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Preface

The idea for writing this book came up when the authors met at the University of
Valencia in 2005. While comparing our experiences with regard to various aspects
of the linear ordering problem (LOP), we realized that most of the optimization
technologies had been successfully applied to solve this problem. We also found that
there were only a small number of books covering all state-of-the-art optimization
methods for hard optimization problems (especially considering both exact methods
and heuristics together). We thought that the LOP would make an ideal example to
survey these methods applied to one problem and felt the time was ripe to embark
on the project of writing this monograph.

Faced with the challenge of solving hard optimization problems that abound in
the real world, classical methods often encounter serious difficulties. Important ap-
plications in business, engineering or economics cannot be tackled by the solution
methods that have been the predominant focus of academic research throughout the
past three decades. Exact and heuristic approaches are dramatically changing our
ability to solve problems of practical significance and are extending the frontier of
problems that can be handled effectively. In this text we describe state-of-the-art
optimization methods, both exact and heuristic, for the LOP. We actually employ
the LOP to illustrate current optimization technologies and the design of successful
implementations of exact and heuristic procedures. Therefore, we do not limit the
scope of this book to the LOP but, on the contrary, we provide the reader with the
background and strategies in optimization to tackle different combinatorial prob-
lems.

This monograph is devoted to the LOP, its origins, applications, instances and
especially to methods for its effective approximate or exact solution. Our intention
is to provide basic principles and fundamental ideas and reflect the state-of-the-art
of heuristic and exact methods, thus allowing the reader to create his or her per-
sonal successful applications of the solution methods. The book is meant to be of
interest for researchers and practitioners in computer science, mathematics, opera-
tions research, management science, industrial engineering, and economics. It can
be used as a textbook on issues of practical optimization in a master’s course or as
a reference resource for engineering optimization algorithms.
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viii Preface

To make the book accessible to a wider audience, it is to a large extent self-
contained, providing the reader with the basic definitions and concepts in optimiza-
tion. However, in order to limit the size of this monograph we have not included
extensive introductions. Readers interested in further details are referred to appro-
priate textbooks such as [4, 84, 102, 117, 118, 124].

The structure of this book is as follows. Chapter 1 provides an introduction to the
problem and its applications and describes the set of benchmark instances which we
are using for our computational experiments and which have been made publically
available. Chapter 2 describes such basic heuristic methods such as construction
and local searches. Chapter 3 expands on Chapter 2 and covers meta-heuristics in
which the simple methods are now embedded in complex solution algorithms based
on different paradigms, such as evolution or learning strategies. Chapter 4 discusses
branch-and-bound, the principal approach for solving difficult problems to optimal-
ity. A special version based on polyhedral combinatorics, branch-and-cut, is pre-
sented in Chapter 5. Chapter 6 deals in more detail with the linear ordering polytope
which is at the core of branch-and-cut algorithms. The book concludes with Chap-
ter 7, where a number of further aspects of the LOP and potential issues for further
research are described.

Rafael Martı́’s research was partially supported by the Ministerio de Ciencia e
Innovación of Spain (Grant Refs. TIN2006-02696 and TIN2009-07516).

We are in debt to many people, but in particular to some very good friends and
colleagues who helped us to gain a deeper understanding of the linear ordering
problem: Vicente Campos, Thomas, Christof, Angel Corberán, Carlos Garcı́a, Fred
Glover, Martin Grötschel, Michael Jünger, Manuel Laguna and Dionisio Pérez. The
proofreading by Cara Cocking, Elena Fernández, Héctor Fraire, Marcus Oswald,
Rodolfo Pazos, Hanna Seitz, Markus Speth and Pei Wang is particularly acknowl-
edged. Finally, our special thanks go to Abraham Duarte, who implemented most
of the methods described in Chapters 2 and 3 and performed some of the associated
experiments.

Valencia, Heidelberg Rafael Martı́
October 2010 Gerhard Reinelt



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications of the Linear Ordering Problem . . . . . . . . . . . . . . . . . . . 3

1.2.1 Equivalent Graph Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Related Graph Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Aggregation of Individual Preferences . . . . . . . . . . . . . . . . . . . 4
1.2.4 Binary Choice Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Triangulation of Input-Output Tables . . . . . . . . . . . . . . . . . . . . 5
1.2.6 Optimal Weighted Ancestry Relationships . . . . . . . . . . . . . . . 6
1.2.7 Ranking in Sports Tournaments . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.8 Corruption Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.9 Crossing Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.10 Linear Ordering with Quadratic Objective Function . . . . . . . 8
1.2.11 Scheduling with Precedences . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.12 Linear Ordering with Cumulative Costs . . . . . . . . . . . . . . . . . 9
1.2.13 Coupled Task Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.14 Target Visitation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Input-Output Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Randomly Generated Instances A (Type 1) . . . . . . . . . . . . . . . 13
1.3.4 Randomly Generated Instances A (Type 2) . . . . . . . . . . . . . . . 13
1.3.5 Randomly Generated Instances B . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.6 SGB Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 1
Introduction

Abstract The linear ordering problem (LOP) is one of the classical combinatorial
optimization problems which was already classified as NP-hard in 1979 by Garey
and Johnson [50]. It has received considerable attention in various application areas
ranging from archeology and scheduling to economics and even mathematical psy-
chology. Solution methods for the LOP have been proposed since 1958, when Chen-
ery and Watanabe outlined some ideas on how to obtain solutions for this problem.
The interest in this problem has continued over the years, resulting in the book [111]
and many recent papers in scientific journals. This chapter surveys the main LOP
applications and instances. We have compiled a comprehensive set of benchmark
problems including all problem instances which have so far been used for conduct-
ing computational experiments. Furthermore we have included new instances. All
of them form the new benchmark library LOLIB. We will use them in the next chap-
ters to report our experiments with heuristics, meta-heuristics and exact approaches
for the LOP.

1.1 Basic definitions

In its graph version the LOP is defined as follows. Let Dn = (Vn,An) denote the com-
plete digraph on n nodes, i.e., the directed graph with node set Vn = {1,2, . . . ,n} and
the property that for every pair of nodes i and j there is an arc (i, j) from i to j and
an arc ( j, i) from j to i. A tournament (or spanning tournament) T in An consists of
a subset of arcs containing for every pair of nodes i and j either arc (i, j) or arc ( j, i),
but not both. A (spanning) acyclic tournament is a tournament without directed cy-
cles, i.e., not containing an arc set of the form {(v1,v2),(v2,v3), . . . ,(vk,v1)} for
some k > 1 and distinct nodes v1,v2, . . . ,vk.

A linear ordering of the nodes {1,2, . . . ,n} is a ranking of the nodes given as
linear sequence, or equivalently, as a permutation of the nodes. We denote the lin-
ear ordering that ranks node v1 first, v2 second, etc., and vn last by 〈v1,v2 . . . ,vn〉
and write vi ≺ v j if node vi is ranked before node v j. If σ denotes a linear

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

ordering, then σ(i) gives the position of node i in this ordering. We will also con-
sider partial orderings where only a subset of the nodes is ranked or only some pairs
are compared.

It is easy to see that an acyclic tournament T in An corresponds to a linear or-
dering of the nodes of Vn and vice versa: the node ranked first is the one without
entering arcs in T , the node ranked second is the one with one entering arc (namely
from the node ranked first), etc., and the node ranked last is the one without leaving
arcs in T .

Usually, ordering relations are weighted and we have weights ci j giving the ben-
efit or cost resulting when node i is ranked before node j or, equivalently, when
the arc (i, j) is contained in the acyclic tournament. The (weighted) linear ordering
problem is defined as follows.

Linear ordering problem

Given the complete directed graph Dn = (Vn,An) with arc weights ci j

for every pair i, j ∈Vn, compute a spanning acyclic tournament T in An

such that ∑(i, j)∈T ci j is as large as possible.

Alternatively, the LOP can be defined as a matrix problem, the so-called trian-
gulation problem.

Triangulation problem

Let an (n,n)-matrix H = (Hi j) be given. Determine a simultaneous per-
mutation of the rows and columns of H such that the sum of superdiag-
onal entries becomes as large as possible.

Obviously, by setting arc weights ci j = Hi j for the complete digraph Dn, the trian-
gulation problem for H can be solved as a linear ordering problem in Dn. Conversely,
a linear odering problem for Dn can be transformed to a triangulation problem for
an (n,n)-matrix H by setting Hi j = ci j and the diagonal entries Hii = 0.

Consider as an example the (5,5)-matrix

H =

⎛
⎜⎜⎜⎜⎝

0 16 11 15 7
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0

⎞
⎟⎟⎟⎟⎠

.

The sum of its superdiagonal elements is 138. An optimum triangulation is ob-
tained if the original numbering (1,2,3,4,5) of the rows and columns is changed to
(5,3,4,2,1), i.e., the original element H12 becomes element Hσ(1)σ(2) = H̃54 in the
permuted matrix. Thus the optimal triangulation of H is
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H̃ =

⎛
⎜⎜⎜⎜⎝

0 25 24 28 30
12 0 26 23 26
13 11 0 22 22
9 14 15 0 21
7 11 15 16 0

⎞
⎟⎟⎟⎟⎠

.

Now the sum of superdiagonal elements is 247.

1.2 Applications of the Linear Ordering Problem

We review some of the many applications of the linear ordering problem.

1.2.1 Equivalent Graph Problems

The acyclic subdigraph problem (ASP) is defined as follows. Given a directed graph
D = (V,A) with arc weights di j, for all (i, j) ∈ A, determine a subset B ⊆ A which
contains no directed cycles and has maximum weight d(B) = ∑(i, j)∈B di j.

It can easily be seen that this problem is equivalent to the LOP. For a given ASP
define a LOP on Dn, where n = |V |, by setting for 1 ≤ i, j ≤ n, i �= j:

ci j =

{
max{0,di j}, if (i, j) ∈ A,

0, otherwise.

If T is a tournament of maximum weight, then B = {(i, j) ∈ T ∩A | ci j > 0} is an
acyclic subdigraph of D of maximum weight. In the opposite direction, by adding a
suitably large constant, we can transform a given LOP into an equivalent one where
all weights are strictly positive. Then an acyclic subdigraph of maximum weight is
a tournament.

The feedback arc set problem (FBAP) in a weighted digraph D = (V,A) consists
of finding an arc set B of minimum weight such that A\B is acyclic, i.e., such that
B is a so-called feedback arc set intersecting every dicycle of D. Obviously, FBAP
and ASP are equivalent because they are complementary questions.

Fig. 1.1 shows a digraph on 9 nodes where the arcs of a minimum feedback arc
set are drawn as dotted lines. If the six arcs of the feedback arc set are removed, we
obtain an acyclic arc set.
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Fig. 1.1 A digraph with
minimum feedback arc set

1.2.2 Related Graph Problems

There are some further problems dealing with acyclic subdigraphs. The node in-
duced acyclic subdigraph problem asks for a node set W ⊆ V such that the subdi-
graph (W,A(W )) is acyclic. (Here A(W ) denotes the set of arcs with both end nodes
in W .) The problem can be defined either with node weights d, and d(W ) is to be
maximized, or with arc weights c where c(A(W )) has to be maximum. Analogously,
the feedback node set problem is to find a set W ⊆V such that (V \W,A(V \W )) is
acyclic. Here, sums of node weights or arc weights have to be minimized.

The request that solution digraphs have to be node induced adds a further com-
plexity. These problems cannot be transformed to a pure linear ordering problem
and are even more difficult.

1.2.3 Aggregation of Individual Preferences

Linear ordering problems may occur whenever rankings of some objects are to
be determined. Consider for example the following situation. A set of n objects
O1,O2, . . . ,On is given which have to be rated by m persons according to their in-
dividual preferences. Then a ranking of these objects is to be found which reflects
these single rankings as closely as possible. The first question to be answered is
how the individual rankings can be obtained. One solution is a pairwise comparison
experiment. For any pair Oi and O j, 1 ≤ i < j ≤ n, of objects each person decides
whether Oi should be preferred to O j or vice versa. The results of these m

(n
2

)
com-

parisons are stored in an (n,n)-matrix H = (Hi j) where Hi j = number of persons
preferring object Oi to object Oj. A ranking of these objects which infers as few
contradictions to the individual rankings as possible can be obtained by triangulat-
ing H. It should be remarked that there are various statistical methods to aggregate
single preference relations to one relation.

This area of application is the oldest one of the LOP. In 1959 Kemeny [77] posed
the following problem (Kemeny’s problem). Suppose that there are m persons and
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each person i, i = 1, . . . ,m, has ranked n objects by giving a linear ordering Ti of
the objects. Which common linear ordering aggregates the individual orderings in
the best possible way? We can solve this problem as a linear ordering problem by
setting ci j = number of persons preferring object Oi to object O j. Note that this is
basically the problem stated above, but this time the relative ranking of the objects
by each single person is consistent (which is not assumed above).

Slater [119], in 1961, asked for the minimum number of arcs that have to be
reversed to convert a given tournament T into an acyclic tournament. In the context
of preferences, the input now is a collection of rankings for all pairs i and j of objects
stating whether i should be preferred to j or vice versa and the problem is to find
a the maximum number of pairwise rankings without contradiction. Also Slater’s
problem can also be solved as a LOP, namely by setting

ci j =

{
1, if (i, j) ∈ T,

0, otherwise.

Questions of this type naturally occur in the context of voting (How should a fair
distribution of seats to parties be computed from the votes of the electors?) and have
already been studied in the 18th century by Condorcet [37].

1.2.4 Binary Choice Probabilities

Let Sn denote the set of all permutations of {1,2, . . . ,n} and let P be a probability
distribution on Sn.

Define the induced (binary choice) probability system p for {1,2, . . . ,n} as the
mapping p : {1,2 . . . ,n}×{1,2 . . .,n} \ {(i, i) | i = 1,2, . . . ,n}→ [0,1] where

p(i, j) = ∑
S∈Sn, i≺ j in S

P(S).

The question of whether a given vector p is a vector of binary choice probabilities
according to this definition is of great importance in mathematical psychology and
the theory of social choice (see [48] for a survey).

In fact, the set of binary choice vectors is exactly the linear ordering polytope
which will play a prominent role later in this book.

1.2.5 Triangulation of Input-Output Tables

One field of practical importance in economics is input-output analysis. It was pi-
oneered by Leontief [88, 89] who was awarded the Nobel Prize in 1973 for his
fundamental achievements. The central component of input-output analysis is the
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so-called input-output table which represents the dependencies between the differ-
ent branches of an economy. To make up an input-output table the economy of a
country is divided into sectors, each representing a special branch of the economy.
An input-output table shows the transactions between the single sectors in a certain
year. To be comparable with each other all amounts are given in monetary values.
Input-output analysis is used for forecasting the development of industries and for
structural planning (see [69] for an introductory survey).

Triangulation is a means for a descriptive analysis of the transactions between
the sectors. In a simple model of production structure the flow of goods begins in
sectors producing raw material, then sectors of manufacturing follow, and in the
last stage goods for consumption and investments are produced. A real economy, of
course, does not show such a strict linearity in the interindustrial connections, here
there are flows between almost any sectors. Nevertheless it can be observed that the
main stream of flows indeed goes from primary stage sectors via the manufacturing
sectors to the sectors of final demand. Triangulation is a method for determining a
hierarchy of all sectors such that the amount of flow incompatible with this hierar-
chy (i.e., from sectors ranked lower to sectors ranked higher) is as small as possible.
Such rankings allow interpretations of the industrial structure of a country and com-
parisons between different countries.

1.2.6 Optimal Weighted Ancestry Relationships

This application from anthropology has been published in [56]. Consider a cemetery
consisting of many individual gravesites. Every gravesite contains artifacts made
of different pottery types. As gravesites sink over the years and are reused, it is
a reasonable assumption that the depth of a pottery type is related to its age. So
every gravesite gives a partial ordering of the pottery types contained in it. These
partial orderings may not be consistent in the sense that pairs of pottery types may
be ranked differently depending on the gravesite. The task of computing a global
ordering with as few contradictions as possible amounts to solving a linear ordering
problem in the complete directed graph where the nodes correspond to the pottery
types and the arc weights are aggregations of the individual partial orderings. In [56]
several possibilities for assigning arc weights are discussed and a simple heuristic
for deriving an ordering is presented.

1.2.7 Ranking in Sports Tournaments

In many soccer leagues each team plays each other team twice. The winner of a
match gets three points, in case of a tie both teams get one point. In the stan-
dard procedure, the final ranking of the teams in the championship is made up
by adding these points and breaking ties by considering the goals scored. Another
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possible method of ranking the teams leads to a linear ordering problem. If there
are n teams which have played each other twice we construct an (n,n)-matrix H
by setting Hi j = number of goals which were scored by team i against team j. A
triangulation of this matrix yields a ranking of the teams which takes the number of
goals scored and (implicitly) the number of matches won into account. Moreover,
transitive relations are important, and winning against a top team counts more than
beating an average team.

As an example we compare the official ranking of the English Premier League in
the season 2006/2007 with a ranking obtained by triangulation. Table 1.1 shows on
the left side the official ranking and on the right side an optimum linear ordering.
There are alternate optima, however, which we do not list here, but which would
make this type of ranking approach problematical for practical use.

Table 1.1 Premier League 2006/2007 (left: official, right: triangulated)

1 Manchester United 1 Chelsea
2 Chelsea 2 Arsenal
3 Liverpool 3 Manchester United
4 Arsenal 4 Everton
5 Tottenham Hotspur 5 Portsmouth
6 Everton 6 Liverpool
7 Bolton Wanderers 7 Reading
8 Reading 8 Tottenham Hotspur
9 Portsmouth 9 Aston Villa

10 Blackburn Rovers 10 Blackburn Rovers
11 Aston Villa 11 Middlesborough
12 Middlesborough 12 Charlton Athletic
13 Newcastle United 13 Bolton Wanderers
14 Manchester City 14 Wigan Athletic
15 West Ham United 15 Manchester City
16 Fulham 16 Sheffield United
17 Wigan Athletic 17 Fulham
18 Sheffield United 18 Newcastle United
19 Charlton Athletic 19 Watford
20 Watford 20 West Ham United

1.2.8 Corruption Perception

The organisation Transparency International [122] releases an annual corruption
perception index which ranks more than 150 countries by their perceived level of
corruption. This index is computed from expert assessments and opinion surveys.
The respective assessments and surveys only consider a subset of all countries and
can thus also be viewed as a partial ordering. In [1] the linear ordering problem is
used to aggregate these partial rankings. It is shown that the solution of the linear
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ordering problem agrees with the ranking according to the index to a large extent,
but exhibits interesting differences for some countries.

1.2.9 Crossing Minimization

The relatively new research field graph drawing is concerned with finding good
drawings of graphs for making the relations they represent easier to understand. In
one of the many problems, the LOP could be employed. Let G = (V,E) be a bipar-
tite graph with the bipartition V = V1 ∪V2 of its nodes. A basic problem in graph
drawing considers the task of drawing the nodes (linearly ordered) on two oppo-
site horizontal lines and drawing the edges as straight lines such that the number
of crossing lines is minimized. In [73] it is observed that the so-called one sided
crossing minimization problem (where the permutation of one of the two sides is
fixed) can be solved as a linear ordering problem with good results in practice. By
embedding this procedure into a branch-and-bound algorithm, the two sided cross-
ing minimization (without fixing) can also be solved. Figure 1.2 (taken from [73])
shows the results of a heuristic with 30 crossings and the optimal drawing with only
4 crossings.

d i d ia b c e gf h j a b eh f cj g

0 1 4 8 6 5 9 7 3 20 1 2 3 4 5 6 7 8 9

Fig. 1.2 Two sided crossing minimization

1.2.10 Linear Ordering with Quadratic Objective Function

Bipartite crossing minimization without fixed nodes can also be modelled directly
employing the LOP. However in this case the objective function is not linear any-
more, but contains products xi jxkl . A successful application of this model (using
methods different from the ones presented in this book) is reported in [17].
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1.2.11 Scheduling with Precedences

Consider a set of n jobs which have to be processed on a single machine. Each
job i has a processing time pi and a weight wi. Furthermore, there is a set P of
job pairs (i, j), each specifying that job i has to be executed before job j. (It is as-
sumed that there are no contradictions within these precedences.) The task consists
of finding a linear ordering 〈k1,k2, . . . ,kn〉 of the jobs such that the total weighted
completion time ∑n

i=1 witi is minimized, where

tki =
i

∑
j=1

pkj

and the precedences given by P are observed. This problem can be modeled as a
linear ordering extension problem where some relative rankings are already fixed
beforehand. Solution methods are discussed in [12].

1.2.12 Linear Ordering with Cumulative Costs

Here, in addition to the arc weights ci j of the standard linear ordering problem, there
are node weights pi, 1 ≤ i ≤ n, and the task is to find an ordering 〈k1,k2, . . . ,kn〉 of
the nodes minimizing the cost ∑ j

i=1 αi, where

αki = pki +
n

∑
j=i+1

ckik j αk j .

An application of this problem for optimizing UMTS mobile phone telecommu-
nication and its solution with a mixed-integer programming approach is discussed
in [10]. Heuristic algorithms are presented in [43].

1.2.13 Coupled Task Problem

Many combinatorial optimization problems require as one constraint that some sub-
set of elements is linearly ordered. We give a brief account to one of them where we
could successfully use linear ordering variables in its optimization model [9]. The
coupled task problem deals with scheduling n jobs each of which consists of two
subtasks and where there is the additional requirement that between the execution
of these subtasks an exact delay is required. If {J1,J2, . . . ,Jn} is the set of jobs and
{T1,T2, . . . ,T2n} the set of tasks, where T2i−1 and T2i denote the first and second sub-
task of Ji, then one requirement for a feasible schedule is that all tasks are linearly
ordered. We can model this constraint by introducing binary variables ykl indicating
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whether task Tk is scheduled before task Tl or not. Of course, additional constraints
are necessary to take processing times and gaps properly into account.

1.2.14 Target Visitation Problem

This optimization problem is a composition of the linear ordering problem and the
traveling salesman problem and was proposed in [62]. Suppose that, starting from
some origin 0, a set {1, . . . ,n} of n targets has to be visited. In addition to the dis-
tance traveled, priorities have also to be taken into account. If di j (d0i and di0) de-
notes the distance between two targets (the distance between the origin and a target
and the distance between a target and the origin) and ci j the gain when target i is
visited before target j, the target visitation problem consists of finding a visiting
sequence 〈k1,k2, . . . ,kn〉 of the targets maximizing the objective function

n−1

∑
i=1

n

∑
j=i+1

ckik j −
(
d0k1 +

n−1

∑
i=1

dkiki+1 + dkn0
)
.

In the literature, the term “linear ordering problem” is sometimes misused also
for some problems where a linear ordering of the nodes of some weighted graph
has to be found, but where the objective function is a different one. For example, [3]
actually considers the linear arrangement problem and [76] requests as the objective
that the capacity of a cut between two adjacent nodes is as small as possible, i.e., it
deals with the cut-width problem.

1.3 Benchmark Problems

We have compiled a set of benchmark problem instances of the LOP. These problem
instances consist of real-world as well as randomly generated data sets.

1.3.1 Data Format

For finding the optimum triangulation of a matrix, the diagonal entries are irrelevant.
Furthermore, orderings compare in the same way if some constant C is added to
both entries Hi j and Hji. In particular, the optimality of an ordering is not affected
by this transformation. However, the quality of bounds does change. If we take
diagonal entries into account and add a large constant to every matrix entry, then
every feasible solution is close to optimal and no real comparison of qualities is
possible. Therefore we transform every problem instance to a suitable normal form.
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Definition 1.1. A quadratic (n,n)-matrix H is in normal form if

(i) all entries of H are integral and nonnegative,
(ii) Hii = 0 for all i = 1, . . . ,n,

(iii) min{Hi j,Hji} = 0 for all 1 ≤ i < j ≤ n.

The following example shows a matrix and its normal form.
⎛
⎜⎜⎜⎜⎝

−17 36 11 45 7
21 22 44 15 9
26 23 13 26 12
22 22 11 0 33
30 9 25 24 −7

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 15 0 23 0
0 0 21 0 0
15 0 0 15 0
0 7 0 0 9
23 0 13 0 0

⎞
⎟⎟⎟⎟⎠

For our computations, all matrices H are transformed to their normal form H.
Note that this normal form is unique. Since the “true” value of a linear ordering
might be interesting for some application, we compute

sd =
n

∑
i=1

Hii and st =
n−1

∑
i=1

n

∑
j=i+1

min{Hi j,Hji}.

Now, if copt(H) is the value of an optimum triangulation of H, then copt(H) =
copt(H)+ sd + st .

In normal form, a matrix can be seen as the specification of a weighted tourna-
ment (take all arcs (i, j) with Hi j > 0 and, if Hi j = Hji = 0, then choose one of the
arcs (i, j) or ( j, i)). The LOP then directly corresponds to finding a minimum weight
feedback arc set for this tournament.

Definition 1.2. Let H be a matrix and σ be an optimum linear ordering. Then the
number

λ (H) =
∑

σ(i)<σ( j)
Hi j

∑
i�= j

Hi j

is called degree of linearity of H.

The degree of linearity gives the sum of the superdiagonal entries as the percent-
age of the total sum of the matrix entries (except for the diagonal elements) and
allows for some interpretations in economical analysis. It lies between 0.5 (this is
a trivial lower bound) and 1.0 (for a triangular matrix) and is an indicator for the
closeness of a matrix to a triangular matrix. Note, that the degree of linearity differs
depending on whether a matrix is in normal form or not, so some care has to be
given when interpreting it.

From a computational point of view it turns out that problems with smaller degree
of linearity tend to become more difficult. This is validated by some experiments
with random matrices.

We now describe the problem instances selected for the benchmark library.



12 1 Introduction

1.3.2 Input-Output Matrices

These are real-world data sets taken from input-output tables from various sources.
The corresponding linear ordering problems are comparatively easy. They are thus
more of interest for economists than for the assessment of heuristics for hard prob-
lems. So we have not conducted extensive experiments with them. Only the quality
of simple heuristics can be assessed with these matrices. The original entries in these
tables were not necessarily integral, but for LOLIB they were scaled to integral val-
ues.

European 44-Sector Tables

The Statistical Office of the European Communities (Eurostat) compiles input-
output tables for the member states of the EC. Our benchmark set contains 31 ma-
trices of dimension 44 from the years 1959 to 1975 (t59b11xx – t75u11xx).

Belgian 50-Sector Tables

These input-output tables (be75eec, be75np, be75oi and be75tot) of 1975
with 50 sectors were compiled for the Belgian economy.

German 56-Sector Tables

These matrices (tiw56n54 – tiw56r72) for some years between 1954 to 1975
were compiled by Deutsches Institut für Wirtschaftsforschung (DIW) for the Federal
Republic of Germany.

German 60-Sector Tables

These input-output tables (stabu70, stabu74 and stabu75) were compiled
by the Statistisches Bundesamt of the Federal Republic of Germany for the years
1970, 1974 and 1975. (In some publications, these matrices were named stabu1 –
stabu3.)

US 79-Sector Table

The matrix usa79 is the input-output table for the economy of the United States
for the year 1985. It has been made available by Knuth [80].
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1.3.3 Randomly Generated Instances A (Type 1)

This is a set of random problems defined by Martı́ [93] that has been widely used for
experiments. Problems are generated from a (0,100) uniform distribution. Sizes are
100, 150, 200 and 500 and there are 25 instances in each set for a total of 100. The
names of these instances are t1dn.i (e.g. t1d200.25), where n is the dimension
and i the number within the instances of the same size.

In their original definition, these problem instances are not in normal form. For
the experiments in this monograph and for publication in the library LOLIBwe only
give values with respect to the normalized objective function.

1.3.4 Randomly Generated Instances A (Type 2)

This data set has also been defined by Martı́ [93]. Problems are generated by count-
ing the number of times a sector appears in a higher position than another in a set
of randomly generated permutations. For a problem of size n, n/2 permutations are
generated.

There are 25 instances with sizes 100, 150 and 200, respectively. The names of
these instances are t2dn.i (e.g. t2d150.12), where n is the dimension and i the
number within instances of the same size.

1.3.5 Randomly Generated Instances B

In this kind of random problem we tried to influence the difficulty of the problems
for computational experiments. To this end we generated integer matrices where the
superdiagonal entries are drawn uniformly from the interval [0,U1] and the subdi-
agonal entries from [0,U2], where U1 ≥ U2. The difference U1 −U2 affects the dif-
ficulty. Subsequently, the instances were transformed to normal form and a random
permutation was applied.

For n = 40, we set U1 = 100 and U2 = 100 + 4(i−1) for problems p40-i. For
n = 44 and n = 50 we set U1 = 100 and U2 = 100 + 2(i−1) for problems p44-i,
p50-i, respectively.

1.3.6 SGB Instances

These instances were used in [86] and are taken from the Stanford GraphBase [80].
They are random instances with entries drawn uniformly distributed from [0,25000].
The set has a total of 25 instances with n = 75. Instances are named sgb75.01
through sgb75.25.
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1.3.7 Instances of Schiavinotto and Stützle

Some further benchmark instances have been created and used by Schiavinotto and
Stützle [116]. These instances were generated from the input-output tables by repli-
cating them to obtain larger problems. Thus, the distribution of numbers in these
instances somehow reflects real input-output tables, but otherwise they behave more
like random problems. This data set has been called XLOLIB, and instances with
n = 150 and n = 250 are available.

1.3.8 Instances of Mitchell and Borchers

These instances have been used by Mitchell and Borchers for their computational
experiments [100]. They are random matrices where the subdiagonal entries are
uniformly distributed in [0,99] and the superdiagonal entries are drawn uniformly
from [0,39]. Furthermore a certain percentage of the entries was zeroed out.

1.3.9 Further Special Instances

We added some further instances that were used in some publications.

EX Instances

These random problems (EX1–EX6) were used in particular in [34] and [35].

econ Instances

The problems instances econ36 through econ77 were generated from the ma-
trix usa79. They turned out not to be solvable as a linear program using only
3-dicycle inequalities.

Paley Graphs

Paley graphs, or more precisely Paley tournaments, have been used by Goemans and
Hall [58] to prove results about the acyclic subdigraph polytope. These tournaments
are defined as follows. Let q = 3 mod 4 be a prime power. Define the digraph on
q nodes corresponding to the elements of the finite field GF(q). This digraph con-
tains the arc (i, j) if and only if j− i is a nonzero square in GF(q). Some of them
provide interesting difficult linear ordering problems.
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atp Instances

These instances were created from the results of the ATP tennis tour 1993/1994.
Nodes correspond to a selection of players and the weight of an arc (i, j) is the
number of victories of player i against player j.

Table 1.2 summarizes the number of instances in each set described above. More-
over, it specifies the number of instances for which either the optimum or only an
upper bound is known. In the computational experiments we call the set of 229 in-
stances for which the optimum is known OPT-I, and the set of 255 instances for
which an upper bound is known UB-I.

Table 1.2 Number of instances in each set

Set #Instances #Optima #Upper Bounds
IO 50 50 –
SGB 25 25 –
RandomAI 100 – 100
RandomAII 75 25 50
RandomB 90 70 20
MB 30 30 –
XLOLIB 78 – 78
Special 36 29 6
Total 484 229 255

LOLIB is available at the web site http://heur.uv.es/optsicom/LOLIB.
Also the currently best known values and upper bounds as well as the constants
eliminated by the transformation to normal form can be found there.





Chapter 2
Heuristic Methods

Abstract Since the linear ordering problem is NP-hard, we cannot expect to be
able to solve practical problem instances of arbitrary size to optimality. Depending
on the size of an instance or depending on the available CPU time we will often
have to be satisfied with computing approximate solutions. In addition, under such
circumstances, it might be impossible to assess the real quality of approximate so-
lutions. In this and in the following chapter we will deal with the question of how
to find very good solutions for the LOP in short or reasonable time. The methods
described in this chapter are called heuristic algorithms or simply heuristics. This
term stems from the Greek word heuriskein which means to find or discover. It is
used in the field of optimization to characterize a certain kind of problem-solving
methods. There are a great number and variety of difficult problems, which come up
in practice and need to be solved efficiently, and this has promoted the development
of efficient procedures in an attempt to find good solutions, even if they are not op-
timal. These methods, in which the process speed is as important as the quality of
the solution obtained, are called heuristics or approximative algorithms.

2.1 Introduction

As opposed to exact methods, which guarantee to give an optimum solution of the
problem, heuristic methods only attempt to yield a good, but not necessarily opti-
mum solution. Nevertheless, the time taken by an exact method to find an optimum
solution to a difficult problem, if indeed such a method exists, is in a much greater
order of magnitude than the heuristic one (sometimes taking so long that in many
cases it is inapplicable). Thus we often resort to heuristic methods to solve real
optimization problems.

Perhaps the following comment by Onwubolu and Babu [105] is a little far-
fetched: “The days when researchers emphasized using deterministic search tech-
niques to find optimal solutions are gone.”. But it is true that in practice an engineer,
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an analyst or a manager sometimes might have to make a decision as soon as possi-
ble in order to achieve desirable results.

Recent years have witnessed a spectacular growth in the development of heuris-
tic procedures to solve optimization problems. This fact is clearly reflected in the
large number of articles published in specialized journals. 1995 saw the first issue
of the Journal of Heuristics, dedicated solely to the publication of heuristic proce-
dures. In the same year the first international congress dealing with these methods,
called the Metaheuristic International Conference (MIC), was held in Breckenridge,
Colorado (USA).

In addition to the need to find good solutions of difficult problems in reasonable
time, there are other reasons for using heuristic methods, among which we want to
highlight:

– No method for solving the problem to optimality is known.
– Although there is an exact method to solve the problem, it cannot be used on

the available hardware.
– The heuristic method is more flexible than the exact method, allowing, for

example, the incorporation of conditions that are difficult to model.
– The heuristic method is used as part of a global procedure that guarantees to

find the optimum solution of a problem.

A good heuristic algorithm should fulfil the following properties:

– A solution can be obtained with reasonable computational effort.
– The solution should be near optimal (with high probability).
– The likelihood for obtaining a bad solution (far from optimal) should be low.

There are many heuristic methods that are very different in nature. Therefore, it
is difficult to supply a full classification. Furthermore, many of them have been
designed to solve a specific problem without the possibility of generalization or
application to other similar problems. The following outline attempts to give wide,
non-excluding categories, under which to place the better-known heuristics:

Decomposition Methods

The original problem is broken down into sub-problems that are simpler to solve,
bearing in mind, be it in a general way, that subproblems belong to the same problem
class.

Inductive Methods

The idea behind these methods is to generalize the smaller or simpler versions to the
whole case. Properties or techniques that have been identified in these cases which
are easier to analyze, can be applied to the whole problem.
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Reduction Methods

These involve identifying properties that are mainly fulfilled by the good solutions
and introduce them as boundaries to the problem. The objective is to restrict the
space of the solutions by simplifying the problem. The obvious risk is that the opti-
mum solutions of the original problem may be left out.

Constructive Methods

These involve building a solution to the problem literally step by step from scratch.
Usually they are deterministic methods and tend to be based on the best choice
in each iteration. These methods have been widely used in classic combinatorial
optimization.

Local Search Methods

In contrast to the methods previously mentioned, local improvement or local search
starts with some feasible solution of the problem and tries to progressively improve
it. Each step of the procedure carries out a movement from one solution to another
one with a better value. The method terminates when, for a solution, there is no
other accessible solution that improves it.

Even though all these methods have contributed to expanding our knowledge of
solving real problems, the constructive and local search methods form the foun-
dations of the meta-heuristic procedures [4], which will be described in the next
chapter.

2.1.1 Assessing the Quality of Heuristics

There are diverse possibilities for measuring the quality of a heuristic, among which
we find the following.

Comparison with the Optimum Solution

Although one normally resorts to an approximative algorithm, because no exact
method exists to obtain an optimum solution or it is too time-consuming, sometimes
a procedure is available that provides an optimum for a limited set of examples
(usually small sized instances). This set of examples can be used to assess the quality
of the heuristic method.

Normally, for each example, the following are measured: the percentaged devi-
ation of the heuristic solution value as compared to the optimum one and the mean
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of these deviations. If we denote by cA the value of the solution delivered by heuris-
tic A and by copt the optimum value of a given example, in a maximization problem
like the LOP, the percentaged deviation, PerDev, is given by the expression

PerDev = 100 · copt − cA

copt
.

(We assume that all feasible solutions have a positive value.)

Comparison with a Bound

There are situations when no optimum solution is available for a problem, not even
for a limited set of examples. An alternative evaluation method involves comparing
the value of the solution provided by the heuristic with a bound for the problem (a
lower bound if it is a minimization problem and an upper bound if it is a maximiza-
tion problem). Obviously the quality of fit will depend on the quality of the bound
(closeness to optimal). Thus we must somehow have information about the quality
of the aforementioned bound, otherwise the proposed comparison would not be of
much interest.

Comparison with a Truncated Exact Method

An enumerative method like branch-and-bound explores very many solutions, even
though this may be a fraction of the total, and therefore large-scale problems can be
computationally out of reach using these methods. Nevertheless, we can establish a
limit on the maximum number of iterations (or on the CPU time) to run the exact
algorithm. Moreover, we can modify the criteria to fathom a node in the search tree
by adding or subtracting (depending on whether it is a minimization or maximiza-
tion problem) a value Δ to the bound of the node thus fathoming a larger number
of nodes and speeding up the method. In this way it guarantees that the value of the
best solution provided by the procedure is no further than distance Δ from the opti-
mal value to the problem. In any case, the best solution found with these truncated
procedures establishes a bound against which the heuristic can be measured.

Comparison with Other Heuristics

This is one of the most commonly used methods for difficult problems which have
been worked on for a long time and for which some good heuristics are known.
Similarly to what happens with the bound comparisons, the conclusion of this com-
parison deals with the quality of fit of the chosen heuristic.

Given that the LOP has been studied in-depth from both the exact viewpoint
and that of a heuristic, we have a value of the optimum solution for small and
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medium-scale examples, which enables us to establish the optimal deviation in the
solution obtained by the heuristics. Furthermore, we can compare the values ob-
tained between the different heuristics to solve the same examples of any size.

Worst Case Analysis

One method that was well-accepted for a time concerns the behavioral analysis of
the heuristic algorithm in the worst case; i.e., consider the examples that most dis-
favor the algorithm and set analytical bounds to the maximal deviation in terms of
the optimum solution to the problem. The best aspect of this method is that it estab-
lished the limits of the algorithm’s results for any example. However, for the same
reason, the results tend not to be representative of the average behavior of the al-
gorithm. Furthermore, the analysis can be very complicated for more sophisticated
heuristics.

An algorithm A for dealing with a maximization problem is called ε-approxi-
mative if there is a constant ε > 0 such that for every problem instance the algorithm
guarantees that a feasible solution can be found with value cA and the property

cA ≥ (1− ε)copt.

The analogous definition for minimization problems is cA ≤ (1 + ε)copt.
Concerning the approximability of the LOP the following results are known. Sup-

pose that all objective function coefficients are nonnegative and take some arbitrary
ordering. Then either this ordering or its reverse version contains at least half of the
sum of all coefficients. So 1

2 -approximation of the LOP is trivial, but nothing better
is known.

2.2 Construction Heuristics

We will now review some of the construction heuristics, i.e., methods which follow
some principle for successively constructing a linear ordering. The principle should
somehow reflect that we are searching for an ordering with high value.

2.2.1 The Method of Chenery and Watanabe

One of the earliest heuristic methods was proposed by Chenery and Watanabe [32].
These authors did not formulate an algorithm, but just gave some ideas of how to
obtain plausible rankings of the sectors of an input-output table. Their suggestion
is to rank those sectors first which show a small share of inputs from other sectors
and of outputs to final demand. Sectors having a large share of inputs from other
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industries and of final demand output should be ranked last. Chenery and Watanabe
defined coefficients taking these ideas into account to find a preliminary ranking.
Then they try to improve this ranking in some heuristic way which is not specified
in their paper. The authors admit that their method does not necessarily lead to good
approximate solutions of the triangulation problem.

2.2.2 Heuristics of Aujac & Masson

This method [6] is based on so-called output coefficients. The output coefficient of
a sector i with respect to another sector j is defined as

bi j =
ci j

∑
k �=i

cik
.

Then it is intended to rank sector i before sector j whenever bi j > b ji (“better cus-
tomer principle”). This is impossible in general. So it is heuristically tried to find a
linear ordering with few contradictions to this principle. Subsequently local changes
are performed to achieve better triangulations. Similarly an input coefficient method
can be formulated based on the input coefficients

ai j =
ci j

∑
k �= j

ck j
.

2.2.3 Heuristics of Becker

In [8] two further methods are described. The first one is related to the previous
ones in that it calculates special quotients to rank the sectors. For each sector i the
number

qi =
∑

k �=i
cik

∑
k �=i

cki

is determined. The sector with the largest quotient qi is then ranked highest. Its
corresponding rows and columns are deleted from the matrix, and the procedure is
applied to the remaining sectors.
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Heuristic of Becker (1)

(1) Set S = {1,2, . . . ,n}.
(2) For k = 1,2, . . . ,n:

(2.1) For each i ∈ S compute qi =
∑

j∈S\{i}
ci j

∑
j∈S\{i}

c ji
.

(2.2) Let q j = max{qi | i ∈ S}.
(2.3) Set ik = j and S = S \ { j}.

The second method starts with an arbitrarily chosen linear ordering, w.l.o.g.
〈1,2, . . . ,n〉. Then for every m = 1,2, . . . ,n− 1 the objective function values of the
orderings 〈m+ 1,m+ 2, . . . ,n,1, . . . ,m〉 are evaluated. The best one among them is
chosen, and the procedure is repeated as long as improvements are possible.

Heuristic of Becker (2)

(1) Generate a random ordering.
(2) Let 〈i1, i2, . . . , in〉 denote the current ordering.
(3) Evaluate all of the orderings 〈im+1, im+2, . . . , in,1,2, . . . , im〉, for m =

1,2, . . . ,n−1.
(4) If the best one among these orderings is better than the current one,

take it as the new current ordering and goto (3).

2.2.4 Best Insertion

This is a simple heuristic which builds an ordering by inserting the next objects at
positions which are locally optimal.

Best Insertion

(1) Select an arbitrary object j and set S = {1,2, . . . ,n} \ { j}. Let 〈 j〉 be
the current ordering.

(2) For k = 1,2, . . . ,n−1:

(2.1) Let 〈i1, i2, . . . , ik〉 denote the current ordering and choose some
l ∈ S.

(2.2) For every t, 1 ≤ t ≤ k + 1, compute qt = ∑t−1
j=1 ci jl + ∑k

j=t cli j and
let qp = max{qt | 1 ≤ t ≤ k}.

(2.3) Insert l at position p in the current ordering and set S = S\ {l}.
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An alternative version of step (2.2) computes

qt =
t−1

∑
j=1

ci j l +
k

∑
j=t

cli j −
t−1

∑
j=1

cli j −
k

∑
j=t

ci jl

to account for the sum of entries which are “lost” when l is inserted at position t.

Table 2.1 Constructive methods on OPT-I instances

CW AM-O AM-I Bcq Bcr BI1 BI2

IO
Dev(%) 19.07 32.94 31.45 4.07 30.19 3.24 4.18

Score 231 291 266 101 289 89 104

#Opt 0 0 0 0 0 0 0

SGB
Dev(%) 12.83 26.15 26.15 3.57 31.56 3.89 3.03

Score 100 125 125 54 175 56 40

#Opt 0 0 0 0 0 0 0

RandomAII
Dev(%) 2.60 36.50 36.55 1.57 37.75 1.09 1.26

Score 100 135 136 68 162 34 48

#Opt 0 0 0 0 0 0 0

RandomB
Dev(%) 10.13 24.69 24.69 7.04 26.41 5.24 4.87

Score 276 368 368 194 454 124 106

#Opt 0 0 0 0 0 0 0

MB
Dev(%) 8.40 43.37 43.37 2.90 40.30 2.49 2.27

Score 120 178 178 80 154 52 48

#Opt 0 0 0 0 0 0 0

Special
Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17

Score 64 178 113 210 149 41 83

#Opt 0 0 0 0 0 4 3

OPT-I
Avg. Dev(%) 10.85 32.97 32.55 3.95 32.35 3.49 3.50

Sum #Opt 0 0 0 0 0 4 3

Table 2.1 reports on our results for 7 constructive heuristics on the OPT-I set
(the set of 229 instances with optimum known). In this experiment we compute
for each instance and each method the relative deviation Dev (in percent) between
the best solution value Value obtained with the method and the optimal value for
that instance. For each method, we also report the number of instances #Opt for
which an optimum solution could be found. In addition, we calculate the so-called
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score statistic [114] associated with each method. For each instance, the nrank of
method M is defined as the number of methods that produce a better solution than
the one found by M. In the event of ties, the methods receive the same nrank, equal
to the number of methods strictly better than all of them. The value of Score is the
sum of the nrank values for all the instances in the experiment. Thus the lower the
Score the better the method. We do not report running times in this table because
these methods are very fast and their running times are extremely short (below 1
millisecond). Specifically, Table 2.1 shows results for:

– CW: Chenery and Watanabe algorithm
– AM-O: Aujac and Masson algorithm (output coefficients)
– AM-I: Aujac and Masson algorithm (input coefficients)
– Bcq: Becker algorithm (based on quotients)
– Bcr: Becker algorithm (based on rotations)
– BI1: Best Insertion algorithm (variant 1)
– BI2: Best Insertion algorithm (variant 2)

Results in Table 2.1 clearly indicate that OPT-I instances pose a challenge
for the simple heuristics with average percentage deviations ranging from 3.49%
to 32.97%. In most of the cases none of the methods is able to match the optimum
solution (with the exception of BI1 and BI2 with 4 and 3 optima respectively in
the Special instances). These results show that only Bcq, BI1 and BI2 can be con-
sidered reasonable construction heuristics (with an average percent deviation lower
than 5%).

2.3 Local Search

After having constructed some ordering with one of the heuristics above, it is rea-
sonable to look for improvement possibilities. In this section we will describe fairly
simple (deterministic) local improvement methods that are able to produce accept-
able solutions for the LOP. The basic philosophy that drives local search is that it
is often possible to find a good solution by repeatedly increasing the quality of a
given solution, making small changes at a time called moves. The different types of
possible moves characterize the various heuristics. Starting from a solution gener-
ated by a construction heuristic, a typical local search performs steps as long as the
objective function increases.

Local search can only be expected to obtain optimum or near-optimum solutions
for easy problems of medium size, but it is a very important and powerful concept
for the design of meta-heuristics, which are the topic of the next chapter.
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2.3.1 Insertion

This heuristic checks whether the objective function can be improved if the position
of an object in the current ordering is changed. All possibilities for altering the po-
sition of an object are checked and the method stops when no further improvement
is possible this way.

In problems where solutions are represented as permutations, insertions are prob-
ably the most direct and efficient way to modify a solution. Note that other move-
ments, such as swaps, can be obtained by composition of two or more insertions. We
define move(O j, i) as the modification which deletes O j from its current position j
in permutation O and inserts it at position i (i.e., between the objects currently in
positions i−1 and i).

Now, the insertion heuristic tries to find improving moves examining eventually
all possible new positions for all objects O j in the current permutation O. There are
several ways for organizing the search for improving moves. For our experiments
we proceeded as follows:

Insertion

(1) Compute an initial permutation O = 〈O1,O2, . . . ,On〉.
(2) For j = 1,2, . . . ,n:

(2.1) Evaluate all possible insertions move(O j, i).
(2.2) Let move(Ok, i∗) be the best of these moves.
(2.3) If move(Ok, i∗) is improving then perform it and update O.

(3) If some improving move was found, then goto (2).

In [86] two neighborhoods are studied in the context of local search methods for
the LOP. The first one consists of permutations obtained by switching the positions
of contiguous objects O j and O j+1. The second one involves all permutations result-
ing from executing general insertion moves, as defined above. The conclusion from
the experiments is that the second neighborhood clearly outperforms the first one,
which is much more limited. Furthermore two strategies for exploring the neighbor-
hood of a solution were studied. The best strategy selects the move with the largest
move value among all the moves in the neighborhood. The first strategy, on the
other hand, scans the list of objects (in the order given by the current permutation)
searching for the first object whose movement gives a strictly positive move value.
The computations revealed that both strategies provide similar results but the first
involved lower running times.
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2.3.2 The Heuristic of Chanas & Kobylanski

The method developed by Chanas and Kobylanski [32], referred to as the CK method
in the following, is based on the following symmetry property of the LOP. If the per-
mutation O = 〈O1,O2, . . . ,On〉 is an optimum solution to the maximization problem,
then an optimum solution to the minimization problem is O∗ = 〈On,On−1, . . . ,O1〉.
In other words, when the sum of the elements above the main diagonal is maxi-
mized, the sum of the elements below the diagonal is minimized. The CK method
utilizes this property to escape local optimality. In particular, once a local optimum
solution O is found, the process is re-started from the permutation O∗. This is called
the REVERSE operation.

In a global iteration, the CK method performs insertions as long as the solution
improves. Given a solution, the algorithm explores the insertion move move(O j, i)
of each element O j in all the positions i in O, and performs the best one. When
no further improvement is possible, it generates a new solution by applying the
REVERSE operation from the last solution obtained, and performs a new global
iteration. The method finishes when the best solution found cannot be improved
upon in the current global iteration.

It should be noted that the CK method can be considered to be a generalization
of the second heuristic of Becker described above. The latter evaluates the orderings
that can be obtained by rotations of a solution, while the CK method evaluates all
insertions. Since these rotations are basically insertions of the first elements to the
last positions, we can conclude that Becker’s method explores only a fraction of the
solutions explored by CK.

2.3.3 k-opt

The k-opt improvement follows a principle that can be applied to many combinato-
rial optimization problems. Basically, it selects k elements of a solution and locally
optimizes with respect to these elements. For the LOP, a possible k-opt heuristic
would be to consider all subsets of k objects Oi1 , . . . ,Oik in the current permuta-
tion and find the best assignment of these objects to the positions i1, . . . , ik. Since
the number of possible new assignments grows exponentially with k, we have only
implemented 2-opt and 3-opt.

2.3.4 Kernighan-Lin Type Improvement

The main problem with local improvement heuristics is that they very quickly get
trapped in a local optimum. Kernighan and Lin proposed the idea (originally in [78]
for a partitioning problem) of looking for more complicated moves that are com-
posed of simpler moves. In contrast to pure improvement heuristics, it allows that



28 2 Heuristic Methods

some of the simple moves are not improving. In this way the objective can decrease
locally, but new possibilities arise for escaping from the local optimum. This type
of heuristic proved particularly effective for the traveling salesman problem (where
it is usually named Lin-Kernighan heuristic).

We only describe the principle of the Kernighan-Lin approach. For practical ap-
plications on large problems, it has to be implemented carefully with appropriate
data structures and further enhancements like restricted search or limited length of
combined moves to speed up the search for improving moves. We do not elaborate
on this here.

We devised two heuristics of this type for the LOP. In the first version, the basic
move consists of interchanging two objects in the current permutation.

Kernighan-Lin 1

(1) Compute some linear ordering O.
(2) Let m = 1, Sm = {1,2, . . . ,n}.
(3) Determine objects s,t ∈ Sm, s �= t, the interchange of which in the cur-

rent ordering leads to the largest increase gm of the objective function
(increase may be negative).

(4) Interchange s and t in the current ordering. Set sm = s and tm = t.
(5) If m < 	n/2
, set Sm+1 = Sm \ {s,t} and m = m+ 1. Goto (3).
(6) Determine 1 ≤ k ≤ m, such G = ∑k

i=1 gi is maximum.
(7) If G ≤ 0 then Stop, otherwise, starting from the original ordering O,

successively interchange si and ti, for i = 1,2, . . . ,k. Let O denote the
new ordering and goto (2).

The second version builds upon insertion moves.

Kernighan-Lin 2

(1) Compute some linear ordering O.
(2) Let m = 1, Sm = {1,2, . . . ,n}.
(3) Among all possibilities for inserting an object of Sm at a new position

determine the one leading to the largest increase gp of the objective
function (increase may be negative). Let s be this object and p the new
position.

(4) Move s to position p in the current ordering. Set sm = s and pm = p.
(5) If m < n, set Sm+1 = Sm \ {s} and m = m+ 1. Goto (3).
(6) Determine 1 ≤ k ≤ m, such G = ∑k

i=1 gi is maximum.
(7) If G ≤ 0 then Stop, otherwise, starting from the original ordering O,

successively move si to position pi, for i = 1,2, . . . ,k. Let O denote
the new ordering and goto (2).
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2.3.5 Local Enumeration

This heuristic chooses windows 〈ik, ik+1, . . . , ik+L−1〉 of a given length L of the cur-
rent ordering 〈i1, i2, . . . , in〉 and determines the optimum subsequence of the respec-
tive objects by enumerating all possible orderings. The window is moved along the
complete sequence until no more improvements can be found. Of course, L cannot
be chosen too large because the enumeration needs time O(L!).

Local Enumeration

(1) Compute some linear ordering O.
(2) For i = 1, . . . ,n−L+ 1:

(2.1) Find the best possible rearrangement of the objects at positions
i, i+ 1, . . . , i+ L−1.

(3) If an improving move has been found in the previous loop, then
goto (2).

Table 2.2 reports on our results for 7 improving heuristics on the OPT-I set of
instances. As in the construction heuristics, we report, for each instance and each
method, the relative percent deviation Dev, the number of instances #Opt for which
an optimum solution is found, and the score statistic. Similarly, we do not report
running times in this table because these methods are fairly fast. Specifically, the
results obtained with the following improvement methods (started with a random
initial solution) are given:

– LSi: Local Search based on insertions
– 2opt: Local Search based on 2-opt
– 3opt: Local Search based on 3-opt
– LSe: Local Search based on exchanges
– KL1: Kernighan-Lin based on exchanges
– KL2: Kernighan-Lin based on insertions
– LE: Local enumeration

As expected, the improvement methods are able to obtain better solutions than
the construction heuristics, with average percentage deviations (shown in Table 2.2)
ranging from 0.57% to 2.30% (the average percentage deviations of the construc-
tion heuristics range from 3.49% to 32.97% as reported in Table 2.1). We have not
observed significant differences when applying the improvement method from dif-
ferent initial solutions. For example, as shown in Table 2.2 the LSi method exhibits
a Dev value of 0.16% on the RandomAII instances when it is started from random
solutions. When it is run from the CW or the Bcr solutions, it obtains a Dev value
of 0.17% and 0.18% respectively.
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Table 2.2 Improvement methods on OPT-I instances

LSi 2opt 3opt LSe KL1 KL2 LE

IO
Dev(%) 1.08 0.64 0.23 1.73 1.35 4.24 0.01
Score 243 181 125 295 239 232 49
#Opt 0 1 4 0 1 0 43

SGB
Dev(%) 0.16 0.81 0.53 1.35 0.63 0.28 1.09
Score 42 122 84 154 100 63 135
#Opt 1 0 0 0 0 0

RandomAII
Dev(%) 0.16 0.77 0.38 0.62 0.61 0.09 0.54
Score 46 161 81 134 134 29 112
#Opt 0 0 0 0 0 0 0

RandomB
Dev(%) 0.79 4.04 2.13 3.78 3.51 0.61 3.56
Score 124 400 232 387 359 95 362
#Opt 1 0 0 0 0 1 0

MB
Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17
Score 64 178 113 210 149 41 83
#Opt 0 0 0 0 0 4 3

Special
Dev(%) 1.19 3.30 2.05 3.21 2.40 0.89 3.52
Score 69 144 82 138 120 49 156
#Opt 4 2 2 2 3 3 3

OPT-I
Avg. Dev(%) 0.57 1.69 0.91 2.30 1.49 1.02 1.48
Sum #Opt 5 3 6 2 4 8 49

2.4 Multi-Start Procedures

Multi-start procedures were originally conceived as a way of exploiting a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization, aspiring
to find global optima, usually require certain diversification to overcome local op-
timality. Without this diversification, such methods can become reduced to tracing
paths that are confined to a small area of the solution space, making it impossible
to find a global optimum. Multi-start algorithms can be considered to be a bridge
between simple (classical) heuristics and complex (modern) meta-heuristics. The
re-start mechanism of multi-start methods can be super-imposed on many different
search methods. Once a new solution has been generated, a variety of options can
be used to improve it, ranging from a simple greedy routine to a complex meta-
heuristic. This section focuses on the different strategies and methods that can be
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used to generate solutions to launch a succession of new searches for a global opti-
mum.

The principle layout of a multi-start procedure is the following.

Multi-Start

(1) Set i=1.
(2) While the stopping condition is not satisfied:

(2.1) Construct a solution xi. (Generation)
(2.2) Apply local search to improve xi and let x′i be the solution ob-

tained. (Improvement)
(2.3) If x′i improves the best solution, update it. Set i = i+ 1. (Test)

The computation of xi in (2.1) is typically performed with a constructive algo-
rithm. Step (2.2) tries to improve this solution, obtaining x′i. Here, a simple improve-
ment method can be applied. However, this second phase has recently become more
elaborate and, in some cases, is performed with a complex meta-heuristic that may
or may not improve the initial solution xi (in this latter case we set x′i = xi).

2.4.1 Variants of Multi-Start

We will first review some relevant contributions on multi-start procedures.
Early papers on multi-start methods are devoted to the Monte Carlo random re-

start in the context of nonlinear unconstrained optimization, where the method sim-
ply evaluates the objective function at randomly generated points. The probability
of success approaches 1 as the sample size tends to infinity under very mild assump-
tions about the objective function. Many algorithms have been proposed that com-
bine the Monte Carlo method with local search procedures [115]. The convergence
for random re-start methods is studied in [120], where the probability distribution
used to choose the next starting point can depend on how the search evolves. Some
extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to
the global optimum [96].

In [13] relationships among local minima from the perspective of the best local
minimum are analyzed, finding convex structures in the cost surfaces. Based on the
results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, adaptive multi-start heuristics generate random starting solutions
and run a greedy descent method from each one to determine a set of correspond-
ing random local minima. In the second step, adaptive starting solutions are con-
structed based on the local minima obtained so far and improved with a greedy de-
scent method. This improvement is applied several times from each adaptive starting
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solution to yield corresponding adaptive local minima. The authors test this method
for the traveling salesman problem and obtain significant speedups over previous
multi-start implementations.

Simple forms of multi-start methods are often used to compare other methods
and measure their relative contribution. In [7] different genetic algorithms for six
sets of benchmark problems commonly found in the genetic algorithms literature
are compared: traveling salesman problem, job-shop scheduling, knapsack and bin
packing problem, neural network weight optimization, and numerical function op-
timization. The author uses the multi-start method (multiple restart stochastic hill-
climbing) as a basis for computational testing. Since solutions are represented with
strings, the improvement step consists of a local search based on random flipping of
bits. The results indicate that using genetic algorithms for the optimization of static
functions does not yield a benefit, in terms of the final answer obtained, over simpler
optimization heuristics.

One of the most well known multi-start methods is the greedy adaptive search
procedure (GRASP). The GRASP methodology was introduced by Feo and Re-
sende [45] and was first used to solve set covering problems [44]. We will devote a
section in the next chapter to describe this methodology in detail.

A multi-start algorithm for unconstrained global optimization based on quasi-
random samples is presented in [67]. Quasi-random samples are sets of determin-
istic points, as opposed to random, that are evenly distributed over a set. The al-
gorithm applies an inexpensive local search (steepest descent) on a set of quasi-
random points to concentrate the sample. The sample is reduced, replacing worse
points with new quasi-random points. Any point that is retained for a certain number
of iterations is used to start an efficient complete local search. The algorithm termi-
nates when no new local minimum is found after several iterations. An experimental
comparison shows that the method performs favorably with respect to other global
optimization procedures.

An open question in order to design a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a great number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial solu-
tion but a more elaborate method takes much more running time and therefore can
only be applied a few times, thus reducing the sampling of the solution space. Some
meta-heuristics, such as GRASP, launch limited local searches from numerous con-
structions (i.e., starting points). In other methods, such as tabu search, the search
starts from one initial point and, if a restarting procedure is also part of the method,
it is invoked only a limited number of times. In [94] the balance between restart-
ing and search-depth (i.e., the time spent searching from a single starting point)
is studied in the context of the matrix bandwidth problem. Both alternatives were
tested with the conclusion that it was better to invest the time searching from a few
starting points than re-starting the search more often. Although we cannot draw a
general conclusion from these experiments, the experience in the current context
and in previous projects indicates that some meta-heuristics, like tabu search, need
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to reach a critical search depth to be effective. If this search depth is not reached,
the effectiveness of the method is severely compromised.

2.4.2 Experiments with the LOP

In this section we will describe and compare 10 different constructive methods for
the LOP. It should be noted that, if a constructive method is completely determinis-
tic (with no random elements), its replication (running it several times) will always
produce the same solution. Therefore, we should add random selections in a con-
structive method to obtain different solutions when replicated. Alternatively, we can
modify selections from one construction to another in a deterministic way by record-
ing and using some frequency information. We will look at both approaches, which
will enable us to design constructive methods for the LOP that can be embedded in
a multi-start procedure.

Above we have described the construction heuristic of Becker [8] in which for
each object i the value qi is computed. Then, the objects are ranked according to the
q-values qi = ∑k �=i cik/∑k �=i cki.

We now compute two other values that can also be used to measure the attractive-
ness of an object to be ranked first. Specifically, ri and ci are, respectively, the sum
of the elements in the row corresponding to object i, and the sum of the elements in
the column of object i, i.e., ri = ∑k �=i cik and ci = ∑k �=i cki.

Constructive Method G1

This method first computes the ri values for all objects. Then, instead of selecting
the object with the largest r-value, it creates a list with the most attractive objects,
according to the r-values, and randomly selects one among them. The selected ob-
ject is placed first and the process is repeated for n iterations. At each iteration the
r-values are updated to reflect previous selections (i.e., we sum the cik across the
unselected elements) and the candidate list for selection is computed with the high-
est evaluated objects. The method combines the random selection with the greedy
evaluation, and the size of the candidate list determines the relative contribution of
these two elements.
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Constructive method G1

(1) Set S = {1,2, . . . ,n}. Let α ∈ [0,1] be the percentage for selection and
O be the empty ordering.

(2) For t = 1,2, . . . ,n:

(2.1) Compute ri = ∑
k∈S,k �=i

cik for all i ∈ S.

(2.2) Let r∗ = max{ri | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | ri ≥ αr∗}.
(2.4) Randomly select j∗ ∈ C and place j∗ at position t in O and set

S = S \ { j∗}.

Constructive Methods G2 and G3

Method G2 is based on the ci-values computed above. It works in the same way as
G1 but the attractiveness of object i is now measured with ci instead of ri. Objects
with large c-values are placed now in the last positions.

Constructive method G2

(1) Set S = {1,2, . . . ,n}. Let α ∈ [0,1] be the percentage for selection and
O be the empty ordering.

(2) For t = n,n−1, . . . ,1:

(2.1) Compute ci = ∑
k∈S,k �=i

cki for all i ∈ S.

(2.2) Let c∗ = max{ci | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | ci ≥ αc∗}.
(2.4) Randomly select j∗ ∈ C and place j∗ in position t in O and set

S = S \ { j∗}.

In a similar way, constructive method G3 measures the attractiveness of object i
for selection with qi and performs the same steps as G1. Specifically, at each iter-
ation the q-values are computed with respect to the unselected objects, a restricted
candidate list is formed with the objects with largest q-values, and one of them is
randomly selected and placed first.

Constructive Methods G4, G5 and G6

These methods are designed analogously to G1–G3, except that the selection of
objects is from a candidate list of the least attractive and the solution is constructed
starting from the last position of the permutation. We give the specification of G6
which is modification of G3.
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Constructive method G6

(1) Set S = {1,2, . . . ,n}. Let α ≥ 0 be the percentage for selection and O
be the empty ordering.

(2) For t = 1,2, . . . ,n:

(2.1) For all i ∈ S, compute

qi =
∑

k∈S,k �=i
cik

∑
k∈S,k �=i

cki
.

(2.2) Let q∗ = min{qi | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | qi ≤ (1 + α)q∗}.
(2.4) Randomly select j∗ ∈C and place j∗ in position n− t +1 in O and

set S = S \ { j∗}.

Constructive Method MIX

This is a mixed procedure derived from the previous six. The procedure generates
a fraction of solutions from each of the previous six methods and combines these
solutions into a single set. That is, if n solutions are required, then each method Gi,
i = 1, . . . ,6, contributes n/6 solutions.

Constructive Method RND

This is a random generator. This method simply generates random permutations.
We use it as a basis for our comparisons.

Constructive Method DG

This is a general purpose diversification generator suggested in [55] which gener-
ates diversified permutations in a systematic way without reference to the objective
function.

Constructive Method FQ

This method implements an algorithm with frequency-based memory, as proposed
in tabu search [52] (we will see this methodology in the next chapter). It is based on
modifying a measure of attractiveness with a frequency measure that discourages
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objects from occupying positions that they have frequently occupied in previous
solution generations.

The constructive method FQ (proposed in [19]) is based on the notion of
constructing solutions employing modified frequenciesfrequency. The generator
exploits the permutation structure of a linear ordering. A frequency counter is
maintained to record the number of times an element i appears in position j. The
frequency counters are used to penalize the “attractiveness” of an element with re-
spect to a given position. To illustrate this, suppose that the generator has created
30 solutions. If 20 out of the 30 solutions have element 3 in position 5, then the
frequency counter freq(3,5) = 20. This frequency value is used to bias the potential
assignment of element 3 in position 5 during subsequent constructions, thus induc-
ing diversification with respect to the solutions already generated.

The attractiveness of assigning object i to position j is given by the greedy func-
tion fq(i, j), which modifies the value of qi to reflect previous assignments of object i
to position j, as follows:

fq(i, j) =
∑

k �=i
cik

∑
k �=i

cki
−β

maxq

max f
freq(i, j),

where max f = max{freq(i, j) | i = 1, . . . ,n, j = 1, . . . ,n} and maxq = max{qi | i =
1, . . . ,n}.

Constructive method FQ

(1) Set S = {1,2, . . . ,n}. Let β ∈ [0,1] be the percentage for diversifica-
tion and freq(i, j) be the number of times object i has been assigned
to position j in previous constructions.

(2) For t = 1,2, . . . ,n:

(2.1) For all i, j ∈ S compute fq(i, j) =
∑

k �=i
cik

∑
k �=i

cki
−β maxq

max f
freq(i, j).

(2.2) Let i∗ and j∗ be such that fq(i∗, j∗) = max{fq(i, j) | i, j ∈ S}.
(2.3) Place i∗ at position j∗ in O and set S = S\ {i∗}.
(2.4) freq(i∗, j∗) = freq(i∗, j∗)+ 1.

It is important to point out that fq(i, j) is an adaptive function since its value
depends on attributes of the unassigned elements at each iteration of the construction
procedure.

In our first experiment we use the instance stabu75 from LOLIB. We have
generated a set of 100 solutions with each of the 10 generation methods. Figure 2.1
shows in a box-and-whisker-plot representation, the value of the 100 solutions gen-
erated with each method. Since the LOP is a maximization problem, it is clear that
the higher the value, the better the method. We can therefore say that constructive
method G3 obtains the best results. Other methods, such as FQ and MIX also obtain
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Fig. 2.1 Objective function value box-plot for each method

solutions with very good values, but their box-plot representation indicates that they
also produce lower quality solutions. However, if the construction is part of a global
method (as is the case in multi-start methods), we may prefer a constructive method
able to obtain solutions with different structures rather than a constructive method
that provides very similar solutions. Note that if every solution is subjected to lo-
cal search, then it is preferable to generate solutions scattered in the search space
as starting points for the local search phase rather than good solutions concentrated
in the same area of the solution space. Therefore, we need to establish a trade off
between quality and diversity when selecting our construction method.

Given a set of solutions P represented as permutations, in [95] a diversity mea-
sure d is proposed which consists of computing the distances between each solution
and a “center” of P. The sum (or alternatively the average) of these |P| distances
provides a measure of the diversity of P. The diversity measure d is calculated as
follows:

(1) Calculate the median position of each element i in the solutions in P.
(2) Calculate the dissimilarity (distance) of each solution in the population with

respect to the median solution. The dissimilarity is calculated as the sum of the
absolute difference between the position of the elements in the solution under
consideration and the median solution.

(3) Calculate d as the sum of all the individual dissimilarities.

For example, assume that P consists of the orderings 〈A,B,C,D〉, 〈B,D,C,A〉,
and 〈C,B,A,D〉. The median position of element A is therefore 3, since it occupies
positions 1, 3 and 4 in the given orderings. In the same way, the median positions
of B,C and D are 2, 3 and 4, respectively. Note that the median positions might not
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induce an ordering, as in the case of this example. The diversity value of the first
solution is then calculated as d1 = |1−3|+ |2−2|+ |3−3|+ |4−4|= 2.

In the same way, the diversity values of the other two solutions are obtained as
d2 = 4 and d3 = 2. The diversity measure d of P is then given by d = 2+4+2 = 8.

We then continue with our experiment to compare the different constructive
methods for the LOP. As described above, we have generated a set of 100 solutions
with each of the 10 generation methods. Figure 2.2 shows the box-and-whisker plot
of the diversity values of the solution set obtained with each method.

Fig. 2.2 Diversity value box-plot for each method

Figure 2.2 shows that MIX and FQ obtain the highest diversity values (but also
generate other solutions with low diversity values). As expected, the random con-
structive method RND consistently produces high diversity values (always generat-
ing solutions with an associated d-value over 800 in the diagram).

As mentioned, a good method must produce a set of solutions with high quality
and high diversity. If we compare, for example, generators MIX and G3 we observe
in Fig. 2.1 that G3 produces slightly better solutions in terms of solution quality, but
Fig. 2.2 shows that MIX outperforms G3 in terms of diversity. Therefore, we will
probably consider MIX as a better method than G3. In order to rank the methods we
have computed the average of both measures across each set.

Figure 2.3 shows the average of the diversity values on the x-axis and the average
of the quality on the y-axis. A point is plotted for each method.

As expected, the random generator RND produces a high diversity value (as mea-
sured by the dissimilarity) but a low quality value. DG matches the diversity of RND
using a systematic approach instead of randomness, but as it does not use the value
of solutions, it also presents a low quality score. The mixed method MIX provides a
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good balance between dissimilarity and quality, by uniting solutions generated with
methods G1 to G6.

We think that quality and diversity are equally important, so we have added both
averages. To do so, we use two relative measures �C for quality, and �d for di-
versity. They are basically standardizations to translate the average of the objective
function values and diversity values respectively to the [0,1] interval. In this way we
can simply add both quantities.
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Figure 2.4 clearly shows the following ranking of the 10 methods, where the
overall best is the FQ generator: G5, G4, G2, G1, DG, RND, G6, G3, MIX and FQ.
These results are in line with previous works which show the inclusion of memory
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structures (frequency information) to be effective within the multi-start framework.
However, one should note that this method of ranking has been obtained considering
both quality and diversity with equal weight. If we vary this criterion, the ranking
would also change.

It should be noted that, unlike other well-known methods that we will review in
the next chapter, multi-start procedures have not yet become widely implemented
and tested as a meta-heuristic itself for solving complex optimization problems. We
have shown new ideas that have recently emerged within the multi-start area that
add a clear potential to this framework which has yet to be fully explored.



Chapter 3
Meta-Heuristics

Abstract In this chapter we elaborate on meta-heuristics for optimization from a
beginner’s perspective. Basically, we start from scratch to describe the different
methodologies and provide the reader with the elements and strategies to build and
implement them successfully. Although we describe the adaptation of these meth-
ods to the linear ordering problem, we do not limit our descriptions to this problem.
Instead, we present all methods in their generic form and then adapt them to the
specific case of the LOP. This way, the reader can easily apply these methods to a
wide range of combinatorial optimization problems.

3.1 Introduction

In the last decade a series of methods have appeared under the name of meta-
heuristics, which aim to obtain better results than those obtained with “traditional
heuristics”. The term meta-heuristic was coined by Glover [54] in 1986. In this
book we shall use the term heuristics to refer to the classical methods as opposed
to meta-heuristics, which we shall reserve to refer to the most recent and complex
ones. In some texts one can find the expression modern heuristics to refer to meta-
heuristics [110]. Osman and Kelly [106] introduce the following definition:

“A meta-heuristic is an iterative generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and exploiting the search spaces
using learning strategies to structure information in order to find near-optimal solutions.”

Meta-heuristic procedures are conceptually ranked “above” heuristics in the
sense that they guide their design. Thus, facing an optimization problem, we can
employ any of these procedures to design a specific algorithm for computing an
approximate solution.

Heuristic methods have been developed to such an extent, with new methodolo-
gies appearing “almost daily”, that to offer an exhaustive survey of all of them lies
far outside of the the scope of this monograph. Furthermore, our prime interest lies

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 3,
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in those that have been used successfully for the LOP. We can list as better estab-
lished ones the following approaches:

– Estimation distribution algorithms
– Evolutionary algorithms
– Fuzzy adaptive neighborhood search
– Genetic algorithms
– Greedy randomized adaptive search procedure
– Guided local search
– Heuristic concentration
– Memetic algorithms
– Multi-start methods
– Path relinking
– Scatter search
– Simulated annealing
– Tabu search
– Variable neighborhood search

It is important to highlight two aspects. The first one is that the above list is not
exhaustive; as we mentioned previously this would be very difficult to establish. The
second one is that some methods can be considered specializations or adaptations of
other more generic ones (a consideration that is not free from controversy). For ex-
ample, “ant colony optimization” is motivated by the trails left by ants in search for
optimum paths. In our view, this could as well be interpreted as a short term mem-
ory structure in tabu search. Researchers in this field increasingly propose combi-
nations and hybridizations among the different methods, which makes the boundary
between them less well defined, in many cases taking some ingredients from others.

All the meta-heuristic methodologies have many degrees of freedom and the user
must take several decisions in order to design the final algorithm. Hertz and Wid-
mer [66] identified two categories on which meta-heuristics are based: local search
and population search. In the former the method iterates over a single solution,
while in the later the method iterates over a set of solutions. TS, SA or VNS are
local search based methods, while SS or GA are population search based methods
(in which a set of solutions evolves during the search process). In their study the au-
thors provide the following guidelines to help designing a good method for a given
problem within each category.

Local search

– It should be easy to generate solutions in the search space under consideration.
– The solutions in the neighborhood of a solution should be close to this solution

in some way.
– The topology induced by the objective function in the neighborhood space

should not be too “flat”.
– Each solution in the search space should be linked with the optimum solution

by a (short) sequence of moves.
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Population search

– Pertinent information should be transmitted during the combination phase (in
which new solutions are obtained with the combination of old ones).

– The combination of two equivalent parent solutions should not produce a new
solution that is different from the parents.

– Diversity should be preserved in the population.

In this chapter we are going to describe the application of the main meta-heuristic
procedures to the LOP. We will consider only those procedures that are relatively
consolidated and that have proved efficient for a representative collection of prob-
lems. Specifically, we shall describe the adaptation of GRASP, TS, SA, VNS, SS,
GA and MA to the LOP.

3.2 GRASP

The GRASP methodology was developed in the late 1980s, and this acronym
for greedy randomized adaptive search procedures was coined by Feo and Re-
sende [45]. It was first used in [44] to solve computationally difficult set covering
problems. Each GRASP iteration consists of constructing a trial solution and then
applying an improvement procedure to find a local optimum (i.e., the final solution
for that iteration). The construction phase is iterative, greedy and adaptive. It is it-
erative because the initial solution is built considering one element at a time. It is
greedy because the addition of each element is guided by a greedy function. It is
adaptive because the element chosen at any iteration in a construction is a function
of those chosen previously and thus relevant information is updated from one con-
struction step to the next. The improvement phase typically entails a local search
procedure. The GRASP method is similar in layout to the general multi-start meth-
ods described in the previous chapter.

GRASP

(1) Set i=1.
(2) While i < MaxIter:

(2.1) Construct a solution xi. (Construction phase)
(2.2) Apply a local search method to improve xi. Let x′i be the solution

obtained. (Improvement phase)
(2.3) If x′i improves the best solution found, update it. (Test)
(2.4) i = i+ 1.

We now describe the two phases in more detail.
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3.2.1 Construction Phase

At each iteration of the construction phase, GRASP maintains a candidate list CL
of elements which can be added to the partial solution under construction to obtain
a feasible complete solution. All candidate elements are evaluated according to a
greedy function in order to select the next element to be added in the construction.
The greedy function usually represents the marginal increase in the cost function
by adding the element to the partial solution. Element evaluation is used to create
a restricted candidate list RCL with the best elements in CL, i.e., those with the
largest incremental cost in a maximization problem (as in the LOP). The element to
be added to the partial solution is randomly selected from those in the RCL. Once
the selected element is added to the partial solution, the candidate list is updated and
the evaluations (incremental costs) are recalculated.

A particularly appealing characteristic of GRASP is its ease of implementation.
We only need to define a construction mechanism according to the description above
and a local search procedure. Moreover, the construction usually has one parameter
related to the quality of the elements in the restricted candidate list. GRASP typi-
cally performs a pre-established number of iterations (construction + improvement)
and returns the best solution found overall.

The first step in designing a GRASP construction is to define a greedy function in
order to evaluate the relative contribution of adding an element to the partial solution
under construction. In [20] the following three evaluators are proposed for the LOP,
inspired by the simple heuristics described in the previous chapter:

– The evaluation e1(i) of object i is the sum of the elements in the matrix in its
corresponding row:

e1(i) =
n

∑
j=1

ci j.

– The evaluation e2(i) of object i is the difference between the maximum of
the sum of columns, colmax, and the sum of the elements in the matrix in its
corresponding column:

e2(i) = colmax−
n

∑
j=1

c ji.

– The evaluation e3(i) of object i is the sum of the elements in the matrix in its
corresponding row divided by the sum of the elements in its corresponding
column:

e3(i) =
∑n

j=1 ci j

∑n
j=1 c ji

.

The goal of the constructive method is to obtain a permutation of size n, so in
each iteration we select an object from an RCL to be placed in the next available
position. The permutations are constructed from left to right, meaning that we start
from position 1 and end at position n. Initially, all objects are in the unassigned
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list U . For each object i ∈ U , we calculate its associated evaluation e1(i) (or alter-
natively e2(i) or e3(i)) with respect to the unassigned objects (i.e., we only compute
in the expressions above the c-values associated to unassigned objects). This mea-
sures the attractiveness of each object. The largest attractiveness value e∗1 of all the
unassigned objects is multiplied by a parameter α , 0 ≤ α ≤ 1. This value represents
a threshold that is used to build the RCL. In particular, the RCL comprises all the
objects in U with an attractiveness measure that is at least as large as the threshold
value and we set RCL = {i ∈U | e1(i) ≥ αe∗1}, where e∗1 = max{e1(i) | i ∈U}.

Then, the next object to be assigned is randomly selected from the RCL. After the
assignment has been made, the list of unassigned objects is updated and the measure
of attractiveness for the objects in the updated set U is recalculated. The process is
repeated n times and the outcome is a feasible solution of the LOP.

The example in Figure 3.1 shows the value of 100 solutions generated with the
construction described above. We apply the evaluator e1 and create the RCL with
α set to 0.4 to solve the LOLIB instance be75eec. The best solution found in
these 100 iterations has value 199072. Note that GRASP performs an independent
sampling of the solution space, and therefore there is no connection between dif-
ferent constructions. In other words, we cannot predict the value of a solution by
considering the value of the previously generated solutions. This is why we cannot
find any pattern in Figure 3.1.
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Fig. 3.1 Value of GRASP constructions

The design of different evaluation functions for the GRASP construction phase
leads us to an interesting point: How can we compare different constructive meth-
ods? This is not a specific question about GRASP, but it is a general question about
constructive methods. Obviously we want to obtain good solutions, so the larger the
value of the solutions obtained (in a maximization problem), the better the construc-
tive method. However, as discussed in the previous chapter in the context of general
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multi-start methods, we need to establish a trade-off between quality and diversity
when selecting our construction method.

Let GC1, GC2 and GC3 be the three GRASP constructive methods obtained with
the greedy functions e1, e2 and e3 respectively. In order to compare their relative per-
formance when solving the LOLIB instance be75eec, we generate 100 solutions
with each method and then compute a measure of both the quality and diversity of
all 100 solutions. To evaluate quality we can simply compute the average objective
function value of the 100 solutions generated with each method. To evaluate diver-
sity we can compute the distance between each pair of solutions and then calculate
the average of these distances. The distance between two orderings or permutations
p = 〈p1, p2, ..., pn〉 and q = 〈q1,q2, ...,qn〉 is given by

d(p,q) =
n

∑
i=1

|pi −qi|.

Table 3.1 shows both measures for the three constructive methods. We can see
that GC3 provides the best results in terms of quality, since it obtains an average
objective function value of 222013.87, which compares favorably with 178080.9
obtained with GC1 and 161885.1 obtained with GC2. On the other hand, GC2 pro-
vides the best results in terms of diversity, since it obtains an average distance value
of 802.5, which compares favorably with 743.6 obtained with GC1 and 632.9 ob-
tained with GC3. However, if we consider both criteria together, quality and di-
versity, GC1 is probably the best constructive method, providing a good trade-off
between them.

Table 3.1 Comparison of constructive methods

Method Quality Diversity
GC1 178080.90 743.6
GC2 161885.10 802.5
GC3 222013.87 632.9

GRASP may be viewed as a repetitive sampling technique, producing a sample
solution in each iteration from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if RCL is restricted
to a single element, then only one solution will be produced, the variance of the
distribution will be zero and the mean will equal the value of the greedy solution. If
the RCL has more than one element, then many different solutions will be generated,
implying a larger variance. Since greediness plays a less important role in this case,
the mean solution value may be worse. However, the value of the best solution found
outperforms the mean value and can be better than the greedy solution (and in some
cases may be optimal).

In the definition of the restricted candidate list RCL given above, we can see
that only the elements with a value exceeding αe∗1 are included in this list. We can
therefore interpret the parameter α as the degree of greediness (between 0 and 1)
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in the selection of the element to be added to the partial solution. If α takes the
value 0, all the candidate elements will be included in RCL and the method will
actually perform a random selection (not greedy at all). On the contrary, if α takes
the value 1, only the most highly evaluated elements will be included in RCL, and
the method will perform a greedy selection (with no randomization at all). It is then
expected that low values of α will produce diverse solutions of low quality, while
large values of α will produce similar solutions (low diversity) of good quality.

To test this hypothesis, we consider the LOLIB instance be75eec and generate
100 solutions with the constructive method GC1 with each particular value of α in
the set {0.0, 0.1, 0.2, ..., 1.0}. Figure 3.2 shows the average value of the quality and
diversity of each set of 100 solutions, obtained as in the previous experiment, for
each value of α . In order to compare both values, quality and diversity, we represent
them as a percentage and then we add them up to obtain a global evaluation of GC1

with each α value considered.
Figure 3.2 shows that, as expected, when α is set to 0, the average quality ob-

tained is the lowest (0% in the figure) but the diversity is the largest (100% in the
figure). Symmetrically, when α is set to 1, the average quality obtained is close to
the largest one (95% in the figure) but the diversity is the lowest one (0% in the
figure). If we consider the addition of both percentage values (which means that we
consider quality and diversity as equally important), we can see that when α is set
to 0.4 we obtain the best solutions (185% in the figure). Therefore we will use GC1

with α set to 0.4 as the constructive method in our GRASP algorithm for the LOP.
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Fig. 3.2 Performance according to α

In [33] an alternative GRASP construction is proposed. It is based on a variant of
the evaluation function e3(i) in which, instead of ratios, differences are computed.
This way, the evaluation e(i) of object i is the sum of the elements in the matrix in
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its corresponding row minus the sum of the elements in its corresponding column,
i.e., e(i) = ∑n

j=1 ci j −∑n
j=1 c ji.

The authors compared the use of e(i) with e3(i) and did not observe significant
differences in the quality of solutions, although they stated that adapting the greedy
function is computationally more expensive when ratios are used.

The construction method in [33] follows the same steps as the other GRASP
methods described in this section (constructing first a candidate list of elements
and computing then a restricted list RCL from which random selections are made).
However, instead of inserting the selected element in the next available position,
it inserts the element in the best position according to the value of the elements
already selected. This strategy, introduced in [26], can be considered a local search
in a reduced (partial) neighborhood.

3.2.2 Improvement Phase

The local search of our GRASP algorithm is based on the neighborhood search
developed for the LOP presented in [86]. Here insertions are used as the primary
mechanism to move from one solution to another. We again define move(p j, i) as
the local modification deleting p j from its current position j in permutation p and
inserting it at position i (i.e., between the objects currently at positions i−1 and i).

A key to designing an efficient local search procedure is the incremental com-
putation of the solution value. In other words, when we move from one solution p
to another q, we need to calculate the objective function value of q from the value
of p quickly and efficiently. In the LOP, when we apply move(p j, i) to solution p,
obtaining solution q, it is easy to check that the value z(q) of q can be directly ob-
tained from the value z(p) by considering only the elements in row and column j in
the data matrix C. More precisely, if i < j then

z(q) = z(p)+
j−1

∑
k=i

(cp j pk − cpk p j).

Starting from a solution generated in the construction phase, the improvement
phase of our GRASP algorithm performs iteration steps as long as the objective
function increases. At each step, it considers an element p j in p and scans all po-
sitions i from 1 to n, in search for the position i∗ with the best associated move
move(p j, i∗). If this is an improving move, it is performed; otherwise it is discarded
and the method resorts to the next element p j+1 in the solution.
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Figure 3.3 shows the value of 100 solutions constructed with GC1 (with α set
to 0.4) and the value of the improved solutions with this local search procedure on
the LOLIB instance be75eec. The effectiveness of the local search procedure is
clearly shown, since it is able to improve the solutions by 48.5% on average. It also
shows a large variability in the objective function of the constructed solutions, with
a minimum value of 154728 and a maximum of 199072. However, on the contrary, it
shows very similar values in the improved solution, with a minimum of 262387 and
a maximum of 264940. Therefore, we cannot conclude that constructed solutions
with low quality produce low quality improved solutions. This would indicate that
diversity is more important than quality in the constructive method.

In our final experiment in this section, we apply the GRASP algorithm for 10 sec-
onds to the 229 instances in the OPT-I set (with optimum known). Table 3.2 shows
the number of instances in each set, the average percentage relative deviation Dev
between the best solution value found with this method and the optimal value, and
the number of instances, #Opt, for which an optimum solution is found.

Table 3.2 GRASP on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.00 0.00 0.01 0.00 0.00 0.05 0.01
#Opt 49 23 5 70 21 14 182

The results in Table 3.2 clearly indicate that OPT-I instances do not pose a chal-
lenge for the GRASP methodology, since it is able to obtain 182 optimum solutions
out of 229 instances in 10 seconds of running time. We will see in the next sections
that most of the meta-heuristic are able to obtain high quality solutions on these
instances within short running times.
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3.3 Tabu Search

Tabu search [52] is a meta-heuristic that guides a local heuristic search procedure
to explore the solution space beyond local optimality by allowing non-improving
moves. This, in turn, requires some additional mechanisms based on memory struc-
tures to avoid cycling, which creates flexible search behavior. The name tabu comes
from the fact that move selection is limited because certain moves or solutions are
forbidden (declared tabu) as a result of the recorded information. In this section we
will see how to implement both simple and complex memory structures that allow
us to record useful information (called attributes) about the solutions visited during
the search. Based on this information we will design a local search method with
attributive and adaptive memory.

Tabu search (TS) uses attributive memory for guiding purposes. This type of
memory records information about solution attributes that change in moving from
one solution to another. For example, in a graph or network setting, attributes can
consist of nodes or arcs that are added, dropped or repositioned by the moving mech-
anism. In production scheduling, the index of jobs may be used as attributes to in-
hibit or encourage the method to follow certain search directions.

We can compare the memory of tabu search with the explicit memory of branch-
and-bound methods (see Chap. 4) in which an exhaustive memory is applied to know
the solutions we have already examined during the search process. In contrast, TS
incorporates attributive and adaptive memory. The attributive term means that we
are not going to record all the solutions generated (because we are not interested in
examining all the solutions of the problem) but we are going to record some of their
properties (attributes). The term “adaptive” means that the rules and properties that
we are going to apply may evolve during the search process.

In this section we start with an adaptation of the so-called short term memory
design to the LOP. In this design we only record attributes of recently visited solu-
tions. Then, we will see how we can add long term memory strategies to this basic
design to obtain a competitive solution method for the LOP. Both memory strategies
together, short and long term, constitute the core of most tabu search implementa-
tions.

If we see the search space as a huge set of solutions and think that we are only
able to explore a tiny part of it, we easily understand the rationale behind the two
search strategies intensification and diversification. Roughly speaking, the first one
favors the exploration of promising areas of the solution space, while the second one
drives the search to new regions of the solution space. Therefore, intensification and
diversification have complementary objectives. Intensification strategies are based
on modifying choice rules to encourage move combinations and solution features
that have historically been found to be good. In some settings, they consist of revis-
iting attractive regions to search them more thoroughly. Diversification strategies, on
the other hand, are based on visiting unexplored regions, increasing the effective-
ness in exploring the solution space of search methods based on local optimization.
Both strategies interact with the two memory structures mentioned above, short and
long term, to create an efficient search algorithm.
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3.3.1 Short Term Memory

Tabu search begins in the same way as an ordinary local or neighborhood search,
proceeding iteratively from one solution to another until a chosen termination crite-
rion is satisfied. When TS is applied to an optimization problem with the objective
of minimizing or maximizing f (x) subject to x ∈ X , each solution x has an associ-
ated neighborhood N (x), and each solution y ∈ N (x) can be reached from x by an
operation called a move.

When contrasting TS with a simple descent method where the goal is to mini-
mize f (x), we must point out that such a method only permits moves to neighbor
solutions that improve the current objective function value and ends when no im-
proving solutions can be found. Tabu search, on the other hand, permits moves that
deteriorate the current objective function value but the moves are chosen from a
modified neighborhood N ∗(x). Short and long term memory structures are respon-
sible for the specific composition of N ∗(x). In other words, the modified neighbor-
hood is the result of maintaining a selective history of the states encountered during
the search.

In short term memory we usually consider attributes of the solutions recently
visited, or the moves performed, in the last iterations. These attributes are used to
exclude some elements in the neighborhood of the solutions in the next iterations.
N ∗(x) is typically a subset of N (x), and the tabu classification serves to identify
elements of N (x) excluded from N ∗(x). Let T (x) be this set of solutions in N (x),
labeled as tabu, that we do not consider admissible for selection, i.e.,

N ∗(x) = N (x)\T (x).

Recency based memory, as its name suggests, keeps track of attributes of solu-
tions that have changed during the recent past. To exploit this memory, selected at-
tributes that occur in solutions recently visited are labeled tabu-active, and solutions
that contain tabu-active elements, or particular combinations of these attributes, are
those that become tabu, thus being included in T (x). This prevents certain solutions
from the recent past from belonging to N ∗(x) and hence from being revisited.

The basic tabu search algorithm for the LOP proposed in [86] implements a short
term memory structure alternating two phases: intensification and diversification. It
is based on insertions as the improvement phase of the GRASP algorithm described
above. However, instead of scanning the objects in the search for a move in their
original order (from 1 to n), they are randomly selected in the intensification phase
based on a measure of influence.
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Short term tabu search

(1) Generate an initial solution x.
(2) Determine the attributes to establish the tabu status of solutions.
(3) While the stopping condition is not satisfied:

(3.1) Compute T (x) and set N ∗(x) = N (x)\T (x).
(3.2) Let y be the best solution in N ∗(x).
(3.3) Set x = y.
(3.4) Update the tabu status of solutions.

For each object, there are at most m, m ≤ 2n− 2, relevant elements in the ma-
trix, i.e., those elements that may contribute to the objective function value. The
elements in the main diagonal of the matrix are excluded because their sum does
not depend on the ordering of the objects. This indicates that objects should not
be treated equally by a procedure that selects an object for a local search (i.e., for
search intensification). We define wj as the weight of object j by setting

wj = ∑
i	= j

(ci j + c ji).

Note that weight values do not depend on the permutation p, and therefore they
can be calculated off-line, i.e., before the search begins. The weight values will be
used to bias the selection of objects during the tabu search intensification phase.

Short Term Intensification Phase

An iteration in the intensification phase begins by randomly selecting an object.
The probability of selecting object j is proportional to its weight wj . The move
move(p j, i) with the largest move value is selected. (Note that this rule may result
in the selection of a non-improving move.) The move is executed even when the
move value is not positive, resulting in a deterioration of the current objective func-
tion value. The moved object becomes tabu-active for TabuTenure iterations, and
therefore it cannot be selected for insertions during this time.

The number of times that object j has been chosen to be moved is accumulated
in the value freq( j). This frequency information is used for diversification purposes.
The intensification phase terminates after MaxIter consecutive iterations without
improvement.

Short Term Diversification Phase

The diversification phase is performed for MaxDiv iterations. In each iteration, an
object is randomly selected, where the probability of selecting object j is inversely
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proportional to the frequency count freq( j). The chosen object is placed in the best
position, as determined by the move values associated with the insert moves.

The basic tabu search procedure stops when MaxGlo global iterations are per-
formed without improving the value of the best solution p∗ found. A global itera-
tion is an application of the intensification phase followed by the application of the
diversification phase.

3.3.2 Long Term Memory

In TS strategies based on short term memory, N ∗(x) characteristically is a subset
of N (x), and the tabu classification serves to identify elements of N (x) excluded
from N ∗(x). In TS strategies that include longer term considerations, N ∗(x) may
also be expanded to include solutions not ordinarily found in N (x), such as solu-
tions visited and evaluated in a past search, or identified as high quality neighbors
of these past solutions.

The most common attributive memory approaches are recency based memory
and frequency based memory. Recency, as its name suggests, keeps track of solu-
tions’ attributes that have changed during the recent past and we usually apply it
in short term memory as described in the previous section. Frequency based mem-
ory provides a type of information that complements the information provided by
recency based memory, broadening the foundation for selecting preferred moves.
Like recency, frequency often is weighted or decomposed into subclasses. Also, fre-
quency can be integrated with recency to provide a composite structure for creating
penalties and inducements that modify move evaluations.

Frequencies typically consist of ratios, whose numerators represent the number
of iterations (that we will refer to as transition measures) where an attribute of the
solutions visited changes, and the denominators generally represent the total number
of associated iterations. Alternatively, the numerators can represent the number of
iterations where an attribute belongs to solutions visited on a particular trajectory
(residence measures). Therefore, the ratios can produce transition frequencies that
keep track of how often attributes change, or residence frequencies that keep track
of how often attributes are members of solutions generated.

A long term diversification phase to complement the basic tabu search algorithm
for the LOP is implemented in [86]. The long term diversification is applied after
a pre-established number of global iterations have elapsed without improving the
value of p∗.

For each object p j, a rounded average position α(p j) is calculated using the
positions occupied by this object in the set of elite solutions and the solutions visited
during the last intensification phase. The set of elite solutions consists of the best
solutions found during the entire search. Instead of only recording (and updating)
the best solution p∗ found during the search, the long term memory records (and
updates) a set of best solutions. Then, it calculates the average position occupied by
each object in this set.
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As mentioned above, in the computation of α(p j) we also include the position oc-
cupied by the object during the last application of the intensification phase. Roughly
speaking, we want to obtain a new solution far from those in the elite set but also far
from those visited in the last iterations.

Long Term Diversification Phase

The long term diversification phase performs n steps, scanning the objects in their
original order for j = 1 to n. In step j we insert object p j in its complementary posi-
tion n−α(p j) according to the average position computed above. In mathematical
terms, we apply move(p j,n−α(p j)).

This strategy is inspired by the REVERSE operation of [26]. We, however, in-
corporate information about solutions that have been recently visited (during the
last intensification phase) and solutions of high quality that have been found during
the search (elite solutions). Purposefully constructing solutions that are “far away”
from those in the elite set constitutes a diversifying element that also complements
the diversification described in the short term memory.

In [86] series of experiments are performed to first establish the value of the key
search parameters, and then to compare their method with the state of the art proce-
dures. The first experiment has the goal of finding appropriate values for the three
critical search parameters: TabuTenure, MaxIter, and MaxDiv. With a full factorial
design with 3 levels for each parameter on the input-output matrices of LOLIB,
it is determined that the best values are: TabuTenure = 2

√
n, MaxIter = n and

MaxDiv = 0.5n. In the second computational experiment the authors compared:

– the short term memory tabu search method, STS (without the long-term diver-
sification,

– the complete tabu search method, TS,
– the method of Chanas and Kobylanski [26],
– the method of Becker [8], and
– the improvement method of the GRASP algorithm, LS, described in Sect. 3.2.

We refer to Chanas and Kobylanski’s method as CK, and as CK-10 for the ap-
plication of the method from 10 randomly generated initial solutions. In a simi-
lar way, LS-10 refers to the application of the improvement local search method
from 10 different starting solutions. The experimentation in [86] is limited to three
sets of instances: the input-output instances IO of LOLIB, the instances SGB from
the Stanford GraphBase [80] and randomly generated instances, RandomAI. A uni-
form distribution with parameters (0, 25000) was used to generate the random in-
stances of sizes 75, 150 and 200 (25 instances per size). Table 3.3 shows, for each
method, the average percentaged deviation from optimality and/or best known so-
lutions, the number of optimum solutions, and the average CPU time (seconds on
a 166 MHz Pentium). (Since the optimum solutions were not known for the random
instances, we list in this case the number of best solutions found.)
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Table 3.3 Comparison of methods

LS LS-10 Becker CK CK-10 STS TS
Input-output tables
Deviation 0.15 0.02 8.95 0.15 0.02 0.04 0.00
Normal deviation 0.18 0.03 10.38 0.18 0.03 0.05 0.00
No. of opt. solutions 11 22 0 11 27 30 47
CPU time 0.01 0.08 0.02 0.10 1.06 0.33 0.93
SGB instances
Deviation 0.18 0.01 2.04 0.08 0.01 0.02 0.00
No. of opt. solutions 3 20 0 4 22 35 70
CPU time 0.06 0.55 0.20 1.45 16.33 1.16 4.09
Random instances
Deviation 0.47 0.23 3.08 0.53 0.28 0.06 0.00
No. of best solutions 0 2 0 0 0 40 73
CPU time 0.12 1.21 0.80 10.67 108.44 10.79 20.19

Table 3.3 shows that Becker’s procedure is clearly inferior in terms of solution
quality although, given its simplicity, its performance is quite acceptable. The per-
formance of the LS and CK methods is very similar across the three problem sets.
TS outperforms all other methods in terms of solution quality, specially in the Ran-
dom set, where it provides 73 of the 75 best known solutions. However, in terms of
computational effort, TS consumes more running time than the other methods, with
the exception of CK-10. The short term memory implementation, STS, performs
very well considering its short running time. For the input-output matrices, we re-
port in Table 3.3 both the deviation reported in [86] (see row “Deviation”) and the
deviation computed for the instances transformed to normal form (see row “Normal
deviation”). As expected the latter is slightly larger (we include both deviations as a
baseline for future comparisons).
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As a final result of the study in [86] the performance graph shown in Figure 3.4
is given in which the best three methods identified in the previous experiment were
run in a way that the best solution found was reported every 0.5 seconds. These
data points were used to generate the graph. The difference in quality between CK
and the LS procedure may be due to the number of initial solutions used for each
method. While the LS procedure can be applied 150 times during 5 seconds, the CK
method can be applied only 10 times during the same amount of time. The superior
performance of TS is made evident by Figure 3.4.

This study reveals that, although ignored in some tabu search implementations,
the long term diversification by itself is an important component of the methodology,
since in all cases it enhanced the performance of the basic procedure (as can be seen
in Table 3.3 comparing the results of STS and TS).

We now report on our own experiment with tabu search for the LOP. Specifically,
we apply the tabu search algorithm for 10 seconds to the 229 instances in the OPT-I
set (with optimum known). Table 3.4 shows the number of instances in each set, the
average percentage relative deviation, Dev, between the best solution value found
with this method and the optimal value, and the number of instances, #Opt, for
which an optimum solution is found.

Table 3.4 Tabu search on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.00 0.00 0.00 0.00 0.00 0.02 0.00
#Opt 50 25 25 70 30 15 215

The results in Table 3.4 clearly show that the tabu search method is able to ob-
tain the optimal solution for most of the instances in the OPT-I set. Specifically, it
obtains 215 optimum out of 229 instances.

3.4 Simulated Annealing

The simulated annealing methodology [79] is based on a presumed analogy between
the physical process known as annealing of solids and the algorithmic process of
solving an optimization problem.

Annealing refers to a physical process in which a solid, placed in a heat bath,
is first heated up by increasing the temperature of the bath, and then cooling down
by slowly lowering this temperature. In this way, the particles of the solid arrange
themselves in the low energy ground state (called crystal). If the cooling is done
very quickly, irregularities are locked into the particles’ structure, thus obtaining
an amorphous solid (with a higher trapped energy level than in a perfectly struc-
tured crystal). Therefore, to obtain a perfect crystal, the temperature must be low-
ered gradually, following what Kirpatrick et al. [79] called careful annealing, where
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temperature descends slowly through a series of levels. At each temperature value t,
the solid is then allowed to reach thermal equilibrium, which can be characterized
by a probability given by the Boltzmann distribution [41].

From the optimization viewpoint, SA proceeds in the same way as ordinary local
search but incorporates some randomization in the move selection process. Specifi-
cally, it avoids getting trapped in a local optimum by means of nonimproving moves.
These moves are accepted according to certain probabilities taken from the analogy
with the annealing process. To simulate the change to thermal equilibrium of a solid
for a given value of t, Metropolis et al. [97] proposed a Monte Carlo method. This
simulation, introduced in the late 1940’s to model the behavior of gases in a heat
bath, is implemented in SA to determine whether a change in the physical system
will be accepted or not.

Simulated annealing claims that an optimization problem or more precisely, the
set of its feasible solutions, can be interpreted as the states of a physical system
and that the process of careful annealing can be re-interpreted for the optimization
problem to find an optimum solution. An optimum solution thus corresponds to a
ground state. This analogy is shown in Table 3.5.

Table 3.5 Simulated annealing analogy

Physical system Optimization problem
State Feasible solution
Energy Objective function
Ground state Optimum solution
Careful annealing Simulated annealing

At a given state of the solid (solution), the Monte Carlo method applies a random
small perturbation and computes the difference in energy ΔE between the current
state and the perturbed state. If this difference is negative (ΔE < 0), the change is
accepted and the perturbed solution becomes the current one because it has lower
energy. However, if this difference is positive (ΔE > 0), the probability of the per-
turbed state being accepted is computed according to the Boltzmann distribution. In
mathematical terms

P(new solution is accepted) = e−ΔE/tkB ,

where kB is the Boltzmann constant [41]. The Monte Carlo method (also called the
Metropolis algorithm) is applied to generate moves (states) and accept all improving
moves, but in addition also worsening moves with a certain probability. It should be
noted that, when run long enough, Monte Carlo simulation indeed generates states
according to the Boltzmann distribution.

As is tabu search (TS) in its basic form, simulated annealing is also based on
local search. When comparing SA and TS with a simple descent method to max-
imize f (x), we know that such a method only permits improving moves to neigh-
bor solutions. In physical terms, this would be rapid quenching instead of careful
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annealing. Simulated annealing and tabu search, on the other hand, permit moves
that deteriorate the current objective function value.

In the previous section we described how the moves are chosen in TS from a
modified neighborhood N ∗(x) according to the tabu status. Non-improving moves
are accepted in SA according to the Boltzman distribution. Since the LOP is a max-
imization problem, a move from x to y is an improving one if Δ = f (y)− f (x) > 0.

The basic outline of a simulated annealing method is the following. The algo-
rithm starts at some temperature t which is decreased in the course of the algorithm.
For each temperature, a number of moves according to the Metropolis algorithm is
executed to simulate getting to the thermal equilibrium. Various schemes for guiding
this process are given in the literature. For certain schemes one can prove that this
algorithm indeed yields an optimum solution with probability 1, but these schemes
lead to much too slow a convergence to be useful for practical applications. But at
least, this result indicates the potential of the approach.

Simulated Annealing

(1) Generate an initial solution x.
(2) Choose an initial temperature t, a cooling factor c, 0 < c < 1, and a

repetition factor r.
(3) While not frozen:

(3.1) Repeat the following steps r times:

(3.1.1) Choose y ∈ N (x) at random.
(3.1.2) Compute Δ = f (y)− f (x).
(3.1.3) If Δ ≥ 0, set x = y.
(3.1.4) If Δ < 0, compute a random number p, 0 ≤ p ≤ 1. If p ≤ eΔ

t ,
set x = y.

(4) Update temperature t = ct.

Johnson et al. [71] give some guidelines to set the values of the parameters in
the SA algorithm shown above: the initial temperature t, the cooling factor c, the
repetition factor r and how to establish the stopping criterion (when it is frozen).
The authors declare themselves to be skeptical about the relevance of the details of
the analogy to the actual performance of SA algorithms in practice (and we share
their point of view). In line with this, they examine and test the values of this key
search parameters from the performance viewpoint, regardless of their meaning in
the physical process. They actually translate the computation of these parameters
into others that are more closely related to the optimization process:

– A new parameter, initprob, is used to determine an initial temperature t. Based
on an abbreviated trial annealing run, a temperature is found at which the frac-
tion of accepted moves is approximately initprob, and this is used as a starting
temperature. They recommend setting initprob to 0.4 in the problem tested.
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– The repetition factor r is set as r = 16s where s is the expected neighborhood
size.

– The minpercent parameter is introduced to determine whether the annealing
run is frozen or not. A counter is kept which is incremented each time a tem-
perature is completed for which the percentage of accepted moves is at most
minpercent, and is reset to 0 each time a solution is found to be better than the
incumbent one. If the counter reaches 5 the process is declared frozen and the
SA algorithm stops.

As far as we know there is no previous implementation of the SA methodology
to the LOP. However, there are several approximations with similar methods or vari-
ants of the LOP. In [11] a SA method is proposed for the chromosome reconstruc-
tion problem. This problem arises when creating maps in genetics to reconstruct the
DNA sequence. Although the authors called the mathematical formulation of this
problem optimal linear ordering, it should be noted that it involves computing an
ordering (clone ordering) that minimizes the sum of differences between successive
clones. However, in this computation they do not include the differences between
noncontiguous elements (clones) and only consider consecutive elements. Thus, it is
not the same objective function as in the LOP. On the other hand, as will be shown in
a subsequent chapter, SA has been implemented to solve an auxiliary problem that
appears when studying the convex hull of feasible solutions (the polytope) of the
LOP. Specifically, we will see how this method is applied to separate small facets
defining inequalities for the LOP.

Charon and Hudry [28] describe the application of the noising method to some
combinatorial optimization problems, including the LOP. This method proceeds in
the same way as local search, performing a move at each iteration, from the cur-
rent solution x to a neighbor solution y ∈ N (x). However, when they compute
the move value, Δ = f (y)− f (x), they add a perturbation or noise and, instead,
consider Δnoise = f (y)− f (x) + σ where σ is a random value drawn from the in-
terval [−r,r] according to a pre-established probability distribution. As the search
progresses the noise rate r decreases and the method finishes when no improvement
move is available. The authors point out that different methodologies, including SA,
can be considered an instance of the noising method. In other words, if we choose
the parameters properly, especially the probability distribution, the noising method
generalizes these methodologies. In their computational experiments, the authors
test their adaptation of the noising method to the LOP with different parameters,
including noising rates, descent variants and restarting mechanisms, and conclude
that the method provides high quality solutions.

As in the previous sections, we report the results obtained when applying this
method for 10 seconds to the 229 instances in the OPT-I set. Specifically, we im-
plemented the SA method described in the basic outline above. Table 3.6 shows
the number of instances in each set, the average percentage deviation, Dev, and the
number of instances, #Opt, for which SA obtains an optimum solution.
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Table 3.6 Simulated Annealing on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.03 0.03 0.08 0.25 1.33 0.39 0.35
#Opt 16 0 0 10 0 6 32

The results in Table 3.6 clearly show that the simulated annealing obtains good
solutions on the OPT-I set, since the average percentage deviation overall is 0.35%.
However, these results are inferior in quality to those obtained with the tabu search
method (as shown in Table 3.4, TS presents an average percent deviation of 0.00%).
At the end of this chapter we will show an extensive comparison among all the
methods described.

3.5 Variable Neighborhood Search

Variable neighborhood search (VNS) is rapidly becoming a method of choice for
designing solution procedures for hard combinatorial optimization problems [63].
VNS is based on a simple and effective idea: a systematic change of the neighbor-
hood within a local search algorithm. In this section we follow the description given
in [49] to adapt the VNS methodology to the LOP.

As stated in [63], VNS is based on the following three principles, where princi-
ple (2) is true for all optimization problems, but principles (1) and (3) may or may
not hold depending on the problem at hand.

(1) A local minimum with respect to one neighborhood is not necessarily so with
another.

(2) A global minimum is a local minimum with respect to all possible neighbor-
hood structures.

(3) For many problems local minima with respect to one or several neighborhoods
are relatively close to each other.

To apply the VNS methodology we first need to define different neighborhoods
for our problem. Let again move(p j, i) denote the local modification where p j is
deleted from its current position j in permutation p and inserted at position i (i.e.,
between the objects currently in positions i−1 and i). In [49] Garcı́a et al. proposed
the following neighborhoods to adapt the VNS methodology to the LOP:

N1(p) = {p′ | p′ is obtained by move(p j, i), for some j = 1, . . . ,n,

and i ∈ { j−1, j + 1}},
N2(p) = {p′ | p′ is obtained by move(p j, i), for some j = 1, . . . ,n,

and i = 1, . . . ,n, i 	= j}.
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The neighborhood N1(p) consists of permutations p′ that are reached by switch-
ing the positions of contiguous objects in p. N2(p) consists of all permutations p′
resulting from executing general insertion moves in p. Based on N2, composed
neighborhoods Nk, k = 3, . . . ,n, can be defined. The neigborhood Nk(p) is the set
of solutions that are obtained when we apply the general insertion move k−1 times
from p. Obviously, Nk can be defined in terms of N2. E.g., for k = 3, a solution r is
in N3(p) if, for some q ∈ N2(p), we have r ∈ N2(q).

In the following subsections we will describe five different implementations of
variable neighborhood search (and its variants) for the LOP. We will first describe
them in detail and then report some computational experiments to compare them.

3.5.1 Variable Neighborhood Descent

The variable neighborhood descent (VND) method is obtained when the change
between neighbors is performed in a deterministic way.

The implementation for the LOP performs a local search for the best solution
in N1 and only resorts to performing one move in N2 when the search is trapped in
a local optimum found in N1. If the local search in N2 is able to improve the best
solution found so far, the search continues in N1, otherwise it terminates.

3.5.2 Restricted Variable Neighborhood Search

This restricted version RVNS is also limited to N1 and N2. It repeatedly performs
three steps combining stochastic and deterministic strategies (assume k ∈ {1,2}):

(1) A solution p′ is randomly generated in Nk(p). (Shaking)
(2) Apply a local search from p′ to obtain a local optimum p′′. (Improving)
(3) If p′′ is better than p, then p is replaced by p′′ and k is set to 1; otherwise, k is

switched (from 1 to 2 or from 2 to 1). (Updating)

As in VND, k is initially set to 1 and the method resorts to N2 when N1 (now
in combination with local search) fails to improve the current solution. However,
if N2 also fails to improve on the incumbent solution, instead of stopping the search,
RVNS sets k = 1 and randomly selects another trial solution in N1, repeating the
three steps again. The sequence is repeated until a MaxIter number of consecutive
iterations is performed with no further improvement. In step (2) we apply the local
search method based on move(p j, i) (N2(p)) described in the previous chapter.
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3.5.3 Basic Variable Neighborhood Search

The basic variable neighborhood search method (BVNS) follows the same scheme
as RVNS based on the three steps shaking, improving and updating. However, in
this version the method uses kmax neighborhoods.

Basic variable neighborhood search

(1) Generate an initial solution p.
(2) Define neighborhoods Nk with k=1,. . . ,kmax.
(3) Set counter = 0 and k = 1.
(4) While counter < MaxIter:

(4.1) Randomly generate a solution p′ in Nk(p).
(4.2) Apply a local search from p′ to obtain a local optimum p′′.
(4.3) If p′′ is better than p, then set p = p′′, counter = 0 and k = 1.
(4.4) Else set k = k + 1 (if k = kmax, then set k = 1) and counter =

counter+ 1.

Initially, k is set to 1 and in the shaking step a solution p′ ∈ Nk(p) is randomly
generated. Then, a local search method is applied from p′ to obtain a local opti-
mum p′′. In the update step, if p′′ is better than p, p is replaced by p′′ and k is
set to 1; otherwise, k is incremented. The method repeats these three phases until
a MaxIter number of consecutive iterations is performed with no further improve-
ment. As in the previous version, we consider the N2 descent procedure as the local
search phase.

3.5.4 Frequency Variable Neighborhood Search

This variant combines VNS and tabu search. As we have seen in the previous vari-
ants, VNS is mainly based on random sampling of selected neighborhoods in com-
bination with local search. On the other hand, tabu search is based on the notion
of recording information (attributes) to perform a guided and deterministic (i.e., not
random) search of the solution space. We therefore can say that to some extent they
represent opposite approaches. However, in the frequency variable neighborhood
search, FVNS, both approaches are integrated into a single design.

As in BVNS, the FVNS method repeats shaking, improving and updating steps
until a MaxIter number of consecutive iterations is performed with no further im-
provement. However, in FVNS, the shaking step is guided by frequency information
recorded in previous iterations. This is made to diversify the search in a controlled
way (instead of a completely random and uncontrolled way). As previously shown
(see Sect. 3.3), diversification is the notion of expanding the search to unexplored
regions in the solution space (and it does not necessarily means randomization).
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Diversification strategies are generally based on either encouraging the incorpora-
tion of new elements or discouraging elements visited frequently.

In Chap. 2 we compared several different constructive methods for the LOP.
Among them, in particular, FQ is based on a frequency counter that records the
number of times an element appears in a specific position. This counter is used to
penalize the “attractiveness” of an element with respect to a given position. In a
similar way, we now use a frequency counter freq(i) to record the number of times
object i has been moved. Therefore, each time object i is moved from one position
to another in the shaking or the local search phase, we increment freq(i) by one
unit. We use this frequency counter to generate a new solution in the shaking step.
Since we want to diversify, we select objects j with a small frequency value freq( j).
Specifically, in the shaking step, we randomly select kmax objects in the incumbent
solution p to be moved. The probabilistic selection rule is inversely proportional to
the frequency count. The selected objects are moved to the best available position.

3.5.5 Hybrid Variable Neighborhood Search

As mentioned in the introduction of this chapter, researchers in the meta-heuristic
field increasingly propose combinations and hybridizations among the different
methodologies, which makes the boundary between them less well defined, in many
cases taking some elements from others. Actually we described in the previous sub-
section FVNS in which a simple memory structure based on frequencies (a tabu
search element indeed) plays an important role in the shaking step of VNS.

In this subsection we describe two straightforward hybridizations of VNS in
which we simply replace the local search of the improving step with a meta-heuristic
method, thus obtaining the following three steps:

(1) A solution p′ is randomly generated in Nk(p). (Shaking)
(2) Apply a meta-heuristic from p′. Let p′′ be the output solution. (Searching)
(3) If p′′ is better than p, then p is replaced by p′′ and k is set to 1, otherwise, k is

incremented by 1 (if k = kmax, k is set to 1). (Updating)

We considered the two previous VNS variants, BVNS and FVNS, and replaced
the local search with the short term memory tabu search algorithm described in the
previous section (in which no longer term structures are present) according to the
scheme above. We called the resulting methods BVNS-TS and FVNS-TS, respec-
tively. In their computational experiments, Garcı́a et al. [49] tested these procedures
on the input-output instances from LOLIB, the Stanford GraphBase instances, and
the random instances A of type I and type II.

In a preliminary experiment of [49] simple local search methods are compared
to find appropriate values of the key search parameters. Specifically, they compare
VND with the local search based on the N2 neighborhood on both real and ran-
dom instances. The experiment confirms what is well known for the LOP: random
instances are more difficult than the real input-output instances. It also shows that
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there are small variations in the results of these procedures. However, if we run them
from different initial solutions it becomes clear that VND saves time since it only
resorts to N2 when the search is trapped in N1.

In the first experiment of [49] VNS variants that do not incorporate long term
strategies are compared with two previous methods on the input-putput instances
and on the random instances of type I. Specifically, they compare RVNS, BVNS,
FVNS with the short term tabu search, ST-TS [86], described in the previous section,
and the method by Chanas and Kobilansky, CK-10 [26], run from 10 randomly
generated initial solutions. Table 3.7 reports the number of best solutions found
(optimum solutions for the LOLIB) and the percentaged deviation of each method
on each set of instances.

Table 3.7 shows that the best solution quality is obtained by the variants of the
VNS methodology, which are able to match a larger number of optimum and best
known solutions than the short term TS and CK methods. In particular, for the input-
output instances, RVNS finds 39 optimum solutions, BVNS 35, FVNS 34, ST-TS 30
and CK-10 finds 27. On the other hand, on the random instances, RVNS determines
only 10 best known solutions out of 25, BVNS 19, FVNS 17, ST-TS 14 and CK-10
finds 4. All methods are extremely fast considering that their running times are
below 0.02 seconds. The performance of CK is clearly inferior with a lower number
of optimum solutions than those achieved by the other approaches. However, as
mentioned, it is a simple heuristic and its results are quite acceptable considering its
simplicity.

Table 3.7 Comparison of basic methods

Instances RVNS BVNS FVNS ST-TS CK-10
Input-output
No. of opt. solutions 39 35 34 30 27
Percentaged deviation 0.02 0.03 0.05 0.04 0.02
Random A type I
No. of best solutions 10 19 17 14 4
Percentaged deviation 0.15 0.03 0.04 0.05 0.12

The final experiments in [49] compare basic and hybrid VNS with the best
heuristics for the LOP, in particular BVNS, BVN-TS, FVN-TS and the previous
approaches TS (the complete tabu search approach described in the previous sec-
tion) and SS (the scatter search approach described in the next section).

Table 3.8 shows, for each procedure, the average deviation from optimality in
percent, the number of optimum solutions, and the average CPU time in seconds for
each set of instances. Since optimum solutions are not known for the large random
instances, the deviation for these problems is given with respect to the best solution
found during each experiment. Also the number of best solutions found is reported
instead of the number of optimum solutions. We have set the stopping parameter
MaxIter in the VNS versions to 100 to approximate the running time consumed by
the LT-TS method.
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For the input-output instances the long term tabu search algorithm TS is able
to obtain 47 optimum solutions in 0.024 seconds while the VNS variants obtain a
number of optimum solutions that ranges between 39 and 46 in less computation
time than LT-TS. The performance of the SS method in this experiment is clearly
inferior in terms of quality considering its running time.

For large and more difficult instances, as in the previous experiments, SS ob-
tains very good solutions but it needs longer running times than the other meth-
ods. FVN-TS and LT-TS are clearly the best methods in terms of solution quality
achieved within small running times. Both obtain the same number of optimum so-
lutions for the SGB instances, although LT-TS presents a smaller percentaged devi-
ation on average and a larger computational time than FVN-TS. On the other hand,
FVN-TS obtains 6 best solutions and 0.16 average percent deviation in the random
type I instances, while LT-TS obtains 10 best solutions and 0.06 average percent
deviation. Results in random type II instances are different since FVN-TS is able to
obtain 29 best solutions in 0.22 seconds of running time, which compares favorably
with all the other methods considered.

It is interesting to see that, although the frequency VNS version (FVNS) does
not improve the memory less variant (VNS) as shown in previous tables, when we
coupled the VNS methods with tabu search it seems that the use of frequency based
memory improves the basic VNS in solving the LOP.

Table 3.8 Comparison of best methods

BVNS BVN-TS FVN-TS TS SS
Input-output instances
Deviation 0.0208 0.0370 0.0082 0.0007 0.0133
No. of opt. solutions 40 41 46 47 42
CPU time 0.015 0.013 0.018 0.024 0.04
SGB instances
Deviation 0.0251 0.0087 0.0104 0.0018 0.0023
No. of opt. solutions 7 11 14 14 15
CPU time 0.067 0.039 0.052 0.090 0.153
Random A type I
Deviation 0.1870 0.1615 0.1600 0.0615 0.0130
No. of best solutions 4 5 6 10 48
CPU time 1.020 0.289 0.305 0.417 0.709
Random A type II
Deviation 0.0053 0.0029 0.0019 0.0014 0.0017
No. of best solutions 16 20 29 28 18
CPU time 0.607 0.336 0.220 0.269 0.457

Figure 3.5 shows in a box-and-whisker plot the value of the best solution ob-
tained with LT-TS and FVN-TS on the largest random instances (types I and II
with n=200).
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Fig. 3.5 Best value box plot
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Note that the higher the value, the better the method (since we are maximizing
the objective function). This figure clearly shows that both methods present similar
results (in terms of the best solution found) although LT-TS presents a marginal
improvement over FVN-TS in these instances since it is able to obtain, in some
cases, better solutions (the higher whisker is larger in LT-TS than in FVN-TS).

As in previous sections, we report the results obtained when applying this method
for 10 seconds to the 229 instances in the OPT-I set. Specifically, we consider the
basic VNS method described above. Table 3.9 shows the number of instances in
each set, the average percentaged deviation Dev, and the number of instances #Opt,
for which SA obtains an optimum solution.

Table 3.9 BVNS on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.00 0.00 0.00 0.02 0.00 0.11 0.02
#Opt 50 25 19 64 30 20 208

Results in Table 3.9 clearly show that the VNS methodology obtains high quality
solutions on the OPT-I set. The average percentaged deviation overall is 0.02% and
the number of optimum solutions is 208 out of 229 instances.

3.6 Scatter Search

Scatter search (SS) is an evolutionary or population based method in the sense that
it operates on a set of solutions, combining them to obtain new and hopefully better
solutions [85]. Nowadays it is a well established method within the meta-heuristic
community and has been successfully applied to a wide range of optimization prob-
lems. However, general awareness of the method still lags behind that of other popu-
lation based methods such as genetic algorithms or well established meta-heuristics
like tabu search.
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There are three elements that we need to define in any evolutionary method: a
way to generate solutions, a way to combine solutions and a way to maintain a set
(population) of solutions. When we design these elements for the problem we are
faced with, we follow the guidelines given by the meta-heuristic. In this section we
will see how to define these elements for the LOP and how they interact according
to the SS methodology.

Scatter search was first introduced in [53] as a heuristic for integer programming.
In the original proposal, solutions are purposely (i.e., non-randomly) generated to
take characteristics of various parts of the solution space into account. Scatter search
orients its explorations systematically relative to a set of reference points that typi-
cally consist of good solutions obtained by prior problem solving efforts, where the
criteria for “good” are not restricted to objective function values, and may apply to
subcollections of solutions rather than to a single solution, as in the case of solutions
that differ from each other according to certain specifications.

The scatter search methodology is very flexible, since each of its elements can be
implemented in a variety of ways and degrees of sophistication. In this section we
give a basic design to implement scatter search based on the following five methods:

(1) A diversification generation method to generate a collection of diverse trial
solutions, using an arbitrary trial solution (or seed solution) as an input.

(2) An improvement method to transform a trial solution into one or more en-
hanced trial solutions. (Neither the input nor the output solutions are required
to be feasible, though the output solutions will usually be expected to be feasi-
ble. If no improvement of the input trial solution results, the enhanced solution
is considered to be the same as the input solution.)

(3) A reference set update method to build and maintain a reference set consisting
of the b best solutions found (where the value of b is typically small, e.g.,
not greater than 20), organized to provide efficient access by other parts of
the method. Solutions gain membership to the reference set according to their
quality or their diversity.

(4) A subset generation method to operate on the reference set and to produce a
subset of its solutions as a basis for creating combined solutions.

(5) A solution combination method to transform a given subset of solutions pro-
duced by the subset generation method into one or more combined solution
vectors.



68 3 Meta-Heuristics

P

RefSet

Diversification Generation
Method

Repeat until |P| = PSize

Subset Generation
Method

Improvement
Method

Solution Combination
Method

Improvement
Method

Stop if no more
new solutions

Reference Set
Update Method

Fig. 3.6 Schematic flow diagram of scatter search

In Figure 3.6, diversification generation and improvement methods are initially
applied, adding improved solutions to P, until the cardinality of P reaches PSize so-
lutions that are different from each other. The darker circles represent improved
solutions resulting from the application of the improvement method. The main
search loop appears to the left of the box containing the reference solutions (labeled
RefSet). The subset generation method takes reference solutions as input to produce
solution subsets to be combined. Solution subsets contain two or more solutions.
The new trial solutions resulting from the application of the combination method
are subjected to the improvement method and handed to the reference set update
method. This method applies rules regarding the admission to the reference set of
solutions coming from P or from the application of the combination and improve-
ment methods. Of the five methods in scatter search, only four are strictly required.
The improvement method is usually needed if high quality outcomes are desired,
but a scatter search procedure can be implemented without it. The advanced fea-
tures of scatter search are related to the way the five methods are implemented. That
is, the sophistication comes from the implementation of the SS methods instead of
the decision to include or exclude some elements (like in the case of tabu search).
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Scatter search

(1) Set P = /0 and PSize = 100.
(2) While |P| < PSize:

(2.1) Generate solution x with the diversification generation method.
(2.2) Apply the improvement method to x. Let x′ be the output.
(2.3) If x′ /∈ P, then add x′ to P.

(3) Build the reference set RefSet = {x1, . . . ,xb} containing b “good”
(w.r.t. quality and diversity) solutions in P.

(4) Set NewSolutions = True.
(5) While NewSolutions:

(5.1) Generate a set NewSubsets which consists of all pairs of solutions
in RefSet that include at least one new solution.

(5.2) Set NewSolutions = False.
(5.3) While NewSubsets 	= /0:

(5.3.1) Select the next set S ∈ NewSubsets.
(5.3.2) Apply the solution combination method to S to obtain one or

more new solutions x.
(5.3.3) Apply the improvement method to x. Let x′ be the output.
(5.3.4) If x′ /∈ RefSet and improves its worst solution, then replace

this with x′ and set NewSolutions = True.
(5.3.5) Delete S from NewSubsets.

(6) Output the best solution in RefSet.

The core of the SS method is the reference set in which good solutions are stored
(where good refers not only to quality but also to diversity). The scatter search al-
gorithm has three main stages according to the status of the reference set: reference
set creation, reference set update, and reference set rebuild.

In the following subsections we will describe how these three stages can be im-
plemented to build a scatter search algorithm for a given problem and how they are
adapted in [19] to the LOP.

Similarities and contrasts between SS and the original proposals for genetic algo-
rithms (GA) are observed in [85]. Both are instances of what are sometimes called
“population based” or “evolutionary” approaches. Both incorporate the idea that a
key aspect of producing new elements is to generate some form of combination of
existing elements. However, GA approaches are predicated on the idea of choosing
parents randomly to produce offsprings, and further on introducing randomization
to determine which components of the parents should be combined. In contrast, the
SS approach does not emphasize randomization, particularly in the sense of being
indifferent to choices among alternatives. Instead, the approach is designed to incor-
porate strategic responses, both deterministic and probabilistic, that take evaluations
and history into account. SS focuses on generating relevant outcomes without losing
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the ability to produce diverse solutions, due to the way the generation process is im-
plemented.

3.6.1 Reference Set Creation

The diversification generation method is used to build a large set P of diverse solu-
tions. The size PSize of P is typically at least 10 times the size of RefSet. The initial
reference set is built taking solutions from P according to the reference set update
method.

The reference set RefSet is a collection of both high quality solutions and diverse
solutions, which are used to generate new solutions by way of applying the combi-
nation method. In this basic design we can use a simple mechanism to construct an
initial reference set based on a distance function between solutions, and then update
it during the search. The size of the reference set is denoted by b = b1 +b2. The con-
struction of the initial reference set starts with the selection of the best b1 solutions
from P. These solutions are added to RefSet and deleted from P. For each solution
in P\RefSet, the minimum of the distances to the solutions in RefSet is computed.
Then, the solution with the maximum of these minimum distances is selected. This
solution is added to RefSet and deleted from P and the minimum distances are up-
dated. (In applying this max-min criterion, or any criterion based on distances, it can
be important to scale the problem variables, to avoid a situation in which a particular
variable or subset of variables dominates the distance measure and distorts the ap-
propriate contribution of the vector components.) The process is repeated b2 times,
thus the resulting reference set has b1 high quality solutions and b2 diverse solutions.

In Chap. 2 we reviewed constructive methods for the LOP: G1, G2, G3, G4,
G5, G6, MIX, RND, DG, and FQ. Any of them can be used as a diversification
generation method within a SS algorithm. Moreover, we have seen that FQ, which
is based on frequency information, performs best, considering quality and diversity
as equally important. Therefore, we will employ this generator in our SS method for
the LOP.

In the standard SS design [85] the improvement method is applied to all the
solutions in P. However, in some problems where local search methods are usually
extremely time consuming, the improvement method is not applied across the board
but rather in a selective manner. In the LOP we follow the standard design and apply
the improvement method to all the solutions in P. In Sect. 3.2 we describe a local
search procedure using insertions. Based on moves move(p j, i), the local search
method performs steps as long as the objective function increases. We apply this
local search as the improvement method of our SS algorithm.
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3.6.2 Reference Set Update

The search is initiated in this second stage by applying the subset generation method
that, in its simplest form, involves generating all pairs of reference solutions. The
pairs of solutions in RefSet are selected one at a time and the solution combination
method is applied to generate one or more trial solutions. These trial solutions are
subjected to the improvement method. The reference set update method is applied
once again to build the new RefSet with the best solutions, according to the objective
function value, from the current RefSet and the set of trial solutions. The basic
procedure terminates after all the subsets generated are subjected to the combination
method and none of the improved trial solutions are admitted to RefSet under the
rules of the reference set update method.

Solution combination methods in scatter search typically are not limited to
combining just two solutions and therefore the subset generation method in its
more general form consists of creating subsets of different sizes. The scatter search
methodology is such that the set of combined solutions (i.e., the set of all combined
solutions that the implementation intends to generate) may be produced in its en-
tirety at the point where the subsets of reference solutions are created. Therefore,
once a given subset is created, there is no merit in creating it again. This creates a
situation that differs noticeably from those considered in the context of genetic al-
gorithms, where the combinations are typically determined by the spin of a roulette
wheel (see next section for a description).

The procedure for generating subsets of reference solutions in advanced SS ap-
plications uses a strategy to expand pairs into subsets of larger size while controlling
the total number of subsets to be generated. In other words, the mechanism does not
attempt to create all subsets of size 2, then all the subsets of size 3, and so on until
reaching the subsets of size b−1 and finally the entire RefSet. This approach would
not be practical because there are 1023 subsets in a reference set of a typical size
b = 10. Even for a smaller reference set, combining all possible subsets is not effec-
tive, because many subsets will be almost identical. For example, a subset of size
four containing solutions 1, 2, 3, and 4 is almost the same as all the subsets with
four solutions for which the first three solutions are solutions 1, 2 and 3. And even if
the combination of subset {1,2,3,5} were to generate a different solution than the
combination of subset {1,2,3,6}, these new trial solutions would likely converge to
the same local optimum after the application of the improvement method.

The following approach selects representative subsets of different sizes by creat-
ing subset types:

– Type 1: all 2-element subsets,
– Type 2: 3-element subsets derived from the 2-element subsets by augmenting

each 2-element subset to include the best solution not in this subset,
– Type 3: 4-element subsets derived from the 3-element subsets by augmenting

each 3-element subset to include the best solutions not in this subset, and
– Type 4: the subsets consisting of the best i elements, for i = 5 to b.
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We will use this approach in our subset generation method for the LOP. In [19]
an experiment is designed with the goal of assessing the contribution of combin-
ing subset types 1 to 4 in the context of the LOP. The experiment tried to identify
how often, across a set of benchmark problems, the best solutions came from com-
binations of reference solution subsets of various sizes. Since subset types 1 to 4,
respectively, generate solutions from 2 to up to b reference solutions, it is sufficient
to keep a 4-element array for each solution generated during the search. The first
element of the array is the counter corresponding to subset type 1; the second el-
ement corresponds to subset type 2, etc. The array for each solution in the initial
reference set starts as (0,0,0,0), meaning that there are no sources. The array then
counts the number of times the different subset types are used. E.g., suppose that
three solutions in a subset of type 2 with arrays [2,0,0,1], [5,1,0,0] and [0,1,0,0]
are combined. Then a new solution resulting from this combination is accompanied
by the array [7,3,0,1], the sum of the other arrays, plus 1 added to position 2.

In an experiment with 15 input-output instances from LOLIB tracking arrays
are used in [19] to find the percentage of times that each subset type produces so-
lutions that become members of the reference set. The same experiment was also
conducted employing 15 randomly generated instances with 100 objects and with
weights drawn uniformly distributed between 0 and 100. The percentages are shown
in Figure 3.7, where the bars labeled “LOLIB” represent the results from the exper-
iments with the input-output instances and the bars labelled “Random” correspond
to the results from the randomly generated instances.

As noted before, the combination method is an element of scatter search whose
design depends on the problem context. Although it is possible in some cases to
design context independent combination procedures, it is generally more effective
to base the design on specific characteristics of the problem setting.

The combination method for the LOP employs a min-max construction based
on votes. The method scans (from left to right) each solution in a subset (called
the reference permutation), and uses the rule that each reference permutation in the
combination subset votes for its first object that so far has not been included in the
combined permutation (referred to as the “incipient object”). The voting determines
the object to be assigned to the next free position in the combined permutation
(where the incipient object with more votes is assigned). This is a min-max rule in
the sense that, if any object of the reference permutation is chosen other than the
incipient object, then it would increase the deviation between the reference and
the combined permutations. Similarly, if the incipient object were placed later in
the combined permutation than its next available position, this deviation would also
increase. So the rule attempts to minimize the maximum deviation of the combined
solution from the reference solution, subject to the fact that other reference solutions
in the subset are also competing to contribute.
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Fig. 3.7 Performance of
subset types
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This voting scheme can be implemented using a couple of variations that depend
on the way votes are modified:

– The vote of a given reference solution is weighted according to the incipient
object’s position (referred to as the “incipient position”). A smaller incipient
position gets a higher vote. For example, if the object in the first position of
some reference permutation is not assigned to the combined permutation dur-
ing the first 4 assignments, then the vote is weighted more heavily to increase
the chances of having that object assigned to position 5 of the combined per-
mutation. The rule emphasizes the preference of this assignment to one that
introduces an (incipient) object that occurs later in some other reference per-
mutation.

– A bias factor gives more weight to the vote of a reference permutation with
higher quality. Within the current organization of the scatter search implemen-
tation in this tutorial such a factor should only have weak influence because it
is expected that high quality solutions will be strongly represented anyway.

We chose to implement the first variant with a tie-breaking rule based on solution
quality. The tie-breaking rule is used when more than one object receives the same
votes. Then the object with highest weighted vote is selected, where the weight of
a vote is directly proportional to the objective function value of the corresponding
reference solution.

3.6.3 Reference Set Rebuild

In basic scatter search implementations, the reference set is updated by replacing
the reference solution with the worst objective function value with a new trial solu-
tion that has a better objective function value. Since we always assume that RefSet
is ordered, the best solution is x1 and the worst solution is xb. So, when a new
trial solution x is generated as a result of the application of the combination and
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improvement methods, the objective function value of the new trial solution x is
used to determine whether RefSet needs to be updated (it is updated by replacing xb

with x and reordering its elements). If the reference set remains unchanged after the
update (no trial solution improves the worst solution xb in the set), then a rebuild
step is performed.

A reference set {x1,x2, . . . ,xb1 ,xb1+1, . . . ,xb1+b2}, where b = b1 +b2, is partially
rebuilt with the following diversification update when no new trial solutions are
admitted to it:

(1) Solutions xb1+1, . . . ,xb1+b2 are deleted from RefSet.
(2) The diversification generation method is used to construct a set P of new solu-

tions.
(3) We sequentially select b2 solutions from P and move them to RefSet. We apply

the same min-max criterion, which is part of the reference set update method,
as we did when RefSet was constructed the first time.

Figure 3.8 shows a schematic representation of the rebuilding mechanism.
A series of experiments is performed to assess the quality of the SS implementation
in [19] for the LOP. We report here on three of them. The first one is designed to
find the best values for the key parameters of the scatter search algorithm. For this
experiment, again 15 input-output instances and 15 randomly generated instances
with 100 objects (as described above) are used.

The following values were tested during these experiments:

– PSize: 50, 100, 150,
– b: 10, 20, 40,
– (b1,b2): (5,5), (10,10), (5,15), (15,5), (20,20).

Fig. 3.8 RefSet rebuilding
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The experiments revealed that a significant change in the solution quality is due
to the increase in PSize. The experiments were inconclusive about the advantage
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of increasing the size of the reference set (i.e., the value of b) beyond 20 when
PSize is not greater than 100. The experiments showed that the best results are
obtained when b1 = b2. Therefore the key parameters were set as PSize = 100,
b = 20 and b1 = b2 = 10.

The second experiment was performed to learn about the ranks of the reference
solutions that generated the best solutions found in the search process. To this end
it was tracked from which rank or position in the reference set the best solutions
came from. Say e.g., the overall best solution came from combining the 3rd and 5th
best solutions, where one of these came from combining the 1st, 2nd and 6th best
solutions, and the other came from ... etc. This trace would give an idea of which
solutions are important as components of others.

Figure 3.9 shows the results of this experiment. Its interpretation is as follows.
Consider the line associated with rank 1. Then, the count of (almost) 18 in the
first point of this line indicates that rank 1 solutions were generated (approxi-
mately) 18 times from other rank 1 solutions. Similarly, rank 1 solutions were gen-
erated 8 times from rank 2 solutions. The decaying effect exhibited by all the lines
indicate that high quality solutions tend to generate new solutions that are admitted
to the reference set. This is evident by the counts corresponding to rank 1 in the
x-axis. During the search, on average, rank 1 solutions generated 18 rank 1 solu-
tions, 4 rank 10 solutions and 1 rank 20 solution.
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Fig. 3.9 Source ranks of reference solutions

In the third experiment the SS algorithm is compared with some of the state-of-
the-art meta-heuristics for the LOP on the input-output matrices, SGB instances and
random problems A (types I and II). In particular, we report about a comparison
of SS (with its parameters set as specified above) with the method CK of [26] and
the improved GRASP method LS (described in Sect. 3.2). Again, CK-10 denotes
the application of CK from 10 randomly generated initial solutions.
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Table 3.10 shows, for each method, the average percent deviation from optimality
(or from the best known solutions), the number of optimum (or best) solutions, and
the average CPU time (seconds on a Pentium 166 MHz).

Table 3.10 Comparison of best methods

LS CK CK-10 TS SS
Input-output instances
Deviation 0.15 0.15 0.02 0.04 0.01
No. of opt. solutions 11 11 27 33 42
CPU time 0.01 0.10 1.06 0.49 2.35
SGB instances
Deviation 0.31 0.05 0.01 0.01 0.01
No. of opt. solutions 0 0 0 5 18
CPU time 0.10 2.73 31.93 3.03 14.05
Random A type I
Deviation 0.45 0.48 0.29 0.11 0.02
No. of best solutions 0 0 0 5 21
CPU time 0.08 6.90 67.12 12.74 63.82
Random A type II
Deviation 0.02 0.02 0.01 0.00 0.00
No. of best solutions 0 0 0 41 14
CPU time 0.07 4.30 44.51 7.91 43.36

Table 3.10 shows that the local search procedure LS is clearly inferior in terms
of solution quality, although the simplicity of the approach remains appealing. The
performance of LS and CK is very similar within each of the four problem sets, but
their deviation from the optimum (or best) solutions is significantly higher in the
case of the random instances type I. Both LS and CK were started from a randomly
generated solution. TS and SS, on the other hand, are quite robust, as is evident by
the negligible change in the deviation values across problem sets.

It is difficult to measure solution quality in terms of percentaged deviation, since
TS and SS have very small average deviations from optimality. In terms of the num-
ber of optima (or best solutions), TS is very competitive, considering that it is able
to find 33 optima for the input-output instances and 41 best solutions for random
type II problems. The most robust method is SS in terms of number of optima or
best solutions found. However, this is achieved at the expense of higher computation
times.

Finally, we report the results obtained when applying SS for 10 seconds to
the 229 instances in the OPT-I set. Table 3.11 reports the #Instances, Dev and #Opt
statistics in each subset of instances.
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Table 3.11 Scatter Search on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.01 0.00 0.01 0.01 0.00 0.09 0.02
#Opt 42 20 13 62 16 12 165

The results in Table 3.11 clearly show that the Scatter Search methodology ob-
tains high quality solutions on the OPT-I set. The average percentaged deviation
overall is 0.02% and the number of optimum solutions is 165 out of 229 instances.

3.7 Genetic Algorithms

The idea of applying the biological principle of natural evolution to artificial sys-
tems, introduced more than three decades ago, has seen impressive growth in the
past few years [98].

Usually grouped under the term evolutionary algorithms or evolutionary compu-
tation, we find the domains of genetic algorithms, evolution strategies, evolution-
ary programming, and genetic programming. Evolutionary algorithms have been
successfully applied to numerous problems from different domains, including opti-
mization, automatic programming, machine learning, economics, ecology, popula-
tion genetics, studies of evolution and learning, and social systems.

A genetic algorithm is an iterative procedure that consists of a constant size pop-
ulation of individuals, each one represented by a finite string of symbols, known
as the genome, encoding a possible solution in a given problem space. This space,
referred to as the search space, comprises all possible solutions to the problem at
hand. Generally speaking, genetic algorithms are applied to spaces that are too large
to be exhaustively searched (such as those in combinatorial optimization). Solutions
to a problem were originally encoded as binary strings due to certain computational
advantages associated with such encoding. Also the theory about the behavior of
algorithms was based on binary strings. Because in many instances it is impracti-
cal to represent solutions using binary strings, the solution representation has been
extended in recent years to include character based encoding, real-valued encoding,
and tree representations.

The standard genetic algorithm [39] proceeds as follows: an initial population
of individuals is generated at random or heuristically. In every evolutionary step,
denoted as a generation, the individuals in the current population are decoded and
evaluated according to some predefined quality criterion, referred to as their fitness
(evaluated by a fitness function). To form a new population (the next generation),
individuals are selected according to their fitness. Many selection procedures are
currently in use, one of the simplest being Holland’s original fitness-proportionate
selection, where individuals are selected with a probability proportional to their rel-
ative fitness. This ensures that the expected number of times an individual is chosen
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is approximately proportional to its relative performance in the population. Thus,
high fitness (“good”) individuals stand a better chance of “reproducing”, while low
fitness ones are more likely to disappear.

The roulette wheel selection [36] is a common implementation of a proportional
selection mechanism. In this selection process, each individual in the population
is assigned a portion of the wheel proportional to the ratio of its fitness and the
population’s average fitness.

Fig. 3.10 One point crossover
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Tournament and ranking are two other popular selection techniques. Tournament
selection consists of choosing q individuals from a population of n individuals and
selecting the best according to the fitness value to survive into the next generation.
Hence, n tournaments are necessary to build the population for the next generation.
Binary tournaments, for which q = 2, are the most common implementation of this
selection technique. Ranking ignores the fitness values and assigns selection proba-
bilities based exclusively on rank. Genetically inspired operators are used to intro-
duce new individuals into the population, i.e., to generate new points in the search
space. The best known such operators are crossover and mutation. Crossover is
performed, with a given probability (the crossover probability or crossover rate), be-
tween two selected individuals, called parents, by exchanging parts of their genomes
(i.e., encoding) to form two new individuals, called offspring; in its simplest form,
substrings are exchanged after a randomly selected crossover point. This operator
tends to enable the evolutionary process to move toward promising regions of the
search space. Figure 3.10 depicts a one point crossover operation.

The mutation operator is introduced to prevent premature convergence to local
optima by randomly sampling new points in the search space. Mutation entails flip-
ping bits at random, with some (small) probability. Figure 3.11 shows a graphical
representation of the mutation operator.
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Fig. 3.11 Mutation operation
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The principle layout of a genetic algorithm is the following.

Genetic algorithm

(1) Create the initial population P by randomly generating n solutions.
(2) While the stopping condition is not met:

(2.1) Evaluate the solutions in P and update the best solution found if
necessary. (Evaluate)

(2.2) Calculate the probability of surviving based on solution quality.
Evolve P by choosing n solutions according to their probability
of surviving. (Survival of the fittest)

(2.3) Select a fraction pc of the solutions in P to be combined. Selection
is at random with the same probability for each element of P.
The selected elements are randomly paired for combination, with
each pair generating one or more offsprings that are added to P.
(Combine)

(2.4) A fraction pm of the solutions in P is selected for mutation. The
mutated solution is improved and added to P. (Mutate)

(3) Output the best solution in P.

Genetic algorithms are stochastic iterative processes that are not guaranteed to
converge in practice; the termination condition may be specified as some fixed, max-
imal number of generations or as the attainment of an acceptable fitness level for the
best individual. However, contrary to other meta-heuristics, theoretical studies [39],
based on Markov chains and the so-called schema theorem, have been developed to
establish the convergence conditions to a global optimum with respect to the selec-
tion strategies and operators of the method.

In [27] a GA for the LOP based on the following three elements is proposed:

(1) A selection procedure. The n individuals in the current population are sorted
according to their objective value (where the best one comes first). Then, the
probability to choose an individual for combination is proportional to its rank
in this ordering (i.e., the best individual has a selection probability n times the
probability of the worst one).

(2) A crossover operator. Two selected solutions (individuals) are “crossed” or
combined to obtain a new one. Specifically, given u = 〈u1,u2, . . . ,un〉 and
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v = 〈v1,v2, . . . ,vn〉, we first compute the auxiliary array a = (a1,a2, . . . ,an)
where ai = ui + vi. Then, we order the elements in a from the lowest to the
highest: aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(n). The offspring w is constructed as

w = 〈aσ(1),aσ(2), . . . ,aσ(n)〉.

(3) A mutation operator. Regardless of the objective function, a selected individual
is mutated by applying a simple transformation.

Table 3.12 reports the results obtained with our implementation of a classical GA
for the LOP according to the three elements above. This table shows the #Instances,
Dev and #Opt statistics in each subset of instances in the OPT-I set. As in our previ-
ous experiments, we run the method for 10 seconds on each instance.

Table 3.12 Genetic Algorithm on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.38 0.76 21.44 0.75 35.53 1.38 10.04
#Opt 9 0 0 1 0 4 14

The results in Table 3.12 show that the GA obtains relatively low quality results
on the OPT-I instances. It is only able to obtain 14 optimum solutions out of 229
instances. Note that the methods reported in the previous sections obtain a larger
number of optimum solutions (215 in the case of the tabu search).

In [116] a genetic algorithm coupled with a local search procedure is developed
for the LOP. This hybrid method is called memetic algorithm. In the initialization,
a population of individuals is obtained by first generating a set of random permu-
tations (solutions) and then applying a local search procedure to each of them. The
local procedure is based on insertions where the neighborhood is examined in ran-
dom order and the first improving move is performed. This method is very similar
to the local search procedure implemented for the LOP in other meta-heuristics de-
scribed in previous sections.

In each iteration of the algorithm, called generation, new solutions are generated
by applying crossover and mutation to randomly selected solutions in the population
(according to a uniform distribution). The crossover operator takes two individuals
of the current population and combines them into a new individual, while the mu-
tation operator introduces a perturbation into an individual. Local search is applied
again to improve each new solution. The new population is created by merging the
best solutions in the population and the new improved solutions. It is worth men-
tioning that the authors consider four different crossover operators: DPX (similar
distance from parents), CX (classical crossover), OB (order based crossover) and
Rank (computing the average ranking of the elements). In computational experi-
ments CX and OB performed best.
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Finally, if the average of the objective function value of the population does not
change in a certain number of consecutive generations, the population is rebuilt in
a similar way as the Reference Set is rebuilt in scatter search: the best solutions are
kept and the worst solutions are replaced with new ones.

Table 3.13 shows the results obtained with the memetic algorithm [116] on the
OPT-I instances. We run the method for 10 seconds and report the #Instances, Dev
and #Opt statistics in each subset of instances.

Table 3.13 Memetic Algorithm on OPT-I instances

IO SGB RandAII Rand B MB Special Total
#Instances 50 25 25 70 30 29 229

Dev(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#Opt 50 25 25 70 30 28 228

Table 3.13 clearly shows that the MA obtains the best results so far on the OPT-I
instances (it only misses one optimum solution out of 229 instances). Comparing
these results with those obtained with a classical GA method (reported in Table 3.12)
we can conclude that the inclusion of a local search makes an important difference
in a meta-heuristic procedure.

In [70] a similar method, based on combining a classical GA with a local search is
presented. Is is called hybrid genetic algorithm and it is very similar to the method
in [116]. The local search is also based on exchanges and it also applies the CX
and OB crossover operators. However, instead of DPX and Rank, it applies PMX
(partially matched crossover). In their experimentation the authors conclude that GA
without a local search produces low quality results, but its hybridization with local
search is able to match state-of-the-art methods.

We can establish that both scatter search and genetic algorithms belong to the
family of population based meta-heuristics. Moreover, they were both proposed in
the seventies: while Holland [68] introduced genetic algorithms and the notion of
imitating nature and the “survival of the fittest” paradigm, Glover [53] introduced
scatter search as a heuristic for integer programming that expanded on the concept
of surrogate constraints. Both methods are based on maintaining and evolving a pop-
ulation of solutions throughout the search. Although the population based approach
makes SS and GA similar in nature, as described in [85], there are fundamental
differences between these two methodologies:

– The population in genetic algorithms is about one order of magnitude larger
than the reference set in scatter search. A typical GA population size is 100,
while a typical SS reference set size is 10.

– A probabilistic procedure is used to select parents to apply crossover and mu-
tation operators in GAs while the combination method is applied to a predeter-
mined list of subsets of reference solutions in scatter search.

– The evolution of a GA population follows the “survival of the fittest” philoso-
phy, which is implemented using probabilistic rules. In scatter search, changes
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in the reference set are controlled by the deterministic rules in the reference set
update method.

– The use of local search procedures is an integral part of scatter search, while it
was added to GAs in order to create hybrid implementations that would yield
improved outcomes.

– The subset generation method considers combinations of more than two solu-
tions. GAs are typically restricted to combining two solutions.

– Full randomization is the typical mechanism used in GAs to build the initial
population. Diversity in scatter search is achieved with the application of the
diversification generation method, which is designed to balance diversity with
solution quality.

Although GA and SS have contrasting views about searching a solution space,
it is possible to create a hybrid approach without entirely compromising the scatter
search framework. Specifically, if we view the crossover and mutation operators as
an instance of a combination method, it is then straightforward to design a scatter
search procedure that employs genetic operators for combination purposes.

3.8 Empirical Comparison

In this section we compare the meta-heuristics described in the previous sections.
Specifically, we consider the following methods:

– TS: Tabu Search
– MA: Memetic Algorithm
– VNS: Variable Neighbourhood Search
– SA: Simulated Annealing
– SS: Scatter Search
– GRASP: Greedy ramdomized adaptive search procedure
– GA: Genetic Algorithm

We divide our experimentation into two parts according to the classification of
the instances introduced in Chap. 1. Table 3.14 reports the results on the 229 OPT-I
instances and Table 3.15 reports those on the 255 UB-I instances.

In each experiment we compute for each instance and each method the relative
deviation Dev (in percent) between the best solution value obtained with the method
and the optimal value for that instance (in the UB-I instances we do not know the
optimal value and therefore we instead consider the best known value). For each
method, we also report the number of instances #Opt for which an optimum solution
could be found (#Best in the case of UB-I instances). In addition, we calculate the
so-called score statistic [114] associated with each method. For each instance, the
nrank of method M is defined as the number of methods that found a better solution
than the one found by M. In the event of ties, the methods receive the same nrank,
equal to the number of methods strictly better than all of them. The value of Score is
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the sum of the nrank values for all the instances in the experiment. Thus the lower
the Score the better the method.

Table 3.14 Meta-heuristics on OPT-I instances

TS MA VNS SA SS GRASP GA

IO
Dev(%) 0.00 0.00 0.00 0.03 0.01 0.00 0.38
Score 50 50 50 270 90 57 343
#Opt 50 50 50 16 42 49 9
SGB
Dev(%) 0.00 0.00 0.00 0.03 0.00 0.00 0.76
Score 25 25 25 197 47 31 220
#Opt 25 25 25 0 20 23 0
RandAII
Dev(%) 0.00 0.00 0.00 0.08 0.01 0.01 21.44
Score 25 25 47 197 80 116 242
#Opt 25 25 19 0 13 5 0
RandB 70
Dev(%) 0.00 0.00 0.02 0.25 0.01 0.00 0.75
Score 70 70 103 486 115 70 607
#Opt 70 70 64 10 62 70 1
MB
Dev(%) 0.00 0.00 0.00 1.33 0.00 0.00 35.53
Score 30 30 30 240 98 71 295
#Opt 30 30 30 0 16 21 0
Special
Dev(%) 0.02 0.00 0.11 0.39 0.09 0.05 1.38
Score 64 30 66 166 109 84 226
#Opt 15 28 20 6 12 14 4

OPT-I
Dev(%) 0.00 0.00 0.02 0.35 0.02 0.01 10.04
#Opt 215 228 208 32 165 182 14

Table 3.14 shows that most of the meta-heuristics considered are able to obtain all
the optimal solutions within the time limit of 10 seconds considered (they actually
obtain it in around 1 second). We therefore conclude that instances in OPT-I are easy
for the best meta-heuristics and therefore not adequate to compare them.

In our second experiment we target the UBI-instances for which the optimum is
not known but we have an upper bound for comparison. We therefore compute for
each instance and each method the relative deviation D.Best (in percent) between
the best solution value Value obtained with the method and the best known value
BestValue as well as the relative deviation D.UB (in percent) between Value and the
upper bound. For each method, we also report the number of instances #Best for
which the value of the solution is equal to BestValue. As in the previous experiment
we calculate the score statistic. Table 3.15 reports the values of these four statistics
on the UB-I instances when running the 7 meta-heuristics for 10 seconds.



84 3 Meta-Heuristics

Table 3.15 Meta-heuristics on UB-I instances

TS MA VNS SA SS GRASP GA

RandAI
D.Best 0.12 0.05 0.47 1.77 0.26 0.42 10.59
D.UB 17.81 17.75 18.10 18.88 17.92 18.05 26.28
Score 201 105 482 641 326 461 936
#Best 5 33 0 0 1 0 0
RandAII
D.Best 0.01 0.00 0.01 0.07 0.02 0.04 35.97
D.UB 0.38 0.38 0.39 0.44 0.40 0.41 36.21
Score 63 25 74 175 109 151 191
#Best 3 39 8 0 0 0 0
RandB
D.Best 0.00 0.00 0.00 0.31 0.04 0.00 0.91
D.UB 3.20 3.20 3.26 3.51 3.24 3.20 4.08
Score 20 20 67 160 50 20 175
#Best 20 20 11 0 11 20 0
XLOLIB
D.Best 0.62 0.12 0.42 0.53 0.68 1.14 23.99
D.UB 3.21 2.72 3.01 3.13 3.27 3.72 25.96
Score 307 87 200 266 320 460 758
#Best 0 2 0 0 0 0 0
Special
D.Best 0.43 0.03 0.50 2.05 0.32 0.65 9.27
D.UB 9.61 9.26 9.67 11.04 9.52 9.81 17.35
Score 21 7 27 57 17 28 63
#Best 3 4 2 0 3 3 0

UB-I
D.Best 0.23 0.04 0.28 0.95 0.26 0.45 16.15
D.UB 6.84 6.66 6.89 7.40 6.87 7.04 21.98
#Best 31 98 21 0 17 23 0

The results in Table 3.15 show that MA is able to obtain the largest number of best
solutions (98 of a total of 255 instances) in short runs (10 seconds). No other method
is able to obtain more than 31 best solutions, which clearly indicates the superiority
of MA. On the other hand, considering average percentage deviations with respect to
the best solutions, the differences among the methods appear to be very small. MA
presents on average a deviation of 0.04% while TS, SS and VNS present averages
deviations of 0.23% 0.26% and 0.28%, respectively. This indicates that although
these methods are not able to match the best solution values, they obtain solutions
with values very close to the best.

According to the differences among methods observed in Table 3.15, where the
deviations w.r.t. the best solution known range from 0.04% to 17.72%, we can con-
clude that the instances in set UB-I are more difficult to solve than those in OPT-I
(where the deviations range from 0.00% to 15.31%).



Chapter 4
Branch-and-Bound

Abstract We now turn to the discussion of how to solve the linear ordering problem
to (proven) optimality. In this chapter we start with the branch-and-bound method
which is a general procedure for solving combinatorial optimization problems. In
the subsequent chapters this approach will be realized in a special way leading to
the so-called branch-and-cut method. There are further possibilities for solving the
LOP exactly, e.g. by formulating it as dynamic program or as quadratic assignment
problem, but these approaches did not lead to the implementation of practical algo-
rithms and we will not elaborate on them here.

4.1 Introduction

Combinatorial optimization deals with a special type of mathematical optimization
problem with the property that the set of feasible solutions is finite. In its most
general form such a problem is defined on a finite set I (set of feasible solutions)
and a function f : I → R has to be optimized. Since the set of feasible solutions I
is finite, the problem could in principle be solved by enumeration. However, the
number of feasible solutions can be very large, thus prohibiting this approach in
general.

Branch-and-bound tries to deal with these many feasible solutions in a systematic
way. Basically, it is a divide-and-conquer approach that tries to solve the original
problem by splitting it into smaller problems for which upper and lower bounds
are computed and may be employed to exclude large parts of the solution set from
further consideration.

Of course, the general definition of a combinatorial optimization problem given
above is of no use unless we have a reasonable characterization of I and an algo-
rithmic way of evaluating the objective function.

For many problems the objective function can be defined in a simple way and
they can be formulated as follows. (2E denotes the power set of E .)
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86 4 Branch-and-Bound

Definition 4.1. Let the finite set E = {e1,e2 . . . ,en} (ground set) and I ⊆ 2E (set
of feasible solutions) be given. Assume that there is a function c : E → R (ob-
jective function) such that the value of a feasible solution F ∈ I is given as
c(F) = ∑e∈F c(e). The linear combinatorial optimization problem (E,I ,c) con-
sists of finding F ∈ I such that c(F) is as large as possible.

The LOP fits into this scheme by setting E = An, I = {T ⊂ An | T is an acyclic
tournament}, and c((i, j)) = ci j. By complementing the function c we can also deal

with minimization problems.
The crucial part of a successful branch-and-bound algorithm is the computation

of upper bounds for subproblems. Here one uses the fundamental concept of relax-
ation.

Definition 4.2. Suppose that two combinatorial problems (E,I , f ), (E ′,I ′, f ′)
and an injective function ϕ : E → E ′ are given. The problem (E ′,I ′, f ′) is a re-
laxation of (E,I , f ), if ϕ(F) ∈ I ′ and f (F) = f ′(ϕ(F)), for all F ∈ I .

(More generally one can define that a problem max{ f (x) | x ∈ T} is a relaxation
of the problem max{c(x) | x ∈ X} if X ⊆ T and f (x) ≥ c(x), for all x ∈ X .)

Hence a solution of the relaxed problem gives an upper bound on the optimum
objective function value of the problem it was derived from. The tighter the relax-
ation, the better this bound will be. Of course, a relaxation is only useful if it can be
treated efficiently by optimization algorithms.

Branch-and-bound can be outlined as follows.

Branch-and-Bound Algorithm

(1) Initialize the list of active subproblems with the original problem.
(2) If the list of active subproblems is empty, Stop (the best feasible

solution found so far is optimal).
(3) Otherwise, choose some subproblem from the list of active problems

and “solve” it as follows:

(3.1) Find an optimal solution for the subproblem, or
(3.2) prove that the subproblem has no feasible solution, or
(3.3) prove that there is no feasible solution for the subproblem that has

larger objective value than the best feasible solution that is already
known, or

(3.4) split the subproblem into further subproblems and add them to the
list of active problems.

(4) Goto step (2).

The splitting of problems into subproblems can be represented by the so-called
branch-and-bound tree, the root of which represents the original problem.

It is crucial for the efficiency of a branch-and-bound algorithm that the branch-
and-bound tree does not grow too large. Already, if problems are only split into
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two subproblems, the number of subproblems grows exponentially fast. Therefore
subproblems have to be solved if possible by alternatives (3.1), (3.2) or (3.3). Al-
ternative (3.1) rarely occurs, and relaxations are important for (3.2) and (3.3). With
respect to (3.2), if a relaxation of the subproblem is already infeasible, then the sub-
problem itself is also infeasible. To be able to fathom the subproblem using (3.3),
good lower and upper bounds must be available. Lower bounds are obtained by
finding feasible solutions. These are computed either by solving some subproblem
to optimality or more often by determining good feasible solutions using one of the
many heuristics we have discussed in the previous chapters. Upper bounds can be
computed by using relaxations where in principle any type of relaxation can be em-
ployed. It is clear that the stronger the bounds obtained by a relaxation are, the better
the performance of the algorithm will be. Without a suitable relaxation branch-and-
bound tends to completely enumerate the set of feasible solutions and thus becomes
unsuitable for practical computations.

Besides bounding, the second component of this approach is branching which
denotes the splitting of the current subproblem into a collection of new subprob-
lems whose union of feasible solutions contains all feasible solutions of the current
subproblem. For 0/1-problems, the simplest branching rule consists of defining two
new subproblems: in the first subproblem some chosen variable is required to have
the value 1 in every feasible solution and in the second one to have the value 0. Other
branching strategies are possible. There are also several heuristics for choosing the
next subproblem to be considered.

4.2 Branch-and-Bound with Partial Orderings

One of the earliest branch-and-bound algorithms for the LOP was proposed by
de Cani [23] in 1972. He encountered the linear ordering problem when studying
procedures to obtain a ranking of n objects on the basis of a number of pairwise
comparisons. The algorithm successively constructs partial rankings of more and
more objects and tries to prove by upper bounds that some partial rankings need not
be extended for finding optimum solutions.

An upper bound for the optimum solution value of a LOP is clearly given by

z0 =
n−1

∑
i=1

n

∑
j=i+1

max{ci j,c ji}.

If we require that object i is to be ranked before object j then an upper bound is
given by

z(i, j) = z0 −max{ci j,c ji}+ ci j.

Partial rankings are built up, and each branching operation in the tree corresponds
to inserting a further object at some position in the partial ranking. For each partial
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ranking an upper bound for the best possible extension to a complete ranking can be
calculated.

Suppose that an ordering of k objects (w.l.o.g. objects 1, . . . ,k), say 〈1,2, . . . ,k〉,
is given. If we insert object k + 1 at position l, 1 ≤ l ≤ k + 1, of this ordering then,
as an upper bound on the objective funtion value for the linear orderings containing
the respective partial ordering of k + 1 objects, we get

z(1, . . . , l −1,k + 1, l, l + 1, . . . ,k) =

z(1, . . . ,k)+
l−1

∑
r=1

cr,k+1 +
k

∑
r=l

ck+1,r −
k

∑
r=1

max{ck+1,r,cr,k+1}.

We start the branch-and-bound algorithm by arbitrarily choosing two of the objects,
say i and j, and calculate z(i, j) and z( j, i). We generate two nodes, the first one cor-
responding to the partial ordering ranking i before j, and the second one to ranking j
before i. Then we proceed at the node with the larger upper bound value. Suppose
that we are at a node of level k, 1 < k < n, of the tree (assuming that the root node is
on level 1). Then k objects are already partially ordered. From the remaining n− k
objects we select one (according to some rule). The k + 1 upper bounds obtained
by inserting the new object at each possible position are calculated, and we proceed
in that branch of the tree corresponding to the largest of these values. At level n a
complete ranking of the objects is found.

The upper bounds are exploited in the usual way for backtracking and excluding
parts of the tree from further consideration.

Figure 4.1 visualizes the development of the branch-and-bound tree with this
approach. Nodes are labeled with partial ordering relations. Note that it is not a
binary tree, the number of branches increases with the level.

< k, j, i > < j, k, i > < j, i, k >

< j, i >

< i, j, k >< i, k, j >< k, i, j >

< i, j >

<>

Fig. 4.1 Construction of the branch-and-bound tree
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4.3 Lexicographic Search

Another one of the early methods for the solution of linear ordering problems is the
lexicographic search algorithm proposed in 1968 by Korte and Oberhofer [82, 83].
It is actually not a branch-and-bound algorithm and can better be characterized as an
enumeration scheme. Korte and Oberhofer were interested not only in an optimum
triangulation of an input-output matrix, but also in the number of optima and the
number of so-called relatively optimum solutions.

Definition 4.3. A matrix C = (ci j) satisfies Helmstädter’s conditions if

(i)
k

∑
l=i

cil ≥
k

∑
l=i

cli, for all i < k, and

(ii)
i

∑
l=k

cli ≥
i

∑
l=k

cil , for all k < i.

Such matrices are also called relatively optimum.

These conditions were given by Helmstädter [65]. Of course, every optimally
triangulated matrix satisfies Helmstädter’s conditions. If one of the conditions is vi-
olated, then a simple reordering can improve the objective function. If, for example,
condition (i) is violated for some i and k, then it would be profitable to change the
subsequence 〈i, i+ 1, . . . ,k〉 to 〈i+ 1, . . . ,k, i〉.

The lexicographic search algorithm enumerates all permutations of the n objects
by fixing at level k of the enumeration tree the k-th position of the permutations.
More precisely, if a node at level k is generated, then the first k positions σ(1), . . . ,
σ(k) are fixed. Based on this fixing, several of Helmstädter’s conditions can be
checked. If one is violated then no relatively optimum solution has σ(1), . . . ,σ(k)
in the first k positions. The node can be ignored, and a backtracking operation is
performed.

Figure 4.2 shows part of the enumeration tree for 4 objects. Nodes at level k show
the fixings of the first k positions. (Here the root node is at level 0.)

Since there is no bounding according to objective function values eventually all
relatively optimum solutions are enumerated, and the best ones among them are op-
timum. Korte and Oberhofer applied their algorithm to get information about the
distribution of relatively and absolutely optimum solutions for real-world and ran-
dom problems.

4.4 Extension of Lexicographic Search to Branch-and-Bound

Possiblities for the derivation of bounds are already mentioned in [83], although
not implemented. Recall that we may w.l.o.g. assume that all matrix entries ci j are
nonnegative.
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< 1, 4, 3 >< 1, 4, 2 >< 1, 3, 4 >< 1, 3, 2 >< 1, 2, 4 >< 1, 2, 3 >

< 1, 2 > < 1, 3 > < 1, 4 >

< 1 > < 2 > < 3 > < 4 >

<>

Fig. 4.2 Lexicographic search tree

Suppose that we have fixed the first k positions σ(1), . . . ,σ(k) of a permutation.
Let I = {σ(1), . . . ,σ(k)} and J = {1, . . . ,n} \ I. If σ is extended to some complete
permutation of {1, . . . ,n} we have

n−1

∑
i=1

n

∑
j=i+1

cσ(i)σ( j) =
k−1

∑
i=1

k

∑
j=i+1

cσ(i)σ( j) +∑
i∈I

∑
j∈J

ci j +
n−1

∑
i=k+1

n

∑
j=i+1

cσ(i)σ( j) .

The first two terms on the right hand side of this equation do not depend on the
permutation of J. An upper bound for the third term (which amounts to determining
an upper bound for the triangulation problem with respect to the ground set J) yields
an upper bound for all possible extensions.

Kaas [75] developed a lexicographic branch-and-bound scheme based on the al-
gorithm of [83]. He also applies Helmstädter’s conditions to rule out solutions which
are not relatively optimum, but in addition uses this equation to compute upper
bounds (heuristics are used for bounding the third term from above).

Note that the sum of the subdiagonal entries of the matrix obtained by permuting
the rows and columns according to σ is calculated by

n−1

∑
i=1

n

∑
j=i+1

cσ( j)σ(i) =
k−1

∑
i=1

k

∑
j=i+1

cσ( j)σ(i) +∑
i∈I

∑
j∈J

c ji +
n−1

∑
i=k+1

n

∑
j=i+1

cσ( j)σ(i) .

The sum of the first two right-hand side terms gives a lower bound on the sum of
the subdiagonal entries of any extension and can thus be used to compute an upper
bound on the sum of the superdiagonal entries.

There are more authors who have formulated a branch-and-bound method for
this problem (e.g. [64, 87, 108]) based on the same ideas as outlined above.
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4.5 Branch-and-Bound with Lagrangian Relaxation

This is a more recent branch-and-bound approach of Charon and Hudry [29] where
Lagrangian relaxation techniques are used for bound computations.

Define 0/1 variables xi j, 1 ≤ i, j ≤ n, i �= j, where xi j = 1 if i is ranked before j,
and xi j = 0 otherwise. Then the LOP can be formulated as the linear 0/1 program

max ∑
(i, j)∈An

ci jxi j

xi j + x jk + xki ≤ 2, for all distinct nodes i, j, k ∈Vn,

xi j + x ji = 1, for 1 ≤ i < j ≤ n,

xi j ∈ {0,1}, for 1 ≤ i, j ≤ n, i �= j.

This is the canonical IP formulation of the LOP and we will discuss it in more detail
in the next chapters.

Lagrangian relaxation removes constraints from the original problem and penal-
izes their violation in a modified objective function.

Let T be the set of all triples (r,s,t) of three distinct nodes where r < s and r < t.
The following Lagrangian relaxation is used in [29] for a given vector μ ≥ 0 of
Lagrangian multipliers.

L(μ) = max ∑
(i, j)∈An

ci jxi j + ∑
(r,s,t)∈T

(2− xrs− xst − xtr)μrst

xi j + x ji = 1, for 1 ≤ i < j ≤ n,

xi j ∈ {0,1}, for 1 ≤ i, j ≤ n, i �= j.

This problem can be solved trivially (more details below) and obviously gives an
upper bound on the optimum objective function value of the LOP. Note that this
relaxation does not exactly meet the requirements of Definition 4.2. Here we have
f (F) ≤ f ′(ϕ(F)), but the upper bound property holds as well.

The best such bound can be found by solving the Lagrangian dual problem

min
μ

L(μ).

To this end one uses so-called subgradient or bundle methods which are able to find
good approximations of the best bound. In theory, they could compute this bound
exactly, but then a very slow convergence of the step sizes of the subgradient algo-
rithm to 0 is required. In practice, step sizes are decreased faster and the optimum
bound is therefore not met exactly.

With the notation (i, j) ∈ (r,s,t) if (i, j) is one of the edges (r,s), (s,t) or (t,r)
the objective function for computing L(μ) can be rewritten as
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max ∑
(i, j)∈An

ci jxi j + ∑
(i, j,k)∈T

(2− xi j − x jk − xki)μi jk

=max ∑
(i, j)∈An

(
ci j − ∑

(r,s,t)∈T,(i, j)∈(r,s,t)
μrst

)
xi j + 2 ∑

(r,s,t)∈T

μrst

=max ∑
(i, j)∈An

di jxi j −C,

where di j is set according to the second-to-last line and C is constant. In this form it
is clear that finding the optimum in 0/1 variables with only xi j +x ji = 1 as constraints
is trivial.

We now describe a prototypical realization of a subgradient approach for approx-
imating minμ L(μ).

LOPSubgradient(Dn, c)

(1) Let τ be an initial step size and 0.9 ≤ α < 1 a decrement factor.
(2) Set t1 = τ , μ0

rst = 0 for every (r,s,t) ∈ T and k = 1.
(3) While tk > ε:

(3.1) Compute L(μ) by setting xi j = 1, if di j > d ji, and xi j = 0, other-
wise, for i < j, and set x ji = 1− xi j.

(3.2) Define dk by setting dk
rst = 2− xrs− xst − xtr, for (r,s,t) ∈ T .

(3.3) Set μk+1
rst = μk

rst + tk×dk
rst , for every (r,s,t) ∈ T . If μk+1

rst < 0, then
set μk+1

rst = 0.
(3.4) Set tk+1 = αtk and increment k.

(4) Return the best bound found.

We do not want to introduce the background of nondifferentiable optimization here.
We just note that dk is a so-called subgradient and that with α very close to 1
and ε small, minμ L(μ) is usually very well approximated at the expense of, how-
ever, considerable running time. The decrease of the bounds is not monotone, and
therefore in (4) the best bound found is returned. Bundle methods extend this princi-
ple and compute combinations of subgradients of several iterations for the direction
of the next step. In practice, they are much more powerful.

We illustrate this (simple) subgradient algorithm with two applications for find-
ing an upper bound for the LOLIB instance be75np. In the first run (Fig. 4.3) α is
set to 0.999999, while in the second run (Fig. 4.4) it is set to 0.99. The figures show
the development of the upper bounds for the first 100 iterations. The first run termi-
nates after 2 hours giving the upper bound 790989 (which as will be seen in the next
chapter is the minimum of L(μ)), the second run terminates after only 5 seconds
giving the upper bound 799467. The decrease of the upper bound is fast in the first
iterations. After 100 iterations we have bound 800077 in the first run and 801963 in
the second run, but to reach bounds near the optimum substantial running time has
to be invested.
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Fig. 4.3 Simple subgradient method with slow convergence
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Fig. 4.4 Simple subgradient method with fast convergence

This is just a simple example for the general behaviour of subgradient meth-
ods. In [29] a variant that finds a good compromise between fairly fast convergence
and good quality of bounds is developed. With this branch-and-bound method, in-
stances of moderate sizes can be solved successfully. As the heuristic for finding
good linear orderings, the meta-heuristic noising method is used which was de-
scribed in Chap. 3.

The algorithm is publically available [29] and we have applied it (with standard
parameter settings) to a set of random benchmark instances with n = 40. Table 4.1
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Table 4.1 Branch-and-bound with Lagrangian relaxation

Problem Optimum #nodes CPU
p40-01 29457 4261 0:06
p40-02 27482 444285 6:13
p40-03 28061 29660 0:31
p40-04 28740 267766 3:51
p40-05 27450 639401 9:26
p40-06 29164 79270 1:09
p40-07 28379 226125 3:27
p40-08 28267 103477 1:31
p40-09 30578 431607 5:47
p40-10 31737 86698 0:59
p40-11 30658 333902 4:16
p40-12 30986 96651 1:27
p40-13 33903 13423 0:09
p40-14 34078 73839 0:57
p40-15 34659 396839 4:45
p40-16 36044 9295 0:07
p40-17 38201 3040 0:04
p40-18 37562 9669 0:07
p40-19 38956 9857 0:07
p40-20 39658 13067 0:09

shows the number of branch-and-bound nodes and the CPU time on a standard PC.
Large variations can be observed which are depending on the gap between the La-
grangian bound and optimum value. We will compare these results with a different
bounding approach based on linear programming in the next chapter.



Chapter 5
Branch-and-Cut

Abstract This chapter focuses on the approach for solving the LOP to optimality
which can currently be seen as the most successful one. It is a branch-and-bound
algorithm, where the upper bounds are computed using linear programming relax-
ations.

5.1 Integer Programming

Linear programming is concerned with the problem of maximizing a linear objective
function subject to finitely many linear constraints. Given a matrix A ∈ R(m,n) and
vectors b ∈ Rm, c ∈ Rn, the task is to find a vector x� ∈ Rn with

cT x� = max{cT x | Ax ≤ b}.

Such a problem is called a linear programming problem or linear program (LP).
Note that a minimization problem can be transformed to a maximization problem
by complementing the objective function. Equations can be expressed as pairs of
inequalities, and bounds on variables can be included into Ax≤ b. The set of feasible
solutions {x | Ax ≤ b} is a polyhedron and if the problem has a finite optimum
solution then it has an optimum vertex solution. We do not go into more details on
polyhedra here. They will be a central topic of Chap. 6.

Very effective algorithms for solving linear programming problems have been
developed and very large instances can be treated in reasonable time. Important
methods are the primal and dual simplex algorithms (as vertex following methods)
and the barrier method (as an interior-point method).

For combinatorial optimization, linear programming models are not sufficient.
Usually, some or all of the variables have to take integer values. If some vari-
ables have to be integral, we speak about a mixed-integer linear programming
problem. If all variables are required to be integer, then we have an integer linear
program; if all variables have to take values 0 or 1, the problem is called linear 0/1

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 5,
c© Springer-Verlag Berlin Heidelberg 2011
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programming problem (0/1-IP). This type of problem is an important one in com-
binatorial optimization. There has been significant progress in the development of
algorithms for solving mixed-integer programming problems. But still, problems
with several hundreds of variables and constraints can be difficult depending on
their specific structure.

Usually, a linear combinatorial optimization problem (E,I ,c) can easily be
turned into a linear 0/1 programming problem. First, we associate with every set
F ⊆ E its characteristic vector χF by setting

χF
e =

{
1, if e ∈ F,

0, otherwise.

Then equations and inequalities have to be found which are satisfied by all char-
acteristic vectors corresponding to the feasible sets and are violated by all 0/1 vec-
tors for sets F ⊆ E with F �∈ I . In most cases, the combinatorial properties dis-
criminating feasible solutions can be expressed in a straighforward way by linear
constraints.

The LOP can be formulated as 0/1-IP as follows. We use 0/1 variables xi j, for
(i, j) ∈ An, stating whether arc (i, j) is present in the tournament or not. The basic
observation is that in a tournament exactly one of the arcs (i, j) and ( j, i) is present
for every pair of nodes i and j, and that a tournament is acyclic if and only if it does
not contain any dicycle of length 3.

The respective 0/1-IP is

max ∑
(i, j)∈An

ci jxi j

xi j + x ji = 1, for all i, j ∈Vn, i < j,

xi j + x jk + xki ≤ 2, for all i, j,k ∈Vn, i < j, i < k, j �= k,

xi j ∈ {0,1}, for all i, j ∈Vn.

This 0/1-IP can be considered as the canonical IP formulation of the problem. Note
that the

(n
2

)
equations could actually be simply removed by substituting every vari-

able xi j, j > i, by 1− x ji. More problematical is the large number 2
(n

3

)
of 3-dicycle

constraints.
Obviously, if we replace the constraints “xi j ∈ {0,1}” by “0 ≤ xi j ≤ 1” then we

obtain a linear programming problem, the canonical LP relaxation. The optimum
objective function value of this relaxation gives an upper bound on the solution value
of the LOP.

If, by chance, the optimum solution is integral then the characteristic vector of an
optimum acyclic tournament is found. If not, then together with heuristics providing
good feasible solutions, we can immediately design a branch-and-bound algorithm
for solving the LOP to optimality.

In this branch-and-bound approach problems are split into subproblems by fixing
one selected variable either to 1 or to 0. During its execution the algorithm keeps a
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list K of active problems and the value L of the best feasible solution x found so
far.

LOPBranch-and-Bound

(0) Run a heuristic to provide a feasible ordering x with value L.
(1) Let problem P0 be the canonical IP formulation. Set K = {P0} and

k = 0.
(2) If K = /0, Stop (The ordering x is optimal with value L).
(3) Select a problem Pj ∈ K .
(4) Solve the linear programming relaxation LP j of Pj. If LP j is infeasi-

ble then set c∗ = −∞, otherwise let x∗ be its optimum solution with
value c∗. Distinguish the following three cases:

(4.1) If c∗ ≤ L, then remove Pj from K .
(4.2) If c∗ > L and x∗i is integral, then set L = c∗, x = x∗ and remove Pj

from K .
(4.3) If c∗ > L and x∗i is not integral, then select an arc (i, j) ∈ An with

fractional value x∗i j. Remove Pj from K and add the new prob-
lems Pk+1 and Pk+2 to K , where

Pk+1 = Pj with additional constraint xi j = 1,
Pk+2 = Pj with additional constraint xi j = 0.

Set k = k + 2.

(5) Goto (2).

Clearly, this algorithm solves the LOP in finite time since in the worst case all
possible feasible solutions would be enumerated. In principle, this approach actually
splits a problem by putting bounds on a single variable and can also be used for
general linear 0/1 or mixed integer programs. It was originally formulated for the
latter case by Dakin [38].

The above enumeration scheme essentially fixes i ≺ j in one branch and j ≺ i in
the other one. Of course, other schemes could also be used in this framework.

5.2 Cutting Plane Algorithms

If the LOP is formulated as 0/1-IP as above, instances of moderate size, say up to
n = 30, can be solved with a comemrcial MIP solver in several hours. The solution
time is highly problem dependent, in particular depending on the strength of the LP
relaxation. For easy instances, the relaxation can sometimes even already provide
an optimum solution. For difficult instances, however, the LP bound can be more
than 4% off the optimum value and a large number of branch-and-bound nodes is
generated. It is the main purpose of this and the following chapter to exhibit ways
of overcoming these difficulties.
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A first observation is that the number of dicycle constraints 2
(n

3

)
is fairly large

(already 323,400 for n = 100). It constitutes a major drawback if such large LPs
have to be solved at every node of the branch-and-bound tree. On the other hand,
only few of these constraints are binding at the optimum vertex and most of them are
(depending on the objective function) actually not needed at all. The cutting plane
approach makes use of this fact and tries to incorporate only important inequalities.

Suppose that the LP max{cT x | Ax ≤ b,0 ≤ x ≤ 1} with very many constraints
has to be solved. The cutting plane approach solves such an LP as follows.

Cutting plane algorithm

(1) Initialize P as linear program max{cT x | 0 ≤ x ≤ 1}.
(2) Solve problem P and obtain an optimum solution x∗.
(3) If Ax∗ ≤ b, Stop (x∗ solves max{cT x | Ax ≤ b,0 ≤ x ≤ 1}).
(4) Otherwise, choose an inequality Ai.x ≤ bi from Ax ≤ b such that

Ai.x∗ > bi. Augment P by this inequality and goto (2).

The term “cutting plane method” was chosen because in every iteration the cur-
rent optimum point is cut off since it is infeasible for the real problem.

In step (4) also more than one violated inequality can be added. In practical
computations this is highly advisable. It is also useful to eliminate constraints from
the LP which are not binding at the current optimum. For the reoptimization in (2)
after the addition of constraints, the dual simplex algorithm is most useful because
it can be started immediately since dual feasibility is still given.

As an example we illustrate the algorithm when solving the LP relaxation of
the LOLIB benchmark problem be75np (here n = 75). Table 5.1 shows for every
reoptimization the number of inequalities added, removed resp., the current number
of constraints in the LP and the current optimum value. The bound given by the
relaxation is 790989 (the optimum linear ordering has value 790966). Instead of the
possible 39200 only 1781 3-dicycle inequalites were generated.

Table 5.1 Solution of be75np with cutting planes

#added ineq. #removed ineq. #current ineq. Objective value
0 0 0 816602

200 0 200 810126
200 33 367 806134
200 33 534 802379
200 70 664 800896
200 55 809 795674
200 51 958 794413
200 83 1075 791815
200 48 1227 791196
126 71 1282 791036
27 35 1274 790990
28 17 1285 790989
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Further issues such as how to select inequalities to be added, will be addressed
later. Note the fact that, actually, in steps (3) and (4), it is not required to have an
explicit list of the constraints but just to be able to answer the question of whether
x∗ is feasible and, if not, to provide a violated inequality. Furthermore, and this is
what makes this approach even more powerful: in principle, we do not even have to
know the system of inequalities explicitly. We want to make this more precise.

Let max{cT x | Ax ≤ b,x ∈ {0,1}n} be a formulation of a combinatorial optimiza-
tion problem as 0/1-IP. From polyhedral theory, it is known that there exists a finite
system Bx ≤ d such that the vertices of the polyhedron {x | Bx ≤ d} are exactly the
feasible 0/1 solutions of Ax ≤ b. Therefore, if the system is known, then the LOP
can be solved as the linear programming problem max{cT x | Bx ≤ d}.

An inequality f T x≤ f0 is said to be valid with respect to {x |Ax≤ b, x∈ {0,1}n}
if f x ≤ f0 for all x ∈ {x | Ax ≤ b, x ∈ {0,1}n}.

If, in the cutting plane algorithm, we can find violated valid inequalities w.r.t. the
set {x | Ax≤ b, x ∈ {0,1}n} as long as the current point is not feasible then we could
in principle not only solve the relaxation but also the combinatorial optimization
problem if we have access to all necessary inequalities from the system Bx ≤ d.
This algorithm would be correct under the assumptions that all occuring LPs can be
solved, that a cutting plane can always be generated, and that it terminates after a
finite number of iterations.

Therefore, at the core of applying linear programming to combinatorial optimiza-
tion we have the following problem.

Separation Problem
Given a description {x | Ax ≤ b, x ∈ {0,1}n} of a combinatorial optimiza-
tion problem and a vector y∗, either prove that y∗ is feasible or find an
inequality which is valid for {x | Ax ≤ b, x ∈ {0,1}n}, but violated by y∗.

An algorithm which solves the separation problem is called an exact separation
algorithm.

Usually, we have the following situation when attempting to design a cutting
plane algorithm for a combinatorial optimization problem.

– A linear characterization {x | Ax ≤ b, x ∈ {0,1}n} is available and the feasibil-
ity test just amounts to checking whether x∗ is binary.

– The system Bx ≤ d is not known, but some partial information is available and
there are types (called classes) of inequalities which have similar structure or
logic behind them. Classes may (and will) contain many inequalities (usually
at least expontially many in n).

– For some of these classes it can be checked in polynomial time whether all
inequalities of the class are satisfied and, if not, a cutting plane can be provided.
These are classes of inequalities with exact separation algorithms.

– As can be expected for NP-hard problems there will be classes of inequalities
the separation of which is NP-complete or where no good separation algorithm
is known. In such a case we have to be content with separation heuristics. But,
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also if exact separation is possible, heuristics may be employed in addition to
save computing time.

It might seem that cutting planes offer a chance to escape the inherent complexity
of NP-hard combinatorial optimization problems. In this context the following result
(see e.g. [61]) is of major importance.

Theorem 5.1. Let P = {x | Ax ≤ b} be a rational polyhedron such that the encoding
length of every inequality in Ax ≤ b is at most ϕ .

Then for every vector c ∈ Qn the optimization problem max{cT x | Ax ≤ b} can be
solved in polynomial time (in ϕ and the encoding length of c) if and only if for every
vector y ∈ Qn the separation problem with respect to P can be solved in polynomial
time (in ϕ and the encoding length of y).

This theorem states the equivalence of optimization and separation. Therefore,
LP relaxations with polynomial separation algorithms can be solved in polynomial
time. The number of inequalities is not relevant as long as cutting planes can be
generated in polynomial time. It should be noted that this result is only true if the
respective linear programs are solved using the ellipsoid method. Since this method
is not practicable, the simplex algorithm is used in practice. No polynomial ver-
sion of the simplex method could be formulated so far but, in any case, it is a fast
algorithm for practical computations.

We now have a theoretical framework for solving combinatorial optimization
problems using linear programming and branch-and-bound. The remaining sections
of this chapter will be devoted to practical issues of the implementation and pos-
sibilities to add further cuts which are not contained in the LP relaxation and not
known beforehand.

5.3 Branch-and-Cut with 3-Dicycle Cuts

A branch-and-bound algorithm using the canonical LP relaxation for computing
upper bounds can, in principle, be used for solving the LOP to optimality. An inter-
esting theoretical result should be mentioned here. Recall the Lagrangian relaxation
with 3-dicycle inequalities of Chap. 4:

L(μ) = max ∑
(i, j)∈An

ci jxi j + ∑
(r,s,t)∈T

(2− xrs− xst − xtr)μrst

xi j + x ji = 1, for 1 ≤ i < j ≤ n,

xi j ∈ {0,1}, for 1 ≤ i, j ≤ n, i �= j.

Because the constraints of the Lagrangian problem define a polyhedron with 0/1
vertices only, it can be shown that the optimum value minμ≥0 L(μ) is equal to the
optimum value of the canonical LP relaxation of the LOP.
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We now address the question of how to solve the LP relaxation most effectively
and we will see that its exact value can be obtained much faster than the approximate
value using the Lagrangian approach.

5.3.1 Solving the 3-Diycle Relaxation

The 3-dicycle relaxation to be solved at every node of the tree is

max ∑
(i, j)∈An

ci jxi j

xi j + x jk + xki ≤ 2, for all distinct nodes i, j, k ∈Vn,

xi j + x ji = 1, for 1 ≤ i < j ≤ n,

xi j ≥ 0, for 1 ≤ i, j ≤ n, i �= j.

In the branching process some of the variables will be fixed.
When looking for violated 3-dicycle inequalities it makes no sense to look for

some sophisticated procedure: it is appropriate to just enumerate all of them and
check for violation. But there are some possibilities to speed up the solution process.

An important observation is that it is helpful to try to generate “deeper” cuts. To
this end we set z as a convex combination of the current LP optimum x∗ and the
currently best known feasible solution x and first try to cut off z. Only if z cannot
be cut off, then 3-dicycle inequalities separating x∗ are searched for. Experiments
showed that the setting z = 1

3 x∗ + 2
3 x leads to good results and usually reduces the

overall CPU time by about 60%.
Furthermore, it is not necessary to add all violated inequalities in every phase,

but to limit their number. Significant progress in the first phases is already achieved
with few inequalities and thus the LP size only increases slowly. The best limit on
the number of added cuts depends on the problem size, but usually limiting the
number to about several hundreds is perfect. It is a further improvement to add in
the first phases only inequalities which are arc-disjoint, i.e., having the property that
no variable occurs in more than one cut.

It is not only important to limit the number of cuts added, but also to select
among the available cuts. This is substantiated in Table 5.2. Columns 5 and 6 show
the number of LPs solved (nlps2) and the CPU time (CPU2) in min:sec if cuts were

just selected at random. Alternatively, cuts f T x ≤ f0 with large value cT f
|| f || were

preferred. The idea is that inqualities with small angle between their normal vector
and the normal vector of the objective function should yield progress. The results
for this strategy are shown in columns 3 and 4 (nlps1 and CPU1). Depending on the
problem it can lead to substantial savings in CPU time (see in particular atp76).
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Table 5.2 Importance of cut selection strategies

Problem Size nlps1 CPU1 nlps2 CPU2

EX1 50 15838 7:15 18065 8:38
EX2 50 20993 10:26 24977 13:07
EX4 50 244 0:06 365 0:14
EX5 50 346 0:10 445 0:15
EX6 50 138 0:04 203 0:08

atp66 66 112 0:06 278 0:29
atp76 76 591 0:49 4186 14:28
econ77 77 30 0:02 63 0:04
randD 50 9711 4:14 10097 4:20

Sum 48003 23:16 58679 41:46

5.3.2 An LP Based Heuristic

The following hypothesis proved to be very useful. We assume that the current frac-
tional LP solution x∗ should be somehow close to an optimum solution and contain
some of its characteristics. Therefore, we exploit x∗ for starting a heuristic to find a
feasible solution. For every object i we compute

si = ∑
j �=i

x∗i j

and then sort the objects according to nondecreasing values si. The corresponding
linear ordering serves as a starting solution for improvement heuristics.

For proving the usefulness of this idea, we solved the 3-dicycle relaxation for the
LOLIB input-output matrices and called the lower bound heuristic for every LP so-
lution. As improvement heuristic we just employed local enumeration as described
in Chap. 2.

Since almost all problems could be solved to optimality we list in Table 5.3
only those problems that could not be solved and the artifical problems econ36
– econ77. The table shows in column 3 the deviation of the 3-dicycle upper bound
from the optimum solution in percent. For these easy problems the bound is very
good and at most 0.052% above the optimum. (The bound for stabu70 is less
than 0.0005% off).

In addition, Table 5.3 proves that the LP based heuristic works very well achiev-
ing at least 99.26% of the optimum.

5.3.3 Computational Results with 3-Dicycles

In another experiment we solved the same instances as with the branch-and-bound
algorithm of Charon and Hudry of Chap. 4. Table 5.4 displays for every problem
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Table 5.3 3-Dicycle relaxation

Problem OPT 3CYC LPHeu
be75np 790966 0.003% 100.000%
stabu70 422088 0.000% 99.938%
t59b11xx 245750 0.005% 100.000%
econ36 555568 0.003% 99.888%
econ43 675180 0.001% 99.670%
econ47 845374 0.032% 99.889%
econ58 1263005 0.004% 99.358%
econ59 1256708 0.035% 99.726%
econ61 1265164 0.002% 99.881%
econ62 1275989 0.005% 99.263%
econ64 1328547 0.011% 99.627%
econ67 1437471 0.007% 99.969%
econ68 1480971 0.052% 99.770%
econ71 1636218 0.007% 99.624%
econ72 1932752 0.028% 99.795%
econ73 2146505 0.009% 99.648%
econ76 2781838 0.008% 99.735%
econ77 2798507 0.007% 99.994%

the root bound obtained from the 3-dicycle relaxation, the number of nodes in the
branch-and-cut tree, the maximum depth of the tree, and the CPU time (in min:sec).

Table 5.4 Branch-and-cut with 3-dicycle inequalities

Problem Optimum Root bound #nodes #maxlevel CPU
p40-01 29457 29494.47 3 2 0:00
p40-02 27482 28032.00 5449 28 15:24
p40-03 28061 28354.33 115 12 0:20
p40-04 28740 29298.67 2317 22 7:12
p40-05 27450 28213.33 976 27 9:26
p40-06 29164 29632.33 613 15 1:54
p40-07 28379 29006.00 2777 21 8:30
p40-08 28267 28870.67 1279 16 4:08
p40-09 30578 31183.00 5675 23 17:00
p40-10 31737 32147.67 419 15 1:07
p40-11 30658 31275.00 3985 23 11:43
p40-12 30986 31479.00 571 14 1:48
p40-13 33903 34056.85 10 5 0:00
p40-14 34078 34494.33 241 13 0:39
p40-15 34659 35369.67 5073 28 14:24
p40-16 36044 36199.00 17 5 0:00
p40-17 38201 38217.86 3 2 0:00
p40-18 37562 37694.93 17 5 0:00
p40-19 38956 39117.17 15 5 0:00
p40-20 39658 39812.67 31 7 0:00
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The problems are solved in about the same order of magnitude of CPU time.
The branch-and-cut algorithm generates much fewer tree nodes, but solving the LPs
needs a lot of time. Of course, since the 3-dicycle bound and exact Lagarangian
bound are equal, problems which are difficult for one code are difficult for the
other one as well. Recent experiments with a bundle method, however, were very
promising. Running some iterations of the bundle method on the Lagrangian re-
laxation seems to offer the chance of identifying important starting inequalities for
computing the 3-dicycle bound with a subsequent cutting plane algorithm.

There have also been experiments using interior-point solvers for optimization
the LP relaxations. Restarting after adding cuts is difficult here. In [99, 100] restart
is realized by backtracking some steps on the path taken when optimizing the previ-
ous LP. Results, however, do not suggest employing interior-points methods in this
context.

5.4 Generation of Further Cuts

Only 3-dicycle cuts are not sufficient for attempting to solve larger problems. We
will now address the question of how to generate further cuts. As further cuts we
will only discuss at this point cuts that can basically be used for every combinatorial
optimization problem. Special further cuts for the LOP will be described in Chap. 6.

5.4.1 Chvátal-Gomory Cuts

We discuss briefly the principle of general cuts. Their generation has far-reaching
consequences at least in theory, but to some extent also in practice.

Chvátal-Gomory cuts can be viewed as being obtained by so-called closure op-
erations which allow for generating new stronger inequalities from an inequality
system.

Definition 5.1. Let S be the system Ax ≤ b of rational inequalities.

(i) An inequality dT x ≤ d0 with integral d is said to belong to the elementary clo-
sure of S if there is a rational vector λ ≥ 0 such that λ T A = dT and 	λ T b
 ≤ d0.

(ii) The set of all inequalities belonging to the elementary closure of S is denoted
by e1(S). For k > 1 the set ek(S) is defined as ek(S) = e1(S∪ ek−1(S)).

(iii) The closure cl(S) of S is given as

cl(S) = ∪∞
k=1ek(S).

An inequality is said to have Chvátal rank k with respect to S if it is contained
in ek(S), but not in ek−1(S). The number k is a good indicator for the complexity of
an inequality.
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As an example, assume that for integral variables y and xi, i = 1, . . . ,k the fol-
lowing constraints have to be satisfied:

a1x1 + . . .+ akxk − y = b (5.1)

−xi ≤ 0, i = 1, . . . ,k. (5.2)

By adding suitable multiples of (5.2) to (5.1) and rounding down the right hand
side one obtains the valid inequality

	a1
x1 + . . .+ 	ak
xk − y ≤ 	b
. (5.3)

Subtracting (5.1) from (5.3) now yields the inequality

(	a1
− a1)x1 + . . .+(	ak
− ak)xk ≤ 	b
− b.

Note that this inequality is violated if x1 = . . . = xk = 0. This is the standard type
of a Chvátal-Gomory cut as it can be obtained directly from the simplex tableau.
There the variables x1, . . . ,xn are the non-basic variables at the optimum of the cur-
rent LP relaxation and thus the inequality cuts off this optimum, but is satisfied by
all feasible integral points.

A very nice theoretical results is

Theorem 5.2. A cutting plane algorithm with Chvátal-Gomory cuts either solves an
integer programming problem max{cT x | Ax = b,x ≥ 0,x integer} in finitely many
steps or verifies that it is unbounded or infeasible.

For proving this theorem several technicalities have to be observed. The optimal
tableau of the LP relaxations has to be lexicographically positive and thus the pivot-
ing rule of the dual simplex has to be modified to preserve lexicographic positivity.
A lower bound on a feasible solution (derivable from the data) has to be tested. A
cut has to be derived from the row with smallest index. If in the dual simplex the
slack variable of a cut becomes basic, then the cut is eliminated from the problem.

It turned out that this approach cannot be utilized in practice straightaway be-
cause after the addition of many such cutting planes severe numerical problems
occur. On the other hand, however, it was shown that the careful use of Chvátal-
Gomory cutting planes can lead to substantial improvements in integer program-
ming.

5.4.2 Maximally Violated Mod-k Cuts

As a further possiblity to generate cuts of general nature in a branch-and-cut algo-
rithm we describe mod-k inequalities which are special kinds of Chvátal-Gomory
cuts.

Let Ax ≤ b be a system of linear inequalities with integral coefficients and
let k > 1 be an integer number. Suppose that we scale every inequality r of Ax ≤ b
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by a nonnegative factor μr and sum the resulting inequalities. Now, if μ denotes
the vector of all factors, assume that all coefficients of μT A are divisible by k and
that the remainder on dividing μT b by k is k−1. Hence μ satisfies the congruence
system

μT A ≡ 0T mod k

μT b ≡ k−1 mod k.

We have μT b = sk+(k−1) for some s ∈ Z, and therefore μT b− (k−1) is divisible
by k. Furthermore μT Ax is divisible by k for all x ∈ {x ∈Z

n | Ax ≤ b}, and therefore
the inequality

μT Ax ≤ μT b− (k−1)

is valid for all feasible integer solutions of Ax ≤ b. We can express the inequality in
an equivalent way as the mod-k inequality

1
k

μT Ax ≤ 1
k

(
μT b− (k−1)

)
.

Now consider some fractional solution x∗ of Ax ≤ b. In a branch-and-cut algo-
rithm we would like to find an integer k and a vector μ such that the conguence
system above is satisfied and the corresponding mod-k inequality is violated by x∗
and thus provides a cutting plane (a so-called mod-k cut). Since μT Ax∗ ≤ μT b this
solution can violate μT Ax ≤ μT b− (k−1) by at most k−1 and the maximal viola-
tion can only be achieved if μT Ax∗ = μT b, i.e., if μr = 0 for all r with Ar.x∗ < br.

We use the separation algorithm for maximally violated mod-k cuts suggested
in [25]. Let x∗ be a fractional solution of the current LP relaxation Ax ≤ b. Due to
the remarks above, in order to find a maximally violated inequality, we restrict the
congruence system to contain only those inequalities that are tight for x∗. We have
to choose k and find an integer multiplier vector μ ≥ 0 such that the congruence
system is satisfied. Note that the coefficients of μ can obviously be restricted to
values smaller than k, i.e., μr ∈ {0,1, . . . ,k−1} for all r. It was proved in [25], that
only prime numbers have to be considered for k.

Usually, if one cut exists then there are plenty of others. This is due to the fact,
that there is a number f of free variables μi in the solution whose values can be cho-
sen arbitrarily from {0,1, . . . ,k−1}. There can be dozens or even a few hundred of
these variables and thus there exist k f different solutions of the congurence system.
Even though the map of solutions to cuts is not injective, we will have to address
the problem of selecting cuts from the huge set of generated constraints to be added
to the linear relaxation.
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5.4.3 Mod-2 Cuts

For the special case k = 2 an efficient separation procedure is given in [24]. Again,
we search for a multiplier vector μ for Ax ≤ b that satisfies the congruence system.
The arguments of previous section show that

1
2

μT Ax ≤ 1
2
(μT b−1). (5.4)

is valid for {x ∈ Z
n | Ax ≤ b} and can be violated by at most 1

2 by a tight fractional
solution x∗ of Ax ≤ b. For λ = 1

2 μ and μ satisfying the congruence system, all
entries of λ T A are integer and λ T b− 1

2 = 	λ T b
. Therefore (5.4) can be expressed
equivalently as

λ T Ax ≤ 	λ T b
.
This inequality is a so-called {0, 1

2}-Chvátal-Gomory inequality. The identification
of a suitable vector λ in principle amounts to optimizing over

P1/2 =
{

x ∈ R
n
∣∣ Ax ≤ b,λ T Ax ≤ 	λ T b
 and λ ∈ {0, 1

2}m with λ T A ∈ Z
n}.

As the separation problem of P1/2 is NP-hard, it is unlikely that one can optimize
over P1/2 in polynomial time. But, in [24], possibilities are derived for relaxing P1/2
in such a way that separation becomes polynomially solvable.

By a so-called weaking of inequalities, a separation algorithm is developed which
basically amounts to solving shortest path problems in a specially constructed di-
graph.

The advantage of this shortest path mod-2 method is that there is no restriction
on the constraints that are used for the generation of the cut, as long as they can be
transformed in such a way that they have exactly two odd coefficients on the left
hand side. Another advantage is that the digraph for the shortest path computations
is usually sparse. On the other hand, no extension from 2 to bigger prime numbers
is possible and the violation of the resulting cut is maximal if and only if all used
constraints are tight for x∗.

There is a further problem-independent approach for generating cuts, namely so-
called local cuts and target cuts. Because it is easier to explain these cuts in the
context of the linear ordering polytope, their discussion is postponed to Sect. 6.7.

5.5 Implementation of Branch-and-Cut

We will now discuss in more detail implementational issues for the realization of
a branch-and-bound algorithm where upper bounds are computed using LP relax-
ations. Because the LP relaxations are solved with the cutting plane approach the
notion “branch-and-cut” was coined for this type of algorithms.
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We will keep the discussion on a general level valid for all combinatorial opti-
mzation problems. At some point we will add special remarks for the LOP.

In the following it is assumed that the problem is defined on a graph or digraph
and that the variables are associated with edges or arcs. Variables and arcs/edges are
used as synonyms.

A 0/1-IP formulation of the problem is assumed to be available as

max{cT x | Ax ≤ b,x ∈ {0,1}n}.

The minimal equation system is also known, but for simplicity not listed explicitly.
Further inequalities Ax ≤ b in addition to the system Ãx ≤ b̃ are known with

{x | Ax ≤ b,x ∈ {0,1}n} ⊂ {x | Ãx ≤ b̃} ⊂ {x | Ax ≤ b,0 ≤ x ≤ 1}.

Note that an explicit list of the constraints of Ãx ≤ b̃ is not needed. We assume that
for some classes of inequalities in Ãx ≤ b̃ exact or heuristic separation algorithms
are available.

The algorithm will construct a branch-and-cut tree whose nodes represent the
subproblems generated. The following states of a tree node will be distinguished:

– current: this node is presently worked on,
– active: the node is generated, but not considered yet,
– inactive: the node has been treated and has active successors,
– fathomed: this node and all of its successors have been worked on (such nodes

can obviously be deleted from the tree).

A variable can be in one of the following states:

– active: the variable is present in the current LP,
– inactive: the variable is not present in the current LP,
– fixed: the variable is permanently fixed to 1 or 0,
– set: the variable is set to 1 or 0, but this is valid only in part of the tree.

Furthermore, let L be the global lower bound on the optimum objective function
value (best known feasible solution so far) and let U be the global upper bound
(valid for the original problem).

We now describe the main aspects of the branch-and-cut algorithm. The goal is
to solve max{cT x | Ax ≤ b,x ∈ {0,1}n} based on the approximation Ãx ≤ b̃.

5.5.1 Initialization

As first LP for the root node max{cT x | 0≤ x≤ 1} is usually chosen. In principle, the
minimal equation system could be used to eliminate variables beforehand. However,
this is only reasonable in few cases, such as the LOP. Here variables xi j, i > j, can
simply be replaced by 1− x ji without effecting the density of the constraint matrix.
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One could already introduce some of the inequalities from Ax ≤ b if respective
information is available. Computational experience has shown that this only has a
significant effect if inequalities are selected carefully.

5.5.2 Active Variables

If the number of variables is large, it can be useful to work only with a subset of
active variables and assume that the inactive variables are zero. Of course, it has to
be checked later (by pricing) if this assumption is correct.

For the LOP, working with only a subset of variables has not been interesting so
far. The problem is already difficult for small values of n, and the number n(n−1)
of its variables (

(n
2

)
after elimination, resp.) is still small.

5.5.3 Local Upper Bound

The solution of the current LP gives an upper bound for the respective subproblem
and all subproblems generated from it (if all inactive variables price out correctly).
LPs are usually solved using the dual simplex method because of the simple restart
after addition of constraints or variables.

5.5.4 Branching

If the current subproblem cannot be solved, it has to be partitioned. A common way
for partitioning (also frequently used for the LOP) is to choose some variable xi j

with fractional value and set it to 1 in one subproblem and to 0 in the other. This
way a binary branch-and-cut tree is generated.

Several priority rules for selecting this branching variable are possible. It is com-
mon to choose variables close to 1

2 with high absolute value of their objective func-
tion coefficient. The motivation behind this is that setting the branching variable
should have some effect on the current problem. Non-binary partitions or generat-
ing subproblems using inequalities is also possible.

5.5.5 Fixing and Setting of Variables

Let x∗ be the optimum solution of the current LP with value c∗ and let r be the vector
of reduced costs.
The following holds for a nonbasic variable xe:



110 5 Branch-and-Cut

(i) If xe = 0 and c∗ + re ≤ L, then one can set xe = 0.
(ii) If xe = 1 and c∗ − re ≤ L, then xe can be set to 1.

This setting of variables is valid for the current node and all of its successors.
If setting is possible at the root node, then it amounts to fixing a variable perma-

nently. If advantageous, the variable could be removed from the problem.

5.5.6 Logical Implications

Setting variables can (depending on the problem) influence other variables as well.
E.g. if in the LOP we have the setting xi j = 1 and x jk = 1, then xki = 0 is implied,
because otherwise a 3-dicycle inequality would be violated.

Tests for logical implications can in particular be helpful since it can affect basic
variables which are currently fractional. Nonbasic variables are only set or fixed to
values they already have (so, locally there is no effect on the problem).

5.5.7 Selection of Nodes

When work on the current node is finished, then the next node for processing has to
be chosen. Basic strategies are:

– Depth-first
Choose an active node with highest level in the branch-and-cut tree.

– Breadth-first
Choose an active node with lowest level in the branch-and-cut tree.

– Best-first
Choose a node with smallest difference between its lower and upper bound.
(Note that different upper bounds are valid for the nodes.)

– Strong branching
Here work is started on several active nodes and depending on the progress
one of them is selected promising the best improvement of the upper bound.

Depth-first is mainly employed if it is at all difficult to find feasible solutions.
Otherwise it is inferior compared with the other strategies. Best-first leads to fewer
nodes and better running times than breadth-first. Strong branching usually performs
best, but at higher effort.

Further heuristics rules for selecting the most promising node can be formulated
in addition.
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5.5.8 Lower Bounds

Good feasible solutions are very important in order to obtain lower and upper
bounds which are close together. Feasible solutions can be computed independent
from the branch-and-cut algorithm beforehand or in parallel on a separate processor.
As pointed out above, we found LP based heuristics exploiting the current fractional
LP solution very useful.

Note that, if better lower bounds are found, fixing further variables can be tried.
To this end the reduced costs at the root node have to be stored.

5.5.9 Separation

Separation clearly is at the core of branch-and-cut. It depends on the knowledge
about the system Ãx ≤ b̃ and on how many effective separation algorithms are avail-
able. Strategies for calling the respective procedures and for the selection of cutting
planes found have to be developed.

5.5.10 Elimination of Constraints

With the cutting plane approach only a very small fraction of potential inequalities
is actually introduced into the LP, but nevertheless this number also can be huge. It
has proved to be reasonable to eliminate inequalities which are not binding at the
current LP optimum. However, these inequalities should be stored in a constraint
pool, because they could be valuable for other nodes. This is in particular advisable
if they have been found with high computational effort.

5.5.11 Constraint Pool

The constraint pool stores inequalities that are needed for the initialization of the
next node or were temporarily eliminated. Since the pool can grow very large, suit-
able data structures for storing inequalities in sparse format are necessary.

5.5.12 Pricing

If the current LP is solved in the active variables then it has to be checked if the
setting of the inactive variables is optimal as well. This can be accomplished by
evaluating their reduced costs.
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Assume that xe is an inactive variable with value 0. First the column for xe in the
constraint matrix has to be retrieved; let this be ae. Then the equation system

ABae = ae

has to be solved. The reduced costs of xe are

re = ce − cT
Bae = ce − cT

BA−1
B ae.

Usually, in LP codes, the dual vector cT
BA−1

B is available and does not have to be
computed. So there is no need for solving an equation system.

If re ≥ 0, for all inactive variables xe, then the current LP solution is optimal for
the complete problem, although possibly only a small subset of the variables has
actually been used. If the reduced costs are negative for one or more variables, then
some of them have to be activated and the LP has to be augmented correspondingly.

It is possible to perform pricing in several stages by assigning priority classes
to inactive variables. Also, not all variables will be examined, if already several
have been found that do not price out correctly. Note that pricing incurs significant
computational effort.

5.5.13 Infeasible LPs

If there are inactive variables it is possible that the current LP is infeasible. This
can be caused by a setting of variables that makes it impossible to achieve feasibil-
ity with active variables only. In such a case variables have to be added to regain
feasibility. It is not clear how to choose such variables, and there are only heuristic
strategies available.

5.5.14 Addition of Variables

Addition of variables is necessary if LPs become infeasible or it can also be caused
by pricing. It can also be helpful to activate variables which seem to be important
because they are contained in good feasible solutions.

The efficient implementation of the above components is not trivial. In particular,
the administration of branch-and-cut nodes, of active variables and of the constraint
pool require some effort. But these are tasks which can be solved to a large extent in-
dependently of the concrete problem and there are frameworks like ABACUS [74],
SCIP [2] or SYMPHONY [109] that facilitate the development of branch-and-cut
algorithms. Cutting plane generation is problem dependent in any case and also re-
quires complex algorithms and data structure.
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5.6 Some Computational Results

We report about computational results from [107] where also further details on the
implementation of mod-2 and mod-k separation can be found.

We have applied the branch-and-cut algorithm with mod-2 and mod-k cuts on
ten random problem instances p40-01 – p40-10. The problem instances are dif-
ficult and no 3-dicycle relaxation had an integral optimum solution. In the following
we describe how we deal with the fractional solution x∗ of the relaxation. We will
also speak about the digraph associated with x∗ which consists of the arcs whose
associated variables have a positive value.

Since the generation of cuts is time consuming, we incorporated a heuristic el-
ement in our separation procedures to possibly generate further cuts at cheap cost.
Our idea is based on an interesting property of the linear ordering polytope which
will be discussed in the next chapter. Namely, for this polytope a rotation mapping
can be defined which converts valid inequalities into different valid inequalites. We
enhanced our separation routines by also checking rotated versions of violated in-
equalities for violation. This lead to the detection of further cuts.

We are using two general strategies for trying to generate mod-k cuts violated
by the current fractional solution x∗. The first strategy considers small subdigraphs
(of the digraph defined by x∗) and generates all violated cuts that can be found for
this digraph. The idea is that by proceeding this way, the relaxation can locally be
strengthed considerably and therefore allow for a reasonable bound improvement in
the branch-and-cut algorithm. The second strategy applies the mod-k separation rou-
tine to the complete digraph and selects cuts afterwards. Cuts for the whole digraph
should provide global information which is also important for the algorithm.

The strategies for choosing an appropriate subdigraph differ as follows. The vari-
able heuristic limits the number nV of variables from which the subdigraph is con-
structed, while the improvement heuristic limits the number nN of the nodes of the
subdigraph.

The variable heuristic starts with the variable that occurs in the most constraints
of the current LP. (If there are several variables satisfying this condition, then we
choose one at random.) Then we continue to successively select all other variables
from these constraints and also choose all constraints that contain these new vari-
ables. If the limit nV on the number of variables is reached, the selection is stopped
and the subdigraph G′ is defined by the variables selected by this procedure.

A practical problem we had to address was that already a slight increase of nV

could lead from subdigraphs for which no cuts were found to subdigraphs where
very many violated cuts existed. This phenomenon turned out to be caused by the
fact that not all 3-dicycle inequalities for the subdigraph are part of the LP relax-
ation. After all trivial and binding 3-dicycle inequalities were added, this problem
disappeared. We experienced that, for our problem instances, nV = 1

4 n and nV = 1
5 n

are good bounds as the resulting digraph was just big enough to generate a reason-
able number of mod-k cuts.

The improvement heuristic uses information from the current LP solution. For
every node, the sum of the values of variables corresponding to outgoing arcs is
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computed. Then the nodes are linearly ordered with respect to nonincreasing sums.
Our heuristic is based on the hypothesis that nodes close together in this ordering
will also be neighboring in an optimum solution. For forming the subdigraph we
therefore take the first nN nodes of the ordering, then the second nN nodes, etc., and
generate all mod-k cuts from these n/nN subgraphs. Values nN ∈ { 1

4 n, 1
5 n, 1

6 n} lead
to suitable results.

The third strategy is to apply the maximally violated mod-k method to the whole
digraph and select cuts afterwards. This selection strategy is based on some different
criteria. First, we randomly order the columns of the matrix to avoid always gener-
ating the first cuts obtained from the system in each iteration. Second, we prefer cuts
introducing few non-zero coefficients because dense LPs are usually more difficult
than sparse ones. A further criterion is to select only the single basic solution or
at most f trivial solutions and not take all k f possible solutions of the system into
account.

For the shortest path calculation of the mod-2 procedure we use Dijkstra’s algo-
rithm leading to running time O(E logV ). To avoid inequalities being found more
than once we delete all nodes that are part of an already found violated inequality
from the list of potential starting nodes.

In the case of rotation we repeat this procedure for all rotation parameters r in a
random order until the limit of 250 cuts is reached. For the violation tolerance we
use the relatively high value of 0.01, because otherwise the separation procedure
finds a lot of cuts without significantly improving the dual bound. In addition we
use tailing off which stops the mod-2 separation if the last 10 separations did not
improve the bound by more than 0.05 percent.

Table 5.5 Root bounds

Problem Opt 3-cyc MV M2 MV+M2
p40-01 29457 29494.48 29488.09 29457.00 29457.00
p40-02 27482 28032.00 27967.75 27768.25 27768.11
p40-03 28061 28354.33 28297.53 28098.77 28098.59
p40-04 28740 29298.67 29220.46 28976.85 28974.93
p40-05 27450 28213.33 28091.60 27855.72 27849.33
p40-06 29164 29632.30 29553.90 29321.40 29316.30
p40-07 28379 29006.00 28892.08 28651.53 28647.43
p40-08 28267 28870.67 28744.77 28463.46 28460.07
p40-09 30578 31183.00 31078.85 30898.49 30891.87
p40-10 31737 32147.67 32089.26 31897.68 31894.69

Table 5.5 displays, for the instances p40-01 – p40-10, the optimum values,
the 3-dicycle bound and the improved bound when additional cuts are added for
tightening the LP relaxation. In the first two experiments we added mod-2 and
mod-k cuts separately (MV and M2), in the third experiment both separations were
employed (MV+M2). The branch-and-cut algorithm was stopped when no more vi-
olated inequalities could be found at the root node, i.e., no branching was started.
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Table 5.6 verifies that these bounds can be improved considerably with little ad-
ditional computational effort when rotation is employed to find further cuts.

Improvement with respect to the 3-dicycle relaxation is easier to assess if the gap
closure

100× |cT x∗ − c3cycle|
|copt − c3cycle|

is computed, where copt, c3cycle, and cT x∗ are the optimum objective function value,
the 3-dicycle upper bound, and the bound obtained with additional mod-k cuts, re-
spectively. The gap closure measures (in percent) how much of the gap between
3-dicycle bound and optimum value could be closed.

Table 5.6 Root bounds with rotation

Problem Opt 3-cyc MVR M2R MV+M2R

p40-01 29457 29494.48 29485.69 29457.00 29457.00
p40-02 27482 28032.00 27956.53 27648.32 27647.84
p40-03 28061 28354.33 28290.45 28061.00 28061.00
p40-04 28740 29298.67 29193.68 28829.76 28829.77
p40-05 27450 28213.33 28085.01 27679.71 27678.77
p40-06 29164 29632.30 29546.30 29186.20 29186.10
p40-07 28379 29006.00 28879.06 28481.02 28480.75
p40-08 28267 28870.67 28735.02 28311.82 28312.41
p40-09 30578 31183.00 31077.59 30697.73 30698.30
p40-10 31737 32147.67 32090.65 31778.55 31778.37

Table 5.7 shows that the gap between 3-dicycle bound and optimum can be closed
by 86% on average and that the gap closure is mainly due to mod-2 cuts with rota-
tion.

So with respect to bound improvement the additional separation has proved its
advantages. But it is interesting as well to check if this improvement also leads to
faster computation times when a provably optimum solution has to be computed.

Table 5.7 Gap Closure

Name MV MVR M2 M2R MV+M2 MV+M2R

p40-01 17.05% 23.45% 100.00% 100.00% 100.00% 100.00%
p40-02 11.68% 13.72% 47.96% 69.76% 47.98% 69.85%
p40-03 19.36% 21.18% 87.12% 100.00% 87.19% 100.00%
p40-04 14.00% 18.79% 57.61% 83.95% 57.95% 83.94%
p40-05 15.95% 16.81% 46.85% 69.99% 47.69% 70.03%
p40-06 16.74% 18.36% 66.39% 95.26% 67.48% 95.28%
p40-07 18.17% 20.25% 56.53% 83.73% 57.19% 83.77%
p40-08 20.86% 22.47% 67.46% 92.58% 68.02% 92.48%
p40-09 17.21% 17.42% 47.03% 80.21% 48.23% 80.01%
p40-10 14.22% 13.88% 60.87% 89.88% 61.60% 89.93%
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Our experiments revealed that the separation of maximally violated mod-k in-
equalities did not have a too big effect on the root bound and is, in general, not
worth the effort compared to mod-2 separation. Mod-2- separation gives a better gap
closure, and because of the better bounds the number of branch-and-nodes needed
to solve the problems to optimality is considerably less (even when rotation is not
invoked). Therefore, we did not use mod-k separation anymore. Table 5.8 displays
the respective results of our computations.

Table 5.8 CPU times (min:sec), number of tree nodes and percentage of separation time

3-cyc M2 M2R

Name CPU #nod sep CPU #nod sep CPU #nod sep
p40-01 0:00 3 30% 0:01 1 70% 0:01 1 75%
p40-02 6:57 5441 4% 26:26 147 87% 34:51 41 91%
p40-03 0:08 115 6% 0:32 5 79% 0:23 1 79%
p40-04 3:18 2317 4% 12:48 69 86% 13:56 19 89%
p40-05 1:41:36 24317 3% 1:29:39 471 85% 1:53:12 73 93%
p40-06 0:48 609 4% 3:02 19 84% 2:03 3 84%
p40-07 4:22 2775 3% 15:47 85 87% 12:05 15 87%
p40-08 1:57 1287 4% 6:21 33 85% 4:45 3 87%
p40-09 7:42 5625 4% 31:57 177 87% 19:41 23 89%
p40-10 0:33 421 4% 3:14 19 86% 3:41 7 87%

Table 5.8 exhibits the following facts. If only 3-dicycle separation is used, the al-
gorithm spends most of its CPU time for solving the linear programs. Mod-2 separa-
tion changes this relation. Now separation is responsible for the CPU time. Because
of the better bounds, the number of branch-and-cut nodes is drastically decreased.
However, since separation is time consuming, the overall solution time for the prob-
lems with n = 40 is not reduced. But this changes for larger problems. E.g. instance
p50-01 can now be solved in half of the time.

Our computational experiments for the linear ordering problem lead us to the
conclusion that the incorporation of general cut generation procedures is worth-
while and promising, and should also be tried for other combinatorial optimization
problems. The optimal use of mod-2 and mod-k inequalities still has to be explored.
To some extent their potential cannot be fully exploited because LPs are becoming
more difficult, at least for current LP solvers.



Chapter 6
The Linear Ordering Polytope

Abstract So far we developed a general integer programming approach for solving
the LOP. It was based on the canonical IP formulation with equations and 3-dicycle
inequalities which was then strengthened by generating mod-k-inequalities as cut-
ting planes. In this chapter we will add further ingredients by looking for problem-
specific inequalities. To this end we will study the convex hull of feasible solutions
of the LOP: the so-called linear ordering polytope.

6.1 Polyhedral Combinatorics and Basic Results

We recall some necessary definitions and notations. If E is some set we denote
by RE the set of real vectors having |E| components which are indexed by the mem-
bers of E . The vector with all components equal to 1 is denoted by 1 and the zero
vector is denoted by 0. The unit matrix is denoted by I and the k-th unit vector by ek.
We do not usually state explicitly the row and column dimensions of a matrix or the
dimension of a vector if they are clear from the context.

Let m > 0 and x1, . . . ,xm ∈ Rn,α1, . . . ,αm ∈ R. A linear combination ∑m
i=1 αixi

is called an affine combination if ∑m
i=1 αi = 1, a convex combination if ∑m

i=1 αi = 1
and αi ≥ 0, i = 1, . . . ,m, and a conic combination if αi ≥ 0, i = 1, . . . ,m . If S ⊆ Rn,
then the affine hull aff(S) of S is defined as the set of all (finite) affine combinations
of elements of S. Similarly the convex hull conv(S) and the conic hull cone(S) are
defined. By definition we have aff( /0) = conv( /0) = /0. If S = aff(S) then S is called an
affine space. The affine rank arankS of a set S is the smallest cardinality of a set X
such that S ⊆ aff(X). If 0 ∈ aff(S) then we have arankS = rankS + 1; otherwise the
affine rank is equal to the linear rank.

For a ∈ Rn \ {0} and a0 ∈ R the set {x ∈ Rn | aT x = a0} is called a hyperplane.
A hyperplane defines the halfspace {x ∈ Rn | aT x ≤ a0}. A polyhedron (or H -poly-
hedron) P is defined as the intersection of finitely many halfspaces or equivalently
as the solution set of a finite system of linear inequalities. More precisely, P is an
H -polyhedron if there exists a matrix A ∈ Rm×n and a vector b ∈ Rm such that

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 6,
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P = {x | Ax ≤ b}.

We use the abbreviation P(A,b) for the set {x | Ax ≤ b}.
A description of a polyhedron by means of linear inequalities is also called the

outer description. Note that some inequalities may actually be equations. If we want
to emphasize that equations are present in the description of P, we explicitly write
P = {x | Ax ≤ b,Bx = d}.

A set P is a called a V -polyhedron if there exist finite sets X and Y such that

P = conv(X)+ cone(Y ),

i.e., P consists of all vectors z = x+y where x ∈ conv(X) and y ∈ cone(Y ). This type
of description is called the inner description with generating sets X and Y .

According to classical results in polyhedral theory, a set P is a V -polyhedron if
and only if it is an H -polyhedron.

A polytope is a bounded polyhedron, i.e., P ⊆ Rn is a polytope if and only if it
is a polyhedron and there exist bounds l,u ∈ Rn such that l ≤ x ≤ u for all x ∈ P. In
particular, P is a polytope if and only if it is equal to the convex hull of a finite set.

The dimension of a set S is defined as dimS = arankS− 1. (The empty set has
dimension−1.) The dimension of a polyhedron P is obtained as follows. If Bx = d is
a system of equations such that aff(P)= {x |Bx = d}, then dimP = n−rankB, where
rankB is the usual rank of the matrix B. A polyhedron P ⊆ Rn is full dimensional if
dimP = n. Therefore, if P is full dimensional, then there exists no equation aT x = a0,
with a �= 0, satisfied by all points in P.

An inequality aT x ≤ a0, a �= 0, is said to be valid for a polyhedron P if
P ⊆ {x | aT x ≤ a0}. If aT x ≤ a0 is valid then the set F = P∩{x | aT x = a0} deter-
mines a face of P (which may be empty). If F �= P then F is called a proper face. If
|F |= 1 then the element v∈ F is called a vertex of P. Vertices cannot be represented
as convex combinations of other elements of the polyhedron. If P is a polytope, then
P = conv(V ) where V is the set of vertices of P. A maximal nonempty proper face
F is called a facet of P. A face F is a facet of P if and only if dimF = dimP− 1.
If F is a facet we call aT x ≤ a0 a facet defining inequality for P. If aT x ≤ a0 and
bT x ≤ b0 are inequalities defining the same facet of P, then one can be obtained
from the other by multiplication by a positive constant and by adding multiples of
equations valid for P. For a full dimensional polyhedron, facet defining inequalities
are unique up to positive multiples.

The following theorem shows two ways for proving that an inequality is facet
defining.

Theorem 6.1. Let P be a polyhedron and bT x ≤ b0 a valid inequality such that
F = {x ∈ P | bT x = b0} is a proper face of P. Let Dx = d be a minimal equation
system and aff(P) = {x | Dx = d}. Then the following statements are equivalent.

(i) F is a facet of P.
(ii) dimF = dimP−1.

(iii) If F ⊂ {x ∈ P | cT x = c0} where cT x ≤ c0 is a valid inequality for P then there
exist λ ∈ Rn−dimP and μ > 0 such that cT = μbT + λ T D.
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The main idea of polyhedral combinatorics for solving a combinatorial optimiza-
tion problem (E,I ,c) is to associate a polytope with it as follows. For I ∈ I we
define the corresponding characteristic vector (or incidence vector) χ I by setting

χ I
e =

{
0, if e ∈ I,

1, otherwise.

The polytope PI associated with (E,I ,c) is

PI = conv
({χ I | I ∈ I }).

For the LOP we define the linear ordering polytope Pn
LO as the convex hull of the

characteristic vectors of the acyclic tournaments in Dn, i.e.,

Pn
LO = conv

({χT ∈ {0,1}n(n−1) | T ⊂ An is an acyclic tournament }).
Hence the vertices of Pn

LO correspond exactly to the linear orderings of n objects.
If Pn

LO were explicitly known, then the LOP could be solved as the linear pro-
gramming problem

max{cT x | x ∈ Pn
LO}.

However, to be able to apply linear programming techniques, the above definition
is useless. Pn

LO has to be represented as an H -polyhedron. Therefore, it is the main
goal of this chapter to study the linear description of Pn

LO. The best such description
would be a so-called minimal linear description Pn

LO = {x | Ax ≤ b,Bx = d} where
aff(Pn

LO) = {x | Bx = d} with B of full row rank and where the inequality system
Ax ≤ b contains exactly one defining inequality for every facet of Pn

LO.
Some basic general properties of the linear ordering polytope are easily derived.

Theorem 6.2. Let n ≥ 2. Then the system

xi j + x ji = 1, for all i, j ∈Vn, i < j,

is a minimal equation system for Pn
LO.

Due to the minimal equation system the dimension of Pn
LO is

(n
2

)
. Since Pn

LO is not
full-dimensional, a facet defining inequality can be represented in different ways.
However, the structure of the equation system allows a simple standard representa-
tion of inequalities to be defined.

Theorem 6.3. For every facet of Pn
LO there exists an inequality aT x ≤ α defining it

such that the vector a has nonnegative integral coefficients and the property that for
every pair of nodes i, j ∈Vn at least one of the coefficients ai j or a ji is equal to zero.

We can use this observation to define a normal form for facet defining inequali-
ties. Namely, every facet can be represented uniquely by an inequality aT x ≤α such
that all coefficients ai j are nonnegative coprime integers and min{ai j,a ji} = 0 for
every pair of nodes i, j ∈Vn. The set of arcs corresponding to positive coefficients is
called the support of a.
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An important general question is to decide whether or not two facet defining
inequalities define the same facet. A sufficient condition for the nonequivalence of
two inequalities is given in the following theorem.

Theorem 6.4. Let aT x≤α and bT x≤ β be facet defining inequalities for Pn
LO, n≥ 2,

given in normal form. If there exists an arc (i, j) ∈ An with ai j > 0 and bi j = 0 (or
bi j > 0 and ai j = 0) then the inequalities define different facets.

Two useful general properties of facet defining inequalities for Pn
LO are stated in

the following two lemmas.

Theorem 6.5 (Trivial Lifting Lemma). Let aT x ≤ α be facet defining for Pn
LO,

n ≥ 2. Define the vector a ∈ R(n+1)n by setting ai j = ai j for all (i, j) ∈ An, and
ai,n+1 = an+1,i = 0, for i = 1, . . . ,n. Then aT x ≤ α defines a facet of Pn+1

LO .

Theorem 6.6 (Arc Reversal Lemma). Suppose aT x≤α is a facet defining inequal-
ity for Pn

LO, n ≥ 2. If b ∈ Rn(n−1) is defined by bi j = a ji for all (i, j) ∈ An, then
bT x ≤ α is facet defining for Pn

LO.

Therefore the linear ordering polytope Pn+1
LO inherits all facets from Pn

LO in the
sense that the added coefficients can just be set to zero. Furthermore, reversing the
arcs in the support of a facet defining inequality yields a new facet defining inequal-
ity. However, if the reversed digraph is isomorphic to the original support digraph
then the new facet basically has the same structure because only the numbering of
the nodes is different.

6.2 Facets of the Linear Ordering Polytope

The facial structure of Pn
LO has been investigated in many publications [22, 15, 60,

111, 90, 121, 48, 42, 47]. Interestingly, there has been a lot of independent research
because the linear ordering problem occurs with different names in several fields.
In this section we review some of the results. We usually give no proofs (except
for showing some principles) and do not give definitions precisely that are of minor
importance for our exposition.

A simple class of inequalities for Pn
LO is given by the so-called trivial inequal-

ities 0 ≤ xi j ≤ 1, for all (i, j) ∈ An, which are always valid for polytopes with 0/1-
vertices.

Theorem 6.7. Trivial inequalities define facets of Pn
LO for all (i, j) ∈ An. No two

of the inequalities xi j ≤ 1 are equivalent. The normal form of inequality −xi j ≤ 0
is x ji ≤ 1.

The minimal equation system and the trivial inequalities are sufficient for de-
scribing P2

LO. Further inequalities are needed for n ≥ 3. Clearly, inequalities exclud-
ing dicycles in tournaments should play a central role.
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Theorem 6.8. For every dicycle C of length three in An, the inequality x(C) ≤ 2
defines a facet of Pn

LO.

Inequalities x(C) ≤ |C|− 1 for longer dicycles are obviously valid for Pn
LO. Let

|C|> 3 and let i, j be a pair of dicycle nodes with (i, j) �∈C and ( j, i) �∈C. Then C can
be partitioned into C1 and C2 such that C1 ∪{(i, j)} and C2 ∪{( j, i)} are dicycles.
Now x(C) = x(C1)+x(C2)+xi j +x ji ≤ |C1|−1+ |C2|−1+1 = |C|−1. All dicycle
inequalities for dicycles longer than three are thus implied by 3-dicycle inequalites
and therefore do not define facets.

The polytope P3
LO is contained in R6, but using the equation system it can be

projected to R3. Figure 6.1 shows the projection of P3
LO. The remaining variables

are x12, x13 and x23. The vertices are labeled by the corresponding linear orderings.

Fig. 6.1 The (projected)
polytope P3

LO

<2,1,3>

<3,2,1> <3,1,2>

<1,3,2>

<1,2,3>

<2,3,1>

The minimal equation system, trivial inequalities and 3-dicycle inequalities are
sufficient to completely describe P3

LO, P4
LO, and P5

LO. Hence their respective number
of facets is 8, 20, and 40. In earlier publications [22, 15] it was believed that, in
general, the polytope Pn

C defined by equations, trivial and 3-dicycle inequalities has
only integral vertices. But this is not the case as already observed in [125].

Figure 6.2 shows a fractional vertex for P6
C. Dotted edges represent pairs of an-

tiparallel arcs the corresponding variables taking the value 1
2 .

Fig. 6.2 A fractional vertex
of P6

C
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The study of this example gives rise to a first class of further inequalities.

Definition 6.1. A digraph D = (V,F) is called a k-fence if it has the following prop-
erties:

(i) |V | = 2k,k ≥ 3,
(ii) V can be partitioned into two subsets U = {u1, . . .uk} and L = {l1, . . . , lk} such

that

F =
k⋃

i=1

({
(ui, li)

}∪{
(li,u j) | j ∈ {1, . . . ,k}, j �= i

})
.

Every k-fence D = (V,F) defines the k-fence inequality x(F) ≤ k2 − k +1 which
is valid for Pn

LO,n ≥ 2k. Figure 6.3 shows a 3-fence.

Fig. 6.3 A 3-fence

Note that the fractional vertex shown in Fig. 6.2 violates the inequality associated
with 3-fences by 1

2 .

Theorem 6.9. Let D = (V,F) be a k-fence contained in Dn,n ≥ 2k. Then the k-fence
inequality x(F) ≤ k2 − k + 1 defines a facet of Pn

LO.

Proof. To illustrate the technique of how to show, without exhibiting a sufficiently
large set of affinely independent vertices, that an inequality is facet defining we give
an explicit proof.

Let D = (V,F) be a k-fence, k ≥ 3. Assume that U = {1,2, . . . ,k} is the set of
its upper nodes and L = {k + 1,k + 2, . . . ,2k} is the set of its lower nodes. We call
the arcs (i,k + i), i = 1, . . . ,k, pales and the other arcs pickets. Due to Lemma 6.5 it
suffices to show that x(F) ≤ k2 −k +1 is facet defining for P2k

LO. Denote this k-fence
inequality by aT x ≤ a0.

Suppose that {x ∈ P2k
LO | bT x = b0} ⊇ {x ∈ P2k

LO | aT x = a0} for some inequality

bT x ≤ b0 valid for P2k
LO. If we can show that there exists a vector λ ∈ R(2k

2 ) and
a scalar μ with bT = μaT + λ T H (where Hx = 1 denotes the minimal equation
system) then we are done by Theorem 6.1.

Let F = An \ {(u,v) | (u,v) ∈ F or (v,u) ∈ F}. Because of the structure of the
minimal equation system we can make the following assumptions without losing
generality

bi j = ai j = 1, for (i, j) ∈ F ,

bi j = ai j = 0,for (i, j) ∈ F and i < j.
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By reversing k−1 pales of D or k−2 pales and one picket having no endnode with
any of these k − 2 pales in common we obtain an acyclic digraph which induces
a partial ordering of the nodes of D. Every extension of such a partial ordering
to a linear ordering gives an acyclic tournament T the incidence vector of which
satisfies aT χT = a0. Let u,v be two nodes in U (or V ). If we can find a partial
ordering (by reversing exactly k−1 arcs of D) which implies neither u≺ v nor v ≺ u
then there exist linear extensions T1 = 〈α,u,v,β 〉 and T2 = 〈α,v,u,β 〉 satisfying
aT χT1 = aT χT2 = a0 and therefore bT χT1 = bT χT2 = b0. From this we get

0 = bT χT1 −bT χT2 = buv −bvu.

We first show that b21 = b12 = 0. By reversing all pales except for pale (k,2k) we
obtain a partial ordering of the nodes of D which leaves nodes 1 and 2 incomparable
(both nodes are sinks in the corresponding digraph) and hence by the above argu-
ment b12 = b21 = 0. Repeating this construction for all pairs of nodes in U , resp.
in V yields bi j = 0 for all (i, j) ∈ F .

We now show that there is some scalar ξ ∈ R such that bi j = ξ for all arcs (i, j)
with ( j, i) ∈ F . W.l.o.g. we assume that bk+1,1 = ξ

The reversal of all pales except for pale (2,k + 2) gives a partial ordering which
can be extended to the linear ordering

T1 = 〈k + 3,k + 4, . . . ,2k,k + 1,2,k + 2,1,3,4, . . .,k〉.

The reversal of the picket (k + 2,1) and all pales except for the two pales (1,k + 1)
and (2,k+2) induces a partial ordering which can be extended to the linear ordering

T2 = 〈k + 3,k + 4, . . . ,2k,1,k + 1,2,k + 2,3,4, . . .,k〉.

From this we get

0 = bT χT1 −bT χT2

= bk+1,1 + b21 + bk+2,1 −b1,k+1−b12 −b1,k+2

= ξ + 0 + 1−1−0−b1,k+2

and hence b1,k+2 = ξ .
Using similar constructions we eventually obtain bi j = ξ for all arcs antiparallel

to the arcs of the k-fence.
Defining λ ∈ R(2k

2 ) with components λ{i, j} for i < j by

λ{i, j} =

{
0, if (i, j) ∈ F ,

ξ , otherwise,

and setting μ = 1− ξ > 0, we get bT = μaT + λ T H. This finishes the proof. ��
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According to Theorem 6.4 different k-fences induce different facets of Pn
LO.

Hence the number of facets of Pn
LO, n ≥ 6, which are induced by k-fences is

� n
2 �

∑
k=3

[(
n
2k

)(
2k
k

)
k!

]
=

� n
2 �

∑
k=3

n!
(n−2k)!k!

.

For k > 3 the k-fences can be considered as a generalization of the 3-fence. Look-
ing at the 3-fence from a different point of view, namely by focusing on the structure
of its dicycles, leads to another generalization and the rich class of Möbius ladders.
Let C1, . . . ,Ck be different dicycles in Dn = (Vn,An) such that

(i) Ci and Ci+1, for i ∈ {1, . . . ,k−1}, have exactly one arc in common. This arc is
called ei. Ck and C1 have exactly the arc ek in common.

(ii) Ci and Cj, for j /∈ {i−1, i+1} (resp. j /∈ {k,2}, if i = 1), have no common arc.

We define the digraph D = (V,A) by setting V = ∪k
i=1V (Ci) and A = ∪k

i=1Ci

and say that D is generated by the dicycles C1, . . . ,Ck. Conversely, whenever a di-
graph D = (V,A) is said to be generated by k dicycles, we implicitly assume that
V = ∪V (Ci), A = ∪Ci and that the common arcs are denoted by ei as in (i).

A dicycle Cj is called right-adjacent to a dicycle Ci if Cj and Ci have some node v
in common and if all dicycles Cl contain this node, l ∈ { j, j + 1, . . . , i}, for j < i,
and l ∈ { j, j + 1, . . . ,k,1,2, . . . , i}, for j > i. A dicycle Cj is called left-adjacent to a
dicycle Ci if Cj and Ci have some node v in common and if all dicycles Cl contain
this node, l ∈ {i, i + 1, . . . , j}, for j > i, resp. l ∈ {i, i + 1, . . . ,k,1,2, . . . , j − 1, j},
for j < i. If Cj is both left- and right-adjacent to Ci then all dicycles have a common
node.

Figure 6.4 gives a different drawing of the 3-fence showing that it can also be
considered a Möbius ladder consisting of three 4-dicycles. The figure also illustrates
why the name Möbius ladder was chosen.

Fig. 6.4 A 3-fence drawn as
Möbius ladder

Not all digraphs of Möbius ladder structure yield facets. They have to be gener-
ated by an odd number of dicycles and these dicycles have to be short.
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Definition 6.2. Let D = (V,M) be a subdigraph of Dn which is generated by the k
dicycles C1, . . . ,Ck, i.e., V = ∪V (Ci),M = ∪Ci, and which satisfies the following
properties:

(i) k ≥ 3 and k is odd.
(ii) The length of Ci is three or four, i = 1, . . . ,k.

(iii) The degree of each node u ∈V (M) is at least three.
(iv) If two dicycles Ci and Cj,2 ≤ i + 1 < j ≤ k, have a node, say v, in common

then Cj is either left-adjacent or right-adjacent to Ci but not both.
(v) Given any dicycle Cj, j ∈ {1, . . . ,k}, set J = {1, . . . ,k}∩ ({ j− 2, j− 4, . . .}∪

{ j + 1, j + 3, . . .}). Then the set M \ {ei | i ∈ J} contains exactly one dicycle,
namely Cj.

Then D is called a Möbius ladder.

Theorem 6.10. Let D = (V,M) be a Möbius ladder in Dn generated by the k dicycles
C1,C2, . . . ,Ck. Then the Möbius ladder inequality

x(M) ≤ |M|− k + 1
2

defines a facet of Pn
LO for n ≥ |V |.

Möbius ladder inequalities are mod-2 inequalities w.r.t. to trivial and dicy-
cle inequalities. Namely, let D = (V,M) be generated by C1,C2, . . . ,Ck and let
F = {e1, . . . ,ek} be the set of common arcs of adjacent dicycles. Then the addition
of the inequalities

x(C1) ≤ |C1|−1

...

x(Ck) ≤ |Ck|−1

∑
e∈F

xe ≤ |M|− |F|

gives 2x(M) ≤ 2|M|− k and hence, after dividing by 2 and rounding down the right
hand side, the Möbius ladder inequality x(M) ≤ |M|− k+1

2 .
There are further classes of facet-defining and valid inequalities which we will

not describe here:

– diagonal inequalites [51],
– Zm-inequalities [111],
– t-reinforced k-fences [90],
– augmented k-fences [91],
– Paley inequalities [58],
– facets from stability-critical graphs [81, 40],
– generalizations of Möbius ladders [46],
– new facets by rotations [14].



126 6 The Linear Ordering Polytope

Concerning separation, the situation is not too fortunate. The separation problem
for k-fences is already NP-hard. The only inequalities so far which can be separated
in a systematic way (and in polynomial time) are certain Möbius ladder inequalities
as they are mod-2 inequalities [24].

We will discuss how to obtain further cutting planes in the subsequent sections.

6.3 Computation of Complete Descriptions

In addition to identifying classes of facet defining inequalities, there has always
been interest in deriving complete linear descriptions for polytopes associated with
small instances of combinatorial optimization problems. Though real problems are
usually large scale, it is worthwhile to put investigations into small polytopes. Facets
derived for small polytopes can give hints for generalizations to facets for larger
polytopes and studying small polytopes can also yield information on the relative
importance of the different classes of facets. Furthermore, in particular in the case
of the LOP (because of the trivial lifting property), facet-defining inequalities for
small instances are also facet-defining for large instances and can thus be used in
computations.

In general, a V -polyhedron conv(V ) = conv({v1 . . . ,vm}) can be transformed to
an H -polyhedron according to the following reformulation.

conv(V ) = {x | there exists y such that Vy = x,1T y = 1,y ≥ 0}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
∣∣∣ there exist y such that

⎛
⎜⎜⎜⎜⎝

V −I
−V I

1T 0
−1T 0
−I 0

⎞
⎟⎟⎟⎟⎠

(
y
x

)
≤

⎛
⎜⎜⎜⎜⎝

0
0
1

−1
0

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{

x
∣∣∣ there exists y such that

(
y
x

)
∈ P(D,d)

}
,

where D and d are defined by the second-to-last row.
By projecting P(D,d) onto the subspace y = 0 (by elimination of the y-variables)

we obtain a polyhedron P(A,b) with the property

x ∈ P(A,b) ⇔ there exists y such that

(
y
x

)
∈ P(D,d)

⇔ x ∈ conv(V ).

As a first step one should determine the minimal equation system for conv(V ) by
performing Gaussian elimination in the system
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(
V −I
1T 0

)(
y
x

)
=

(
0
1

)
.

The system is brought into an equivalent form
(

I ∗ ∗
0 0 D′

)(
y
x

)
=

( ∗
d′

)

with D′ as large as possible. The system D′x = d′ is an equation system for conv(V ).
Possible redundant equations still contained in it can be removed to obtain a minimal
system.

P(A,b) can be obtained algorithmically by using Fourier-Motzkin elimination.
The following algorithm eliminates the j-th variable from the system Dx ≤ d and
yields a system Ax ≤ b which is defined in the remaining variables only and has
feasible solutions if and only if Dx ≤ d is feasible.

FourierMotzkin(D, d, j)

(1) Let k = 0 and partition the rows M = {1,2, . . . ,m} of D into
N = {i ∈ M | di j < 0},
P = {i ∈ M | di j > 0},
Z = {i ∈ M | di j = 0}.

(2) For all i ∈ Z, set k = k + 1 and
Ak· = Di· and bk = di.

(3) For all (s,t) ∈ (N ×P) set k = k + 1 and
Ak· = dt jDs· −ds jDt· and bk = dt jds −ds jdt .

(4) The resulting system is Ax ≤ b.

To turn this principle approach into an effective algorithm further ingredients
have to be added, e.g. for avoiding redundancy and finding good elimination orders.
All details can be found in [34]. Here we report on the most important findings for
the linear ordering polytope.

The complete linear description of P6
LO consists of the 15 equations forming the

minimal equation system, 30 trivial inequalities, 40 3-dicycle inequalities, 120 3-
fence inequalities and 360 inequalites from each of the two types of Möbius lad-
ders M1 (defined on four 3-dicycles and one 4-dicycle) and M2 (the reversal of M1).

Figure 6.6 displays two facet defining inequalities of P7
LO. All solid arcs shown

have coefficient 1 in the inequality, the dotted arc has coefficient 2. The right hand
side of the inequality on the left side is 13 and the other inequality has right hand
side 14.

The complete linear description of P7
LO given in [112] consists of 87,472 facets.

To visualize how many facets are structurally different we define equivalence
classes. Two facet defining inequalities are said to belong to the same σ -class if
one can be obtained from the other just by renaming the nodes. The vertices satis-
fying a facet defining inequality with equation are called roots of the facet.
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x(F ) ≤ 7 x(M1) ≤ 8 x(M2) ≤ 8

x(C) ≤ 2xe ≤ 1

Fig. 6.5 Facet defining inequalities of P6
LO

Fig. 6.6 Facet defining inequalities for P7
LO

The facets of P7
LO can be partitioned into 27 σ -classes which are displayed in

Table 6.1. Eight of these classes are obtained from other classes just by arc reversal.
They are marked with a “∗”. The table also gives the number of vertices on each
facet and the number of nonequivalent facets in each class.

Table 6.1 substantiates the importance of trivial (F1) and 3-dicycle (F2) inequal-
ities. Every such inequality defines a facet with 2520 roots, i.e., a facet containing
half of the vertices of P7

LO. A 3-fence facet (F3) contains only 126 vertices and there
are facets containing only a few roots more than required for the facet dimension.

A further partition of facets of Pn
LO into equivalence classes is possible. Let P =

conv(V ) be a polytope in Rd . An affine mapping ψ from Rd to itself is called a
rotation mapping for P if ψ(V ) = V . A rotation mapping transforms a facet F of P
to a facet ψ(F).
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Table 6.1 The polyhedral structure of P7
LO

Class #vertices on facet #different facets

F1 2,520 42

F2 2,520 70

F3 126 840

F4, F4∗ 126 5,040

F5, F5∗ 67 10,080

F6 44 5,040

F7, F7∗ 104 5,040

F8, F8∗ 67 10,080

F9, F9∗ 67 10,080

F10, F10∗ 44 5,040

F11 67 5,040

F12 104 5,040

F13 67 5,040

F14 126 840

F15, F15∗ 104 5,040

F16 104 5,040

F17, F17∗ 28 2,520

F18 28 2,520

F19 28 5,040

Arc reversal is one such rotation mapping. A second one was introduced in [14].
For fixed r ∈ {1, . . . ,n} the rotation mapping ψ is defined by

ψ(x)r j = x jr, for all 1 ≤ j ≤ n, j �= r,

ψ(x) jr = xr j, for all 1 ≤ j ≤ n, j �= r,

ψ(x)i j = xi j + x jr + xri −1, for all 1 ≤ i, j ≤ n, i �= r, j �= r.

It was shown in [14] that if aT x ≤ α defines the facet F of Pn
LO then

n

∑
i=1,i�=r

n

∑
j=1, j �=r

ai jψ(x)i j

=
n

∑
i=1,i�=r

( n

∑
j=1, j �=r

ai j(xi j + x jr − xir)+ airxri + arixir
)

≤ α

defines the facet ψ(F) of Pn
LO. E.g. this mapping transforms a 3-dicycle inequality

to a trivial inequality and vice versa. We say that two facets belong to the same
Pn

LO-class if they can be converted to each other either by renaming the nodes or by
applying a rotation mapping.
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Using a parallel computer and the adjacency approach described in [34] we could
compute at least a lower bound on the number of facets of P8

LO. We could not prove
that this lower bound gives the exact number of facets, because in 11 out of 12,231
cases we could not compute the adjacent facets. These cases are the facets with
the maximum number of roots (among them the facets defined by trivial, 3-dicycle,
3-fence and 4-fence inequalities). At least 67.5% of the facet σ -classes were first
discovered by our computations. This is a very conservative estimation, based on
the observation that no facets of P8

LO with coefficients larger than 2 were known
before, while for that percentage of facet σ -classes the minimal coefficient is 3.

Table 6.2 summarizes the current state of knowledge about linear ordering poly-
topes.

Table 6.2 Facet structure of Pn
LO

n #vertices #different facets #σ -classes Pn
LO-classes

3 6 8 2 1

4 24 20 2 1

5 120 40 2 1

6 720 910 5 2

7 5,040 87,472 27 6

8 40,320 ≥ 488,602,996 ≥ 12,231 ≥1,390

It is impressive how huge the number of facets of combinatorial polytopes is even
for small instances. And, moreover, none of them is superfluous and they are also
present in larger instances. We will therefore below turn to the question whether we
can make use of this wealth of inequalities in practical computations.

6.4 Differences between Facets

It is a natural question which classes of facets are most or least useful in cutting
plane algorithms. For reasons of efficiency, the choice of the inequalities to use in
a cutting plane algorithm is typically dictated by whether efficient exact or heuris-
tic algorithms are known for the corresponding separation problem. Up to now no
ultimate measure of the quality of a valid inequality with respect to its application
in a branch-and-cut algorithm could be established. From our computations of de-
scriptions of small polytopes we now have 12231 different classes of (necessary!)
facet defining inequalities available for all linear ordering problems on at least 8
nodes. Even on parallel hardware it does not seem to make sense to call a separa-
tion procedure for every class. In the following we therefore want to exhibit differ-
ences between the facets in order to possibly obtain insight into their usefulness for
branch-and-cut algorithms.
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Our goal is to find out if there is a measure such that a priority rule can be given
for the application of the facets of a small problem instance relaxation in a branch-
and-cut algorithm.

In [57, 58] the notion of strength of a relaxation was introduced. The strength of
a relaxation is meant to be a measure of how well a relaxation approximates a poly-
hedron in comparison to another weaker relaxation. The strength is only defined for
certain types of combinatorial polyhedra, namely polyhedra of blocking type [57]
and of anti-blocking type [58]. In the case of the LOP the anti-blocking type is of
interest.

Definition 6.3. Given polytopes P and Q of anti-blocking type, P is said to be an
α-relaxation of Q for some α ≥ 1 if Q ⊇ 1

α P =
{

x
α | x ∈ P

}
. The strength str(P,Q)

of Q with respect to P is the minimum value of α such that P is an α-relaxation
of Q.

Notice that str(P,Q) ≥ 1 and str(P,Q) = 1 if and only if P = Q. In general,
str(P,Q) could be infinite.

While Pn
LO is not of blocking or anti-blocking type we can apply this concept

because of its close relation to the acyclic subdigraph polytope Pn
AC. The acyclic

subdigraph polytope

Pn
AC = conv{χB ∈ {0,1}n(n−1) | B is an acyclic arc set in An}

is of anti-blocking type.
Because Pn

LO = {x ∈ Pn
AC | xi j + x ji = 1,1 ≤ i < j ≤ n}, the linear ordering poly-

tope Pn
LO is a face of Pn

AC. For any nonnegative objective function, an optimal solu-
tion of the linear ordering problem is an optimal solution of the acyclic subdigraph
problem.

Furthermore, a facet defining inequality for Pn
LO in normal form is valid, resp.

facet defining for Pn
AC. Hence, if we restrict ourselves to nonnegative objective func-

tions (which we can do w.l.o.g. for the LOP), we can interpret a cutting plane algo-
rithm for solving the linear ordering problem as a cutting plane algorithm for the
acyclic subdigraph problem using exclusively facet defining inequalities for Pn

LO.
This observation justifies the discussion of strength of relaxations given by inequal-
ities for Pn

LO.
The strength of an inequality with respect to a polytope P is the strength of the

relaxation obtained by adding the inequality. We will compute the strength of classes
of inequalities with respect to the following polytopes.

Trivial relaxation:

Pn
T = {x | xi j + x ji = 1, for all 1 ≤ i, j ≤ n,

xi j ≥ 0, for all 1 ≤ i, j ≤ n}.
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Dicycle relaxation:

Pn
C = {x | xi j + x ji = 1, for all 1 ≤ i, j ≤ n,

xi j ≥ 0, for all 1 ≤ i, j ≤ n

x(C) ≤ 2, for all dicycles C of length 3}.

Obviously, Pn
C = Pn

T ∩{x | x(C) ≤ 2, for all dicycles C length 3}.
Let f T x ≤ f0 be a facet defining inequality for Pn

LO in normal form. Follow-
ing [58] we define the trivial strength of this inequality as

sT ( f ) =
max{ f T x | x ∈ Pn

T }
max{ f T x | x ∈ Pn

LO}
=

max{ f T x | x ∈ Pn
T }

f0

and the dicycle strength of f as

sC( f ) =
max{ f T x | x ∈ Pn

C }
max{ f T x | x ∈ Pn

LO}
=

max{ f T x | x ∈ Pn
C }

f0
.

Note that max{ f T x | x ∈ Pn
T } = 1T f since f T x ≤ f0 is in normal form.

Figure 6.7 shows the trivial strengths of the σ -classes of facets of P8
LO (except for

the trivial inequalities).
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Fig. 6.7 Trivial strength of σ -classes of facets of P8
LO

Figure 6.8 displays the only two facets of P8
LO with sT > 1.5. The right hand

sides of these facets are 17 and 13, the trivial strengths being sT = 1.52941 and
sT = 1.53846, respectively. The 3-dicycle inequality has trivial strength 1.5.

Figure 6.9 displays the dicycle strength of the σ -classes of facets (except for the
trivial and 3-dicycle inequalities). The values of max{ f T x | x ∈ Pn

C } were computed
using the branch-and-cut algorithm for the linear ordering problem described earlier.
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2

Fig. 6.8 Facet defining inequalities with sT = 1.52941 and sT = 1.53846

The 4-fence inequality is the facet with maximum dicycle strength sC = 1.07692
among all facets of P8

LO.
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Fig. 6.9 Dicycle strength of σ -classes of facets of P8
LO

As shown by Goemans and Hall [58], the trivial strength of Pn
AC is 2− o(1),

where o(1) is nonnegative and tends to 0 as the number of nodes n tends to in-
finity. They prove that the highest trivial strength of the known inequalities of
Pn

LO is attained asymptotically for the augmented k-fence inequality with a value
of only 1.52777 and they present new valid inequalities, called Paley inequalities,
which they prove to be facet defining for n = 11 and n = 19 with trivial strengths
1.57143 and 1.59813, respectively. They conclude that the strongest facets of the
acyclic subdigraph polytope are unknown. Concerning the dicycle strength they
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show that the value for Pn
AC must be at least 4

3 since the Paley inequalities achieve
this bound asymptotically. Figure 6.10 displays the Paley graph for 11 nodes.

Fig. 6.10 Paley graph on 11 nodes

A further measure for the usefulness of a facet (proposed by Naddef and Rinaldi
in [101]) could be the distance of the facet to a given relaxation. For Pn

LO we consider
the distance with respect to the 3-dicycle relaxation and define

dc( f ) =
f T x∗ − f0

| f | ,

where f T x∗ = max{ f T x | x ∈ Pn
C }.

Figure 6.11 shows this distance for the facets of P8
LO (except for the trivial and 3-

dicycle inequalities). The strongest facet in this sense is the 4-fence inequality with
dicycle distance dc = 0.25.

A further indication of the usefulness of a facet could be its volume. Volume com-
putation is very difficult and we refer to [34] where volume computation methods
are described and where it is shown that there is a correlation between the volume
of facets and their number of roots.

If one examines correlations between these measures then it turns out that dicy-
cle strength and dicycle distance are correlated whereas there seems to be a neg-
ative correlation between trivial and dicycle strength, i.e., a facet with large dicy-
cle strength has small trivial strength and vice versa. There seems to be a weak
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Fig. 6.11 Distance of σ -classes of facets of P8
LO relative to P8

C

correlation between number of roots and trivial strength but no correlation between
number of roots and dicycle strength or distance.

6.5 Separation of Small Facets

We now describe a possibility for employing the “small” facets in practical compu-
tations. We do not attempt to generalize promising classes because the separation
problem for well-structured inequalities like fences and Möbius ladders is already
hard. Of course, the study of generalizations is an interesting topic for theoretical re-
search. We rather develop a general procedure which has the chance to find violated
inequalities of any facet class.

Let f T x ≤ f0 be a small facet defining inequality for the LOP (in normal form)
with support graph D f = (Vf ,A f ). If x∗ is the current fractional solution, we have
to identify a subgraph D′ = (V ′,A′) of Dn with |V ′| = |Vf | and an isomorphism
between V ′ and Vf such that f T x∗ > f0 on this subgraph.

We use the following method for identifying the subset V ′ and the isomorphism.
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Small facet separation

(1) Choose a subset of nodes W ⊆V , |W |= |Vf | and a 1-1 correspondence
between Vf and W . This gives an initial configuration and a configura-
tion value obtained by evaluating f T x∗ according to the isomorphism
(left hand side of the small facet defining inequality).

(2) As long as possible, generate configurations with higher value. This
can be done by varying the correspondence between W and Vf or by
replacing nodes of W by nodes of V \W .

(3) If the value is greater than f0, a cutting plane is found.

In principle, it is possible to find the best configuration by solving a quadratic
assignment problem with |V | × |Vf | variables. But since the quadratic assignment
problem is NP-hard in general, we have to use heuristics. In the following, let the
current configuration be represented by a mapping σ : V →Vf ∪{0} with σ(w) = u,
if w ∈ W and u is the node of Vf associated with w in the 1-1 correspondence, and
σ(w) = 0, if w ∈V \W .

Figure 6.12 illustrates the principle problem and how to proceed with local mod-
ifications. Here a violated facet defining inequality from a facet class with a support
graph on 7 nodes is searched for.

Fig. 6.12 Separation of small facets

We can use virtually any of the heuristic or meta-heuristic approaches described
in this book. For our computational experiments we have chosen several methods.
Here we briefly describe a deterministic improvement and a simulated annealing
heuristic. A more elaborated GRASP algorithm is given in [34].
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Deterministic Improvement

(1) For every pair of nodes u,v ∈V perform the following:

(1.1) Define a new configuration σ ′ by setting σ ′(u) = σ(v), σ ′(v) =
σ(u), and σ ′(w) = σ(w) for w ∈V \ {u,v}.

(1.2) If the new configuration has higher value, set σ = σ ′.

(2) If the current configuration could be improved for at least one pair,
then repeat step (1).

(3) For every triple of nodes u,v,w ∈W perform the following:

(3.1) Consider all possible new configurations that can be obtained by
exchanging the assignments of u, v and w.

(3.2) If one of these new configurations, say σ ′, has higher value than
the current configuration, set σ = σ ′.

(4) If the current configuration could be improved for at least one triple,
then repeat step (1).

This deterministic heuristic follows the principle of local search and can be char-
acterized as a combination of 2-node and 3-node exchanges. Obviously, the modifi-
cation capabilities of this heuristic are limited, but based on experience from many
local search algorithms one can expect that reasonable configurations are deter-
mined.

In our separation approach we do not exploit special structural information about
small facets to find good configurations. For such unstructured searches, usually also
meta-heuristic algorithms give good results. The second approach is a simulated
annealing scheme.

Simulated Annealing

(1) Choose an initial parameter ϑ , a repetition factor r, and a stopping
parameter ε .

(2) Perform the following as long as ϑ > ε:

(2.1) Repeat the following steps r times
(2.1.1) Let σ be the current configuration. Choose two nodes u,v ∈V

at random, and define a new configuration σ ′ by setting
σ ′(u) = σ(v), σ ′(v) = σ(u), and σ ′(w) = σ(w) for w ∈
V \ {u,v}. Let Δ be the difference of the new configuration
value and the old one.

(2.1.2) If Δ > 0 set σ = σ ′.
(2.1.3) If Δ ≤ 0, compute a random number p, 0 ≤ p ≤ 1 and set

σ = σ ′ if p ≤ eΔ

ϑ .

(3) Update ϑ and r.
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To give an impression of how many violated inequalites one can expect from
small facet separation we list in Tables 6.3 and 6.4 the number of inequalities found
for the facet classes of P7

LO.

Table 6.3 Number of small facets of classes F3–F11 found

Problem F3 F4 F5 F6 F7 F8 F9 F10 F11
econ59 26 163 11 1 1 – 105 3 –
econ64 1 47 1 – 1 – 9 3 –
econ71 1 8 – – – – 35 – –
econ72 19 34 2 2 5 3 66 8 –
econ76 4 147 1 – 1 – 17 3 –
econ77 – 42 9 – 25 17 49 10 –
randB 195 1435 41 11 103 82 134 28 50
randC 130 1035 26 2 55 37 54 11 30

In these experiments problem instances were selected which could not be solved
at the root node with 3-dicycle inequalities only. Small facet separation was invoked
when no more 3-dicycle inequalities were violated. Now, all problems could be
solved at the root node.

Table 6.4 Number of small facets of classes F12–F19 found

Problem F12 F13 F14 F15 F16 F17 F18 F19
econ59 1 6 108 67 11 102 15 –
econ64 1 – 18 6 3 5 1 –
econ71 1 3 26 24 1 13 – –
econ72 1 1 79 34 19 55 6 –
econ76 – – 28 18 – 9 2 –
econ77 – 4 141 24 – 74 17 –
randB 75 23 107 134 70 1 4 –
randC 36 17 36 63 25 2 3 –

For the linear ordering problem we make use of the fact that the facets of small
polytopes are globally facet defining even when lifted trivially. Fractional LP solu-
tions for the linear ordering problem are dense, since we are working on the com-
plete directed graph and since a solution vector contains

(n
2

)
arcs with value 1.

Therefore, we could not develop a reasonable shrinking procedure and perform
small facet separation in the complete digraph with arc weights given by the frac-
tional solution.
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6.6 Computational Experiments with Small Facets

Extensive computational experiments have been carried out to find the best strat-
egy for employing facets from small relaxation. They are documented in depth
in [34, 35] and we only cite the major insights here.

The linear ordering problems were always solved as follows. In a first phase,
only 3-dicycle inequalities were generated. If not enough 3-dicycle cuts are found,
then the heuristics for small facet generation are invoked. Because of the huge num-
ber of facet classes various approaches have been tested. All computations were
carried out on a PC cluster where one processor was the master processor handling
the core of the branch-and-cut and the other processors solved the separation prob-
lem for small facets. The facet classes taken into account were partitioned on the
available processors.

6.6.1 Comparison of Heuristics

It turned out that simulated annealing and GRASP were more effective that the
deterministic approach. Annealing and GRASP were of about the same quality with
respect to finding inequalties. Because of the easier tuning of parameters, eventually
GRASP was preferred.

6.6.2 Cutting Plane Selection

Usually, at each LP phase in the branch-and-cut algorithm many violated inequali-
ties were generated. This was in particular the case because many parallel processors
were active. It is well-known that it is not advisable to add all violated inequalities
because the linear programs become more difficult. The following strategies were
tested.

S1 Select some cuts at random.
S2 Select cuts with priority depending on the amount of violation δ = f T x∗ − f0

(higher violation preferred). This strategy is called distance.
S3 Select cuts with priority depending on the distance d between x∗ and the hy-

perplane f T x = f0, i.e., d = f T x∗− f0
‖ f‖ = δ

‖ f‖ .
S4 If f = kc with k > 0, then f T x ≤ f0 is obviously the “best” inequality that can

be added to the linear program, since f0 is an upper bound of the objective
function which is attained for the roots of f T x ≤ f0. Therefore, an idea is to
prefer cutting planes f T x ≤ f0 with f as parallel as possible to the objective

function c, i.e., those which maximize cT f
‖ f‖ . Moreover, it might be assumed that

a hyperplane f T x = f0 which is nearly parallel to the direction of the objective
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function can bound more symmetrically in all directions when reoptimizing.

Since the angle φ between c and f satisfies cosφ = cT f
‖c‖‖ f‖ , we call this strategy

angle.
S5 Add cutting planes such that the “expected” following LP solution y∗ mini-

mizes cT x. Since, of course, y∗ is not known before reoptimizing, we take − f
as approximating the direction of reoptimization. Let δ = f T x∗− f0. Then with
y∗ = x∗ −λ f and f T y∗ = f0 one obtains λ = δ

f T f
and hence

cT y∗ = cT x∗ − δcT f
f T f

.

Our experiments suggest using strategy S4. It usually leads to the least number
of subproblems and also to the least CPU time. Note that this is also the preferrable
cut selection strategy if only the 3-dicycle relaxation is solved.

6.6.3 Number of Classes Taken into Account

Of course, the gap between the LP bound and integer optimum decreases if more
cutting planes are available. Figure 6.13 displays the gap closure achieved when
using more and more facet classes where in the final case all classes are employed.
It is seen that there is almost no effect any more if more than 1000 classes are used.
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6.6.4 Facet Selection

A next point to be addressed is the question which of the 12229 σ -classes of facets
of P8

LO should be used for separation in addition to trivial and 3-dicycle inequalities.
We have seen above that they have different properties and it should be found out
which of them are important.

In the experiments the 100 best facets relative to the following four criteria were
chosen:

C1 number of roots,
C2 trivial strength,
C3 dicycle strength,
C4 dicycle distance.

Interestingly, it turned out that the number of roots (supposedly correlated to the
volume) does not generally outperform the other choices. It seems that the trivial
strength is a better indicator for the usefulness of a facet. But it was also observed
that this is highly problem dependent.

As the final outcome of all experiments it turned out that, if CPU time in the
parallel setup should be minimum, only the 14 facet classes with most roots should
be taken into account and the 300 cuts best with respect to criterion “angle” or
“distance” should be added in each phase. Despite parallelism, separation of small
facets is still very time consuming and only one or two such phases where introduced
at every node of the branch-and-cut tree. But, since all cuts found are globally valid,
a pool of cuts was kept which could be checked by every node.

In this way the total elapsed time could be reduced by 50% compared with a
sequential implementation using 3-dicycles only. Note that, when using 3-dicycles
only, there is no reasonable use of parallelization (except for parallel processing of
the tree), whereas it makes no sense to use small facet separation in a sequential
code. The number of nodes in the branch-and-cut tree was significantly reduced. At
the expense of more CPU time the number of nodes could be reduced further, but
the above strategy seems to give the best trade-off between less CPU time or less
number of nodes in the tree. The separation of small facets proved to be useful, and
more research on their optimal employment is needed. However, it seems that, due
to their small number of nonzero coefficients, they are not the key to achieving a
breakthrough for solving really large problems.

6.7 Local Cuts and Target Cuts

There is a further general possibility for finding violated inequalities which is in par-
ticular easily applicable for the LOP. This approach is somehow related to the small
facet cut generation as discussed above in that the original problem and the associ-
ated fractional solution are projected to a smaller problem, and cuts for the smaller
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problem are lifted back to the orginal one. The difference is that not “template cuts”
(i.e., inequalities which are basically known) are sought, but that general cuts can be
derived. The approach for generating local cuts was invented and extensively used
for solving large traveling salesman problems [5]. We only describe the principal
idea.

Assume that the given problem is large and that for the current fractional solu-
tion x∗ either no cut can be found, or searching for cuts would be much too time
consuming because of the size of the problem.

The idea now is to go to a smaller problem instance by some way of “shrinking”
the original feasible set P to a smaller set Q, at the same time transforming x∗ to
a point y∗. The goal is to do the shrinking such that, if x∗ is infeasible for P, then
also y∗ is infeasible for Q. Now it is tried to find an inequality bT x≤ b0 separating y∗
from Q which can basically be accomplished by solving the problem

maxbT y∗ −b0

bT y−b0 ≤ 0, for all y ∈ Q.

In the case of violation (solutions with objective function value greater than 0 exist),
this problem would be unbounded, so some normalization conditions are needed
for b. E.g., this could be realized by bounding the components of b, but we do not
elaborate on this here.

Because of the trivial lifting property of the linear ordering polytope we can as-
sume that Q is defined by a subset of the nodes of the original problem (i.e., consists
of the characteristic vectors of all linear orderings of the nodes of this subset) and
that y∗ is just x∗ restricted to this subset.

The new problem can now be solved iteratively in the following way. We start
with some linear orderings χ1, . . . ,χk ∈ Q giving a subset Q ⊆ Q. Then the linear
programming problem (augmented by normalization conditions)

maxbT y∗ −b0

bT χ i −b0 ≤ 0, for all i = 1, . . . ,k

is solved. Let z∗ be the optimum objective function value with corresponding in-
equality b∗T x ≤ b∗0. If z∗ ≤ 0 then no violated inequality can be found for Q. If z > 0
then it has to be checked whether the computed inequality is valid for Q or not.
In the first steps one can try to find points in Q violating this inequality by running
heuristics for finding linear orderings with high value w.r.t. the objective function b∗.
If violating linear orderings are found then they can be added to Q and the above
problem is solved again. If the heuristic does not find a violating ordering then the
problem has to be solved exactly by optimizing over Q. This amounts to solving a
small LOP. If the optimum objective function value is still positive, then a cutting
plane for the small problem has been found, otherwise the shrinking procedure has
failed to generate a cut.
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If a cut has been found, it has to be lifted to a valid inequality aT x ≤ a0 for the
original problem. In the case of the LOP it can be taken as is and a cutting plane for
the original problem can be added.

There is a slight addition to this procedure which is helpful in practical compu-
tations. Usually the cut is tight just at a single vertex of Q. In order to get a better
inequality this cut has to be “tilted” to include further vertices until eventually a
facet cut is constructed.

With the so-called target cuts the same intention as with local cuts is followed.
We want to find cuts for large problems by finding cuts for a problem originating
from the true one by some shrinking procedure.

Let P, x∗, Q and y∗ be defined as above.
In a first step, all linear orderings χ1, . . . ,χm ∈ Q are enumerated. Let x0 be

an interior point of conv({χ1, . . . ,χm}) (e.g., x0 = 1
m ∑ χ i). Note that in our case

conv({χ1, . . . ,χm}) = Pk
LO, if Q is defined by k nodes.

The separation problem can be solved by determining the optimum solutions of
the following pair of dual linear programs.

min
m

∑
i=1

λi

m

∑
i=1

λi(χi − x0) = x∗ − x0

λi ≥ 0

max(x∗ − x0)T u

(χ1 − x0, . . . ,χm − x0)T u ≤ 1

If ∑λ ∗
i > 1 for the pair λ ∗ and u∗ of optimum solutions then the violated inequal-

ity u∗T (x− x0) ≤ 1 is found. This inequality is facet defining for Pk
LO.

The main difference between the two approaches is that target cuts generate
facets for the subproblem while local cuts generate facets only after tilting. But
on the other hand, local cut generation can work with subsets of Q (delayed column
generation), and a cut can be found without enumerating the set Q. Delayed column
generation can also be adopted for target cuts, but this is more complicated (details
can be found in [16]).





Chapter 7
Further Aspects

Abstract In this chapter we want to address some issues of interest for the LOP
which we have not included in the previous chapters and point to some areas for
possible further research.

7.1 Approximative Algorithms

It is surprising that, although the LOP is a classical difficult combinatorial optimiza-
tion problem, not much is known about heuristics with approximation guarantees.

For a nonnegative objective function, a trivial heuristics guarantees an approxi-
mation of 50%. Namely, take a random ordering, then either the arc weights of the
acyclic tournament induced by this ordering, or the arc weights of the reverse tour-
nament sum to at least half of the total weight, and so 1

2 -approximation is trivial.
In [104] it is proved that it is NP-hard to approximate the LOP with a factor better
than 65

66 .
As a somewhat contrasting result, it was shown in [18] that the LOP is “asymp-

totically easy”. To be more precise: under certain mild probability assumptions, the
ratio between the objective function values of the best and of the worst solution is
arbitrarily close to 1 with probability tending to 1 if the problem size goes to infin-
ity. On the other hand, intuitively this result is not surprising. If all entries of the
matrix are drawn from a uniform distribution then there is no specific structure and
all permuted matrices look similar. And, since one half of the entries are added, the
expected difference between values of feasible solutions should be small.

But, as we have seen in the preceding chapters, it is not very difficult to come
up with solutions close to optimal for arbitrary instances using elaborate heuristics.
This suggests that better approximation results should be possible to narrow the
gap [ 1

2 , 65
66 ] which is so far an open problem for possible polynomial time approxi-

mation.
There are some approximation results on special variants of the problem like

the minimum feedback arc set or the acyclic subdigraph problem. For a survey of

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 7,
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approximation results and a discussion of further interesting aspects and open ques-
tions concerning tournaments see [31].

7.2 Integrality Gaps of LP Relaxations

The key to solving the LOP with branch-and-bound or branch-and-cut algorithms
is the strength of the relaxations employed. There has been interesting research on
the so-called integrality gap of LP relaxations. For some given nonnegative weight
function c, let copt(c) and cLP(c) be the corresponding values of the optimum linear
ordering and of the LP relaxation, respectively. Then the integrality gap of the LOP
w.r.t. this relaxation is defined as

sup
c>0

cLP(c)
copt(c)

.

In [104] it is shown that the gap of the standard LP relaxation with 3-dicycle in-
equalities is arbitrarily close to 2. The proof is based on the existence of a class of
digraphs Dε = (V,A) with the property that any acyclic subset of the arcs does not
contain more than approximately (1 + ε) |A|2 arcs.

But, also when further facet-defining inequalities are added, this gap is not im-
proved too much. If all k-fence inequalities were added, the integrality gap would
still be 2−ε . The situation could be a little better when small Möbius ladder inequal-
ities (on up to 7 nodes) are added. In this case, the integrality gap can be shown to
be at least 33

17 − ε , but it could be strictly bounded away from 2.
Based on the approximation results of [104] cited above we can conclude that,

unless P = NP, no LP relaxation can have an integrality gap less than 66
65 if it is

solvable in polynomial time.
The integrality gap of the 3-dicycle relaxation is closely related to the dicycle

strength discussed in the previous chapter. Namely, if the objective function is given
as the left hand side of a facet-defining inequality in normal form, then the integrality
gap is exactly the dicycle strength of this facet.

7.3 Degree of Linearity

As a measure for the “triangularity” of an (n,n)-matrix C = (ci j) the degree of lin-
earity is defined as

λ (C) =
∑

σ(i)<σ( j)
ci j

∑
i�= j

ci j

for an optimum permutation σ . Consider the trivial relaxation of the LOP:
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max ∑
(i, j)∈An

ci jxi j

xi j + x ji = 1, for 1 ≤ i < j ≤ n,

xi j ∈ {0,1}, for 1 ≤ i, j ≤ n, i �= j.

This relaxation is called the tournament relaxation because its feasible solutions are
exactly the tournaments in An. It can be solved simply by setting, for i < j, xi j = 1
and x ji = 0, if ci j ≥ c ji, and xi j = 0 and x ji = 1, otherwise. Therefore, the constraint
“xi j ∈ {0,1}” can be replaced by “xi j ≥ 0” and the relaxation can also be viewed as
an LP relaxation.

For a problem in normal form, the optimum value is just the sum of all weights.
If cT (c) denotes this optimum value and copt(c) the maximum weight of an acyclic
tournament, then

cT (c)
copt(c)

=
1

λ (C)
,

i.e., the integrality gap of this relaxation is the inverse of the degree of linearity,
and thus lies in the interval [1,2]. The results on the integrality gap of the 3-dicycle
relaxation show that the worst case bound 2 is indeed tight.

In analogy with the 3-dicycles, we now have a connection with the trivial strength
of facets. Namely, if the objective function is given as the left hand side of a facet-
defining inequality in normal form, then the integrality gap of the tournament relax-
ation is exactly the trivial strength of this facet.

The integrality gaps of the tournament and of the 3-dicycle relaxation should be
correlated. Figure 7.1 displays the corresponding integrality gaps for a set of random
problems with n = 44.
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Fig. 7.1 Correlation between 3-dicycle and tournament gap
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There is a significant correlation but, e.g., for instances where the 3-dicycle gap
is 1, the tournament gap varies between 1.232 and 1.314. Note that the gaps are far
from their worst case bound.

We have performed some experiments for learning more about the distribution of
the degree of linearity. To this end we have generated random problems in normal
form with different densities and sizes of coefficients.

Tables 7.1–7.3, respectively, show minimum, maximum and average degrees of
linearity for random problems with densities from 10% to 100% and integral coef-
ficients drawn uniformly from the interval [0,U ], where U = 1,2,20,200,2000. For
every combination 1000000 instances were solved.

Table 7.1 Miminum degree of linearity (n = 14, 1000000 problems)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 0.667 0.750 0.744 0.721 0.720 0.702 0.700 0.691 0.683 0.681

2 0.667 0.759 0.750 0.740 0.730 0.720 0.707 0.703 0.689 0.686

20 0.694 0.769 0.772 0.764 0.750 0.731 0.725 0.719 0.710 0.701

200 0.690 0.765 0.777 0.767 0.740 0.734 0.729 0.712 0.705 0.701

2000 0.679 0.765 0.776 0.758 0.750 0.730 0.723 0.720 0.713 0.701

Table 7.2 Maximum degree of linearity (n = 14, 1000000 problems)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 1.000 1.000 1.000 1.000 1.000 1.000 0.967 0.944 0.923 0.923

2 1.000 1.000 1.000 1.000 1.000 1.000 0.974 0.956 0.929 0.910

20 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.970 0.957 0.944

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975 0.966 0.943

2000 1.000 1.000 1.000 1.000 1.000 0.999 0.987 0.974 0.947 0.931

Table 7.3 Average degree of linearity (n = 14, 1000000 problems)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 0.988 0.950 0.907 0.872 0.844 0.822 0.803 0.787 0.773 0.760

2 0.991 0.957 0.918 0.885 0.857 0.835 0.815 0.799 0.785 0.773

20 0.994 0.971 0.940 0.909 0.882 0.859 0.840 0.823 0.808 0.795

200 0.994 0.971 0.939 0.908 0.881 0.858 0.838 0.822 0.807 0.794

2000 0.994 0.971 0.938 0.908 0.881 0.858 0.838 0.821 0.807 0.794

We conducted further experiments with smaller and larger problems. On average,
the following tendencies can be observed and are confirmed by the results shown
here:
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– Problems with smaller entries have lower degree of linearity.
– The minimum degrees of linearity can be found in very sparse problems with

small entries.
– Problems with higher density have a lower degree of linearity.
– Problem examples giving values close to the worst case bound are extremely

rare.

Since the degrees of linearity observed in the above experiments are far from the
worst case 0.5, we tried to generate more instances in order to have a chance to get
lower degrees. Table 7.4 shows some results suggesting again that worst case exam-
ples must be extremely rare. In addition, the table also displays the maximum inte-
grality gap encountered for 3-dicycle relaxations. It should be difficult to generate
small instances where the 3-dicycle bound exceeds the optimum by more than 5%.

The discussion of facet strengths in the preceding chapter showed that there are
instances with n = 8 and trivial gap 1.538 (corresponding to the degree of linear-
ity 0.650) and 3-dicycle gap 1.077. In our experiments we did not even come close
to these values which are themselves still far away from the worst case. Probably
such bad cases really only occur for large n and sparse digraphs (as supported by
the theoretical results). Worst cases should be extremely rare and therefore it is no
surprise that they did not come up in our experiments because we could generate
only a very small fraction of possible problem instances.

Table 7.4 Computational results for random problems

n Density #problems BB min DoL max DoL 3-cyc gap

10 1.0 10008189 0.1% 0.6889 1.0000 1.0323

20 0.1 8500349 0.6% 0.7647 1.0000 1.0357

20 0.5 327350 30.1% 0.7238 0.9333 1.0221

20 1.0 545636 63.1% 0.6737 0.8263 1.0365

30 0.1 1312510 26.4% 0.8269 1.0000 1.0217

30 0.2 88478 55.1% 0.8000 1.0000 1.0159

30 1.0 1974 99.8% 0.6713 0.7379 1.0471

35 1.0 118 81.4% 0.6756 0.7109 1.0446

Table 7.4 also gives the percentage of problems (BB) which required a branch-
and-bound, i.e., for which the 3-dicycle relaxation did not give an integral solu-
tion. For larger problems with comparatively low degree of linearity a solution with
the 3-dicycle LP only cannot be expected. The percentage of 81.4% for n = 35 is
obviously too low, but caused by the fact that only very few instances could be
solved.
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7.4 Semidefinite Relaxations

Let T1, . . . ,Tm, m = n!, denote all spanning acyclic tournaments of Dn = (Vn,An)
with their characteristic vectors χ i. Throughout this monograph algorithms for solv-
ing the LOP to optimality were based on linear relaxations of

Pn
LO = conv

({χ i | i = 1, . . . ,m})

for computing upper bounds on the optimum objective function value, i.e., the
bounds were obtained by solving linear programs of the form max{cT x | Ax ≤ b}
where Pn

LO ⊆ {x | Ax ≤ b}. We have experienced that the computation of these
bounds is very time consuming and for difficult problems the upper bounds are
fairly weak.

A more powerful alternative could be the employment of so-called semidefinite
relaxations which require the solution of semidefinite programming problems. With
symmetric (n,n)-matrices C, A1, . . . ,Am and scalars b1, . . . ,bm a semidefinite pro-
gram (SDP) can be defined as

min
{〈C,X〉 | 〈Ai,X〉 = bi, i = 1, . . . ,m, X 	 0

}
.

Here 〈C,X〉 denotes the product ∑n
i=1 ∑n

j=1 ci jxi j and X 	 0 denotes the requirement
that X is a positive semidefinite matrix. Semidefinite programs can e.g. be solved
by interior point methods. We cannot go into details on semidefinite programming
here, but refer to the state-of-the-art survey [113].

There a several ways of coming up with a semidefinite relaxation for the LOP.
A first one is the following where the central idea is that instead of Pn

LO we now
consider

M n
LO = conv

({χ i(χ i)T | i = 1, . . . ,m}).
This set lies in the space of symmetric (n,n)-matrices and in addition every matrix
in M n

LO is positive semidefinite. The additional property that we are interested only
in matrices of rank 1 cannot be handled by SDP solvers and hence it is relaxed. Of
course, every constraint for the original problem can be transformed into a constraint
in the new space. The big advantage is that also quadratic constraints now become
linear and can thus be employed in models. A disadvantage of this approach is that
the dimension of the problem space is squared, i.e., in the case of the LOP increases
from O(n2) to O(n4).

When using SDP relaxations it is useful to go from the 0/1-model to a ±1-model.
To this end we first replace the usual characteristic vectors χ i for tournaments
by ±1-vectors ξ i by setting

ξ i = 2χ i −1, i = 1, . . . ,m.

Inequalities for the original characteristic vectors can easily be transformed into the
new vectors. E.g., the 3-dicycle inequalities now read
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−1 ≤ xi j + x jk − xik ≤ 1,

for all i < j < k. So essentially the model is not changed, but a major benefit is
that now, in the semidefinite program, we can request in addition that the diagonal
elements have value 1 as they correspond to squares of 1 or -1.

Instead of starting with a linear formulation of the LOP we could as well start
with a quadratic formulation and then construct a semidefinite relaxation by go-
ing from vectors to matrices as described above. Such an approach was taken by
Newman in [103]. It is based on a quadratic programming formulation of the LOP
with ±1-variables yik defined as

yik =

{
−1, the position of i in the ordering is less than k,

+1, the position of i in the ordering is at least k.

The formulation of Newman is

max ∑
(i, j)∈An

∑
1≤h≤l≤n

1
4

ci j(yih − yi,h−1)(y jl − y j,l−1)

(yih − yi,h−1)(y jl − y j,l−1) ≥ 0, for all i, j ∈Vn, h, l = 1, . . .n,

yihyih = 1, for all i ∈Vn, h = 1, . . .n,

yi0 = −1, for all i ∈Vn,

yin = 1, for all i ∈Vn,

∑
i, j∈Vn

yi, n
2
y j, n

2
= 0,

yih ∈ {−1,+1}, for all i,h = 1, . . . ,n.

The quality of the semidefinite relaxation based on this model is analyzed in [103].
Surprisingly, for the worst case examples of the 3-dicycle relaxation which give an
integrality gap arbitrarily close to 2, the gap of this relaxation is only at most 1.64.

7.5 Context Independent Solvers

General purpose heuristics are based on models that treat the objective function
evaluation as a black box, making the search algorithm context independent. The
evaluation of the objective function can be seen as the call of an oracle which returns
the objective value of a feasible solution. The solution algorithm itself does not
know anything about the structure of this objective function and therefore cannot
exploit structural properties. In particular, it is unknown to the solver whether the
objective function is linear or nonlinear and therefore it possibly cannot apply the
most effective search strategies for a given situation.

Meta-heuristics can be used to create solution procedures that are context inde-
pendent. The original genetic algorithmic designs were based on this model. The
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advantage of this design is that the same solver can be applied to a wide variety
of problems. The obvious disadvantage is that the solutions found by context inde-
pendent solvers might be inferior to those of specialized procedures when both are
allotted the same amount of computer effort (e.g. total search time).

Context independent solvers (also called general purpose or black box opti-
mizers) based on meta-heuristics have found their home in commercial imple-
mentations. A standard evolutionary solver that is a context independent GA im-
plementation is included in the Premium Solver Platform of Frontline Systems,
Inc (www.frontsys.com). Opttek Systems, Inc (www.opttek.com) commer-
cializes OptQuest, a context independent solver based on scatter search. Other
GA-based commercial implementations of general purpose optimizers are Evolver
by Palisade Corporation (www.palisade.com) and Pointer by Synaps, Inc.
(www.synaps-inc.de).

In [21] a hybrid meta-heuristic for a class of problems based on a context inde-
pendent paradigm is proposed. The method is restricted to those problems whose
solutions are represented by permutations. This class includes a wide range of prob-
lems such as the traveling salesman problem, the quadratic assignment problem,
various single machine sequencing problems, and the linear ordering problem, to
mention only a few. The procedure is a combination of scatter search and of tabu
search. The scatter search framework provides a means for diversifying the search
throughout the exploration of the permutation solution space. Two improvement
methods are used to intensify the search in promising regions of the solution space.
Improved solutions are then used for combination purposes within the scatter search
design. We briefly describe this design in the next paragraphs.

As described in Chapter 3, there are three elements that we need to define in any
evolutionary method: a way to generate solutions, a way to combine solutions and
a way to maintain a set (population) of solutions. The procedure in [21] follows the
standard scatter search design to maintain the set of solutions (reference set). A gen-
erator of solutions (permutations), which focuses on diversification and not on the
quality of the resulting solutions, is used at the beginning of the search to build the
initial set P of solutions. The generator, proposed by Glover [55], uses a systematic
approach to creating a diverse set of permutations. This contrasts with the typical
GA approach of randomly generating an initial set of solutions from which to start
the evolutionary search. In order to obtain a set of solutions of reasonable quality
and diversity, an improvement method is applied to the solutions in P. The improve-
ment method consists of two phases, a simple local search based on exchange moves
and a tabu search. The TS is based on a short-term memory function and is applied
only to the most promising solutions.

In order to design a context independent combination methodology that performs
well across a wide collection of different problems, a set of ten combination methods
is proposed (cm1 to cm10), from which one is probabilistically selected according
to its performance in previous iterations. Solutions in the reference set are typically
ordered according to their objective function value. So, the best solution is the first
one in this set and the worst is the last one. A score is updated for every method
as follows. If a solution obtained with combination method cmi qualifies to be the
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jth member of the current reference set, then b− j + 1 is added to the score of cmi.
Therefore, combination methods that generate good solutions accumulate higher
scores and are used more often.

In the experiments of [21] the authors considered four well known problems in
which solutions are represented by permutations. We report in Table 7.5 the com-
parison between the proposed solver, called SS-TS, and two commercial packages,
Frontline and Opttek, when solving the linear ordering and the traveling salesman
problem. Table 7.5 reports the average percentaged deviation between the best solu-
tion obtained with each method and the optimal solution of 49 input-output instances
of LOLIB (IO set) and 31 instances of TSPLIB (a library for the traveling salesman
problem [123]). The table also shows the average CPU time in seconds.

Table 7.5 Comparison with commercial solvers

OptQuest Frontline SS-TS
Linear Ordering Problem
Deviation 8.5% 16.1% 0.0%
CPU time 301 300 25
Traveling Salesman Problem
Deviation 311.4% 8.4% 5.7%
CPU time 5772 5628 23

Table 7.5 shows that the proposed scatter search with a tabu search improvement
method yields higher quality solutions on average when compared to two commer-
cially available software packages. To make a fair comparison, a fixed number of
objective function evaluations has been set as a termination criterion for all proce-
dures. We include the execution time to show the advantage of using a specialized
code that does not include additional costly routines, such as those associated with
graphical output or databases to store all visited solutions. It must be noted that, al-
though we mentioned in previous chapters that the input-output instances of LOLIB
are relatively easy to solve with the meta-heuristic methodologies, the solvers in
Table 7.5 are context independent and they do not employ the knowledge, proper-
ties and structure of the problem as meta-heuristics can do.

7.6 Difficulty of LOP Instances

A problem instance is not in itself difficult, but it is difficult with respect to the solu-
tion algorithm. Clearly, for branch-and-bound or branch-and-cut, a problem should
be difficult if the relaxations used do not provide good bounds.

Figures 7.2 and 7.3 display the correlation between CPU times for solving the
problems of the previous section to optimality and the respective integrality gaps
of the tournament and the 3-dicycle LP. Obviously, problems with higher gaps are
more difficult for branch-and-cut algorithms.
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From the perspective of heuristic and meta-heuristic methodologies we can dif-
ferentiate three categories of methods:

a) constructive methods,
b) local search based methods,
c) population based methods.

An instance is easy to solve with a constructive method if it contains useful in-
formation associated with partial neighborhoods. In other words, if we have useful
evaluations both for selecting a good candidate and for placing it in a good posi-
tion to extend the partial solution under construction. In this case we say that the
constructive process is guided by context information.

An instance is easy to solve with a local search based method if it contains useful
information associated with complete neighborhoods. If the evaluation associated
with the moves in a neighborhood permits us to discriminate among them, the local
search can progress in the solution space. Min-max and max-min problems typi-
cally present flat landscapes and do not contain information at all associated with
the neighborhoods. Move values are usually 0 in these problems, and therefore de-
cisions to select moves must be taken at random.

An instance is easy to solve with a population based procedure if its combina-
tion method is able to obtain good solutions when applied to good solutions. The
conjecture that information about the relative desirability of alternative solutions is
captured in different forms by different solutions motivated these approaches. Their
success on a particular instance is based on its ability to capture the structures in
good solutions responsible for their quality, and to transfer these structures to the
combined solutions.

7.7 Sparse Problems

When most of the arcs of a LOP have zero weight, then it is preferrable to treat
it as an acyclic subdigraph problem. As pointed out in the introduction ASP and
LOP are trivially equivalent. If the set of arcs with positive weights is sparse, then a
maximum weighted acyclic subdigraph arc set will not be a tournament, but can be
extended to a tournament.

In the sparse case, we do not optimize the objective function over Pn
LO but over

the polytope PAC(D) instead, where D = (V,A) is the subdigraph of Dn obtained by
eliminating all arcs with weight zero. PAC(D) is defined as

PAC(D) = conv{χB ∈ {0,1}A | B is an acyclic arc set in A}.

Further details on the ASP, in particular on the facet structure of PAC(D) can be
found in [72]. Note that Pn

LO is a face of PAC(Dn) obtained by requiring equality
in all 2-dicycle inequalities xi j + x ji ≤ 1. Therefore, the facial structures of the two
polytopes are closely related.
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The canonical IP formulation of the ASP is

max ∑
(i, j)∈A

ci jxi j

x(C) ≤ |C|−1, for all dicycles C in A,

xi j ∈ {0,1}, for (i, j) ∈ A.

Note that in the case of the ASP we have to exclude all dicycles of length k, k ≥ 2,
because the digraph is not complete. Furthermore the tournament equations do not
apply here. (For LOP instances in normal form, there are no 2-dicycles.)

If the integrality constraints are replaced by “0 ≤ xi j ≤ 1”, then we obtain the
dicycle relaxation of the ASP. The separation problem for dicycle inequalities can
easily be solved in polynomial time, as the following observation shows. Let x∗ be
the current fractional LP solution and define y∗ = 1− x∗. Then x∗(C) ≤ |C| − 1 if
and only if y∗(C) ≥ 1. So, for separating dicycle inequalites, the shortest dicycle
in A with arc weights given by y∗ is computed (using shortest path techniques). If
the shortest such diycle has length greater than or equal 1, then no dicycle inequality
is violated, otherwise this dicycle yields a cut.

Therefore, the dicycle relaxation can be solved in polynomial time and can serve
as a basis for branch-and-bound and branch-and-cut algorithms which are designed
analogously as for the LOP.

Note that if we add the inequality system

xe − x f + xg ≤ 1, for all arcs e, f ,g ∈ A and V ( f ) ⊆V ({e,g}),

then we obtain an IP formulation of the node induced acyclic subdigraph problem
which can serve as a basis for branch-and-cut algorithms.

7.8 A Simple Dual Heuristic

Let a LOP in normal form be given. Denote its optimum solution by copt and let Q
denote the sum of all arc weights.

Let B be some dicycle in An and define

Bmin = min{ci j | (i, j) ∈ B}.

Then Bmin ≥ 0 and obviously copt ≤ Q−Bmin. We modify the objective function by
setting

c′i j =

{
ci j −Bmin, (i, j) ∈ B,

ci j, otherwise.

With another dicycle B′ and B′
min = min{c′i j | (i, j) ∈ B′} we can improve the upper

bound to copt ≤ Q−Bmin−B′
min.
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Of course, only dicycles with strictly positive minimum arc weight are of interest.
We can iterate this procedure as long as we find such dicycles and get an upper
bound for the optimum solution of the LOP.

DualHeuristic(C)

(1) Set UB = Q and c′i j = ci j, for all (i, j) ∈ An.
(2) While An \ {(i, j) | c′i j = 0} is not acyclic:

(2.1) Let B be a dicycle in An \ {(i, j) | c′i j = 0}.
(2.2) Set Bmin = min{c′i j | (i, j) ∈ B}.
(2.3) Set UB = UB−Bmin.
(2.4) For every (i, j) ∈ B set c′i j = c′i j −Bmin.

Surprisingly, this heuristic yields fairly reasonable upper bounds. Table 7.6 gives
the average percentage of this bound w.r.t the best known lower and upper bounds.
We also list the percentage of this bound in terms of the sum of all objective function
coefficients.

Table 7.6 Comparison of simple upper bounds

Problem class % Sum %best UB %best LB
IO 96.01 100.46 100.46
Random A1 70.38 101.62 114.77
Random A2 94.46 101.29 101.55
Random B 76.48 105.07 105.73
MB 91.11 100.81 100.81
XLOLIB 85.16 106.78 109.66
SGB 73.16 100.89 100.89
Spec 85.59 104.57 106.90

Thus, in the case that LP bounds cannot be computed, these bounds provide
useful information for assessing heuristics.

Now consider the following linear program.

max ∑
(i, j)∈An

ci jxi j

x(C) ≤ |C|−1, for all dicycles C in An, |C| ≥ 2,

xi j ≤ 1, for (i, j) ∈ An,

xi j ≥ 0, for (i, j) ∈ An.

For a LOP in normal form, its optimum value is equal to the value of the 3-dicycle
relaxation. The dual of this program is
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min ∑
B dicycle in An

(|B|−1)yB + ∑
(i, j)∈An

zi j

∑
B dicycle in An

(i, j)∈B

yB + zi j ≥ ci j, for all (i, j) ∈ An,

yB ≥ 0, for all dicycles B in An,

zi j ≥ 0, for all (i, j) ∈ An.

Let B denote the set of dicycles used in the dual heuristic and set the dicycle vari-
ables

yB =

{
Bmin, B ∈ B,

0, otherwise,

and
zi j = ci j − ∑

B∈B, (i, j)∈B

yB.

Then this setting of variables is feasible for the dual program and

Q− ∑
B∈B

Bmin = ∑
(i, j)∈An

(
zi j + ∑

B∈B, (i, j)∈B

yB

)
− ∑

B∈B

Bmin

= ∑
(i, j)∈An

zi j + ∑
B∈B

(|B|−1)yB.

So the heuristic can be interpreted as finding a feasible solution for the dual of the
3-dicycle relaxation. Therefore it gives an upper bound on the value of the 3-dicycle
relaxation and thus an upper bound on the LOP.

7.9 Future Research

The current state-of-the-art of solution algorithms for the LOP seems not really
satisfactory. Whereas very good feasible solutions can be found for large problems
using the comprehensive toolbox of heuristics, fairly small problems can still be dif-
ficult for exact algorithms and cannot be solved to optimality in reasonable time. So
there is definite need for further research on algorithms, mainly for exact algorithms
but also for heuristics. We expect progress on the following topics.

Black Box Solvers

As we have seen in the computational experiments shown in Section 7.5, the quality
of the solutions obtained with context independent or black box solvers is still mod-
erate. Although it is expected that general purpose methods obtain medium quality
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solutions, as compared with the high-quality obtained with the specialized meth-
ods, the truth is that these generic methods need further development. Considering
that most commercial solvers are based on this technology, we should study their
associated models and heuristics algorithms to achieve better results.

Solution of the 3-Dicycle Relaxation

The determination of this bound is at the core of exact algorithms. The solution time
needed is still not satisfactory. Possibly a combination of primal and dual methods,
i.e., cutting plane and bundle approaches bears the potential for improvement.

Separation Algorithms

Besides the trivial 3-dicycle enumeration and the separation of certain Möbius lad-
ders as mod-2 inequalities, there are no other exact separation algorithms. It is
known that the separation of k-fences is NP-hard. As the computation for small
polytopes shows there is a wealth of further facet defining inequalities the structure
of which is unexplored. So there is room for theoretical research on the complexity
of separation and the development of further exact algorithms.

Local Cuts and Target Cuts

Local cuts and target cuts offer the possibility of generating cutting planes for large
problems and generating cuts which are different from the ones used in separation
procedures so far. It could be promising to study their effect.

Branch-and-Bound Revisited

Most of the present day branching schemes are binary, i.e., some variable is fixed
to 0 or to 1 and the corresponding two subproblems are created. The effect of just
changing one variable is small and it could be advantageous to employ more com-
plicated schemes.

An obvious possibility is to branch by fixing nodes at certain positions of the
ordering. Fixing a node at a position has significantly more consequences than just
fixing one variable. Furthermore, branching on inequalities could be an option and
parallelization is always applicable to branch-and-bound.
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Different Models

All computational methods for solving the LOP are based on the binary variables xi j

where

xi j =

{
1, if i is before j in the ordering,

0, otherwise.

But other modeling approaches could be explored as well. E.g., one could use binary
variables xi jk for three nodes i, j,k defined as

xi jk =

{
1, if j is after i and before k in the ordering,

0, otherwise.

An IP formulation of the LOP with these variables is

max∑wi jkxi jk

xi jk + xik j + x jik + x jki + xki j + xk ji = 1

xi jk + xik j + xki j − xi jl − xil j − xli j = 0

xi jk ∈ {0,1}

where

wi jk =
ci j + cik + ck j

n−2
,

if c denotes the original objective function. The canonical LP relaxation gives
the 3-dicycle bound as the standard formulation with 2-index variables.

For n = 4 the convex hull of feasible 0/1 vectors has further facets defined by the
inequalities

xi jk − xi jl − xl jk ≤ 0

xi jk − xi jl − xlik − xilk ≤ 0

xi jk − xikl − xl jk − xilk ≤ 0

xi jk + xlk j − xikl − xilk − xl ji − xli j ≤ 0

for pairwise distinct i, j,k, l.
If all these inequalities are added, then the LP relaxation for n = 6 is integral, i.e.,

all 3-fence and Möbius ladder inequalities are implied.
The exploration of alternative models could possibly lead to more effective algo-

rithms.
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General Integer Programming

Since we have difficult problem instances already for small values of n, the study of
general integer programming approaches like lift-and-project could be worthwhile.

Determination of Optimum Solutions Using SDP

In theory, semidefinite programming bounds are stronger than linear programming
bounds. First experiments with quadratic models and semidefinite relaxations sup-
port this. On the other hand, the problem dimension is drastically increased. But, in
the range of a few hundred nodes, this could be manageable and there should be a
thorough investigation of the power of semidefinite relaxations in the context of the
LOP. First experiments on small problems reveal that the 3-dicycle bound seems to
be easily improvable by employing SDP.
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