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1
Introduction

Today, digital audio applications are part of our everyday lives. Popular examples
include audio CDs, MP3 audio players, radio broadcasts, TV or video DVDs,
video games, digital cameras with sound track, digital camcorders, telephones,
telephone answering machines and telephone enquiries using speech or word
recognition.
Various new and advanced audiovisual applications and services become pos-

sible based on audio content analysis and description. Search engines or specific
filters can use the extracted description to help users navigate or browse through
large collections of data. Digital analysis may discriminate whether an audio file
contains speech, music or other audio entities, how many speakers are contained
in a speech segment, what gender they are and even which persons are speaking.
Spoken content may be identified and converted to text. Music may be classified
into categories, such as jazz, rock, classics, etc. Often it is possible to identify a
piece of music even when performed by different artists – or an identical audio
track also when distorted by coding artefacts. Finally, it may be possible to
identify particular sounds, such as explosions, gunshots, etc.
We use the term audio to indicate all kinds of audio signals, such as speech,

music as well as more general sound signals and their combinations. Our primary
goal is to understand how meaningful information can be extracted from digital
audio waveforms in order to compare and classify the data efficiently. When
such information is extracted it can also often be stored as content description
in a compact way. These compact descriptors are of great use not only in
audio storage and retrieval applications, but also for efficient content-based
classification, recognition, browsing or filtering of data. A data descriptor is
often called a feature vector or fingerprint and the process for extracting such
feature vectors or fingerprints from audio is called audio feature extraction or
audio fingerprinting.

Usually a variety of more or less complex descriptions can be extracted to
fingerprint one piece of audio data. The efficiency of a particular fingerprint

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd



2 1 INTRODUCTION

used for comparison and classification depends greatly on the application, the
extraction process and the richness of the description itself. This book will
provide an overview of various strategies and algorithms for automatic extraction
and description. We will provide various examples to illustrate how trade-offs
between size and performance of the descriptions can be achieved.

1.1 AUDIO CONTENT DESCRIPTION

Audio content analysis and description has been a very active research and
development topic since the early 1970s. During the early 1990s – with the
advent of digital audio and video – research on audio and video retrieval became
equally important. A very popular means of audio, image or video retrieval
is to annotate the media with text, and use text-based database management
systems to perform the retrieval. However, text-based annotation has significant
drawbacks when confronted with large volumes of media data. Annotation can
then become significantly labour intensive. Furthermore, since audiovisual data is
rich in content, text may not be rich enough in many applications to describe the
data. To overcome these difficulties, in the early 1990s content-based retrieval
emerged as a promising means of describing and retrieving audiovisual media.
Content-based retrieval systems describe media data by their audio or visual
content rather than text. That is, based on audio analysis, it is possible to describe
sound or music by its spectral energy distribution, harmonic ratio or fundamental
frequency. This allows a comparison with other sound events based on these
features and in some cases even a classification of sound into general sound
categories. Analysis of speech tracks may result in the recognition of spoken
content.
In the late 1990s – with the large-scale introduction of digital audio, images

and video to the market – the necessity for interworking between retrieval
systems of different vendors arose. For this purpose the ISO Motion Picture
Experts Group initiated the MPEG-7 “Multimedia Content Description Interface”
work item in 1997. The target of this activity was to develop an international
MPEG-7 standard that would define standardized descriptions and description
systems. The primary purpose is to allow users or agents to search, identify,
filter and browse audiovisual content. MPEG-7 became an international stan-
dard in September 2001. Besides support for metadata and text descriptions
of the audiovisual content, much focus in the development of MPEG-7 was
on the definition of efficient content-based description and retrieval specifica-
tions.
This book will discuss techniques for analysis, description and classifica-

tion of digital audio waveforms. Since MPEG-7 plays a major role in this
domain, we will provide a detailed overview of MPEG-7-compliant techniques
and algorithms as a starting point. Many state-of-the-art analysis and description
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algorithms beyond MPEG-7 are introduced and compared with MPEG-7 in terms
of computational complexity and retrieval capabilities.

1.2 MPEG-7 AUDIO CONTENT DESCRIPTION – AN
OVERVIEW

The MPEG-7 standard provides a rich set of standardized tools to describe multi-
media content. Both human users and automatic systems that process audiovisual
information are within the scope of MPEG-7. In general MPEG-7 provides such
tools for audio as well as images and video data.1 In this book we will focus on
the audio part of MPEG-7 only.
MPEG-7 offers a large set of audio tools to create descriptions. MPEG-7

descriptions, however, do not depend on the ways the described content is coded
or stored. It is possible to create an MPEG-7 description of analogue audio in
the same way as of digitized content.
The main elements of the MPEG-7 standard related to audio are:

• Descriptors (D) that define the syntax and the semantics of audio feature
vectors and their elements. Descriptors bind a feature to a set of values.

• Description schemes (DSs) that specify the structure and semantics of the
relationships between the components of descriptors (and sometimes between
description schemes).

• A description definition language (DDL) to define the syntax of existing or
new MPEG-7 description tools. This allows the extension and modification of
description schemes and descriptors and the definition of new ones.

• Binary-coded representation of descriptors or description schemes. This
enables efficient storage, transmission, multiplexing of descriptors and descrip-
tion schemes, synchronization of descriptors with content, etc.

The MPEG-7 content descriptions may include:

• Information describing the creation and production processes of the content
(director, author, title, etc.).

• Information related to the usage of the content (copyright pointers, usage
history, broadcast schedule).

• Information on the storage features of the content (storage format, encoding).
• Structural information on temporal components of the content.
• Information about low-level features in the content (spectral energy distribu-
tion, sound timbres, melody description, etc.).

1 An overview of the general goals and scope of MPEG-7 can be found in: Manjunath M., Salembier P.
and Sikora T. (2001) MPEG-7 Multimedia Content Description Interface, John Wiley & Sons, Ltd.
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• Conceptual information on the reality captured by the content (objects and
events, interactions among objects).

• Information about how to browse the content in an efficient way.
• Information about collections of objects.
• Information about the interaction of the user with the content (user preferences,
usage history).

Figure 1.1 illustrates a possible MPEG-7 application scenario. Audio features are
extracted on-line or off-line, manually or automatically, and stored as MPEG-7
descriptions next to the media in a database. Such descriptions may be low-
level audio descriptors, high-level descriptors, text, or even speech that serves
as spoken annotation.
Consider an audio broadcast or audio-on-demand scenario. A user, or an agent,

may only want to listen to specific audio content, such as news. A specific
filter will process the MPEG-7 descriptions of various audio channels and only
provide the user with content that matches his or her preference. Notice that the
processing is performed on the already extracted MPEG-7 descriptions, not on
the audio content itself. In many cases processing the descriptions instead of the
media is far less computationally complex, usually in an order of magnitude.
Alternatively a user may be interested in retrieving a particular piece of audio.

A request is submitted to a search engine, which again queries the MPEG-7
descriptions stored in the database. In a browsing application the user is interested
in retrieving similar audio content.
Efficiency and accuracy of filtering, browsing and querying depend greatly

on the richness of the descriptions. In the application scenario above, it is of
great help if the MPEG-7 descriptors contain information about the category of

Figure 1.1 MPEG-7 application scenario
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the audio files (i.e. whether the broadcast files are news, music, etc.). Even if
this is not the case, it is often possible to categorize the audio files based on the
low-level MPEG-7 descriptors stored in the database.

1.2.1 MPEG-7 Low-Level Descriptors

The MPEG-7 low-level audio descriptors are of general importance in describing
audio. There are 17 temporal and spectral descriptors that may be used in a variety
of applications. These descriptors can be extracted from audio automatically and
depict the variation of properties of audio over time or frequency. Based on
these descriptors it is often feasible to analyse the similarity between different
audio files. Thus it is possible to identify identical, similar or dissimilar audio
content. This also provides the basis for classification of audio content.

Basic Descriptors
Figure 1.2 depicts instantiations of the two MPEG-7 audio basic descriptors
for illustration purposes, namely the audio waveform descriptor and the audio
power descriptor. These are time domain descriptions of the audio content. The
temporal variation of the descriptors’ values provides much insight into the
characteristics of the original music signal.

Figure 1.2 MPEG-7 basic descriptors extracted from a music signal (cor anglais,
44.1 kHz)
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Basic Spectral Descriptors
The four basic spectral audio descriptors are all derived from a single time–
frequency analysis of an audio signal. They describe the audio spectrum in terms
of its envelope, centroid, spread and flatness.

Signal Parameter Descriptors
The two signal parameter descriptors apply only to periodic or quasi-periodic
signals. They describe the fundamental frequency of an audio signal as well as
the harmonicity of a signal.

Timbral Temporal Descriptors
Timbral temporal descriptors can be used to describe temporal characteristics of
segments of sounds. They are especially useful for the description of musical
timbre (characteristic tone quality independent of pitch and loudness).

Timbral Spectral Descriptors
Timbral spectral descriptors are spectral features in a linear frequency space,
especially applicable to the perception of musical timbre.

Spectral Basis Descriptors
The two spectral basis descriptors represent low-dimensional projections of
a high-dimensional spectral space to aid compactness and recognition. These
descriptors are used primarily with the sound classification and indexing descrip-
tion tools, but may be of use with other types of applications as well.

1.2.2 MPEG-7 Description Schemes

MPEG-7 DSs specify the types of descriptors that can be used in a given descrip-
tion, and the relationships between these descriptors or between other DSs. The
MPEG-7 DSs are written in XML. They are defined using the MPEG-7 descrip-
tion definition language (DDL), which is based on the XML Schema Language,
and are instantiated as documents or streams. The resulting descriptions can be
expressed in a textual form (i.e. human-readable XML for editing, searching,
filtering) or in a compressed binary form (i.e. for storage or transmission).
Five sets of audio description tools that roughly correspond to application

areas are integrated in the standard: audio signature, musical instrument timbre,
melody description, general sound recognition and indexing, and spoken content.
They are good examples of how the MPEG-7 audio framework may be integrated
to support other applications.
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Musical Instrument Timbre Tool
The aim of the timbre description tool is to specify the perceptual features of
instruments with a reduced set of descriptors. The descriptors relate to notions
such as “attack”, “brightness” or “richness” of a sound. Figures 1.3 and 1.4
illustrate the XML instantiations of these descriptors using the MPEG-7 audio
description scheme for a harmonic and a percussive instrument type. Notice that
the description of the instruments also includes temporal and spectral features
of the sound, such as spectral and temporal centroids. The particular values
fingerprint the instruments and can be used to distinguish them from other
instruments of their class.

Audio Signature Description Scheme
Low-level audio descriptors in general can serve many conceivable applications.
The spectral flatness descriptor in particular achieves very robust matching of

Figure 1.3 MPEG-7 audio description for a percussion instrument

Figure 1.4 MPEG-7 audio description for a violin instrument
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audio signals, well tuned to be used as a unique content identifier for robust auto-
matic identification of audio signals. The descriptor is statistically summarized
in the audio signature description scheme. An important application is audio
fingerprinting for identification of audio based on a database of known works.
This is relevant for locating metadata for legacy audio content without metadata
annotation.

Melody Description Tools
The melody description tools include a rich representation for monophonic
melodic information to facilitate efficient, robust and expressive melodic
similarity matching. The melody description scheme includes a melody contour
description scheme for extremely terse, efficient, melody contour representation,
and a melody sequence description scheme for a more verbose, complete, expres-
sive melody representation. Both tools support matching between melodies, and
can support optional information about the melody that may further aid content-
based search, including query-by-humming.

General Sound Recognition and Indexing Description Tools
The general sound recognition and indexing description tools are a collection of
tools for indexing and categorizing general sounds, with immediate application
to sound effects. The tools enable automatic sound identification and indexing,
and the specification of a classification scheme of sound classes and tools for
specifying hierarchies of sound recognizers. Such recognizers may be used auto-
matically to index and segment sound tracks. Thus, the description tools address
recognition and representation all the way from low-level signal-based analyses,
through mid-level statistical models, to highly semantic labels for sound classes.

Spoken Content Description Tools
Audio streams of multimedia documents often contain spoken parts that enclose
a lot of semantic information. This information, called spoken content, consists
of the actual words spoken in the speech segments of an audio stream. As
speech represents the primary means of human communication, a significant
amount of the usable information enclosed in audiovisual documents may reside
in the spoken content. A transcription of the spoken content to text can provide
a powerful description of media. Transcription by means of automatic speech
recognition (ASR) systems has the potential to change dramatically the way we
create, store and manage knowledge in the future. Progress in the ASR field
promises new applications able to treat speech as easily and efficiently as we
currently treat text.
The audio part of MPEG-7 contains a SpokenContent high-level tool targeted

for spoken data management applications. The MPEG-7 SpokenContent tool
provides a standardized representation of an ASR output, i.e. of the semantic
information (the spoken content) extracted by an ASR system from a spoken
signal. It consists of a compact representation of multiple word and/or sub-word
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hypotheses produced by an ASR engine. How the SpokenContent description
should be extracted and used is not part of the standard.
The MPEG-7 SpokenContent tool defines a standardized description of either

a word or a phone type of lattice delivered by a recognizer. Figure 1.5 illustrates
what an MPEG-7 SpokenContent description of the speech excerpt “film on
Berlin” could look like. A lattice can thus be a word-only graph, a phone-only
graph or combine word and phone hypotheses in the same graph as depicted in
the example of Figure 1.5.

1.2.3 MPEG-7 Description Definition Language (DDL)

The DDL defines the syntactic rules to express and combine DSs and descrip-
tors. It allows users to create their own DSs and descriptors. The DDL is not
a modelling language such as the Unified Modeling Language (UML) but a
schema language. It is able to express spatial, temporal, structural and concep-
tual relationships between the elements of a DS, and between DSs. It provides
a rich model for links and references between one or more descriptions and the
data that it describes. In addition, it is platform and application independent and
human and machine readable.
The purpose of a schema is to define a class of XML documents. This is

achieved by specifying particular constructs that constrain the structure and con-
tent of the documents. Possible constraints include: elements and their content,
attributes and their values, cardinalities and data types.

1.2.4 BiM (Binary Format for MPEG-7)

BiM defines a generic framework to facilitate the carriage and processing of
MPEG-7 descriptions in a compressed binary format. It enables the compression,

Figure 1.5 MPEG-7 SpokenContent description of an input spoken signal “film on
Berlin”
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multiplexing and streaming of XML documents. BiM coders and decoders can
handle any XML language. For this purpose the schema definition (DTD or XML
Schema) of the XML document is processed and used to generate a binary format.
This binary format has two main properties. First, due to the schema knowledge,
structural redundancy (element name, attribute names, etc.) is removed from
the document. Therefore the document structure is highly compressed (98% on
average). Second, elements and attribute values are encoded using dedicated
source coders.

1.3 ORGANIZATION OF THE BOOK

This book focuses primarily on the digital audio signal processing aspects for
content analysis, description and retrieval. Our prime goal is to describe how
meaningful information can be extracted from digital audio waveforms, and
how audio data can be efficiently described, compared and classified. Figure 1.6
provides an overview of the book’s chapters.

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Introduction

Low-Level Descriptors

Sound Classification and Similarity

Spoken Content

Music Description Tools

Fingerprinting and Audio Signal Quality

Application

Figure 1.6 Chapter outline of the book
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The purpose of Chapter 2 is to provide the reader with a detailed overview
of low-level audio descriptors. To a large extent this chapter provides the foun-
dations and definitions for most of the remaining chapters of the book. Since
MPEG-7 provides an established framework with a large set of descriptors, the
standard is used as an example to illustrate the concept. The mathematical def-
initions of all MPEG-7 low-level audio descriptors are outlined in detail. Other
established low-level descriptors beyond MPEG-7 are introduced. To help the
reader visualize the kind of information that these descriptors convey, some
experimental results are given to illustrate the definitions.
In Chapter 3 the reader is introduced to the concepts of sound similarity and

sound classification. Various classifiers and their properties are discussed. Low-
level descriptors introduced in the previous chapter are employed for illustration.
The MPEG-7 standard is again used as a starting point to explain the practical
implementation of sound classification systems. The performance of MPEG-7
systems is compared with the well-established MFCC feature extraction method.
The chapter provides in great detail simulation results of various systems for
sound classification.
Chapter 4 focuses on MPEG-7 SpokenContent description. It is possible to

follow most of the chapter without reading the other parts of the book. The
primary goal is to provide the reader with a detailed overview of ASR and
its use for MPEG-7 SpokenContent description. The structure of the MPEG-7
SpokenContent description itself is presented in detail and discussed in the
context of the spoken document retrieval (SDR) application. The contribution of
the MPEG-7 SpokenContent tool to the standardization and development of future
SDR applications is emphasized. Many application examples and experimental
results are provided to illustrate the concept.
Music description tools for specifying the properties of musical signals are

discussed in Chapter 5. We focus explicitly on MPEG-7 tools. Concepts for
instrument timbre description to specify perceptual features of musical sounds
are discussed using reduced sets of descriptors. Melodies can be described using
MPEG-7 description schemes for melodic similarity matching. We will discuss
query-by-humming applications to provide the reader with examples of how
melody can be extracted from a user’s input and matched against melodies
contained in a database.
An overview of audio fingerprinting and audio signal quality description is

provided in Chapter 6. In general, the MPEG-7 low-level descriptors can be seen
as providing a fingerprint for describing audio content. Audio fingerprinting has
to a certain extent been described in Chapters 2 and 3. We will focus in Chapter 6
on fingerprinting tools specifically developed for the identification of a piece of
audio and for describing its quality.
Chapter 7 finally provides an outline of example applications using the con-

cepts developed in the previous chapters. Various applications and experimental
results are provided to help the reader visualize the capabilities of concepts for
content analysis and description.





2
Low-Level Descriptors

2.1 INTRODUCTION

The MPEG-7 low-level descriptors (LLDs) form the foundation layer of the
standard (Manjunath et al., 2002). It consists of a collection of simple, low-
complexity audio features that can be used to characterize any type of sound.
The LLDs offer flexibility to the standard, allowing new applications to be built
in addition to the ones that can be designed based on the MPEG-7 high-level
tools.
The foundation layer comprises a series of 18 generic LLDs consisting of a

normative part (the syntax and semantics of the descriptor) and an optional, non-
normative part which recommends possible extraction and/or similarity matching
methods. The temporal and spectral LLDs can be classified into the following
groups:

• Basic descriptors: audio waveform (AWF), audio power (AP).
• Basic spectral descriptors: audio spectrum envelope (ASE), audio spectrum
centroid (ASC), audio spectrum spread (ASS), audio spectrum flatness (ASF).

• Basic signal parameters: audio harmonicity (AH), audio fundamental fre-
quency (AFF).

• Temporal timbral descriptors: log attack time (LAT) and temporal centroid
(TC).

• Spectral timbral descriptors: harmonic spectral centroid (HSC), harmonic
spectral deviation (HSD), harmonic spectral spread (HSS), harmonic spectral
variation (HSV) and spectral centroid (SC).

• Spectral basis representations: audio spectrum basis (ASB) and audio spectrum
projection (ASP).

An additional silence descriptor completes the MPEG-7 foundation layer.

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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This chapter gives the mathematical definitions of all low-level audio descrip-
tors according to the MPEG-7 audio standard. To help the reader visualize the
kind of information that these descriptors convey, some experimental results are
given to illustrate the definitions.1

2.2 BASIC PARAMETERS AND NOTATIONS

There are two ways of describing low-level audio features in the MPEG-7
standard:

• An LLD feature can be extracted from sound segments of variable lengths
to mark regions with distinct acoustic properties. In this case, the summary
descriptor extracted from a segment is stored as an MPEG-7 AudioSegment
description. An audio segment represents a temporal interval of audio material,
which may range from arbitrarily short intervals to the entire audio portion of
a media document.

• An LLD feature can be extracted at regular intervals from sound frames. In
this case, the resulting sampled values are stored as an MPEG-7 ScalableSeries
description.

This section provides the basic parameters and notations that will be used
to describe the extraction of the frame-based descriptors. The scalable series
descriptions used to store the resulting series of LLDs will be described in
Section 2.3.

2.2.1 Time Domain

In the time domain, the following notations will be used for the input audio
signal:

• n is the index of time samples.
• s�n� is the input digital audio signal.
• Fs is the sampling rate of s�n�.

And for the time frames:

• l is the index of time frames.
• hopSize is the time interval between two successive time frames.

1 See also the LLD extraction demonstrator from the Technische Universität Berlin (MPEG-7 Audio
Analyzer), available on-line at: http://mpeg7lld.nue.tu-berlin.de/.
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• Nhop denotes the integer number of time samples corresponding to hopSize.
• Lw is the length of a time frame (with Lw ≥ hopSize).
• Nw denotes the integer number of time samples corresponding to Lw.• L is the total number of time frames in s�n�.

These notations are portrayed in Figure 2.1.
The choice of hopSize and Lw depends on the kind of descriptor to extract.

However, the standard constrains hopSize to be an integer multiple or divider
of 10ms (its default value), in order to make descriptors that were extracted at
different hopSize intervals compatible with each others.

2.2.2 Frequency Domain

The extraction of some MPEG-7 LLDs is based on the estimation of short-term
power spectra within overlapping time frames. In the frequency domain, the
following notations will be used:

• k is the frequency bin index.
• Sl�k� is the spectrum extracted from the lth frame of s�n�.
• Pl�k� is the power spectrum extracted from the lth frame of s�n�.

Several techniques for spectrum estimation are described in the literature (Gold
and Morgan, 1999). MPEG-7 does not standardize the technique itself, even
though a number of implementation features are recommended (e.g. an Lw of
30ms for a default hopSize of 10ms). The following just describes the most
classical method, based on squared magnitudes of discrete Fourier transform
(DFT) coefficients. After multiplying the frames with a windowing function

Figure 2.1 Notations for frame-based descriptors
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w�n� (e.g. a Hamming window), the DFT is applied as:

Sl�k�=
NFT−1∑

n=0

s�n+ lNhop�w�n� exp
(
−j 2�nk

NFT

)

�0≤ l≤L−1�0≤k≤NFT −1�� (2.1)

where NFT is the size of the DFT �NFT ≥Nw�. In general, a fast Fourier transform
(FFT) algorithm is used and NFT is the power of 2 just larger than Nw (the
enlarged frame is then padded with zeros).
According to Parseval’s theorem, the average power of the signal in the lth

analysis window can be written in two ways, as:

Pl =
1
Ew

Nw−1∑

n=0

∣
∣s�n+ lNhop�w�n�

∣
∣2 = 1

NFTEw

NFT−1∑

k=0

�Sl�k��2 � (2.2)

where the window normalization factor Ew is defined as the energy of w�n�:

Ew =
Nw−1∑

n=0

�w�n��2 � (2.3)

The power spectrum Pl�k� of the lth frame is defined as the squared magnitude
of the DFT spectrum Sl�k�. Since the signal spectrum is symmetric around the
Nyquist frequency Fs/2, it is possible to consider the first half of the power
spectrum only �0≤k≤NFT/2� without losing any information. In order to ensure
that the sum of all power coefficients equates to the average power defined in
Equation (2.2), each coefficient can be normalized in the following way:

Pl�k�=
1

NFTEw

�Sl�k��2 for k= 0 and k= NFT

2

Pl�k�= 2
1

NFTEw

�Sl�k��2 for 0<k<
NFT

2
�

(2.4)

Figure 2.2 depicts the spectrogram of a piece of music (a solo excerpt of cor
anglais recorded at 44.1 kHz). Power spectra are extracted through the FFT
(NFT = 2048) every 10ms from 30ms frames. They are represented vertically at
the corresponding frame indexes. The frequency range of interest is between 0
and 22.05 kHz, which is the Nyquist frequency in this example. A lighter shade
indicates a higher power value.
In the FFT spectrum, the discrete frequencies corresponding to bin indexes

k are:

f�k�= k�F �0≤ k≤NFT/2�� (2.5)

where �F = Fs/NFT is the frequency interval between two successive FFT
bins. Inverting the preceding equation, we can map any frequency in the range
�0�Fs/2	 to a discrete bin in 
0�1� � � � �NFT/2�:

k= round�f/�F� �0≤ f ≤Fs/2�� (2.6)

where round(x) means rounding the real value x to the nearest integer.
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Figure 2.2 Spectrogram of a music signal (cor anglais, 44.1 kHz)

2.3 SCALABLE SERIES

An MPEG-7 ScalableSeries description is a standardized way of representing a
series of LLD features (scalars or vectors) extracted from sound frames at regular
time intervals. Such a series can be described at full resolution or after a scaling
operation. In the latter case, the series of original samples is decomposed into
consecutive sub-sequences of samples. Each sub-sequence is then summarized
by a single scaled sample.
An illustration of the scaling process and the resulting scalable series descrip-

tion is shown in Figure 2.3 (ISO/IEC, 2001), where i is the index of the scaled

Figure 2.3 Structure of a scalable series description
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series. In this example, the 31 samples of the original series (filled circles) are
summarized by 13 samples of the scaled series (open circles).
The scale ratio of a given scaled sample is the number of original samples

it stands for. Within a scalable series description, the scaled series is itself
decomposed into successive sequences of scaled samples. In such a sequence,
all scaled samples share the same scale ratio. In Figure 2.3, for example, the first
three scaled samples each summarize two original samples (scale ratio is equal
to 2), the next two six, the next two one, etc.
The attributes of a ScalableSeries are the following:

• Scaling: is a flag that specifies how the original samples are scaled. If absent,
the original samples are described without scaling.

• totalNumOfSamples: indicates the total number of samples of the original
series before any scaling operation.

• ratio: is an integer value that indicates the scale ratio of a scaled sample,
i.e. the number of original samples represented by that scaled sample. This
parameter is common to all the elements in a sequence of scaled samples. The
value to be used when Scaling is absent is 1.

• numOfElements: is an integer value indicating the number of consecutive
elements in a sequence of scaled samples that share the same scale ratio. If
Scaling is absent, it is equal to the value of totalNumOfSamples.

The last sample of the series may summarize fewer than ratio samples. In the
example of Figure 2.3, the last scaled sample has a ratio of 2, but actually
summarizes only one original sample. This situation is detected by comparing
the sum of ratio times numOfElements products to totalNumOfSamples.

Two distinct types of scalable series are defined for representing series of
scalars and series of vectors in the MPEG-7 LLD framework. Both types inherit
from the scalable series description. The following sections present them in
detail.

2.3.1 Series of Scalars

The MPEG-7 standard contains a SeriesOfScalar descriptor to represent a series
of scalar values, at full resolution or scaled. This can be used with any temporal
series of scalar LLDs. The attributes of a SeriesOfScalar description are:

• Raw: may contain the original series of scalars when no scaling operation is
applied. It is only used if the Scaling flag is absent to store the entire series at
full resolution.
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• Weight: is an optional series of weights. If this attribute is present, each weight
corresponds to a sample in the original series. These parameters can be used
to control scaling.

• Min, Max and Mean: are three real-valued vectors in which each dimension
characterizes a sample in the scaled series. For a given scaled sample, a
Min, Max and Mean coefficient is extracted from the corresponding group of
samples in the original series. The coefficient in Min is the minimum original
sample value, the coefficient in Max is the maximum original sample value
and the coefficient in Mean is the mean sample value. The original samples
are averaged by arithmetic mean, taking the sample weights into account if the
Weight attribute is present (see formulae below). These attributes are absent
if the Raw element is present.

• Variance: is a real-valued vector. Each element corresponds to a scaled sample.
It is the variance computed within the corresponding group of original samples.
This computation may take the sample weights into account if the Weight
attribute is present (see formulae below). This attribute is absent if the Raw
element is present.

• Random: is a vector resulting from the selection of one sample at random
within each group of original samples used for scaling. This attribute is absent
if the Raw element is present.

• First: is a vector resulting from the selection of the first sample in each group
of original samples used for scaling. This attribute is absent if the Raw element
is present.

• Last: is a vector resulting from the selection of the last sample in each group
of original samples used for scaling. This attribute is absent if the Raw element
is present.

These different attributes allow us to summarize any series of scalar features.
Such a description allows scalability, in the sense that a scaled series can be
derived indifferently from an original series (scaling operation) or from a previ-
ously scaled SeriesOfScalar (rescaling operation).
Initially, a series of scalar LLD features is stored in the Raw vector. Each

element Raw(l) �0≤ l≤L− 1� contains the value of the scalar feature extracted
from the lth frame of the signal. Optionally, the Weight series may contain the
weights W�l� associated to each Raw(l) feature.
When a scaling operation is performed, a new SeriesOfScalar is generated

by grouping the original samples (see Figure 2.3) and calculating the above-
mentioned attributes. The Raw attribute is absent in the scaled series descriptor.
Let us assume that the ith scaled sample stands for the samples Raw(l) contained
between l= lLo�i� and l= lHi�i� with:

lHi�i�= lLo�i�+ ratio− 1 (2.7)
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where ratio is the scale ratio of the ith scaled sample (i.e. the number of original
samples it stands for). The correspondingMin andMax values are then defined as:

Min�i�=minlHi�i�

l=lLo�i� Raw�l� and Max�i�=maxlHi�i�

l=lLo�i� Raw�l�� (2.8)

The Mean value is given by:

Mean�i�= 1
ratio

lHi�i�∑

l=lLo�i�

Raw�l� (2.9)

if no sample weights W�l� are specified in Weight. If weights are present, the
Mean value is computed as:

Mean�i�=
lHi�i�∑

l=lLo�i�

W�l�Raw�l�
/ lHi�i�∑

l=lLo�i�

W�l�� (2.10)

In the same way, there are two computational methods for the Variance depend-
ing on whether the original sample weights are absent:

Variance�i�= 1
ratio

lHi�i�∑

l=lLo�i�

�Raw�l�−Mean�i�	2 � (2.11)

or present:

Variance�i�=
lHi�i�∑

l=lLo�i�

W�l� �Raw�l�−Mean�i�	2
/ lHi�i�∑

l=lLo�i�

W�l�� (2.12)

Finally, the weights W�i� of the new scaled samples are computed, if necessary,
as:

W�i�= 1
ratio

lHi�i�∑

l=lLo�i�

W�l�� (2.13)

2.3.2 Series of Vectors

Some LLDs do not consist of single scalar values, but of multi-dimensional
vectors. To store these LLDs as scalable series, the MPEG-7 standard contains
a SeriesOfVector descriptor to represent temporal series of feature vectors. As
before, a series can be stored at the full original resolution or scaled. The
attributes of a SeriesOfVector description are:

• vectorSize: is the number of elements of each vector in the series.
• Raw: may contain the original series of vectors when no scaling operation is
applied. It is only used if the Scaling flag is absent to store the entire series at
full resolution.
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• Weight: is an optional series of weights. If this attribute is present, each weight
corresponds to a vector in the original series. These parameters can be used
to control scaling in the same way as for the SeriesOfScalar description.

• Min, Max and Mean: are three real-valued matrices. The number of rows is
equal to the sum of numOfElements over the scaled series (i.e. the number
of scaled vectors). The number of columns is equal to vectorSize. Each row
characterizes a scaled vector. For a given scaled vector, a Min, Max and Mean
row vector is extracted from the corresponding group of vectors in the original
series. The row vector in Min contains the minimum coefficients observed
among the original vectors, the row vector in Max contains the maximum
coefficients observed among the original vectors and the row vector in Mean
is the mean of the original vectors. Each vector coefficient is averaged in the
same way as the Mean scalars in the previous section. These attributes are
absent if the Raw element is present.

• Variance: is a series of variance vectors whose size is set to vectorSize.
Each vector corresponds to a scaled vector. Its coefficients are equal to the
variance computed within the corresponding group of original vectors. This
computation may take the sample weights into account if the Weight attribute
is present. This attribute is absent if the Raw element is present.

• Covariance: is a series of covariance matrices. It is represented as a three-
dimensional matrix: the number of rows is equal to the sum of numOfElements
parameters over the scaled series; the number of columns and number of pages
are both equal to vectorSize. Each row is a covariance matrix describing a
given scaled vector. It is estimated from the corresponding group of original
vectors (see formula below). This attribute is absent if the Raw element is
present.

• VarianceSummed: is a series of summed variance coefficients. Each coefficient
corresponds to a scaled vector. For a given scaled vector, it is obtained by
summing the elements of the corresponding Variance vector (see formula
below). This attribute is absent if the Raw element is present.

• MaxSqDist: is a series of maximum squared distance (MSD) coefficients. For
each scaled vector, an MSD coefficient is estimated (see formula below),
representing an upper bound of the distance between the corresponding group
of original vectors and their mean. This attribute is absent if the Raw element
is present.

• Random: is a series of vectors resulting from the selection of one vector at
random within each group of original vectors used for scaling. This attribute
is absent if the Raw element is present.

• First: is a series of vectors resulting from the selection of the first vector in
each group of original vectors used for scaling. This attribute is absent if the
Raw element is present.

• Last: is a series of vectors resulting from the selection of the last vector in
each group of original samples used for scaling. This attribute is absent if the
Raw element is present.
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As in the case of SeriesOfScalar, these attributes aim at summarizing a series of
vectors through scaling and/or rescaling operations.
Initially, a series of vector LLD features is stored in the Raw attribute. Each

element Raw(l) (0≤ l≤L−1� contains the vector extracted from the lth frame of
the signal. Optionally, theWeight series may contain the weightsW�l� associated
to each vector.
When a scaling operation is performed, a new SeriesOfVector is generated.

The Min, Max, Mean and Weight attributes of the scaled series are defined in the
same way as for the SeriesOfScalar scaling operation described in Section 2.3.1
(the same formulae are applied with vectors instead of scalars). The elements of
the Covariance matrix of the ith scaled sample are defined as:

Cov�i� b� b′�= 1
ratio

lHi�i�∑

l=lLo�i�

�Raw�l� b�−Mean�i� b�	�Raw�l� b′�−Mean�i� b′�	�

(2.14)

with (0≤ b≤B− 1) and (0≤ b′ ≤B− 1), where B is the size of vector Raw(l),
and b and b′ are indexes of vector dimensions. Raw(l� b) and Mean(i� b) are the
bth coefficients of vectors Raw(l) and Mean(i). The VarianceSummed attribute
of the ith scaled sample is defined as:

VarianceSummed�i�= 1
ratio

B−1∑

b=0

lHi�i�∑

l=lLo�i�

�Raw�l� b�−Mean�i� b�	2� (2.15)

If weights are specified for original vectorsRaw(l), the computation ofCovariance
andVarianceSummed takes themintoaccount in the samewayas inEquation (2.12).
The MaxSqDist attribute of the ith scaled sample is defined as:

MaxSqDist�i�=maxlHi�i�

l=lLo�i� �Raw�l�−Mean�i��2 � (2.16)

2.3.3 Binary Series

The standard defines a binary form of the aforementioned SeriesOfScalar and
SeriesOfVector descriptors: namely, the SeriesOfScalarBinary and SeriesOfVec-
torBinary descriptors. These descriptors are used to instantiate series of scalars
or vectors with a uniform power-of-2 ratio. The goal is to ease the comparison of
series with different scaling ratios, as the decimation required for the comparison
between two binary series is also a power of 2.

2.4 BASIC DESCRIPTORS

The goal of the following two descriptors is to provide a simple and economical
description of the temporal properties of an audio signal.
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2.4.1 Audio Waveform

A simple way to get a compact description of the shape of an audio sig-
nal s�n� is to consider its minimum and maximum samples within successive
non-overlapping frames (i.e. Lw = hopSize). For each frame, two values are
stored:

• minRange: the lower limit of audio amplitude in the frame.
• maxRange: the upper limit of audio amplitude in the frame.

The audio waveform (AWF) descriptor consists of the resulting temporal series
of these (minRange, maxRange) pairs. The temporal resolution of the AWF is
given by the hopSize parameter. If desired, the raw signal can be stored in an
AWF descriptor by setting hopSize to the sampling period 1/Fs of s�n�.
The AWF provides an estimate of the signal envelope in the time domain.

It also allows economical and straightforward storage, display or comparison
techniques of waveforms. The display of the AWF description of a signal consists
in drawing for each frame a vertical line from minRange to maxRange. The time
axis is then labelled according to the hopSize information.
Figure 2.4 gives graphical representations of the series of basic LLDs extracted

from the music excerpt used in Figure 2.2. We can see that the MPEG-7 AWF
provides a good approximation of the shape of the original waveform.

Figure 2.4 MPEG-7 basic descriptors extracted from a music signal (cor anglais,
44.1 kHz)
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2.4.2 Audio Power

The audio power (AP) LLD describes the temporally smoothed instantaneous
power of the audio signal. The AP coefficients are the average square of wave-
form values s�n� within successive non-overlapping frames (Lw=hopSize). The
AP coefficient of the lth frame of the signal is thus:

AP�l�= 1
Nhop

Nhop−1
∑

n=0

∣
∣s�n+ lNhop�

∣
∣2 �0≤ l≤L− 1�� (2.17)

where L is the total number of time frames. The AP allows us to measure the
evolution of the amplitude of the signal as a function of time. In conjunction
with other basic spectral descriptors (described below), it provides a quick
representation of the spectrogram of a signal.
An example of the AP description of a music signal is given in Figure 2.4.

The AP is measured in successive signal frames and given as a function of time
(expressed in terms of frame index l). This provides a very simple representation
of the signal content: the power peaks correspond to the parts where the original
signal has a higher amplitude.

2.5 BASIC SPECTRAL DESCRIPTORS

The four basic spectral LLDs provide time series of logarithmic frequency
descriptions of the short-term audio power spectrum. The use of logarithmic
frequency scales is supposed to approximate the response of the human ear.
All these descriptors are based on the estimation of short-term power spectra

within overlapping time frames. This section describes the descriptors, based on
the notations and definitions introduced in Section 2.2. For reasons of clarity,
the frame index l will be discarded in the following formulae.

2.5.1 Audio Spectrum Envelope

The audio spectrum envelope (ASE) is a log-frequency power spectrum that can
be used to generate a reduced spectrogram of the original audio signal. It is
obtained by summing the energy of the original power spectrum within a series
of frequency bands.
The bands are logarithmically distributed (base 2 logarithms) between two

frequency edges loEdge (lower edge) and hiEdge (higher edge). The spectral
resolution r of the frequency bands within the [loEdge,hiEdge] interval can be
chosen from eight possible values, ranging from 1/16 of an octave to 8 octaves:

r = 2j octaves �−4≤ j≤+3�� (2.18)
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Both loEdge and hiEdge must be related to 1 kHz in the following way:

Edge= 2rn × 1kHz� (2.19)

where r is the resolution in octaves and n is an integer value.
The default value of hiEdge is 16 kHz, which corresponds to the upper limit

of hearing. The default value of loEdge is 62.5Hz so that the default [loEdge,
hiEdge] range corresponds to an 8-octave interval, logarithmically centred at a
frequency of 1 kHz.
Within the default [loEdge, hiEdge] range, the number of logarithmic bands

that corresponds to r is Bin = 8/r. The low (loFb) and high (hiFb) frequency
edges of each band are given by:

loFb = loEdge× 2�b−1�r

hiFb = loEdge× 2br
�1≤ b≤Bin�� (2.20)

The sum of power coefficients in band b �loFb�hiFb	 gives the ASE coefficient
for this frequency range. The coefficient for the band b is:

ASE�b�=
hiKb∑

k=loKb

P�k� �1≤ b≤Bin�� (2.21)

where P�k� are the power spectrum coefficients defined in Equation (2.4),
and loKb (resp. hiKb) is the integer frequency bin corresponding to the lower
edge of the band loFb (the higher edge of the band hiFb) obtained from
Equation (2.6).
However, the repartition of the power spectrum coefficients P�k� among the

different frequency bands can be a problem, particularly for the narrower low-
frequency bands when the resolution r is high. It is reasonable to assume that a
power spectrum coefficient whose distance to a band edge is less than half the
FFT resolution (i.e. less than �F/2) contributes to the ASE coefficients of both
neighbouring bands. How such a coefficient should be shared by the two bands
is not specified by the standard. A possible method is depicted in Figure 2.5.
The Bin within-band band power coefficients are completed by two additional

values: the powers of the spectrum between 0Hz and loEdge and between hiEdge
and the Nyquist frequency Fs/2 (provided that hiEdge < Nyquist frequency).
These two values represent the out-of-band energy.
In the following, B= Bin + 2 will describe the total number of coefficients

ASE�b� �0≤ b≤B− 1� forming the ASE descriptor extracted from one frame.
With loEdge and hiEdge default values, the dimension of an ASE can be chosen
between B= 3 �Bin = 1� with the minimal resolution of 8 octaves and B= 130
�Bin = 128� with the maximal resolution of 1/16 octave.
The extraction of an ASE vector from a power spectrum is depicted in

Figure 2.6 with, as an example, the loEdge and hiEdge default values and a
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Figure 2.5 Method for weighting the contribution of a power coefficient shared by two
bands

Figure 2.6 Extraction of ASE from a power spectrum with a single-octave resolution

1-octave resolution. The ASE vectors comprise 10 coefficients: 8 within-band
coefficients plus 2 out-of-band coefficients.

The summation of all ASE coefficients equals the power in the analysis
window, according to Parseval’s theorem. More generally, this descriptor has
useful scaling properties: the power spectrum over an interval is equal to the
sum of power spectra over subintervals.
Figure 2.7 gives graphical representations of the basic LLDs extracted from the

same music excerpt as in Figure 2.4. The ASE description is depicted in (b). Each
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Figure 2.7 MPEG-7 basic spectral descriptors extracted from a music signal (cor
anglais, 44.1 kHz)

ASE vector is extracted from 34 frequency bands and consists of 32 within-band
coefficients between loEdge= 250Hz and hiEdge= 16kHz (i.e. a 1/4-octave
resolution) and two out-of-band coefficients. ASE vectors are extracted every
10ms from 30ms frames and represented vertically at the corresponding frame
indexes. A lighter shade indicates a higher band power value. The ASE provides
a compact representation of the spectrogram of the input signal.

2.5.2 Audio Spectrum Centroid

The audio spectrum centroid (ASC) gives the centre of gravity of a log-frequency
power spectrum. All power coefficients below 62.5Hz are summed and repre-
sented by a single coefficient, in order to prevent a non-zero DC component
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and/or very low-frequency components from having a disproportionate weight.
On the discrete frequency bin scale, this corresponds to every power coefficient
falling below the index:

Klow = floor�62�5/�F �� (2.22)

where floor(x) gives the largest integer less than or equal to x, and �F =Fs/NFT

is the frequency interval between two FFT bins.
This results in a new power spectrum P ′�k′� whose relation to the original

spectrum P�k� of Equation (2.4) is given by:

P ′�k′�=





Klow∑

k=0
P�k� for k′ = 0

P�k′ +Klow� for 1≤ k′ ≤ NFT

2 −Klow�

(2.23)

The frequencies f ′�k′� corresponding to the new bins k′ are given by:

f ′�k′�=
{
31�25 for k′ = 0

f�k′ +Klow� for 1≤ k′ ≤ NFT

2 −Klow�
(2.24)

where f�k� is defined as in Equation (2.5). The nominal frequency of the low-
frequency coefficient is chosen at the middle of the low-frequency band: f ′�0�=
31�25Hz.
Finally, for a given frame, the ASC is defined from the modified power

coefficients P ′�k′� and their corresponding frequencies f ′�k′� as:

ASC=

�NFT /2�−Klow∑

k′=0
log2

(
f ′�k′�
1000

)
P ′�k′�

�NFT /2�−Klow∑

k′=0
P ′�k′�

(2.25)

Each frequency f ′�k′� of the modified power spectrum is weighted by the
corresponding power coefficient P ′�k′�.

Several other definitions of the spectrum centroid can be found in the literature
(Wang et al., 2000), using different spectrum coefficients (amplitude, log-power,
etc.) or frequency scales (logarithmic or linear). The MPEG-7 definition, based
on an octave frequency scale centred at 1 kHz, is designed to be coherent with
the ASE descriptor defined in Section 2.5.1.
The ASC measure gives information on the shape of the power spectrum. It

indicates whether a power spectrum is dominated by low or high frequencies
and can be regarded as an approximation of the perceptual sharpness of the
signal. The log-frequency scaling approximates the perception of frequencies in
the human hearing system.
Figure 2.7 depicts the temporal series of ASC values. In this example, the

spectrum is dominated by lower frequencies. The ASC values remain around 0,
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which means, according to Equation (2.25), that the corresponding frequency
centroids remain around 1 kHz.

2.5.3 Audio Spectrum Spread

The audio spectrum spread (ASS) is another simple measure of the spectral
shape. The spectral spread, also called instantaneous bandwidth, can be defined
in several different ways (Li, 2000). In MPEG-7, it is defined as the second
central moment of the log-frequency spectrum. For a given signal frame, the
ASS feature is extracted by taking the root-mean-square (RMS) deviation of the
spectrum from its centroid ASC:

ASS=

√
√
√
√
√
√
√
√

�NFT /2�−Klow∑

k′=0

[
log2

(
f ′�k′�
1000

)
−ASC

]2
P ′�k′�

�NFT /2�−Klow∑

k′=0
P ′�k′�

� (2.26)

where the modified power spectrum coefficients P ′�k′� and the corresponding
frequencies f ′�k′� are calculated in the same way as for the ASC descriptor (see
Equations (2.23) and (2.24)).
The ASS gives indications about how the spectrum is distributed around its

centroid. A low ASS value means that the spectrum may be concentrated around
the centroid, whereas a high value reflects a distribution of power across a wider
range of frequencies. It is designed to help differentiate noise-like and tonal sounds.
Figure 2.7 depicts the temporal series of ASS values. Except at the onsets of

notes and for the noise-like end silence, the spread remains rather low (an ASS
of 0.5 corresponding to a 500Hz spread), as expected with a solo instrument
excerpt.

2.5.4 Audio Spectrum Flatness

The audio spectrum flatness (ASF) reflects the flatness properties of the power
spectrum. More precisely, for a given signal frame, it consists of a series of
values, each one expressing the deviation of the signal’s power spectrum from
a flat shape inside a predefined frequency band. As such, it is a measure of
how similar an audio signal is to white noise, or, vice versa, how correlated a
signal is.
The first step of the ASF extraction is the calculation of the power spectrum

of each signal frame as specified in Equation (2.4). In this case, the power
coefficients P�k� are obtained from non-overlapping frames (i.e. the hopSize
parameter is set to Lw, the length of the analysis windows, which is recommended
to be 30ms in this case).
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Within a [loEdge, hiEdge] range, the spectrum is then divided into 1/4-
octave-spaced log-frequency bands. These parameters must be distinguished
from the loEdge and hiEdge edges used in the definition of the ASE descriptor
in Section 2.5.1. Here, the values of loEdge and hiEdge must be chosen so that
the intervals separating them from 1 kHz are integer multipliers of a 1/4 octave.
We thus have:

loEdge= 2
1
4 n × 1kHz

hiEdge= 2
1
4B × loEdge�

(2.27)

where n and B are integer parameters with the following meanings:

• The value of n determines the lower band edge. The minimum value for
loEdge is recommended to be 250Hz (i.e. n=−8).

• B is the desired number of frequency bands. After loEdge has been set, the
value of B determines the higher band edge. The value of hiEdge should not
exceed a frequency limit beyond which no flatness features can be properly
extracted. The most obvious limitation to hiEdge is the Nyquist frequency.
Another limitation could be the bandwidth of the original signal. The choice
of parameter B must be made accordingly within these limitations.

The resulting frequency bands are proportional to those used in the definition of
the ASE, thus ensuring compatibility among the different basic spectral descrip-
tors.
However, defining frequency bands with no overlap could make the calcu-

lation of ASF features too sensitive to slight variations in sampling frequency.
Therefore, the nominal edge frequencies of Equation (2.27) are modified so that
the B frequency bands slightly overlap each other. Each band is thus made 10%
larger in the following manner:

loFb = 0�95× loEdge× 2
1
4 �b−1�

hiFb = 1�05× loEdge× 2
1
4 b

�1≤ b≤B�� (2.28)

with loFb and hiFb being the lower and upper limits of band b. We denote as
loKb and hiKb the corresponding bins in the power spectrum, obtained from
Equation (2.6).
Furthermore, in order to reduce computational costs and to adjust the frequency

resolution of the spectrum to the log-frequency bands, the MPEG-7 standard
specifies a method for grouping the power spectrum coefficients P�k� in bands
above the edge frequency of 1 kHz. The grouping is defined as follows:

• For all bands between 1 kHz and 2 kHz (i.e. four bands if hiEdge is greater
than 2 kHz), power spectrum coefficients P�k� are grouped by pairs. Two
successive coefficients P�k� and P�k+ 1� are replaced by a single average
coefficient �P�k�+P�k+ 1�	/2.
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Figure 2.8 Power coefficient grouping within two consecutive bands around 2 kHz

• This grouping procedure is generalized to the following intervals of 1 octave
as follows. Within all bands between 2n kHz and 2n+1 kHz (where n is an
integer and n≥1), each group of 2n+1 successive power coefficients is replaced
by a single coefficient equal to their arithmetic mean. Figure 2.8 illustrates
the coefficient grouping procedure within two consecutive bands b (between
f = 23/4 kHz≈ 1681�8Hz and f = 2kHz) and b+ 1 (between f = 2kHz and
f =25/4 kHz≈2378�4Hz). As specified in Equation (2.28), these nominal edge
frequencies are actually modified to introduce a 10% overlap represented on
the schema.

• At the end of each band, the last group of coefficients may not contain
the required number of values. If at least 50% of the required coefficients
are available (i.e. 2n coefficients for bands between 2n kHz and 2n+1 kHz),
the group is completed by using the appropriate number of coefficients at the
beginning of the next band. Otherwise, no average coefficient is yielded;
the power coefficients contained in the last group are simply ignored. In
the example of Figure 2.8, the last group of band b+ 1 only contain one
coefficient, which is ignored in the calculation of the three grouped power
coefficients finally associated to b+ 1.

This grouping procedure results in a new set of power coefficients Pg�k
′�. We

call loK′
b and hiK′

b the new band edge indexes of frequency bands b in the
modified power spectrum (see Figure 2.8).
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For each band b, a spectral flatness coefficient is then estimated as the ratio
between the geometric mean and the arithmetic mean of the spectral power
coefficients within this band:

ASF�b�=
hiK′

b
−loK′

b
+1

√
hiK′

b∏

k′=loK′
b

Pg�k
′�

1
hiK′

b−loK′
b+1

hiK′
b∑

k′=loK′
b

Pg�k
′�

�1≤ b≤B�� (2.29)

For all bands under the edge of 1 kHz, the power coefficients are averaged
in the normal way. In that case, for each band b, we have Pg�k

′� = P�k′�
between k′ = loK′

b = loKb and k′ =hiK′
b =hiKb. For all bands above 1 kHz, for

which a power coefficient grouping was required, only the reduced number of
grouped coefficients is taken into account in the calculation of the geometric and
arithmetic means.
A flat spectrum shape corresponds to a noise or an impulse signal. Hence, high

ASF coefficients are expected to reflect noisiness. On the contrary, low values
may indicate a harmonic structure of the spectrum. From a psycho-acoustical
point of view, a large deviation from a flat shape (i.e. a low spectral flatness
measure) generally characterizes the tonal sounds.
Figure 2.7 shows the temporal series of ASF vectors. Each ASF vector

is extracted from 24 frequency bands within a 6-octave frequency interval,
between loEdge= 250Hz and hiEdge= 16kHz (chosen to be smaller than the
22.05 kHz Nyquist frequency). A lighter shade indicates a higher spectral flat-
ness value, meaning that the tonal component is less present in the corresponding
bands.
The spectral flatness coefficients may be used as a feature vector for robust

matching between pairs of audio signals. It is also possible to reduce the spectral
flatness features to a single scalar by computing the mean value across the fre-
quency band coefficients ASF(b) for each frame. The resulting feature measures
the overall flatness of a frame and can be used by an audio classifier (Burred
and Lerch 2003, 2004).

2.6 BASIC SIGNAL PARAMETERS

The above-mentioned basic spectral LLDs give a smoothed representation of
power spectra. They cannot reflect the detailed harmonic structure of periodic
sounds because of a lack of frequency resolution. The following descriptors pro-
vide some complementary information, by describing the degree of harmonicity
of audio signals.
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2.6.1 Audio Harmonicity

The audio harmonicity (AH) descriptor provides two measures of the harmonic
properties of a spectrum:

• the harmonic ratio: the ratio of harmonic power to total power.
• the upper limit of harmonicity: the frequency beyond which the spectrum
cannot be considered harmonic.

They both rely on a standardized fundamental frequency estimation method,
based on the local normalized autocorrelation function of the signal. This
approach, widely used for local pitch estimation, is independent of the extraction
of the audio fundamental frequency descriptor presented below.

2.6.1.1 Harmonic Ratio

The harmonic ratio (HR) is a measure of the proportion of harmonic components
in the power spectrum. An HR coefficient is computed for each Nw sample
frame of the original signal s�n�, with a hop of Nhop samples between successive
frames. The extraction of an HR frame feature is standardized as follows.
For a given frame index l, the normalized autocorrelation function of the

signal is first estimated as:

l�m�=
Nw−1∑

n=0
sl�n�sl�n−m�

√
Nw−1∑

n=0
sl�n�

2
Nw−1∑

n=0
sl�n−m�2

�l≤m≤M�0≤ l≤L− 1�� (2.30)

where sl�n� is defined as s�lNhop + n��m is the lag index of the autocorrelation
and L is the total number of frames in s�n�. In the definition of Equation (2.30),
autocorrelation values are computed at lags ranging from m = 1 to m =M .
The maximum lag M corresponds to the maximum fundamental period T0 (or
equivalently the minimum fundamental frequency) that can be estimated:

M =Tmax
0 Fs =

Fs

fmin
0

� (2.31)

The default expected maximum period Tmax
0 is 40ms, which corresponds to a

minimum fundamental frequency of 25Hz.
If the signal is purely periodic, the maximum values of l�m� will be at lags

m corresponding to multiples of T0. At lags near m= 0 a high peak will appear,
which will very likely reach values near to 1 for almost any type of audio signal,
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independently of its degree of periodicity. To obtain the HR, the autocorrelation
is searched for the maximum, after having ignored the zero-lag peak:

HR= max
M0≤m≤M


l�m��� (2.32)

where M0 denotes a lag immediately to the right of the zero-lag peak. One
straightforward possibility is to define M0 as the lag corresponding to the first
zero crossing of the autocorrelation.
It should be noted that, in the MPEG-7 standard, the above equation is writ-

ten as:

HR= max
l≤m≤Nhop


l�m��� (2.33)

It can be seen that, on the one side, the zero-lag peak is not ignored, which
would result in HR values virtually always close to 1. On the other side, the
rightmost limit corresponds only to a frame length, and not to the maximum lag
M corresponding to the maximum fundamental period expected.
The lag that maximizes l�m� corresponds to the estimated local fundamental

period. The HR values will be close to 0 for white noise and to 1 for purely
periodic signals.
Figure 2.9 gives the temporal series of HR values extracted from three different

types of sounds: flute, laughter and noise. It is clear that the modified definition
described in Equation (2.32) differentiates more clearly the three types of sounds.

Figure 2.9 MPEG-7 HR extracted from three different types of sounds (44.1 kHz) with:
top, the original HR of Equation (2.33); and bottom, the modified HR of Equation (2.32)
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With both methods, flute has an HR uniformly equal to 1, as expected for
a purely harmonic signal, whereas the lack of harmonicity of noise is better
described with the modified HR, whose value stays below 0.5 across the whole
audio segment. The results obtained with the laughter sound are also clearly
different. With the original HR definition, laughter cannot be distinguished from
music, whereas the modified HR definition clearly separates the two curves.
This indicates, as expected, less harmonicity in laughter than in flute.

2.6.1.2 Upper Limit of Harmonicity

The upper limit of harmonicity (ULH) is an estimation of the frequency beyond
which the spectrum no longer has any harmonic structure. It is based on the
output/input power ratio of a time domain comb filter (Moorer, 1974) tuned
to the fundamental period of the signal estimated in the previous section. The
algorithm is performed as follows:

1. The comb-filtered signal is calculated as:

s̃l�n�= sl�n�−Glsl �n− m̂� �0≤ n≤Nw − 1�� (2.34)

where m̂ is the lag maximizing the autocorrelation function l�m� in Equa-
tion (2.32), which corresponds to the estimated fundamental period of frame
l. The Gl factor is the optimal gain of the comb filter:

Gl =

Nw−1∑

j=0
sl�j�sl �j− m̂�

Nw−1∑

j=0
sl �j− m̂�2

� (2.35)

2. The power spectra of the original and comb-filtered signals (P ′�k� and P ′
c�k�,

respectively) are computed for each frame l as described in Equation (2.23).
3. For each of the spectra P ′�k� and P ′

c�k�, all the power samples falling beyond
a given frequency bin klim are summed. The ratio of the two sums is then
taken as follows:

R�klim�=

�NFT /2�−Klow∑

k=klim

P ′
c�k�

�NFT /2�−Klow∑

k=klim

P ′�k�
� (2.36)

The maximum frequency bin of the spectra kmax = NFT/2−Klow has been
explained in Equation (2.23).

4. The ratios R�klim� are computed sequentially, decrementing klim from klim =
kmax down to the first frequency bin kulh for which R�klim� is smaller than a
threshold of 0.5.
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5. The corresponding frequency fulh is given by f�kulh +Klow� as defined in
Equation (2.5), except if kulh = 0. In the later case, fulh is set to 31.25Hz,
conforming to the definition of the ASC in Equation (2.25).

6. Finally, a ULH feature is computed for each signal frame as:

ULH = log2

(
fulh
1000

)

� (2.37)

The conversion of the frequency limit fulh into an octave scale centred on
1 kHz makes the ULH coherent with the definitions of the ASC and ASS
descriptors in Equations (2.25) and (2.26).

The two AH features HR and ULH are designed to provide a compact description
of the harmonic properties of sounds. They can be used for distinguishing
between harmonic sounds (i.e. sounds whose spectra have a harmonic structure,
like musical sounds and voiced speech segments) and non-harmonic sounds
(i.e. sounds with non-harmonic spectra, like noisy sounds and unvoiced speech
segments).

2.6.2 Audio Fundamental Frequency

The audio fundamental frequency (AFF) descriptor provides estimations of the
fundamental frequency f0 in segments where the signal is assumed to be periodic.
It is particularly useful to get an approximation of the pitch of any music or
speech signals.
Numerous f0 estimation algorithms are available in the literature. The standard

does not specify any normative extraction method. In the following we provide
an overview of several widely used pitch estimation techniques.
One of the most common approaches is the temporal autocorrelation (TA)

method already described in the AH section, in Equations (2.30) and (2.32).
However, even though the TA method produces exact pitch values in most cases,
it may result in doubled pitch errors when the signal is highly periodic with
short pitch periods. This means, that for a given true pitch period of T0, the
maximum value of TA may be reached at integer multiples of T0, such as 2T0,
3T0, etc.
One way to avoid this is to use the spectral autocorrelation (SA) method,

which is a transposition of the TA approach in the spectral domain. But in spite
of its effectiveness in avoiding pitch doubling, the SA method may cause pitch
halving, i.e. detect a pitch period which is an integer division of the actual T0,
such as T0/2� T0/3, etc.
To avoid these shortcomings, the spectro-temporal autocorrelation (STA)

method (Cho et al., 1998) was proposed. Combining the TA and SA approaches,
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the STA pitch estimation is robust against gross pitch errors such as pitch dou-
bling or halving. Given a pitch candidate �, the STA is defined by:

STA���=�TA���+ �1−���SA���� (2.38)

where TA and SA are the autocorrelation functions of the signal in the temporal
and spectral domains respectively, and � is a weighting factor between 0 and 1.
The fundamental period T0 is then estimated as:

T0 = argmax
�

�STA���	� (2.39)

and the local fundamental frequency is finally given by:

f0 =
1
T0

� (2.40)

Although the estimation method is not normalized, the MPEG-7 standard requires
additional parameters to be provided that, along with the estimated value of f0,
form the AFF descriptor. These parameters are:

• loLimit: the lower limit of the frequency range in which f0 has been searched.
• hiLimit: the upper limit of the frequency range in which f0 has been searched.
• A measure of confidence on the presence of periodicity in the analysed part
of the signal, contained between 0 and 1. These measures are stored in the
Weight field of a SeriesOfScalar (see Section 2.3.1) that stores a temporal
series of AFF descriptors.

The confidence measure allows us to annotate different portions of a signal
according to their respective degree of periodicity. It ranges from 0, meaning
a non-periodic interval, to 1, reflecting a perfect periodicity. Although it is not
mentioned in the standard, the MPEG-7 HR descriptor (Section 2.6.1.1) could be
used as a confidence measure, since it fulfils these requirements. This measure
can be used by scaling or sound matching algorithms as a weight for handling
portions of a signal that are not clearly periodic.
Together with the AH features, the AFF provides some information on the

fine harmonic structure of a periodic sound. These features may complement a
log-frequency spectrum like the ASE descriptor (Section 2.5.1) whose frequency
resolution is too coarse to provide a detailed representation of the harmonic
peaks.
The AFF is mainly used as an estimate of the pitch of musical sounds and

voiced speech. The pitch curve of a speech signal reflects the voice intonation
and is an important prosodic feature.
Figure 2.10 depicts graphical representations of two basic signal LLDs

extracted from the same piece of music as in Figure 2.4. This musical solo
excerpt presents a clear harmonic structure with HR≈ 1, except at the onsets of
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Figure 2.10 MPEG-7 basic signal parameters extracted from a music signal (cor anglais,
44.1 kHz)

notes and at the end of the audio segment which is terminated by a short silence.
The interruptions and discontinuities of the AFF plot (the pitch contour of the
audio segment) mostly correspond to the onsets of notes.

2.7 TIMBRAL DESCRIPTORS

The timbral descriptors aim at describing perceptual features of instrument
sounds. Timbre refers to the features that allow one to distinguish two sounds
that are equal in pitch, loudness and subjective duration. The underlying percep-
tual mechanisms are rather complex. They involve taking into account several
perceptual dimensions at the same time in a possibly complex way. Timbre is
thus a multi-dimensional feature that includes among others the spectral enve-
lope, temporal envelope and variations of each of them. The MPEG-7 timbre
description (Peeters et al., 2000) relies on the experiments of (Krumhansl, 1989),
(McAdams et al., 1995) and (Lakatos, 2000). The seven timbral descriptors are
of two types:

• The temporal timbral descriptors: log attack time (LAT) and temporal centroid
(TC).

• The spectral timbral descriptors: harmonic spectral centroid (HSC), harmonic
spectral deviation (HSD), harmonic spectral spread (HSS), harmonic spectral
variation (HSV) and spectral centroid (SC).
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Figure 2.11 Extraction of the MPEG-7 timbral LLDs.

The calculation of each descriptor will be detailed in the following sections. The
block diagram depicted in Figure 2.11 gives a first overview of the extraction
of the temporal and spectral timbral descriptors.
It should be noted that these descriptors only make sense in the context of

well-segmented sounds. They were originally designed to work with the high-
level timbre description tools. However, their definition as MPEG-7 LLDs makes
them available for other applications.

2.7.1 Temporal Timbral: Requirements

The temporal timbral descriptors are extracted from the signal envelope in the
time domain. The signal envelope describes the energy change of the signal
and is generally equivalent to the so-called ADSR (Attack, Decay, Sustain,
Release) of a musical sound. Figure 2.12 gives a schematic representation of the
envelope of a sound, showing its different phases and the corresponding time
limits (expressed in the frame index domain).
The extraction of the signal envelope Env is not normative. A straightforward

method is to compute frame by frame the RMS of the original signal s�n�:

Env�l�=
√
√
√
√ 1

Nw

Nw−1∑

n=0

s2
(
lNhop + n

)
�0≤ l≤L− 1�� (2.41)

where L is the total number of frames.
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Figure 2.12 General shape of the ADSR envelope of a sound

The typical ADSR phases of a sound are:

• Attack is the length of time required for the sound to reach its initial maximum
volume. It will be very short for a percussive sound.

• Decay is the time taken for the volume to reach a second volume level known
as the sustain level.

• Sustain is the volume level at which the sound sustains after the decay phase.
In most sounds is it lower than the attack volume, but it could be the same or
even higher.

• Release is the time it takes the volume to reduce to zero.

A sound does not have to have all four phases. A woodblock, for example, only
has an attack phase and a decay phase. An organ has an attack phase, a sustain
phase and a release phase, but no decay phase.

2.7.2 Log Attack Time

The log attack time (LAT) is defined as the time it takes to reach the maximum
amplitude of a signal from a minimum threshold time (McAdams, 1999). Its
main motivation is the description of the onsets of single sound samples from
different musical instruments.
In the MPEG-7 standard, LAT is defined as the logarithm (decimal base) of

the duration from time Tstart (see Figure 2.12) when the signal starts to time Tstop

when it reaches its maximum value (for a percussive sound) or its sustained part
(for a sustained sound, i.e. with no decay phase). It is defined as:

LAT = log10
(
Tstop −Tstart

)
� (2.42)

Although the attack portion embodies a great deal of transitional information
of the signal leading to a steady state, it is difficult to say where the attack
portion ends and where the steady begins. The standard does not specify any
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Figure 2.13 MPEG-7 LAT and TC extracted from the envelope of a dog bark sound
(22.05 kHz)

method for precisely determining Tstart and Tstop. A simple way of defining them
could be:

• Estimate Tstart as the time the signal envelope exceeds 2% of its maximal
value.

• Estimate Tstop as the time the signal envelope reaches its maximal value.

The attack time feature has been used in wavetable music synthesis. The basic
idea is to take an auditory snapshot of the signal – the attack and first few
milliseconds of the state portion – and then loop the steady-state portion. Hence,
this gives the listener the illusion that the whole signal is being played back,
although only a fractional length of the signal has actually been used to render
such an illusion. Today’s popular music genres and electronic jazz music are
very much dominated by this technology.
Figure 2.13 illustrates the extraction of LAT from a dog bark percussive

sound.

2.7.3 Temporal Centroid

The TC is defined as the time average over the energy envelope of the signal.
The resulting time-based centroid is:

TC= Nhop

Fs

L−1∑

l=0
�lEnv�l��

L−1∑

l=0
Env�l�

� (2.43)
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where Env�l� is the signal envelope defined in Equation (2.41). The multiplying
factor Nhop/Fs is the frame sampling rate. This enables the conversion from the
discrete frame index domain to the continuous time domain. The unit of the TC
feature is the second. Figure 2.13 illustrates the extraction of the TC from a dog
bark sound.

2.7.4 Spectral Timbral: Requirements

The spectral timbral features aim at describing the structure of harmonic spectra.
Contrary to the previous spectral descriptors (the basic spectral descriptors of
Section 2.5), they are extracted in a linear frequency space. They are designed to
be computed using signal frames if instantaneous values are required, or larger
analysis windows if global values are required. In the case of a frame-based
analysis, the following parameters are recommended by the standard:

• Frame size: Lw = 30ms.
• Hop size: hopSize= 10ms.

If global spectral timbral features are extracted from large signal segments, the
size of the analysis window should be a whole number of the local fundamental
period. In that case, the recommended parameters are:

• Frame size: Lw = 8 fundamental periods.
• Hop size: hopSize= 4 fundamental periods.

In both cases, the recommended windowing function is the Hamming window.
The extraction of the spectral timbral descriptors requires the estimation of

the fundamental frequency f0 and the detection of the harmonic components of
the signal. How these pre-required features should be extracted is again not part
of the MPEG-7 standard. The following just provides some general definitions,
along with indications of the classical estimation methods.
The schema of a pitch and harmonic peak detection algorithm is shown in

Figure 2.14.
This detection algorithm consists of four main steps:

1. The first step is to extract by means of an FFT algorithm the spectrum S�k�
of the windowed signal defined in Equation (2.1). The amplitude spectrum
�S�k�� is then computed.

2. Estimation of the pitch frequency f0 is then performed.
3. The third step consists of detecting the peaks in the spectrum.
4. Finally, each of the candidate peaks is analysed to determine if it is a harmonic

peak or not.
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Figure 2.14 Block diagram of pitch and harmonic peak detection

As mentioned above, the estimation of the fundamental frequency f0 can be per-
formed, for instance, by searching the maximum of one of the two autocorrelation
functions:

• The temporal autocorrelation function (TA method) defined in Equation (2.30).
• The spectro-temporal autocorrelation function (STA method) defined in Equa-
tion (2.38).

The estimated fundamental frequency is used for detecting the harmonic peaks
in the spectrum. The harmonic peaks are located around the multiples of the
fundamental frequency f0:

fh =hf0 �1≤h≤NH�� (2.44)

where NH is the number of harmonic peaks. The frequency of the hth harmonic is
just h times the fundamental frequency f0, the first harmonic peak corresponding
to f0 itself �f1 = f0�. Hence, the most straightforward method to estimate the
harmonic peaks is simply to look for the maximum values of the amplitude
spectrum around the multiples of f0. This method is illustrated in Figure 2.15.
The amplitude spectrum �S�k�� of a signal whose pitch has been estimated at
f0 = 300Hz is depicted in the [0,1350Hz] range.
The harmonic peaks are searched within a narrow interval (grey bands in

Figure 2.15) centred at every multiple of f0. The FFT bin kh corresponding to
the hth harmonic peak is thus estimated as:

kh = argmax
k∈�ah�bh	

�S�k��� (2.45)

The search limits ah and bh are defined as:

ah = floor

[

�h− nht�
f0
�F

]

bh = ceil

[

�h+ nht�
f0
�F

]

�

(2.46)



44 2 LOW-LEVEL DESCRIPTORS

Figure 2.15 Localization of harmonic peaks in the amplitude spectrum

where �F = Fs/NFT is the frequency interval between two FFT bins, and nht
specifies the desired non-harmonicity tolerance (nht= 0�15 is recommended).
The final set of detected harmonic peaks consists of the harmonic frequen-
cies f�kh�, estimated from kh through Equation (2.5), and their corresponding
amplitudes Ah = �S�kh��.
The detection of harmonic peaks is generally not that easy, due to the presence

of many noisy components in the signal. This results in numerous local maxima
in the spectrum. The above method is feasible when the signal has a clear
harmonic structure, as in the example of Figure 2.15. Several other methods
have been proposed to estimate the harmonic peaks in a more robust way (Park,
2000; Ealey et al., 2001). As depicted in Figure 2.14, these methods consist
of two steps: first the detection of spectral peaks, then the identification of the
harmonic ones.
A first pass roughly locates possible peaks, where the roughness factor for

searching peaks is controlled via a slope threshold: the difference between the
magnitude of a peak candidate (a local maximum) and the magnitude of some
neighbouring frequency bins must be greater than the threshold value. This
threshold dictates the degree of “peakiness” that is allowed for a local maximum
to be considered as a possible peak. Once every possible peak has been detected,
the most prominent ones are selected. This time, the peaks are filtered by means
of a second threshold, applied to the amplitude differences between neighbouring
peak candidates.
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After a final set of candidate peaks has been selected, the harmonic structure
of the spectrum is examined. Based on the estimated pitch, a first pass looks
for any broken harmonic sequence, analysing harmonic relationships among the
currently selected peaks. In this pass, peaks that may have been deleted or
missed in the initial peak detection and selection process are inserted. Finally,
the first candidate peaks in the spectrum are used to estimate an “ideal” set
of harmonics because lower harmonics are generally more salient and stable
than the higher ones. The harmonic nature of each subsequent candidate peak is
assessed by measuring its deviation from the ideal harmonic structure. The final
set of harmonics is obtained by retaining those candidate peaks whose deviation
measure is below a decision threshold.
The analysis of the harmonic structure of the spectrum is particularly useful for

music and speech sounds. Pitched musical instruments display a high degree of
harmonic spectral quality. Most tend to have quasi-integer harmonic relationships
between spectral peaks and the fundamental frequency. In the voice, the spectral
envelope displays mountain-like contours or valleys known as formants. The
locations of the formants distinctively describe vowels. This is also evident in
violins, but the number of valleys is greater and the formant locations change
very little with time, unlike the voice, which varies substantially for each vowel.

2.7.5 Harmonic Spectral Centroid

The harmonic spectral centroid (HSC) is defined as the average, over the duration
of the signal, of the amplitude-weighted mean (on a linear scale) of the harmonic
peaks of the spectrum. The local expression LHSCl (i.e. for a given frame l) of
the HSC is:

LHSCl =
NH∑

h=1
�fh�lAh�l�

NH∑

h=1
Ah�l

� (2.47)

where fh�l and Ah�l are respectively the frequency and the amplitude of the hth
harmonic peak estimated within the lth frame of the signal, and NH is the number
of harmonics that is taken into account.
The final HSC value is then obtained by averaging the local centroids over

the total number of frames:

HSC= 1
L

L−1∑

l=0

LHSCl� (2.48)
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where L is the number of frames in the sound segment. Similarly to the previous
spectral centroid measure (the ASC defined in Section 2.5.2), the HSC provides
a measure of the timbral sharpness of the signal.
Figure 2.16 gives graphical representations of the spectral timbral LLDs

extracted from a piece of music (an oboe playing a single vibrato note, recorded
at 44.1 kHz). Part (b) depicts the sequence of frame-level centroids LHSC defined
in Equation (2.47). The HSC is defined as the mean LHSC across the entire
audio segment.

Figure 2.16 MPEG-7 spectral timbral descriptors extracted from a music signal (oboe,
44.1 kHz)
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2.7.6 Harmonic Spectral Deviation

The harmonic spectral deviation (HSD) measures the deviation of the harmonic
peaks from the envelopes of the local spectra. Within the lth frame of the signal,
where NH harmonic peaks have been detected, the spectral envelope SEh�l is
coarsely estimated by interpolating adjacent harmonic peak amplitudes Ah�l as
follows:

SEh�l =






1/2�Ah�l +Ah+1�l� if h= 1

1/3�Ah−1�l +Ah�l +Ah+1�l� if 2≤h≤NH − 1�

1/2�Ah−1�l +Ah�l� if h=NH

(2.49)

Then, a local deviation measure is computed for each frame:

LHSDl =
NH∑

h=1
� log10�Ah�l�− log10�SEh�l��

NH∑

h=1
log10�Ah�l�

� (2.50)

As before, the local measures are finally averaged over the total duration of the
signal:

HSD= 1
L

L−1∑

l=0

LHSDl� (2.51)

where L is the number of frames in the sound segment.
Figure 2.16 depicts the sequence of frame-level deviation values LHSD defined

in Equation (2.50). The HSD is defined as the mean LHSD across the entire audio
segment. This curve clearly reflects the spectralmodulationwithin the vibrato note.

2.7.7 Harmonic Spectral Spread

The harmonic spectral spread (HSS) is a measure of the average spectrum spread
in relation to the HSC. At the frame level, it is defined as the power-weighted
RMS deviation from the local HSC LHSCl defined in Equation (2.47). The local
spread value is normalized by LHSCl as:

LHSSl =
1

LHSCl

√
√
√
√
√
√
√

NH∑

h=1

[
�fh�l −LHSCl�

2A2
h�l

]

NH∑

h=1
A2

h�l

(2.52)
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and then averaged over the signal frames:

HSS= 1
L

L−1∑

l=0

LHSSl� (2.53)

where L is the number of frames in the sound segment.
Figure 2.16 depicts the sequence of frame-level spread values LHSS defined

in Equation (2.52). The HSS is defined as the mean LHSS across the entire audio
segment. The LHSS curve reflects the vibrato modulation less obviously than
the LHSD.

2.7.8 Harmonic Spectral Variation

The HSV (HSV) reflects the spectral variation between adjacent frames. At the
frame level, it is defined as the complement to 1 of the normalized correlation
between the amplitudes of harmonic peaks taken from two adjacent frames:

LHSVl = 1−
NH∑

h=1
�Ah�l−1Ah�l�

√
NH∑

h=1
A2

h�l−1

√
NH∑

h=1
A2

h�l

� (2.54)

The local values are then averaged as before:

HSV = 1
L

L−1∑

l=0

LHSVl� (2.55)

where L is the number of frames in the sound segment.
Figure 2.16 shows the sequence of frame-level spectral variation values LHSV

defined in Equation (2.54). The HSV is defined as the mean LHSV across the
entire audio segment. The local variation remains low across the audio segment
(except at the end, where the signal is dominated by noise). This reflects the fact
that the vibrato is a slowly varying modulation.

2.7.9 Spectral Centroid

The spectral centroid (SC) is not related to the harmonic structure of the signal.
It gives the power-weighted average of the discrete frequencies of the estimated
spectrum over the sound segment. For a given sound segment, it is defined as:

SC=
NFT /2∑

k=0
f�k�Ps�k�

NFT /2∑

k=0
Ps�k�

� (2.56)
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Figure 2.17 MPEG-7 SC extracted from the envelope of a dog bark sound

where Ps is the estimated power spectrum for the segment, f�k� stands for the
frequency of the kth bin and NFT is the size of the DFT. One possibility to
obtain Ps is to average the power spectra Pl for each of the frames (computed
according to Equation (2.4)) across the sound segment.
This descriptor is very similar to the ASC defined in Equation (2.25), but

is more specifically designed to be used in distinguishing musical instrument
timbres. Like the two other spectral centroid definitions contained in the MPEG-7
standard (ASC in Section 2.5.2 and HSC in Section 2.7.5), it is highly correlated
with the perceptual feature of the sharpness of a sound.
The spectral centroid (Beauchamp, 1982) is commonly associated with the

measure of the brightness of a sound (Grey and Gordon, 1978). It has been found
that increased loudness also increases the amount of high spectrum content of a
signal thus making a sound brighter.
Figure 2.17 illustrates the extraction of the SC from the power spectrum of

the dog bark sound of Figure 2.13.

2.8 SPECTRAL BASIS REPRESENTATIONS

The audio spectrum basis (ASB) and audio spectrum projection (ASP) descrip-
tors were initially defined to be used in the MPEG-7 sound recognition high-level
tool described in Chapter 3. The goal is the projection of an audio signal spec-
trum (high-dimensional representation) into a low-dimensional representation,
allowing classification systems to be built in a more compact and efficient way.
The extraction of ASB and ASP is based on normalized techniques which are
part of the standard: the singular value decomposition (SVD) and the Indepen-
dent Component Analysis (ICA). These descriptors will be presented in detail
in Chapter 3.
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2.9 SILENCE SEGMENT

The MPEG-7 Silence descriptor attaches the simple semantic label of silence to
an audio segment, reflecting the fact that no significant sound is occurring in
this segment. It contains the following attributes:

• confidence: this confidence measure (contained in the range [0,1]) reflects the
degree of certainty that the detected silence segment indeed corresponds to a
silence.

• minDurationRef: the Silence descriptor is associated with a SilenceHeader
descriptor that encloses a minDuration attribute shared by other Silence
descriptors. The value of minDuration is used to communicate a minimum
temporal threshold determining whether a signal portion is identified as a
silent segment. The minDuration element is usually applied uniformly to a
complete segment decomposition as a parameter for the extraction algorithm.
The minDurationRef attribute refers to the minDuration attribute of a Silence-
Header.

The time information (start time and duration) of a silence segment is enclosed
in the AudioSegment descriptor to which the Silence descriptor is attached.

The Silence Descriptor captures a basic semantic event occurring in audio
material and can be used by an annotation tool; for example, when segmenting
an audio stream into general sound classes, such as silence, speech, music, noise,
etc. Once extracted it can help in the retrieval of audio events. It may also simply
provide a hint not to process a segment. There exist many well-known silence
detection algorithms (Jacobs et al., 1999). The extraction of the MPEG-7 Silence
Descriptor is non-normative and can be implemented in various ways.

2.10 BEYOND THE SCOPE OF MPEG-7

Many classical low-level features used for sound are not included in the founda-
tion layer of MPEG-7 audio. In the following, we give a non-exhaustive list of
the most frequently encountered ones in the audio classification literature. The
last section focuses in more detail on the mel-frequency cepstrum coefficients.

2.10.1 Other Low-Level Descriptors

2.10.1.1 Zero Crossing Rate

The zero crossing rate (ZCR) is commonly used in characterizing audio signals.
The ZCR is computed by counting the number of times that the audio waveform
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crosses the zero axis. This count is normalized by the length of the input signal
s�n� (Wang et al., 2000):

ZCR= 1
2

(
N−1∑

n=1

�sign�s�n��− sign�s�n− 1���
)
Fs

N
� (2.57)

where N is the number of samples in s�n�, Fs is the sampling frequency and
sign�x� is defined as:

sign�x�=






1 if x > 0

0 if x = 0

−1 if x < 0�

(2.58)

Different definitions of zero crossing features have been used in audio signal
classification, in particular for voiced/unvoiced speech, speech/music (Scheirer
and Slaney, 1997) or music genre classification (Tzanetakis and Cook, 2002;
Burred and Lerch 2004).

2.10.1.2 Spectral Rolloff Frequency

The spectral rolloff frequency can be defined as the frequency below which 85%
of the accumulated magnitude of the spectrum is concentrated (Tzanetakis and
Cook, 2002):

Kroll∑

k=0

�S�k�� = 0�85
NFT /2∑

k=0

�S�k��� (2.59)

where Kroll is the frequency bin corresponding to the estimated rolloff frequency.
Other studies have used rolloff frequencies computed with other ratios, e.g. 92%
in (Li et al., 2001) or 95% in (Wang et al., 2000).
The rolloff is a measure of spectral shape useful for distinguishing voiced

from unvoiced speech.

2.10.1.3 Spectral Flux

The spectral flux (SF) is defined as the average variation of the signal amplitude
spectrum between adjacent frames. It is computed as the averaged squared
difference between two successive spectral distributions (Lu et al., 2002):

SF = 1
LNFT

L−1∑

k=0

N−1
FT∑

k=0

�log ��S1�k�� + ��− log ��Sl−1�k�� + ��	
2 � (2.60)

where Sl�k� is the DFT of the lth frame, NFT is the order of the DFT, L is
the total number of frames in the signal and � is a small parameter to avoid
calculation overflow.
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The SF is a measure of the amount of local spectral change. According to
(Lu et al., 2002), SF values of speech are higher than those of music. The SF
feature has therefore been used for the separation of music from speech (Scheirer
and Slaney, 1997; Burred and Lerch, 2004). In addition, environmental sounds
generally present the highest SF values with important spectral change between
consecutive frames.

2.10.1.4 Loudness

The loudness is a psycho-acoustical feature of audio sounds (Wold et al., 1996;
Allamanche et al., 2001). It can be approximated by the signal’s RMS level in
decibels. It is generally calculated by taking a series of frames and computing
the square root of the sum of the squares of the windowed sample values.

2.10.2 Mel-Frequency Cepstrum Coefficients

The mel-frequency cepstrum coefficients (MFCCs) can be used as an excellent
feature vector for representing the human voice and musical signals (Logan,
2000). In particular, the MFCC parameterization of speech has proved to be
beneficial for speech recognition (Davis and Mermelstein, 1980). As the MFCC
representation is not part of the MPEG-7 standard, several works have made
comparative studies using MFCC and MPEG-7-only LLDs in different kinds of
audio segmentation and classification applications (Xiong et al., 2003; Kim and
Sikora, 2004).
Cepstral coefficient parameterization methods rely on the notion of cepstrum

(Rabiner and Schafer, 1978). If we suppose that a signal s�t� can be modelled
as the convolution product of an excitation signal e�t� and the impulse response
of a filter h�t��s�t�= e�t�∗h�t��, the cepstrum is a homomorphic transformation
(Oppenheim et al., 1968) that permits the separation of e�t� and h�t�. The
spectrum of s�t� is obtained by taking the inverse Fourier transform (TF−1) of
the logarithm of the spectrum: that is, TF−1 	Log��� 	TF�s�t��.
The MFCCs are the most popular cepstrum-based audio features, even though

there exist other types of cepstral coefficients (Angelini et al., 1998), like the
linear prediction cepstrum coefficient (LPCC), extracted from the linear predic-
tion coefficient (LPC). MFCC is a perceptually motivated representation defined
as the cepstrum of a windowed short-time signal. A non-linear mel-frequency
scale is used, which approximates the behaviour of the auditory system.
The mel is a unit of pitch (i.e. the subjective impression of frequency). To

convert a frequency f in hertz into its equivalent in mel, the following formula
is used:

Pitch�mel�= 1127�0148 log
(

1+ f�Hz�
700

)

� (2.61)
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Figure 2.18 Mel-spaced filter bank

The mel scale is a scale of pitches judged by listeners to be equal in distance
one from another. The reference point between this scale and normal frequency
measurement is defined by equating a 1000Hz tone, 40 dB above the listener’s
threshold, with a pitch of 1000 mels. Below about 500Hz the mel and hertz
scales coincide; above that, larger and larger intervals are judged by listeners to
produce equal pitch increments.
The MFCCs are based on the extraction of the signal energy within critical

frequency bands by means of a series of triangular filters whose centre frequen-
cies are spaced according to the mel scale. Figure 2.18 gives the general shape
of such a mel-spaced filter bank in the [0Hz,8 kHz] frequency range. The non-
linear mel scale accounts for the mechanisms of human frequency perception,
which is more selective in the lower frequencies than in the higher ones.
The extraction of MFCC vectors is depicted in Figure 2.19.
The input signal s�n� is first divided into overlapping frames of Nw samples.

Typically, frame duration is between 20 and 40ms, with a 50% overlap between
adjacent frames. In order to minimize the signal discontinuities at the borders of
each frame a windowing function is used, such as the Hanning function defined
as:

w�n�= 1
2

{

1− cos
[
2�
Nw

(

n+ 1
2

)]}

�0≤ n≤Nw − 1�� (2.62)

An FFT is applied to each frame and the absolute value is taken to obtain the mag-
nitude spectrum. The spectrum is then processed by a mel-filter bank such as the
one depicted in Figure 2.18. The log-energy of the spectrum is measured within
the pass-band of each filter, resulting in a reduced representation of the spectrum.
The cepstral coefficients are finally obtained through a Discrete Cosine Trans-

form (DCT) of the reduced log-energy spectrum:

ci =
Nf∑

j=1

{

log�Ej� cos
[

i

(

j− 1
2

)
�

Nf

]}

�1≤ i≤Nc�� (2.63)
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Figure 2.19 Extraction of MFCC vectors

where ci is the ith-order MFCC, Ej is the spectral energy measured in the
critical band of the jth mel filter and Nf is the total number of mel filters
(typically Nf = 24). Nc is the number of cepstral coefficients ci extracted from
each frame (typically Nc = 12). The global log-energy measured on the whole
frame spectrum – or, equivalently, the c0 MFCC calculated according to the
formula of Equation (2.63) with i= 0 – is generally added to the initial MFCC
vector. The extraction of an MFCC vector from the reduced log-energy spectrum
is depicted in Figure 2.20.
The estimation of the derivative and acceleration of the MFCC features are

usually added to the initial vector in order to take into account the temporal
changes in the spectra (which play an important role in human perception).
One way to capture this information is to use delta coefficients that measure
the change in coefficients over time. These additional coefficients result from
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Figure 2.20 Extraction of an eighth-order MFCC vector from a reduced log-energy
spectrum

a linear regression over a few adjacent frames. Typically, the two previous and
the two following frames are used, for instance, as follows:

�ci�l�=−ci�l− 2�− 1
2
ci�l− 1�+ 1

2
ci�l+ 1�+ ci�l+ 2� (2.64)

and:

��ci�l�= ci�l− 2�− 1
2
ci�l− 1�− ci�l�−

1
2
ci�l+ 1�+ ci�l+ 2�� (2.65)

where ci�l� is the ith-order MFCC extracted from the lth frame of the signal.
The �ci�l� and ��ci�l� coefficients are the estimates of the derivative and
acceleration of coefficient ci at frame instant l, respectively. Together with the
cepstral coefficients ci�l�, the � and �� coefficients form the final MFCC vector
extracted from frame l.
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3
Sound Classification
and Similarity

3.1 INTRODUCTION

Many audio analysis tasks become possible based on sound similarity and sound
classification approaches. These include:

• the segmentation of audio tracks into basic elements, such as speech, music,
sound or silence segments;

• the segmentation of speech tracks into segments with speakers of different
gender, age or identity;

• the identification of speakers and sound events (such as specific persons,
explosions, applause, or other important events);

• the classification of music into genres (such as rock, pop, classic, etc.);
• the classification of musical instruments into classes.

Once the various segments and/or events are identified, they can be used to
index audio tracks. This provides powerful means for understanding semantics
in audiovisual media and for building powerful search engines that query based
on semantic entities.
Spectral features of sounds (i.e. the ASE feature described in Section 2.5.1)

are excellent for describing sound content. The specific spectral feature of a
sound – and more importantly the specific time variation of the feature – can be
seen as a fingerprint. This fingerprint allows us to distinguish one sound from
another.
Using a suitable measure it is possible to calculate the level of sound similarity.

One application might be to feed the sound fingerprint of a specific violin
instrument into a sound similarity system. The response of the system is a list
with the most similar violins fingerprinted in the database, ranked according to

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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the level of similarity. We may be able to understand whether the example violin
is of rather good or bad quality.
The purpose of sound classification on the other hand is to understand whether

a particular sound belongs to a certain class. This is a recognition problem, similar
to voice, speaker or speech recognition. In our example above this may translate
to the question whether the sound example belongs to a violin, a trumpet, a
horn, etc.
Many classification systems can be partitioned into components such as the

ones shown in Figure 3.1.
In this figure:

1. A segmentation stage isolates relevant sound segments from the background
(i.e. the example violin sound from background noise or other sounds).

2. A feature extraction stage extracts properties of the sound that are useful for
classification (the feature vector, fingerprint). For both the sound similarity
and sound classification tasks, it is vital that the feature vectors used are
rich enough to describe the content of the sound sufficiently. The MPEG-7
standard sound classification tool relies on the audio spectrum projection
(ASP) feature vector for this purpose. Another well-established feature vector
is based on MFCC.
It is important that the feature vector is of a manageable size. In practice it is

often necessary to reduce the size of the feature vector. A dimension reduction
stage maps the feature vector onto another feature vector of lower dimension.
MPEG-7 employs singular value decomposition (SVD) or independent compo-
nent analysis (ICA) for this purpose. Other well-established techniques include
principal component analysis (PCA) and the discrete cosine transform (DCT).

3. A classifier uses the reduced dimension feature vector to assign the sound to
a category. The sound classifiers are often based on statistical models. Exam-
ples of such classifiers include Gaussian mixture models (GMMs), hidden
Markov models (HMMs), neural networks (NNs) and support vector machines
(SVMs).

Audio Input

Segmentation

Feature Extraction

Classification

Decision

Figure 3.1 General sound classification system
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The figure implies that the classification problem can be seen as a batch process
employing various stages independently. In practice many systems employ feed-
back from and to various stages of the process; for instance, when segmenting
speech parts in an audio track it is often useful to perform classification at the
same time.
The choice of the feature vector and the choice of the classifier are critical in

the design of sound classification systems. Often prior knowledge plays a major
role when selecting such features. It is worth mentioning that in practice many
of the feature vectors described in Chapter 2 may be combined to arrive at a
“large” compound feature vector for similarity measure or classification.
It is usually necessary to train the classifier based on sound data. The data

collection can amount to a surprisingly large part of the costs and time when
developing a sound classification system. The process of using a collection of
sound data to determine the classifier is referred to as training the classifiers and
choosing the model.
The purpose of this chapter is to provide an overview of the diverse field of

sound classification and sound similarity. Feature dimensionality reduction and
training of the classifier model are discussed in Section 3.2. Section 3.3 intro-
duces various classifiers and their properties. In Section 3.4 we use the MPEG-7
standard as a starting point to explain the practical implementation of sound
classification systems. The performance of the MPEG-7 system is then compared
with the well-established MFCC feature extraction method. Section 3.5 intro-
duces the MPEG-7 system for indexing and similarity retrieval and Section 3.6
provides simulation results of various systems for sound classification.

3.2 DIMENSIONALITY REDUCTION

Removal of the statistical dependencies of observations is used in practice to
reduce the size of feature vectors while retaining as much important perceptual
information as possible. We may choose one of the following methods: singu-
lar value decomposition (SVD) (Golub and Van Loan, 1993), principal com-
ponent analysis (PCA) (Jollife, 1986), independent component analysis (ICA)
(Hyvärinen et al., 2001) or non-negative matrix factorization (NMF) (Lee and
Seung, 1999, 2001).

3.2.1 Singular Value Decomposition (SVD)

Let X be the feature matrix, in the form of an L×F time–frequency matrix. In
this example, the vertical dimension represents time (i.e. each row corresponds
to a time frame index l�1≤ l≤L�) and the horizontal dimension represents the
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spectral coefficients (i.e. each column corresponds to a logarithmic frequency
range index f�1≤ f ≤F�).

SVD is performed on the feature matrix of all the audio frames from all
training examples in the following way:

X=UDVT� (3.1)

where X is factored into the matrix product of three matrices: the L× L row
basis U matrix, the L× F diagonal singular value matrix D and the F × F
transposed column basis functions V .

In order to perform dimensionality reduction, the size of the matrix V is
reduced by discarding F −E of the columns of V . The resulting matrix VE has
the dimensions F ×E. To calculate the proportion of information retained for E
basis functions we use the singular values contained in matrix D:

I�E�=
E∑

i=1

D�i� i�
/ F∑

j=1

D�j� j�� (3.2)

where I�E� is the proportion of information retained for E basis functions and
F is the total number of basis functions, which is also equal to the number of
spectral bins.
The SVD transformation produces decorrelated, dimension-reduced bases for

the data, and the right singular basis functions are cropped to yield fewer basis
functions.

3.2.2 Principal Component Analysis (PCA)

The purpose of PCA is to derive a relatively small number of decorrelated linear
combinations of a set of random zero-mean variables, while retaining as much
of the information from the original variables as possible. PCA decorrelates the
second-order moments corresponding to low-frequency properties and extracts
orthogonal principal components of variations. By projecting onto these highly
varying subspaces, the relevant statistics can be approximated by a smaller
dimension system.
Before applying a PCA algorithm on matrix X, centring is performed. First,

the columns are centred by subtracting the mean value from each one:

∧
X�f� l�=X�f� l�−�f (3.3)

�f =
1
L

L∑

l=1

X�f� l�� (3.4)
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where �f is the mean of the column f . Next, the rows are standardized by
removing any DC offset and normalizing the variance:

�l =
1
F

F∑

f=1

∧
X�f� l� (3.5)

�l =
F∑

f=1

∧
X

2

�f� l� (3.6)

�l =
√(

�l −F�2
l

)
/�F − 1� (3.7)

∧
X�f� l�=

∧
X �f� l�−�l

�l
� (3.8)

where �l and �l are respectively the mean and standard deviation of row l, and
�l is the energy of the

∧
X �f� l�.

Using PCA, the columns are linearly transformed to remove any linear corre-
lations between the dimensions. PCA can be performed via eigenvalue decom-
position of the covariance matrix:

C=VDVT = E

{
∧
X

∧
X

T
}

(3.9)

CP =D−1/2VT � (3.10)

where V is the matrix of orthogonal eigenvectors and D is a diagonal matrix
with the corresponding eigenvalues. In order to perform dimension reduction,
we reduce the size of the matrix CP by throwing away F −E of the columns of
CP corresponding to the smallest eigenvalues of D. The resulting matrix CE has
the dimensions F ×E.

3.2.3 Independent Component Analysis (ICA)

ICA defines a generative model for the observed multivariate data, which is
typically estimated based on a large set of training data. In the model, the data
variables are assumed to be linear mixtures of some unknown latent variables,
and the mixing system is also unknown. The latent variables are assumed to
be non-Gaussian and mutually independent. They are called the independent
components of the observed data. These independent components, also called
sources or factors, can be found by ICA.
ICA is a statistical method which not only decorrelates the second-order statis-

tics but also reduces higher-order statistical dependencies. Thus, ICA produces
mutually uncorrelated bases.
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The independent components of matrix X can be thought of as a collection of
statistically independent bases for the rows (or columns) of X. The L×F matrix
X is decomposed as:

X=WS+N� (3.11)

where S is the P×F source signal matrix, W is the L×P mixing matrix (also
called the matrix of spectral basis functions) and N is the L×F matrix of noise
signals. Here, P is the number of independent sources. The above decomposition
can be performed for any number of independent components and the sizes of
W and S vary accordingly.

To find a statistically independent basis using the basis functions, the well-
known ICA algorithms, such as INFOMAX, JADE or FastICA, can be used.
From several ICA algorithms we use a combination of PCA and the FastICA
algorithm (Hyvärinen, 1999) in the following to perform the decomposition.
After extracting the reduced PCA basis CE , a further step consisting of basis

rotation in the direction of maximal statistical independence is needed for appli-
cations that require maximum independence of features. This whitening, which
is closely related to PCA, is done by multiplying the F ×E transformation matrix
CE by the normalized L×F feature matrix

∧
X :

∨
X= ∧

XCE� (3.12)

The input
∨
X is then fed to the FastICA algorithm, which maximizes the infor-

mation in the following six steps:

Step 1. Initialize spectrum basis Wi to small random values, where i is the
number of independent components.

Step 2. Apply Newton’s method:

Wi =E
{ ∨
Xg

(
WT

i

∨
X
)}

−E
{
g′
(
WT

i

∨
X
)}

Wi� (3.13)

where g is the derivative of the non-quadratic function.
Step 3. Normalize the spectrum basis approximation Wi as:

Wi =
Wi

�Wi�
� (3.14)

Step 4. Decorrelate using the Gram–Schmidt orthogonalization:

Wi =Wi −
i−1∑

j=1

WT
i WjWj� (3.15)

After every iteration step, subtract from Wi the projections WT
i WjWj�

j= 1� � � � � i, of the previously estimated i vectors.
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Step 5. Renormalize the spectrum basis approximation as:

Wi =
Wi

�Wi�
� (3.16)

Step 6. If not converged, go back to step 2.

The purpose of the Gram–Schmidt decorrelation/orthogonalization performed in
the algorithm is to avoid finding the same component more than once. When
the tolerance becomes close to zero, Newton’s method will usually keep con-
verging towards the optimum. By turning off the decorrelation when almost
converged, the orthogonality constraint is loosened. Steps 1–6 are executed until
convergence. Then the iteration performing only the Newton step and normal-
ization is carried out until convergence WiW

T
i = 1. With this modification the

true maximum is found.

3.2.4 Non-Negative Factorization (NMF)

NMF has been recently proposed as a new method for dimensionality reduction.
NMF is a subspace method which finds a linear data representation with the
non-negativity constraint instead of the orthogonality.
PCA and ICA are holistic representations because basis vectors are allowed

to be combined with either positive or negative coefficients. Due to the holistic
nature of the method, the resulting components are global interpretations, and
thus PCA and ICA are unable to extract basis components manifesting localized
features. The projection coefficients for the linear combinations in the above
methods can be either positive or negative, and such linear combinations gen-
erally involve complex cancellations between positive and negative numbers.
Therefore, these representations lack the intuitive meaning of adding parts to
form a whole. NMF imposes the non-negativity constraints in the learning basis.
For this reasons, NMF is considered as a procedure for learning a parts-based
representation. NMF preserves much of the structure of the original data and
guarantees that both basis and weights are non-negative. It is conceptually sim-
pler than PCA or ICA, but not necessarily more computationally efficient. Within
this context, it was first applied for generating parts-based representations from
still images and later was evaluated in audio analysis tasks, such as general sound
classification (Cho et al., 2003) and polyphonic music transcription (Smaragdis
and Brown, 2003).
Given a non-negative L× F matrix X, NMF consists of finding the non-

negative L×P matrix G and the P×F matrix H such that:

�X� =GH� (3.17)
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where the columns of H are the basis signals, matrix G is the mixing matrix,
and P (P<L and P<F ) is the number of non-negative components.
Several algorithms have been proposed to perform NMF. Here, the multiplica-

tive divergence update rules are described. The divergence of two matrixes A
and B is defined as:

D�A�B�=∑

ij

(

Aij log
Aij

Bij

−Aij +Bij

)

� (3.18)

The algorithm iterates the update of the factor matrices in such a way that the
divergence D��X��GH� is minimized. Such a factorization can be found using
the update rules:

Gia ←Gia

∑
� Ha�Xi�/�GH�i�

∑
	 Ha	

(3.19)

Ha� ←Ha�

∑
i GiaXi�/�GH�i�

∑
k Gka

(3.20)

More details about the algorithm can be found in (Cho et al., 2003).
In our case, X is the L× F feature matrix, and thus factorization yields the

matrices GE and HE of size L× E and E × F , respectively, where E is the
desired dimension-reduced bases.

3.3 CLASSIFICATION METHODS

Once feature vectors are generated from audio clips, and if required reduced in
dimension, these are fed into classifiers.
The MPEG-7 audio LLDs and some other non-MPEG-7 low-level audio

features are described in Chapter 2. They are defined in the temporal and/or the
spectral domain. The model-based classifiers that have been most often used for
audio classification include Gaussian mixture model (GMM) (Reynolds, 1995)
classifiers, neural network (NN) (Haykins, 1998) classifiers, hidden Markov
model (HMM) (Rabiner and Jung, 1993) classifiers, and support vector machines
(SVMs) (Cortes and Vaprik, 1995). The basic concepts of these model-based
classifiers are introduced in this section.

3.3.1 Gaussian Mixture Model (GMM)

GMMs have been widely used in the field of speech processing, mostly for
speech recognition, speaker identification and voice conversion. Their capability
to model arbitrary probability densities and to represent general spectral features
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motivates their use. The GMM approach assumes that the density of an observed
process can be modelled as a weighted sum of component densities given by:

p�x�
�=
M∑

m=1

cm bm�x�� (3.21)

where x is a d-dimensional random vector, M is a number of mixture compo-
nents, and bm�x� is a Gaussian density, parameterized by a mean vector �m and
the covariance matrix �m:

bm�x�=
1

�2��d/2��m�1/2
exp

{

−1
2

[
�x−�m�

T�−1
m �x−�m�

]
}

(3.22)

The parameters of the sound model are denoted as 
 = cm��m��m�,
m= 1� � � � �M .
A useful algorithm for estimating the parameters of a GMM that maximize the

likelihood of a set of n data vectors is the expectation maximization algorithm.
This algorithm works by iteratively updating the parameters according (in the
case of diagonal covariance matrices) to the following equations:

�new
m =

∑n
i=1 p�m�xi�
�xi

∑n
i=1 p�m�xi�
�

(3.23)

�new
m =

∑n
i=1 p�m�xi�
��xi −�m�

T �xi −�m�
∑n

i=1 p�m�xi�
�
(3.24)

cnewm = 1
n

n∑

i=1

p�m�xi�
� (3.25)

where the value p�m�xi�
� can be computed as:

p�m�xi�
�=
cmbm�xi�

∑M
j=1 cjgj�xi�

(3.26)

For a group of K sounds represented by GMMs 
1�
2� � � � � 
K , the objective
of recognition (classification) is to find the model which has the maximum a
posteriori probability for a given L observation sequence X= x1� x2� � � � � xL:

∧
K= argmax

1≤k≤K

Pr�
k�X�= argmax
1≤k≤K

p�X�
k�Pr�
k�

p�X�
� (3.27)
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where p�X� is the same for all sound models, and assuming that the Pr�
k� are
equal for each sound, the classification rule simplifies to:

∧
K= argmax

1≤k≤K

p�X�
k�� (3.28)

Using logarithms and the independence between observations, the sound recog-
nition system computes:

∧
K= argmax

1≤k≤K

L∑

l=1

logp�xl�
k�� (3.29)

GMMs have the following advantages and disadvantages.

Advantages
• GMMs are computationally inexpensive. They are based on a well-understood
statistical model. I.e for text-independent speech recognition tasks they are
insensitive to the temporal aspects of the speaker (modelling only the under-
lying distribution of acoustic observations from a speaker).

Disadvantages
• Higher-level information about the sound conveyed in the temporal audio
signal is not used. The modelling and exploitation of such higher-level infor-
mation may benefit speech recognition in the future. To date, large vocabulary
or phoneme recognizers only compute likelihood values, without explicit use
of any higher-level information such as speaker-dependent word usage or
speaking style.

3.3.2 Hidden Markov Model (HMM)

An HMM is a statistical method, widely used in the pattern classification field.
Very successful applications based on HMM include speech recognition, speaker
verification and handwriting recognition. HMMs are used to model processes
with time varying characteristics. After the models are trained it is useful to
analyse and study the models more closely.
An HMM can be described as:

• A set of NS states Si�.• A set of state transition probabilities aij�, where aij is the probability of
transition from state Si to sate Sj .• A set of d-dimensional probability density functions bj�x��, where bj is the
density function of state Sj .• A set of initial state probabilities �i�, where �i is the probability that Si is
the initial state.



3.3 CLASSIFICATION METHODS 69

The system starts at time 0 in a state Si with a probability �i. When in a state Si
at time l the system moves at time l+ 1 to state Sj with a probability aij and so
on, generating a sequence of L observation vectors xl. An HMM is completely
specified by the three sets aij�� bj� and �i�. Continuous HMMs generally
set bj�x� to a multivariate Gaussian distribution with mean �j and covariance
matrix

∑
j , giving bj =

{
�j�

∑
j

}
for each state.

Two useful algorithms for HMMs are the Baum–Welch and the Viterbi algo-
rithms. The Baum–Welch algorithm finds the parameters �= [ {

aij

}
�
{
bj
}
� �i�

]

of an HMM that maximize the likelihood of a sequence of observation vectors.
The Viterbi algorithm finds the most likely sequence of states given the model
and the observations.
HMMs have the following advantages and disadvantages.

Advantages
• Rich mathematical framework: HMMs are based on a flexible statistical theory.
• Efficient learning and decoding algorithms: these algorithms handle sequences
of observations probabilistically and do not require explicit hand segmentation
of the basic sound units. They can be implemented very efficiently even for
large systems.

• Easy integration of multiple knowledge sources: different levels of constraints
can be incorporated within the HMM framework as long as these are expressed
in terms of the same statistical formalism.

• Effective sound similarity capabilities: the state path generated by the selected
model is used to compute a sound model state histogram. Distances are calcu-
lated between the query histogram and a pre-computed database of histograms
using the sum of square errors distance metrics. These distances are used to
sort the results in ascending order thereby yielding the best matches for the
given audio query.

Disadvantages
• Poor discrimination: estimation of the parameters of HMMs is based on like-
lihood maximization. This means that only correct models receive training
information; incorrect models do not get any feedback.

• First-order Markov assumption: current observations and state transitions are
dependent only on the previous state. All other history is neglected.

• Independence assumptions: consecutive feature vectors are assumed to be
statistically independent.

• Distributional assumptions required: for example, modelling acoustic obser-
vations by a mixture of Gaussians with diagonal covariance matrices requires
uncorrelated feature coefficients.

• Assumption of exponential state duration distributions: this assumption is an
integral part of first-order HMMs. It can only be circumvented by applying
explicit state duration modelling; that is, imposing external duration distribu-
tions such as a gamma distribution.
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3.3.3 Neural Network (NN)

An NN classifier is an artificial intelligence network with parallel processing
units working together. NNs are well suited to discriminative objective func-
tions (e.g. mean squared error). The probabilities are optimized to maximize
discrimination between sound classes, rather than to match most closely the dis-
tributions within each class. It can be argued that such a training is conservative
of parameters, since the parameters of the estimate are trained to split the space
between classes, rather than to represent the volumes that compose the division
of space constituting each class. For these reasons, NNs have been studied for
many years in the hope of achieving human-like performance in the fields of
speech and image recognition.
Various NNs, such as Kohonen self-organizing maps (SOMs), the multi-layer

perceptron (MLP), time-delay neural network (TDNN) and hidden control neural
network (HCNN), have been used for speech recognition. Among these, MLPs
are the most common NN architecture used for speech recognition and sound
classification.
Typically, MLPs are feedforward nets with an input layer (consisting of the

input variables), zero or more hidden (intermediate) layers and an output layer,
as shown in Figure 3.2.
The number of neurons in the output layer is determined by the number

of audio classes to classify. Each layer computes a set of linear discriminant
functions (via a weight matrix) followed by a non-linear function, which is often
a sigmoid function:

sig�x�= 1
1+ exp�−x�

� (3.30)

where x is the input vector.
This non-linear function performs a different role for the hidden and the output

units. For the hidden units, it serves to generate high-order moments of the input;
this can be done effectively by many non-linear functions, not just by sigmoids.

Input layer

Hidden layer

Output layer

Figure 3.2 MLP architecture



3.3 CLASSIFICATION METHODS 71

The activation function of the neurons in the hidden layer is selected to be a
hyperbolic tangent function. There is no activation function in the output layer.
MLPs with enough hidden units can provide arbitrary mappings between input
and output. MLP parameters (the elements of the weight matrices) are trained to
associate a desired output vector with an input vector. This is achieved via the
error back propagation (EBP) algorithm, which uses an iterative gradient algo-
rithm designed to minimize the mean square error between the actual output of a
multi-layer feedforward perceptron and the desired output. It requires continuous
differentiable non-linearities. Although the standard back propagation (BP) algo-
rithm is a common learning algorithm for MLP networks, it converges slowly and
typically into local minima. Some fast learning algorithms have been proposed
in the past to train feedforward NNs, such as the conjugate gradient algorithm,
the quasi-Newton algorithm or the Levenberg–Marquadt algorithm. The last is
usually more efficient than the conjugate gradient or quasi-Newton algorithms.
NNs have the following advantages and drawbacks.

Advantages
• Few parameters.
• Excellent performance.

Disadvantages
• Slow training procedure.
• The network must be retrained when a new sound class is added to the system.

3.3.4 Support Vector Machine (SVM)

SVMs have been used in a variety of classification tasks, such as isolated
handwritten digit recognition, speaker identification, object recognition, face
detection and vowel classification.
RecentlySVMshavealsobeen introducedfor theclassificationandsegmentation

of audio streams or audio clips. Advantages of SVMs for audio classification are:

• A set of training data is often available and can be used to train a classifier.
• Once trained, the computation in an SVM depends on a usually small number
of supporting vectors and is fast.

• The distribution of audio data in the feature space is complicated and different
classes may have overlapping or interwoven areas in feature space. A kernel-
based SVM is well suited to handle such a situation.

Given a set of training vectors belonging to two separate classes,
�x1� y1�� � � � � �xl� yl�, where xi ∈Rn and yi ∈ −1�+1�, we want to find a hyper-
plane wx+ b = 0 to separate the data. Of all the boundaries determined by
w and b, the one that maximizes the margin will generalize better than other
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possible separating hyperplanes. The linear classifier is termed the optimal sepa-
rating hyperplane. The optimization condition relies upon finding the plane that
maximizes the distance between the hyperplane and the closest sample:

d�w�b�= min
xi�yi=1�

wxi + b

�w� − max
xi�yi=−1�

wxi + b

�w� (3.31)

and the appropriate minimum and maximum values are ±1. Distance is needed
to maximize:

d�w�b�= 1
w
− −1

w
= 2

w
(3.32)

The pair of hyperplanes gives the maximummargin by minimizing �w�2/2 subject
to the constraints yi��wxi�+ b�≥ 1.
The solution to the optimization problem of SVMs is given by the saddle

point of the Lagrange function:

L�w�b���= 1
2
�w�2 −

l∑

i=1

�iyi��wxi�+ b�− 1�� (3.33)

with Lagrange multipliers �i.
While L�w�b��� is minimized with respect to w and b, the derivatives

of L�w�b��� with respect to all the �i vanish, all subject to the constraints
�i ≥ 0.
The solution is given by:

w̄=
l∑

i=1

�̄iyixi� b̄=−1
2
w̄�xr + xs�� (3.34)

where xr and xs are any two support vectors which belong to class yr = 1 and
ys =−1. The samples in the input space cannot be separated by any linear
hyperplane, but can be linearly separated in the non-linear mapped feature space.
Note that the feature space of the SVMs is different from the audio feature space.
SVMs can realize non-linear discrimination f�x� by kernel mapping K�·� ·�:

f�x�= sgn

(
l∑

i=1

�̄iyiK�xi� x�+ b

)
N∑

i=1

�itiK�x�xi�+ b� (3.35)

where the yi are the target values,
∑l

i=1 �̄iyi = 0, and �̄i > 0.
The kernel K�·� ·� is constructed to have certain properties (the Mercer condi-

tion), so that K�·� ·� can be expressed as:

K�x� y�=��x���y�� (3.36)
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where ��x� is a mapping from the input space to a possibly infinite dimensional
space.
There are three kernel functions for the nonlinear mapping:

1. Polynomial K�x� y�= ��xy + 1��z, where parameter z is the degree of the
polynomial.

2. Gaussian radial basis functions K�x� y�= exp
{− [

�x− y�2/2�2
]}
, where the

parameter � is the standard deviation of the Gaussian function.
3. MLP function K�x� y�= tanh�scale�xy�− offset�, where scale and offset are

two given parameters.

SVMs are classifiers for multi-dimensional data that essentially determine a
boundary curve between two classes. The boundary can be determined only with
vectors in boundary regions called the margin of two classes in a training data set.
SVMs, therefore, need to be relearned only when vectors in boundaries change.
From the training examples SVM finds the parameters of the decision function
which can classify two classes and maximize the margin during a learning phase.
After learning, the classification of unknown patterns is predicted.
SVMs have the following advantages and drawbacks.

Advantages
• The solution is unique.
• The boundary can be determined only by its support vectors. An SVM is
robust against changes of all vectors but its support vectors.

• SVM is insensitive to small changes of the parameters.
• Different SVM classifiers constructed using different kernels (polynomial,
radial basis function (RBF), neural net) extract the same support vectors.

• When compared with other algorithms, SVMs often provide improved perfor-
mance.

Disadvantages
• Very slow training procedure.

3.4 MPEG-7 SOUND CLASSIFICATION

The MPEG-7 standard (Casey, 2001; Manjunath et al., 2001) has adopted a gen-
eralized sound recognition framework, in which dimension-reduced, decorrelated
log-spectral features, called the audio spectrum projection (ASP), are used to
train HMM for classification of various sounds such as speech, explosions, laugh-
ter, trumpet, cello, etc. The feature extraction of the MPEG-7 sound recognition
framework is based on the projection of a spectrum onto a low-dimensional sub-
space via reduced rank spectral basis functions called the audio spectrum basis
(ASB). To attain a good performance in this framework, a balanced trade-off
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between reducing the dimensionality of data and retaining maximum informa-
tion content must be performed, as too many dimensions cause problems with
classification while dimensionality reduction invariably introduces information
loss. The tools provide a unified interface for automatic indexing of audio using
trained sound class models in a pattern recognition framework.
The MPEG-7 sound recognition classifier is performed using three steps:

audio feature extraction, training of sound models, and decoding. Figure 3.3
depicts the procedure of the MPEG-7 sound recognition classifier. Each classified
audio piece will be individually processed and indexed so as to be suitable for
comparison and retrieval by the sound recognition system.

3.4.1 MPEG-7 Audio Spectrum Projection (ASP)
Feature Extraction

As outlined, an important step in audio classification is feature extraction. An
efficient representation should be able to capture sound properties that are the
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most significant for the task, robust under various environments and general
enough to describe various sound classes.
Environmental sounds are generally much harder to characterize than speech

and music sounds. They consist of multiple noisy and textured components, as
well as higher-order structural components such as iterations and scatterings.
The purpose of MPEG-7 feature extraction is to obtain from the audio source

a low-complexity description of its content. The MPEG-7 audio group has
proposed a feature extraction method based on the projection of a spectrum
onto a low-dimensional representation using decorrelated basis functions (Casey,
2001; Kim et al., 2004a, 2004b; Kim and Sikora, 2004a, 2004b, 2004c). The
starting point is the calculation of the audio spectrum envelope (ASE) descriptor
outlined in Chapter 2.
Figure 3.3 shows the four steps of the feature extraction in the dimensionality

reduction process:

• ASE via short-time Fourier transform (STFT);
• normalized audio spectrum envelope (NASE);
• basis decomposition algorithm – such as SVD or ICA;
• basis projection, obtained by multiplying the NASE with a set of extracted
basis functions.

ASE

First, the observed audio signal s�n� is divided into overlapping frames. The ASE
is then extracted from each frame. The ASE extraction procedure is described in
Section 2.5.1. The resulting log-frequency power spectrum is converted to the
decibel scale:

ASEdB�l� f�= 10 log10�ASE�l� f��� (3.37)

where f is the index of an ASE logarithmic frequency range, l is the frame
index.

NASE

Each decibel-scale spectral vector is normalized with the RMS energy envelope,
thus yielding a normalized log-power version of the ASE called NASE. The
full-rank features for each frame l consist of both the RMS-norm gain value Rl

and the NASE vector X�l� f�:

Rl =
√
√
√
√

F∑

f=1

�ASEdB�l� f��
2� 1≤ f ≤F (3.38)
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and:

X�l� f�= ASEdB�l� f�

Rl

� 1≤ l≤L (3.39)

where F is the number of ASE spectral coefficients and L is the total number
of frames.
Much of the information is disregarded due to the lower frequency resolution

when reducing the spectrum dimensionality from the size of the STFT to the F
frequency bins of NASE.
To help the reader visualize the kind of information that the NASE vectors

X�l� f� convey, three-dimensional (3D) plots of the NASE of a male and a female
speaker reading the sentence “Handwerker trugen ihn” are shown in Figure 3.4.
In order to make the images look smoother, the frequency channels are spaced
with 1/16-octave bands instead of the usual 1/4-octave bands. The reader should
note that recognizing the gender of the speaker by visual inspection of the plots
is easy. Compared with the female speaker, the male speaker produces more
energy at the lower frequencies and less at the higher frequencies.

Figure 3.4 The 3D plots of the normalized ASE of a male speaker and a female speaker
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Dimensionality Reduction Using Basis Decomposition

In order to achieve a trade-off between further dimensionality reduction and
information loss, the ASB and ASP of MPEG-7 low-level audio descriptors are
used. To obtain the ASB, SVD or ICA may be employed.

ASP

The ASP Y is obtained by multiplying the NASE matrix with a set of basis
functions extracted from several basis decomposition algorithms:

Y =






XVE for SVD

XCE for PCA

XCEW for FastICA

�X�HT
E for NMF (not MPEG-7 compliant).

(3.40)

After extracting the reduced SVD basis VE or PCA basis CE , ICA is employed
for applications that require maximum decorrelation of features, such as the
separation of the source components of a spectrogram. A statistically inde-
pendent basis W is derived using an additional ICA step after SVD or PCA
extraction.
The ICA basis W is the same size as the reduced SVD basis VE or PCA basis

CE . The basis function CEW obtained by PCA and ICA is stored in the MPEG-7
basis function database for the classification scheme.
The spectrum projection features and RMS-norm gain values are used as input

to the HMM training module.

3.4.2 Training Hidden Markov Models (HMMs)

In order to train a statistical model on the basis projection features for each
audio class, the MPEG-7 audio classification tool uses HMMs, which consist
of several states. During training, the parameters for each state of an audio
model are estimated by analysing the feature vectors of the training set. Each
state represents a similarly behaving portion of an observable symbol sequence
process. At each instant in time, the observable symbol in each sequence
either stays at the same state or moves to another state depending on a set
of state transition probabilities. Different state transitions may be more impor-
tant for modelling different kinds of data. Thus, HMM topologies are used
to describe how the states are connected. That is, in TV broadcasts, temporal
structures of video sequences require the use of an ergodic topology, where
each state can be reached from any other state and can be revisited after leav-
ing. In sound classification, five-state left–right models are suitable for isolated
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sound recognition. A left–right HMM with five states is trained for each sound
class.
Figure 3.5 illustrates the training process of an HMM for a given sound class i.
The training audio data is first projected onto the basis function corresponding

to sound class i. The HMM parameters are then obtained using the well-known
Baum–Welch algorithm. The procedure starts with random initial values for all
of the parameters and optimizes the parameters by iterative re-estimation. Each
iteration runs through the entire set of training data in a process that is repeated
until the model converges to satisfactory values. Often parameters converge after
three or four training iterations.
With the Baum–Welch re-estimation training patterns, one HMM is computed

for each class of sound that captures the statistically most regular features of
the sound feature space. Figure 3.6 shows an example classification scheme
consisting of dogs, laughter, gunshot and motor classes. Each of the resulting
HMMs is stored in the MPEG-7 sound classifier.
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Projections 
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Algorithm

HMM 
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Class i

Figure 3.5 HMM training for a given sound class i
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Figure 3.6 Example classification scheme using HMMs
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3.4.3 Classification of Sounds

Sounds are modelled according to category labels and represented by a set of
HMM parameters. Automatic classification of audio uses a collection of HMM,
category labels and basis functions. Automatic audio classification finds the
best-match class for an input sound by presenting it to a number of HMM and
selecting the model with the maximum likelihood score.
Here, the Viterbi algorithm is used as the dynamic programming algorithm

applied to the HMM for computing the most likely state sequence for each
model in the classifier given a test sound pattern. Thus, given a sound model and
a test sound pattern, a maximum accumulative probability can be recursively
computed at every time frame according to the Viterbi algorithm.
Figure 3.3 depicts the recognition module used to classify an audio input

based on pre-trained sound class models (HMMs). Sounds are read from a media
source format, such as WAV files. Given an input sound, the NASE features
are extracted and projected against each individual sound model’s set of basis
functions, producing a low-dimensional feature representation. Then, the Viterbi
algorithm (outlined in more detail in Chapter 4) is applied to align each projection
on its corresponding sound class HMM (each HMM has its own representation
space). The HMM yielding the best maximum likelihood score is selected, and
the corresponding optimal state path is stored.

3.5 COMPARISON OF MPEG-7 AUDIO SPECTRUM
PROJECTION VS. MFCC FEATURES

Automatic classification of audio signals has a long history originating from
speech recognition. MFCCs are the state-of-the-art dominant features used for
speech recognition. They represent the speech amplitude spectrum in a compact
form by taking into account perceptual and computational considerations. Most
of the signal energy is concentrated in the first coefficients. We refer to Chapter 4
for a detailed introduction to speech recognition.
In the following we compare the performance of MPEG-7 ASP features based

on several basis decomposition algorithms vs. MFCCs. The processing steps
involved in both methods are outlined in Table 3.1.
As outlined in Chapter 2, the first step of MFCC feature extraction is to

divide the audio signal into frames, usually by applying a Hanning windowing
function at fixed intervals. The next step is to take the Fourier transform of each
frame. The power spectrum bins are grouped and smoothed according to the
perceptually motivated mel-frequency scaling. Then the spectrum is segmented
into critical bands by means of a filter bank that typically consists of overlapping
triangular filters. Finally, a DCT applied to the logarithm of the filter bank
outputs results in vectors of decorrelated MFCC features. The block diagram of
the sound classification scheme using MFCC features is shown in Figure 3.7.
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Table 3.1 Comparison of MPEG-7 ASP and MFCCs

Steps MFCCs MPEG-7 ASP

1 Convert to frames Convert to frames
2 For each frame, obtain the

amplitude spectrum
For each frame, obtain the amplitude
spectrum

3 Mel-scaling and smoothing Log-scale octave bands
4 Take the logarithm Normalization
5 Take the DCT Perform basis decomposition using

PCA, ICA, or NMF for projection
features
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Both MFCC and MPEG-7 ASP are short-term spectral-based features. There
are some differences between the MPEG-7 ASP and the MFCC procedures.

Filter Bank Analysis

The filters used for MFCC are triangular to smooth the spectrum and empha-
size perceptually meaningful frequencies (see Section 2.10.2). They are equally
spaced along the mel-scale. The mel-frequency scale is often approximated as a
linear scale from 0 to 1 kHz, and as a logarithmic scale beyond 1 kHz. The power
spectral coefficients are binned by correlating them with each triangular filter.
The filters used for MPEG-7 ASP are trapezium-shaped or rectangular filters

and they are distributed logarithmically between 62.5Hz (lowEdge) and 16 kHz
(highEdge). The lowEdge–highEdge range has been chosen to be an 8-octave
interval, logarithmically centred on 1 kHz. The spectral resolution r can be
chosen between 1/16 of an octave and 8 octaves, from eight possible values as
described in Section 2.5.1.
To help the reader visualize the kind of information that the MPEG-7 ASP

and MFCC convey, the results of different steps between both feature extraction
methods are depicted in Figure 3.8–3.13. The test sound is that of a typical
automobile horn being honked once for about 1.5 seconds. Then the sound
decays for roughly 200ms. For the visualization the audio data was digitized
at 22.05 kHz using 16 bits per sample. The features were derived from sound
frames of length 30ms with a frame rate of 15ms. Each frame was windowed
using a Hamming window function and transformed into the frequency domain
using a 512-point FFT. The MPEG-7 ASP uses octave-scale filters, while MFCC
uses mel-scale filters.
MPEG-7 ASP features are derived from 28 subbands that span the logarithmic

frequency band from 62.5Hz to 8 kHz. Since this spectrum contains 7 octaves,
each subband spans a quarter of an octave. MFCCs are calculated from 40
subbands (17 linear bands between 62.5Hz and 1 kHz, 23 logarithmic bands
between 1 kHz and 8 kHz). The 3-D plots and the spectrogram image of subband
energy outputs for MFCC and MPEG-7 ASP are shown in Figure 3.8 and
Figure 3.9, respectively.
Compared with the ASE coefficients, the output of MFCC triangular filters

yields more significant structure in the frequency domain for this example.

Normalization

It is well known that the perceived loudness of a signal has been found to be
approximately logarithmic. Therefore, the smoothed amplitude spectrum of the
triangular filtering for MFCC is normalized by the natural logarithmic operation,
while 30 ASE coefficients for each frame of MPEG-7 ASP are converted to the
decibel scale and each decibel-scale spectral vector is normalized with the RMS
energy envelope, thus yielding a NASE.
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Figure 3.8 Mel-scaling and smoothing

Figure 3.9 ASE

Figure 3.10 Logarithm of amplitude spectrum

Figure 3.11 NASE
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Figure 3.12 MFCC features

Figure 3.13 ASP features

Compared with the NASE depicted in Figure 3.11, the logarithm of the
MFCC amplitude spectrum of Figure 3.10 produces more energy at the lower
frequency bin.

Basis Representation for Dimension Reduction

The components of the Mel-spectral vectors calculated for each frame are highly
correlated. Features are typically modelled by mixtures of Gaussian densities.
Therefore, in order to reduce the number of parameters in the system, the
cepstral coefficients are calculated using a DCT which attempts to decorrelate
the frequency-warped spectrum. The 3-D plots and the spectrogram due to the
DCT for MFCC are depicted in Figure 3.12, where the DCT is taken to obtain 13
cepstral features for each frame. MFCC basis vectors are the same for all audio
classes. This is because it assumes that the probabilities of the basis functions
by the DCT are all equal.
MPEG-7 audio features of the same example are different. Since eachPCAspace

is derived from the training examples of each training class, each class has its own
distinct PCA space. The ICA algorithm, however, uses a non-linear technique to
perform the basis rotation in the directions of maximal statistical independence.
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As a result, the ASP features generated via FastICA have more peaks on aver-
age due to larger variances. The 3-D plots and spectrogram image of the ASP
feature are shown in the Figure 3.13, where 13 PCA basis components are used
so that the number of MPEG-7 features is the same as that of the MFCC features.

3.6 INDEXING AND SIMILARITY

The structure of an audio indexing and retrieval system using MPEG-7 ASP
descriptors is illustrated in Figure 3.14.
The audio indexing module extracts NASE features from a database of sounds.

An HMM and a basis function were trained beforehand for each predefined
sound class. A classification algorithm finds the most likely class for a given
input sound by presenting it to each of the HMM (after projection on the corre-
sponding basis functions) and by using the Viterbi algorithm. The HMM with the
highest maximum likelihood score is selected as the representative class for the
sound.
The algorithm also generates the optimal HMM state path for each model

given the input sound. The state path corresponding to the most likely class is
stored as an MPEG-7 descriptor in the sound indexing database. It will be used
as an index for further query applications.
The audio retrieval is based on the results of the audio indexing. For a given

query sound, the extracted audio features are used to run the sound classifier as
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Figure 3.14 Structure of audio indexing and retrieval system
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described above. The resulting state path corresponding to the most likely sound
class is then used in a matching module to determine the list of the most similar
sounds.

3.6.1 Audio Retrieval Using Histogram Sum of
Squared Differences

In addition to classification, it is often useful to obtain a measure of how close two
given sounds are in some perceptual sense. It is possible to leverage the internal
hidden variables generated by an HMM in order to compare the evolution of two
sounds through the model’s state space. An input sound is indexed by selecting
the HMM yielding the maximum likelihood score and storing the corresponding
optimal HMM state path, which was obtained using the Viterbi algorithm. This
state path describes the evolution of a sound through time with a sequence of
integer state indices.
TheMPEG-7 standard proposes a method for computing the similarity between

two state paths generated by the Viterbi algorithm. This method, based on the
sum of squared differences between “state path histograms”, is explained in the
following.
A normalized histogram can be generated from the state path obtained at the

end of the classification procedure. Frequencies are normalized to values in the
range [0–1] obtained by dividing the number of samples associated with each
state of the HMM by the total number of samples in the state sequence:

hist�j�= N�j�
∑Ns

i=1N�i�
� 1≤ j≤Ns (3.41)

where Ns is the number of states in the HMM and N�j� is the number of samples
for state j in the given state path.
A similarity measure between two state paths a and b is computed as the

absolute difference between each relative frequency summed over state indices.
This gives the Euclidean distance between the two sounds indexed by a and b:

��a�b�=
Ns∑

j=1

√

�hista�j�−histb�j��
2 (3.42)

3.7 SIMULATION RESULTS AND DISCUSSION

In order to illustrate the performance of the MPEG-7 ASP features and MFCC,
the feature sets are applied to speaker recognition, sound classification, musi-
cal instrument classification and speaker-based segmentation (Kim et al., 2003,
2004a, 2004b; Kim and Sikora, 2004a, 2004b, 2004c).
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3.7.1 Plots of MPEG-7 Audio Descriptors

To help the reader visualize the kind of information that the MPEG-7 ASP
features convey, several results of four of the ASE and ASP descriptors are
depicted in Figures 3.15–3.18.
Figure 3.15 compares the MPEG-7 NASE features of “horn” to a “telephone

ringing” sound. Note that the harmonic nature of the honk, shown by the almost
time-independent spectral peaks of the NASE X�f� l�, is readily visible.
The decay of the sound at the end can also be seen as the higher frequencies

decay and the lower frequencies seem to grow in strength. The lower frequencies
becoming stronger may seem out of place, but this phenomenon is actually due
to the normalization. As the sound in general becomes quieter, the levels at the
different frequencies become more even and all are boosted by the normalization,
even the low ones.
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The NASE X�f� l� of an old telephone being rung once is depicted on the
right of Figure 3.15. The first 0.7 seconds consist of the noise-like sound of the
manual cranking necessary for old-fashioned telephones, while the rest of the
sound consists of the harmonic sound of the bells ringing out. Distinguishing
between the harmonic and noise-like parts of sounds is easy by visual inspection
of the NASE.
While this visual interpretation of the NASE is rather easy, visual interpretation

of the bases CE in Figure 3.16 is not so straightforward. Each of these bases
is a matrix, which can be thought as a linear transformation between a spectral
domain containing correlated information (NASE) and PCA basis vectors, in
which the correlations in the information are reduced.
However, since we do not know exactly how the correlations are being reduced

in each case, the bases are difficult to interpret. For instance, one can see in the
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PCA bases that the first basis vectors calculated are rather simple and have small
variances, while the last basis vectors that are calculated tend to be complicated,
have larger variances and be less well behaved in general. It becomes more and
more difficult to find meaningful basis vectors. Much of the information has
already been extracted. The PCA algorithm also tends to find basis vectors that
have large amplitudes, but not necessarily those that convey more information.
The FastICA algorithm, however, uses a non-linear technique to help decor-

relate the NASE. As a result, the bases generated via FastICA have more peaks
on average due to larger variances. The FastICA bases CEW are shown on the
left of Figure 3.17 for horns and on the right for telephone sounds.
The projections Y =XCEW , on the other hand, look like versions of the NASE

where the frequency information is scrambled by the basis. As can be verified
on the left and the right of Figure 3.18, telling apart the harmonic and noise-like
parts of the sounds is still possible.

3.7.2 Parameter Selection

The dimension-reduced audio spectrum basis (ASB) functions are used to project
the high-dimensional spectrum into a low-dimensional representation contained
by the ASP. The reduced representation should be well suited for use with
probability model classifiers. The projection onto well-chosen bases increases
recognition performance considerably. In order to perform a trade-off between
dimensionality reduction and information content maximization, basis parameters
in PCA and ICA of the feature extraction need to be selected with care.
For the MPEG-7 ASP feature extraction, we created 12 sound classes (trum-

pet, bird, dog, bell, telephone, baby, laughter, gun, motor, explosion, applause,
footstep) containing 40 training and 20 different testing sound clips, which were
recorded at 22 kHz and 16 bits and which ranged from 1 to 3 seconds long.
Figure 3.19 shows the recognition rates according to the MPEG-7 ASP based
on the PCA/FastICA method vs. the reduced dimension E.

The parameter with the most drastic impact turned out to be the horizontal
dimension E of the basis matrix CE from PCA. If E is too small, the matrix CE

reduces the data too much, and the HMM do not receive enough information.
However, if E is too large, then the extra information extracted is not very
important and is better ignored.
As can be seen in Figure 3.19, the best recognition rate of 96% for the

classification of 12 sound classes resulted when E was 23. In other experiments
we found the optimal E to be as small as 16. One needs to be careful about
choosing E and to test empirically to find the optimal value.
For each predefined sound class, the training module builds a model from a set

of training sounds using HMMs which consist of several states. The statistical
behaviour of an observed symbol sequence in terms of a network of states,
which represents the overall process behaviour with regard to movement between
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Figure 3.19 Classification rates of 12 sound classes due to FastICA method vs. the
reduced dimension E

states of the process, describes the inherent variations in the behaviour of the
observable symbols within a state. An HMM topology consists of the number of
states with varied connections between states which depend on the occurrence
of the observable symbol sequences being modelled. To determine the HMM
topology it is necessary to decide on the types of HMM (such as ergodic, left–
right, or some others) and to decide on the number of states and the connections
between them.
We investigated the effects of different HMM topologies and differing num-

bers of states on the sound recognition rates. Figure 3.20 shows a few common
HMM topologies.
Table 3.2 depicts the classification results for different HMM topologies given

the features with E= 24. The number of states includes two non-emitting states,
so seven states implies that only five non-emitting states were used. Total sound
recognition rates are obtained by the maximum likelihood score among the 12
competing sound models.
From Table 3.2, we depict that the HMM classifier yields the best performance

for our task when the number of states is 7 and topology is ergodic. The

(a) left-right HMM (b) forward and backward HMM (c) ergodic HMM

Figure 3.20 Illustration of three HMM topologies with four emitting states
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Table 3.2 Total sound recognition rate (%) of 12 sound classes for three HMMs

HMM topology Number of states

4 5 6 7 8

Left–right HMM 77�3 75�9 78�1 78�8 77�5
Forward and backward HMM 61�8 78�1 73 76�7 75�9
Ergodic HMM 58�6 75�5 80�1 84�3 81�9

corresponding classification accuracy is 84.3%. Three iterations were used to
train the HMMs.
It is obvious from the problems discussed that different applications and recog-

nition tasks require detailed experimentation with various parameter settings
and dimensionality reduction techniques. Figure 3.21 depicts a typical custom-
designed user interface for this purpose.

Figure 3.21 Input interface of the audio classification system using MPEG-7 audio
features (TU-Berlin)



3.7 SIMULATION RESULTS AND DISCUSSION 91

3.7.3 Results for Distinguishing Between Speech,
Music and Environmental Sound

Automatic discrimination of speech, music and environmental sound is impor-
tant in many multimedia applications, i.e. (1) radio receivers for the automatic
monitoring of the audio content of FM radio channels, (2) disabling the speech
recognizer during the non-speech portion of the audio stream in automatic speech
recognition of broadcast news, (3) distinguishing speech and environmental
sounds from music for low-bit-rate audio coding.
For the classification of speech, music and environmental sounds we col-

lected music audio files from various music CDs. The speech files were taken
from audio books, panel discussion TV programmes and the TIMIT database.1

Environmental sounds were selected from various categories of CD movie sound
tracks; 60% of the data was used for training and the other 40% for testing.
We compared the classification results of MPEG-7 ASP based on a PCA or

ICA basis vs. MFCC. Table 3.3 shows the experimental results. Total recognition
rates are obtained by the maximum likelihood score between the three sound
classes. In our system, the best accuracy of 84.9% was obtained using an MPEG-
7 ASP based on an ICA basis.
Figure 3.22 shows an analysis program for on-line audio classification. The

audio recordings are classified and segmented into basic types, such as speech,
music, several types of environmental sounds, and silence.
For the segmentation/classification we use four MPEG-7 LLDs, such as

power, spectrum centroid, fundamental frequency and harmonic ratio. Also, four
non-MPEG-7 audio descriptors’ features including high zero crossing rate, low
short-time energy ratio, spectrum flux and band periodicity are applied to seg-
ment the audio stream. In the implementation we compared the segmentation
results using MPEG-7 audio descriptors vs. non-MPEG-7 audio descriptors. The

Table 3.3 Total classification accuracies (%) between speech, music and environmental
sounds

Feature extraction methods Feature dimension

7 13 23

PCA-ASP 78�6 81�5 80�3
ICA-ASP 82�5 84�9 79�9
MFCC 76�3 84�1 77�8

PCA-ASP: MPEG-7 ASP based on PCA basis.
ICA-ASP: MPEG-7 ASP based on ICA basis.
MFCC: mel-scale frequency cepstral coefficients.

1 See LDC (Linguistic Data Consortium): http://www.ldc.upenn.edu.
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Figure 3.22 Demonstration of an on-line audio classification system between speech,
music, environmental sound and silence (TU- Berlin)

experimental results show that the classification/segmentation using non-MPEG-
7 audio descriptors is more robust, and can perform better and faster than the
MPEG-7 audio descriptors.

3.7.4 Results of Sound Classification Using Three
Audio Taxonomy Methods

Sound classification is useful for film/video indexing, searching and professional
sounds archiving. Our goal was to identify classes of sound based on MPEG-7
ASP and MFCC.
To test the sound classification system, we built sound libraries from various

sources. This included a speech database collected for speaker recognition, and
the “Sound Ideas” general sound effects library (SoundIdeas: http://www.sound-
ideas.com). We created 15 sound classes: 13 sound classes from the sound effects
library and 2 from the collected speech database; 70% of the data was used for
training and the other 30% for testing.
For sound classification, we used three different taxonomy methods: a direct

approach, a hierarchical approach without hints and a hierarchical approach with
hints.
In the direct classification scheme, only one decision step is taken to classify

the input audio into one of the various classes of the taxonomy. This approach
is illustrated in Figure 3.23(a).
For the direct approach, we used a simple sound recognition system to gen-

erate the classification results. Each input sound is tested on all of the sound
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Figure 3.23 Classification using a direct and hierarchical approach

models, and the highest maximum likelihood score is used to determine the
test clip’s recognized sound class. This method is more straightforward, but
would cause problems when there are too many classes. For the hierarchical
approach we organize the database of sound classes using the hierarchy shown
in Figure 3.23(b). Because we modelled the database in this fashion, we decided
to use the same hierarchy for recognition. That is, we create additional bases
and HMMs for the more general classes animal, foley, people and music. For
each test sound, a path is found from the root down to a leaf node with testing
occurring at each level in the hierarchy.
In certain systems, such as hierarchical classification with hints, it would be

feasible to assume that additional information is available. For instance, it would
be possible to have a recording of human speech but not be able to tell the
gender of the speaker by ear. The hint speech can be given, so that the program
can determine the gender of the speaker with possibly higher accuracy. In our
hint experiments, each sound clip is assigned a hint, so that only one decision
per clip needed to be made by the sound recognition program.
We performed experiments with different feature dimensions of the different

feature extraction methods. The results of sound classification for the direct
approach are shown in Table 3.4. Total sound recognition rates are obtained by
the maximum likelihood score among the 15 competing sound models.
For the 15 sound classes MPEG-7 ASP projected onto a PCA basis provides

a slightly better recognition rate than ASP projected onto a FastICA basis at
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Table 3.4 Total classification accuracies (%) of 15 sound classes

Feature extraction methods Feature dimension

7 13 23

PCA-ASP 82�9 90�2 95�0
ICA-ASP 81�7 91�5 94�6
NMF-ASP 74�5 77�2 78�6
MFCC 90�5 93�2 94�2

NMF-ASP: MPEG-7 ASP based on NMF basis.

dimensions 7 and 23, while slightly worse at dimension 13. Recognition rates
using MPEG-7 confirm that ASP results appear to be significantly lower than
the recognition rate of MFCC with the dimensions 7 and 13.
For performing NMF of the audio signal we had two choices: NMF method

1: The NMF basis was extracted from the NASE matrix. The ASP features
projected onto the NMF basis were directly applied to the HMM sound classifier.
NMF method 2: The audio signal was transformed to the spectrogram. NMF
component parts were extracted from spectrogram image patches. Basis vectors
computed by NMF were selected according to their discrimination capability.
Sound features were computed from these reduced vectors and fed into the HMM
classifier. This process is well described in (Cho et al., 2003).
The ASP projected onto NMF derived from the absolute NASE matrix using

NMF method 1 yields the lowest recognition rate, while NMF method 2 with a
95 ordered basis according to the spectrogram image patches provides a 95.8%
recognition rate. Disadvantages are its computational complexity and its large
memory requirements.
Table 3.5 describes the recognition results of several sounds with different

classification structures. The total recognition rates are obtained by the maximum
likelihood score among the 15 competing sound models. The MPEG-7 ASP

Table 3.5 Total classification accuracies (%) of 15 sound classes
using different sound classification structures

Feature extraction methods Feature dimension (13)

A B C

PCA-ASP 90�23 75�83 97�05
ICA-ASP 91�51 76�67 97�08
MFCC 93�24 86�25 96�25

A: direct approach.
B: hierarchical classification without hints.
C: hierarchical classification with hints.
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features yield a 91.51% recognition rate in the classification using a direct
approach A. This recognition rate appears to be significantly lower than the
93.24% recognition rate obtained with MFCC.
For classification using the hierarchical approach without hints B, the MFCC

features yield a significant recognition improvement over the MPEG-7 ASP fea-
tures. However, the recognition rate is lower compared with the direct approach.
Many of the errors were due to problems with recognition in the highest layer –
sound samples in different branches of the tree were too similar. For example,
some dog sounds and horn sounds were difficult to tell apart with the human ear.
Thus, a hierarchical structure for sound recognition does not necessarily improve
recognition rates if sounds in different general classes are too similar unless
some sort of additional information (e.g. a hint) is available. The hierarchical
classification with hints C yields overall the highest recognition rate. Especially,
the recognition rate of the MPEG-7 ASP is slightly better than the recognition
rate of the MFCC features, because some male and female speeches are better
recognized by the MPEG-7 ASP than by MFCC.
Figure 3.24 shows a typical graphical user interface for sound recognition. The

underlying MPEG-7 sound classification tool is used to search a large database
of sound categories and find the best matches to the selected query sound using
state-path histograms. For the classification of environmental sounds, different
models are constructed for a fixed set of acoustic classes, such as applause, bell,

Figure 3.24 Interface of an on-line sound classification system (TU-Berlin)



96 3 SOUND CLASSIFICATION AND SIMILARITY

footstep, laughter, bird’s cry, and so on. The MPEG-7 ASP feature extraction is
performed on a query sound as shown on the left of Figure 3.24. The model class
and state path are stored and these results are compared against the state paths
stored in a pre-computed sound index database. The matching module finds the
recognized sound class and outputs the best matches within the class assigned to
the query sound. The right part of Figure 3.24 shows the sound similarity results
according to the best match using the state-path histogram. The most similar
sounds should be at the top of the list and the most dissimilar ones at the bottom.

3.7.5 Results for Speaker Recognition

Speaker recognition attempts to recognize a person from a spoken phrase, useful
for radio and TV broadcast indexing. This section focuses on the performance
of NASE, PCA, ICA and MFCC methods for speaker recognition.
We performed experiments where 30 speakers (14 male and 16 female) were

used. Each speaker was instructed to read 20 different sentences. After recording
the sentences spoken by each speaker, we cut the recordings into smaller clips:
31 training clips (about 5 minutes long) and 20 test clips (2 minutes) per speaker.
Left–right HMM classifiers with seven states were used to model each speaker.
For each feature space (NASE, PCA, ICA, MFCC), a set of 30HMMs (30 speak-
ers) was trained using a classical expectation and maximization (EM) algorithm.
In the case of NASE, the matching process was easy because there were no

bases. We simply matched each test clip against each of the 25HMMs (trained
with NASE features) via the Viterbi algorithm. The HMM yielding the best
acoustic score (along the most probable state path) determined the recognized
speaker.
In the case of the PCA and ICA methods, each HMM had been trained with

data projected onto a basis. Every time we tested a sound clip on an HMM, the
sound clip’s NASE was projected onto the basis (ASB) first. This process caused
testing to take considerably longer, as each test clip had to be projected onto 30
different bases, before it could be tested on the 30HMMs to determine what it
should be recognized as. On the other hand, the performance due to the projection
onto the well-chosen bases increased recognition performance considerably. The
recognition rates for a smaller training set are depicted in Figure 3.25.
The best value E for both methods was 23. However, this was not always

the case and was dependent on the training/test data sets. Results for speaker
recognition among six male speakers revealed that the optimal dimension for E
should be 16.
The results for using the different feature extraction methods are shown in

Table 3.6. Total recognition rates are obtained by the maximum likelihood score
among the 30 competing speaker models.
For PCA and ICA the recognition rate corresponding to E= 23 was chosen,

even though in one case the recognition rate was 1.5% higher for E = 28
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Figure 3.25 Effect of E on recognition rates obtained with PCA and ICA

Table 3.6 Total speaker recognition results of 30 speakers (%) and gender recognition
rate between male and female speakers

Recognition mode NASE PCA ICA MFCC+�+��

Speaker recognition (small set) 80�8 90�4 91�2 96�0
Speaker recognition (larger set) 80�0 85�6 93�6 98�4
Gender recognition (small set) 98�4 100�0 100�0 100�0

(PCA, with larger training set). For the recognition of 30 speakers, ICA yields
better performance than PCA and NASE features, but significantly worse than
MFCC+�+�� based on 39 coefficients. Dynamic features such as � and
�� provide estimates of a gross shape (linear and second-order curvature) of
a short segment of feature trajectory. It appears that MFCC, which is not an
MPEG-7 feature, outperforms MPEG-7. To test gender recognition, we used the
smaller set. Two HMMs were trained: one with the training clips from female
speakers, the other with the training clips from male speakers. Because there
were only two possible answers to the recognition question, male or female,
this experiment was naturally much easier to carry out and resulted in excellent
recognition rates, as depicted in Table 3.6; 100% indicates that no mistakes were
made out of 125 test sound clips.
The ASP features based on three basis decomposition algorithms were further

applied to speaker recognition including 30 speakers. For NMF of the audio
signal we did not use NMF method 2 using the spectrogram image patches, but
computed the NMF basis from the NASE matrix according to NMF method 1.
ASP projected onto the NMF basis (without further basis selection) was applied
directly to the sound classifier. The results of speaker recognition for the direct
approach are shown in Table 3.7.
Overall, MFCC achieves the best recognition rates. The recognition rate using

the ASP projected onto NMF derived from the absolute NASE matrix is very
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Table 3.7 Total speaker recognition accuracies of 30 speakers (%)

Feature extraction methods Feature dimension

7 13 23

PCA-ASP 62�1 83�6 90�2
ICA-ASP 65�95 84�9 92�9
NMF-ASP 45�4 48�3 53�2
MFCC 72�80 92�7 96�25

poor. The reason is that the NMF basis matrix, which was produced without
spectrogram image patches and basis ordering, reduced the data too much, and
the HMM did not receive enough information.

3.7.6 Results of Musical Instrument Classification

Automatic musical instrument classification is a fascinating and essential sub-
problem in music indexing, retrieval and automatic transcription. It is closely
related to computational auditory scene analysis.
Our validation database consisted of 960 solo tones of 10 orchestral instru-

ments, such as flute, horn, violin, cello, guitar, piano, oboe, bassoon, saxophone
and trumpet, with several articulation styles. All tones were from the Iowa Uni-
versity samples collection (Iowa: http://theremin.MUSIC.viowa.edu/MIS.html).
The database for training is partitioned into a testing set of 40 minutes/10
minutes. The classification accuracy for individual instruments is presented in
Table 3.8.
The recognition accuracy depends on the recording circumstances, as might

be expected. The best classification accuracy was 62% for individual instruments
and was obtained with MPEG-7 ASP features on a PCA basis of feature dimen-
sion 30. MFCC performs slightly worse at dimension 23 and significantly worse
at dimension 30. The experimental results illustrate that both the MPEG-7 ASP
and the MFCC features are not very efficient for the classification of musical
instruments.

Table 3.8 Total classification accuracies (%) of 10 musical instruments

Feature dimension Feature extraction methods

PCA-ASP ICA-ASP MFCC

23 61�5 60�5 60�05
30 62�0 54�0 58�5
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3.7.7 Audio Retrieval Results

Once an input sound a has been recognized as a sound of class Cl, the state
paths of the sounds b in the MPEG-7 database, which belong to class Cl,
can be compared with the state path of a using the Euclidean distance ��a�b�
as described in Section 3.7.4. These sounds can then be sorted so that those
corresponding to the smallest distances are at the top of the list. That is, the items
which are most similar to the query should be at the top of the list and the most
dissimilar ones at the bottom. This system would basically be a search engine for
similar sounds within a given sound class. In Table 3.9, telephone_37 was input
as a test sound a and recognized as Cl= telephone. The list of the retrieved
items indexed with telephone, sorted by similarity with query telephone_37, are
presented.
The maximum likelihood scores used for classification are also included in

Table 3.9, so that the reader can see that calculating the similarity by compar-
ing the state paths and by comparing the maximum likelihood scores produce
different results. Note that the similarity is calculated based on “objective” mea-
sures.
To compare lists of similar items, we used our own measure called consistency.

A list is consistent when the elements next to each other belong to the same
class, and a list is inconsistent when any two adjacent elements always belong
to different classes. We used the following method to calculate the consistency
C of a retrieval method.
M sound clips are tested to produce M lists lm of similar sounds, such that

1≤m≤M . Let Lm be the length of the list lm, and let Nm be the number of

Table 3.9 Results of sound similarity

Similar sound Maximum likelihood score Euclidean distance

Telephone 37 37�8924 0�111 033
Telephone 34 38�5650 0�111 627
Telephone 58 38�4153 0�116 466
Telephone 35 25�3898 0�135 812
Telephone 55 39�2438 0�150 099
Telephone 60 36�1829 0�158 053

Similar sound Maximum likelihood score Euclidean distance

Gunshot 27 27�8624 0�111 023
Gunshot 31 28�5342 0�111 532
Gunshot 46 28�4523 0�115 978
Gunshot 33 16�5835 0�138 513
Gunshot 41 29�5342 0�162 056
Gunshot 50 26�3256 0�167 023
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Table 3.10 Consistencies

Method With the state paths With maximum likelihood scores

NASE 0�69 0�50
PCA 0�72 0�57
FastICA 0�73 0�58

times that two adjacent entries in the list lm belong to the same class. Compute
the consistency C according to:

Cm = Nm

Lm − 1
(3.43)

C = ECM�

1
M

M∑

m=1

Cm� (3.44)

Thus, the consistency is a real number between 0 and 1, with 0 being as incon-
sistent as possible and 1 as consistent as possible.
Using the same library of test sounds, we then measured the inconsistency

for retrieval methods using NASE, PCA projections and FastICA projections as
inputs to the HMMs. As it was also possible to measure the similarity using just
the maximum likelihood scores, we also list those results in Table 3.10.
The results indicate that the lists of similar sounds are more consistent, if the

state paths instead of the maximum likelihood scores are used for comparison.
We attribute this result to the fact that the state paths contain more information
because they are multi-dimensional, whereas the maximum likelihood scores are
one dimensional. Thus, our best technique for retrieving similar sounds is the
FastICA method using the state paths for comparison.

3.8 CONCLUSIONS

In this chapter we reviewed various techniques frequently used for sound clas-
sification and similarity. Several methods for dimensionality reduction and clas-
sification were introduced. The MPEG-7 standard was discussed in this context.
To provide the reader with an overview of the performance of MPEG-7, we
compared the performance of MPEG-7 audio spectrum projection (ASP) features
obtained with three different basis decomposition algorithms vs. mel-frequency
cepstrum coefficients (MFCCs). These techniques were applied for sound clas-
sification, musical instrument identification, speaker recognition and speaker-
based segmentation. For basis decomposition of the MPEG-7 ASP, principal
component analysis (PCA), FastICA as independent component analysis (ICA)
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or non-negative matrix factorization (NMF) were used. Audio features are com-
puted from these decorrelated vectors and fed into a continuous hidden Markov
model (HMM) classifier.
Our average recognition/classification results show that the MFCC features

yield better performance compared with MPEG-7 ASP in speaker recognition,
general sound classification and audio segmentation except musical instrument
identification, and classification of speech, music and environmental sounds. In
the case of MFCC, the process of recognition, classification and segmentation is
simple and fast because there are no bases used. On the other hand, the extraction
of MPEG-7 ASP is more time and memory consuming compared with MFCC.
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4
Spoken Content

4.1 INTRODUCTION

Audio streams of multimedia documents often contain spoken parts that enclose
a lot of semantic information. This information, called spoken content, consists
of the actual words spoken in the speech segments of an audio stream. As speech
represents the primary means of human communication, a significant amount
of the usable information enclosed in audiovisual documents may reside in the
spoken content. In the past decade, the extraction of spoken content metadata
has therefore become a key challenge for the development of efficient methods
to index and retrieve audiovisual documents.
One method for exploiting the spoken information is to have a human being

listen and transcribe it into textual information (full transcription or manual
annotation with a series of spoken keywords). A classical text retrieval system
could then exploit this information. In real-world applications, however, hand
indexing of spoken audio material is generally impracticable because of the huge
volume of data to process. An alternative is the automatization of the transcription
process by means of an automatic speech recognition (ASR) system.
Research in ASR dates back several decades. Only in the last few years has

ASR become a viable technology for commercial application. Due to the progress
of computation power, speech recognition technologies have matured to the point
where speech can be used to interact with automatic phone systems and control
computer programs (Coden et al., 2001). ASR algorithms have now reached
sufficient levels of performance to make the processing of natural, continuous
speech possible, e.g. in commercial dictation programs. In the near future, ASR
will have the potential to change dramatically the way we create, store and
manage knowledge. Combined with ever decreasing storage costs and ever more
powerful processors, progress in the ASR field promises new applications able
to treat speech as easily and efficiently as we currently treat text.

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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In this chapter we use the well defined MPEG-7 Spoken Content description
standard as an example to illustrate challenges in this domain. The audio part
of MPEG-7 contains a SpokenContent high-level tool targeted at spoken data
management applications. The MPEG-7 SpokenContent tool provides a stan-
dardized representation of an ASR output, i.e. of the semantic information (the
spoken content) extracted by an ASR system from a spoken signal. The Spo-
kenContent description attempts to be memory efficient and flexible enough to
make currently unforeseen applications possible in the future. It consists of a
compact representation of multiple word and/or sub-word hypotheses produced
by an ASR engine. It also includes a header that contains information about the
recognizer itself and the speaker’s identity.
How the SpokenContent description should be extracted and used is not part of

the standard. However, this chapter begins with a short introduction to ASR sys-
tems. The structure of the MPEG-7 SpokenContent description itself is presented
in detail in the second section. The third section deals with the main field of appli-
cation of the SpokenContent tool, called spoken document retrieval (SDR), which
aims at retrieving information in speech signals based on their extracted contents.
The contribution of the MPEG-7 SpokenContent tool to the standardization and
development of future SDR applications is discussed at the end of the chapter.

4.2 AUTOMATIC SPEECH RECOGNITION

The MPEG-7 SpokenContent description is a normalized representation of the
output of an ASR system. A detailed presentation of the ASR field is beyond the
scope of this book. This section provides a basic overview of the main speech
recognition principles. A large amount of literature has been published on the
subject in the past decades. An excellent overview on ASR is given in (Rabiner
and Juang, 1993).
Although the extraction of the MPEG-7 SpokenContent description is non-

normative, this introduction is restrained to the case of ASR based on hidden
Markov models, which is by far the most commonly used approach.

4.2.1 Basic Principles

Figure 4.1 gives a schematic description of an ASR process. Basically, it consists
in two main steps:

1. Acoustic analysis. Speech recognition does not directly process the speech
waveforms. A parametric representation X (called acoustic observation) of
speech acoustic properties is extracted from the input signal A.

2. Decoding. The acoustic observation X is matched against a set of predefined
acoustic models. Each model represents one of the symbols used by the system
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Figure 4.1 Schema of an ASR system

for describing the spoken language of the application (e.g. words, syllables
or phonemes). The best scoring models determine the output sequence of
symbols.

The main principles and definitions related to the acoustic analysis and decod-
ing modules are briefly introduced in the following.

4.2.1.1 Acoustic Analysis

The acoustic observation X results from a time–frequency analysis of the input
speech signal A. The main steps of this process are:

1. The analogue signal is first digitized. The sampling rate depends on the par-
ticular application requirements. The most common sampling rate is 16 kHz
(one sample every 62�5�s).

2. A high-pass, also called pre-emphasis, filter is often used to emphasize the
high frequencies.

3. The digital signal is segmented into successive, regularly spaced time intervals
called acoustic frames. Time frames overlap each other. Typically, a frame
duration is between 20 and 40ms, with an overlap of 50%.

4. Each frame is multiplied by a windowing function (e.g. Hanning).
5. The frequency spectrum of each single frame is obtained through a Fourier

transform.
6. A vector of coefficients x, called an observation vector, is extracted from

the spectrum. It is a compact representation of the spectral properties of the
frame.

Many different types of coefficient vectors have been proposed. The most cur-
rently used ones are based on the frame cepstrum: namely, linear prediction
cepstrum coefficients (LPCCs) and more especially mel-frequency cepstral coef-
ficients (MFCCs) (Angelini et al. 1998; Rabiner and Juang, 1993). Finally, the
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acoustic analysis module delivers a sequence X of observation vectors, X =
�x1� x2� � � � � xT �, which is input into the decoding process.

4.2.1.2 Decoding

In a probabilistic ASR system, the decoding algorithm aims at determining the
most probable sequence of symbols W knowing the acoustic observation X:

∧
W = argmax

W

P�W �X�� (4.1)

Bayes’ rule gives:

∧
W = argmax

W

P�X�W�P�W�

P�X�
� (4.2)

This formula makes two important terms appear in the numerator: P�X�W� and
P�W�. The estimation of these probabilities is the core of the ASR problem. The
denominator P�X� is usually discarded since it does not depend on W .

The P�X�W� term is estimated through the acoustic models of the symbols
contained in W . The hidden Markov model (HMM) approach is one of the
most powerful statistical methods for modelling speech signals (Rabiner, 1989).
Nowadays most ASR systems are based on this approach.
A basic example of an HMM topology frequently used to model speech is

depicted in Figure 4.2. This left–right topology consists of different elements:

• A fixed number of states Si.• Probability density functions bi, associated to each state Si. These functions
are defined in the same space of acoustic parameters as the observation vectors
comprising X.

• Probabilities of transition aij between states Si and Sj . Only transitions with
non-null probabilities are represented in Figure 4.2. When modelling speech,
no backward HMM transitions are allowed in general (left–right models).

These kinds of models allow us to account for the temporal and spectral vari-
ability of speech. A large variety of HMM topologies can be defined, depending
on the nature of the speech unit to be modelled (words, phones, etc.).

Figure 4.2 Example of a left–right HMM
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When designing a speech recognition system, an HMM topology is defined
a priori for each of the spoken content symbols in the recognizer’s vocabulary.
The training of model parameters (transition probabilities and probability density
functions) is usually made through a Baum–Welch algorithm (Rabiner and Juang,
1993). It requires a large training corpus of labelled speech material with many
occurrences of each speech unit to be modelled.
Once the recognizer’s HMMs have been trained, acoustic observations can

be matched against them using the Viterbi algorithm, which is based on the
dynamic programming (DP) principle (Rabiner and Juang, 1993).
The result of a Viterbi decoding algorithm is depicted in Figure 4.3. In this

example, we suppose that sequence W just consists of one symbol (e.g. one
word) and that the five-state HMM �W depicted in Figure 4.2 models that word.
An acoustic observation X consisting of six acoustic vectors is matched against
�W . The Viterbi algorithm aims at determining the sequence of HMM states that
best matches the sequence of acoustic vectors, called the best alignment. This is
done by computing sequentially a likelihood score along every authorized paths
in the DP grid depicted in Figure 4.3. The authorized trajectories within the grid
are determined by the set of HMM transitions. An example of an authorized path
is represented in Figure 4.3 and the corresponding likelihood score is indicated.
Finally, the path with the higher score gives the best Viterbi alignment.
The likelihood score of the best Viterbi alignment is generally used to approx-

imate P�X�W� in the decision rule of Equation (4.2). The value corresponding
to the best recognition hypothesis – that is, the estimation of P�X�Ŵ � – is called
the acoustic score of X.

The second term in the numerator of Equation (4.2) is the probability P�W�
of a particular sequence of symbols W . It is estimated by means of a stochastic
language model (LM). An LM models the syntactic rules (in the case of words)

HMM 
for word W

λ w

S5

S4

S3

S2

S1

x1 x2 x3 x4 x5 x6

(*)

(*) Likelihood Score = b1(x1).a13.b3(x2).a34.b4(x3).a44.b4(x4).a45.b5(x5).a55.b5(x6)

Acoustic Observation X

Figure 4.3 Result of a Viterbi decoding
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or phonotactic rules (in the case of phonetic symbols) of a given language, i.e.
the rules giving the permitted sequences of symbols for that language.
The acoustic scores and LM scores are not computed separately. Both are

integrated in the same process: the LM is used to constrain the possible sequences
of HMM units during the global Viterbi decoding. At the end of the decoding
process, the sequence of models yielding the best accumulated LM and likelihood
score gives the output transcription of the input signal. Each symbol comprising
the transcription corresponds to an alignment with a sub-sequence of the input
acoustic observation X and is attributed an acoustic score.

4.2.2 Types of Speech Recognition Systems

The HMM framework can model any kind of speech units (words, phones, etc.)
allowing us to design systems with diverse degrees of complexity (Rabiner,
1993). The main types of ASR systems are listed below.

4.2.2.1 Connected Word Recognition

Connected word recognition systems are based on a fixed syntactic network,
which strongly restrains the authorized sequences of output symbols. No stochas-
tic language model is required. This type of recognition system is only used for
very simple applications based on a small lexicon (e.g. digit sequence recogni-
tion for vocal dialling interfaces, telephone directory, etc.) and is generally not
adequate for more complex transcription tasks.
An example of a syntactic network is depicted in Figure 4.4, which represents

the basic grammar of a connected digit recognition system (with a backward
transition to permit the repetition of digits).

Figure 4.4 Connected digit recognition with (a) word modelling and (b) flexible
modelling
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Figure 4.4 also illustrates two modelling approaches. The first one (a) consists
of modelling each vocabulary word with a dedicated HMM. The second (b) is a
sub-lexical approach where each word model is formed from the concatenation
of sub-lexical HMMs, according to the word’s canonical transcription (a phonetic
transcription in the example of Figure 4.4). This last method, called flexible
modelling, has several advantages:

• Only a few models have to be trained. The lexicon of symbols necessary to
describe words has a fixed and limited size (e.g. around 40 phonetic units to
describe a given language).

• As a consequence, the required storage capacity is also limited.
• Any word with its different pronunciation variants can be easily modelled.
• New words can be added to the vocabulary of a given application without
requiring any additional training effort.

Word modelling is only appropriate with the simplest recognition systems, such
as the one depicted in Figure 4.4 for instance. When the vocabulary gets too
large, as in the case of large-vocabulary continuous recognition addressed in
the next section, word modelling becomes clearly impracticable and the flexible
approach is mandatory.

4.2.2.2 Large-Vocabulary Continuous Speech Recognition

Large-vocabulary continuous speech recognition (LVCSR) is a speech-to-text
approach, targeted at the automatic word transcription of the input speech signal.
This requires a huge word lexicon. As mentioned in the previous section, words
are modelled by the concatenation of sub-lexical HMMs in that case. This means
that a complete pronunciation dictionary is available to provide the sub-lexical
transcription of every vocabulary word.
Recognizing and understanding natural speech also requires the training of a

complex language model which defines the rules that determine what sequences
of words are grammatically well formed and meaningful. These rules are intro-
duced in the decoding process by applying stochastic constraints on the permitted
sequences of words.
As mentioned before (see Equation 4.2), the goal of stochastic language models

is the estimation of the probability P�W� of a sequence of wordsW . This not only
makes speech recognition more accurate, but also helps to constrain the search
space for speech recognition by discarding the less probable word sequences.
There exist many different types of LMs (Jelinek, 1998). The most widely

used are the so-called n-gram models, where P�W� is estimated based on
probabilities P�wi�wi−n+1�wi−n+2� � � � �wi−1� that a word wi occurs after a sub-
sequence of n−1 words �wi−n+1�wi−n+2� � � � �wi−1�. For instance, an LM where
the probability of a word only depends on the previous one �P�wi�wi−1�� is
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called a bigram. Similarly, a trigram takes the two previous words into account
�P�wi�wi−2�wi−1��.

Whatever the type of LM, its training requires large amounts of texts or
spoken document transcriptions so that most of the possible word successions
are observed (e.g. possible word pairs for a bigram LM). Smoothing methods are
usually applied to tackle the problem of data sparseness (Katz, 1987). A language
model is dependent on the topics addressed in the training material. That means
that processing spoken documents dealing with a completely different topic could
lead to a lower word recognition accuracy.
The main problem of LVCSR is the occurrence of out-of-vocabulary (OOV)

words, since it is not possible to define a recognition vocabulary comprising
every possible word that can be spoken in a given language. Proper names are
particularly problematic since new ones regularly appear in the course of time
(e.g. in broadcast news). They often carry a lot of useful semantic information
that is lost at the end of the decoding process. In the output transcription, an OOV
word is usually substituted by a vocabulary word or a sequence of vocabulary
words that is acoustically close to it.

4.2.2.3 Automatic Phonetic Transcription

The goal of phonetic recognition systems is to provide full phonetic transcriptions
of spoken documents, independently of any lexical knowledge. The lexicon is
restrained to the set of phone units necessary to describe the sounds of a given
language (e.g. around 40 phones for English).
As before, a stochastic language model is needed to prevent the generation

of less probable phone sequences (Ng et al., 2000). Generally, the recognizer’s
grammar is defined by a phone loop, where all phone HMMs are connected
with each other according to the phone transition probabilities specified in the
phone LM. Most systems use a simple stochastic phone–bigram language model,
defined by the set of probabilities P��j��i� that phone �j follows phone �i

(James, 1995; Ng and Zue, 2000b).
Other, more refined phonetic recognition systems have been proposed. The

extraction of phones by means of the SUMMIT system (Glass et al., 1996)
developed at MIT,1 adopts a probabilistic segment-based approach that differs
from conventional frame-based HMM approaches. In segment-based approaches,
the basic speech units are variable in length and much longer in comparison
with frame-based methods. The SUMMIT system uses an “acoustic segmenta-
tion” algorithm (Glass and Zue, 1988) to produce the segmentation hypotheses.
Segment boundaries are hypothesized at locations of large spectral change. The
boundaries are then fully interconnected to form a network of possible segmen-
tations on which the recognition search is performed.

1Massachusetts Institute of Technology.
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Another approach to word-independent sub-lexical recognition is to train
HMMs for other types of sub-lexical units, such as syllables (Larson and
Eickeler, 2003). But in any case, the major problem of sub-lexical recognition
is the high rate of recognition errors in the output sequences.

4.2.2.4 Keyword Spotting

Keyword spotting is a particular type of ASR. It consists of detecting the occur-
rences of isolated words, called keywords, within the speech stream (Wilpon
et al., 1990). The target words are taken from a restrained, predefined list of
keywords (the keyword vocabulary).
The main problem with keyword spotting systems is the modeling of irrelevant

speech between keywords by means of so-called filler models. Different sorts of
filler models have been proposed. A first approach consists of training different
specific HMMs for distinct “non-keyword” events: silence, environmental noise,
OOV speech, etc. (Wilpon et al., 1990). Another, more flexible solution is
to model non-keyword speech by means of an unconstrained phone loop that
recognizes, as in the case of a phonetic transcriber, phonetic sequences without
any lexical constraint (Rose, 1995). Finally, a keyword spotting decoder consists
of a set of keyword HMMs looped with one or several filler models.
During the decoding process, a predefined threshold is set on the acoustic score

of each keyword candidate. Words with scores above the threshold are considered
true hits, while those with scores below are considered false alarms and ignored.
Choosing the appropriate threshold is a trade-off between the number of type
I (missed words) and type II (false alarms) errors, with the usual problem that
reducing one increases the other. The performance of keyword spotting systems
is determined by the trade-offs it is able to achieve. Generally, the desired trade-
off is chosen on a performance curve plotting the false alarm rate vs. the missed
word rate. This curve is obtained by measuring both error rates on a test corpus
when varying the decision threshold.

4.2.3 Recognition Results

This section presents the different output formats of most ASR systems and
gives the definition of recognition error rates.

4.2.3.1 Output Format

As mentioned above, the decoding process yields the best scoring sequence
of symbols. A speech recognizer can also output the recognized hypotheses in
several other ways. A single recognition hypothesis is sufficient for the most basic
systems (connected word recognition), but when the recognition task is more
complex, particularly for systems using an LM, the most probable transcription
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usually contains many errors. In this case, it is necessary to deliver a series of
alternative recognition hypotheses on which further post-processing operations
can be performed. The recognition alternatives to the best hypothesis can be
represented in two ways:

• An N-best list, where the N most probable transcriptions are ranked according
to their respective scores.

• A lattice, i.e. a graph whose different paths represent different possible tran-
scriptions.

Figure 4.5 depicts the two possible representations of the transcription alterna-
tives delivered by a recognizer (A, B, C and D represent recognized symbols).
A lattice offers a more compact representation of the transcription alternatives.

It consists of an oriented graph in which nodes represent time points between the
beginning �Tstart� and the end �Tend� of the speech signal. The edges correspond
to recognition hypotheses (e.g. words or phones). Each one is assigned the label
and the likelihood score of the hypothesis it represents along with a transition
probability (derived from the LM score). Such a graph can be seen as a reduced
representation of the initial search space. It can be easily post-processed with an
A∗ algorithm (Paul, 1992), in order to extract a list of N -best transcriptions.

4.2.3.2 Performance Measurements

The efficiency of an ASR system is generally measured based on the 1-best tran-
scriptions it delivers. The transcriptions extracted from an evaluation collection
of spoken documents are compared with reference transcriptions. By comparing
reference and hypothesized sequences, the occurrences of three types or errors
are usually counted:

Figure 4.5 Two different representations of the output of a speech recognizer. Part (a)
depicts a list of N -best transcriptions, and part (b) a word lattice
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• Substitution errors, when a symbol in the reference transcription was substi-
tuted with a different one in the recognized transcription.

• Deletion errors, when a reference symbol has been omitted in the recognized
transcription.

• Insertion errors, when the system recognized a symbol not contained in the
reference transcription.

Two different measures of recognition performance are usually computed based
on these error counts. The first is the recognition error rate:

Error Rate= #Substitution+ #Insertion+ #Deletion

#Reference Symbols
� (4.3)

where #Substitution, #Insertion and #Deletion respectively denote the numbers
of substitution, insertion and deletion occurrences observed when comparing the
recognized transcriptions with the reference. #Reference Symbols is the number
of symbols (e.g. words) in the reference transcriptions. The second measure is
the recognition accuracy:

Accuracy= #Correct− #Insertion
#Reference Symbols

� (4.4)

where #Correct denotes the number of symbols correctly recognized. Only one
performance measure is generally mentioned since:

Accuracy+Error Rate= 100%� (4.5)

The best performing LVCSR systems can achieve word recognition accuracies
greater than 90% under certain conditions (speech captured in a clean acoustic
environment). Sub-lexical recognition is a more difficult task because it is syntac-
tically less constrained than LVCSR. As far as phone recognition is concerned,
a typical phone error rate is around 40% with clean speech.

4.3 MPEG-7 SPOKENCONTENT DESCRIPTION

There is a large variety of ASR systems. Each system is characterized by a large
number of parameters: spoken language, word and phonetic lexicons, quality
of the material used to train the acoustic models, parameters of the language
models, etc. Consequently, the outputs of two different ASR systems may differ
completely, making retrieval in heterogeneous spoken content databases difficult.
The MPEG-7 SpokenContent high-level description aims at standardizing the
representation of ASR outputs, in order to make interoperability possible. This
is achieved independently of the peculiarities of the recognition engines used to
extract spoken content.
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4.3.1 General Structure

Basically, the MPEG-7 SpokenContent tool defines a standardized description
of the lattices delivered by a recognizer. Figure 4.6 is an illustration of what
an MPEG-7 SpokenContent description of the speech excerpt “film on Berlin”
could look like. Figure 4.6 shows a simple lattice structure where small circles
represent lattice nodes. Each link between nodes is associated with a recognition
hypothesis, a probability derived from the language model, and the acoustic score
delivered by the ASR system for the corresponding hypothesis. The standard
defines two types of lattice links: word type and phone type. An MPEG-7 lattice
can thus be a word-only graph, a phone-only graph or combine word and phone
hypotheses in the same graph as depicted in the example of Figure 4.6.
The MPEG-7 a SpokenContent description consists of two distinct elements:

a SpokenContentHeader and a SpokenContentLattice. The SpokenContentLattice
represents the actual decoding produced by an ASR engine (a lattice structure
such as the one depicted in Figure 4.6). The SpokenContentHeader contains
some metadata information that can be shared by different lattices, such as the
recognition lexicons of the ASR systems used for extraction or the speaker
identity. The SpokenContentHeader and SpokenContentLattice descriptions are
interrelated by means of specific MPEG-7 linking mechanisms that are beyond
the scope of this book (Lindsay et al., 2000).

4.3.2 SpokenContentHeader

The SpokenContentHeader contains some header information that can be shared
by several SpokenContentLattice descriptions. It consists of five types of
metadata:

• WordLexicon: a list of words. A header may contain several word lexicons.
• PhoneLexicon: a list of phones. A header may contain several phone lexicons.

Figure 4.6 MPEG-7 SpokenContent description of an input spoken signal “film on
Berlin”
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• ConfusionInfo: a data structure enclosing some phone confusion information.
Although separate, the confusion information must map onto the phone lexicon
with which it is associated via the SpeakerInfo descriptor.

• DescriptionMetadata: information about the extraction process used to gener-
ate the lattices. In particular, this data structure can store the name and settings
of the speech recognition engine used for lattice extraction.

• SpeakerInfo: information about the persons speaking in the original audio
signals, along with other information about their associated lattices.

These descriptors are mostly detailed in the following sections.

4.3.2.1 WordLexicon

A WordLexicon is a list of words, generally the vocabulary of a word-based
recognizer. Each entry of the lexicon is an identifier (generally its orthographic
representation) representing a word. A WordLexicon consists of the following
elements:

• phoneticAlphabet: is the name of an encoding scheme for phonetic symbols. It
is only needed if phonetic representations are used (see below). The possible
values of this attribute are indicated in the PhoneLexicon section.

• NumOfOriginalEntries: is the original size of the lexicon. In the case of a
word lexicon, this should be the number of words originally known to the
ASR system.

• A series of Token elements: each one stores an entry of the lexicon.

Each Token entry is made up of the following elements:

• Word: a string that defines the label corresponding to the word entry. The
Word string must not contain white-space characters.

• representation: an optional attribute that describes the type of representation
of the lexicon entry. Two values are possible: orthographic (the word is
represented by its normal orthographic spelling) or nonorthographic (the word
is represented by another kind of identifier). A non-orthographic representation
may be a phoneme string corresponding to the pronunciation of the entry,
encoded according to the phoneticAlphabet attribute.

• linguisticUnit: an optional attribute that indicates the type of the linguistic unit
corresponding to the entry.

The WordLexicon was originally designed to store an ASR word vocabu-
lary. The linguisticUnit attribute was introduced also to allow the definition
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of other types of lexicons. The possible values for the linguisticUnit attribute
are:

• word: the default value.
• syllable: a sub-word unit (generally comprising two or three phonetic units)
derived from pronunciation considerations.

• morpheme: a sub-word unit bearing a semantic meaning in itself (e.g. the
“psycho” part of word “psychology”).

• stem: a prefix common to a family of words (e.g. “hous” for “house”, “houses”,
“housing”, etc.).

• affix: a word segment that needs to be added to a stem to form a word.
• component: a constituent part of a compound word that can be useful for
compounding languages like German.

• nonspeech: a non-linguistic noise.
• phrase: a sequence of words, taken as a whole.
• other: another linguistic unit defined for a specific application.

The possibility to define non-word lexical entries is very useful. As will be later
explained, some spoken content retrieval approaches exploit the above-mentioned
linguistic units. The extraction of these units from speech can be done in twoways:

• A word-based ASR system extracts a word lattice. A post- processing of
word labels (for instance, a word-to-syllable transcription algorithm based on
pronunciation rules) extracts the desired units.

• TheASR system is based on a non-word lexicon. It extracts the desired linguistic
information directly from speech. It could be, for instance, a syllable recognizer,
based on a complete syllable vocabulary defined for a given language.

In the MPEG-7 SpokenContent standard, the case of phonetic units is handled
separately with dedicated description tools.

4.3.2.2 PhoneLexicon

A PhoneLexicon is a list of phones representing the set of phonetic units (basic
sounds) used to describe a given language. Each entry of the lexicon is an
identifier representing a phonetic unit, according to a specific phonetic alphabet.
A WordLexicon consists of the following elements:

• phoneticAlphabet: is the name of an encoding scheme for phonetic symbols
(see below).

• NumOfOriginalEntries: is the size of the phonetic lexicon. It depends on the
spoken language (generally around 40 units) and the chosen phonetic alphabet.

• A series of Token elements: each one stores a Phone string corresponding to an
entry of the lexicon. The Phone strings must not contain white-space characters.
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The phoneticAlphabet attribute has four possible values:

• sampa: use of the symbols from the SAMPA alphabet.1

• ipaSymbol: use of the symbols from the IPA alphabet.2

• ipaNumber: use of the three-digit IPA index.3

• other: use of another, application-specific alphabet.

A PhoneLexicon may be associated to one or several ConfusionCount
descriptions.

4.3.2.3 ConfusionInfo

In the SpokenContentHeader description, the ConfusionInfo field actually refer to
a description called ConfusionCount. The ConfusionCount description contains
confusion statistics computed on a given evaluation collection, with a particular
ASR system. Given a spoken document in the collection, these statistics are
calculated by comparing the two following phonetic transcriptions:

• The reference transcription REF of the document. This results either from
manual annotation or from automatic alignment of the canonical phonetic
transcription of the speech signal. It is supposed to reflect exactly the phonetic
pronunciation of what is spoken in the document.

• The recognized transcription REC of the document. This results from the
decoding of the speech signal by the ASR engine. Unlike the reference tran-
scription REF, it is corrupted by substitution, insertion and deletion errors.

The confusion statistics are obtained by string alignment of the two transcriptions,
usually by means of a dynamic programming algorithm.

Structure
A ConfusionCount description consists of the following elements:

• numOfDimensions: the dimensionality of the vectors and matrix in the Con-
fusionCount description. This number must correspond to the size of the
PhoneLexicon to which the data applies.

• Insertion: a vector (of length numOfDimensions) of counts, being the number
of times a phone was inserted in sequence REC, which is not in REF.

• Deletion: a vector (of length numOfDimensions) of counts, being the number
of times a phone present in sequence REF was deleted in REC.

1 Speech Assessment Methods Phonetic Alphabet (SAMPA): www.phon.ucl.ac.uk/home/sampa.
2 International Phonetic Association (IPA) Alphabet: http://www2.arts.gla.ac.uk/IPA.
3 IPA Numbers: http://www2.arts.gla.ac.uk/IPA/IPANumberChart96.pdf.
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• Substitution: a square matrix (dimension numOfDimensions) of counts, report-
ing for each phone r in row (REF) the number of times that phone has been
substituted with the phones h in column (REC). The matrix diagonal gives
the number of correct decodings for each phone.

Confusion statistics must be associated to a PhoneLexicon, also provided in the
descriptor’s header. The confusion counts in the above matrix and vectors are
ranked according to the order of appearance of the corresponding phones in the
lexicon.

Usage
We define the substitution count matrix Sub, the insertion and deletion count
vectors Ins and Del respectively and denote the counts in ConfusionCount as
follows:

• Each element Sub�r�h� of the substitution matrix corresponds to the number
of times that a reference phone r of transcription REF was confused with a
hypothesized phone h in the recognized sequence REC. The diagonal elements
Sub�r� r� give the number of times a phone r was correctly recognized.

• Each element Ins�h� of the insertion vector is the number of times that phone
h was inserted in sequence REC when there was nothing in sequence REF at
that point.

• Each element Del�r� of the deletion vector is the number of times that phone
r in sequence REF was deleted in sequence REC.

The MPEG-7 confusion statistics are stored as pure counts. To be usable in most
applications, they must be converted into probabilities. The simplest method
is based on the maximum likelihood criterion. According to this method, an
estimation of the probability of confusing phone r as phone h (substitution error)
is obtained by normalizing the confusion count Sub�r�h� as follows (Ng and
Zue, 2000):

PC�r�h�=
Sub�r�h�

Del�r�+∑

k

Sub�r� k�
≈P�h�r�� (4.6)

The denominator of this ratio represents the total number of occurrences of
phone r in the whole collection of reference transcriptions.

The PC matrix that results from the normalization of the confusion count
matrix Sub is usually called the phone confusion matrix (PCM) of the ASR
system. There are many other different ways to calculate such PCMs using
Bayesian or maximum entropy techniques. However, the maximum likelihood
approach is the most straightforward and hence the most commonly used.
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The deletion and insertion count vectors Del and Ins can be normalized in
the same way. An estimation of the probability of a phone r being deleted is
given by:

PD�r�=
Del�r�

Del�r�+∑

k

Sub�r� k�
≈P���r�� (4.7)

where � is the null symbol, indicating a phone absence.
Similarly, an estimation of the probabilities of a phone h being inserted, given

an insertion took place, is derived from the insertion count vector Ins:

PI�h�=
Ins�h�

∑

k

Ins�k�
≈P�h���� (4.8)

The denominator of this ratio represents the total number of insertions in the
whole collection; that is, the number of times any phone appeared in a REC
sequence where there was nothing in the corresponding REF sequence at that
point.
Figure 4.7 gives an example of a phone confusion matrix, along with phone

insertion and deletion vectors. This matrix was obtained with a German phone
recognizer and a collection of German spoken documents.
The estimated probability values P in the matrix and vectors are represented

by grey squares. We used a linear grey scale spanning from white �P = 0� to
black �P= 1�: the darker the square, the higher the P value.
The phone lexicon consists of 41 German phone symbols derived from the

SAMPA phonetic alphabet (Wells, 1997). The blocks along the diagonal group
together phones that belong to the same broad phonetic category. The following
observations can be made from the results in Figure 4.7:

• The diagonal elements PC�r� r� correspond to the higher probability val-
ues. These are estimations of probabilities P�r�r� that phones r are correctly
recognized.

• Phone confusions are not symmetric. Given two phones i and j, we have
PC�j� i� �=PC�i� j�.• Most of the phonetic substitution errors occur between phones that are within
the same broad phonetic class (Halberstadt, 1998).

The phone confusion information can be used in phone-based retrieval systems,
as will be explained later in this chapter.

4.3.2.4 SpeakerInfo

The SpeakerInfo description contains information about a speaker, which may be
shared by several lattices. It effectively contains a Person element representing
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Figure 4.7 Phone confusion matrix of German phones with main phonetic classes

the person who is speaking, but also contains much more information about
lattices, such as indexes and references to confusion information and lexicons.
A SpeakerInfo consists of these elements:

• Person: is the name (or any other identifier) of the individual person who is
speaking. If this field is not present, the identity of the speaker is unknown.

• SpokenLanguage: is the language that is spoken by the speaker. This is distinct
from the language in which the corresponding lattices are written, but it
is generally assumed that the word and/or phone lexicons of these lattices
describe the same spoken language.

• WordIndex: consists of a list of words or word n-grams (sequences of n
consecutive words), together with pointers to where each word or word n-gram
occurs in the lattices concerned. Each speaker has a single word index.

• PhoneIndex: consists of a list of phones or phone n-grams (sequences of n
consecutive phones), together with pointers to where each phone or phone
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n-gram occurs in the corresponding lattices. Each speaker has a single phone
index.

• defaultLattice: is the default lattice for the lattice entries in both the word and
phone indexes.

• wordLexiconRef: is a reference to the word lexicon used by this speaker.
• phoneLexiconRef: is a reference to the phone lexicon used by this speaker.
Several speakers may share the same word and phone lexicons.

• confusionInfoRef: is a reference to a ConfusionInfo description that can be
used with the phone lexicon referred to by phoneLexiconRef.

• DescriptionMetadata: contains information about the extraction process.
• provenance: indicates the provenance of this decoding.

Five values are possible for the provenance attribute:

• unknown: the provenance of the lattice is unknown.
• ASR: the decoding is the output of an ASR system.
• manual: the lattice is manually derived rather than automatic.
• keyword: the lattice consists only of keywords rather than full text. This results
either from an automatic keyword spotting system, or from manual annotation
with a selected set of words. Each keyword should appear as it was spoken in
the data.

• parsing: the lattice is the result of a higher-level parse, e.g. summary extraction.
In this case, a word in the lattice might not correspond directly to words
spoken in the data.

4.3.3 SpokenContentLattice

The SpokenContentLattice contains the complete description of a decoded lattice.
It basically consists of a series of nodes and links. Each node contains timing
information and each link contains a word or phone. The nodes are partitioned
into blocks to allow fast access. A lattice is described by a series of blocks, each
block containing a series of nodes and each node a series of links. The block,
node and link levels are detailed below.

4.3.3.1 Blocks

A block is defined as a lattice with an upper limit on the number of nodes that it
can contain. The decomposition of the lattice into successive blocks introduces
some granularity in the spoken content representation of an input speech signal.
A block contains the following elements:

• Node: is the series of lattice nodes within the block.
• MediaTime: indicates the start time and, optionally, the duration of the block.
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• defaultSpeakerInfoRef: is a reference to a SpeakerInfo description. This ref-
erence is used where the speaker entry on a node in this lattice is blank.
A typical use would be where there is only one speaker represented in the
lattice, in which case it would be wasteful to put the same information on
each node. In the extreme case that every node has a speaker reference, the
defaultSpeakerRef is not used, but must contain a valid reference.

• num: represents the number of this block. Block numbers range from 0 to
65 535.

• audio: is a measure of the audio quality within this block.

The possible values of the audio attribute are:

• unknown: no information is available.
• speech: the signal is known to be clean speech, suggesting a high likelihood
of a good transcription.

• noise: the signal is known to be non-speech. This might arise when segmen-
tation would have been appropriate but inconvenient.

• noisySpeech: the signal is known to be speech, but with facets making recog-
nition difficult. For instance, there could be music in the background.

4.3.3.2 Nodes

Each Node element in the lattice blocks encloses the following information:

• num: is the number of this node in the current block. Node numbers can range
from 0 to 65 535 (the maximum size of a block, in terms of nodes).

• timeOffset: is the time offset of this node, measured in one-hundredths of a
second, measured from the beginning of the current block. The absolute time
is obtained by adding the node offset to the block starting time (given by the
MediaTime attribute of the current Block element).

• speakerInfoRef: is an optional reference to the SpeakerInfo corresponding to
this node. If this attribute is not present, the DefaultSpeakerInfoRef attribute
of the current block is taken into account. A speaker reference placed on every
node may lead to a very large description.

• WordLink: a series of WordLink descriptions (see the section below) all the
links starting from this node and carrying a word hypothesis.

• PhoneLink: a series of PhoneLink descriptions (see the section below) all the
links starting from this node and carrying a phone hypothesis.

4.3.3.3 Links

As mentioned in the node description, there are two kinds of lattice links:
WordLink, which represents a recognized word; and PhoneLink, which represents
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a recognized phone. Both types can be combined in the same SpokenContent-
Lattice description (see the example of Figure 4.6). Both word and phone link
descriptors inherit from the SpokenContentLink descriptor, which contains the
following three attributes:

• probability: is the probability of the link in the lattice. When several links
start from the same node, this indicates which links are the more likely. This
information is generally derived from the decoding process. It results from
the scores yielded by the recognizer’s language model. The probability values
can be used to extract the most likely path (i.e. the most likely transcription)
from the lattice. They may also be used to derive confidence measures on the
recognition hypotheses stored in the lattice.

• nodeOffset: indicates the node to which this link leads, specified as a relative
offset. When not specified, a default offset of 1 is used. A node offset leading
out of the current block refers to the next block.

• acousticScore: is the score assigned to the link’s recognition hypothesis by the
acoustic models of the ASR engine. It is given in a logarithmic scale (base e)
and indicates the quality of the match between the acoustic models and the
corresponding signal segment. It may be used to derive a confidence measure
on the link’s hypothesis.

The WordLink and PhoneLink links must be respectively associated to a
WordLexicon and a PhoneLexicon in the descriptor’s header. Each phone or
word is assigned an index according to its order of appearance in the correspond-
ing phone or word lexicon. The first phone or word appearing in the lexicon is
assigned an index value of 0. These indices are used to label word and phone
links.

4.4 APPLICATION: SPOKEN DOCUMENT RETRIEVAL

The most common way of exploiting a database of spoken documents indexed
by MPEG-7 SpokenContent descriptions is to use information retrieval (IR)
techniques, adapted to the specifics of spoken content information (Coden et al.,
2001).
Traditional IR techniques were initially developed for collections of textual

documents (Salton and McGill, 1983). They are still widely used in text databases
to identify documents that are likely to be relevant to a free-text query. But
the growing amount of data stored and accessible to the general population no
longer consists of text-only documents. It includes an increasing part of other
media like speech, video and images, requiring other IR techniques. In the past
decade, a new IR field has emerged for speech media, which is called spoken
document retrieval (SDR).
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SDR is the task of retrieving information from a large collection of recorded
speech messages (radio broadcasts, spoken segments in audio streams, spoken
annotations of pictures, etc.) in response to a user-specified natural language
text or spoken query. The relevant items are retrieved based on the spoken
content metadata extracted from the spoken documents by means of an ASR
system. In this case, ASR technologies are applied not to the traditional task of
generating an orthographically correct transcript, but rather to the generation of
metadata optimized to provide search and browsing capacity for large spoken
word collections.
Compared with the traditional IR field (i.e. text retrieval), a series of questions

arises when addressing the particular case of SDR:

• How far can the traditional IR methods and text analysis technologies be
applied in the new application domains enabled by ASR?

• More precisely, to what extent are IR methods that work on perfect text
applicable to imperfect speech transcripts? As speech recognition will never
be perfect, SDR methods must be robust in the face of recognition errors.

• To what extent is the performance of an SDR system dependent on the ASR
accuracy?

• What additional data resulting from the speech recognition process may be
exploited by SDR applications?

• How can sub-word indexing units be used efficiently in the context of SDR?

This chapter aims at giving an insight into these different questions, and at pro-
viding an overview of what techniques have been proposed so far to address them.

4.4.1 Basic Principles of IR and SDR

This section is a general presentation of the IR and SDR fields. It introduces a
series of terms and concept definitions.

4.4.1.1 IR Definitions

In an IR system a user has an information need, which is expressed as a text
(or spoken) request. The system’s task is to return a ranked list of documents
(drawn from an archive) that are best matched to that information need. We
recall the structure of a typical indexing and retrieval system in Figure 4.8. It
mainly consists of the following steps:

1. Let us consider a given collection of documents, a document denoting here
any object carrying information (a piece of text, an image, a sound or a
video). Each new document added to the database is processed to obtain a
document representation D, also called document description. It is this form
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Figure 4.8 General structure of an indexing and retrieval system

of the document that represents it in the IR process. Indexing is the process
of producing such document representations.

2. The request, i.e. the expression of the user’s information need, is input to the
system through an interface.

3. This request is processed to produce a query Q (the request description).
4. The query is matched against each document description in the database. In

general, the matching process yields a relevance score for each document,
where relevance means the extent to which a document satisfies the underlying
user’s information requirement. The relevance score is also called the retrieval
status value (RSV).

5. A ranked list of documents is formed, according to their respective relevance
scores.

6. The corresponding documents are extracted from the database and displayed
by means of an interface.

7. Optionally, the initial request may be subsequently refined by means of an
iterative relevance feedback strategy. After each retrieval pass, a relevance
assessment made on the best-ranked documents allows a new request to be
formed.
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An indexing and retrieval strategy relies on the choice of an appropriate retrieval
model. Basically, such a model is defined by the choice of two elements:

• The nature of the indexing information extracted from the documents and
requests, and the way it is represented to form adequate queries and document
descriptions.

• The retrieval function, which maps the set of possible query–document pairs
onto a set of retrieval status values RSV(Q, D), resulting from the matching
between a query Q and a document representation D.

There are several ways of defining the relevance score: that is, a value that reflects
how much a given document satisfies the user’s information requirement. The
different approaches can be classified according to two main types of retrieval
models: similarity-based IR models and probabilistic IR models (Crestani et al.,
1998).
In the first case, the RSV is defined as a measure of similarity, reflecting

the degree of resemblance between the query and the document descriptions.
The most popular similarity-based models are based on the vector space model
(VSM), which will be further detailed in the next section.
In the case of probabilistic retrieval models, the relevance status value is

evaluated as the probability of relevance to the user’s information need. In most
probabilistic models, relevance is considered as a dichotomous event: a document
is either relevant to a query or not. Then, according to the probability rank-
ing principle (Robertson, 1977), optimal retrieval performance can be achieved
by the retrieval system when documents D are ranked in decreasing order of
their evaluated probabilities P(“D relevant”�Q�D) of being judged relevant to a
query Q.
In the following sections, different retrieval models are presented, in the

particular context of SDR. A sound theoretical formalization of IR models is
beyond the scope of this chapter. The following approaches will be described
from the point of view of similarity-based models only, although some of them
integrate some information in a probabilistic way, in particular the probabilistic
string matching approaches introduced in Section 4.4.5.2. Hence, the retrieval
status value (RSV) will be regarded in the following as a measure of similarity
between a document description and a query.

4.4.1.2 SDR Definitions

The schema depicted in Figure 4.9 describes the structure of an SDR system.
Compared with the general schema depicted in Figure 4.8, a spoken retrieval
system presents the following peculiarities:

• Documents are speech recordings, either individually recorded or result-
ing from the segmentation of the audio streams of larger audiovisual (AV)
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Figure 4.9 Structure of an SDR system

documents. If necessary, a segmentation step may be applied to identify spo-
ken parts and discard non-speech signals (or non-exploitable speech signals,
e.g. if too noisy), and/or to divide large spoken segments into shorter and
semantically more relevant fragments, e.g. through speaker segmentation.

• A document representation D is the spoken content description extracted
through ASR from the corresponding speech recording. To make the SDR
system conform to the MPEG-7 standard, this representation must be encap-
sulated in an MPEG-7 SpokenContent description.

• The request is either a text or spoken input to the system. Depending on the
retrieval scenario, whole sentences or single word requests may be used.

• The query is the text or spoken content description extracted from the request.
A spoken request requires the use of an ASR system in order to extract a spoken
content description. A text request may be submitted to a text processing
module.

The relevance score results this time from the comparison between two spoken
content descriptions. In case of a spoken request, the ASR system used to form
the query must be compatible with the one used for indexing the database; that is,
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both systems must be working with the same set of phonetic symbols and/or
similar word lexicons. In the same way, it may be necessary to process text
requests in order to form queries using the same set of description terms as in
the one used to describe the documents.

4.4.1.3 SDR Approaches

Indexing is the process of generating spoken content descriptions of the docu-
ments. The units that make up these descriptions are called indexing features
or indexing terms. Given a particular IR application scenario, the choice of a
retrieval strategy and, hence, of a calculation method of the relevance score
depends on the nature of the indexing terms. These can be of two types in SDR:
words or sub-word units. Therefore, researchers have addressed the problem of
SDR in mainly two different ways: word-based SDR and sub-word-based SDR
(Clements et al., 2001; Logan et al., 2002).
The most straightforward way consists in coupling a word-based ASR engine

to a traditional IR system. An LVCSR system is used to convert the speech
into text, to which well-established text retrieval methods can be applied (James,
1995).
However, ASR always implies a certain rate of recognition errors, which

makes the SDR task different from the traditional text retrieval issue. Recognition
errors usually degrade the effectiveness of an SDR system. A first way to address
this problem is to improve the speech recognition accuracy, which requires a huge
amount of training data and time. Another strategy is to develop retrieval methods
that are more error tolerant, out of the traditional text retrieval field. Furthermore,
there are two major drawbacks for the word-based approach of SDR.
The first one is the static nature and limited size of the recognition vocabulary,

i.e. the set of words that the speech recognition engine uses to translate speech
into text. The recognizer’s decoding process matches the acoustics extracted
from the speech input to words in the vocabulary. Therefore, only words in the
vocabulary are capable of being recognized. Any other spoken term is considered
OOV. This notion of in-vocabulary and OOV words is an important and well-
known issue in SDR (Srinivasan and Petkovic, 2000).
The fact that the indexing vocabulary of a word-based SDR system has to be

known beforehand precludes the handling of OOV words. This implies direct
restrictions on indexing descriptions and queries:

• Words that are out of the vocabulary of the recognizer are lost in the indexing
descriptions, replaced by one or several in-vocabulary words.

• The query vocabulary is implicitly defined by the recognition vocabulary. It
is therefore also limited in size and has to be specified beforehand.

A related issue is the growth of the message collections. New words are con-
tinually encountered as more data is added. Many of these are out of the initial
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indexing vocabulary, in particular new proper names, which can be very impor-
tant for IR purposes. Therefore, the recognizer vocabulary may need to be
regularly updated and increased to handle these new words. It is then a diffi-
cult practical problem to determine when, how and what new words need to be
added and whether the entire message collection needs to be reindexed when
the recognizer vocabulary changes. Moreover, it should be kept in mind that
there is a practical limit, with current ASR technologies, as far as the size of the
recognition vocabulary is concerned.
A second major drawback of word-based SDR is the derivation of stochastic

language models, which are necessary for reasonable-quality LVCSR systems.
This requires huge amounts of training data containing a sufficient number of
occurrences of each recognition–vocabulary word. Furthermore, the training of
efficient LVCSR language models often relies on domain-specific data (eco-
nomical news, medical reports, etc.). If new documents, whose content is not
semantically consistent with the LM training data are added to the collection,
then the indexing ASR system may perform poorly on them.
With regard to the previous considerations, an alternative way is to perform

retrieval on sub-word-level transcriptions provided by a phoneme recognizer. In
recent years, a lot of works have considered the indexing of spoken documents
with sub-lexical units instead of word hypotheses (Ferrieux and Peillon, 1999;
Larson and Eickeler, 2003; Ng, 2000; Ng and Zue, 2000; Wechsler, 1998). In
this case, a limited amount of sub-word models is necessary, allowing any speech
recording to be indexed (for a given language) with sub-lexical indexing terms,
such as phones (Ng, 2000; Ng and Zue, 2000), phonemes (Ferrieux and Peillon,
1999; Wechsler, 1998) or syllables (Larson and Eickeler, 2003). Sub-word-based
SDR has the advantages that:

• The use of sub-word indexing terms restrains the size of the indexing lexicon
(to a few dozens of units in a given language in the case of phonemes). The
memory needs are far smaller than in the case of word-based SDR, which
requires the storage of several thousands of vocabulary words.

• The recognizer is less expensive with respect to the training effort. It does not
require the training of complex language models, as LVCSR systems do.

• Open-vocabulary retrieval is possible, because the recognition component is
not bound to any set of vocabulary words defined a priori.

However, sub-word recognition systems have a major drawback. They have to
cope with high error rates, much higher than the word error rates of state-of-the-
art LVCSR systems. The error rate of a phone recognition system, for instance,
is typically between 30% and 40%. The challenge of sub-word-based SDR is
to propose techniques that take into account the presence of these numerous
recognition errors in the indexing transcriptions. The information provided by
the indexing ASR system, e.g. the ones encapsulated into the header of MPEG-7
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SpokenContent descriptions (PCM, acoustic scores, etc.), may be exploited to
compensate for the indexing inaccuracy.
In the TREC SDR experiments (Voorhees and Harman, 1998), word-based

approaches have consistently outperformed phoneme approaches. However, there
are several reasons for using phonemes. Indeed, the successful use of LVCSR
word-based recognition implies three assumptions about the recognition process:

• The recognizer uses a large vocabulary.
• The semantic content of spoken documents is consistent with the recognizer’s
vocabulary and language model.

• Enough computational resources are available.

If these prerequisites are not fulfilled, then a sub-word SDR approach may
perform better than word-based SDR. Thus, limited computational resources, in
the case of small hand-held speech recognition devices for example, may hinder
the management of very large vocabularies. In the same way, the huge data
resources required to build an efficient language model may not be available.
Besides, as reported earlier, some retrieval systems may have to deal with steadily
growing data collections, continuously enriched with new words, in particular
new proper names (e.g. broadcast news).
Finally, both word and phoneme recognition-based SDR have also been inves-

tigated in combination. First results indicate that combined methods outperform
either single approach; however, they require larger recognition effort. All these
different approaches are detailed in the following sections.

4.4.2 Vector Space Models

The most basic IR strategy is the Boolean matching searching, which simply
consists of looking for the documents containing at least one of the query terms,
and outputting the results without ranking them. However, this method is only
relevant for the most basic retrieval applications. More accurate retrieval results
are obtained with best-matching search approaches, in which the comparison
of the query with a document description returns a retrieval status value (RSV)
reflecting their degree of similarity. In the traditional text retrieval field, the
most widely used RSV calculation methods are based on the vector space model
(VSM) (Salton and McGill, 1983).
A VSM creates an indexing term space T , formed by the set of all pos-

sible indexing terms, in which both document representations and queries are
described by vectors. Given a query Q and a document representation D, two
NT -dimensional vectors q and d are generated, where NT is the predefined num-
ber of indexing terms (i.e. the cardinality of set T , NT = �T ��. Each component
of q and d represents a weight associated to a particular indexing term. We
will denote by q�t� and d�t� the components of description vectors q and d
corresponding to a particular indexing term t.
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4.4.2.1 Weighting Methods

Different weighting schemes can be used (James, 1995; Salton and Buckley,
1988). The most straightforward is to use binary-valued vectors, in which each
component is simply set to “1”, if the corresponding indexing term is present in
the description, or “0” otherwise. For a given term t, the binary weighting of q
and d can be written as:

q�t�=
{
1 if t ∈Q

0 otherwise
and d�t�=

{
1 if t ∈D

0 otherwise�
(4.9)

More complex weighting methods make use of real-valued vectors, allowing us
to give a higher weight (not restricted to 0 and 1 values) to terms of higher
importance.
A classical IR approach is to take account of indexing term statistics within

individual document representations, as well as in the whole document collection.
The weight of term t is expressed as:

d�t�= log�1+ fd�t�� (4.10)

in the document vector d, and as:

q�t�= log�1+ fq�t�� log
(

Nc

nc�t�

)

(4.11)

in the query vector q. In the two expressions above, fd�t� is the frequency (i.e.
the number of occurrences) of term t in document description D, fq�t� is the
frequency of term t in query Q, Nc is the total number of documents in the
collection and nc�t� the number of documents containing term t. A term that
does not occur in a representation (either D or Q) is given a null weight.
The Nc/nc�t� ratio is called the inverse document frequency (IDF) of term t.

Terms that occur in a small number of documents have a higher IDF weight than
terms occurring in many documents. It is supposed here that infrequent terms
may carry more information in terms of relevancy. Given a document collection,
the IDF can be computed beforehand, for every element of the indexing term
set. It is taken into account into query term weights rather than document term
weights for reasons of computational efficiency.

4.4.2.2 Retrieval Functions

After a weighting method has assigned weights to indexing terms occurring in
the document and the query, these weights are combined by the retrieval function
to calculate the RSV. As stated above, the RSV will be considered here as a
similarity measure reflecting how relevant a document is for a given query. It
allows us to create a list of documents, ordered according to the RSVs, which is
returned to the user.
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The most straightforward way of measuring the degree of similarity between
a query Q and a document description D is to count the number of terms they
have in common. Taking the binary weighting of Equation (4.9), the binary
query–document similarity measure (also called coordination level or quorum
matching function) is then expressed as:

RSVbin�Q�D�=∑

t∈Q
q�t��d�t�= �Q∩D�� (4.12)

It should be noted that the Boolean matching searching mentioned at the begin-
ning of the section can be formalized in the VSM framework, by considering
q�t� and d�t� as Boolean variables (with a Boolean weighting scheme) and com-
bining q and d as in Equation (4.12) with addition and multiplication operators
representing the logical AND and OR operators. All relevant documents yield an
RSV of 1, all the others a null value.
From a more general point of view, classical IR models evaluate the RSV of a

document D with regard to a query Q using some variant of the following basic
formula, which is the inner product of vectors d and q:

RSVc�Q�D�=∑

t∈T
q�t��d�t�� (4.13)

where T is the global set of indexing terms, d�t� is the indexing weight assigned
to term t in the context of document D, and q�t� is the indexing weight assigned
to term t in the context of query Q.
Another formulation, which has proved to be effective for word- based retrieval

(Salton and Buckley, 1988), is to normalize the inner product of Equation (4.13)
by the product of the norms of vectors q and d. This formulation is called the
cosine similarity measure:

RSVnorm�Q�D�=
∑

t∈T q�t��d�t�
√∑

t∈T q�t�2�
∑

t∈T d�t�2
= 1

	q	�	d	
∑

t∈T
q�t��d�t�� (4.14)

Originally developed for use on text document collections, these models have
some limitations when applied to SDR, in particular because there is no mecha-
nism for an approximate matching of indexing terms. The next section addresses
this issue.

4.4.2.3 Indexing Term Similarities

A fundamental and well-known problem of classical text retrieval systems is the
term mismatch problem (Crestani, 2002). It has been observed that the requests
of a given user and the corresponding relevant documents in the collection
frequently use different terms to refer to the same concepts. Therefore, matching
functions that look for exact occurrences of query terms in the documents often
produce an incorrect relevance ranking. Naturally, this problem also concerns
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SDR systems, which consist of an LVCSR system coupled with a text retrieval
system.
Moreover, SDR has to cope with another more specific problem, when terms

misrecognized by the ASR system (or simply out of the recognizer’s vocabu-
lary) are found not to match within query and document representations. This
hinders the effectiveness of the IR system in a way similar to the term mismatch
problem. By analogy to the term mismatch problem, this was called the term
misrecognition problem by (Crestani, 2002).
By taking into account only the matching terms in query and document rep-

resentations (i.e. terms t belonging to Q ∩D), the classical IR functions of
the previous section are inappropriate to tackle the term mismatch and term
misrecognition problems. However, supposing that some information about the
degree of similarity between terms t in the term space T is available, it could be
used in the evaluation of the RSV to account for the term mismatch problem.
This concept of term similarity is defined here as a measure that evaluates, for

a given pair of index terms, how close the terms are according to a metric based
on some properties of the space that we want to observe. For a given indexing
space T , term similarity is a function s that we will define as follows:

T ×T →R

�ti� tj�→ s�ti� tj�� (4.15)

Some works have proposed retrieval models that exploit the knowledge of term
similarity in the term space (Crestani, 2002). Term similarity is used at retrieval
time to estimate the relevance of a document in response to a query. The retrieval
system looks not only at matching terms, but also at non-matching terms, which
are considered similar according to the term similarity function.
There are two possible ways of exploiting the term similarity in the evaluation

of relevance scores, each method being associated to one of the following types
of IR models:

• The Q→ D models examine each term in the query Q. In this case, the
retrieval function measures how much of the query content is specified in the
document (the specificity of the document to the query is measured).

• The D→Q models examine each term in the document D. In that case, the
retrieval function measures how much of the document content is required by
the query (the exhaustivity of the document to the query is measured).

The Q→D models consider the IR problem from the point of view of the query.
If a matching document term cannot be found for a given query term ti, we look
for similar document terms tj , based on the similarity term function s�ti� tj�.
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The general formula of the RSV is then derived from Equation (4.13) in the
following manner:

RSVQ→D�Q�D�= ∑

ti∈Q
q�ti��	

(
s�ti� tj�� d�tj�

)

�tj∈D (4.16)

where ti is a query term, tj is a document term and 	 is a function which
determines the use that is made of the similarities between terms ti and tj .
This model can be seen as a generalization of the classical IR approach

mentioned in Equation (4.13). The inner product of q and d is obtained by
taking:

s�ti� tj�=
{
1 if ti = tj
0 otherwise

and 	�s�ti� tj�� d�tj���tj∈D =d�ti�� (4.17)

A natural approach to the definition of function 	 is to take into account for
each query term ti the contribution of all matching and non-matching document
terms tj:

	tot�s�ti� tj�� d�tj���tj∈D = ∑

tj∈D
s�ti� tj��d�tj�� (4.18)

The RSV is then expressed as:

RSV tot
Q→D�Q�D�= ∑

ti∈Q

[
∑

tj∈D
s�ti� tj��d�tj�

]

�q�ti�� (4.19)

A simpler approach consists of retaining for each query term the most similar
document term only, by taking the following combination function:

	max�s�ti� tj�� d�tj���tj∈D =max
tj∈D

�s�ti� tj��d�tj��� (4.20)

and then:

RSVmax
Q→D�Q�D�=∑

t∈Q
s�t� t∗��d�t∗��q�t� with t∗ = argmax

t′∈D
�s�t� t′��� (4.21)

Considering each query term t�t∈Q� one by one, the RSVmax approach consists
of the following procedure:

• If there is a matching term in the document �t ∈D�, the q�t��d�t� term of the
inner product of q and d is weighted by s�t� t�.

• In the case of non-matching �t�D�, the closest term to t inD (denoted by t∗) is
looked for, and a new term is introduced into the normal inner product. Within
the document representation D, the absent indexing term t is approximated by
t∗. It can be thus interpreted as an expansion of the document representation
(Moreau et al., 2004b, 2004c).
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Compared with a classical IR approach, such as the binary approach of Equa-
tion (4.12), non-matching terms are taken into account.
In a symmetrical way, the D→Q model considers the IR problem from the

point of view of the document. If a matching query term cannot be found for a
given query term tj , we look for similar query terms ti, based on the similarity
term function s�ti� tj�. The general formula of the RSV is then:

RSVD→Q�Q�D�= ∑

tj∈D
d�tj����s�ti� tj�� q�ti���ti∈Q (4.22)

where � is a function which determines the use that is made of the similarities
between a given document term tj and the query terms ti.
It is straightforward to apply to the D→Q case the RSV expressions given

in Equation (4.19):

RSV tot
D→Q�Q�D�= ∑

tj∈D

[
∑

ti∈Q
s�ti� tj��q�ti�

]

�d�tj� (4.23)

and Equation (4.21):

RSVmax
D→Q�Q�D�=∑

t∈D
s�t∗� t��d�t��q�t∗� with t∗ = argmax

t′∈Q
�s�t′� t��� (4.24)

According to the nature of the SDR indexing terms, different forms of term
similarity functions can be defined.
In the same way that we have made a distinction in Section 4.4.1.3 between

word-based and sub-word- based SDR approaches, we will distinguish two forms
of term similarities:

• Semantic term similarity, when indexing terms are words. In this case, each
individual indexing term carries some semantic information.

• Acoustic similarity, when indexing terms are sub-word units. In the case of
phonetic indexing units, we will talk about phonetic similarity. The indexing
terms have no semantic meaning in themselves and essentially carry some
acoustic information.

The corresponding similarity functions and the way they can be used for com-
puting retrieval scores will be presented in the next sections.

4.4.3 Word-Based SDR

Word-based SDR is quite similar to text-based IR. Most word-based SDR sys-
tems simply process text transcriptions delivered by an ASR system with text
retrieval methods. Thus, we will mainly review approaches initially developed
in the framework of text retrieval.
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4.4.3.1 LVCSR and Text Retrieval

With state-of-the-art LVCSR systems it is possible to generate reasonably accu-
rate word transcriptions. These can be used for indexing spoken document
collections. The combination of word recognition and text retrieval allows the
employment of text retrieval techniques that have been developed and optimized
over decades.
Classical text-based approaches use the VSM described in Section 4.4.2. Most

of them are based on the weighting schemes and retrieval functions given by
Equations (4.10), (4.11) and (4.14).
Other retrieval functions have been proposed, notably the Okapi function,

which is considered to work better than the cosine similarity measure with text
retrieval. The relevance score is given by the Okapi formula (Srinivasan and
Petkovic, 2000):

RSVOkapi�Q�D�=∑

t∈Q

fq�t�fd�t� log�IDF ′�t��

1 + �
2ld/Lc�+ fd�t�

(4.25)

where ld is the length of the document transcription in number of words and Lc is
the mean document transcription length across the collection. The parameters 
1

and 
2 are positive real constants, set to 
1=0�5 and 
2=1�5 in (Srinivasan and
Petkovic, 2000). The inverse document frequency IDF ′�t� of term t is defined
here in a slightly different way compared with Equation (4.11):

IDF ′�t�= Nc − nc�t�+ 0�5
nc�t�+ 0�5

(4.26)

where Nc is the total number of documents in the collection, and nc�t� is the
number of documents containing t.
However, as mentioned above, these classical text retrieval models fall into the

term mismatch problem, since they do not take into account that the same concept
could be expressed using different terms within documents and within queries.
In word-based SDR, two main approaches are possible to tackle this problem:

• Text processing of the text transcriptions of documents, in order to map
the initial indexing term space into a reduced term space, more suitable for
retrieval purposes.

• Definition of a word similarity measure (also called semantic term similarity
measure).

In most text retrieval systems, two standard IR text pre-processing steps are
applied (Salton and McGill, 1983). The first one simply consists of removing
stop words – usually consisting of high-frequency function words such as
conjugations, prepositions and pronouns – which are considered uninteresting
in terms of relevancy. This process, called word stopping, relies on a predefined
list of stop words, such as the one used for English in the Cornell SMART
system (Buckley, 1985).
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Further text pre-processing usually aims at reducing the dimension of the
indexing term space using a word mapping technique. The idea is to map words
into a set of semantic clusters. Different dimensionality reduction methods can
be used (Browne et al., 2002; Gauvain et al., 2000; Johnson et al., 2000):

• Conflation of word variants using a word stemming (or suffix stripping)
method: each indexing word is reduced to a stem, which is the common prefix –
sometimes the common root – of a family of words. This is done according
to a rule- based removal of the derivational and inflection suffixes of words
(e.g. “house”, “houses” and “housing” could be mapped to the stem “hous”).
The most largely used stemming method is Porter’s algorithm (Porter, 1980).

• Conflation based on the n-gram matching technique: words are clustered
according to the count of common n-grams (sequences of three characters, or
three phonetic units) within pairs of indexing words.

• Use of automatic or manual thesauri.

The application of these text normalization methods results in a new, more
compact set of indexing terms. Using this reduced set in place of the initial
indexing vocabulary makes the retrieval process less liable to term mismatch
problems.
The second method to reduce the effects of the term mismatch problem

relies on the notion of term similarity introduced in Section 4.4.2.3. It consists
of deriving semantic similarity measures between words from the document
collection, based on a statistical analysis of the different contexts in which
terms occur in documents. The idea is to define a quantity which measures how
semantically close two indexing terms are.
One of the most often used measures of semantic similarity is the expected

mutual information measure (EMIM) (Crestani, 2002):

sword�ti� tj�=EMIM�ti� tj�=
∑

ti�tj

P�ti∈D� tj ∈D� log
P�ti ∈D� tj ∈D�

P�ti ∈D�P�tj ∈D�
(4.27)

where ti and tj are two elements of the indexing term set. The EMIM between
two terms can be interpreted as a measure of the statistical information contained
in one term about the other. Two terms are considered semantically closed if
they both tend to occur in the same documents. One EMIM estimation technique
is proposed in (van Rijsbergen, 1979). Once a semantic similarity measure has
been defined, it can be taken into account in the computation of the RSV as
described in Section 4.4.2.3.
As mentioned above, SDR has also to cope with word recognition errors (term

misrecognition problem). It is possible to recover some errors when alternative
word hypotheses are generated by the recognizer through an n-best list of word
transcriptions or a lattice of words. However, for most LVCSR-based SDR
systems, the key point remains the quality of the ASR transcription machine itself,
i.e. its ability to operate efficiently and accurately in a large and diverse domain.



138 4 SPOKEN CONTENT

4.4.3.2 Keyword Spotting

A simplified version of the word-based approach consists of using a keyword
spotting system in place of a complete continuous recognizer (Morris et al.,
2004). In this case, only keywords (and not complete word transcriptions) are
extracted from the input speech stream and used to index the requests and the
spoken documents. The indexing term set is reduced to a small set of keywords.
As mentioned earlier, classical keyword spotting applies a threshold on the

acoustic score of keyword candidates to decide validating or rejecting them.
Retrieval performance varies with the choice of the decision threshold. At low
threshold values, performance is impaired by a high proportion of false alarms.
Conversely, higher thresholds remove a significant number of true hits, also
degrading retrieval performance. Finding an acceptable trade-off point is not an
easy problem to solve.
Speech retrieval using word spotting is limited by the small number of practical

search terms (Jones et al., 1996). Moreover, the set of keywords has to be chosen
a priori, which requires advanced knowledge about the content of the speech
documents or what the possible user queries may be.

4.4.3.3 Query Processing and Expansion Techniques

Different forms of user requests are possible for word-based SDR systems,
depending on the indexing and retrieval scenario:

• Text requests: this is a natural form of request for LVCSR-based SDR systems.
Written sentences usually have to be pre-processed (e.g. word stopping).

• Continuous spoken requests: these have to be processed by an LVCSR system.
There is a risk in introducing new misrecognized terms in the retrieval process.

• Isolated query terms: this kind of query does not require any pre-processing.
It fits the simple keyword-based indexing and retrieval systems.

Whatever the request is, the resulting query has to be processed with the same
word stopping and conflation methods as the ones applied in the indexing step
(Browne et al., 2002). Before being matched with one another, the queries and
document representations have to be formed from the same set of indexing terms.
From the query point of view, two approaches can be employed to tackle the

term mismatch problem:

• Automatic expansion of queries;
• Relevance feedback techniques.

In fact, both approaches are different ways of expanding the query, i.e. of
increasing the initial set of query terms in such a way that the new query
corresponds better to the user’s information need (Crestani, 1999). We give
below a brief overview of these two techniques.
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Automatic query expansion consists of automatically adding terms to the query
by selecting those that are most similar to the ones used originally by the user. A
semantic similarity measure such as the one given in Equation (4.27) is required.
According to this measure, a list of similar terms is then generated for each
query term. However, setting a threshold on similarity measures in order to form
similar term lists is a difficult problem. If the threshold is too selective, not
enough terms may be added to improve the retrieval performance significantly.
On the contrary, the addition of too many terms may result in a sensible drop in
retrieval efficiency.
Relevance feedback is another strategy for improving the retrieval efficiency.

At the end of a retrieval pass, the user selects manually from the list of retrieved
documents the ones he or she considers relevant. This process is called relevance
assessment (see Figure 4.8). The query is then reformulated to make it more
representative of the documents assessed as “relevant” (and hence less represen-
tative of the “irrelevant” ones). Finally, a new retrieval process is started, where
documents are matched against the modified query. The initial query can be thus
refined iteratively through consecutive retrieval and relevance assessment passes.
Several relevance feedback methods have been proposed (James, 1995,

pp. 35–37). In the context of classical VSM approaches, they are generally based
on a re-weighting method of the query vector q (Equation 4.11). For instance,
a commonly used query reformulation strategy, the Rocchio algorithm (Ng and
Zue, 2000), forms a new query vector q′ from a query vector q by adding terms
found in the documents assessed as relevant and removing terms found in the
retrieved non-relevant documents in the following way:

q′ =
q+�

(
1
Nr

∑

d∈Dr

d

)

−�

(
1
Nn

∑

d∈Dn

d

)

(4.28)

where Dr is the set of Nr relevant documents, Dn is the set of Nn non-relevant
documents, and 
�� and � are tuneable parameters controlling the relative
contribution of the original, added and removed terms, respectively. The original
terms are scaled by 
, the added terms (resp. subtracted terms) are weighted
proportionally to their average weight across the set of Nr relevant (resp. Nn

non-relevant) documents. A threshold can be placed on the number of new terms
that are added to the query.
Classical relevance feedback is an interactive and subjective process, where the

user has to select a set of relevant documents at the end of a retrieval pass. In order
to avoid human relevance assessment, a simple automatic relevance feedback
procedure is also possible by assuming that the top Nr retrieved documents
are relevant and the bottom Nn retrieved documents are non-relevant (Ng and
Zue, 2000).
The basic principle of query expansion and relevance feedback techniques is

rather simple. But practically, a major difficulty lies in finding the best terms
to add and in weighting their importance in a correct way. Terms added to the
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query must be weighted in such a way that their importance in the context of
the query will not modify the original concept expressed by the user.

4.4.4 Sub-Word-Based Vector Space Models

Word-based retrieval approaches face the problem of either having to know
a priori the keywords to search for (keyword spotting), or requiring a very
large recognition vocabulary in order to cover the growing and diverse message
collections (LVCSR). The use of sub-words as indexing terms is a way of
avoiding these difficulties. First, it dramatically restrains the set of indexing
terms needed to cover the language. Furthermore, it makes the indexing and
retrieval process independent of any word vocabulary, virtually allowing for the
detection of any user query terms during retrieval.
Several works have investigated the feasibility of using sub-word unit rep-

resentations for SDR as an alternative to words generated by either keyword
spotting or continuous speech recognition. The next sections will review the
most significant ones.

4.4.4.1 Sub-Word Indexing Units

This section provides a non-exhaustive list of different sub-lexical units that
have been used in recent years for indexing spoken documents.

Phones and Phonemes
The most encountered sub-lexical indexing terms are phonetic units, among
which one makes the distinction between the two notions of phone and phoneme
(Gold and Morgan, 1999). The phones of a given language are defined as the
base set of all individual sounds used to describe this language. Phones are
usually written in square brackets (e.g. [m a t]). Phonemes form the set of unique
sound categories used by a given language. A phoneme represents a class of
phones. It is generally defined by the fact that within a given word, replacing
a phone with another of the same phoneme class does not change the word’s
meaning. Phonemes are usually written between slashes (e.g. /m a t/). Whereas
phonemes are defined by human perception, phones are generally derived from
data and used as a basic speech unit by most speech recognition systems.
Examples of phone–phoneme mapping are given in (Ng et al., 2000) for the

English language (an initial phone set of 42 phones is mapped to a set of 32
phonemes), and in (Wechsler, 1998) for the German language (an initial phone
set of 41 phones is mapped to a set of 35 phonemes). As phoneme classes
generally group phonetically similar phones that are easily confusable by an
ASR system, the phoneme error rate is lower than the phone error rate.
The MPEG-7 SpokenContent description allows for the storing of the rec-

ognizer’s phone dictionary (SAMPA is recommended (Wells, 1997)). In order
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to work with phonemes, the stored phone-based descriptions have to be post-
processed by operating the desired phone–phoneme mapping. Another possibility
is to store phoneme-based descriptions directly along with the corresponding set
of phonemes.

Broad Phonetic Classes
Phonetic classes other than phonemes have been used in the context of IR. These
classes can be formed by grouping acoustically similar phones based on some
acoustic measurements and data-driven clustering methods, such as the standard
hierarchical clustering algorithm (Hartigan, 1975). Another approach consists of
using a predefined set of linguistic rules to map the individual phones into broad
phonetic classes such as back vowel, voiced fricative, nasal, etc. (Chomsky and
Halle, 1968). Using such a reduced set of indexing symbols offers some advan-
tages in terms of storage and computational efficiency. However, experiments
have shown that using too coarse phonetic classes strongly degrades the retrieval
efficiency in comparison with phones or phoneme classes (Ng, 2000).

Sequences of Phonetic Units
Instead of using phones or phonemes as the basic indexing unit, it was proposed
to develop retrieval methods where sequences of phonetic units constitute the
sub-word indexing term representation. A two-step procedure is used to generate
the sub-word unit representations. First, a speech recognizer (based on a phone
or phoneme lexicon) is used to create phonetic transcriptions of the speech
messages. Then the recognized phonetic units are processed to produce the
sub-word unit indexing terms.
The most widely used multi-phone units are phonetic n-grams. These sub-word

units are produced by successively concatenating the appropriate number n of
consecutive phones (or phonemes) from the phonetic transcriptions. Figure 4.10
shows the expansion of the English phonetic transcription of the word “Retrieval”
to its corresponding set of 3-grams.
Aside from the one-best transcription, additional recognizer hypotheses can

also be used, in particular the alternative transcriptions stored in an output lattice.
The n-grams are extracted from phonetic lattices in the same way as before.
Figure 4.11 shows the set of 3-grams extracted from a lattice of English phonetic
hypotheses resulting from the ASR processing of the word “Retrieval” spoken
in isolation.

Figure 4.10 Extraction of phone 3-grams from a phonetic transcription
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Figure 4.11 Extraction of phone 3-gram from a phone lattice decoding

As can be seen in the two examples above, the n-grams overlap with each
other. Non-overlapping types of phonetic sequences have been explored. One of
these is called multigrams (Ng and Zue, 2000). These are variable-length, pho-
netic sequences discovered automatically by applying an iterative unsupervised
learning algorithm previously used in developing multigram language models for
speech recognition (Deligne and Binbot, 1995). The multigram model assumes
that a phone sequence is composed of a concatenation of independent, non-
overlapping, variable-length phone sub-sequences (with some maximal length
m). Another possible type of non-overlapping phonetic sequences is variable-
length syllable units generated automatically from phonetic transcriptions by
means of linguistic rules (Ng and Zue, 2000).
Experiments by (Ng and Zue, 1998) lead to the conclusion that overlapping

sub-word units (n-grams) are better suited for SDR than non-overlapping units
(multigrams, rule-based syllables). Units with overlap provide more chances for
partial matches and, as a result, are more robust to variations in the phonetic
realization of the words. Hence, the impact of phonetic variations is reduced for
overlapping sub-word units.
Several sequence lengths n have been proposed for n-grams. There exists

a trade-off between the number of phonetic classes and the sequence length
required to achieve good performance. As the number of classes is reduced,
the length of the sequence needs to increase to retain performance. Generally,
the phone or phoneme 3-gram terms are chosen in the context of sub-word
SDR. The choice of n= 3 as the optimal length of the phone sequences has
been motivated in several studies either by the average length of syllables in
most languages or by empirical studies (Moreau et al., 2004a; Ng et al., 2000;
Ng, 2000; Srinivasan and Petkovic, 2000). In most cases, the use of individual
phones as indexing terms, which is a particular case of n-gram (with n= 1),
does not allow any acceptable level of retrieval performance.
All those different indexing terms are not directly accessible from MPEG-7

SpokenContent descriptors. They have to be extracted as depicted in Figure 4.11
in the case of 3-grams.
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Syllables
Instead of generating syllable units from phonetic transcriptions as mentioned
above, a predefined set of syllable models can be trained to design a syllable
recognizer. In this case, each syllable is modelled with an HMM, and a specific
LM, such as a syllable bigram, is trained (Larson and Eickeler, 2003). The
sequence or graph of recognized syllables is then directly generated by the
indexing recognition system.
An advantage of this approach is that the recognizer can be optimized specif-

ically for the sub-word units of interest. In addition, the recognition units are
larger and should be easier to recognize. The recognition accuracy of the syl-
lable indexing terms is improved in comparison with the case of phone- or
phoneme-based indexing. A disadvantage is that the vocabulary size is signif-
icantly increased, making the indexing a little less flexible and requiring more
storage and computation capacities (both for model training and decoding). There
is a trade-off in the selection of a satisfactory set of syllable units. It has both
to be restricted in size and to describe accurately the linguistic content of large
spoken document collections.
The MPEG-7 SpokenContent description offers the possibility to store the

results of a syllable-based recognizer, along with the corresponding syllable
lexicon. It is important to mention that, contrary to the previous case (e.g.
n-grams), the indexing terms here are directly accessible from SpokenContent
descriptors.

VCV Features
Another classical sub-word retrieval approach is the VCV (Vowel–Consonant–
Vowel) method (Glavitsch and Schäuble, 1992; James, 1995). A VCV indexing
term results from the concatenation of three consecutive phonetic sequences,
the first and last ones consisting of vowels, the middle one of consonants: for
example, the word “information” contains the three VCV features “info”, “orma”
and “atio” (Wechsler, 1998). The recognition system (used for indexing) is built
by training an acoustic model for each predetermined VCV feature.
VCV features can be useful to describe common stems of equivalent word

inflection and compounds (e.g. “descr” in “describe”, “description”, etc.). The
weakness of this approach is that VCV features are selected from text, without
taking acoustic and linguistic properties into account as in the case of syllables.

4.4.4.2 Query Processing

As seen in Section 4.4.3.3, different forms of user query strategies can be
designed in the context of SDR. But the use of sub-word indexing terms implies
some differences with the word-based case:

• Text request. A text request requires that user query words are transformed into
sequences of sub-word units so that they can be matched against the sub-lexical
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representations of the documents. Single words are generally transcribed by
means of a pronunciation dictionary.

• Continuous spoken request. If the request is processed by an LVCSR system
(which means that a second recognizer, different from the one used for index-
ing, is required), a word transcription is generated and processed as above. The
direct use of a sub-word recognizer to yield an adequate sub-lexical transcrip-
tion of the query can lead to some difficulties, mainly because word boundaries
are ignored. Therefore, no word stopping technique is possible. Moreover,
sub-lexical units spanning across word boundaries may be generated. As a
result, the query representation may consist of a large set of sub-lexical terms
(including a lot of undesired ones), inadequate for IR.

• Word spoken in isolation. In that particular case, the indexing recognizer
may be used to generate a sub-word transcription directly. This makes the
system totally independent of any word vocabulary, but recognition errors are
introduced in the query too.

In most SDR systems the lexical information (i.e. word boundaries) is taken
into account in the query processing process. On the one hand, this makes the
application of classical text pre-processing techniques possible (such as the word
stopping process already described in Section 4.4.3.3). On the other hand, each
query word can be processed independently. Figure 4.12 depicts how a text
query can be processed by a phone-based retrieval system.
In the example of Figure 4.12, the query is processed on two levels:

• Semantic level. The initial query is a sequence of words. Word stopping is
applied to discard words that do not carry any exploitable information. Other
text pre-processing techniques such as word stemming can also be used.

• Phonetic level. Each query word is transcribed into a sequence of phonetic units
and processed separately as an independent query by the retrieval algorithm.

Words can be phonetically transcribed via a pronunciation dictionary, such as
the CMU dictionary1 for English or the BOMP2 dictionary for German. Another
automatic word-to-phone transcription method consists of applying a rule-based
text-to-phone algorithm.3 Both transcription approaches can be combined, the
rule-based phone transcription system being used for OOV words (Ng et al.,
2000; Wechsler et al., 1998b).

Once a word has been transcribed, it is matched against sub-lexical document
representations with one of the sub-word-based techniques that will be described
in the following two sections. Finally, the RSV of a document is a combination

1 CMU Pronunciation Dictionary (cmudict.0.4): www.speech.cs.cmu.edu/cgi-bin/cmudict.
2 Bonn Machine-Readable Pronunciation Dictionary (BOMP): www.ikp.uni-bonn.de/dt/forsch/
phonetik/bomp.
3Wasser, J. A. (1985). English to phoneme translation. Program in public domain.
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Figure 4.12 Processing of text queries for sub-word-based retrieval

of the retrieval scores obtained with each individual query word. Scores of query
words can be simply averaged (Larson and Eickeler, 2003).

4.4.4.3 Adaptation of VSM to Sub-Word Indexing

In Section 4.4.3, we gave an overview of the application of the VSM approach
(Section 4.4.2) in the context of word-based SDR. Classical VSM-based SDR
approaches have already been experimented with sub-words, mostly n-grams of
phones or phonemes (Ng and Zue, 2000). Other sub-lexical indexing features
have been used in the VSM framework, such as syllables (Larson and Eickeler,
2003). In the rest of this section, however, we will mainly deal with approaches
based on phone n-grams.

When applying the standard normalized cosine measure of Equation (4.14) to
sub-word-based SDR, t represents a sub-lexical indexing term (e.g. a phonetic
n-gram) extracted from a query or a document representation. Term weights
similar or close to those given in Equations (4.10) and (4.11) are generally used.
The term frequencies fq�t� and fd�t� are in that case the number of times n-gram
t has been extracted from the request and document phonetic representations. In
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the example of Figure 4.11, the frequency of the phone 3-gram “[I d e@]” is
f�I d e@��= 2.
The Okapi similarity measure – already introduced in Equation (4.25) – can

also be used in the context of sub-word-based retrieval. In (Ng et al., 2000),
the Okapi formula proposed by (Walker et al., 1997) – differing slightly from
the formula of Equation (4.25) – is applied to n-gram query and document
representations:

RSVOkapi�Q�D�=∑

t∈Q

�k1 + 1�fd�t�

k1

(
�1− b�+ b ld

Lc

)
+ fd�t�

�k3 + 1�fq�t�

k3 + fq�t�
log�IDF ′�t��

(4.29)

where k1� k3 and b are constants (respectively set to 1.2, 1000 and 0.75 in (Ng
et al., 2000)), ld is the length of the document transcription in number of phonetic
units and Lc is the average document transcription length in number of phonetic
units across the collection. The inverse document frequency IDF ′�t� is given in
Equation (4.26).
Originally developed for text document collections, these classical IR methods

turn out to be unsuitable when applied to sub-word-based SDR. Due to the high
error rates of sub-word (especially phone) recognizer systems, the misrecognition
problem here has even more disturbing effects than in the case of word-based
indexing. Modifications of the above methods are required to propose new
document–query retrieval measures that are less sensitive to speech recognition
errors. This is generally done by making use of approximate term matching.
As before, taking non-matching terms into account requires the definition of

a sub-lexical term similarity measure. Phonetic similarity measures are usually
based on a phone confusion matrix (PCM) which will be called PC henceforth.
Each element PC�r�h� in the matrix represents the probability of confusion for
a specific phone pair �r�h�. As mentioned in Equation (4.6), it is an estimation
of the probability P�h�� that phone h is recognized given that the concerned
acoustical segment actually belongs to phone class r. This value is a numerical
measure of how confusable phone r is with phone h. A PCM can be derived from
the phone error count matrix stored in the header of MPEG-7 SpokenContent
descriptors as described in the section on usage in Section 4.3.2.3.
In a sub-word-based VSM approach, the phone confusion matrix PC is used as

a similarity matrix. The element PC�r�h� is seen as a measure of acoustic simi-
larity between phones r and h. However, in the n-gram-based retrieval methods,
individual phones are barely used as basic indexing terms �n= 1�. With n values
greater than 1, new similarity measures must be defined at the n-gram term level.
A natural approach would be to compute an n-gram confusion matrix in

the same way as the PCM, by deriving n-gram confusion statistics from an
evaluation database of spoken documents. However, building a confusion matrix
at the term level would be too expensive, since the size of the term space can
be very large. Moreover, such a matrix would be very sparse. Therefore, it is
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necessary to find a simple way of deriving similarity measures at the n-gram
level from the phone-level similarities. Assuming that phones making up an
n-gram term are independent, a straightforward approach is to evaluate n-gram
similarity measures by combining individual phone confusion probabilities as
follows (Moreau et al., 2004c):

s�ti� tj�=
n∏

k=1

PC�tik�� tjk�� (4.30)

where ti and tj are two phone n-grams comprising the following phones:

ti = ti1�ti2�� � � tin�� and tj =�tj1�tj2�� � � tjn�� (4.31)

Under the assumption of statistical independence between individual phones,
this can be interpreted as an estimation of the probability of confusing n-gram
terms ti and tj:

s�ti� tj�≈P�tj�ti�� (4.32)

Many other simple phonetic similarity measures can be derived from the PCM,
or even directly from the integer confusion counts of matrix Sub described
in Section 4.3.2.3, thus avoiding the computation and multiplication of real
probability values. An example of this is the similarity measure between two
n-gram terms ti and tj of size n proposed in (Ng and Zue, 2000):

s�ti� tj�=
∑n

k=1 Sub�tik�� tjk��
∑n

k=1 Sub�tik�� tik��
� (4.33)

where Sub�tik�� tjk�� is the count of confusions between tik� and tjk�, the kth
phones in sub-word units ti and tj respectively. The measure is normalized so
that it is equal to 1 when ti = tj .
However, the n-gram similarity measures proposed in Equations (4.30) and

(4.33) are rather coarse. Their main weakness is that they only consider sub-
stitution error probabilities and ignore the insertion and deletion errors. More
complex methods, based on the dynamic programming (DP) principle, have been
proposed to take the insertions and deletions into account. Making the simplify-
ing assumption that the phones within n-gram terms ti and tj are independent,
estimation of the P�ti�tj� can be made via a DP procedure. In order to compare
two phone n-grams ti and tj of length n defined as in Equation (4.31), we
define an �n+ 1�× �n+ 1� DP matrix A. The elements of A can be recursively
computed according to the procedure given in Figure 4.13 (Ng, 1998).
PC�PD and PI are the PCM, the deletion and insertion probability vectors

respectively. The corresponding probabilities can be estimated according to the
maximum likelihood criteria, for instance as in Equations (4.6), (4.7) and (4.8).
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BEGIN:

A�0�0�= 1 u= v= 0

A�u�0�=A�u− 1�0��PD�tiu�� 0<u≤ n

A�0� v�=A�0� v− 1��PI �tj v�� 0<v≤ n

ITERATIONS:

A�u� v�=max






A�u− 1� v��PD�tiu�� �Deletion�
A�u− 1� v− 1��PC�tiu�� tj v�� �Substitution�
A�u� v− 1��PI �tj v�� �Insertion�

�0<u≤m�

�0<v≤ n�

END:

A�n�n�= s�ti� tj�≈P�tj �ti��

Figure 4.13 Example of a DP procedure for the computation of n- gram similarity
measures

This DP procedure represents a significant increase of the computation need
compared with the simpler product of Equation (4.30). However, provided that
enough memory resources are available, the computation of the similarity mea-
sures s�ti� tj� for all pairs of phones ti and tj can be done once off-line and stored
in a table for future use during retrieval.
A first way to exploit these similarity measures is the automatic expansion

of the query set of n-gram terms (Ng and Zue, 2000; Srinivasan and Petkovic,
2000). The query expansion techniques address the corruption of indexing terms
in the document representation by augmenting the query representation with
similar or confusable terms that could erroneously match recognized speech.
These “approximate match” terms are determined using information from the
phonetic error confusion matrix as described above. For instance, a thresholded,
fixed-length list of near-miss terms tj can be generated for each query term ti,
according to the phonetic similarity measures s�ti� tj� (Ng and Zue, 2000).
However, it is difficult to select automatically the similarity threshold above

which additional “closed” terms should be taken into account. There is a risk
that too many additional terms are included in the query representation, thus
impeding the retrieval efficiency.
A more efficient use of phonetic similarity measures is to integrate them in

the computation of the RSV as described in Section 4.4.2.3. The approximate
matching approach of Equation (4.19) implicitly considers all possible matches
between the “clean” query n-gram terms and the “noisy” document n-gram terms
(Ng and Zue, 2000). As proposed in Equation (4.21), a less expensive RSV
in terms of computation is to consider, for each query n-gram, the “closest”
document n-gram term (Moreau et al., 2004b, 2004c). These different VSM-
based approximate matching approaches have proven to make sub-word SDR
robust enough to recognition errors to allow reasonable retrieval performance.
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Robust sub-word SDR can even be improved by indexing documents (and
queries, if spoken) with multiple recognition candidates rather than just the single
best phonetic transcriptions. The expanded document representation may be a list
of N -best phonetic transcriptions delivered by the ASR system or a phone lattice,
as described in the MPEG-7 standard. Both increase the chance of capturing the
correct hypotheses. More competing n-gram terms can be extracted from these
enriched representations, as depicted in Figure 4.11. Moreover, if a term appears
many times in the top N hypotheses or in the different lattice paths, it is more
likely to have actually occurred than if it appears in only a few. This information
can be taken into account in the VSM weighting of the indexing terms.
For instance, a simple estimate of the frequency of term t in a document D

was obtained in (Ng and Zue, 2000) by considering the number of times nt it
appears in the top N recognition hypotheses and normalizing it by N :

fd�t�=
nt

N
� (4.34)

This normalized term frequency can then be used in the classical VSM document
term weighting formula of Equation (4.10).
As in the case of automatic query expansion, however, one danger of docu-

ment expansion is to include too many additional phones in the representation.
Numerous erroneous n-gram terms may result from low scoring recognition
hypotheses. This can lead to spurious matches with query terms resulting in a
decrease in retrieval precision.
All the techniques presented above handle one type of sub-word indexing

term (e.g. n-grams with a fixed length n). A further refinement can consist
in combining different types of sub-word units, the underlying idea being that
each one may capture some different kinds of information. The different sets of
indexing terms are first processed separately. The scores obtained with each one
are then combined to get a final document–query retrieval score, e.g. via a linear
combination function such as (Ng and Zue, 2000):

RSVC�Q�D�=∑

k

wkRSVk�Q�D�� (4.35)

where RSVk is the document–query score obtained using sub-words of type k
and wk the corresponding weight parameter.
In particular, this approach allows us to use phone n-grams of different lengths

in combination. Short and long phone sequences have opposite properties: the
shorter units are more robust to errors and word variants compared with the
longer units, but the latest capture more discrimination information and are less
susceptible to false matches. The combined use of short and long n-grams is
supposed to take advantage of both properties. In that case, the retrieval system
handles distinct sets of n-gram indexing terms, each one corresponding to a
different length n. The retrieval scores resulting from each set are then merged.
For instance, it has been proposed to combine monograms �n= 1�, bigrams
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�n=2� and trigrams �n=3� by means of the following retrieval function (Moreau
et al., 2004a, 2004b):

RSV�1�2�3��Q�D�=
3∑

n=1

nRSVn�Q�D�� (4.36)

where RSVn represents the relevance score obtained with the set of n-gram terms
of size n. This combination function gives more weight to the longer units, which
are more sensitive to recognition errors (a single erroneous phone modifies the
whole indexing term) but carry more information.
However, a few experimental studies have shown that the fusion of different

sub-word units results in marginal gains in terms of retrieval efficiency (Moreau
et al., 2004a; Ng and Zue, 2000).

4.4.4.4 Example Experiment with Sub-Word VSM

This section presents an example of an SDR evaluation experiment. The evalu-
ation was performed on a very simple retrieval task, using a phone-based VSM
approach.
A phone-only recognizer was used for extracting MPEG-7 phone lattices

from spoken documents. It is based on 43 speaker-independent phone HMMs
describing the German language. These acoustic models are looped, according
to a bigram phone language model. Experiments have been conducted with data
from the PhonDat corpus.1 The spoken document set consists of 19 306 short
sentences read by more than 200 German speakers. The average document length
is 4 seconds and 37.7 phones (average number of phones in the best transcriptions
delivered by the recognizer). A phone-only SpokenContentLattice containing
several alternative phonetic transcriptions is extracted from each document and
stored in a separate database.
The set of evaluation queries consists of 10 city names: Augsburg, Dortmund,

Frankfurt, Hamburg, Koeln, Muenchen, Oldenburg, Regensburg, Ulm and
Wuerzburg. Their phonetic transcriptions were used as single word queries. In
a word-only-based indexing approach, one can imagine that such proper names
might be OOV words and thus impossible to retrieve.
The phone recognizer was run on a separate evaluation corpus to provide the

phone confusion counts stored, along with the phone lexicon, in an MPEG-7
SpokenContentHeader shared by all extracted lattices.
The retrieval system evaluated here is independent of any a priori word vocab-

ulary (as in keyword- or LVCSR-based systems). This leads to the notion of open-
vocabulary retrieval because in principle the query vocabulary is unrestricted
(Wechsler, 1998). The only practical restriction is given by the pronunciation

1 BAS (Bavarian Archive for Speech Signals) Corpora: http://www.phonetik.uni-muenchen.de/Bas/.
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dictionary for the case that the text queries are transcribed automatically.
The use of phonetic retrieval also makes “sound-like” retrieval applications
possible.
However, as mentioned earlier, this phone-based retrieval has to cope with

high error rates. The phone error rate of the ASR system used for this experiment
is 43.0% (it was measured on a separate development corpus). Besides, the use
of phonetic-only indexing might lose discrimination power between relevant
and irrelevant documents when compared with word indexing, because of the
exclusion of lexical knowledge. In the TREC SDR experiments (Voorhees and
Harman, 1998), word-based approaches have consistently outperformed phoneme
approaches.
However, this particular retrieval experiment is straightforward due to the

relatively small number and concise nature of the speech messages, and the
use of single word queries. One could imagine the scenario of a database of
photos annotated with short spoken descriptions. In that case, the use of a simple
vocabulary-independent phone recognizer is a reasonable indexing approach.

Evaluation Method
The classical evaluation measures for retrieval effectiveness are Recall and
Precision. Given a set of retrieved documents, the recall rate is the fraction of
relevant documents in the whole database that have been retrieved:

Recall= Number of Relevant Retrieved Documents

Number of Relevant Documents in the Database
� (4.37)

The precision rate is the fraction of retrieved documents that are relevant:

Precision= Number of Relevant Retrieved Documents

Number of Retrieved Documents
� (4.38)

The precision and recall rates depend on how many documents are kept to form
the N -best retrieved document set. Precision and Recall vary with N , generally
inversely with each other. To evaluate the ranked list, a common approach is to
plot Precision vs. Recall after each retrieved document. To facilitate the evalu-
ation of the SDR performance across different queries (each corresponding to a
different set of relevant documents), it is convenient to use the plot normalization
proposed by TREC (TREC, 2001): the precision values are interpolated accord-
ing to 11 standard recall levels �0�0�0�1� � � � �1�0� as represented in Figure 4.14.
These values can be averaged over all queries.
Finally, a single performance measure can be derived from a series of

Precision–Recall measures by computing the mean average precision (mAP). It
is the average of precision values across all recall points. It can be interpreted
as the area under the Precision–Recall curve. A perfect retrieval system would
result in a mean average precision of 100% �mAP= 1�.
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Figure 4.14 Precision–Recall plot, with mAP measure

Results
The indexing terms used in this experiment are the phone n-grams introduced in
Section 4.4.4.1. In that case, a set of indexing n-gram terms is extracted from
each MPEG-7 lattice in the database and each query. These terms are used in
the VSM weighting schemes and retrieval functions introduced earlier. The best
n-gram length was determined by the results in Figure 4.15 (Moreau et al., 2004a).
These are average values of the mAP obtained with each of the 10 queries, and
four different n-gram lengths (n = 1, 2, 3 and 4). The simple binary weighting
of Equation (4.9) and the cosine retrieval function of Equation (4.14) were used.
The trigrams �n=3� represent the best trade-off. The combination of trigrams

with bigrams �n= 2� and individual phones �n= 1�, according to the retrieval
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Figure 4.15 mAP values for different n-gram lengths
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Figure 4.16 mAP for 10 different queries and three weighting strategies

function of Equation (4.36), resulted in marginal mAP gains (Moreau et al.,
2004a).
Figure 4.16 depicts the mAP values obtained with each of the 10 city name

queries and different weighting strategies. The rightmost part of the figure rep-
resents the average values of the 10 previous measures.
The first measure (�) was obtained from the baseline system, i.e. using the

binary weighting and the cosine retrieval function. The second one ( ) results
from the use of the inner product retrieval function where each query n-gram
term t is weighted by its recognition probability (i.e. q�t�= P�t�t�). The last
mAP measure ( ) is obtained with the retrieval function of Equation (4.21).

We observe in Figure 4.16 that not every query benefits from the introduction
of confusion probabilities ( compared with �). For some of them, this weight-
ing factor yielded no improvement in comparison with the performance of the
baseline system (Muenchen, Oldenburg, Ulm). For the other queries, the retrieval
effectiveness is clearly increased. A query such as Augsburg might contain one
or more 3-grams for which the ASR system has produced high recognition
probabilities. On average (right part of Figure 4.16), this technique improves
the overall retrieval performance. In comparison with the baseline average
performance �mAP= 33�97%�, the mAP increases by 9.8% �mAP= 37�29%�.

The retrieval function of Equation (4.21) further improves the retrieval effec-
tiveness. As reported in Figure 4.16 ( ), the average performance is improved
by 28.3% (from mAP= 33�97% to 43.59%) in comparison with the baseline
system (�), and by 16.9% in comparison with the use of confusion weighting
with no expansion ( ). Even in the case of poorly performing queries (in par-
ticular Oldenburg and Ulm), this approach significantly improves the retrieval
performance. In the case of the short, three-phone long Ulm query, we obtain one
of the best relative mAP improvements in comparison with the baseline value
(+54.0%). Queries that are poorly retrieved indicate that the recognition of the
corresponding targets within the indexed documents contains a lot of recognition
errors. This is particularly problematic when the query is short. In that case, the
corresponding targets may not contain any correctly recognized 3-grams that can
compensate for the badly recognized ones. The use of the expansion strategy
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can recover some of the missed targets by taking into account some document
indexing 3-grams that, although different from the ones contained in the query,
are “close” to them in terms of confusion probability.
Compared with a simple 1-best phonetic transcription, a multi-hypothesis

phone lattice is an expanded representation of a document. To verify if the
use of lattice expansion is not redundant with the confusion-based expansion of
Equation (4.21), “1-best” transcriptions (i.e. the best path in the lattice) were also
used to index the documents. The results are reported in Figure 4.17 (mAP values
averaged over all queries). As expected in the baseline case (binary weighting,
cosine function), the use of lattices yields an improvement compared with the
use of simple transcriptions: from mAP=28�89% with 1-best to mAP=33�97%
with lattices (+17.6%). It is interesting to observe the same phenomenon when
applying the confusion-based expansion technique; lattices perform significantly
better than transcriptions in that case too: from mAP= 38�01% with 1-best to
mAP = 43�59% with lattices (+14.7%). The combination of confusion-based
expansion with multi-hypothesis lattices seems to be relevant.
These experiments show that sub-word units are able to capture enough infor-

mation to perform effective retrieval, provided that adequate expansion tech-
niques are applied in order to compensate for the high phone error rate of the
indexing engine.

4.4.5 Sub-Word String Matching

The techniques reviewed in the previous section are all based on the VSM. There
exists a second, radically different approach to sub-word-based SDR, where the
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Figure 4.17 Average mAP obtained when indexing with 1-best transcriptions or lattices
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sub-lexical transcriptions of queries and documents are considered as a whole
and not as a set of individual terms or sub-sequence units as before.
This approach relies on approximate string matching techniques whose goal

is to search for approximate occurrences (i.e. taking into account symbol mis-
matches, insertions and deletions) of a query string in a document string. A
method of this type, also called fuzzy matching search, works in the following
way:

• Each query keyword is broken down into a string of sub-lexical units (either
by means of a pronunciation dictionary, in the case of text queries, or through
automatic recognition, in the case of query words spoken in isolation). The
query string will be called the source string.

• The document transcription (i.e. a string of sub-lexical units in this case) is
scanned to find the sub-string that best corresponds to a possible occurrence
of the source string. This sub-string will be called the target string.

• A similarity measure between the source string and the target string constitutes
the RSV of the document for the corresponding query word.

It is actually a subword-based word spotting technique, performed on sub-lexical
representations of the spoken documents. Contrary to the traditional keyword
spotting approach (Section 4.4.3.2), which relies on a fixed, predefined set of
keyword models, the fuzzy sub-lexical matching techniques allow flexibility in
the presence of recognition errors, and OOV query words can potentially find
matches.

4.4.5.1 Edit Distance

A prerequisite for any fuzzy matching search algorithm is the definition of a
distance or a similarity measure between two given fixed-length sequences of
symbols. A well-known and simple string distance is called the Levenshtein
distance (Levenshtein, 1966), also known as the edit distance. In information
theory, the Levenshtein distance between two strings is given by the minimum
number of operations (insertions, deletions and substitutions) needed to transform
one string (source string) into another (target string).
Let us consider a source string 
 and a target string �, with respective sizes

m and n, comprising the following symbols:


=
1�
2�� � � 
m� and �=�1��2�� � � �n�� (4.39)

The edit distance LD�
��� between 
 and � can be automatically derived from
a DP procedure by defining an �m+ 1�× �n+ 1� matrix A and applying the
algorithm given in Figure 4.18.
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BEGIN:

A�0�0�= 0 u= v= 0

A�u�0�= u 0<u�m

A�0� v�= v 0<v� n

ITERATIONS:

A�u� v�=min






A�u− 1� v�+ 1 �Deletion�
A�u− 1� v− 1�+ 1− ��
u���v��� �Substitution�
A�u� v− 1�+ 1 �Insertion�

�0<u�m�

�0<v� n�

with ��
u���v��=
{
1 if 
u�=�v�

0 if 
u� �=�v�

END:

A�m�n�=LD�
���

Figure 4.18 Algorithm to compute the Levenshtein distance between two strings

Two identical strings have a null distance, and the greater the Levenshtein
distance is, the more different the strings are. Finally, the edit distance LD�
���
between two strings 
 and � can be converted into a similarity measure called
the inverse normalized edit distance (Wechsler et al., 1998b):

INED�
���= 1− LD�
���

max�m�n�
� (4.40)

The measure of similarity INED�
��� between a query string 
 and a sub-string
� forms the relevance score of the document containing � for the query word
corresponding to 
.
In the example of Figure 4.19 two strings of phonetic symbols are com-

pared using this procedure. The source string 
 is the canonical transcription
of “Muenchen” using the German phone set. The target string � represents an
errorful transcription of the same word, provided by a speech decoder. The edit
distance between 
 and � is LD�
���= 5, which means that a minimum of
five operations is required to transform 
 and �. The alignment path indicated
in bold in Figure 4.19 corresponds to one deletion (phone /C/) followed by four
substitutions. Other possible optimal alignment paths are also represented with
dashed lines. Each one yields an edit distance of 5.
This example illustrates the weakness of this approach where all phones have

an equal acoustic distance of 1 between each other. It does not take into account
the strong acoustic similarities between some phones in 
 and �: for instance,
between /@/ in 
 and /E/ in � or between /n/ in 
 and /m/ in �. The alignment
depicted in Figure 4.19 is clearly not optimal in terms of acoustic similarity.



4.4 APPLICATION: SPOKEN DOCUMENT RETRIEVAL 157

Target String β (n = 7)

So
ur

ce
 S

tr
in

g 
α (

m
 =

 6
)

u

0

1

2

0 1 2 3 v

m

∅

∅

Y

m Y C

0 1 2 3

1 0

2 1 0

4

E

4

3 n 3 2 1

4 C 4 3 2

5 @ 5

6 n 6 3

5

l

5

6

m

6

7

h

7

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 3 4 54 3 2

3 4 55 4 3

Final Alignment: α = m Y ∅ n  C @  n 
 β = m Y C E   l  m  h

Levenshtein Distance:
LD(α, β) = 5

Figure 4.19 Computation of a Levenshtein distance

4.4.5.2 Probabilistic String Matching

The main drawback of the edit distance approach is that it relies very much
on the precision of the best phonetic transcription. In that case, some of the
misrecognized phones cannot be recovered through a multi-hypotheses lattice.
The only way to cope with the recognition inaccuracy is to develop fuzzy match-
ing techniques – also called probabilistic string matching (PSM) techniques
(Wechsler, 1998) – which integrate phone (or syllable) confusion probabilities
into the string matching process itself. The principle of PSM was introduced in
Section 4.4.4.3, where it was used for measuring n-gram similarities. Thus, the
algorithm described in Figure 4.13 also offers a way of estimating a measure of
similarity between the source and the target strings.
This algorithm uses the same DP transitions (horizontal, vertical, diagonal)

as in the edit distance case. But instead of applying the same uniform cost
(= 1) to every transition, it defines a transition probability that depends on both
the end node and the direction of the transition. Suppose that the end node is
�
u���v��, where 
u� is the uth phone in the source string 
 (query), and
�v� is the vth phone in the target sub-string � (document):

• A vertical move corresponds to the deletion of 
u�, and the transition prob-
ability is PD�
u��.• A horizontal move corresponds to the insertion of �v�, and the transition
probability is PI��v��.
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• A diagonal move corresponds to the substitution of 
u� by �v�, and the
transition probability is PC�
u���v�� (see Figure 4.22).

If strings 
 and � respectively comprise m and n phones, an �m+ 1�× �n+ 1�
DP matrix A is processed by the algorithm of Figure 4.13. The final similarity
score is given by A�m�n�, which can be interpreted as an estimation of the
probability P���
�.

In Figure 4.20, the two strings whose edit distance was depicted in Figure 4.19
are compared once again using the above PSM procedure. The intersections
�u� v� of the DP matrix are represented by circles whose sizes are proportional to
the probability of substitution of the corresponding phone pairs �
u���v��. The
grey circles represent probabilities of correct recognition (i.e. when 
u�=�v��
and are depicted at a reduced scale compared with the others.
Contrary to the case of edit distance (Figure 4.19), the high probabilities of

confusion PC�@�E� and PC�n�m�, used here as a measure of acoustic similarity,
are taken into account. The final decoding path aligns 
5�=/@/ on �4�=/E/
and 
6�= /n/ on �6�= /m/.

Many other PSM algorithm structures can be designed to compute a stochastic
similarity measure between two phone strings. An interesting one is proposed in
(Wechsler, 1998) and outlined in Figure 4.21.
The previous PSM procedure (Figure 4.13), as well as the edit distance pro-

cedure (Figure 4.18), did not restrict the number of vertical (i.e. deletion) and
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Figure 4.20 Computation of a string similarity score using a PSM procedure
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BEGIN:

A�0�0�= 1 u= v= 0

A�u�0�=A�u− 1�0��PD�
u�� 0<u≤m

A�0� v�=A�0� v− 1��PI ��v�� 0<v≤ n

ITERATIONS:

A�u� v�=max






A�u− 2� v− 1��PD�
u− 1���PC�
u���v�� �1 Del�+ 1 Sub��
A�u− 1� v− 1��PC�
u���v�� �1 Sub��
A�u− 1� v− 2��PI ��v− 1���PC�
u���v�� �1 Ins�+ 1 Sub��

�0<u≤m�

�0<v≤ n�

END:

A�m�n�= s�
���≈P���
�

Figure 4.21 PSM algorithm with restrictions on deletions and insertions

horizontal (i.e. insertion) moves. This can be a problem, notably if too many
phones are inserted in the target string before and/or after the actual sub-string
of interest. Here, a maximum of only one insertion or one deletion is allowed
between two phone matching (or mismatching) pairs. Figure 4.22 illustrates this,
by showing the DP transition schemes of the edit distance and the two PSM
algorithms described above.
Another original way of measuring the similarity between two strings consists

of modelling the source string with a discrete HMM which allows variations
of the correct pronunciation of the corresponding word (Ferrieux and Peillon,
1999; Kupiec et al., 1994). The target string is aligned on the model by means
of a DP algorithm similar to the ones described above.
Finally, the measure of similarity between the query string and the target

sub-string within a given document forms the RSV of that document for the
corresponding query word.

4.4.5.3 Slot Detection

After a relevance score has been defined by one of the above string matching
techniques, there remains the question of the detection of target sub-strings within
a document transcription for a given query word. As the sub-word sequences
provided by the indexing recognizer do not contain word boundaries, the retrieval
system must be able to locate automatically possible occurrences of the query
word.
The most straightforward way is to scan dynamically the document transcrip-

tion for each query keyword. The fuzzy matching search returns an identified
keyword whenever the distance between the query keyword string and a sub-
string in the document is less than an empirically determined threshold (Larson
and Eickeler, 2003).
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Figure 4.22 Transition schemes for different string matching algorithms: (a) edit dis-
tance (see Figure 4.18), (b) first PSM algorithm (see Figure 4.13) and (c) second PSM
algorithm (see Figure 4.21)

A more refined approach consists of applying a slot detection step prior to the
string fuzzy matching procedure. Wechsler proposed an error-tolerant detection
algorithm to spot efficiently several possible occurrences of a query string in a
document (Wechsler, 1998, p. 20). A sub-sequence of the document in which an
occurrence of the query string is hypothesized is called a slot. Only slots that do
not overlap a previously selected one and contain a sufficient number of query
phonemes (a threshold is applied) are retained. Finally, slot probabilities are
estimated by means of a fuzzy matching technique such as the PSM algorithms
mentioned above (the edit distance approach being too coarse when strings are
corrupted by numerous recognition errors).
Whatever the target location method is, the probability of the best document

sub-string candidate for the occurrence of a query word forms the document
relevance score for that query word. The final document RSV is the combination
of the relevance scores obtained with the different query words. In a comparative
study made by (Wechsler, 1998), the string matching SDR method (with slot
detection) proved significantly more effective than retrieval based on phoneme
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n-grams. But a major weakness of the string matching SDR approaches in general
remains the computational cost of the fuzzy matching algorithms.

4.4.6 Combining Word and Sub-Word Indexing

The previous sections have reviewed different SDR approaches based on two
distinct indexing levels: words and sub-lexical terms. As mentioned above, each
indexing level has particular advantages and drawbacks. A further refinement
in the SDR field consists of combining word and sub-word indexing terms for
optimal retrieval performance.

4.4.6.1 Word-to-Phone Conversion

Sub-word-based retrieval is not specific to SDR. In particular, the extraction of
phoneme n-grams and their use as indexing features is a well-established text
retrieval technique. Document and query words are first transformed in phonetic
sequences by means of pronunciation dictionaries or rule-based text-to-phone
algorithms. Then, a phonetic-based approach can be used for retrieval.
The main difference from the case where documents are directly indexed by a

phone recognizer is the absence of phonetic transcription errors in the documents.
Another important difference lies in the fact that word boundaries are available
(Ng et al., 2000). It is therefore possible, for instance, to forbid phone n-grams
to form across neighbouring words. Phonetic string matching methods can also
be used for mapping a query phone sequence to the most probable corresponding
words in a text (Kupiec et al., 1994).

These methods can be applied to word transcription resulting from LVCSR,
transcribed into phone sequences just after the ASR extraction step. The prob-
lem of word substitution errors in the document transcriptions can be alleviated
by phone-based SDR because the substituted words are generally phonetically
close to the ones actually spoken, and hence may have close phonetic transcrip-
tions (Srinivasan and Petkovic, 2000). In the same way, OOV query words can
potentially find matches. An OOV word will often be erroneously recognized
as an in-vocabulary word that is phonetically similar. The use of sub-word-
based retrieval may allow detection of some of its occurrences in the LVCSR-
transcribed documents by making “sound-like” retrieval possible.

4.4.6.2 Combination of Multiple Index Sources

The approach mentioned above relies on a single LVCSR-based spoken content
extraction system. The derivation of sub-lexical transcriptions from the recog-
nized words requires some additional information (pronunciation dictionaries or
transcription rules), which may not always be available.
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An alternative is the extraction of sub-word indexing terms via a second
recognition pass, by means of a sub-word-based ASR system. The underlying
motivation is that independent sub-lexical indexing systems can be useful for
complementing word indexing when word recognition has failed, especially in
situations where names and unknown words are misrecognized. This leads to
the idea of integrating different indexing descriptions, resulting from distinct
recognition systems, into the SDR process.
There are different approaches to the exploitation of multiple recognition

outputs for indexing and retrieval purposes. The first one is to use the extracted
sub-lexical information in the case of OOV query words only. In that case, the
word index is used for in-vocabulary query words and the sub-word index is
used to spot OOV query words (James, 1995; Logan et al., 2002).
Other approaches consist of combining the different sources of information

in a global retrieval framework. Multiple recognition outputs can be integrated
into an SDR system in two ways (Wechsler, 1998):

• Data merging: multiple recognition outputs of a document are merged and
then treated as a single document representation for indexing.

• Data fusion: a separate retrieval sub-system is applied for each type of recog-
nition output. Then, the retrieval scores resulting from each sub-system are
combined to form a final composite score.

Generally, an LVCSR-based word indexing system is fused with a phonetic
indexing system (Jones et al., 1996; Witbrock and Hauptmann, 1997). The
fusion function often consists of a simple addition (Jones et al., 1996) or linear
combination of the retrieval scores obtained independently from each information
source:

RSVmixed�q�d�=
RSVword�q�d�+�RSVphone�q�d�� (4.41)

where RSVword (resp. RSVphone) is a retrieval score obtained with one of the
word-based (phone-based) retrieval methods mentioned in the previous sections,
and 
 and � weight the contribution of each information source.
Another simple approach to multi-indexing fusion is the combined use of

term similarities computed at the semantic and phonetic levels (Crestani, 2002).
Semantic term similarity and phonetic similarity are linearly combined to form
a relevance score. These are very simplistic linear combinations of semantic and
phonetic similarities, and other more complex combinations can be devised.
The combination of word-based retrieval and phonetic sub-string matching

techniques experimented in the Informedia project (Witbrock and Hauptmann,
1997) has shown that increased relative retrieval effectiveness is observed
with data fusion, when compared with either the word-based approach or the
phone-based approach alone. These experiments verified that phonetic sub-string
retrieval has the capacity to correct some of the transcription errors occurring in
the word-based document descriptions.
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4.5 CONCLUSIONS

Given that increasingly large portions of the available data contain spoken lan-
guage information (such as recorded speech messages, radio broadcasts and TV
broadcasts), the development of automatic methods to index and retrieve spoken
documents will become even more important in the future. In that context, the
standardization effort of MPEG with the definition of the MPEG-7 SpokenCon-
tent tool could play a key role in the development of next-generation multimedia
indexing and retrieval tools.
The MPEG-7 SpokenContent description allows interoperability across

databases indexed by different ASR systems. The description is flexible enough
to be used by various kinds of spoken content indexing and retrieval systems.

4.5.1 MPEG-7 Interoperability

It is not possible to standardize the ASR process itself, due to the huge variety
and complexity of existing ASR technologies, and to economical considera-
tions. Therefore, multimedia content management applications will continue to
cope with heterogeneous databases of spoken content metadata, extracted with
different ASR engines.
These recognizers may have different error rates, and result in recognition

outputs with diverse levels of reliability. Moreover, the same recognition engine
may produce outputs with different levels of reliability if inputs themselves
differ in quality (different speech quality, different recording environments, etc.).
It is therefore difficult to rank efficiently this heterogeneous metadata based
on the same retrieval parameters. At some level, the degree of reliability of
spoken content metadata should be assessed and used to weight its ranking in the
retrieval list. The SpokenContent description offers different ways of assessing
the reliability of a recognition output:

• Two scores are attached to both word and phone links in a SpokenContent-
Lattice (Section 4.3.3.3): the probability attached to the link (derived from
the language model) and the acousticScore of the corresponding recognition
hypothesis (derived from the acoustic models). These attributes give indi-
cations of the reliability of the recognition hypothesis they refer to. This
information may be used to weight different outputs provided by the same
ASR system, helping retrieval to cope with input heterogeneity (i.e. different
input speech qualities, resulting in more or less reliable decodings).

• In the case of word-based indexing, another important parameter is the size
of the word lexicon used in the decoding. The outputs of a recognizer based
on a small lexicon should be considered less reliable than those yielded by
a large-vocabulary ASR system. With a restrained set of possible words, a
recognizer is very likely to encounter OOV inputs and produce recognition
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errors. The word lexicon size may be used to weight outputs from different
ASR systems, helping retrieval to cope with the heterogeneity of indexing
sources.

• In the case of phone-based indexing, it is possible to measure a complete set of
phone confusion statistics due to the retrained size of the indexing vocabulary.
This information is stored in the ConfusionInfo metadata (Section 4.3.2.3) of
a SpokenContentHeader. Integrating phone confusion probabilities directly in
the computation of the RSVs (as explained in Sections 4.4.4.3 and 4.4.5.2)
ensures that SpokenContentLattices produced by different phone recognizers
(i.e. with different phone error rates) are treated equally.

• Another feature of potentially useful MPEG-7 metadata is the audio attribute
enclosed in the Block description of a SpokenContentLattice (Section 4.3.3.1).
It is a coarse category of audio quality, indicating if a lattice Block was
extracted from noise, noisy speech or clean speech. Given in this order, each
of these labels may indicate an increasing level of recognition reliability. This
discrete parameter can help retrieval coping with speech input heterogeneity.

The integration of these various parameters in the computation of retrieval scores
is a major issue for robust SDR. Another possibility is to use this information
for selecting documents in a database, according to the reliability of their spoken
content descriptions.

4.5.2 MPEG-7 Flexibility

The SpokenContent description has been designed to fit the output formats of
most up-to-date ASR systems. Thus, a SpokenContentLattice may enclose one
of the following ASR outputs:

• Many recognizers deliver a single transcription hypothesis of the input speech.
This can be stored as a SpokenContentLattice enclosing a single path.

• Some commercial recognizers also provide word alternatives for each rec-
ognized word, or a list of n-best transcriptions. These outputs can also be
encoded in MPEG-7 lattices. Word alternatives may be attached to parallel
links, starting and ending at the same start and end nodes. The n-best tran-
scriptions may be stored in parallel single paths, starting and ending at the
start and end nodes of the global lattice.

• Finally, some more refined ASR systems are capable of outputting multi-
hypotheses lattices directly. An encoding operation may be necessary to con-
vert the ASR specific lattice format into a valid MPEG-7 SpokenContent
description.

The level of detail in the lattice depends on the particular application. As men-
tioned in Sections 4.3.2.1 and 4.3.2.2, the MPEG-7 SpokenContent standard
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allows for multiple indexing levels: phones, syllables, words, sequence of words,
etc. All this makes the SpokenContent description compatible with the different
SDR approaches detailed in Section 4.4:

• Classical word-based retrieval techniques (Section 4.4.3) may be applied to
word lattices generated by an LVCSR system. In that case, only theWordLinks
are activated in the SpokenContentLattice descriptions. The lattices must refer
to a SpokenContentHeader enclosing the WordLexicon of the LVCSR sys-
tem. However, it should be noted that SpokenContent descriptions have no
field to store word similarity measures, such as the EMIM distance given in
Equation (4.27).

• Some classical text pre-processing may be applied to reduce the dimension of
the indexing term space using a word mapping technique (Section 4.4.3.1).
The result can be stored in a SpokenContent word lattice by setting the lin-
guisticUnit attribute of the WordLexicon (set to word by default) to the appro-
priate value, e.g. linguisticUnit=stem to store the output of a word stemming
algorithm.

• Some intermediate level between words and phones may be chosen. For
example, the output of a syllable recognizer (Larson and Eickeler, 2003)
can be stored in a word lattice. The complete set of syllables is stored in a
WordLexicon descriptor with linguisticUnit=syllable.

• Phone-based VSM retrieval techniques (Section 4.4.4) may be applied to
phonetic lattices. In that case, only the PhoneLinks are activated in the Spoken-
ContentLattice descriptions. The lattices must refer to a SpokenContentHeader
enclosing the PhoneLexicon of the phone recognizer and the corresponding
ConfusionInfo metadata. It should be noted that the PhoneIndex descriptions
can be activated in the SpeakerInfo header metadata. The index can be used
to store the lists of phone n- gram terms extracted from the lattices.

• Phonetic string matching techniques (Section 4.4.5) may be applied to 1-best
phonetic transcriptions directly stored in single-path SpokenContent lattices or
extracted from multi-hypotheses SpokenContent lattices. ConfusionInfo meta-
data is required to apply PSM techniques (Section 4.4.5.2).

• The combination of word and phone indexing methods (Section 4.4.6),
allowing retrieval at different semantic levels, is possible. A SpokenContent
description can store different types of recognition hypotheses in the same
SpokenContentLattice (mixing WordLinks and PhoneLinks), as depicted in
Figure 4.6.

It is even possible to make classical text retrieval applications conform to the
MPEG-7 standard, since hand-annotated metadata can be stored in the same
scheme as the ASR output. The provenance attribute enclosed in the SpeakerInfo
metadata can be used to distinguish between data sources (e.g. manual for a
written text or ASR for automatic word annotation).
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The flexibility of the MPEG-7 SpokenContent description makes it usable in
many different application contexts. The main possible types of applications are:

• Spoken document retrieval. This is the most obvious application of spoken
content metadata, already detailed in this chapter. The goal is to retrieve
information in a database of spoken documents. The result of the query may
be the top-ranked relevant documents. As SpokenContent descriptions include
the time locations of recognition hypotheses, the position of the retrieved
query word(s) in the most relevant documents may also be returned to the
user. Mixed SpokenContent lattices (i.e. combining words and phones) could
be an efficient approach in most cases.

• Indexing of audiovisual data. The spoken segments in the audio stream can
be annotated with SpokenContent descriptions (e.g. word lattices yielded by
an LVCSR system). A preliminary audio segmentation of the audio stream is
necessary to spot the spoken parts. The spoken content metadata can be used
to search particular events in a film or a video (e.g. the occurrence of a query
word or sequence of words in the audio stream).

• Spoken annotation of databases. Each item in a database is annotated with
a short spoken description. This annotation is processed by an ASR system
and attached to the item as a SpokenContent description. This metadata can
then be used to search items in the database, by processing the SpokenContent
annotations with an SDR engine. A typical example of such applications,
already on the market, is the spoken annotation of photographs. In that case,
speech decoding is performed on a mobile device (integrated in the camera
itself) with limited storage and computational capacities. The use of a simple
phone recognizer may be appropriate.

4.5.3 Perspectives

One of the most promising perspectives for the development of efficient spoken
content retrieval methods is the combination of multiple independent index
sources. A SpokenContent description can represent the same spoken information
at different levels of granularity in the same lattice by merging words and
sub-lexical terms.
These multi-level descriptions lead to retrieval approaches that combine the

discriminative power of large-vocabulary word-based indexing with the open-
vocabulary property of sub-word-based indexing, by which the problem of OOV
words is greatly alleviated. As outlined in Section 4.4.6.2, some steps have
already been made in this direction. However, hybrid word/sub-word-based SDR
strategies have to be further investigated, with new fusion methods (Yu and Seide,
2004) or new combinations of index sources, e.g. combined use of distinct types
of sub-lexical units (Lee et al., 2004) or distinct LVCSR systems (Matsushita
et al., 2004).
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Another important perspective is the combination of spoken content with
other metadata derived from speech (Begeja et al., 2004; Hu et al., 2004).
In general, the information contained in a spoken message consists of more
than just words. In the query, users could be given the possibility to search
for words, phrases, speakers, words and speakers together, non-verbal speech
characteristics (male/female), non-speech events (like coughing or other human
noises), etc. In particular, the speakers’ identities may be of great interest for
retrieving information in audio. If a speaker segmentation and identification
algorithm is applied to annotate the lattices with some speaker identifiers (stored
in SpeakerInfo metadata), this can help searching for particular events in a film
or a video (e.g. sentences or words spoken by a given character in a film). The
SpokenContent descriptions enclose other types of valuable indexing information,
such as the spoken language.
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5
Music Description Tools

The purpose of this chapter is to outline how music and musical signals can
be described. Several MPEG-7 high-level tools were designed to describe the
properties of musical signals. Our prime goal is to use these descriptors to
compare music signals and to query for pieces of music.
The aim of the MPEG-7 Timbre DS is to describe some perceptual features

of musical sounds with a reduced set of descriptors. These descriptors relate
to notions such as “attack”, “brightness” or “richness” of a sound. The Melody
DS is a representation for melodic information which mainly aims at facilitat-
ing efficient melodic similarity matching. The musical Tempo DS is defined to
characterize the underlying temporal structure of musical sounds. In this chapter
we focus exclusively on MPEG-7 tools and applications. We outline how dis-
tance measures can be constructed that allow queries for music based on the
MPEG-7 DS.

5.1 TIMBRE

5.1.1 Introduction

In music, timbre is the quality of a musical note which distinguishes different
types of musical instrument, see (Wikipedia, 2001). The timbre is like a formant
in speech; a certain timbre is typical for a musical instrument. This is why, with
a little practice, it is possible for human beings to distinguish a saxophone from
a trumpet in a jazz group or a flute from a violin in an orchestra, even if they
are playing notes at the same pitch and amplitude. Timbre has been called the
psycho-acoustician’s waste-basket as it can include so many factors.
Though the phrase tone colour is often used as a synonym for timbre, colours of

the optical spectrum are not generally explicitly associated with particular sounds.
Rather, the sound of an instrument may be described with words like “warm” or

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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“harsh” or other terms, perhaps suggesting that tone colour has more in common
with the sense of touch than of sight. People who experience synaesthesia,
however, may see certain colours when they hear particular instruments.
Two sounds with similar physical characteristics like pitch and loudness may

have different timbres. The aim of the MPEG-7 Timbre DS is to describe per-
ceptual features with a reduced set of descriptors.
MPEG-7 distinguishes four different families of sounds:

• Harmonic sounds
• Inharmonic sounds
• Percussive sounds
• Non-coherent sounds

These families are characterized using the following features of sounds:

• Harmony: related to the periodicity of a signal, distinguishes harmonic from
inharmonic and noisy signals.

• Sustain: related to the duration of excitation of the sound source, distinguishes
sustained from impulsive signals.

• Coherence: related to the temporal behaviour of the signal’s spectral compo-
nents, distinguishes spectra with prominent components from noisy spectra.

The four sound families correspond to these characteristics, see Table 5.1. Pos-
sible target applications are, following the standard (ISO, 2001a):

• Authoring tools for sound designers or musicians (music sample database
management). Consider a musician using a sample player for music production,
playing the drum sounds of in his or her musical recordings. Large libraries
of sound files for use with sample players are already available. The MPEG-7
Timbre DS could be facilitated to find percussive sounds in such a library
which matches best the musician’s idea for his or her production.

• Retrieval tools for producers (query-by-example (QBE) search based on per-
ceptual features). If a producer wants a certain type of sound and already has

Table 5.1 Sound families and sound characteristics (from ISO, 2001a)

Sound family Harmonic Inharmonic Percussive Non-coherent

Characteristics Sustained Sustained Impulsive Sustained
Harmonic Inharmonic
Coherent Coherent Non-coherent

Example Violin, flute Bell, triangle Snare, claves Cymbals
Timbre Harmonic-

Instrument-
Timbre

Percussive-
Instrument-
Timbre
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a sample sound, the MPEG-7 Timbre DS provides the means to find the most
similar sound in a sound file of a music database. Note that this problem is
often referred to as audio fingerprinting.

All descriptors of the MPEG-7 Timbre DS use the low-level timbral descrip-
tors already defined in Chapter 2 of this book. The following sections describe
the high-level DS InstrumentTimbre, HarmonicInstrumentTimbre and Percus-
siveInstrumentTimbre.

5.1.2 InstrumentTimbre

The structure of the InstrumentTimbre is depicted in Figure 5.1. It is a set of tim-
bre descriptors in order to describe timbres with harmonic and percussive aspects:

• LogAttackTime (LAT), the LogAttackTime descriptor, see Section 2.7.2.
• HarmonicSpectralCentroid (HSC), the HarmonicSpectralCentroid descriptor,
see Section 2.7.5.

• HarmonicSpectralDeviation (HSD), the HarmonicSpectralDeviation descrip-
tor, see Section 2.7.6.

• HarmonicSpectralSpread (HSS), the HarmonicSpectralSpread descriptor, see
Section 2.7.7.

Figure 5.1 The InstrumentTimbre: + signs at the end of a field indicate further
structured content; – signs mean unfold content; · · · indicate a sequence (from Manjunath
et al., 2002)
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• HarmonicSpectralVariation (HSV), the HarmonicSpectralVariation descrip-
tor, see Section 2.7.8.

• SpectralCentroid (SC), the SpectralCentroid descriptor, see Section 2.7.9.
• TemporalCentroid (TC), the TemporalCentroid descriptor, see Section 2.7.3.

Example As an example consider the sound of a harp which contains har-
monic and percussive features. The following listing represents a harp using the
InstrumentTimbre. It is written in MPEG-7 XML syntax, as mentioned in the
introduction (Chapter 1).

<AudioDescriptionScheme xsi:type=“InstrumentTimbreType”>
<LogAttackTime>
<Scalar>-1.660812</Scalar>

</LogAttackTime>
<HarmonicSpectralCentroid>
<Scalar>698.586713</Scalar>

</HarmonicSpectralCentroid>
<HarmonicSpectralDeviation>
<Scalar>-0.014473</Scalar>

</HarmonicSpectralDeviation>
<HarmonicSpectralSpread>
<Scalar>0.345456</Scalar>

</HarmonicSpectralSpread>
<HarmonicSpectralVariation>
<Scalar>0.015437</Scalar>

</HarmonicSpectralVariation>
<SpectralCentroid>
<Scalar>867.486074</Scalar>

</SpectralCentroid>
<TemporalCentroid>
<Scalar>0.231309</Scalar>

</TemporalCentroid>
</AudioDescriptionScheme>

5.1.3 HarmonicInstrumentTimbre

Figure 5.2 shows the HarmonicInstrumentTimbre. It holds the following set of
timbre descriptors to describe the timbre perception among sounds belonging to
the harmonic sound family, see (ISO, 2001a):

• LogAttackTime (LAT), the LogAttackTime descriptor, see Section 2.7.2.
• HarmonicSpectralCentroid (HSC), the HarmonicSpectralCentroid descriptor,
see Section 2.7.5.
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Figure 5.2 The HarmonicInstrumentTimbre. (from Manjunath et al., 2002)

• HarmonicSpectralDeviation (HSD), the HarmonicSpectralDeviation descrip-
tor, see Section 2.7.6.

• HarmonicSpectralSpread (HSS), the HarmonicSpectralSpread descriptor, see
Section 2.7.7.

• HarmonicSpectralVariation (HSV), the HarmonicSpectralVariation descrip-
tor, see Section 2.7.8.

Example The MPEG-7 description of a sound measured from a violin is
depicted below.

<AudioDescriptionScheme
xsi:type="HarmonicInstrumentTimbreType">
<LogAttackTime>
<Scalar>-0.150702</Scalar>

</LogAttackTime>
<HarmonicSpectralCentroid>
<Scalar>1586.892383</Scalar>

</HarmonicSpectralCentroid>
<HarmonicSpectralDeviation>
<Scalar>-0.027864</Scalar>

</HarmonicSpectralDeviation>
<HarmonicSpectralSpread>
<Scalar>0.550866</Scalar>

</HarmonicSpectralSpread>
<HarmonicSpectralVariation>
<Scalar>0.001877</Scalar>

</HarmonicSpectralVariation>
</AudioDescriptionScheme>
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Figure 5.3 The PercussiveInstrumentTimbre (from Manjunath et al., 2002)

5.1.4 PercussiveInstrumentTimbre

The PercussiveInstrumentTimbre depicted in Figure 5.3 can describe impulsive
sounds without any harmonic portions. To this end it includes:

• LogAttackTime (LAT), the LogAttackTime descriptor, see Section 2.7.2.
• SpectralCentroid (SC), the SpectralCentroid descriptor, see Section 2.7.9.
• TemporalCentroid (TC), the TemporalCentroid descriptor, see Section 2.7.3.

Example A side drum is thus represented using only three scalar values in the
following example.

<AudioDescriptionScheme
xsi:type=“PercussiveInstrumentTimbreType”>
<LogAttackTime>
<Scalar>-1.683017</Scalar>

</LogAttackTime>
<SpectralCentroid>
<Scalar>1217.341518</Scalar>

</SpectralCentroid>
<TemporalCentroid>
<Scalar>0.081574</Scalar>

</TemporalCentroid>
</AudioDescriptionScheme>

5.1.5 Distance Measures

Timbre descriptors can be combined in order to allow a comparison of two
sounds according to perceptual features.
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For comparing harmonic sounds this distance measure may be employed:

d=√
8��LAT�2 + 3 · 10−5��HSC�2 + 3 · 10−4��HSD�2 + �10�HSS− 60�HSV�2 (5.1)

For percussive sounds this distance measure is useful:

d=√
�−0�3�LAT − 0�6�TC�2 + �−10−4�SC�2 (5.2)

In both cases, � is the difference between the values of the same acoustical
parameter for the two sounds considered, see (ISO, 2001a).

5.2 MELODY

The MPEG-7 Melody DS provides a rich representation for monophonic melodic
information to facilitate efficient, robust and expressive melodic similarity match-
ing.
The term melody denotes a series of notes or a succession, not a simultaneity

as in a chord, see (Wikipedia, 2001). However, this succession must contain
change of some kind and be perceived as a single entity (possibly gestalt) to be
called a melody. More specifically, this includes patterns of changing pitches and
durations, while more generally it includes any interacting patterns of changing
events or quality.
What is called a “melody” depends greatly on the musical genre. Rock music

and folk songs tend to concentrate on one or two melodies, verse and chorus.
Much variety may occur in phrasing and lyrics. In western classical music,
composers often introduce an initial melody, or theme, and then create variations.
Classical music often has several melodic layers, called polyphony, such as
those in a fugue, a type of counterpoint. Often melodies are constructed from
motifs or short melodic fragments, such as the opening of Beethoven’s Ninth
Symphony. Richard Wagner popularized the concept of a leitmotif: a motif or
melody associated with a certain idea, person or place.
For jazz music a melody is often understood as a sketch and widely changed

by the musicians. It is more understood as a starting point for improvization.
Indian classical music relies heavily on melody and rhythm, and not so much on
harmony as the above forms. A special problem arises for styles like Hip Hop
and Techno. This music often presents no clear melody and is more related to
rhythmic issues. Moreover, rhythm alone is enough to picture a piece of music,
e.g. a distinct percussion riff, as mentioned in (Manjunath et al., 2002). Jobim’s
famous “One Note Samba” is an nice example where the melody switches
between pure rhythmical and melodic features.

5.2.1 Melody

The structure of the MPEG-7 Melody is depicted in Figure 5.4. It contains
information about meter, scale and key of the melody. The representation
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Figure 5.4 The MPEG-7 Melody (from Manjunath et al., 2002)

of the melody itself resides inside either the fields MelodyContour or
MelodySequence.
Besides the optional field Header there are the following entries:

• Meter: the time signature is held in the Meter (optional).
• Scale: in this array the intervals representing the scale steps are held (optional).
• Key: a container containing degree, alteration and mode (optional).
• MelodyContour: a structure of MelodyContour (choice).
• MelodySequence: a structure of MelodySequence (choice).

All these fields and necessary MPEG-7 types will be described in more detail in
the following sections.

5.2.2 Meter

The field Meter contains the time signature. It specifies how many beats are in
each bar and which note value constitutes one beat. This is done using a fraction:
the numerator holds the number of beats in a bar, the denominator contains the
length of one beat. For example, for the time signature 4/4 each beat contains
three quarter notes. The most common time signatures in western music are 4/4,
3/4 and 2/4.
The time signature also gives information about the rhythmic subdivision of

each bar, e.g. a 4/4 meter is stressed on the first and third bar by convention. For
unusual rhythmical patterns inmusic complex signatures like3+2+3/8aregiven.
Note that this cannot be represented exactly byMPEG-7 (see example next page).
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Figure 5.5 The MPEG-7 Meter (from Manjunath et al., 2002)

The Meter is shown in Figure 5.5. It is defined by:

• Numerator: contains values from 1 to 128.
• Denominator: contains powers of 2: 20� � � � �27, e.g. 1�2� � � � �128.

Example Time signatures like 5/4, 3/2, 19/16 can be easily represented using
MPEG-7. Complex signatures like 3+2+3/8 have to be defined in a simplified
manner like 8/8.

<Meter>
<Numerator>8</Numerator>
<Denominator>8</Denominator>

</Meter>

5.2.3 Scale

The Scale descriptor contains a list of intervals representing a sequence of
intervals dividing the octave. The intervals result in a list of frequencies giving
the pitches of the single notes of the scale. In traditional western music, scales
consist of seven notes, made up of a root note and six other scale degrees whose
pitches lie between the root and its first octave. Notes in the scale are separated
by whole and half step intervals of tones and semitones, see (Wikipedia, 2001).
There are a number of different types of scales commonly used in western

music, including major, minor, chromatic, modal, whole tone and pentatonic
scales. There are also synthetic scales like the diminished scales (also known as
octatonic), the altered scale, the Spanish and Jewish scales, or the Arabic scale.

The relative pitches of individual notes in a scale may be determined by one
of a number of tuning systems. Nowadays, in most western music, the equal
temperament is the most common tuning system. Starting with a pitch at F0, the
pitch of note n can be calculated using:

f�n�=F0 2
n/12� (5.3)



180 5 MUSIC DESCRIPTION TOOLS

Figure 5.6 The MPEG-7 Scale. It is a simple vector of float values. From (Manjunath
et al., 2002)

Using n= 1� � � 12 results in all 12 pitches of the chromatic scale, related to a
pitch at F0 (e.g. 440Hz). Note that f�12� is the octave to F0.

The well temperaments are another form of well-known tuning systems. They
evolved in the baroque period and were made popular by Bach’s Well Tempered
Clavier. There are many well temperament schemes: French Temperament Ordi-
naire, Kirnberger, Vallotti, Werckmeister or Young. Some of them are given as
an example below.
Also mentioned in the MPEG-7 standard is the Bohlen–Pierce (BP) scale,

a non-traditional scale containing 13 notes. It was independently developed in
1972 by Heinz Bohlen, a microwave electronics and communications engineer,
and later by John Robinson Pierce,1 also a microwave electronics and commu-
nications engineer! See the examples for more details.
The information of the Scale descriptor may be helpful for reference purposes.

The structure of the Scale is a simple vector of floats as shown in Figure 5.6:

• Scale: the vector contains the parameter n of Equation (5.3). Using the whole
numbers 1–12 results in the equal temperated chromatic scale, which is also
the default of the Scale vector. If a number of frequencies f�n� of pitches
building a scale are given, the values scale(n) of the Scale vector can be
calculated using:

scale�n�= 12 log2

(
f�n�

F0

)

� (5.4)

Example The default of the Scale vector, the chromatic scale using the equal
temperature, is simply represented as:

<Scale>
1.0 2.0 3.0 4.0 5.0 6.0
7.0 8.0 9.0 10.0 11.0 12.0

</Scale>

1 Note that Pierce is also known as the “Father of the Communications Satellite”.



5.2 MELODY 181

An example of a well temperated tuning, the Kirnberger III temperature, is
written as:

<Scale>
1.098 2.068 3.059 4.137 5.020 6.098
7.034 8.078 9.103 10.039 11.117 12.0

</Scale>

The BP scale represented by the Scale vector contains 13 values:

<Scale>
1.3324 3.0185 4.3508 5.8251 7.3693 8.8436
10.1760 11.6502 13.1944 14.6687 16.0011 17.6872
19.0196

</Scale>

5.2.4 Key

In music theory, the key is the tonal centre of a piece, see (Wikipedia, 2001).
It is designated by a note name (the tonic), such as “C”, and is the base of the
musical scale (see above) from which most of the notes of the piece are drawn.
Most commonly, the mode of that scale can be either in major or minor mode.
Other modes are also possible, e.g. dorian, phrygian, lydian, but most popular
music uses either the major (ionian) and minor (aeolian) modes. Eighteenth- and
nineteenth-century music also tends to focus on these modes.
The structure of the MPEG-7 Key is given in Figure 5.7. Besides the optional

Header it contains only a field KeyNote which is a complex type using some
attributes.

• KeyNote is a complex type that contains a degreeNote with possible strings
A, B, C, D, E, F, G. An optional attribute field Display contains a string to be
displayed instead of the note name, e.g. “do” instead of “C”.

Figure 5.7 The structure of the MPEG-7 Key (from Manjunath et al., 2002)
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• Two attributes can be set for the KeyNote:

– accidental: an enumeration of alterations for the alphabetic note name;
possible values are natural (default), flat (�), sharp (�), double flat (��),
double sharp (��).

– mode: the mode is a controlled term by reference, e.g. major or minor.

A possible melody key is “B� major”:

<Key>
<KeyNote accidental=“flat” mode=“major”>B</KeyNote>

</Key>

5.2.5 MelodyContour

Melody information is usually stored in formats allowing good musical repro-
duction or visual representation, e.g. as a score. A popular format for playback
of melodies or generally music is MIDI (Music Instrument Digital Interface),
which stores the melody as it is played on a musical instrument. GUIDO1 in
turn is one of many formats related to score representation of music, see (Hoos
et al., 2001). MPEG-7 provides melody representations specifically dedicated
to multimedia systems. The MelodyContour described in this section and the
MelodySequence described in Section 5.2.6 are standardized for this purpose.
MPEG-7 melody representations are particularly useful for “melody search”,

such as in query-by-humming (QBH) systems. QBH describes the application
where a user sings or “hums” a melody into a query system. The system searches
in a database for music entries with identical or similar melodies. For such pur-
poses a reasonable representation of melodies is necessary. This representation is
required on the one hand for melody description of the user and on the other hand
as a database representation, which is searched for the user query. In many cases
it is sufficient to describe only the contour of the melody instead of a detailed
description given by MIDI or GUIDO. The simplest form is to use only three
contour values describing the intervals from note to note: up (U), down (D) and
repeat (R). Coding a melody using U, D and R is also known as Parsons code, see
(Prechelt and Typke, 2001). An example is given in Figure 5.8. “As time goes
by”, written by Herman Hupfield, is encoded as UDDDUUUDDDUUUDDDU.
Amore detailed contour representation is to represent the melody as a sequence

of changes in pitch, see (Uitdenbogerd and Zobel, 1999). In this relative pitch or
interval method, each note is represented as a change in pitch form the prior note,

1 Guido of Arezzo or Guido Monaco (995–1050) is regarded as the inventor of modern musical
notation, see (Wikipedia, 2001).
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Figure 5.8 Example score: “As time goes by – theme from Casablanca”, written by
Herman Hupfield. Three different codings are given: the Parsons code, the interval
method and the MPEG-7 MelodyContour

e.g. providing the number of semitones up (positive value) or down (negative
value). A variant of this technique is modulo interval, in which changes of more
than an octave are reduced by 12. Figure 5.8 shows the relative pitches.
MPEG-7 MelodyContour DS is a compact contour representation using five

steps as proposed by (Kim et al., 2000). For all contour representations described
so far, no rhythmical features are taken into account. However, rhythm can be an
important feature of a melody. The MelodyContour DS also includes rhythmical
information (ISO, 2001a) for this purpose.
The MPEG-7 MelodyContour is shown in Figure 5.9. It contains two vectors,

Contour and Beat:

• Contour: this vector contains a five-level pitch contour representation of the
melody using values as shown in Table 5.2. These values are declared in the
MPEG-7 Contour.

• Beat: this vector contains the beat numberswhere the contour changes take place,
truncated to whole beats. The beat information is stored as a series of integers.
The beats are enumerated continuously, disregarding the number of bars.

The contour values given in Table 5.2 are quantized by examining the
change in the original interval value in cents. A cent is one-hundredth of a

Figure 5.9 The MPEG-7 MelodyContour. Contour: holds interval steps of the melody
contour; Beat: contains the beat numbers where the contour changes (from Manjunath
et al., 2002)
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Table 5.2 Melodic contour intervals defined for five-step representation.
The deviation of pitch is given in cents (1 cent is one-hundredth of a
semitone)

Contour value Change of c�f� in cents Musical interval

−2 c≤−250 Minor third or more down
−1 −50≤ c<−250 Major or minor second down
0 −50<c< 50 Unison
1 50≤ c< 250 Major or minor second up
2 250≤ c Minor third or more up

semitone following the equal temperature, e.g. the deviation of frequency F1

from frequency F0 in Hz is given by:

c= 1200 log2

(
F1

F0

)

� (5.5)

In terms of the western tuning standard, a change of a minor third or more, i.e.
three semitones, is denoted using ±2. Three semitones mean 300 cents, thus
the threshold of 250 cents also includes very flat minor thirds. A major second
makes a 200-cent step in tune, therefore a 249-cent step is an extreme wide
major second, denoted with ±1. The same holds for the prime, 0.
The Beat information is given in whole beats only, e.g. the beat number is

determined by truncation. If a melody starts on beat 1.5, the beat number is 1.
The beat information is simply enumerated: beat 1.5 in the second bar counted
meter 4/4 is 4+ 1�5= 5.

Example The following example is used to illustrate this concept. In Figure 5.8
the values for the MelodyContour DS are denoted using Contour and Beat.
Contour shows the gradient of the interval values. The melody starts going up
one semitone, resulting in contour value 1. Then it goes down one semitone,
yielding−1, then two semitones down, yielding−1 again. Larger intervals as±3
semitones are denoted with a contour value ±2. The first note has no preceding
note; a * denotes there is no interval.
The Beat vector in Figure 5.8 starts with 4, because the melody starts with an

offbeat. The successive eight notes are counted 5, 5, 6, 6, because of the time
signature 4/4. Note that there is one more beat value than contour values.

< !– MelodyContour description of "As time goes by" –>
<AudioDescriptionScheme xsi:type="MelodyType">
<Meter>
<Numerator>4</Numerator>
<Denominator>4</Denominator>
</Meter>
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<MelodyContour>
<Contour>
1 –1 –1 –1 1 1 <!–– bar 2 ––>
2 1 –1 –1 2 1 <!–– bar 3 ––>
2 –1 –1 –1 1 <!–– bar 4 ––>

</Contour>
<Beat>
4 <!–– bar 1 ––>
5 5 6 6 7 8 <!–– bar 2 ––>
9 9 10 10 11 12 <!–– bar 3 ––>
13 13 14 14 15 <!–– bar 4 ––>

</Beat>
</MelodyContour>
</AudioDescriptionScheme>

5.2.6 MelodySequence

The MelodyContour DS is useful in many applications, but sometimes provides
not enough information. One might wish to restore the precise notes of a melody
for auditory display or know the pitch of a melody’s starting note and want to
search using that criterion. The contour representation is designed to be lossy, but
is sometimes ambiguous among similar melodies. The MPEG-7MelodySequence
DS was defined for these purposes.
For melodic description it employs the interval method, which is restricted not

only to pure intervals but also to exact frequency relations. Rhythmic properties
are described in a similar manner using differences of note durations, instead
of a beat vector. So, the note durations are treated in a analogous way to the
pitches. Also lyrics, including a phonetic representation, are possible.
The structure of the MelodySequence is displayed in Figure 5.10. It contains:

• StartingNote: a container for the absolute pitch in the first note in a sequence,
necessary for reconstruction of the original melody, or if absolute pitch is
needed for comparison purposes (optional).

• NoteArray: the array of intervals, durations and optional lyrics; see description
following below.

StartingNote
The StartingNote’s structure given in Figure 5.11 contains optional values for
frequency or pitch information, using the following fields:

• StartingFrequency: the fundamental frequency of the first note in the repre-
sented sequence in units of Hz (optional).

• StartingPitch: a field containing a note name as described in Section 5.2.4 for
the field KeyNote. There are two optional attributes:
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Figure 5.10 The structure of the MPEG-7 MelodySequence (from Manjunath et al.,
2002)

Figure 5.11 The structure of the StartingNote (from Manjunath et al., 2002)

– accidental: an alteration sign as described in Section 5.2.4 for the same
field.

– Height: the number of the octave of the StartingPitch, counting octaves
upwards from a standard piano’s lowest A as 0. In the case of a non-octave
cycle in the scale (i.e. the last entry of the Scale vector shows a significant
deviation from 12.0), it the number of repetitions of the base pitch of the
scale over 27.5Hz needed to reach the pitch height of the starting note.

NoteArray
The structure of the NoteArray is shown in Figure 5.12. It contains optional
header information and a sequence of Notes. The handling of multiple NoteArrays
is described in the MPEG-7 standard see (ISO, 2001a).

• NoteArray: the array of intervals, durations and optional lyrics. In the case of
multiple NoteArrays, all of the NoteArrays following the first one listed are
to be interpreted as secondary, alternative choices to the primary hypothesis.
Use of the alternatives is application specific, and they are included here in
simple recognition that neither segmentation nor pitch extraction are infallible
in every case (N57, 2003).
The Note contained in the NoteArray has the following entries (see

Figure 5.13):
• Interval: a vector of interval values of the previous note and following note.
The values are numbers of semitones, so the content of all interval fields of
a NoteArray is a vector like the interval method. If this is not applicable, the
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Figure 5.12 The MPEG-7 NoteArray (from Manjunath et al., 2002)

Figure 5.13 The MPEG-7 Note (from Manjunath et al., 2002)

interval value i�n� at time step n can be calculated using the fundamental
frequencies of the current note f�n+ 1� and the previous note f�n�:

i�n�= 12 log2

(
f�n+ 1�
f�n�

)

� (5.6)

As values i�n� are float values, a more precise representation as the pure
interval method is possible. The use of float values is also important for
temperatures other than the equal temperature.
Note that for N notes in a sequence, there are N − 1 intervals.

• NoteRelDuration: the log ratio of the differential onsets for the notes in the
series. This is a logarithmic “rhythm space” that is resilient to gradual changes
in tempo. An extraction algorithm for extracting this is:

d�n�=
{
log2

o�n+1�−o�n�

0�5 � n= 1

log2
o�n+1�−o�n�

o�n�−o�n−1� � n≥ 2�
(5.7)

where o�n� is the time of onset of note n in seconds (measured from the onset
of the first note).
The first note duration is in relation to a quarter note at 120 beats per minute

(0.5 seconds), which gives an absolute reference point for the first note.
• Lyric: text information like syllables or words is assigned to the notes in the
Lyric field. It may include a phonetic representation, as allowed by Textual
from (ISO, 2001b).
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Example An example is used to illustrate this description. The melody “As
time goes by” shown in Figure 5.8 is now encoded as a melody sequence. To
fill the field Interval of the Note structure, the interval values of the interval
method can be taken. In opposition to this method, the interval is now assigned
to the first of both notes building the interval. As a result, the last note of the
melody sequence has no following note and an arbitrary interval value has to be
chosen, e.g. 0.
For calculation of the NoteRelDuration values using Equation (5.7), preceding

and following onsets of a note are taken into account. Therefore, the value for the
last NoteRelDuration value has to be determined using a meaningful phantom
note following the last note. Obviously, the onset of this imaginary note is the
time point when the last note ends. A ballad tempo of 60 beats per minute was
chosen. The resulting listing is shown here.

< !– MelodySequence description of "As time goes by" –>
<AudioDescriptionScheme xsi:type="MelodyType">
<MelodySequence>
<NoteArray>
<!– bar 1 –>
<Note>
<Interval> 1</Interval>
<NoteRelDuration> 1.0000</NoteRelDuration>
</Note>
<!– bar 2 –>
<Note>
<Interval>-1</Interval>
<NoteRelDuration>-1.0000</NoteRelDuration>
</Note>
<Note>
<Interval>-2</Interval>
<NoteRelDuration> 0</NoteRelDuration>
</Note>
<Note>
<Interval>-2</Interval>
<NoteRelDuration> 0</NoteRelDuration>
</Note>
<Note>
<Interval> 2</Interval>
<NoteRelDuration> 0</NoteRelDuration>
</Note>
<Note>
<Interval> 2</Interval>
<NoteRelDuration> 1.5850</NoteRelDuration>
</Note>
<!– bar 3 –>
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<Note>
<Interval> 3</Interval>
<NoteRelDuration>-1.5850</NoteRelDuration>
</Note>
<!– Other notes elided –>
<NoteArray>
<MelodySequence>
</AudioDescriptionScheme>

An example of usage of the lyrics field within the Note of theMelodySequence
is given in the following listing, from (ISO, 2001a). It describes “Moon River”
by Henry Mancini as shown in Figure 5.14. Notice that in this example all
fields of the Melody DS are used: Meter, Scale and Key. Moreover, the optional
StartingNote is given.

< !– MelodySequence description of "Moon River" –>
<AudioDescriptionScheme xsi:type="MelodyType">
<Meter>
<Numerator>3</Numerator>
<Denominator>4</Denominator>
</Meter>
<Scale>1 2 3 4 5 6 7 8 9 10 11 12</Scale>
<Key> <KeyNote display="do">C</KeyNote> </Key>
<MelodySequence>
<StartingNote>
<StartingFrequency>391.995</StartingFrequency>
<StartingPitch height="4">
<PitchNote display="sol">G</PitchNote>
</StartingPitch>
</StartingNote>
<NoteArray>
<Note>
<Interval>7</Interval>
<NoteRelDuration>2.3219</NoteRelDuration>
<Lyric phoneticTranscription="m u: n">Moon</Lyric>
</Note>
<Note>
<Interval>-2</Interval>
<NoteRelDuration>-1.5850</NoteRelDuration>
<Lyric>Ri-</Lyric>
</Note>
<Note>
<Interval>-1</Interval>

(Continued)
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<NoteRelDuration>1</NoteRelDuration>
<Lyric>ver</Lyric>
</Note>
<!– Other notes elided –>
</NoteArray>
</MelodySequence>
</AudioDescriptionScheme>

Figure 5.14 “Moon River” by Henry Mancini (from ISO, 2001a)

5.3 TEMPO

In musical terminology, tempo (Italian for time) is the speed or pace of a given
piece, see (Wikipedia, 2001). The tempo will typically be written at the start of a
piece of music, and is usually indicated in beats per minute (BPM). This means
that a particular note value (e.g. a quarter note = crochet) is specified as the beat,
and the marking indicates that a certain number of these beats must be played per
minute. Mathematical tempo markings of this kind became increasingly popular
during the first half of the nineteenth century, after the metronome had been
invented by Johann Nepomuk Mälzel in 1816. Therefore the tempo indication
shows for example ‘M.M.= 120’, where M.M. denotes Metronom Mälzel. MIDI
files today also use the BPM system to denote tempo.
Whether a music piece has a mathematical time indication or not, in classical

music it is customary to describe the tempo of a piece by one or more words.
Most of these words are Italian, a result of the fact that many of the most
important composers of the Renaissance were Italian, and this period was when
tempo indications were used extensively for the first time.
Before the metronome, words were the only way to describe the tempo of a

composition, see Table 5.3. Yet, after the metronome’s invention, these words
continued to be used, often additionally indicating the mood of the piece, thus
blurring the traditional distinction between tempo and mood indicators. For
example, presto and allegro both indicate a speedy execution (presto being faster),
but allegro has more of a connotation of joy (seen in its original meaning in
Italian), while presto rather indicates speed as such (with possibly an additional
connotation of virtuosity).
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Table 5.3 Tempo markings in different languages

Italian Largo Slowly and broadly
Larghetto A little less slow than largo
Adagio Slowly
Andante At a walking pace
Moderato Moderate tempo
Allegretto Not quite allegro
Allegro Quickly
Presto Fast
Prestissimo Very fast
Larghissimo As slow as possible
Vivace Lively
Maestoso Majestic or stately

(generally a solemn slow movement)

French Grave Slowly and solemnly
Lent Slow
Modéré Moderate tempo
Vif Lively
Vite Fast

German Langsam Slowly
Mäßig Moderately
Lebhaft Lively
Rasch Quickly
Schnell Fast

Metronome manufacturers usually assign BPM values to the traditional terms,
in an attempt, perhaps misguided, to be helpful. For instance, a Wittner model
MT-50 electronic metronome manufactured in the early 1990s gives the values
shown in Table 5.4.

Table 5.4 Usual tempo markings
and related BPM values

Marking BPM

Largo 40–60
Larghetto 60–66
Adagio 66–76
Andante 76–108
Moderato 106–120
Allegro 120–168
Presto 168–208
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5.3.1 AudioTempo

The MPEG-7 AudioTempo is a structure describing musical tempo information.
It contains the fields:

• BPM: the BPM (Beats Per Minute) information of the audio signal of type
AudioBPM.

• Meter: the information of the current unit of measurement of beats in Meter
as described in Section 5.2.2 (optional).

The AudioBPM is described in the following section.

5.3.2 AudioBPM

The AudioBPM describes the frequency of beats of an audio signal representing a
musical item in units of beats per minute (BPM). It extends the AudioLLDScalar
with two attributes:

• loLimit: indicates the smallest valid BPM value for this description and defines
the upper limit for an extraction mechanism calculating the BPM information
(optional).

• hiLimit: indicates the biggest valid BPM value for this description and defines
the lower limit for an extraction mechanism calculating the BPM information
(optional).

A default hopSize of 2 seconds is assumed for the extraction of the BPM
value. This is meaningful for automatic tempo estimation where a block-wise
BPM estimation is performed. A well-established method for beat extraction is
described by (Scheirer, 1998).

Example Let us assume that the tempo is already given. A piece constantly
played in moderate tempo M.M. = 106 with meter 2/4 is then described by:

<AudioTempo>
<BPM>
<SeriesOfScalar totalNumOfSamples="1">
<Raw>106</Raw>
<Weight>1</Weight>
</SeriesOfScalar></BPM>
<Meter>
<Numerator>2</Numerator>
<Denominator>4</Denominator>
</Meter>
</AudioTempo>
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5.4 APPLICATION EXAMPLE: QUERY-BY-HUMMING

A QBH system enables a user to hum a melody into a microphone connected to
a computer in order to retrieve a list of possible song titles that match the query
melody. The system analyses the melodic and rhythmic information of the input
signal. The extracted data set is used as a database query. The result is presented
as a list of, for example, 10 best-matching results. A QBH system is a typical
music information retrieval (MIR) system, which can make use of the MPEG-7
standard.
Different QBH systems are already available on the World Wide Web

(WWW). Musicline is a commercial QBH system developed by Fraunhofer
IDMT which can be found at (Musicline, n.d.). The database contains about
3500 melodies of mainly pop music. A Java interface allows a hummed query
to be submitted.
The website (Musipedia, 2004) is inspired by (Wikipedia, 2001), and provides

a searchable, editable and expandable collection of tunes, melodies and musical
themes. It uses the QBH system Melodyhound by (Prechelt and Typke, 2001)
and provides a database with tunes of about 17 000 folk songs, 11 000 classic
tunes, 1500 rock/pop tunes and 100 national anthems. One or more of these
categories can be chosen to narrow down the database and increase chances for
correct answers. Melodyhound uses the Parsons code as melody representation.
The query input can be submitted via the keyboard or as whistled input, using a
Java application.
A typical architecture for a QBH system is depicted in Figure 5.15. The

user input is taken using a microphone which converts the acoustic input to
a pulse code modulated (PCM) signal, the necessary information is extracted
and transcribed for comparison. The representation of the melody information
can use MPEG-7 MelodyContour or MelodySequence, respectively. Also the
content of the music database, which might be files containing PCM or MIDI
information, must be converted into a symbolic representation. Thus, the crucial
processing steps of a QBH system are transcription and comparison of melody
information. They are discussed in the following sections.

Music 
Database

Polyphonic 
Transcription

Melody 
Database

Microphone
Monophonic 
Transcription

Comparison Result list

PCM or 
MIDI MPEG-7

PCM MPEG-7 Text

Figure 5.15 A generic architecture for a QBH system
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5.4.1 Monophonic Melody Transcription

The transcription of the user query to a symbolic representation is a mandatory
part of a QBH system. Many publications are related to this problem, e.g.
(McNab et al., 1996b; Haus and Pollastri, 2001; Clarisse et al., 2002; Viitaniemi
et al., 2003) to mention a few. (Clarisse et al., 2002) also give an overview of
commercial systems used for the transcription of singing input.
Queryhammer is a development tool for a QBH system using MPEG-7 descrip-

tors in all stages, which also addresses this problem, see (Batke et al., 2004b).
The transcription block is also referred to as the acoustic front-end, see (Clarisse
et al., 2002). In existing systems, this part is often implemented as a Java applet,
e.g. (Musicline, n.d.), or (Musipedia, 2004). For illustration purposes we will
now step through all the processing steps of the query transcription part of
Queryhammer.
Figure 5.16 shows the score of a possible user query. This query results in

a waveform as depicted in Figure 5.18 (top). The singer used the syllable /da/.
Other syllables often used are /na/, /ta/, /du/ and so on. Lyrics are much more dif-
ficult to transcribe, therefore most QBH systems ask the user to use /na/ or /da/.
In Figure 5.17 the processing steps to transcribe this query are shown. After

recording the signal with a computer sound card the signal is bandpass filtered
to reduce environmental noise and distortion. In this system a sampling rate of
8000Hz is used. The signal is band limited to 80 to 800Hz, which is sufficient
for sung input, see (McNab et al., 1996a). This frequency range corresponds to
a musical note range of D�2–G5.

2

4
4

–2 –1 0 1 2MPEG-7 contour: *

Figure 5.16 Some notes a user might query. They should result in all possible contour
values of the MPEG-7 MelodyContour DS

Query
Fundamental 
frequency f0

Event 
detection

Transcription XML file

PCM PCM

Text

Bandpass

Figure 5.17 Processing steps for melody extraction
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Following pre-processing, the signal is analysed by a pitch detection algorithm.
Queryhammer uses the autocorrelation method as used in the well-known speech
processing tool Praat by Paul Boersma (Boersma, 1993). This algorithm weights
the autocorrelation function using a Hanning window, followed by a parabolic
interpolation in the lag domain for higher precision. The result of the pitch
detection is shown in Figure 5.18 (bottom).
The next task is to segment the input stream into single notes. This can be

done using amplitude or pitch information, as shown in (McNab et al., 1996a).
The event detection stage extracts note events from the frequency information.
A note event carries information about the onset time, the pitch and the duration
of a single note. This task is difficult because no singer will sing in perfect
tune, therefore a certain amount of unsteadiness is expected. A first frequency
value is taken for determination of the musical pitch, e.g. a “D”. The consecutive
sequence of frequency values is evaluated for this pitch. If the frequency results
in the same musical pitch with a deviation of ±50 cents, this “D” in our example,
the frequency value belongs to the same note event. To adapt the tuning of
the singer, frequency values of long-lasting events (about 250ms) are passed
through a median filter. The median frequency determines a new tuning note,
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Figure 5.18 Top: the PCM signal of the user query; bottom: the fundamental frequency
of the singing input
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which is assumed to be 440Hz at the beginning. The next event is then searched
using the new tuning note, e.g. 438Hz (most singers tend to fall in pitch).
Finally very short events less than 100ms are discarded. Since no exact

transcription of the singing signal is required, this is sufficient for building a
melody contour. In Figure 5.19 (top) the events found from the frequencies of
Figure 5.19 are shown. The selected events in Figure 5.19 (bottom) are passed
to the transcription block.
The melodic information is now transcribed into a more general representation,

the MelodyContour, as outlined in Section 5.2.5.

5.4.2 Polyphonic Melody Transcription

The “Polyphonic Transcription” block in Figure 5.15 is not a mandatory part
of a QBH system itself, but necessary to build up the melody database. If the
“Music Database” consists of MIDI files as a symbolic representation, melody
information can be easily extracted.
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Figure 5.19 Top: the events extracted from the frequency signal; bottom: the note
events extracted with minimum length
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The extraction of symbolic information like a melody contour from music is
strongly related to the music transcription problem, and an extremely difficult
task. This is because of the fact that most music files contain polyphonic sounds,
meaning that there are two or more concurrent sounds, harmonies accompanying
a melody or melodies with several voices.
Technically speaking this task can be seen as the “multiple fundamental

frequency estimation” (MFFE) problem, also known as “multi-pitch estimation”.
An overview of this research field can be found in (Klapuri, 2004). The work of
(Goto, 2000, 2001) is especially interesting for QBH applications, because Goto
uses real work CD recordings in his evaluations.
The methods used for MFFE can be divided into the following categories, see

(Klapuri, 2004). Note that a clear division is not possible because these methods
are complex and combine several processing principles.

• Perceptual grouping of frequency partials. MFFE and sound separation are
closely linked, as the human auditory system is very effective in separating and
recognizing individual sound sources in mixture signals (see also Section 5.1).
This cognitive function is called auditory scene analysis (ASA). The com-
putational ASA (CASA) is usually viewed as a two-stage process, where
an incoming signal is first decomposed into its elementary time–frequency
components and these are then organized to their respective sound sources.
Provided that this is successful, a conventional F0 estimation of each of the
separated component sounds, or in practice the F0 estimation, often takes place
as a part of the grouping process.

• Auditory model-based approach. Models of the human auditory periphery
are also useful for MFFE, especially for preprocessing the signals. The most
popular unitary pitch model described in (Meddis and Hewitt, 1991) is used
in the algorithms of (Klapuri, 2004) or (Shandilya and Rao, 2003).
An efficient calculation method for this auditory model is presented in

(Klapuri and Astola, 2002). The basic processing steps are: a bandpass filter
bank modelling the frequency selectivity of the inner ear, a half-wave rectifier
modelling the neural transduction, the calculation of autocorrelation functions
in each bandpass channel, and the calculation of the summary autocorrelation
function of all channels.

• Blackboard architectures. Blackboard architectures emphasize the integration
of knowledge. The name blackboard refers to the metaphor of a group of
experts working around a physical blackboard to solve a problem, see (Klapuri,
2001). Each expert can see the solution evolving and makes additions to the
blackboard when requested to do so.
A blackboard architecture is composed of three components. The first com-

ponent, the blackboard, is a hierarchical network of hypotheses. The input
data is at the lowest level and analysis results on the higher levels. Hypotheses
have relationships and dependencies on each other. Blackboard architecture is
often also viewed as a data representation hierarchy, since hypotheses encode
data at varying abstraction levels. The intelligence of the system is coded into
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knowledge sources (KSs). The second component of the system comprises
processing algorithms that may manipulate the content of the blackboard. A
third component, the scheduler, decides which knowledge source is in turn
to take its actions. Since the state of analysis is completely encoded in the
blackboard hypotheses, it is relatively easy to add new KSs to extend a system.

• Signal-model-based probabilistic inference. It is possible to describe the task
of MFFE in terms of a signal model, and the fundamental frequency is the
parameter of the model to be estimated.
(Goto, 2000) proposed a method which models the short-time spectrum of a

music signal. He uses a tone model consisting of a number of harmonics which
are modelled as Gaussian distributions centred at multiples of the fundamental
frequency. The expectation and maximization (EM) algorithm is used to find
the predominant fundamental frequency in the sound mixtures.

• Data-adaptive techniques. In data-adaptive systems, there is no parametric
model or other knowledge of the sources; see (Klapuri, 2004). Instead, the
source signals are estimated from the data. It is not assumed that the sources
(which refer here to individual notes) have harmonic spectra. For real-world
signals, the performance of, for example, independent component analysis
alone is poor. By placing certain restrictions on the sources, the data-adaptive
techniques become applicable in realistic cases.
Further details can be found in (Klapuri, 2004) or (Hainsworth, 2003).

In Figure 5.20 an overview of the system PreFEst (Goto, 2000) is shown. The
audio signal is fed into a multi-rate filter bank containing five branches, and the
signal is down-sampled stepwise from Fs

2 to Fs
16 in the last branch, where Fs is

the sample rate. A short-time Fourier transform (STFT) is used with a constant
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Figure 5.20 Overview of the system PreFEst by (Goto, 2000). This method can be seen
as a technique with signal-model-based probabilistic inference
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window length N in each branch to obtain a better time–frequency resolution
for lower frequencies.
The following step is the calculation of the instantaneous frequencies of the

STFT spectrum. Assume that X�	� t� is the STFT of x�t� using a window
function h�t�. The instantaneous frequency 
�	� t� is given by:


�	� t�= d��	� t�

dt
(5.8)

with X�	� t�=A�	� t� exp�j��	�t��. It is easily calculated using the time–frequency
reassignment method, which can be interpreted as estimating the instantaneous
frequency and group delay for each point (bin) on the time–frequency plane,
see (Hainsworth, 2003). Quantization of frequency values following the equal
temperatured scale leads to a sparse spectrum with clear harmonic lines. The
bandpass simply selects the range of frequencies that is examined for the melody
and the bass lines.
The EM algorithm uses the simple tone model described above to maximize the

weight for the predominant pitch in the examined signal. This is done iteratively
leading to a maximum a posteriori estimate, see (Goto, 2000). An example of

Figure 5.21 Probability of fundamental frequencies (top) and finally tracked F0

progression (bottom): solid line = exact frequencies; crosses = estimated frequencies
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the distribution of weights for F0 is shown in Figure 5.21 (top). A set of F0

candidates is passed to the tracking agents that try to find the most dominant and
stable candidates. In Figure 5.21 (bottom) the finally extracted melody line is
shown. These frequency values are transcribed to a symbolic melody description,
e.g. the MPEG-7 MelodyContour.

5.4.3 Comparison of Melody Contours

To compare two melodies, different aspects of the melody representation can be
used. Often, algorithms only take into account the contour of the melody, disre-
garding any rhythmical aspects. Another approach is to compare two melodies
solely on the basis of their rhythmic similarity. Furthermore, melodies can be
compared using contour and rhythm. (McNab et al., 1996b) also discuss other
combinations, like interval and rhythm.
This section discusses the usability of matching techniques for the comparison

of MPEG-7 compliant with the MelodyContour DS. The goal is to determine
the similarity or distance of two melodies’ representations. A similarity measure
represents the similarity of two patterns as a decimal number between 0 and 1,
with 1 meaning identity. A distance measure often refers to an unbound positive
decimal number with 0 meaning identity.
Many techniques have been proposed for music matching, see (Uitdenbogerd,

2002). Techniques include dynamic programming, n-grams, bit-parallel tech-
niques, suffix trees, indexing individual notes for lookup, feature vectors, and
calculations that are specific to melodies, such as the sum of the pitch differences
between two sequences of notes. Several of these techniques use string-based
representations of melodies.

N-gram Techniques
N -gram techniques involve counting the common (or different) n-grams of
the query and melody to arrive at a score representing their similarity, see
(Uitdenbogerd and Zobel, 2002). A melody contour described by M interval
values is given by:

C= �m�1��m�2�� � � � �m�M�� (5.9)

To create an n-gram of length N we build vectors:

G�i�= �m�i��m�i+ 1�� � � � �m�i+N − 1�� (5.10)

containing N consecutive interval values, where i= 1� � � � M −N + 1. The total
amount of all n-grams is M −N + 1.
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Q represents the vector with contour values of the query, and D is the piece
to match against. Let QN and DN be the sets of n-grams contained in Q and D,
respectively.

• Coordinate matching (CM): also known as count distinct measure, CM counts
the n-grams G�i� that occur in both Q and D:

RCM = ∑

G�i�∈QN∩DN

1� (5.11)

• Ukkonen: the Ukkonen measure (UM) is a difference measure. It counts the
number of n-grams in each string that do not occur in both strings:

RUM = ∑

G�i�∈SN
�U�Q�G�i��−U�D�G�i���� (5.12)

where U�Q�G�i�� and U�D�G�i�� are the numbers of occurrences of the
n-gram G�i� in Q and D, respectively.

• Sum of frequencies (SF): on the other hand SF counts how often the n-grams
G�i� common in Q and D occur in D:

RSF =
∑

G�i�∈QN∩DN

U�G�i��D� (5.13)

where U�G�i��D� is the number of occurrences of n-gram G�i� in D.

Dynamic Programming
The description of a melody as a sequence of symbols can been seen as a string.
Therefore it is possible to apply string matching techniques to compare melodies.
As stated in (Uitdenbogerd, 2002), one established way of comparing strings is
to use edit distances. This family of string matching techniques has been widely
applied in related applications including genomics and phonetic name matching.

• Local Alignment: the dynamic programming approach local alignment deter-
mines the best match of the two strings Q and D, see (Uitdenbogerd and Zobel,
1999, 2002). This technique can be varied by choosing different penalties for
insertions, deletions and replacements.
Let A represent the array, Q and D represent query and piece, and index i

ranges from 0 to query length and index j from 0 to piece length:

A�i� j=max






A�i− 1� j+ cd �i≥ 1�
A�i� j− 1+ cd �j≥ 1�
A�i− 1� j− 1+ ce �Q�i�=D�j�� and i� j≥ 1�
A�i− 1� j− 1+ cm �Q�i� �=D�j��
0

(5.14)

where cd is the cost of an insertion or deletion, ce is the value of an exact
match, and cm is the cost of mismatch.
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• Longest common subsequence: for this technique, array elements A�i� j are
incremented if the current cell has a match, otherwise they are set to the same
value as the value in the upper left diagonal, see (Uitdenbogerd and Zobel,
2002). That is, inserts, deletes and mismatches do not change the score of the
match, having a cost of zero.

String Matching with Mismatches
Since the vectors Q and D can be understood as strings, also string matching
techniques can be used for distance measurement. Baeza-Yates describes in
(Baeza-Yates, 1992) an efficient algorithm for string matching with mismatches
suitable for QBH systems. String Q is sliding along string D, and each character
q�n� is compared with its corresponding character d�m�. R contains the highest
similarity score after evaluating D. Matching symbols are counted, e.g if q�n�=
d�m� the similarity score is incremented. R contains the highest similarity score.

Direct Measure
Direct measure is an efficiently computable distance measure based on dynamic
programming developed by (Eisenberg et al., 2004). It compares only the
melodies’ rhythmic properties. MPEG-7 Beat vectors have two crucial limi-
tations, which enable the efficient computation of this distance measure. All
vectors’ elements are positive integers and every element is equal to or bigger
than its predecessor. The direct measure is robust against single note failures
and can be computed by the following iterative process for two beat vectors U
and V :

1. Compare the two vector elements u�i� and v�j� (starting with i= j = 1 for
the first comparison).

2. If u�i�= v�j�, the comparison is considered a match. Increment the indices i
and j and proceed with step 1.

3. If u�i� �= v�j�, the comparison is considered a miss:
(a) If u�i�< v�j�, increment only the index i and proceed with step 1.
(b) If u�i�> v�j�, increment only the index j and proceed with step 1.

The comparison process should be continued until the last element of one of
the vectors has been detected as a match, or the last element in both vectors is
reached. The distance R is then computed as the following ratio with M being
the number of misses and V being the number of comparisons:

R= M

V
� (5.15)

The maximum number of iterations for two vectors of length N and length M
is equal to the sum of the lengths �N +M�. This is significantly more efficient
than a computation with classic methods like the dot plot, which needs at least
N ·M operations.
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TPBM I
The algorithm TPBM I (Time Pitch Beat Matching I) is described in (Chai
and Vercoe, 2002) and (Kim et al., 2000) and directly related to the MPEG-7
MelodyContour DS. It uses melody and beat information plus time signature
information as a triplet time, pitch, beat, e.g. �t� p� b�. To compute the similarity
score S of a melody segment m=�tm�pm�bm� and a query q=�tq� pq� bq�, the
following steps are necessary:

1. If the numerators of tm and tq are not equal, return 0.
2. Initialize measure number, n= 1.
3. Align pm and pq from measure n of m.
4. Calculate beat similarity score for each beat:

(a) Get subsets of pm and pq that fall within the current beat as sq and sm.
(b) Set i= 1� j= 1� s= 0.
(c) While i≤ �sq� and j≤ �sm�

i. if sq�i= sm�j then
s= s+ 1� i= i+ 1� j= j+ 1

ii. else
k= j
if sq�i �= 0 then j= j+ 1
if sm�k �= 0 then i= i+ 1

(d) Return S= S
�Sq � .

5. Average the beat similarity score over total number of beats in the query.
This results in the overall similarity score starting at measure n: Sn.

6. If n is not at the end of m, then n= n+ 1 and repeat step 3.
7. Return S =maxSn, the best overall similarity score starting at a particular

measure.

An evaluation of distance measures for use with MPEG-7 MelodyContour can
be found in (Batke et al., 2004a).
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6
Fingerprinting and
Audio Signal Quality

6.1 INTRODUCTION

This chapter is dedicated to audio fingerprinting and audio signal quality descrip-
tion. In general, the MPEG-7 low-level descriptors in Chapter 2 can be seen
as providing a fingerprint for describing audio content. We will focus in this
chapter on fingerprinting tools specifically developed for the identification of a
piece of audio and for describing its quality.

6.2 AUDIO SIGNATURE

6.2.1 Generalities on Audio Fingerprinting

This section gives a general introduction to the concept of fingerprinting. The
technical aspects will be detailed in Sections 6.2.2–6.2.4 quoted out of (Cano
et al., 2002a) and (Herre et al., 2002).

6.2.1.1 Motivations

The last decades have witnessed enormous growth in digitized audio (music)
content production and storage. This has made available to today’s users an
overwhelming amount of audio material. However, this scenario created great
new challenges for search and access to audio material, turning the process of
finding or identifying the desired content efficiently into a key issue in this
context.

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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Audio fingerprinting or content-based audio identification (CBID) technolo-
gies1 are possible and effective solutions to the aforementioned problems, pro-
viding the ability to link unlabelled audio to corresponding metadata (e.g. artist
and song name), perform content-based integrity verification or watermarking
support (Cano et al., 2002c).
Audio watermarking is also another possible and much proposed solution. It is

somewhat related to audio fingerprinting, but that topic is beyond the scope of this
section. There are some references that explain the differences and similarities
between watermarking and fingerprinting, and evaluate the applications where
each technology is best suited for use (Cano et al., 2002c; Gómez et al., 2002;
Gomes et al., 2003).
The basic concept behind an audio fingerprinting system is the identification

of a piece of audio content by means of a compact and unique signature extracted
from it. This signature, also known as the audio fingerprint, can be seen as a
summary or perceptual digest of the audio recording. During a training phase,
those signatures are created from a set of known audio material and are then
stored in a database. Unknown content, even if distorted or fragmented, should
afterwards be identified by matching its signature against the ones contained in
the database.
However, great difficulties arise when trying to identify audio-distorted content

automatically (i.e. comparing a PCM music audio clip against the same clip
compressed as MP3 audio).
Fingerprinting eliminates the direct comparison of the (typically large) digi-

tized audio waveform as an efficient and effective approach to audio identifi-
cation. Also hash methods, such as MD5 (Message Digest 5) or CRC (Cyclic
Redundancy Checking), can be used to obtain a more compact representation of
the audio binary file (which would allow a more efficient matching). It is diffi-
cult to achieve an acceptable robustness to compression or minimal distortions
of any kind in the audio signals using hash methods, since the obtained hash
values are very fragile to single bit changes.
Hash methods fail to perform the desired perceptual identification of the audio

content. In fact, these approaches should not be considered as content-based
identification, since they do not consider the content, just the bit information in
the audio binary files (Cano et al., 2002a).
When compared with the direct matching of multimedia content based on

waveforms, fingerprint systems present important advantages in the identification
of audio contents. Fingerprints have small memory and storage requirements and
perform matching efficiently. On the other hand, since perceptual irrelevancies
have already been removed from the fingerprints, fingerprinting systems should
be able to achieve much more robust matching results.

1 Audio fingerprinting is also known as robust matching, robust or perceptual hashing, passive
watermarking, automatic music recognition, content-based digital signatures and content-based audio
identification (Cano et al., 2002c).
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6.2.1.2 Requirements

An audio fingerprinting system should fulfil the following basic, application-
dependent requirements (Cano et al., 2002a, Haitsma and Kalker, 2002):

• Robustness: the system should be able to identify an audio item accurately,
regardless of the level of compression, distortion or interference in the trans-
mission channel. Additionally, it should be able to deal gracefully with other
sources of degradation, such as pitch shifting, time extension/compression,
equalization, background noise, A/D and D/A conversion, speech and audio
coding artefacts (e.g. GSM, MP3), among others. In order to achieve high
robustness, the audio fingerprint should be based on features strongly invariant
with respect to signal degradations, so that severely degraded audio still leads
to similar fingerprints. The false negative rate (i.e. very distinct audio finger-
prints corresponding to perceptually similar audio clips) is normally used to
express robustness.

• Reliability: highly related to the robustness, this parameter is inversely related
to the rate at which the system identifies an audio clip incorrectly (false posi-
tive rate). A good fingerprinting system should make very few such mismatch
errors, and when faced with a very low (or below a specified threshold) iden-
tification confidence it should preferably output an “unknown” identification
result. Approaches to deal with false positives have been treated for instance
in (Cano et al., 2001).

• Granularity: depending on the application, it should be able to identify whole
titles from excerpts a few seconds long (this property is also known as robust-
ness to cropping), which requires methods for dealing with shifting. This
problem addresses a lack of synchronization between the extracted fingerprint
and those stored in the database.

• Efficiency: the system should be computationally efficient. Consequently, the
size of the fingerprints, the complexity of the corresponding fingerprint extrac-
tion algorithms, as well as the speed of the searching and matching algorithms,
are key factors in the global efficiency of a fingerprinting system.

• Scalability: the algorithms used in the distinct building blocks of a finger-
printing system should scale well with the growth of the fingerprint database,
so that the robustness, reliability and efficiency parameters of the system
remain as specified independently of the register of new fingerprints in the
database.

There is an evident interdependency between the above listed requirements. In
most cases, this is when improving one parameter implies losing performance in
another. A more detailed enumeration of requirements can be found in (Kalker,
2001; Cano et al., 2002c).
An audio fingerprint system generally consists of two main building blocks:

one responsible for the extraction of the fingerprints and another one that per-
forms the search and matching of fingerprints. The fingerprint extraction module
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should try to obtain a set of relevant perceptual features out of an audio record-
ing, and the resultant audio fingerprint should respect the following requirements
(Cano et al., 2002c):

• Discrimination power over huge numbers of other fingerprints: a fingerprint
is a perceptual digest of the recording, and so must retain the maximum of
acoustically relevant information. This digest should allow discrimination over
a large number of fingerprints. This may conflict with other requirements,
such as efficiency and robustness.

• Invariance to distortions: this derives from the robustness requirement.
Content-integrity applications, however, may relax this constraint for content
preserving distortions in order to detect deliberate manipulations.

• Compactness: a small-sized representation is important for efficiency, since
a large number (e.g. millions) of fingerprints need to be stored and com-
pared. However, an excessively short representation might not be sufficient to
discriminate among recordings, thus affecting robustness and reliability.

• Computational simplicity: for efficiency reasons, the fingerprint extraction
algorithms should be computationally efficient and consequently not very time
consuming.

The solutions proposed to fulfil the above requirements normally call for a
trade-off between dimensionality reduction and information loss, and such a
compromise is usually defined by the needs of the application in question.

6.2.1.3 General Structure of Audio Identification Systems

Independent of the specific approach to extract the content-based compact
signature, a common architecture can be devised to describe the function-
ality of fingerprinting when used for identification (RIAA/IFPI, 2001). This
general architecture is depicted in Figure 6.1. Two distinct phases can be
distinguished:

• Building the database: off-line a memory of the audio to be recognized is
created. A series of sound recordings is presented to a fingerprint generator.
This generator processes audio signals in order to generate fingerprints derived
uniquely from the characteristics of each sound recording. The fingerprint (e.g.
the compact and unique representation) that is derived from each recording
is then stored in a database and can be linked with a tag or other metadata
relevant to each recording.

• Content identification: in the identification mode, unlabelled audio (in either
streaming or file format) is presented to the input of a fingerprint generator.
The fingerprint generator function processes the audio signal to produce a



6.2 AUDIO SIGNATURE 211

Fingerprint
Generator

Database

Recordings’
Collection 

Recordings’
IDs 

Building the Database

Match
Unlabelled
Recording

(Test Track) 

Fingerprint
Generator

Identification

Recording ID
(Track ID)

Figure 6.1 Content-based audio identification framework

fingerprint. This fingerprint is then used to query the database and is compared
with the stored fingerprints. If a match is found, the resulting track identifier
(Track ID) is retrieved from the database. A confidence level or proximity
associated with each match may also be given.

The actual implementations of audio fingerprinting normally follow this
scheme with differences on the acoustic features observed and the modelling of
audio as well as in the matching and indexing algorithms.

6.2.2 Fingerprint Extraction

The overall extraction procedure is schematized in Figure 6.2. The fingerprint
generator consists of a front-end and a fingerprint modelling block. These two
modules are described in the following sections.

6.2.2.1 Front-End

The front-end converts an audio signal into a sequence of relevant features
to feed the fingerprint model block. Several driving forces co-exist in the
design of the front-end: dimensionality reduction, extraction of perceptually
meaningful parameters (similar to those used by the human auditory system),
design towards invariance or robustness (with respect to channel distortions,
background noise, etc.), temporal correlation (systems that capture spectral
dynamics).



212 6 FINGERPRINTING AND AUDIO SIGNAL QUALITY

Audio

Pre-processing

Framing & Overlap

Transforms

Feature Extraction

Post-Processing

Front-End

Fingerprint Modelling 

Audio Fingerprint

Figure 6.2 Fingerprint generator: frond-end and fingerprint modelling (Cano et al.,
2002a)

The front-end comprises five blocks: pre-processing, framing and overlap,
transformation, feature extraction and post-processing (see Figure 6.2).

Pre-Processing
Most of the front-ends for audio fingerprinting start with a pre-processing step,
where the audio is digitized (if necessary) and converted to a general digital audio
format (e.g. 16-bit PCM, 5–44.1 kHz, mono). The signal may also be subjected
to other types of processing, such as GSM encoding/decoding in a mobile phone
system, pre-emphasis, amplitude normalization (bounding the dynamic range to
�−1�1�), among others. In the training phase (i.e. when adding a new fingerprint
to the database), the fingerprint is usually extracted from an audio source with the
best quality possible, trying to minimize interference, distortion or unnecessary
processing of the original audio recording.

Framing and Overlap
The audio signal is then divided into frames (whose size should be chosen so that
measurements can be assumed to be a stationary signal), windowed (in order to
minimize discontinuities) and finally overlapped (this assures some robustness to
shifting). The choice of the frame size, window type and overlap factor is again
a trade-off between the rate of change in the spectrum and system complexity.
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Typical values for frame size and overlap factor are in the ranges 10–500ms
and 50–80%, respectively.

Linear Transforms: Spectral Estimates
In order to achieve the desired reduction of redundancy in the audio signal, the
audio frames are first submitted to a suitably chosen linear transformation. The
most common transformation used in audio fingerprinting systems is the fast
Fourier transform (FFT), but some other transforms have also been proposed: the
discrete cosine transform (DCT), the Haar transform or the Walsh–Hadamard
transform (Subramanya et al., 1997), and the modulated complex lapped trans-
form (MCLT) (Mihcak and Venkatesan, 2001; Burges et al., 2002). Richly et al.
did a comparison of the DFT and the Walsh–Hadamard transform that revealed
that the DFT is generally less sensitive to shifting (Richly et al., 2000). The
MCLT exhibits approximate shift invariance properties.
There are optimal transforms in the sense of information packing and decor-

relation properties, like Karhunen–Loève (KL) or singular value decomposition
(SVD) (Theodoris and Koutroumbas, 1998). These transforms, however, are sig-
nal dependent and computationally complex. For that reason, lower-complexity
transforms using fixed basis vectors are more common. Most content-based audio
identification methods therefore use standard transforms to facilitate efficient
compression, noise removal and subsequent processing (Lourens, 1990; Kurth
et al., 2002).

Feature Extraction
Once a time–frequency representation of the audio signal has been transformed,
additional transformations are applied to the audio frames to generate the final
acoustic vectors. The purpose is again to reduce the dimensionality, and at the
same time to increase the invariance to distortions. A large number of algorithms
have been proposed to generate the final feature vectors, and many of them
extract several features by means of a critical-band analysis of the spectrum.
It is very common to include knowledge of the human auditory system

to extract more perceptually meaningful parameters. Therefore, many systems
extract several features performing a critical-band analysis of the spectrum. In
(Papaodysseus et al., 2001; Cano et al., 2002a), mel-frequency cepstrum coeffi-
cients (MFCCs) are used. In (Allamanche et al., 2001), the choice is the spectral
flatness measure (SFM), which is an estimation of the tone-like or noise-like
quality for a band in the spectrum. Papaodysseus et al. proposed a solution based
on “band representative vectors”, which are an ordered list of indexes of bands
with prominent tones (Papaodysseus et al., 2001). Kimura et al. use the energy
of each frequency band (Kimura et al., 2001), and Haitsma and Kalker propose
the use of the energies of 33 bark-scaled bands to obtain a “hash string”, which
is the sign of the energy band differences, in both the time and in frequency axes
(Haitsma and Kalker, 2002).
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Sukittanon and Atlas claim that spectral estimates and related features are only
inadequate when audio channel distortion occurs (Sukittanon and Atlas, 2002).
They proposed modulation frequency analysis to characterize the time varying
behaviour of audio signals. In this case, features correspond to the geometric
mean of the modulation frequency estimation of the energy of 19 bark-spaced
band filters.
Approaches for music information retrieval include features that have proved

valid for comparing sound: harmonicity, bandwidth, loudness, ZCR, etc. (Blum
et al., 1999).
(Burges et al., 2002) point out that the features commonly used are heuristic,

and as such may not be optimal. For that reason they use a modified Karhunen–
Loève (KL) transform, namely oriented principal component analysis (OPCA),
to find the optimal features in an unsupervised way. If KL (which is also known
as principal component analysis, PCA) finds a set of orthogonal directions which
maximize the signal variance, OPCA obtains a set of possible non-orthogonal
directions which take some predefined distortions into account.

Post-Processing
Most of the above-mentioned features are absolute measurements. In order to
characterize better the temporal variations in the signal, higher-order time deriva-
tives are added to the feature vector. In (Batlle et al., 2002; Cano et al., 2002a),
the feature vector is the concatenation of MFCCs, their derivative (�) and the
acceleration ����, as well as the � and �� of the energy. In order to minimize
the tendency of derivative features to amplify noise, (Batlle et al., 2002) use cep-
strum mean normalization (CMN) to reduce slowly varying channel distortions.
They both use transforms (e.g. PCA) to compact the feature vector representa-
tion. Some other systems use only the derivative of the features, discarding their
absolute values (Allamanche et al., 2001; Kurth et al., 2002). It is quite common
to apply a very low-resolution quantization to the features: ternary (Richly et al.,
2000) or binary (Haitsma and Kalker, 2002; Kurth et al., 2002). This allows the
gaining of robustness against distortions (Haitsma and Kalker, 2002; Kurth et al.,
2002), normalizes (Richly et al., 2000), eases hardware implementations and
reduces memory requirements. Binary sequences are required to extract error cor-
recting words. In (Mihcak and Venkatesan, 2001), the discretization is designed
to increase randomness in order to minimize fingerprint collision probability.

6.2.2.2 Fingerprint Modelling

The fingerprint modelling block usually receives a sequence of feature vectors
calculated on a frame-by-frame basis. This is a sequence of vectors where
redundancies may be exploited in the frame time vicinity, inside a recording
and across the whole database to reduce the fingerprint size further. The type
of model chosen conditions the distance metric and also the design of indexing
algorithms for fast retrieval.
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A very concise form of fingerprint is achieved by summarizing the multi-
dimensional vector sequences of a whole song (or a fragment of it) in a single
vector.
In Etantrum,1 the fingerprint was calculated from the means and variances

of the 16 bank-filtered energies corresponding to 30 s of audio encoding with a
signature of up to 512 bits, which along with information on the original audio
format was sent to a server for identification (Cano et al., 2002a). MusicBrainz’s2

TRM audio fingerprint is composed of the average zero crossing rate feature, the
estimated beats per minute (BPM), an average representation of the spectrum
and some more features of a piece of audio. This fingerprint model proved to
be computationally efficient and compact, addressing the requirements of the
application for which this system was designed: linking MP3 files to metadata
(title, artist, etc.). This application gives priority to low complexity (on both the
client and server side) to the detriment of robustness.
Fingerprints can also be simple sequences of features. In (Haitsma and Kalker,

2002) and (Papaodysseus et al., 2001), the fingerprint, which consists of a
sequence of band representative vectors, is binary encoded for memory effi-
ciency. Some systems include high-level musically meaningful attributes, like
rhythm (BPM) or prominent pitch (Blum et al., 1999).
Following the reasoning on the possible sub-optimality of heuristic features,

(Burges et al., 2002) employs several layers of OPCA to decrease the local statis-
tical redundancy of feature vectors with respect to time, reducing dimensionality
and achieving better robustness to shifting and pitching.
(Allamanche et al., 2001) propose the exploration of “global redundancies”

within an audio piece, assuming that the audio features of a given audio item
are similar among them. From this assumption, a compact representation can
be generated by clustering the feature vectors, thus approximating the sequence
of feature vectors by a much lower number of representative code vectors, a
codebook. However, the temporal evolution of the extracted features is lost with
such an approximation. In order to achieve higher recognition results and faster
matching, short-time statistics are collected over regions of time, which allows
taking into account certain temporal dependencies and shortening the length of
each sequence.
(Cano et al., 2002b) and (Batlle et al., 2002) use a fingerprint model much

inspired by speech research, and which further exploits global redundancy. They
view a corpus of music as sentences constructed of concatenating sound classes
of a finite alphabet (e.g. “perceptually equivalent” drum sounds occur in a great
number of pop songs). This approximation yields a fingerprint which consists
of sequences of indexes to a set of sound classes representative of a collection
of audio items. The sound classes are estimated via unsupervised clustering and

1 Available on-line at: http://www.freshmeat.net/project/songprint.
2MusicBrainz: http://www.musicbrainz.org.
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modelled with hidden Markov models (HMMs). This fingerprint representation
retains the information on the evolution of audio through time.
In (Mihcak and Venkatesan, 2001), discrete sequences are mapped to a dic-

tionary of error correcting words. In (Kurth et al., 2002), the error correcting
codes form the basis of their indexing method.

6.2.3 Distance and Searching Methods

After an audio database has been indexed with the extracted fingerprints of
individual recordings, it can be searched by the fingerprint identification module
as depicted in Figure 6.1.
In order to compare fingerprints, it is necessary to define some sort of metric.

Distance metrics are closely related to the type of model chosen. Correlation
is a common option, but the Euclidean distance, or variations of it that deal
with sequences of different lengths, are used for instance in (Blum et al., 1999).
In (Sukittanon and Atlas, 2002), the classification is nearest neighbour using
a cross-entropy estimation. In systems where the vector feature sequences are
quantized, a Manhattan distance (or Hamming distance when the quantization
is binary) is common (Richly et al., 2000; Haitsma and Kalker, 2002). Another
error metric called the exponential pseudo norm (EPM), suggested by (Mihcak
and Venkatesan, 2001), could be more appropriate to distinguish between close
and distant values with an emphasis stronger than linear.
So far, the presented identification frameworks are based on a template match-

ing paradigm (Theodoris and Koutroumbas, 1998): both the reference fingerprints
(the ones stored in the database) and the test fingerprints (the ones extracted from
the unknown audio) are in the same format and are thus compared according to
some distance metric, e.g. Hamming distance, a correlation and so on.
However, in some systems only the reference items are actually finger-

prints, compactly modelled as a codebook or a sequence of indexes to HMMs
(Allamanche et al., 2001; Batlle et al., 2002), and in these cases the dis-
tances are computed directly between the feature sequence extracted from the
unknown audio and the reference audio fingerprints stored in the repository. In
(Allamanche et al., 2001), the feature vector sequence is matched to the different
codebooks using a distance metric. For each codebook, the errors are accumu-
lated. The unknown items are then assigned to the class which yields the lowest
accumulated error. In (Batlle et al., 2002), the feature sequence is run against the
fingerprints (a concatenation of indexes pointing at HMM sound classes) using
the Viterbi algorithm and the most likely passage in the database is selected.
Besides the definition of a distance metric for a fingerprint comparison, a

fundamental issue for the usability of such a system is how the comparison of the
unknown audio will in fact be made efficiently against all the possibly millions of
fingerprints, and this depends heavily on the fingerprint model being used. Vector
spaces allow the use of efficient, existing spatial access methods (Baeza-Yates
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and Ribeiro-Neto 1999). The general goal is to build a data structure, an index, to
reduce the number of distance evaluations when a query is presented. As stated
by (Chávez et al., 2001), most indexing algorithms for proximity searching build
sets of equivalence classes, discard some classes and exhaustively search the rest.
They use a simpler distance to eliminate many hypotheses quickly, and the use of
indexing methods to overcome the brute-force exhaustive matching with a more
expensive distance function is found in the content-based audio identification
literature, e.g. in (Kenyon, 1999). Haitsma and Kalker proposed an efficient
search algorithm: instead of following a brute-force approach where the distance
to every position in the database would be calculated, the distance is calculated
for a few candidate positions only (Haitsma and Kalker, 2002). These candidates
contain, with very high probability, the best-matching position in the database.
In (Cano et al., 2002a), heuristics similar to those used in computational biology
for the comparison of DNA are used to speed up a search in a system where the
fingerprints are sequences of symbols. (Kurth et al., 2002) presents an index that
uses code words extracted from binary sequences representing the audio. These
approaches, although very fast, make assumptions on the errors permitted in the
words used to build the index. This could result in false dismissals; the simple
coarse distance used for discarding unpromising hypotheses must lower bound
the more expensive fine distance.
The final step in an audio fingerprinting system is to decide whether the query

is present or not in the repository. The result of the comparison of the extracted
fingerprint with the database of fingerprints is a score which results from the
calculated distances. The decision for a correct identification must be based on a
score that is beyond a certain threshold. However, this threshold is not trivial to
define, and dependent on the fingerprint model, on the discriminative information
of the query, on the similarity of the fingerprints in the database and on the
database size. The larger the database, the higher the probability of returning a
false positive, and consequently the lower the reliability of the system.

6.2.4 MPEG-7-Standardized AudioSignature

The MPEG-7 audio standard provides a generic framework for the descriptive
annotation of audio data. The AudioSignature high-level tool is a condensed
representation of an audio signal, designed to provide a unique content identifier
for the purpose of robust automatic identification. It is a compact-sized audio
signature which can be used as a fingerprint. This tool also provides an example
of how to use the low-level MPEG-7 framework.

6.2.4.1 Description Scheme

The AudioSignature description essentially consists of a statistical summariza-
tion of AudioSpectrumFlatness low-level descriptors (LLDs) over a period of
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time. These AudioSpectrumFlatness descriptors (see Chapter 2) are extracted
on a frame-by-frame basis. The spectral flatness LLDs are stored in the unique
attribute of the AudioSignature description scheme, which is called Flatness.
There are some restrictions regarding the instantiations of the AudioSpectrum-

Flatness descriptors. In order to constitute a valid AudioSignature description,
the following requirements have to be satisfied:

• The AudioSpectrumFlatness descriptions contained by the Flatness attribute
must be stored as a SeriesOfVectorBinary description.

• Both the Mean and the Variance fields of the SeriesOfVectorBinary series
containing the Flatness features have to be instantiated.

• The scaling ratio (i.e. the ratio attribute of the SeriesOfVectorBinary) must
range between 2 and 128. The default value is 32.

• The loEdge attribute of the AudioSpectrumFlatness descriptor is fixed at
250Hz.

• The hiEdge attribute of the AudioSpectrumFlatness descriptor must be at least
500Hz. The default value is 4000Hz.

6.2.4.2 Scalability

The AudioSignature description scheme instantiates the AudioSpectrumFlatness
LLDs in such a way that an interoperable hierarchy of scalable audio signatures
can be established with regard to the following parameters:

• Temporal scope of the audio signatures.
• Temporal resolution of the audio signatures.
• Spectral coverage/bandwidth of the audio signatures.

The temporal scope of the audio signatures represents a first degree of freedom
and relates to the start position and the length of the audio item for which the
feature extraction is carried out. The signal segment used for signature generation
can be chosen freely and depends on the type of application envisaged.
The temporal resolution of the fingerprint is an important parameter which

can be used to control the trade-off between fingerprint compactness and its
descriptive power (i.e. its ability to discriminate between many different audio
signals). This temporal scalability is obtained by using the mean and variance of
the LLD values, as provided by the generic SeriesOfVectorBinary construct, with
selectable degrees of decimation, and thus temporal resolution. Consequently,
signatures may be rescaled (scaled down) in their temporal resolution according
to the standard SeriesOfVectorBinary scaling procedures as desired, e.g. in order
to achieve a compatible temporal resolution between two signatures.
A second dimension of AudioSignature scalability resides in its spectral cov-

erage/bandwidth. The AudioSpectrumFlatness descriptor provides a vector of
feature values, each value corresponding to a specific quarter-octave frequency
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band. The number of frequency bands above a fixed base frequency (250Hz) can
be selected as a further parameter of scalability. While signatures may provide
different numbers of frequency bands, a meaningful comparison between them
is always possible for the bands common to the compared signatures, since these
relate to common fixed band definitions.

6.2.4.3 Use in Fingerprinting Applications

The main application for the AudioSignature description scheme is the automatic
identification of an unknown piece of audio based on a database of registered
audio items. An AudioSignature is extracted from the item to be identified
and then matched to all previously registered AudioSignature descriptions in a
database. The best-matching reference AudioSignature description is the most
likely candidate to correspond to the unknown signal.
In a wider sense, the AudioSignature structure may be used to identify corre-

sponding MPEG-7 descriptions for audio items which are delivered without any
other descriptive data. To this end, the MPEG-7 descriptions available at some
server have to include an AudioSignature description of each described item.
An example of an MPEG-7-based audio identification system is depicted in

Figure 6.3 (Herre et al., 2002). It consists mainly of the two basic extraction and
identification modes of operation already introduced in Figure 6.1.
The first steps in the signal processing chain are the same for training and

classification: the audio signal is converted to a standard format (e.g. monophonic
PCM) at the pre-processing stage of the feature extractor. This stage is followed
by the extraction of the AudioSpectrumFlatness LLD features.
A feature processor is then used to decrease the description size by means

of statistical data summarization. In the MPEG-7 framework, this is done by
applying the appropriate rescaling operation to the MPEG-7 ScalableSeries of
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Figure 6.3 MPEG-7 standard audio identification system (Herre et al., 2002)
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vectors containing the AudioSpectrumFlatness features. The final result is an
MPEG-7 AudioSignature description that can be interpreted as a fingerprint of
the original piece of audio.
Based on this representation, matching between fingerprints can be done in

numerous different ways. Since the choice of the matching approach or distance
metric does not affect the interoperability of different applications using such a
fingerprint, this choice is beyond the scope of the MPEG-7 standardization and
left up to the individual application.
(Herre et al., 2002) proposes a simple matching of MPEG-7 AudioSignature

descriptions that is performed based on a vector quantization (VQ) and nearest-
neighbour approach. During the training phase, the class generator in Figure 6.3
performs clustering (e.g. LBG vector quantization (Linde et al., 1980)) using a
set of training items. The resulting reference codebooks are then stored in the
system’s class database. During the classification phase, the signal at the output
of the feature processor is compared by the classifier with the codebooks stored
in the reference database. The item with the shortest distance (matching error) is
presented at the system’s output as a result. More sophisticated techniques can
be used in the MPEG-7 AudioSignature framework to increase both matching
robustness and speed.
As mentioned above, the scalability of the MPEG-7-based fingerprinting

framework comes from the ability to vary some extraction parameters, such as
temporal scope, temporal resolution and number of spectral bands. In this way, a
flexible trade-off between the compactness of the fingerprint and its recognition
robustness can be achieved.
From an application point of view, this is a powerful concept which helps

satisfy the need for a wide range of applications by a single framework. More
importantly, the fingerprint representation still maintains interoperability so that
fingerprints extracted for one application can still be compared with a fingerprint
database set up for a different purpose.
The specification for the AudioSignature extraction method guarantees

worldwide compatibility between all standards-compliant applications. Numer-
ous different applications, such as broadcast monitoring, Internet services or
mobile audio identification services using cellular phones, are currently under
development.

6.3 AUDIO SIGNAL QUALITY

The description of the “objective” or “subjective” quality of an audio signal is of
great interest for many applications. In the following we describe the MPEG-7
tools developed for this purpose.
The MPEG-7 AudioSignalQuality descriptor contains several features reflect-

ing the quality of a signal stored in an AudioSegment descriptor. The
AudioSignalQuality features are often extracted without any perceptual or



6.3 AUDIO SIGNAL QUALITY 221

psycho-acoustical considerations and may not describe the subjective sound
quality of audio signals.
The quality information enclosed in AudioSignalQuality descriptions could be

used, for example, to select the files that should be downloaded among a list of
audio documents retrieved on the Internet. More generally, this information helps
to decide if a file is of sufficient quality to be used for a particular purpose. The
AudioSignalQuality can also be used to guide the retrieval of audio documents
in a database, based on the quality information.

6.3.1 AudioSignalQuality Description Scheme

The AudioSignalQuality description scheme is a set of descriptors that have
been designed to handle and describe audio signal quality information. In par-
ticular the handling of single error events in audio streams is considered. An
AudioSignalQuality description scheme comprises the following attributes:

• Operator: designates the person who is responsible for the audio quality
information.

• UsedTool: designates the system that was used by the Operator to create the
quality information. UsedTool is stored in a CreationTool descriptor.

• BroadcastReady: describes whether or not the sound material is ready for
broadcasting. BroadcastReady is a Boolean parameter (false or true).

• IsOriginalMono: describes if a signal was originally mono if it presently has
more than one channel. IsOriginalMono is a Boolean parameter (false or true).

• BackgroundNoiseLevel: contains the estimations of the noise levels in the
different channels of a stereo signal.

• CrossChannelCorrelation: describes the correlations between the channels of
a stereo signal.

• RelativeDelay: describes the relative delays between the channels of a stereo
signal.

• Balance: describes the relative level between the channels of a stereo signal.
• DcOffset: describes the mean relative to the maximum of each channel of a
stereo signal.

• Bandwidth: describes the upper limit of the signal’s bandwidth for each
channel.

• TransmissionTechnology: describes the technology with which the audio file
was transmitted or recorded using a predefined set of categories.

• ErrorEventList: contains different ErrorEvent descriptors. An ErrorEvent
describes the event time of a specified error type in the signal. The type of
error is labelled according to a predefined set of categories.

These quality attributes are detailed in the following sections.
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6.3.2 BroadcastReady

BroadcastReady indicates if the sound material is ready for broadcasting (value
set to “true”) or not (value set to “false”). Its value should generally result
from the subjective evaluation of an operator, according to the context of the
application. For example, the quality of a piece of audio may be quite bad, but it
may be ready for broadcasting (e.g. a historical piece of audio, or a news report
recorded in adverse conditions).

6.3.3 IsOriginalMono

IsOriginalMono describes whether or not a stereo signal (with NCH channels)
was originally recorded as a mono signal. The extraction of the IsOriginalMono
descriptor is not normative. The standard recommends a method based on the
calculation of normalized cross-correlations between the NCH channels. If any of
the derived coefficients is greater than a threshold reflecting correlation between
the channels, IsOriginalMono is set to “true”. Otherwise it is set to “false”.

6.3.4 BackgroundNoiseLevel

The BackgroundNoiseLevel attribute indicates the noise level within an
AudioSegment. A noise-level feature is computed separately in each channel of
the signal. These values, expressed in dB, are in the range �−��0�. The extrac-
tion of the BackgroundNoiseLevel for an NCH -channel signal is not standardized.
A simple method consists of the following steps:

1. The absolute maximum amplitude AdBmax�i� is computed in dB, for each
channel i�1≤ i≤NCH�, as:

AdBmax�i�= 20 log10
(
max

n
�si�n��

)
�1≤ i≤NCH�� (6.1)

where si�n� represents the digital signal in the ith channel.
2. The signal is divided into blocks (5ms long, typically), in which the mean

power is estimated as:

Pi�j�=
1
LB

j�LB−1∑

n=�j−1�LB

s2i �n� �1≤ j≤ number of blocks��

�1≤ i≤NCH� (6.2)

where j is the block index, LB is the length of a block (in number of samples),
and Pi�j� is the mean power of the jth block in the ith channel signal si�n�.
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3. Then, the minimum block power of each channel is computed in dB:

PdBmin�i�= 10 log10

(

min
j

�Pi�j��
)

�1≤ i≤NCH�� (6.3)

4. Finally, the BackgroundNoiseLevel feature of the ith channel is defined by
the difference:

BNL�i�=PdBmin�i�−AdBmax�i� �1≤ i≤NCH�� (6.4)

The noise level features should be normalized in each channel by the maximum
amplitude of the signal, in order to make the descriptor independent of the
recording level. Finally, the extraction process yields values, which are stored
in a vector, as a summary of the noise level in one AudioSegment.

6.3.5 CrossChannelCorrelation

The CrossChannelCorrelation attribute describes the correlation between the
channels of a signal stored in an AudioSegment. It is a measurement of the
relationship between the first channel and the NCH − 1 other channels of a
multi-channel signal, independently of their levels. The extraction of the Cross-
ChannelCorrelation features from an NCH -channel signal is not standardized.
A possible method consists of the following steps:

1. Each channel is normalized to its maximum value.
2. The cross-correlations �s1�si between the first channel and the NCH − 1 other

channels �2≤ i≤NCH� are estimated.
3. Each correlation �s1�si is normalized by the geometric mean of the first chan-

nel’s autocorrelation �s1�s1 and the ith channel’s autocorrelation �si�si.
4. Finally, the �i− 1�th CrossChannelCorrelation feature is defined as the mid-

dle coefficient of the ith channel’s normalized cross correlation:

Cor�i− 1�= �s1�si �0�√
�s1�s1�0��si�si �0�

�2≤ i≤NCH�� (6.5)

This procedure yields a vector of NCH − 1 CrossChannelCorrelation features
Cor�i��1≤ i≤NCH − 1�, used to describe the audio segment. Each CrossChan-
nelCorrelation feature Cor ranges between −1 and +1:

• Cor =+1: the channels are completely correlated.
• Cor = 0: the channels are uncorrelated.
• Cor =−1: the channels are out of phase.
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In the case of two sine signals �NCH =2�, the CrossChannelCorrelation is defined
by a unique feature Cor = cos�	�, where 	 is the phase shift between the two
channels.

6.3.6 RelativeDelay

The RelativeDelay attribute describes the relative delays between two or more
channels of a stereo signal. The delay values are expressed in milliseconds. They
are restricted to the range �−0�5ms�+0�5ms�, in order to prevent ambiguity
with pitch or other correlations in the signal. The extraction of the RelativeDelay
features from an NCH -channel signal is not standardized. A possible method
consists of the following steps:

1. An unscaled cross-correlation function UCCs1�si between the first channel and
each of the NCH − 1 other channels is estimated as:

UCCs1�si
�m�=






LS−m−1∑

n=0
s1�n�si�n+m� �m≥ 0�

UCCs1�si
�−m� �m< 0�

�2≤ i≤NCH�� (6.6)

where LS is the length of the input signal in number of samples. The UCCs1�si

cross-correlation functions have 2LS − 1 coefficients.
2. The extraction system searches the position mmax�i� of the maximum of

UCCs1�si in a search region corresponding to ±0�5ms (defined according to
the sampling frequency).

3. The �i− 1�th RelativeDelay feature is then estimated for the ith channel by
taking the difference between the position of the maximum m=mmax�i� and
the position of the middle coefficient m= 0. This time interval is converted
to ms:

RD�i− 1�= mmax�i�

Fs

�2≤ i≤NCH�� (6.7)

where Fs is the sample rate of the input signal.

This procedure yields a vector ofNCH −1 RelativeDelay features RD�i��1≤ i≤
NCH −1� for the whole audio segment. For a mono signal, a single RelativeDelay
value is set to 0.

6.3.7 Balance

The Balance attribute describes the relative level between two or more chan-
nels of an AudioSegment. The Balance features are expressed in dB within a
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�−100dB�100dB� range. The extraction of the Balance features from an NCH -
channel signal is not standardized. A possible method consists of the following
steps:

1. The mean power is calculated in each channel as:

Pi =
1
LS

LS−1∑

n=0

s2i �n� �1≤ i≤NCH�� (6.8)

where LS is the length of the input signal.
2. The �i− 1�th Balance feature is defined by the ratio (in dB) between the first

channel’s power and the ith channel’s power:

Bal�i− 1�= 10 log10

(
P1

Pi

)

�2≤ i≤NCH�� (6.9)

The extraction procedure yields a vector of NCH − 1 Balance features
Bal�i��1≤ i≤ NCH − 1� for the whole audio segment. For a mono signal,
a single Balance value is set to 0.

6.3.8 DcOffset

The DcOffset attribute describes the mean relative to the maximum of each
channel of an AudioSegment. As audio signals should have a zero mean, a DC
offset may indicate a bad analogue–digital conversion. The DcOffset features
take their values in the �−1�1� range. The extraction of the DcOffset features
from an NCH -channel signal is not standardized. A possible method consists of
the following steps:

1. The mean amplitude is first calculated within each channel:

si =
1
LS

LS−1∑

n=0

si�n� �1≤ i≤NCH�� (6.10)

where LS is the length of the input signal.
2. The DcOffset features are obtained by normalizing these values by the maxi-

mum of the absolute magnitude value in each channel:

DC�i�= si
maxn �si�n��

�1≤ i≤NCH�� (6.11)

The extraction procedure yields a vector of NCH DcOffset features DC�i�
�1≤ i≤NCH� for the whole audio segment.
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6.3.9 Bandwidth

Bandwidth describes the upper limit of the signal’s bandwidth for each channel.
The Bandwidth features are expressed in Hz, and take their values within the
range �0Hz�Fs/2�, where Fs is the sample rate of the input signal. These features
give an estimation of the original signal bandwidth in each channel. This gives
an indication of the technical quality of the original recording.
To extract the Bandwidth description from an NCH -channel signal, the follow-

ing method is proposed. First, the local power spectra of the signal are calculated
from successive overlapping frames (e.g. 30ms frames starting every 10ms)
within each channel. A maximum filter is then used over the local spectra to get
a maximum power spectrumMPSi�k� for each channel. A logarithmic maximum
power spectrum (LMPS) is defined in each channel as:

LMPSi�k�= 10 log10�MPSi�k�� �1≤ i≤NCH�� (6.12)

A boundary is used to find the edge of the bandwidth of the LMPS of each chan-
nel. The maximum value LMPmax and minimum value LMPmin of each LMPS
are calculated. The boundary LMPbound for the upper limit of the bandwidth
is set to 70% of �LMPmax − LMPmin� below LMPmax. The upper edge of the
bandwidth is the frequency BW above which the power spectrum falls below
LMPbound. The extraction procedure yields a vector of NCH Bandwidth features
BW�i� �1≤ i≤NCH� for the whole audio segment.

6.3.10 TransmissionTechnology

The TransmissionTechnology attribute describes the technology in which the
audio file was transmitted or recorded. The description uses a predefined set of
categories describing different possible transmission and recording technologies.
The extraction of TransmissionTechnology has to be made manually by a

human operator. The sound can be labelled with 10 categories defined by the
standard. The operator has to be familiar with the different transmission or
recording technologies in order to choose a proper category. Some categories may
pack different types of signals together, which share similar acoustic qualities.
For instance, the Category 6, as defined by the standard, stands for two distinct
types of bad-quality recordings: speech over telephones with a [50Hz–8 kHz]
bandwidth and vinyl before 1960.

6.3.11 ErrorEvent and ErrorEventList

The ErrorEventList description contains a list of ErrorEvent descriptors. An
ErrorEvent descriptor is used to describe a type of error occurring in the input
audio signal. It consists of the following attributes:
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• ErrorClass: describes the error type using a predefined set of categories.
The standard defines 12 error categories: Click (a high-frequency burst of
short duration), ClickSegment (a segment containing many clicks), DropOut
(absence of high frequencies for a short period), Pop (a low-frequency burst),
DigitalClip (distortion occurring when a digital signal is clipped), AnalogClip
(distortion occurring when an analogue signal is clipped), SampleHold (click
at start and end, short muting of signal), BlockRepeating (repetition of a short
block), Jitter (single sample click),MissingBlock (click at the transition caused
by missing blocks), DigitalZero (click at the transition caused by zero-valued
samples) and Other (any other error).

• ChannelNo: specifies the channel in which the error occurs.
• TimeStamp: specifies the temporal location of the error.
• Relevance: is the degree of relevance of the error. The possible integer values
range from 0 (relevance not specified) to 7 (high relevance). An error with low
relevance (e.g. Relevance=1) is hardly audible. An error with high relevance
(e.g. Relevance= 7) is very disturbing.

• DetectionProcess: describes the process of detection: Manual or Automatic.
• Status: describes the current status of the error. This label is set automatically
or by a listener. Five labels are possible: Undefined (default), checked (the
error has been checked), needs restoration (the error needs to be restored),
restored (the error has been restored) and deleted (the detected error was a
false alarm).

• Comment: contains any comment about the detected error.

The ErrorEvent is used to describe typical errors that occur in audio data, in
particular those resulting from an analogue–digital conversion. The ErrorClass
category may be set manually by a human listener, or automatically extracted
from the input signal, for instance through a click detection algorithm. A given
audio segment can be indexed with different ErrorEvent descriptors due to the
ErrorEventList attribute.
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7
Application

7.1 INTRODUCTION

Audio content contains very important clues for the retrieval of home videos,
because different sounds can indicate different important events. In most cases
it is easier to detect events using audio features than using video features. For
example, when interesting events occur, people are likely to talk or laugh or cry
out. So these events can be easily detected by audio content, while it is very
difficult or even impossible using visual content. For these reasons, effective
video retrieval techniques using audio features have been investigated by many
researchers in the literature (Srinivasan et al., 1999; Bakker and Lew, 2002;
Wang et al., 2000; Xiong et al., 2003).

The purpose of this chapter is to outline example applications using the
concepts developed in the previous chapters.
To retrieve audiovisual information in semantically meaningful units, a system

must be able to scan multimedia data automatically like TV or radio broadcasts
for the presence of specific topics. Whenever topics of users’ interests are
detected, the system could alert a related user through a web client. Figure 7.1
illustrates on a functional level how multimedia documents may be processed
by a multimedia mining system (MMS).
A multimedia mining system consists of two main components: a multimedia

mining indexer and a multimedia mining server. The input signal, received for
example through a satellite dish, is passed on to a video capture device or audio
capture device, which in turn transmits it to the multimedia mining indexer. If
the input data contains video, joint video and audio processing techniques may
be used to segment the data into scenes, i.e. ones that contain a news reader or a
single news report, and to detect story boundaries. The audio track is processed
using audio analysis tools.
The multimedia mining indexer produces indexed files (e.g. XML text files)

as output. This output, as well as the original input files, are stored in a

MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval H.-G. Kim, N. Moreau and T. Sikora
© 2005 John Wiley & Sons, Ltd
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Figure 7.1 Multimedia mining system

multimedia-enabled database for archiving and retrieval. The multimedia min-
ing server application then makes the audio, video, index and metadata files
available to the user. All output and functionalities may be presented to the user
through a web client.
Based on data contained in the mining server it could be possible to understand

whether a TV programme is a news report, a commercial, or a sports programme
without actually watching the TV or understanding the words being spoken.
Often, analysis of audio alone can provide excellent understanding of scene
content. More sophisticated visual processing can be saved. In this chapter we
focus on indexing audiovisual information based on audio feature analysis.
The indexing process starts with audio content analysis, with the goal to

achieve audio segmentation and classification. A hierarchical audio classification
system, which consists of three stages, is shown in Figure 7.2.
Audio recordings from movies or TV programmes are first segmented and

classified into basic types such as speech, music, environmental sounds and
silence. Audio features including non-MPEG-7 low-level descriptors (LLDs)
or MPEG-7 LLDs are extracted. The first stage provides coarse-level audio
classification and segmentation. In the second stage, each basic type is further
processed and classified.
Even without a priori information about the number of speakers and the identi-

ties of speakers the speech stream can be segmented by different approaches, such
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Figure 7.2 A hierarchical system for audio classification

as metric-based, model-based or hybrid segmentation. In speaker-based segmen-
tation the speech stream is cut into segments, such that each segment corresponds
to a homogeneous stretch of audio, ideally a single speaker. Speaker identi-
fication groups the individual speaker segments produced by speaker change
detection into putative sets from one speaker. For speakers known to the system,
speaker identification (classification) associates the speaker’s identity to the set.
A set of several hundred speakers may be known to the system. For unknown
speakers, their gender may be identified and an arbitrary index assigned.
Speech recognition takes the speech segment outputs and produces a text

transcription of the spoken content (words) tagged with time-stamps. A phone-
based approach processes the speech data with a lightweight speech recognizer
to produce either a phone transcription or some kind of phonetic lattice. This
data may then be directly indexed or used for word spotting.
For the indexing of sounds, different models are constructed for a fixed set of

acoustic classes, such as applause, bells, footstep, laughter, bird’s cry, and so on.
The trained sound models are then used to segment the incoming environmental
sound stream through the sound recognition classifier.
Music data can be divided into two groups based on the representational form:

that is, music transcription, and the audio fingerprinting system.
As outlined in Chapter 5, transcription of music implies the extraction of

specific features from a musical acoustic signal resulting in a symbolic repre-
sentation that comprises notes, their pitches, timings and dynamics. It may also
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include the identification of the beat, meter and the instruments being played.
The resulting notation can be traditional music notation or any symbolic rep-
resentation which gives sufficient information for performing the piece using
musical instruments.
Chapter 6 discussed the basic concept behind an audio fingerprinting system,

the identification of audio content by means of a compact and unique signature
extracted from it. This signature can be seen as a summary or perceptual digest
of the audio recording. During a training phase, the signatures are created from
a set of known audio material and are then stored in a database. Afterwards
unknown content may be identified by matching its signature against the ones
contained in the database, even if distorted or fragmented.

7.2 AUTOMATIC AUDIO SEGMENTATION

Segmenting audio data into speaker-labelled segments is the process of deter-
mining where speakers are engaged in a conversation (start and end of their
turn). This finds application in numerous speech processing tasks, such as
speaker-adapted speech recognition, speaker detection and speaker identification.
Example applications include speaker segmentation in TV broadcast discussions
or radio broadcast discussion panels.
In (Gish and Schmidt, 1994; Siegler et al., 1997; Delacourt and Welekens,

2000), distance-based segmentation approaches are investigated. Segments
belonging to the same speaker are clustered using a distance measure that mea-
sures the similarity of two neighbouring windows placed in evenly spaced seg-
ments of time intervals. The advantage of this method is that it does not require
any a priori information. However, since the clustering is based on distances
between individual segments, accuracy suffers when segments are too short to
describe sufficiently the characteristics of a speaker.
In (Wilcox et al., 1994; Woodland et al., 1998; Gauvain et al., 1998; Sommez

et al., 1999), a model-based approach is investigated. For every speaker in the
audio recording, a model is trained and then an HMM segmentation is performed
to find the best time-aligned speaker sequence. This method places the segmen-
tation within a global maximum likelihood framework. However, most model-
based approaches require a priori information to initialize the speaker models.
Similarity measurement between two adjacent windows is based on a com-

parison of their parametric statistical models. The decision of a speaker change
is performed using a model-selection-based method (Chen and Gopalakrishnan,
1998; Delacourt and Welekens, 2000), called the Bayesian information criterion
(BIC). This method is robust and does not require thresholding. In (Kemp et al.,
2000; Yu et al., 2003; Kim and Sikora, 2004a), it is shown that a hybrid algorithm,
which combines metric-based and model-based techniques, works significantly
better than all other approaches. Therefore, in the following we describe a hybrid
segmentation approach in more detail.
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7.2.1 Feature Extraction

The performance of the segmentation depends on the feature representation of
audio signals. Discriminative and robust features are required, especially when
the speech signal is corrupted by channel distortion or additive noise. Various
features have been proposed in the literature:

• Mel-frequency cepstrum coefficients (MFCCs): one of the most popular sets
of features used to parameterize speech is MFCCs. As outlined in Chapter 2,
these are based on the human auditive system model of critical frequency
bands. Linearly spaced filters at low frequencies and logarithmically at high
frequencies have been used to capture the phonetically important characteris-
tics of speech.

• Linear prediction coefficients (LPCs) (Rabiner and Schafer, 1978): the
LPC-based approach performs spectral analysis with an all-pole modelling
constraint. It is fast and provides extremely accurate estimates of speech
parameters.

• Linear spectral pairs (LSPs) (Kabal and Ramachandran, 1986): LSPs are
derived from LPCs. Previous research has shown that LSPs may exhibit
explicit differences in different audio classes. LSPs are more robust in noisy
environments.

• Cepstral mean normalization (CMN) (Furui, 1981): the CMS method is used in
speaker recognition to compensate for the effect of environmental conditions
and transmission channels.

• Perceptual linear prediction (PLP) (Hermansky, 1990): this technique uses
three concepts from the psychophysics of hearing to derive an estimate of
the auditory spectrum: (1) the critical-band spectral resolution, (2) the equal-
loudness curve and (3) the intensity–loudness power law. The auditory spec-
trum is then approximated by an autoregressive all-pole model. A fifth-order
all-pole model is effective in suppressing speaker-dependent details of the
auditory spectrum. In comparison with conventional linear predictive (LP)
analysis, PLP analysis is more consistent with human hearing.

• RASTA-PLP (Hermansky and Morgan, 1994): the word RASTA stands for
RelAtive SpecTrAl technique. This technique is an improvement on the tra-
ditional PLP method and incorporates a special filtering of the different fre-
quency channels of a PLP analyser. The filtering is employed to make speech
analysis less sensitive to the slowly changing or steady-state factors in speech.
The RASTA method replaces the conventional critical-band short-term spec-
trum in PLP and introduces a less sensitive spectral estimation.

• Principal component analysis (PCA): PCA transforms a number of correlated
variables into a number of uncorrelated variables called principal components.
The first principal component accounts for as much of the variability in the
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data as possible, and each succeeding component accounts for as much of the
remaining variability as possible.

• MPEG-7 audio spectrum projection (ASP): the MPEG-7 ASP feature extrac-
tion was described in detail in chapter.

7.2.2 Segmentation

In model-based segmentation, a set of models for different acoustic speaker
classes from a training corpus is defined and trained prior to segmentation. The
incoming speech stream is classified using the models. The segmentation system
finds the best time-aligned speaker sequence by maximum likelihood selection
over a sliding window. Segmentation can be made at the locations where there
is a change in the acoustic class. Boundaries between the classes are used as
segment boundaries. However, most model-based approaches require a priori
information to initialize the speaker models. The process of HMM model-based
segmentation is shown in Figure 7.3.
In the literature several algorithms have been described for model-based seg-

mentation. Most of the methods are based on VQ, the GMM or the HMM. In
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Figure 7.3 Procedure for model-based segmentation
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the work of (Sugiyama et al., 1993), a simple application scenario is studied, in
which the number of speakers to be clustered was assumed to be known. VQ and
the HMM are used in the implementation. The algorithm proposed by (Wilcox
et al., 1994) is also based on HMM segmentation, in which an agglomerative
clustering method is used when the speakers are known or unknown. (Siu et al.,
1992) proposed a system to separate controller speech and pilot speech with
a GMM. Speaker discrimination from telephone speech signals was studied in
(Cohen and Lapidus, 1996) using HMM segmentation. However, in this system,
the number of speakers was limited to two. A defect of these models is that
iterative algorithms need to be employed. This makes these algorithms very time
consuming.

7.2.3 Metric-Based Segmentation

The metric-based segmentation task is divided into two main parts: speaker
change detection and segment clustering. The overall procedure of metric-based
segmentation is depicted in Figure 7.4.
First, the speech signal is split into smaller segments that are assumed to

contain only one speaker. Prior to the speaker change detection step, acoustic
feature vectors are extracted. Speaker change detection measures a dissimilarity
value between feature vectors in two consecutive windows. Consecutive distance
values are often low-pass filtered. Local maxima exceeding a heuristic threshold
indicate segment boundaries.
Various speaker change detection algorithms differ in the kind of distance

function they employ, the size of the windows, the time increments for the
shifting of the two windows, and the way the resulting similarity values are
evaluated and thresholded. The feature vectors in each of the two adjacent
windows are assumed to follow some probability density (usually Gaussian) and
the distance is represented by the dissimilarity of these two densities. Various
similarity measures have already been proposed in the literature for this purpose.
Consider two adjacent portions of sequences of acoustic vectors X1 =

�x1� � � � � xi� and X2 =
{
xi+1� � � � � xNX

}
, where NX is the number of acoustic

vectors in the complete sequence of subset X1 and subset X2:

• Kullback–Leibler (KL) distance. For Gaussian variables X1 and X2, KL can
be written as:

dKL�X1�X2�=
1
2
��X2

−�X1
�T

(
�−1

X1
+�−1

X2

)
��X2

−�X1
�

+1
2
tr

((
�

1/2
X1

�
−1/2
X2

)(
�

1/2
X1

�
−1/2
X2

)T
)

+1
2
tr

((
�

−1/2
X1

�
1/2
X2

)(
�

−1/2
X1

�
1/2
X2

)T
)

−p (7.1)



238 7 APPLICATION

Speech Stream

Feature Extraction

Sequence of Acoustic Feature Vectors

Window 1 (time i) Window 2 (time i)

Window 1 (time i + 1) Window 2 (time i + 1)

Window 1 (time i + 2) Window 2 (time i + 2) … ….

Distance d(i) d(i + 1) d(i + 2) … ….

… ….

Speaker
Change Point

(SCP)

SCP SCP SCP

Speaker Change Detection

Segment Clustering (bottom-up hierarchical clustering)

Sp 1 Sp 2 Sp 3 Sp 2 … ….

Segmentation Results

Figure 7.4 Procedure for metric-based segmentation

where tr denotes the trace of a matrix, �X1
��X2

are respectively the mean
values of the subsets X1 and X2�

∑
X1
�
∑

X2
are respectively the covariance

matrices of X1 and X2, and p is the dimension of the feature vectors.
• Mahalanobis distance:

dMAH�X1�X2�=
1
2
��X2

−�X1
�T ��X1

�X2
�−1��X2

−�X1
� (7.2)
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• Bhattacharyya distance:
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• Generalized likelihood ratio (GLR). The GLR is used by (Gish and Schmidt,
1994) and (Gish et al., 1991) for speaker identification. Let us consider testing
the hypothesis for a speaker change at time i:

H0: both X1 andX2 are generated by the same speaker. Then the reunion of
both portions is modelled by a multi-dimensional Gaussian process:

X=X1 ∪X2 ∼N��x��x�	 (7.4)

H1: X1 and X2 are pronounced by a different speaker. Then each portion is
modelled by a multi-Gaussian process:

X1 ∼N��x1
��x1

� and X2 ∼N��x2
��x2

�	 (7.5)

The GLR between the hypothesis H0 and H1 is defined by:

R= L�X�N��X�
∑

X��

L�X1�N��X1
�
∑

X1
��L�X2�N��X2

�
∑

X2
��

(7.6)

where L�X�N��X�
∑

X�� represents the likelihood of the sequence of acoustic
vectors X given the multi-dimensional Gaussian process N��X�

∑
X�.

A distance is computed from the logarithm of this ratio:

dGLR =− logR	 (7.7)

A high value of R (i.e. a low value of dGLR) indicates that the one multi-
Gaussian modelling (hypothesis H0) fits the data well. A low value of R (i.e.
a high value of dGLR) indicates that the hypothesis H1 should be preferred so
that a speaker change is detected at time i.

• Divergence shape distance (DSD). The DSD (Cambell, 1997; Lu and Zhang,
2001; Lu et al., 2002; Wu et al., 2003) is used to measure the dissimilarity
between two neighbouring sub-segments at each time slot. It is defined as the
distance between their reliable speaker-related sets:

dDSD = 1
2
tr
[(
�X1

−�X2

) (
�−1

X1
−�−1

X2

)]
	 (7.8)
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A potential speaker change is found between the ith and the �i+ 1�th sub-
segments, if the following conditions are satisfied:

dDSD�i� i+ 1� > dDSD�i+ 1� i+ 2�

dDSD�i� i+ 1� > dDSD�i− 1� i� (7.9)

dDSD�i� i+ 1� > Thi

where dDSD�i� i+ 1� is the distance between the ith and the �i+ 1�th sub-
segments, and Thi is a threshold.
The first two conditions guarantee that a local peak exists, and the last

condition can prevent very low peaks from being detected. The threshold
setting is affected by many factors, such as insufficiently estimated data and
various environmental conditions. For example, the distance between speech
sub-segments will increase if the speech is in a noisy environment. Accord-
ingly, the threshold should increase in such a noisy environment. The dynamic
threshold Thi is computed as:

Thi =

1
N

N∑

n=0

dDSD�i− n− 1� i− n� (7.10)

where N is the number of previous distances used for predicting the threshold,
and 
 is a coefficient as amplifier.
Thus, the threshold is automatically set according to the previous N suc-

cessive distances. The threshold determined in this way works well in various
conditions, but false detections still exist.

The next step merges speech segments containing the same speaker. Segments
belonging to the same speaker are clustered using a distance measure between
segments detected by the speaker change step, such that each cluster contains
speech from only one speaker. Also speech from the same speaker is classified
in the same cluster. For this, bottom-up hierarchical clustering (Siu et al., 1992;
Everitt, 1993) of the distance matrix between speech segments is often used.
The algorithm picks the closest pair of clusters according to the distance metric,
and merges them. This step is repeated until there is only one cluster. There are
several agglomerative schemes, as illustrated in Figure 7.5:

• Single linkage: the distance between two clusters is defined as the distance
between their two closest members.

• Complete linkage: the distance between two clusters is defined as the distance
between their two farthest members.

• Average linkage between groups: the distance between two clusters is defined
as the average of the distances between all pairs of members, one segment
taken in each cluster.



7.2 AUTOMATIC AUDIO SEGMENTATION 241

(a) Single linkage (b) Complete linkage

(c) Average linkage between groups (d) Average linkage within groups

Figure 7.5 Various distances between groups used in neighbourhood clustering schemes

• Average linkage within groups: the distance between two clusters is defined
as the average of the distances between all pairs in the cluster, which would
result from combining the two clusters.

The output from the scheme is generally represented by a dendrogram, a tree of
clusters, in which each node corresponds to a cluster. The cutting (or pruning)
of the dendrogram produces a partition composed of all the segments. Several
techniques exist in the literature (Solomonoff et al., 1998; Reynolds et al., 1998)
for selecting a partition. These techniques consist of cutting the dendrogram at
a given height or of pruning the dendrogram by selecting clusters at different
heights. Figure 7.6 shows a dendrogram to illustrate the consecutive grouping
of clusters.

Height

Cutting

Pruning

Cutting{ (a, b, c, d ),  (e, f, g),  (h, i)}
Pruning {(a, b),  (c, d),  (e, f),  (g),  (h, i)}

a b c d e f g h i

Figure 7.6 Example of dendrogram: cluster selection methods
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The metric-based method is very useful and very flexible, since no or little
information about the speech signal is needed a priori to decide the segmentation
points. It is simple and applied without a large training data set. Therefore,
metric-based methods have the advantage of low computation cost and are thus
suitable for real-time applications. The main drawbacks are: (1) It is difficult
to decide an appropriate threshold. (2) Each acoustic change point is detected
only by its neighbouring acoustic information. (3) To deal with homogeneous
segments of various lengths, the length of the windows is usually short (typically
2 seconds). Feature vectors may not be discriminative enough to obtain robust
distance statistics.

7.2.4 Model-Selection-Based Segmentation

The challenge of model identification is to choose one from among a set of
candidate models to describe a given data set. Candidates of a series of models
often have different numbers of parameters. It is evident that when the number
of parameters in the model is increased, the likelihood of the training data is
also increased. However, when the number of parameters is too large, this might
cause the problem of overtraining. Further, model-based segmentation does not
generalize to acoustic conditions not presented in the model.
Several criteria for model selection have been introduced in the literature,

ranging from non-parametric methods such as cross-validation to parametric
methods such as the BIC. The BIC permits the selection of a model from a
set of models for the same data: this model will match the data while keeping
complexity low. Also, the BIC can be viewed as a general change detection
algorithm since it does not just take into account prior knowledge of speakers.
Instead of making a local decision based on the distance between two adjacent
sliding windows of fixed size, (Chen and Gopalakrishnan, 1998) applied the BIC
to detect the change point within a window.
The maximum likelihood ratio between H0 (no speaker turn) and H1 (speaker

turn at time i) applied to the GLR is then defined by:

RBIC�i�=
NX

2
log ��X� −

NX1

2
log ��X1

� − NX2

2
log ��X2

� (7.11)

where
∑

X�
∑

X1
�
∑

X2
are the covariance matrices of the complete sequence,

the subset X1 = �x1� � � � � xi� and the subset X2 = �xi+1� � � � � xNX
� respectively.

NX�NX1
�NX2

are the number of acoustic vectors in the complete sequence, sub-set
X1 and sub-set X2.
The speaker turn point is estimated via the maximum likelihood ratio crite-

rion as:

t̂= argmax
i

RBIC�i�	 (7.12)
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The variations of the BIC value between the two models is then given by:

�BIC�i�=−RBIC�i�+�D (7.13)

with the penalty

D= 1
2

(

d+ 1
2
d�d+ 1�

)

logNX� (7.14)

where d is the dimension of the acoustic feature vectors.
If the �BIC value is negative, this indicates a speaker change. If there is

no change point detected, the window will grow in size to have more robust
distance statistics.
Because of this growing window, Chen and Gopalakrishnan’s BIC scheme

suffers from high computation costs, especially for audio streams that have
many long homogeneous segments. The �BIC computation relies on a similar
approach as the one used in the GLR computation, but there is a penalty for
the complexity of the models. �BIC is actually thresholding the GLR with
D�1≤D≤4�. The advantage of using �BIC for the distance measure is that the
appropriate threshold can be easily designed by adjusting the penalty factor, �.
Two improved BIC-based approaches were proposed to speed up the detection

process (Tritschler and Gopinath, 1999; Zhou and John, 2000). A variable win-
dow scheme and some heuristics were applied to the BIC framework while the T 2

statistic was integrated into the BIC. (Cheng and Wang, 2003) propose a sequen-
tial metric-based approach which has the advantage of low computation cost
for the metric-based methods. It yields comparable performance to the model-
selection-based methods. The Delacourt segmentation technique (Delacourt and
Welekens, 2000) takes advantage of these two types of segmentation techniques.
First, a distance-based segmentation combined with a thresholding process is
applied to detect the most likely speaker change points. Then the BIC is used
during a second pass to validate or discard the previously detected change points.

7.2.5 Hybrid Segmentation

Hybrid segmentation is a combination of metric-based and model-based
approaches. A distance-based segmentation algorithm is used to create an initial
set of speaker models. Starting with these, model-based segmentation performs
more refined segmentation.
Figure 7.7 depicts the algorithm flow chart of a system introduced by (Kim

and Sikora, 2004a). The hybrid segmentation can be divided into seven modules:
silence removal, feature extraction, speaker change detection, segment-level clus-
tering, speaker model training, model-level clustering and model-based reseg-
mentation using the retrained speaker models. First, silence segments in the input
audio recording are detected by a simple energy-based algorithm. The detected
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Figure 7.7 Block diagram of the hybrid speaker-based segmentation system

silence part is used to train a silence model. The speech part is transformed into
a feature vector sequence and fed into the speaker change detection step, which
splits the conversational speech stream into smaller segments.
The speech segments found by speaker change detection are classified using

segment-level clustering, such that each cluster is assumed to contain the speech
of only one speaker. After training a model for every cluster, model–cluster
merging is performed by L-best likelihood scores from all cluster speaker models,
thus yielding a target cluster number equal to the actual number of speakers. After
merging the two clusters, the new cluster models are retrained. The retrained
speaker models are used to resegment the speech stream. Finally, the model-based
resegmentation step is achieved using a Viterbi algorithm to determine the
maximum likelihood score.
The detailed procedure is described in the following:

• Speaker change detection: speech signals are first parameterized in terms of
acoustic feature vectors. The distance between two neighbouring segments is
sequentially calculated for speaker change detection using the GLR, BIC or
DSD.
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• Segment-level clustering: since this set of cluster models is to be used as
the starting point of the subsequent model-level clustering, the aim is high
cluster purity (every cluster should consist of segments from only one speaker).
Because of this, initial segment clustering is terminated at a target cluster
number larger than the actual speaker number.
The segment-level clustering is a simple, greedy, bottom-up algorithm.

Initially, every segment is regarded as a cluster. The GLR or BIC can be
applied to the segment-level clustering. The GLR is most accurate when the
segments have uniform length. In the approach of (Kim and Sikora, 2004a),
clustering of segments of the same speaker is done using the BIC as the
distance between two clusters. Given a set of speech segments Seg1� � � Segk
found by speaker change detection, one step of the algorithm consists of
merging two of them. In order to decide if it is advisable to merge Segi and
Segj , the difference between the BIC values of two clusters is computed. The
more negative the �BIC is, the closer the two clusters are.

At the beginning, each segment is considered to be a single segment cluster
and distances between this and the other clusters are computed. The two
closest clusters are then merged if the corresponding �BIC is negative. In this
case, the distances between the new cluster and the other ones are computed,
and the new pair of closest clusters is selected at the new iteration. Otherwise,
the algorithm is terminated.

• Model building and model-level clustering: after segment-level clustering the
cluster number may be larger than the actual speaker number. Starting with
speaker models trained from these clusters, model-based segmentation cannot
achieve higher accuracy. We perform model-level clustering using speaker
model scores (likelihood).
In order to train a statistical speaker model for each cluster, GMMs or

HMMs can be used, which consist of several states. (Kim and Sikora, 2004b)
employed an ergodic HMM topology, where each state can be reached from
any other state and can be revisited after leaving. Given the feature vectors
of one cluster, an HMM with seven states for the cluster is trained using a
maximum likelihood estimation procedure (the Baum–Welch algorithm). All
cluster GMMs or HMMs are combined into a larger network which is used to
merge the two clusters.
The feature vectors of each cluster are fed to the GMM or HMM network

containing all reference cluster speaker models in parallel. The reference
speaker model scores (likelihoods) are calculated over the whole set of feature
vectors of each cluster. All these likelihoods are passed to the Likelihood
Selection block, where the similarity between all combinations of two reference
scores is measured by the likelihood distance:

di�i� l�=P�Ci��i�−P�Cl��l� (7.15)

where Cl denotes the observations belonging to cluster l�P�Cl��l� the cluster
model score and �l the speaker model.
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If di�i� l�≤��� being a threshold, the index j is stored as the candidate in
the L-best likelihood table Ti. This table also provides ranking of the cluster
models similar to Ci. In order to decide if the candidate models j in the table
Ti belong to the same speaker, we check the L-best likelihood table Tj , where
the distances between the j cluster model and an other reference model i is
computed:

dj�j� i�=P�Cj��j�−P�Ci��i�	 (7.16)

If dj�j� i�≤�, it is assumed that GMM or HMM �i and GMM or HMM �j

represent the same speaker and thus cluster Ci and cluster Cj can be merged.
Otherwise, �i and �j represent different speakers. The algorithm checks all
entries in table Ti and similar clusters are merged. In this way we ensure
that model-level clustering achieves higher accuracy than direct segment-level
clustering. After merging the clusters, the cluster models are retrained.

• Model-based resegmentation: for this, the speech stream is divided into
1.5 second sub-segments, which overlap by 33%. It is assumed that there is
no speaker change within each sub-segment. Therefore, speaker segmentation
can be performed at the sub-segment level. Given a sub-segment as input,
the MFCC features are extracted and fed to all reference speaker models in
parallel. In the case of the GMM, model-based segmentation is performed
using GMM cluster models. Using the HMM, the Viterbi algorithm finds the
maximum likelihood sequence of states through the HMMs and returns the
most likely classification label for the sub-segment.
The sub-segment labels need to be smoothed out. A low-pass filter can be

applied to enable more robust segmentation by correcting errors. The filter
stores A adjacent sub-segments of the same label to decide on the beginning
of a segment. Errors can be tolerated within a segment, but once B adjacent
classifications of any other models are found, the segment is ended. For our
data, the optimum values were A= 3 and B= 3.

7.2.6 Hybrid Segmentation Using MPEG-7 ASP

Hybrid segmentation using MPEG-7 ASP features may be implemented as shown
in Figure 7.8 (Kim and Sikora, 2004a). In the following, this MPEG-7-compliant
system together with system parameters used in the experimental setup described
by (Kim and Sikora, 2004a) is described in more detail to illustrate the concept.

7.2.6.1 MPEG-7-Compliant System

The speech streams are digitized at 22.05 kHz using 16 bits per sample and
divided into successive windows, each 3 seconds long. An overlap of 2.5 seconds
is used. Detected silence segments are first removed. For each non-silence
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Figure 7.8 Block diagram of segmentation using a speaker recognition classifier

segment, the segment is divided into overlapping frames of duration 30ms with
15ms overlapping for consecutive frames. Each frame is windowed using a
Hamming window function. To extract audio spectrum envelope (ASE) features,
the observed audio signal is analysed using a 512-point FFT. The power spectral
coefficients are grouped in logarithmic subbands spaced in non-overlapping 7
octave bands spanning between a low boundary (62.5Hz) and high boundary
(8 kHz). The resulting 30-dimensional ASE is next converted to the decibel scale.
Each decibel-scale spectral vector is further normalized with the RMS energy
envelope, thus yielding a normalized log-power version of the ASE (NASE).
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The speaker change detection step is performed using a NASE DSD between
two successive windows. This splits the speech stream into smaller segments
that are assumed to contain only one speaker. These segments created by the
speaker change detection are selected to form initial clusters of similar segments
with the hierarchical agglomerative method. The initial clusters are then used to
train an initial set of speaker models.
Given the NASE features of every cluster, the spectral basis is extracted with

one of three basis decomposition algorithms: PCA for dimension reduction, Fas-
tICA for information maximization or NMF. For NMF there are two choices: (1)
In NMF method 1 the NMF basis is extracted from the NASE matrix and the ASP
projected onto the NMF basis is applied directly to the HMM sound classifier.
(2) In NMF method 2 the audio signal is transformed to the spectrogram. NMF
component parts are extracted from the segmented spectrogram image patches.
Basis vectors computed by NMF are selected according to their discrimination
capability. Sound features are computed from these reduced vectors and fed into
the HMM classifier. This process is well described in (Cho et al., 2003).

The resulting spectral basis vectors are multiplied with the NASE matrix,
thus yielding the ASP features. The resulting ASP features and RMS-norm gain
values are used for training a seven-state ergodic HMM for each cluster.
The speech stream is then resegmented based on the resulting speaker HMMs.

The input speech track is cut into 1.5 second sub-segments, which overlap by
33%. Thus, the hop size is 1 second. Overlapping increases the input data to be
classified by 50%, but yields more robust sound/speaker segmentation results
due to the filtering technique described with the model-based resegmentation.
Given a sub-segment 1.5 seconds long as input, the NASE features are extracted
and projected against basis functions of each speaker class. Then, the Viterbi
algorithm is applied to align each projection with its corresponding speaker class
HMM. Resegmentation is achieved using the Viterbi algorithm to determine the
maximum likelihood state sequence through the speaker recognition classifier.

7.2.6.2 Selection of Suitable ICA Basis Parameters for the
Segmentation Using MPEG-7 ASP Features

In this section we describe how suitable parameters for the MPEG-7 system in
Figure 7.8 can be derived in an experimental framework.
Two audio tracks from TV panel discussions and broadcast news were used

for our purpose. The TV broadcast news (N) was received from a TV satellite
and stored as MPEG-compressed files. The set contained five test files; every
file was about 5 minutes long and contained the speech of between three and
eight speakers. The video part of the signal was not used for our experiments.
We further used two audio tracks from TV talk show programmes: “Talk Show
1 (TS1)” was approximately 15 minutes long and contained only four speakers;
“Talk Show 2 (TS2)” was 60 minutes long and contained much more challeng-
ing content with seven main speakers (five male and two female). The studio
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audience often responded to comments with applause. The speakers themselves
were mostly German politicians arguing about tax reforms, so they interrupted
each other frequently.
For each audio class, the spectral basis was extracted by computing the PCA

to reduce the dimensions and the FastICA to maximize information.
To select suitable ICA basis parameters, we measured the classification rate

of the sub-segments 3 seconds long from “Talk Show 2”. Two minutes from
each speaker’s opening talk were used to train the speaker models and the last 40
minutes of the programme were used for testing. In this case, we assumed that
the ergodic topology with seven states would suffice to measure the quality of the
extracted data. The parameter with the most drastic impact turned out to be the
horizontal dimension E of the PCA matrix. If E was too small, the PCA matrix
reduced the data too much, and the HMMs did not receive enough information.
However, if E was too large, then the extra information extracted was not very
important and was better ignored. The total recognition rate of the sub-segments
vs. E from the ICA method for “Talk Show 2” is depicted in Figure 7.9.

As can be seen in the figure, the best value for E was 24, yielding a recognition
rate of 84.3%. The NASE was then projected onto the first 24 PCA/ICA basis
vectors of every class. The final output consisted of 24 basis projection features
plus RMS energy.
For the classification with these features, we tested the recognition rate for

the different HMM topologies. Table 7.1 depicts the classification results for
different HMM topologies given the features with E= 24. The number of states
includes two non-emitting states, so seven states implies that only five non-
emitting states were used.
The HMM classifier yields the best performance when the number of states is

7 and topology is ergodic. The corresponding classification accuracy is 85.3%;
three iterations were used to train the HMMs.

Figure 7.9 Comparison of recognition rates for different values of E of ICA
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Table 7.1 Sub-segment recognition rate for three different HMMs

Number of states

HMM topology 4 5 6 7 8

Left–right HMM 76	3% 75	5% 79	5% 81	1% 80	2%
Forward and backward HMM 64	9% 79	3% 74	3% 77	1% 76	3%
Ergodic HMM 61	7% 78	8% 81	5% 85	3% 82	9%

7.2.7 Segmentation Results

For measuring the performance of various techniques for speaker segmentation,
the recognition rate and F-measure were used. The F-measure F is a combination
of the recall (RCL) rate of correct boundaries and the precision (PRC) rate of the
detected boundaries. When RCL and PRC errors are weighted as being equally
detractive to the quality of segmentation, F is defined as:

F = 2 ·PRC ·RCL
PRC+RCL

	 (7.17)

The recall is defined by RCL=ncf/tn, while precision PRC=ncf/nhb, where
ncf is the number of correctly found boundaries, tn is the total number of
boundaries, and nhb is the number of hypothesized boundaries (meaning the
total number of boundaries found by the segmentation module). F is bounded
between 0 and 100, where F = 100 is a perfect segmentation result and F = 0
implies segmentation to be completely wrong.

7.2.7.1 Results for Model-Based Segmentation

We compare the MFCC-based technique vs. MPEG-7 ASP. An HMM was
trained for each acoustic class model with between 1 and 2 minutes of audio
for every sound/speaker. These models were used by the segmentation module.
The segmentation module consists of recognition classifiers, each containing an
HMM (and a set of basis functions in the case of MPEG-7 ASP features). There
is a classifier for each speaker and for other audio sources that may occur, such as
applause. The audio stream can be parsed in terms of these models. Segmentation
can be made at the locations where there is a change in the acoustic class.
The results of model-based segmentation are summarized in Table 7.2. The

segmentation performance for “Talk Show 1” was quite good because there
were only four speakers, and they rarely interrupted each other. The algorithms
run fast enough so they can be implemented for real-time applications. The
F-measure for “Talk Show 2” was not as good, but still impressive in view of
the numerous interruptions.
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Table 7.2 Results for model-based segmentation

Data FD FE Reco. rate (%) RCL (%) PRC (%) F (%)

TS1 13 ASP 83	2 84	6 78	5 81	5
MFCC 87	7 92	3 92	3 92	3

23 ASP 89	4 92	3 92	3 92	3
MFCC 95	8 100 92	8 96	2

TS2 13 ASP 61	6 51	5 28	8 36	9
MFCC 89	2 63	6 61	7 62	6

23 ASP 84	3 66	6 61	1 63	7
MFCC 91	6 71	2 73	8 73	4

TS1: Talk Show 1; TS2: Talk Show 2; FD: feature dimension; FE: feature extraction methods; Reco.
rate: recognition rate.

The training data also differed somewhat from the test data because the
speakers (politicians) did not raise their voices until later in the show. That is, we
used their calm introductions as training data, while the test data sounded quite
different. The segmentation results show that the MFCC features yield far better
performance compared with the MPEG-7 features with dimensions 13 and 23.
Figure 7.10 depicts a demonstration user interface for the model-based seg-

mentation. The audio stream is automatically segmented into four speakers. The
system indicates for each speaker the speaker segments in the stream. In the
demonstration system the user can access the audio segments of each speaker
directly to skip forwards and backwards quickly through the stream.

7.2.7.2 Hybrid- vs. Metric-Based Segmentation

Table 7.3 shows the results of a metric-based segment clustering module for the
TV broadcast news data and the two panel discussion materials.

Figure 7.10 Demonstration of the model-based segmentation using MPEG-7 audio
features (TU-Berlin)
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Table 7.3 Metric-based segmentation results based on several feature extractionmethods

Data FD FE Reco. Rate (%) F (%)

N 30 NASE 78	5 75	3
13 MFCC 82	3 79	9
24 MFCC 89	7 88	1

TS1 30 NASE 79	5 79	5
13 MFCC 85	4 87	5
24 MFCC 93	3 94	6

TS2 30 NASE 66	3 49	9
13 MFCC 81	6 65	5
24 MFCC 87	5 73	7

N: TV broadcast news; TS1: Talk Show 1; TS2: Talk Show 2; FD: feature dimension; FE: feature
extraction methods; Reco. rate: recognition rate.

The recognition accuracy, recall, precision and F-measure of the MFCC fea-
tures in the case of both 13 und 24 feature dimensions are far superior to the
NASE features with 30 dimensions for TV broadcast news and “Talk Show 1”.
For “Talk Show 2” the MFCC features show a remarkable improvement over
the NASE features.
Table 7.4 depicts the results for hybrid segmentation. The hybrid approach

significantly outperforms direct metric-based segmentation, given the suitable
initialization of speaker models. MFCC features yield higher recognition accu-
racy and F-measure than MPEG-7 ASP features in the case of both 13 and 24
feature dimensions for all test materials including broadcast news, “Talk Show
1” and “Talk Show 2”.

Table 7.4 Hybrid segmentation results based on several feature extraction methods

Data FD FE Reco. rate (%) F (%)

N 13 ASP 83	2 88	9
MFCC 87	1 92	1

24 ASP 88	8 93	3
MFCC 94	3 95	7

TS1 13 ASP 86	2 88	5
MFCC 90	5 93	5

24 ASP 91	5 94	7
MFCC 96	8 98	1

TS2 13 ASP 72	1 56	1
MFCC 87	2 69	7

24 ASP 88	9 75	2
MFCC 93	2 82	7

N: TV broadcast news; TS1: Talk Show 1; TS2: Talk Show 2; FD: feature dimension; FE: feature
extraction methods; Reco. rate: recognition rate.
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Figure 7.11 depicts further results for a video sequence. The audio clip
recorded from “Talk Show” (TS1) contains only four speakers. Figure 7.11(a)
shows that the number of speakers detected by metric-based segmentation was 6.
The correct number of speakers was detected by model-level clustering using
hybrid segmentation in Figure 7.11(b).

(a) Metric-based segmentation

(b) Hybrid segmentation

Figure 7.11 Demonstration of metric-based and hybrid segmentation applied to TV
panel discussions (TU-Berlin)
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Figure 7.12 Demonstration of metric-based segmentation applied to TV broadcast news
(TU-Berlin)

Figure 7.12 illustrates a result for metric-based segmentation applied to TV
broadcast news. The technique identifies several speakers. Only one speaker was
contained in the scene. Hybrid segmentation resulted in correct segmentation.

7.3 SOUND INDEXING AND BROWSING OF HOME
VIDEO USING SPOKEN ANNOTATIONS

In this section we describe a simple system for the retrieval of home video
abstracts using MPEG-7 standard ASP features. Our purpose here is to illustrate
some of the innovative concepts supported by MPEG-7, namely the combination
of spoken content description and sound classification. The focus on the “home
video” is due to the fact that it becomes more feasible for users to annotate
video with spoken content. For measuring the performance we compare the
classification results of the MPEG-7 standardized features vs. MFCCs.

7.3.1 A Simple Experimental System

For the retrieval of home video abstracts the system consists of a two-level
hierarchy method using speech recognition and sound classification. Figure 7.13
depicts the block diagram of the system.
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Figure 7.13 Block diagram of a two-level hierarchy method using speech recognition
and sound classification

At the first/top level, a spoken annotation is recorded by the user for each
home video abstract of the database. A speech recognizer extracts a spoken
content descriptor from each spoken annotation. In our example, each abstracted
home video is annotated with one word of the six-keyword lexicon: holiday, zoo,
kindergarten, movie, party and street. Each keyword of the description vocabu-
lary is modelled by concatenating the phone models. By uttering keywords, the
user can automatically retrieve the corresponding home video abstracts.
At the second/bottom level, each home video of the database includes its

own sound. For example, audio segments of home videos according to keyword
category “holiday” is classified into bird, water, boat.
The sounds of home videos are modelled according to category labels and

presented in a set of model parameters. Sound retrieval is achieved based on
sound classification. Given a selected query sound, the extracted sound features
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Figure 7.14 A home video abstract is described as a key frame annotated with spoken
content and sound descriptors

are used to run the sound classifier, which compares the pre-indexed sounds in
the sound database with the audio query and outputs the classification results.
Figures 7.14–7.17 show the graphical interfaces of the system. Each home

video abstract includes two MPEG-7 descriptors: the spoken content descriptor
and sound descriptor as shown in Figure 7.14.
Figure 7.15 illustrates the global view of all home video abstracts. If the user

is looking for home video abstracts of holiday videos, he or she starts with the

Figure 7.15 Examples of key frames of videos contained in the database (TU-Berlin)
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Figure 7.16 The results of a query using the speech input word “holiday”. Speech
recognition is used to identify the appropriate class of videos (TU-Berlin)

Figure 7.17 The query is refined using the query sound “water”. Sound recognition is
used to identify videos in the class “holiday” that contain sounds similar to the query
sound (TU-Berlin)
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global view and refines the search by processing query keywords to the system.
Figure 7.16 illustrates the result of a query using speech as the query input. The
system recognizes that the user selected the category “holiday” using speech
input. The search can be refined by querying for the sound of “water” using
a sound sample. The system then matches the “water” sound sample against
the sounds contained in the audio streams of videos in the “holiday” category.
Figure 7.17 depicts the results of an audio query belonging to the “water”
class.

7.3.2 Retrieval Results

We collected 180 home video abstracts from a controlled audio environment
with very low background interference. Each of them was hand-labelled into
one of 18 audio classes. Their durations differed from around 7 seconds to more
than 12 seconds long. The recorded audio signals were in PCM format sampled
at 22.05 kHz with 16 bits/sample.
For the feature extraction we used two approaches, MPEG-7 ASP features

and MFCC. The ASP features based on PCA/ICA were derived from speech
frames of length 30ms with a frame rate of 15ms. The spectrum was split
logarithmically into 7 octaves with the low and high boundaries at 62.5Hz
and 8 kHz respectively. For each audio class, the spectral basis was extracted
by computing the PCA to reduce the dimensions and FastICA to maximize
information.
In the case of MFCC the power spectrum bins were grouped and smoothed

according to the perceptually motivated mel-frequency scaling. Then the spec-
trum was segmented into 40 critical bands by means of a filter bank that consisted
of overlapping triangular filters. The first 13 filters for low frequencies had tri-
angular frequency responses whose centre frequencies were linearly spaced by
a difference of 133.33Hz. The last 27 filters for high frequencies had triangular
frequency responses whose centre frequencies were logarithmically spaced by a
factor of 1.071 170 3. A discrete cosine transform applied to the logarithm of the
40 filter banks provided the vectors of decorrelated MFCC.
As feature parameters for speech recognition, 13th-order MFCCs plus delta

and acceleration calculations were used. In order to compare the performance of
MPEG-7 standardized features vs. the MFCC approach for sound classification
we used MFCCs only without delta and acceleration calculations.
For speech recognition at the first level, the recognition rate was always

excellent, because only six keywords were used.
The results of the sound classification are shown in Table 7.5. These results

show that the sound classification system achieves a high recognition rate,
because only three or four sound classes in each of the eight categories were
tested.
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Table 7.5 Sound classification accuracy (%)

FD Feature
extraction

Holiday Zoo Street Kindergarten Movie Party Average

7 PCA-ASP 92	5 95	5 92	1 91	3 96	5 75	1 90	05
ICA-ASP 91	3 96	2 90	7 90	5 96	9 82	3 91	32
MFCC 97	08 97	6 95	3 96	3 97	6 94 96	31

13 PCA-ASP 96	3 97	6 95	7 95	8 98 82	4 94	3
ICA-ASP 97	9 94	3 96	6 96	6 98	7 93	9 96	33
MFCC 100 99 96	6 99 100 90	1 97	45

23 PCA-ASP 100 98	8 98	5 98	5 100 88	2 97	33
ICA-ASP 99 99	4 97	8 99 100 94 98	2
MFCC 100 100 99 100 100 93	4 98	73

Average 97	12 97	6 95	81 96	28 98	63 88	15 95	56

FD: feature dimension.

On average, MPEG-7 ASP based on ICA yields better performance than ASP
based on PCA. However, the recognition rates using MPEG-7 ASP results appear
to be significantly lower than the recognition rate of MFCC. Overall MFCC
achieves the best recognition rate.

7.4 HIGHLIGHTS EXTRACTION FOR SPORT PROGRAMMES
USING AUDIO EVENT DETECTION

Research on the automatic detection and recognition of events in sport video
data has attracted much attention in recent years. Soccer video analysis and
events/highlights extraction are probably the most popular topics in this research
area. Based on goal detection it is possible to provide viewers with a summary
of a game.
Audio content plays an important role in detecting highlights for various types

of sports, because often events can be detected easily by audio content.
There has been much work on integrating visual and audio information to

generate highlights automatically for sports programmes. (Chen et al., 2003)
described a shot-based multi-modal, multimedia, data mining framework for
the detection of soccer shots at goal. Multiple cues from different modalities
including audio and visual features are fully exploited and used to capture the
semantic structure of soccer goal events. (Wang et al., 2004) introduced a method
to detect and recognize soccer highlights using HMMs. HMM classifiers can
automatically find temporal changes of events.
In this section we describe a system for detecting highlights using audio fea-

tures only. Visual information processing is often computationally expensive
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and thus not feasible for low-complex, low-cost devices, such as set-top
boxes.
Detection using audio content may consist of three steps: (1) feature extraction

to extract audio features from the audio signals of a video sequence; (2) event
candidate detection to detect the main events (i.e. using an HMM); and (3) goal
event segment selection to determine finally the video intervals to be included
in the summary. The architecture of such a system is shown in Figure 7.18 on
the basis that an HMM is used for classification.
In the following we describe an event detection approach and illustrate its

performance. For feature extraction we compare MPEG-7 ASP vs. MFCC (Kim
and Sikora, 2004b).
Our event candidate detection focuses on a model of highlights. In the soccer

videos, the sound track mainly includes the foreground commentary and the
background crowd noise. Based on observation and prior knowledge, we assume
that: (1) exciting segments are highly correlated with announcers’ excited speech;
and (2) the audience ambient noise can also be very useful, because the audience
reacts loudly to exciting situations.
To detect the goal events we use one acoustic class model for the announcers’

excited speech, the audience’s applause and cheering for a goal or shot. An
ergodic HMM with seven states is trained with approximately 3 minutes of audio
using the well-known Baum–Welch algorithm. The Viterbi algorithm determines
the most likely sequence of states through the HMM and returns the most likely
classification/detection event label for the event segment (sub-segments).

Soccer Video Stream

Feature Extraction

Event Candidate
Detection Using HMM

Event Pre-Filtering

Word Recognition

Soccer Goal Event

Goal Event Detection

Audio Chunks

Figure 7.18 Architecture for detection of goal events in soccer videos
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Figure 7.19 Structure of the goal event segment selection

7.4.1 Goal Event Segment Selection

When goals are scored in a soccer game, commentators as well as audiences get
excited for a longer period of time. Thus, the classification results for successive
sub-segments can be combined to arrive at a final, robust segmentation. This is
then achieved using a pre-filtering step as illustrated in Figure 7.19.
To detect a goal event it is possible to employ a sub-system for excited speech

classification. The speech classification is composed of two steps, as shown in
Figure 7.19:

1. Speech endpoint detection: in TV soccer programmes, the presence of noise
can be as strong as the speech signal itself. To distinguish speech from other
audio signals (noise) a noise reduction method based on smoothing of the
spectral noise floor (SNF) may be employed (Kim and Sikora, 2004c).
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2. Word recognition using HMMs: the classification is based on two models,
excited speech (including “goal” and “score”) and non-excited speech. This
model-based classification performs a more refined segmentation to detect
the goal event.

7.4.2 System Results

Our first aim was to identify the type of sport present in a video clip. We
employed the above system for basketball, soccer, boxing, golf and tennis.
Table 7.6 illustrates that it is possible in general to recognize which one of

the five sport genres is present in the audio track. With feature dimensions
23–30 a recognition rate of more than 90% can be achieved. MFCC features
yield better performance compared with MPEG-7 features based on several basis
decompositions with dimension 23 and 30.
Table 7.7 compares the methods with respect to computational complexity.
Compared with the MPEG-7 ASP the feature extraction process of MFCC is

simple and significantly faster because there are no bases used. MPEG-7 ASP is
more time and memory consuming. For NMF, the divergence update algorithm
was iterated 200 times. The spectrum basis projection using NMF is very slow
compared with PCA or FastICA.
Table 7.8 provides a comparison of various noise reduction techniques (Kim

and Sikora, 2004c). The above SNF algorithm is compared with the results of
MM (multiplicatively modified log-spectral amplitude speech estimator) (Malah

Table 7.6 Sport genre classification results for four feature extraction methods.

Classification accuracy

Feature extraction Feature dimension

7 13 23 30

ASP onto PCA 87	94% 89	36% 84	39% 83	68%
ASP onto ICA 85	81% 88	65% 85	81% 63	82%
ASP onto NMF 63	82% 70	92% 80	85% 68	79%
MFCC 82	97% 88	65% 93	61% 93	61%

Table 7.7 Processing time

Feature extraction method

Feature dimension ASP onto PCA ASP onto FastICA ASP onto NMF MFCC

23 75.6 s 77.7 s 1 h 18.5 s
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Table 7.8 Segmental SNR improvement for different one-
channel noise estimation methods

Input SNR (dB)

Method White noise Car noise Factory noise

10 5 10 5 10 5

SNR improvement (dB)

MM 7	3 8	4 8	2 9	7 6	2 7	7
OM 7	9 9	9 9 10	6 6	9 8	3
SNF 8	8 11	2 9	7 11	4 7	6 10	6

MM: multiplicatively modified log-spectral amplitude speech estimator;
OM: optimally modified LSA speech estimator and minima-controlled
recursive averaging noise estimation.

et al., 1999) and OM (optimally modified LSA speech estimator and minima-
controlled recursive averaging noise estimation) (Cohen and Berdugo, 2001). It
can be expected that improved signal-to-noise ratio (SNR) will result in improved
word recognition rates.
For evaluation the Aurora 2 database together with a hidden Markov toolkit

(HTK) were used. Two training modes were selected: training on clean data
and multi-condition training on noisy data. The feature vectors from the speech
database with a sampling rate of 8 kHz consisted of 39 parameters: 13 MFCCs
plus delta and acceleration calculations. The MFCCs were modelled by a simple
left-to-right, 16-state, three-mixture whole-word HMM. For the noisy speech
results, we averaged the word accuracies between 0 dB and 20 dB SNR.
Tables 7.9 and 7.10 confirm that different noise reduction techniques yield

different word recognition accuracies. SNF provides better performance than
MM front-end and OM front-end. The SNF method is very simple because it
needs lower turning parameters compared with OM.
We employed MFCCs for the purpose of goal event detection in soccer

videos. The result was satisfactory and encouraging: seven out of eight goals

Table 7.9 Word recognition accuracies for training with clean data

Feature extraction Set A Set B Set C Overall

Without noise reduction 61.37% 56.20% 66.58% 61.38%
MM 79.28% 78.82% 81.13% 79.74%
OM 80.34% 79.03% 81.23% 80.20%
SNF 84.32% 82.37% 82.54% 83.07%

Sets A, B and C: matched noise condition, mismatched noise condition, and
mismatched noise and channel condition.
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Table 7.10 Word recognition accuracies for training with multi-
condition training data

Feature extraction Set A Set B Set C Overall

Without NR 87.81% 86.27% 83.77% 85.95%
MM 89.68% 88.43% 86.81% 88.30%
OM 90.93% 89.48% 88.91% 89.77%
SNF 91.37% 91.75% 92.13% 91.75%

NR: noise reduction; Set A, B and C: matched noise condition, mismatched
noise condition, and mismatched noise and channel condition.

contained in four soccer games were correctly identified, while one goal event
was misclassified.
Figure 7.20 depicts the user interface of our goal event system. The detected

goals are marked in the audio signal shown at the top. The user can skip directly
to these events.
It is possible to extend the above framework to more powerful indexing

and browsing systems for soccer video based on audio content. The soccer
game has high background noise from the excited audience. Separated acoustic
class models, such as male speech, female speech, music for detecting the
advertisements, and announcers’ excited speech with the audience’s applause
and cheering, can be trained with between 5 and 7 minutes of audio. These
models may be used for event detection using the ergodic HMM segmentation

Figure 7.20 Demonstration of goal event detection in soccer videos (TU-Berlin)
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Figure 7.21 Demonstration of indexing and browsing system for soccer videos using
audio contents (TU-Berlin)

module. To test for the detection of main events, a soccer game of 50 minutes’
duration was selected. The graphical user interface is shown in Figure 7.21.
A soccer game is selected by the user. When the user presses the “Play” button

at top right of the window, the system displays the soccer game. The signal
at the top is the recorded audio signal. The second “Play” button on the right
detects the video from the position where the speech of the woman moderator
begins, while the third “Play” button detects the positions of two reporters, the
fourth “Play” button is for the detection of a goal or shooting event section and
the fifth “Play” button is for the detection of the advertisements.

7.5 A SPOKEN DOCUMENT RETRIEVAL SYSTEM FOR
DIGITAL PHOTO ALBUMS

The graphical interface of a photo retrieval system based on spoken annotations
is depicted in Figure 7.22. This is an illustration of a possible application for the
MPEG-7 SpokenContent tool described in Chapter 4.

Each photo in the database is annotated by a short spoken description. During
the indexing phase, the spoken content description of each annotation is extracted
by an automatic speech recognition (ASR) system and stored. During the retrieval
phase, a user inputs a spoken query word (or alternatively a query text). The
spoken content description extracted from that query is matched against each
spoken content description stored in the database. The system will return photos
whose annotations best match the query word.
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Figure 7.22 MPEG-7 SDR demonstration (TU-Berlin)

This retrieval system can be based on the MPEG-7 SpokenContent high-level
tool. The ASR system first extracts an MPEG-7 SpokenContent description from
each noise-reduced spoken document. This description consists of an MPEG-7-
compliant lattice enclosing different recognition hypotheses output by the ASR
system (see Chapter 4). For such an application, the retained approach is to
use phones as indexing units: speech segments are indexed with phone lattices
through a phone recognizer. This recognizer employs a set of phone HMMs and
a bigram language model. The use of phones restrains the size of the indexing
lexicon to a few units and allows any unknown indexing term to be processed.
However, phone recognition systems have high error rates. The retrieval system
exploits the phone confusion information enclosed in the MPEG-7 SpokenCon-
tent description to compensate for the inaccuracy of the recognizer (Moreau
et al., 2004). Text queries can also be used in the MPEG-7 context. A text-to-
phone translator converts a text query into an MPEG-7-compliant phone lattice
for this purpose.
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