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Preface

From the time unknown, we are appreciating the symmetry present in nature.
Starting from the beautiful wings of the butterfly and the colourful flowers
the world of symmetry includes the glittering gem stones. People developed
the methods of gems cutting and polishing and irrespective of the sex; gems
had taken their place in ornaments.

Every man being vertebrate walks similarly on foot and so a symmetry or
in variance exists in the mode of their walking, but there still exists something
distinctive and characteristic in every man even in walking so that we can
easily recognize in dark a known individual by observing simply his style of
walking. There lies the asymmetry or a deviation from total invariance. The
art of finding the wonderful symmetries that exists in nature is amazing and
also the finding of asymmetry so intrinsically associated with it is probably
more amazing.

The book has a beginning from the concept of crystal pattern, the lattice,
different crystal lattices and the Space groups (Chaps. 1–8). A rather brief
passage through this concept is made by discussing the different methods for
the determination of the structure of crystals.

The book is basically intended to introduce the well known topic “Crys-
tallography” from a different angle and so the topic has been introduced from
the very initial concept of patterns and the symmetry present in crystals to
the world of symmetry with the main aim to induce the general readers to
keep their eyes open a bit wider to observe the ever attracting symmetry that
the nature has left before us to apprehend and appreciate (Chap. 9). An em-
phasis is drawn on the symmetry present in the natural and the man-made
objects, from flower, animal bodies to the ancient as well as the present day
man-made engineering structures. From paintings to the nature and the laws
of nature, from the concept of symmetry to asymmetry which is present along
with the symmetry in nature and in some crystalline form of matter is also
introduced.



VIII Preface

Imperfect crystals are close to the asymmetric stage of matter but being
variant in the characteristics of symmetrical state, they demonstrate some
important properties that an ideally perfect symmetrical state fail to give.
Therefore, attention is then shifted from single crystal state to polycrystalline
state and some of their characteristic properties.

The concepts and characteristics of semi-crystalline states like liquid crys-
tals, quasi crystals and finally the nano crystalline states are discussed in
Chap. 10. While discussing the relevant aspects of this asymmetrical state of
matter due attention has been given to discuss the properties and particularly
the peculiarities of their structure dependant properties which are only possi-
ble to exist because of their deviation from perfect geometrically symmetrical
arrangements of the constituents. The entire development is correlated with
the symmetries and also the asymmetries present in matter and the laws that
explain their characteristics.

Though the outline of this book is designed to serve those having only
the basic introduction to mathematics, a brief introduction to the diffraction
theory of perfect periodic to aperiodic structures is given in Appendix A.
Some solved problems are also given in Appendix B to help students.

I express my thankfulness to Dr. M.K. Mandal for his help in proof reading.
I express my gratefulness to Prof. L.S. Dent Glasser, Department of Chemistry,
U. Aberdeen (Rtd) for allowing to reproduce some of the diagrams from her
book “Crystallography and its applications.” I also thank my students whose
interest in the subject and interactions within and outside the class room gave
me the idea to undertake this venture. If the content and presentation of this
book satisfy their inquisitiveness, I would consider this venture as successful.

Durgapur, India Sanat Kumar Chatterjee
July 2008
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1

Pattern

1.1 Pattern: An Introduction

Let us begin with the question: What is a pattern? The answer to this question
is as much objective as it may be subjective. From the days unknown, the hu-
man race have started studying and appreciating the regular periodic features
like movement of stars, moon, sun, the beautiful arrangement of petals in flow-
ers, the shining faces of gems, and also the beautiful wings of a butterfly. They
have constructed many architectural marvels like tombs, churches, pyramids,
and forts having symmetries, which still attract tourists. The regularities ob-
served in nature either in the worlds of plants, animals, or inanimate objects
are patterns and people get startled by observing them and thrilled by inspect-
ing them. That may be the beginning of the study of pattern. Every music
or song has two aspects: the tal or the tune and the verse of the song. The
composer composes the tune on the verse of the song made by the lyric. This
composition must satisfy certain harmonic conditions and the listener of the
song has the right to appreciate a song or reject it. This judgment is more
subjective than objective as to some listener some songs are very pleasing and
appreciating where as to others its appeal may not be that much deep rooted.
The appeal of a song sometimes also changes with time; new tunes come in
the front and the old one are either rejected or forgotten. A pattern has much
similarity with the sense of order, harmony that a song brings forward to us. It
is also composed of two aspects: The first one like the verse of the song is the
motif or the object which is the constituent of the pattern which can be com-
pared with the song. The other is the order of the arrangement of the motif,
which has similarity with the tune or the music. The most common example
of a geometric pattern is a printed cloth or a wall paper. In a printed cloth the
motif can be any object, it can be any geometrical figure, a leaf or a bud or
anything. But the conventional sense of pattern can only be created if these
motifs are either all similar, regular, or may be even a combination of more
than one type. Now about the arrangement of these motifs in two-dimensional



2 1 Pattern

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
Fig. 1.1. Same motif, a perfect pattern

♥       • ∗ ♠ ♦

♦       ♠ ♠ ∗ ♥

♠ ∗ ♦ • ∗

♠ ∗ ♠ ∗ ♥
Fig. 1.2. Regular arrangement of random motifs, not a pattern

∗∗ ♠ • ♦

∗ ♠ • ♦

∗ ♠ • ♦

∗ ♠ • ♦
Fig. 1.3. The motifs are different but they bear a constant regularity in their
arrangement, and so it constitute a pattern

printed cloths must also satisfy an order of their arrangement both in their
translation or position and after orientation [1].

In Figs. 1.1 and 1.2, two arrangements of motifs are created such that in one
all the motifs are similar and in the other, they are different. Now the question
is, which one of these two appears more soothing to our eye? There lies perhaps
the subjectivity of the problem. But if we do not only restrict ourselves to
the more common geometric senses, then also the first one (Fig. 1.1) appears
definitely more soothing to the eye and so can be accepted as a pattern and
whereas the latter is not at least as in Fig. 1.1.

In Fig. 1.3 motifs are not all same row-wise but they are same column-wise.
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Note: The scheme of repetition or the mode of arrangement of motifs is the
same in all figures. The only difference is that in Fig. 1.1 the motifs are similar
and in Figs. 1.2 and 1.3 they are different. The pattern in Fig. 1.1 is more
regular than that in Fig. 1.2 and also in Fig. 1.3, but Fig. 1.3 is more “pattern-
like” than Fig. 1.2.

Conclusion: To constitute a pattern, the motifs are either to be same or should
be regularly arranged in the same scheme of repetition even if they are dif-
ferent. The scheme of repetition comprises of position and orientation of the
motifs.

Now, if the motifs are identical but the mode of their arrangement, that
is, the scheme of their repetition is changed then the pattern will also be
changed. This is shown in Figs. 1.4 and 1.5.

Note: In both Figs. 1.4 and 1.5, the patterns are created but they look differ-
ent because their schemes of repetition are different. Again in Fig. 1.6 though
there is regularity in arrangement, it looks less pattern-like than Fig. 1.7 as
the color of the motifs is random in Fig. 1.6, whereas the motifs are system-
atically colored in Fig. 1.7 and so it appears more pattern-like. In Fig. 1.8
each motif are similar but randomly oriented but positioned in regular order,
and in Fig. 1.9 both are maintained and so it is a regular geometric pattern.
Figure 1.10 shows another pattern though motifs are oriented but in sym-
metrical right-hand screw order. This can be understood in more elaborate

♣♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
Fig. 1.4. A pattern with one scheme of repetition

♣♣         ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
Fig. 1.5. A pattern with different scheme of repetition
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♣♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
Fig. 1.6. Regular arrangement of randomly coloured motifs

♣♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
Fig. 1.7. Regular arrangement of symmetrically coloured motifs

▲ ► ▼ ◄ ►

◄ ▼ ◄ ◄ ►

▼ ◄ ► ◄ ►

◄ ▼ ◄ ► ►
Fig. 1.8. Same motifs, symmetrically placed but randomly oriented

◄ ◄ ◄ ◄ ◄

◄ ◄ ◄ ◄ ◄

◄ ◄ ◄ ◄ ◄

◄ ◄ ◄ ◄ ◄
Fig. 1.9. Same motifs symmetrically placed and oriented
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► ◄ ◄ ►

◄ ► ► ◄

► ◄ ◄ ►

◄ ► ► ◄
Fig. 1.10. Motifs symmetrically placed and also oriented

Fig. 1.11. Motifs are triangles and each is placed in perfect symmetrical position
to constitute a pattern

Fig. 1.12. Motifs are triangles and are same as Fig. 1.11 and they are placed in
perfect symmetrical positions but are randomly oriented about their positions and
so it loses the characteristics of the pattern

way from Figs. 1.11 and 1.12, where in the motifs are triangles and they are
differently placed so far as their orientation is concerned but in symmetrical
positions.

Conclusion: The change in scheme of repetition either in position or orientation
changes the patterns and even loses the sense of pattern if there is no regularity
in their orientation, though the motifs remain same and they are placed at
equal intervals.
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Therefore, a pattern must possess two characteristics, the regular motifs
stationed at sites that obey a certain scheme of repetition [1, 2]. Any change
of motif or the change of the repetition scheme both in their positions and
orientation changes the pattern. So to study a pattern these two aspects are
to be looked into and studied. It is more convenient to start with the study of
different possible schemes of repetition that exist in their position rather than
with the orientation symmetry, if there is any, in the motifs. The former class
of study may be categorized as Macroscopic whereas the latter may be called
as Microscopic. To begin with the investigation on scheme of repetition, it
should be appreciated that the regularity of the scheme of repetition including
both macro and micro is the essence of a perfect pattern [3]. This regularity
generates a sense of symmetry, which is later described as Macroscopic and
Microscopic. It is better to start with the symmetry present in the scheme of
repetition, that is, with the symmetry operations.

Note: Two bodies or configuration of bodies (i.e., Pattern) may be called
symmetrical if and only if they are indistinguishable in all respect. The sym-
metry operations are those operations which when performed on a pattern,
the pattern returns back to its state of self-coincidence or invariance.

Thus the total identification of the symmetry operations that can be per-
formed to bring a pattern in to its self coincidence, gives the knowledge of the
symmetry and the scheme of repetition present in the pattern.

This should be appreciated that the entire knowledge of symmetry or
scheme of repetition present in the pattern though include the sense of motifs
present, it would be much beneficial at least to start with if we consider
the symmetry present within the sites of the motifs only (Macroscopic), and
when these are known, then the symmetry operations including the motifs
(Microscopic) can be considered. Therefore, let us start with the symmetry
present within the sites where the motifs are to be placed to generate the
patterns.

These sites of the motifs, which are represented by simple geometrical
points, have a special significance and they are known as “Lattice.”

Conclusion: The Lattice is the sites of motifs where they can be placed to
generate the pattern. It can be two-dimensional regular arrays of points for
two-dimensional patterns or it can be three-dimensional arrays of points for
three-dimensional patterns. Therefore, the lattice bears the knowledge of the
scheme of repetition and when the motifs are placed in the lattice sites the en-
tire pattern takes the shape and changes whenever the orientation of the motifs
takes their role to play. If the order of this orientation of the motifs is main-
tained in some way or other, it retains the pattern characteristics of being
geometrically symmetric otherwise not.
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1.2 Summary

1. A pattern has two constituents: one is the motif and the other is the scheme
of repetition of the motif.

2. The scheme of repetition of motifs again has two aspects: Positions in
the lattice sites (macroscopic) and the orientation (microscopic) in their
respective lattice sites.

3. A pattern has two aspects: one is the structure of the motif and its schemes
of repetition and the other is its pleasant visual effect. This is the after effect
when these two aspects are followed. Therefore, both these two aspects,
that is, the symmetry and the visual effect are important and are usually
supplementary to each other.

4. When the first aspect is not at all or is only partially followed, it is not
necessary that the assembly of the motifs will not satisfy the second aspect
of it, that is, the visual pleasure and will fail to constitute a pattern. It is
then an incidence of an exception in the geometric rule of pattern, that is,
asymmetry in symmetry, which is abundantly present in nature.
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Lattices

2.1 Plane Lattice

The two-dimensional infinite array of geometrical points symmetrically
arranged in a plane where the different motifs may be placed to create the
patterns is known as plane lattice. Figures 2.1 and 2.2 are the examples of
plane lattices, where the neighborhood of every point is identical. Figures 2.1
and 2.2 are two types of plane lattices, where motifs are to be placed to
generate the desired patterns [1].

Note: The plane lattice of a two-dimensional pattern is that array of geometric
points which specifies the scheme of repetition that is present in the pattern.
There is no difference between the neighbors of one lattice site from any of
its neighborhood. Actually the situation becomes so much identical that if
the attention from one lattice point is removed, it then becomes impossible
to identify and locate the same lattice point.

Note: The unit translation is the distance shown by arrow between adjacent
points along any line in a lattice. This distance taken between any adjacent
point is a, and d is the distance of separation between any line drawn through
the points in the lattice (Figs. 2.3 and 2.4).

The product of a and d, that is, a×d is the total area associated with each
lattice point and the inverse, that is, 1/(a×d) is the number of points in each
unit area of the lattice. The unit cell of the plane lattice is a parallelogram of
two unit translations with lattice points at the corners and is the representa-
tive of the lattice, that is, the lattice is constituted by repeating this unit cell
in two directions of the plane lattice.

This unit cell is completely specified by the lengths of the edges known as
unit translations and the angle between them. So, the unit cell is the building
block of the lattice (Fig. 2.5) [1–3].

Now as this unit cell is the building block of the pattern, it may be thought
that there can be infinite number of patterns even for same motifs for different
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Fig. 2.1. Plane Lattice (Type I)
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Fig. 2.2. Plane Lattice (Type II)
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Fig. 2.3. Distances between lattice sites and lattice rows (Type I)
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Fig. 2.4. Distances between lattice sites and rows (Type II)
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<  ADC=α

b
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B

Fig. 2.5. A unit cell, ABCD the building block of the lattice. Two sides are of
lengths a and b and α is the angle between them
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Fig. 2.6. Plane lattice structure. There are possibilities of different shapes of unit
cells, each having different sets of a and b and also the angles between them, but
each one preserve one condition: they are formed by joining only the corner sites

unlimited values of a and b, but the actual fact is that the pattern types are
dependent not on the value of a and b but whether a = b or a �= b and
whether α = 90◦ or α �= 90◦ but equal to 120◦. These different conditions
can only lead to different types of plane lattices. Based on this observation
it can be concluded that there are five different types of plane lattices out
of six possible unit cells as a pentagon cannot act as a building block for a
continuous two-dimensional pattern [2, 3].

(1) Square [a = b and α = 90◦]
(2) Rectangle [a �= b but α = 90◦]
(3) Rhombus [a = b and α �= 90◦]
(4) Pentagon [a = b and α = 108◦]∗

(5) Hexagon [a = b and α = 120◦]
(6) Parallelogram [a �= b and α �= 90◦].

∗This unit cell is not considered as a building block.
Figures 2.6 and 2.7 show the unit cells of five possible plane lattices.
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Square Rectangle

Parallelogram 

Pentagon*

Rhombus Hexagon

Fig. 2.7. Different possible shapes of unit cells of plane lattices

The question may arise why a pentagonal unit cell is not generally possi-
ble? The answer to this interesting question may be obtained from the con-
sideration of two aspects of the pattern. The one is the unit cell consideration
and the other from the symmetry consideration, which will be discussed later.
From the first consideration, it can be said that as the unit cells are building
block of the pattern, by repeating the pentagon in a plane it is not possible
to construct a plane lattice. This aspect as mentioned will be taken up in a
later chapter.

2.2 Space Lattice

If we add one more dimension to the plane lattice and arrange the geometrical
points also in the third axis obeying the order, then it constitutes a space
lattice. The unit cell of the space lattice is the three-dimensional building block
of the space lattice, which when are arranged in three directions obeying the
order of repletion will constitute the space lattice. The three axial lengths and
the angles between them then are required to specify the unit cell. Figure 2.8
shows the unit cell of a space lattice.

2.3 Lattice Planes and Miller Indices

Unlike plane lattice where the lines joining lattice points are lines, here in space
lattice it generates a plane known as lattice plane. As it is important to know
these lattice planes and as they preserve their individuality in much respect,
each such lattice planes are identified by indices known as Miller indices, hkl.
These indices are given to a plane by the following procedures [3, 4]:

(a) Measure the intercept that the plane makes on the axes of the lattice
(b) Divide the intercept by the appropriate unit translation
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c

0 a
b

Fig. 2.8. a, b, and c are unit translations and α, β, and γ are the angles between
b and c, a and c, and a and b, respectively

(a) Intercepts : a, ∝ and ∝
(b) 1, ∝/b and ∝/c
(c) 1, b/∝ and c/∝
(d) 1, 0, 0 
(e)  (100)

(a) a, b and ∝
(b) 1, 1 and ∝/c
(c) 1, 1 and  c/∝
(d) 1, 1 and 0 
(e) (110)

(b) 1, 1, 1 
(c) 1, 1, 1 
(d) 1, 1, 1
(e)  (111) 

b 

c
a 

(a) Intercepts : a, b and c 

Fig. 2.9. The Miller indices of some planes

(c) Invert the dividends
(d) Rationalize the inverted dividends
(e) Place the rationalized numbers in round brackets

Figures 2.9 and 2.10 explain the procedures as mentioned above.
The sets of planes (hkl) are noted by {hkl}. The {110} family of planes

comprises six planes, that is, (110), (101), (011), (¯̄11̄0), (1̄01̄), and (01̄1̄). The
bars as usually signify the intercept in the negative side of the axes. All these
planes belong to the same class and together they are represented by {110}.

2.4 Lattice Directions

Like the indices of a lattice plane, the lattice directions are also important
aspects to be known. They are also noted by Miller indices and are done as
follows:

(a) Measure the coordinates of any point on the direction to be named or
indexed
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c

a
b

_
111 

_
111 

111 

_ _
111 

_ _
111 

Fig. 2.10. Miller Indices of some more planes with axes showing separately

(b) Divide the coordinates of the point by appropriate unit translations
(c) Rationalize the dividends
(d) Place the rationalized dividends in a square bracket

Note: [uvw] refer to any direction in a space lattice. [1̄11] and [11̄1̄] are opposite
senses of the same line [3, 4].

In space lattices in addition to the unit translational distances called vec-
tors like a, b, and c and angles as α, β, and γ between them the distances
between different lattice planes designated by their respective Miller indices
are also important. These distances are known as interplaner distances and
are designated by ‘d’ spacings. The derivation of their expressions is done in
a later chapter after the introduction of crystal classes.

2.5 Summary

1. A lattice is an array of geometrical points either in two or in three dimen-
sions to make plane or space lattices.

2. This array of points shows the order in the scheme of repetition.
3. This scheme of repetition is maintained although the lattice, that is, every

region of a lattice is exactly identical with other.
4. The different planes and also the directions on which these lattice points

lie are designated by indices known as Miller indices.
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Symmetry in Lattices

In discussing the unit cells of five different kinds in plane lattices, it has
been understood that more a unit cell is complex, greater is the number of
parameters required to specify that cell. This complexity of the unit cells is
determined by the “symmetry properties” of the array of points in the different
types of plane and space lattices.

The symmetry properties of a lattice are specified by one or more than one
operation, which when are executed over a lattice point, the entire lattice can
be constructed. Each point of the lattice is brought back to another identical
point. It should be taken in mind that when we discuss only with lattices, the
symmetry exists only due to the scheme of repetition, but when the motifs are
placed the symmetry changes, but the symmetry in the lattice is the minimum
symmetry present.

3.1 Symmetry Operations in Plane Lattices

3.1.1 Rotational Symmetry

In Fig. 3.1, ABCD is a parallelogram. If the diagram is rotated alongX-Y
axis clockwise or anticlockwise through angles 180◦ or 360◦, then the diagram
returns to its self coincidence. The minimum angle through which it can be
rotated to bring it into self coincidence is 180◦. If instead of a parallelogram or
rectangle the diagram was a square, then the minimum angle through which
it had to be rotated for self coincidence would be 90◦.

These rotation axes of symmetry are noted by 360/θ = n, where θ is the
angle of rotation for self coincidence and n is known as “fold of rotation.” Thus
for parallelogram or for rectangle n should be 2 about X-Y and for square it
should be 4.
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(1)  Rotational symmetry:
X 

D

A B

Y 

C 

Fig. 3.1. Rotation axis of symmetry

Note: A n fold rotation axis of symmetry is a line about which the body or
the pattern is transformed to self coincidence n times during a 360◦ rotation.

The rotation axes of symmetry from onefold to sixfold rotation are shown
in Fig. 3.2a–f and the details of rotation angles to bring the lattice into self-
coincidence are also given in Table 3.1. It is evident from the above figures
that onefold of rotation is present in any irregular shaped body; the fivefold
rotation axis of symmetry is not possible in regular pattern as its unit cell,
which is a regular pentagon, cannot be arranged even in a plane so as to
make any plane pattern. There is some exception to this, that is, possibility
of fivefold symmetry (Fig. 3.3). This aspect will be taken up in a later Chapter.
Sevenfold or more than that will either fail to make a regular unit cell or they
will be repetition of any of the one- to sixfold of rotations [1–3].

Note: The highest rotational symmetry that occurs in the plane lattice is the
rotational symmetry of the plane lattice and fivefold of rotation is not possible.

However, there are some exceptions to this in quasi crystalline state of
matter, which will be discussed in a later chapter.

3.1.2 Mirror Plane of Symmetry

A mirror plane (Hermann–Mauguin symbol: m) is any plane that divides the
lattice into two halves so that one half is the mirror image of the other half
across the plane. As a lattice is made up of regular points (sites of motifs), the
number of mirror planes in a plane pattern may be less than the number in a
plane lattice. This depends on the shape and symmetry of the motifs which
make that pattern.
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(a) (b) (c)
X/ X/
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X/
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Fig. 3.2. (a–f) Rotation axis for n = 1, 2, 3, 4, 5, and 6 and (g) and (h) are,
respectively, the patterns having fourfold and eightfold axis of symmetry
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Table 3.1. Different rotational symmetries present in plane or space lattices

Sl. No. θ, the rotation 360◦/θ Symmetry Numerical symbol
angle axis (Hermann–Mauguin)

1 360◦ 1 Onefold 1
2 180◦ 2 Twofold 2
3 120◦ 3 Threefold 3
4 90◦ 4 Fourfold 4
5 72◦ 5 Fivefold 5∗

6 60◦ 6 Sixfold 6

Fig. 3.3. It shows the impossibility of fitting regular pentagons having fivefold
of rotation symmetry in condensed matter structure. Any such attempt will leave
either voids or an overlap of the pentagons [2]

· · · · ·

· · · · ·

· · · · ·  Horizontal

· · · · ·  Diagonal
Diagonal Vertical 

Fig. 3.4. Four mirror planes in a plane lattice

Note: In Figs. 3.4 and 3.5 the lattices are same but in Fig. 3.5 there is only one
diagonal mirror plane because of the shape of the motif. Therefore, Mirror
Plane also depends on the shape of the motifs. Therefore, the actual number
of mirror plane of symmetry present in patterns depends on the shape of the
motifs.
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Fig. 3.5. One diagonal mirror plane in the pattern
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Fig. 3.6. An irregular polygon has a centre of symmetry at the point P. Each point
is equidistant from P, from the corresponding point on the opposite side of centre
point P. If every point within a body can be inverted through a centre then the
body is transformed to self coincidence by the inversion

3.1.3 Centre of Symmetry

A body has a centre of symmetry (Symbol 1̄) if for every point in it there
is an identical point equidistant from the centre but on opposite side in the
inverted state (Fig. 3.6).

Note: The unit cells of all plane lattices have a centre of symmetry, but whether
the unit cell of a pattern has a centre of symmetry depends on the shape of
the motif.

3.2 Symmetry Operation in Space Lattices

3.2.1 Rotation Inversion (Rotary Inversion) Symmetry

A three-dimensional space lattice retains all the symmetry operations possible
in plane lattices, that is, rotation axis, mirror plane, and centre of symmetries.
In addition to these symmetries for reasons having one more dimension, a
space lattice may have an additional symmetry operation, that is, rotation
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inversion symmetry or simply roto-inversion. This symmetry operation is the
combined effect of pure rotation and inversion of the lattice point to bring it
into self-coincidence.

They are the following:

1 (Onefold rotation) + 1̄ = 1̄∗

2 (Twofold rotation) + 1̄ = 2̄

3 (Threefold rotation) + 1̄ = 3̄

4 (Fourfold rotation) + 1̄ = 4̄

6 (Sixfold rotation) + 1̄ = 6̄

Figure 3.7 demonstrates this rotation inversion symmetry operation in
space lattices.

Note: The onefold roto-inversion (1̄) and twofold roto-inversion (2̄) may exist
on a plane but higher roto-inversion symmetries must move out of the plane
and so this symmetry is called a symmetry operation in space lattices.

Conclusion: The symmetry elements that may occur without any repetition
in space lattices are as follows:

Rotation Axes: 1, 2, 3, 4, and 6
Centre of Symmetry: 1
Rotation Inversion Axes: 3, 4, and 6
Mirror plane: m (2)

Note: As 1̄, that is, onefold rotation and inversion is same as centre of symme-
try and 2̄, that is, twofold rotations and inversion is also same as the mirror
plane, they are not included as separate symmetry elements in space lattices.

A� 0
•  A 

C • _
1 

•

• B

Fig. 3.7. Fourfold rotation inversion. A is given 90◦ rotation about the rotation axis
X-Y. Filled circle changes to open circle (A to A′) then inversion about the centre
to B
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a� a
⇑ ⇑

B

CD

⇓  a��

Fig. 3.8. Equivalence of 2̄ and m a to a′ by a twofold rotation and then inversion
to a′′. These entire operations are equivalent to a simple mirror reflection over the
plane ABCD (a changes directly to a′′)

Example: Figure 3.8 shows that a twofold rotation inversion is same as mirror
plane. The motif ⇑ at position a has undergone a twofold rotation to position a′

and then subsequently by inversion to position a′′, which can also be obtained
by a simple mirror reflection over the plane ABCD [3].

3.3 Summary

1. Lattice, which is the array of points, the sites of the motifs, gives the
knowledge of the particular scheme of repetition present.

2. The scheme of repetition is controlled by “symmetry operations,” which
when performed the lattice goes to an identical situation of existence, that
is, the position of self coincidence or the position of invariance.

3. The scheme of repetition may or may not alter after the motifs are placed
at the lattice sites as then the symmetry will also depend on the structure
and nature of the motifs.
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Crystal Symmetry (Crystal Pattern): I

4.1 Macroscopic Symmetry Elements

We have already introduced the space lattice and the symmetry elements
that are possible in the space lattices. It has also been mentioned that when a
pattern is constituted by placing the motifs in the lattice sites, these symmetry
elements originally present in the space lattice of the pattern may be reduced
due to the shape of the motifs; however, this is not true only when the motifs
are isotropic in their shape. If the motifs are atoms or molecules then the
pattern itself is a crystal. Therefore, the crystals can be regarded as three-
dimensional patterns. When some of the symmetry elements present in the
corresponding space lattices are also present in the crystal, they are named as
macroscopic symmetry elements as they are manifested by the regular external
faces of the crystals and as most of them can be studied by unaided eye
by observing the single crystal faces. These macroscopic symmetry elements
present in a crystal can be once again recalled as in Table 4.1.

The total macroscopic symmetry of a crystal or a pattern is then that col-
lection of symmetry elements which is associated with the point at the centre
of the crystal. Now, since every point of a space lattice is indistinguishable
from every other point, the collection of elements defining the symmetry of
the lattice must be associated with each and every point of the lattice. Thus,
to completely specify the macroscopic symmetry of the lattice it is necessary
only to specify the symmetry at any point in that lattice.

The collection of symmetry elements at any point of the lattice is termed
as the point symmetry or the point group of symmetry.

Conclusion: The point group of symmetry of a crystal is that collection of
macroscopic symmetry elements which occurs at every lattice point of the
space lattice of the crystal taking into consideration that point group of a
lattice may be different from the point symmetry of the actual crystal itself
as a consequence of the shape of the motif (atoms or molecules).
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Table 4.1. Symmetry Operations and Symbols

Sl. no. Symmetry operation Symmetry elements Total
Hermann–Mauguin symbol

1 Mirror plane m or 2̄ 1
2 Centre of symmetry 1̄ 1
3 Rotation axis 1, 2, 3, 4, 6 5
4 Rotary inversion 3̄, 4̄, 6̄ 3

Total number of macroscopic symmetry elements = 10

Cube       = 3-fold rotation (4 in No)
= 4-fold rotation (3 in No.)
= 2-fold rotation (6 in No.)     

Side face diagonal 
Body diagonal 

Side edge 
Face diagonal plane 

Fig. 4.1. Different planes and rotation axes in cube. ∆ = threefold rotation (4 in
number); � = fourfold rotation (3 in numbers);� = twofold rotation (6 in numbers)

A detailed analysis of the compatibility of the ten symmetry elements in all
possible combinations is beyond the scope of this book. It can be analyzed that
out of a large number of possible groupings of these ten symmetry elements,
only 32 are compatible combinations of one or more of them and thus there
exist only 32 point groups of symmetry (Fig. 4.1).

4.2 Thirty-Two Point Groups of Symmetries
in Hermann–Mauguin Notations

1 1 A onefold rotation axis (no symmetry at all)
2 1̄ A centre of symmetry only
3 2 A twofold rotation axis only
4 m(2̄) A single mirror plane
5 2/s A twofold rotation axis with a mirror plane

at right angle to it
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6 222 Three twofold rotation axes at right angles to
one another

7 2mm Two mirror planes at right angles to one an-
other with a twofold rotation axis along the
line of intersection of the mirror planes

8 2/m 2/m 2/m Three mirror planes at right angles to one
another with a twofold rotation axis along
each of the three lines of intersection

9 3 A threefold rotation axis only
10 3̄ A threefold rotary inversion axis
11 3m Three mirror planes at 120◦ to one another

intersecting along a threefold rotation axis
12 32 A threefold rotation axis passing at right an-

gles through the intersection of three twofold
axes at 120◦ to each other

13 3̄ 2/m Three mirror planes at 120◦ to each other
intersecting along a threefold rotary inver-
sion with three twofold axes at right angles
to the rotary inversion and midway between
the mirror planes

14 4 A fourfold rotation axis only
15 4̄ A fourfold rotary invertor only
16 4/m A fourfold rotation axis with a mirror plane

at right angle to it
17 4 2 2 A fourfold rotation axis passing at right an-

gles through the intersection of four twofold
rotation axes at 45◦ to one another

18 4mm Four mirror planes at 45◦ to one another with
a fourfold rotation axis along the line of in-
tersection

19 4/m 2/m 2/m Four mirror planes at 45◦ to one another in-
tersecting along a fourfold rotation axis; an
additional mirror plane at right angles to
the fourfold axis intersects the other mirror
planes along four twofold rotation axes

20 4̄ 2m Two mirror planes intersecting along a four-
fold rotary invertor with two twofold rotation
axes at right angles to the rotary inversion
and midway between the mirror planes

21 6 A sixfold rotation axis
22 6̄ A sixfold rotary inversion
23 6/m A sixfold rotation axis with a mirror plane at

right angle to it
24 6mm Six mirror planes at 30◦ to one another in-

tersecting along a sixfold rotation axis
25 6 2 2 A sixfold rotation axis passing at right an-

gles through the intersection of six twofold
rotation axes at 30◦ to one another
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26 6̄ 2m Three mirror planes at 60◦ to each other
intersecting along a sixfold rotary inver-
sion, each mirror plane containing a twofold
rotation axis at right angles to the rotary in-
version axis

27 6/m 2/m 2/m Six mirror planes at 30◦ to each other in-
tersecting along a sixfold rotation axis, each
mirror plane containing a twofold rotation
axis at right angles to the sixfold axis and
lying in a mirror plane also at right angles to
the sixfold axis

28 23 Three twofold axes at right angles to one an-
other and parallel to the edges of a cube with
four threefold axes parallel to the body diag-
onals, i.e., four threefold axes at 70◦32/to one
another

29 2m 3̄ Three mirror planes parallel to the face of the
cube, intersecting along three twofold axes
parallel to the edges of the cube with four
threefold rotary invertors parallel to the body
diagonal of the cube

30 4̄ 3m Three fourfold rotary inversion parallel to the
edges of a cube, with four threefold rotation
axes parallel to the body diagonal and six
mirror planes, each containing a face diagonal

31 4 3 2 Three fourfold rotation axes parallel to the
edges of a cube with four threefold rotation
axes parallel to the body diagonals and six
twofold rotation axes parallel to the face di-
agonals

32 4/m 3̄ 2/m Three fourfold rotation axes parallel to the
edges of a cube with four threefold rotary
invertors parallel to the body diagonals, six
twofold rotation axes parallel to the face di-
agonals, and nine mirror planes, three of
which are parallel to the faces and the other
six containing a face diagonal

Note: The group of Sl. No. 32 is the most highly symmetrical of all the point groups
of symmetry.

Now these 32 point groups, which are the only possible combinations of
ten symmetry elements like mirror plane (m or 2̄), centre of symmetry (1̄),
rotation axis of symmetries (onefold, twofold, threefold, fourfold, and sixfold),
and rotation (Rotary) inversion (threefold rotary inversion 3̄, fourfold rotary
inversion 4̄, and sixfold rotary inversion 6̄), can be regrouped into seven dif-
ferent sets each having one common symmetry element. These seven different
sets are listed in Table 4.2.
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Table 4.2. Seven Crystal Systems

Set Sl. Nos. grouped together
with their symmetry elements

Common essential symmetry Name of the
set

A 1 and 2; 1, 1̄ One onefold rotation axis Triclinic
B 3–5; 2, m, 2/m One twofold rotation axis Monoclinic
C 6–8; 222, 2mm, 2/m2/m2/m Three twofold rotation axes,

perpendicular to one another
Orthorhombic

D 9–13; 3, 3̄, 3m, 32, 3̄ 2m One threefold rotation axis Rhombohedral
(trigonal)

E 14–20; 4, 4̄, 4/m, 422, 4mm,
4/m2/m2/m, 4̄2m

One fourfold rotation axis Tetrgonal

F 21–27; 6, 6̄, 6/m, 6mm, 622,
6̄2m, 6/m 2/m 2/m

One sixfold rotation axis Hexagonal

G 28–32; 23, 2/m 3̄, 4̄ 3m,
432, 4/m 3̄ 2/m

Four threefold rotation axes
at 70◦ 32/to each other

Cubic

• • • • • • • •
• • •

• • • • • • • •
• • •

• • • • • • • •
• • •

• • • • • • • •
(a) (b)

Fig. 4.2. Different pattern but same shape (square) unit cell

These seven sets into which the 32 point groups can be regrouped are
known as seven crystal systems. There is one common symmetry element
between the point groups belonging to each set, that is, crystal systems and
they are named as expressed in Table 4.2.

4.3 Crystal Systems

These crystal systems some times are also named as crystal classes. Now as
the unit cells (Fig. 4.2) are the building block of the two three-dimensional
patterns, that is, space lattices, they also show the same symmetry as that of
the space lattices and they are characterized by relations between the axial
lengths known as unit translational vectors and the angles between them. It
is more convenient to express these edge distances of the unit cells as vectors
and so they will henceforth be noted as unit translational vectors: a, b, and
c and the angles between them as α, β, and γ. Table 4.3 lists those unit cells
and the relations between the unit translational vectors.
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Table 4.3. Unit cells of seven crystal systems

Set Crystal class or systems Relation between
a, b and c

Relation between α, β and γ

A Triclinic a �= b �= c α �= β �= γ
B Monoclinic a �= b �= c α = γ = 90◦◦ �= β
C Orthorhombic a �= b �= c α = β = γ = 90◦

D Rhombohedral a = b = c α = β = γ �= 90◦

E Tetragonal a = b �= c α = β = γ = 90◦

F Hexagonal a = b �= c α = β = 90◦, γ = 120◦

G Cubic a = b = c α = β = γ = 90◦

Note: These seven unit cells represent the total number of different ways in which
it is possible to draw a parallelepiped. However, it should be mentioned here that
the sign �=, which means ‘not equal to’ in mathematics, means here usually not
equal to by reason of symmetry and accidentally the equality may occur

4.4 Bravais Lattices

Now a question may be raised: “Is it possible to create different patterns
two-dimensional or three-dimensional and yet to preserve the same symmetry
present in the unit cell, that is, keeping the shape of the unit cells unchanged?”

The answer to this question is “yes.” Let us see how this is possible from
an example of plane square lattice.

Like this example in plane lattice, in space lattice also by assigning
additional lattice points in the unit cells it is possible to create a new three-
dimensional pattern but yet keeping the shape of the unit cells unchanged.
This assignment of additional lattice points may be done by several possible
ways and these result in unit cells as follows:

1. Primitive with only corner lattice points Symbol P
2. Base-centered, i.e., a face-centered Symbol A

Or B face-centered Symbol B
Or C face-centered Symbol C
Or all face-centered Symbol F

3. Body-centered Symbol I

Now as there are seven numbers of crystal systems and there are six numbers
of different lattices that could be constructed by assigning additional lattice
points like P, A, B, C, F, and I, so it might be possible to find 42 (6×7) different
types of space lattices. But we get actually only 14 numbers distinctly different
lattices known as Bravais lattices.

Any additional lattice other than these 14 in number is a repetition of
any one of the existing lattices. Now, those possible 14 numbers of Bravais
lattices distributed in seven numbers of crystal systems and those which are
redundant are given in Table 4.4.
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Table 4.4. The possible Bravais lattices

Set Crystal class
or system

Symbol of possible
space lattices

Total no. possible
in the class

Total no. of space
(Bravais) lattices

A Triclinic P 1 1
B Monoclinic P and C 2 2 + 1 = 3
C Orthorhombic P,C,I, and F 4 3 + 4 = 7
D Rhombohedral P 1 7 + 1 = 8
E Tetragonal P and I 2 8 + 2 = 10
F Hexagonal P 1 10 + 1 = 11
G Cubic P,I, and F 3 11 + 3 = 14

Table 4.5. The redundant space lattices

Set Crystal class
or system

Symbol of
redundant
space lattices

Total no. of
redundant
lattice in
the class

Total no. of
redundant
space lattices

Reason for
redundancy

A Triclinic A,B,C,I, and F 5 5 All others are
repetitions

B Monoclinic A,B,I, and F 4 5 + 4 = 9 All others are
repetitions

C Orthorhombic A and B 2 9 + 2 = 11 All others are
repetitions

D Rhombohedral A,B,C,I, and F 5 11 + 5 = 16 All others are
repetitions

E Tetragonal A,B,C, and F 4 16 + 4 = 20 All others are
repetitions

F Hexagonal A,B,C,I, and F 5 20 + 5 = 25 All others are
repetitions

G Cubic A,B, and C 3 25 + 3 = 28 All others are
repetitions

The possible Bravais lattice depends on the fact by the addition of extra
lattice sites in the crystal pattern, the pattern changes without changing the
basic primitive characteristics [1–3]. A body-centered cubic is a changed pat-
tern but lattice represents basically a cubic lattice. It may result in the same
lattice but does not repeat with other lattices (Table. 4.5). Figure 4.3 demon-
strates this fact. Some examples of the redundant space lattices are shown in
Fig. 4.4a–h.

Conclusion: Therefore, all crystals have a space lattice that must be one of
the 14 Bravais lattices and not more, as for these are the only ways in which
indistinguishable points can occur uniquely in three dimensions of space.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.3. (a) Corner sites, primitive symbol: P. (b) A face-centered, symbol: A.
(c) B face–centered, symbol: B. (d) C face–centered, symbol: C. (e) All face-
centered, symbol: F. (f) Body–centered, symbol: I. (g) A possible body-centered
cubic cell basically remains cubic (bold) a = b = c and α = β = γ = 90◦, yet the
pattern is changed and there is no repetition except remaining as body-centered
cubic. All the corner atoms are not shown. (h) A possible face-centered cubic cell
which basically remains cubic (bold) even after changing the pattern. a = b = c = a
of the original primitive. The corner atoms are not shown
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(a) (b)

(c)

(d)

(e) (f)

(g)
(h)

Fig. 4.4.
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Some important materials as an example of 14 Bravais lattices they belong
to are as follows:

Set Crystal system Bravais lattice Example

A Triclinic Primitive Copper sulfate, sodium bisulfate
B Monoclinic Primitive Malachite, azunite

Base centered Gypsum, mica
C Orthorhombic Primitive Topaz, aragonite

Base centered Chlorine, iodine
Body centered Thorium tetrafluoride
Face centered Sulfur, plutonium

D Rhombohedral Primitive Quartz, tourmaline, antimony,
arsenic

E Hexagonal Primitive Zinc, titanium, magnesium,
cadmium

F Tetragonal Primitive Rutile, cassiterite
Body centered Tin, indium

G Cubic Primitive Polonium, sodium chlorate
Body centered Iron, chromium, sodium, potassium,

tungsten, vanadium
Face centered Copper, silver, gold, diamond,

sodium chloride

The number of lattice points, N (atoms or molecules in actual crystals), in a
Unit Cell is given by N = 1 + (1/2)f + b, where f and b stand for number of
points in the centre of the faces and at the centre of the body of the unit cell.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 4.4. (Continued) (a) The addition of base-centered points in cubic cell results
in primitive tetragonal space lattice. The resultant lattice is shown by heavy lines.
a = b �= c and α = β = γ = 90◦. The resultant tetragonal lattice is shown by bold
lines. (b) The addition of base-centered points in primitive tetragonal cell results
in primitive tetragonal space lattice and does not yield to a new lattice. (c) The
addition of face-centered lattice points in tetragonal lattice results in body-centered
tetragonal space lattice points and thus does not give a new lattice and resultant
lattice, that is, body-centered tetragonal (shown by heavy lines) is already considered
as a new lattice. (d) The face-centered lattice in Rhombohedra system is equivalent
to primitive rhombohedra lattice. The corner points are not shown and the resultant
lattice is shown by heavy lines. (e) The figure shows the equivalence between body-
centered rhombohedra and the primitive rhombohedra lattice. The resultant lattice
is shown by heavy lines. (f) The figure shows the equivalence between base-centered
and primitive (shown by heavy lines) lattices in monoclinic system. No corner atoms
are shown. (g) & (h) The equivalence between bcc (g) and fcc (h) monoclinic with
C (base) centered monoclinic. This shows that only primitive and C face-centered
monoclinic lattices are possible, rest are repetitions and redundant. No corner atoms
are shown



References 33

A primitive cubic lattice unit cell has atoms at the corners but each one of
them is shared by eight neighboring unit cells and therefore the total contri-
bution of corner atoms is equivalent to only one. A body-centered cubic unit
cell has only two (f = 0) and a face-centered cubic unit cell has four, one
due to eight corner points and three due to centre points on each of six faces.
These face centered points are shared by two neighboring unit cells.

4.5 Summary

1. Crystal symmetry considers the scheme of positional repetitions as well as
the influence of motifs on the symmetry.

2. When the existence of the motifs is only considered on planes in three-
dimensional crystal, the different patterns that can be created are called
“point groups”.

3. There can be only 32 of such point groups as more than that will be a
duplication of the one that already exists.

4. These 32 point groups can be grouped into seven different classes, each
having different shapes of the unit cells.

5. A creation of additional lattice points without disturbing the class makes 14
different types of patterns, which appears different as a whole but basically
remains in the same class and they are known as Bravais lattices.
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Crystal Symmetry (Crystal Pattern): II

5.1 Microscopic Symmetry Elements in Crystals

So far we have discussed the macroscopic symmetry elements that are mani-
fested by the external shape of the three-dimensional patterns, that is, crys-
tals. They can be studied by investigating the symmetry present in the faces of
the crystals. In addition to these symmetry elements there are two more sym-
metry elements that are related to the detailed arrangements of motifs (atoms
or molecules in actual crystals). These symmetry elements are known as mi-
croscopic symmetry elements, as they can only be identified by the study of
internal arrangement of the motifs. As X-ray or electron diffraction can reveal
the internal structures, these symmetry arrangements can only be identified
by X-ray, Electro or Neutron diffraction. Obviously, they are not revealed in
the external shape of the pattern. These symmetry elements are classified
as microscopic symmetry elements. There are two such types of symmetry
elements: (i) glide plane of symmetry and (ii) screw axis of symmetry.

Glide plane of symmetry: It is a combination of reflection and translation of
the motif. It is explained by Fig. 5.1. Figure 5.2 shows simple pattern of a
glide plane.

The translation associated with the glide plane may be one of the following
(Fig. 5.3):

(i) One half of one of the unit translational vectors, that is, a, b, and c,
which define the unit cell

(ii) One half or one quarter of the face diagonal

Hermann–Mauguin symbol of glide plane of symmetry:

Reflection + translation a/2 symbol = a
Reflection + translation b/2 symbol = b
Reflection + translation c/2 symbol = c
Reflection + 1/2 face diagonal symbol = n
Reflection + 1/4 face diagonal symbol = d
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a

g 
a/2 

Fig. 5.1. a is the unit translational vector. The motif suffers a reflection on the
mirror plane and undergoes a translation half the way. g the mirror perpendicular
to the diagram and is known as the glide plane

╔ ╔ ╔ ╔

╚ ╚ ╚
Fig. 5.2. A border showing simple glide plane of symmetry

Glide Plane  n

Glide 
Plane a

Fig. 5.3. Reflection and 1/2 translation along a, “a” glide, and along face diagonal,
“n” glide

There are plenty of natural examples: The stacking sequence of the close-
packed planes, that is, {111} sets of planes in face-centered lattice (fcc) are
known as ABC . . .. The entire scenario of stacking of these close-packed planes
can be viewed as the stacking of hard billiard balls one over the other (Fig. 5.4).
It can be easily visualized that a layer of such balls can never be placed exactly
vertically at the top as the arrangement has to get toppled. To make a stable
arrangement, the balls of one layer have to be placed on the gaps of the balls
in the lower layer. This can be understood from the diagram as below.

Now one particular ball will have glide plane of symmetry on the same
plane the ball exists, but will also have a glide plane up the plane in three-
dimensional arrangements of the balls. The different layers arranged one over
other are manifested by different colors.
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Side View

Unbalanced
Stacking

Stacking sequence of Billiard balls

Top View

Balanced Stacking
sequence Glide Planes

of Symmetry, one on the
plane of a particular

shade and the other off
the plane between
two different layers

Fig. 5.4. The balanced stacking sequence of Billiard balls: red is the first layer,
blue the second, and green the third. The fourth layer shown by open circle is the
repetition of the first layer, that is, it can stay exactly over first layer. Each layer of
first to third has suffered a glide in the plane over them

Note: A glide plane is a plane across which mirror reflection combined with a
translation transforms an array of motifs into self coincidence. This stacking
sequence shown above for Billiard balls has an important resemblance with
that of stacking sequence of crystal planes discussed later.

Screw Axis of Symmetry: It is the combined effect of rotation and translation,
which transforms the array of motifs into self coincidence. The rotation axis is
known as screw axis of rotational symmetry or simply screw axis of symmetry
(Figs. 5.5 and 5.6).

Note: A screw axis of symmetry is an axis about which a rotation combined
with translation parallel to the axis transforms an array of motifs into self
coincidence.

All the rotation axis of symmetries obtained in macroscopic symmetry
elements are also valid here only with the addition of a translation along the
axis about which the rotation takes place. The translation is a fraction of the
unit translational distance.
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X

a

a/2

X /

Fig. 5.5. A twofold rotation and half translation a/2 along the rotation axis XX;
Symbol: 21

Fig. 5.6. A right handed screw in three dimension

Like this, if we consider all the possible rotation axes of symmetries and
the possible translations along the rotation axis, henceforth known as screw
axis, we get eleven different types of Screw axes of symmetries. They are listed
in Table 5.1.

Conclusion: The microscopic symmetry elements are those symmetry elements
that have no influence on the external shape of freely grown crystals, be-
ing concerned only with the detailed array of motifs (atoms or molecules)
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Table 5.1. Eleven different types of screw axes of symmetries

Rotation axis Translation: fraction of the distance between
lattice points in the direction of the axis

Symbol
(Hermann–Mauguin)

2 1/2 21

3 1/3 31

3 2/3 32

4 1/4 41

4 1/2 42

4 3/4 43

6 1/6 61

6 1/3 62

6 1/2 63

6 2/3 64

6 5/6 65

within the three-dimensional patterns (crystals) and involving a translation
operation. They are detectable only by X-ray diffraction methods and hence
the name “microscopic symmetry.” They can only be manifested in space and
so they are called spatial symmetry. These elements consist of FIVE different
kinds of GLIDE planes and ELEVEN different types of SCREW AXIS.

It now can be appreciated those only symmetry elements that might be
present in the structure of any crystal which is nothing but a three-dimensional
pattern are the following:

Macroscopic symmetry Mirror plane m
Centre of symmetry 1̄
Rotation axis 1, 2, 3, 4, 6
Rotary inversion 3̄, 4̄, 6̄

Microscopic symmetry Glide plane a, b, c, n, d
Screw axis 21, 31, 32, 41, 42, 43

61, 62, 63, 64, 65

The detailed information about the symmetry properties of the complete
array of atoms or molecules in a crystal can be obtained only from the com-
bined specifications of the symmetry at a lattice point, that is, the point groups
modified by the microscopic translational symmetry and the distribution in
space (Bravais lattice) of those points.

Such combination demonstrates the full description of the symmetry ele-
ments present in any crystal and it is named as space group [1, 2].

Conclusion: The space group of a crystal is the collection of symmetry elements
(macroscopic and microscopic) which, when considered to be distributed in
space according to the Bravais Lattice, provides knowledge of total symme-
try present in the crystal amongst the different array of atoms or molecules
within it.
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5.2 Space Groups

Therefore, a space group is a possible combination of all the symmetry ele-
ments, macroscopic and microscopic, in space of the Bravais lattice and can be
derived. It is found that when all such symmetry elements are combined and
applied in the Bravais lattices, 230 different types of crystal space lattices are
possible. It is appropriate to mention here that any crystal either naturally
free grown or crystallized artificially from the solutions of the synthesized com-
pounds must belong to any of these possible 230 types of space groups [1, 2].

Note: The Hermann–Mauguin space group notation for any particular crystal
comprises two parts. The first part identifies the Bravais lattice type into
which the crystal belongs and the second part identifies the total symmetry
of the array of atoms in the crystal and therefore also the crystal system. In
the second part that identifies the symmetry, only those symmetry elements
are included in the symbol that are necessary to describe the space group
uniquely. The remainders are being omitted since they follow, as a necessary
consequence.

Example:
P m m m = Primitive lattice, three mirror planes at right angles.

P n m a = Primitive lattice, glide plane (n), that is, 1/2 diagonal
face (b/2 + c/2) and perpendicular to a axis, mirror plane perpendicu-
lar to b axis, and finally another glide plane (a) perpendicular to c axis
with translation a/2. The same space group oriented differently might be
P n a m, P b n m, P c m n, P m n b, and P m c n.

F m 3 m = Face centered, mirror plane along a, threefold rotation axis
along b, and another mirror plane along c axis.

It is instructive to derive a few space groups as follows:

Triclinic System: There is possibility of the existence of only one primitive
P lattice. It has two point groups 1 and 1-bar, that is, onefold rotation and
a centre of symmetry and these are the only ways in which the symmetry
elements can occur in triclinic system. These two combinations, i.e., P 1 and
P 1̄ are two space groups of the triclinic system.

Monoclinic System: It has two Bravais lattices, i.e., primitive (P) and base-
centered C, and three point groups 2, m, and 2/m. In detailed study of sym-
metry, the array of atoms that constitutes the structure of the crystal, a
macroscopic mirror plane m, might be a glide plane c, while twofold rota-
tion axis might be a screw axis as 21. Considering these aspects of possible
symmetry, the complete set is given as follows:

1. A twofold rotation axis in P and C lattices = P2, C2
2. A 21 screw axis in P and C lattices = P21, C21

3. A mirror plane in P and C lattices = Pm, Cm
4. A glide plane c in P and C lattices = Pc, Cc
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5. A twofold axis and mirror plane in P and C = P2/m, C2/m
6. A 21 screw axis and mirror plane in P and C = P21/m, C21/m
7. A twofold axis and a glide plane c in P and C = P2/c, C2/c
8. A 21 screw axis and glide plane c in P and C = P21/c, C21/c

However, out of these 16 numbers of combinations as mentioned above do
not specify different arrays of symmetry elements in space, as C2 and C21

are identical and combinations C21/c and C2/c are also identical. So, there
can be only thirteen (13) different combinations of symmetry elements that
can occur in the array of atoms in a monoclinic system and so the monoclinic
system has 13 space groups.

Note: When all possible but different combinations of symmetry elements
present between array of atoms in seven crystal systems are added together,
we get 230 number of space groups (Table 5.2).

These 230 space groups are the only ways in which different distribution of
compatible combinations of macroscopic and microscopic symmetry elements
can occur in the array of atoms in any crystal.

In reading a space group notation it is important to remember the
following:

A onefold axis includes the elements 1, 1̄
A twofold axis includes the elements 2, 21, m, a, b, c, n, d
A threefold axis includes the elements 3, 3̄, 31, 32

A fourfold axis includes the elements 4, 4̄, 41, 42, 43

A sixfold axis includes the elements 6, 6̄, 61, 62, 63, 64, 65;
these may further be noted that the existence of
onefold axes denote the triclinic system,
one twofold axis denotes the monoclinic system,
three twofold axes at right angles denote the orthorhombic system,
one threefold axis denotes the rhombohedra system,
four threefold axes at 70◦ 32/to one another denote the cubic system,
one fourfold axis denotes the tetragonal system, and
one sixfold axis denotes the hexagonal system.

Table 5.2. Possible space groups

System No of space group

Triclinic 2
Monoclinic 13
Orthorhombic 59
Rhombohedral 25
Hexagonal 27
Tetragonal 68
Cubic 36
Total 230
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5.3 Constitution of Space Groups

The detailed study to know how these space groups are constituted from
seven crystal systems is out of the scope of this book. Mathematically it can be
derived from the group theory and geometrically, the derivation of all these 230
space groups is cumbersome and therefore, for only one crystal system, that
is, for monoclinic system the procedure that is adopted is explained below.

A particular crystal system has some definite number of point groups and
for this monoclinic system it has symmetry operations like 2, m, and 2/m, that
is, twofold rotation, a mirror plane, and twofold with mirror plane of symme-
tries. Now, for three-dimensional crystal the possible symmetry elements will
include also screw axes and glide planes, and when screw axes and glide planes
are added to the point group of symmetries for this system, we can say that
different possibilities that may exist are 2, 21, m, c, 2/m, 21/m, 2/c, and
21/c. Now each of these symmetry groups are repeated by lattice translation
of the Bravais lattices of that system. As monoclinic system has only primitive
P and C, all the symmetry possibilities may be associated with both P and C.
Therefore, if they are worked out, they come out to be 13 in number and they
are Pm, Pc, Cm, Cc, P2, P21, C2, P2/m, P21/m, C2/m, P2/c, P21/c,
C2/c, etc.

Similarly the space groups of all the crystal systems can be worked out
and these come out to be as mentioned earlier 230 in number.

5.4 Summary

1. When two more symmetry operations move the motifs out from their orig-
inal plane on which they originally exist, more lattice patterns are created.

2. These symmetry operations are called microscopic symmetry operations as
they can only be identified from internal structure of the crystal lattice in
three dimensions and not by the geometrical shape of the crystal.

3. The number of possible patterns comprising the lattice sites not confined
on a plane will then increase to 230 and these lattices are called “space
groups.”
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Crystals and X-Ray

X-ray was discovered by the German Physicist Roentgen in 1895 almost acci-
dentally while performing experiments on the discharge of electricity through
gases under low pressure. Another German Physicist Von Laue’s discovery of
regular diffraction pattern when X-ray was diffracted by single crystals opened
a new year of crystal structure analysis. It is only after the Von Laue’s famous
experiment; it was proved that the crystallinity of a solid depends on the reg-
ular arrangement of the constituent atoms or molecules in three-dimensional
space and not on the external features. It should also be known that the wave-
length of X-ray radiation varies between ∼1 and ∼3 Å, which is the order of
interatomic distances of the solids and that is why X-ray satisfies the diffrac-
tion conditions. In addition to that of X-ray, there are two other methods of
analysis of crystallinity of materials and they are electron and neutron dif-
fraction. These three techniques have their own advantages and limitations
and in essence complement one another.

6.1 Production and Properties of X-Ray

X-rays are produced when accelerated electrons while penetrating through the
target material and moving through the orbital electron cloud of atoms of the
target are rapidly decelerated by the resistive force. Due to this deceleration of
the bombarding electrons, their energy is emitted in the form of X-ray. This
spectrum of X-ray radiation continuously varies in intensity from a lowest
wavelength value known as short-wavelength limit. This radiation spectrum is
named as continuous or general radiation. When the accelerating potential for
the bombarding electrons is increased, then these bombarding even after being
decelerated still possess sufficient energy to knock off electrons from different
orbits of the target atoms. When K-shell electrons are knocked off, then the
target atoms are raised up to a potential energy corresponding to the K-shell.
The electrons from the higher energy levels like L-shell or M-shell then jump
down to the K-shell to fill up the vacancy and lower down the potential energy
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Fig. 6.1. Emission of Kα and Kβ
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Fig. 6.2. X-ray tube (sealed type) showing target metal, cooling device, and the
filament for electron emission

of the target atoms. These processes emit radiation of specific wavelengths
which are characteristic of the target atom as they depend on the atomic
number (Z) of the atoms of the target. These radiations being dependent on
the atomic number are named as characteristic radiation [1, 2].

In Figs. 6.1, 6.2, and 6.3, potential energy change and subsequent emis-
sions of K characteristic radiations, the X-ray tube used for the production of
X-rays, and the X-ray spectra showing both the continuous and characteristic
radiations are shown, respectively. Now, whenever X-rays are emitted from
the metal target, the radiation contains both the general and characteristic
radiations, and in most of the diffraction procedures monochromatic radia-
tion is required. This monochromatization of X-ray spectra is obtained by
absorbing the Kβ radiation by an absorber (filter) of optimum thickness. Ob-
viously, different targets must have different Kβ filters. The transmitted radia-
tion through this absorber contains only Kα radiation and the background (the
part of general radiation). Now, to eliminate the background from transmitted
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Fig. 6.3. X-ray spectra from Cu target and the position of K absorption edge of Ni
used as Kβ filter for Cu radiation

radiation, balanced filters (Ross filters) or crystal monochromators are used.
The crystal monochromator and absorption edges of these balanced filters are
shown in Fig. 6.4a, b.

6.2 Laue Equations

It has been stated before that the Laue diffraction pattern from single crystals
was the beginning of the idea that the internal regular arrangement of atoms
in space is responsible for the crystallinity of the material. Figure 6.5 shows
the X-ray diffraction from a row of atoms.

Now, when the path difference between incident and diffracted beams be-
comes equal to the integral multiple of the wavelength λ, then the interference
maxima condition will be satisfied, i.e., BC − AD = a cos θ − a cos ϕ = nλ,
this is one-dimensional Laue equation. When the other two directions are
considered, then the corresponding Laue equations are

b cos θ′ − b cos ϕ′ = nλ and c cos θ′′ − c cos ϕ′′ = nλ.

In vector form, these three Laue equations can be written as

a · (S − S0) = nλ, b · (S − S0) = nλ, and c · (S − S0) = nλ.

When these three conditions are simultaneously satisfied, the entire diffrac-
tion phenomenon may be equivalent to a planer reflection and gives rise to
Bragg’s law. It will be shown in this chapter that the wavelengths for which the
Laue conditions are satisfied are not the characteristic radiation but general
radiation.
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Li F
Crystal
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rotating
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Counter

Crystal Monochromator

Diffracted X-ray
From Sample
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Ni and Co

Ni &Co

Co
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Balanced Filter : Ross Filter : Ni & Co combination for
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Fig. 6.4. (a) Crystal monochromator. LiF single crystals can diffract like other
crystals, Kα and Kβ radiations from any target at specific angles and the counter
placed at such angles will only record the diffraction pattern due to that wavelength
and that without reducing the intensity of the radiation and reducing considerably
the background. This is the major advantage of crystal monochromator now attached
invariably with diffractometer. (b) Ross filter. As mass absorption coefficient is
dependent on λ3, the two absorbers differing in Z by one will give same absorption
coefficient for any wavelength except for the narrow region called pass band. This is
the narrow region between K absorption edges of these two absorbers and when this
pass band is chosen to include the Kα, the result is a strong monochromatic beam
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Fig. 6.5. X-ray diffraction from the rows of atoms/molecules
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Fig. 6.6. Bragg’s reflection from a set of hkl planes having interplanar distance d

6.3 Bragg’s Law

Let us consider two parallel crystallographic planes defined by the Miller in-
dices hkl having their planes perpendicular to the diagram (Fig. 6.6) and X-ray
having definite wavelength, λ is incident at a particular angle.

The path difference between the incident and diffracted wavefronts AB
and AD will be BC − CD = 2d sin θ and when this is equal to an integral
multiple of the characteristic wavelength λ, then there will be “reflection”
and the reflected beams will interfere constructively, i.e., 2d sin θ = nλ. This
is known as Bragg’s law and the angle θ is known as Bragg angle. The d is
the interplanar spacing. As the values of the interplanar spacing, i.e., d are
different for different sets of planes, the angle θ will also be dependant on the
plane for a definite wavelength of X-ray radiation. So, the Bragg’s condition
for reflection can be more generalized as [3]

2dhkl sin θhkl = nλ.

6.4 Reciprocal Lattice

The concept and the applicability of reciprocal lattice are very important in
structural analysis of crystalline materials. The importance of this hypotheti-
cal lattice can be best understood as we move through the following chapters.
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It can be rightly said that “The reciprocal lattice is as important in crystal
structure analysis as the walking stick of a blind man moving in a narrow
lane having frequent turns.” It is extremely difficult if not impossible to pic-
ture the different intersecting crystal planes satisfying the Bragg’s reflection
in three-dimensional lattice from the two-dimensional array of spots or lines.

The problem was reduced by assuming normal on such planes and as
the angles of these normal are equal to the angles between the intersecting
planes. Such imaginary normal when projected on the surface of a sphere or
a plane, the projections are, respectively, known as spherical projections or
stereographic projections. But to minimize the problem of finding the angles
and the interplanar distances between any two sets of planes, the introduction
of the concept of a hypothetical lattice becomes essential. Let us introduce
the concept from an optical analogy. When a distant light source is observed
through a fine mesh, e.g., when the Sun is viewed through a silk umbrella,
a diffraction pattern is observed. This is because the distances between two
fine fibers of silk cloth is approximately of the order of wave length of light.
It can be seen from the diffraction pattern that the distance of separation
between the central spot and the second spot either on the x-axis or on the
y-axis is found to be twice the distance between the central spot and the first
spot. The entire diffraction phenomenon is shown in Fig. 6.7. The beautifully
arranged diffraction spots form a two-dimensional lattice and can be utilized
to introduce the reciprocal lattice. If the three unit translational vectors which
define the direct lattice are given as a, b, and c, then corresponding to these
vectors let us introduce three other vectors such as a∗, b∗, and c∗, so that
the following relations hold good:

a ·a∗ = 1, b ·b∗ = 1, and c ·c∗ = 1 and also b ·a∗ = c ·a∗ = 0. (6.1)

Fig. 6.7. Optical diffraction from fine fabric and distant light source
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Fig. 6.8. OA, OB, and OC are the intercepts on the a, b, and c axes of the plane
hkl, n is the unit vector normal to the plane hkl and ϕ is the angle that this unit
vector makes with the a-axis

Now, as the dot product of a∗ with b and c vanishes, therefore, a∗ is per-
pendicular to both of them, i.e., perpendicular to the plane containing b and
c in the direct lattice. This gives the direction of a∗ and from the relation
a · a∗ = 1, we can have the magnitude of it. Similarly, b∗ is perpendicular to
the plane containing c, and a and c∗ are perpendicular to the plane containing
a and b. So, as a, b, and c the three vectors define the actual lattice (called
“direct lattice”), the three vectors introduced as a∗, b∗, and c∗ will also define
another lattice. The relations between these vectors can be derived as [4]

a∗ =
b × c

a · b × c
, b∗ =

c × a
a · b × c

, and c∗ =
a × b

a · b × c
.

Now, as a · b × c is the volume, V of the unit cell of the direct lattice, the
above relations can be written as

a∗ =
b × c

V
, b∗ =

c × a
V

, and c∗ =
a × b

V
. (6.2)

In Fig. 6.8, the unit translational vectors of the direct lattice and a plane
having Miller indices hkl are shown to derive the further relations between
the plane and the vectors in the corresponding “new imaginary lattice.”

Now, let us introduce a vector Hhkl in the imaginary lattice which is
defined as

Hhkl = ha∗ + kb∗ + lc∗.

This is logical as h, k, and l are pure numbers defining the plane hkl in the
direct lattice.

Now,

OB + BA = OA, i.e., BA = OA − OB = a/h − b/k.
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So,

BA · Hhkl = (a/h − b/k) · Hhkl = (a/h − b/k) · (ha∗ + kb∗ + lc∗).

Now, using the relation between a, b, and c and a∗, b∗, and c∗ from (6.1),
we get

(a/h − b/k) · Hhkl = 1 − 1 = 0, i.e., BA · Hhkl = 0

and similarly, we can also show that

CB · Hhkl = (b/k − c/l) · Hhkl = 0.

Therefore, the vector Hhkl of the imaginary lattice is perpendicular to the
plane hkl of the direct lattice. Now, the interplanar distance of this hkl (dhkl)
is the normal distance of the plane hkl from the similar plane at 0 and it is
given as

dhkl = (|a|/h) cos ϕ = (|a|/h) · n
= (|a|/h) · ha∗ + kb∗ + lc∗

|Hhkl| (6.3)

= 1/|Hhkl|.
The vector Hhkl of the imaginary lattice defined as before is reciprocal of the
interplanar distance in direct lattice and hence this “new” imaginary lattice
is named as:

Reciprocal lattice. The vector Hhkl in the reciprocal lattice is the position
vector of the lattice point hkl in that reciprocal space. Therefore, the hkl which
are the Miller indices of a plane in direct space lattice are the coordinates of
a lattice point in reciprocal space. This reciprocal lattice has also a similarity
with the optical diffraction pattern of a distant light source when viewed
through fine cloth (Fig. 6.7) which has been explained before.

Conclusion. To minimize the difficulty in the visualization of different inter-
secting planes in the direct lattice, a hypothetical lattice called reciprocal
lattice is introduced in which each lattice point represents a plane of the di-
rect lattice and the distance of each point from the origin of such lattice is the
reciprocal of the interplanar distance of the plane that it represents in direct
lattice.

6.5 Geometry of X-Ray Diffraction: Use of Reciprocal
Lattice

Now is the time to realize importance of reciprocal lattice through the in-
terpretation of X-ray diffraction phenomena. Let us imagine a sphere having
radius equal to the reciprocal of the wavelength of the incident X-ray on a
crystal stationed on the incident ray. Let the X-ray beam comprises of only
the strongest Kα radiation (Fig. 6.9).
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Fig. 6.9. Ewald’s sphere of radius 1/λ, crystal may be stationed either at the center
O or at C. The reciprocal lattice origin is also at C, θ is the Bragg angle of reflection
from the Miller plane (hkl) in the crystal, CB is drawn normal on the hkl plane

Now,

∠ABC: sin θ = BC/AC = BC/(2/λ), i.e., 2(1/BC) sin θ = λ. (6.4)

But we have assumed that the X-ray has already satisfied the diffraction
condition, i.e., Bragg’s relation which is

2dhkl sin θ = λ(n = 1). (6.5)

Therefore, to get (6.4) and (6.5) simultaneously satisfied, we get BC = 1/dhkl,
i.e., B is a point on the normal drawn on the plane hkl and its distance from
the plane is reciprocal of the interplanar distance dhkl. So, the point B is the
reciprocal lattice point of the plane hkl, and when there is a Bragg’s reflection
from the plane for a definite wavelength then it should lie on the surface of
the corresponding Ewald’s sphere.

Conclusion. The Bragg’s reflection will occur from a plane for a definite wave-
length of X-ray, incident in a particular direction only when the reciprocal
lattice point of the plane concerned lies on the surface of the corresponding
Ewald’s sphere.

It may be mentioned here that Laue spots (discussed in a later chapter) are
obtained for general radiation and the spots vanish when a monochromator
(Kβ filter) is introduced before the beam. This is because out of all the recipro-
cal lattice points of the planes of the direct lattice only a very few or none at all
will lie on the surface of the Ewald’s sphere and satisfy the Bragg’s condition,
but when general radiation is used the wavelength increases from a short limit
continuously and in that case plenty of the reciprocal lattice points may be
assumed to lie on the surfaces of Ewald’s spheres having continuously varying
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radius. This gives rise to plenty of Laue spots all symmetrically arranged as
those of the reciprocal points in the reciprocal lattice.

The unit of the reciprocal lattice vectors a∗, b∗, and c∗ is Å
−1

or λ Å
−1

and in the latter case, it is unitless and they are some times expressed in
reciprocal unit (r.u.). As α, β, and γ are the angles between the axes in the
direct lattice, α∗, β∗, and γ∗ will be the corresponding angles between the
axes in the reciprocal space. It can be mentioned here that as in a particular
type of lattice, different shapes of unit cells are possible (this has already been
explained in an earlier chapter); in the corresponding reciprocal lattice, also
different shapes of the unit cells are possible. However, like direct lattice, the
reciprocal lattice remains same.

The relations between the unit translational vector of direct lattice and
reciprocal lattice can be derived as follows.

The volume V of the unit cell in direct lattice is given by V = a · b × c
and let a, b, and c are expressed as

a = axi + ayj + azk, b = bxi + byj + bzk, and c = cxi + cyj + czk,

then the volume can be expressed in determinant form as

V =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣ .

As the value of the determinant remains unchanged if the rows and columns
are interchanged, we can write

V 2 =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣ ×
∣∣∣∣∣∣
ax bx cx

ay by cy

az bz cz

∣∣∣∣∣∣ .

Applying the rule of multiplication of determinants,

V 2 =

∣∣∣∣∣∣
axax + ayay + azaz bxax + byay + bzaz cxax + cyay + czaz

axbx + ayby + azbz bxbx + byby + bzbz cxbx + cyby + czbz

axcx + aycy + azcz bxcx + bycy + bzcz cxcx + cycy + czcz

∣∣∣∣∣∣
or,

V 2 =

∣∣∣∣∣∣
a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

∣∣∣∣∣∣
using the vector dot product i · i = j · j = k · k = 1 and i · j = i · k = j · k = 0.

Now, a · a = a2, b · b = b2, c · c = c2, a · b = ab cos γ, a · c = ac cos β,
and b · c = bc cos α, then the above determinant is

V 2 =

∣∣∣∣∣∣
a2 ab cos γ ac cos β

ab cos γ b2 bc cos α
ac cos β bc cos α c2

∣∣∣∣∣∣
= a2(b2c2 − b2c2 cos2 α) + ab cos γ(abc2 cos α cos β − abc2 cos γ)

+ ac cos β(ab2c cos γ cos α − ab2c cos β)
= a2b2c2(1 − cos2 α + 2 cos α cos β cos γ − cos2 γ − cos2 β).
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Therefore,

V = abc(1 − cos2 α − cos2 γ − cos2 β + 2 cos α cos β cos γ)1/2.

Now as

V =

∣∣∣∣∣∣
ax bx cx

ay by cy

az bz cz

∣∣∣∣∣∣ , V ∗ =

∣∣∣∣∣∣
a∗

x b∗x c∗x
a∗

y b∗y c∗y
a∗

z b∗z c∗z

∣∣∣∣∣∣ ,

where V ∗ is the volume of the unit cell of the reciprocal lattice

V × V ∗ =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ ,

and so, V = 1/V ∗.
Therefore, V ∗ is also reciprocal of the volume of the unit cell of the direct

lattice and the relations between the angles are

α∗ = sin−1{V/(abc sin β sin γ)},
β∗ = sin−1{V/(abc sin α sin γ)},

and
γ∗ = sin−1{V/(abc sin α sin β)}.

6.6 The Interplanar Distance (d-Spacing) of Different
Crystal Systems

The interplanar distance dhkl in the direct lattice is related to the correspond-
ing vector Hhkl in reciprocal space by the relation

dhkl = 1/|Hhkl|,

where Hhkl = ha∗ + kb∗ + lc∗. Therefore,

1/d2
hkl = (ha∗ + kb∗ + lc∗) · (ha∗ + kb∗ + lc∗)

= h2a∗ ·a∗ + k2b∗ · b∗ + l2c∗ · c∗ + 2hka∗ · b∗ + 2hla∗ · c∗ + 2klb∗ · c∗,

where a∗ = (b × c)/V, b∗ = (c × a)/V , and c∗ = (a × b)/V . Putting these
values of a∗, b∗, and c∗ in the above expression for 1/d2

hkl, we get

1/d2
hkl = 1/V 2

{
h2|b × c|2 + k2|c × a|2 + l2|a × b|2 + 2hk(b × c) · (c × a)
+ 2hl(b × c) · (a × b) + 2kl(c × a) · (a × b)} .

Now,

|b × c|2 = b2c2 sin2 α, |c × a|2 = c2a2 sin2 β, and |a × b|2 = a2b2 sin2 γ,
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and further from vector product,

(b × c) · (c × a) = (b · c)(c · a) − (b · a)(c · c) = abc2(cos α · cos β − cos γ),
(a × b) · (b × c) = (a · b)(b · c) − (a · c)(b · b) = ab2c(cos γ · cos α − cos β),
(c × a) · (a × b) = (c · a)(a · b) − (c · b)(a · a) = a2bc(cos β · cos γ − cos α).

Using these relations and factoring out a2b2c2, we get

1
d2

hkl

=
a2b2c2

V 2

{
h2 sin2 α

a2
+

k2 sin2 β

b2
+

l2 sin2 γ

c2
+

2hk

ab
(cos α · cos β − cos γ)

+
2hl

ac
(cos γ · cos α − cos β) +

2kl

bc
(cos β · cos γ − cos α)

}
.

Now, V has been derived as

V = abc(1 − cos2 α − cos2 γ − cos2 β + 2 cos α cos β cos γ)1/2

and replacing this in the above expression, we get the d-spacing formulae as

1
d2

hkl

=
1

1 − cos2 α − cos2 γ − cos2 β + 2 cos α · cos β · cos γ

×
{

h2 sin2 α

a2
+

k2 sin2 β

b2
+

l2 sin2 γ

c2
+

2hk

ab
(cos α · cos β − cos γ)

+
2hl

ac
(cos γ · cos α − cos β) +

2kl

bc
(cos β · cos γ − cos α)

}
.

This is the general expression for the d-value and is valid for triclinic system
for which a �= b �= c and α �= β �= γ. The expression becomes much simplified
in the other systems having increasing symmetry like:
Monoclinic: a �= b �= c, α = γ = 90◦ �= β

1
d2

hkl

= (1/ sin2 β)
(

h2

a2
+

k2 sin2 β

b2
+

l2

c2
− 2hl cos β

ac

)
.

Orthorhombic: a �= b �= c, α = β = γ = 90◦

1
d2

hkl

=
h2

a2
+

k2

b2
+

l2

c2
.

Rhombohedral: a = b = c, α = β = γ �= 90◦

1
d2

hkl

=
(h2 + k2 + l2) sin2 α + 2(hk + kl + lh)(cos2 α − cos α)

a2(1 + 2 cos3 α − 3 cos2 α)
.

Hexagonal: a = b �= c, α = β = 90◦, γ = 120◦
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1
d2

hkl

=
4
3

(
h2 + hk + k2

a2

)
+

l2

c2
.

Tetragonal: a = b �= c, α = β = γ = 90◦

1
d2

hkl

=
h2 + k2

a2
+

l2

c2
.

Cubic: a = b = c, α = β = γ = 90◦

1
d2

hkl

=
h2 + k2 + l2

a2
.

6.7 Weighted Reciprocal Lattice

It has been explained before how the concept of reciprocal lattice is important
particularly in describing the diffraction pattern of a crystal. This purpose will
be more fruitfully served if each lattice point in the reciprocal space can also
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Fig. 6.10. Weighted reciprocal lattice for (a) zero layer hexagonal or rhombohedral,
(b) first layer rhombohedral, and (c) first layer hexagonal (By courtesy of L.S. Dent
Glasser)
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represent the intensity of diffraction from the corresponding plane in the direct
lattice. This is achieved by assigning to each point a weight proportional to
the intensity of the corresponding reflection. The resulting weighted reciprocal
lattice is usually drawn by making each point with a dot whose size is roughly
proportional to the observed intensity. Weighting the points in this way brings
out the relationship between the symmetry of the crystal and the symmetry
of its diffraction pattern. Figure 6.10 shows the weighted reciprocal lattice of
a hexagonal crystal. However, the discussion of the utility of this weighted
reciprocal lattice will be made in a later chapter.

6.8 Summary

1. The basics of X-ray production, its monochromatization and diffraction
from crystal, and the diffraction laws are discussed.

2. On the basis of the crystal structure analysis, the concept of reciprocal
lattice has been introduced and the importance of its concept has been
emphasized.

3. The expressions of the interplanar distances and also the mathematical
relations between the hypothetical reciprocal lattice and the real direct
lattice parameters have been derived and shown.

4. There exists an important relationship between the position of an atom or
molecule in the lattice and the intensity of the diffracted X-radiation, and
to incorporate the both in one diagram the concept of weighted reciprocal
lattice is introduced here and its applications in structure analysis are
discussed in appropriate chapter later.
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7

Experimental Methods for Structure Analysis:
X-Ray Diffraction Techniques

A crystal is made up by arranging the corresponding unit cells in three di-
rections. If there is an order in the repetition of this unit cell arrangement
in space, then only its crystalline nature is manifested. This order is of two
types (a) local order and (b) long-range order. When both of these two types
of ordering are maintained in space then the crystal is called single crystal,
and when the local order is maintained but the long-range order is violated of-
ten then the crystalline material is called polycrystal. The region within which
these two types of ordering are maintained but the long-range ordering is vi-
olated just on its boundary is single crystal region. The size of these regions
behaving like single crystals depends on the resolution power of probe which
is used to “see” them. The X-ray diffraction patterns from these two types of
crystals are obviously different and so also the experimental techniques to get
them. In this chapter, the different experimental techniques and the method
of their interpretations generally used for the structural studies are discussed
for both of these two types of crystalline state of matter, i.e., single and poly-
crystalline states [1–3].

7.1 Experimental Techniques for Single Crystal

There are two types of experimental techniques for single crystal studies. This
classification is made on the basis of the wavelength λ and Bragg’s angle θ as:

Type (A). Bragg’s angle θ is known but the wavelength λ which satisfies the
Bragg condition is unknown.

Type (B). Bragg’s angle θ as well as the wavelength λ which satisfy the Bragg
condition are known.

7.1.1 Laue Camera and Laue Pattern

Laue camera is the simplest of all the devices for the structure determination
of crystals as it consists of a collimator to narrow down the general radiation
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Fig. 7.1. Laue pin-hole camera. Single crystal is stationary and two flat fixed films
for recording transmission (possible if the crystal is transparent to X-ray) and back
reflection (for large crystals)

of X-ray, a two circle goniometer to mount the single crystal and align its
desired axis perpendicular to the incident beam and a beam outlet at the back
of which there is a fluorescent screen to see the transmitted beam followed
by a lead glass absorber. There are two film cassettes that are flat and one of
them is mounted through the inlet collimator and the other in the transmitted
side. In addition to these, there is one lead stop to stop the transmitted direct
beam from reaching the film. All these, i.e., the film cassettes, beam stop, and
the goniometer are mounted on a bridge so that their distances are adjustable.
Figure 7.1 shows the schematic diagram of a Laue camera.

A Laue pattern which is shown in Fig. 7.2 is symmetrical arrangement
of diffraction spots on the flat film either in the transmission mode or in
back reflection mode. The spots when connected generate either an ellipse
or a hyperbola. These spots originate due to Bragg’s reflection from sets of
intersecting planes which are parallel to an axis known as zone axis (Fig. 7.3).
Planes having common zone axis generate symmetrical spots, and in most of
the cases they show a center of symmetry.

Let us introduce any vector A(uvw) as A(uvw) = ua+vb+wc, where uvw
are integers. All planes containing the direction A(uvw) are said to belong to
the same zone u v w. Now, Hhkl which is defined as Hhkl = ha∗ + kb∗ + lc∗

is a vector normal to the plane hkl.
Therefore,

A(uvw) · Hhkl = (ua + vb + wc) · (ha∗ + kb∗ + lc∗)
= hu + kv + lw = 0

as the vector A(uvw) lies on the plane and Hhkl perpendicular to it. So, the
equation hu + kv + lw = 0 represents the planes hkl which belong to the zone
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Fig. 7.2. Transmission Laue photograph, showing diffraction spots arranged
symmetrically (By courtesy of L.S. Dent Glasser)

S

A (uvw)

ϕ
ϕo

O So

Fig. 7.3. Zone axis A(uvw), S and S0 are the unit vectors defining, respectively,
the diffracted and incident beam directions

u v w. Now, as S = S0 +λHhkl (from Ewald’s sphere), multiplying both sides
by A(uvw) we get

S · A(uvw) = S0 · A(uvw) + λHhkl · A(uvw), and as Hhkl · A(uvw) = 0,

we get
|A(uvw)| cos ϕ = |A(uvw)| cos ϕ0 and so, ϕ = ϕ0.

Note. Therefore, diffracted beams from the sets of hkl planes form a cone and
the zone axis is the axis of that diffraction cone and all such sets of planes
belong to the same zone u v w defined by the zone axis A(uvw).

There are some difficulties in interpreting the Laue pattern in terms of
identifying the reflected spots on the film. We recall the Bragg’s law as

2dhkl sin θ = nλ and sin θ/n = λ/2dhkl,
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where dhkl is the spacing of the reflecting plane having Miller indices hkl, now
considering the reflection from plane having Miller indices nh, nk, nl we get

2dnh,nk,nl sin θ′ = λ

and

sin θ′ = λ/2dnh,nk,nl but as dnh,nk,nl = dhkl/n,

= nλ/2dhkl = n · sin θ/n = sin θ.

Therefore, in the Laue photograph, all the spots for reflection from nh, nk,
nl planes will overlap for all values of n with nth order of reflection from hkl
planes. It has been shown that in most realistic experimental arrangements,
95% of the spots should be either without overlap or singly overlapped and the
reason for having some Laue spots high intensity than the neighboring ones.

The Laue photograph is particularly suited for detecting the symmetry
present if the incident X-ray is directed along or very near to the symmetry
axis. The diffraction spots will show that rotational symmetry in their position
on the film as the X-ray beam direction represents in the original crystal. If the
beam direction represents accurately say the triad axis of symmetry present,
then the diffraction spots will form equilateral triangle otherwise even if the
beam direction is slightly offset from the triad axis of symmetry, the trigonal
symmetry will still be evident from the triangles of spots which will not be
equilateral [2, 3].

7.1.2 Rotation/Oscillation Camera and the Applications

In this arrangement, the crystal is a single crystal as in Laue arrangement
but it is either rotated or oscillated through certain angular range, the X-ray
is monochromatic and the film instead of being flat is cylindrical. Therefore,
the camera arrangement is also called cylindrical camera. Figure 7.4 shows
the arrangement of a cylindrical camera. Here, the film though cylindrical is
kept stationary as in Laue.

As X-ray beam is monochromatic say Kα so the wavelength is known. The
diffraction cones originating from the crystal will form layers as shown in the
following rotation/oscillation X-ray photograph (Fig. 7.5).

Let S and S0 be the diffracted and incident beam directions and a3 be the
crystal axis about which the crystal is mounted in Fig. 7.4. Then from Laue
condition,

(S − S0) · a3 = lλ but as S0 · a3 = 0,

S · a3 = lλ or, a3 sin β = lλ or, sin β = lλ/a3,
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X-RAY
(Monochromatic)

l=1

l=2

l=3

l=–1

l=–2

l=–3

Rotation
Axis

Fig. 7.4. The rotation–oscillation (cylindrical) camera. Monochromatic Kα is used.
The crystal shown at the center is rotated or oscillated. The layer lines formed by
the intersection of diffraction cones and the cylindrical film are shown for different
l values

Fig. 7.5. The oscillation photograph of a single crystal mounted along its c-axis
(By courtesy of L.S. Dent Glasser)

where β is the latitude angle and reflections having same value of l will have
the same latitude angle and form a diffraction cone. When cylindrical film is
used, the cones form layers on the film, for each value of, i.e., 0, 1, 2, −1, −2,
etc. (see Fig. 7.6).

Now, measuring the distance yn of the nth layer from the equatorial layer
(l = 0), we get

tan βn = yn/R,

where R is the camera radius.
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Fig. 7.6. Diffraction of X-ray in rotation/oscillation camera
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Fig. 7.7. The relation between cylindrical coordinates and indices of reciprocal
lattice. Points of rotation photograph (indexing of rotation photographs)

The axial lengths of a crystal a1, a2, or a3 can be determined by mount-
ing the crystal in the corresponding axis and measuring it from rotation
photographs. This measurement does not require any knowledge of the crys-
tal system or hkl indices of the reflections. Now, to find the correlation be-
tween reciprocal lattice points and diffraction spots on the film, let us consider
Fig. 7.7 [2].

Let ζ, ε, and ϕ be the cylindrical coordinates of the reciprocal lattice point
hkl with respect to the rotation axis and direct beam. Now, if σ represents
the position vector of the reciprocal lattice point, then σ = ζ + ε.

We know from Bragg’s law

S − S0 = λH = λσ.

Now taking the vertical components of the vectors |S1| − |S01| = λ|H1| = λζ,
but S01 is zero as S0 lies on the plane and perpendicular component S1 of the
unit vector S is sin β.

Therefore, sin β = λ|H1| = λζ and the vertical coordinate y of the spot
on the film is given by
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y = R tan β =
R√

(1/λζ)2 − 1
. (7.1)

Now, the angle α in the Fig. 7.6 is given by α = x/R, where x is the horizontal
coordinate of the film, then from spherical triangle cos 2θ = cos α·cos β, we get

cos
( x

R

)
=

cos 2θ

cos β
=

1 − 2 sin2 β√
1 − sin2 β

=
1 − 1/2(λ/dhkl)2√

1 − (λζ)2
=

1 − 1/2(λHhkl)2√
1 − (λζ)2

=
1 − 1/2(λσ)2√

1 − (λζ)2
=

1 − 1/2[(λζ)2 + (λξ)2]√
1 − (λζ)2

. (7.2)

Now, measuring the vertical coordinate y from the film of the spot, one can get
from (7.1) the ζ coordinate (provided the camera radius R and wavelength λ
are known) and knowing ζ, the value of ξ can be found out after measuring the
horizontal coordinate x and using the (7.2). These calculations are, however,
avoided by using the Barnal chart relating x, y with ζ, ξ. The Barnal chart in
the form of a plot of coordinates x, y with ζ, ξ for different standard camera
radius is commercially available on transparent paper, and the coordinates
can be easily read out by superimposing the rotation photographs over the
such transparent charts. However, if the needle-shaped crystal is mounted on
its c-axis, then from Laue condition

c cos θ = 1λ and cos θ = ζ/λ−1

then
c = 1λ/ζλ = 1/ζ.

Here, 1λ is the radius of the sphere of reflection, and thus mounting the crystal
in two other directions as rotation axis, the other two unit translational vectors
a and b can be determined [2, 3].

Now, as the values of ζ and ξ, respectively, give the vertical distance from
the zero layer of reciprocal net and the horizontal distance from the rotation
axis, assigning the h, k indices to the spots within a layer is usually not a
straightforward process. The problem is that all the information from two-
dimensional reciprocal lattice layer is compressed into the one-dimensional
layer – line. As an exercise, it may be tried by first drawing the reciprocal
lattice net and then drawing arcs of circles from the origin of the net having
radii equal to the ξ values. The point of intersections of such arcs with the
reciprocal lattice points on the net gives the probable values of h and k for
different layers. However, it becomes increasingly difficult to assign indices to
the spots at higher value ξ. This problem can be decreased by taking an os-
cillation photograph when crystal is oscillated through certain angular range
instead of taking a complete rotation photograph. The amount of informa-
tion recorded is thus reduced and thus interpretation is made correspondingly
easier. For crystals with low symmetry and/or large unit cells, it is usually
not worthwhile to sort this out but try to spread this information out into
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two dimension using a moving film camera like Weissenberg camera. However,
the main advantages or importance of an oscillation method are that first it
gives the measurement of crystal axes like a, b, and c as described above and
secondly it is essential for the alignment of the crystal axis along the rota-
tional axis of the camera. If the crystal is needle shaped, it becomes difficult
to align the symmetry axes other than the needle axis along the rotation axis.
In case the rotation axis differs, then the rotation/oscillation layer line will
appear wavy instead of being straight lines. There exist standard methods
for aligning the crystal by measuring the distance between the existing wavy
layer line and the expected layer line. The details of this process of alignment,
however, are avoided in this book and can be found in any book dealing the
details of photographic techniques.

7.1.3 Weissenberg Camera and Moving Film Technique

It should be mentioned here that the reciprocal lattice which is three dimen-
sion cannot be recorded without any ambiguity on a two-dimensional film
and so, the rotational method discussed before is not sufficient to record the
diffraction spots with their three hkl indices known. Therefore, the rotational
method cannot give any satisfactory information about the Space Group from
the rule of systematic absences. Moreover, there is every chance of coincidence
of the diffraction from one hkl and its hkl counterpart and so, they hardly can
be read separately. Therefore, it becomes necessary to move the film along with
the rotation of the crystal to record one reciprocal lattice net lying on a plane.

There are two types of moving film cameras: Precision and Weissenberg
cameras. Of these two, Weissenberg camera is closer to rotation/oscillation
camera. But former of them records the undistorted reciprocal lattice while the
latter records the distorted one. The Weissenberg camera which is discussed
here only records relatively smaller part of reciprocal lattice as the crystal is
not rotated through entire range of 360◦ but instead oscillated through an an-
gular range say 120◦, and the film whose linear movement is perfectly coupled
with the oscillation of the crystal is also translated back and forth through
certain length of distance. This is to avoid the major drawback that is found
in simple rotation/oscillation camera, i.e., recording two-dimensional recipro-
cal lattice net of certain value of l into one-dimensional layer, which results
almost impossibility of assigning the indices to the reflected spots without
any ambiguity. To preserve more certainty in the process of assigning indices,
a particular layer line is selected at a time in Weissenberg by using a layer
line screen of cylindrical shape and having a slot perpendicular to its axis. By
adjusting the slot opening in the position of the desired layer and rotating the
crystal through certain precalculated angle, the incident beam coincides with
the diffraction cone of the desired layer and the diffracted cone can reach the
translating film through the aligned slot on the layer screen. Such arrangement
in Weissenberg camera is called equi-inclination setting. Figure 7.8 shows an
arrangement of the Weissenberg camera [3].
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Fig. 7.8. Equi-inclination Weissenberg camera. (a) is the arrangement for recording
the zero layer and (b) is the arrangement for recording the first layer photographs.
Note: in (b), the crystal and the film cassette with the layer screen are rotated
through an angle δ and the layer line selector screen is shifted through a distance of
ζ/2 = r tan δ for recording the first layer diffraction cone. The incident X-ray beam
coincides with the diffraction cone in this equi-inclination setup

The result of the oscillation of crystal and translational motion of the
film which is synchronized with the oscillatory motion of the crystal is highly
distorted picture of the reciprocal lattice. While the distance of any spot from
the equator depends on ξ, its horizontal distance along the film represents the
angular position of the crystal as the corresponding reciprocal lattice point
passes through the surface of the sphere of reflection (Fig. 7.9). Figure 7.10
indicates how this distortion can be visualized and why this equi-inclination
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Fig. 7.9. Replica of zero layer Weissenberg photograph and the undistorted
weighted reciprocal lattice (By the courtesy of L.S. Dent Glasser)

Weissenberg is said to record the distorted reciprocal lattice separately for
each layer of reciprocal lattice net. Imagine the weighted reciprocal lattice
layer drawn on a stretchable plane, with a rod inserted along each axis to
keep it straight. These axial rods are then pulled apart at the origin until
they are parallel. The axes are then inclined to the equator because to bring
successive axial points into sphere of reflection the reciprocal lattice has to
rotate. The quantitative interpretation is done with the help of Weissenberg
chart, which enables coordinates in reciprocal space to be read directly from
the photograph.

Now, knowing such hkl values of the spots of the X-ray diffraction photo-
graphs which are undistorted record of the reciprocal lattice, the Space Group
and also the crystal structure can be determined. It may be once again stated
here that by Space Group, we should mean the spatial symmetries which
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Fig. 7.10. (a) The weighted reciprocal lattice drawn say on a stretchable surface. (b)
The axes are drawn from the origin away from each other with an intention to make
them parallel to each other. (c) The axes are made parallel. The diffraction spots
then resemble the Weissenberg photograph (replica) of Fig. 7.9, showing streamers
and festoons (By courtesy of L.S. Dent Glasser)

are present in three directions of the unit cell amongst the different atoms
present in the unit cell. By crystal structure, we should mean knowing fully
the positions of all the atoms present in the unit cell. Therefore, determination
of the Space Group is usually the step which precedes the process for structure
determination. A discussion rather in brief is given in the following chapter
which is followed for Space Group and structure determination.
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7.1.4 de Jong–Boumann and Precession Camera

It has been said that the Precision camera records the undistorted recipro-
cal lattice. There are two types of Precision cameras. The one is due to de
Jong and Boumann and the other is due to Buerger. The Precession camera
developed by Buerger is quite different and difficult to visualize and so, the
Boumann method is first described here.

The layer screen used in this method is annular opening in which the
central opaque part is supported to the outer part, leaving the desired annular
opening by cellophane paper which is transparent to X-ray (Fig. 7.11). In de
Jong and Boumann method, like Weissenberg, the diffraction data are spread
out over the flat film by rotating it (Figs. 7.12 and 7.13).

If µ and ν are the angles, respectively, between the X-ray incident direction
and crystal axis and semiapex angle of the diffraction cone as shown in the
following figure,

ν

µ

Then, the distance through which the film is to be moved back and the
formulae relating to the recording of upper layer are given as: For zero layer
arrangement µ = ν = 45◦, layer screen subtends 90◦ cone at the crystal, and
this is to be kept constant. The upper layer is to be recorded by changing µ.
Now for nth layer,

sin µn = cos ν − nλ

t
=

1√
2
− nλ

t
, since µ is fixed.

The film is to be moved away from the crystal by

F · nλ

t
,

Fig. 7.11. The annular opening in layer separator slit
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Fig. 7.12. de Jong–Boumann camera setup for recording the zero layer. (a) The
crystal is mounted with its principal axis perpendicular to the film and rotated along
its axis. The diffracted beam makes 90◦ with the incident beam. (b) The zero layer
rotates about the parallel axis. (c) The flat film parallel to the set of reciprocal
lattice layers is also rotated about the axis. (d) The rotation of film and reciprocal
lattice is synchronized, so that the diffracted spot reaches the same point on the film

where F is the crystal to film distance and t is the unit cell translation along
the relevant principal axis of the crystal.

Precession camera. It has been stated that the visualization of Precession cam-
era is rather difficult compared with de Jong–Boumann camera. Therefore,
only zero layer Precision setup is described in brief. The detailed informa-
tion is available in more specialized books given in the references for further
reading [2].

While de Jong–Boumann method records reciprocal lattice layers perpen-
dicular to the axis of the goniometer head, the precession method records
layers that are parallel to it. Thus, the de Jong method for orthogonal crystal
mounted about c can record hk0, hk1, etc., layers, and the precession method
records both 0kl, 1kl, etc., and h0l, h1l, etc., layers.

The chief drawbacks to both of these two methods are that both of them
record only a small part of the reciprocal lattice. This may not be of any diffi-
culty if the crystal has short reciprocal dimension, but for crystals with larger
reciprocal dimensions too little information may be recorded for the systematic
absences to be fully investigated. One way to escape from this is to use X-ray
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(Obstructed) 

Fig. 7.13. de Jong–Boumann camera setup for recording the higher layer. (a) The
crystal is rotated and so also its reciprocal lattice without altering the relative
positions of the crystal, screen, and rotation axis of the film remains unchanged.
(b) The film is moved back along its rotation axis by a distance proportional to the
height of the nth layer above zero layer so as to record the higher layer. (c) The
diffraction from the zero layer is obstructed by the layer screen. (d) The upper layer
is brought into recording position by altering the angle of incidence of X-ray beam

of shorter wavelength, but this may also have certain disadvantages and in
that condition one may have to depend upon other methods like Weissenberg
which records distorted reciprocal lattice (Fig. 7.14).

7.2 Experimental Techniques for Polycrystals

A polycrystal is in one way an unsymmetrical state of crystalline matter
compared with single crystals. The long-range order which is extended all
through the bulk is maintained but the short-range order is often violated.
The region or the plane where this long-range order is violated is known as the
grain boundary. Within a grain, each crystal plane is oriented in a particular
fashion whereas this orientation order is not obeyed at the grain boundary.
In a perfect polycrystal, each crystal plane is randomly oriented or rather it
is oriented in all possible fashion. The result is the total change of diffraction
pattern, in place of getting diffraction spots we get a cone of diffraction for a
particular wavelength. Figure 7.15 shows the diffraction cone resulting from
a polycrystalline specimen.
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Fig. 7.14. Zero layer setup for Buerger precession camera
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Incident X-ray
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Fig. 7.15. Diffraction cones originating from different planes for the same X-ray
wavelength. Different Bragg’s angle for different planes present in different grains
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7.3 Debye–Scherrer Cylindrical Powder Camera:
The Plan View

2θrad =
2S

2R
, 2θ0 = 180/π × 2θrad

and from Bragg’s law
2dhkl sin θ = nλ.

So, measuring 2S from film which is loaded on the inside wall and knowing
R the radius of the camera and the wavelength λ, we can calculate the inter
planar spacing dhkl for the hkl plane. The dhkl for the cubic system is related
to the lattice parameter a by

dhkl =
ahkl√

h2 + k2 + l2
.

By using Debye–Scherrer technique for polycrystals, lattice parameter can
be determined. The lines (arcs) can be indexed by adopting the following
procedures (Fig. 7.16) [1].

2 S 
2θ

(a)

2θR

Sample 
(Powder)

2 S 

(b)

Fig. 7.16. (a) The Debye–Scherrer cylindrical camera and incident monochromatic
Kα radiation. (b) The cylindrical film and Debye arcs from various planes
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7.4 Indexing of the Debye–Scherrer Pattern

7.4.1 Cubic Systems

We know that from Bragg’s law, 2d sin θ = nλ. And, for cubic system 1/d2 =
(h2 + k2 + l2)/a2 and from Bragg’s law 1/d2 = 4 sin2 θ/n2λ2, for n = 1, we
get 1/d2 = 4 sin2 θ/λ2. Now, equating two 1/d2 values,

sin2 θ

h2 + k2 + l2
=

sin2 θ

s
=

λ2

4a2
,

where s = h2 + k2 + l2 which is a constant for any one particular pattern.
Now, the problem of indexing the pattern of a cubic system turns out to

find the constant quotient when observed sin2 θ values are divided one after
another by all combinations of h2 +k2 + l2 like 1, 2, 3, 4, 5, 6, . . . formed by the
sum of three squared integers. Each of the four common cubic lattice types has
characteristic sequence of diffraction lines, given by their sequential s values:

Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, . . . (all reflections)
Body-centered cubic: 2, 4, 6, 8, 10, 12, . . . (h + k + l = 2n)
Face-centered cubic: 3, 4, 8, 11, 12, . . . (h, k, l are either all even or all odd)
Diamond cubic: 3, 8, 11, 16, . . .

Now, each set should be tried in turn and if any set of integers is not found
giving constant λ2/4a2 value, then it should be concluded that the sample
does not belong to cubic system and other possibilities like that of tetragonal,
hexagonal, etc., are to be explored.

7.4.2 Tetragonal System

1
d2

=
h2 + k2

a2
+

l2

c2

and from Bragg’s law
1
d2

=
4 sin2 θ

λ2

and equating the RHS, we get

sin2 θ =
λ2

4a2
(h2 + k2) +

λ2

4c2
l2.

Now, for l = 0, i.e., for hk0 reflections h2 +k2 = 1, 2, 4, 5, 8, . . . in the equation
λ2/4a2 = [1/(h2 + k2)] sin2 θ, a search for finding constant values for λ2/4a2

satisfying integers and the corresponding reflections are to be sorted out and
the rest reflections are then from hkl reflections for which l �= 0. The above
equation can then be written as
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sin2 θ − A(h2 + k2) = Cl2,

where A = λ2/4a2 and C = λ2/4c2. Now, for various combination of h, k for
LHS giving RHS values in the ratio of 1, 4, 9, 16, . . . are sorted out and corre-
sponding hkl are identified. c the second lattice parameter is then calculated
from the ratio 1 and then confirmed from 4, 9, . . .

7.4.3 Hexagonal System

For this system,
1
d2

=
4
3

(
h2 + hk + k2

a2

)
+

l2

c2

and from Bragg’s law 1/d2 = 4 sin2 θ/λ2 and equating both, we get

sin2 θ =
λ2

3a2
(h2 + hk + k2) +

λ2

4c2
l2, and putting l = 0,

sin2 θ =
λ2

3a2
(h2 + hk + k2) and

λ2

3a2
=

sin2 θ

h2 + hk + k2
=

sin2 θ

1, 3, 4, 7, 9, . . .
.

Dividing each sin2 θ values sequentially by integers 1, 3, 4, 7, 9, . . . , the match
for λ2/3a2 giving constant values is then indexed and the indexed (hk0) lines
are to be sorted out and the lattice parameter a is to be calculated. For rest
of the lines (l �= 0), we get

sin2 θ − λ2

3a2
(1, 3, 4, 7, 9) =

λ2

4c2
l2,

then the values of LHS in the ratios of 1, 4, 9, 16 are sorted out and c can be
calculated for ratio 1 and using the corresponding values of l as 1, 2, 3, 4, . . . ,
the hk values in the matching ratio are to be found and thus hkl can be indexed.

7.4.4 Orthorhombic System

For this system,
1
d2

=
h2

a2
+

k2

b2
+

l2

c2

and applying Bragg’s law, we get

sin2 θ =
λ2

4a2
h2 +

λ2

4b2
k2 +

λ2

4c2
l2,

where A = λ2/4a2, B = λ2/4b2, and C = λ2/4c2 and so, sin2 θ = Ah2+Bk2+
Cl2, the indexing problem is considerably difficult here as three unknowns are
to be determined. The general procedure is too lengthy to be discussed here.
For example, consider two reflections hk0 and hk1 say 120 and 121, then the
difference of their sin2 θ values gives C and the difference between 310 and
312 is 4C. However, the difficulty in indexing increases if some lines are found
to be missing because of zero structure factor. Moreover, the sin2 θ values are
to be determined with considerable accuracy.



References 75

7.4.5 Monoclinic and Triclinic Systems

The problem of indexing increases manifold as these systems involve four and
six independent constants and there are sometimes more than hundred lines
found in the diffraction patterns. Solving and indexing the lines manually then
turns out to be almost impossible and so, they are generally done with the
aid of computer. Standard programs are now available and therefore indexing
of the lines belonging to any system is seldom done manually.

7.5 Summary

1. Different X-ray diffraction techniques for single crystal starting from Laue
techniques to rotation/oscillation and finally to Weissenberg techniques are
discussed along with the interpretation and the advantages and limitations.

2. These techniques which are systematically introduced and discussed are
essential for understanding the inside of structure and their arrangements
in a crystal.
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Determination of Space Group and Crystal
Structure

8.1 Determination of Space Group from Data Obtained
from Moving Film

8.1.1 Weissenberg Photographs

The Weissenberg photographs thus obtained are placed on the Weissenberg
chart to find out the coordinates of the diffraction spots in the reciprocal space
along with reciprocal cell dimensions and the indices of reflections can also be
determined. It may be directly written either on the film or more conveniently
on a tracing paper on which the diffraction spots of the Weissenberg have
been already traced out. It may be pointed out here that the equi-inclination
Weissenberg has some advantage over other settings. The form of the curves
for other layer are same as zero layer and the same chart can be used for the
interpretation of the photographs. Figure 7.9 is a typical example of zero layer
Weissenberg as mentioned and the reason for the formation of festoons is also
explained by Fig. 7.10.

After noting down the indices of reflecting planes, the next task is to find
whether there are any systematic absences. The absences due to centering
of the lattice (f.c.c., b.c.c., etc.) occur throughout the reciprocal space and
a general survey will reveal the lattice type which is to be determined. The
presence of glide planes and screw axis will affect the absences of certain layers
or rows of points in the reciprocal lattice.

To verify and understand how these absences result due to the presence
of these microsymmetries, let us consider the following derivation of crystal
structure factor in the case of their presence.

The presence of a-glide perpendicular to c-axis means that for any atom
at xyz, there must be an identical atom at x + 1/2, y,−z (movement of half
of a cell along a which makes x into x + 1/2 and reflected across the glide
plane which turns z into −z). The structure factor will then be n/2 of such
pair of atoms
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F =
∑
n/2

fr{exp 2πi(hxr + kyr + lzr) + exp 2πi(h[xr + 1/2] + kyr − lzr)}

=
∑
n/2

fr exp 2πi(hxr + kyr + lzr){1 + exp πi(h − 2)}. (8.1)

Putting h − 2 as m, we get exp πi(h − 2) = expmπi = cos mπ + i sinmπ = 1
or −1 depending on m is even or odd and correspondingly, the reflection will
either occur or not.

The situation will be simpler to follow for set of reflections for which l = 0,
i.e., for zero layer Weissenberg. Equation (8.1) will take a simpler form

F =
∑
n/2

fr{exp 2πi(hxr + kyr) + exp 2πi(h[xr + 1/2] + kyr)}

=
∑
n/2

fr exp 2πi(hxr + kyr){1 + exp πi(h)}.

By the same argument, there will be reflections from hk0 planes for which h
is even and the no reflection when h is odd.

Therefore, reflections will occur only when Fhk0 does not vanish and it is
from the planes hk0, where h is even. Similar arguments may also be applied
for screw axis of symmetry and other translational symmetries. Screw axis of
symmetry produces absences among reflections from the planes perpendicular
to them. For example, 41 symmetry axis parallel to c limits 00l reflections to
those with l = 4n, while 21-axis parallel to a-axis produces reflections h00
only when h = 2n. These conclusions can be drawn from the calculation of
structure factor Fhkl.

For example for 21 parallel to b, the atoms occur in pairs like x, y, z and
(−x, y + 1/2, −z) and the structure factor can be written as

Fhk1 =
∑
n/2

f{exp 2πi(hx + ky + lz) + exp 2πi[−hx + k(y + 1/2) − lz]}

=
∑
n/2

f exp 2πi(hx + ky + lz){1 + exp(−4πi[hx + lz] + πik)}.

Now, exp(−4πi[hx + lz] + πik) = exp−i(m), where m = 4π[hx + lz] + πk and
exp−i(m) = cos m − i sin m = +1 when m is even and = −1 when m is odd.
For simplicity, considering reflection 0k0, we then get F0k0 = 0 for k is odd
and F0k0 �= 0 for k is even.

Therefore, whenever this systematic absence is found without others af-
fecting reflections for which both h and l are not zero, then the existence of a
21-axis parallel to b is established. Therefore, if systematic absences are found
in addition to lattice centering, then it can be concluded that they are due
to translational symmetry like glide planes or screw axis present along or
perpendicular to the crystal axis.
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The list of these systematic absences and the presence of symmetry re-
sponsible for it are given in International Tables (Vol. 1, pp 111–119 and
133–151 or p 350) which is to be consulted before drawing any conclusion
for the Space Group. In the four-digit Space Group symbol, the first digit
represents the lattice centering present or not, the second, third, and fourth
digits signify the translational symmetries present along or perpendicular to
the three crystal axes. This should also be kept in mind that if a, b, and c are
interchanged, an apparently different sets of systematic absences will result.
For example, the Space Group Pnam may be noted as Pnma if b and c are
exchanged.

Some of the systematic absences due to the presence of translational sym-
metry elements may be summarized as follows:

If absences are found in reflections like: and the presence of symmetries is:

0kl A glide plane perpendicular to a

h0l A glide plane perpendicular to b

hk0 A glide plane perpendicular to c

and if reflections are observed only if: and the presence of symmetries is:

h, k, and l are 2n A presence of 21, 42, or 63

and l = 3n A presence of 31, (32)

The Space Group determination is occasionally complicated by a phenomenon
known as double reflection. If the beam reflected from a set of planes h1k1l1 suf-
fers another reflection at appropriate angle from another set of planes h2k2l2,
then this doubly reflected beam appears to arise from another set of planes
h3k3l3, so that

h3k3l3 = h1k1l1 + h2k2l2.

Though the intensity of the double reflected beam is usually very weak, some-
times both h1k1l1 and h2k2l2 are very strong giving rise to spurious reflections.
However, as this case is not very frequent in the diffraction pattern, the pres-
ence of one weak reflection violating the norm of systematic absences may be
considered as spurious and can be safely ignored.

8.2 Determination of Crystal Structure

8.2.1 Trial-and-Error Method

It has been stated earlier that the object of crystal structure determination
is to find or locate the positions of all the atoms present in the unit cell and
thus to determine what it actually means.

The process in general is very elaborate and sometimes very complex when
a large number of atoms are involved and it is task to locate their individual



80 8 Determination of Space Group and Crystal Structure

positions in space in side the unit cell. Sometimes though now very seldom, it
may be a comparatively easier job when some guess can be made about the
crystal structure or at least restrict it to much fewer possibilities than many.
In the early days of the development of the structure analysis, only simpler
types of structure could be tackled and trial-and-error methods based on the
special features were used. In trial-and-error method, the structure factors,
both calculated Fc and observed Fo, were determined and a factor R known
as reliability index or residual defined as

R =
∑ ||Fo| − |Fc||∑ |Fo| .

Once the trial structure is found which is close to real structure demonstrated
by the low value of residual R, the structure can be refined by adopting
the routine procedures. This method has now only historical importance as
most of the structures that could be solved by this method have already been
solved and structure of present-day complex molecules can only be determined
by more complex methods. Some important features of these methods are
discussed in the following sections in a way which can best be considered
as an introduction. The details of these methods can only be found in more
advanced books and hundreds of literatures [1–7].

O to O′ by a vector OO′ = r. Therefore, the Patterson function will be
large if the strong regions of electron density are separated by the vector r and
if there are several strong regions of electron density separated by a vector r,
the P (r) will show a total effect of it and will also be large. The Patterson
function will be a superposition of peaks derived from all pairs of atoms in
the unit cell. If there is no overlap of Patterson peaks, then the function P (r)
will show the position of all interatomic vectors but usually the resolution
of Patterson function is very poor and in fact the Patterson peaks are more
diffuse than the electron density peaks. Despite this overcrowded nature of the
Patterson maps, useful information can be derived and complex structures can
be solved from an interpretation of Patterson function.

8.2.2 The Electron Density Equation and Patterson Function

In the expression for the scattering by an atom where there are n number of
electrons present as scatterer (the number n is equal to the atomic number
of the atom), we get in the amplitude term of the intensity scattered by the
atom a factor F as (Appendix A)

F (S) =
∑
n

exp(2πi/λ)(S′ − S0) · rn

=
∑
n

exp(2πi)S · rn, where (S′ − S0)/λ = S.
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Now, considering the charges of the electrons as scatterers are to be distributed
within a volume and having a charge density ρ(r), we get

F (S) =
∫

v

ρ(r) exp(2πi)S · r dv.

Now, F (S) is the Fourier transform of ρ(r), where

ρ(r) =
∫

v∗
F (S) exp(−2πi S · r)dv∗,

the integration is carried out over entire volume v∗ of the reciprocal space in
which r is defined.

This electron density is, however, in terms of F (S) which exists in recip-
rocal space and is a fraction of scattering from an electron considered as a
point. Now, for the entire crystal, F (S) has weight at these reciprocal points
as (1/V )Fhkl. Therefore, the equation for ρ(r) can be written as

ρ(r) =
1
v

∑
h

∑
k

∑
l

Fhkl exp
(
−

∑
2πi S · r

)
. (8.2)

Here, the summations for hkl are from −∞ to ∞.
In this equation, Fhkl is the crystal structure factor and ρ(r) is the electron

density expressed in electron per unit volume. The structure factor Fhkl is
given in terms of the fractional coordinates x, y, and z of the atoms in the
unit cell and diffraction vector S in terms of reciprocal vector as

r = xa + yb + zc

and
S = ha∗ + kb∗ + lc∗.

Replacing these values of r and S in (8.2), we get

ρ(xyz) =
1
V

∑
h

∑
k

∑
l

Fhkl cos{2π(hx + ky + lz)}. (8.3)

Here, again the summations over hkl are from −∞ to ∞.
It has been shown in earlier chapter that the distribution of values of |F |

or F 2 gives a measure of intensities and hence the Space Group as different
face-centering symmetries result into different distribution of F . Now, as Fhkl

is complex but the left-hand side of (8.3), i.e., ρ(xyz), is a real quantity, the
structure factor Fhkl is expressed separately as the summation of one real and
complex quantity

Fhkl = Ahkl + iBhkl,
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where

Ahkl =
N∑

j=1

fj cos{2π(hxj + kyj + lzj)}

and

Bhkl =
N∑

j=1

fj sin{2π(hxj + kyj + lzj)}.

And also the phase tanφhkl = Bhkl/Ahkl, and now as Fhkl = |Fhkl| exp(iφhkl),
we can write (8.3) as

ρ(xyz) =
1
V

∑
h

∑
k

∑
l

|Fhkl| cos{2π(hxj + kyj + lzj) − φhkl}. (8.4)

Now, the problem of determining the crystal structure can be realized. As the
structure amplitude |Fhkl| can be derived from the measurement of intensity
of X-ray reflection, the phase angle φhkl cannot be directly determined and
if these phases of the structure factor are known, then the crystal structure
is known as one can compute the electron density from (8.4) and hence the
positions of the atoms giving rise to the measured electron densities. There-
fore, the lack of knowledge of the phases of the structure factors prevents
from directly computing the electron density map and hence determines the
positions of the atoms. Patterson suggested as an aid the use of the following
equation instead of (8.4) [1, 6, 7]:

P (r) =
1
V

∑
h

|Fh|2 exp(−2πi h · r),

where r = xa + yb + zc and h = ha∗ + kb∗ + lc∗ but as |Fh|2 = |Fh̄|2.
We would get P (r) = (1/V )

∑
h |Fh|2 cos(2πi h · r) and so, the Patterson

function is real as expected. Now, as the transform of the product of two
functions is a convolution of their individual transforms and as the transform
of (1/V )Fh is ρ(r) and the transform of (1/V )Fh̄ is ρ(−r) = ψ(r), say then

∫
v

ρ(u)ψ(r − u)dv =
1

V 2

∑
h

Fh · Fh̄ exp(−2πi h · r)

and as Fh · Fh̄ = |Fh|2, we can write

1
V

∑
h

|Fh|2 exp(−2πi h · r) = V

∫
v

ρ(u)ψ(r − u)dv = P (r).

We know that ρ(−r) = ψ(r) and so, ψ(r − u) = ρ(u − r) and P (r) =
P (−r)V

∫
v
ρ(u)ρ(u − r)dv and as P (r) is centrosymmetrical, we get
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P (r) = P (−r)V =
∫

v
ρ(u)ρ(u + r)dv. The physical interpretation of Pat-

terson function may be looked as the superposition of two electron densities
of two unit cells whose origins are displaced origins are displaced by r [1].

Sometimes, the solution of structure can be made straightforward if the
structure contains a large number of light atoms and a few heavy atoms. The
method is then separately named as heavy atom method and the structure fac-
tor can then be divided into two parts: one due to heavy atom and the other
due to light atoms and then it can be written as [1, 6, 7]

Fh = Ch +
N−n∑
j=1

fj cos(2π h · rj) = Ch + Kh,

where the contribution due to heavy atoms is Ch and the total effect due to
light atoms is Kh. N is the total number of atoms in the unit cell and n is the
total number of heavy atoms. Sometimes, the contribution due to these heavy
atoms dominates to an extent, so that the most of the F ’s signs will be same
as Ch. This decision will be safe to take if the magnitude Cs are sufficiently
high and thus the phase problem can be tackled. It has been observed that
the best result is obtained if the average contribution of light atoms and that
due to heavy atoms are equal.

The details of the description of the entire range of methods are, however,
beyond the scope of this book. It is sufficient for the fulfillment of the aim and
ambition of this book if it is well realized that there exists a large collection of
formidable armory for the solution of structures even having a very complex
nature and only a bird’s eye view of some of them is given in this chapter. The
details of the processes involved can be found in many books and publications
by reputed crystallographers. A short but comprehensive list is given in the
chapter for further reading. Therefore, nature and also human synthesize ma-
terials and manufacture crystals of them have a three-dimensional pattern and
it is also possible to know and determine the symmetry of the entire arrange-
ment of the assembly of atoms in space at determined positions exhibit. It is,
therefore, a passage from the symmetry identification to the position deter-
minations of atoms in space and then confirmation of the symmetry that the
crystalline structures manifest.

8.3 Summary

A brief discussion along with mathematical basis underlying the different
methods applicable for the determination of spatial symmetry present in a
crystal, i.e., the Space Group is given. The details of these methods are avail-
able in a number of publications and a brief reference is given at the end of
the book suitable for Further Reading.
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The World of Symmetry

The sky above is adorned with sun and stars
the earth below by full of lives
and that I found for me a place on it,
flabbergasted is aroused, awakened my heart.

Rabindranath Tagore

The word “symmetry” constitutes its own world. A world that originates from
the natural objects, living or nonliving like from animal bodies or Maple leaves
to rock salt or diamond and extends through the man-made objects of great
engineering skills like thousands of historically important minarets, modern
bridges, sky scrappers, and then through arts like the symmetry in verses
and tunes and perhaps finally through science like atomic structure and the
characters of physical laws. That is why this world is symmetrically wonderful.
Further, as nothing is perfectly perfect, the symmetry what we see in this
universe is always associated with asymmetry. Amongst these two extremes
it will probably remain as an insolvable question, “which dominates what?”
Irrespective of this fact, it may be said that the beauty of the symmetry could
probably not realized if it was not intimately combined with asymmetry.

An attempt has been made so far in the earlier chapters to introduce this
symmetry present in crystals, which are three dimensional patterns, and the
processes and techniques that are followed to know and find this symmetry.
Now perhaps it is high time to make an attempt to visualize the symmetry
present in nature. Some most common examples are cited only with the in-
tention to get the readers induced if not fully but at least partially so that
they would be tempted to peep through the window and have a glimpse of
this world of symmetry that lies around us. Now, questions may arise in our
mind that what is the domain of this world symmetry? What are its upper
and lower limits? If the upper limit is taken as the galaxy our solar system
belongs, the lower limit may be taken as the structure of DNA or even lower
(Figs. 9.1and 9.2).
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Fig. 9.1. The Galaxy, the upper limit? Our own galaxy consists of about 200 billion
stars, with our own Sun being a fairly typical specimen. It is a fairly large spiral
galaxy and it has three main components: a disk, in which the solar system resides,
a central bulge at the core, and an all encompassing halo. The interesting fact that
can be observed is its spiral structure

Let us start with the helical spiral symmetry that our Galaxy exhibits in
the “Domain of Symmetry.” It is interesting to note that both these structures,
that is, the Galaxy and DNA show the helical structures. Now within these
limits let us examine the symmetry present and we first start with the sym-
metry present in living bodies.

9.1 Symmetry in Living Bodies

A mirror plane of symmetry actually exists through a vertical plane through
any human or animal body (Fig. 9.3) as the right side of the body appear
to be just mirror reflection of the left side. A more beautiful and interesting
example may be cited as that of the Maple leave or more appropriately the
butterfly and snail (Figs. 9.4–9.6). A more complicated symmetry, that is,
rotation symmetry is very interestingly manifested in the pattern exhibited
by flowers and is given in Fig. 9.7.

Therefore, the symmetry is not only present in the total body of the liv-
ing objects it goes down even to the molecular level. The living bodies’ cells
contain chromosome, which carries and preserves the characteristics of the
species and also the hereditary information. The chromosomes are consisted
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Fig. 9.2. DNA double helix structure: Two right handed screw axes, The lower
limit? DNA is made up of subunits, which scientists called nucleotides. Each nu-
cleotide is made up of a sugar, a phosphate, and a base. There are four different
bases in a DNA molecule. So, the symmetrical structure of helix exists in the very
root of living matter

of proteins and DNA. The genetic as well as the hereditary information are
contained in DNA. The structure of this DNA was discovered in the year
1951 by James Watson and Francis Crick based on the X-ray diffraction data
obtained by Rosalind Franklin and Maurice Wilkins. The structure of DNA
is commonly known as double helix. It is two right-handed screw axis of sym-
metry about one single axis and structure looks like one twisted ladder. The
structure of DNA through its discovery has opened up a fascinating field of
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Fig. 9.3. A human figure having a mirror plane of symmetry bisecting vertically
the figure

Fig. 9.4. Mirror plane through leaves, that is, Maple leave (yellow color) and other
leaves and also flowers

Genetic Science and is a certification of the fact the world has symmetry
down to the molecule. The work of Watson, Crick, and Wilkins was duly
acknowledged through the award of the Nobel Prize in Medicine, and their
work was published as “Molecular Structure of Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid” in the British journal Nature (April 25, 1953).
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Fig. 9.5. A beautiful butterfly, showing a mirror plane of symmetry passing centrally

Fig. 9.6. The logarithmic spiral on snail shell, showing beautiful symmetrical cre-
ation of nature under sea. Will that be a too far extrapolation if this spiral nature
is compared with that which exists in our Galaxy?

9.2 Symmetry in Patterns, Snow Flakes, and Gems

Man made patterns to paint the walls and floors and even clothes are examples
of symmetry of various kinds:

Some “patterns” which apparently look like a pattern but bear no geo-
metric symmetry, yet their looks are pleasant (Figs. 9.8–9.10). Sometimes an
asymmetry can also be as beautiful as that one having the conventional sym-
metry.

While introducing “Crystal,” it has been stated earlier that the word has
been derived from Greek word meaning ice or frozen water.

In fact a snow flake is a tiny crystal of frozen water and is of various
beautiful shapes each having sixfold of rotation symmetry and also a mirror
plane of symmetry.

Figure 9.11 gives some examples of snow flake crystals and some gems used
in ornaments.
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Fig. 9.7. Fivefold of symmetry in flowers. It has been stated and explained earlier
that fivefold of symmetry is absent in crystalline materials. It is partially true but
it is not true for natural objects like wild flowers; “Hyericum” shows fivefold of
symmetry ((a) and (b)) with or without a mirror plane of symmetry across them

(a) (b)

Fig. 9.8. Egyptian pattern. (a) There are two mutually perpendicular mirror planes
but in Fig. 9.7b, in addition of the same mirror plane, a higher symmetry, that is,
fourfold rotation symmetry plus inversion 4̄ exists perpendicular to the plane of
the figure. It should be noted that simply by changing the color of the pattern the
symmetry changes or is modified
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Fig. 9.9. Kaleidoscope pattern. Each motif having threefold of rotation symmetry

Fig. 9.10. Floor mosaic tiles: No symmetry but is beautiful

9.3 Symmetry in Architecture

In the man-made architectural marvels scattered all over the world, the sense
and the knowledge of symmetry that the man acquired has been manifested.
To mention and explain a few of them, which have been spread over the
span of centuries of the development of human civilization, the Tajmahal
of Agra, the pyramids of Egypt, the Eiffel Tower of Paris bear marvelous
symmetric structures (Figs. 9.12–9.14). The Cathedral of St. Basil in Moscow
is an architectural beauty, which though deviates from geometrical symmetry,
yet is an example of asymmetry in symmetry in architecture (Fig. 9.15).

9.4 Symmetry in Fundamental Particles

We have so far seen some natural examples of the presence of symmetry,
for example, mirror plane of symmetry in animal bodies, rotation and roto-
inversions in precious stones, flowers, and leaves, and now it would be inter-
esting to note that the mirror plane of symmetry is also present in the world
of fundamental particles. We know that the atoms are made of positively
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(a)

(b) (c)

(d)

Fig. 9.11. (a) The beautiful six fold structural pattern of snow flakes. (b) Diamond
used in ornaments. (c) Ceylon Hessoni. (d) The famous diamond Kohinoor

charged protons and neutral neutrons in the nucleus, the center of atoms, and
the negatively charged electrons, which revolve around this center in different
orbits. In addition to the interesting fact of finding a symmetry, that is, in-
variance between this model of atoms and the our solar system having sun at
the center and the different planets orbiting round it in different orbits, there
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Fig. 9.12. The marvel of one of the man-made symmetries: one of the wonders of
the world, the Tajmahal, the tomb of Mughal Emperor Shahjahan and his queen
Mumtaz Begum in Agra (built in 1631–1648). The famous architecture has a perfect
fourfold of symmetry about the axis vertical through the center of the center dome

Fig. 9.13. The Great Sphinx of Giza with Khafre’s pyramid in the background built
in the year 2500 BC or perhaps earlier is the symbol of ancient Egyptian culture
and an exquisite structure bearing perfect geometrical symmetry

is the existence of some strange particles like antiprotons having mass equal
to that of normal protons but having negative charge instead of positive as for
protons. The existence of positively charged “electrons” known as positrons
has been found, and therefore, the existence of an anti-atom having negatively
charged nucleus constituted by antiprotons and positrons in different orbits
around this nucleus can not be ruled out. The following list gives some of the
particles and their antiparticles. The existence of a mirror plane of symmetry
can therefore be imagined between them.
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Fig. 9.14. The great Eiffel Tower, Paris (1889), was designed by the famous French
engineer Alexandre Gustave Eiffel. Built with 7,000 tons of wrought iron to make
the perfect geometrical structure having total height of 320 meters

Objects Reflected Image
↓

Mass
(Electron
Units)

Fundamental Particles Anti Particles

0 Neutrino ν Anti Neutrino ν
1 Electron e− Positron e+

207 Mu Mesons µ− Mu Meson µ+

270 Pi Meson π− Pi Meson π+

1837 Neutron n Proton p+ Anti Proton p− Anti Neutron n
↑

Mirror Plane

The galaxy constituted by these anti-atoms may exist though the physical
verification of their existence may be ruled out as any space ship made from
the matter available in our earth will cease to exist as soon as it meets any
antimatter of that imaginary antigalaxy. Moreover, it has been theoretically
predicted that in our galaxy the existing matter out number the antimatter
and that is the reason for the existence of our galaxy and may also be said
that the asymmetry exists along with symmetry.
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Fig. 9.15. The Cathedral of St. Basilius, Moscow (1551–1561). The architecture by
Barma and Postnik and was built by Ivan the Terrible. Architecturally it is a highly
successful solution of the problem of symmetry–asymmetry and an elegant exhibition
of the artistic solution. It stands as a symbol of esthetic taste and understanding
the beauty of the builder

9.5 Symmetry (Invariance) of Physical Laws

The concept of symmetry is not only confined to the symmetry of objects,
may it be geometrical patterns or the living or nonliving objects. It is also
extended to the physical laws that govern this universe. The German mathe-
matician Hermann Weyl defined symmetry of natural objects as that if some-
thing (operation) is done on it, there would be no change on the appearance
of the object compared to that before the operation. This is the sense as was
narrated by Feynman that the laws of physics are symmetrical. There can be
plenty of things that we can do while representing the laws, but this makes no
difference and leaves no change in its effect. The symmetry of physical laws
resides in their unchangeability or invariance in one or another of transforma-
tion, which is related to the change of conditions under which the phenomenon
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is observed and the law is framed. The invariance, that is, symmetry of the
laws of physics under transition from one inertial frame to another inertial ref-
erence frame is an example of the symmetry of the physical laws. Any process
in nature occurs in the same manner in any reference frame, that is, in all
inertial frames a law has the same form. Let us consider for an example the
relativity principle [1, 2]

x

z

y

z �

y �

x �

V

Let x, y, and z be a stationery frame of reference and x′, y′, and z′

be another frame of reference moving with respect to x, y, and z, with a
velocity V . Now let an event occur at a time t at a point x, y, z point in the
frame x, y, and z. The same event occurs in x′, y′, and z′ at the point x′ y′ z′

at a time t′, then the space and time coordinates of the event in frames xyz
and x′ y′z′ are related by

x′ =
x − V t√
1 − V 2/c2

,

y′ = y,

z′ = z and t′ =
t − V x/c2√
1 − V 2/c2

.

This relationship, that is, x′ in terms of x are called Lorentz transfor-
mations and the symmetry of physical laws with respect to changes from one
inertial frame to another are mathematically expressed in this transformation.
When the relation is reversed the x in terms of x′, y′, and z′ in terms of y′

and z′ and t in terms of t′ will be given as

x =
x′ + V t′√
1 − V 2/c2

,

y = y′,

z = z′ and t =
t′ + V x′/c2√

1 − V 2/c2
.
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The invariance of the velocity of light c in both of the frames can be
shown as:

x′

t′
=

x − vt

t − vx
c2

=
x/t − v

1 − vx
c2t

=
c − v

1 − v/c
= c.

Therefore, if there are two frames of reference moving with respect to each
other with constant velocity, then the basic property and value of the phys-
ical parameters do not change as for the velocity of light. Now, this Lorentz
transformation is simplified in to Galilean transformation when v � c as

x′ = x − vt ; y′ = y; z′ = z, and t′ = t.

So, the laws of physics are symmetrical and invariant when there is uniform
motion.

Now for another example, the vector operations, say product of vectors,
the replacement of the word “right” by “left,” for example, “right hand rule
by left hand rule does not make any difference in physical laws.

Let us consider F = r × p, where F is the torque, r is the distance of the
mass from the axis, and p is its momentum. From right hand rule of the vector
product we get the direction of the product as per the following diagram.

p

r 

F= rxp

Right hand rule Mirror Plane Left hand rule 

F � =pxr

r

p

In the first figure consider a right-handed screw rotated from r to p, the
movement defines the direction of torque, which is down wards. In the second
figure imagine a left-handed screw rotating from p to r, and the direction of
torque is invariant as in this unconventional left hand screw the thread is in
opposite direction.

The right side of the figure is the mirror reflection of the left side. The
directions of r and that of p are reversed and now if the right hand rule, which
is applied to the left side diagram, is also reversed due to mirror reflection
to left hand rule then the direction of torque remains same, which may be
thought of as the symmetry or invariance of the physical laws. This may
also be seen that if the right hand rule is kept unchanged for the right side
diagram, then the direction of the torque will be reversed. The invariance of
time was explained by Feynman with an imaginary experiment. If we have two
clocks one of which is the exact mirror reflection of the other including the
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winding of the spring and the motions of the arms, that is, when the arms of
the original one move in the “clock wise direction” the other one which is the
mirror reflection of the original will have its arms moving in “anti clock wise”
direction. Even in this situation it can be easily predicted that both the clocks
will “tick” after the same interval and the time in the mirror image clock will
not move in the reverse direction. Therefore, the time is invariant even under
mirror plane symmetry operation and so there cannot be any “reversibility”
of time [1].

Though most of the physical laws bear symmetry, that is, invariance, but
it is not always true. The invariance of space can be realized in two frames
moving only with uniform motion with respect to each other. But if one of
them is moving with acceleration, then an additional force called pseudo force
will be acting on the body lying in the accelerating frame of reference, which
is now called noninertial frame of reference. Same is the case when we consider
two phenomena occurring in two frames when one of which is rotating with
respect to the other. The apparatus that measures these phenomena will result
differently in the two frames because the apparatus in the rotating one (even
with constant angular motion) will experience an additional force known as
centrifugal force.

Therefore, there is always some asymmetry in the world of symmetry. Some
of the things are not perfectly symmetrical and even if they are symmetrical
there is always some gradation of the order of symmetry, that is, from no
symmetry to perfect symmetry through the zone of partial symmetry. Some-
times the lack of perfect symmetry at least in some cases is an advantage as
because materials having partial symmetry may exhibit some property fea-
tures, which are special for this state of existence and which the perfectly
symmetrical material or phenomena fail to deliver.

The exhibitions of some properties from such partial symmetric or asym-
metric materials are described and discussed in the following chapters.

Note: At the end of this chapter a question may linger in the minds of the
readers that what precedes what? Is it symmetry that is conceived first and
then the objects are tailor made either by man or nature to fit the planned
symmetry or is it we who get amazed after finding the symmetry already
present in those objects? There lies the controversy. There is probably no
specific answer to this question. It is of course more likely that we learned
the symmetry present in the nature and tried successfully to emulate them in
structures like minarets, sky scrappers, bridges, and planning of cities.

9.6 Summary

1. The symmetrical or the geometrical periodic structures present in living or
nonliving bodies are discussed with a few examples.
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2. The symmetries in structures are known as in variances in physical laws.
It has been established that the physical laws are independent of space
and time.

3. It has been also emphasized that the fundamental particles found in this
universe may also have their mirror symmetry.

References

1. R.P. Feynman, Lectures on Physics, vol 1 (Addison Wesley, New York, 1963)
2. L. Tarasov, This Amazingly Symmetrical World (Mir Publications, Moscow,

1986)



10

Asymmetry in Otherwise Symmetrical Matter

We have so far discussed the symmetry present in patterns, crystals, and
the physical laws. If symmetry is understood as something that limits the
number of possible forms of matter and there can be no existence beyond that
boundary defined by this symmetrical world, then it can be found that it is
not totally correct. Actually, there is almost no existence of a matter in perfect
symmetrical state, and as a consequence, the symmetry must be treated as
no more than ideal norm from which there is always deviation in reality. If
this deviation is called asymmetry, then the problem of symmetry–asymmetry
must be understood more closely and intimately. Symmetry and asymmetry
are two closely related phenomena that exist in nature, in substances, and even
in physical laws, and in fact they are so closely interlinked that they must be
viewed as two aspects of the same concept. If beautiful gems and crystals
found in nature are the representation of symmetrical world, water in its bulk
structural form shows total asymmetrical arrangement of its molecules.

Therefore, when the aim of the book is to discuss the patterns, crystals,
and the symmetry that is manifested by them, it is also necessary to discuss
the deviations from symmetry, that is, asymmetry to make it complete or
more comprehensive.

10.1 Single Crystals, Poly Crystals,
and Asymmetry–Symmetry

The symmetry so far discussed in the earlier chapters consists of several “oper-
ations,” which when done on the object, the object comes to a stage of self
coincidence and there is no difference between the stages before and after the
said operations are done. This is due to invariance of these two positions or
stages. Now all these symmetries can be regrouped in two broad categories,
that is, (1) local order or symmetry and (2) long range order or symmetry
depending on the extent of their validity (Fig. 10.1).
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(a) (b)

Fig. 10.1. (a) A single crystal having parallel orientation of planes. The alignments
of any h1 k1 l1 planes are shown and they are exactly parallel to each other. Both the
local and long range orders are valid all through the bulk. (b) A polycrystal having
random orientation of the same h1 k1 l1 crystal plane. The boundary (bold lines)
divides the bulk into several regions, separate the regions having same orientation
of the plane, and known as Grains. The long range order is assumed to be valid
as the disorientation between the planes in the neighboring grains is small but the
local order is violated at the grain boundary

This violation of the symmetry on the grain boundary results in a differ-
ent crystal stage of matter known as polycrystalline state. There is marked
difference between the physical properties of these two different stages and
many of them, which are characteristic of the respective crystal stage, are im-
portant for enhancing the utility of the material. It may be emphasized that
the difference between the single crystal and polycrystal state of matter is the
randomness of the orientation of any particular plane throughout the bulk.
Now this randomness of the orientation will increase if the grain sizes become
finer, and this will lead to more asymmetry in one hand and more homo-
geneity of the physical properties of the material on the other. But there lies
enough space in “No man’s Land” between these two states of matter. During
grain growth state of the heat treatment, the randomness of the orientation of
any particular crystal plane will decrease. This is more conveniently achieved
by some mechanical processes of deformation. Now, this decrease in the or-
der of randomness of the arrangement of crystallographic planes results in a
shift from random orientation to orientation in some preferred direction of the
plane. As a result, the homogeneity of physical properties is hampered, giving
rise to some heterogeneity in one hand and introduction of some symmetry in
otherwise asymmetric stage of matter. This is some times a boon while fab-
ricating some mechanical structure or materials. This phenomena popularly
known as “texture” is, however, beyond the scope of discussion of this book
and it will suffice if it is mentioned here that this state of material is also a
symmetry in the world of asymmetry.
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If we summarize the differences between single and polycrystalline states
of matter, this may be done as follows:

Property Single crystalline stage Polycrystalline stage

Symmetry Perfect symmetry in ideal
crystals

The symmetry is maintained
within the region known as
grain and remains “almost”
same but not exactly same
within other neighboring grains
belonging to same structure or
phase, but is totally different if
the grains are of different struc-
tures or phases

Order of
arrangement
of constituents

It remains same both lo-
cally and also throughout
the bulk

It changes at the boundary be-
tween two grains

Physical prop-
erties

As the physical properties
are direction dependent, a
single crystal shows total
heterogeneity

A polycrystal in this respect
shows homogeneous physical
properties

When close-packed structures mainly like FCC and HCP and also other
structures are deformed, first thing that happens is the fragmentation of the
grains called domains and polycrystalline materials, then shows more homo-
geneity, and the lattice is strained. This strained lattice contains higher energy
and resists more the deformation and thus inducts hardening. There appear
some drastic changes in their diffraction patterns. The stacking arrangement
of their close-packed planes also changes and this result in a defected region
compared to surrounding and is known as stacking fault. The number of planes
required to bring back the sequence into original are the number of faulted
planes. Less the number of faulted planes for a type of deformation process,
more is the energy required. Materials having more of this energy known as
stacking fault energy do not usually get “work hardened” (Fig. 10.2).

The displacement of 111 plane by the vector b = 1/2[1̄01̄] in one step,
that is, from one A site to next A site requires larger misfit energy and so
A → B → C → A is preferred by the two partials b1 and b2, satisfying the
relation b = b1 + b2, which is

a/2 [1̄01̄] = a/6 [2̄11] + a/6 [1̄1̄2].

The above situation may be visualized as follows:

A   B   C   A   B   C   A   B    C 
↓ ↓ ↓ ↓ ↓ ↓

A   B   C   B   C   A   B   C    A
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b

Fig. 10.2. Stacking sequence of close-packed plane {111}. The slip occurs in <110>
directions, which involves the sliding of one plane over other. A to B to C by the
burger vector b = 1/2[1̄01̄]. Open circles, A Site; light-shaded circles, B Site; dark-
shaded circles, C Site

↔ Faulted zone having h c p stacking sequence B C B C. type.
Now this faulted region having different stacking sequence does not com-

mensurate with the perfect stacked regions on both sides. This may be seen
as an asymmetry introduced in the symmetrical structure.

Introduction of symmetry in otherwise asymmetrical structure is also
found in “super lattices” discovered in 1923 in AuCu3 alloys and found later
to exist in a number of alloys below a temperature known as critical temper-
ature and they are PtCu3, FeNi3, MnNi3, and (MnFe) Ni3 alloys. Ordinarily
an alloy of say A and B elements exists in solid solutions wherein the atoms of
A and B are arranged randomly in the interstitials. This is the state of affairs
in the alloys other than those mentioned above. In these alloys, the random
structures are available at an elevated temperature, and when they are cooled
down below a particular temperature called critical temperature, an ordered
state happens wherein a particular set of lattice sites are occupied periodically
by say A atoms and the other particular sites by B atoms. The solution is
then said to be ordered and the lattice thus constituted is known by super
lattice. This is a sort of disorder–order transformation and is manifested by an
extra reflection in X-ray diffraction pattern. This is an important phenomena
not only because of the fact that this ordered state exhibits different physical
and chemical properties, but it is also an example of asymmetry to symmetry
transformation. The long range order that exist in the super lattice of AuCu3

alloys can be explained as follows:
In AuCu3 alloys, the occupancy probability for a particular lattice site say

by Au atoms is 1/4, then for Cu atoms it will be 3/4 because of the composition,
and the unit cell for the disordered and ordered structures will look as given
in Fig. 10.3.

The view from any side surface of the lattice will demonstrate the super
lattice more explicitly.
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Disordered Structure
above  tc

Ordered Structure
below tc

Fig. 10.3. Atomic sites having random occupancy by either Au or Cu atoms in
disordered structures. Filled circle, atomic sites occupied by Cu atoms; open circle,
atomic sites occupied by Au atoms

 Au  Cu 

Disordered and Ordered States
of Au Cu3 alloy.

It can be seen from the above figures that in perfectly ordered state the
gold atoms occupy the corner positions and the copper atoms the face-centered
positions, whereas in the disordered state there is no such regularity and
positions in the unit cell are randomly occupied. As both individual structures
are cubic and have almost same lattice parameters, there is only a very slight
change in lattice parameter in the ordered state and so there is practically
no change in the positions of the X diffraction lines. But the change in the
positions of the atoms cause change in the diffracted intensities. Let us see
how it changes.

In the disordered state the structure factor F can be calculated as follows:

fav. = (atomic fraction of Au) fAu+ (atomic fraction of Cu) fCu,
fav. = 1/4fAu + 3/3fCu.

The positions of the atoms in the unit cell are 000, 1/21/20, 1/201/2, and
01/21/2.

The structure factor F =
∑
n

fne2πi(hxn + kyn + lzn) as there are four

atoms in unit cell (n = 4).

F = fav

[
1 + eπi(h+k) + eπi(h+1) + eπi(k+1)

]

For hkl unmixed, F = 4fav. = (fAu + 3fCu) and for hkl mixed F = 0.
Therefore, the disordered alloy produces the diffraction pattern similar to

face-centered cubic structure.
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In the ordered state, each unit cell now should contain one Au atom at
000 position and Cu atoms at 1/21/20, 1/201/2, and 01/21/2, and the structure
factor then stands out as

F = fAu + fCu

[
eπi(h+k) + eπi(h+1) + eπi(k+1)

]
.

F = (fAu + 3fCu) when hkl are unmixed, but when hkl are mixed then F
instead of being zero it is F = (fAu −fCu). Therefore, so far as the diffraction
lines are concerned, there exists one extra line for the reflection hkl mixed (odd
and even) only when the structure is perfectly ordered, otherwise it remains as
zero. This extra line is the manifestation of ordered structure and is known as
“super lattice line” even though they are weaker than fundamental lines.

So, super lattice is a transformation of one “disordered” or asymmetric
state to one ordered or symmetric state of this alloy and the order–disorder
transformation around a temperature establish that the symmetry and asym-
metry may be viewed as the two sides of the same coin.

10.2 A Symmetry in Asymmetry I: Quasi Crystalline
State of Matter

It has been discussed in earlier Chapters (Chaps. 3–5) that a perfect crystalline
structure should possess a long range order comprising both translational
and rotational symmetries, which should be maintained in three dimensions.
However, crystalline order can also be maintained in some ways other than
translational symmetry and they are called “aperiodic crystals.” Now, three
alternatives to translational symmetry are known: incommensurately modu-
lated crystals, incommensurate composite crystals, and quasi crystals. The
modulated structures are obtained from the structures having translational
symmetry by giving displacements of the atoms in the periodic structure by
equal amounts. Incommensurate composite structures are formed in layered
compounds by two interpenetrating periodic structures which are mutually
incommensurate. The discovery of quasi crystals has added up one more di-
mension to crystallography. Influenced by the discovery of a number of quasi
crystals or quasi periodic crystals, International Union of Crystallography has
redefined the term crystals to mean “any solid having an essentially discrete
diffraction diagram.” This broader definition leads to the understanding that
microscopic periodicity are sufficient but not necessarily the only condition
for crystallinity. A distinct property of quasi crystals that has been found
from the diffraction pattern is that it shows fivefold rotation and also other
crystallographic point symmetries.

We have seen in Chap. 3 (Fig. 10.3) that there cannot be any crystalline
substance with fivefold of symmetry as the motifs having that symmetry can-
not make any compact structure, and same is true for sevenfold, eightfold,
or tenfold rotation symmetries. It was accepted in classical crystallography
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that these symmetries are not possible to preserve both translational and
rotational symmetries in the long range in stable and metastable states of
crystalline solids till the year 1984 [1]. However, quasi crystals as mentioned
above lack translational symmetry but rotational symmetries are allowed ac-
cording to any point group in three-dimensional space. The important logic
behind this classical idea was that no compact structure can be formed having
fivefold symmetry, but the building principle to form a compact structure can
be revised if the motifs are not exactly similar and tilling can be made without
overlapping or leaving any gap. This tiling will definitely be aperiodic as they
lack translational symmetry and can be taken as a model of quasi crystals.
An aperiodic tiling of the plane can be formed with two different proto tiles.
In the simplest form, the proto tiles are rhombuses with equal edges but of
different angles between the edges. The skinny one has angle 36◦ and the fat
one has angle 72◦, that is, a multiple of (360/10)◦.

Now, not following this matching rule for joining the proto tiles, an infinite
number of tilings can be formed, which can be either periodic or aperiodic.
One periodic tiling is given above. When this matching rule is followed, the
Penrose tiling can be obtained [2].

British mathematician of Oxford, Roger Penrose, devised a pattern in a
nonperiodic fashion using two different types of tiles (Fig. 10.4b). The motif
of this Penrose tiles is rhombi, which may be arranged in a plane or in three
dimension (rhombohedra) so that they obey certain matching rules other than
those symmetries discussed before and yet these constitute patterns. Such 2D
or 3D tilling have several important properties and among them the most im-
portant is that they possess self similarity, which means that any part of the
tiling repeats again within a predictable area or volume. This Penrose tiling
shows crystalline properties in a number of ways. The edges occur in five
different orientations only and thus represent fivefold rotation symmetry. In
1984, when Shechtman et al. [3] published in their paper the electron diffrac-
tion pattern of Al-Mn alloy, the diffraction pattern showed tenfold symmetry
and that was the first experimental evidence of the presence of symmetry
hitherto unpredictable in crystalline matter and it was the evidence of the
existence of a new crystalline state knownas quasi crystal. If closely observed
there lays a similarity between 3D Penrose pattern and icosahedral quasi crys-
tals. Atomic structures of quasi crystals can be constructed by placing atoms
in the Penrose tiling having same atoms at all the vertices and also the simi-
lar edges. A three-dimensional structure can then be constructed by stacking
the Penrose tilings. This leads to a crystal, which is quasi periodic in two
dimension but periodic in third direction. Figure 10.4c, which is the electron
diffraction micrograph of rapidly solidified Al-Fe-Cu alloy system distinctly,
shows the presence of fivefold of rotation symmetry.

A Fourier transform explains very well the diffraction patterns obtained
from Al-Mn quasi crystal. The symmetry that determines the type of quasi
crystal is found in its electron diffraction patterns. Figures 10.5–10.7 given
below show the diffraction pattern and the simulation of diffraction patterns,
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(a)

(b)

(c)

Fig. 10.4. (a) Flat and skinny rhombuses at the left used for making the tiling
shown at the right. The sides marked similarly are to be joined to construct the
tiling to maintain the matching rule. (b) A 2D Penrose tile pattern. A rhombus,
that is, motif is arranged in a plane having different modes of arrangements bearing
fivefold rotation symmetry and this is repeated in the pattern so that they obey a
matching rule. When two of such layers each bearing fivefold symmetry and lying
in two planes and rotated by 18◦ with respect to each other so as to constitute a
3D pattern, the projection along the rotation axis results in a tenfold of symmetry.
(c) The electron diffraction micrograph of rapidly solidified Al-Fe-Cu system. The
fivefold of rotation symmetry is shown. (By the courtesy of K. Chattopadhyay,
unpublished work)
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Fig. 10.5. The Diffraction pattern of an icosahedra quasi crystal

Fig. 10.6. (Left) Simulation having eightfold rotation symmetry showing similarity
in octagonal quasi crystals

which like others represent the eightfold and tenfold rotation symmetry
observed in the electron diffraction or the zero layer precession X-ray
photographs.

Since 1984, many stable and also metastable quasi crystals have been
found, and these are often binary or ternary intermetallic alloys with aluminum
as one of the primary component. Some of these stable quasi crystals with
aluminum as a major component are
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Fig. 10.7. (Right) Simulation showing tenfold symmetry decagonal quasi crystals

Al-Ni-Co
Al-Cu-Co
Al-Cu-Co-Si
Al-Mn-Pd

⎫⎪⎪⎬
⎪⎪⎭

Decagonal Quasi Crystals

Al-Li-Cu
Al-Pd-Mn

}
Icosahedral Quasi Crystals

In addition to these stable state quasi crystals, there are much more binary
and ternary alloys that form metastable quasi crystalline states.

These quasi crystals are materials with perfect long range order but with
no three-dimensional translational periodicity. The first property is manifested
by the symmetric diffraction spots and the second property is manifested by
the presence of noncrystallographic rotation symmetry, that is, either fivefold
or 8-, 10-, or 12-fold rotation symmetry. Since quasi crystals do not show the
translational periodicity at least in one dimension, it is mathematically more
difficult to interpret its diffraction pattern. As for normal classical crystals,
we require three integer values known as Miller indices (hkl), to label the
observed reflections, because of it having three-dimensional periodicity, for
quasi crystals we require at least five linearly independent indices for polygonal
quasi crystals and six indices for icosahedral quasi crystals, giving rise to
generalized Miller indices. It can then be said that while in three-dimensional
space quasi crystals fail to show the required periodicity, in higher dimensional
space they exhibit periodicity.

The growth morphology of the stable decagonal quasi crystals Al-Ni-Co
or Al-Mn-Pd shows that they grow as decaprismaic (ten prism faces with the
tenfold axis as rotation axis). Al-Cu-Fe quasi crystals, which are icosahedral
quasi crystals, grow with triacontahedral shape, which exhibit 30 rhombic
faces perpendicular to the twofold rotation axes. Though the interpretation
of the patterns involves more mathematical complexicity, the experimental



10.3 A Symmetry in Asymmetry II: Liquid Crystalline Phase 111

techniques involved HRTEM (The high resolution transmission electron mi-
croscopy) and maximum entropy method (MEM) for the interpretation [4].

Conclusion: A crystalline material should then not be regarded as those ma-
terials which only preserve the ten number of macroscopic symmetry in three-
dimensional space, but it would be more appropriate to redefine the crystalline
materials as those that show a regular diffraction spot and having, in addi-
tion to the classically existing ones, also 5, 6, 8, 10 or 12 rotation axes of
symmetries.

10.3 A Symmetry in Asymmetry II: Liquid Crystalline
Phase

Now, if the long range order (symmetry) is looked in a different way, it can be
classified into two categories: (1) positional order and (2) orientation order.
This classification is, however, is relevant when the molecules of the “crys-
talline” matter, the motif of the crystal pattern, are asymmetric in its struc-
ture, which is the case in most of the organic and also in some inorganic
matter. It is obvious to visualize that if both the categories mentioned above
are not valid, then the material cannot posses any crystallinity that is sym-
metry and it is then called an isotropic liquid stage. But the stage of matter
that shows the orientation symmetry but no positional symmetry was dis-
covered in the year 1888 by an Austrian botanist F. Reinitzer while heating
a solid compound crystal known as Cholesteryl benzoate. He observed that
first the material melt into hazy dense liquid and then on further heating it
transformed into a clear liquid. This hazy liquid stage is the new phase of
matter and henceforth known as liquid crystal.

Such materials in order to lose the positional symmetry must be liquid
having mobility, but its molecules being asymmetric and having the cylindri-
cal shape and being aligned more or less in one particular direction and even
being mobile are named as “liquid crystal”. Two conventionally diametrically
opposite properties are found mingled in this state of matter. It is often called
a delicate state of matter. At room temperature if such matter shows liquid
crystal characteristic, then upon heating to a high temperature it loses the
orientation symmetry and is transformed into an isotropic liquid. If the mole-
cules of this matter are having asymmetric cylindrical shape designated as
then in the bulk stage, the three closely comparable stages may be explained
by Fig. 10.8a–c.

Therefore, an analogy can be drawn between polycrystals and the liq-
uid crystal. It is being an intermediate state between isotropic liquid and an
anisotropic crystal because of having orientation symmetry, while sacrificing
totally, the positional symmetry as that of a liquid shows some directionality
of the physical properties, more importantly the optical properties. This will
be discussed in brief in the later section. Now, it may be mentioned at this
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(a)
(b)

Fig10.2

(c)

Fig. 10.8. (a) A perfect crystalline state of matter. Molecules preserve both posi-
tional and orientation order. (b) An intermediate state of matter. Molecules preserve
orientation order but no positional order, and the matters preserve fluidity. A state
of “anisotropic liquid.” (c) A totally disordered state of matter, for example, an
isotropic liquid. The molecules preserve neither orientation nor positional order

stage that there exists another type of ordering present in materials where the
positional order is maintained but not orientation order. That is the state of
“Plastic” crystal. Figure 10.9 again classifies these states.

Liquid crystals are of two types:

1. Thermotropic liquid crystals. Where the mesomorphic phase change de-
pends on temperature

2. Lyotropic liquid crystals. Where such phase change depends on the solvent
concentration

Thermotropic liquid crystals are classified into the following:

1. Nematic
2. Cholesteric
3. Smectic

Nematic liquid crystals have anisotropic molecules, and they are arranged in
space in more or less in one direction called director, but there is no regularity
in their positions like liquids. They are only more viscous than ordinary liquids
and like liquids they do not possess definite shape. It is the most type of liquid
crystal phase [5, 6].
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ISOTROPIC LIQUID PERFECT CRYSTAL

LIQUID CRYSTALLINE STAGE

Cylindrical
molecule

Fig. 10.9. The states of isotropic liquids having random arrangement of cylin-
drical molecules in space, the ordered arrangement (positional and rotational) of
the molecules in perfect crystalline stage, and an intermediate stage, that is, liquid
crystalline stage

Cholesteric liquid crystals are also nematic, only difference is that their
different layers of molecules have helical orientations. The pitch is dependent
on temperature. It may also be called as chiral nematic. The nematic liquid
crystals may also be made up of “Disc”-shaped molecules instead of cylindrical
rod-shaped molecules.

The smectic liquid crystals are of different types, that is, having different
arrangement of the anisotropic molecules. Smectic A, Smectic B, Smectic C,
and Smectic D (Fig. 10.10). Smectic A is simply a layered structure; there is
no order of positional arrangement of molecules in a perpendicular layer. The
inter layer attraction is less than intra layer attraction between molecules.

Smectic A type commonly known as simple smectic has nematic structure
but having the molecules arranged in layers, and there exists no order of
their arrangement in any layer. Smectic B, however, in addition to having
the structure as that of Smectic A, the molecules in any layer are arranged
bearing sixfold rotation of symmetry. Smectic C has molecules in each layer
tilted in more or less in one direction.

The lyotropic liquid crystals exist in the cells of living organism and may
be responsible for the proper functioning of the cells, though the discussion
on this type of liquid crystal is well beyond the scope of this book, but it
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SMECTIC CHOLESTERIC DISCOTIC

SMECTIC B SMECTIC C

Fig. 10.10. Smectic B and smectic C liquid crystals

may be mentioned here that the structural configuration of these lyotropic
liquid crystals present in cells is the essence of life and may be related to
the “ordered” state of living matter; any disorder or deviation caused in this
constituent may be the reasons behind many diseases [5–8].

The liquid crystal, a delicate state of matter, has enormous applications in
display devices. The molecules being mesomorphic in structure and because of
the bulk having orientation order, the liquid crystal exhibits optical activity
and Birefringence.

10.3.1 Optical Study of Liquid Crystals

The main study of optical properties of liquid crystalline materials is by using
a “polarizing light microscope” and it is the first and important property that
received attentions (Fig. 10.11).

Birefringence: The difference of velocity of light for different colors and as a
consequence different refractive indices is known as dispersion. Because of this
the VIBGYOR spectra is exposed whenever white light passes through any re-
fracting medium. Now, the difference in light velocity and the refractive index
due to different planes of polarization is known as Birefringence. It is a typ-
ical optical property of almost all crystalline substances, which are basically
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Fig. 10.11. Polarizing optical microscope. (Right) The microscope. (Left) The path
of incident source light through polarizer, birefringent sample (liquid crystals), and
analyzer

anisotropic. The anisotropic materials show more than one refractive indices.
Light on incidence is split up into two beams; one whose plane of polariza-
tion is parallel to the crystallographic axis, that is, optical axis and the other
whose polarization plane is perpendicular to the optic axis. These two beams
have different velocities of travel through the material and thus have two re-
fractive indices and thus have a resultant phase difference when they go out
of the material. When they meet while passing through analyzer, they create
an interference pattern depending on the orientation of the molecules of the
material. The left side of the above figure shows such effect and the right side
shows the polarizing microscope for analyzing this Birefringence in optically
active crystals, including liquid crystals. The following figures demonstrate
these phenomena in liquid crystal. In a polarizing light microscope, as shown
above, the polarizer is set at some angular position and then the analyzer
above the specimen stage is rotated until the field of view becomes totally
dark, that is, no light can come to the eyepiece. This is known as crossed
Nicol position. If an isotropic medium is placed between them on the speci-
men stage (like glass), the situation does not change. When a liquid crystal,
which is Birefringent, is placed on the specimen stage, the situation changes.

Though the details of its various applications are available in some books
devoted on liquid crystals and their applications, it may be interesting to
introduce the basis of its application in devices that is based on its anisotropic
optical property, particularly under electric or magnetic field [9].
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10.3.2 Effect of Electric Field on Nematic Liquid Crystal
(Electro-Optical Effect)

In Fig. 10.12, the different colored regions in the polarizing light microscope
appear due to different orientation of the molecules. The dark regions corre-
spond to the molecules oriented perpendicular to the analyzer and areas of
all colored regions are proportional to the number of molecules having same
orientation. The molecules of the liquid crystals may be polar molecules or the
polarity may be induced by the application of electric field. The application
of electric field enhances the orientation in the direction of the field. A trans-
formation from less ordered state to more ordered state starts from more
asymmetry to less asymmetry. This can be studied by using one simple speci-
men stage with electrodes and observing the changes in the birefringence and
calculating the areas and their change with the electric field (Fig. 10.13a,b).
This can be qualitatively said that while the electric field can enhance the
orientation of the molecules in the direction of the field, the other effects like
intermolecular attraction and the “anchoring” effect with the glass slide sur-
faces and the thermal perturbations are the opposing effects. When the areas
are plotted with voltage, the resulting curve is shown in Fig. 10.14. The curve
shows slow increase of area, particularly of black region, and then the increase
becomes rapid and it passes through a plateau region where the effect of field
and the opposing effects balance each other. After this region, with increase
in field the area increases again. In the Fig. 10.15, the effect is observed with
time at a voltage fixed on the plateau region. It also shows a parabolic increase
exhibiting the effect of field and the time dependence of the orientation of the
molecules [9].

This effect is used in display devices like monitors, watches, and also in
other passive matrix and active matrix displays. The total internal effect of
the orientation of the plane of polarized light through the birefringent liquid
crystals is shown in Fig. 10.16. These devices are efficient power saver and
consume on the average 100 times less power than LED.

10.4 Symmetry Down to the Bottom:
The Nanostructures

So far we have discussed the different forms of symmetries present in patterns,
crystals, and living bodies, but all that were considered exist in bulk where a
large number of motifs, atoms, or molecules are involved. Now the question
may arise what would happen for the patterns or symmetry if we go down
and confine our observations on a very number of motifs? What happens when
the total dimension of the pattern is extended only up to a few nanometers
or so? The question is typical and the most relevant in the present state of
nanomaterials [1].

This small sized pattern (?) may be attained either moving down the di-
mension level from the bulk or building the bulk from this nanometer level.
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(a)

(b)

(c)

Fig. 10.12. (a) The field in crossed nicol position. Totally dark and no transmission
of light through analyzer. (b) 4× Magnification birefringent liquid crystal 1-(trans-4-
Hexylcyclohexyl)-4-isothiocyanatobenzene (Nematic). (c) 10× Magnification of the
same liquid crystal. The field shows different colored matrices signifying the different
orientation of the liquid crystal molecules with respect to the plane of polarized light.
The dark regions correspond to the orientation of the molecules perpendicular to the
analyzer and white regions parallel to it, whereas the other colors show intermediate
orientations
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(a)

(b)

Fig. 10.13. (a) and (b) Electro-optical effect on 1-(trans-4-Hexylcyclohexyl)-4-
isothiocyanatobenzene (Nomadic). (a) LC sample with no electric field. Areas of
black and other colored patches are determined. (b) LC sample with 20 V electric
field. Areas of black and other colored patches are determined

The first type of nanomaterials is called the state obtained by “Top Down”
and the latter by “Bottom Up.” The concept of this top down process was
interestingly introduced by Prof. R.P. Feynman in one of his numerous famous
lectures titled “There’s Plenty of Room at the Bottom,” a lecture delivered
by him at California Institute of Technology in December 1959. The minia-
turization of the bulk was introduced by him in his talk by citing the possi-
bility of writing 24 volumes of Encyclopedia of Britannica on the head of a
pin! The technique is well developed now and is known as nano-lithography.
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Fig. 10.14. The variation of areas of different colored regions with DC voltage. Black
region shows maximum influence of electric field (Fig. 10.13). The plateau is obtained
at 10–14V for 1-(trans-4-hexylcyclohexyl)-4-isothiocyanatobenzene (nematic)
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120 10 Asymmetry in Otherwise Symmetrical Matter

Fig. 10.16. A nematic LC display device. The pink colored plates are two polarizers
whose optic axes are perpendicular to each other. The two blue colored plates are
glass plates with a transparent plastic and indium tin oxide coating, the latter serve
as electrodes. A nematic LC is put in between and the arrangement of its molecules
is shown. The first one is the arrangement of a “twisted” stage of molecules under
No field condition. The second is the arrangement when there is field. The yellow
arrow shows the condition of the polarized light during its transmission when there
is no field and its obstruction when the field is on

In his characteristically thought provoking talk he predicted the possibility of
miniaturization of computers, circuits, and development of microscopes that
will help the Biologists to “see” the mutation of DNA.

The present day production of nanomaterials are through different routs
and all of them may be regarded as top down or from bottom up. In one
way it is achieved by dividing the bulk materials belonging to one type of
structures or arrangement of atoms into small domains of different structures
or symmetry of atoms, which are usually scattered in the matrix, and the
sizes of these domains are restricted to the size of one to few nanometers.
One of these methods is the Ball milling or mechanical alloying. The powders
of Co-Ti alloys on ball milling produces amorphous structures, which upon
further milling produces nanosized Co3Ti domains belonging to body-centered
cubic and scattered in the amorphous matrix. There are many such examples
published in a number of publications, showing the precipitation of one phase
(structure) of nanosize in the matrix of other different structure. The methods
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of the production of nanostructured materials can be broadly classified into
three categories:

I. Physical Methods: Mechanical alloying (Ball Milling), Vapor deposition,
Sputtering deposition, chemical vapor deposition, etc.

II. Chemical Methods: Colloidal route, Sol–gel route, etc.
III. Biological Methods: Protein synthesis, Synthesis of microorganism, etc.

The detailed discussion of these methods is however beyond the scope of
this book.

The bottom up methods result in tailor-made materials. We can arrange
without violating the physical laws layers of few atoms in three dimensions
so that in none of the direction the dimension increase beyond the range
between 1 and 100 nm. We can make something marvelous and that is what
exactly we can do. The materials of this nanoscale dimension are not only
governed by the quantum mechanical laws as the dimension is so small that the
classical mechanics does not hold good, they show some different properties
both physical, optical, mechanical, and also the structural. We know that
when any colored glass is broken into pieces, its color does not change, but
when it is grounded into powder, then irrespective of its original color it
turns into white. This is due to light scattering from the fine particles of the
powder. When it is nanoparticles its color changes through different shades as
its particle size changes. For example, when we consider CdS nanoparticles,
its color systematically changes from light pink to deep reddish pink when the
particle size changes from 2 to 6 nm. It becomes light colored when particle
size decreases. In essence, they completely belong to a different symmetry
than the bulk state or conventional state of this same system.

In this bottom up or auto assembly method, the individual molecules have
their edges so encoded that they automatically connect each other in the
correct manner.

One of the most talked about state is the third state of carbon other than
graphite and diamond. It is called fullerene structure of carbon (Fig. 10.17).

Carbon 60 (C60, Buckyball) is this third form of carbon, discovered in 1985
by Richard Smalley, Harold Kroto, and Robert Curl for which they won the
1996 Nobel Prize in chemistry. It is named as “Buckministerfuller” to honor
the architect of the geodesic dome, Buckminster Fuller, because the dome’s
shell resembles the fullerenes’ hollow-core construction. Fullerene structure of
carbon is face-centered cubic having carbon molecules at the corners and at
the center of the faces and belonging to the fullerene family. In the world
of symmetry it is definitely a new form of pattern created by the existing
symmetry operations.

These tiny tubes of carbon, crafted into the shape of a Y, could revolu-
tionize the computer industry, as they act as remarkably efficient electronic
transistors – the toggles used to control the flow of electrons through com-
puter circuits (Fig. 10.18). But the nanotransistors are just a few hundred
millionths of a meter in size, which is roughly 100 times smaller than the



122 10 Asymmetry in Otherwise Symmetrical Matter

Fig. 10.17. Left is the fullerene structure of C 60 and right shows the face-centered
unit cell with fullerene structured carbon atoms at the eight corners and at the
center of the six faces

Fig. 10.18. Y-shaped nanotubes are readymade transistors. New research suggests
that tiny tubes of carbon crafted into the shape of a Y could revolutionize the
computer industry. The work has shown that Y-shaped carbon nanotubes are easily
made and act as remarkably efficient electronic transistors – the toggles used to
control the flow of electrons through computer circuits. But the nanotransistors are
just a few hundred millionths of a meter in size – roughly 100 times smaller than
the components used in today’s microprocessors. They could, therefore, be used to
create microchips several orders of magnitude more powerful than the ones used in
computers today, with no increase in chip size

components used in today’s microprocessors. They could, therefore, be used
to create microchips several orders of magnitude more powerful than the ones
used in computers today, with no increase in chip size. Prab Bandaru and his
colleagues at the University of California in San Diego, and Apparao Rao of
Clemson University in South Carolina, both in the US, started by growing
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ordinary carbon nanotubes through chemical vapor deposition. Iron–titanium
particles were added to spur the growth of an extra nanotube branch attached
to the main stem. The overall structure assumed a Y-shape and the catalyst
particles were absorbed into the tubes at the branching point (see Fig. 10.10).

Experiments showed that applying a voltage to the stem of the Y pre-
cisely controls the flow of electrons through the other two branches. The
switching capacity of these nanostructures is in comparable to that of to-
day’s silicon transistors. It is true that the present day silicon transistors have
been shrunk to around 100 nm, but this Y-shaped nanotubes measure just
tens of nanometres in size. Eventually, they could even be shrunk to just a
few nanometers.

“The transistor is fully self-contained, the discovery heralds a new era
of nanoelectronics in that functionality can be harnessed using all-carbon
devices.” says Bandaru.

The next generation of computer and television screens could be built
using carbon nanotubes. A prototype high-definition 10-cm flat screen has
been already made using this technology.

The new screen, called a nano emissive display or NED, is made from
two sheets of glass, one covered by a layer of nanotubes standing on end,
the other by a layer of blue, red, or green phosphors similar to those used in
conventional cathode ray tube screens. When charged, the nanotubes direct
electrons at the phosphors, making them light up. Because the electrons have
only a short distance to travel, even a 105-cm NED would use relatively little
power, says maker Motorola. A screen that size will also have a wide viewing
angle and could sell for less than $400, the company claims (Excerpts from
New Scientist magazine, 21 May 2005).

Further a material that is harder than diamond has been created in the lab
by packing together tiny “nanorods” of carbon. This new material, known as
aggregated carbon nanorods (ACNR), was created by compressing and heat-
ing super-strong carbon molecules called buckyballs or carbon-60 consisting of
60 atoms that interlock in hexagonal or pentagonal shapes and resemble tiny
soccer balls (Fig. 10.9).This super-tough ACNR was created by compressing
carbon-60 to 200 times normal atmospheric pressure, while simultaneously
heating it to 2226◦C. The properties of the resulting material were then mea-
sured using a diamond anvil cell. This instrument squeezes a material between
two normal diamonds, enabling researchers to study it at high pressure using
synchrotron radiation – extremely intense X-rays which reveal the material’s
structure. The researchers found their ACNR to be 0.3% denser than ordinary
diamond and more resistant to pressure than any other known material and
can actually scratch a normal diamond.

While an ordinary diamond gets its hardness from the strong molecular
bonds between each of its atoms, ACNR derives its strength from the fact
that it is formed by interlocking nanorods.

Finally, the future of these nanoscale materials, their production processes,
and characterization has ushered in a new era. This symmetrical arrangement
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of motifs down to the bottom has tremendous application potentialities, which
are radically different from their bulk counter part and probably a minute part
of its applicability in industry and particularly in life sciences has yet been
explored and established.

“The precise and energy-efficient self-assembly of matter into material
structures with properties that cannot be achieved otherwise is an impor-
tant goal for nanotechnology,” said Mihail Roco, NSF senior advisor for
nanotechnology and chair of the National Science and Technology Council’s
Subcommittee on Nanoscale Science and Engineering. “This is just one way
that nanotechnology will help foster “the next industrial revolution.”

There are different microscopes to observe the nanostructure. The grazing
angle X-ray diffraction, Low Energy Electron diffraction (LEED), Electron
Tunneling microscopy, and Scanning electron microscopy are amongst the
conventional experimental techniques for studying the surface morphology of
the nanomaterials (Fig. 10.19).

Another important instrument to study the nanostructure is the atomic
force microscope (AFM) (Fig. 10.20). An atomic force microscope is optimized
for measuring surface features that are extremely small, thus it is important
to be familiar with the dimensions of the features being measured. An atomic
force microscope is capable of imaging features as small as a carbon atom
and as large as the cross section of a human hair. A carbon atom is approxi-
mately .25 nanometers (nm) in diameter and the diameter of a human hair is
approximately 80 microns (µm) in diameter.

Traditional microscopes have only one measure of resolution; the resolution
in the plane of an image. An atomic force microscope has two measures of

Fig. 10.19. Scanning electron micrograph of nanocrystalline Nickel ferrite sample
prepared by chemical route with ball – milling time of 1 h. The picture indicates
that the grains are well resolved and have almost spherical in shape. The particle
sizes are varying between 20 and 50 nm. Figure on the left indicates that the small
particles are getting agglomerated and the figure on the right indicates the single
particle picture. By courtesy of S. Ghatak and A.K. Meikap (unpublished work)
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Fig. 10.20. The atomic force microscope. X,Y,Z are the piezoelectric sensors to
control the motion of the probe over the sample in XY Z directions. Force sensor
is to measure the force between the probe and the sample. (CPU) Computer – The
computer is used for setting the scanning parameters such as scan size, scan speed,
feedback control response, and visualizing images captured with the microscope

(a) (b)

Fig. 10.21. (a) A less sharp probe giving less resolution of the atoms. The atoms
appear to be overlapping. (b) A sharper probe than (a). Figure shows more resolved
positions of atoms

resolution; in the plane and perpendicular on the sample surface. The planar
resolution depends on the geometry of the probe that is used for scanning. In
general, the sharper the probe is, the higher the resolution of the AFM image
(Fig. 10.21).

Therefore, as a conclusion it may be said that whether the object is in
the bulk state or in the nanostate of matter, there exists an order which is
followed for the growth of the material from bottom to top and it continues
to exist when we go down from top to bottom. The order may change during
this transition but as a whole it exists in most of the cases and these results
in too many drastic changes in the properties of the material.
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10.5 Summary

Along with symmetrical structures or the periodic structures, there is as a
rule the existence of asymmetric or aperiodic structures. It has also been in-
troduced that materials present in their asymmetric structural existence show
drastically different characteristics, which are not found to exist in their pe-
riodic structural states of existence. This asymmetries, which are present in
the aperiodic structures of materials and which are incommensurate with the
classical structures, leads to the revelation of many more fantastic proper-
ties, which are hitherto not found in perfect structural existence of the same
materials.
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Epilogue

The present endeavour in the form of a book is a brief sojourn in the fasci-
nating world of symmetry that dwells in patterns, crystals and the physical
laws and that which decors and governs this universe. It is true that in the
short life-span of human beings, the symmetries in objects, incidence and
the phenomena that happen to exist in front of our eyes every day attract
the attention and absorb the minds of inquisitive individuals. The vastness
of the ocean, the expanse of the meadows, the wonderful symmetry of bloom-
ing flowers and their petals of innumerable colours and the endless starry sky
have been inciting a quest in the mind to know this wonderful world we live in.

It should be recorded that from antiquity to the present, the notion of
symmetry has undergone a lengthy development. From a purely geometrical
concept it turned in to a fundamental notion lying at the foundation of na-
ture’s laws. Now, we understand that the symmetry is not only that which is
visible to our eyes. The symmetry is not just the thing that exists around us
but it is the root of everything. According to the modern views, the concept
of symmetry is characterized by a certain structure in which three factors are
combined:

(1) An object (phenomenon) whose symmetry is considered, (2) transfor-
mations or the operations under which the symmetries are considered and (3)
the invariance (unchangeability or the conservation) of some properties of the
object that expresses the symmetries under consideration. Invariance exists
not in general but only in as far as something is conserved.

Symmetry in essence limits the number of possible forms of natural struc-
tures and also the number of possible forms of behaviour of various systems.

It can be said that there are three stages of the cognition of our world. At
the lowest stage is the phenomena, at the second upper, the laws of nature and
lastly at the top third stage symmetry principles. The laws of nature govern
phenomena, and the principle of symmetry governs the laws of nature. If the
natural laws enable the phenomena to be predicted, then the symmetry prin-
ciple enables the laws of nature to be dictated. There are also the laws and the
concept of compensation of symmetry: once the symmetry is lowered at one
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level it is conserved at the other at a larger level. It is directly related to the
problem of symmetry–asymmetry. We know how strongly today’s picture of
the physically symmetrical world is different from the geometrically symmet-
rical cosmos of the ancients. The symmetry must be treated as no more than
ideal norm from which there are always deviations in reality. Symmetrical
crystal changes to the partially symmetrical liquid crystals and the conven-
tional geometrical symmetry in crystals to the unconventional symmetry in
quasi-crystalline materials. Thus, the problem of symmetry–asymmetry must
be understood more deeply. Symmetry and asymmetry are so closely inter-
linked that they must be viewed as the two aspects of the same concept. In a
less complex manner this proposition can be viewed as, that the beauty of a
face sometimes increases if it has a dimple on only one side of the face than
symmetrically on both, a clear deviation from symmetry yet having greater
visual pleasure. So said the Soviet philosopher V. Gott in his book Symme-
try and Asymmetry as: “Symmetry discloses its content and meaning through
asymmetry, which in itself is a result of changes, or violations of symmetry.
Symmetry and asymmetry is one of the manifestations of the general law of
dialectics – the law of unity and conflict of opposites.”

More we grasp the symmetry of nature, more asymmetry comes out.
Therefore, any search for a unified theory or universal equations is bound
to fail as it tantamount to an attempt to consider symmetry separately from
asymmetry. The two dialectically opposite categories, symmetry and asymme-
try can not exist independently. In an absolutely symmetrical world we would
observe nothing – no objects, no phenomena. A crystal otherwise symmetrical
can only be grown on the basis of a linear defect i.e. Screw dislocation.

In exactly the same way, an absolutely asymmetrical world is impossible to
find too. Behind almost every discovery and its attempts, the driving force was
the sense of symmetry and the efforts to establish that. We can site numerous
examples like Maxwell’s displacement current to wave particle dualism and
also to De Broglie’s finding of electron wave.

We see, therefore, that symmetry is dominant not only in the process of
scientific quest but also in the process of its sensual, emotional perception of
the world. In Nature–science–art we find the age old competition of symmetry
and asymmetry and this competition is the leading force between all changes
and transformations.



A

An Outline of the Diffraction Theory
of Periodic and Aperiodic Structures

The detailed theory of X-ray diffraction from periodic and aperiodic structures
is, however, out of the scope of this book. However, a brief introduction is given
here. The readers are requested to find the detailed analysis from [1–4] and
also they may consult the references given in “Further Reading.”

Scattering by an Isolated Electron

When an unpolarized X-ray beam is incident on an electron, the electron will
experience a force due to the electric field vector of the X-ray electromagnetic
wave. Due to this force, the electron will accelerate and as an accelerated
charge radiates, electron will also radiate the energy and this is known as
scattering by an electron. Assuming that there is no net absorption of energy
by the electron, there will be no change of wavelength of the scattered X-ray.
Though this elastic scattering is an approximation, it is close to the actual.
The following figure demonstrates such scattering.

Eo
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Un polarized X-ray

Z

X

Y

R
φ

O

The force experienced by an electron of charge e due to a field ε having
an instantaneous amplitude on the YZ-plane as E0 will be given in Y and Z
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directions as FY = EOY e sin 2νt and FZ = EOZe sin 2νt. The accelerations
resulted in Y and Z directions are

fY =
EOY sin 2πνt

m
and fZ =

EOZ sin 2πνt

m
.

The field scattered by the accelerated electron is

ε

Y
=

e2EOY sin 2πνt cos ϕ

mc2R

as the direction of the scattered field due to EOY component includes the sin
of the angle between Y and R, which is 90◦ − ϕ. But the Z component is
perpendicular to the XY-plane on which R lies, the field scattered by the Z
component is

ε

Z
=

e2EOZ sin 2πνt

mc2R
.

The time averages on the square of the amplitudes when added give the re-
sultant amplitude of the scattered wave and that is given by

〈E2〉 =
〈
E2

0

〉 e4

m2c2R2

(
1 + cos2 ϕ

2

)
.

And in terms of intensity, the intensity of the scattered radiation at a distance
R from origin is given as

I = I0
e4

m2c2R2

(
1 + cos2 ϕ

2

)
.

This is known as classical Thomson Scattering equation.

Diffraction by Periodic Perfect Small Crystal

The electromagnetic radiations like X-rays are scattered by electron cloud
around the center of the atom. This cloud of electrons will have a charge
distribution resulting into a charge density ρ and the charge in an elementary
volume element dv due to a single electron will be ρdv, so that

∫
ρdv = 1 in

terms of electron units. Figure A.1 demonstrates such scattering.
The X-ray field scattered from this spherically symmetrical electron charge

distribution (per electron) and received at the point P is given by

εP =
E0e

2

mc2R
cos

[
2πυt − 2π

λ
(X1 + X2)

]
. (A.1)

Now, X1 + X2 = rn · S0 + R − rn · S = R − (S − S0) · rn and so, the above
expression can be modified for the electron cloud (per electron) in terms of
complex exponential as
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Fig. A.1. S0 and S are directions of incident (plane polarized) and diffracted X-ray
from the volume element dv of the electron cloud. rn is the position vector of volume
element dv having charge ρ dv. X1 is the distance of the volume element dv from
the plane-polarized X-ray wave and X2 is the distance of the point of observation
from the volume element dv

ε =
E0e

2

mc2R
exp 2πi[υt − R/λ]

∫
exp[(2πi/λ)(S − S0) · r]ρ dv. (A.2)

Now, (S−S0)·r can be expressed as 2 sin θr cos ϕ and expressing dv in spherical
coordinate as the charge distribution bears a spherical symmetry, we get dv =
dx · dy · dz = dr · r dϕ · r sin ϕ dψ. Integrating over ψ from 0 to 2π, we get
dv = 2πr2 sin ϕ dϕdr.

So S
q

q

S-So

r
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r n

b

a

Fig. A.2. A section of a two-dimensional crystal

Now, replacing dv and writing ρ the charge density as function distance r
from 0 and abbreviating 4π sin θ/λ = k, we write (A.2) as

fe =
∫ ∞

r=0

∫ π

φ=0

exp(ikr cos φ)ρ(r)2πr2 sin φ dφdr.

Integrating over ϕ, we get

fe =
∫ ∞

0

4πr2ρ(r)
sin kr

kr
dr.

As this is applicable for only one single electron and there are n such electrons
in one atom, so writing f for atomic scattering factor, we get

f =
∑

n

∫ ∞

0

4πr2ρ(r)
sin kr

kr
dr. (A.3)

A perfect crystal is made up of unit cells periodically arranged. Figure A.2
shows a two-dimensional representation of perfect crystal and unit cell para-
meters are designated as a and b. The position vector in terms of fractional
coordinates xn, yn, and zn of an nth atom is given by rn in any unit cell
and it may be given in a three-dimensional crystal by rn = xna + ynb + znc
and the position vector with respect to crystal origin is given by Rmn =
m1a + m2b + m3c + rn, where a, b, and c are the unit cell vectors and
m1, m2, and m3 are the integers specifying the position of the unit cell with
respect to the origin. For simplicity, let unit vectors in direct space henceforth
be written as a1, a2, and a3 in place of a, b, and c as noted earlier.

The instantaneous field scattered by a small crystal at a distance R from
the crystal is then given by

ε =
E0e

2

mc2R
exp[2πi(υt − R/λ)]

∑
n

fn exp[(2πi/λ)(S − S0) · rn]

×
i=1,2,3∑
mi,ai

exp[(2πi/λ)(S − S0)miai], (A.4)
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where
∑

n fn exp[(2πi/λ)(S − S0) · rn], over all such n number of atoms in
a unit cell, is known as “the crystal structure factor” and henceforth will be
noted as F . Now, any factor of the summations over m(= 1, 2, 3) and a1,2,3

leads to three Laue equations as

(π/λ)(S − S0) · a1 = hπ, i.e., (S − S0) · a1 = hλ,

(π/λ)(S − S0) · a2 = kπ, i.e., (S − S0) · a2 = kλ,

(π/λ)(S − S0) · a3 = lπ, i.e., (S − S0) · a3 = lλ,

where h, k, and l are integers and are the Miller indices of the crystal planes.
These three equations must be simultaneously satisfied so as to result any
diffraction or reflection from the plane.

Introducing the reciprocal lattice vectors as b1, b2, b3 in place of
a∗, b∗, c∗ and a vector in reciprocal space as Hhkl = hb1 + kb2 + lb3,
it can be shown that the diffraction vector (S − S0) in reciprocal space can
be related to the reciprocal lattice vector Hhkl as

(S − S0) = λHhkl,

which is the Bragg’s law and |Hhkl| = 1/dhkl. Now abbreviating (S − S0)/λ
as S and m1a1 + m2a2 + m3a3 as L, we get

Rmn = L + rn.

The time-independent amplitude term of the scattered field ε can be written
after using the abbreviations as above

E(S) = F (S)
N∑
L

exp(2πi S · L),

where N is the number of such unit cells in the diffracted volume of the
crystal. In terms of reciprocal lattice vectors H and using the delta function
δ(S) which is defined by δ(x−a) = 0 except at x = a and also for well-behaved
function as ∫ +∞

−∞
f(x)δ(x − a)dx = f(a)

and also using the property

∞∑
m=−∞

exp(2πi S · m) =
∞∑

m=−∞
δ(S − m), (A.5)

we can write
E(S) = F (S)

∑
H

δ(S − H). (A.6)
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Diffraction by Modulated Structures

Modulated structures can be obtained from the structures having translational
symmetry by say a displacement of atomic layers by an integral number of
lattice translations. This results into a superlattice still retaining translational
symmetry. But if the displacement is not an integral multiple of lattice vectors,
the resulting lattice will lose its commensurability with the basic structure
and also the translational symmetry. The diffraction of the modulated wave
in addition to the determination of rn of the atoms is within the domain of
“Incommensurate Crystallography.”

The scattered X-ray wave from such modulated structures is in the form
of Bragg’s reflection and the scattering vectors of Bragg’s reflections are

H′ = hb1 + kb2 + lb3 + mb4,

where H′ = H + mb4 and h, k, l, and m are the four reflection indices or
H′ = H+mq, where q = b4 and have the significance of being a wave vector
giving the modulation functions. The diffraction pattern of such modulated
structures will contain Bragg’s reflection of the basic structure given by H
(i.e., m = 0) and they are found to be surrounded by satellite reflections
corresponding to having m �= 0.

Now, the difference in these modulated structures from the periodic coun-
terpart starts with the position of the atoms, which in modulated structure
are given by

r′n = L + rn + un(x4), (A.7)

where un(x4) = un
1 (x4)a1 + un

2 (x4)a2 + un
3 (x4)a3 gives the displacement of

atom out of its basic structural position and n = 1, 2, . . . , N the atoms in
the unit cell of the basic structure, and L is the lattice vectors of the basic
structure. Using these relations, the amplitude of the scattered X-ray E(S)
will be given by

E(S) =
Ncell∑

L

N∑
n

fn(S) exp[2πi S · (L + rn + un(x4)], (A.8)

where S as defined earlier is (S−S0)/λ and fn is the atomic scattering factor
of nth atom. As E(S) is a complex function multiplying it with its complex
conjugate, we can get the expression for the intensity of the scattered radiation
from modulated structures having the modulation incommensurate with the
basic structure.
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B

Solved Problems

1. Let a, b, c and a∗, b∗, c∗ are direct lattice and reciprocal lattice vectors,
respectively. Now, VD and VR are, respectively, the volumes of unit cells
in direct and reciprocal lattices and are given as

VD = a · b × c and VR = a∗ · b∗ × c∗.

Show that VD = 1/VR.
Solution:
We know that

a∗ =
b × c
VD

, b∗ =
c × a
VD

, and c∗ =
a × b
VD

,

VR = a∗ · b∗ × c∗ =
(b × c) · [(c × a) × (a × b)]

V 3
D

=
(a × b) · (b × c) × (c × a)

V 3
D

=
(a · b × c)2

V 3
D

=
V 2

D

V 3
D

= 1/VD.

Therefore, VD = 1/VR.
2. Two crystallographic directions are given as A and A′, and they are

A = ua + vb + wc and A′ = u′a + v′b + w′c,

and the angle ϕ between them is given by

cos ϕ =
A · A′

|A||A′| .

Find the values of cos ϕ for (1) orthorhombic and (2) cubic systems.
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Solution:

A · A′ = (ua + vb + wc) · (u′a + v′b + w′c)
= uu′a2 + vv′b2 + ww′c2

(a · b = a · c = b · c = 0 as angle between axial vectors for orthorhombic
and cubic systems are 90◦, i.e., α = β = γ = 90◦) and

|A||A′| =
√

{(u2a2 + v2b2 + w2c2)(u′2a2 + v′2b2 + w′2c2)}.

Therefore,

cos ϕ =
uu′a2 + vv′b2 + ww′c2√{(u2a2 + v2b2 + w2c2)(u′2a2 + v′2b2 + w′2c2)} . (B.9)

1. For orthorhombic, a �= b �= c, so, cos ϕ is given by (B.9).
2. For cubic, a = b = c and so, (B.9) is changed into

cos ϕ =
uu′ + vv′ + ww′√{(u2 + v2 + w2)(u′2 + v′2 + w′2)} . (B.10)

3. Two crystal direction vectors are given as Auvw = ua + vb + wc and in
its reciprocal space Hhkl = ha∗ +kb∗ + lc∗, Hhkl is perpendicular to the
hkl plane. If ϕ is the angle between them, then find the value of cos ϕ in
terms of uvw and hkl for orthorhombic system.
Solution:
Taking the dot product of the two vectors Auvw = ua + vb + wc and
Hhkl = ha∗ + kb∗ + lc∗, we get

cos ϕ =
(ua + vb + wc) · (ha∗ + kb∗ + lc∗)
|(ua + vb + wc)||(ha∗ + kb∗ + lc∗)|

=
hu + kv + lw√

[(u2a2 + v2b2 + w2c2)(h2a∗2 + k2b∗2 + l2c∗2)]
.

4. The zone axis uvw is defined by Auvw = ua + vb + wc; all planes which
contain the direction Auvw are said to belong to the same zone. Deduce
an expression of hkl planes which belong to this zone.
Solution:
Hhkl is the vector perpendicular to the hkl plane and as the planes contain
Ahkl, Hhkl will also be perpendicular to Ahkl. Therefore,

Ahkl · Hhkl = 0, i.e., ϕ = 90◦.
Ahkl · Hhkl = (ua + vb + wc) · (ha∗ + kb∗ + lc∗)

= uh + vk + wl = 0

is the required expression.



B Solved Problems 139

5. If γ∗ is the angle between a∗ and b∗ in reciprocal space and is given by

cos γ∗ =
a∗ · b∗

|a∗| · |b∗| ,

then express cos γ∗ in terms of α, β, and γ.
Solution:
Now, as a∗ and b∗ are expressed as

a∗ =
b × c

V
and b∗ =

c × a
V

,

cos γ∗ =
1/V 2[(b × c) · (c × a)]
1/V 2|(b × c)||(c × a)|

= [(b × c) · (c × a)]/[abc2 sin α sin β].

Now, from vector multiplication, (b×c)·(c×a) = abc2(cos α·cos β−cos γ).
Therefore, cos γ∗ = (cos α ·cos β−cos γ)/ sin α sin β, i.e., in terms of α, β,
and γ.

6. Cesium chloride is simple cubic and has one CsCl per unit cell with Cs
at 0 0 0 and Cl at 1

2
1
2

1
2 . Derive simplified expression for structure factor.

Is there any systematic absences?
Solution:
Structure factor is

Fhkl =
∑

n

fn exp[2πi(hxn + kyn + lZn)]

and for Cs at 0 0 0 and Cl at 1
2

1
2

1
2 positions in the unit cell, we get

Fhkl =
∑

fCs +
∑

fCl exp πi(h + k + l)

and the exponential is of the form exp(πim) = (−1)m. Now, for m is odd,
i.e., hkl are all odd or any one is odd, so that h + k + l are odd, then

Fhkl =
∑

(fCs − fCl) �= 0 as fCs �= fCl.

Again, when h + k + l are even,

Fhkl =
∑

(fCs + fCl).

Therefore, there will be no absences and only intensity fluctuates between
these two values.

7. Diamond is face-centered cubic with eight atoms per unit cell. Carbon
atoms at 0 0 0 and 1

4
1
4

1
4 positions and the other positions (six) are given by

face-centering translations. Deriving simplified expression for the struc-
ture factor, find the rule for systematic absences and also the intensity of
2 2 2 reflection.
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Solution:

Fhkl =
∑
4

exp[2πi(hxn + kyn + lzn)]

= 4{fc + fc exp[πi/2(h + k + l)]}
= 4fc{1 + exp[πi/2(h + k + l)]}.

As this is complex, multiplying it with its complex conjugate, we get

F 2
hkl = 16f2

c {[1 + exp[πi/2(h + k + l)]][1 + exp[−πi/2(h + k + l)]]}
F 2

hkl = 32f2
c [1 + cos π/2(h + k + l)].

When (n = 0, 1, 2, 3, . . .) h+ k + l = 4n, cos 2nπ = 1 and F 2
hkl = 64f2

c ;
when h+k + l = 4n+1, cos π/2(4n+1) = 0 and F 2

hkl = 32f2
c ; and when

h + k + l = 4n + 2, cos π/2(4n + 2) = −1 and F 2
hkl = 0; i.e., when hkl

are all odd, F 2
hkl = 32f2

c ; when mixed (one odd, two even) h + k + l are
odd (1, 3, 5, 7, . . .), F 2

hkl = 32f2
c ; and when mixed (one even, two odd)

h + k + l are even (0, 2, 4, 6, . . .), the intensity will fluctuate between
64f2

c and 0.
For 2 2 2 reflection, h + k + l = 6 and in F 2

hkl = 32f2
c [1 + cos π/2(h + k +

l)], F 2
hkl = 32f2

c [1 + cos 3π] = 0.
8. Zinc has hexagonal close-packed structure with Zn atoms (two atoms per

unit cell) at positions 0 0 0 and 1
3

2
3

1
2 . Find the structure factor.

Solution:
Recalling

Fhkl =
∑
2

fn exp[2πi(hxn + kyn + lzn)],

the structure expression comes out to be

Fhkl = fZn{1 + exp 2πi[(h + 2k)/3 + l/2]}.

As this can be either real or complex, and so multiplying with its complex
conjugate, we get

F 2
hkl = f2

Zn{1+exp 2πi[(h + 2k)/3+ l/2]}{1+ exp−2πi[(h +2k)/3+ l/2]}
= f2

Zn{2 + exp 2πi[(h + 2k)/3 + l/2] + exp−2πi[(h + 2k)/3 + l/2]}
= f2

Zn{2 + 2 cos 2π[(h + 2k)/3 + l/2]}
= f2

Zn{4 cos2 π[(h + 2k)/3 + l/2]} = 4f2
Zn cos2 π[(h + 2k)/3 + l/2].

Now, for h + 2k = 3n and l = even, F 2
hkl = 4f2

Zn; for h + 2k = 3n and
l = odd, F 2

hkl = 0; for h + 2k = 3n± 1 and l = odd, F 2
hkl = 3f2

Zn; and for
h + 2k = 3n ± 1 and l = even, F 2

hkl = f2
Zn.

9. Copper is a f.c.c. metal containing four atoms per unit cell at positions
0 0 0, 1

2
1
20, 1

20 1
2 , and 01

2
1
2 . Find the systematic absences.
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Solution:
Recalling

Fhkl =
∑
4

fn exp[2πi(hxn + kyn + lzn)],

Fhkl =
∑

fCu{1 + exp 2πi(h + k)/2 + exp 2πi(h + l)/2

+ exp 2πi(k + l)/2}.

Now, for hkl being either all even or all odd all the exponential terms will
be equal to 1, then Fhkl = 4fCu and when hkl are mixed, Fhkl = 0.

10. Tungsten is a b.c.c. metal having its atoms at positions as 0 0 0 and 1
2

1
2

1
2 .

There are thus two atoms per unit cell. Find the reflection conditions.
Solution:
Recalling

Fhkl =
∑
2

fn exp[2πi(hxn + kyn + lzn)],

Fhkl =
∑

fW(1 + expπi[h + k + l]).

When h+k+ l are even, Fhkl = 2fW and when h+k+ l are odd, Fhkl = 0.
11. Sodium chloride (NaCl) is two f.c.c. lattices (as both Na and Cl are f.c.c.)

intervened within resulting into the positions of Na and Cl in one NaCl
unit cell as

Na =

1
2

1
2

1
2

0 0 1
2

0 1
2 0

1
2 0 0

and Cl =

0 0 0
1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

Solution:
Recalling

Fhkl =
∑

n

fn exp[2πi(hxn + kyn + lzn)]

and considering one position each from the Cl and Na atoms, we get for hkl
mixed, Fhkl = 0 and for hkl unmixed, Fhkl = 4[fCl +fNa exp πi(h+k+ l)];
and also when hkl are all even, Fhkl = 4[fCl + fNa] and when hkl are all
odd, Fhkl = 4[fCl − fNa].

12. A unit cell of tetragonal system has similar atoms at positions as 01
2

1
4 ,

1
20 1

4 , 1
20 3

4 , and 01
2

3
4 in the unit cell. Find the reflection conditions from

the following reflections: 110, 222, and 111.
Solution:
Recalling

Fhkl =
∑

n

fn exp[2πi(hxn + kyn + lzn)]
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and putting the coordinates of the atoms, we get

Fhkl = f{exp 2πi(k/2 + l/4) + exp 2πi(h/2 + l/4)
+ exp 2πi(h/2 + 3l/4) + exp 2πi(k/2 + 3l/4)}.

For mixed indices like 110,

Fhkl = f{exp 2πi(k/2) + exp 2πi(h/2) + exp 2πi(h/2) + exp 2πi(k/2)}
= 2f{exp πi(h) + exp πi(k)} = 4f{exp πi} = 4f.

For unmixed like 222,

Fhkl = f{exp 3πi + exp 3πi + exp 5πi + exp 5πi}
= −4f and F 2

hkl = 16f2.

For unmixed like 111 all odd,

Fhkl = f{exp πi(1 + 1/2) + exp πi(1 + 1/2) + exp πi(1 + 3/2)
+ exp πi(1 + 3/2)}

= f{exp 3πi/2 + exp 3πi/2 + exp 5πi/2 + exp 5πi/2}
= 0.

Therefore, F 2
hkl = 0.

13. Derive an expression for the resolution of a Debye–Scherrer camera for two
wavelengths having very near values, in terms of separation of positions
(S). S is defined in Sect. 7.2.
Solution:

S/R = 2θ and ∆S/R = 2∆θ, ∆θ = ∆S/2R,

2d sin θ = λ and 2d cos θ∆θ = ∆λ.

Now dividing both, we get

sin θ

cos θ∆θ
=

λ

∆λ
,

tan θ
∆λ

λ
= ∆θ = ∆S/2R.

Therefore, λ/∆λ = 2R tan θ/∆S.
14. What is the smallest value of θ for which the CrKα doublet can be re-

solved? In a 5.73-cm radius Debye–Scherrer camera, the smallest separa-
tion between two lines should be of width 0.06.
Solution:
In the expression as above, putting the following values

∆S = 0.06, R = 5.73 cm, λ for CrKα = 2.2910 Å,
CrKα1 = 2.2897 Å,CrKα2 = 2.2936 Å, and ∆λ = 0.0039 Å,
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we get

θ = tan−1

(
∆S

2R
× λ

∆λ

)

= 72◦.

15. Index the following lines obtained from a cubic system in a powder pattern
with CuKα and their measured sin2 θ values are given as 0.1118, 0.1487,
0.294, 0.403, 0.439, 0.691, 0.727, 0.872, and 0.981. Confirm its Bravais
lattice.

Solution:
2d sin θ = λ and for a cubic system,

d =
a√

h2 + k2 + l2
,

h2 + k2 + l2 =
4a2

λ2
sin2 θ = c sin2 θ,

where c is the constant.
For the first reflection, there are three possibilities of hkl (1) 100, (2)110,

and (3) 111. The constant c is calculated from each of these possibilities:

1. From 100, c = 1/ sin2 θ = 1/0.1118 = 8.9445.
2. From 110, c = 2/ sin2 θ = 2/0.1118 = 17.889.
3. From 111, c = 3/ sin2 θ = 3/0.1118 = 26.833.

From second reflection, it must be from 200 plane for any of the cubic sys-
tem and so, c = 4/ sin2 θ = 4/0.1487 = 26.899 and this value matches with
the third possibility for first line; it can be concluded that the cubic system
belongs to f.c.c. lattice. The reflections can be serially indexed as:

sin2 θ values – Belongs to

0.294 = 220
0.403 = 311
0.439 = 222
0.583 = 400
0.691 = 331
0.727 = 420
0.872 = 422
0.981 = 333

It can be verified that the values of constant c as above can only match with
possibility (3) for the above reflections and not for any other reflections which
are thus not possible.
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AuCu3 alloys, 104
Kα radiation, 44
Kβ filters, 44

Aggregated carbon nanorods (ACNR),
123

Aperiodic crystals, 106
Atomic force microscope (AFM), 124
Atomic number, of atoms, 44, 80

Balanced filters. See Ross filters
Balanced stacking, glide planes of, 37
Ball milling

and mechanical alloying, 120
nanomaterials, production of, 120

Barnal chart, 63
Birefringence, in liquid crystals, 114,

115, 117
Bragg’s law, 45, 47, 59, 62, 72
Bragg’s reflection, 48, 51, 58
Bravais lattices, 29

lattice translation of, 42
materials having, 32
microscopic translational symmetry

in, 39
space groups in space of, 40

Buerger precession camera, 71

Cameras, 71
Buerger precession, 71
de Jong–Boumann, 69
Debye–Scherrer cylindrical powder,

72
Laue, 57

rotation/oscillation, 60–62

Weissenberg, 64, 65

Carbon nanotubes, 123

Cholesteric liquid crystals, 113

Critical temperature, 104

Crossed Nicol position, 115, 117

Crystal

defined, 80

monochromators, 45, 46

space lattices, types of, 40

systems, 27

Crystal structure

analysis of, 24

determination of, 79

factors, 82

trial-and-error method for determin-
ing, 79, 80

Crystal symmetry, 23, 35

elements of, 23

Hermann–Mauguin notations, 24,
35

macroscopic, 23, 24

microscopic, 35, 38

in architecture, 91

in flowers, 90

in fundamental particles, 89, 91

in living bodies, 86

in snow flake, 92

of nanostructures, 116

of physical laws, 95, 96

X-ray diffraction methods, for
detecting, 39
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Crystal systems, 27
unit cells of, 28

Crystalline materials
and polycrystal, 57
diffraction spot in, 110
optical properties of, 111, 114
structural analysis of, 47
symmetry in, 91

Cubic lattice unit cell, 33

de Jong and Boumann method
single crystals, for study of, 68

de Jong–Boumann camera, 69
Debye–Scherrer cylindrical powder

camera, 72
Debye–Scherrer pattern, indexing of, 73
Disordered structure, 105
Dispersion, of light, 114
DNA, molecular structure of, 87, 88
Double reflection, 79

Electro-optical effect, 116
Electron

cloud, 43
density, 80, 81

maps, 80
diffraction pattern of quasi crystal,

104, 107
emission, 44
scattering, 81

Ewald’s sphere of radius, 49, 51

Face-centered lattice, 36
in Rhombohedra system, 32

Face-centered unit cell, 122
Fourier transform, of quasi crystal, 107
Fullerenes, 121

Glide plane of symmetry, 35, 36
balanced stacking, 37

Grain boundary, 70, 102

Heavy atom method, 83
Hermann–Mauguin notations

space groups, 40
thirty-two point groups of symmetries

in, 24
Hermann–Mauguin symbol, 16, 18

of glide plane of symmetry, 35

International Tables, 79
International Union of Crystallography,

106
Interplanar distance, 50

of different crystal systems, 53

K-shell electrons, 43

L-shell electrons, 43
Lattice. See also Motifs, 9, 77

Bravais lattices, translation of, 42
directions, 13, 14
geometrical points in, 6
plane (see also Plane lattices), 12
points, 20
symmetry properties of, 15

Laue camera, 57
Laue equations, 45
Laue pattern, 57–59
Laue spots, 51
Light microscope, 114, 115
Liquid crystals, 111

cholesteric, 113
lyotropic, 112, 113
molecules of, 116
nematic, 112
optical properties of, 114
thermotropic, 112
types of, 112

Lyotropic liquid crystals, 113

M-shell electrons, 43
Macroscopic symmetry elements, 23, 35
Microscopic symmetry elements, 35, 39
Microscopic translational symmetry, 39
Miller indices, 12, 13, 47, 49, 60, 110
Mirror plane, 18, 86
Monoclinic system, 40, 41

array of atoms in, 41
lattices in, 32

Motifs. See also Lattice
geometrical points, significance of, 6
orientation of, 6
scheme of repetition in, 6
shape and symmetry of, 16

Nano emissive display(NED), 123
Nano-lithography, 118
Nanostructures, 116, 123



Index 149

Nematic liquid crystals, 112
electric field, effect of, 116

Optic axis, 115
Optical analogy, 48
Optical properties, of liquid crystals,

114
Ordered structure, 104, 105

Patterns
characteristics of, 6
crystal, 23, 29, 111
Debye–Scherrer, 73
diffraction, 43, 48, 55, 105
external shape of, 35
forms of, 121
Kaleidoscope, 91
Laue diffraction, 45
meaning of, 1
of snow flakes, 92
orientations, 5
symmetry in, 89
three-dimensional, 6, 23, 27, 28, 35,

39, 83
Patterson function, 82, 83
Penrose tiling, 107
Plane lattices

as building block, 11
shapes of unit cells of, 12
structure, 11
symmetry operations in, 19

centre of symmetry, 19
mirror plane, 16
rotational, 15

two-dimensional infinite array in, 9
types of, 9, 11
unit cells of, 19

Point group of symmetry. See Point
symmetry

Point symmetry, 23
Polycrystal, 102

vs. single crystals, 102
experimental techniques for, 70

Polycrystalline materials, 103
Powders (Co–Ti alloys), 120
Precision cameras

process for visualization of, 69
types of, 68

Quasi crystals, 106, 107, 109

Reciprocal lattice, 47, 55
weighted (see Weighted reciprocal

lattice),
Reflections (symmetry operation), 78
Reliability index See Residual (R-value),

80
Residual (R-value), 80
Rhombohedra system, face-centered

lattice in, 32
Ross filter, 46
Rotation axis, 108, 110
Rotation symmetry, 86
Rotation/oscillation camera, applica-

tions of, 60
Roto-inversion symmetry, 20

Scattering
atom, by, 80
electron, by, 81

Screw axis of symmetry, 37
different types of, 39

Single crystals, 101
vs. polycrystals, 102, 103
de Jong–Boumann and precession

camera, 68–70
experimental techniques for

Laue camera and Laue pattern, 57
rotation/oscillation camera, 60
Weissenberg camera and moving

film, 64
Laue arrangement, 60
Laue diffraction pattern from, 45
oscillation photograph of, 61
types of ordering in, 57
X-ray diffraction in, 43

Smectic liquid crystals, 113
Space groups

constitution of, 42
determination of, 77–79
in space of Bravais lattice, 40
notations, 41
process for determination, 67
reciprocal lattice for determining, 66

Space lattices
symmetry operations in

rotation (rotary) inversion, 19
three-dimensional, 19

Stacking fault, 103
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Stacking sequence
billiard balls, of, 36, 37
close-packed plane, of, 103

Strained lattice, 103
Structure factors, 81, 82
Super lattice, 106
Symmetry elements

different combinations, 41
macroscopic, 23
microscopic, 35

Symmetry. See Crystal symmetry

Thermotropic liquid crystals, 112
Three-dimensional

arrays of points, 6
crystal, 42

Translational symmetry, 79
Trial-and-error method, for determining

crystal structure, 79
Triclinic system, 40

interplanar distance of, 53
space group of, 40

Two-dimensional, 9
infinite array, 9
patterns, 6

Unit cells
complexity of, 15
of crystal systems, 28
of plane lattices, 9
positions of atoms in, 105
shapes of, 11

Unit translational vectors, 27, 35, 48,
49, 63

Weighted reciprocal lattice, 55
Weissenberg camera, 64
Weissenberg photographs, 77–79

X-rays
diffraction

by atoms/molecules, 47
by single crystal, 43
geometry of, 50–53
patterns, 57, 104

monochromatic beam, 60
production and properties of, 43
radiation, wavelength of, 43
spectra, monochromatization of, 44
spectrum of, 43
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