the A-particle contribution follows from the A-particle T matrix. The
A-particle T matrix obeys a Bethe–Salpeter equation, see (6.7),

GA(1 . . . A, 1′ . . . A′, zA) = G
(0)
A (1 . . . A, zA)δ11′ . . . δAA′

+
∑

1′′...A′′
G

(0)
A (1 . . . A, zA)VA(1 . . . A, 1′′ . . . A′′)GA(1′′ . . . A′′, 1′ . . . A′, zA),

(6.33)

where VA(1 . . . A, 1′ . . . A′) =
∑

i<j V (ij, i′j′)
∏
k =i,j δkk′ is the interaction

within the A-particle cluster. zA denotes a fermionic or bosonic Matsubara
frequency. The free A-particle Green function follows as (see (6.5))

G
(0)
A (1 . . . A, zA) =

[1− f1(1)] . . . [1− f1(A)]− (−1)Af1(1) . . . f1(A)
zA − Equ(1)− · · · −Equ(A)

. (6.34)

The solution of the Bethe–Salpeter equation follows as (6.8)

GA(1 . . . A, 1′ . . . A′, zA) =
∑

νP

ψAνP (1 . . . A)
1

zA − EAνP
ψ∗
AνP (1′ . . . A′).(6.35)

The summation over the internal quantum states ν includes besides the bound
states also the scattering states. The A-particle wave function and the corre-
sponding eigenvalues follow from solving the in-medium Schrödinger equation

[Equ(1) + · · ·+ Equ(A)− EAνP ]ψAνP (1 . . . A)

+
∑

1′...A′

∑

i<j

[1− f̃1(i)− f̃1(j)]V (ij, i′j′)
∏

k =i,j
δkk′ψAνP (1′ . . . A′) = 0 .

(6.36)
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The main structures are given in this equation: we have dressed single-particle
propagators given by quasiparticle energies. This equation contains the ef-
fects of the medium in the quasiparticle shift as well as in the Pauli blocking
terms. The approximation of an uncorrelated medium leads to the effective
occupation numbers f̃1(1) = [exp((Equ(1) − μ̃1)/kBT ) + 1]−1, where μ̃1 is
determined by the normalization condition Ω−1

∑
p1
f̃1(1) = nτ1 . A more de-

tailed description of the medium containing also the correlations is given by
the cluster mean-field approximation, where besides the single particle distri-
bution function f1 also higher cluster distribution functions fA occur.

Obviously, the bound state wave functions and energy eigenvalues as well
as the scattering phase shifts become dependent on temperature and density.
Two effects have to be considered, the quasiparticle energy shift and the Pauli
blocking.

6.5 Nucleon–Nucleon Interaction

In contrast to the second virial coefficient, which can be expressed in terms
of observables such as the deuteron binding energy and the scattering phase
shifts in the spin singlet or in the spin triplet channels, the evaluation of
medium modifications of the single and two-particle states can be performed
only if the interaction potential is known. As long as the nucleon–nucleon
interaction reproduces the deuteron binding energy and the scattering phase
shifts in the different channels, the low-density expansion coincides with the
ordinary Beth–Uhlenbeck formula for the second virial coefficient.

The full treatment of the empirical data to construct separable potentials
has been performed by Plessas et al. [13], who presented a rank 4 separa-
ble interaction based on the Paris (PEST) or Bonn (BEST) potential. This
potential has been used in calculating correlations and bound state forma-
tion in nuclear matter, see [6, 8]. We give here some simpler rank 1 separa-
ble forms [16] based on the following two-particle properties: The deuteron
binding energy is Ed = 2.224573MeV. In the spin triplet state, τ =3S1, we
have besides the bound state properties the observed scattering phase shifts,
which are characterized by the scattering length a3S1 = 5.396 fm and the ef-
fective range r3S1 = 1.726 fm. In the spin singlet state, τ =1S0, we have no
bound state. From the observed scattering phase shifts we have the scattering
length a1S0 = −23.678 fm and the effective range r1S0 = 2.729 fm. Physi-
cal constants are taken as h̄c = 197.327MeV fm, the isospin averaged mass
mc2 = 939.1735MeV, so that h̄2/m = 41.4598MeV fm2.

For the two-nucleon system, we take a Gaussian interaction of the form

Vτ (p1, p2; p′1, p
′
2) = −λτw(p)w(p′)δp1+p2,p′1+p

′
2

= −λτe−p
2/β2

τ e−p
′2/β2

τ δp1+p2,p′1+p′2 , (6.37)

with p = (p2 − p1)/2, p′ = (p′2 − p′1)/2. Better approximations are given by
coupled waves and higher rank interactions, see [13].
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The advantage of a separable interaction is that the ladder-T matrix
(6.12) can be solved. We give the solution for uncoupled waves in the channel
τ = 3S1 (isospin singlet, spin triplet) and τ = 1S0 (isospin triplet, spin singlet)
including the Pauli blocking factors, starting with

Tτ (12, 1′2′, z) = Vτ (12, 1′2′) (6.38)

+
∑

1”2”

Vτ (12, 1”2”)
1− f1(1”)− f1(2”)

z − Equ(1”)− Equ(2”)
Tτ (1”2”, 1′2′, z).

For the separable interaction (6.37), we take the ansatz Tτ (12, 1′2′, z) =
w(p)w(p′)tτ (P, z)δp1+p2,P δp′1+p′2,P and find

tτ (P, z) = −λτ − λτ
∑

p

w2(p)
1− f1(p + P /2)− f1(p− P /2)

z − Equ(p + P /2)− Equ(p− P /2)
tτ (P, z),

(6.39)
with the solution

tτ (P, z) = −λτ

[
1 + λτ

∑

p

w2(p)
1− f1(p + P /2)− f1(p− P /2)

z − Equ(p + P /2)− Equ(p− P /2)

]−1

.

(6.40)
The binding energy is obtained as the value of z where the denominator

of tτ (P, z) (see (6.40)) becomes equal to zero. The scattering phase shift in
the channel τ is given by

δτ (P,E) = arctan
[
Im tτ (P,E)
Re tτ (P,E)

]
. (6.41)

The scattering length aτ and the effective range r0,τ follow from k cot δτ =
−1/aτ + r0,τk

2/2− Pτ r30,τk4 + · · · .
We evaluate TL2 for the Gaussian form-factor

Tτ (k1k2, k
′
1k

′
2, z) = −λτ e(k1−k2)2/(4β2)e(k′1−k′2)2/(4β2)tτ (P, T, np, nn, z),

(6.42)
with

1
tτ (P, T, np, nn, z)

= 1

− λτ
2π2

m∗

h̄2

β

23/2

(
π1/2 − π

(
−2m∗z̄
h̄2β2

)1/2

e−
2m∗ z̄
h̄2β2 Erfc

[(
−2m∗z̄
h̄2β2

)1/2
])

+
np + nn

2

(
2πh̄2

m∗kBT

)3/2

e−h̄
2P 2/8m∗kBT λτ

2π2

m∗

h̄2

(
2
β2

+
h̄2

2m∗kBT

)−1/2

× 1
2

(
π1/2 − π

(
−m

∗z̄
h̄2

(
2
β2

+
h̄2

2m∗kBT

))1/2

e−
m∗ z̄
h̄2 ( 2

β2 + h̄2
2m∗kBT

)

Erfc

[(
−m

∗z̄
h̄2

(
2
β2

+
h̄2

2m∗kBT

))1/2
])

. (6.43)
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Here, the Fermi distribution and the quasiparticle shifts in (6.40) are angle
averaged, and the nondegenerate distribution f1(p)= nτ1Λ

3 exp[−p2/2m∗kBT ]
is used, with z̄ = z − 2v − P 2h̄2/(4m∗) reflecting the quasiparticle properties
as described by the single nucleon shift v and the effective mass m∗. Dropping
all density effects, a more simple form results as the solution of the isolated
two-nucleon problem

tτ (E) = (6.44)
[
1− λτ

2π2

m

h̄2

β

23/2

(
π1/2 − π

(
−2mE
h̄2β2

)1/2

e−
2mE
h̄2β2 Erfc

[(
−2mE
h̄2β2

)1/2
])]−1

.

Considering the solution of the isolated two-nucleon problem, we can de-
termine the parameter of the potential (6.37). Similar to Yamaguchi [16], we
use the deuteron bound state energy and the scattering length to fix the two
parameters λ3S1 = 1172.87MeV fm3, β3S1 = 1.58 fm−1 (spin triplet) (units:
MeV, fm)

V3S1(p, p
′) = −1172.58 e−(p2+p′2)/1.582

. (6.45)

For the spin singlet state we adapt like Yamaguchi the same parameter β1S0 =
β3S1 = β. From the fit to the scattering length follows λ1S0 = 774.688MeV fm3

(spin singlet)
V1S0(p, p

′) = −774.688 e−(p2+p′2)/1.582
. (6.46)

From the solution of this potential, we calculate in the spin triplet chan-
nel the nucleonic rms value (〈r2〉nucleon)1/2 = 1.928 fm for the deuteron (see
Sect. 6.8) and the effective range r0,3S1 = 1.729 fm for the scattering phase
shifts, whereas for the spin triplet channel r0,1S0 = 2.0979 fm is calculated.
These values give a good parametrization of the low-energy two-nucleon prop-
erties. Better coincidence is possible using more sophisticated potentials [13]
where partial waves for uncoupled channels (singlet, 1S0) and coupled chan-
nels (triplet, J = 1, 3S1 −3D1), etc. are treated, and the set of adjustable
parameters is extended. Different angular momenta with higher rank basis
systems are considered.

We can also perform the fit to a more complex (rank 2) separable potential,
reflecting attraction and repulsion, see also [16]. The ratio of both ranges of
interaction can be related to the masses of σ and ω mesons. Using units MeV
and fm for the spin triplet channel follows

V3S1(p, p
′) = −1645.89 e−(p2+p′2)/1.7492

+ 445.843 e−(p2+p′2)/2.492
(6.47)

and for the spin singlet channel

V1S0(p, p
′) = −1309.436 e−(p2+p′2)/1.7492

+ 484.658 e−(p2+p′2)/2.492
. (6.48)

In the following, we restrict us to the simple rank 1 potential (6.45) and (6.46)
to show the effects we are interested in.
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An alternative is a Lorentz-type form-factor, which, however, does not
allow to separate the center-of-mass (c.o.m.) momentum in a simple way:

〈k,K|V |k′,K ′〉 = V (k, k′) δK,K′ ,

Vτ (k, k′) = λτw(k)w(k′) , w(k) =
1

k2 + β2
. (6.49)

According to Yamaguchi [16] we have

(k2 − p2)ψ(p) = −λτ
1

p2 + β2

∫
d3p′

1
p′2 + β2

ψ(p′), (6.50)

with β = 1.4488 fm−1, λ3S1 = 8πβ3 h̄2

m

(
1 +

√
− m
h̄2β2 (−ED)

)2

= 4263.05

MeV fm−1, and find

λ̄3S1 = π−2β(α + β)2, ED = α2/m, (6.51)

with 1/a = (β/2)
[
1− β3/(π2λ̄)

]
and r0 = (1/β)

[
1 + 2β3/(π2λ̄)

]
. A consis-

tency test is r0,3S1 = 2/kD [1− 1/(a3S1kD)] = 1.726 fm , with k2
Dh̄

2/m = ED =
2.224573MeV and α3S1 = 0.2319 fm−1, thus λ̄3S1 = λ3S1m/(8π

3h̄2). For the
isolated two-nucleon system, the integral in tτ (P,E), (6.40), can be performed
with the result

−λ3S1

2π2

m

h̄2

∫
p2 dp

(p2 + β2)2
1

(−Em/h̄2) + p2
=

π

4β3

−5.20911

(1 +
√
−Em/h̄2β2)2

= − 1.34533
(1 + 0.107196

√
(−E))2

. (6.52)

For the singlet channel we find λ1S0= 2550.03MeV fm−1.
In conclusion, using higher rank separable interactions and coupled chan-

nels, any potential can be represented with arbitrary accuracy, see [13]. For
exploratory calculations, we restrict us here to a simple Gaussian rank 1 sep-
arable interaction (6.45) and (6.46).

6.6 Quasiparticle Approximation and the EoS
at High Densities

Starting from the noninteracting, ideal Fermi gas to describe nuclear matter,
the simplest approximation which is of first order in the interaction potential is
the Hartree–Fock approximation, where the single-particle energies are shifted
by ΔHF(1) =

∑
2 V (12, 12)ex[exp((p2

2/2m+ΔHF(2)−μ2)/kBT )+ 1]−1. Using
an appropriate nucleon–nucleon interaction potential, the EoS can be evalu-
ated in Hartree–Fock approximation (6.17) with Equ(1) = p2

1/2m+ΔHF(1). In
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a simple approximation, we can introduce the quasiparticle shift and effective
mass to describe the dispersion relation at small momenta. However, this ap-
proximation is not sufficient, because it does not contain the relevant correla-
tions. As already mentioned, the deviation of the EoS from the ideal behavior
in the low-density limit is given by the virial expansion. In particular, bound
state formation, which has to be taken into account to obtain the correct virial
expansion at low densities, is not described in Hartree–Fock approximation.

At saturation and higher densities, correlations are suppressed due to Pauli
blocking when the Fermi energy exceeds the interaction energy. Then, a quasi-
particle concept can be used to derive the EoS of nuclear matter, taking
into account only the singularity in the spectral function (6.3) for vanishing
ImΣ, and also in this case nuclear matter is not correctly described in
Hartree–Fock approximation. The phenomenological properties derived from
nuclear structure and excited nuclei as well as the expected properties of neu-
tron star core [2] give benchmarks for a realistic nuclear matter EoS. The
main shortcoming of the Hartree–Fock approximation is the strong repulsion
at short nucleon distances, which demands the treatment of short-range cor-
relations absent in a mean-field approach.

A microscopic calculation of the quasiparticle energies has been performed
within the Brueckner–Hartree–Fock calculations, which also have been made
for the Dirac theory [17]. The relation to the formalism presented above, in
particular solving the T matrix for a separable interaction, is shown in [6].
These calculations give a realistic description also near the saturation density.
At low densities, the formation of bound states is of importance, and a self-
consistent solution of the quasiparticle energy may become impossible when
the structure of the spectral function becomes complex.

Semiempirical expressions have been proposed to model the known prop-
erties of nuclear matter. Well known are the Skyrme parametrization of the
quasiparticle energy shifts, see [4, 18], which are improved presently by the
relativistic mean field approaches, see [12, 19]. These approaches are based
on a field theory, which reflects essential symmetries of the fundamental mi-
croscopic theory, but combine results of the microscopic calculations such as
Dirac–Brueckner Hartree–Fock [17] with empirical data to adjust parame-
ters so that a simple mean-field approximation contains already the relevant
many-particle effects. This way, a nuclear matter EoS is obtained, which is ap-
plicable also near and above saturation density. The main issue is an optimal
quasiparticle description. We will not give here the details, but only mention
that at present they are successfully used to calculate the nuclear structure.
They are also of interest for the structure of compact objects such as neutron
stars, supernovae explosions, and the early universe, see [2].

We conclude that an appropriate introduction of the quasiparticle energy
will be of importance to get the correct description of nuclear matter at higher
densities when the contribution of bound states disappear. The nuclear EoS
then is given by the quasiparticle contribution (6.17). It is a challenge to
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an advanced nuclear matter EoS to merge from the correct low-density limit
given by the virial expansion to the quasiparticle description at high densities.

The quasiparticle shift occurs also in the few-body wave equations (6.36).
The properties of the bound states in a dense medium will be modified due to
the Pauli blocking. In addition, the properties of bound states will be modified
if the quasiparticle shift, which arises from the self-energy, is considered, as
shown in the following. Improving former approaches [4,20] where the Skyrme
parametrization has been used, we apply the parametrization according to
the relativistic mean field approaches, see [12, 19], which give expressions for
the scalar as well as for the vector potential energy.

6.7 Medium Modifications of Two-Particle Correlations

With increasing density of nuclear matter, medium modifications of single-
particle states as well as of few-nucleon states become of importance. The self-
energy of an A-particle cluster can in principle be deduced from contributions
describing the single-particle self-energies as well as medium modifications of
the interaction and the vertexes. A guiding principle in incorporating medium
effects is the construction of consistent (“conserving”) approximations, which
treat medium corrections in the self-energy and in the interaction vertex at
the same level of accuracy. This can be achieved in a systematic way using the
Green functions formalism. At the mean-field level, we have only the Hartree–
Fock self-energy ΔHF =

∑
2 V (12, 12)exf̃1(2) together with the Pauli blocking

factors, which modify the interaction from V (12, 1′2′) to V (12, 1′2′)[1−f̃1(1)−
f̃1(2)]. More advanced, within the cluster-mean field approximation, the few-
body wave equation (6.36) was obtained, which consistently describes the
modification of the few-body system due to the embedding correlated nuclear
matter.

In the case of the two-nucleon system (A = 2), the resulting effective wave
equation that includes the mean-field corrections reads

[Equ(1) +Equ(2)− E2,ν,P ]ψ2,ν,P (12)

+
∑

1′2′
[1− f̃1(1)− f̃1(2)] V (12, 1′2′)ψ2,ν,P (1′2′) = 0. (6.53)

This effective wave equation describes bound states as well as scattering states.
As also shown below in Sect. 6.11, we also mention that the Gor’kov equation
describing the transition to superfluidity is reproduced from (6.53) when the
binding energy E2,ν,P=0 = Ed,P=0 coincides with μp + μn.

From the solution of the in-medium two-particle Schrödinger equation
(6.53) or the corresponding T matrix, the scattering and possibly bound
states are obtained. Because of the self-energy shifts and the Pauli blocking,
the binding energy of the deuteron Ed(P, T, μp, μn) as well as the scattering
phase shifts δτ (E,P, T, μp, μn) in the isospin singlet or triplet channel τ , re-
spectively, will depend on the temperature and the chemical potentials. For a
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separable interaction V (12, 1′2′) like the PEST4 potential [13], an analytical
solution of (6.53) can be found in the low-density limit, and the results for
the shift of the binding energy and the medium modification of the scattering
phase shifts are discussed extensively, see [6, 8]. We discuss the medium shift
of the binding energy in perturbation theory.

We take the quasi-particle energies that are described by an effective mass
and a self-energy shift and solve the Schrödinger equation for a separable po-
tential. Separating the center of mass motion, with energy p2/2 (m∗

p + m∗
n)

from the relative motion, with reduced mass m∗
pm

∗
n/(m

∗
p +m∗

n), we find the
binding energy Equ

d (P ) = Ed + ΔESE
d + ΔEPauli

d , where Ed is density depen-
dent due to the effective masses. The corresponding wave function is used to
evaluate the Pauli blocking term

ΔEPauli
d =

∑

1 2 1′ 2′
ψd,P (1 2)V (1 2, 1′ 2′) [f̃1(1) + f̃1(2)]ψ∗

d,P (1′ 2′) (6.54)

in first order perturbation theory. The self-energy shift ΔESE
d is simply the

sum of the quasi-particle self-energy shift v(1) of the proton and neutron,
(6.15) at p1 = 0, as discussed in the previous section.

In Fig. 6.1, we show the shift of the binding energy of the deuteron (d) with
zero c.o.m. momentum in symmetric nuclear matter as a function of density
for temperature T = 10MeV. The shift of the other light clusters (t/h, α),
also shown in Fig. 6.1, will be discussed in the following section.

It is found that the cluster binding energy decreases with increasing den-
sity. Finally, at the Mott density nMott

A,ν,P (T, α), depending on the temperature T
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Fig. 6.1. Shift of binding energy B of the light clusters (d dash dotted, t/h dotted,
and α dashed: perturbation theory, full line: nonperturbative Faddeev–Yakubovski
equation) in symmetric nuclear matter as a function of density ρ = nB for given
temperature T = 10MeV [7]
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and the asymmetry parameter α, the bound state is dissolved. The clusters are
not present at higher densities, having been merged into the nucleonic quasi-
particle liquid. For a given cluster type, characterized by {A, ν} = {A,Z, n},
we can also introduce the Mott momentum PMott

A,ν (np, nn, T ) depending on the
ambient temperature T and nucleon densities np, nn, such that bound states
exist only for P ≥ PMott

A,ν (np, nn, T ).
In-medium scattering phase shifts are obtained from the two-particle T

matrix, see (6.41). At given temperature T = 10MeV and different bary-
onic densities, the singlet and triplet phase shifts are shown in Fig. 6.2 for
symmetric matter.

As a consequence, the virial expansion of the EoS (generalized Beth–
Uhlenbeck formula (6.17) and (6.18)) for the total baryon density nB

nB(T, μp, μn) = nfree(T, μp, μn) + ncorr(T, μp, μn) (6.55)

constitutes of the single-particle contributions nfree = nfree
p + nfree

n , where
nfree
τ (T, μτ ) = 2/(2πh̄)3

∫
d3pf1,τ (Equ

τ (p)) describes the free quasi-particle
contributions of protons (τ = p) or neutrons (τ = n), respectively, and
the two-particle contributions ncorr = nbound

2 + nscat
2 containing the contri-

bution of deuterons (spin factor 3)

nbound
2 (T, μp, μn) = 3

∫

P>PMott
d

d3P

(2πh̄)3
f2,d(E

qu
d (P )), (6.56)
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with f2,d(E
qu
d (P )) = [e(Equ

d (P ;T,μp,μn)−μp−μn)/kBT−1]−1, and scattering states
of the isospin singlet and triplet channel τ (degeneration factor gτ )

nscat
2 (T, μp, μn) =

∑

τ

gτ

∫
d3P

(2πh̄)3

∫ ∞

0

dE
2π

f2,τ (ΔESE
d (P ) + E)

× sin2 δτ (E,P ;T, μp, μn)
d

dE
δτ (E,P ;T, μp, μn), (6.57)

ΔESE
d (P ;T, μp, μn) is the shift of the continuum edge (self-energies at mo-

mentum P/2).
The EoS (6.55) shows some interesting features: (1) In the low-density

limit, a mass action law is obtained describing an ideal mixture of free nucleons
and deuterons. We stress that a quasi-particle picture is not able to reproduce
this important limiting case correctly. (2) With increasing density, the single-
particle properties as well as the two-particle properties are simultaneously
modified by the medium. In particular, the bound states are dissolved at high
densities. (3) There is also a contribution from scattering states to the two-
particle density. As a consequence of the Levinson theorem, the contribution of
the disappearing bound states is replaced by a contribution from the scattering
states (resonances) at the Mott density so that the total two-particle density
n2 behaves smoothly. (4) Because of the pole of the Bose distribution function
at low temperatures, pairing can occur in n2. A smooth transition from BEC
of deuterons at low densities to Cooper pairing at high densities is observed [8].

Calculations of the composition (n2/nB) of symmetric nuclear matter
(np = nn, no Coulomb interaction) are shown in Fig. 6.3 [8]. At low densities,

0

2

4

6

8

10

12

14

T
 [M

eV
]

25%25% 50%

60%

65%

70%

75%

80%

Mott
line

TC

10−3 10−2 10−1

ntot [fm−3]

Fig. 6.3. Fraction of correlated density for symmetric nuclear matter as function of
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the contribution of bound states becomes dominant at low temperatures. At
fixed temperature, the contribution of the correlated density n2 is first in-
creasing with increase in density according to the mass action law, but above
the Mott line it is sharply decreasing, so that near nuclear matter saturation
density (nB = n0 = 0.17 fm−3) the contribution of the correlated density al-
most vanishes. Also, the critical temperature Tc for the pairing transition is
shown, which will be discussed in Sect. 6.11.

In the low-density limit, perturbation theory gives Equ
d (P ) = E0

d +
P 2/2Md + ΔESE

d (P ) + ΔEPauli
d (P ) with E0

d = −2.22MeV, and

ΔEPauli
d =

∑

12,1′2′
ψd,P (12)[f̃1(1) + f̃1(2)]V (12, 1′2′)ψd,P (1′2′)

≈ ψ2
d,P (0)(np + nn)(E0

d − Ekin
d ), (6.58)

whereEkin
d denotes the mean kinetic energy of the nucleons in the unperturbed

deuteron. To reproduce the behavior shown in Fig. 6.3, in [21] the following
parametrization

ΔEd ≈ 340 (np + nn) MeV fm3 + 13000 (n2
p + n2

n) MeV fm6 (6.59)

was proposed for T = 10MeV. The result of this calculation can be compared
with the evaluation of the correlated density shown in [6]. Two particle cor-
relations are suppressed for densities higher than the Mott density of about
0.001 fm−3, but will be present up to densities of the order of nuclear matter
saturation density n0. A more general expression for arbitrary temperatures
is given in the following section.

6.8 Medium Modification of Cluster Properties

In the low-density limit, the most important effect of interaction with respect
to the nuclear matter EoS is the formation of bound states characterized by the
proton content Z and the neutron content N = A−Z. We restrict us to light
clusters only with A ≤ 4 as the α particle is strongly bound. Heavier nuclei
can be treated in a similar way [4, 20]. Large strongly bound clusters such as
iron, being of importance in considering the outer crust of neutron stars, for
example, can be described using other concepts such as phase instability and
the formation of a liquid droplet in nuclear matter, see, for example [12, 18].

After discussing the two-nucleon system in the previous section, we con-
sider higher clusters. In-medium wave equations similar to (6.53) have been
derived from the Green function approach for the case A = 3 and A = 4,
(6.36) describing triton/helion (3He) nuclei as well as α-particles embedded
in nuclear matter. The effective wave equation contains the quasiparticle self-
energy shift of the single-particle energies as well as the Pauli blocking of the
interaction. We give the effective wave equation for A = 4,



6 Mott Effect in Nuclear Matter 137

0 = [Equ(1) +Equ(2) +Equ(3) +Equ(4)− E4,ν,P ]ψ4,ν,P (12)

+
4∑

i<j

∑

1′2′3′4′
[1− f̃1(i)− f̃1(j)]V (ij, i′j′)

∏

k =i,j
δk,k′ψ4,ν,P (1′2′3′4′). (6.60)

A similar equation is obtained for A = 3.
We first discuss the low-density limit where any medium effects are omit-

ted, that is, f̃1(i) � 1, Equ(1) = p2
1/2m. In contrast to the two-particle

problem, where rigorous solutions are available, few-body techniques have to
be applied to solve the three-particle or the four-particle problem. Here we
restrict us to variational approaches and perturbation theory. We have to
parameterize the nucleon–nucleon interaction in the corresponding channels
that reproduces the empirical data. Considering t, h, α, we account this way
for Coulomb repulsion and three-nucleon interaction what is well-known when
introducing density-dependent nucleon–nucleon interactions.

In case of the two-nucleon system, the interaction is parametrized in the
different channels, using empirical data. Adjusting the interaction potentials
to two-particle scattering data and bound state properties as given in the
previous section, the thermodynamic properties, which are directly related to
the empirical data (mass action law and composition, second virial coefficient),
are correctly reproduced.

Now we are considering higher clusters. Properties of light clusters are
given in Table 6.1, see [22]. We used 〈r2〉nucleon = 〈r2〉electrom.−〈r2〉proton. To
describe the nucleon wave function of the light clusters, a Gaussian form-factor
is assumed, as it allows for the separation of the c.o.m. motion in a simple
way. We restrict us here to variational approaches in solving the few-nucleon
problem. The potential appropriate to reproduce two-particle properties has
already been given in the previous section. Parameters for the Gaussian-type
nucleon–nucleon interaction (6.37) in the other cluster channels can be given,
reproducing the measured binding energies and nucleonic rms values. Using a
variational approach with Gaussian product wave functions,

ψt/h(p1, p2, p3) = const e−p
2
1/b

2−p22/b2−p23/b2δp1+p2+p3,0, (6.61)

Table 6.1. Properties of light nuclei

rms-radius rms-radius
Binding energy Mass Spin (electrom.) (nucleon)

n 0 939.565 MeV c−2 1/2 0.34 fm −
p (1H) 0 938.783 MeV c−2 1/2 0.87 fm 0 fm
d (2H) −2.225 MeV 1876.12 MeV c−2 1 2.17 fm 1.99 fm
t (3H) −8.482 MeV 2809.43 MeV c−2 1/2 1.70 fm 1.46 fm
h (3He) −7.718 MeV 2809.41 MeV c−2 1/2 1.87 fm 1.66 fm
α (4He) −28.30 MeV 3728.40 MeV c−2 0 1.63 fm 1.38 fm
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or

ψα(p1, p2, p3, p4) = const e−p
2
1/b

2−p22/b2−p23/b2−p24/b2δp1+p2+p3+p4,0, (6.62)

respectively, we have for the three-nucleon bound state (triton/helion)

〈r2〉nucleon = 2/b2 (6.63)

so that bt = 0.968 fm−1 and bh = 0.968 fm−1. Determining the minimum of

E3 =
h̄2

m

3
4
b2 − 3λ

β6b3

π3/2(b2 + β2)3
, (6.64)

we find λt = 1416MeV fm3 and βt = 1.21 fm−1, or λh = 1735MeV fm3,
βh = 1.04 fm−1, respectively.

For the α-particle we have 〈r2〉nucleon = 9/(4b2) so that bα = 1.087 fm−1.
Determining the minimum of

E4 =
h̄2

m

9
8
b2 − 6λ

β6b3

π3/2(b2 + β2)3
, (6.65)

we find λα = 1295MeV fm3, βα = 1.231 fm−1.
Of course, the variational solution by using Gaussians is not optimal, in

contrast to the exact solution for the wave function found for the two-nucleon
system. A strict solution of the three and four nucleon bound states is possible
using the Faddeev–Yakubovsky technique. Within our variational approach,
the bound state and scattering properties are reasonably well reproduced,
which is sufficient for the present exploratory calculations.

Now we consider in-medium effects at finite density of nuclear matter.
For A = 3, 4 calculations using a Faddeev approach have been performed
in [7]. The shifts of binding energy can also be calculated approximately via
perturbation theory. In Fig. 6.1, the shifts of the binding energies of the light
clusters (d, t/h, and α) in symmetric nuclear matter are shown as a function
of density for the temperature T = 10MeV.

We find that the clusters become modified if they are imbedded in nu-
clear matter. Like the single nucleon states that become quasiparticles, the
contribution of bound states is no longer characterized by only their binding
energies which are known, see [22], but have to be calculated on the basis
of the nucleon–nucleon interaction. Neglecting the broadening of the bound
states due to reactions, a quasiparticle shift can be introduced for the bound
states similar to the single-nucleon quasiparticle shift, as has already been
discussed in the cluster-mean field approach.

The in-medium Schrödinger equations (6.36) containing quasiparticle
shifts and Pauli blocking terms are derived for clusters with mass number A
and charge Z [4, 5]. The shift of the bound state energies Equ

A,Z(P ;T, ni) =
EA,Z + ΔSE

A,Z + ΔPauli
A,Z + ΔCoul

A,Z , containing in addition to the single-particle
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self-energy shift ΔSE
A,Z and the Pauli blocking term ΔPauli

A,Z also the Coulomb
shift ΔCoul

A,Z , can be calculated within perturbation theory. Besides the quasi-
particle shift at zero momentum ΔSE,0

A,Z = ZEqu
p (0) + (A − Z)Equ

n (0), which
can be included into the chemical potential, there is the contribution due to
the effective mass m∗. Assuming for light clusters 2 ≤ A ≤ 4 a Gaussian
wave function with the nucleonic root mean square (r.m.s) radii 〈r2〉A,Z , the
self-energy shift results as ΔSE

A,Z = ΔSE,0
A,Z + 3(A − 1)h̄2b2A,Z(m −m∗)/(8m2)

after introducing Jacobian coordinates and separating the c.o.m. motion,
where b2A,Z = 3(A− 1)/(A〈r2〉A,Z). With Gaussian wave functions, we obtain
the following estimate for the Pauli blocking shift

ΔPauli
A,Z =

∫
q2dqe−

2Aq2

b2(A−1) [|E|+ h̄2

2m ( A
A−1q

2 + 3(A−2)
4 b2)]

(e[ h̄2
2m ( P

A +q)2−μ̂i]/T + 1)
[
A−1
A

]3/2 √
π

8 b3
. (6.66)

Similar expressions [20] can be given for the weakly bound clusters with
5 ≤ A ≤ 11. The Coulomb shift ΔCoul

A,Z is calculated in Wigner–Seitz ap-
proximation, see also [18]. Within the parameter values considered below, the
influence of the Coulomb corrections on the composition is small.

For heavier clusters with mass numbers A ≥ 12, the self-energy and Pauli-
blocking shifts become less important and will be neglected here. The heavier
clusters repel the nuclear matter so that the mean-field effects are mostly
produced by the other nucleons within the cluster and are contained in the
cluster binding energy. For a more detailed consideration see [20].

6.9 Composition of Normal Nuclear Matter

Above the critical temperature Tc for the transition to the superfluid state,
the approach given here allows to calculate the composition of nuclear matter
as well as the thermodynamic properties. We define the mass fractions of the
different constituents as

XA,Z = AnA,Z/nB, (6.67)

that is, Xn = nn/nB, Xp = np/nB, Xd = 2nd/nB, Xt = 3nt/nB,
Xh = 3nh/nB and Xα = 4nα/nB, where nB =

∑
A,Z AnA,Z is the to-

tal baryon density. Furthermore, we introduce the total proton fraction as
Y tot
p =

∑
A,Z Z nA,Z/nB.

In thermal equilibrium, within a quantum statistical approach a mass ac-
tion law can be derived. The densities of the different components are deter-
mined by the chemical potentials μp and μn and temperature T . The densities
of the free protons and neutrons as well as of the bound states follow in the
nonrelativistic case as (c.f. (6.6))

nA,Z =
gA,Z
2 π2

∫ ∞

0

dP P 2 1

e
EA,Z (P ;T,μp,μn)−Zμp−(A−Z)μn

kBT − (−1)A
, (6.68)
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where for deuterons gd = 3, for tritons gt = 2, for helions gh = 2, and for α
particles gα = 1. In the low-density limit where the medium effects can be
neglected, the energies EA,Z(P ;T, μp, μn) = mA,Z+P 2/(2mA,Z) can be used,
where mA,Z = Zmp + (A − Z)mn + Eb

A,Z and the binding energies Eb
A,Z are

given in Table 6.1. Note that now the chemical potentials are shifted when
including the rest mass of nucleons in the energy.

In the low-density limit, we reproduce the statistical multi-fragmentation
model, which is well established in heavy ion collision theory. Here, only the
bound state contributions are considered, which means that an ideal mixture
of reacting species is considered in thermal equilibrium. The excited states
are taken into account, but any interaction between the clusters is omitted.
The distribution function is given by (6.6).

The concept of composition anticipates that clusters are well-defined ob-
jects in nuclear matter, which becomes questionable with increasing density. If
the A-nucleon spectral function which always is a well-defined quantity shows
no clear δ-like signatures of quasiparticles, we cannot identify abundances
of the corresponding clusters. Considering a nonequilibrium process where
warm dense matter expands, in the quasistatic, adiabatic approximation the
bound state part of the in-medium A-nucleon spectrum will transform to nu-
clei, whereas in the sudden approximation a coalescence model can be applied
where a projection of the wave function on the free-cluster wave function has
to be performed.

Here, we calculate the composition replacing the isolated cluster bind-
ing energies by the density dependent ones. We use the estimations for the
medium modification of the binding energies given in [21, 23, 24]. Results for
the composition of nuclear matter at temperature T = 10MeV with proton
fraction Y tot

p = 0.2 are shown in Fig. 6.4, for symmetric matter Y tot
p = 0.5 in
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Fig. 6.5. The model of an ideal mixture of free nucleons and clusters applies
to the low density limit. At higher baryon density, medium effects are rele-
vant. It is shown that in particular α-clusters are formed in symmetric nu-
clear matter, but they are destroyed at about nuclear matter density. In the
case of asymmetric matter, tritons become abundant compared with 3He if
α = 1− 2Y tot

p > 0.
In detail, up to densities of about 0.001 fm−3, density effects can be ne-

glected. This way we describe an ideal mixture in chemical equilibrium. The
composition as well as the thermodynamic functions can be calculated im-
mediately by solving the equations given above. Also, the β-equilibrium can
be calculated describing the chemical equilibrium with respect to the weak
decay n ⇀↽ p+ e+ ν̄e, where one usually neglects the chemical potential of the
neutrinos. For the electron chemical potential, the relativistic ideal fermion
gas model is used. Neglecting the formation of clusters, the corresponding
results for the proton fraction as well as the thermodynamical functions are
well known from the literature, see [12], where at higher densities a quasi-
particle picture is introduced. They are used to describe nuclear matter in β-
equilibrium to calculate the structure of neutron stars. There is an additional
relation between the chemical potentials of the proton, neutron, and electron
due to the charge neutrality condition so that ne = Y tot

p nB. The calculation of
nuclear matter in β-equilibrium is improved by taking the formation of light
clusters into account. The calculations within the model of an ideal mixture
of different components is straightforward, see [21, 23, 24]. Of interest is the
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influence of the cluster formation on the proton fraction Y tot
p in β-equilibrium.

We expect that the formation of clusters will increase the proton fraction.
We conclude that not only the α-particle but also the other light clusters

contribute significantly to the composition. This is of relevance for the collapse
of the pre-supernovae core because of the influence of nucleonic correlations
on the emission and absorption of neutrinos, which determine cooling and
heating rates in the evolution of the neutron star [12].

Furthermore, they also contribute to the baryon chemical potential and
this way to the modification of the phase instability region with respect to
the parameter values temperature, baryon density, and asymmetry. As an
example, for symmetric matter the baryon chemical potential as a function
of density for T = 10MeV is shown in Fig. 6.6, where the reduction of the
instability region is shown when correlations, in particular cluster formation,
are taken into account.

Another interesting point is the determination of the symmetry energy.
In the low-density limit, the calculation using the cluster–virial expansions
[14] show a significant influence of the cluster formation on the symmetry
energy. This has recently been confirmed by experiments [25], see Fig. 6.7.
A challenging problem is the transition from the low-density limit where the
virial expansion is applicable to the saturation density region nB ≈ n0 =
0.17 fm−3 where the mean-field approaches can be used. The present approach
is able to solve this problem.
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6.10 Comparison with the Concept of Excluded Volume

To get the correct physical behavior, medium modifications for the clusters
have to be taken into account at high densities. A simple approach is the
concept of an excluded volume as used in [12, 18]. Other effects such as the
modification of quasi-particles forming a bound state are not considered. For
details we refer to [12]. We have also shown in Fig. 6.5 the result for the
composition if only α-particle formation is taken into account, using the con-
cept of the excluded volume. The abundance of the α-particle increases up to
baryon densities of about a tenth of nuclear matter density and is rapidly de-
creasing with higher densities. In contrast, the quantum statistical approach
shows a more weak decrease of the correlated density with the baryon den-
sity. In particular, two-particle correlations are present up to nuclear matter
density. Discussing the difference in both approaches, we first note that the
concept of a hard core that leads to the excluded volume overestimates the
Pauli blocking, which makes the interaction potential more softer. Further, in
addition to the medium modification due to the Pauli blocking, the effect of
the quasiparticle self-energy shift has to be taken into account.

6.11 Two-Particle Condensates at Low Temperatures

The evaluation of the Beth–Uhlenbeck formula including two-particle cor-
relations has been carried out in [6] based on a separable nucleon–nucleon
potential. The result [8] for the composition of nuclear matter as a function
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of density and temperature is shown in Fig. 6.3. Two aspects of this study of
two-particle condensation deserve special attention.

1. The contribution of the correlated density, which derives both from
deuterons as bound states in the isospin-singlet channel and from scattering
states, is found to increase with decreasing temperature, in accordance with
the law of mass action. This law also predicts the increase of correlated density
with increasing nucleon density (as also seen in Fig. 6.3 for the low-density
limit).

However, under increasing density, the binding energy of the bound state
(deuteron) decreases due to Pauli blocking (Mott effect). At the Mott den-
sity, introduced above, the bound states with vanishing c.o.m. momentum
are dissolved in the continuum of scattering states. Bound states with higher
c.o.m. momentum merge with the continuum at higher densities. According
to Levinson’s theorem, if a bound state merges with the continuum, the scat-
tering phase shift in the corresponding channel exhibits a jump by π, such
that no discontinuity appears in the EoS. Accordingly, the contribution of the
correlated density will remain finite at the Mott density, but will be strongly
reduced at somewhat higher densities.

Thus, one salient result is the disappearance of bound states and correlated
density already below the saturation density of nuclear matter. The underlying
cause of the Mott effect is Pauli blocking, which prohibits the formation of
bound states if the phase space is already occupied by the medium (Fermi
sphere), and hence no longer available for the formation of the wave function
of the bound state (momentum space). This effect holds also for higher-A
bound states such as the triton, helion, and α particle, which disappear at
corresponding densities (see Fig. 6.1).

2. The Bose pole in the correlated density signals the onset of a quantum
condensate. As it is well known, for the bound-state (deuteron channel) con-
tribution, the T-matrix approach breaks down when the pole corresponding
to the bound-state energy coincides with twice the chemical potential. In the
following, we restrict us to symmetric matter, μp = μn = μ. The Thouless
condition, embodied in

ψ2,ν,P (12) =
∑

1′2′

1− f̃1(1)− f̃1(2)
2μ− Equ(1)− Equ(2)

ψ2,ν,P (1′2′)

=
∑

1′2′
K2(12, 1′2′, 2μ)ψ2,ν,P (1′2′) (6.69)

describes the onset of a quantum condensate. The same condition also holds
for the contribution of scattering states. Consequently, the transition temper-
ature for the onset of a quantum condensate appears as a smooth function of
density, as shown in Fig. 6.8.

Below the transition temperature, the T-matrix approach is no longer
applicable. However, a mean-field approach becomes possible in this regime
after performing a Bogoliubov transformation. Even so, the proper inclusion
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of correlations below the critical temperature remains a challenging problem.
To date, only the first steps have been taken [26] toward solving this problem
for general quantum many-particle systems.

Another important aspect of the problem of two-particle condensation,
indeed one of great current interest, is the interpretation of the critical
temperature. At low densities, where the two-body bound states (deuterons)
are well-defined composite particles, the mass–action law implies that the
deuterons will dominate the composition in the low-temperature region. In
this region, the critical temperature for the transition to the quantum con-
densate coincides with the BEC of deuterons as known for ideal Bose systems.
At high densities, where bound states are absent, the transition temperature
coincides with the solution of the Gor’kov equation describing the formation
of Cooper pairs. Thus, BEC and BCS scenarios characterize the low- and
high-density regimes, respectively. We observe a smooth crossover transition
from BEC to BCS behavior [8] that is general issue in fermion systems, for
example, in [27], and is currently the subject of intense experimental study in
cold atomic gases.

Going beyond the mean-field approximation, the first remarkable feature
[28] emerging at the two-particle level is the formation of a pseudogap in
the density of states (DoS) above the critical temperature Tc. Compared with
the orthodox BCS solution, for which a gap opens in the DoS below Tc, a quite
different situation is present in strongly correlated Fermi systems. The full
treatment of the (two-body) T-matrix leads to a reduction of the DoS near the
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Fermi energy already above Tc, within an energy interval of the same order as
the BCS gap at zero temperature. This behavior may be traced to fluctuations
above Tc that presage the transition to the superfluid state. Similar precursor
behavior is known to occur in other systems of strongly correlated fermions.
In the Hubbard model, for example, the formation of local magnetic moments
already begins above the critical temperature at which long-range order of the
moments becomes manifest. The pseudogap phenomenon is of course a widely
discussed aspect of compounds exhibiting high Tc superconductivity [29].

In the context of nuclear matter, the occurrence of a pseudogap phase was
first considered by Schnell et al. [28] in the quasiparticle approximation, as
noted earlier. They showed that this effect is partially washed out if a self-
consistent approximation for the spectral function is implemented, but a full
description should take vertex corrections into account. A similar assessment
applies to a recent self-consistent solution of the Gor’kov equation in terms of
the spectral function [30], which shows a reduction of the transition temper-
ature for quantum condensation. However, vertex corrections should also be
included in this case and may partially compensate the self-energy effects.

6.12 Four-Particle Condensates and Quartetting
in Nuclear Matter

In general, it is necessary to take account of all bosonic clusters to gain a
complete picture of the onset of superfluidity. The picture developed in the
preceding section includes only the effects of two-particle correlations leading
to two-body deuteron clusters. However, as is well known, the deuteron is
weakly bound compared to other nuclei. Higher-A clusters can arise that are
more stable. In this section, we consider the formation of α particles, which
are of special importance because of their large binding energy per nucleon
(7 MeV). We will not include tritons or helions, which are fermions and not so
tightly bound. Moreover, we will not consider nuclei in the iron region, which
have even larger binding energy per nucleon than the α and thus comprise
the dominant component at low temperatures and densities. The latter are
complex structures of many particles and are strongly affected by the medium
as the density increases, so that they are assumed to be not of relevance in
the temperature and density region considered here.

The in-medium wave equation for the four-nucleon problem has been
solved using the Faddeev–Yakubovski technique, with the inclusion of Pauli
blocking. The binding energy of an α-like cluster with zero c.o.m. momen-
tum vanishes at around n0/10, where n0 � 0.17 nucleons fm−3 denotes the
saturation density of isospin-symmetric nuclear matter. Thus, the four-body
bound states make no significant contribution to the composition of the system
above this density. Given the medium-modified bound-state energy Equ

4,α(P ),
the bound-state contribution to the EoS is
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nα(β, μ) =
∑

P

[
eβ(Equ

4,α(P )−2μp−2μn) − 1
]−1

. (6.70)

We will not include the contribution of the excited states or that of scat-
tering states. Because of the large specific binding energy of the α particle,
low-density nuclear matter is predominantly composed of α particles. This
observation underlies the concept of α matter and its relevance to diverse
nuclear phenomena.

Symmetric nuclear matter is characterized by equality of the proton and
neutron chemical potentials, that is, μp = μn = μ. The four-particle correla-
tions are embodied in the four-particle Green function, which in the ladder
approximation is given by

G4(1234, 1′2′3′4′, Ω4) =
f̃1(1)f̃1(2)f̃1(3)f̃1(4)

f̃4(E4(1234))
δ11′δ22′δ33′δ44′

Ω4 − E4(1234)

+
∑

1′′2′′3′′4′′
K4(1234, 1′′2′′3′′4′′, Ω4)G4(1′′2′′3′′4′′, 1′2′3′4′, Ω4) , (6.71)

where E4(1234) = Equ(1) +Equ(2) +Equ(3) +Equ(4) and f̃4(E) is the Bose
distribution function with the effective chemical potential μ̃. The interaction
kernel K is obtained using the technique of the Matsubara Green functions,
which yields

K4(1234, 1′2′3′4′, Ω4) = V (12, 1′2′)δ33′δ44′
f̃(1)f̃(2)
f̃2(E2(12))

1
Ω4 − E4(1234)

×
[
1 + f̃4(1′2′34)

Ω4 − E4(1′2′34)
E2(12)− E2(1′2′)

(
e(E2(1

′2′)−2μ)/T − e(E2(12)−2μ)/T
)]

+ · · ·+ · · ·+ · · ·+ · · ·+ · · · , (6.72)

where the terms obtained by relabeling are not shown explicitly. In the zero-
density limit nB → 0, where the Fermi distribution function is small compared
with unity, this becomes simply

lim
nB→0

K4(1234, 1′2′3′4′, Ω4) =
δ11′δ22′δ33′δ44′

Ω4 − E4(1234)

∑

i<j

V (ij, i′j′)δkk′ (6.73)

in terms of the bare interaction term of the four-body system.
The poles of the analytic continuation of G4(1234, 1′2′3′4′, z) into the com-

plex z plane are of special interest. Near the pole at Equ
4,ν(P ), the Green func-

tion can be factorized as

G4(1234, 1′2′3′4′, z) ≈ ψ4,ν,P (1234)ψ∗
4,ν,P (1′2′3′4′)/(z − Equ

4,ν(P )). (6.74)

In this expression, Equ
4,ν(P ) and ψ4,ν,P (1234) are the eigenvalues and the eigen-

states of the four-particle system, which follow from the solution of the four-
particle Schrödinger-like wave equation
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ψ4,ν,P (1234) =
∑

1′2′3′4′
K4(1234, 1′2′3′4′, Equ

4,ν(P ))ψ4,ν,P (1′2′3′4′) . (6.75)

Importantly, bound states can exist, and we denote the lowest bound state by
E4,0, which in the nuclear context is the α particle. Because of the influence
of the medium as reflected in the self-energy and the phase-space occupation
factors, the bound-state energy depends on the temperature T and chemical
potential μ.

The four-particle correlations as contained in the four-particle Green func-
tion G4 serve to determine the thermodynamic properties of the system, in-
cluding the EoS. For example, the four-particle density is given by

〈a†1a
†
2a

†
3a

†
4a4′a3′a2′a1′〉 =

∫
dω
π
f4(ω)ImG4(1234, 1′2′3′4′, ω − i0) . (6.76)

Obviously, this density diverges when, at a given temperature, the chemical
potential attains the value 4μ = Equ

4,ν(0). At that point, the delta function
produced by the pole coincides with the singularity of the Bose distribution
function. This singularity is directly related to the onset of superfluidity [9];
for example, at low densities it will lead to Bose condensation of α particles.
In general, the condition for the onset of superfluidity due to four-particle
correlations follows from the equation

ψ4,α,0(1234) =
∑

1′2′3′4′
K4(1234, 1′2′3′4′, 4μ)ψ4,α,0(1′2′3′4′) , (6.77)

which determines the critical temperature Tc(μ). It should be noted that anal-
ogous arguments are used to determine the onset of pairing by considering the
behavior of the two-particle propagator [31].

The results in solving (6.77) are presented in Figs. 6.9 and 6.10. An im-
portant consequence is that at the lowest temperatures, BEC occurs for α
particles rather than deuterons. As the density increases within the low-
temperature regime, the chemical potential μ first reaches −7MeV, where
the α’s Bose-condense. By contrast, Bose condensation of deuterons would
not occur until μ rises to −1.1MeV.

The calculation reveals that in the low-density region, the critical den-
sity tracks that for BEC of ideal α particles; hence the Bose condensation
of deuterons as considered in the previous section becomes irrelevant. As ex-
pected, with increasing density the transition temperature deviates from that
of the ideal Bose gas of α’s due to medium corrections.

Moreover, the quartetting transition temperature is sharply reduced as
the rising density approaches the critical Mott value at which the four-body
bound states disappear. At that point, pair formation in the isospin-singlet
deuteron-like channel comes into play, and a deuteron condensate will ex-
ist below the critical temperature for BCS pairing up to densities above the
nuclear-matter saturation density n0 ≈ 0.17 fm−3, as described in the pre-
vious section. The critical density at which the α condensate disappears is
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Fig. 6.10. Transition temperature to quartetting/pairing as a function of the free
nucleon density n1 in symmetric nuclear matter

estimated to be n0/3. However, the variational approach of [9] on which this
estimate is based represents only a first attempt of describing the transition
from quartetting to pairing. The detailed nature of this fascinating transition
remains to be clarified.

The BEC for ideal quantum gases is a well-known phenomenon. The oc-
cupation of single-particle states is given by the Bose distribution function.
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Below a critical temperature Tc, to obey normalization, the state of lowest
energy is macroscopically occupied. This macroscopically enhanced coherent
occupation of the lowest quantum state is denoted as quantum condensate.
As well known, the fraction of bosons found in the condensate results for the
ideal Bose gas as ncond/n = 1− (T/Tc)3/2.

However, this simple picture is no longer valid if interaction is taken into
account. Here, we want to concentrate on interaction effects at zero temper-
ature. In general, the condensate fraction is given by the properties of the
density matrix, which contains a part which factorizes. According to Penrose
and Onsager [32], the quantum condensate in a homogeneous interacting bo-
son system at zero temperature is given by the off-diagonal long-range order
in the density matrix. The nondiagonal density matrix in coordinate repre-
sentation can be factorized so that in the limit |r − r′| → ∞ follows

lim
|r−r′|→∞

ρ(r, r′) = ψ∗
0(r)ψ0(r′) + γ(r − r′). (6.78)

The last contribution γ(r) disappears at large distances, whereas the first
contribution determines the condensate fraction in infinite matter as

n0 =
〈Ψ |a†0a0|Ψ〉
〈Ψ |Ψ〉 , (6.79)

with a†0a0 being the occupation number of the condensate state ψ0(r). Ex-
ploratory calculation of the condensate fraction of α matter will be given in
the following section. In contrast to [9] where the transition temperature Tc

for quartetting was considered, we consider here the zero temperature case
and analyze the ground state wave function. It will be shown that due to the
interaction, the condensate fraction is suppressed with increasing density.

6.13 Suppression of Condensate Fraction in α Matter
at Zero Temperature

The theory of Penrose and Onsager [32] was first applied to a system with
hard core repulsion. Depending on the filling factor, the suppression of the
condensate was calculated. In particular, for liquid 4He with a filling factor
of 28% at normal conditions, the condensate fraction is reduced to ≈8%, in
good agreement with experimental observations. To give an estimation for α
matter, with an “excluded volume” of about 20 fm3 [18], such a filling factor of
28% would arise at ≈ n0/3 so that a substantial reduction of the condensate
fraction already below saturation densities is expected for α matter.

Within a more systematic approach, we follow the work of Clark et al.
[33]. We calculate the reduction of the condensate fraction as function of the
baryon density within perturbation theory. A uniform Bose gas of α particles,
interacting via the potential Vα(r), is considered, disregarding any change of
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the internal structure of the α particles at increasing density. In particular,
the dissolution of the α particle as a four-nucleon bound state because of the
Pauli blocking is not taken into account.

The simplest form of a trial wave function incorporating the strong spa-
tial correlations implied by the interaction potential is the familiar Jastrow
choice, ψ(r1, . . . , rA) =

∏
i<j f(|ri−rj |). Within our exploratory calculation,

we consider the lowest approximation with respect to the density to show
the tendency of condensate suppression due to the interaction. Normalization
gives for the variational function the constraint

4πnα
∫ ∞

0

[f2(r) − 1]r2dr = −1, (6.80)

nα = nB/4 being the density of α particles.
In the low density limit, the binding energy per α-particle is given by

E[f ] = 2πnα
∫ ∞

0

{
h̄2

4m

(
∂f(r)
∂r

)2

+ Vα(r)f2(r)

}
r2dr, (6.81)

m being the nucleon mass. The condensate fraction is calculated according to

n0 = exp
{
−4πnα

∫ ∞

0

[f(r) − 1]2r2dr
}
. (6.82)

Note that these approximations [33] only hold in the low-density limit. At
higher densities, the pair correlation function has to be evaluated. A more
advanced approach based on a HNC calculation has been given by Clark,
Ristig, and others, see [33, 34].

For the evaluation of the condensate fraction (6.82), we use the Ali–
Bodmer α–α interaction potential [35]

Vα(r) = 457 e−(0.7r/fm)2MeV − 130 e−(0.475r/fm)2MeV. (6.83)

According to Johnson and Clark [33], we choose the variational function as

f(r) = (1− e−ar)(1 + b e−ar + c e−2ar). (6.84)

After determining the parameters a, b, c from the minimum of energy [36], the
condensate fraction can be evaluated, see Fig. 6.11.

In Fig. 6.11, the full line represents the result for the condensate fraction
as function of the baryonic density according to the perturbative treatment.
In the zero density limit this fraction is expected to go to 1. Calculations
performed by Johnson and Clark [33] using a HNC calculation for the pair
distribution function are given by crosses, showing a stronger suppression of
the condensate fraction near the saturation density.

As found from the calculation of the critical temperature for the formation
of a quartetting condensate [9], we expect that the condensate fraction will
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Fig. 6.11. Reduction of condensate fraction in α matter with increasing baryon
density nB. Full line, perturbation approach; crosses, HNC calculations by Johnson
and Clark [33]; stars, Hoyle state (see Sect. 6.14)

disappear near the saturation density. For this, we have not only to take into
account the HNC type improvement of the pair distribution function, but also
the Pauli blocking effects that modify the internal structure of the α particle
so that the use of the Ali–Bodmer interaction potential is no longer justified.
Recently, improved versions of the α–α interaction have been proposed [37].
Three-α forces have been considered to give a better estimation for the critical
point of α matter, which should be positioned below saturation density. Thus,
the repulsive part of the α–α interaction (which also is a consequence of the
Pauli blocking with respect to the internal nucleonic structure) is only a part
of the suppression of the condensate, which is described here.

Another effect is the medium modification of the internal structure of the
α particle as well as of the interaction that can be elaborated within a cluster-
mean field approximation [4]. The dissolution of α-like bound states due to
Pauli blocking has been evaluated for an uncorrelated medium solving the
Faddeev–Yakubowsky equation [7]. It has been shown [9] that the four-particle
correlations in the condensate disappear due to Pauli blocking at around n0/3
within a variational approach, approximating the four-nucleon wave function
by the solution of the two-particle problem and describing the relative c.o.m.
motion by a Gaussian wave function. Therefore, a medium-dependent α–α
interaction of the Ali–Bodmer type may be expected to account for the fea-
tures of this effect in an exploratory way. In principle, an ab initio calculation
based on interacting nucleons should be performed, with Green functions,
variational, or AMD techniques.
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6.14 Enhancement of Cluster c.o.m. S Orbital
Occupation in 4n Nuclei

An important question is whether such properties of infinite nuclear matter
are of relevance for finite nuclei. As well known, for example, pairing obtained
in nuclear matter within the BCS approach is also clearly seen in finite nuclei.
Nuclei with densities near the saturation density are well described by the
quasiparticle picture, which leads to the shell model for finite nuclei. At low
densities, a fully developed α cluster structure similar to α matter is expected.
Cluster structures in finite nuclei have been well established. A density func-
tional approach is able to include correlations and to bridge between infinite
matter and finite nuclei.

An interesting aspect of finite nuclei is the enhancement of the occupation
of single α-particle states similar to BEC in α-particle matter or condensation
of bosonic atoms in traps. Recently, gas-like states have been investigated in
self-conjugate 4n nuclei [38], and a special ansatz for the wave function (THSR
ansatz), which is similar to the condensate state in infinite matter, has been
shown to be appropriate in describing low-density isomers. In particular, 8Be
and the Hoyle state of 12C are well described with this THSR wave function.
Investigations of states near the four α threshold in 16O are in progress [39,40].

Signatures akin to BEC calculated for infinite nuclear matter should arise
already in finite nuclei. Low-density states of self-conjugate 4n nuclei clearly
show an α cluster structure, in particular for n = 2 and n = 3 (Hoyle state).
The counterpart of a condensate in infinite α matter, where the occupation
of the ground state is enhanced and becomes of the same order as the total
particle number, will be the enhancement of the occupation number of a single-
α orbital of the α-clusters in a low density state of the nucleus.

The α clustering nature of the nucleus 12C has been studied by many au-
thors using various approaches [41]. Among these studies, solving the fully
microscopic three-body problem of α clusters gives us the most important
and reliable theoretical information of α clustering in 12C within the as-
sumption that no α cluster is distorted or broken, except for the change
of the size parameter of the α cluster’s internal wave function. First solu-
tions of the microscopic 3α problem where the antisymmetrization of nucle-
ons is exactly treated have been given by Uegaki et al. [42] and by Kamimura
et al. [43]. In those works, the 12C levels are described by the wave func-
tion of the form A{χ(s, t)φ3

α} with A standing for the antisymmetrizer,
φ3
α ≡ φ(α1)φ(α2)φ(α3) for the product of the internal wave functions of three
α clusters, and s and t for the Jacobi coordinates of the center-of-mass motion
of three α clusters. Here φ(αi) (i = 1, 2, 3) is the internal wave function of
the α-cluster αi having the form φ(αi) ∝ exp[−(1/8b2)

∑4
m>n(ri,m − ri,n)2].

The wave function χ(s, t) of the relative motion of three α clusters is ob-
tained by solving the energy eigenvalue problem of the full three-body equa-
tion of motion; 〈φ3

α|(H − E)|A{χ(s, t)φ3
α}〉 = 0, where H is the microscopic

Hamiltonian consisting of the kinetic energy, effective two-nucleon potential,
and the Coulomb potential between protons.
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Both calculations reproduce reasonably well the observed binding energy
and r.m.s. radius of the ground 0+

1 state, which is the state with normal
density, while they both predict a very large r.m.s. radius for the second 0+

2

state, which is larger than the r.m.s. radius of the ground 0+
1 state by about

1 fm, that is, by over 30%. The second 0+ state of 12C is well known as the
key state for the synthesis of 12C in stars (Hoyle state) and also as one of
the typical mysterious 0+ states in light nuclei, which are very difficult to
understand from the point of view of the shell model [44].

Alternatively, the 0+
2 state with dilute density can be described by a gas-

like structure of 3α-particles, which interact weakly with each other, predom-
inantly in relative S waves. The S-wave dominance in the 0+

2 state structure
had been already suggested by Horiuchi on the basis of the 3α OCM (or-
thogonality condition model) calculation [45]. It should be mentioned that
not only the binding energy, but also other properties of the 0+

2 state such
as electron scattering form factors are well described within the calculations
given in [42,43, 45].

Recently, based on the investigations of the possibility of α-particle con-
densation in low-density nuclear matter [9], it was conjectured that, near
the nα threshold in self-conjugate 4n nuclei, there exist excited states of di-
lute density, which are composed of a weekly interacting gas of self-bound
α particles and which can be considered as an nα condensed state [38]. The
structure of 12C and 16O was examined using a new α-cluster wave function
of the α-cluster condensate type. The new α-cluster wave function, which will
be denoted as THSR wave function, actually succeeded to place an excited
state of dilute density (about one third of saturation density) in 12C and 16O
at energy in the vicinity of the three, respectively, 4 α breakup threshold,
without using any adjustable parameter.

The THSR wave function of the α-cluster condensate type used in [38]
represents a condensation of α-clusters in a spherically symmetric state. This
is clearly seen by the following expression

|Ψ〉 = P(C†
α)
n|vac〉, (6.85)

with

〈1234|C†
α|vac〉 = Φ(P )δP ,p1+p2+p3+p4φα(1234)a†1a

†
2a

†
3a

†
4, (6.86)

Φ(P ) describing the c.o.m. motion of the α cluster, and φ the internal wave
function of the four-nucleon cluster. The operator P is projecting out the total
c.o.m. motion of the 4n nucleus. In the limit of infinite nuclear matter, the Φ
orbitals are plane waves, and the projection operator P can be neglected. In
the case considered here, the use of Gaussians allows the explicit separation
of the c.o.m. motion of the four-nucleon cluster as well as of the whole 4n
nucleus. It should also be noted that (6.85) contains two limits exactly: the
one of a pure Slater determinant relevant at higher densities and the one of a
100% ideal α-particle condensate in the dilute limit [38].
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This wave function (6.85) has been extended so that it can describe the
α-cluster condensate with spatial deformation [46]. This new wave function,
applied to 8Be, succeeded to reproduce not only the binding energy of the
ground state but also the energy of the excited 2+ state.

It was shown that the 0+
2 wave function of 12C, which was obtained long

time ago by solving the full three-body problem of the microscopic 3α cluster
model, is almost completely equivalent to the wave function of the 3α THSR
state. The rms radius for this THSR state was calculated as R(0+

2 )THSR =
4.3 fm, which fits well with the experimental data for the form factor of the
Hoyle state, see [47]. It confirms the assumption of low density as a pre-
requisite for the formation of an α-cluster structure for which the Bose-like
enhancement of the occupation of the S orbit is possible.

Recently, a fermionic AMD calculation based on nucleons with effective
interactions has been performed [47], which supports the applicability of the
THSR state to describe the Hoyle state. It is found that the form factor
calculated for the 0+

2 state of 12C coincides with the form factor obtained
from the THSR wave function. In particular, the low density of nucleons,
the formation of four-nucleon clusters, and the dominant contribution of the
gas-like distribution has been confirmed.

A very interesting analysis of the applicability of the THSR wave function
can be performed by comparing with stochastic variational calculations [48]
and OCM calculations [49]. The α density matrix ρ(r, r′) defined by inte-
grating out of the total density matrix all intrinsic α-particle coordinates is
diagonalized to study the single-α orbits and occupation probabilities in 12C
states. Figure 6.12 shows the occupation probabilities of the S orbits as a
function of the nuclear density corresponding to the rms radius, including the

Fig. 6.12. Occupation of the S-wave α orbital (1.0 = 100%) of 12C as a function
of the nuclear density nB/n0 ≈ ρ/ρ0, where the ratio ρ/ρ0 is determined by the rms
radii of the excited nucleus and the ground state nucleus [49]
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ground and Hoyle state of 12C, obtained by diagonalizing the density matrix
ρ(r, r′). In the Hoyle state, the 0S α-particle orbit with zero node is occupied
to more than 70% by the three α-particles (see also [48]). This huge percent-
age means that an almost ideal α-particle condensate is realized in the Hoyle
state. One should remember that superfluid 4He has only 8% of the particles in
the condensate, which represents a macroscopic amount of particles nonethe-
less. The S-wave occupancy of the Hoyle state results at least by a factor of
10 larger than the occupancy of any other state. On the other hand, in the
ground state of 12C, the α-particle occupations are equally shared among S1,
D1, and G1 orbits, where they have two, one, and zero nodes, respectively,
reflecting the SU(3)(λμ) = (04) character of the ground state [49].

An interesting item is whether there exist other nuclei showing the Bose
condensate-like enhancement of the S-orbit occupation number. Then, the
suppression of the condensate with increasing density is also of relevance
for those nuclei. In analogy to the aforementioned OCM calculation for 12C
[49], recently a quite complete OCM calculation has been performed also for
16O [40]. It was possible to reproduce the full spectrum of 0+ states with
0+
2 at 6.4MeV, 0+

3 at 9.4MeV, 0+
4 at 12.6MeV, 0+

5 at 14.1MeV, and 0+
6 at

16.5MeV. Also the rms radii are obtained. The largest values are found as
R(0+

6 )OCM = 5.4 fm, followed by R(0+
4 )OCM = 3.9 fm. The analysis of the

diagonalization of the α-particle density matrix ρ(r, r′) (as was done in [49])
showed that the newly discovered 0+ state at 13.6MeV [50], as well as the well
known 0+ state at 14.01MeV, corresponding to the states at 12.6MeV and
14.1MeV, respectively, have, contrary to what we assumed previously [51],
very little condensate occupancy of the 0S-orbit (about 20%). On the other
hand, the sixth 0+ state for which the energy 16.5MeV has been calculated
(to be identified with the experimental state at 15.1MeV) has 61% of the α
particles being in the 0S-orbit.

These results confirm the statement that the α-particle condensate in nu-
clear matter is suppressed with increasing density and, consequently, a well de-
veloped condensate state in nuclei can be expected only at very low densities.
For 16O, the relative densities ρ/ρ0 are estimated as (R(0+

4 )OCM/R(0+
1 )exp)

3 =
0.34 and (R(0+

6 )OCM/R(0+
1 )exp)

3 = 0.13. Therefore, we expect a significant
enhancement of the S orbit occupation number only for the 0+

6 state, in full
agreement with the OCM calculation cited above. The very large radius of
that state is again a clear indication of an α-particle gas (Hoyle)-like state,
and the THSR wave function is expected to describe this state in a sufficient
approximation. Work in determining the complete spectrum of THSR states
in 16O showing the relevance of a Bose-condensate like state is in progress [39].

6.15 Conclusions

In certain regions of the density–temperature plane, a significant fraction of
nuclear matter is bound into clusters. For instance, at low densities deuterons
can be formed as a two-nucleon bound state. The mass fraction of nucleons
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bound into deuterons is given by a mass action law. Macroscopic properties
such as the EoS are influenced by the occurrence of bound states. Within a
consistent description, also scattering states have to be included, which can
be done within a quantum statistical approach such as the Beth–Uhlenbeck
formula.

With increasing density, the single-particle properties as well as the two-
particle properties are modified by medium effects. The quantum statistical
approach allows to calculate self-energy and Pauli blocking. The single-nucleon
as well as the two-nucleon spectral function allow for a comprehensive and
exhaustive description of all correlation effects. Neglecting the broadening
of the states, a quasiparticle description holds, which gives the shift of the
single-particle energies as well as the shift of the bound state energies. Also the
modification of the scattering phase shifts due to medium effects is calculated.
These quantities then can be considered as input to calculate the EoS at
higher densities. Different approximations for the quasiparticle shifts have
been considered here.

A description of nuclear matter at low densities should also include the
formation of other bound states, that is, nuclei in the ground state and excited
states. Of particular interest is the α particle as the binding energy per nucleon
is rather high so that it will be abundant in nuclear matter. The inclusion of
both three and four-particle correlations in nuclear matter allows not only to
describe the abundances of t, h, α but also their influence on the EoS and
phase transitions.

An interesting effect is the dissolution of all bound states with increasing
density. Because of the Pauli blocking, the bound state energy is shifted and
merges with the continuum at the so-called Mott density, which depends on
the temperature and the c.o.m. momentum of the bound state. This effect has
the consequence that near the saturation density bound states are dissolved in
nuclear matter, and the single-nucleon quasiparticle approach becomes valid.
Below the Mott density, bound states are of relevance in calculating the prop-
erties of nuclear matter. In general, we find approximations that interpolate
between the low-density virial expansion and the Fermi liquid approach at
higher densities.

Cluster formation is essential for the symmetry energy in the low-density
region. A quasiparticle approach fails to give correct results, which are de-
termined by the formation of bound states such as α particles. A challenging
issue is also the microscopic approach to α matter, which should include the
simultaneous treatment of the single-nucleon states and other correlations.

Below a critical temperature, depending on baryon density and asymmetry,
the deuterons will form a Bose–Einstein condensate. With increasing density,
the bound states are dissolved, and we observe the cross-over from BEC to
Cooper pairing. Pairing is also of relevance in finite nuclei.

Quantum condensates in nuclear matter are treated beyond the mean-
field approximation, with the inclusion of cluster formation. The occurrence
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of a separate binding pole in the four-particle propagator in nuclear matter is
investigated with respect to the formation of a condensate of α-like particles
(quartetting), which is dependent on temperature and density.

Because of interaction effects and Pauli blocking, the formation of an α-like
condensate is limited to the low-density region. Consequences for finite nuclei
are considered. In particular, excitations of n-α self-conjugate nuclei (Z = 2n,
N = 2n) near the n-α breakup threshold are candidates for quartetting, for
example, 8Be, 12C, and 16O. Exploratory calculations are performed for the
density dependence of the α condensate fraction at zero temperature to ad-
dress the suppression of the four-particle condensate below nuclear matter
saturation density.

The microscopic approach to the EoS anticipates a homogeneous system
in equilibrium, described by the grand canonical ensemble. However, thermo-
dynamic stability with respect to phase separation has to be shown. For a
special density region depending on the asymmetry, nuclear matter becomes
instable below the critical temperature for the gas–liquid like phase transition.
The spinodale marks the region where spontaneous phase separation occurs.
The EoS, calculated for a homogeneous system, contradicts in that region
the stability conditions. If the Coulomb interaction and a background of neu-
tralizing electrons is taken into account, instead of phase separation, droplet
formation and other structures will characterize the region of two-phase in-
stability.

In nuclear reactions, particularly in heavy ion collisions, we have inhomo-
geneous matter in nonequilibrium, and the nuclear matter EoS serves only as
an approximation to characterize a state in local equilibrium, but changing
with space and time. Nevertheless, this local equilibrium may be considered as
a prerequisite to describe the formation of correlations and bound states. Sim-
ple approximations such as the freeze-out concept or the coalescence model
are presently used to characterize the cluster formation in heavy ion collisions.

Important consequences are also expected for nonequilibrium processes
occurring in astrophysical objects. Cluster formation is of importance in other
nonequilibrium processes and will determine the mean free path for different
particles. An interesting application is the neutrino transport in supernova
collapses. The formation of clusters is of interest in the early universe, if
inhomogeneous distribution of matter as a consequence of phase separation is
considered [52].
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M. Schmidt, L. Münchow, H. Schulz, Phys. Lett. B 110, 21 (1982)
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BEC–BCS Crossover in Strongly
Interacting Matter

Daniel Zablocki, David Blaschke, and Gerd Röpke

Abstract. A quantum field theoretical approach to the thermodynamics of dense
Fermi systems is developed for the description of the formation and the dissolution of
quantum condensates and bound states in dependence of temperature and density.
As a model system, we study the chiral and superconducting phase transitions in
two-flavor quark matter within the NJL model and their interrelation with the for-
mation of quark–antiquark and diquark bound states. The phase diagram of quark
matter is evaluated as a function of the diquark coupling strength, and a coexis-
tence region of chiral symmetry breaking and color superconductivity is obtained at
very strong coupling. The crossover between Bose–Einstein condensation of diquark
bound states and condensation of diquark resonances (Cooper pairs) in the contin-
uum is discussed as a Mott effect. This effect consists in the transition of bound
states into the continuum of scattering states under the influence of compression
and heating. We explain the physics of the Mott transition, with special emphasis
on the role of the Pauli principle for the case of the pion in quark matter.

7.1 Introduction

Key issues of modern physics of dense matter are concepts explaining the
phenomena related to the appearance of quantum condensates in dense Fermi
systems. Two regimes are well-known: the Bose–Einstein condensation (BEC)
of bound states with an even number of fermions and the condensation of
bosonic correlations (e.g., Cooper pairs) in the continuum of unbound states
according to the Bardeen–Cooper–Schrieffer (BCS) theory. While the former
mechanism concerns states that are well-localized in coordinate space as they
occur for strong enough attractive coupling, the latter mechanism applies to
states that are correlated within a shell of the order of the energy gap Δ
around the Fermi sphere in momentum space but delocalized in coordinate
space. The transition between both regimes is called BEC–BCS crossover.
Recently, this transition regime became accessible to laboratory experiments
with ultracold gases of fermionic atoms coupled via Feshbach resonances, with
a strength tunable by applying external magnetic fields, see Fig. 7.1. After the
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Fig. 7.1. Illustration of the transition from BCS pairing with delocalized wave
functions to BEC of bound states, well-localized in coordinate space, from [1]

preparation of fermionic dimers in 2003, now also the BEC [2,3] and the su-
perfluidity of these dimers have been observed [4,5]. The BEC–BCS crossover
is physically related [6] to the bound state dissociation or Mott–Anderson
delocalization transition [7], where the modification of the effective coupling
strength is caused by electronic screening and/or Pauli blocking effects. It is
thus a very general effect expected to occur in a wide variety of dense Fermi
systems with attractive interactions [8] such as electron–hole systems in solid
state physics [9], electron–proton systems in the interior of giant planets [10],
deuterons in nuclear matter [11–13], or diquarks in quark matter [14–17].
The BEC–BCS crossover transition in quark matter takes place when form-
ing or dissolving hadrons at the Mott density when the temperatures are low
enough for condensation of the bosonic correlations. It is of particular theoret-
ical interest due to the additional relativistic regime when the binding energy
compensates for the mass of constituents, and the correlations may therefore
reach a massless, ultrarelativistic limit [18–20].

A systematic treatment of these effects is possible within the path integral
formulation for finite-temperature quantum field theories. This approach is
rather general as it is relativistic and is especially suited to take into account
the effects of spontaneous symmetry breaking, manifest, for example, in the
chiral symmetry breaking and color superconductivity transitions in quark
matter or in the superfluid and liquid–gas phase transitions in nuclear matter.
Within this contribution, we present the basics of this approach on the exam-
ple of a model field theory of the Nambu–Jona–Lasinio type for relativistic,
strongly interacting Fermi systems. These investigations are also motivated
by the analogies of the strongly coupled quark–gluon plasma (sQGP) at Rela-
tivistic Heavy Ion Collider (RHIC) in Brookhaven [21], with the experiments
on BEC of atoms in traps. Furthermore, qualitative insights into possible ef-
fects observable in the upcoming CBM experiment at FAIR Darmstadt as well
as from neutron stars with quark matter interiors could be derived along the
lines of this approach.
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7.2 Quark Matter

7.2.1 Partition Function and Model Lagrangian

As a generic model system for the description of hot, dense Fermi-systems
with strong, short-range interactions, we consider quark matter described by
a model Lagrangian with four-fermion coupling. The key quantity for the
derivation of thermodynamic properties is the partition function Z from which
all thermodynamic quantities can be derived. It is given as a path integral,
which in the imaginary time formalism (t = −iτ ) can be expressed as [22]

Z =
∫
D(iq†)D(q) e

∫
β d4x (L−μq†q), (7.1)

where the chemical potential μ is introduced as a Lagrange multiplier for
assuring conservation of baryon number as a conserved charge carried by the
quarks. The notation

∫ β d4x is shorthand for
∫ β
0 dτ

∫
d3x, where β = 1/T is

the inverse temperature. The quark matter is described by a Dirac Lagrangian
with internal degrees of freedom (Nf = 2 flavors , Nc = 3 colors), with a
current–current-type four-fermion interaction inspired by one-gluon exchange

L = q̄(iγμ∂μ −m0)q −
g2

2

8∑

a=1

q̄
λa

2
γμq q̄

λa

2
γμq, (7.2)

where λa are the Gell–Mann matrices for color SU(3). After Fierz transfor-
mation of the interaction, we select the scalar diquark channel and the scalar,
pseudoscalar, and vector meson channels so that our model Lagrangian as-
sumes the form

L = L0 + Lqq + Lqq̄ , (7.3)

where the different terms are given by

L0 = q̄(iγμ∂μ −m0)q, (7.4)

Lqq̄ = GS

[
(q̄q)2 + (q̄iγ5τq)

2
]
, (7.5)

Lqq = GD

{
q̄ [iγ5Cτ2λ2] q̄T

}{
qT [iCγ5τ2λ2] q

}
, (7.6)

where γν are the Dirac matrices, τi are SU(2) flavor matrices and C = iγ2γ0

is the charge conjugation matrix. GS and GD are the coupling strengths cor-
responding to the different channels, see [23] for a recent review. For the
numerical analysis we adopt parameters from [24], that is, Λ = 629.5MeV,
m0 = 5.3MeV, and GSΛ

2 = 2.18, and consider GD as a free parameter of the
model.

A general method to deal with four-fermion interactions in the path in-
tegral approach starts with the Hubbard–Stratonovich transformation [25] of
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the partition function to its equivalent form in terms of collective bosonic
fields, which is more suitable to deal with nonperturbative effects such as the
occurrence of order parameters (mean fields) related to phase transitions in
the system. The correlations beyond the mean fields are mesons correspond-
ing to plasmon (particle–hole) excitations and diquarks corresponding to pair
fluctuations (two-particle bound and scattering states) in the dense fermion
system.

7.2.2 Hubbard–Stratonovich Transformation: Bosonization

The Hubbard–Stratonovich transformation is a two-step procedure, which
consists of (1) linearization of the four-fermion interaction terms by introduc-
ing bosonic auxiliary fields in the appropriate channels and (2) integrating
out the fermions analytically.

We introduce the Hubbard–Stratonovich auxiliary fields Δ(τ, x), Δ∗(τ, x),
π(τ, x), and σ(τ, x) so that the partition function of the system becomes

Z =
∫
DΔ∗DΔDσDπ

{
exp

{
−

∫ β

d4x

[
σ2 + π2

4GS
+
|Δ|2
4GD

]}∫
[dq] [dq̄]

× exp

{∫ β

d4x (q̄(iγμ∂μ + μγ0 −m0)q − q̄(σ + iγ5τ · π)q

−Δ
∗

2
qTRq − Δ

2
q̄R̃q̄T

)}}
, (7.7)

where R = iCγ5⊗τ2⊗λ2, R̃ = iγ5C⊗τ2⊗λ2. By introducing Nambu–Gorkov
spinors

Ψ ≡ 1√
2

(
q
qc

)
, Ψ̄ ≡ 1√

2

(
q̄q̄c

)
(7.8)

with qc(x) ≡ Cq̄T(x), the Lagrangian takes the bilinear form

L = Ψ̄

(
iγμ∂μ + μγ0 − m̂− iγ5τ · π iΔγ5τ2λ2

iΔ∗γ5τ2λ2 iγμ∂
μ − μγ0 − m̂− iγ5τ · π

)
Ψ (7.9)

with m̂ = m0 + σ. Hence the partition function becomes a Gaussian path
integral in the bispinor fields, which can be evaluated and yields the fermion
determinant

Z =
∫
DΔ∗DΔDσDπ exp

{
−

∫ β

d4x
σ2 + π2

4GS
+
|Δ|2
4GD

}

×
∫
DΨ̄DΨ exp

{∫ β

d4xΨ̄
[
S−1

]
Ψ

}
(7.10)

=
∫
DΔ∗DΔDσDπ exp

{
−

∫ β

d4x
σ2 + π2

4GS
+
|Δ|2
4GD

}
Det[S−1], (7.11)
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where the inverse bispinor propagator is a matrix in Nambu–Gorkov-, Dirac-,
color-, and flavor-space, which after Fourier transformation reads

S−1 =
(

(iωn + μ)γ0 − m̂− iγp− iγ5τ · π iΔγ5τ2λ2

iΔ∗γ5τ2λ2 (iωn − μ)γ0 − m̂− iγp + iγ5τ · π.

)
. (7.12)

So far we could derive with (7.11) a very compact, bosonized form of the quark
matter partition function (7.1), which is an exact transformation of (7.1), now
formulated in terms of collective, bosonic fields. As we demonstrate in the fol-
lowing, this form is suitable as it allows to obtain nonperturbative results
already in the lowest orders with respect to an expansion around the station-
ary values of these fields. In performing this expansion, we may factorize the
partition function into mean field (MF), Gaussian fluctuation (Gauss), and
residual (res) contributions

Z(μ, T ) ≡ e−βΩ(μ,T ) = ZMF(μ, T )ZGauss(μ, T )Zres(μ, T ).

In the following, we discuss the physical content of these approximations.

7.2.3 Mean-Field Approximation: Order Parameters

After the evaluation of the traces in the internal spaces and the sum over the
Matsubara frequencies, one gets

ΩMF = − 1
βV

lnZMF =
(m−m0)2

4GS
+
|Δ|2
4GD

− 1
βV

Tr
(
lnβS−1

MF

)
,

=
(m−m0)2

4GS
+
|Δ|2
4GD

− 4
∫

d3p

(2π)3
[
E+

p + E−
p + Ep + 2T ln(1 + e−βE

+
p )

+ 2T ln(1 + e−βE
−
p ) + T ln(1 + e−βξ

+
p ) + T ln(1 + e−βξ

−
p )

]
, (7.13)

where we have defined the particle dispersion relation E±
p =

√(
ξ±p

)2
+Δ2

with ξ±p = Ep±μ, Ep =
√
m2 + p2. The Δ = 0 dispersion law is associated to

the red and green quarks (E−
p ) and antiquarks (E+

p ), whereas the ungapped
blue quarks (antiquarks) have the dispersion ξ−p (ξ+p ). In thermodynamical
equilibrium, the mean field values satisfy the stationarity condition of the
minimal thermodynamical potential, that is,

∂ΩMF

∂σMF
=
∂ΩMF

∂πMF
=
∂ΩMF

∂ΔMF
= 0, (7.14)

equivalent to the fulfillment of the gap equations σMF = −4GSTr (SMF) ≡ m−
m0, πMF = −4iGSTr (γ5τSMF) = 0 and ΔMF = 4GDTr (γ5τ2λ2SMF) = Δ,
together with the stability criterion that the determinant of the curvature
matrix formed by the second derivatives is positive. From (7.14) with (7.13),
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we obtain the gap equations for the order parameters m and Δ, which have
to be solved self-consistently,

m−m0 = 8GSm

∫
d3p

(2π)3
1
Ep

{[
1− 2nF(E−

p )
] ξ−p
E−

p

+
[
1− 2nF(E+

p )
] ξ+p
E+

p

+ nF(−ξ+p )− nF(ξ−p )
}
, (7.15)

Δ = 8GD

∫
d3p

(2π)3

[
1− 2nF(E−

p )
E−

p

+
1− 2nF(E+

p )
E+

p

]
, (7.16)

with the Fermi distribution function nF(E) = (1 + eβE)−1. For zero temper-
ature, the gap equations take the simple form

m−m0 = 8GSm

∫
d3p

(2π)3
1
Ep

[
ξ−p
E−

p

+
ξ+p

E+
p

+Θ(ξ−p )
]
, (7.17)

Δ = 8GDΔ

∫
d3p

(2π)3

[
1
E−

p

+
1
E+

p

]
. (7.18)

Solutions of the gap equations for the dynamically generated quark mass m
and for the diquark pairing gap Δ at T = 0 as a function of the chemical
potential are shown in Fig. 7.2. From the knowledge of the order parameters
as functions of the thermodynamical variables (T, μ), we can deduce the phase
diagram of Fig. 7.3.

7.2.4 Phase Diagram

From the solutions of the gap equations for the order parameters in depen-
dence of the thermodynamical variables T and μ, we have constructed the
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Fig. 7.2. Order parameters for chiral symmetry breaking (m, full lines) and color
superconductivity (Δ, dashed lines) at T = 0 for different values of the diquark
coupling ηD. First order phase transitions turn to second order or even crossover
when ηD is increased. For details, see text
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Fig. 7.3. Phase diagram of two-flavor quark matter with critical lines for chiral
symmetry breaking and color superconductivity for different values of the diquark
coupling strength ηD. Upper panel: For rather small coupling ηD = 0.75, the phase
diagram features a first order phase transition (solid line) for the quark mass m as
well as the diquark gap Δ for low temperatures, which changes into crossover (m,
dashed line) and second order (Δ, dotted line) for higher temperatures. We also find a
critical endpoint for first order phase transitions. Lower panel: For larger coupling
ηD = 1.30, we do not find first order phase transitions anymore. For increasing
temperatures, the diquark gap undergoes a second-order phase transition (dotted
line), whereas all other phase transitions turn out to be crossover. The BEC–BCS
crossover occurs when the chiral transition (coincident with the Mott transition for
mesonic and diquark bound states) occurs inside the 2SC phase. It is characterized
by the coexistence of diquark condensation with chiral symmetry breaking
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phase diagram of the present quark matter model in the T − μ plane, see
Fig. 7.3. The two order parameters allow to distinguish four phases:

• Δ = 0, m ∼ m0: normal phase (NQM)
• Δ = 0, m ∼ m0: color superconductor (2SC)
• Δ = 0, m� m0: chiral symmetry broken phase (χSB)
• Δ = 0, m� m0: coexistence of χSB and 2SC (BEC phase)

Order parameters are indicators of phase transitions. The phase transitions
can be classified according to their order, depending on the behavior of the
order parameters with the change of thermodynamic variables:

• First order: order parameter jumps, as in the case of the χSB→ 2SC phase
transition at not too large coupling.

• Second order: order parameter turns continuously to zero. The 2SC →
NQM transition with increasing T is always second order. The χSB →
2SC transition turns from first to second order for strong enough coupling.

• Crossover: the order parameter changes continuously, but does not go to
zero and also has no jumps. An example is the χSB → NQM transition at
temperatures above the critical endpoint (CP), where it goes over to the
line of first order transitions in the T − μ plane. The identification of the
CP is a key issue for experimental research and thus for the verification
of QCD models. It is suggested that verifiable signatures (change of the
fluctuation spectrum, latent heat or not) are related with it. For strong
coupling, the CP moves to lower T and finally to T = 0 (for ηD > 1.3, the
chiral transition is always crossover).

Increasing the diquark coupling ηD leads to an increase of the diquark gap
and therefore a rise in the critical temperature for the second-order transition
to a normal quark matter phase. It shifts also the border between color super-
conductivity (2SC) and chiral symmetry broken phase (χSB) to lower values
of the chemical potential. For very strong coupling ηD ∼ 1, a coexistence re-
gion develops, where both order parameters are simultaneously nonvanishing.
Under these conditions, the phase border is not of first order and therefore
no critical endpoint can be identified. As we are going to explain in the next
section, in the χSB phase, pion and diquark bound states can exist. At the
chiral symmetry restoration transition, they merge the continuum of unbound
states and turn into (resonant) scattering states. When this Mott transition
occurs within the 2SC phase (characterized by a nonvanishing diquark con-
densate), we speak of a BEC–BCS crossover: the condensation of diquark
bound states (BEC) turns into a condensation of resonances, called Cooper
pairs (BCS).

For lower coupling, the critical point occurs and is shown as a colored dot
in the phase diagram of Fig. 7.3.

In the next section, we turn towards the interesting question about the
quasiparticle excitations in these phases. To this end, we expand the action
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functional in the partition function up to quadratic (Gaussian) order in the
mesonic fields and arrive at a tractable approximation for the bosonized quark
matter model (7.11).

7.2.5 Gaussian Fluctuations: Bound and Scattering States

Let us expand now the mesonic fields around their mean field values. In this
article, we focus on fluctuations in the mesonic channels, where the pion and
the sigma meson will emerge as quasiparticle degrees of freedom. On the ex-
ample of the pion, we explain the physics of the Mott transition. As discussed
in the previous section, the phenomenon of the BEC–BCS crossover in the
2SC phase is due to the Mott transition for diquarks. The detailed investi-
gation of the quantized diquark fluctuations, which are also a prerequisite of
the formation of baryons, will be given elsewhere [20, 26, 27, 27a]. As we al-
ready noticed, the pion does not contribute to the mean field, and we need
to introduce only the sigma-field fluctuations as σ → σMF + σ. Hence it is
possible to decompose the inverse propagator S−1 into a mean field part and
a fluctuation part S−1 = S−1

MF +Σ , where the matrix Σ is defined as

Σ ≡
(
−σ − iγ5τ · π 0

0 −σ − iγ5τ
t · π

)
. (7.19)

In the Gaussian approximation, the fermion determinant becomes

Det
[
S−1

] ∣∣
Gauss

Det
[
S−1

MF

] = exp
{
− 1

2

∫
d4q

(2π)4

×Tr [SMF(p)Σ(q)SMF(p+ q)Σ(q)]
}
. (7.20)

The propagator SMF is obtained from (7.12) by the matrix inversion

SMF ≡
(

G+ F−

F+ G−

)
, (7.21)

with the matrix elements

G±
p =

∑

sp

∑

tp

tp

2E±sp
p

tpE
±sp
p − spξ±sp

p

p0 − tpE±sp
p

Λ
−sp
p γ0Prg

+
∑

sp

Λ
−sp
p γ0Pb

p0 + spξ
±sp
p

, (7.22)

F±
p = i

∑

sp

∑

tp

tp

2E±sp
p

Δ±

p0 − tpE±sp
p

Λ
sp
p γ5τ2λ2, (7.23)
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where sp, tp = ±1, (Δ+, Δ−) = (Δ∗, Δ). For the subsequent evaluation of
traces in quark-loop diagrams, it is convenient to use this notation with pro-
jectors in color space, Prg = diag(1, 1, 0), Pb = diag(0, 0, 1), and in Dirac
space,

Λ±
p =

1
2

[
1± γ0

(
γ · p + m̂

Ep

)]
.

The summation over Matsubara frequencies p0 = iωn is most systematic using
the above decomposition into simple poles in the p0 plane. The poles of the
normal propagators G± are given by the gapped dispersion relations for the
paired red–green quarks (antiquarks), E−

p (E+
p ), and the ungapped dispersions

ξ−p (ξ+p ) for the blue quarks (antiquarks). The anomalous propagators F±
p are

only nonvanishing in the 2SC phase when the pair amplitude is nonvanishing.
Let us notice explicitly that this procedure has yielded an effective action
that includes the fluctuation terms responsible for the excitation of scalar
and pseudoscalar mesonic modes. The evaluation of the traces (7.20) can be
performed with the result

1
2
Tr (SMFΣSMFΣ) = (π, σ)

(
Πππ 0

0 Πσσ

)(
π
σ

)
, (7.24)

with

Πσσ(q0,q) ≡ Tr[G+
p G+

p+q + F−
p F+

p+q + G−
p G−

p+q + F+
p F−

p+q], (7.25)

Πππ(q0,q) ≡ −Tr[G+
p (γ5τ )G+

p+q(γ5τ ) + F−
p (γ5τ

t)F+
p+q(γ5τ )

+F+
p (γ5τ )F−

p+q(γ5τ
t) + G−

p (γ5τ
t)G−

p+q(γ5τ
t)]. (7.26)

These polarization functions are the key quantities for the investigation of
mesonic bound and scattering states in quark matter. In the following, we
perform the further evaluation and discussion for the pionic modes, and the σ
modes is treated in an analogous way. We start with the evaluation of traces
and Matsubara summation.

Πππ(q0,q) = 2
∫

d3p

(2π)3
∑

sp,sk

T +
− (sp, sk)

{
nF(spξ

sp
p )− nF(skξsk

p+q)
q0 − skξsk

p+q + spξ
sp
p

−
nF(spξ

sp
p )− nF(skξsk

p+q)
q0 + skξ

sk
p+q − spξ

sp
p

+
∑

tp,tk

tptk

E
sp
p Esk

p+q

nF(tpE
sp
p )− nF(tkEsk

p+q)
q0 + tkE

sk
p+q − tpE

sp
p

×
(
tptkE

sp
p Esk

p+q + spskξ
sp
p ξsk

p+q − |Δ|2
)}

, (7.27)
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where

T +
− (sp, sk) =

(
1 + spsk

p · p + q−m2

EpEp+q

)
. (7.28)

For a pionic mode at rest in the medium (q = 0), this reduces to

Πππ(q0,0) = 8
∫

d3p

(2π)3

{
N(ξ+p , ξ

−
p )

[
1

q0 − 2Ep
− 1
q0 + 2Ep

]

+

[
1−

ξ+p ξ
−
p +Δ2

E+
pE

−
p

]
M(E+

p , E
−
p )

×
[

1
q0 − E+

p + E−
p

− 1
q0 + E+

p − E−
p

]

+

[
1 +

ξ+p ξ
−
p +Δ2

E+
pE

−
p

]
N(E+

p , E
−
p )

×
[

1
q0 + E+

p + E−
p

− 1
q0 − E+

p − E−
p

]}
, (7.29)

where we have introduced the phase space occupation factors N(x, y) = 1 −
nF(x)− nF(y) (Pauli blocking) and M(x, y) = nF(x)− nF(y). For μ = 0, this
function has three poles from the first terms in each bracket, corresponding
to positive energies (q0 > 0). So we need to focus only on these three terms.
For μ = 0, the second term vanishes due to the prefactor and we are left with
two poles.

We make use of the Dirac identity limη→0
1

x+iη = P 1
x − iπδ(x) to decom-

pose the polarization function into real and imaginary parts after analytical
continuation to the complex plane. The imaginary part is straightforwardly
integrated after transformation from momentum to energy ω. At the pole, the
variables transform as

pω =

√
ω4 − 4ω2(μ2 +Δ2)

4(ω2 − 4μ2)
−m2. (7.30)

For ηD < 1, we know that Δ = 0 if m ≥ μ, which includes that ω ≥ 2μ
as this is the relevant threshold. Therefore, the pole is not hidden and we
recover the usual 2m threshold. For small enough couplings,Δ = 0 only ifm <
μ. Therefore, this pole is not hidden in this case. This reasoning includes that
the argument of the square root is strictly positive. The integration borders
thus shift p ∈ (0,∞) → ω ∈ (X±,∞), where the thresholds are given by 2m
and

X± =
√

(m+ μ)2 +Δ2 ±
√

(m− μ)2 +Δ2. (7.31)
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The pion polarization function in the 2SC phase can thus be decomposed into
real and imaginary parts in the following form:

ΠΔ
ππ(ω + iη,0) = ReΠΔ

ππ(ω + iη,0) + iImΠΔ
ππ(ω + iη,0)

= 8
∫

d3p

(2π)3

{
N(ξ+p , ξ

−
p )

[
P

ω − 2Ep
− 1
ω + 2Ep

]

+

[
1−

ξ+p ξ
−
p +Δ2

E+
pE

−
p

]
M(E+

p , E
−
p )

×
[

P
ω − E+

p + E−
p

− 1
ω + E+

p − E−
p

]

−
[
1 +

ξ+p ξ
−
p +Δ2

E+
pE

−
p

]
N(E+

p , E
−
p )

×
[

P
ω − E+

p − E−
p

− 1
ω + E+

p + E−
p

]}

− i
2
π

{
p0
ωEp0ωN(ξ+p0ω , ξ

−
p0ω

)Θ(ω − 2m) + pωEpω

×
E+
pω
E−
pω
− ξ+pω

ξ−pω
−Δ2

ξ+pωE
−
pω − ξ−pωE

+
pω

M(E+
pω
, E−

pω
)Θ(ω −X−)

− pωEpω

E+
pω
E−
pω

+ ξ+pω
ξ−pω

+Δ2

ξ+pωE
−
pω + ξ−pωE

+
pω

N(E+
pω
, E−

pω
)

×Θ(ω −X+)
}
, (7.32)

where P denotes the principal value integration, p0
ω = pω |Δ=0=

√
ω2

4 −m2

and we have made explicit the three thresholds, 2m andX±, for the occurrence
of the corresponding decay processes, giving rise to the partial widths Γ2m and
Γ±, respectively. In the normal phase, this reduces to

Π0
ππ(ω + iη,0) = ReΠ0

ππ(ω + iη,0) + iImΠ0
ππ(ω + iη,0)

= 24
∫

d3p

(2π)3
N(ξ+p , ξ

−
p )

[
P

ω − 2Ep
− 1
ω + 2Ep

]

−i
6
π
p0
ωEp0ωN(ξ+p0ω , ξ

−
p0ω

)Θ(ω − 2m). (7.33)

The analytic properties of the mesonic modes can be analyzed from their
spectral function. Here we discuss results for pionic modes with q = 0 in the
rest frame of the medium

ρπ(ω + iη,0) =
8G2

σImΠππ(ω + iη,0)
[1− 2GσReΠππ(ω,0)]2 + [2GσImΠππ(ω + iη,0)]2

. (7.34)
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In the limit of vanishing imaginary part, we recover the spectral function for
a “true” (on-shell) bound state

lim
ImΠππ→0

ρπ(ω + iη,0) = 2πδ(1− 2GσReΠππ(ω,0)), (7.35)

which corresponds to an infinite lifetime of the state and a mass to be found
from the pole condition 1 − 2GσReΠππ(mπ,0) = 0. In Fig. 7.4, we show
results for the mass spectrum of pions and sigma-mesons as a function of
the temperature for vanishing chemical potential μB = 0 and strong diquark
coupling ηD = 1.0. As Δ = 0, the only threshold for the imaginary parts of
meson decays is 2m. The σ mass is always above the threshold and therefore
this state is unstable in the present model. The pion, however, is a bound state
until the critical temperature for the Mott transition TMott = 212.7MeV is
reached. For T > TMott, the pion becomes unstable for decay into quark–
antiquark pairs. As can be seen from the behavior of the spectral function
in the lower panel of Fig. 7.4, the pion is still a well-identifyable, long-lived
resonance in that case. The detailed analytic behavior of the pion at the Mott
transition has been discussed in the context of the NJL model by Hüfner
et al. [28], see also the inset of the lower panel of Fig. 7.4. It shows strong
similarities with the behavior of bound states of fermionic atoms in traps
when their coupling is tuned by exploiting Feshbach resonances in an external
magnetic field, see [29]. In the context of RHIC experiments, one has discussed
such quasi-bound states as an explanation for the perfect liquid behavior of
the sQGP [30].

Next we want to discuss the pionic excitations in the presence of a diquark
condensate in the 2SC phase, see Fig. 7.4. We choose μ = 320MeV and discuss
the effect of melting the 2SC diquark condensate by increasing the tempera-
ture from T = 0 to T > Tc, where Tc = 95MeV is the critical temperature
for the second order transition to the normal quark matter phase. We observe
the remarkable fact that the 2SC condensate stabilizes the pion at T = 0 as
a true bound state, although the pion mass exceeds by far the threshold 2m.
This effect is due to a compensation of gapped and ungapped quark modes
and has been discussed before by Ebert et al. [26] for T = 0 only. Here we
extend this study to the finite temperature case, where the pion is still a very
good resonance, but obtains a finite width. At the critical temperature Tc,
the normal pion width is restored. But already before T = Tc is reached, the
threshold X− is reached and the corresponding decay process is opened with
a considerable width of O(50 MeV). From the pion spectral function in the
lower panel of Fig. 7.4, we observe the gap in the excitation spectrum due to
the presence of the diquark gap. At T > Tc, a resonance type spectral func-
tion with a threshold at ω = 2m and a resonance peak at ω ∼ 250MeV is
obtained.

The discussion of the mesonic modes in the 2SC phase points to a very
rich spectrum of excitations, which eventually leads to specific new observable
signals of this hypothetical phase. The CBM experiment planned at FAIR
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Fig. 7.4. Upper panel: Mass spectrum of mesons (π, σ) as a function of the temper-
ature for vanishing chemical potential μB = 0 and strong diquark coupling ηD = 1.0.
The threshold Eth = 2mq for Mott dissociation of pions and occurrence of a nonva-
nishing decay width Γπ = Im Ππ/mπ is reached at TMott = 212.7 MeV (see inset).
Lower panel: Spectral function for pionic correlations for μB = 0 in the vacuum at
T = 0 (see inset) and at different temperatures around the Mott transition. Below
TMott, the bound state (delta function) and the continuum of scattering states are
separated by a mass gap. Above TMott, the spectral function is still sharply peaked,
related to a lifetime of pionic correlations of the order of the lifetime of a fireball in
heavy-ion collisions (quasi-bound states in the quark plasma)

Darmstadt and the NICA project at JINR Dubna could be capable of creating
thermodynamical conditions for the observation of these excitations in the
experiment. In view of this discovery potential, we want to outline a few
points for the further development of the theoretical approach.
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Fig. 7.5. Mass spectrum of mesons (π, σ) as a function of the temperature for finite
chemical potential μB = 360 MeV and strong diquark coupling ηD = 1.0 in the 2SC
phase

7.3 Further Developments

In this contribution, we have described the first steps into the interesting and
very complex physics of the relativistic BEC–BCS crossover theory. As the
next steps following this development, some of the approximations can be
removed. In particular, one should next:

• Evaluate the full spectrum of diquark states, including their mixing with
mesonic channels

• Study the backreaction of the correlations on the meanfield (self-consistent
meanfield)

• Include higher orders in the one-fermion-loop approximation (diquark–
diquark and diquark–meson interactions)

• study the effect of the color neutrality condition by adjusting color chem-
ical potential(s)

• Study the effect of charge neutrality (gapless superconductivity)
• Evaluate the contribution from diquark–antidiquark annihilation to the

photon propagator (Maki–Thompson and Aslamasov–Larkin terms).

In particular, the latter point bears a big potential for applications to the
diagnostic of dense quark matter formed, for example, in not too high- en-
ergy nucleus–nucleus collisions. The onset of color superconductivity not only
changes the spectrum of diquark states (occurrence of the Goldstone bosons)
but due to the nonvanishing diquark gap additional terms for the diquark
annihilation process into the observable dilepton channel arise, which stem
from then nonvanishing anomalous propagator contributions. As the critical
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temperature for the color superconductivity transition might be as high as
100MeV, there is a fair chance to observe traces of this transition with the
future CBM experiment at FAIR Darmstadt.

7.4 Nuclear Matter

7.4.1 Lagrangian Approach to the Partition Function
(NJL vs. Walecka model)

As another generic model system for hot, dense fermionic matter with strong,
short-range interactions, we consider nuclear matter described by the NJL
model Lagrangian for nucleons [31] with mesonic (σ and ω0) and nucleon
pair (scalar deuteron) interaction channels modeled by a local four-fermion
coupling of current–current type. The partition function Z for this model is
given analogously to (7.1) by

Z =
∫
D(iψ†)D(ψ) e

∫ β d4x (L−μψ†ψ), (7.36)

where in symmetric nuclear matter we have the same chemical potential μ for
neutrons (n) and protons (p), which are both described by four-spinors, taken
together in the eight-spinor of the nucleon ψ. For details, see [22]. Besides the
interaction in the mesonic channels, we want to extend the Walecka model
here by n− p pairing interaction, which for simplicity we will assume here to
be a Dirac scalar, so that it will generate a scalar n − p bound state (model
deuteron) or Cooper pair, depending on the coupling strength. A more realistic
model should describe the deuteron as a spin triplet state and therefore by a
Dirac vector current, see [32] for details. The Lagrangian assumes the form

L = L0 + Ld + LM, (7.37)

where the different terms are given by

L0 = ψ̄(iγμ∂μ −mN)ψ, (7.38)

LM = gσ
(
ψ̄ψ

)2 + gω
(
ψ̄iγ0ψ

)2 (7.39)

Ld = gd
{
ψ̄ (iγ5Cτ2) ψ̄T

}{
ψT (iCγ5τ2)ψ

}
, (7.40)

where gσ, gω, and gd are the coupling strengths in the scalar meson, vector me-
son, and deuteron channels, respectively; C = iγ2γ0 is the charge conjugation
matrix.

In linearizing these four-fermion interactions in the path integral approach
by Hubbard–Stratonovich transformations, we will be able to describe already
in the mean-field approximation the liquid–gas phase instability (σ−ω model)
and the nuclear superfluidity (n− p pairing).
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In principle, the effective Walecka-like Lagrangian (7.37) should be de-
rived from the more fundamental Lagrangian (refLL) after hadronization. In
particular, the coupling strengths should be derived that way and a nonlo-
cality of the meson–nucleon coupling (form-factor) emerges from the quark
substructure. At present, this approach is not in reach, owing to the fact that
the confinement problem has not been solved. It is expected that a unified
description of quark and nucleon systems will provide a consistent approach
to the properties of dense nuclear matter. At the time being we consider (7.37)
as an empirical ansatz.

7.4.2 Hubbard–Stratonovich Transformation: Bosonization

In a complete analogy to the quark matter model, we perform a Hubbard–
Stratonovich transformation, introducing the bosonic auxiliary fields Δ(τ, x),
Δ∗(τ, x), σ(τ, x), and ω0(τ, x) so that the partition function of the system
becomes

Z =
∫

DΔ∗DΔDσDω0

{
e
− ∫ β d4x

[
σ2
4gσ

− ω2
0

4gω
+

|Δ|2
4gd

]

×
∫

[dψ]
[
dψ̄

]
e
∫ β d4x

(
ψ̄(iγμ∂

μ+μγ0−mN )ψ−ψ̄(σ+iγ5τ ·π)ψ−Δ∗
2 ψTRψ− Δ

2 ψ̄R̃ψ̄
T
)}
.

(7.41)

where R = iCγ5 ⊗ τ2 and R̃ = iγ5C ⊗ τ2. By introducing Nambu–Gorkov
spinors

Ψ ≡ 1√
2

(
ψ
ψc

)
, Ψ̄ ≡ 1√

2

(
ψ̄ψ̄c

)
(7.42)

with ψc(x) ≡ Cψ̄T(x), the Lagrangian takes the bilinear form

L = Ψ̄

(
iγμ∂μ + μ∗γ0 −m∗

N iΔγ5τ2
iΔ∗γ5τ2 iγμ∂μ − μ∗γ0 −m∗

N

)
Ψ, (7.43)

with m∗
N = mN − σ and μ∗ = μ − ω0. Hence the partition function becomes

a Gaussian path integral in the bispinor fields, which can be evaluated and
yields the fermion determinant

Z =
∫
DΔ∗DΔDσDω0e

− ∫ β d4x σ2
4gσ

− ω2
0

4gω
+

|Δ|2
4gd

∫
DΨ̄DΨe

∫
β d4xΨ̄[S−1]Ψ

=
∫
DΔ∗DΔDσDω0e

− ∫
β d4x σ2

4gσ
− ω2

0
4gω

+ |Δ|2
4gd ·Det[S−1], (7.44)

where the inverse bispinor propagator is a matrix in Nambu–Gorkov-, Dirac-,
color-, and flavor space, which after Fourier transformation reads

S−1 =
(

(iωn + μ∗)γ0 −m∗
N − iγp iΔγ5τ2

iΔ∗γ5τ2 (iωn − μ∗)γ0 −m∗
N − iγp

)
. (7.45)
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In complete analogy to the quark matter model, we could derive a very com-
pact, bosonized form of the partition function, which is an exact transforma-
tion, now formulated in terms of collective, bosonic fields. The subsequent
steps are to be carried out in the same manner as in the previous section. We
carry on with an expansion of the action functional around stationary, mean
field solutions to obtain results in the nonperturbative regime. In performing
this expansion, we may factorize the partition function into mean field (MF),
Gaussian fluctuation (Gauss), and residual (res) contributions

Z(μ, T ) ≡ e−βΩ(μ,T ) = ZMF(μ, T )ZGauss(μ, T )Zres(μ, T ).

In the following, we discuss the physical content of these approximations.

7.4.3 Mean-Field Approximation: Order Parameters and EoS

In thermodynamical equilibrium, the mean field values satisfy the stationarity
condition of the minimal thermodynamical potential ΩMF ≡ − 1

βV lnZMF,
that is,

∂ΩMF

∂σMF
=
∂ΩMF

∂ωMF
=
∂ΩMF

∂ΔMF
= 0, (7.46)

equivalent to the fulfillment of the self-consistency equations σMF =
−4gσTr (SMF) ≡ mN − m∗

N, ω0,MF = −4igωTr (γ0SMF) = μ − μ∗ and the
gap equation ΔMF = 4gdTr (γ5τ2SMF) = Δ, together with the stability cri-
terion that the determinant of the curvature matrix formed by the second
derivatives is positive. After the evaluation of the traces in the internal spaces
and the sum over the Matsubara frequencies, one gets

ΩMF = − 1
βV

lnZMF =
(mN −m∗

N)2

4gσ
− (μ− μ∗)2

4gω
+
|Δ|2
4gd
− 1
βV

Tr
(
lnβS−1

MF

)

=
(mN −m∗

N)2

4gσ
− (μ− μ∗)2

4gω
+
|Δ|2
4gd
− 2

∫
d3p

(2π)3

[
E+

p + E−
p

+ 2T ln(1 + e−βE
+
p ) + 2T ln(1 + e−βE

−
p )

]
, (7.47)

where we have defined the particle dispersion relation E±
p =

√(
ξ±p

)2
+Δ2

MF

with ξ±p = Ep ± μ∗, Ep =
√

(m∗
N)2 + p2. The integral over the zero-point

energies in (7.47) is divergent and has to be regularized. Here we drop these
terms and understand the vacuum contribution to the σMF to be absorbed
into the definition of the bare nucleon mass mN.

From (7.47) with (7.46), we obtain the self-consistency equations for
the order parameters σMF, ωMF, and ΔMF, which have to be solved self-
consistently,
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mN −m∗
N = 8gσ

∫
d3p

(2π)3
mN

Ep

[
nF(E−

p )
ξ−p
E−

p
+ nF(E+

p )
ξ+p

E+
p

]
, (7.48)

μ− μ∗ = 8gωmN

∫
d3p

(2π)3

[
nF(E−

p )
ξ−p
E−

p

− nF(E+
p )

ξ+p

E+
p

]
, (7.49)

ΔMF = 8gdΔMF

∫
d3p

(2π)3

[
nF(E−

p )
E−

p

+
nF(E+

p )
E+

p

]
, (7.50)

with the Fermi distribution function nF(E) = (1 + eβE)−1. For zero temper-
ature, the self-consistency equations take the simple form

mN −m∗
N = 8gσ

∫
d3p

(2π)3
mN

Ep
Θ(μ∗ − Ep), (7.51)

μ− μ∗ = 8gωmN

∫
d3p

(2π)3
Θ(μ∗ − Ep). (7.52)

In the limit for vanishing gap, Δ = 0, these equations coincide with the ones
derived for the Walecka model in the mean-field approximation [22]. Because
of this strong relation to the Walecka model, we can identify the corresponding
parameters of the model as

gi =
g2
i,W

2m2
i

, i = σ, ω,

where the index W denotes the Walecka model parameters: mN = 939MeV,
mσ = 550MeV, mω = 783MeV, gσ,W = 10.3, and gω,W = 12.7 [33].

Thus, this approach represents one possibility to introduce pairing into the
problem in complete analogy to the quark matter case. However, while the
Walecka model itself is a renormalizable theory, the NJL model is known
to be non-renormalizable. Our approach includes the phase transition auto-
matically, by the condition of the global minimum of the thermodynamical
potential, so that no explicit Maxwell construction has to be done. As gd is a
free parameter of our model, we determine it by fitting the deuteron binding
energy. Solutions of the gap equations for the effective mass m∗

N and for the
renormalized chemical potential μ∗ for different temperatures as a function of
the chemical potential are shown in Fig. 7.6.

The jump in the order parameters σ and ω0 indicates a first order phase
transition, which for increasing temperatures gets less pronounced and van-
ishes at the critical temperature Tc, which in our simple model is approxi-
mately Tc ≈ 20MeV.

Reinserting the meanfield values of these order parameters into the ther-
modynamical potential (7.47) results in the pressure as a function of μ for
given T (isotherms). The corresponding baryon density can be obtained by
derivation with respect to the chemical potential n = ∂Ω

∂μ . In Fig. 7.7, we dis-
play the behavior of p(ρ, T ), the EoS for the present nuclear matter model.
There we recognize the instability region corresponding to the coexistence of
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Fig. 7.6. Order parameters as a function of the chemical potential μ for several
values of temperature for the case of vanishing pairing gap Δ = 0
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Fig. 7.7. Equation of state for different temperatures. The gas–liquid phase transi-
tion is evident from the jump in the density

liquid and gas phases. More details concerning the field theoretical treatment
of the nuclear liquid–gas phase transition within the NJL-type Walecka model
can be found, for example, in [33, 34].

7.4.4 Discussion

In analogy to the quark matter case, we have suggested to explore the EoS
with a Lagrangian approach using the basic channels of attraction (σ) and
repulsion (ω0) in the mesonic channels and pairing (Δ) in the n–p interaction
channel. As improvement would be the generalization to nonlocal interactions
by, for example, using form-factors of a separable interaction. In this way, a
modeling of scattering phase shifts in a dense medium would be possible [11].
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Further interaction channels can be included, as also the scalar channel can
be modeled in a nonlinear way.

The mesonic and nucleon pair fields have been introduced using the
Hubbard–Stratonovich transformation, evaluated in the mean-field approx-
imation, where contact to the Walecka model is established. The new aspect
is in the inclusion of the pairing channel, which goes beyond the Walecka
model.

In analogy to the situation for the case of the chiral and color supercon-
ducting phase transitions in quark matter, which have been discussed above,
we can describe the liquid–gas phase transition in the nuclear matter EoS
from the behavior of the thermodynamical potential as a function of the or-
der parameter fields.

7.5 Conclusions

We have derived a field theoretical approach to the EoS and the correlations
in dense Fermi systems for the example of quark matter and nuclear matter.
Further developments are foreseen to provide a unified approach to nuclear
matter in terms of quark degrees of freedom, where nucleons and mesons
appear as bound or scattering states. This physical picture would allow to
discuss the quark–hadron transition due to the change of the order parameters
(σ, ω0, Δ) characterizing the phases of quark/nuclear matter together with
the aspect of quark bound state dissociation (delocalization) in analogy to the
Mott–Anderson transition. In comparison to earlier nonrelativistic approaches
as in [35,36], in the present approach the chiral symmetry restoration and color
superconductivity can be implemented in a consistent way. First steps in this
direction have been done in [37–39].

The elucidation of the role of nuclear pairing for the self-consistent
meanfield EoS within the present approach is one of the frontiers of present re-
search. The coupled set of equations of motion that has been given in the non-
relativistic T-matrix approach in [40] is formulated here within a field theoretic
treatment. Within the Gaussian approximation for the pairing fluctuations,
the formation of clusters (deuterons) and their dissociation (Mott effect) can
be given also below the critical temperature for pair condensation, where this
effect is addressed as BEC–BCS crossover in nuclear matter [12].
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36. G. Röpke, D. Blaschke, H. Schulz, Phys. Rev. D 34, 3499 (1986)
37. W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)
38. R. Huguet, J.C. Caillon, J. Labarsouque, Nucl. Phys. A 781, 448 (2007)
39. A.H. Rezaeian, H.J. Pirner, Nucl. Phys. A 769, 35 (2006)
40. A. Sedrakian, Prog. Part. Nucl. Phys. 58, 168 (2007)



Index

angular-resolved photoemission, 108
astrophysics, 115

Bardeen–Cooper–Schrieffer, 145, 148,
153, 161, 162, 168

barrier suppression ionization, 87
BCS, see Bardeen–Cooper–Schrieffer
BEC, see Bose–Einstein condensation
BEC–BCS crossover, see crossover from

BEC to BCS
Beth–Uhlenbeck equation, 122
Beth–Uhlenbeck formula, 40, 117, 120,

122, 123, 127, 134, 143, 157
Bethe–Salpeter equation, 48, 50, 65, 126
bipolaron, 11, 12, 14, 15
bond order wave, 16
Bose–Einstein condensation, 115, 120,

135, 145, 148, 149, 153, 157, 161,
162, 168

BOW, see bond order wave
Brillouin zone, 72
Brillouin–Planck–Larkin , 52
BSI, see barrier suppression ionization

Carnahan–Starling, 53
CDW, see charge density wave
charge density wave, 4
charge gap, 2, 3, 6, 9, 12, 14–16
charge structure factor, 4, 5, 9
chemical model, see chemical picture
chemical picture, 51, 63–68, 70, 71, 73,

74, 76–80
chirped pulse amplification, 94
cluster, 85

cluster mean-field, 125
cluster mean-field approximation, 124,

127
cluster–matter effect, 92
composition, 140
conductivity

dynamic, 77
electrical, 26–31
optical, 19

Coulomb explosion, 86, 102
critical point, 23, 24, 27–29
crossover from BEC to BCS, 145, 161,

162, 167–169, 175, 181

Debye screening, 50
degree of dissociation , 53
degree of ionization, 55
delayed plasmon enhanced ionization,

88
density functional theory, 65, 71, 72, 77
DFT, see density functional theory
dipole resonance, 87
dissociation, 74, 80
Drude weight, 12

effective wave equation, 124, 126, 132,
136

electron emission, 103
electron–electron collisions, 95
electron–phonon coupling, 1, 2
equation of state, 115, 118, 132

hydrogen, 58, 67, 73
excluded volume, 143, 150
exploding clusters, 86



184 Index

Faddeev approach, 138
finite system, 85
fluid variational theory, 67, 79
Fock shift, 43
focus volume effect, 102
FVT, see fluid variational theory

gas aggregation, 92
gas gun, 63, 76

helium nanodroplets, 92
Hohenberg–Kohn theorems, 71
Holstein model, 3, 6, 8, 9
Holstein–Hubbard model, 1, 2, 9, 14, 16
Hoyle state, 154
Hubbard–Stratonovich transformation,

163, 164, 176, 177, 181
Hugoniot curve, 63, 64, 66, 72, 73,

75–80
hydrogen, 35–59, 63–80

atom, 39–41, 47, 68
dense, 37–58
fluid, 38, 53
liquid, 63
metallization, 38, 63
plasma, 54, 66, 67, 69
solid, 38, 63
warm dense, 63–80

index of refraction, 79
inner ionization, 85
ionization equilibrium, 54

Keldeysh parameter, 87
Kohn–Sham equations, 71
Kubo–Greenwood formula, 77

ladder-T matrix, 128
liquid-vapor phase boundary, 24–26
Luttinger liquid, 3, 5, 16

parameter, 5

magnetron sputter source, 92
mercury

fluid, 23–26, 28
metal–insulator transition, see

metal-to-nonmetal transition
metal-to-nonmetal transition, 1, 26,

63–66, 71, 79
metallic particles, 87

Mie resonance, 87
minimum electrical conductivity, 66
Mott criterion, 44
Mott density, 133
Mott effect, 37, 144
Mott transition, 35–58, 65–67, 161,

167–169, 173
Mott–Anderson transition, 162, 181
Mott–Hubbard transition, 1

nanoemulsion, 25, 27
nanoplasma, 85, 86, 103, 111
nanoplasma model, 87
nonmetal-to-metal transition, see

metal-to-nonmetal transition
nuclear matter, 115–158

optical absorption, see optical
conductivity

optical conductivity, 4, 5, 12
optical field ionization, 87
outer ionization, 85

PACIS, see pulsed arc cluster ion source
partially ionized plasma, 67
path integral, 162–164, 176, 177
Pauli blocking, 35–59, 115, 116, 121,

126–128, 131–133, 138, 139, 143,
144, 146, 151, 152, 157

Peierls transition, 1, 8
phase diagram

nuclear matter, 126, 135
quark matter, 161, 167, 168

phase transition, 8, 25, 26, 28–30, 34,
69, 71

first-order, 63, 64, 80, 167, 179
liquid–gas, 162
liquid–liquid, 64
liquid-gas, 180, 181
liquid-vapor, 23, 26
non-congruent, 29
plasma, 33, 63, 64, 70, 71, 73
quantum, 1, 12, 13, 18, 19

phonon hardening, 8
phonon softening, 8
phonon spectral function, 7
photoemission, 103
photoemission spectra, 6, 9, 11
physical picture, 71



Index 185

pick-up technique, 92
plasmon resonance, 87
polarization, 50
polaron, 2, 4, 6
polaronic superlattice, 4, 8
ponderomotive potential, 87
PPT, see phase transition, plasma
pseudogap, 145
pulsed arc cluster ion source, 92

QMD, see quantum molecular dynamics
quantum condensate, 144
quantum molecular dynamics, 64, 71,

80
quark matter, 161–163, 165, 167–170,

173, 177–181
quark–gluon plasma, 162, 173
quartetting, 148
quasiparticle energy, 131
quasiparticle weight, 11
quiver amplitudes, 85

reduced volume concept, 68
reflectivity, 79

Saha equation, 38, 55, 59
SAXS, see small angle X-ray scattering
scattering phase shift, 128
Schrödinger equation, 65, 116, 117, 119,

126, 132, 138
effective, 38, 40, 42, 58

SDW, see spin density wave
self-energy, 115–121, 124, 126, 132, 133,

136, 139, 143, 146, 148, 157
separable potential, 118, 127, 129, 133

simulations
quantum molecular dynamics, 71
wave-packet molecular dynamics, 71

single-particle excitation gap, see charge
gap

single-particle spectral function, 6
small particles, 86
small angle X-ray scattering, 24, 25, 27
SPARC, see surface–plasmon assisted

rescattering in clusters
spectral function, 39, 116–118, 121, 125,

131, 140, 146, 157
spin density wave, 9
spin gap, 2, 12, 14–17
spin structure factor, 9, 10, 14
spin–Peierls transition, 8, 17
spin–phonon coupling, 18
supersonic expansion, 91
suppression of the condensate fraction,

151
surface–plasmon assisted rescattering in

clusters, 109

THSR wave function, 154
time-of-flight measurements, 93
tunnel ionization, 87
two-particle excitation gap, 15

Vlasov calculations, 88
Vlasov equation, 96
Vlasov–Uehling–Uhlenbeck equation, 96
VUU, 96

XXZ model, 3, 5


	3642039529
	Metal-to-NonmetalTransitions
	Preface
	References

	Contents
	1 Luttinger, Peierls or Mott? Quantum Phase Transitions in Strongly Correlated 1D Electron–Phonon Systems
	1.1 Introduction
	1.2 Luttinger–Peierls Metal–Insulator Transition
	1.3 Peierls–Mott Insulator–Insulator Transition
	1.4 On the Possibility of an Intervening Metallic Phase
	1.5 Limiting Cases
	1.5.1 Adiabatic Holstein–Hubbard Model
	1.5.2 Spin–Peierls Model

	1.6 Conclusions
	Acknowledgements

	References

	2 The Metal–Nonmetal Transition in Fluid Mercury: Landau–Zeldovich Revisited
	2.1 Introduction
	2.2 The Liquid–Vapor Phase Boundary of Mercury
	References

	3 The Influence of Pauli Blocking Effects on the Mott Transition in Dense Hydrogen
	3.1 Introduction
	3.2 Bound States in a Plasma
	3.2.1 Generalized Beth–Uhlenbeck Equation
	3.2.2 Effective Schrödinger Equation of Pairs
	3.2.3 Evaluation of the Mean-Field Energy Shift of Bound States: Perturbation Theory
	3.2.4 Evaluation of the Mean-Field Energy Shift of Bound States: Variational Approach
	3.2.5 Evaluation of the Mean-Field Energy Shift of Bound States Including the Fock Term
	3.2.6 Discussion of Further Contributions to the Shift

	3.3 Thermodynamic Functions and Ionization Equilibriumof Hydrogen
	3.3.1 The Chemical Picture
	3.3.2 The Ionization Equilibrium

	3.4 Discussion and Conclusions
	Acknowledgment

	References

	4 Metal–Insulator Transition in Dense Hydrogen
	4.1 Introduction
	4.2 Mott Effect in Dense Plasmas
	4.2.1 Theoretical Concept
	4.2.2 Experimental Signatures

	4.3 Advanced Chemical Models
	4.3.1 Free Energy Model for the EOS of Dense Hydrogen
	4.3.2 Reduced Volume Concept
	4.3.3 Results for the EOS

	4.4 Warm Dense Hydrogen in the Physical Picture
	4.4.1 Quantum Molecular Dynamics Simulations
	4.4.2 Ab Initio EOS Data and Hugoniot Curve
	4.4.3 Dynamic Conductivity

	4.5 Conclusion
	Acknowledgment

	References

	5 Resolving the Ion and Electron Dynamics in Finite Systems Exposed to Intense Optical Laser Fields
	5.1 Introduction
	The Role of Collective Effects

	5.2 Experimental Challenge
	Ultrafast Laser System

	5.3 Computational Details
	5.4 Results and Discussion
	5.4.1 Energetic Particle Emission
	Electron Yield

	5.4.2 Time-Resolved Studies
	5.4.3 Directed Electron Emission
	5.4.4 Control Experiments

	5.5 Conclusions
	References

	6 Mott Effect in Nuclear Matter
	6.1 Introduction
	6.2 Single Particle Spectral Function and Self-Energy
	6.3 Two-Particle Contribution: Generalized Beth–UhlenbeckFormula and Virial Expansion
	6.4 Cluster Mean-Field Approximation
	6.5 Nucleon–Nucleon Interaction
	6.6 Quasiparticle Approximation and the EoS at High Densities
	6.7 Medium Modifications of Two-Particle Correlations
	6.8 Medium Modification of Cluster Properties
	6.9 Composition of Normal Nuclear Matter
	6.10 Comparison with the Concept of Excluded Volume
	6.11 Two-Particle Condensates at Low Temperatures
	6.12 Four-Particle Condensates and Quartetting in Nuclear Matter
	6.13 Suppression of Condensate Fraction in  Matter at Zero Temperature
	6.14 Enhancement of Cluster c.o.m. S Orbital Occupation in 4n Nuclei
	6.15 Conclusions
	Acknowledgment

	References

	7 BEC–BCS Crossover in Strongly Interacting Matter
	7.1 Introduction
	7.2 Quark Matter
	7.2.1 Partition Function and Model Lagrangian
	7.2.2 Hubbard–Stratonovich Transformation: Bosonization
	7.2.3 Mean-Field Approximation: Order Parameters
	7.2.4 Phase Diagram
	7.2.5 Gaussian Fluctuations: Bound and Scattering States

	7.3 Further Developments
	7.4 Nuclear Matter
	7.4.1 Lagrangian Approach to the Partition Function (NJL vs. Walecka model)
	7.4.2 Hubbard–Stratonovich Transformation: Bosonization
	7.4.3 Mean-Field Approximation: Order Parameters and EoS
	7.4.4 Discussion

	7.5 Conclusions
	References

	Index

