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Preface

The Workshop on Real and Complex Singularities is a series of biennial workshops
organized by the singularity group at the Instituto de Ciências Matemáticas e
de Computação, of the Universidade de São Paulo, São Carlos (ICMC-USP, São
Carlos), Brazil. Its main purpose is to bring together specialists in the vanguard of
singularities and its applications. Initiated in 1990, it became a key international
event for people working in the field.

For the first time not in São Carlos, “The 8th workshop on real and complex
singularities” took place at the Centre International de Rencontres Mathématiques,
Luminy, France, from 19 to 23 of July, 2004. A total of 94 mathematicians from 19
countries (Brazil, France, Belgium, Canada, Denmark, England, Germany, Hun-
gary, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Poland, Portugal,
Russia, Spain, U.S.) participated in this very successful event, among these, 24
from Brazil.

The workshop program consisted of 14 plenary sessions, 44 ordinary sessions,
and 2 mini-courses given by Maxim Kazarian on “Calculations on Thom polyno-
mials”, and Victor Goryunov on “Lagrangian and Legendrian Singularities ”.

We could not have organized the workshop without the help of many people
and institutions. We start by thanking the members of the Scientific Committee:
Jose Manuel Aroca, Jim Damon, Gert Martin Greuel, Abramo Hefez, Heisuke Hi-
ronaka, Alcides Lins Neto, Marcio Soares, Bernard Teissier, Terry Wall for their
support for the event. The workshop was funded by Institutions from Brasil:
FAPESP, CNPq, CAPES, USP, and from France: Ministère de l’Enseignement
Supérieur et de la Recherche, Université de la Méditerranée, CNRS (Délégation
Régionale Provence, FRUMAM, IML, LATP), Conseil Général des Bouches-du-
Rhône, Ville de Marseille. Their support we gratefully acknowledge. We are also
very grateful to the staff of the IML and the CIRM for their help to organize the
event.

It is a pleasure to thank the speakers and the participants whose presence
was the real success of the 8th Workshop.

Marseille, São Carlos

Jean-Paul Brasselet, Maria Ruas





Introduction

“Singularities are all over the place. Without singularities, you cannot talk about
shapes. When you write a signature, if there is no crossing, no sharp point, it’s just
a squiggle. It doesn’t make a signature. Many phenomena are interesting, or some-
times disastrous, because they have singularities. A singularity might be a crossing
or something suddenly changing direction. There are many things like that in the
world, and that’s why the world is interesting. Otherwise, it would be completely
flat. If everything were smooth, then there would be no novels or movies. The
world is interesting because of the singularities. Sometimes people say resolving
the singularities is a useless thing to do – it makes the world uninteresting! But,
technically it is quite useful, because when you have singularities, computation of
change becomes very complicated. If I can make some model that has no singular-
ities but that can be used as a computation for the singularity itself, then that’s
very useful. It’s like a magnifying glass. For smooth things, you can look from a
distance and recognize the shape. But when there is a singularity, you must come
closer and closer. If you have a magnifying glass, you can see better. Resolution of
singularities is like a magnifying glass. Actually, it’s better than a magnifying glass.

A very simple example is a roller coaster. A roller coaster does not have
singularities – if it did, you would have a problem! But if you look at the shadow
that the roller coaster makes on the ground, you might see cusps and crossings.
If you can explain a singularity as being the projection of a smooth object, then
computations become easier. Namely, when you have a problem with singularities
in evaluation or differentiation or whatever, you can pull back to the smooth thing,
and there the calculation is much easier. So you pull back to the smooth object,
you do the computation or analysis, and then pull back to the original object to see
what it means in the original geometry.”

Heisuke Hironaka

Notices of the AMS, v. 52, no. 9.

The papers presented here are a selection of those submitted to the editors. They
are grouped into three categories:

The first set, dedicated to local singularity theory, starts with the notes of
the mini-course on Lagrangian and Legendrian Singularities, by V. Goryunov and
V. Zakalyukin, followed by the papers by F. Aroca, Valuations compatible with
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a projection, D. Barlet, Quelques résultats sur certaines fonctions à lieu singulier
de dimension 1, T. Gaffney, The multiplicity of pairs of modules and hypersur-
face singularities, I. Gregorio and D. Mond, F-manifolds from composed functions,
K. Houston, On Equisingularity of Images of Corank 1 Maps, V.H. Jorge-Perez,
E.C. Rizziolli and M.J. Saia, Whitney equisingularity, Euler obstruction and in-
variants of map germs from Cn to C3, A. Libgober and A. Dimca, Local topology
of reducible divisors, B. Martin, Modular spaces of singularities of the T -series,
A. Pratoussevitch, On the Link Space of a Q-Gorenstein Quasi-Homogeneous Sur-
face Singularity, and D. Siersma and M. Tibar, Singularity exchange at the frontier
of the space.

The second group, dedicated to singular varieties both in affine and pro-
jective spaces, includes the papers Celestian integration, stringy invariants, and
Chern-Schwartz-MacPherson classes, by P. Aluffi, Versality properties of projective
hypersurfaces and Minimal intransigent hypersurfaces, by A. du Plessis, Classifica-
tion of rational unicuspidal projective curves whose singularities have one Puiseux
pair, by J. Bobadilla, A. Nemethi, I. Luengo and A. Melle, Bounding from below the
degree of an algebraic differential system having a prescribed algebraic solution, by
D. Lehmann and V. Cavalier, and Mackey functors on provarieties, by S. Yokura.

The third category includes applications of singularity theory to differential
geometry, robotics, symmetric functions and bifurcation problems, and Goursat
distributions. It contains the papers by A. Diatta and P. Giblin, Vertices and in-
flexions of plane sections of surfaces in R3, by P. Donelan, Trajectory singularities
for a class of parallel motions , by D. Dreibelbis, The Geometry of Flecnodal Pairs,
by I. Labouriau and E. Pinho, by A. Sitta and J.C. Ferreira Costa, Path formula-
tion for Z2 + Z2-equivariant bifurcation problems, and by P. Mormul, Do moduli
of Goursat distributions appear on the level of nilpotent approximations?.

We thank the staff members of Birkhäuser, involved with the preparation of
this book, and all those who have contributed in whatever way to these proceed-
ings. All the papers here have been refereed.

J.P. Brasselet
M. Ruas

Editors
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c© 2006 Birkhäuser Verlag Basel/Switzerland

Celestial Integration, Stringy Invariants,
and Chern-Schwartz-MacPherson Classes

Paolo Aluffi

Abstract. We introduce a formal integral on the system of varieties mapping
properly and birationally to a given one, with value in an associated Chow
group. Applications include comparisons of Chern numbers of birational vari-
eties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta
function specializing to the topological zeta function.

In its simplest manifestation, the integral gives a new expression for
Chern-Schwartz-MacPherson classes of possibly singular varieties, placing
them into a context in which a ‘change of variable’ formula holds.

The formalism has points of contact with motivic integration.

1. Introduction

1.1. In this note I review the notion of celestial integration, and sketch a few
applications; for proofs and further details, the reader is addressed to [Alu05]. I
am very grateful to Jean-Paul and Cidinha for organizing the VIIIème Rencontre
Internationale de São Carlos sur les singularités réelles et complexes au CIRM,
relocating for the occasion the idyllic surroundings of São Carlos, Brasil to the
idyllic surroundings of Luminy, France. Perfect weather, exceptionally interesting
talks, and spirited conversations made the conference a complete success. What
follows was the subject of my lecture at the São Carlos/Luminy meeting, and
preserves (for better or worse) the informal nature of a seminar talk.

I thank the Max-Planck-Institut für Mathematik in Bonn, where much of
this material was conceived and where this note was written.

1.2. Summary: to a variety X I will associate a large group A∗CX (containing the
Chow group A∗X of X); for certain data D, S (arising, for example, from a divisor
D and a constructible subset S of X) I will define a distinguished element∫

S
1(D) dcX ∈ A∗CX .
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These are the celestial integrals in the title; they are not defined as integrals, but
satisfy formal properties justifying the terminology. The celestial qualifier is meant
to evoke the fact that the modification systems on which this operation is defined
are close relatives of Hironaka’s voûte étoilée.
Applications of this construction:
• Comparison of Chern classes of birational varieties;
• Birational invariants;
• ‘Celestial’ zeta functions;
• Invariants of singular varieties (‘Stringy Chern classes’);
• Relations with the theory of Chern-Schwartz-MacPherson classes.

1.3. Digression: motivic integration. This is technically not necessary for the rest
of the talk, but useful nonetheless as ‘inspiration’ for the main construction.

The Grothendieck group of varieties is the free abelian group on symbols [X ],
where X is a complex algebraic variety up to isomorphism, modulo relations

[X ] = [Y ] + [X \ Y ]

for each closed subvariety Y ⊂ X . This group may be made into a ring by setting
[X ] · [Y ] = [X × Y ].

Example 1.1. The class of a point is the identity for this multiplication. The class
[A1] is denoted L; thus

[Pn] = [A0] + [A1] + · · ·+ [An] =
Ln+1 − 1

L− 1
.

As Eduard Looijenga writes ([Loo02], p. 269), this ring – or rather its local-
ization at L – is interesting, big, and hard to grasp. In practice, it is necessary to
further tweak this notion, by a suitable completion with respect to a dimension
filtration; I will glibly ignore such important ‘details’.

Mapping X to its class in this ring gives a universal Euler characteristic: any-
thing satisfying the basic relations – e.g., topological Euler characteristic, Hodge
polynomials and structures,. . . , must factor through this map. This is motivation
to ‘compute’ [X ] for given X .

Through motivic integration, one can determine an element∫
S

L− ord Ddµ

in the completed Grothendieck ring of varieties, from the information of a divisor
D and a constructible subset S of the arc space X of X . If X is nonsingular, then
choosing D = 0, S = X gives

∫
X L0dµ = [X ].

Motivic integration was defined and developed by Maxim Kontsevich, Jan
Denef, and François Loeser, and it is of course much deeper than this brief sum-
mary can begin to suggest. There are many good surveys of this material, for
example: [Cra04], [DL01], [Loo02], [Veya]. For an explanation of what makes mo-
tivic integration motivic, see the appendix in [Cra04].
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The definition of the integral
∫
S L− ord Ddµ relies on the study of the arc

spaces of a variety; dµ is a measure on this space, with value in the completed
Grothendieck ring; the integral is an honest integral with respect to this measure,
and as such it satisfies a change of variable formula: for example, if π : Y → X is
proper and birational, then∫

X
L− ord Ddµ =

∫
Y

L− ord(π−1D+Kπ)dµ ,

where Kπ denotes the relative canonical sheaf.
This formula is at the root of spectacular applications of motivic integra-

tion. For example, suppose X , Y are birational nonsingular, complete Calabi-Yau
varieties; resolve a birational morphism between them:

V
π1

����
��

��
�

π2

���
��

��
��

X ��������� Y

with V nonsingular and π1, π2 proper and birational. Then the Calabi-Yau con-
dition implies Kπ1 = Kπ2 ; denoting this by K gives

[X ] =
∫
X

L0 dµ =
∫
V

L− ord K dµ =
∫
Y

L0 dµ = [Y ] .

Hence: such varieties must have the same topological Euler characteristic, Betti
numbers, Hodge polynomials, etc.

1.4. Motivic integration only serves as motivation for the rest of this lecture, or
maybe more correctly as a motivating analogy. The basic relation in the Gro-
thendieck ring holds (in a suitable sense) for Chern-Schwartz-MacPherson classes;
‘hence’ there should be a ‘motivic’ theory of such classes: it should be possible to
deal with the classes within the framework of an integration theory, satisfying a
suitable change-of-variable formula; one should be able to play tricks such as the
application sketched above at the level of Chern classes.

This is the guiding theme in what follows.

2. Modification systems

2.1. The task is to define an ‘integral’ carrying information about Chern classes.
Taking at heart the lesson learned in motivic integration, we should start by defin-
ing an appropriate context in which this integral may take its value.

Let X be a variety over an algebraically closed field of characteristic zero (the
precise requirement is that embedded resolution à la Hironaka should work).
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Definition 2.1. I will denote by CX the category of proper birational maps

Vπ

π

��
X

with morphisms given in the obvious way by commutative triangles

Vπ1
α ��

π1
���

��
��

��
�

Vπ2

π2
����

��
��

��

X

with α proper and birational.

Proper birational maps are often called modifications, and the natural way to
think of CX is as an inverse system, so it seems appropriate to call this category the
modification system of X . Also, it is useful to take this notion up to the following
equivalence relation: say that CX and CY are equivalent if there exist objects in
CX and CY with a common source. For example, if X and Y are birational and
complete then their modification systems are equivalent in this sense.

2.2. I will (usually) denote by Vπ the source of the object π of CX . It is hard to
resist the temptation to think of the object π really in terms of its corresponding
Vπ, and of CX as a system of varieties birational to X .

Morally I would like to take the inverse limit of this system, and define
ordinary data such as divisors, Chow group, etc. for the resulting provariety. In
practice, it is more straightforward to simply define these data as appropriate
limits of the corresponding data on the individual Vπ ’s. For example, denote by
A∗Vπ the Chow group of Vπ, with rational coefficients; then

AX := {A∗Vπ |π ∈ Ob(CX)}
is an inverse system of abelian groups under proper push-forward.

Definition 2.2. The Chow group of CX is the inverse limit of this system:

A∗CX := lim←−AX .

Thus, an element a ∈ A∗CX consists of the data of a class (a)id in the Chow
group of X and of compatible lifts (a)π for all π ∈ Ob(CX). I call (a)π the π-
manifestation of a.

Note that any class α ∈ A∗X determines a ‘silly’ class a ∈ A∗CX : just set
(a)π := π∗α. One intriguing (to me, at least) consequence of the construction given
in this paper is that certain classes on X have other, more interesting, lifts to A∗CX .
These lifts call for rational coefficients, hence the need for rational coefficients in
the definition of A∗CX .

Equivalent modification systems have isomorphic Chow groups.
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2.3. Other standard notions may be defined similarly. Divisors and constructible
sets of sources Vπ are organized by direct systems, under pull-backs; the corre-
sponding notions for a modification system are defined as direct limits of these
systems.

For example, a divisor D of CX is represented by a pair (π,Dπ) with Dπ

a divisor of Vπ, and where pairs (π,Dπ), (π ◦ α,Dπ◦α) are identified whenever
α : Vπ◦α → Vπ is a proper birational map and Dπ◦α = α−1(Dπ):

Vπ◦α
α �� Vπ

π �� X .

An obvious way to get a divisor D is by pulling back a divisor of X through
the whole system; but note that there are many other divisors: for example, every
subscheme S of X determines a divisor of CX (represented by the exceptional
divisor in the blow-up of X along S). As a bonus, equivalent modification systems
have the same divisors, while birational varieties don’t.

2.4. The story is entirely analogous for constructible subsets of a modification
system. The ‘obvious’ such object is determined by a constructible (for example,
closed) subset of X , by taking inverse images through the system. While this is
our main example, one should keep in mind that the notion is considerably more
general.

Of course, equivalent systems have the same constructible subsets. For ex-
ample, if V maps properly and birationally to both X and Y :

V
πX

����
��

��
�

πY

���
��

��
��

X ��������� Y

then (πX , V ) determines the same subset of CX as (id, X) and the same subset of
CY as (id, Y ); abusing language I may denote this object by CX or CY according to
the context, but the reader should keep in mind that these constructible subsets
of different systems may be identified.

Details about all these notions, and natural definitions (such as sums of divi-
sors, or unions of constructible subsets) are left to the interested reader, and may
be found in [Alu05].

3. Celestial integrals

3.1. The main result of this note is that for a variety X , a divisor D of CX , and
a constructible subset S, there is an element (the ‘celestial integral’ of D over S,
in CX) ∫

S
1(D) dcX

of the Chow group A∗CX , satisfying interesting properties.
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The actual definition of this element is uninspiring; I’ll give it at the end of
the paper for the sake of completeness. The properties satisfied by this ‘integral’
are more important, so they get the honor of prime time.

Of course the notion is additive with respect to disjoint unions of constructible
subsets, as should be expected from an integral. What makes the notion interesting
is that it computes interesting objects for suitable choices of the input data, and
that it satisfies a change-of-variable formula (again, as should be expected from
an integral!).

More explicitly:

Theorem 3.1.

1. (Normalization) Assume X is nonsingular. If S is represented by (id, S) with
S ⊂ X a nonsingular subvariety, then(∫

S
1(0) dcX

)
id

= c(TS) ∩ [S] ,

the total homology Chern class of S, viewed as an element of A∗X.
2. (Change-of-variables) If ρ : Y → X is proper and birational, then∫

S
1(D) dcX =

∫
S
1(D + Kρ) dcY ,

where Kρ denotes the relative canonical divisor of ρ.

The normalization property (1) is self-explanatory; it will serve as a point of
depart for extensions to possibly singular subsets S of a nonsingular variety, in
§§5 and 6. By contrast, (2) deserves an immediate clarification.

3.2. First of all, note that under the given hypotheses we have that CX and CY

are equivalent systems; thus we may indeed treat S and D as data belonging to
either.

Secondly, I have to clarify what I mean by the relative canonical divisor Kρ of
ρ : Y → X . It in fact turns out that there are more than one sensible such notions,
according to the context. In the simplest case, when X and Y are nonsingular, Kρ is
the divisor corresponding to the determinant of the differential dρ : TY → ρ∗TX .
In the general case there is a choice as to what is the correct generalization of TX ;
I’ll come back to this point in §5.2.

Further, in general the scheme corresponding to the vanishing of the determi-
nant may not be locally principal. This is not a problem in our context, however,
since every subscheme of every variety in the modification system CX determines
a divisor of the system, as observed in §2.3.



Celestial Integration 7

4. Sketch of applications

4.1. Invariance of Chern classes. Exactly as in the case of motivic integration, the
change-of-variable formula yields an invariance statement for celestial integration
across birational morphisms preserving the canonical class.

Two varieties X , Y (nonsingular, for simplicity) are K-equivalent if their
modification systems are equivalent, and the canonical divisors KX , KY agree in
the system(s): that is, if the pull-backs of KX , KY to a common source agree:

V
πX

����
��

��
�

πY

���
��

��
��

X ��������� Y

π∗
XKX = π∗

Y KY .

In this situation, letting K = KπX = KπY and applying the change-of-
variable formula (2) gives:∫

S
1(D) dcX =

∫
S
1(D + K) dcV =

∫
S
1(D) dcY .

Therefore:

Theorem 4.1. Celestial integrals on K-equivalent varieties agree as elements of the
(common) Chow group of the corresponding modification systems.

4.2. For example, applying this observation with D = 0, S = CX (= CY on Y ) and
using (1) from §3 shows that c(TX)∩ [X ] and c(TY ) ∩ [Y ] are manifestations (in
A∗X , A∗Y , respectively) of the same class in the Chow group of the modification
system.

This recovers the fact (known, for example, through motivic integration) that
the Euler characteristics of K-equivalent varieties must agree. More generally, it
shows (via a simple application of the projection formula) that all numbers

ci
1 · cn−i

with n = dimX = dimY must agree for K-equivalent varieties.
Incidentally, these numbers must therefore be invariant through classical

flops, and hence (as shown by Burt Totaro, [Tot00]) they must factor through the
complex elliptic genus. It is a pleasant exercise to verify this fact directly: these
numbers can be assembled into a genus (which I would like to call the cuspidal
genus, for reasons which will likely be apparent to many readers), corresponding
to the characteristic exT (1 + xU); it is straightforward to check directly that the
cuspidal genus factors through the complex elliptic genus.

The invariance of Chern numbers mentioned above is of course only a very
particular case of similar results accessible through celestial integration. Every
choice of a divisor and a constructible subset yields an analogous (but, unfortu-
nately, usually much less transparent) invariance statement.
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4.3. Birational invariants. As another application, we can extract new birational
invariants from the integral. For example, let

dCan(X) := {deg
∫
CX

1(K) dcX | K effective canonical divisor of X} ⊂ Z .

Theorem 4.2. If X, Y are birational complete varieties, then dCan(X) = dCan(Y ).

For example: if X is birational to a Calabi-Yau variety Y , then dCan(X) =
{χ(Y )}.

An interesting question is whether an analogous (and nontrivial) invariant
can be defined for varieties without effective canonical divisors. A few natural can-
didates for such invariants, involving negative representatives, must be ruled out
at the moment because of a sticky technical obstacle to the definition of celestial
integrals for noneffective divisors (see §7).

4.4. Zeta functions. In analogy with motivic integration, zeta functions can be
concocted from motivic integrals. For example, for a divisor D of X (say defined
by f = 0) set

Z(D,m) :=
∫
CX

1(mD) dcX ,

a series in the variable m, with coefficients in A∗CX ; here D is the divisor in CX

determined by D. Then

Theorem 4.3. The degree of Z(D,m) equals the topological zeta function of f .

This connection makes it possible to formulate analogs of the monodromy
conjecture (see for example [Veya], §6.8) for celestial zeta functions. I hope that
the celestial viewpoint will add something to the circle of ideas surrounding zeta
functions. For example, conceivably the relationship between celestial integration
and the theory of Chern-Schwartz-MacPherson classes (§6) may give a tool to
compute local contributions to the zeta function of a hypersurface in terms of the
Segre class of its singularity subscheme.

5. Stringy invariants

5.1. If X has sufficiently mild singularities, there is a notion of stringy Euler char-
acteristic of X , introduced by Batyrev. For example, in the particular case in
which X admits a crepant resolution V , the stringy Euler characteristic of X may
be defined to be the ordinary Euler characteristic χ(V ) of V : remarkably, this
turns out to be independent of the chosen crepant resolution.

Celestial integration extends this notion to a whole class in A∗X . By the
normalization property (Theorem 3.1 (1)),(∫

CX

1(0) dcX

)
id

= c(TX) ∩ [X ]
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if X is nonsingular; but the expression on the left-hand-side defines an element of
A∗X even if X is singular (in fact, the celestial integral defines this expression
together with distinguished lifts to all varieties mapping to X). If X admits a
crepant resolution π : V → X , it is easy to check that this definition produces the
push-forward π∗c(TV )∩ [V ]. By the Poincaré-Hopf theorem, therefore, the degree
of this class recovers the stringy Euler characteristic of X in this case.

This in fact holds for any X for which the stringy Euler characteristic is
defined, justifying the following:

Definition 5.1. The stringy Chern class of X is the identity manifestation(∫
CX

1(0) dcX

)
id

.

Coincidentally, a notion of stringy Chern class was produced simultaneously
as the one presented above, by Tommaso de Fernex, Ernesto Lupercio, Thomas
Nevins, and Bernardo Uribe (in fact, the preprint [dFLNU] appeared on the arXiv
during the São Carlos/Luminy conference!). While the approaches to the two no-
tions differ somewhat, the two stringy classes agree.

5.2. There is a subtlety here, which I can only touch upon in this note. For singular
X , the notion of celestial integral depends on the choice of a good notion of relative
canonical divisor. The ‘usual’ notion is constructed starting from the double dual
ωX of the Kähler differentials Ωdim X

X of X ; this ‘ω flavor’ of the celestial integral is
what leads to the stringy Chern class recovering the usual stringy Euler character-
istic, as explained above, and agreeing with the class introduced by deFernex et al.

The ω flavor leads to a technical difficulty, which may make the celestial
integral (and hence stringy Chern classes) undefined if the singularities of X are
not mild enough – the technical condition is that they should be log terminal.
Whether stringy classes (or more generally celestial integrals) may be defined for
varieties with more general singularities is an open question, see §7.

One way out of this bind is to choose a different notion of relative canonical
divisor in the main set-up. For example, one can avoid taking the double-dual,
leading to the ω flavor as mentioned above; this leads to a different notion (which
I call the Ω flavor of the integral), which is defined for arbitrarily singular varieties.
While this yields a stringy Chern class for arbitrary varieties, the meaning of this
class (for example vis-a-vis the stringy Euler characteristic) has not been explored.

6. Chern-Schwartz-MacPherson classes from celestial integrals

6.1. The stringy notion presented in §5.1 amounts to taking the identity manifes-
tation of the integral of 0 over the whole modification system CX of the variety X .
By the normalization property ((1) in Theorem 3.1), this yields the usual Chern
class of the tangent bundle of X when X is nonsingular.
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There is a different natural way to use the same tool and define a class general-
izing c(TX)∩ [X ]: embed X into an ambient nonsingular variety M , then compute
the identity manifestation of the celestial integral of 0 over the constructible subset
X determined by X : (∫

X
1(0) dcM

)
id

.

With due care, this class can be defined in A∗X (our definition of the celestial
integral would only place it in A∗M); remarkably, as such it does not depend on
the ambient variety M . In fact:(∫

X
1(0) dcM

)
id

!= cSM(X) ,

the Chern-Schwartz-MacPherson class of X .
This is a famous notion, going back to Marie-Hélène Schwartz ([Sch65]) and

Robert MacPherson ([Mac74]). In MacPherson’s construction (as recalled, for ex-
ample, in [Ful84], §19.1.7), one obtains in fact a natural transformation c∗ from
the functor of constructible functions (with proper push-forward defined by Euler
characteristic of fibers) to the Chow group functor; applying c∗ to the constant
function 1X defines the class cSM(X).

6.2. The connection between celestial integrals and Chern-Schwartz-MacPherson
classes mentioned above goes in fact much deeper. Given any divisor D and any
constructible subset S of a modification system CX , one may define a constructible
function by

p �→ IX(D,S) := deg
(∫

S∩p

1(D) dcX

)
;

here, S∩p is the constructible subset of CX obtained by intersecting S with inverse
images of p through the system.

Theorem 6.1.
(∫

S
1(D) dcX

)
id

= c∗(IX(D,S)) .

Thus, celestial integrals and Chern-Schwartz-MacPherson classes are, in a
sense, equivalent information: each can be obtained from the other.

Classes such as the stringy Chern class considered in §5.1 correspond, via
MacPherson’s natural transformation, to specific constructible functions. These
‘stringy’ characteristic functions deserve much further study.

The apparatus of Chern-Schwartz-MacPherson classes is an important ingre-
dient in the construction in [dFLNU].

6.3. It should be noted that the definition of celestial integration (which I will
finally summarize in §7) does not rely on Chern-Schwartz-MacPherson classes;
the latter are an honest subproduct of the former. Thus, one could try to recover
the main defining features of Chern-Schwartz-MacPherson classes from celestial
properties.
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For example, I would like to venture the guess that the covariance property of
Chern-Schwartz-MacPherson classes is a facet of the change-of-variable formula
for celestial integrals. This should mean that the change-of-variable formula is
a Riemann-Roch theorem in disguise. As things stand now I don’t even have a
precise version of this ‘guess’ to offer, and I will have to leave it at the stage of
half-baked speculations.

7. The definition

A summary of celestial integration without a definition of this notion would be
incomplete, even though I have tried to defend the idea that the definition itself
is less important than the fact alone that such a notion exists – in practice, the
normalization and change-of-variable properties suffice for interesting applications
and do not require the actual definition of the integral to be appreciated.

In any case, here is the definition. Given a divisor D and a constructible
(say closed and proper, for simplicity) subset S of the modification system CX ,
embedded resolution of singularities ensures that there is an object π : Vπ → X
in CX , a normal crossing divisors E with nonsingular components Ej , j ∈ J , and
divisors Dπ, Sπ = ∪j∈JSEj of Vπ such that:
• D is represented by (π,Dπ);
• S is represented by (π, Sπ);
• Dπ + Kπ =

∑
j∈J mjEj , with mj ∈ Q.

This set of data depends on the chosen notion of relative canonical divisor Kπ.
Assume that all coefficients mj are > −1.

Definition 7.1.
(∫

S
1(D) dcX

)
π

:= c(ΩVπ (logE)∨) ∩
∑

I⊂J, I∩JS �=∅

[∩i∈IEi]∏
i∈I(1 + mi)

This expression defines the manifestation of the integral on all varieties such
as Vπ , in which the data D, S are ‘resolved’ by a normal-crossing divisor. The
manifestation on any other variety is obtained by push-forward, compatibly with
the requirement that the celestial integral is an element of the inverse limit A∗CX .

The obvious difficulty with this definition is that it is not at all clear that
it should not depend on the chosen π used to resolve the given data. In motivic
integration, similar expressions are obtained a posteriori, and compute intrinsically
defined objects, hence it is clear that they do not depend on the choices. In celestial
integration I have to prove the necessary independence explicitly, directly from
Definition 7.1.

Theorem 7.2. If all mj are > −1, then the given expression does define an element
of the inverse limit A∗CX.

This is proved by applying the factorization theorem of [AKMW02], which
reduces this claim to a computation across blow-ups along nonsingular centers.
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Manipulating the expressions is a somewhat messy, but manageable, exercise in
standard intersection theory.

The independence requires that all mj > −1 (even though the expression
in Definition 7.1 makes sense as soon as no mj is = −1); this is where the sin-
gularities of X may play a rôle for the particular case D = 0, as I discussed in
§5.2: the restriction mj > −1 in this case amounts to the requirement that X be
log terminal.

The difficulty arising if some mj ≤ −1 is that in a chain of varieties connecting
two varieties where the data is resolved, one may appear for which the expression
in Definition 7.1 does not make sense, for the mundane reason that one of the
denominators in the expression may vanish.

This problem arises in many different contexts, of which celestial integration
is but one instance (see for example [Veya], §8, Question I). While there is a feeling
that the obstacle is technical rather than conceptual, it has opposed stubborn
resistance to the attempts made so far to overcome it, and examples such as the
one presented in §3.4 in [Veyb] suggest that the issue may be more fundamental
than initially expected.

The question of exactly which celestial integrals are well defined outside the
range specified in Theorem 7.2 is subtle and difficult. Answering this question is a
worthwhile challenge: the present state of affairs limits the scope of the definition
of certain key celestial integrals and hence, as pointed out in §4 and §5, of some
potentially interesting applications.
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Abstract. Given an N-dimensional germ of analytic hypersurface H, a finite
projection π : H −→ CN and a valuation ν on the ring of convergent series
in N variables, we study the valuations on the ring OH that extend π∗ν. All
these valuations are described when ν is a monomial valuation whose weight
vector is not orthogonal to any of the faces of the Newton Polyhedron of
the discriminant of the projection π. This description is done in terms of the
Puiseux parameterizations of H with exponents in a cone.
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1. Introduction

Let H be an irreducible germ of analytic hypersurface at the origin in CN+1, let
π : H −→ (CN , 0) be a finite projection and denote by R the ring of convergent
series in N variables. Given a valuation ν∼ : R −→ R≥0∪{∞}, we want to describe
all the valuations ν : OH −→ R≥0 ∪ {∞} that extend ν∼. That is, that make the
diagram

OH
ν−→ R≥0 ∪ {∞}

π∗

↖
ν∼
↗

R
(1.1)

commute.
In this note all these valuations are described when ν∼ is a monomial val-

uation whose weight vector is not orthogonal to any of the faces of the Newton
Polyhedron of the discriminant of the projection π. This description is done in
terms of the Puiseux parameterizations of H.
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The question was posed to me by Bernard Teissier at the congress “Singu-
larity theory and Applications” held at Sapporo in 2003. I thank Daniel Levcovitz
for fruitful discussions during the preparation of this note.

In all what follows H will be a germ of analytic hypersurface embedded in
(CN+1, 0) defined by F (x1, . . . , xN , y) = 0, where F = yd + ad−1y

d−1 + · · ·+ a0 is
an irreducible polynomial of degree d in y and ai ∈ R. The projection

π : H −→ CN

(x1, . . . , xN , y) �→ (x1, . . . , xN ) (1.2)

will be supposed to be finite. The discriminant of the projection π will be denoted
by δ. That is

δ(x1, . . . , xN ) = Resultanty(F,
∂

∂y
F ).

The ideal of R[y] generated by F will be denoted by I. So that OH = R[y]
I

and π∗ is the natural inclusion R ↪→ R[y]
I .

2. Monomial valuations

Given a Laurent series ϕ =
∑

α∈ZN aαx
α, the set of exponents of ϕ is the set

E(ϕ) := {α ∈ ZN | aα �= 0}.
When E(ϕ) is finite, ϕ is a Laurent polynomial. When E(ϕ) is contained in the
first orthant, ϕ is a series with non-negative exponents.

A subset of RN of the form σ = {λ1v1 + · · · + λrvr | λi ∈ R≥0} for some
v1, . . . , vr ∈ QN is called a (rational convex polyhedral) cone. A cone is said to be
strongly convex when it contains no non-trivial linear subspace.

Let σ ⊂ RN be a strongly convex cone. The set of formal Laurent series with
exponents in σ

C[[σ]] = {ϕ | E(ϕ) ⊂ σ}
is a ring with the natural sum and product.

Definition 2.1. The Newton polyhedron of a series φ ∈ R is the convex hull in RN

of the set E(φ) + R≥0
N and is denoted by NPφ. Let V be a vertex of NPφ. The

cone of NPφ associated to V is the cone

σV = {v ∈ RN | (V + λv) ∈ NPφ for some positive real number λ}.

Remark 2.2. The cone σV is always strongly convex and contains the positive
orthant.

Now for k ∈ N consider the ring of series

C[[σ]] 1
k

:=

⎧⎪⎨⎪⎩
∑

α∈( 1
k Z)N∩σ

aαx
α | aα ∈ C

⎫⎪⎬⎪⎭ .
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When k divides k′ there is a natural inclusion C[[σ]] 1
k
↪→ C[[σ]] 1

k′ . So, it makes
sense to consider the ring of formal Puiseux series with exponents in σ

C[[σ]]℘ :=
⋃
k∈N

C[[σ]] 1
k
.

Given a formal series with rational exponents φ =
∑

α∈QN aαx
α the set of

exponents of φ is the set E(φ) := {α ∈ QN | aα �= 0}. The set of exponents of a
formal Puiseux series with exponents in a cone is contained in a lattice.

We will work only with cones σ containing the first orthant, for such σ we
have the following diagram of inclusions:

R −→ C[[σ]] −→ Fr(C[[σ]])
↓ ↓

C[[σ]]℘ −→ Fr(C[[σ]]℘)

where Fr(A) stands for the field of fractions of A.
The dual of a cone σ is the cone σ∨ := {v ∈ RN | u · v ≥ 0, ∀u ∈ σ}. A cone

σ ⊂ RN is strongly convex if and only if the interior of σ∨ (as a subset of RN ) is
not empty.

Definition 2.3. Let σ be a strongly convex cone. Given w ∈ σ∨ the map

νw : C[[σ]]℘ −→ R ∪ {∞}

defined by
νwφ = min

α∈E(φ)
w · α (2.1)

is a valuation called the monomial valuation with weight w.

By restriction, νw induces a valuation in all subrings of C[[σ]]℘. The extension
of νw|R from R to C[[σ]]℘ is not unique. Anyhow the following holds:

Lemma 2.4. There exists a unique way to extend νw|C[[σ]] from the ring of series
with exponents in σ to the ring of Puiseux series with exponents in σ.

Proof.

C[[σ]] 1
k

= C[[σ]][x1
1
k , . . . , xN

1
k ] =

C[[σ]][t1, . . . , tN ]
({tik − xi}i=1,...,N )

.

The field extension

Fr (C[[σ]]) ↪→ Fr (C[[σ]]) (x1
1
k , . . . , xN

1
k )

is a normal algebraic extension. Its Galois group is formed by the automorphisms

g(j1,...,jN ) : xi
1
k �→ ξjixi

1
k ; ξk = 1, (j1, . . . , jN ) ∈ NN

by a theorem of Ostrowski and Krull [5, F,Theorem 1] two extensions of a given
valuation are conjugate. Since νw(g(j1,...,jN )(φ)) = νwφ we have the result. �
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Remark 2.5. Let C[σ] denote the ring of Laurent polynomials with exponents in
σ. That is C[σ] = {ϕ ∈ C[[σ]] | #E(ϕ) < ∞}. Then C[[σ]] is the completion of
C[σ] with respect to the valuation νw for any w in the interior of σ∨. The field of
fractions of C[σ] is the same as the field of fractions of C[x1, . . . , xN ]. Then, C[[σ]]
is a ring of dimension N .

3. Parametrizations with exponents in a cone

J. McDonald showed in [4] that given a polynomial P in C[x1, . . . , xN ][y], for any
w ∈ RN of rationally independent coordinates, there exists a strongly convex cone
σ, with w ∈ σ∨ such that P has a root in C[[σ]]℘. Moreover he gives an algorithm to
compute such series. Then, P. González Pérez showed in [3] that σ may be chosen
to be a cone of the Newton polyhedron of the discriminant of P with respect to y.

Definition 3.1. Let σ ⊂ RN be a cone. For � ∈ (R>0)
N , the σ-wedge of polyradius

� is the set

W(σ, �) :=
{
z ∈ (C∗)N ; τ(z)u ≤ �u, ∀u ∈ σ ∩ ZN

}
where τ(z1, . . . , zN ) = (|z1|, . . . , |zN |).

Denote by δ the discriminant of F with respect to y. For each vertex V of
the Newton Polyhedron of δ let σV be the cone of NPδ associated to V (Definition
2.1). By [1, Proposition 5.1], there exists �V ∈ (R>0)

N such that the σV -wedge of
polyradius �V does not intersect the zero locus of δ.

Definition 3.2. A connected component of π−1(W(σV , �V )) ∩ H will be called a
σV -branch of H.

Given a σV -branch C of H the degree of the covering π : C −→ W(σV , �V )
will be denoted by dC.

Remark 3.3. Let BV be the set of σV -branches of H, d =
∑

C∈BV

dC, d being the

degree of F in y.

The following proposition is proved in [1]:

Proposition 3.4. Let V be a vertex of NPδ and let σV be the cone of NPδ associated
to V . Given a σV -branch C of H, there exist a σV -wedge W and a series ϕC ∈
C[[σV ]], convergent on W such that

ΦC : W −→ CN+1

(x1, . . . , xN ) �→ (x1
dC , . . . , xN

dC , ϕC(x))

parameterizes C. That is:{
(x1

dC , . . . , xN
dC , ϕC(x)) | (x1, . . . , xN ) ∈W

}
= C. (3.1)
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Remark 3.5. Let ζ be a primitive dC-root of unity, the set of functions with prop-
erty (3.1) is{

ϕC(ζi1x1, . . . , ζ
iN xN ) | ij ∈ {1, . . . , dC}

}
=

{
ϕ

(1)
C , . . . , ϕ

(dC)
C

}
and it has exactly dC elements.

Remark 3.6. The irreducibility ofH implies that a polynomial h ∈ R is an element
of I if and only if it vanishes on C. That is

h(x1
dC , . . . , xN

dC , ϕC(x1, . . . , xN )) = 0

which is equivalent to h(x1, . . . , xN , ϕC(x1

1
dC , . . . , xN

1
dC )) = 0.

4. σ-branches and primary decomposition

Let V be a vertex of NPδ and let C be a σV -branch of H. We will denote by JC

the kernel of the morphism

C[[σV ]][y] −→ C[[σV ]]
h(x1, . . . , xN , y) �→ h(x1

dC , . . . , xN
dC , ϕC(x))

where ϕC is as in Proposition 3.4.
Since C[[σV ]] is an integral domain, JC is a prime ideal of C[[σV ]][y]. By

Remark 3.6 we have I = JC ∩R[y] for any C ∈ BV .

Proposition 4.1. Let IσV be the extension of I to the ring C[[σV ]][y] via the natural
inclusion. Then

IσV =
⋂

C∈BV

JC.

Proof. Let IσV
℘

be the extension of I to the ring C[[σV ]]℘[y] via the natural
inclusion. Since C[[σV ]][y] ↪→ C[[σV ]]℘[y] is an integral extension, by the “Going-
up theorem” [2, Theorem 5.10] there exists an ideal L ⊂ C[[σV ]]℘[y] such that
IσV = L ∩ C[[σV ]][y]. We have that

IσV
℘ ∩ C[[σV ]][y] = Lcec = Lc = IσV (4.1)

where c stands for contraction and e for extension.
Set φ

(i)
C := ϕ

(i)
C (x1

1
dC , . . . , xN

1
dC ), i = 1, . . . dC, where the ϕ

(i)
C are as in Re-

mark 3.5. Each ϕ
(i)
C is a root of F as a polynomial in y. Then

dC∏
i=1

(y−φ
(i)
C ) divides

F as an element of C[[σV ]]℘[y]. This, together with Remark 3.3, implies

F =
∏

C∈BV

dC∏
i=1

(y − φ
(i)
C ). (4.2)
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Let K(i)
C be the kernel of the morphism

C[[σV ]]℘[y] −→ C[[σV ]]℘

h(x, y) �→ h(x, φ(i)
C (x)).

By Remark 3.6 we have

JC = K(i)
C ∩ C[[σV ]][y] for any i ∈ {1, . . . , dC}. (4.3)

Equation (4.2) implies IσV
℘

=
⋂

C∈BV

dC⋂
i=1

K(i)
C , and the conclusion follows from (4.1)

and (4.3). �

Proposition 4.2. The only prime ideals P of C[[σV ]][y] with the property P∩R[y] =
I are of the form JC with C ∈ BV .

Proof. It follows from Proposition 4.1 and Remark 2.5. �

5. The theorem

Given w ∈ R>0
N , take a vertex V of the Newton polyhedron of δ such that w ∈ σ∨.

Each σV -branch C of H induces a valuation

νC : OH −→ R ∪∞
h(x1, . . . , xN , y) �→ 1

dC
νwh(x1

dC , . . . , xN
dC , ϕC)

that extends νw.

Theorem 5.1. Let w ∈ R>0
N be a vector non-orthogonal to any of the faces of the

Newton Polyhedron of δ, and let V be the only vertex of NPδ such that w belongs
to the dual of σV . Then all the valuations that extend νw are the ones induced by
the σV -branches of H.

We start by proving a lemma:

Lemma 5.2. Let w be a vector in the interior of σV
∨, and let ν : OH −→ R≥0∪{∞}

be a valuation that extends νw. There exists a σV -branch C of H and a valuation
ν̄ : C[[σV ]][y]

JC
−→ R ∪ {∞} that makes the diagram

C[[σV ]] ↪→ C[[σV ]][y]
JC

←↩ OH

↘ νw ↓ ν̄ ν ↙

R ∪ {∞}
commutative.
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Proof. An element h ∈ C[[σ]][y] is written as

h =
deg h∑
i=0

ψiy
i, where ψi =

∑
α∈ZN∩σ

a(i)
α xα.

For each i ∈ {0, . . . ,deg h} and j ∈ Z set

ψ
(j)
i :=

∑
α ∈ ZN ∩ σ

j ≤ w · α < j + 1

a(i)
α xα.

Since w is in the interior of σ∨, for all j, the set {α ∈ ZN ∩ σ | j ≤ w · α < j + 1}
is finite and then the ψ

(j)
i ’s are Laurent polynomials. We have

ψi =
∞∑

j=0

ψ
(j)
i for all i ∈ {1, . . . ,deg h}.

Let R[y]I be the localization of R[y] with respect to I. Since I ∩ R = {0}, we
have

ψ
(j)
i ∈ R[y]I , ∀j ∈ Z and∀i ∈ {1, . . . ,deg h}

Let ν̂ : RI −→ R be the extension of the morphism given by the composition

R[y] −→ OH
ν−→ R ∪∞.

Since ν extends νw and ψ
(j)
i ∈ Fr(R), we have ν̂

(
ψ

(j)
i

)
= νw

(
ψ

(j)
i

)
≥ j. Then

ν̂

⎛⎜⎝ ∑
i ∈ {1, . . . ,deg h}

ψ
(K)
i yi

⎞⎟⎠ ≥ K + min{0, ν(y) deg h}, ∀K. (5.1)

Set

τK := ν̂

⎛⎜⎝ K∑
j=0

∑
i ∈ {1, . . . ,deg h}

ψ
(j)
i yi

⎞⎟⎠ .

Inequality (5.1) implies that either τK ≥ K + min{0, ν(y) deg h} for all K or
there exists K such that τl = τK for all l > K. Then it makes sense to define:

ν̃h := lim
K−→∞

τK .

By construction, ν̃(hh′) = ν̃(h) + ν̃(h′) and ν̃(h + h′) ≥ min{ν̃(h), ν̃(h′)}, then ν̃

induces a valuation ν̄ :
C[[σ]][y]
ν̃−1(∞)

−→ R ∪∞.

The ideal ν̃−1(∞) is prime and ν̃−1(∞)∩R[y] = I. Then, by Proposition 4.2
there exists C ∈ BV such that ν̃−1(∞) = JC. �
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Proof of the theorem. Let C and ν̄ : C[[σ]][y]
JC

−→ R∪ {∞} be as in the lemma. Let

K(1)
C be as defined in the proof of Proposition 4.1, and let ¯̄ν be an extension of ν̄

to
C[[σV ]]℘[y]

K(1)
C

.

Given h ∈ R[y],

h(x, y) = h(x, φ(1)
C ) + (y − φ

(1)
C )g(x, y), where g(x, y) ∈ C[[σ]]℘.

So,
ν(h) = ¯̄ν(h) = ¯̄ν(h(x, φ(1)

C )) lemma2.4= νwh(x, φ(1)
C )) = νCh. �
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Quelques Résultats sur Certaines Fonctions
à Lieu Singulier de Dimension 1

Daniel Barlet

Abstract. This text is a survey on my recent work [B.04] on some holomorphic
germs having a one dimensional singular locus. An analogous of the Brieskorn
module of an isolated singularity is defined and a finiteness theorem is proved
using Kashiwara’s constructibility theorem. A bound for the (finite dimen-
sional) torsion is also obtained. Non existence of torsion is proved for curves
(reduced or not) an this property is stable by “Thom-Sebastiani” adjunction
of an isolated singularity. This provides a lot of examples in any dimension
where our formula r = µ(f)+ ν(f) generalizing the Milnor number formula,
is valid.

1. Le complexe (Ker df •, d•)

Nous introduisons, de façon générale pour une fonction holomorphe f sur une
variété complexe X , le complexe (Ker df•, d•) de faisceaux sur Y := f−1(0) en
posant:

Ker dfp := Ker
[
∧ df : Ωp

X |Y → Ωp+1
X |Y

]
et où la différentielle d• est induite par la différentielle de de Rham.
Les faisceaux de cohomologie de ce complexe seront notés par H•.
De façon générale1 ces faisceaux de cohomologie sont naturellement munis de deux
opérations a et b. La première est simplement donnée par la multiplication par
f . La seconde est donnée par l’inverse de la connexion de Gauss-Manin, c’est à
dire par b = df ∧ d−1. On a le résultat général suivant

Proposition 1.1. Soit f : (Cn+1, 0) → (C, 0) un germe non nul de fonction
holomorphe. Considérons pour p ∈ [1, n + 1] le C-espace vectoriel

Hp
0 :=

(
(Ker df)p ∩Ker d

)
0

/
d((Ker df)p−1)0

1c’est à dire sans hypothèse sur f .
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muni des C-endomorphismes a et b définis respectivement par la multiplication
par f et df ∧ d−1.
Alors Hp

0 vérifie les conditions 0), 1), 2), et 3) de la définition d’un pré-(a,b)-
module donnée ci-dessous.

Pour les démonstrations, le lecteur se reportera de façon générale à mon preprint
[B.04] qui est accessible sur matharxiv.

Définition 1.2. Soit E un espace vectoriel complexe muni d’endomorphismes a
et b.
On pose:

B(E) =
⋃

m∈N

Ker bm et A(E) = {x ∈ E / C[b].x ⊂
⋃

m∈N

Ker am }

On dira que E est un pré-(a,b)-module lorsque les conditions suivantes sont
vérifiées

0) a.b− b.a = b2.
1) Pour tout λ ∈ C∗, b− λ est bijectif dans E.
2) ∃N ∈ N /aN .A(E) = 0 et on a B(E) ⊂ A(E).
3)

⋂
m∈N bm(E) ⊂ A(E).

4) Le noyau et le conoyau de b sont de dimensions finies sur C. �
On dira que E est sans torsion2 si on a de plus Ker b = 0, ce qui équivaut à
B(E) = 0 et donc à l’absence de b-torsion. Mais ceci implique aussi A(E) = 0
(voir [B.04] Lemme (1.3)). Dans le cas considéré dans la proposition ci-dessus le
théorème de positivité de B. Malgrange [M. 74] donne alors l’absence de a-torsion3

(voir aussi [B.S.04]).

A tout pré-(a,b)-module E on associe un (a,b)-module, c’est à dire un module
libre de type fini sur l’anneau C[[b]] muni d’un endomorphisme C-linéaire a qui
est continu pour la topologie b-adique et vérifie

ab− ba = b2.

Nous le noterons par L(E) et c’est le complété b-adique du quotient E/B(E).
On remarquera que grace à la relation 3) (et à l’égalité entre B(E) et A(E))
on a b-séparation de ce quotient. Donc E/B(E) s’injecte toujours dans L(E).
Quand E est sans torsion, on en déduit que la dimension complexe de E/bE est
le rang du (a,b)-module L(E). En général ce rang est donné par dimE/bE − δ
où δ := dim Ker b.
Les (a,b)-modules que l’on associe à des singularités sont loin d’être les plus
“généraux”; en particulier ils sont réguliers, propriété qui reflète la regularité de la
connexion de Gauss-Manin. Pour plus de détails la-dessus consulter par exemple
[B. 93], [B.04] ou [B.S.04] ).

2même en l’absence de la condition 4).
3ce qui est plus fort, en général, que la nullité de A(E).
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2. L’hypothèse (H)

Soit f̃ : (Cn+1, 0) −→ (C, 0) un germe non constant de fonction holomorphe et
soit f : X −→ D un représentant de Milnor de f̃ . Nous ferons les hypothèses
suivantes (auxquelles nous nous référons sous le nom de “l’hypothèse (H)”)

H a) Le lieu singulier S := {x ∈ X
/
dfx = 0} est une courbe contenue dans

Y := f−1(0), dont chaque composante irréductible contient l’origine et est
non singulière en dehors de 0.

H b) En chaque point x de S − {0} il existe un germe en x de champ de
vecteur holomorphe Vx , non nul en x, tel que Vx · f ≡ 0.

L’hypothèse H b) est assez restritive puisqu’elle implique que le long de chaque
composante connexe de S − {0} la singularité {f = 0} est une déformation
localement analytiquement triviale de la singularité hyperplane transverse (qui est
une singularité isolée de Cn).
Cependant il est facile de voir que cette hypothèse est toujours vérifiée pour n = 1
(courbes planes réduites ou non ) et qu’il y a beaucoup d’exemples en dimensions
supérieures, comme le montreront les théorèmes 5 et 7.

Proposition 2.1. Sous l’hypothèse (H) on a les propriétés suivantes:
1) Les faisceaux de cohomologie Hp du complexe (Ker df•, d•) sont nuls pour

p �= 1, n, n + 1.
2) Pour n ≥ 2 le faisceau H1 � Ker df1 ∩ Ker d est constant sur Y de

fibre isomorphe à E1 = Ω1
C,0 muni des opérations a et b “naturelles” de

multiplication par z et de “primitive sans constante” .
3) Pour n ≥ 2 le faisceau Hn a son support contenu dans S. Il est localement

constant sur S∗ := S \ {0}. Sa fibre en un point d’une composante connexe
S∗

j de S∗ est le module de Brieskorn de la singularité obtenue par section
hyperplane transverse. De plus le faisceau Hn n’a pas de torsion (même à
l’origine).

4) Le faisceau Hn+1 est supporté par l’origine.
5) Pour n = 1 on a une suite exacte de faisceaux sur Y , compatible aux

opérations a et b:

0→ E1 ⊗ CY → H1 → H̃1 → 0

où le faisceau H̃1 a son support dans S et induit sur S∗ un système local
évident à décrire4.

Introduisons maintenant deux ingrédients importants dans cette situation.

2.1. L’idéal Ĵ(f)
Notons par J(f) l’idéal jacobien de f et soit i : X \ {0} ↪→ X l’inclusion, où
X désigne ici une boule de Milnor pour f à l’origine. Définissons alors l’idéal
(cohérent) Ĵ(f) := i∗i∗(J(f)). Donc un germe g de fonction holomorphe à

4la singularité transverse se réduit à la multiplicité transverse dans ce cas.
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l’origine sera dans Ĵ(f)0 si et seulement s’ il induit une section de J(f) en
dehors de 05. Le faisceau cohérent Ĵ(f)

/
J(f) est à support l’origine. C’est donc

un espace vectoriel de dimension finie. Nous poserons

µ(f) := dim Ĵ(f)
/
J(f)

ce qui définit l’analogue du nombre de Milnor pour le cas d’une fonction à singu-
larité isolée6.

2.2. Le DX -module M
Définissons maintenant l’idéal à gauche I de DX comme l’déal engendré par
Ĵ(f) et par l’annulateur de f dans le faisceau ΘX des champs de vecteurs
holomorphes sur X :

Ann(f) = {V ∈ ΘX/ V.f ≡ 0}.
Posons alors M := DX

/
I.

Il est clair que l’hypothèse (H) implique immédiatement que M est un DX -
module holonome de support contenu dans S. D’après le théorème de constructibi-
lité de M. Kashiwara [K. 75] son complexe de de Rham est à cohomologie con-
structible. En particulier, le faisceau DRn+1(M) est concentré à l’origine et se
réduit à un espace vectoriel de dimension finie. Nous poserons

ν(f) := dimDRn+1(M).

On remarquera que pour f à singularité isolée à l’origine on a M = 0 puisque
Ĵ(f) = OX . On a donc ν(f) = 0 dans ce cas.

Théorème 2.2. Sous l’hypothèse (H) l’espace vectoriel

E′ := Hn+1
0 � H0

{0}(Y,Hn+1)

est un pré-(a,b)-module de rang r vérifiant

dimE′/b.E′ = µ(f) + ν(f)− γ + δ et r = µ(f) + ν(f)− γ

où γ et δ sont les dimension de Ker j7 et de Ker b. De plus on a les majorations:

δ ≤ γ ≤ dimH1
{0}(S,Hn

/
b.Hn).

On a γ = 0 et donc l’égalité dimE′/b.E′ = µ(f) + ν(f) = r sous la condition
(P) décrite ci-dessous.

On remarquera que comme Hn
/
b.Hn est un système local d’espaces

vectoriels de dimensions finies sur S∗, on a bien une majoration finie de γ. Par
ailleurs ce majorant est en pratique assez facile à estimer.

5nous supposerons toujours n ≥ 1 ce qui permet d’utiliser Hartogs.
6dans ce cas bJ(f) = OX .
7Voir plus loin la définition de j.
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3. Etude de la torsion

3.1. La condition (P)

Comme le fait E. Brieskorn dans le cas d’une fonction à singularité isolée à l’origine,
il est intéressant d’introduire également le faisceau

E ′′ := Ωn+1
X

/
df ∧ dΩn−1

X

en plus du faisceau E ′ ≡ Hn+1. Il est également muni d’opérations a et b
naturelles vérifiant la relation de commutation ab − ba = b2. On a alors une
surjection naturelle compatible à a et b

j : E ′′ → E ′

de noyau d(Ker df)n
/
df ∧ dΩn−1

X . Mais le faisceau E ′′ n’est pas, en général,
supporté par l’origine sous l’hypothèse (H)8.
Posons:

E′ := H0
{0}(X, E ′) et E′′ := H0

{0}(X, E ′′).
La suite exacte de cohomologie à support l’origine déduite du morphisme j donne
une suite exacte (a,b)-linéaire

0→ H0
{0}(X,Ker j)→ E′′ ĵ→ E′ → · · ·

On a également une suite exacte de faisceaux

0→ E ′ b̃→ E ′′ → Ωn+1
X

/
df ∧ Ωn

X → 0 (µ)

où le morphisme b̃ est donné par df ∧ d−1. Comme le faisceau E ′ est à support
l’origine, on en déduit la suite exacte

0→ E′ b̃→ E′′ → H0
{0}(X,Ωn+1

X

/
df ∧ Ωn

X)→ 0

et l’application b : E′ → E′ est la composée ĵ ◦ b̃. Comme b̃ est injective,
l’injectivité de ĵ implique celle de b dans E′. La condition suivante est necessaire
et suffisante pour que l’application ĵ soit injective:

d(Ker dfn) ∩ Ĵ(f).Ωn+1
X ⊂ df ∧ dΩn−1

X (P)

alors qu’une condition nécessaire et suffisante pour avoir l’injectivité de
b : E′ → E′ est donnée par l’inclusion:

d(Ker dfn) ∩ (df ∧ Ωn
X) ⊂ df ∧ dΩn−1

X . (P’)

Bien sur, la condition (P) implique la condition (P’). Mais il est bon de préciser,
qu’à ce jour, je ne connais pas d’exemple de germe vérifiant l’hypothèse (H) et ne
vérifiant pas la condition (P). Malheureusement, je n’ai pas non plus de preuve
que l’hypothèse (H) implique toujours la condition (P). C’est cependant vrai (et
non trivial) pour n = 1:

8comme le montre la suite exacte (µ) ci-dessous.
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Théorème 3.1. Pour n = 1, c’est à dire pour les germes à l’origine de C2, réduits
ou non, la condition (P) est toujours vérifiée.

La preuve de ce résultat utilise la récurrence tordue suivante qui permet de tenir
compte des multiplicités d’annulation d’une fonction sur les différentes compo-
santes irréductibles de Y 9.

Lemme 3.2 (récurrence tordue.). Soient p1, . . . , pk des entiers ≥ 2 et soient
φ1 · · ·φk des fonctions strictement croissantes

φj : [0, pj − 1] ∩ N −→ [0, 1] vérifiant φj(pj − 1) = 1, ∀j ∈ [1, k].

Considérons des propositions A(σ1, . . . , σk) indéxées par les entiers

σj ∈ [0, pj − 1] ∩ N.

On suppose

1) A(0, . . . , 0) est vraie .
2) l’implication A(σ1, . . . , σk)⇒ A(σ1, . . . , σj + 1, . . . , σk) est vraie si les deux

conditions suivantes sont satisfaites
a) σj ≤ pj − 2
b) φj(σj) = minl∈[1,k]{φl(σl)}

Alors la proposition A(p1 − 1, . . . , pk − 1) est vraie.

On prendra garde que nous n’affirmons pas ici que A(σ1, . . . , σk) est vraie pour
toutes les valeurs de (σ1, . . . , σk).

Le résultat suivant fournit, à partir de ce théorème, une bonne quantité d’exemples
de fonctions vérifiant l’hypothèse (H) pour lesquelles la condition (P) est vraie:

Théorème 3.3. Soit f un germe de fonction à singularité isolée à l’origine de
Cn+1 et soit g un germe de fonction holomorphe à l’origine de Cp+1 vérifiant
l’hypothèse (H). Alors le germe de fonction holomorphe F à l’origine de Cn+p+2

défini par
F (x, y) := f(x) + g(y) pour (x, y) ∈ Cn+1 × Cp+1

vérifie (H). De plus, le (a,b)-module associé à F à l’origine est le produit ten-
soriel10 des (a,b)-modules associés à l’origine à f et g respectivement.
Si, de plus, le germe g vérifie la condition (P), il en est de même pour F .

Dans la situation du théorème ci-dessus, on peut également décrire le faisceau
Hn+p+1 associé à F 11 à partir du module de Brieskorn de f et du faisceau Hn

associé à g.

9rappelons que l’on est ici dans C2 et donc que Y est une courbe et que S est la réunion des
composantes irréductibles de Y de multiplicité ≥ 2.
10au sens des (a,b)-modules ; voir ci-dessous.
11ou plus exactement le faisceau de (a,b)-module qui lui est associé après complétion formelle.
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3.2. Produits tensoriels de (a,b)-modules

Nous allons nous contenter ici de définir le produit tensoriel de deux (a,b)-modules,
ce qui permet de comprendre le résultat à la “Thom-Sébastiani” énoncé ci-dessus.

Définition 3.4. Etant donné deux (a,b)-modules E et F nous poserons

E ⊗a,b F := E ⊗C[[b]] F

comme C[[b]]-module, et nous définirons l’endomorphisme C-linéaire a en posant

a := aE ⊗ 1F + 1E ⊗ aF .

On vérifie alors immédiatement la relation de commutation ab − ba = b2 sur
E ⊗a,b F . Comme un (a,b)-module est complètement déterminé par la donnée
d’une C[[b]]-base ainsi que l’action de a sur cette base (grâce à la relation de
commutation et à la continuité de a pour la topologie b-adique) il est facile de
décrire en ces termes le produit tensoriel de deux (a,b)-modules donnés de cette
façon.

En fait dans [B.04] on définit également la notion de produit tensoriel de deux
pré-(a,b)-modules et on montre, sous une condition très large12, que l’on obtient
à nouveau un pré-(a,b)-module. On montre alors que le (a,b)-module associé au
produit tensoriel est le produit tensoriel des (a,b)-modules associés.

3.3. Un exemple

Considérons le polynôme homogène à deux variables13

f(X,Y ) = X3(X3 + Y 3).

Il est facile de voir que Ker df1
/
O.df est engendré par la 1-forme associé au

champ de vecteur

V = XY 2 ∂

∂X
− (2X3 + Y 3)

∂

∂Y
annulant f et de divergence div V = −2Y 2. Posons Ṽ = V − div(V ).
On a J(f) = X2.(2X3 + Y 3, XY 2), Ĵ(f) = (X2) et
dimC Ĵ(f)

/
J(f) = µ(f) = 9 .

Par ailleurs, en explicitant DR2(M) on trouve:

ν(f) = dimOX

/
(Ĵ(f)) + Ṽ (OX).

Pour calculer dimC

(
C{X,Y }

/
(X2) + Ṽ

(
C{X,Y }

))
on regarde l’identité

Ṽ (XpY q) = (p− q − 2)XpY q+2 − 2qXp+3Y q−1 ;

on peut donc réduire XaY b à Xa+3Y b−3 pourvu que a �= b et b ≥ 2.

12l’hypothèse “locale”, à savoir l’existence d’un entier l tel que al.E ⊂ b.E; elle est toujours
satisfaite dans les cas que nous considérons.
13pour n = 1 l’hypothèse (H) est toujours vérifiée, ainsi que la condition (P) comme nous
l’avons vu plus haut.
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Si a = b ≥ 2 on est dans (X2). Il reste donc 1, X, Y et XpY pour p < 2.
Donc 1, X, Y,XY donne une base et ν(f) = 4.
Alors L(E′)14 est un (a,b)-module de rang 13. Une base de E′/

bE′ est donnée
par

1, X, Y,XY,X2, X3, X4, X5, X2Y,X3Y,X4Y,X5Y,X2Y 2.

Comme on a

b(XpY q)dX ∧ dY = df ∧ Xp+1Y q

p + 1
dY = −df ∧ XpY q+1

q + 1
dX,

on en déduit que

a[XpY q] =
p + q + 2

6
.b[XpY q].

Pour calculer le (a,b)-module associé à l’origine au polynôme à trois variables
F (X,Y, Z) = X3(X3 + Y 3) + Z2 il nous suffit donc de calculer le (a,b)-module
de Brieskorn associé à la fonction Z → Z2 et de faire le produit tensoriel avec
celui associé à X3(X3 + Y 3) à l’origine. Le (a,b)-module de Brieskorn associé à
Z → Z2 est de rang 1 et engendré par un générateur e vérifiant a.e = 1

2 .b.e. Le
produit tensoriel est donc de rang 13 et engendré par les XpY q ⊗ e mais avec

a[XpY q ⊗ e] =
p + q + 5

6
b[XpY q ⊗ e].
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[B.93] Barlet, D. Théorie des (a, b)-modules I, in Complex Analysis and Geometry,
Plenum Press, (1993), p. 1–43.

[B.04] Barlet, D. Sur certaines singularités non isolées d’hypersurfaces I, preprint In-
stitut E. Cartan 2004/ n0 03, 47 pages.

[Br.70] Brieskorn, E. Die Monodromie der isolierten Singularitäten von Hyperflächen,
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1. Introduction

It is a very old and interesting open problem to characterize those collections of
embedded topological types of local plane curve singularities which may appear
as singularities of a projective plane curve C of degree d. (We invite the reader to
consult the articles of Fenske, Flenner, Miyanishi, Orevkov, Sugie, Tono, Zaiden-
berg, Yoshihara or [3] and the references therein, for recent developments.) The
goal of the present article is to give a complete (topological) classification of those
cases when C is rational and it has a unique singularity which is locally irreducible
(i.e., C is unicuspidal) with one Puiseux pair.

In fact, as a second goal, we also wish to present some of the techniques which
are/might be helpful in such a classification, and we invite the reader to join us
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in our effort to produce a classification for all the cuspidal rational plane curves.
In fact, this effort also motivates that decision, that in some cases (in order to
have a better understanding of the present situation), we produce more different
arguments for some of the steps.

In the next paragraph we formulate the main result. We will write d for the
degree of C and (a, b) for the Puiseux pair of its cusp, where 1 < a < b. We denote
by {ϕj}j≥0 the Fibonacci numbers ϕ0 = 0, ϕ1 = 1, ϕj+2 = ϕj+1 + ϕj .

Theorem 1.1 (Main Theorem). The Puiseux pair (a, b) can be realized by a unicus-
pidal rational plane curve of degree d if and only if (d, a, b) appears in the following
list.
(a) (a, b) = (d− 1, d);
(b) (a, b) = (d/2, 2d− 1), where d is even;
(c) (a, b) = (ϕ2

j−2, ϕ
2
j ) and d = ϕ2

j−1 + 1 = ϕj−2ϕj, where j is odd and ≥ 5;
(d) (a, b) = (ϕj−2, ϕj+2) and d = ϕj, where j is odd and ≥ 5;
(e) (a, b) = (ϕ4, ϕ8 + 1) = (3, 22) and d = ϕ6 = 8;
(f) (a, b) = (2ϕ4, 2ϕ8 + 1) = (6, 43) and d = 2ϕ6 = 16.

All these cases are realizable: (a) e.g., by {zyd−1 = xd}, (b) by {(zy−x2)d/2 =
xyd−1}, or by the parametrization [z(t) : x(t) : y(t)] = [1 + td−1 : td/2 : td]. The
existence of (c) and (d) is guaranteed by the results by Miyanishi-Sugie in [7] by
Miyanishi and or by Kashiwara classification [5], Corollary 11.4. These two cases
can be realized by a rational pencil of type (0, 1): the generic member of the pencil
is (c), while the special member of the pencil is of type (d) (cf. also with the last
paragraphs of the present article). Orevkov in [9] provides a different construction
for curves which realize the case (d) (denoted by him by Cj). Similarly, the cases
(e) and (f) are realized by the sporadic cases C4 and C∗

4 of Orevkov [9].

1.1. Remarks

(1) Since C is rational and its singular locus p has Milnor number µ = (a−1)(b−1),
the genus formula says that

(a− 1)(b− 1) = (d− 1)(d− 2). (1)

On the other hand, not any triple (d, a, b) with (a− 1)(b− 1) = (d− 1)(d− 2) can
be geometrically realized. E.g., (5, 3, 7) or (17, 6, 49) cannot.
(2) There are two integers which coordinate the above classification. The first one
is defined as follows. Let π : X → P2 be the minimal good embedded resolution
of C ⊂ P2, and let C̄ be the strict transform of C. Clearly, (π∗C, C̄) = C2 = d2,
and π∗C = C̄ + abE−1 + · · · (where E−1 is the unique −1 exceptional curve of π),
hence d2 = C̄2 + ab. Using (1), we get:{

a + b = 3d− 1− C̄2

ab = d2 − C̄2.
(2)

Then C̄2 in the above cases is as follows: it is positive for (a) and (b), it is zero
for (c), equals −1 for (d), and = −2 for (e) and (f).
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(3) The second guiding integer is the logarithmic Kodaira dimensions κ̄ := κ̄(P2\C)
(cf. [4]). Its values are the following (cf. [9]): −∞ for (a)-(d), and 2 for the last
two sporadic cases. (In particular, κ̄ depends only on the integers (d, a, b), and it
is independent on the analytic type of C which realizes these integers.)

In particular, the above classification shows that κ̄ = −∞ if and only if
C̄2 > −2.

In fact, after we finished the manuscript, we learned from the introduction of
[10] that in [16] (written in Japanese) it is proved that for any unicuspidal rational
curve C, κ̄ = −∞ if and only if C̄2 > −2. Using [16] (i.e., this equivalence),
a possible ‘quick’ classification for C̄2 > −2 would run as follows: Since for all
these cases κ̄ = −∞, we just have to separate in Kashiwara’s classification [5]
those unicuspidal curves with exactly one Puiseux pair. Their numerical invariants
(d, a, b) are exactly those listed in (a)–(d).

On the other hand, this argument probably does not show what is really
behind the classification of this case. Therefore, we decided to keep the structure
of our manuscript, and provide an independent classification.

Note also that in [2] we list the complete topological classification of the
cuspidal rational curves with κ̄ < 2. In fact κ̄ = 0 cannot occur because of a result
of Tsunoda’s [11], see also Orevkov’s paper [9]. Moreover, Tono in [10] provides all
the possible curves C with κ̄ = 1: there is no one with one Puiseux pair.

Hence, in our case, the remaining part of the classification corresponds to
C̄2 ≤ −2, or equivalently, to κ̄ = 2. In general, the classification of this (‘general’)
case is the most difficult; and in our case it is not clear at all at the beginning (and,
in fact, it is rather surprising) that there are only two (sporadic) cases satisfying
these data.

(4) Let α = (3 +
√

5)/2 be the root of α + 1
α = 3. Notice that in family (d) d/a

and b/d asymptotically equals α. In fact, for j odd, {ϕj/ϕj−2}j are the increasing
convergents of the continued fraction of α. Using this, another remarkable property
of the family (d) can be described as follows (cf. [9], page 658). The convex hull of
all the pairs (m, d) ∈ Z2 satisfying m + 1 ≤ d < αm (cf. with the sharp Orevkov
inequality [9], or 2.4) coincides with the convex hull of all pairs (m, d) realizable
by rational unicuspidal curves C (where d = deg(C) and m = mult(C, p)) with
κ̄(P2 \C) = −∞; moreover, this convex hull is generated by curves with numerical
data (a) and (d).

(5) It is clear that the families (a)–(d) are organized in nice series of curves. It is
less clear from the statement of the theorem, but rather clear from the proof, that
also (e)–(f) form a ‘series’: they are the only curves with 3d = 8a (cf. also with
the next remark).

(6) A hidden message of the classification (and some of the steps of the proof) is
that there is an intimate relationship between the semigroup of N generated by
the elements a and b, and the intervals of type ( (l − 1)d , ld ]. The endpoints d
and 3d play crucial roles in some of the arguments. (E.g., C̄2 ≤ −2 if and only if
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a + b > 3d; see also 2.5.) This fact is deeply exploited in [2]. In fact, that paper
strongly motivated the present manuscript.
(7) The (part of the) proof in section 4 clearly shows the deficiencies of the known
restrictions, bounds which connect the local data (a, b) with the degree d – although
we list and try to use a large number of them. On the other hand, the above
classification fits perfectly with the conjectured restriction proposed by the authors
in [2] (valid in a more general situation), which, in fact, alone would provide the
classification.

2. Restrictions and bounds

In the present section we list some general results which impose some restrictions
for the integers (d, a, b). We start with a trivial one: (1) and (2) clearly imply:

Lemma 2.1 (The ‘trivial’ bound.). In any situation b ≥ d. Moreover, if b = d then
(a, b) = (d− 1, d).

If b > d then a < d− 1. The next result proves a ‘gap’ for a: if a < d− 1 then
a ≤ d/2 too.

Lemma 2.2 (The ‘dual curve bound’). If b > d then d ≥ 2a (hence b > 2a too).

Proof. Let (C, p) be the germ of the singular point p of C, and let {mi}i be the
multiplicity sequence of (C, p). We will use the symbol ∨ for the corresponding
invariants of the dual curve C∨ of C. By a result of C.T.C. Wall [15] Proposition
7.4.5, the blow ups of the singularities (C, p) and (C∨, p∨) (where p∨ corresponds to
the tangent cone of (C, p)) are equisingular. Assume that b < 2a. Then m2 = b−a,
hence m∨

2 = b − a ≤ m∨
1 . But, according [15], the intersection multiplicity of the

tangent cone of (C, p) with C at p is i = m1 + m∨
1 , hence d ≥ i = m1 + m∨

1 ≥
a + b − a = b, a contradiction. In particular, b ≥ 2a. In this case m2 = a, hence
m∨

2 = a as well. The above argument gives: d ≥ i ≥ m1 + m∨
1 ≥ 2a. �

2.1. The semicontinuity of the spectrum

The very existence of the curve C shows that the local plane curve singularity (C, p)
is in the deformation of the local plane curve singularity (U, 0) := (xd +yd, 0) (see,
e.g., [1] (3.24)). In particular, we can use the semicontinuity of the spectrum for
this pair [13, 14]. More precisely, this assures that in any interval (c, c + 1), the
number of spectral numbers of (C, p) is not larger than the number of spectral
numbers of (U, 0). E.g., for the intervals (−1 + l/d, l/d) (l = 2, 3, . . . , d) one has
the following inequality:

#{ i
a

+
j

b
<

l

d
; i ≥ 1, j ≥ 1} ≤ 1 + 2 + · · ·+ l − 2 =

(l − 2)(l − 1)
2

. (SSl)

Notice that the inequality (SSd) is automatically satisfied (with equality), since
for both singularities the number of spectral numbers strict smaller than 1 is
(d− 1)(d− 2)/2.
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2.2. Example. The inequality (SSd−1)
We denote by #d−1 the number of lattice points at the left-hand side of (SSd−1).
Since i/a < (d− 1)/d and a < d, one gets that 1 ≤ i ≤ a− 1. Therefore,

#d−1 =
a−1∑
i=1

#{j : 1 ≤ j < b(
d− 1
d

− i

a
)} =

a−1∑
i=1

⌈
b− b

d
− ib

a

⌉
− 1,

hence

#d−1 = (a− 1)(b− 1)−
a−1∑
i=1

⌊ b
d

+
ib

a

⌋
.

This expression can be computed explicitly. Indeed, since (a, b) is a lattice point
and gcd(a, b) = 1, one has:

a∑
i=1

⌊ ib
a

⌋
=

(a + 1)(b + 1)
2

− a,

hence
a∑

i=1

⌊ ib
a

+
b

d

⌋
=

(a + 1)(b + 1)
2

− a + a
⌊ b
d

⌋
+

a∑
i=1

⌊{ ib

a

}
+

{ b

d

}⌋
.

Notice that the set {ib/a} for i = 1, . . . , a is the same as the set r/a for r =
0, . . . , a− 1. Moreover, r/a + {b/d} ≥ 1 if and only if a− 1 ≥ r ≥ �a(1− {b/d})�,
hence the number of possible r’s is �a{b/d}�. Therefore,

a∑
i=1

⌊ ib
a

+
b

d

⌋
=

(a + 1)(b + 1)
2

− a +
⌊ab
d

⌋
.

Hence
a−1∑
i=1

⌊ ib
a

+
b

d

⌋
=

(a + 1)(b + 1)
2

− a− b−
⌊ b
d

⌋
+

⌊ab
d

⌋
,

or

#d−1 =
(a− 1)(b− 1)

2
+

⌊ b
d

⌋
−

⌊ab
d

⌋
,

Then, using (1) and (2), (SSd−1) becomes:⌊ b
d

⌋
+

⌈ C̄2

d

⌉
≤ 2. (3)

2.2.1. Other examples of (SSl). (SS2) is equivalent with 1/a+ 1/b ≥ 2/d. This is
true automatically, since 1/a + 1/b ≥ 1/d + 1/(d− 1) > 2/d. The next inequality
(SS3) is equivalent with 2/b + 1/a ≥ 3/d, which also is satisfied automatically.

If b > d then a+2b > 3a+ b (cf. 2.2), hence (SS4) is equivalent with the pair
of inequalities: a + 2b ≥ 4ab/d and 4a + b ≥ 4ab/d. Or, via (2):

min{3a, b} ≥ d + 1 +
d− 4
d

C̄2.
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This with an (absolute) lower bound for C̄2 already is interesting: 3a > d+const,
which has the flavor of the Matsuoka-Sakai inequality 3a > d (see 2.3) proved by
different methods.

By a similar method as above, one can verify that (SSd−2) is equivalent with:⌊2b
d

⌋
+

⌈2C̄2

d

⌉
≤ 5.

and (SSd−3) is equivalent with:⌊3b
d

⌋
+

⌊3b
d
− b

a

⌋
+

⌈3C̄2

d

⌉
≤ 8.

In general, one expects that the set of all inequalities (SSl) is really strong.

2.3. Matsuoka-Sakai inequality

The next set of restrictions are provided by Bogomolov-Miyaoka-Yau type inequal-
ities in [6] which in our case reads as d < 3a (valid for any κ̄).

2.4. Remark. Orevkov’s inequality

Orevkov in [9] obtained different improved versions of 2.3. Below α = (3+
√

5)/2 ≈
2.618 and β = 1/

√
5.

(a) [9] Theorem B(a): If κ̄ = −∞, then d < αa.
(b) [9] Theorem B(b): If κ̄ = 2, then d < α(a + 1)− β.
(c) [9] (2.2)(4): If κ̄ = 2, then

−C̄2 ≤ −2 +
a

b
+

b

a
. (4)

Finally, we end with the following:

2.5. The ‘semigroup density property’ [2]
Let Γ be the semigroup of (C, p), i.e., the semigroup (with 0) of N generated by
the integers a and b. Then for any 0 ≤ l < d the following inequality holds:

#Γ ∩ [0, ld] ≥ (l + 1)(l + 2)/2.

Proof. It is instructive to sketch the proof for l = 3 case: we wish to prove #Γ ∩
[0, 3d] ≥ 10. Recall that a cubic is determined by 9 parameters. Therefore, #Γ ∩
[0, 3d] ≤ 9 would imply the existence of a cubic with intersection multiplicity with
C at p strict greater than 3d, which contradicts Bézout’s theorem. �

In the classical theory, many ‘candidates’ (d, a, b) were eliminated by dif-
ferent geometric constrictions using ingenious Cremona transformations. We will
exemplify this in 4.3.
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3. The classification in the case C̄2 > 0

Theorem 3.1. If C̄2 > 0 then either (a, b) = (d− 1, d) or (a, b) = (d/2, 2d− 1).

Proof. Since b ≥ d (cf. Lemma 2.1), by (3) we get that C̄2 ≤ d. Clearly, equality
holds if and only if (a, b) = (d− 1, d). Next, assume that 0 < C̄2 < d. Then again
by (3) one has �b/d� ≤ 1, or b < 2d. But notice that b < 2d− 1 would imply (by
(1)) that a > d/2 which contradicts Lemma 2.2. Hence b = 2d− 1. �

4. Classification in the case C̄2 ≤ −2

4.0.1. Our first goal is to prove that 3d ≥ 8a. For this we apply 2.5 for l = 3.
Since a+b > 3d (cf. (2)) and 9a > 3d (cf. 2.3), the needed 10 elements of Γ∩ [0, 3d]
must be b, 0, a, . . . , 8a, hence 8a ≤ 3d.

Corollary 4.1. κ̄(P2 \ C) = 2.

Proof. κ̄ cannot be −∞ because of 2.4(a); cannot be 0 because of [9], Theorem
B(c) (see also [11]). Unicuspidal rational curves with κ̄ = 1 are classified by K.
Tono [10], the corresponding splice diagrams are listed in [2]: there is no example
with one Puiseux pair. �

Now, the classification for C̄2 ≤ −2 can be finished in two different ways.

4.1. First proof. Using the computer

The first version is based on the inequality 2.4(b). Notice that in the case of a
geometric realization one must have

3α(a + 1)− 3β > 3d ≥ 8a,

which is true only if a ≤ 44, (or, by using again d < α(a+1)−β), only if d ≤ 117.
Hence, we have only to analyze the finite family determined by, say, d ≤ 117. Then,
one can search with the computer for 3-uples (d, a, b) verifying all the restrictions
considered above. E.g., we used the conditions d ≤ 117, gcd(a, b) = 1, a < d <
b, d < 3a, 3d ≥ 8a, 2 ≤ −C̄2 ≤ −2 + a

b + b
a , b < α(d − 1)(d− 2)/(d− 2α + β)) +

1, (d − α + β)/α < a, and (SSd−1), (SSd−2), (SSd−3), (SSd−4), (SS4). Using the
inequality 3d ≥ 8a and a similar computation as in the case of (SSd−1), we obtain
that (SSd−4) is equivalent with⌊4b

d

⌋
+

⌊4b
d
− b

a

⌋
+

⌈4C̄2

d

⌉
≤ 13. (5)

Then the only triplets satisfying all these are listed below (in the list appears
(d, a, b; C̄2)):

C1 := ( 8, 3, 22;−2),
C2 := (11, 4, 31;−3),
C3 := (16, 6, 43;−2),
C4 := (17, 6, 49;−5),
C5 := (19, 7, 52;−3),
C6 := (20, 7, 58;−6).
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Next, notice that the curves C1 and C3 exist, they are listed in our classification
theorem. The others do not exist: C2 is eliminated by Orevkov in [9], page 2 (see
also 4.4 (b)); C4 and C6 can be excluded by the semicontinuity property of the
spectrum (applied for all the intervals of type (l/d, l/d + 1), −d < l < d), finally
C5 can be eliminated by the ‘nodal cubic trick’, see Example 4.4 (a). (Notice also
that C2 and C5 cannot be eliminated by the semicontinuity property.)

4.2. Second proof. Resolving diophantic equations

Next we show how one can analyze the case 3d ≥ 8a (cf. 4.0.1) by a diophantic
equation (for the convenience of the reader, later we will make more precise the
geometry behind this equation, cf. 4.2 and 4.3). Our goal is to eliminate everything
excepting C1 and C3, and to emphasize that C exists if and only if 3d = 8a, and
C1 and C3 are the only solutions with 3d = 8a.

Let us write x := 3d− 8a ≥ 0. Then clearly 3|a− x. Moreover,

−C̄2(a− 1) = −(3d− 1− a− b)(a− 1)

= −(x + 7a− 1− b)(a− 1)

= (b − 1)(a− 1)− (x + 7a− 2)(a− 1)

= (d− 1)(d− 2)− (x + 7a− 2)(a− 1).

Using again d = (x + 8a)/3 one gets

−9C̄2(a− 1) = x2 + 7ax + a2 + 9a. (6)

4.2.1. The case x = 0. (6) implies the divisibility a− 1|10. Since one also has 3|a,
the only solutions are a = 3 and a = 6, corresponding to C1 and C3 above.

4.2.2. Facts. −C̄2 ≤ 7 and x ≤ 5.

Proof. First we verify −C̄2 ≤ 7. It is easy to verify (using (1), (2) and d/3 < a ≤
d/2, cf. 2.3 and 2.2) that for 6 ≤ d ≤ 10 this is true. Hence assume that d ≥ 11.
Notice that if for some (positive) k one has kd ≤ −C̄2 < (k + 1)d, then (3) gives
b/d ≤ 3 + k. But d/a < 3 by 2.3, hence b/a < 3(3 + k). Using 2.4(c) one gets
−C̄2 ≤ 3k + 7. Since for k > 0 and d ≥ 11 one has 3k + 7 < dk, one should have
k = 0.

Using this and x ≥ 6, from (6) we get 63(a− 1) ≥ 36 + 42a+ a2 + 9a, which
has no solution. �

Now, we consider the above equation (6) for x ≥ 1. By 4.2.2 we only have to
analyze the cases 1 ≤ x ≤ 5, and eliminate all the solutions.
The case x = 1. In this case one has −9(C̄2 + 2)(a − 1) = (a − 1)2 + 18, hence
3|a − 1|18 but 9 � |a − 1. In particular, a = 4 or 7 corresponding to C2 and C5

above.
The case x = 2. Similarly as above, a− 1|28 and 3|a− 2, hence a− 1 = 4, 7 or 28.
In fact, if a = 5 then d = 12 and b �∈ Z. The next case (d, a, b; C̄2) = (22, 8, 61;−4)
can be eliminated by (5); the last (78, 29, 210;−6) by 2.4(c).
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The case x = 3. Now a−1|40 and 3|a. The possible a’s are a = 3 which gives d = 9
contradicting 2.3; a = 6 providing C4; a = 9 providing (25, 9, 70;−5) which can be
eliminated by (5), and a = 21 providing (57, 21, 155;−6) which is eliminated by
2.4(c).
The case x = 4. (6) has two solutions: C6: (20, 7, 58;−6) and (28, 10, 79;−6), the
second one can be eliminated by (5).
The case x = 5 provides two integral solutions: (23, 8, 67;−7) and (31, 11, 88;−7).
Both can be eliminated by 2.4(c).

We end this section by the description of the promised geometric construction
(used also in [9] and by E. Artal-Bartolo as well).

Lemma 4.2 (The existence of a specific nodal cubic.). There exists a (unique)
irreducible cubic N ⊂ P2 with a node singularity at p such that N and C share the
first seven infinitely near points at p.

Proof. A cubic is determined by nine parameters. The multiplicity sequence of
N at p should be [2, 16]. Passing through p and having multiplicity 2 provides 3
conditions. The remaining six conditions are imposed by the remaining six infin-
itely near points. The condition which would imply that the singularity (N, p) is
a cusp would involve another equation (the vanishing of the determinant of the
quadratic part at p), and the corresponding system of equations would not have
any solution. Similar arguments eliminates other type of singularities (two smooth
branches with contact two, or (N, p) with multiplicity 3). Hence (N, p) is a node.

Next we prove that N cannot be a product of three linear forms. Indeed,
the tangent line L0 of C at p goes just through the first two infinitely near points
because d < 3a and d = L0 · C. Any other line has less tangency than L0. This
also shows that N cannot be L0 ·Q for some Q (transversal to L0 at p).

The remaining possibility is N = LQ where Q is a smooth conic and L and
Q meets transversally at p. Since Q is determined by five conditions (five infinitely
near points) then Q and C must be tangent and share the seven infinitely near
points at p. In particular by Bezout 2d = Q ·C ≥ 6a which is in contradiction with
d < 3a, cf. 2.3. �

4.3. The Cremona transformation associated with the nodal cubic N

Consider the nodal cubic N given in Lemma 4.2. First we verify that C and N
share exactly the first seven infinitely near points. Indeed, assume that this is not
the case. If b ≤ 8a then the multiplicity sequence of (C,P ) is [a7, b−7a, . . . ], hence
3d ≥ 2a+6a+b−7a= a+b = 3d−1−C̄2 > 3d, a contradiction. If b > 8a then the
multiplicity sequence of (C,P ) is [a8, . . . ], hence 3d ≥ 9a which contradicts 2.3.

In particular, the intersection multiplicity of C and N at P is 8a. Assume
that C ∩ N = {P, P1, . . . , Pr}. Notice that at Pi (1 ≤ i ≤ r) both curves C and
N are smooth, let ki be their intersection multiplicity at Pi. By Bezout’s theorem
one has 3d = 8a +

∑
i ki. We prefer to write x :=

∑
i ki, hence 3d = 8a + x (and

the notation is compatible with above).
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Blow up the common seven infinitely near points. We get seven irreducible
exceptional divisors {Ei}7i=1. Let C̃ and Ñ be the strict transforms of C and N .
One has the following intersections: E2

1 = · · · = E2
6 = −2, E2

7 = −1, Ñ2 = −1,
E1 ·E2 = E2 ·E3 = · · · = E6 ·E7 = 1, E1 ·Ñ = E7 ·Ñ = 1. Also, C̃ intersects E7 (but
not the other irreducible exceptional divisors) at a point P ′, and the singularity
(C̃, P ′) has exactly one Puiseux pairs of type (b − 7a, a). The intersection of Ñ
with E7 is not P ′.

Consider now the curve Ñ ∪ ∪6
i=1Ei. Clearly, this can be blown down, and

after this modification π we get another copy of P2. Let the image of C̃ via this
projection be C′. By standard (intersection) argument one gets that the degree d′

of C′ is

d′ = 8d− 21a (which also satisfies 3d′ = 8x + a).

The curve C′ has at most two singular points. One candidate is the (isomorphic)
image of the germ at P ′ with one Puiseux pair (b−7a, a). The other is the common
image of the points {Pi} (1 ≤ i ≤ r). Clearly, if x = 0 then this point does not
exist, if x = 1 then this is a smooth point, but otherwise it is singular. One can
find its embedded resolution graph by blowing up (for each i) ki times the point
Pi. Hence, by A’Campo’s formula one can determine its Milnor number, which
is µ = 7x2 − 7x − r + 1 (provided that x ≥ 1). Since it has r local irreducible
components, the delta-invariant is (7x2 − 7x)/2. Then one can verify that (6)
corresponds to the genus formula of C′.

4.4. Example

(a) Let us start with (d, a, b) = (19, 7, 52). Then x = 1, hence C′ is again rational
and unicuspidal with (d′, a′, b′) = (5, 3, 7). But such a curve does not exist because
of 3.1 (one can also check the classification of rational curves of degree five, e.g.,
in [8]).

(b) Let us consider now the curve C2 above with data (d, a, b) = (11, 4, 31).
Then x = 1, hence C′ is rational unicuspidal, say at Q1, with (d′, a′, b′) = (4, 3, 4).
Notice that a curve with this triplet may exists – although C2 does not. The image
N̄ under the modification π of the exceptional curve E7 is a (rational) nodal cubic
with a node, say at Q2(�= Q1). Moreover, N̄ · C′ = 4Q1 + 8Q2. At Q1, N̄ is non-
singular and with the same tangent as C′, and at Q2 the quartic C′ has intersection
multiplicity 7 with one of the branches of the node of N̄ and 1 with the other. To
show that C2 does not exist we will prove that such configuration of the rational
curves C′ and N̄ in P2 does not exist.

Choosing affine coordinates we may assume that C′ is given by the zero locus
of ay3 +a1y

3x+a2y
2x2 +a3yx

3 +x4 +a0y
4; with a �= 0. In such a case Q1 = (0, 0)

and its tangent line L1 = {y = 0} verifies L1 · C′ = 4Q1. The curve C′ has a
parametrization given by [z(λ, t) : x(λ, t) : y(λ, t)] = [λ4 +a3tλ

3 +a2t
2λ2 +a1t

3λ+
a0t

4 : −at3λ : −at4].
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To have IQ1 (N̄ , C′) = 4 then N̄ must be the zero locus of a polynomial
y + f2(x, y) + f3(x, y) (see the parametrization of C′), where f2(x, y) = m1,1xy +
m2,0x

2 + m0,2y
2 and f3(x, y) = n1,2xy

2 + n2,1x
2y + n3,0x

3 + n0,3y
3.

Next one imposes that, in the affine plane P2 \ L1 = {y �= 0}, the curves
C′ and N̄ must meet at only one point Q2 (with intersection multiplicity 8). The
parametrization of C′ in this affine chart is (z, x) = (s4+a3s

3+a2s
2+a1s+a0,−as)

and the equation of N̄ is given by z2 + f2(x, 1)z + f3(x, 1) = 0. Imposing to have
a solution of the form (As + B)8 gives B = a3A/4 which means s = −a3/4. We
have two possibilities: firstly, if a3 = 0 then s = 0 and Q2 = (z, x) = (a0, 0). The
solutions are given by m1,1 = 2a1/a; m2,0 = −2a2/a

2; m0,2 = −(2a0− a2
2); n1,2 =

(−2a0+a2
2)a1/a; n2,1 = (a2

1+2a0a2−a3
2)/a

2; n3,0 = −2a1a2/a
3; n0,3 = (a0−a2

2)a0.
To have N̄ a node at Q2 implies a2 vanishes and therefore N̄ must be a conic which
is a contradiction.

In the other case, i.e., a3 �= 0 then s = −a3/4 and Q2 = (z, x) = (z0, aa3/4).
The solutions are given by:

m1,1 = (16a1 − a3
3)/(8a);

m2,0 = (3/4a2
3 − 2a2)/a2;

m0,2 = −2a0 + a2
2 + 19a4

3/128− 3a2a
2
3/4;

n1,2 = − 4096a0a1−2048a1a2
2−304a1a4

3+1536a1a2a2
3−256a0a3

3+a7
3

2048a ;

n2,1 = 211a0a2+(25a1)
2−210a3

2−152a2a4
3+768a2

2a2
3−128a1a3

3−768a0a2
3+7a6

3
(25a)2 ;

n3,0 = (−64a1a2 + 32a3a
2
2 + 3a5

3 − 20a2a
3
3 + 24a1a

2
3)/(32a3);

n0,3 = a2
0 − a0a

2
2 − (19/128)a0a

4
3 + (3/4)a0a2a

2
3 + (1/65536)a8

3.

In order N̄ to have multiplicity two at Q2 one needs a2 = 3a2
3/8 but this

condition also impose that the tangent cone of N̄ at Q2 is a double line and
therefore Q2 cannot be a node. Hence this configuration also does not exist.

5. The case C̄2 = 0,−1

In this section we find all the integer solution (d, a, b) of (2) with C̄2 = 0,−1 and
we show that all of them can be realized by some unicuspidal rational plane curve
of degree d and Puiseux pair (a, b). Let ϕj be the ith Fibonacci number, that is
ϕ0 = 0, ϕ1 = 1 and ϕj+2 := ϕj+1 + ϕj . They share many interesting properties,
see, e.g., [12]. We will use here the following:

3ϕj = ϕj−2 + ϕj+2, and ϕ2
j = (−1)j+1 + ϕj−1ϕj+1. (7)

Let Φ = 1+
√

5
2 be the positive solution of the equation Φ2 − Φ− 1 = 0. For every

integer j > 0 one has:

Φj =
ϕj+1 + ϕj−1 + ϕj

√
5

2
. (8)
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5.1. The Pell equation

The system of equations (2) for C̄2 = 0,−1 can be transformed (see below) into
the Pell equation:

x2 − 5y2 = −4, x, y ∈ Z. (9)
Consider the number field K = Q[

√
5] and its ring of integers R = Z[

√
5], which

is a UFD. If γ = x + y
√

5 is a solution of (9) then its norm is NK(γ) = γγ̄ = −4.
Consider η = 1 +

√
5, then NK(η) = −4 and −4 has a prime decomposition

−4 = ηη̄. Since the fundamental unit of K turns out to be u = 2 +
√

5 and γ is
associated either to η or η̄ then γ is either ±urη or ±ūrη̄ (since ū = −1/u) for
r ∈ Z. Moreover NK(u) = −1 which implies that r must be even, that is r = 2j
for j ∈ Z. Then η = 2Φ and from the identity Φ2 = Φ + 1 one gets Φ3 = u.

Thus solutions of (9) are either γ = ±u2jη = ±2Φ6j+1 or γ = ±ū2j η̄ =
±2Φ̄6j+1 with j ∈ Z. Using ΦΦ̄ = −1, γ is either ±2Φ6j+1, ±2Φ6j−1, or their
conjugates ±2Φ̄6j+1,±2Φ̄6j−1 with j ≥ 0.

Using (7) and (8) the set of solutions of (9) is given by
(A) ±

(
ϕ6j+2 + ϕ6j + ϕ6j+1

√
5
)
, with j ≥ 0,

(B) ±
(
ϕ6j + ϕ6j−2 + ϕ6j−1

√
5
)
, with j ≥ 0,

(C) ±
(
ϕ6j+2 + ϕ6j − ϕ6j+1

√
5
)
, with j ≥ 0,

(D) ±
(
ϕ6j + ϕ6j−2 − ϕ6j−1

√
5
)
, with j ≥ 0.

5.2. The case C̄2 = 0
Since gcd(a, b) = 1 and ab = d2 then a = m2, b = n2 and d = mn for some positive
integers m,n with gcd(m,n) = 1. Thus a + b = 3d− 1 transforms into

m2 + n2 = 3mn− 1. (10)

5.3. The case C̄2 = −1
The system (2) provides the equation

a2 + d2 = 3ad− 1. (11)

Thus, any solution (ω, v) of ω2+v2 = 3ωv−1 is a solution of (2ω−3v)2−5v2 = −4.
Hence, with the transformation x = 2ω− 3v, y = v, one gets the solutions of (9).

Case A. If γ = ±
(
ϕ6j+2 + ϕ6j + ϕ6j+1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±ϕ6j+1 and ω = ±(ϕ6j+2 + ϕ6j + 3ϕ6j+1)/2 = ±ϕ6j+3 is a solution of (10)
and (11) (for the last equality use (7)). Since 1 < a < d, if C̄2 = −1, then
a = ϕ6j+1, d = ϕ6j+3 and b = 3d − a = 3ϕ6j+3 − ϕ6j+1 = ϕ6j+5 for some
j > 0, by property (7) of Fibonacci numbers. Similarly, if C̄2 = 0, then ω and
v are both either positive or negative which implies a = ϕ2

6j+1, b = ϕ2
6j+3 and

d = ωv = ϕ6j+1ϕ6j+3 = ϕ2
6j+2 + 1.

Case B. If γ = ±
(
ϕ6j + ϕ6j−2 − ϕ6j−1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±(−ϕ6j−1) and ω = ±(ϕ6j + ϕ6j−2 − 3ϕ6j−1)/2 = ±(−ϕ6j−3) is a solution of
(10) and (11). In the case C̄2 = −1, one gets a = ϕ6j−3, d = ϕ6j−1 and b =
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3d − a = 3ϕ6j−1 − ϕ6j−3 = ϕ6j+1 with j > 0. If C̄2 = 0, then ω and v are both
either positive or negative which implies a = ϕ2

6j−3, b = ϕ2
6j−1 and d = ωv =

ϕ6j−1ϕ6j−3 = ϕ2
6j−2 + 1 with j > 0.

Case C. If γ = ±
(
ϕ6j+2 + ϕ6j − ϕ6j+1

√
5
)
, j ≥ 0, is a solution of (9) then v =

±(−ϕ6j+1) and ω = ±(ϕ6j+2 + ϕ6j − 3ϕ6j+1)/2 = ±(−ϕ6j−1) is a solution of
(10) and (11). If C̄2 = −1, then a = ϕ6j−1, d = ϕ6j+1 and b = ϕ6j+3 with
j > 0. If C̄2 = 0, then ω and v are both either positive or negative which implies
a = ϕ2

6j−1, b = ϕ2
6j+1 and d = ϕ6j−1ϕ6j+1 = ϕ2

6j + 1 with j > 0.

Case D. Any solution in this case is included in the previous cases.

Hence, we determined all the possible integer solutions.

Theorem 5.1 (Classification for C̄2 = −1). If C̄2 = −1 then (a, b) = (ϕj−2, ϕj+2)
and d = ϕj , with j odd ≥ 5. For every such j there exists a unicuspidal rational
plane curve of degree with such invariants.

Theorem 5.2 (Classification for C̄2 = 0). If C̄2 = 0 then (a, b) = (ϕ2
j−2, ϕ

2
j ) and

d = ϕ2
j−1 + 1, with j odd ≥ 5. For every such j there exists a unicuspidal rational

plane curve with such invariants.

Proof. We only need to give equations for such curves. We will rely on [5], Corollary
11.4. Let (x, y) be a system of affine coordinates in P2 and consider

P−1 = y − x2, Q−1 = y, P0 = (y − x2)2 − 2xy2(y − x2) + y5,

Q0 = y − x2, G = xy − x3 − y3, Qs = Ps−1, Ps =
(
Gϕ2s+1 + Q3

s

)
/Qs−1.

Then Ps is a polynomial in x and y of degree ϕ2s+3 and defines a rational uni-
cuspidal curve whose unique singularity p has exactly one characteristic pair
of type (a, b) = (ϕ2s+1, ϕ2s+5). The curves Ps = 0 and Qs = 0 only meet
at p. The rational pencil with only one base point determined by the ratio-
nal function Rs = (Ps)ϕ2s+1/(Qs)ϕ2s+3 has only two special fibres Ps = 0 and
Qs = 0, and the other fibres are rational unicuspidal plane curves of degree
ϕ2s+3ϕ2s+1 = ϕ2

2s+2 + 1. The singularity of a generic fiber has one characteristic
pair (a, b) = (ϕ2

2s+1, ϕ
2
2s+3). �
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Bounding from below the Degree of
an Algebraic One-dimensional Foliation
Having a Prescribed Algebraic Solution

Vincent Cavalier and Daniel Lehmann

In this paper, we summarize [CaLe2] without proof.

Let F be a one-dimensional algebraic foliation of degree d over the complex projec-
tive space Pn: this means (see for instance [LiSo]), that F is given by a morphism
� : O(1−d)→ TPn (d ≥ 0) of holomorphic vector-bundles, where O(k) denotes as
usually the |k|th tensorial power of the tautological holomorphic line-bundle over
Pn when k is negative (resp. of its dual when k is positive), and TPn the complex
tangent space to Pn. [Notice that, for d < 0, there is no morphism but 0 from
O(1 − d) into TPn.] The singularities of F are the points m ∈ M where �m van-
ishes. Let Γ be a (compact connected) algebraic curve of degree δ in Pn, invariant
by F (“invariant” means that, over the regular part Γ0 of Γ, the restriction of �
factorizes through TΓ0). It is not possible in general, as is well known, to bound
from above δ in function of d, without further assumptions on F or on Γ.

However, for n = 2, the inequality d + 2− δ ≥ 0 has been proved
– by Cerveau and Lins-Neto ([CeLi] when Γ has only nodal singularities (see

also [So3]),
– by Carnicer ([C]), when the foliation has only non-dicritical singularity (in

dimension 2, a singularity is said to be “non-dicritical” if there is only a finite
number of separatrices through it).

Moreover, Brunella ([B]) recovered Carnicer’s result by observing that the negativ-
ity of the GSV -indices (see [GSV]) is an obstruction to the above inequality, and
proving that these indices are always non-negative in the non-dicritical case. Car-
nicer and Campillo ([CC]) proved also that there exists some non-negative integer
a, depending on conditions imposed to F or to Γ, such that d + 2− δ ≥ −a.

In higher dimension n, the inequality
(
d+n−

∑n−1
λ=1 δλ

)
≥ 1 has been proved

by Soares ([So2]), when Γ is the complete intersection
⋂n−1

λ=1 Sλ of n− 1 algebraic
hypersurfaces Sλ of degree δλ, under the further conditions that Γ be smooth, and
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the restriction of the foliation to Γ be non-degenerate. (He gave more generally in
[So1][So2] a lower bound for the degree of the algebraic foliations leaving invariant
a smooth submanifold of Pn, under conditions of non-degeneracy of the foliation).
Also, the inequality (d − 1)(δ − 1) − 2g ≥ 1 − r(Γ), has been proved by Esteves
and Kleiman ([EK]), g denoting the geometrical genus of Γ and r(Γ) the number
of its globally irreducible components.

We consider in this paper the case of curves with any kind of singularity, in
any dimension. The normal bundle NΓ0 to the non-singular part Γ0 of Γ in M has
a stable class which always admits a natural extension [NΓ] in the Grothendieck
group K0(Γ). If Γ is moreover a locally complete intersection (LCI) in M , [NΓ]
may even be realized as the stable class of a natural bundle NΓ which is a nat-
ural extension of NΓ0 to all of Γ. (See for instance [LS1][LSS] for the LCI case,
and [CaLeSo1][CaLeSo2] in general). Denote by Σ = SingΓ ∪ (SingF ∩ Γ) the
union (made of isolated points) of the singular part of Γ with the set of singular
points of F which are in Γ. To each point mα in Σ, we can associate an inte-
ger GSV mα(F ,Γ) (defined in [CaLe2], but already in [LS1][LSS] for LCI’s and in
[CaLeSo2] in the general case, under the notation BB(cn,FΓ)), generalizing the
index of GomezMont-Seade-Verjovski ([GSV]), such that we get:

Theorem 1.

(i) The following formula holds:

(d + n)δ −
(
c1([NΓ]) � [Γ]

)
=

∑
α

GSV mα(F ,Γ).

(ii) The following inequality holds:∑
α

GSV mα(F ,Γ) ≥ B(Γ)− E(Γ),

– where B(Γ) denotes the total number of locally irreducible branches through
singular points of Γ when Γ has singularities, and B(Γ) = 1 (instead of 0)
when Γ is smooth,

– and E(Γ) = 2− 2g+
(
c1
(
[NΓ]

)
� [Γ]

)
− (n+1)δ denotes the correction term

in the genus formula (g being the geometrical genus of Γ).
Equivalently, we get (d− 1)δ + 2− 2g ≥ B(Γ).

When Γ =
⋂n−1

λ=1 Sλ is the complete intersection (no more necessarily smooth)
of n− 1 algebraic hyper-surfaces Sλ in Pn of respective degree δλ (1 ≤ λ ≤ n− 1),
we get the

Corollary. The following inequality holds:(
d + n−

n−1∑
λ=1

δλ

)
δ ≥ B(Γ)− E(Γ),

and in particular: (d + 2− δ)δ ≥ B(Γ)− E(Γ) for n = 2.
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Let π : Γ′ → Γ be the normalisation of Γ: this means that Γ′ is a non-
singular complex curve, that the composition π̂ : Γ′ → M of π with the the
natural inclusion Γ ↪→M is holomorphic, and that the restriction of π to π−1(Γ0)
is a biholomorphism π−1(Γ0) → Γ0. When Γ has singularities, the number B(Γ)
above is still equal to the number of points in π−1

(
Sing(Γ)

)
.

When Γ is reducible, we can refine Theorem 1 as follows. For any irreducible
component C of Γ, denote more generally:

– by δ
C

its degree,
– by g

C
its geometrical genus,

– by BC(Γ) the number of points in π−1
(
Sing(Γ)

)
∩ C′, where C′ = π−1(C),

– and set: EC(Γ) = 2− 2g
C

+
(
c1([NΓ]) � [C]

)
− (n + 1)δ

C
.

Theorem 2. For any irreducible component C of Γ, the following inequality holds:

(d + n)δ
C
−

(
c1([NΓ]) � [C]

)
≥ BC(Γ)− EC(Γ),

or equivalently: (d− 1)δ
C

+ 2− 2g
C
≥ BC(Γ). In particular, for complete intersec-

tions, we get, with the same notations as above:(
d + n−

n−1∑
λ=1

δλ

)
δC ≥ BC(Γ)− EC(Γ).

Examples of applications

A: Case n=2

1) If Γ has an irreducible component C such that all singularities of Γ which are
in C are non-dicritical, then d + 2− δ ≥ 0. This uses a slight improvement (given
in [CaLe1]) of the positivity of GSV proved in [B], and refines the result of [C]
when Γ is reducible.

2) We shall say that some r-multiple point of Γ (r ≥ 2) is “elementary”, when
the r local branches through this point are all smooth and have distinct tangents.
Assume that Γ has only elementary singularities, and let nr be the number of
r-multiple points. Then, the following formulae hold:

(d− 1)δ + 2− 2g ≥
∑
r≥2

nrr, and (d + 2− δ)δ ≥ −
∑
r≥2

nrr(r − 2).

More generally, if Γ is reducible and if there is an irreducible component C such
that all singularities of Γ which are in C are elementary singularities of Γ, denote
by nr(C) the total number of local branches included into C through singular
r-multiple points of Γ. Then, the following formula holds:

(d− 1)δC + 2− 2gC ≥
∑
r≥2

nr(C), and (d + 2− δ)δC ≥ −
∑
r≥2

nr(C)(r − 2).
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If nr = 0 when r �= 2, we recover the result of [CeLi][So3], and refine it in
the reducible case when there exists some irreducible component C such that
nr(C) = 0 for r �= 2.

3) Let Γ1 be a non-degenerate conic in P2, m0 be a point of Γ1, and (∆i)i a
family of δ − 2 projective straight lines ∆i through m0 in the plane (δ ≥ 3), none
of them being tangent to Γ1. Taking for Γ the union of this conic and of these
straight lines, all singularities of Γ are nodal (double point), except m0 which is a
δ − 1-uple point, and the degree of the curve is δ. We get:

d ≥ 1 when applying Theorem 2 to ∆i,

d ≥ δ−1
2 when applying Theorem 2 to the conic,

and d ≥ 2− 3
δ when applying Theorem 1.

The strongest of these inequalities is of course the second one.

B: Higher dimension

1) Assume again that that Γ =
⋂n−1

λ=1 Sλ be a complete intersection, with the same
notations as above. Assume moreover that there is an irreducible component C of
Γ, which is smooth. We then get:(

d + n−
n−1∑
λ=1

δλ

)
δC ≥ BC(Γ).

Since BC(Γ) is always greater or equal to 1, we recover the result of [So2], and
refine it in the reducible case, or in the case of degenerate singularities.

2) Let Γ be the (non-LCI) rational quintic parametrized by the map

[u, v] �→ [X(u, v) = u3v2, Y (u, v) = u4v, Z(u, v) = u5, T (u, v) = v5]

from P1 (with homogeneous coordinates [u, v]) into P3 (with homogeneous coordi-
nates [X,Y, Z, T ]). It has only the origin for singular point with one local branch
at this point, hence B(Γ) = 1. According to [CaLeSo1], c1(NΓ) � [Γ] = 21, hence
E(Γ) = 3. The lower-bound 1 of d is in fact reached, since Γ is invariant by the
foliation of degree 1 defined by the vector field 3x ∂

∂x + 4y ∂
∂y + 5z ∂

∂z . Notice that
this foliation has dicritical singularities. We can prove that the minimal degree of
the foliations without dicritical singularities leaving this quintic invariant is 2.
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Trajectory Singularities for a Class
of Parallel Motions
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Abstract. A rigid body, three of whose points are constrained to move on the
coordinate planes, has three degrees of freedom. Bottema and Roth [2] showed
that there is a point whose trajectory is a solid tetrahedron, the vertices rep-
resenting corank 3 singularities. A theorem of Gibson and Hobbs [9] implies
that, for general 3-parameter motions, such singularities cannot occur gener-
ically. However motions subject to this kind of constraint arise as interesting
examples of parallel motions in robotics and we show that, within this class,
such singularities can occur stably.
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1. Introduction

The presence of singularities in the motion of a robot manipulator presents both
difficulties in terms of control and potential advantages in task performance. Un-
derstanding the singularity types that arise is valuable therefore for optimal manip-
ulator design. While it is true that engineers frequently use special design geometry
to bring about specific outcomes, nevertheless stable phenomena are still desirable
if one is to allow some tolerance in the manufacture and operation of a manipula-
tor. In this paper, the authors explore the occurrence of certain highly degenerate
singularities in a class of parallel manipulators from the perspective of stability.

The International Organisation for Standardisation (ISO) [13] defines a ma-
nipulator to be:

a machine, the mechanism of which usually consists of a series of seg-
ments, jointed or sliding relative to one another, for the purpose of grasp-
ing and/or moving objects (pieces or tools) usually in several degrees of
freedom. It may be controlled by an operator, a programmable electronic
controller, or any logic system (for example cam device, wired, etc.)
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Of special interest is the motion of the end-effector, the grasping component or
component to which the operative tool is attached, which may be represented as
a function of the joint variables.

From the point of view of kinematics we are interested in the geometry of
the manipulator, rather than its control. The class of parallel manipulators is dis-
tinguished from serial manipulators in that they include closed chains of linked or
jointed components. Characteristic advantages of parallel manipulators are that
they generally can handle heavier payloads and have greater accuracy. Their in-
verse kinematics – determining joint variables from knowledge of the configuration
of the end-effector – is generally easier than their forward kinematics.

In [6], the authors showed that trajectory singularities of tracing points in
the end-effector of a manipulator form instantaneous singular sets whose geometry
is determined by the screw system of the manipulator at that configuration. The
Hunt–Gibson class of screw system [10] also provides first-order information, i.e.,
the corank, for the singular trajectories.

In this paper, the implications are explored for a particular class of parallel
manipulators, namely those for which a given set of k points is each constrained to
lie on a surface, in particular, the case k = 3. We will call such a device a k-point
mechanism. The contact of one point of a rigid body with the surface of another
constitutes the simplest kind of joint. Although, in the terminology of mechanisms,
it is a higher pair, in many cases it is possible to synthesize the resulting motion
using lower pairs (joints with contacting surfaces). Each joint of this kind imposes,
in general, one constraint, or the loss of one degree of freedom, on the moving body.

The motivating example is due initially to Darboux. He considered the 3
degree-of-freedom rigid-body motion, generated by three points in the body being
constrained to lie in three planes in general position, and whether a fourth point
could move in a plane, which he answered in the negative. Bottema and Roth [2]
analyzed this motion more carefully in the case that the planes are mutually or-
thogonal. They showed that if the triangle formed by the constrained points is
acute, then there is a point in the body whose trajectory is a solid tetrahedron.
Such a situation arises when the normals to the constraining planes at the points
of contact mutually intersect. The point of intersection in the moving body lies at
the vertex of its tetrahedral trajectory and is at a corank 3 singularity.

Two practical manipulators that incorporate 3-point mechanisms are:

Remote Centre Compliance Device: a device attached to a robot-arm end-effector
to facilitate peg-in-hole insertion tasks. The device was invented by Watson, Nevins
and Whitney [14, 16, 17]. It is not actively controlled but passively responsive to
forces and torques at the end-effector tip, where the peg is held. In a simplified
form, three rigid rods of equal length connect the vertices of an equilateral triangle
in the base to a similar smaller triangle in the the end-effector, by means of ball
joints. Hence, the three joints in the end-effector are effectively constrained to
move on the surfaces of spheres. In its relaxed configuration the axes of the rods
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intersect at the end-effector tip. This component handles rotation of the peg in
response to torques.

HVRam mechanism: designed for control of telescope mirror focussing. The de-
vice is analyzed in detail by Carretero et al. [3, 4]. Three hydraulically extensible
(P joint) arms in the plane of the base are each connected by revolute (R) joints,
with axes perpendicular to the arms in the same plane, to legs of fixed and equal
length. These in turn are connected to the mirror by ball (S) joints, thus forming a
3-PRS architecture. The optimal positioning of the component arms is the subject
of the second paper, but in its simplest form, they are symmetrically placed at
angles of 2π/3. The three joints in the mirror (end-effector) are constrained to
move on three planes which intersect in the focal axis of the mirror when in its
home configuration (mirror parallel to the base plane). The associated singularities
mean that the tracking motion of the mirror is an order of magnitude smaller than
the input through extension of the hydraulic legs, leading to superior control.

Section 2 of this paper describes the mathematical formulation for analyzing
rigid-body motions, together with basic results on screw systems and instanta-
neous singular sets, including the Genericity Theorem. Section 3 establishes the
relationship between the configuration of contact normals for a 3-point mecha-
nism and the associated screw system. The key result in section 4 is to establish
conditions under which high-corank singularities appear stably. Although the the-
orem disproves a natural genericity hypothesis for this class of parallel motions,
the phenomenon explains why such motions provide a valuable class from the
point of view of mechanical advantage and control. Application of the result to
the examples above appears in Section 5.

2. Motions, screw systems and ISSs

2.1. Motions and trajectories

We shall restrict our attention to those spatial motions for which the underlying
joint space, encoding all the feasible combinations of joint variables for a given
manipulator, is a smooth manifold. In practice, for most design geometries, the
joint space is in fact an algebraic variety, and is smooth for almost all choices
of design parameters (e.g., component lengths). Let SE(3) denote the Euclidean
isometry group SE(3), combining rotations and translations in the semi-direct
product SO(3) � R3. It is a 6-dimensional Lie group. By assigning orthonormal
coordinate frames to the rigid body (moving coordinates) and the ambient space
(fixed coordinates), configurations of the body can be represented by elements of
the group.

Definition 2.1. A spatial rigid-body motion is a smooth function λ : M → SE(3),
where M , the joint space of the motion, is a manifold. The rank d of (the derivative
of) λ at a given configuration x ∈ M is the infinitesimal degree of freedom at x.
The maximum value of the infinitesimal degrees of freedom over M is the degree
of freedom of the motion.
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The rigid-body motion of the end-effector of a mechanical devices is fre-
quently called a kinematic mapping, but we stick to the terminology of motions
as it confers greater generality. A rigid-body motion λ : M → SE(3) may be
represented by λ(x) = (A(x),a(x)), where A(x) ∈ SO(3) and a(x) ∈ R3. Given
a point w ∈ R3 of the rigid body (in moving coordinates), the trajectory of w is
determined by the action of the SE(3) on R3, that is by the function

τw : M → R3, τw(x) = λ(x).w = A(x)w + a(x). (2.1)

Note that τw can be thought of as a composition of the action with the motion λ
itself. That is, if evw : SE(3)→ R3 is the map

evw(A,a) = Aw + a, (2.2)

then τw = evw ◦ λ. It is valuable to regard the trajectories as forming a family
parametrised by w ∈ R3:

τ : M × R3 → R3; τ(x,w) = τw(x). (2.3)

Given positive integers r and k, there is an induced multijet extension rj
kτw :

M (r) → rJ
k(M,R3), where M (r) is the manifold of r-tuples of distinct points

in M . Since τ depends smoothly on w, there is also a three-parameter family of
multijets:

rj
k
1 τ : M (r) × R3 −→ rJ

k(M,R3),

where the subscript 1 indicates we are taking jets with respect to the first com-
ponent only. The following Genericity Theorem [9] concerns general kinematics of
rigid-body motions.

Theorem 2.2. Let S be a finite stratification of rJ
k(M,R3). The set of rigid-body

motions λ : M → SE(3) with rj
k
1 τ transverse to S is residual in C∞(M,SE(3)),

endowed with the Whitney C∞ topology.

A relevant example is to apply the theorem to 3-dof spatial motions (dimM =
3) and to consider monogerms of 1-jets (r = k = 1) with stratification by corank
of the derivative. The corank 1 stratum has codimension 1so for a generic motion,
given any tracing point w ∈ R3, there would be a surface in M (or possibly
no points) where the trajectory τw has a corank 1 singularity. There would be
a surface of tracing points w ∈ R3 whose trajectories possess isolated corank 2
singularities (codimension 4 stratum), and there would be no tracing points with
corank 3 singularities (codimension 9 stratum).

A working hypothesis is that such a theorem holds true for classes of motion
arising from specific mechanism geometries, such as the k-point mechanisms under
consideration here. The difficulty is that such classes typically depend only on
finitely many parameters. So the validity of the hypothesis depends on how that
finite-dimensional family sits within the infinite-dimensional space of all motions.
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2.2. Screw systems

The Lie algebra se(3) of the Euclidean group inherits its semi-direct product struc-
ture: so(3) � t(3). The Lie algebra so(3), corresponding to the rotations, consists
of the skew-symmetric 3× 3 matrices. That means we can write B ∈ so(3) in the
form

B =

⎛⎝ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞⎠ ,

which we identify with the vector u = (u1, u2, u3). Note that u spans the kernel of
B, so long as B �= 0. The instantaneous translations may be represented by a 3-
vector v = (v1, v2, v3). In the engineering literature, elements of the Lie algebra are
referred to as motors and elements of the corresponding 5-dimensional projective
space Pse(3) are called screws. Thus (u,v) are referred to as motor coordinates
and the homogeneous version (u;v) as screw coordinates.

Given a rigid-body motion λ : M → SE(3), the instantaneous motion at
a configuration x ∈ M is given by the image of the derivative of λ at x, a sub-
space of Tλ(x)SE(3). By suitable choice of moving and fixed coordinates, we may
assume this to be a subspace of the Lie algebra se(3). The corresponding projec-
tive subspace in Pse(3) is called a screw system. If λ has k-dof at x then it is a
k-system.

The classification of screw systems was originally proposed by Hunt [12], and
given a firm mathematical basis by Gibson and Hunt [10]. They introduced the
pencil of pitch quadrics Qh = 0, where h ∈ R ∪ {∞} is the pitch. Explicitly, Qh is
a quadratic form, given in motor coordinates by:

Qh(u,v) = u.v − h(u.u), h �=∞; Q∞(u,v) = u.u (2.4)

Since the forms are homogeneous, the corresponding varieties (quadrics) are well
defined in screw coordinates. The special case Q0 = 0 corresponds to the classical
Klein quadric of lines in projective 3-space, where we identify a pure rotation with
its axis; in this case, the coordinates correspond to Plücker line coordinates of the
axis (see, for example, [15]). We note for later reference that by viewing a line as
an intersection of a pencil of planes, it may also be represented by its dual Plücker
coordinates (u∗;v∗) = (v,u). Application of duality enables geometric assertions
about points and lines to be transformed into statements about planes and lines,
and vice versa.

The quadric Q∞ = 0, corresponding to infinitesimal translations, degenerates
to a (projective) plane. Thus the family Sh of sets of screws of each pitch h, in the
screw system S, is just its pencil of intersections with the hypersurfaces Qh = 0 –
in the case of 3-systems, this gives a pencil of conics, as had been recognized by
Ball [1]. Each pitch quadric Qh = 0, h �=∞, has a pair of rulings: by the α-planes
corresponding to all screws of pitch h whose axis passes through a given point,
and by the β-planes corresponding to all screws whose axis lies in a given plane.

The quadratic forms (2.4) have associated bilinear forms; in particular, for
a pair of motors µi = (ui,vi), i = 1, 2, we have Q0(µ1, µ2) = 1

2 (u1.v2 + u2.v1).
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Given a k-system S, define the reciprocal (6− k)-system

S⊥ = {$ |Q0($, $′) = 0, ∀ $′ ∈ S}.

The broad classification of 3-systems is on the following basis. Type I sys-
tems do not lie wholly in a single pitch quadric and therefore they intersect the
pitch quadrics in a pencil of conics as indicated above. Type II systems are those
contained within a single pitch quadric. The subtypes A, B, C, D distinguish the
projective dimension of intersection with Q∞: subtype A denoting empty inter-
section, up to subtype D denoting a 2-dimensional intersection. Within the type I
systems, further distinction is made on the basis of the projective type of the pencil
of conics.

Further refinement of the classification was provided in [7, 8] where screw
systems were placed in the context of the Lie group approach to rigid body motions.
The Hunt–Gibson classification can be derived from equivalence under the action
induced on the Grassmannian of screw systems of a given dimension by the adjoint
action of the Lie group on its Lie algebra. The pitch arises as the fundamental
invariant of the projectivised adjoint action. The benefit of this approach is that
the classes of screw systems arise as submanifolds of a Grassmannian manifold.
The codimensions and adjacencies were determined in [8] and the stratification
was shown to be Whitney regular.

The intersection of the screw system with Q0 is also of significance both
mathematically and from the engineering point of view. In the fine classification
of 3-systems in Table 1 from [8], superscripts refer to the signs of the principal
pitches and other moduli.

The Thom Transversality Theorem ensures that motions in a residual set
have 1-jet transverse to these stratifications. Therefore, generically, one would
expect to encounter, for example, a smooth surface (codimension 1 manifold) in
the 3-dimensional jointspace M where the screw system is of type IA+0−

1 , since
this stratum has codimension 1, but not one of type IIA0, as it has codimension 6.

2.3. Instantaneous singular sets

Given a motion λ : M → SE(3) and a configuration x ∈ M , define the instanta-
neous singular set at x to be

I(λ, x) = {w ∈ R3 |x is a singular point of τw} (2.5)

where the trajectory function τw associated to λ was defined in (2.1). Given a
tracing point w ∈ R3, let Aw denote the α-plane in Q0 consisting of lines (or
screws of pitch zero) through w. We have the following central theorem, stated
here for 3-dof motions. The general result appears in [6].

Theorem 2.3. Let λ : M → SE(3) be a 3-dof motion and let S be the screw system
at x ∈M . A tracing point w belongs to I(λ, x) if and only if S∩Aw is non-empty.
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Broad Inter- Codim Fine classes
class mediate

class

IA1 IA1 0 IA+++
1 , IA++−

1 , IA+−−
1 , IA−−−

1

IA0
1 1 IA++0

1 , IA+0−
1 , IA0−−

1

IA2 IA2 2 IA(++)+
2 , IA+(++)

2 , IA(++)−
2 , IA+(−−)

2 ,
IA(−−)−

2 , IA−(−−)
2

IA0
2 3 IA(++)0

2 , IA+(00)
2 , IA(00)−

2 , IA0(−−)
2

IB0 IB1 1 IB+
0 , IB−

0

IB0
1 2 IB0

0

IB2 2 IB0,+
0 , IB0,−

0

IB0
2 3 IB0,0

0

IB3 IB3 3 IB++
3 , IB+−

3 , IB−−
3

IB0
3 4 IB+0

3 , IB0−
3

IC IC 4 IC+

IC0 5 IC0

IIA IIA 5 IIA+, IIA−

IIA0 6 IIA0

IIB IIB 5 IIB+, IIB−

IIB0 6 IIB0

IIC IIC 6 IIC+, IIC−

IIC0 7 IIC0

IID 9 no finer subtypes

Table 1. Classification of 3-systems.

Elementary corollaries of Theorem 2.3 are:

1. I(λ, x) depends only on the associated screw system S – it is a first-order
invariant of the motion. We may therefore write I(S) for the ISS associated
in this way to the screw system S.

2. The projective dimension of S ∩Aw plus one is the corank of the singularity
of τw at x.

3. A point w is in I(S) if and only if S contains a screw of pitch zero, and w lies
on its axis. Hence, I(S) is ruled , in the sense that for any point w ∈ I(S),
there is a line through w contained in I(S).
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type of 3-system intersection ISS max
corank

IA+++
1 , IA−−−

1 empty empty 0

IA++−
1 , IA+−−

1 conic elliptic 1-sheet hyperboloid 1

IA++0
1 , IA0−−

1 point line 1

IA+0−
1 line pair plane pair 2

IA(++)+
2 , IA+(++)

2 empty empty 0

IA(−−)−
2 , IA−(−−)

2 empty empty 0

IA(++)−
2 , IA+(−−)

2 conic circular 1-sheet hyperboloid 1

IA(++)0
2 , IA0(−−)

2 point line 1

IA+(00)
2 , IA(00)−

2 repeated line plane 2

IB+
0 , IB−

0 , IB0,+
0 , IB0,−

0 conic hyperbolic paraboloid 1

IB0
0, IB0,0

0 line pair plane pair 2

IB++
3 , IB−−

3 point in Q∞ empty 0

IB+−
3 line pair parallel planes 1

IB+0
3 , IB0−

3 line plane 1

IC, IC0 line plane 1

IIA+, IIA− empty empty 0

IIA0 α-plane whole space 3

IIB+, IIB− point in Q∞ empty 0

IIB0 β-plane plane 2

IIC+, IIC− line in Q∞ empty 0

IIC0 α-plane whole space 1

IID Q∞ empty 0

Table 2. Instantaneous singular sets for 3-systems.

4. The geometric form of this ISS is determined by the intersection of the screw
system with Q0 which, in turn, can be determined from the fine classification
of 3-systems. These are given in Table 2, together with the maximum corank
of any singular trajectory.
The following theorem in [6] provides a fundamental connection between a

screw system and its reciprocal and is important for the analysis of 3-point motions.

Theorem 2.4. Let S be a 3-system, and let S⊥ be the reciprocal 3-system. Then
I(S) = I(S⊥).
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3. k-point motions

3.1. Configuration space

We formalize the notion of a k-point motion.

Definition 3.1. A k-point motion (1 ≤ k ≤ 6) is a rigid-body motion in which a set
of points W1, . . . ,Wk of the rigid body, satisfying the condition that any subset
of four or less points is affinely independent, is constrained to lie, respectively, on
a set of k smooth surfaces, N1, . . . , Nk. The points Wi are the contact points and
the surfaces Ni the contact surfaces. The points W1, W2, W3 define the coupler
triangle where, if k < 3, introduce 3− k additional points Wj , j = k + 1, . . . , 3 so
that W1, W2, W3 are affinely independent.

Not all choices of contact points and surfaces result in a proper rigid-body
motion, that is one for which the configuration space is a manifold. Sufficient
conditions for this are established below. For clarity we shall call such a motion
regular and otherwise singular (though, strictly, it is not a motion at all by our
definition).

By a smooth surface, in the definition, is meant an embedded, orientable,
2-dimensional submanifold in R3. Globally, therefore, Ni = φi(Mi), where Mi is
an orientable 2-dimensional manifold and φi : Mi → Ni ⊂ R3 an embedding, for
each i. If one is only interested in what happens locally, then each contact surface
Ni can be parametrised by a smooth function φi : Ui → Ni, where Ui is some
open subset of R2. Sometimes it may be more convenient to represent the contact
surfaces implicitly by Ni = f−1

i (0), where fi : R3 → R is a smooth function and
0 ∈ R a regular value, for each i = 1, . . . , k.

Let the moving coordinates of the contact points Wi, i = 1, . . . , l (where
l = min{3, k}) be wi = (wi1, wi2, wi3). Then the rigidity of the moving body gives
rise to an equation for each pair i, j such that 1 ≤ i < j ≤ k:

||φi(xi)− φj(xj)||2 − ||wi −wj||2 = 0. (3.1)

This gives 1
2k(k − 1) equations on points (x1, . . . , xk) ∈ M1 × · · · × Mk, a 2k-

dimensional manifold. For k < 3, we add further variables, z = (zi1, zi2, zi3) for
i = (k + 1), . . . , 3, denoting the fixed coordinates of the unconstrained vertices of
the coupler triangle, and further equations of the form:

||φi(xi)− zj ||2 − ||wi −wj ||2 = 0, 1 ≤ i ≤ k, k + 1 ≤ j ≤ 3

||zi − zj ||2 − ||wi −wj ||2 = 0 k + 1 ≤ i < j ≤ 3. (3.2)

In the case k ≥ 5 there is some dependence between the equations and it
suffices to restrict to three equations respecting the distance between the vertices
of the coupler triangle and, for each Wj , j > 3, the distances from Wj to each
vertex of the coupler triangle. Further care is needed in the cases k ≥ 4 as here
the equations do not distinguish between the possible orientations or combinations
of orientations of contact tetrahedra. Thus, we must choose the component of the
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solution set of equations (3.1) for which the orientation of each contact tetrahedron
over the coupler triangle corresponds to that of the moving contact points.

In summary, the configuration space has the form F−1
k (0), with Fk : M1 ×

· · · ×Mk × Rpk → Rqk , where pk is the number of additional variables for non-
constrained contact points, and qk is the number of equations, taking the values
given in Table 3. For a regular motion, 0 is required to be a regular value of this
map. In that case dimension of the configuration space is 2k + pk − qk = 6− k for
each k.

Contacts k 1 2 3 4 5 6

Surface variables 2k 2 4 6 8 10 12

Non-constraint variables pk 6 3 0 0 0 0

Total variables 2k + pk 8 7 6 8 10 12

Equations qk 3 3 3 6 9 12

Table 3. Variables and equations for parametric k-point motions.

3.2. Regularity conditions

The following theorem determines sufficient conditions on contact surfaces and
points for the configuration space to be a manifold and hence for the motion to be
regular. A direct proof using local parametrisations is reasonably straightforward
too, but here a simpler implicit surface approach is given.

Theorem 3.2. The configuration space for a k-point motion (with contact surfaces
defined implicitly) is a smooth manifold unless, in some realizable configuration,
the surface normals at the contact points, thought of as screws of pitch zero, fail
to span a k-system.

Proof. Suppose the contact surfaces are defined implicitly by Ni = f−1
i (0), i =

1, . . . , k. Let the moving coordinates of the contact points Wi, i = 1, . . . , k, be
wi = (wi1, wi2, wi3). Then the configuration space M is defined as a subset of
SE(3) by the equation G(µ) = 0, where the components of G : SE(3) → Rk in
terms of µ = (A,a) ∈ SE(3) are:

Gi(A,a) = fi(Awi + a), i = 1, . . . , k. (3.3)

M is a manifold unless, for some α ∈M , the rank of G at α is less than k. Suppose
we are at such an α and the fixed contact points are α(wi) = xi, i = 1, . . . , k. By
the rank formula of linear algebra, the dimension of the kernel S of the derivative
DG(α) must be > (6 − k). Note that S is just a screw system. In fact, since
M =

⋂k
i=1 G

−1
i (0), we have S =

⋂k
i=1 Si, where Si is the kernel of DGi(α).

Now Gi = fi ◦ evwi , where evwi is defined in equation (2.2). Since evwi has
no singular points and, by assumption, 0 is a regular value of fi, it follows that
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0 is a regular value of Gi and hence Si is a 5-system. Its elements are just those
screws for which the instantaneous direction of motion of wi lies in the tangent
space to Ni at xi.

It is clear that Si must contain the α-plane of pitch-zero screws whose axes
pass through xi, since these fix xi, and also the pitch infinity screws parallel to the
tangent plane. This gives us five independent screws, which therefore span Si. It
is now an easy exercise to show that the pitch-zero screw with axis normal to the
tangent plane is reciprocal to Si, and hence to S ⊆ Si. Thus the contact surface
normals all lie in the reciprocal screw system S⊥ and in fact span it. Since the
dimension of S is greater than 6 − k then S⊥, spanned by the surface normals,
must have dimension less than k. �

We spell out the import of Theorem 3.2 for 3-point motions.

Corollary 3.3. The configuration space of a 3-point motion is a manifold unless,
for some configuration, either

1. there is a common normal to two of the contact surfaces at the points of
contact or

2. the three surface normals are coplanar and coincident or
3. the three surface normals are coplanar and parallel.

Proof. By Theorem 3.2 we require the three surface normals in each configuration
to span a 3-system. This can only fail if they span a 2-system; a 1-system is
not possible as this would require the three normals to coincide, but we have
assumed the contact points are affinely independent, so cannot be collinear. We
have a 2-system if either two normals coincide, and hence we are in case (a), or
they are (projectively) collinear as points in Q0. In the latter case, three distinct
points of a 2-system lie on Q0 so the 2-system must be of type IIA0 or IIB0 [6]
and projectively span a line in an α-plane (or β-plane) corresponding to a planar
pencil of lines in R3, with either finite or infinite vertex, giving rise to cases (b)
and (c) respectively. �

Theorem 3.4. Given k contact surfaces in R3, 1 ≤ k ≤ 6, for a residual set of k
contact points in R3k the configuration space for the resulting k-point motion is a
manifold of dimension 6− k or empty.

Proof. Treat the coordinates of the contact points as variables in the equations
(3.1). The resulting function can readily be shown to be a submersion, so 0 is a
regular value. The result now follows by a standard transversality theorem (e.g.,
Golubitsky and Guillemin [11], Chapter 2, §4). �

3.3. Singularities of 3-point motions

The key to determining the instantaneous singular sets and singular trajectory
types lies in the observation, in the proof of Theorem 3.2, that the normals to the
contact surfaces at the points of contact lie in the reciprocal screw system at a
given configuration. We have the following result.
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Theorem 3.5. For a 3-point motion, the contact surface normals lie in the ISS at
each configuration.

Proof. Let S be the 3-system of the motion in a given configuration. Then the
reciprocal system S⊥ is spanned by the surface normals. As screws these have
pitch zero and so, by Theorem 2.3, the normals belong to I(S⊥). The invariance
of the ISS under reciprocity (Theorem 2.4) establishes the result. �

A similar statement is true for k-point motions, k = 1, 2, but more care is
needed for k ≥ 4 as a screw belonging to Q0 does not ensure that its axis is in the
ISS; rather we require the k-system to intersect an α-plane in a projective line at
least.

The knowledge that any ISS of a regular 3-point motion contains three dis-
tinct lines, together with the information in Table 2, enables us to exclude im-
mediately a number of possible screw types, namely all those for which the ISS
is empty or a line. It is also possible to eliminate types IA+(00)

2 , IA(00)−
2 , IB+0

3 ,
IB0−

3 and IC. For in those cases, the ISS is a plane which would require the surface
normals to be coplanar. Then, either the normals form a planar pencil in which
case the configuration space is singular, or the entire 3-system lies in Q0 and hence
is of type II. Details can be found in [5].

The following lemma establishes a simple relationship between the configu-
ration of the surface normals and screw system types.

Lemma 3.6. Given a 3-point motion and some configuration, if the direction vectors
of the surface normals in that configuration:

1. span R3, then the associated 3-system has type A;
2. span a plane, then the associated 3-system has type B;
3. span a line, then the associated 3-system has type C.

A type D system is not possible.

Proof. The screw system contains a screw of infinite pitch if and only if it cor-
responds to an infinitesimal translation perpendicular to all the surface normal
directions. The result follows. �

Further consideration of the ISSs for each type enables us to establish a
precise correspondence between the screw system type and the configuration of
the surface normals. This is summarized in Table 4.

It can be noted immediately that the special configurations, described in the
Introduction, for the classical Darboux motion and for the RCC device, are ones in
which the surface normals are coincident, so the instantaneous screw type is IIA0.
From Table 2, the trajectory of the point in question has corank 3 and every point
in the moving body is instantaneously singular. This screw type has codimension 6
amongst 3-systems, so it and the corresponding corank 3 singularities should not
occur generically.

For the HVRam device, the home configuration is one in which the contact
normals are coplanar but not coincident, and hence the screw system type is IIB0.
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type of 3-system configuration of surface normals

IA++−
1 , IA+−−

1 3 mutually skew lines

IA+0−
1 2 intersect in finite point, 3rd skew to others

IA(++)−
2 , IA+(−−)

2 3 mutually skew lines 1

IIA0 3 lines intersect in finite point

IB+
0 , IB−

0 3 mutually skew lines

IB0
0, 2 intersect in finite point, 3rd in parallel plane

IB0,+
0 , IB0,−

0 3 mutually skew lines with common perpendicular

IB0,0
0 2 intersect in finite point, 3rd in parallel plane

with common perpendicular through intersection

IB+−
3 2 parallel, 3rd in parallel plane

IIB0 3 coplanar not meeting in a point

IIC0 3 parallel but not coplanar
1 The distances between each pair of lines in the

direction parallel to the third are equal [5].

Table 4. Screw system types for 3-point motions.

This type has codimension 6, the ISS is the plane of the mirror joints and every
point in the plane has a trajectory with a corank 2 singularity. Again this is not
generic in the space of all motions.

4. Stability of type II screw systems

There are several ways of perturbing a k-point motion:
• by altering the dimensions of the coupler triangle;
• by altering design parameters within a given family of contact surfaces;
• by altering the contact surfaces in a general way.

From an engineering perspective, the first two are of most interest. Mathematically,
the last, of which the second is a special case, provides greatest leeway (one is
perturbing in an infinite-dimensional space) and would be most likely to perturb
away degenerate behavior.

Within the class of 3-point motions, we show that certain high-codimension
screw types (IIA0 and IIB0) may occur stably – so the class fails to satisfy the
genericity hypothesis referred to in Section 2.3. Essentially, this is because the
condition in Table 4, concerning the surface normal arrangements giving rise to
these screw types, has only codimension 3 among triples of lines in 3-space.

Let Ni = φi(Mi), i = 1, 2, 3, be the three contact surfaces, as in Section 3.1.
We are interested in the space of triples of embeddings Γ3 = Emb(M1,R

3) ×
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Emb(M2,R3)×Emb(M3,R3) endowed with the (product) Whitney C∞ topology.
Let Γ̂3 denote the open subset for which the associated 3-point motion is regular.

If W1W2W3 is a coupler triangle, then the resulting motion is characterized by
the lengths of its sides, dij = ||wi−wj|| > 0, (i, j) = (1, 2), (2, 3), (3, 1). We denote
this set of design parameters by δ = (d23, d31, d12) ∈ R3

+ = {(x, y, z) ∈ R3 |x, y, z >

0}. Given φ = (φ1, φ2, φ3) ∈ Γ̂3, and δ ∈ R3
+, define Fφ,δ : M1×M2×M3 → R3 by

Fφ,δ
k (x1, x2, x3) = ||φi(xi)− φj(xj)||2 − d2

ij , k = 1, 2, 3

where (i, j, k) is a cyclic permutation of (1, 2, 3). Then M = (Fφ,δ)−1(0) is the con-
figuration space of the corresponding 3-point motion. Treating φ and δ as variables
gives rise to a continuous map

F : Γ̂3 × R3
+ → C∞(M1 ×M2 ×M3,R

3); (φ, δ) �→ Fφ,δ.

We now characterize the configurations corresponding to the screw systems
of interest. Given any X = (x1, x2, x3) ∈ M1 ×M2 ×M3, let Li(X) denote the
normal line to Ni = φi(Mi) at the point yi = φi(xi), i = 1, 2, 3. If ni(xi) denotes
a smooth choice of normal vector to Ni at yi, then we may represent Li(X), in
motor coordinates, by (ni(xi),yi(xi)× ni(xi)) = (ni(xi),vi(xi)), say.

In terms of the bilinear form Q0, define Gφ
k : M1 ×M2 ×M3 → R, k = 1, 2, 3, by

Gφ
k(X) = Q0(Li(X), Lj(X))

where (i, j, k) is a cyclic permutation of (1, 2, 3), and then define the following
map:

Hφ,δ : M1 ×M2 ×M3 → R6; Hφ,δ = (Fφ,δ
1 , Fφ,δ

2 , Fφ,δ
3 , Gφ

1 , G
φ
2 , G

φ
3 ).

As for F , since the manifolds are orientable, the normal vectors may be chosen
smoothly, so this can be regarded as defining a continuous map

H : Γ̂3 × R3
+ → C∞(M1 ×M2 ×M3,R

6); (φ, δ) �→ Hφ,δ.

Finally, let ρφ, σφ : M1 ×M2 ×M3 → R be given by

ρφ(X) = n1(x1).(n2(x2)× n3(x3)),

σφ(X) = v1(x1).(v2(x2)× v3(x3)).

Lemma 4.1. Given a regular 3-point motion defined by φ ∈ Γ̂3 and δ ∈ R3
+, as

above, a point X ∈M1 ×M2 ×M3 is a configuration of the motion and has:
1. a type IIA0 screw system at X if and only if X ∈ (Hφ,δ)−1(0) and ρφ(X) �= 0;
2. a type IIB 0 screw system at X if and only if X ∈ (Hφ,δ)−1(0) and σφ(X) �= 0.

Proof. Suppose that Hφ,δ(X) = 0. Then X is certainly a configuration since
Fφ,δ(X) = 0.

It is a standard result of line geometry (see for example [10, 15]) that two lines
L1, L2 intersect, possibly at infinity (i.e., are parallel), if and only if Q0(L1, L2) = 0.
Thus, since Gφ

k (X) = 0, k = 1, 2, 3, the three surface normals either intersect or
are parallel, pairwise.
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Suppose now that ρφ(X) �= 0. It follows that the three direction vectors of
the lines are not coplanar and, in particular, no two lines are parallel. Hence the
normals intersect pairwise and, to avoid coplanarity, the three points of intersection
must coincide at a single point so the corresponding screw system is type IIA0.

Conversely, if X is a configuration and if the screw system there is type IIA0,
then the relevant conditions all hold. This proves (a).

By duality, the condition σφ(X) �= 0 corresponds to the three lines not being
coincident. Hence they either intersect pairwise in distinct points, in which case the
lines are coplanar and the screw system type IIB0, or at least two are parallel. If all
three were parallel then the motion would be singular by Corollary 3.3, contrary
to hypothesis. So at most two are parallel and the third must intersect each of
them, again resulting in a coplanar system of lines. �

Theorem 4.2. Given a 3-point motion defined by φ ∈ Γ̂3 and a coupler triangle
with parameters δ = (d23, d31, d12) ∈ R3

+, suppose X is a configuration at which the
screw type is IIA0 (resp. IIB 0). If Hφ,δ !� {0} then there are open neighborhoods
U ′ of φ ∈ Γ̂3 and V ′ of δ ∈ R3

+ such that for any φ′ ∈ U ′ and δ′ ∈ V ′, the
corresponding 3-point motion is regular and possesses a configuration at which the
screw type is IIA0 (resp. IIB 0).

Proof. By a standard result of transversality (see for example [11]), since {0} ⊂ R6

is closed, the set of maps

{f ∈ C∞(M1 ×M2 ×M3,R
6) | f !� {0} }

is open. Moreover the inequalities in Lemma 4.1 also define open sets in C∞(M1×
M2×M3,R6). The theorem now follows from the lemma and the continuity of H .

�

5. Applications

While Theorem 4.2 establishes sufficient conditions for stability of these screw
types, we wish to establish whether they hold for the specific examples of 3-point
mechanisms discussed in Section 1.

5.1. Darboux motions

Let Ni, i = 1, 2, 3, to be three planes in general position. We may assume the planes
intersect at the origin and denote unit vectors along the line of intersection of Ni,
Nj by rij for (i, j) = (1, 2), (2, 3), (3, 1). Then each Ni may be parametrised by

φi(ui, vi) = uirki + virij

where (i, j, k) is a cyclic permutation of (1, 2, 3). A normal vector at any point of
Ni is then ni = rki × rij .

Let aij = cos θij = rik.rkj , where θij is the angle between the planes Ni, Nj .
These three numbers are effectively design parameters for the motion, in addition
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to the side lengths dij of the coupler triangle. The feasible region for these param-
eters is bounded by θ12 + θ23 + θ31 = 2π; taking cosines and applying multiple
angle formulae results in the boundary condition:

a2
12 + a2

23 + a2
31 − 2a12a23a31 = 1.

The normal line Li, at a point yi = φi(ui, vi) ∈ Ni, can be expressed in motor
coordinates by (ni,yi × ni). Hence

Q0(Li, Lj) = ni.(yj × nj) + nj .(yi × ni) = (yi − yj).(ni × nj).

Note that ni×nj must lie in the intersection Ni ∩Nj , so is a non-zero multiple of
rij . Since we are interested in the zeroes of the function Hφ,δ of Lemma 4.1, we may
safely ignore the constant and assume Gφ

k = (yi − yj).rij . Hφ,δ = (Fφ,δ, Gφ) may
now be expressed in terms of the 6 design parameters aij , dij and the 6 internal
variables (ui, vi), i = 1, 2, 3.

Fφ,δ
k (u1, v1, u2, v2, u3, v3) = (u2

i + v2
i ) + (u2

j + v2
j ) + 2ajkuivi − 2ajkuiuj

− 2aijuivj − 2ujvi − 2akivivj + 2akiujvj ;

Gφ
k (u1, v1, u2, v2, u3, v3) = ajkui + vi − uj + akivj ,

for k = 1, 2, 3 and (i, j, k) cyclic.
The determinant of the Jacobian may be calculated (most easily using com-

puter algebra software) and has the form:

8(1− a2
12 − a2

23 − a2
31 + 2a12a23a31)2(u1u2u3 + v1v2v3).

The repeated factor represents the boundary of the feasible region of design pa-
rameters established above. The last factor is proportional to the volume of the
tetrahedron whose vertices are the origin and the contact points yi = φi(ui, vi),
i = 1, 2, 3:

(y1 × y2).y3 = (u1u2u3 + v1v2v3)[(r12 × r23).r31].

It follows that Hφ,δ is a local diffeomorphism at a configuration with screw type
IIA0 unless the “coupler tetrahedron” collapses to become planar. This represents
the boundary in the space of coupler triangles, for which there exist IIA0 screw
systems. For example, in the special case considered by Bottema and Roth, where
the contact surfaces are the coordinate planes, the coupler triangle must be right-
angled or acute for Hφ,δ = 0, and transversality fails only for the right-angled
triangles (see [5]).

5.2. RCC device

A general analysis of the case of three contact spheres has so far proved intractable.
We therefore concentrate on the local situation in the standard case described in
the Introduction. We may assume that the centres ci, i = 1, 2, 3, are at (1, 0, 0),
(− 1

2 ,±
√

3
2 , 0). Let the spheres have radius R and suppose the vertices of the coupler
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triangle lie on a circle of radius r < 1. Then the sides of the coupler triangle have
length

√
3r. The spheres may by parametrised by:

φi(ui, vi) = R(cos vi cosui, cos vi sinui, sin vi) + ci, i = 1, 2, 3.

The home configuration of the device, in which the screw system is type IIA0,
is such that the contact points are at r.ci + (0, 0, sin v), where v is the common
value of the parameters v1, v2, v3 for which the triangle is horizontal. A simple
trigonometric argument shows that cos v = (1− r)/R. Evaluating the determinant
of the Jacobian of the associated map Hφ,δ shows that it is non-zero, except for
the special values r = 1±R. (In fact, for these values the motion is singular as the
normals are coplanar as well as coincident.) Otherwise, for any local perturbation
of the spheres or the coupler triangle, there remains a type IIA0 screw system for
the perturbed motion.

5.3. HVRam device

In this case, it is the presence of a IIB0 screw system that confers mechanical
advantage. The three contact planes may be assumed to intersect in the z-axis
and hence to be parametrised by:

φi(ui, vi) = ui(ai, bi, 0) + vi(0, 0, 1), i = 1, 2, 3,

where we may take a2
i + b2i = 1. One establishes easily that

Gφ
k(u1, v1, u2, v2, u3, v3) = (aibj − ajbi)(vi − vj)

for any cyclic permutation (i, j, k) of (1, 2, 3). It follows that the last three rows of
the Jacobian of Hφ,δ, for any choice of coupler triangle, will have rank 2 only, so
transversality fails. Indeed, it is clear that the coupler triangle can be translated
vertically from the given configuration and will retain screw type IIB0. In this
case, small perturbations of the device may not possess its special property.
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Vertices and Inflexions of Plane Sections
of Surfaces in R3

André Diatta and Peter Giblin

Abstract. We discuss the behavior of vertices and inflexions of one-parameter
families of plane curves which include a singular member. These arise as sec-
tions of smooth surfaces by families of planes parallel to the tangent plane
at a given point. We cover all the generic cases, namely elliptic, umbilic, hy-
perbolic, parabolic and cusp of Gauss points. This work is preliminary to an
investigation of symmetry sets and medial axes for these families of curves,
reported elsewhere.
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Keywords. Isophote curve, symmetry set, medial axis, skeleton, vertex, inflex-
ion, plane curve, shape analysis.

1. Introduction

Let M be a smooth surface, and p be a point of M . We shall consider the intersec-
tion of M with a family of planes parallel to the tangent plane at p. This family
of plane curves contains a singular member, when the plane is the tangent plane
itself; generically the other members of the family close to the tangent plane are
nonsingular curves.

The motivation for this work comes from computer vision, where the surface
is the intensity surface z = f(x, y) corresponding to the intensity function f of a
two-dimensional image, and the plane curves are level sets of this function, that
is, isophotes. A great deal of information about the shape of these level sets and
the way they evolve through the singular level set is contained in the family of
so-called symmetry sets and medial axes of the level sets (see for example [9]).

This work is a part of the DSSCV project supported by the IST Programme of the European
Union (IST-2001-35443.) The first author was supported and the second author partially sup-

ported by this grant. We are also very grateful to Terry Wall, Bill Bruce and Vladimir Zakalyukin
for helpful suggestions.
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These sets in turn take some of their structure from the pattern of vertices and
inflexions (curvature extrema and zeros) of the level set.

In this article we concentrate on the vertices and inflexions, and apply this and
other results to the study of symmetry sets in articles to appear elsewhere [6, 7].
Besides the patterns of vertices and inflexions we also study the limiting curvatures
at the vertices as the level set approaches the singular member of the family.

The contact between a surface and its tangent plane at p is an affine invariant
of the surface. Likewise the inflexions on the intersections with nearby planes are
affine invariants, but we are also interested in the curvature extrema on these
sections, and these are Euclidean invariants. For a generic surface M , the contact
between the surface and its tangent plane at a point p, as measured by the height
function in the normal direction at p, can be of the following types. See for example
[11] for the geometry of these situations, and [4, 5, 10] for an extensive discussion
of the singularity theory.
• The contact at p is ordinary (‘A1 contact’), at an elliptic point or at a hyperbolic
point (occupying regions of M). The intersection of M with its tangent plane at p
is locally an isolated point or a pair of transverse smooth arcs. (As regards contact
there is no distinction between ‘ordinary’ elliptic points and umbilics, where the
principal curvatures coincide. But as we shall see there is a great deal of difference
when we consider vertices of the plane sections.)
• The contact is of type A2 at parabolic points (generically forming smooth curves
on M), where the asymptotic directions coincide. The intersection of M with its
tangent plane at p is locally a cusped curve.
• The contact is of type A3 at a cusp of Gauss, where the parabolic curve is
tangent to the asymptotic direction at p (these are isolated points of M). There
are two types, the elliptic cusp and the hyperbolic cusp. The intersection with the
tangent plane is locally an isolated point or a pair of tangential arcs.

Other authors have considered the A1 cases, using different techniques and
with slightly different motivations from ours. Vertices in the A1 case are studied
by Uribe-Vargas in [14] and inflexions in the same case by Garay in [8], using
more sophisticated techniques of singularity theory aimed at finding normal forms
up to an appropriate equivalence. Our very detailed results on the other hand
combine vertices and inflexions and apply to all three cases A1, A2, A3 above.
They are obtained by direct calculation: our motivation, as above, is to facilitate
investigation of the symmetry sets of surface sections, and we do not as yet know
how to fit this into a more general theory.

Here is a simple example. Consider a round torus in 3-space, obtained by
rotating a circle about an axis in the plane of the circle but not intersecting it.
This consists of elliptic and hyperbolic points, separated by two circles of parabolic
points along the ‘top’ and ‘bottom’ of the torus. (The parabolic curves are far from
generic but we shall stay clear of them.) We can take sections by planes parallel
to the axis of rotation, as in Figure 1. The sections pass from a connected curve
through a nodal curve (a ‘figure eight’) to two ovals. In the figure we have drawn the
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Figure 1. Two plane sections of a torus close to a singular section,
together with their evolutes. One connected component becomes two
ovals, and four inflexions disappear while, locally, two vertices be-
come six.

evolutes of the nonsingular sections: these have cusps at the centres of curvature
of the vertices. As the connected curve splits, two vertices (maxima of curvature)
come into coincidence at the crossing. After the transition, when there are two com-
ponents of the curve, three vertices (one maximum and two minima of curvature)
emerge from the crossing on each component. This transition, two local vertices be-
coming six local vertices, is written ‘1+1↔ 3+3’. As regards transitions on vertices
this is one of two generic situations at a hyperbolic point on a surface. However as
regards inflexions it is special since the figure-eight level curve itself has an inflexion
on each branch at the crossing point (in the terminology of [11, p.282] the crossing
point is a flecnode for both asymptotic directions). This allows a transition on the
inflexions of the plane sections whereby 2+2↔ 0+0: two inflexions on each branch
becomes none. Taking into account both vertices and inflexions this becomes one
of the types ‘H7’ below. If we take a hyperbolic point on the torus at which the
tangent plane is not parallel to the axis of rotation, then it can be shown that nei-
ther branch of the nodal curve has an inflexion. While the transition on vertices
remains as 1+1↔ 3+3, the inflexions become 2+0↔ 1+1 or 1+1↔ 2+0; this is
one of the ‘H1’ cases in the notation below, which occur in regions of the surface.

The paper is organized as follows. In §2 we state the main results in the
various cases. In §3 we describe the various patterns which arise in the hyperbolic
case, and the limiting curvatures. The hyperbolic region of our surface M is divided
into subregions according to the possible patterns, separated by a set which we call
the vertex transition (VT) set. This set consists of those hyperbolic points p in M
for which one of the smooth local components of the intersection between M and
the tangent plane at p has a vertex. The VT set is difficult to calculate in particular
cases but in §3.3 we give some examples and explain how the VT set approaches
the parabolic curve on M . In §4 we turn to the elliptic case, concentrating on
umbilic points since the general elliptic case is very simple. In §5 and §6 we cover
the remaining cases, parabolic point and cusp of Gauss respectively. Finally in §7
we summarize and add some remarks on the material of the paper.



74 A. Diatta and P. Giblin

2. The vertex and inflexion sets

We always assume that our surface is locally given by an equation z = f(x, y) for
some smooth function f , with the tangent plane at the origin given by z = 0. Thus
our family of curves is f(x, y) = k for constants k close to 0, and (x, y) close to
(0, 0). (In some cases the set f(x, y) = k is non-empty only for one sign of k.) We
also take the x and y axes to be in principal directions at the origin, so that the
surface M assumes the local Monge form

f(x, y) = 1
2 (κ1x

2 + κ2y
2) + b0x

3 + b1x
2y + b2xy

2 + b3y
3

+ c0x
4 + c1x

3y + c2x
2y2 + c3xy

3 + c4y
4

+ d0x
5 + d1x

4y + d2x
3y2 + d3x

2y3 + d4xy
4 + d5y

5 + h.o.t. (1)

where κ1, κ2 are the principal curvatures at p. We often scale the surface (multiply
x, y and z by the same nonzero constant) so that κ1 = 2 and the coefficient of x2

is therefore 1.
We use subscripts to denote partial derivatives: fx = ∂f

∂x etc.
To such f we assign two functions Vf and If whose zero-level sets Vf = 0 and

If = 0 are respectively the sets of all vertices and inflexions of the plane curves
f(x, y) = k for constants k. We shall consider both the ‘vertex function’ Vf and
the ‘vertex set’ Vf = 0. In fact for each of the generic cases of elliptic, hyperbolic,
parabolic and cusp of Gauss points of M we shall go through the following steps.

• Calculate Vf = 0 and f = 0 and their Taylor expansions at the origin. In each
case there will be several branches, some of which may be singular. (The same also
applies to If .)
• Decide the possible relative positions of the branches of f = 0 and Vf = 0 (and
If = 0). These can be indicated on diagrams.
• For k small, the level sets f = k are close to the zero level set f = 0. We can
read off the pattern of vertices (and inflexions) from the diagrams above.
• Calculate the limiting curvature at vertices of the section f = k, when k → 0.

To obtain the function Vf we argue as follows. We want to find the vertices
on a smooth curve f(x, y) = k. For this purpose we may assume that locally the
curve is given by y = h(x) for a smooth h, that is f(x, h(x)) = k is an identity.
Then the vertex condition is simply κ′(x) = 0 where κ(x) = h′′(x)

(1+(h′(x))2)3/2 is the
curvature of y = h(x). Working out the derivatives of h in terms of those of f
and clearing denominators we arrive at the following. The vertices of any smooth
curve f(x, y) = k will be at the intersections with the set Vf = 0, where

Vf = (f2
x + f2

y )(−f3
y fxxx + 3fxf

2
y fxxy − 3f2

xfyfxyy + f3
xfyyy)

+ 3fxfy(f2
y f

2
xx + (f2

x − f2
y )fxxfyy − f2

xf
2
yy)

+ 6fxfyf
2
xy(f

2
x − f2

y )

+ 3fxy(fxxf
4
y − 3f2

xf
2
y (fxx − fyy)− fyyf

4
x). (2)
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The square of the curvature, κ2, of the curve f(x, y) = k at (x, y) is

κ2 =
(fxxf

2
y − 2fxyfxfy + fyyf

2
x)2

(f2
x + f2

y )3
, (3)

so that the inflexion condition is If = 0 where

If (x, y) = fxxf
2
y − 2fxyfxfy + fyyf

2
x (4)

is the usual Hessian determinant of f .
The following result gives the number of intersections of the level set f(x, y) =

k with Vf = 0 and If = 0, as k passes through 0.

Theorem 2.1. Let f = k be a section of a generic surface M by a plane close to
the tangent plane at p, k = 0 corresponding with the tangent plane itself. Then
for every sufficiently small open neighborhood U of p in M , there exists ε > 0
such that f = k has exactly v(p) vertices and i(p) inflexions lying in U , for every
0 < |k| ≤ ε, where v(p) and i(p) satisfy the following equalities. We also use ↔ to
indicate the numbers of vertices or inflexions on either side of a transition, local
to the singular point on f = 0, when f = k has two branches. The notation m+n
indicates the numbers of vertices or inflexions on the two branches.

(E) If p is an elliptic point, then for one sign of k the section is locally empty; in
the non-umbilic case, for the sign of k yielding a locally nonempty intersection
we have v(p) = 4, i(p) = 0. Likewise if p is a generic1 umbilic point, then
v(p) = 6, i(p) = 0. (This is already well known: see for example [13, §15.3].)

(H) If p is a hyperbolic point v(p) satisfies one of the following.
For p lying in open regions of M we have
2 + 2 ↔ 2 + 2 or 1 + 1 ↔ 3 + 3.
In other cases, occurring along curves or at isolated points of M , we can have
in addition
3 + 2 ↔ 2 + 1 or 3 + 1 ↔ 2 + 2.
See §3.1 for an explanation of the different cases.

Also using the same notation, i(p) satisfies: 1 + 1 ↔ 0 + 2 or 1 + 2 ↔ 0 + 1; the
full list is in Table 2.

(P) If p is a parabolic point but not a cusp of Gauss, v(p) = 3, i(p) = 2.

(ECG) If p is an elliptic cusp of Gauss, v(p) = 4 , i(p) = 2 for one sign of k,
and the level set is empty for the other.

(HCG) If p is a hyperbolic cusp of Gauss, we have:
v(p) : 1 + 3 ↔ 4 + 4 or 2 + 2 ↔ 4 + 4,
and for each of these, we can have any of
i(p) : 1 + 1↔ 0 + 0 or 2 + 2↔ 0 + 2 or 1 + 1↔ 0 + 4

1The genericity assumption can be stated explicitly: the quadratic terms of f should not divide
the cubic terms. See §4.
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We split the proof of Theorem 2.1 into different cases discussed in the relevant
sections, in which we also carry out a closer investigation of the geometry of the
sets Vf = 0 and If = 0.

3. Hyperbolic case

Recall that at a hyperbolic point p of a surface, the principal curvatures κ1, κ2

are not zero and have opposite signs. After scaling, f can be taken in (1) to have
quadratic part x2 − a2y2 where a > 0. We shall write Vh for Vf in this case, and
likewise Ih for If .

3.1. Patterns of vertices and inflexions on the level sets

Proposition 3.1.

(i) The vertex set Vh = 0 has exactly four smooth branches V H1, V H2, V H3,
V H4 through (0, 0), where VH1 is tangent to the principal direction x = 0,
V H2 is tangent to the principal direction y = 0, V H3 is tangent to the as-
ymptotic direction x−ay = 0 and V H4 is tangent to the asymptotic direction
x + ay = 0.

(ii) The level sets f = 0 and Ih = 0 have exactly two smooth branches in a
neighborhood of (0, 0), one of them being tangent to x− ay = 0 and the other
one to x + ay = 0.

The proof for Vh can be done in several ways. We can use the technique ex-
emplified in §5.1, that is, blowing up combined with the implicit function theorem,
or, in the present case, we can even prove that Vh is R-equivalent as a function to
its lowest terms, which are 192a4(1 + a2)xy(x− ay)(x+ ay). The functions f and
Ih are Morse functions, hence equivalent to their quadratic parts.

In order to verify the conclusions of Theorem 2.1 in the hyperbolic case we
need to determine the relative positions of the branches of f = 0 and Vf = 0 (and
If = 0) which are tangent to one another at the origin. To do this we need the
higher terms of the Taylor expansions of those branches with the same tangents.
The branches V H1 and V H2 present no problems since they are always transverse
to the branches of the level set f = 0. For the branches V H3 and V H4 we use
Proposition 3.1 and substitute for example x = ay + x2y

2 + x3y
3 + higher terms,

into the expression of the vertex set Vh, for the branch V H3.

Notation. Certain expressions occur often in our formulae so we introduce some
notation for them.

f (n)(a) means the result of substituting x = a, y = 1 in the homogeneous part of
degree n in the Taylor expansion of f . (We write this rather than the more precise
f (n)(a, 1).)

For example,
f (3)(a) = b0a

3 + b1a
2 + b2a + b3, and f (4)(a) = c0a

4 + c1a
3 + c2a

2 + c3a + c4.
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Similarly f (n)(−a) is the result of substituting x = −a, y = 1 in the same homo-
geneous polynomial of degree n.

Proposition 3.2.

(i) The branches V H3, V H4 of the vertex set have the following 3-jets:

VH3 : x = ay − 1
2a

f (3)(a)y2

+
1

4a3(1 + a2)

(
f (3)(a)(3b0a5 + b1a

4 + (5b0 − b2)a3 + (3b1 − 3b3)a2

+ b2a− b3)− 4a2(1 + a2)f (4)(a)
)
y3

= ay + x+
2vy

2 + x+
3vy

3 say,

V H4 : x = −ay + x−
2vy

2 + x−
3vy

3(obtained by replacing a with −a in the above.)

(ii) The branches of f = 0 have the following 3-jets:

x = ay − 1
2a

f (3)(a)y2

+
1

8a3

(
f (3)(a)(5b0a3 + 3b1a2 + b2a− b3)− 4a2f (4)(a)

)
y3

= ay + x+
2vy

2 + x+
3fy

3 say, and

x = −ay + x−
2vy

2 + x−
3fy

3 obtained by replacing a with −a in the above.

It is evident, from (i) and (ii) of Proposition 3.2, that the branches of vertex
set and those of the curve f = 0 have at least 3-point contact at the origin: their
Taylor expansions agree up to order two. This also means that they have the
same osculating circle (circle of curvature) at the origin. The condition for them
to have (at least) 4-point contact is that the terms in y3 agree also. After some
manipulation, this 4-point contact condition comes to the following.

Proposition 3.3. Four-point contact condition The condition for the vertex branch
V H3 to have (at least) 4-point contact with the corresponding branch of f = 0 at
the origin is

f (3)(a)
(
b0a

5 − b1a
4 + (5b0 − 3b2)a3 − (5b3 − 3b1)a2 + b2a− b3

)
− 4a2(1 + a2)f (4)(a) = 0. (5)

The condition for V H4 to have (at least) 4-point contact with the corresponding
branch of f = 0 is obtained by replacing a by −a:

f (3)(−a)
(
b0a

5 + b1a
4 + (5b0 − 3b2)a3 + (5b3 − 3b1)a2 + b2a + b3

)
+ 4a2(1 + a2)f (4)(−a) = 0. (6)
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For a generic surface M , (5) or (6) then imposes one condition on the point
p and can therefore be expected to hold for points p along one or more curves on
M . We call this the vertex transition set (VT set) on M .

Remarks 3.4.
(1) The apparently rather complicated conditions in Proposition 3.3 actually state
that one or other of the branches of the curve f = 0 itself – the intersection between
the surface M : z = f(x, y) and its tangent plane – has a vertex.
In fact we have the general result:

For any f giving a hyperbolic point at the origin, a branch of the curve
f = 0 and the corresponding branch of the vertex set have the same
order of contact with their common osculating circle.

Thus at a point of the VT set, the corresponding branches of f = 0 and of the
vertex set both have vertices. We shall not use this fact here, but discuss the result
and its consequences elsewhere.
(2) Note in particular that (5) holds if x − ay is a factor of both the cubic and
quartic terms of the expansion of f . This is a biflecnode in the terminology of
Koenderink [11, p.296]. As a special case, one of (5), (6) will hold at every point of
a ruled surface, since the whole line in one of the asymptotic directions lies on the
surface. From the point of view of the VT set, both ruled surfaces and surfaces of
revolution (see §3.3) are highly non-generic.

Note that the 4-point contact condition can be regarded as a formula for
f (4)(±a) in terms of the lower degree coefficients of the expansion of f . It can
therefore be regarded as a formula for any of the degree 4 coefficients ci in terms
of the other cj and lower degree coefficients of f . In a similar way we can write
down the additional condition for V H3 or V H4 and the corresponding branch of
f = 0 to have 5-point contact. This can be written in the form f (5)(±a) = a
polynomial in the lower degree coefficients, but it is complicated and we shall not
display it here. (As noted above, this is equivalent to the branch of f = 0, or of
the vertex set, having a higher vertex.)

Analyzing in a similar way the Taylor expansions of the inflexion function Ih

we find the following.

Proposition 3.5. The branches of the inflexion curve Ih = 0 have the following
3-jets:

x = ay +
1

8a3

(
−3f (3)(a)(3b0a3 + b1a

2 − b2a− 3b3) + 8a2f (4)(a)
)
y3

= ay + x+
3iy

3 say,

and

x = −ay + x−
3iy

3 obtained by replacing a with −a in the above.
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Symbol x = ay branch x = −ay branch ‘codim’ Comment

H1 V1I1 V1I1 0 the most generic case

H2 V2I1 V1I1 1 along curves
in the VT set

H3 V2I1 V2I1 2 self-intersections
of the VT set

H4 V3I1 V1I1 2 isolated points
of the VT set

H5 V1I2 V1I1 1 curves in
the hyperbolic region

H6 V2I1 V1I2 2 isolated points

H7 V1I2 V1I2 2 isolated points

H8 V2I3 V1I1 2 V2I2 and V1I3

do not occur

Table 1. The possibilities for contact between f = 0 and the vertex
and inflexion curves. See Propositions 3.3 and 3.6, and Lemma 3.7 for
further information.

Note that there are no quadratic terms in these expansions: the branches of
the inflexion curve Ih = 0 themselves have inflexions at the origin. Accordingly
the branches of Ih = 0 and f = 0 tangent to x = ay, say, have 2-point contact
unless the branch of f = 0 also has an inflexion (that is, f (3)(a) = 0).

Altogether the possibilities for contact between branches of the vertex and
inflexion sets and the branches of f = 0 in the present hyperbolic cases are as
follows.

Notation
V1 A branch of f = 0 and of Vh = 0 have the minimum 3-point contact,
V2 A branch of f = 0 and of Vh = 0 have 4-point contact; see (5) or (6),
V3 A branch of f = 0 and of Vh = 0 have 5-point contact,
I1 A branch of f = 0 and of Ih = 0 have the minimum 2-point contact,
I2 A branch of f = 0 and of Ih = 0 have 3-point contact.
I3 A branch of f = 0 and of Ih = 0 have 4-point contact.

The possible ways of combining these at the two branches of f = 0 tangent to
x = ±ay are therefore as shown in Table 1. Here ‘codim’ refers to the codimension
of the locus of these points in the hyperbolic region.

For the ‘most generic’ case H1, we give in Figure 2 the three possible ways
(up to rotation or reflection of the diagram) in which the different elements can
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intersect. We use the notation 2 + 2 ↔ 2 + 2 and 1 + 1 ↔ 3 + 3 to indicate the
numbers of vertices on the pair of branches of f = k for small k first of one sign and
then of the other. The inflexions in the first case follow the pattern 2 + 0↔ 1 + 1
whereas in the second case the two patterns 2+0↔ 1+1 and 1+1↔ 2+0 occur.
Examining cases we find the following.

Proposition 3.6.
(i) In the case H1, the vertex transition 2 + 2 ↔ 2 +2 occurs when the left-hand

sides of (5) and (6) have opposite signs.
(ii) The vertex transition 1 + 1 ↔ 3 + 3 occurs when the left-hand sides of (5)

and (6) have the same sign.
(iia) The inflexion transition 1 + 1 ↔ 2 + 0 occurs when, in addition to (ii),

‘left-hand sides both < 0’ is accompanied by f (3)(a)f (3)(−a) > 0 and
‘left-hand sides both > 0’ by f (3)(a)f (3)(−a) < 0.

(iib) The inflexion transition 2 + 0 ↔ 1 + 1 occurs when, in addition to (ii),
‘left-hand sides both < 0’ is accompanied by f (3)(a)f (3)(−a) < 0 and
‘left-hand sides both > 0’ by f (3)(a)f (3)(−a) > 0.

The other cases also require an analysis of the order of branches of f =
0, Vh = 0, Ih = 0 around each of the lines x = ±ay. In Figure 3 the principal
cases for a single branch tangent to x = ay are illustrated. By putting these
together with similar information at x = −ay, and including the other branches
of Vh = 0 tangent to the two coordinate axes (see Proposition 3.1) we arrive at
the classification in Table 2.

Here is an indication of the calculations which allow us to draw the cases in
Figure 3.

Lemma 3.7.
(i) The condition for V1I2 on the branch tangent to x = ay is f (3)(a) = 0,

f (4)(a) �= 0 and the configuration of f = 0, Vh = 0, and Ih = 0 is determined
by the sign of f (4)(a), as in Figure 3.

(ii) The conditions for V2I2 or V1I3 on the branch tangent to x = ay are
f (3)(a) = f (4)(a) = 0, f (5)(a) �= 0, and this situation is in fact V2I3. The
configuration of f = 0, Vh = 0 and Ih = 0 is determined by the sign of f (5)(a),
as in Figure 3.

Proof For (i), note that we require the branches of Ih = 0 and f = 0 tangent to
x = ay to have the same 2-jet, and using the formulae of Propositions 3.2 and 3.5
this requires f (3)(a) = 0. They have different 3-jets provided f (4)(a) �= 0, since
the coefficients of y3 in the two Taylor series are then 1

af
(4)(a) and − 1

2af
(4)(a)

respectively. Since the coefficient of y3 in the Taylor series of Vh is − 1
a we find the

two orderings of the branches depicted in Figure 3.
For (ii) we use the same Propositions, noting that I2 together with V2 imply
f (3)(a) = f (4) = 0 which in turn imply that the 3-jets of the branches of Vh = 0
and f = 0 agree. Further calculations then show that the coefficients of y4 in
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Symbol Vertex transitions Inflexion transitions Comment

H1 (i) 2 + 2 ↔ 2 + 2 2 + 0 ↔ 1 + 1 Figure 2(i)

(iia) 1 + 1 ↔ 3 + 3 1 + 1 ↔ 2 + 0 Figure 2(iia)
(iib) 2 + 0 ↔ 1 + 1 Figure 2(iib)

H2 3 + 2 ↔ 2 + 1 1 + 1 ↔ 2 + 0
2 + 0 ↔ 1 + 1
0 + 2 ↔ 1 + 1
1 + 1 ↔ 0 + 2

H3 3 + 1 ↔ 2 + 2 2 + 0 ↔ 1 + 1
1 + 1 ↔ 2 + 0
0 + 2 ↔ 1 + 1

H4 As for H1

H5 (i) 2 + 2 ↔ 2 + 2 1 + 2 ↔ 1 + 0

(ii) 1 + 1 ↔ 3 + 3 1 + 2 ↔ 1 + 0

H6 3 + 2 ↔ 2 + 1 1 + 0 ↔ 2 + 1

H7 (i) 2 + 2 ↔ 2 + 2 1 + 1 ↔ 1 + 1

(ii) 1 + 1 ↔ 3 + 3 2 + 2 ↔ 0 + 0 Torus, Figure 1

H8 3 + 2 ↔ 2 + 1 1 + 1 ↔ 0 + 2
0 + 2 ↔ 1 + 1

Table 2. The transitions on vertices and inflexions in the hyperbolic case.

the three branch expansions are f = 0 : − 1
2af

(5)(a), Vh = 0 : − 5
2af

(5)(a) and
Ih = 0 : 5

2af
(5)(a) from which the results now follow.

3.2. Extrema of curvature and limiting curvature

In order to analyze the vertices further, we need to decide which vertices correspond
to maxima and which to minima of curvature on the curve. (This is of significance
when we apply the results to the symmetry set and the medial axis, since only
minima – indeed absolute minima – can contribute to the latter.) We proceed
as follows. The different branches of the vertex set locally divide the plane into
regions where the derivative κ′ of the curvature κ (with respect to any regular
parametrisation of the curve) has a constant sign, the vertex branches being the
loci of points where this derivative vanishes. Note that the sign of κ′ does not
depend on the orientation of the curve. However κ′ has the same sign as the
vertex condition Vh(x, y).

To decide the sign of κ′, for instance in the (local) region between the vertex
branches tangent to y = 0 and x − ay = 0, let us then check the sign of Vh(x, y)
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Figure 2. Arrangements of vertices and inflexions on the level sets of
f , hyperbolic case H1 (see Table 2). In each case, we show, above, the
vertex and inflexion curves – that is, the loci of vertices and inflexions
on the level sets of f – and, below, a sketch of the level curves for
f < 0, f > 0, showing the positions of these vertices and inflexions. The
orientation chosen for the branches of f = k is shown in Figure 4.

along the line x = 2ay, which is inside this region. Along this line, the sign of the
vertex condition is positive, at least for y small, as the Taylor expansion of the
vertex condition is: Vh(2ay, y) = 1152(a7 + a9)y4 + O(y5) and a > 0.

We can complete the sign of κ′ in all other regions by just alternating it
before and after vertex branches. This completely describes the growth of κ on
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Figure 3. The arrangements of branches tangent to x = ay: thick line
f = 0, thin solid line the vertex curve Vh = 0 and dashed line the
inflexion curve Ih = 0. Three cases are illustrated here, the notation
being that of Table 1.

the level sets of f in the plane. We shall always orient the branches of f = k as
indicated in Figure 4, and in this orientation κ will have a definite maximum or a
minimum at a given vertex.

Proposition 3.8. In the notation of Proposition 3.1, the limiting curvature of the
level curves f = k, k → 0 at vertices on the various branches is, up to sign,
• infinite, along VH1 and VH2

• f (3)(a)/a(1 + a2)3/2, along V H3

• −f (3)(−a)/a(1 + a2)3/2, along VH4.

To prove this, we use the Taylor expansions of the branches of the vertex set,
given above in Proposition 3.2, and the formula (3) for the square of the curvature
of a plane curve. For the branch V H1 we find the numerator and denominator of
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Figure 4. Case H1(iia) (compare Figure 2). The sign of κ′: following
the indicated orientations on f = k, before the curve f = k intersects a
vertex branch “Max”, the derivative κ′ of κ is positive, then vanishes at
the vertex branch and becomes negative afterwards. So the intersections
of the vertex branches “Max” and the curves f = k are the vertices on
f = k where κ reaches a local maximum; likewise the ‘min’ describes
the patterns of the local minima of curvature of f = k when k goes
through zero. The diagram on the right takes into account inflexions on
f = k.

κ2 come to 64a8y4 +O(y5) and 64a12y6 +O(y7) respectively, so that as y → 0 the
limiting curvature is infinite. The situation for V H2 is similar.

For VH3 the numerator and denominator come to 64a4f (3)(a)2y6+O(y7) and
64a6(1 + a2)3y6 + O(y7), which gives the required result. Note that this limiting
curvature is zero precisely for a flecnodal point, at which the quadratic and cubic
terms have a common factor x − ay. The limiting curvatures for both branches
V H3 and V H4 are zero when the whole of the quadratic terms are a factor of the
cubic terms, that is for the intersection of two flecnodal curves corresponding to
different asymptotic directions on the surface M .

3.3. The vertex transition (VT) set

Given a generic surface M , we can apply our analysis to any point p of the surface:
we are then looking at the family of plane sections of the surface close to the tangent
plane section. The ‘4-point contact condition’ (5) or (6) is generically expected to
hold for points p along a set of curves on M , the vertex transition (VT) set. Of
course the VT set lies entirely in the hyperbolic region, though it may have limit
points on the parabolic set (see below); it separates those points where the family
of sections parallel to the tangent plane exhibits behavior H1(i) in Table 2 from
those exhibiting H1(ii).
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It is clearly of interest to determine, for a given surface M , the subregions into
which the hyperbolic region is separated by the VT set. This set can self-intersect,
when both local branches of f = 0 have 4-point contact with the corresponding
local branches of the vertex set Vh = 0: this is H3 in Table 1. Also there are
special points on the VT set where a branch of the vertex set and f = 0 have
5-point contact: this is H4 in Table 1. Although the local conditions are quite easy
to calculate – see the above formulae – it is not so easy to take a global surface
and determine the VT set. We consider below the case of a surface of revolution
M , which turns out to be non-generic in the sense that a point of M lies on both
branches of the VT set or on neither. We also consider the limit points of the VT
set on the parabolic curve of a general surface M .

Torus and surface of revolution. Consider a torus of revolution M in R3, obtained
by rotating a circle about a line in its plane, not intersecting the circle. Naturally
the VT set will be one or more circular ‘latitude parallels’ of the torus in view
of the circular symmetry. In fact, for a circle of radius r rotating so that its
centre describes a circle C of radius R > r, the two latitude parallels in the
hyperbolic region of the torus making an angle cos−1(r/R) with the plane of C lie
on both branches of the VT set. Thus for points p on these two latitude parallels,
both branches of the local intersection of M with its tangent plane have 4-point
contact with the corresponding branches of the vertex set at p (or equivalently
both branches of the intersection of M with its tangent plane have a vertex at
p). At other hyperbolic points of M neither branch has these properties. Crossing
the VT set we therefore cross it twice, so that, apart from points p on the VT set
itself, the pattern of vertices on sections of M parallel to the tangent plane at p is
always the same. In fact we find that, in the expansion of the torus in Monge form
at any hyperbolic point, the coefficients b1, b3, c1, c3 are all zero. It is clear that,
in this situation, the two expressions in Proposition 3.3 become identical so that,
in the case H1 of Theorem 2.1, only (ii) is possible. Thus all hyperbolic points
away from the VT set exhibit the same pattern of vertices. Interestingly, when
we consider inflexions, then both possibilities in Table 2 occur. In fact let p be
a point of the torus of the form (r sin t, 0, R + r cos t) (where the axis of rotation
is the x-axis and we can without loss of generality take p to be in the xz-plane).
Then using Proposition 3.6 we find that if −r/R < cos t < 0 then the inflexion
transition is 1 + 1 ↔ 2 + 0 but if −1 < cos t < −r/R it is 2 + 0 ↔ 1 + 1. Note
that cos t < 0 since p is hyperbolic, and t = π gives the symmetrical case H7(ii)
of Table 2 and Figure 1.

The same happens in fact for any surface of revolution generated by rotating
a plane curve, say in the x, z-plane, about the z-axis. We find that b1, b3, c1, c3 are
all zero and the conclusion follows as before. If we rotate the curve y = 0, x =
a + bz + cz2 + dz3 + ez4 + · · · about the z-axis then the condition for the point
(a, 0, 0) to be hyperbolic is ac > 0 and the condition for this point to lie on
the VT set determines e uniquely in terms of a, b, c, d. For example, the curve
x = a + cz2 − (c2/2a)z4 has the latter property, as does x = 4− 2z + 2z2 + z3.
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The VT set and the parabolic curve. The analysis of sections parallel to the
tangent plane at a parabolic point and at a cusp of Gauss is given in §§5, 6. Here
we are concerned with the hyperbolic region near a parabolic point and we ask
which type, H1(i) or H1(ii), the points of this region can be.

Suppose we consider a sequence of hyperbolic points tending to a parabolic
point p of M . If we let a→ 0 in (5) and (6), the left-hand sides both tend to −b23,
since f (3)(0) = b3. Hence, if b3 �= 0 at a point p of the parabolic curve, then all
hyperbolic points sufficiently close to p are of type H1(iia), by Proposition 3.6(ii).
In particular the VT set cannot have a limit point on the parabolic curve except
where b3 = 0, that is at the cusps of Gauss. It is possible to calculate the local
form of the VT set at cusps of Gauss; we find the following.
• At an elliptic cusp of Gauss p (in (1) p = (0, 0, 0) and κ2 = 0, b22 < 2κ1c4 or,

scaling κ1 to 2, b22 < 4c4), there is locally no VT set.
• At a hyperbolic cusp of Gauss p (the previous inequalities are reversed), there

is either locally no VT set, or locally a VT set consisting of two curves
tangent to the parabolic curve at p and having inflexional contact with each
other (equivalent by a change of coordinates in the parameter plane of M to
(x − y3)(x + y3) = 0). The criterion separating these cases is the sign of a
polynomial in coefficients of the Monge form of M at p of order ≤ 4, together
with d5. When d5 = 0 a VT set exists if and only if c4 lies between 0 and
20b22c3(b1b2− c3)/(4b1b2 + c3)2. There is a similar, slightly more complicated
formula, for general d5.

4. Elliptic points

We sketch this case for completeness; the chief interest for us lies in the symmetry
set and medial axis in the umbilic case as in [6].

At an elliptic point, say p = (0, 0, 0) on a surface z = f(x, y), the two
principal curvatures are of the same sign, say positive: κ1 > 0, κ2 > 0. Using
(1), the function f , after scaling of the variables x, y, z, is of the form fe(x, y) =
x2 + a2y2 + b0x

3 + b1x
2y + b2xy

2 + b3y
3+ h.o.t., where we may assume a > 0.

We can distinguish two cases here: the generic case where a �= 1 and the case
a = 1 of umbilic points, where the principal curvatures are equal. Umbilic points
are isolated points in the elliptic region of a surface. See Figure 5 for the vertex
set and some level curves fe(x, y) = k in the umbilic case.

4.1. Proof of Theorem 2.1: elliptic case

The results on vertices in this case are well known; to deduce them from the
function Ve note that it has 4-jet

−192a4xy(a2 − 1)(x2 + a2y2)

so that, when a �= 1, there can be only two real branches of Ve = 0, with tangents
x = 0 and y = 0.
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The inflexion condition Ie has 2-jet 8a2(x2 + a2y2), hence the set Ie = 0
contains no real points apart from the origin.

The sections fe = k will therefore have four vertices for small k > 0, just as
in the case of an ellipse.

The umbilic case. Let us consider the case a = 1. The vertex set Vu = 0 is now
given by

1
192

Vu = px5 − 3qx4y − 2px3y2 − 2qx2y3 − 3pxy4 + qy5 + h.o.t.,

= (x2 + y2)(px3 − 3qx2y − 3pxy2 + qy3) + h.o.t.,

where p = b3 − b1, q = b2 − b0. The discriminant of the form of degree 3 is

108(p2 + q2)2,

so that, unless p = q = 0 (which amounts to saying that x2 + y2 is a factor of
the cubic terms), the discriminant is > 0 and the branches of Vu = 0 through
the origin are distinct and exactly three of them are real. It follows that there are
always six vertices on the section fu = k for small k > 0. (Compare [13, §15.3].)
Not surprisingly, there are no inflexions on fu = k. The inflexion set has equation
Iu = 0, which has the form 8(x2 + y2)+h.o.t.

Naturally, the curvature at the vertices tends to infinity as k → 0 through
positive values; in fact the curvature behaves like that of a circle of radius

√
k.

Figure 5. Loci of vertices in a 1-parameter family of level sets f = k
(closed curves), in the umbilic case. The vertex curve has three branches
through the origin, giving rise to six vertices on the level set for
all small k.
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5. Parabolic case

At a parabolic point p the contact of the surface M with its tangent plane is of type
A2 at least; we consider the case of ordinary parabolic points where the contact is
exactly A2 in this section. One of the principal curvatures vanishes. After scaling
of the variables x, y, z in (1) f can be written

fp(x, y) = x2 + b0x
3 + b1x

2y + b2xy
2 + b3y

3 + higher order terms (7)

where b3 �= 0. (The case b3 = 0 is that of a cusp of Gauss; see §6.)

Proposition 5.1.
(i) The vertex set Vp = 0 has three branches, one being smooth and the other

two having ordinary cusps.
(ii) The inflexion set Ip = 0 has two branches, one smooth and one having an

ordinary cusp.
(iii) The zero level set fp = 0 has one branch, having an ordinary cusp.

See §5.1 for the proof.

By the same method as in Proposition 3.5 we can show the following.

Proposition 5.2. Suppose that b3 > 0 (see the Remark below for the contrary case
b3 < 0).

(i) The smooth branch V P1 of the vertex set has the following 3-jet:
• V P1: (− 1

2b2t
2 + b2(b1−3b3)−c3

2 t3, t).
The two cusped branches of the vertex set have the following 4-jets:
• V P2: (x′

3t
3 − 1

2b2t
4,−t2),

• V P3: (x′′
3 t

3 − 1
2b2t

4,−t2),
where 2x′

3 =
√

9 + 3
√

3
√
b3, and 2x′′

3 =
√

9− 3
√

3
√
b3.

(ii) The branches of the inflexion set can be parametrized as
• (3b3t,−b2t + · · · ) (recall b3 �= 0)
• (1

2

√
3b3t3 − 3

8b2t
4 + · · · ,−t2).

(iii) The level set fp = 0 has the following 5-jet:
• (
√
b3t

3 − 1
2b2t

4 + b22+4b1b3−4c4

8
√

b3
t5, −t2).

Comparing the coefficients of the t3-terms of the cuspidal branches in (i), (ii)
and (iii) we have 1

2

√
3b3 < x′′

3 <
√
b3 < x′

3. It follows that the branch of fp = 0
is always between the two cusped branches of the vertex set, and also the cusped
branch of the inflexion set is inside all these three cusps. See Figure 6.

Hence each level curve fp = k has only three vertices, near the origin, for
small k. Thus, when k passes though 0, the number of vertices of the curves fp = k
remains unchanged: 3 ↔ 3, as claimed in Theorem 2.1. The number of inflexions
does not change as k passes through 0: each curve f = k has two inflexions near
the origin. Hence the transition of inflexions is 2 ↔ 2.
Remark. If b3 < 0, then in Proposition 5.2 we use y = t2 instead of y = −t2 and
replace

√
b3 by

√
−b3 wherever it occurs. The two cases ′ and ′′ in (i) are then

reversed.
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Figure 6. Left: a schematic picture of the vertex set Vp = 0 (thin
solid line), the inflexion set Ip = 0 (dashed line) and the zero level
set fp = 0 (thick line) in the parabolic case. The vertex set has two
cuspidal branches and one smooth branch, the inflexion set has one
cuspidal branch and one smooth branch, and fp = 0 has one cuspidal
branch. The level set fp = k then evolves so that the number of vertices
remains as 3 and the number of inflexions as 2 for both signs of k, with
k small. Centre: a sketch of the level curve fp = k for k �= 0, marking
vertices (circles) and inflexions (squares). Right: the Newton polygon
for the parabolic case; see §5.1.

5.1. Proof of Proposition 5.1
In this section we show briefly how we are able to deduce that the vertex and
inflexion sets have branches as claimed above. We do so by looking at the Newton
polygon and then applying the well-known techniques of blowing-up combined
with the implicit function theorem. We give this example in detail; all the other
cases encountered in this article can be dealt with similarly.

The Newton polygon for the function Vp contains the following monomials
with coefficients: 192b3x5 +864b23x

3y3 +648b33xy
6 +324b2b33y

8. Since b3 �= 0 all but
the last term are definitely present. The last term is absent when b2 = 0, which
means that the parabolic curve is tangent to the other principal direction at the
origin. When this is the case, there is a term 324b33c3y

9, which will be present
unless c3 = 0. Generically b2 = c3 = 0 will not happen anywhere on our surface
M . Thus the Newton polygon has terms x5, x3y3, xy6 and either y8 or y9; see
Figure 6.

Let us write the above as g(x, y) = ax5 + bx3y3 + cxy6 +dy8 and consider the
case where d �= 0. Note that a, b, c and b2 − 4ac = 248832b43 are all nonzero. The
function Vp will then be of the form g + terms above the Newton polygon; we can
think of the latter as linear combinations of monomials xmyn where 3m + 2n >
15 and (m,n) �= (0, 8). We first blow up by x = ty, so that the ‘blow-down’
transformation is (t, y) → (ty, y) and y = 0 is the exceptional divisor. The result
after cancelling y5 is

at5 + bt3y + cty2 + dy3 + linear combination of monomials tmym+n−5.
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Note that m + n > 5 for all monomials above the Newton polygon. Hence inter-
secting with y = 0 gives five coincident points at the origin t = y = 0 (and there
are no points sent to infinity, that is y = tx produces no points on the exceptional
divisor, using a �= 0).

For the second blow-up we use y = ut, with blow-down map (t, u) → (t, ut);
we find after cancelling t3

at2 + but + cu2 + du3 + linear combination of monomials um+n−5t2m+n−8,

and 2m + n − 8 > 0 for all monomials above the Newton polygon. This meets
t = 0 in cu2 + du3 = 0, that is a cusp at the origin and a transverse crossing of
the u-axis at u = −c/d, since d �= 0. The transverse crossing provides us with a
smooth branch of the blown-up curve Vp = 0, parametrized by t, using the implicit
function theorem, and by blowing-down we obtain one of the branches of our curve
Vp = 0 (in fact also a smooth branch). No further points are obtained from the
alternative blow-up t = uy.

Blowing up the origin a third time, using t = uw, with blow-down map
(w, u) → (uw, u), we obtain after cancelling u2,

aw2 + bw + c + du + linear combination of monomials u3m+2n−15w2m+n−8,

and again 3m+ 2n− 15 > 0 for all points above the Newton polygon. Finally this
meets the exceptional divisor u = 0 in distinct points, since b2 �= 4ac, each of which
gives a transverse crossing of u = 0 so that the two branches of the blown-up curve
can be locally parametrized smoothly by u, using the implicit function theorem.
These branches blow-down to the remaining two branches (actually ordinary cusps)
of Vp = 0.

5.2. The limiting curvature of fp = k, at vertices

Here again, we would like to evaluate the curvature κ of fp = k at a vertex. Then
we will take the limit of κ, as one approaches the parabolic point p= (0, 0, 0), along
that vertex branch.

Proposition 5.3. The limiting curvature of the level curves f = k is infinite as
k → 0, at vertices on any of the branches of the vertex set.

We substitute the parametrizations of the branches of Vp = 0 given in Propo-
sition 5.2 into the expression for κ2 given in (3). The result is (in all cases using
b3 �= 0) for the branch V P1, κ2 ∼ t−4, while for V P2 and V P3, κ2 ∼ t−2. The
result follows.

6. Non-degenerate cusps of Gauss

For a non-degenerate cusp of Gauss the Monge form (1) can be written, after
scaling the variables, as

fg = x2 + b0x
3 + b1x

2y + b2xy
2 + c0x

4 + c1x
3y + c2x

2y2 + c3xy
3 + c4y

4 + h.o.t
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where b22− 4c4 �= 0, that is, the lowest degree terms in the weighted sense, namely
the x2, xy2 and y4 terms, are non-degenerate. Since cusps of Gauss are isolated we
can assume generically that other conditions on the coefficients are avoided. By
changing the sign of x if necessary we can assume b2 > 0.

There are two broad cases:

Elliptic cusp of Gauss: b22− 4c4 < 0. Then the curve fg = k is locally a closed loop
for k > 0 and empty for k < 0.

Hyperbolic cusp of Gauss: b22 − 4c4 > 0. Then fg = k has two local branches for
k �= 0 and two tangential branches for k = 0.

Note that the principal direction x = 0 is tangent to the parabolic curve at a cusp
of Gauss. See [1] for an extensive discussion of cusps of Gauss, and [11, pp. 245,
276] for further geometrical information.

6.1. Vertices and inflexions on level sets at a cusp of Gauss

In a neighborhood of a cusp of Gauss, the vertex condition now reads

Vg = 192(c3 − b1b2)x6 + 192(4c4 − b22)x
5y + h.o.t.

Since b22 − 4c4 �= 0, there will be a nonzero coefficient of x5y here.

Proposition 6.1.
(i) In the case of an elliptic cusp of Gauss, i.e., b22 − 4c4 < 0 (the closed curve

intersection), there are two smooth real branches of the vertex set Vg = 0
through the origin, one of which is tangent to the axis x = 0, and the other
one to (b22 − 4c4)y = (c3 − b1b2)x.

(ii) In the case b22 − 4c4 > 0 (hyperbolic cusp of Gauss), the vertex set has six
smooth real branches V Gi for i = 1, . . . , 6. All except V G6 are tangent to
x = 0 while V G6 is tangent to (b22 − 4c4)y = (c3 − b1b2)x.

(iii) If in addition to b22 − 4c4 > 0, we have b22 − 8c4 > 0, then the inflexion set
has three smooth branches (see Figures 9 and 10), whereas when b22−8c4 < 0,
there is only one smooth branch (see Figure 8).

The claimed number of branches can be deduced from the Newton polygon
in the same way as §5.1; the present case is easier. The Newton polygon for Vg is
illustrated in Figure 7, right. The terms on the Newton polygon are

192(c3 − b1b2)x6 − 192(b22 − 4c4)x5y − 480b2(b22 − 4c4)x4y3

−48(b22 − 4c4)(7b22 + 12c4)x3y5 − 24b2(b22 − 4c4)(b22 + 36c4)x2y7

+24(b22 − 4c4)(b42 − 10b22c4 − 16c24)xy
9 + 24b2c4(b22 − 4c4)(b22 − 8c4)y11.

The key fact is this: ignoring the first term and then cancelling y, the remaining
terms form a quintic polynomial in x and y2 which has distinct roots; in fact it
factorizes as

(b22 − 4c4)(2x + b2y
2)(x2 + b2xy

2 + c4y
4)(4x2 + 4b2xy2 − (b22 − 8c4)y4).
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Figure 7. Left: Vertices and inflexions in the case of an elliptic cusp of
Gauss: the curves marked V are the vertex set, those marked I are the
inflexion set and f = k is one level set of f . As k increases through 0, the
curve passes from empty to one with four vertices and two inflexions.
Right: the Newton polygon for a hyperbolic cusp of Gauss; compare §6.1.

The discriminant is a nonzero constant times (b22 − 4c4)18 and the number of real
roots is 1 for an elliptic cusp and 5 for a hyperbolic cusp. Two blow-ups x = ty
and y = tu suffice to find the real branches of the singular point Vg = 0.

We can parametrize the branches of the inflexion set as follows. Substitute
x = x1y + x2y

2 + . . . in the inflexion condition Ig = 0; this gives the solution
x1 = 0, implying that the inflexion branches are all tangent to the y-axis. Then
the coefficient z of y2 is a solution of a cubic equation I(z) = 0 where

I(z) = −4c4(b22 − 8c4)− 6b2(b22 − 8c4)z + 48c4z2 + 8b2z3 (8)

with discriminant D = 6912(b22− 8c4)(b22− 4c4)4. So D > 0 , giving 3 solutions for
z, if and only if b22 − 8c4 > 0. However, if b22 < 4c4 (elliptic cusp) then c4 > 0 so
automatically b22 < 8c4 and the 3 solutions case applies only to hyperbolic cusps.

Once we know the number of smooth branches we can find their Taylor
expansions using the same method of substitution of power series that was used
in the previous cases. We find the following.

Proposition 6.2. When b22−4c4 > 0 (hyperbolic cusp of Gauss), the branches of the
vertex set, tangent to the principal direction x = 0, can be parametrized as follows:

V G1 : x = −1
2

(
b2 −

√
b22 − 4c4

)
y2 + h.o.t.,

V G2 : x = −1
2

(
b2 +

√
b22 − 4c4

)
y2 + h.o.t.,

V G3 : x = −1
2

(
b2 −

√
2b22 − 8c4

)
y2 + h.o.t.,



Vertices and Inflexions of Plane Sections of Surfaces in R3 93

V G4 : x = −1
2

(
b2 +

√
2b22 − 8c4

)
y2 + h.o.t.

V G5 : x = −1
2
b2y

2 − 1
2
(c3 − b1b2)y3 + h.o.t.

The level set f = 0 has two branches which can be parametrized as:

FG1 : x = −1
2

(
b2 −

√
b22 − 4c4

)
y2 + h.o.t.,

FG2 : x = −1
2

(
b2 +

√
b22 − 4c4

)
y2 + h.o.t.

This Proposition implies in particular that the vertex branch V G1 and the
branch FG1 of f = 0 have at least 3-point contact at the origin. The same holds
for V G2 and FG2.

The conditions for 4-point contact are given below; since cusps of Gauss are
isolated on a generic surface, only the signs of the expressions below will be of
significance.

Proposition 6.3. The vertex branch V G1 and the branch FG1 of fg = 0 have at
least 4-point contact at the origin if and only if D1 = 0 where

D1 = −b1b22 + b1b2

√
b22 − 4c4 + 2b1c4 + b2c3 − c3

√
b22 − 4c4 − 2d5.

The same holds for V G2 and FG2 if and only if D2 = 0 where

D2 = b1b
2
2 + b1b2

√
b22 − 4c4 − 2b1c4 − b2c3 − c3

√
b22 − 4c4 + 2d5.

The signs of the Di determine the relative positions of the branches V Gi and
FGi. More precisely, D1 > 0 if and only if, above the x-axis, the curve V G1 is
to the right of FG1. (Below the x-axis this is reversed, since they have 3-point
contact at the origin.) Similarly, D2 > 0 if and only if, above the x-axis, V G2

is to the right of FG2. Note that both D1 > 0 and D2 > 0 can be regarded as
conditions on the coefficient d5.

6.2. Hyperbolic cusp of Gauss

Let x2i, i = 1, . . . , 5 be the coefficient of y2 in the expansion of the branch V Gi

as in Proposition 6.2, and let z0 or z1 < z2 < z3 denote the real roots of (8),
as appropriate. Thus the zi are the coefficients of y2 in the expansion(s) of the
branch(es) of the inflexion set: x = ziy

2 + · · · . Recall that we also assume b2 > 0.
The following is obtained from the expressions in Proposition 6.2 and the sign of
the polynomial I in (8) at the values x2i.

Proposition 6.4.
(a) Suppose b22 − 8c4 > 0.

(1) If c4 > 0 then x24 < x22 < z1 < x25 < x21 < z2 < 0 < x23 < z3.
(2) If c4 < 0 then x24 < x22 < z1 < x25 < 0 < z2 < x21 < x23 < z3.

(b) Suppose b22 − 8c4 < 0. Then x24 < x22 < z0 < x25 < x21 < x23 < 0.
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Figure 8. Sketch of the hyperbolic cusp of Gauss case, b2 > 0, 4c4 <
b22 < 8c4 (so c4 > 0); see Proposition 6.1. The left box has D1 and D2

as in Proposition 6.3 of the same sign (negative) and the right box of
opposite signs (D1 > 0). The thick lines are f = 0 on the left of each
figure and f = k for the two signs of small nonzero k on the right. The
thin lines are the V Gi of Proposition 6.2, labelled by i, and the dashed
line is the single branch of the inflexion set. As before, solid circles are
maxima and open circles are minima of curvature, for the orientations
indicated, and squares are inflexions.

These are illustrated in Figures 8-10. The sign of the derivative of curvature
is determined as for the hyperbolic case; this determines the pattern of maxima
and minima of curvature. The statements of Theorem 2.1, case (HCG), follow from
these diagrams.

7. Conclusion

In this article, we have derived detailed results on the pattern of vertices and
inflexions on families of plane curves of the form f(x, y) = k, which can be in-
terpreted as the parallel plane sections of a generic surface close to the tangent
plane at a given point p. This is part of an investigation of the symmetry sets
and medial axes of 1-parameter families of plane curves which evolve through a
singular member. The symmetry set of a nonsingular plane curve γ is the closure
of the locus of centres of circles tangent to γ in more than one place (‘bitangent
circles’). It has endpoints in the cusps of the evolute, that is at the centres of cur-
vature of the vertices of γ. Thus the pattern of vertices has a strong influence on
the branches of the symmetry set. Inflexions have a direct effect on the evolute –
it goes to infinity – and, through the associated double tangents, an indirect effect
on the symmetry set, which has a point at infinity for every double tangent (a
bitangent circle of infinite radius). The limiting curvatures at vertices, as k → 0,
determines the limiting position of the endpoints of the symmetry set as the plane
section becomes singular.
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Figure 9. Sketch of the hyperbolic cusp of Gauss case, b2 > 0, c4 < 0
(hence b22 > 8c4); see Proposition 6.1. The left box has D1 and D2 as in
Proposition 6.3 of the same sign (negative) and the right box of opposite
signs (D1 > 0). The thick lines are f = 0 on the left of each figure and
f = k for the two signs of small nonzero k on the right. The thin lines are
the V Gi of Proposition 6.2, labelled by i, and the dashed lines are the
three branches of the inflexion set. As before, solid circles are maxima
and open circles are minima of curvature, for the orientations indicated,
and squares are inflexions.

The investigation of symmetry sets involves many other factors, such as an
investigation of circles which are tangent in three places to γ (these produce triple
crossings on the symmetry set) and circles which are circles of curvature at one
point of γ and tangent elsewhere (these produce cusps on the symmetry set). These
and other matters are reported elsewhere, beginning with [6].

We conclude with some remarks and questions about the material of this article.
1. Is it possible to calculate the VT curve for classes of global examples where

the two branches do not coincide? Compare §3.3.
2. Can the parabolic and cusp of Gauss cases be approached by more general

methods of singularity theory, as in [8, 14]?
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Figure 10. As for Figure 9 except that b2 > 0, b22 > 8c4, c4 > 0; see
Proposition 6.1.

3. For the purpose of plotting symmetry sets it is much more convenient to
have a parametrized curve rather than a level set f(x, y) = k. A method of
parametrizing the level sets to arbitrarily high accuracy is given in [7].
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Local Topology of Reducible Divisors

Alexandru Dimca and Anatoly Libgober

Abstract. We show that the universal abelian cover of the complement to a
germ of a reducible divisor on a complex space Y with isolated singularity is
(dimY − 2)-connected provided that the divisor has normal crossings outside
of the singularity of Y . We apply this result to obtain a vanishing property
for the cohomology of local systems of rank one and also study vanishing in
the case of local systems of higher rank.

1. Introduction

The topology of holomorphic functions near an isolated singular point is a classical
subject (cf. [23], [4]). Among the main results are the existence of Milnor fibration
and the connectivity of the Milnor fiber yielding a very simple picture for the
latter: it has the homotopy type of a wedge of spheres. Starting with the case of
a germ of holomorphic function on CN considered by Milnor ([23]), these results
were eventually extended to the germs of holomorphic functions on analytic spaces
(cf. [12], [19] ).

In [22], it was shown that if the divisor of a holomorphic function on CN is
reducible then the results on the connectivity of Milnor fibers (cf. [23], [17]) can
be refined. This refinement is based on the observation that the Milnor fiber is
homotopy equivalent to the infinite cyclic cover of the total space of the Milnor
fibration. So the classical connectivity results by Milnor and Kato-Matsumoto can
be restated in terms of the connectivity of this cyclic cover.

In the case when the divisor of a holomorphic function is reducible, it is the
associated universal abelian cover which has interesting connectivity properties
generalizing the connectivity properties in the cyclic cover case, see Theorem 3.2
below. The present paper studies the case of reducible divisors on arbitrary isolated
singularities.

More precisely the situation we consider is the following. Let (Y, 0) ⊂ (CN , 0)
be the intersection of a ball of a sufficiently small radius about the origin 0 with a
(n+1)-dimensional irreducible complex analytic space with an isolated singularity
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at 0. Let (Dj , 0) ⊂ (Y, 0) for j = 1, . . . , r be r irreducible Cartier divisors on (Y, 0).
We set X = ∪i=1,rDi, M = Y \ X and regard M as the complement of the hy-
persurface arrangement D = (Dj)j=1,r . Since (Y, 0) is irreducible, the complement
M is connected and so we can unambiguously talk about the fundamental group
π1(M) without mentioning a base point.

In this paper we investigate the topology of this complement M . In Section
2 we generalize a case of the Lê-Saito result in [18] asserting that if (Y, 0) is a
smooth germ and X is an isolated non-normal crossing divisor (see the definition
below), then the fundamental group π1(M) is abelian. Our proof is based on an
idea used in [24] in the global case and is much shorter than the proof in [18].

In Section 3 we consider the case when the hypersurface arrangement D is
an arrangement based on a hyperplane arrangement A in the sense of Damon [3].
We show that the (co)homology of M is determined up-to degree (n − 1) by the
hyperplane arrangement A. The key fact here is the functoriality of the Gysin
sequence and the splitting of the Gysin sequence associated to a triple (A,A′,A′′)
of hyperplane arrangements into short exact sequences. Note that the proof of
Theorem 3.1 can be done only in this paper more general setting, i.e., the deletion
and restriction argument cannot be performed in the setting of [22] when (Y, 0) is
a smooth germ.
Combining the results above and following the approach in [22], we show that the
universal abelian cover M̃ of M is homotopically a bouquet of spheres of dimension
n which is the refinement of [23] and [12] we mentioned earlier.

In the last two sections we prove vanishing results for the (co)homology of
the complement M with coefficients in a local system L on M . The case when
the rank of L is equal one is treated in Section 4 and in this context we give
a description for the dimension of the non zero homology groups H∗(M,L). The
general case when rank L ≥ 1 is treated in Section 5 where we allow a more general
setting for the ambient space (Y, 0) and for the divisor (X, 0). The vanishing result
in this case follows the general philosophy in [7], but the use of perverse sheaves
as in [2] is unavoidable. Note that in our case the space M may be singular so one
cannot use the technique of integrable connections to get vanishing results. A new
point in our proof is the need to use the interplay between constructible complexes
of sheaves on real and complex spaces. Indeed, real spaces occur in the picture in
the form of links of singularities.

2. Fundamental group of the complements to INNC

Let (Y, 0) ⊂ (CN , 0) be as above an (n + 1)-dimensional irreducible complex an-
alytic space germ with an isolated singularity at the origin. Let (Dj , 0) ⊂ (Y, 0)
for j = 1, . . . , r be r irreducible Cartier divisors on (Y, 0), i.e., each Dj is given
(with its reduced structure) as the zero set of a holomorphic function germ fj :
(Y, 0)→ (C, 0). When the local ring OY,0 is factorial, then any hypersurface germ
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in (Y, 0) is Cartier. This is the case for instance when (Y, 0) is smooth or an iso-
lated complete intersection singularity (ICIS for short) with dim Y ≥ 4, see [11].
See also Example 2.1. Here and in the sequel we identify germs with their (good)
representatives.

In particular the local homotopy groups of Y and M = Y \X are well defined
as πj(LY ) and πj(LY \LX), where the links LY and LX are as defined below. We
assume in this section that the following condition holds.

(C1) The divisor X = ∪i=r
i=1Di has only normal crossing singularities on Y except

possibly at the origin. We say in this case that X is an isolated non normal
crossing divisor (for short INNC) on (Y, 0).

In particular each germ (Dj , 0) has an isolated singularity at the origin as
well. Since the (r + 1)-tuple (Y,D1, . . . , Dr) has a conical structure (cf. [9]) we
have an isomorphism:

π1(LY \ LX) = π1(M ∩ ∂Bε) → π1(M) (1)

where LY (resp. LX) denotes the link of Y (resp. of X), i.e., the intersection of Y
(resp. of X) with the boundary ∂Bε of a small ball Bε about 0. In particular we
get an epimorphism

π1(M) = π1(LY \ LX) → π1(LY )

induced by the inclusion LY \ LX → LY .

Theorem 2.1. For n ≥ 2, the kernel of the surjection π1(M) → π1(LY ) is contained
in the center of the group π1(M). In particular, if LY is simply connected, then
the fundamental group π1(M) is abelian.

Proof. First notice that if dimY > 3 and if H is a generic linear subspace passing
through 0 such that the codimension of H in CN is dimY − 3, then, by Lefschetz
hyperplane section theorem (cf. [9], p. 26 and p. 155), we have an isomorphism

π1(M ∩H)→ π1(M). (2)

Hence it is enough to consider the case dimY = 3 only (though the arguments
below work for any dimension ≥ 3).

Next notice that κ = Ker(π1(LY \ LX) → π1(LY )) is the normal subgroup
spanned by the set of elements in the fundamental group π = π1(LY \LX) repre-
sented by the loops δi each of which is the boundary of a fiber over a non singular
point of a small closed tubular neighborhood T (Di) of the submanifold Di ∩ LY

in the manifold LY . Indeed a loop representing an element γ in the kernel κ is the
image of the boundary of a 2-disk under a map φ : D2 → LY which is isotopic
to an embedding (since dimLY ≥ 5) and which we may assume to be transversal
to all the submanifolds Di ∩ LY . Now δi are the φ-images of loops in D2 each of
which is composed of a path αi going from the point in D2 corresponding to the
base point p ∈ LY to the vicinity of a point y ∈ D2 corresponding to a point in
φ(D2)∩Di, a small loop about y and back along α−1

i . So it is enough to show that
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all these loops δi (note that there may be several of them for a given i) belong to
the center of π1(LY \ LX).

Let T (Di) be a tubular neighborhood of Di ∩ LY in LY as above. We claim
that for any i (i = 1, . . . , r) there is a surjection:

π1(T (Di) \ LX) → π1(LY \ LX). (3)

Notice that assuming the surjectivity in (3) we can conclude the proof as follows.
Since the divisors Di’s have normal intersections in LY , the space T (Di) \ LX

is homotopy equivalent to the total space of a locally trivial circle fibration over
Di \ ∪j �=iDj. The fiber δ′i of this fibration, which is a loop based at a point p′, is
in the center of π1(T (Di) \ LX , p′).
Indeed, if α : S1 → T (Di)\LX is any loop, we set β = π ·α with π : T (Di)\LX →
Di \ ∪j �=iDj the the corresponding projection. Then the commutativity αδ′ = δ′α
follows from the triviality of the pull-back of the normal bundle π : T (Di) \LX →
Di \ ∪j �=iDj under β. This triviality in turn follows from the triviality of any
complex line bundle over a circle S1.
Therefore the surjectivity in (3) yields that the class of δ′ commutes with any
element in π1(LY \ LX , p′) and hence with any element in π1(LY \ LX , p).

To show the surjectivity (3), let us consider a generic holomorphic function
g on Y sufficiently close to fi so that LY ∩ {g = 0} ⊂ T (Di). We have the
decomposition

π1(LY ∩ {g = 0} \ LX)
↓ ↘

π1(T (Di) \ LX) → π1(LY \ LX)
(4)

corresponding to the factorization of the embeddings. This yields that the hori-
zontal map is surjective provided the map:

π1(LY ∩ (g = 0) \ LX) → π1(LY \ LX) (5)

is surjective. But this follows from [14]. �

Note that this result in the case when Y = Cn+1 is a consequence of a theorem
of Lê Dung Trang and K.Saito (cf. [18]).

Example 2.1.
(i) If (Y, 0) is an ICIS with dim (Y, 0) ≥ 3, then it follows from [12] that the link
LY is simply-connected.

(ii) If V ⊂ Pm is a locally complete intersection such that n = dim V > codim V ,
then the morphism π2(V ) → π2(Pm) = Z induced by the inclusion V → Pm is an
epimorphism by the generalized Barth Theorem, see [9], p. 27. It follows that the
associated affine cone (Y, 0) = (CV, 0) has a simply-connected link.

If we assume that V is smooth and that n = dim V > codim V + 1, then the
divisor class group C�(OY,0) is trivial, i.e., any divisor on this germ (Y, 0) is Cartier.
This follows from the exact sequence in [15], Exercise II.6.3 comparing the divisor
class groups in the local and the global settings, the usual isomorphism C�(V ) =
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H1(V,O∗
V ), see [15], II.6.12.1 and II.6.16 and the GAGA results allowing to use

the exponential sequence, see [15], Appendix B, to relate topology to H1(V,O∗
V ).

If E = ∪j=1,rEj is a normal crossing divisor on the smooth variety V , then
the associated cone X = ∪j=1,rCEj is an INNC divisor on the cone (Y, 0).
The epimorphism π1(M) → π1(V \ E) can then be used to show that this last
fundamental group is abelian.

3. Homology of the complements to reducible divisors

Assume in this section that the germ (Y, 0) is an ICIS with dim Y = n+ 1 and let
A = {Hi}i=1,...,r be a central hyperplane arrangement in Cm. Suppose given an
analytic map germ f : (Y, 0)→ (Cm, 0) such that the following condition holds.

(C2) For any edge L ∈ L(A) with codim L = c, the (scheme-theoretic) pull-back
DL = f−1(L) is an ICIS in (Y, 0) of codimension exactly c for c ≤ n and
DL = {0} for c ≥ n + 1.

This condition (C2) is equivalent to asking that f : (Y, 0) → (Cm, 0) is
transverse to A off 0 in the sense of Damon, see [3], Definition 1.2. In his language,
X = ∪i=1,rDi is a nonlinear arrangement of hypersurfaces based on the central
arrangement A, with Di = f−1(Hi). Note that for n ≥ 2 all the germs Dj are
irreducible by [12], but on the other hand the condition (C1) may well fail in this
setting.

Consider the complements M = Y \ X and N = Cm \ ∪i=1,rHi, and note
that there is an induced mapping f : M → N . Our result is the following

Theorem 3.1. With this notation,

f∗ : Hj(M)→ Hj(N)

is an isomorphism for j < n and an epimorphism for j = n. Similarly

f∗ : Hj(N)→ Hj(M)

is an isomorphism for j < n and a monomorphism for j = n. In particular, the
algebra H∗(M) is spanned by H1(M) up-to degree (n− 1).

Proof. For n = 1 everything is clear, so we can assume in the sequel n > 1.
The proof is by induction on r. For r = 1 the result follows since M can

be identified to the total space of the Milnor fibration, whose Milnor fiber is a
bouquet of n-dimensional spheres by work of Hamm, see [12].

Assume now that r > 1 and apply the deletion and restriction trick, see more
on this in [25], p. 4. Namely, let A′ = {Hi}i=2,...,r and A′′ = {H1 ∩ Hi}i=2,...,r.
Then both A′ and A′′ are central arrangements with at most (r− 1) hyperplanes.

Since L(A′) ⊂ L(A), it is clear that f : (Y, 0)→ (Cm, 0) satisfies the condition
C2 with respect to A′. Moreover, L(A′′) ⊂ L(A) (with a 1-shift in codimensions)
and f : (D1, 0)→ (Cm−1, 0) satisfies the condition C2 with respect to A′′.
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Let M ′,M ′′, N ′, N ′′ be the corresponding complements. Since M ′′ (resp. N ′′)
is a smooth hypersurface in M ′ (resp. N ′) we have the following ladder of Gysin
sequences.

· · · �� Hj−1(M ′′)

f∗
��

�� Hj(M)

f∗
��

�� Hj(M ′)

f∗
��

�� Hj−2(M ′′)

f∗
��

�� · · ·

· · · �� Hj−1(N ′′) �� Hj(N) �� Hj(N ′) �� Hj−2(N ′′) �� · · ·

It is a standard fact in hyperplane arrangement theory that the bottom-right
morphism Hj(N ′) → Hj−2(N ′′) is zero. Usually this result is stated for coho-
mology, see [25], p.191, but since both homology and cohomology of hyperplane
arrangement complements are torsion free, the vanishing holds for homology as
well.

An easy diagram chasing, using the induction hypothesis, shows that for
j ≤ n the top-right morphism Hj(M ′) → Hj−2(M ′′) is zero as well. This implies
the claim, again by an easy diagram chasing and using the induction hypothesis.

The proof for the cohomological result is completely dual. �

Using Theorems 2.1 and 3.1 and Example 2.1,(i) we get the following result.

Corollary 3.1. Assume that n ≥ 2 and that the divisor X satisfies the condition
C1. Then

π1(M) = H1(M) = H1(N)
is a free abelian group of rank r = |A|.

Remark 3.1. Note that M is a Stein manifold, and hence Hj(M) = 0 for j > n+1
by [13]. It follows that there are only two Betti numbers bj(M) to compute, namely
for j = n, n+1. Indeed, for j < n the Betti number bj(M) = bj(N) is known by the
results in [25], Theorem 5.93. Moreover by the additivity of Euler characteristics,
see [8], it follows that χ(M) = χ(Y ) − χ(X) = 0. This gives a relation between
the two top unknown Betti numbers of M .

Similarly to [22], the above results yield the following.

Theorem 3.2. Let (Y, 0) be a an isolated complete intersection singularity of di-
mension n + 1 ≥ 3. Let X = ∪i=1,rDi be a union of Cartier divisors of Y which
have normal crossing outside of the origin. Then the universal abelian cover M̃ of
M = Y \X has the homotopy type of a bouquet of spheres of dimension n.

Proof. The proof is similar to the proof of Thm. 2.2 in [22]. Firstly, let us consider
the exact homotopy sequence corresponding to the map f : M → C∗r, obtained by
using the equations fi = 0 for the divisors Di. The isomorphism π1(M) → π1(C∗r)
which follows from Theorems 2.1 and 3.1 and the known fact πj(C∗r) = 0 for
j > 1 yield that π2(C∗r,M) = 0 and πj(C∗r,M) = πj−1(M) for j > 2 (here
we assume that f is replaced by an embedding, which is of course possible up-to
homotopy type). Moreover we can show exactly as in [22] that the action of π1(M)
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on πj(C∗r,M) is trivial. Hence we can apply the relative Hurewich theorem to the
pair (C∗r,M) and note that we have a vanishing of the relative homology of this
pair as a consequence of the previous theorem. Looking now at f : M → C∗r as
a homotopy fibration with fiber M̃ , we get the vanishing of the homotopy groups
of the universal abelian cover M̃ of M up to dimension n− 1. On the other hand,
the existence of the Milnor fibration of g = f1 . . . fr : (Y, 0) → (C, 0) (theorem of
Hamm in [12]) yields that M admits a cyclic cover which has the homotopy type of
a CW complex of dimension n (i.e., the Milnor fiber F of the hypersurface X in Y

). Hence the universal abelian cover M̃ , which is the universal abelian cover of this
Milnor fiber F has the homotopy type of an n-complex. Therefore the universal
abelian cover M̃ is homotopy equivalent to the wedge of spheres Sn. �

4. Homology of local systems (rank one case)

Let (Y, 0) be a germ of an isolated complete intersection singularity and let X =⋃
i=1,r Di be a divisor which has normal crossings outside of the origin, i.e., we

place ourselves again in the setting of Theorem 3.2. The above notation is still
used here.

Let ρ : π1(M)→ C∗ be a character of the fundamental group or equivalently a
local system L of rank one on M . The space M , being a Stein space of dimension
(n + 1), has the homotopy type of an (n + 1) complex and hence Hj(M,L) =
Hj(M,ρ) = 0 for j > n + 1.

The main result of this section is the following:

Theorem 4.1. Let ρ : π1(M) → C∗ be a non trivial character and let L be the
associated rank one local system on M . Then:

(i) Hj(M,L) = 0 for j �= n, n + 1;
(ii) dim Hn(M,L) is the largest integer k such that ρ belongs to the zero set Vk

of the kth Fitting ideal of the C[π1(M)]- module πn(M)⊗Z C.
(iii) The largest integer k such that the trivial character of π1(M) belongs to Vk

is equal to

dim Ker (Λn+1H1(M)→ Hn+1(M)) + dim Hn(M)−
(
r

n

)
.

Proof. Recall the spectral sequence for the cohomology of local systems (cf. [1])
Thm. 8.4. Let Cρ

∗ (M̃) be the chain complex on which H1(M,Z) acts from the right
via g(x) = ρ(g)xg (g ∈ H1(M,Z), x ∈ C∗(M̃,C)) where x → xg is the action via
deck transformations. Let Hρ

q (M̃) be the homology of this complex. We have a
spectral sequence:

E2
p,q = Hp(H1(M,Z), Hρ

q (M̃))⇒ Hp+q(M,ρ).

Recall that M has the homotopy type of an (n + 1)-complex and M̃ has the
homotopy type of a bouquet of spheres of dimension n, see 3.2.
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The group Hρ
q (M̃) carries the canonical structure of H1(M,Z)-module com-

ing from the corresponding module structure on chains. We have the isomorphism:
Hρ

0 (M̃) = Cρ where Cρ is the one-dimensional representation of H1(M,Z) given
by ρ. Indeed, if x is a generator of Cρ

0 (M̃) as H1(M,Z)-module then x−x ·g = 0 in
Hρ

0 (M̃). On the other hand x−x · g = x−ρ(g)g−1x. Hence gx = ρ(g)x in Hρ
0 (M̃).

Since for ρ �= 1 one has Hp(H1(M,Z),Cρ) = 0, it follows from the vanishing
theorem in the last section that the term E2 has only one horizontal row: q = n.
This yields the claim (i). We have

H0(H1(M,Z), Hρ
n(M̃)) = Hρ

n(M̃)Inv = Hn(M̃)⊗H1(M,Z) Cρ

On the other hand, taking tensor product with Cρ in the resolution Φ : Λs →
Λt → Hn(M̃) → 0 we obtain the resolution of Hn(M̃) ⊗H1(M, Z) Cρ in which the
matrix of Φρ : Λs ⊗ Cρ → Λt ⊗ Cρ is obtained from the matrix of Φ by replacing
its entries by values of the entries at ρ. Hence if ρ belongs to the set of zeros of the
kth Fitting ideal (and k is maximal with this property), then the corank of Φρ is
k. This yields the second claim.

Let us consider the exact sequence:

Hn+1(M)→ Hn+1(H1(M,Z)) → Hn(M̃)⊗H1(M,Z) C

→ Hn(M)→ Hn(H1(M,Z)) → 0
(6)

corresponding to the spectral sequence:

Hp(H1(M,Z), Hq(M̃)) ⇒ Hp+q(M) (7)

We have
dim Coker(Hn+1(M) → Hn+1(H1(M,Z)))

= dim KerHn+1(H1(M,Z))∗ → Hn+1(M)∗)
(8)

The latter kernel (using Kronecker pairing identification H∗
i = Hi over C) is

isomorphic to dim KerHn+1(H1(M))→ Hn+1(M). Since H1(M,Z) = Zr we have
Λi(H1(M)) = Hi(H1(M)) with the isomorphism provided by the cup product.
Hence the dimension in (8) is equal to

dim Ker(Λn+1(H1(M)) → Hn+1(M)).

Therefore, using the sequence (6) and the equality dimHn(H1(M)) =
(

r
n

)
, we

obtain

dimHn(M̃)⊗H1(M,Z) C

= dim Ker(Λn+1(H1(M))→ Hn+1(M)) + dimHn(M)−
(
r

n

)
.

This yields the last claim in Theorem 4.1. �

Notice that the claim 4.1 (iii) is a generalization of a result in [20] and that the
space of local systems with non vanishing cohomology in the cases when Y = C2

and Y = Cn+1 was studied in [21] and [22] respectively.
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Remark 4.1. The morphism Λn+1H1(M) → Hn+1(M) in the above Theorem is
surjective in the following two cases.

(i) n = 1 and (Y, 0) = (C2, 0), see [4], Corollary 2.20 ;

(ii) (Y, 0) = (Cn+1, 0) and X a central hyperplane arrangement, see [25], Corol-
lary 5.88.

The following result is a generalization of Example (6.1.8) in [5], where Y was
assumed to be a smooth germ and the proof uses properties of the vanishing cycle
functor and a generalization of Prop. 4.6 from [22] where the case of X smooth
was treated.

Corollary 4.1. Let F be the Milnor fiber of the reduced germ g : (Y, 0) → (C, 0)
which defines the divisor X in Y . With the above assumptions, the monodromy
action hj : Hj(F,C) → Hj(F,C) is trivial for j ≤ n− 1.

Proof. Let ρa be the representation sending each elementary loop to the same
complex number a ∈ C∗. Then it is well-known, see for instance [5], Corollary
6.4.9, that

dim Hq(M,ρa) = dim Ker (hq − aId) + dim Ker (hq−1 − aId).

The unipotence follows by applying this equality to a �= 1.
To obtain triviality of the monodromy action, notice that due to the Milnor’s

fibration theorem, the Milnor fiber F is homotopy equivalent to the infinite cyclic
cover of M . Hence, it is a quotient of the universal abelian cover M̃ by the action
of the kernel of π : π1(M) → Z where π sends each elementary loop to 1. Let us
consider the corresponding spectral sequence:

Hp(Kerπ,Hq(M̃,C))⇒ Hp+q(F,C) (9)

for this action of the group Kerπ = Zr−1 on the universal abelian cover M̃ . No-
tice that this is a spectral sequence of C[t, t−1] modules where the action on
Hp(Kerπ,Hq(M̃)) is the standard action of the generator of π1/Kerπ and the
action of t on cohomology of the Milnor fiber is the monodromy action. Since, by
Theorem 3.2, Hq(M̃) = 0 for 1 ≤ q < n we have n − 1 zero-rows in the term E2

and hence the isomorphism Hj(F,C) = Hj(Kerπ,H0(M̃)) for 1 ≤ j ≤ n−1. Since
the map of the classifying spaces (S1)r → S1 corresponding to the homomorphism
π has trivial monodromy, the action of π1/Kerπ on Hj(Kerπ,C) is trivial for any
j in the range 0 ≤ j ≤ n− 1 and the claim follows. �

Remark 4.2. One can obtain the triviality of the monodromy action also using
mixed Hodge theory, at least for j < n− 1. See for details [6], Theorem 0.2. Note
that the above proof shows that dim Hj(F ) =

(
r−1

j

)
for j ≤ n− 1 (cf. [22]).
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5. Homology of local systems (higher rank case)

In this section we work with weaker assumptions on the germs (Y, 0) and (Dj , 0)
as above. Indeed, we simply need that M has only locally complete intersection
singularities (which is weaker than asking (Y, 0) to be an isolated singularity) and
that there is a Q-Cartier divisor, say D1, among the divisors Dj such that the
INNC condition for X holds only along D1. In particular, the singularities of the
divisors Dj \D1 for j > 1 can be arbitrary.

To start, note that if D1 \ {0} is contained in the smooth part of the space
Y \ {0}, then one has an elementary loop δ1 which goes once about the irreducible
divisor D1 (in a transversal at a smooth point). It follows that a rank m local
system L on Y \X which corresponds to a representation

ρ : π1(Y \X)→ GLm(C)

gives rise to a monodromy operators T1 = ρ(δ1). Of course, both δ1 and T1 are
well-defined only up-to conjugacy. The following result should be compared to the
vanishing part of Theorem 0.2 in [6].

Theorem 5.1. Let L be a local system on M such that

(i) M is a locally complete intersection and D1 is an irreducible Q-Cartier divi-
sor, i.e., there is an integer m such that mD1 is the zero set of a holomorphic
germ;

(ii) D1 \ {0} is contained in the smooth part of the space Y \ {0} and X has only
normal crossings along D1 \ {0};

(iii) the corresponding monodromy operator T1 has not 1 as an eigenvalue.

Then Hk(M,L) = 0 for k < n and for k > n + 1.

Proof. For this proof we assume that the (good) representatives for our germs
Y,Dj, . . . exist as closed analytic subspaces in an open ball B of radius 2ε centered
at the origin. This implies in particular that Y is a Stein space, as well as Y \X ,
which is the complement of the zero set of a holomorphic function on Y . Such a
Stein space has the homotopy type of a CW complex of dimension at most (n+1)
by [13], and this already gives Hk(Y \X,L) = 0 for k > n + 1.

These representatives are good in the sense that all the germs Y,Dj, . . .
have a conic structure inside the ball B such that the corresponding retractions
are the same for all these germs. We represent the links LY , LX , LDj , . . . as the
intersections of these representatives inside B with a sphere S of radius ε. In such
a way we have an inclusion iε : LY → Y and a retraction rε : Y ∗ → LY , with
Y ∗ = Y \ {0}, which induces inclusions and retractions for the other germs.

The main tool for the proof below is the theory of constructible (resp. per-
verse) sheaves. For all necessary background material on this subject we refer to
[16] and [5].
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Let i : Y \X → Y \D1 be the inclusion and set F∗ = Ri∗L ∈ Db
c(Y \D1),

F∗
1 = F∗|(LY \LD1). The constructible sheaf complex F∗ has constant cohomology

sheaves along the fibers of the retraction rε (since the topology is constant along
such a fiber). It follows, as in Lemma 2.7.3 in [16], that

Hk(Y \X,L) = Hk(Y \D1,F∗) = Hk(LY \ LD1 ,F∗
1 ).

Let j1 : LY \ LD1 → LY be the inclusion and note that

Rj1∗F∗
1 = Rj1!F∗

1

exactly as in [7] and [2], the key points being the assumptions (ii) and (iii) in the
above statement. Since the link LY is compact, it plays the role of the compact
algebraic variety in [7] and [2], and we get

Hk(LY \ LD1 ,F∗
1 ) = Hk

c (LY \ LD1 ,F∗
1 )

for any integer k.
The new difficulty we encounter here is that LY \LD1 is not a Stein space (not

even properly homotopically equivalent to a Stein space as the retraction rε : Y \
D1 → LY \LD1 is not proper!), hence the vanishing for the last hypercohomology
group is not obvious.

We proceed as follows. We apply first Poincaré-Verdier Duality on the real
semialgebraic set LY \ LD1 and get

Hk
c (LY \ LD1 ,F∗

1 )∨ = H−k(LY \ LD1 , DRF∗
1 ).

Here DRF∗
1 is the dual sheaf of F∗

1 in this real setting. Note that we can also
consider the (complex) dual sheaf DF∗ ∈ Db

c(Y \D1). It follows that

DF∗|(LY \ LD1) = DRF∗
1 [1]

since the inclusion LY \LD1 → Y \D1 is normally nonsingular in the sense of [10]
(this is what corresponds to a non-characteristic embedding in the sense of [16],
Definition 5.4.12 in the case of singular spaces).

This yields the following isomorphisms

H−k(LY \ LD1 , DRF∗
1 ) = H−k(LY \ LD1 , DF∗[−1]|(LY \ LD1))

= H−k−1(LY \ LD1 , DF∗|(LY \ LD1)).

Here we are again in the presence of a constructible sheaf complex, namely DF∗,
whose cohomology sheaves are constant along the fibers of the retraction rε. This
implies that

H−k−1(LY \ LD1 , DF∗|(LY \ LD1)) = H−k−1(Y \D1, DF∗)

= Hk+1
c (Y \D1,F∗)

the last isomorphism coming from Poincaré-Verdier Duality on the algebraic vari-
ety Y \D1.

Now it is time to note that the shifted local system L[n+1] is a perverse sheaf
on the locally complete intersection variety M and hence F∗[n + 1] is a perverse
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sheaf on the variety Y \D1 since the morphism i is Stein and quasi-finite. It follows
that

Hk+1
c (Y \D1,F∗) = Hk−n

c (Y \D1,F∗[n + 1]) = 0
for any k < n by Artin’s Vanishing Theorem in the Stein setting, see [16] Propo-
sition 10.3.3 (iv) and Theorem 10.3.8 (ii). �
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[18] Lê Dung Trang, K. Saito, The local π1 of the complement to a hypersurface with
normal crossings in codimension 1 is abelian. Ark. Mat. 22 (1984), no. 1, 1–24.



Local Topology of Reducible Divisors 111
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The Geometry of Flecnodal Pairs

Daniel Dreibelbis

Abstract. We generalize the definition of a flecnode on a surface in R3 to
a definition for a general immersed manifold in Euclidean space. Instead of
considering a flecnode as a point on the manifold, we consider it as a pair of
a normal vector and a tangent vector, called the flecnodal pair. The structure
of this set is considered, as well as its connection to binormals and A3 singu-
larities in the set of height functions. The specific case of a surface immersed
in R4 is studied in more detail, with the generic singularities of the flecnodal
normals and the flecnodal tangents classified. Finally, the connection between
the flecnodals and bitangencies are studied, especially in the case where the
dimension of the manifold equals the codimension.

Mathematics Subject Classification (2000). Primary 58K30, 14E20; Secondary
53A07, 58K05.

Keywords. Flecnode, differential geometry.

1. Introduction

Given a surface immersed in R3, one of the main third-order invariants of the
surface is known as the flecnodal curve. This is the set of points on the surface
where there exists a tangent line with at least four point (A3) contact with the
surface ([10]). Flecnodes have several important geometric properties, but the most
important one to the author is that they are one of the boundary sets for the set of
line bitangencies. We wish to generalize the idea of flecnodes to immersed manifolds
of any dimension and any codimension.

Unfortunately, the concept of a tangent line with four-point contact does not
generalize well. The notion of n-point contact is supposed to be a generalization of a
transversal intersection, and we cannot really talk about it unless the codimension
is equal to one. Furthermore, if we look at the set of points on a manifold with
A3 contact with a tangent line, it is possible for every point on the manifold to
have such a tangent line, and so every point would be considered a flecnode. To
generalize the notion of a flecnode, we need to include the tangent vector into the
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definition, and it will turn out that a corresponding normal vector will also be
necessary. Thus we will get our generalization of the flecnode, which we will call
the flecnodal pair.

In Section 1 we give the definition of a flecnodal pair, a geometric description
of the concept, and a calculation of the dimension of the set of flecnodal pairs. In
Section 2 we introduce the definitions of binormals and A3 points ([2, 5]), and we
show the connection between these objects and the flecnodal pair. In particular,
we see for surfaces immersed in a low codimension, the A3 points completely
determine the singularity set of the Gauss map on the flecnodal normals.

In Section 3 we focus on the particular case of surfaces immersed in R4. In
particular, we look at the tangent vector field and the normal surface defined by
the flecnodal pair. We study the type of singularities possible for both, and then
provide an example. Finally, in Section 4, we show the link between these flecnodal
pairs and bitangencies (the concept of flecnodal pairs first came out when studying
bitangencies). In particular, we describe how the concept of flecnodal pairs can lead
us to a general counting formula for bitangencies on n-manifolds immersed in R2n.

2. Definitions

Through out research on bitangencies ([4]), the following concept became impor-
tant to us: given an immersion of a manifold M into Euclidean space, let p be a
point on M and let n be a normal vector at p. We can project M into the subspace
spanned by the tangent plane at p and the normal vector n. The result will be a
local immersion of M in a codimension one Euclidean space. When the codimen-
sion is one, we have a good definition of a flecnode: a point p is a flecnode if there
exists a line with at least A3 contact with the manifold at p. Hence we can say
that n is a flecnodal normal if p is a flecnode of the projected manifold, and we
will say the spanning vector of the line with high contact is the flecnodal tangent.
If we have a parametrization for the immersion of M and a local frame field of the
normal space, then we can explicitly describe a parametrization of the projected
manifold. Then we can take this parametrization and determine the conditions for
A3 contact with a line. We will use the resultant equations as our official definition
of a flecnodal pair:

Definition 2.1. Let s : Mn → Rn+m be an immersion of an n-manifold into (n+m)-
dimensional Euclidean space. Then a point (p,n,v) ∈ (UN ×UT )M is a flecnodal
pair if n and v satisfy the following two equations at p:

n · d2sv2 = 0 (2.1)

(d2n · ds− dn · d2s + 3
m∑

k=1

(ek · dn)(ek · d2s))v3 = 0 (2.2)

where {e1, . . . , em} is a locally defined orthonormal frame field of the normal
bundle. The normal vector of a flecnodal pair is a flecnodal normal, while the
tangent vector is a flecnodal tangent.
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As written, it is not clear that flecnodal pairs are well defined. In particular,
the definition relies on the parametrization of s, it relies on the derivatives of n
(even though flecnodal pairs are supposed to be a pointwise definition), and it relies
on the choice of local orthonormal frame. We need to show that the definition is
invariant of all of these variables.

Theorem 2.2. The equations in Definition 2.1 are invariant of parametrization.

Proof. First we need to show that the definition is invariant of the parametrization
of the immersion. So let r = s ◦ h, where h is the change in coordinates. Also, let
w be the vector where v = dh(w), let m = n ◦ h and fk = ek ◦ h. Then:

m · d2rw2 = (n ◦ h) · d2(s ◦ h)w2

= (n ◦ h) · (d2s(dh)2 + dsd2h)w2

= n · d2sv2

and

(d2m · dr− dm · d2r + 3
∑

k

(fk · dm)(fk · d2r))w3

= (d2(n ◦ h) · d(s ◦ h)− d(m ◦ h) · d2(s ◦ h)

+ 3
∑

k

((ek ◦ h) · d(n ◦ h))((ek ◦ h) · d2(s ◦ h)))w3

= ((d2ndh2 + dnd2h) · (dsdh)− (dndh) · (d2sdh2 + dsd2h)

+ 3
∑

k

((ek ◦ h) · (dndh))(ek ◦ h) · (d2sdh2 + dsd2h))w3

= ((d2ndh2) · (dsdh)− (dndh) · (d2sdh2)

+ 3
∑

k

(ek · dndh)(ek ◦ h) · (d2sdh2))w3

= (d2n · ds− dn · d2s + 3
∑

k

(ek · dn)(ek · d2s))v3

Also, since the definition of the flecnodal pair is supposed to be a pointwise
definition, but Equation 2.2 involves the derivatives of n, we need to show that
the definition does not depend on how n is defined away from p. To this effect, let
n =

∑
akek. We need to show that Equation 2.2 does not depend on the values

of dak or d2ak:

(d2n · ds− dn · d2s + 3
∑

k

(ek · dn)(ek · d2s))v3

= (d2(
∑

k

akek) · ds− d(
∑

k

akek) · d2s

+ 3
∑

k

(ek · d(
∑

j

ajej))(ek · d2s))v3
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=
∑

k

((d2akek + 2dakdek + akd
2ek) · ds− (dakek + akdek) · d2s

+ 3(
∑

j

ek · (dajej + ajdej)(ek · d2s))v3

=
∑

k

(akd
2ek · ds− akdek · d2s + 3(ek · d2s)

∑
j

ajek · dej)v3

The last reduction needed the relations ek · ds = 0, dek · ds + ek · d2s ≡ 0, and
ek · ej = δij . The final equation does not depend on the derivatives of the ak’s,
and so our equations are independent of how we extend n.

Finally, we need to show the definition is independent of our choice of or-
thonormal frame field. This follows from the fact that the summation in Equa-
tion 2.2 is just the trace of the quadratic form Q : NpM ×NpM → R defined by
Q(a,b) = (a · dnv)(b · d2sv2). �

Notes

• In the definition, we restricted n and v to be unit vectors. But since both
Equation 2.1 and Equation 2.2 are homogeneous in both n and v, we can
use non-unit vectors if it is more convenient. This is useful for computational
purposes.

• In fact, because the equations are homogeneous, we could define our flecnodal
pair to be an element of (NPm−1 × TPn−1)M , i.e., the projectified normal
and tangent bundles. While there are some advantages to doing this, the unit
bundles are more natural to the geometry of our objects, and so we will use
them.

• If m = 1 (so we have a hypersurface), the trace term in Equation 2.2 disap-
pears and the formula becomes considerably easier.

• If p is a parabolic point (meaning all of its second fundamental forms have a
common root) and v is the common root, then again the trace term disap-
pears from Equation 2.2 and the formula again becomes easier.

The concept of flecnodal pairs came from the study of bitangencies ([4]).
Specifically, we needed to project surfaces in R4 into a 3-space to get a surface
with a flecnode at a particular point p. Obviously a particular tangent vector would
project to the line with A3 contact, but it also turned out that the direction of
projection needed to be perpendicular to a particular normal vector. This concept
can be generalized for any immersed manifold, no matter what the dimension or
codimension are.

Theorem 2.3. A point (p,n,v) is a flecnodal pair if and only if v spans a line
with at least A3 contact to the manifold πn(M), where πn is the projection into
the subspace spanned by n and ds at p.

Proof. Since our previous theorem showed that our definition is invariant of para-
metrization, we can do all of our work in Monge form. So, let s(x1, . . . , xn) be the
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function

s(x1, . . . xn) = (x1, . . . , xn, f1(x1, . . . xn), . . . , fm(x1, . . . , xn))

where fk are polynomials in the xj ’s with no linear or constant terms. We will
assume that e1 and en+1 (i.e., the first and n + 1 coordinate vector of Rn+m) are
the flecnodal tangent and the flecnodal normal at the origin. The condition for
this is that e1 needs to be a root of both the quadratic part and the cubic part of
f1. Our projection will be

πen+1s = (x1, . . . , xn, f1(x1, . . . , xn))

and the condition for e1 to span a line with A3 contact is precisely that e1 is a
root of both the quadratic and cubic parts of f1. �

The projection in the previous proof could be replaced with πn+w, where w
is an arbitrary tangent vector. The important part is the normal component.

Definition 2.4. Define the sets FP ∈ (UN×UT )M , FN ∈ UNM and FT ∈ UTM
as the set of flecnodal pairs, flecnodal normals, and flecnodal tangents, respectively.

Proposition 2.5. In general, the set FP is an embedded smooth submanifold of
(UN × UT )M of dimension m + 2n− 4.

Proof. The manifold (UN ×UT )M has dimension m+ 2n− 2, and FP is defined
as the intersection of the zero sets of two equations on (UN × UT )M . It remains
to show that the zero sets are transversal. We can describe our surface in Monge
form, as we did in the proof of Theorem 2.3, and then explicitly write down the
formulas for Equations 2.1 and 2.2. We take the gradients of both equations and
determine when they are parallel. The condition for them to be parallel reduces
to m + 2n − 1 conditions on the second, third, and fourth-order terms of the
parametrization s. The conditions have no relation among them, and we only have
n degrees of freedom, so we have no solutions as long as m + 2n − 1 > n, i.e.,
m + n > 1, which of course is always true. �
Examples

• n = 1, m = 1: Planar curves. In general, this set has dimension −1, and so
we would not expect a flecnodal pair on a general planar curve, but we would
expect them in a one-parameter family of curves. These are just points with
A3 contact with their tangent line.

• n = 1, m = 2: Space curves. In general, this set has dimension 0. It corre-
sponds to the points on the curve where the torsion is zero. The flecnodal
normal is the binormal vector B of the Frenet frame.

• n = 2, m = 1: Surfaces in R3. This is the original definition. In general,
the set of points gives a curve on the surface, and the corresponding tangent
vector is the asymptotic vector with higher order contact.

• n = 2, m = 2: Surfaces in R4. In general, FP will be two-dimensional. This
situation will be studied in detail in Section 4. We will show that every point
on the surface has at least one corresponding point on FP .
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3. A3 and binormals

Closely linked to the set of flecnodes is the set of binormals and the set of A3

points. These points have been studied in [2] and [5], but we will describe them in
a slightly different form.

Definition 3.1. Let s : Mn → Rm be an immersion. A point (p,n,v) ∈ (UN ×
UT )M is a binormal pair if

n · d2sv = 0
A point (p,n,v) is an A3 pair if

n · d2sv = 0, n · d3sv3 = 0

We will call the set of binormal pairs BP , the set of A3 pairs A3P , and the
corresponding restrictions to the unit normal bundle and the unit tangent bundle
BN , A3N , BT and A3T .

The set BP (resp. A3P ) correspond to height functions on the manifold with
A2 (resp. A3) singularities, where n is the direction of the height function, p is the
point of the singularity, and v is the probe structure vector (see [5]). The set BN
is the singularity set of the Gauss map Γ : UNM → Sn+m−1, and the set A3P is
the singularity set of the Gauss map Γ : BN → Sn+m−1.

Proposition 3.2. Generically, the sets BP and A3P are n+ m− 2 and n+ m− 3
embedded submanifolds of (UN × UT )M .

Proof. The condition n · d2sv = 0 is actually n different equations. In general,
the zero sets of these equations are transverse, and so the dimension of BP is the
dimension of (UN ×UT )M minus n, which gives us n+m− 2. The conditions for
A3P adds one more equation, which is still in general transverse to all the others.
So the dimension of A3P is one less, or n + m− 3. �

Note that the sets FP and BP are not transverse. In fact their intersection
will have dimension n+m−3, where a transverse intersection would have dimension
n + m− 4. It turns out that A3P is the intersection set.

Proposition 3.3. For an immersed manifold s : Mn → Rn+m, A3P = BP ∩ FP .

Proof. We need to show that the conditions to be a point in A3P are equivalent to
the union of the conditions needed to be in BP and FP . The quadratic condition
for FP is clearly contained in the condition for BP , which in turn is contained in
the condition for A3P . It remains to show that if n · d2sv = 0, then the cubic for
FP and the cubic for A3P are equivalent.

Assume that n ·d3sv3 = 0. By differentiating the relation n ·ds ≡ 0 twice, we
will get the relation n·d3s+2dn·d2s+d2n·ds ≡ 0, and so (2dn·d2s+d2n·ds)v3 = 0.
Plugging this into the flecnode’s cubic gives us:

3(dn · d2s)v3 = 3
(∑

(ek · dn)(ek · d2s)
)
v3

Since n · d2sv = 0, we can rewrite this as dnv · ds = 0, which implies that dnv is
a normal vector, and so dnv =

∑
αkek for some values αk.
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Hence our equation reduces to

3(
∑

αkek) · d2sv2 = 3
∑

(αk)(ek · d2s)v2

which shows that A3P ⊂ BP ∩ FP . Following the argument backwards will give
you the other inclusion. �

We can use the result of Proposition 3.3 to connect the Gauss maps of FN
and BN , at least for low dimensions.

Proposition 3.4. If M1 is a curve, then FP = A3P . In particular, FN = A3N ,
and so FN is the singularity set of the Gauss map of BN .

Proof. Since n = 1, the dimension of FP and A3P are both equal to m− 2. More
to the point, since d2s is just s′′, the quadratic conditions for A3P and FP are the
same, and it follows (as in the proof of of Proposition 3.3) that the cubic conditions
will be the same. �

This phenomenon can be seen in the case of a space curve: here the set of
flecnodal normals is just the Frenet binormal B when the torsion is equal to zero,
and this is exactly the condition for the binormal curve B to have a cusp.

We can get an equivalent condition for surfaces also, but only for low codi-
mension.

Proposition 3.5. If M2 is a generic surface and m ≤ 5, then the projection FP →
FN is an immersion. In this case, the singularity set of the Gauss map Γ : FN →
Sm+1 is the set A3N , which is also the singularity set of the Gauss map Γ : BN →
Sm+1.

Proof. Simply by comparing dimensions, we cannot expect the projection FP →
FN to be an immersion unless the dimension of FP is less than the dimension of
UNM , i.e., 2n+m−4 < n+m−1. This implies n < 3, so curves and surfaces are
the only manifolds for which this projection is an immersion (FP can be immersed
into UNM for curves no matter what the codimension). For a surface, the only way
the projection can have a singularity is if there is a point p which has a flecnodal
normal that can be paired with every tangent vector. The first time such a point
occurs generically on a surface is when the codimension is 6 (at such a point, the
projection will give us a cone point in FN).

Now let us assume that FN is immersed in UNM . In this case, it is only
possible for Γ restricted to FN to be singular when FN is on the singularity set
of the Gauss map, which is precisely BN . As already seen, FP ∩ BP = A3P , so
FN∩BN = A3N . Hence the singularity set of FN is A3N , which is the singularity
set of BN . �

We can see this situation for surfaces in R3. In general, the flecnodal curve
and the parabolic curve (which corresponds to our binormals) will only meet at
a cusp of Gauss ([1]), which are the points with an A3 singularity of the height
function. If we look at the Gauss map of both the parabolic curve and the flecnodal
curve, both of them will have a cusp at the cusp of Gauss.
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4. Surfaces in R4

Now we want to look at case of surfaces in R4 in more detail. We will assume our
surface is in Monge form:

s(x, y) = (x, y, f(x, y), g(x, y))

= (x, y,
∑

i+j≥0

aijx
iyj ,

∑
i+j≥0

bijx
iyj)

and we will work out the conditions for a flecnodal pair at the origin. By setting
n = a(−fx,−fy, 1, 0) + b(−gx,−gy, 0, 1) and v = csx + dsy, our equations for a
flecnodal pair at the origin reduce to

a(a20c
2 + a11cd + a02d

2) + b(b20c2 + b11cd + b02d
2) = 0

a(a30c
3 + a21c

2d + a12cd
2 + a03d

3) + b(b30c3 + b21c
2d + b12cd

2 + b03d
3) = 0

We can solve the first equation for (a, b) and plug the result into the second
equation to get the following fundamental quintic:

(a30b20 − a20b30)c5 + (a30b11 + a21b20 − a20b21 − a11b30)c4d

+(a30b02 + a21b11 − a20b12 + a12b20 − a11b21 − a02b30)c3d2

+(a21b02 − a20b03 + a12b11 − a11b12 + a03b20 − a02b21)c2d3

+(a12b02 − a11b03 + a03b11 − a02b12)cd4 + (a03b02 − a02b03)d5 = 0

(4.1)

So the set of flecnodal tangents at the origin (and hence the number of flecnodal
pairs) is given by the number of real solutions to this quintic equation. In partic-
ular, every point on the surface has at least one associated flecnodal pair, and in
general no point has more than five flecnodal pairs (in a nongeneric case, we can
have a one-parameter set of normals associated with a single tangent).

Equation 4.1 can be considered as a quintic differential equation on the sur-
face, its solutions being the integral curves of the flecnodal tangent vector field.
This vector field cannot have any singularities (a singularity would require the
quintic to reduce to the zero polynomial, which cannot happen on a generic sur-
face). We can expect points where the quintic has a double root, which occur when
the discriminant of Equation 4.1 is zero. These are the points where the projection
map FP →M is singular, and we will call them the flecnodal edge. The condition
for the origin to be on the flecnodal edge is a 16 degree homogeneous equation
in the second and third order derivatives of s, which is an 8 degree homogeneous
equation in the aij ’s, the bij ’s, the second order terms and the third order terms
(it’s formula is too large to include here). If we normalize to make a20 = a30 = 0
(thus guaranteeing that ((0, 0), e1, e3) is a flecnodal pair), then the origin is on the
flecnodal edge when a21b20 = a11b30.

In general, the flecnodal edge will have ordinary cusps when the quintic has
a triple root. Again, the general equation for this is too large to include, but in the
case where a20 = a30 = 0, the flecnodal edge will have a cusp at the origin when
a21b20 = a11b30 and a21b11 + a12b20 = a11b21 + a02b30.
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Finally, if the flecnodal edge meets the parabolic curve, the corresponding
flecnodal tangent and asymptotic vector matching, then the point of intersection
will occur on the A3 curve, and all three points will be tangent at this point (we
will see that a similar thing happens with the flecnodal normals, the binormals,
and the A3 normals).

Proposition 4.1. The flecnodal edge is tangent to the parabolic curve at A3 points.
At such a point, both curves are tangent to the A3 curve, and the corresponding
flecnodal tangent (which is also the asymptotic vector) is tangent to the parabolic
curve.

Proof. We begin by assuming our surface is given in Monge form with a20 = a30 =
0, hence ensuring ((0, 0), e1, e3) is a flecnodal pair. This point will be on the edge
if a21b20 = a11b30. We are making the additional assumption that the origin is
a parabolic point with e1 the asymptotic vector, so b20 = 0. Our condition to
be on the edge reduces to either b30 = 0, which gives us a full flecnodal point
(see [6]), which does not occur on a generic surface, or our condition reduces to
a11 = 0, which gives us an A3 parabolic point. Now we can calculate the gradient
to the flecnodal edge and the gradient to the parabolic curve, and we find with
our restrictions on the coefficients, these two vectors are parallel. The A3 curve is
tangent to the parabolic curve whenever they meet ([3]), so all three curves are
tangent. �

There is a similar quintic polynomial whose solutions give the flecnodal nor-
mals, but its formula is too big to include here. While the quintic is more com-
plicated, its discriminant is the same as the discriminant of Equation 4.1. As seen
in the previous section, the Gauss map of the flecnodal normals has the same
singularity set as the Gauss map of the binormal vectors, namely the A3 points.
However, there is a difference in the types of singularities that occur, namely at
the inflection points.

Theorem 4.2. For a general surface in R4, the Gauss map Γ : FN → S3 can have
the following singularities:
• A cuspidal edge at the A3 points.
• A swallowtail at the A4 points (points where the height function has an A4

singularity).
• A cuspidal pinch point at an inflection point.

Furthermore, three cuspidal pinch points will meet at an elliptic umbilic (i.e., an
inflection where three distinct A3 curves meet), and the three corresponding cusp-
idal edges will be tangent at the meeting point.

Proof. The majority of this theorem follows from the fact that the singularity set
of the binormals is known ([5]) and the singularity set of the flecnodal normals
is the same as the the singularity set of the binormals. The only claim that still
needs to be shown is that the flecnodal normals will have a cuspidal pinch point at
an inflection point. As usual, we do the computations in Monge form. We set up
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Figure 1. Left: The parabolic curve, A3 curve, and asymptotic curves.
Right: The Gauss map of the binormal vectors (both pic-
tures from [5]).

the surface so that it has an inflection point at the origin with the A3 pair given
by e1 (for the tangent) and e3 (for the normal). We can calculate the flecnodal
normals for this surface, calculate its Gauss map, and then look at the singularity
type at the origin. Generically, the result is a cuspidal pinch point. �

Example. Perturbed z3/3.

Consider the surface

s(x, y) = (x, y, x2 + y2 + x3/3− xy2, x2y − y3/3)

This is the function graph of the complex function z3/3, modified by a quadratic
term. We used this example in [5] because it has an easy parabolic curve (the unit
circle) and a relatively simple, though interesting, binormal surface. With some
effort, we can draw the flecnodal tangents and the Gauss map of the flecnodal
normal.

Figure 1 shows the structure of the parabolic curve (the circle), the A3 curve
(the three-leafed rose) and the asymptotic curves. It also shows the the Gauss map
of the binormal vectors after a stereographic projection (Both pictures are from
[5]). Note in particular the three parabolic A3 points, the inflection point at the
origin, and the structure of the singularity set on the binormal vectors.

Figure 2 shows the flecnodal tangent vector field. Figure 3 shows the parame-
ter space colored by the number of flecnodal tangents per point: the brightest color
stands for five tangents, the middle color stand for 3 tangents, the darker color
stands for a single tangent. This picture gives a good idea of the flecnodal edge: the
exact equation for the flecnodal edge of this surface is the zero set of a sixty-eight
degree polynomial. Note the various cusps, corresponding to points with a triple
tangent, and note that the three points where the flecnodal edge is tangent to the
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Figure 2. The flecnodal tangent vector field.

Figure 3. The flecnodal edge.
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Figure 4. Left: An individual sheet of the flecnodal normals.
Right: All three sheets at the same time.

parabolic curve are the three parabolic A3 points. For the other places where the
flecnodal edge is transverse to the parabolic curve, the corresponding flecnodal
tangent and the asymptotic vector are different.

Finally, Figure 4 shows part of the Gauss map of the flecnodal normals. The
left picture shows one of the six sheets over the unit disk (there are three sheets
and their negatives over the unit disk). In particular, you can see the cuspidal edge
(corresponding to the A3 points) and the cuspidal pinch point (corresponding to
the inflection point at the origin). The right picture shows the three sheets that
meet over the inflection point. The three cuspidal edges are tangent at this point,
but obviously this is difficult to see. The cuspidal edges match up with the cuspidal
edges on the bottom half of the binormal vectors pictured in Figure 1.

5. Flecnodes and bitangencies

A line bitangency for an immersed surface is a pair of points (p, q) ∈M×M , p �= q
and s(p) �= s(q), with s(p)− s(q) ∈ TpM and s(p)− s(q) ∈ TqM . Bitangencies and
flecnodes are closely related: a bitangency is a line with 2-point contact at two
points, while a flecnode is a single point with 4-point contact. For surfaces in R3,
flecnodes are the boundary set of bitangencies as p→ q.

Proposition 5.1. Let s be an immersion s : M2 → R3. If (pt, qt) is a one parameter
family of bitangencies with limt→0 pt = limt→0 qt = p0, then p0 is a flecnode, and
its corresponding flecnodal tangent is the limit of (s(pt)− s(qt))/|s(pt)− s(qt)|.

The original definition of the flecnodal normal came about in the study of
bitangencies on surfaces in R4. In particular, we can restrict our attention to the
parabolic curve P . Each point on the curve has a unique asymptotic vector, and
corresponding to that vector is a unique normal vector which is the flecnodal
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normal (unique up to sign, of course). The number of bitangencies on a closed,
oriented surface turned out to be related to the structure of this flecnodal normal
vector field along the parabolic curve.

Theorem 5.2 ([7]). Let s be an immersion of a closed, oriented surface into R4. Let
P be the parabolic curve on this surface, and let F be the flecnodal normal vector
field along P. Then number of F about P is equal to

B + D − 1
2
ν(s(M))2

where B is the number of bitangencies, counted with sign, D is the number of
double points, counted without sign, and ν(s(M)) is the normal Euler number of
the immersion.

In general, we can look at the case of a closed oriented manifold Mn immersed
in R2n. In such a case, there are (in general) a finite number of line bitangencies
on the immersion, and so we should be able to have a counting formula. As in
the case of the surface in R4, the counting formula will reduce to a topological
invariant equal to B + D − 1/2ν(s(M))2. Evidence suggests that we can describe
this invariant in terms of the flecnodal normals at parabolic points.

For our immersed surface, we will define P as the set of points p such that
there is a vector v with n · d2sv2 = 0 for all normal vectors n at p. Note that at
such a point, the quadratic condition for a flecnodal pair is satisfied for any normal
vector n, and the trace term in the cubic condition disappears. The dimension of
P is n − 1, and the set of flecnodal normals at each point form a n − 2 sphere.
In particular, at each point of P , there exists a unique (up to sign) unit normal
vector which is perpendicular to all of the flecnodal normals. We call this vector
field E. Evidence supports the idea that structure of E is the proper topological
invariant to use in the bitangency equation. In the case of surfaces, we looked at
the structure of F instead of E. But since the vector fields are perpendicular at
all points of P , the linking number of one is equal to the linking number of the
other. So the theorem is still correct, only it does not generalize well to higher
dimensions. The generalization will appear in a later paper.

6. Conclusions and further research

Considering surfaces in R4, perhaps the most interesting structure of the flecnodal
pairs occur when the tangent is the asymptotic vector at a parabolic point. It is
the structure of this set that is connected with the number of bitangencies, and
because it uses the asymptotic vectors, it connects bitangencies to the binormals. In
particular, we should be able to extend the flecnodal vector field from the parabolic
curve in such a way that it is smooth everywhere except at the inflections. Doing
this would connect the bitangencies to the inflections. Examples support the idea
of this connection, but the work has not been done.
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Path Formulation for Z2 ⊕ Z2-equivariant
Bifurcation Problems
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Abstract. M. Manoel and I. Stewart ([10]) classify Z2 ⊕ Z2-equivariant bi-
furcation problems up to codimension 3 and 1 modal parameter, using the
classical techniques of singularity theory of Golubistky and Schaeffer [8]. In
this paper we classify these same problems using an alternative form: the path
formulation (Theorem 6.1). One of the advantages of this method is that the
calculates to obtain the normal forms are easier. Furthermore, in our classi-
fication we observe the presence of only one modal parameter in the generic
core. It differs from the classical classification where the core has 2 modal pa-
rameters. We finish this work comparing our classification to the one obtained
in [10].
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Keywords. Path formulation, equivariant bifurcation problems, Z2 ⊕Z2-sym-
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1. Introduction

The symmetry group of a rectangle, Z2⊕Z2, appears in many bifurcation problems:
in PDE problems with rectangular domains, like in the buckling of a rectangular
plate [14], or in some Hopf-Hopf mode interaction [8]. More generally, when there
is an interaction of two modes in symmetric systems where the normalizer of the
isotropy subgroups of the two modes have Weyl group Z2 and are “independent”.
We refer to the introduction of the paper of Manoel and Stewart [10] for a sub-
stantive list of references with such equivariant problems. The classification of
Z2 ⊕ Z2-equivariant bifurcation problems of corank two up to codimension topo-
logical codimension two appears in [10] using the classical techniques of singularity
theory of Golubistky and Schaeffer [8]. In this paper we classify these problems us-
ing an alternative form: the path formulation. The basic idea of path formulation

This work was partially supported by CAPES and FAPESP.
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was suggested by Golubitsky and Schaeffer in [7] where they related bifurcation
problems in one state variable (without symmetry) with a path through a miniver-
sal unfolding of the cuspoid xm+1. This idea has been extended and applied to more
complex situations (cf. [4], [12], [1]). The main idea is to consider the bifurcation
problem g(x, λ) = 0 as an unfolding (perturbation) with parameter λ of the core
g0(x) = g(x, 0). If g0 is of finite codimension, with respect to some equivalence of
maps relevant to our problem (cf. Section 2), we have a miniversal unfolding G0

(with parameter α ∈ Rk where k is the codimension of g0) of g0 such that g is
equivalent (in the previous sense) to a pull-back ᾱ∗G0 where ᾱ : (Rl, 0)→ (Rk, 0) is
the path associated with g0 (given the core g0). Then we can compare paths and
determine their miniversal unfoldings (cf. Section 3 thereafter for more precision).
The path formulation differentiates between the singular behavior attributable to
the core and to the paths. Moreover we can discuss efficiently multiparameter
situations and forced symmetry breaking (cf. [4]).

The main goal of this paper is to use the path formulation as an alternative
method to obtain the classification of Z2 ⊕ Z2-equivariant bifurcation problems:
Theorem 6.1. To do this, we first classify the normal forms to the cores: Theorem
4.1 and Theorem 4.2. We observe the presence of only one modal parameter in
the generic core. It differs from the classical classification where the core has two
modal parameters (cf. [8], [10]). As a byproduct of our approach we get a set-up
that can be easily generalized to multiple bifurcation parameters, even with some
additional complex internal structure (cf. Section 3). Moreover we also get new
information on the structure of vector fields liftable over the projection onto the
parameter space of a miniversal unfolding of singularities in the equivariant case
(cf. Sections 5 and 6).

We assume that the reader has some familiarity with Mather’s approach to
singularity theory as generalized in Damon [3]. In Section 2 we recall the basic
ingredients and results we need to classify the bifurcation problems and their
perturbations modulo changes of coordinates following the now classical approach
of Golubitsky and Schaeffer [8]. In Section 3 we introduce the basic results of
the alternative approach of path formulation theory. Then we apply those ideas to
classify Z2⊕Z2-equivariant bifurcation problems in corank 2 using this formulation.
To that effect we discuss the cores up to codimension 3 in Section 4, followed, in
Section 5, by the main technical ingredient: the module of the vector fields liftable
over the projection onto the parameter space of their miniversal unfoldings. We
can then achieve the classification in Section 6 before finishing this work with some
comments and comparing our classification to the one obtained in [10].

2. Z2 ⊕ Z2-equivariant bifurcation problems and their equivalence

We consider the usual action of Z2⊕Z2 on the plane given by (ε, δ)·(x, y) = (εx, δy)
with ε2 = δ2 = 1. The action on the bifurcation and other parameters is always
trivial. We denote (x, y) by z and by GLl(R) the set of real invertible l×l-matrices



Path Formulation for Z2 ⊕ Z2-equivariant Bifurcation Problems 129

with identity denoted by Il. Derivatives are denoted by subscripts, for example,
fx is ∂f

∂x , and the superscript o denotes the value of any function at the origin, for
example fo = f(0), fo

x = fx(0). For any variable, or set of variables, a ∈ Rn, we
denote by Ea the ring of germs f : (Rn, 0)→ R and by Ma its maximal ideal. For
b ∈ Rm, we denote by �Ea,b the Ea-module of smooth germs g : (Rn, 0) → Rm and
by �Ma,b the Ea-submodule of germs vanishing at the origin. When b is clear from
the context, we denote �Ea,b by �Ea and �Ma,b by �Ma. If R is some ring, we denote
by 〈g1, . . . , gk〉R the R-module generated by {gi}k

i=1.

2.1. Z2 ⊕ Z2-equivariant map germs

The following is well known (for instance [7]). The ring E Z2⊕Z2
z of smooth Z2⊕Z2-

invariant germs is generated by u = x2 and v = y2. The module �E Z2⊕Z2
z of smooth

Z2 ⊕ Z2-equivariant maps f : (R2, 0)→ R2 is generated over E Z2⊕Z2
z by (x, 0) and

(0, y).
Hence, any bifurcation germ g : (R2 × Rl, 0) → R2 (with parameters λ ∈

(Rl, 0)) has the form

g(z, λ) = (p(u, v, λ)x, q(u, v, λ)y),

with p, q ∈ EZ2⊕Z2
(z,λ) . We use the notation g = [p, q].

The zero-set of g = 0 is a stratified set composed of four pieces, each depend-
ing on the isotropy of the solutions. With maximal isotropy we have S0 of solution
z = 0. With each copy of Z2, we have (x, 0, λ) ∈ Sx of equation p(x2, 0, λ) = 0 and
(0, y, λ) ∈ Sy of equation q(0, y2, λ) = 0. Finally, with the trivial isotropy, we have
(z, λ) ∈ Sz of equation p(z, λ) = q(z, λ) = 0.

2.2. KZ2⊕Z2
λ -equivalence

The classification of bifurcation problems is via contact equivalences preserving the
Z2 ⊕ Z2-symmetry. Let f, g ∈ �E Z2⊕Z2

(z,λ) , f is Z2 ⊕ Z2-equivalent to g if there exists
a map S : (R2+l, 0)→ GL2(R) and a diffeomorphism (z, λ) �→ (Z(z, λ), L(λ)) such
that

f(z, λ) = S(z, λ) g(Z(z, λ), L(λ))

where (Zo, Lo) = (0, 0), det(Lo
λ) > 0, Z ∈ �E Z2⊕Z2

(z,λ) , L ∈ �Eλ and

S((ε, δ) · (x, y, λ))
(

ε 0
0 δ

)
=

(
ε 0
0 δ

)
S(x, y, λ). (2.1)

In addition, we require So and Zo
z to be (diagonal) matrices with positive entries.

The set of Z2⊕Z2-equivalences (S,Z, L) has a semidirect product group structure
by composition, and is denoted by KZ2⊕Z2

λ .
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2.3. Unfolding theory

The perturbations of any g ∈ �E Z2⊕Z2
(z,λ) are described by k-parameter unfoldings

of g which are Z2 ⊕ Z2-equivariant map-germs G : (R2+l+k, 0) → R2 such that
G(z, λ, 0) = g(z, λ). We extend in a straightforward manner the previous defini-
tions to the k-parametrized version for unfoldings. The unfolding and finite deter-
minacy theorems follow the general theory of Damon [3] as our group is a geometric
subgroup. Let G(z, λ, α) and F (z, λ, β) be unfoldings of a germ g ∈ �E Z2⊕Z2

(z,λ) with
α ∈ (Rk, 0) and β ∈ (Rs, 0). We say that F maps into G, or F factors through
G, if there exist a β-unfolding (S,Z, L) of the identity in KZ2⊕Z2

λ and a map
A : (Rs, 0)→ (Rk, 0) such that

F (z, λ, β) = S(z, λ, β)G(Z(z, λ, β), L(λ, β), A(β)).

The unfolding G is called versal if any unfolding F of g maps into G and miniversal
if it has the minimal number of parameters necessary to be versal. That number is
given by the KZ2⊕Z2

λ -codimension c(g) of g that is calculated as the real dimension
of the extended normal space.
The extended normal space of g = [p, q] ∈ �E Z2⊕Z2

(z,λ) is defined by

NeKZ2⊕Z2
λ (g) = �E Z2⊕Z2

(z,λ) /TeKZ2⊕Z2
λ (g),

where

TeKZ2⊕Z2
λ (g) = 〈[p, 0], [vq, 0], [0, up], [0, q], [upu, uqu], [vpv, vqv]〉EZ2⊕Z2

(z,λ)
+ 〈[pλ, qλ]〉Eλ

,

is the extended tangent space of g (cf. [7]) which is a module over the system of
rings {EZ2⊕Z2

(z,λ) , Eλ}.
Moreover, if {di}c(g)

i=1 is a basis for NeKZ2⊕Z2
λ (g), then a miniversal unfolding

of g is

G(z, λ, α) = g(z, λ) +
c(g)∑
i=1

αidi(z, λ).

2.4. Determinacy and recognition theories

Let g ∈ �E Z2⊕Z2
(z,λ) . Another consequence of finite codimension is that g is finitely

determined, that is, there exists an integer k ≥ 1 such that every germ with
the same kth-jet as g is KZ2⊕Z2

λ -equivalent to g. The recognition problem seeks
conditions under which a germ g ∈ �E Z2⊕Z2

(z,λ) is KZ2⊕Z2
λ -equivalent to a given normal

form. To solve a particular recognition problem means to explicitly characterize a
KZ2⊕Z2

λ -equivalence class in terms of a finite number of polynomial equalities and
inequalities to be satisfied by the Taylor coefficients of the elements of that class.
For this we need further ideas and results. A subspace M ⊂ �E Z2⊕Z2

(z,λ) is intrinsic if

it contains the KZ2⊕Z2
λ -orbit of all its elements. If V ⊂ �E Z2⊕Z2

(z,λ) then the intrinsic

part of V, denoted by itrV, is the largest intrinsic subspace of �E Z2⊕Z2
(z,λ) contained in

V. In [10] it is shown that the the ideals generated by powers of u = x2, v = y2 or
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λ are intrinsic. Moreover a EZ2⊕Z2
(z,λ) -module M = [I,J ] = {[p, q] | p ∈ I, q ∈ J } is

intrinsic if and only if I,J are intrinsic ideals such that vJ ⊂ I and uI ⊂ J . Let
g ∈ �E Z2⊕Z2

(z,λ) , the “perturbation term” w ∈ �E Z2⊕Z2
(z,λ) is of higher order with respect to

g if f+w is KZ2⊕Z2
λ -equivalent to g for every f in theKZ2⊕Z2

λ -orbit to g. By definition
such a perturbation cannot enter into a solution of the recognition problem for g.
We denote by P(g) the set of all higher order terms of g. Then, for each g ∈ �E Z2⊕Z2

(z,λ)

the set P(g) is an intrinsic EZ2⊕Z2
(z,λ) -submodule of �E Z2⊕Z2

(z,λ) (cf. [8]). To evaluate P(g)

we introduce a subgroup UKZ2⊕Z2
λ of KZ2⊕Z2

λ of unipotent equivalences represented
by equivalences whose linear part is unipotent. The unipotent tangent space of
g = [p, q] ∈ �E Z2⊕Z2

(z,λ) is given by

T UKZ2⊕Z2
λ (g) = 〈[p, 0], [0, q], [upu, uqu], [vpv, vqv]〉MZ2⊕Z2

(z,λ)

+ 〈[vq, 0], [0, up]〉EZ2⊕Z2
(z,λ)

+ 〈[pλ, qλ]〉M2
λ
.

Following the proof of Theorem 1.17 ([6], p. 108) we know that

itr T UKZ2⊕Z2
λ (g) ⊂ P(g).

We finalize this section with two theorems that present the normal forms that
classify the Z2 ⊕Z2-equivariant bifurcation problems using classical techniques of
singularity theory.

Theorem 2.1. ([8]) Let g = [p, q] ∈ �Ex,y,λ(Z2 ⊕ Z2) a bifurcation problem with
λ ∈ (R, 0). If

po
u, qo

v, po
λ, qo

λ, po
uq

o
v − po

vq
o
u, po

uq
o
λ − po

λq
o
u, qo

vp
o
λ − po

vq
o
λ

are all nonzero at the origin, then g is Z2 ⊕ Z2-equivalent to

h1 = [ε1u + mv + ε2λ, ηu + ε3v + ε4λ],

ε1 = sign(po
u), ε2 = sign(po

λ), ε3 = sign(qo
v), ε4 = sign(qo

λ) and modal parameters

m =
∣∣∣∣ qo

λ

qo
vp

o
λ

∣∣∣∣ po
v, η =

∣∣∣∣ po
λ

po
uq

o
λ

∣∣∣∣ qo
u.

Moreover, the moduli µ and η satisfy the conditions

m �= ε2ε3ε4, η �= ε1ε2ε4, mη �= ε1ε3.

Also, it is shown in [7] that the normal form h1 has c(h1) = 3 and miniversal
unfolding

H1(x, y, λ, m̃, η̃, σ) = [ε1u + m̃v + ε2λ, η̃ + u + ε3v + ε4(λ− σ)]

where (m̃, η̃, σ) varies on a neighborhood of (m, η, 0).
The table with the other normal forms that complete the classification of

Z2 ⊕ Z2-equivariant bifurcation problems is given by the theorem to follow:
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Theorem 2.2. ([10]) If a germ g = [p, q] ∈ �Ex,y,λ(Z2 ⊕ Z2), λ ∈ (R, 0), satisfies
the recognition conditions in following table, then g is Z2 ⊕ Z2-equivalent to hj,
j = 2, . . . , 8.

Normal Forms

h2 = [ε1u + ε4v + ε2λ + ε5u
2, ε1ε3ε4u + ε3v + κλ]

h3 = [ε1u + µv + ε2λ, ε1ε2ε4u + ε3v + ε4λ + ε5λ
2]

h4 = [ε1u + ε2ε3ε4v + ε2λ, ηu + ε3v + ε4λ + ε5λ
2]

h5 = [ε1u
2 + µv + ε2λ, ε5u + ε3v + ε4λ]

h6 = [ε1u + ε5v + ε2λ, ηu + ε3v
2 + ε4λ]

h7 = [ε1u + ε5v + ε2λ
2, ηu + ε3v + ε4λ]

h8 = [ε1u + µv + ε2λ, ε5u + ε3v + ε4λ
2]

Normal Recognition ε1 ε2 ε3 ε4 ε5 Modal Unfolding
Form Conditions Parameter Terms

po
uqo

v − po
vqo

u = 0 [u, 0]

h2 po
u, qo

v, po
v, po

λ, qo
λ, ρ2, po

u po
λ qo

v po
v ρ2q

o
v κ =

˛̨ po
v

po
λ

qo
v

˛̨
qo

λ [0, λ]

po
uqo

λ − po
λqo

u �= 0 [0, 1]

po
λqo

u − po
uqo

λ = 0 [v, 0]

h3 po
u, qo

v, po
λ, qo

λ, ρ3, po
u po

λ qo
v qo

λ ρ3p
o
λ µ =

˛̨ qo
λ

po
λ

qo
v

˛̨
po

v [0, u]

po
uqo

v − po
vqo

u �= 0 [0, 1]

po
vqo

λ − po
λqo

v = 0 [v, 0]

h4 po
u, qo

v, po
λ, qo

λ, ρ4, po
u po

λ qo
v qo

λ ρ4p
o
λ η =

˛̨ po
λ

po
uqo

λ

˛̨
qo

u [0, u]

po
uqo

v − po
vqo

u �= 0 [0, 1]

po
u = 0 [v, 0]

h5 po
λ, qo

v , qo
λ, po

uu, po
uu po

λ qo
v qo

λ qo
u µ =

˛̨ qo
λ

po
λ

qo
v

˛̨
po

v [u, 0]

po
vqo

λ − po
λqo

v �= 0 [0, 1]

qo
v = 0 [0, v]

h6 po
u, po

λ, qo
λ, po

v, qo
u, qo

vv, po
u po

λ qo
vv qo

λ po
v η =

˛̨ po
λ

po
uqo

λ

˛̨
qo

u [0, u]

po
uqo

λ − po
λqo

u �= 0 [1, 0]

po
λ = 0 [λ, 0]

h7 po
u, po

v, qo
v , qo

λ, po
λλ, po

u po
λλ qo

v qo
λ po

v η =
˛̨ po

v
po

uqo
v

˛̨
qo

u [0, u]

po
uqo

v − po
vqo

u �= 0 [1, 0]

qo
λ = 0 [0, λ]

h8 po
u, po

λ, qo
u, qo

v , qo
λλ po

u po
λ qo

v qo
λλ, qo

u µ =
˛̨ qo

u
po

uqo
v

˛̨
po

v [v, 0]

po
uqo

v − po
vqo

u �= 0 [1, 0]

ρ2 = qo
uvpo

u(po
v)2 − qo

vv(po
u)2po

v − qo
uu(po

v)
3 − po

uvqo
vpo

upo
v + po

vvqo
v(po

u)2 + po
uuqo

v(po
v)

2

ρ3 = qo
uu(po

λ)3 − po
uu(po

λ)2qo
λ − qo

uλ(po
λ)2po

u + qo
λλpo

λ(po
u)2 + po

uλpo
λqo

λpo
u − po

λλ(po
u)2qo

λ

ρ4 = qo
λλpo

λ(qo
v)2 − po

vvpo
λ(qo

λ)2 − qo
vλpo

λqo
λqo

v − po
vv(qo

λ)3 − po
λλ(qo

v)2qo
λ + po

vλ(qo
λ)2qo

v
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3. Path formulation

This section is divided into two parts. First we explain how we associate a path
to each bifurcation problem. Second we recall the equivalence on paths that cor-
responds to the contact equivalence for the bifurcation diagrams.

3.1. Cores and paths

Let g ∈ �EZ2⊕Z2
(z,λ) . The germ g0 ∈ �EZ2⊕Z2

z defined by g0(z) = g(z, 0) is called the

core of g. When λ = 0, the group KZ2⊕Z2
λ simplifies to KZ2⊕Z2, the classical group

of Z2 ⊕ Z2-equivalences without parameters. A germ g is of finite core if g0 is
of finite KZ2⊕Z2-codimension, say k. Consider now g as an unfolding of g0 with l
parameters. From the KZ2⊕Z2-theory of unfoldings, if G0 is a miniversal unfolding
of g0 (of codimension k, say), then g factors through G0. That is, there exists
changes of coordinates S,Z such that

g(z, λ) = S(z, λ)G0(Z(z, λ), ᾱ(λ)), (3.1)

where ᾱ : (Rl, 0) → (Rk, 0). We say that ᾱ is the path associated to g. Thus ᾱ
induces a new bifurcation problem defined by

ᾱG0(z, λ) = G0(z, ᾱ(λ)).

The space of paths will be denoted by �Pλ = {ᾱ : (Rl, 0)→ (Rk, 0)}.
From (3.1), g and the pull-back ᾱG0 are KZ2⊕Z2-equivalent (with (S,Z, Il)

providing the equivalence).

3.2. Path equivalence and its tangent spaces

We can now define an equivalence between two paths with the same core. That is,
we say that ᾱ, β̄ : (Rl, 0)→ (Rk, 0) are path equivalent if

ᾱ(λ) = H(λ, β̄(L(λ))) (3.2)

where L : (Rl, 0) → (Rl, 0) is an orientation-preserving diffeomorphism and
H : (Rl+k, 0) → (Rk, 0) is a λ-parametrized family of local orientation-preserving
diffeomorphism on (Rk, 0) that lifts to Z2 ⊕ Z2-equivariant diffeomorphism on
G−1

0 (0). More precisely, there exists a λ-family of Z2 ⊕ Z2-equivariant diffeomor-
phisms Φ : (R2+k+l, 0)→ (R2+k, 0) preserving G−1

0 (0) such that H ◦πG0 = πG0 ◦Φ
on G−1

0 (0) where πG0 : G−1
0 (0) → (Rk, 0) is the restriction to G−1

0 (0) of the natu-
ral projection (R2+k, 0) → (Rk, 0). In this case we shall see in Section 5 that this
definition is equivalent to the definition in [12].

For a fixed core g0, the group of path equivalences, denoted by K∆G0 , is a
geometric subgroup which acts on the space of paths, hence the general theory of
[3] applies. Note that we cannot in general simplify H in (3.2) to a λ-parametrized
matrix like with the usual contact-equivalence. An explicit description of the dif-
feomorphisms H is in general very hard, if not impossible. But the tangent space of
ᾱ can be determined explicitly. Let Derlog(∆G0) be the module of liftable vector
fields ξ satisfying

S(z, α)G0(z, α) = (dG0)z(z, α)Z(z, α) + (dG0)α(z, α) ξ(α), α ∈ Rk. (3.3)
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The tangent space at a path ᾱ is the Eλ-module of �Pλ given by

TeK∆G0 (ᾱ) = 〈ᾱλ〉Eλ
+ ᾱDerlog(∆G0). (3.4)

Also we define the codimension of path ᾱ by codK
∆G0

(ᾱ) = dimR
�Pλ/TeK∆G0 (ᾱ).

In Section 5 we discuss the geometric interpretation of the path equivalence
showing that H is also exactly the discriminant preserving contact equivalences,
hence the notation with ∆G0. In the mean time one has the following result about
path and contact equivalences.

Theorem 3.1.

1. Let g ∈ �E Z2⊕Z2
(z,λ) be a finite KZ2⊕Z2

λ -codimension. If g has a core of finite

KZ2⊕Z2-codimension, then there exists a path ᾱ such that g is KZ2⊕Z2
λ -equi-

valent to ᾱG0, where G0 is a miniversal unfolding of the core g0 of g.
2. The K∆G0 -codimension of ᾱ is finite if and only if the KZ2⊕Z2

λ -codimension
of ᾱG0 is finite, as correspondents normal spaces are isomorphics.

3. Let ᾱ, β̄ be two paths in �Pλ. Then, ᾱ is K∆G0 -equivalent to β̄ if and only if
ᾱG0 is KZ2⊕Z2

λ -equivalent to β̄G0 for finite codimension problems.

The proof may be adapted to the correspondent theorem in [5].

4. Z2 ⊕ Z2-equivariant cores

In this section we discuss the cores and their universal unfolding of low codimen-
sion. The Theorem 4.1 and Theorem 4.2 classify the normal forms for the cores.
We observe the presence of only one modal parameter in the generic core hc

1. It
differs from the classical classification where the core has two modal parameters
(see the core of h1 in the Theorem 2.1). To simplify the description of their recog-
nition problem we define the following quantities: ε1 = sign(po

u), ε2 = sign(po
v),

ε3 = sign(qo
u), ε4 = sign(qo

v), ε5 = sign(po
uu) and ε6 = sign(qo

vv).
The generic core and its miniversal unfolding is given in the following result

whose proof follows from a simple re-scaling and a straightforward calculation of
the unipotent tangent space.

Theorem 4.1. Let g ∈ �EZ2⊕Z2
z be given by g(x, y) = (p(u, v)x, q(u, v)y) = [p, q]. If

εi, 1 ≤ i ≤ 4, and po
uq

o
v − po

vq
o
u are all nonzero at the origin, then g is Z2 ⊕ Z2-

equivalent to

hc
1 = [ε1u + mv, ε3u + ε4v]

with the modal parameter m =
∣∣∣ qo

u

po
uqo

v

∣∣∣ po
v (m �= ε1ε3ε4). A miniversal unfolding of

the core hc
1 is

Hc
1 = [ε1u + (m + α3)v + α1, ε3u + ε4v + α2].
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Proof. Consider the change of coordinates given by S(z)g(Z(z)) = [p̄, q̄], Z =

[a, b] ∈ �EZ2⊕Z2
z , S =

(
s1 s2

s3 s4

)
satisfying (2.1) (without λ). It follows

p̄0
u = p0

ua
3
0s

0
1, p̄0

v = p0
va0b

2
0s

0
1, q̄0

u = q0
ua

2
0b0s

0
4, q̄0

v = q0
vb

3
0s

0
4,

where a0 > 0, b0 > 0, s0
1 > 0, s0

4 > 0 are the coefficients in the Taylor expansion
of the functions a, b, s1 and s4, respectively.

Normalizing these coefficients we get the formula to hc
1 and the respective

parameters εi’s and m.
Now, to find the miniversal unfolding, first we calculate that the quadratic

terms are in the unipotent tangent space of hc
1 to justify that they can be ignored.

Then we use the normal space to find the unfolding terms. If m �= ε1ε3ε4, then
d1 = [1, 0], d2 = [0, 1] and d3 = [v, 0] are generators of the extended normal space
of hc

1, thus Hc
1 is a versal unfolding of hc

1. �

The generic core is of smooth codimension 3 but topological codimension
2. The remaining cores of codimension 3 are given by degenerating the previous
conditions in Theorem 4.1. There are 5 of them but they can be grouped in 3 types
by interchanging x and y (as well then as p and q). Define

ρ2 = qo
uvp

o
u(po

v)
2 − qo

vv(po
u)2po

v − qo
uu(po

v)3 − po
uvq

o
vp

o
up

o
v + po

vvq
o
v(po

u)2 + po
uuq

o
v(po

v)
2.

Theorem 4.2. Let g ∈ �EZ2⊕Z2
z be given by g = [p, q].

(a) If po
uq

o
v − po

vq
o
u = 0 with εi, 1 ≤ i ≤ 4, and ρ2 all nonzero, then g is Z2 ⊕ Z2-

equivalent to

hc
2 = [ε1u + ε2v + ε̂5u

2, ε1ε2ε4u + ε4v],

with miniversal unfolding Hc
2 = [(ε1+α3)u+ε2v+ε̂5u

2+α1, ε1ε2ε4u+ε4v+α2]
and ε̂5 = sign(qo

vρ2).

(b) If po
u = 0 with εi, 2 ≤ i ≤ 5, all nonzero, then g is Z2 ⊕ Z2-equivalent to

hc
5 = [ε5u2 + ε2v, ε3u + ε4v]

with miniversal unfolding Hc
5 = [ε5u2 + α3u + ε2v + α1, ε3u + ε4v + α2].

When q0
v = 0, interchanging x and y, we obtain hc

6 = [ε1u + ε2v, ε3u + ε6v
2]

of miniversal unfolding Hc
6 = [ε1u + ε2v + α1, ε3u + ε6v

2 + α3v + α2].

(c) If qo
u = 0 with ε1, ε3, ε4 all nonzero, then g is Z2 ⊕ Z2-equivalent to

hc
9 = [ε1u + ε2v, ε4v]

with miniversal unfolding Hc
9 = [ε1u + ε2v + α1, α3u + ε4v + α2].

When p0
v = 0, interchanging x and y, we obtain hc

10 = [ε1u, ε3u + ε4v] with
miniversal Hc

10 = [ε1u + α3v + α1, ε3u + ε4v + α2].

Proof. We proceed as before with more complicated calculations. This is done with
details in [2]. �
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5. Derlogs

In this section we calculate here the Derlogs of the cores of Theorems 4.1 and
4.2. First we discuss an important geometric notion linked with the liftable vector
fields.

5.1. Discriminants and Derlogs

The discriminant ∆G0 of G0 is the local bifurcation set of G0, that is, the set of
α ∈ (Rk, 0) where G0 is singular. Here the liftability condition on H can be replaced
by preserving the discriminant ∆G0 of G0 in the sense that H(λ,∆G0) ⊂ ∆G0 for
all λ ∈ (Rl, 0). This is a weaker condition because any liftable vector field must
be tangent to the discriminant. In the non equivariant case it is well known that
both notion coincide (cf. [9]). Here both modules are also equal and also free. The
proof is similar to the one in [5].

The discriminants of the miniversal unfoldings of the cores are formed of the
following local bifurcation varieties:

(a) Px,Py of equations q(0, 0, α) = 0, resp. p(0, 0, α) = 0, representing the bifur-
cations of the branches Sx, resp. Sy , from the trivial branch,

(b) Py,z of equation p(0, v, α) = q(0, v, α) = 0 representing the bifurcation of the
branches Sz from Sy, By of equation p(0, v, α) = pu(0, 0, α) = 0 representing
turning points on the Sy-branches. In a similar fashion we define Bx and Px,z.

(c) Bz of equation p = q = puqv − pvqu = 0 representing fold points in Sz .

To fully exploit methods from algebraic geometry we need to complexify our situ-
ation. Nothing will be lost in finite codimension because we can work with germs
equivalent to polynomials and we take care to preserve the real and complex alge-
bras. Our results are valid for real germs viewed as real slices of the holomorphic
objects. Let GC

0 be the complexification of the miniversal unfolding G0 (chosen
as a polynomial from finite determinacy). The discriminant ∆GC

0 of GC
0 is the set

of singular values of the projection πGC

0
: (GC

0 )−1(0) → Ck. The real slice of ∆GC

0

defines the discriminant ∆G0 instead of the equivalent formula for G0. We actu-
ally define Derlog(∆G0) as the submodule of the real vector fields of the module
Derlog(∆GC

0 ) of liftable vector fields. Let I(∆GC

0 ) be the ideal of germs vanishing on
∆GC

0 . The module of vector fields tangent to ∆GC

0 , called Derlog(∆GC

0 ), is given by

Derlog(∆GC

0 ) = {ξ : (Ck, 0)→ Ck | ξ · gα ∈ I(∆GC

0 ), ∀g ∈ I(∆GC

0 )}.

5.2. Liftable vector fields

The discriminant of Hc
1 is

∆Hc
1 = α1α2(ε1α1 − ε3α2)(α1 − ε4α2(m + α3)).

To find the vectors of Derlog∗(∆Hc
1 ) we solve the expression (3.3). The coordinates

of Derlog∗(∆Hc
1 ), with respect to the basis [1, 0], [0, 1] and [v, 0] of unfolding terms,
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are

ξ1 =

⎛⎝α1

α2

0

⎞⎠ , ξ2 =

⎛⎝ −ε1α2
1

−ε3α2
2

(−ε1α1 + ε3α2)(m + α3)

⎞⎠ , ξ3 =

⎛⎝ 0
0

α1 − ε4α2(m + α3)

⎞⎠ .

Note that the determinant of the matrix formed by these vectors is equal to the
discriminant ∆Hc

1 which shows that Derlog∗(∆Hc
1 ) is free and equal to Derlog(∆Hc

1 )
using Saito’s criterion (cf. [13]).

The discriminant of Hc
10 is

∆Hc
10 = α1α2(ε1α1 − ε3α2)(α1 − ε4α2α3).

The generators of Derlog∗(∆Hc
10 ) are

ξ1 =

⎛⎝ α1

α2

0

⎞⎠ , ξ2 =

⎛⎝ ε3α1α2 − ε1α
2
1

0
−ε1α1α3 + ε3α2α3

⎞⎠ , ξ3 =

⎛⎝ 0
0

α1 − ε4α2α3

⎞⎠ ,

and the module is still free.
The discriminant of Hc

2 is ∆Hc
2 = α1α2 (ε4α1−ε2α2) (ε1ε2ε4α2α

3
3+3ε2ε4α2α

2
3+

3ε1ε2ε4α2α3 + ε2ε4α2 − α1α
2
3 − 2ε1α1α3 − α1 − ε5α

2
2α

2
3 − 2ε1ε5α2

2α3 − ε5α
2
2 −

4ε1ε2ε4ε5α1α2α3 + 4ε5α2
1 − 4ε2ε4ε5α1α2 + 4α1α

2
2) (ε2ε4ε5α2

3 − 4ε2ε4α1 + 4α2). The
coordinates of Derlog∗(∆Hc

2 ), with respect to the basis [1, 0], [0, 1] and [u, 0] of
unfolding terms, are

ξ1 =

⎛⎝ 4α1(ε4α1 − ε2α2) + Aα3

2α2(ε4α1 − ε2α2) + Bα3

2ε1(ε4α1 − ε2α2) + Cα3

⎞⎠ ,

with A = ε1ε4ε5α1 + ε4ε5α1α3 − 2ε1ε2α1α2, B = ε1ε4ε5α2 + ε4ε5α2α3 − 2ε1ε2α2
2,

C = −3ε2α2 + 4ε4α1 − ε1ε2α2α3,

ξ2 =

⎛⎝ 2ε1α1(ε4ε5α1 − ε2ε5α2 − 2ε2α1α2 + 2ε4α2
2) + Dα3

2ε1α2(ε4ε5α1 − ε2ε5α2 − 2ε2α1α2 + 2ε4α2
2) + Eα3

−6ε2α1α2 + 4ε4α2
1 + 2ε4α2

2 + Fα3

⎞⎠ ,

with D = −5ε2ε5α1α2 + 4ε4ε5α2
1 − 3ε1ε2ε5α1α2α3 + 4ε4α1α

2
2, E = −5ε2ε5α2

2 +
4ε4ε5α1α2 − 3ε1ε2ε5α2

2α3 + 4ε4α3
2, F = −4ε1ε2α1α2 − 2ε2ε5α2α3 + 4ε1ε4α2

2 +
ε1ε4ε5α1 + ε4ε5α1α3 − ε1ε2ε5α2 − ε1ε2ε5α2α

2
3 + 2ε4α2

2α3, and

ξ3 =

⎛⎝ 2ε1α1(3α2 − 2ε2ε4α1 − 4ε2ε4ε5α2
2) + Gα3

2ε1α2(3α2 − 2ε2ε4α1 − 4ε2ε4ε5α2
2) + Hα3

−2ε2ε5(−ε2ε5α2 + ε4ε5α1 − 2ε2α1α2 + 2ε4α2
2) + Iα3

⎞⎠
with G = −ε2ε4ε5α1− ε1ε2ε4ε5α1α3 +8α1α2, H = −ε2ε4ε5α2− ε1ε2ε4ε5α2α3 +8α2

2

and I = −4ε1ε2ε4α1 + 5ε1α2 + 3α2α3 − 4ε1ε2ε4ε5α2
2. The module is free.

The discriminant of Hc
5 is ∆Hc

5 = α1α2(ε2α1 − ε4α2)(−ε1 − ε1α
2
3 − 4ε2ε4α2 +

2ε2ε3ε4ε1α3 + 4α1)(ε3α2α
3
3−α1α

2
3− ε1α

2
2α

2
3− 4ε3ε1α1α2α3 + 4ε1α2

1 + 4α1α
2
2). The
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generators of Derlog∗(∆Hc
5 ) are listed below

ξ1 =

⎛⎝ −ε2ε3ε1α1α3 + ε4ε1α1α
2
3 − 2ε3ε4α1α2α3 + 4ε4α2

1 − 2ε2α1α2

−ε2ε3ε1α2α3 + ε4ε1α2α
2
3 − 2ε3ε4α2

2α3 + 2ε4α1α2

−2ε2ε3α1 + 4ε4α1α3 − ε3ε4α2α
2
3 − ε2α2α3

⎞⎠ ,

ξ2 =

⎛⎝ −4ε3ε4α2
1α2 − 2ε2ε3ε1α2

1 + A1α3

−4ε3ε4α1α
2
2 − 2ε2ε3ε1α1α2 + A2α3

4ε4α2
1 − 2ε2α1α2 + A3α3

⎞⎠ ,

with A1 = ε2ε1α1α2 − 3ε3ε4ε1α1α2α3 + 4ε4α1α
2
2 + 4ε4ε1α2

1, A2 = ε2ε1α
2
2 +

4ε4ε1α1α2 − 3ε3ε4ε1α2
2α3 + 4ε4α3

2, A3 = −ε2ε3ε1α1 + ε4ε1α1α3 − 4ε3ε4α1α2 +
ε2ε1α2α3 + 2ε4α2

2α3 − ε3ε4ε1α2α
2
3, and

ξ3 =

⎛⎝−4ε3α2
1 − ε3ε1α1α

2
3 + ε2ε4ε1α1α3 + 8α1α2α3 − 8ε3ε1α1α

2
2 − 2ε2ε3ε4α1α2

−4ε3α1α2 − ε3ε1α2α
2
3 + ε2ε4ε1α2α3 + 8α2

2α3 − 8ε3ε1α3
2 − 2ε2ε3ε4α2

2

−4ε3α1α3 + 2ε2ε4α1 + 3α2α
2
3 + 4ε1α1α2 − 4ε3ε1α2

2α3 − ε2ε3ε4α2α3

⎞⎠.

5.3. Modal spaces

We observe that there is a modal parameter in our classification of the generic core
instead of two modal parameters in the core of bifurcation problem in Theorem 2.1.
Because of the equivalence between contact and path equivalence we expect the
values of the modal space to be left pointwise invariant by path equivalence. This
means that the liftable vector fields must vanish along the modal space. In general,
this is a mechanism by which Derlog∗(∆) may be strictly smaller than Derlog(∆)
because vector fields in the latest only need to be tangent to the discriminant, so we
need to select those that actually vanish on the modal space. Such examples occur
for the corank two representation of the dihedral group D4 (cf. [5]). Surprisingly,
in the present case, all vector fields tangent to the discriminant also vanish on
the modal space. In all our cases the modal space is the same, given by m = α3,
α1 = α2 = 0. By inspection, each generator of the Derlogs vanishes on that space
confirming that both Derlogs are the same.

6. Classification of Z2 ⊕ Z2-equivariant bifurcation problems
via path formulation

The classification of the paths up to topological codimension 2 is at follows. First
we define a few quantities (when they exist): δ1 = sign(po

λ), δ2 = sign(qo
λ), δ3 =

sign(po
λλ), δ4 = sign(qo

λλ), δ51 = sign(po
λρ3) and δ52 = sign(po

λρ4) with

ρ3 = qo
uu(po

λ)3 − po
uu(po

λ)2qo
λ − qo

uλ(po
λ)2po

u + qo
λλp

o
λ(po

u)2 + po
uλp

o
λq

o
λp

o
u − po

λλ(po
u)2qo

λ,

and

ρ4 = qo
λλp

o
λ(qo

v)2 − po
vvp

o
λ(qo

λ)2 − qo
vλp

o
λq

o
λq

o
v − po

vv(qo
λ)3 − po

λλ(qo
v)2qo

λ + po
vλ(qo

λ)2qo
v.

Finally, the modal parameters are χ =
∣∣∣ po

u

qo
upo

λ

∣∣∣ qo
λ, κ =

∣∣∣ po
v

qo
vpo

λ

∣∣∣ qo
λ.
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Second we define the following paths αi’s (with their miniversal unfoldings
Ai’s of unfolding parameters νj , j = 1, 2, 3):

• ᾱ1(λ) = (δ1λ, χλ, 0) with A1(λ, ν) = (δ1λ, (χ + ν2)λ + ν1, ν3) of topological
codimension 1,

• ᾱ2(λ) = (δ1λ, κλ, 0) with A2(λ, ν) = (δ1λ, (κ + ν2)λ + ν1, ν3) of topological
codimension 1,

• ᾱ3(λ) = (δ3λ2, δ2λ, 0) with A3(λ, ν) = (δ3λ2 +ν1 +ν2λ, δ2λ, ν3) of topological
codimension 2,

• ᾱ4(λ) = (δ1λ, δ4λ2, 0) with A4(λ, ν) = (δ1λ, δ4λ2 +ν1 +ν2λ, ν3) of topological
codimension 2 and

• ᾱ5i(λ) = (δ1λ, δ2λ + δ5iλ
2, 0), i = 1, 2, with A5i(λ, ν) = (δ1λ, (δ2 + ν2)λ +

δ5iλ
2 + ν1, ν3) of topological codimension 2.

Theorem 6.1 (Main Theorem). Classification of Z2 ⊕ Z2-equivariant bifurcation
problems using path formulation up to topological codimension two and one bifur-
cation parameter:

(a) With the core Hc
1, the paths are ᾱ1 (when χ �= δ1ε1ε3), ᾱ3 (when δ1 = 0), ᾱ4

(when δ2 = 0) and ᾱ51, ᾱ52 (when χ = δ1ε1ε3).

(b) With the core Hc
10 the paths are ᾱ1 (when χ �= δ1ε1ε3), ᾱ4 (when δ2 = 0) and

ᾱ51 (when χ = δ1ε1ε3). With the core Hc
9 the path are ᾱ2 (when κ �= δ1ε2ε4),

ᾱ3 (when δ1 = 0), and ᾱ52 (when κ = δ1ε2ε4).

(c) With the core Hc
6 the path is ᾱ1 = (δ1λ, χλ, 0) (when χ �= δ1ε1ε3), and with

the core Hc
5 the path is ᾱ2 = (δ1λ, κλ, 0) (when κ �= δ1ε2ε4).

(d) With the core Hc
2 the path is ᾱ2 = (δ1λ, κλ, 0) when κ �= δ1ε2ε4.

Proof. The proof of each case follows the same pattern. We show the first case with
some details. Let ᾱ : (R, 0)→ (R3, 0) be a path such that ᾱ(λ) = (δ1λ, χλ, 0)+ �M2

λ.
From (3.4), the tangent space of ᾱ is

TeK∆Hc
1 (ᾱ) = 〈ᾱλ〉Eλ

+ ᾱDerlog(∆Hc
1 ).

At their lowest order the generators of TeK∆Hc
1 (ᾱ) are:

v1 =

⎛⎝ δ1
χ
0

⎞⎠ , v2 =

⎛⎝ δ1λ
χλ
0

⎞⎠ , v3 =

⎛⎝ −ε1λ2

−ε3χ2λ2

(−ε1δ1 + ε3χ)mλ

⎞⎠ ,

v4 =

⎛⎝ 0
0

(δ1 − ε4χm)λ

⎞⎠ .

If δ1 − ε4χm �= 0 the generator (0, 0, λ) is in the tangent space TeK∆Hc
1 (ᾱ). If

χ �= ε1ε2ε3 and χ �= 0, we get the generator (0, λ2, 0). We find that the normal
space NeK∆Hc

1 (ᾱ) is generated by [0, 1], [v, 0] and [0, λ], or in vector notation
(0, 1, 0), (0, 0, 1) and (0, λ, 0). In fact, consider the following table.
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generators [1, 0] [λ, 0] [v, 0] [0, 1] [0, λ]

v1 δ1 0 0 χ 0
v2 0 δ1 0 0 χ

[0, 1] 0 0 0 1 0
[v, 0] 0 0 1 0 0
[0, λ] 0 0 0 0 1

Since this 5×5 matrix has maximum rank, we obtain the generators ofNeK∆Hc
1 (ᾱ).

The miniversal unfolding H
1 of h

1 is given by

H
1 = [ε1u + m̃v + δ1λ, ε3u + ε4v + χ̃λ + ν1]

where m̃ = m + ν3 and χ̃ = χ + ν2. Hence the topological codimension is 1 but
the smooth codimension is 3.

For the other cases we proceed similarly. �

6.1. Comparison with the classical theory

The generic bifurcation diagram in [10, 8] is h1 = [ε1u+µv + δ1λ, ηu+ ε4v + δ2λ].
As expected it has two modal parameters but they live in the core. Our analysis
shows that actually only one modal parameter is associated with the core, the
other is linked with the path. More explicitly, the link between the two sets of
modal parameters are µ = δ1χm, η = δ1ε3χ

−1.
Another point to make is that the classification of [10] contains 8 cases they

denote h1 to h8. In our classification theorem we have 14 cases. Actually a more
detailed comparison indicates that some of the cases in [10] correspond to several
of our cases. Explicitly,

• h1 corresponds to 3 pull-backs: ᾱ∗
1H

c
1 , ᾱ∗

2H
c
9 or ᾱ∗

1H
c
10,

• the next 4 to two pull-backs: h3,8 to ᾱ∗
51,4H

c
1 or ᾱ∗

51,4H
c
10 and h4,7 to ᾱ∗

52,3H
c
1

or ᾱ∗
51,4H

c
9 , and

• the final 3 to only one pull-back: h2 to ᾱ∗
2H

c
2 , h5 to ᾱ∗

2H
c
5 and h6 to ᾱ∗

1H
c
6 .
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The Multiplicity of Pairs of Modules
and Hypersurface Singularities

Terence Gaffney

Abstract. This paper applies the multiplicity polar theorem to the study of
hypersurfaces with non-isolated singularities. The multiplicity polar theorem
controls the multiplicity of a pair of modules in a family by relating the
multiplicity at the special fiber to the multiplicity of the pair at the general
fiber. It is as important to the study of multiplicities of modules as the basic
theorem in ideal theory which relates the multiplicity of an ideal to the local
degree of the map formed from the generators of a minimal reduction. In fact,
as a corollary of the theorem, we show here that for M a submodule of finite
length of a free module F over the local ring of an equidimensional complex
analytic germ, that the number of points at which a generic perturbation of
a minimal reduction of M is not equal to F , is the multiplicity of M .

Specifically, we apply the multiplicity polar theorem to the study of
stratification conditions on families of hypersurfaces, obtaining the first set of
invariants giving necessary and sufficient conditions for the Af condition for
hypersurfaces with non-isolated singularities.

Introduction

In [10] the author introduced the notion of the multiplicity of a pair of modules
as a way of working with modules of non-finite colength. Some applications of this
notion to equisingularity problems were described in [11]. The invariants intro-
duced using this tool have the advantage that they must be independent of the
parameters in the family when the stratification condition they describe holds.
These invariants provide a framework for studying the equisingularity conditions
W , Wf and Af for very general families of spaces and functions. In this paper
we will illustrate the use of these invariants in the study of families of functions
with non-isolated singularities and show how the invariants arise naturally in the
work of Pellikaan ([27], [28])and Zaharia ([32], [33]). Pellikaan studied functions
f whose singular set was an isolated complete intersection singularity (ICIS) of
dimension 1, Zaharia those of of dimension 2. The principal tool for connecting the
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multiplicity of the pair with geometry is the multiplicity polar theorem (Theorem
1.1) which we review in Section 1. This theorem is used to relate multiplicity in-
formation at the special fiber of a family with information at the generic fiber. As
an illustration of the theorem we use it to give a geometric interpretation of the
multiplicity of a module (Theorem 1.2). This interpretation is then used in Remark
1.3 to connect the multiplicity of a module with Fulton’s kth degeneracy class. In
Section 2 we show how the multiplicity of the pair (J(f), I) appears naturally in
the work of Pellikaan and give two formulas for it. The first formula relates this
multiplicity to the number of D∞ and A1 points appearing in a deformation of f .
The second formula shows that the multiplicity of the pair (J(f), I), if defined,
is actually the length of I/J(f). This length is Pellikaan’s invariant j(f). Both
formulas are contained in Theorem 2.3 and its proof. These formulas are used to
give a new formula for the Lê number of dimension 0 (Proposition 2.4). (Cf. [24]
for details on the Lê numbers.)

In Section 3, we extend the results of Pellikaan for singular sets of dimension
1 to ICIS of dimension d, then use these results to prove extensions of the theorems
of section 2. The computation of the formula for the Lê number of dimension 0
uses Zaharia’s computation of the homology of the Milnor fiber. These formulae
suggest in general that the Lê number of dimension 0 is the sum of the invariant
which controls the Af condition, (which in turn is related the multiplicity of a
pair of ideals), and invariants of dimension 0 related to the other singularity types
in the singular set of f . Section 3 also shows that the condition that j(f) is
finite imposes strong restrictions on f – there must exist a set of generators of
I, {g1, . . . , gp} such that f =

∑
g2

i . This implies that every such function is the
composition of a function h with a Morse singularity at the origin and the map
G whose components are generators of I. In particular, all of the germs of type
D(d, p), with d > 1, studied by Pellikaan have j(f) = ∞, contrary to assertions
made in Remark 5.3 on page 52 of [27] and in Remark 5.4 on page 373 of [28].

In Section 4 we then use the multiplicity of the pair to give a necessary
and sufficient condition for the Af condition to hold for a family of functions fy

(Theorem 4.5). The proof of this result involves a new trick which is used to pass
information from strata in the singular set of f to the ambient geometry of f0. This
enables us to drop the hypothesis that the “natural” stratification of the singular
set of f satisfies Whitney A.

In the case that the singular locus of f0 is an ICIS of dimension 1, we use the
relation between our invariant and the Lê numbers, to show that a strong form of
the AF condition also implies that the Lê numbers are constant as well (Corollary
4.7). This is used to show that in this situation the strong form of the Af condition
implies the triviality of the Milnor fibrations (Corollary 4.8). In Example 4.9, by
modifying the example of Briancon-Speder we show that both the Af condition
and topological triviality of the family may hold, yet the Lê numbers may not be
constant. It remains open whether the strong form of the Af condition implies the
Lê number of dimension 0 is constant in general, or if the strong form of Af is
needed if the dimension of S(f) = 1.
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We then discuss the Wf condition for the situation of Theorem 4.5. Here
we show that the independence from parameter of a single invariant is all that is
required for a Wf -Whitney stratification of a family of functions, which implies the
topological triviality of the family (Theorem 4.10). This invariant is then related to
the relative polar multiplicities of the members of the family and the multiplicity
of the pair that is used to control the Af condition (Corollary 4.13). In turn, this
implies that the Af condition combined with the independence from parameter of
the relative polar multiplicities implies that we have a Wf -Whitney stratification
(Corollary 4.14).

The application of the multiplicity of the pair to equisingularity problems
grew out of a long series of conversations with Steven Kleiman; the author thanks
him for his encouragement. The author also thanks David Massey and James
Damon for helpful conversations, and the referee for his careful reading of the
paper, and helpful suggestions.

1. The multiplicity polar theorem

In this paper we work with complex analytic sets and maps. Let OX denote the
structure sheaf on a complex analytic space X . If a module M has finite colength
in Op

X,x, it is possible to attach a number to the module, its Buchsbaum-Rim
multiplicity ([3]). We can also define the multiplicity of a pair of modules M ⊂ N ,
M of finite colength in N , as well, even if N does not have finite colength in Op

X .
We recall how to construct these numbers following the approach of Kleiman and
Thorup ([20]). Given a submodule M of a free OX module F of rank p, we can
associate a subalgebraR(M) of the symmetric OX algebra on p generators. This is
known as the Rees algebra of M . If (m1, . . . ,mp) is an element of M then

∑
miTi is

the corresponding element of R(M). Then Projan(R(M)), the projective analytic
spectrum of R(M) is the closure of the projectivised row spaces of M at points
where the rank of a matrix of generators of M is maximal. Denote the projection
to X by c, or by cM where there is ambiguity. If M is a submodule of N or h is
a section of N , then h and M generate ideals on ProjanR(N); denote them by
ρ(h) and ρ(M). If we can express h in terms of a set of generators {ni} of N as∑

gini, then in the chart in which T1 �= 0, we can express a generator of ρ(h)
by

∑
giTi/T1. Having defined the ideal sheaf ρ(M), we blow up by it. On the

blowup Bρ(M)(ProjanR(N)) we have two tautological bundles, one the pullback
of the bundle on ProjanR(N), the other coming from ProjanR(M); denote the
corresponding Chern classes by lM and lN , and denote the exceptional divisor by
DM,N . Suppose the generic rank of N (and hence of M) is e. Then the multiplicity
of a pair of modules M,N is:

e(M,N) =
d+e−2∑

j=0

∫
DM,N · ld+e−2−j

M · ljN .
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The multiplicity of the pair is well defined as long as the set of points where N is
not integrally dependent on M is isolated ([20]). If the pair is M and Op

X , then this
condition implies that M = Op

X except at isolated points so M ⊂ Op
X is of finite

colength and the multiplicity of M is the multiplicity of the pair (M,Op
X). Later

in this section we will give a new geometric interpretation of this number based
on polar methods. If OXd,x is Cohen-Macauley, and M has d + p − 1 generators
then there is a useful relation between M and its ideal of maximal minors; the
multiplicity of M is the colength of M , is the colength of the ideal of maximal
minors, by some theorems of Buchsbaum and Rim [3], 2.4 p. 207, 4.3 and 4.5
p. 223. In Section 2 we will see a first generalization of this result to pairs of
modules. We next develop the notion of polar varieties which is the other term in
the multiplicity polar theorem. Assume we have a module M which is a submodule
of a free module on Xd, an equidimensional, analytic space, reduced off a nowhere
dense subset of X , and the generic rank of M is e on each component of X . The
hypothesis on the equidimensionality of X and on the rank of M ensures that
ProjanR(M) is equidimensional of dimension d + e − 1. Note that ProjanR(M)
can be embedded in X × Pr−1, provided we can chose a set of generators of M
with r elements.

The polar variety of codimension k of M in X denoted Γk(M) is constructed
by intersecting ProjanR(M) with X ×He+k−1 where He+k−1 is a general plane
of codimension e + k − 1, then projecting to X . This notion was developed by
Teissier in the case where M = JM(F ), X = F−1(0) ([31]). Think of H as the
projectivised row space of a linear submersion π. Then Γk(JM(F )) consists of the
set of points where the matrix formed from Dπ and DF has less than maximal
rank, hence greater than minimal kernel rank. These are the points where the
restriction to X of π is singular. In general, think of Γk(M) as the set of points
where the module whose matrix of generators consists of the matrix of generators
of M augmented by the rows of the linear submersion π, has less than maximal
rank n−k+1. When we consider M as part of a pair of modules M,N , where the
generic rank of M is the same as the generic rank of N , then other polar varieties
become interesting as well. In brief, we can intersect Bρ(M)(ProjanR(N)) ⊂ X ×
PN−1×Pp−1 with a mixture of hyperplanes from the two projective spaces which
are factors of the space in which the blowup is embedded. We can then push these
intersections down to ProjanR(N) or X as is convenient, getting mixed polar
varieties in ProjanR(N) or in X . These mixed varieties play an important role in
the proof of the multiplicity-polar theorem, the theorem we next describe.

Setup: We suppose we have families of modules M ⊂ N , M and N submod-
ules of a free module F of rank p on an equidimensional family of spaces with
equidimensional fibers X d+k, X a family over a smooth base Y k. We assume that
the generic rank of M , N is e ≤ p. Let P (M) denote ProjanR(M), πM the projec-
tion to X . let C(M) denote the locus of points where M is not free, i.e., the points
where the rank of M is less than e, C(ProjanR(M)) its inverse image under πM ,
C(M) the cosupport of ρ(M) in P (ProjanR(N)).
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We will be interested in computing the change in the multiplicity of the pair
(M,N), denoted ∆(e(M,N)). We will assume that the integral closures of M
and N agree off a set C of dimension k which is finite over Y , and assume we are
working on a sufficiently small neighborhood of the origin, that every component of
C contains the origin in its closure. Then e(M,N, y) is the sum of the multiplicities
of the pair at all points in the fiber of C over y, and ∆(e(M,N)) is the change
in this number from 0 to a generic value of y. If we have a set S which is finite
over Y , then we can project S to Y , and the degree of the branched cover at 0
is multyS. (Of course, this is just the number of points in the fiber of S over our
generic y.) We can now state our theorem.

Theorem 1.1. Suppose in the above setup we have that M = N off a set C of
dimension k which is finite over Y . Suppose further that C(ProjanR(M))(0) =
C(ProjanR(M(0))) except possibly at the points which project to 0 ∈ X (0). Then,
for y a generic point of Y ,

∆(e(M,N)) = multyΓd(M)−multyΓd(N).

Proof. The proof in the ideal case appears in [11]; the general proof will appear
in [12]. �

Now we describe an application of the result to the simple case where N is
free. The following geometric interpretation of the multiplicity of an ideal is well
known. Given an ideal I of finite colength in OX,x, Xd equidimensional, choose d
elements (f1, . . . , fd) of I which generate a reduction of I. (Recall that if M is a
submodule of N , then M is reduction of N if they have the same integral closure.)
Then the multiplicity of I is the degree at x of F where F is the branched cover
defined by the map-germ with components (f1, . . . , fd), or the number of points in
a fiber of F over a regular value close to 0. We wish to give a similar interpretation
of the multiplicity of a module.

Theorem 1.2. Given M a submodule of Op
X,x, Xd equidimensional, choose d+p−1

elements which generate a reduction K of M . Denote the matrix whose columns are
the d + p− 1 elements by [K]; [K] induces a section of Hom (Cd+p−1,Cp) which
is a trivial bundle over X. Stratify Hom (Cd+p−1,Cp) by rank. Let [ε] denote a
p×(d+p−1) matrix, whose entries are small, generic constants. Then, on a suitable
neighborhood U of x the section of Hom (Cd+p−1,Cp) induced from [K] + [ε] has
at most kernel rank 1, is transverse to the rank stratification, and the number of
points where the kernel rank is 1 is e(M).

Proof. The first step is to explain by construction what we mean by “generic con-
stants”. Consider the family of maps Ga from Xd, parametrised by Cp(d+p−1) to
Hom (Cd+p−1,Cp) defined by Ga(x) = G(x, a) = [K(x)] + [A], where [A] is the
p×(d+p−1) matrix whose entries are coordinates ai,j on Cp(d+p−1). Let X̃ be a res-
olution of X , so we have an induced family of maps G̃ on X̃. Since the map G̃(x, a)
is a submersion, it follows that for a Z-open subset V of Cp(d+p−1), that for a ∈ V ,
the map G̃a is transverse to the rank stratification. We claim that the points of V
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are the generic constants in the theorem. Note that the points of Hom (Cd+p−1,Cp)
of kernel rank 1 have codimension 1 · ((d + p − 1) − (p − 1)) = d; so since G̃a is
transverse it can only hit points of the rank stratification of kernel rank 1, and
only if DG̃a has maximal rank at such points which implies X is smooth at the
projection of such points. Let K̃ be the submodule of Op

X×Cp(d+p−1) defined by the
matrix [K(x)] + [A]. Now apply the multiplicity-polar theorem to X ×Cp(d+p−1),
thought of as a family parametrised by Cp(d+p−1), and (K̃,Op

X×Cp(d+p−1)). Use
a point of V as the generic parameter value ε. Then Op

X×Cp(d+p−1) has no polar,
because it is free, K̃ has no polar, because K̃ is generated by d + p− 1 elements.
Choose U a neighborhood of x×Cp(d+p−1) sufficiently small such that every com-
ponent of the cosupport of K̃ which meets U has (x, 0) in its closure. Now at ε

the cosupport of K̃ε is just the points where [K] + [ε] has less than maximal rank.
At such points e(K̃ε) is 1, because since we are at a smooth point of X , the local
ring of X is Cohen-Macaulay, so e(K̃ε) is just the colength, which is 1. Hence
e(M) = e(K) = e(K̃0) = e(K̃ε), which is the number of points where the kernel
rank of [K] + [ε] is 1. �
Remark 1.3. In [5] p. 254 Fulton describes the kth degeneracy class associated to σ
a homomorphism of vector bundles over Xd. The support of the class is the set of
points where the rank of σ is less than or equal to k. Suppose σ : E → F where the
rank of E is e and the rank of F is f , e ≥ f , e−f+1 = d. Then the f−1 degeneracy
class is supported at isolated points. Fulton shows that if X is Cohen-Macaulay at
x, the contribution to the class at x is the colength of the ideal of maximal minors
of the matrix of σ at x for some suitable local trivializations of E and F . Note
that this is just the Buchsbaum-Rim multiplicity of the module generated by the
columns of the matrix associated to σ. Theorem 1.2 shows that in this situation
if X is pure dimensional, the contribution to the degeneracy locus is always the
Buchsbaum-Rim multiplicity associated to σ at x, the Cohen-Macaulay hypothesis
is unnecessary. (Just use the proof of 1.2 to construct a rational equivalence to go
back to Fulton’s case close to x.)

2. Hypersurface singularities with 1-dimensional singular locus

In his thesis ([27]) Pellikaan studied non-isolated hypersurface singularities. This
is the setup for his work. He assumed that f : Cn+1 → C, f had a 1-dimensional
singular locus Σ, which is a complete intersection curve defined by an ideal I. He
assumed that f ∈ I2. This ensured that J(f), the jacobian ideal of f was in I as
well. (In fact for the singular locus a complete intersection Pellikaan proved that
if f and its partials were in I then f was in I2.) One of the key invariants of f was

j(f) = dimC
I

J(f)

which plays the same role in Pellikaan’s work as the dimension of On+1
J(f) does in the

case of isolated singularities. Two important examples of non-isolated singularities
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are germs of type A∞ which have the normal form f(z1, . . . , zn+1) =
n∑

i=1

z2
i and

germs of type D∞ which have normal form f(z1, . . . , zn+1) = z1z
2
2 +

n+1∑
i=3

z2
i . Note

that if n=2 then D∞ is just a Whitney umbrella. For A∞ germs j(f) = 0 while
for D∞ germs j(f) = 1. Using these building blocks, Pellikaan was able to give a
nice geometric description of j(f).

Theorem 2.1. Suppose f is as above and j(f) finite. Then f has a deformation F
such that Fy has Σy as singular locus for generic y where Σy is the Milnor fiber
of Σ, with only A1 singularities off Σy and only A∞ singularities at points of Σy,
except for isolated D∞ points. Moreover

j(f) = #{D∞(Fy)} + #{A1(Fy)}.

Proof. Cf. [27] p. 87 Proposition 7.20. �

In applying the theory of integral closure to ambient stratification conditions
like Af or Wf in Pellikaan’s situation, we see that there are three strata – the
open stratum, Σ−0 and the origin. So, there are two pairs of ideals (I,On+1) and
(J(f), I) that we are interested in. We wish to give a geometric interpretation of
(J(f), I) using Pellikaan’s theorem and the multiplicity-polar theorem. First we
look at our building block germs.

Proposition 2.2. If f is a germ of type A∞, then e(I, J(f)) = 0, if f is a germ of
type D∞, then e(I, J(f)) = 1.

Proof. If f is a germ of type A∞, then I = J(f), so e(J(f), I) = 0. So suppose f is
a germ of type D∞. We may assume f is in normal form, as changes of coordinates
do not affect the multiplicity of the pair. We have to compute a sum of intersection
numbers:

e(J(f), I) =
n∑

j=0

∫
DJ(f),I · ln−j

J(f) · l
j
I .

Consider the part of the sum of form:
n∑

j=1

∫
DJ(f),I · ln−j

J(f) · l
j
I =

n−1∑
j=0

∫
(DJ(f),I · lI) · ln−1−j

J(f) · ljI .

This is e(J(f), I) where both ideals are restricted to the codimension 1 polar
variety of I. Consider the family of candidate polar varieties defined by z2 =
n+1∑
i=3

aizi. Since this a Z-open subset of all potential polar varieties, if we show that

for a Z-open subset of them that the multiplicity of the pair of the restriction of
the ideals to each candidate in the set is zero then we will have shown that all
of terms in this second sum are zero and all these candidates are actually polars.
Now it is obvious from the normal form of f that when we restrict our two ideals
to any element of this set the two ideals become equal so all of the terms in the
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second sum are zero. It remains to compute
∫
DJ(f),I · lnJ(f). Our approach is

to choose a Z-open set of candidate polar curves of J(f), then show that each
candidate gives the same value for the computation of the desired intersection
number. Consider the family of curves defined by ideals Ja,b,c = (b1(z1z2)+ c1z

2
2 +

n+1∑
i=3

a1,izi, . . . , bn(z1z2)+ cnz
2
2 +

n+1∑
i=3

an,izi). For a Z-open set of coefficients, we can

re-write the ideals defining these curves as

Ja,b,c = (z1z2 + cz2
2 , . . . , zi + biz1z2, . . . )

where 3 ≤ i ≤ n + 1, c �= 0. Each curve in this family has two components; one
of which (given by z2 = 0) lies in V (J(f)). The other component is the candidate
polar curve. So we get the family of parmeterizations φ(t) = (−ct, t, . . . , bict

2, . . . )
for the candidate polar curves. Now the intersection number we want is just the
multiplicity of the pair restricted to a polar curve; by the additivity of the mul-
tiplicity ([20]) this is just e(J(f)) − e(I) restricted to the polar curve; given a
parameterization this is just the order of vanishing of φ∗(J(f)) less the order of
vanishing of φ∗(I). Now φ∗(J(f)) = (t2) and φ∗(I) = (t) for all parameterizations,
so the value of this intersection number is 2− 1 = 1, so e(J(f), I) = 1. �

For our basic building block germs we have seen that j(f) = e(J(f), I). The
next theorem shows that this is true in general. If F depends on coordinates (y, z),
let Jz(F ) denote the ideal generated by the partials of F with respect to z.

Theorem 2.3. Suppose f : Cn+1 → C, f has a 1-dimensional singular locus Σ,
which is a complete intersection curve defined by an ideal I, f ∈ I2 and j(f) finite.
Then

j(f) = dimC
I

J(f)
= e(J(f), I).

Proof. Let F be the deformation of Theorem 2.1. Denote the parameter space by
Y k. The singular set of F is given by a complete intersection Ĩ. We are interested
in the family of pairs of ideals given by (Jz(F ), Ĩ) as these restrict to (J(f), I) at
y = 0. Since Ĩ defines a complete intersection it has no polar variety of dimension
k. Since Jz(F ) is generated by n + 1 generators it has no polar of dimension k
either. This means that the multiplicity of the pair at the origin is same as the
sum of the multiplicities over a generic parameter value by the multiplicity-polar
formula. Pick a generic y. We have (Jz(F ))y = J(Fy), so the cosupport of (Jz(F ))y

consists of A1 points off Σy, isolated D∞ points on Σy and A∞ points. Off Σy,
(Ĩ)y = On+1, so off Σy, at A1 points, e(J(Fy), Ĩy) = e(J(Fy),On+1) = 1 and
0 elsewhere off Σy. On Σy, e(J(Fy), Ĩy) = 1 at D∞ points, otherwise it is 0 by
proposition 2.2. So the sum of the e(J(Fy), Ĩy), z) at points where it is non-zero is
just #{D∞(Fy)}+ #{A1(Fy)}.

Then, by the multiplicity-polar formula we know that

e(J(f), I) = #{D∞(Fy)}+ #{A1(Fy)}
which proves the theorem. �
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If R is Cohen-Macaulay of dimension d, M a submodule of a rank p free
module F of finite colength, then by a theorem of Buchsbaum and Rim ([3]),
e(M,F ), which is e(M), is just the colength of M if M has d + p− 1 generators.
Theorem 3 can be viewed as a first step in generalizing this result to pairs of
modules.

Using some other results of Pellikaan, we can link e(J(f), I) and the Lê
numbers introduced by Massey. In the situation of Theorem 2.3 there are two Lê
numbers – λ0(f) and λ1(f); denote the number of D∞ points of f by δ(f).

Proposition 2.4. Assume the hypotheses of Theorem 2.3, then

λ0(f) = e(J(f), I) + e(JM(Σ)) + δ(f)

Proof. If F is the Milnor fiber of f , we have that

χ(F ) = 1 + (−1)n−1λ1(f) + (−1)nλ0(f) = 1 + (−1)n(j(f) + δf + µ(Σ)− 1).

The first equality is due to Massey ([24]), while the second is due to Pellikaan
([27], p113, proposition 10.11). In the present situation, since the transverse Milnor
number is 1, λ1(f) = mult (Σ), while e(JM(Σ)) = µ(Σ)+mult (Σ)−1. Therefore,
substituting and cancelling we get

λ0(f) = e(J(f), I) + e(JM(Σ)) + δ(f). �
Now we turn to the extension of these ideas to hypersurface singularities with

a higher-dimensional singular locus.

3. Hypersurface singularities with d-dimensional singular locus

In this section we assume that I = (g1, . . . , gp) ⊂ On defines a complete in-
tersection of dimension d > 1, and S(f) = V (I), hence we can write f as
f =

∑p
i,j hi,jgigj, where hi,j = hj,i, for some hi,j . Let [H ] denote the symmetric

matrix with entries hi,j . We will want to study those germs f for which j(f) <∞.
Basic examples of such germs are those of type A(d). For these germs up to a
change of coordinates, I = (z1, . . . , zn−d), f =

∑n−d
i=1 z2

i , zi part of a coordinate
system on Cn. It turns out that the condition that j(f) < ∞ is much more re-
strictive than in the case where dimension of V (I) = 1. Pellikaan already showed
that j(f) < ∞ implies I defines an ICIS. The next proposition gives a further
restriction.

Proposition 3.1. Suppose f , I as above, then if [H ] has less than maximal rank at
the origin, the set of points on V (I) where the singularity type is not A(d) is of
codimension 1 in V (I) , hence j(f) is not finite.

Proof. If f has an A(d) singularity at x ∈ V (I) then V (I) is smooth at x and the
matrix [H(x)] must have rank n−d. But the points where det[H ] = 0 defines a non-
empty hypersurface in V (I), since det[H(0)] = 0 and the dimension of V (I) > 1.
Hence, at these points f does not have an A(d) singularity. Since at these points
I �= J(f), it follows that j(f) = ∞. �
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There are two types of Lê cycles; those which are the images in Cn of com-
ponents of the exceptional divisor of the Jacobian blow up, called fixed cycles, and
the polar varieties of the fixed cycles called moving cycles.

Corollary 3.2. Suppose f , I, [H ] as above. Then V (I) contains a fixed Lê cycle of
dimension d− 1.

Proof. We can deform f so that the D∞ points are dense in the zero set of det[H ] =
0. These points are clearly the image of a component of the exceptional divisor by
Proposition 2.4, and by the properties of the Lê numbers. Then when we specialize,
the component of E will specialize as well. �

In [27] and in [28] Pellikaan defines the singularities of type D(d, p); here d
is the dimension of S(f), while p is the dimension of the kernel rank of [H ] at the
point in question. Then f : Cn, x→ C, 0 has type D(d, p) at x if local coordinates
can be chosen so that f has the local form

f = z2
1 + · · ·+ z2

q +
∑

1≤i≤j≤p

xi,jyiyj

where z, x, y are part of a coordinate system on Cn at x, n − d = q + p. From
3.1 it follows that if f has singularity type D(d, p) at the origin, and d > 1, then,
since det[H(0)] = 0, it follows that j(f) = ∞, contrary to remark 5.3 of [27] and
Remark 5.4 of [28]. This shows that j(f) fails to be finite in what seems to be the
next most simple case to the A(d) singularities when d > 1. Instead, the structure
of S(f) seems more like a discriminant, in that the non-generic points appear in
codimension 1.

In the next lemma we begin to look at those germs where [H ] has maximal
rank, so we can characterize those germs where j(f) <∞.

Lemma 3.3. Suppose f =
∑p

i,j hi,jgigj, det[H(0)] �= 0, I = (g1, . . . , gp) ⊂ On.
Then one can chose a set of generators (g′1, . . . , g′p) of I such that f =

∑p
i (g

′
i)

2.

Proof. The proof is standard, so we just sketch the details. Given an invertible
matrix [R] with entries in On, it is clear that if

[g] = [R][g′],

where [g] is the column vector whose entries are the gi, [g′] another column vector,
that the entries of [g′] are also a set of generators of I. Given

[f ] = [g]t[H ][g] and [g] = [R][g′]

it follows that
[f ] = [g′]t([R]t[H ][R])[g′].

Hence, we need to show that by choice of [R] we can reduce [H ] to the identity
matrix. This is done in two steps – first we can chose [R] ∈ Gl(p,C) so that we can
assume [H(0)] = I. (This follows because the action of Gl(p,C) clearly preserves
rank, the orbits of Gl(p,C) are connected constructible sets, and the orbits of non-
singular matrices are open, by a tangent space calculation.) For the second step we
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assume [H(0)] = I, consider the linear homotopy from I to [H ]; this stays inside
the set of invertible symmetric matrices. The congruence transformation gives
an action of the group C of invertible p × p matrices with entries in On on the
p× p symmetric matrices. Applying the techniques of Mather-Damon produces a
homotopy in C which trivializes our linear homotopy, which finishes the proof. �

Lemma 3.3 also appears as a remark without proof in [32] (see page 87).
Given a set of generators {g1, . . . , gp} for an ideal, we can form the function G
whose components are the gi. If {g1, . . . , gp} define an ICIS, then the map G is
said to be of finite singularity type.

Corollary 3.4. Suppose f =
∑p

i,j hi,jgigj, det[H(0)] �= 0, I = (g1, . . . , gp) ⊂ On,
{zi} coordinates on Cp then generators (g′1, . . . , g′p) of I can be chosen so that

f =
p∑

i=1

z2
i ◦G′

Proof. By Lemma 3.3 we have there exists generators (g′1, . . . , g′p) of I such that

f =
p∑

i=1

(g′i)
2 =

p∑
i=1

z2
i ◦G′. �

Thus the study of functions with j(f) < ∞ is intimately tied up with the
study of functions on the discriminant of a map germ of finite singularity type as
we shall see below. We wish to describe a condition which will ensure that the
pullback by G of a function on Cp with a Morse singularity at the origin gives a
function on Cn with j(f) <∞ for the ideal defined by the components of G. This
completes our geometric description of the meaning of j(f) finite. Our condition is
based on the intersection of the levels of the Morse function in the target with the
discriminant, ∆(G), of G. At this point we assume that I defines an ICIS. This
implies that if G comes from a minimal set of generators of I, then G|S(G) is a
finite map.

We can partition S(G) by the Si(G) which denotes points of S(G) where
the kernel rank of G is i. We can also partition ∆(G) as follows. For each point
z of ∆(G), list the points Sz of S(G) mapped to z. The points z and z′ are in
the same element of the partition if there is a bijection between Sz and Sz′ which
which preserves components of the Si(G). It is easy to see that the elements of
this partition are constructible sets since G|S(G) is finite. Given an element of the
partition of ∆(G), we now associate a collection of systems of linear sub spaces
of TCp over the underlying set P of the partition element. Since G has constant
rank on each Si(G), D(G)|Si(G)∩G−1(P )(TCn|Si(G) ∩ G−1(P )) is a well-defined
sub bundle of G∗TCp over Si(G) ∩ G−1(P ). Since the restriction of G to each
component of G−1(P ) is a homeomorphism or finite cover, the push forward by
G of these sub bundles gives the desired collection of systems of linear spaces.
We call the partition of ∆(G) together with the collection of linear spaces on
each element of the partition an enriched partition. A smooth subset V of Cp is
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enriched transverse to the enriched partition if at every point of intersection with
the elements of the partition the tangent space of V is transverse to each of the
linear spaces we have associated to the element of the partition at that point. Since
the restriction of G to each component of G−1(P ) is a homeomorphism or finite
cover, all of the linear spaces at a smooth point in a partition element contain the
tangent space to the partition element. So if V is transverse to each element of
the partition it is enriched transverse. The next proposition describes a situation
in which transversality and enriched transversality are equivalent.

Proposition 3.5. Suppose there exists an element P of the partition which is a
Z-open subset of ∆(G) whose pre-images lie in the Z-open subset Sn−p+1(G) on
which G is immersive. Then all of the systems of linear spaces associated to P are
just the tangent bundle to P .

Proof. Suppose y ∈ P , z a preimage in Sn−p+1(G). Since G restricted to Sn−p+1(G)
is immersive at z, the dimension of DG(TSn−p+1(G)) is p− 1 which is the dimen-
sion of D(G)(z)TCn, so these spaces are equal; further DG(TSn−p+1(G)) is the
tangent space to ∆(G) at y, which is the tangent space to P at y. �

Now we give our condition for j(f) finite.

Theorem 3.6. Suppose I = (g1, . . . , gp) ⊂ On defines an ICIS of dimension d > 1,
G the mapgerm whose components are the gi, h : Cp, 0→ C, 0 a function with an
isolated singularity at the origin, f = h ◦G. Then

j(f,G∗(J(h))On) := dimC
G∗(J(h))On

J(f)
<∞

if and only if h−1(0) is enriched transverse to the enriched partition of ∆(G) except
possibly at the origin.

Proof. Suppose j(f,G∗(J(h))On) finite. Then, except possibly at the origin,
J(f) = G∗(J(h))On. If the enriched transversality condition fails, there must be
a curve φ : C→ ∆G, such that the image of φ lies in an element of the partition,
and the tangent space to h−1(0) contains one of the systems of linear spaces along
the partition element. This implies that contained system is in the kernel of Dh
along φ. Then φ has a lift to the component of Si(G) associated to the contained
system, denoted ψ. Along the image of ψ we have

Df ◦ ψ(TCn) = Dh ◦ (G ◦ ψ)DG ◦ ψ(TCn) = 0

Hence V (J(f)) ⊃ imψ, while V (G∗(J(h))On) = V (I) which is a contradiction.
Suppose enriched transversality holds. If j(f,G∗(J(h))On) is not finite, there exists
a curve ψ whose image properly contains the origin in Cn, such that J(f) �=
G∗(J(h))On along ψ. At points of Cn off S(G), G is a submersion, hence J(f) =
G∗(J(h))On. If ψ lies in S(G), then the image of ψ lies in S(f) since G∗(J(h))On =
On at such points. Then ψ lies in the zero set of F , hence G ◦ ψ lies in the zero
set of h. Then enriched transversality fails along G ◦ ψ. �



Multiplicity of Pairs 155

Corollary 3.7. Suppose h has a Morse singularity at the origin in the set-up of
Theorem 3.6, then j(f) is finite if and only if h−1(0) is enriched transverse to the
enriched partition of ∆(G) except possibly at the origin.

Proof. If h has a Morse singularity, then G∗(J(h))On = I. �

Corollary 3.8. Suppose I = (g1, g2) in the setup of Theorem 3.6.
Then j(f,G∗(J(h))On) is finite iff f−1(0) ∩ S(G) is the origin.

Proof. If p = 2, then ∆(G) is a curve, and G restricted to each branch of S(G) is
an immersion except at the origin. Then enriched transversality becomes ordinary
transversality, so h−1(0) must miss ∆(G) off the origin, so f−1(0) ∩ S(G) is the
origin. �

Theorem 3.6 introduces an interesting class of functions. Given an ICIS,
by using appropriate h we can construct examples of non-isolated singularities in
which the singular locus is the ICIS, but the transverse singularity type is constant
and is that of h. In studying the equisingularity of families of such examples, the
key invariant is the multiplicity of the pair J(f), G∗(J(h))On. This number should
also be linked to the way h−1(0) meets the discriminant of G at the origin.

Now we show that such functions with j(f) finite are plentiful.

Proposition 3.9. Suppose G : Cn, 0 → Cp, 0, G−1(0) an ICIS, p > 1. Then if
ha(x) =

∑
aix

2
i , for a ∈ U , U a Z-open subset of Cp, h−1(0) is transverse to the

enriched partition of ∆(G) except perhaps at the origin.

Proof. Consider H(a, z) =
∑

aix
2
i ◦G(z). We have

DH =
〈
. . . , x2

i ◦G, . . . , 2aixi ◦G, . . .
〉

This implies that H is a submersion except along Cp ×G−1(0). Denote by π the
projection of H−1(0) to Cp. By Sard’s lemma for varieties (Prop. 3.7 p. 42 [25])
there exists a Z-open subset U ⊂ Cp such that π is smooth at z ∈ H−1(0) ∩
π−1(U)/Cp×G−1(0). This implies that the fiber of π, which is the fiber of ha ◦G
over 0 is smooth at z; in addition since π maps Tz(H−1(0)) = kerDHz surjectively
to Cp, the kerDHz does not contain Cn, thus ha ◦G is a submersion at z as well,
hence ha is enriched transverse to the enriched partition of ∆(G), except perhaps
at the origin. �

Now that we know that it is worth proving results about functions with j(f)
finite for V (I) an ICIS of dimension > 1, we prove the analogue of 2.3. To do this
we first study a special deformation of f =

∑p
1 z

2
i . We call the following pair of

deformations a smoothing of f .

F (u, b, z) =
∑

i

(1 +
∑

j

bi,jzj)(gi − ui)2

G̃(u, z) = (g1(z)− u1, . . . , gp(z)− up)

This is called a smoothing because of the following lemma:
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Lemma 3.10. For a Z-open subset U of Cp ×Cpn, fu,b has only A1 singularities
off G−1(u), G−1(u) is smooth and fu,b has only A(d) singularities on G−1(u).

Proof. let V ⊂ Cp be the complement of ∆(G) in Cp, then G−1(u) is smooth for
u ∈ V .

We claim DzF (u, b, z) is a submersion off Cpn×Γ(G), where Γ(G) ⊂ Cn×Cp

denotes the graph of G. Let ei, where 1 ≤ i ≤ n denote the unit vectors in Cn.
Then we have

∂Dz(F )
∂bi,j

= (gi − ui)2ej.

This implies DzF (u, b, z) has maximal rank when some gi − ui is not zero which
proves the claim. Now consider DzF (u, b, z)−1(0). The claim shows this is smooth
off Cpn×Γ(G). As in the proof of 3.9 we consider the projection of this set to Cp×
Cpn, let W be the Z-open subset of the base over which π is smooth off Cpn×Γ(G).
Now the tangent space to DzF (u, b, z)−1(0) at a point x is just the kernel at x of
D(DzF (u, b, z)), which has dimension p+pn and which surjects to Cp×Cpn. Hence
D2

zF (u, b, z) has maximal rank, so fu,b has only Morse singularities off G = u. Let
U = W ∩Cpn × V , then for (u, b) ∈ U , we have gu has a smooth fiber over zero.
Since the set of points where the matrix H with entries hi,i =

∑
j 1+bi,jzj, hi,j = 0

i �= j has maximal rank on some Z-open subset of Cpn ×Cn ×Cp which contains
zero, we can ensure that each of the fu,b has only A(d) singularities on some fixed
neighborhood of the origin in Cn on gu = 0. �

Remark 3.11. It was pointed out to the author by the referee that this lemma also
follows from the statement and proof of Theorem 1 of [4]

Now we extend Theorem 2.3 to ICIS of dimension greater than 1.

Theorem 3.12. Suppose f : Cn+1 → C, f has a d-dimensional singular locus Σ,
d > 1, which is an ICIS defined by an ideal I, f ∈ I2 and j(f) finite. Then

j(f) = dimC
I

J(f)
= e(J(f), I) = #A1(f).

where #A1(f) is the number of A1 singularities appearing in a smoothing of f .

Proof. The proof is similar to that of 2.3. By [27] Theorem 3.1 p. 145 the quotient
of the ideals (g1(z) − u1, . . . , gp(z) − up)/Jz(F ) is perfect, where F is part of a
smoothing of f , hence the length of the quotients (gu)/J(fu,b) is independent of
parameter, and for generic parameter value is just #A1(f). Meanwhile, Jz(F ) and
(g1(z) − u1, . . . , gp(z) − up) have no polar varieties of dimension p + p(n + 1), so
as in Theorem 2.3, the multiplicity polar theorem implies that e(J(fu,b, (gu)) is
independent of parameter, so again is #A1(f), hence the theorem follows. �

Now we wish to extend Proposition 2.4 to ICIS of dimension greater than 1.
In [32], Prop 5.5.5, p. 86, (cf. also [26]), Zaharia computed the homology of

the Milnor fiber, f̂ , of a function germ f defined on Cn+1 whose singular set Σ
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was an ICIS of codimension p such that j(f) <∞. His result was:

H∗(f̂) =

⎧⎨⎩Z, if ∗ = 0, p− 1
ZµΣ+σ if ∗ = n
0, otherwise

Here σ is the number of A1 points appearing in a smoothing, which we have shown
is j(f).

Proposition 3.13. Assume the hypotheses of Theorem 3.11, then

λ0(f) = e(J(f), I) + e(JM(Σ))

Proof. By Massey ([24]) we have that

χ(f̂) = 1 +
d∑

i=0

(−1)n−iλi(f) = 1 + (−1)nλ0(f) +
d∑

i=1

(−1)n−iλi(f)

Now, for i > 0, since Σ is the only fixed Lê cycle of dimension greater than 0, and
f has transverse Milnor number 1, since the type of f is A(d) generically on Σ,

λi(f) = md−i(Σ),

where md−i(Σ) is the d − i polar multiplicity of the ICIS Σ. In turn, md−i(Σ) =
µd−i(Σ) + µd−i−i(Σ) ([9]) where µd−i(Σ) is the Milnor number of Σ ∩ Hi where
Hi is a generic plane of codimension i, and where µ−1 = 1. Substituting, the sum
telescopes to:

χ(f̂) = 1 + (−1)nλ0(f) + (−1)n−d + (−1)n−1µd−1(Σ).

Calculating χ(f̂) from the homology calculation of [32] we get:

1 + (−1)nλ0(f) + (−1)n−d + (−1)n−1µd−1(Σ) = 1 + (−1)n−d + (−1)n(µΣ + σ),

Hence
λ0(f) = σ + µΣ + µ(Σ ∩H1) = e(J(f), I) + e(JM(Σ)). �

Remark 3.14. There are two other general calculations of the homology of the
Milnor fiber in [32] (Theorem 5.5.4 and Proposition 5.5.6). (Note, however the
typo in the formula of 5.5.4 – the coefficients of µ∆ and µΣ should be exchanged.)

Using these calculations, it is possible to prove by the same methods as
3.12, two other formulas for λ0(f). In the first case, assume V (I) = Σ is an
ICIS of dimension 2, write [f ] = [g]t[H ][g] as we did earlier, let H denote the
ideal generated by I2 and the entries of [H ][g], assume dimC H/J(f) is finite,
V (det[H ]) ∩ Σ = ∆, where ∆ is an ICIS of dimension 1. We can consider the
smoothing used by Zaharia to study this situation, and the ideal H extends to
H̃ in a natural way, to the space of the smoothing. Then the polar of H̃ may
be non-empty if the kernel rank of [H ] is > 2. Call the multiplicity of the polar
of H̃ over the base m(Γ(H̃)). Then the multiplicity polar theorem applied to the
smoothing gives e(J(f), H) + m(Γ(H̃)) = #(A1(f)) and hence,

λ0(f) = e(J(f), H) + m(Γ(H̃)) + e(JM(Σ)) + 2e(JM(∆)).
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In the second case, assume V (I) has dimension d > 1, assume the rank of [H(0)]
is p−1 (one less than maximal). Then, as Zaharia remarks ([32] p. 87), generators
(g1, . . . , gp) for I can be found so that f = det([H ])g2

1 + g2
2 + · · · + g2

p. Then the
ideal H of the last paragraph is just (det([H ])g1, g

2
1 , g2, . . . , gp). Since H has only

p + 1 generators as does H̃ the polar of H̃ is empty and

λ0(f) = e(J(f), H) + e(JM(Σ)) + 2e(JM(∆)).

The form of these formulae makes it likely that they are special cases of a more
general theorem. It has long been known that in cases like those considered here,
that the independence from parameter of the Lê numbers implies that the families
Σ(t) and ∆(t) are Whitney equisingular. (See, for example, [13] Prop 4.6, for
the case where I = J(f), and use the fact that the components of the exceptional
divisor of the blowup of Cn+1 by J(f) which project to Σ and ∆ are the conormals
of Σ and ∆.) Thus, a relation between the Lê numbers and the invariants used
to control the Whitney equisingularity of Σ and ∆ is not unexpected. That the
formulae relate λ0 so simply to the zero dimensional invariants of the strata and
to the Af invariant is surprising.

Now we develop some results which shows how well e(J(f), I) is linked to
the Af and Wf conditions.

4. Conditions Af and Wf

In this section, we’ll study Thom’s Condition Af , and Henry, Merle and Sabbah’s
Condition Wf , which concern limiting tangent hyperplanes at a singular point of
a complex analytic space. First we recall the notions of integral dependence and
strict dependence. Let (X, 0) be the germ of a complex analytic space, and E := Op

X

a free module of rank p at least 1. Let M be a coherent submodule of E , and h a
section of E . Given a map of germs ϕ (C, 0)→ (X, 0), denote by h ◦ϕ the induced
section of the pullback ϕ∗E , or Op

C, and by M ◦ ϕ the induced submodule. Call h
integrally dependent (resp., strictly dependent) on M at 0 if, for every ϕ, the section
h ◦ ϕ of ϕ∗E is a section of M ◦ ϕ (resp., of m1(M ◦ ϕ), where m1 is the maximal
ideal of 0 in C). The submodule of E generated by all such h will be denoted by M ,
resp., by M † . In the context of hypersurface singularities, given a family of map-
germs F (y, z) parametrised by Y = Ck, where F : Ck ×Cn+1,Ck × 0, 0→ C, 0, 0
Thom’s Af condition holds for the pair (Ck×Cn+1−S(F ),Ck×0) at y ∈ Y if and
only if every limit of tangent hyperplanes to the fibers of F on Ck ×Cn+1−S(F )
contains TY at y. The condition holds for the pair if it holds for the pair at every
y. Although this condition looks like it says nothing about strata other than the
open stratum, this can be deceiving, as we shall see.

Proposition 4.1. Suppose F : Ck × Cn+1,Ck × 0, 0 → C, 0, 0 then the following
are equivalent:

1) The AF condition holds for the pair (Ck ×Cn+1 − S(F ),Ck × 0) at 0.
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2) The fiber over 0 of the exceptional divisor E of the blowup of Ck ×Cn+1 by
J(F ), denoted BJ(F )(Ck ×Cn+1) is contained in C(Y ), the conormal of Y .

3) ∂F
∂yi

∈ J(F )† for 1 ≤ i ≤ k.

4) ∂F
∂yi

∈ Jz(F )† for 1 ≤ i ≤ k.

Proof. The fiber over 0 of the exceptional divisor E of BJ(F )(Ck×Cn+1) is exactly
the set of limiting tangent hyperplanes at 0 to the fibers of F on Ck×Cn+1−S(F );
saying that this fiber lies in the conormal of Y just says that each limit contains
the tangent space to Y at 0. This shows 1) and 2) are equivalent. The equivalences
of 1) and 3) and 4) can be found in [14]. �

The WF condition holds for the pair (Ck×Cn+1−S(F ),Ck×0) at 0 if there
exist a (Euclidean) neighborhood U of 0 in Ck×Cn+1 and a constant C > 0 such
that, for all y in U ∩ Y and all x in U ∩ (Ck ×Cn+1 − S(F )), we have

dist
(
TyY (F (y)), Tx(Ck ×Cn+1)(F (x)

)
≤ C dist(x, Y )

where TyY (F (y)) and Tx(Ck×Cn+1)(F (x)) are the tangent spaces to the indicated
fibers of F and the restriction F |Y .

Proposition 4.2. Suppose F : Ck × Cn+1,Ck × 0, 0 → C, 0, 0 then the following
are equivalent:

1) The WF condition holds for the pair (Ck ×Cn+1 − S(F ),Ck × 0) at 0.
2) ∂F

∂yi
∈mY J(F ) for 1 ≤ i ≤ k.

3) ∂F
∂yi

∈mY Jz(F ) for 1 ≤ i ≤ k.

Proof. This follows from Proposition 1.1 of [15] �
Now we want to look at the connection between the multiplicity of the pair,

e(J(f), I), and the AF condition. At this point we no longer assume that I defines
a curve singularity. We do need two simple lemmas first.

Lemma 4.3. Suppose I is an ideal generated by d elements in an equidimensional
local ring R of dimension n such that R/I has dimension n− d. Suppose J ⊂ I is
a reduction of I. Then J = I.

Proof. The proof is by induction on d. Assume d = 1, denote the generator of I
by p1. Let J = (f1p1, . . . , fkp1). If some fi is a unit, then we are done. Suppose no
fi is, and denote the ideal they generate by F . If p1 satisfies a relation of integral
dependence, then we get

(p1)k +
k−1∑
i=0

gip
i
1 = 0

where gi ∈ Jk−i. Then gi ∈ F k−i(pk−i), so the equation of integral dependence
implies that there exists a unit u such that u · pk = 0 which is a contradiction.
Assume I is generated by d elements; work on R′ = R/(p1), then applying the
induction hypothesis to the homomorphic images of J and I in R′ we have that
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these images are equal, hence pi = gi + rip1 where gi ∈ J . Notice that {p1, p2 −
r2p1, p3, . . . , pd} is a set of generators for I. Now mod out by p2 − r2p1 = gi, and
again apply the induction hypothesis. This shows that {p1, p3, . . . , pd} are in J
hence I is in J since the missing generator of I is already in J . �

Note that it in the above proof it is not necessary for I to be radical.
We say that f : Cn+1, x → C, 0 has singularity of type A(d) at x, if local

coordinates (z1, . . . , zd, w1, . . . , wr) can be found such that

f(z, w) = w2
1 + · · ·+ w2

r .

If f has singularity of type A(d) at x then S(f) = V (w1, . . . , wr) = J(f) so
j(f) = 0. There is a partial converse.

Lemma 4.4. Suppose f : Cn+1, 0→ C, 0. Suppose I defines a complete intersection
Σd at 0 with reduced structure, and suppose j(f) = 0. Then f has a singularity of
type A(d) at 0.

Proof. If d = 0 the hypothesis implies that J(f) = mn+1, and the result is implied
by the Morse lemma. Suppose d > 0, then Theorem 5.14 p. 59 of [27] implies that
Σ is an ICIS, and f is A(d) except perhaps at 0. Further, the formula of 5.14
implies that the Tjurina number of Σ is 0, hence Σ is smooth at the origin. Then
proposition 3.13 p. 35 of [27], the formula cited above, and remark 5.3 on p. 52
imply that f is A(d) at the origin as well. �

Now we are ready to prove our result about Af .

Theorem 4.5. Suppose F : Ck × Cn+1,Ck × 0, 0 → C, 0, 0, suppose the singular
set of F , S(F ) is V (I) where I defines a family of complete intersections with
isolated singularities of fiber dimension d, and every component of V (I) contains
Y = Ck × 0. Suppose further that J(F ) = I off Y . Then:

1) If the pair (Ck × Cn+1 − S(F ),Ck × 0) satisfies the AF condition then
e(J(fy), Iy, (y, 0)) is independent of y.

2) If e(J(fy), Iy , (y, 0)) is independent of y, then {Ck × Cn+1 − S(F ), V (I) −
Y, Y } is an AF stratification on some neighborhood of Y .

Proof. To start the proof of 1), assume the AF condition; this implies that ∂F
∂yi

∈
Jz(F )† for 1 ≤ i ≤ k, by Proposition 3.1. Now

e(J(F )(y), I(y), (y, z)) = e(Jz(F )(y), I(y), (y, z)) = e(J(fy), I(y), (y, z))

for all (y,z) in some neighborhood of (0, 0). Since J(F ) = I off Y , this implies
e(J(fy), I(y), (y, z)) = 0 off Y . Since Γk(I) = Γk(Jz(F )) = ∅, by the multiplicity-
polar theorem,

e(J(f0), I(0), (0, 0)) = e(J(fy), I(y), (y, 0))
for all y. Now we prove 2). By hypothesis we have I = J(F ) off Y . So by Lemma 3.4
off of Y we have that V (I) is smooth and F has only A(k+d) singularities. So the
pair {Ck×Cn+1−S(F ), V (I)−Y } has the AF property. Since e(J(fy), Iy , (y, 0))
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is independent of y, and I and Jz(F ) have no polars of dimension k, it then follows
from the multiplicity-polar theorem that e(J(fy), Iy, (y, z)) = 0, for z �= 0. This
implies that J(fy) = Iy. By Lemma 3.3, J(fy) = Iy. In turn this implies by Lemma
3.5 that V (Iy) is smooth off the origin and f has an A(d) singularity at points of
V (Iy) off the origin. Now we have that Jz(F ) ⊂ I and at a point (y, z) of Σ off Y ,

dimC J(fy, z)/(J(fy, z) ∩m2
z) = n + 1− d ≤ dimJz(F )/(Jz(F ) ∩m2

(y,z))

≤ dim I/(I ∩m2
(y,z)) = n + 1− d

Hence Jz(F ) = I at points of Σ off Y . Using what we have learned about F above,
we can describe the components of the exceptional divisor E of (BJz(F )(Ck ×
Cn+1), π); we do this in order to get ready to apply 2) of 3.1, which will finish
the proof. Let Σi be the ith component of Σ; then there exists a component Vi

of E which surjects to Σi. Suppose V is a component of E such that π(V ) is not
contained in Y . Let x be a point off Y in π(V ). Then there is a neighborhood U
of x in Ck ×Cn+1 such that on U , J(F ) = Jz(F ) = I, and only one component
of Σ intersects U . Hence over U the corresponding blowups are isomorphic; in
particular there is only one component of each exceptional divisor which projects
to Σ ∩ U . So the Vi are the only components of E whose image does not lie in Y .
Suppose W is a component of E whose image lies in Y . Then Wn+k ⊂ Y k ×Pn,
hence W = Y k × Pn if W exists. We have shown that every component of E
projects to a set which contains Y in its closure. (This uses the fact that every
Σi contains Y in its closure.) Since AF is true generically, there exists a Z-open
set U which contains a Z-open subset of Y , and on U we have ∂F

∂yi
∈ Jz(F )† for

1 ≤ i ≤ k. This implies that if we pull back Jz(F ) and J(F ) to the normalization
of BJz(F )(Ck ×Cn+1), then along every component of the exceptional divisor EN

which meets π−1
N (U) in a Z-open set, that π∗

N (J(F )) = π∗
N (Jz(F ). But this is

true for all components of EN , since every component of E of BJz(F )(Ck ×Cn+1)
projects to a set which contains Y in its closure. This implies that Jz(F ) = J(F )
at all points of Y ([23]). The last equality implies that EJ , the exceptional divisor
of BJ(F )(Ck×Cn+1), is finite over E. The components of EJ which are in π−1

N (Y ),
have dimension k + n and have fiber dimension n, which is the fiber dimension of
W , since they are finite over W . Hence they surject onto W , and hence Y . Since
AF holds generically, these components are in C(Y ), the conormal of Y , which
also has dimension n + k, hence they are equal to the conormal, so there is only
1 such component. Over each Vi as we have seen there is only one component of
EJ ; since AF holds between the open stratum and these components, a dimension
count shows that this unique component is C(Σi). The proof will be complete if
we can show that each component of Σ satisfies Whitney A over Y . (This is also
what it means for Af to hold for the pair (Σ, Y ).)

Claim: For every i, C(Σi) ∩ π−1
N (Y ∩ U) is dense in C(Σi) ∩ π−1

N (Y ).

Since C(Σi)∩ π−1
N (Y ∩U) lies in C(Y ) this will finish the proof by 2) of 3.1.

By Lemma 5.7 p230 of [16], we know that each component of C(Σi)∩ π−1
N (Y ) has
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dimension n+ k− 1, that is, must be a hypersurface in C(Σi). (This uses the fact
that I defines a complete intersection.) If the claim fails there must be a component
for some i of C(Σi) ∩ π−1

N (Y ) which does not surject onto Y . Since EN |Y is finite
over E|Y ⊂ Y ×Pn, this component must map to a subset of Y of dimension k−1,
and must have constant fiber dimension n. Let C be the fiber of the bad component
over 0. Consider BJ(F )(0)(0 ×Cn+1). This must contain C as a component of its
exceptional divisor, as C is a subset of BJ(F )(Ck × Cn+1) ∩ 0 × Cn+1 × Pn+k,
and its dimension is too small to be a component of the intersection. Construct a
polar variety of J(F ) of dimension k + 1. This is a family of curves over Y ; the
fiber over 0 contains a curve which is the projection of the intersection of the plane
defining the polar with BJ(F )(0)(0 × Cn+1) forced by the existence of C. Let Γ
be the component of our polar which contains this curve. We choose the plane of
codimension n of Pn+k so that it misses the points of C∩C(Y ). On some sufficiently
small metric neighborhood of the origin in Γ, then we know that Γ intersects Y only
at (0, 0). Restrict I and J(F ) to Γ. Now we apply the multiplicity-polar theorem
again. J(F ) has no polar, because it is integrally dependent on Jz(F ) which has no
polar. Over a generic y value, the only points where J(F ) has support are on Σ−Y
hence e(J(F )(y), Iy) = 0 at such points. We claim that the multiplicity of the pair
(J(F )(0), I0) on Γ(0) at (0, 0) is not zero. This number has an alternate meaning.
It is part of the intersection number

∫
DJ(F )(0),I(0) · lnJ(F )(0), which in turn is

part of e((J(F )(0), I0), (0, 0)) on Cn+1. We know that Bρ(J(F )(0))(ProjanR(I0)),
dominates both BI0(Cn+1) and BJ(F )(0)(Cn+1); corresponding to C there is a
component of the exceptional divisor of Bρ(J(F )(0))(ProjanR(I0)). The map to
BI0(C

n+1) cannot be finite on this component, because the component projects to
the origin in Cn+1, and the fiber dimension of the exceptional divisor of BI0(Cn+1)
over the origin must have dimension less than n − d < n, hence this component
over C makes a non-zero contribution to

∫
DJ(F )(0),I(0) ·lnJ(F )(0), so the multiplicity

of the pair (J(F )(0), I0) on Γ(0) at (0, 0) is not zero, so the multiplicity-polar
theorem gives a contradiction – the change in multiplicity from the special fiber
to the generic fiber is positive, but there is no polar variety of dimension k of
J(F ). So C does not exist, which implies Whitney A holds for (Σ− Y, Y ) and the
theorem is proved. �

Remark 4.6. The key point in the last proof, was the ability to take information
about the k + d dimensional strata of the total space, and relate it to the open
stratum of f0. This was possible because we had good control on the conormals of
the k + d dimensional strata.

The above proof shows that it is easy to show that a stratification condition
implies that the associated invariants are independent of parameter. To prove that
the independence from parameter implies the stratification condition requires in
general the principle of specialization of integral dependence developed in [12].

As we shall see in general (Remark 4.9) the AF condition does not imply
that the Lê numbers are independent of parameter. We can introduce a stronger
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notion of AF which does imply that the Lê numbers are constant if our ICIS is a
curve. In the situation of Theorem 4.5 we say the strong AF condition holds if the
AF condition holds, and for a generic linear function l the Al condition holds for
the pair V (I)− Y, Y .

From Theorem 4.5, and the formula for λ0 in Theorem 2.4, we can now show
that the strong AF condition implies that the Lê numbers are constant in the setup
originally considered by Pellikaan.

Corollary 4.7. Suppose F : Ck ×Cn+1,Ck × 0, 0 → C, 0, 0, suppose the singular
set of F , S(F ) is V (I) where I defines a family of complete intersection curves
with isolated singularities, and every component of V (I) contains Y = Ck × 0.
Suppose further that J(F ) = I off Y . Suppose the pair (Ck ×Cn+1 − S(F ),Ck ×
0) satisfies the AF condition, and the pair V (I) − Ck × 0,Ck × 0 satisfies the
Al condition for a generic linear function l, then the Lê numbers of fy at the
origin are independent of y.

Proof. Theorem 4.5 1) and Theorem 2.3 imply that j(fy) is constant along Y . The
condition that the singular set of F is V (I) implies that F is in I2 (p. 8, Prop 1.9
[27]), hence F =

∑
i,j

hi,jgigj where {gi} are a set of generators of I, and hi,j = hj,i

([27], p. 54). Let ∆ be the determinant of the matrix with entries hi,j . Then the
number of D∞ points at (y, z) is just the colength of (∆y) in O(V (Iy), z) ([27], p.
81 Lemma 7.17). This number is just the local degree at (y, z) of the map with
components (∆, p) where p is projection to the parameter space Y on V (I). Thus if
δ(fy) varies along Y it must be upper semicontinuous, and if the value for generic
y is less than the value over y = 0, there must be other points in the fiber over y
where δ(fy) is non-zero. However as the proof of Theorem 3.5 2) shows off Y fy

has only A∞ singularities on V (Iy). Hence, δ(fy) is constant along Y .
Since the pair V (I) −Ck × 0,Ck × 0 satisfies the Al condition for a generic

linear function l, by Theorem 5.8 p. 232 of [16] the Milnor numbers of V (Iy) and
V (I(y))∩V (l) are constant. Since l is generic, the sum of these Milnor numbers is
just e(JM(Σy), which is then independent of y. The result for λ0 now follows from
the formula for λ0 in Proposition 2.4. Since the Milnor number of V (I(y)) ∩ V (l)
is just the multiplicity of Σy, less 1, the multiplicity of V (Iy) is independent of
Y . Since the transverse Milnor number is always 1, and the multiplicity of V (Iy)
constant, it follows that λ1 is independent of Y as well. �

Corollary 4.8. Suppose F : Ck×Cn+1,Ck×0, 0→ C, 0, 0, suppose the singular set
of F , S(F ) is V (I) where I defines a family of complete intersection curves with
isolated singularities, and every component of V (I) contains Y = Ck×0. Suppose
further that J(F ) = I off Y . Suppose the pairs (Ck × Cn+1 − S(F ),Ck × 0),
V (I)−Ck × 0,Ck × 0 satisfy the strong AF condition at (0, 0) then

1) The homology of the Milnor fibre of of fy at the origin is independent of y
for all y small. If n ≥ 3
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2) The fibre homotopy-type of the Milnor fibrations of fy at the origin is inde-
pendent of y for all y small. If n ≥ 4

3) The diffeomorphism-type of the Milnor fibrations of fy at the origin is inde-
pendent of y for all y small.

Proof. Since the strong AF condition holds, Corollary 4.7 implies that the Lê num-
bers are constant, then Theorem 9.4 of [24] p. 90 gives the result. (Although Massey
states his theorem for the case where the dimension of the parameter stratum is
1, it also applies to the case at hand.) �

This raises the interesting question of whether a strong AF stratification or
an AF stratification implies the triviality (in the sense of the last corollary) of the
Milnor fibrations. The formulae in Proposition 3.12 and Remark 3.13 show that a
strong AF stratification implies that λ0(ft) is independent of t in these cases.

As the next example shows, in the AF case, this problem cannot be tackled
by hoping that the existence of an AF stratification implies that the Lê numbers
are constant.

Remark 4.9. This example shows that neither the Af condition nor topological
triviality imply that the Lê numbers are constant. Let

ft = z5 + ty6z + y7x + x15.

This family of functions was introduced by Briançon-Speder, ([2]) who showed that
µ3(ft) := µ(ft) = 364 for all t, while the Milnor number of a generic hyperplane
slice µ2(ft) is 28 when t = 0 and 26 otherwise. Historically, this example was
important, because it showed that the µ∗ constant condition was stronger than
topological triviality. Now consider Ft = f2

t + w2 where w is a disjoint variable.
Then

Jz(F ) =
〈
w, 2ft

∂ft

∂x
, 2ft

∂ft

∂y
, 2ft

∂ft

∂z

〉
.

So the singular locus of F is defined by 〈w, ft〉, hence is a family of complete
intersections with isolated singularities. A computation shows that:

e(J(Ft), (w, ft)) = j(Ft) = µ3(ft).

Now, the only Lê cycle of dimension 2 is V (w, ft), so

λ2(Ft) = m(Xt) = 5,

while
λ1(Ft) = m(Γ1

1(Xt, 0)) = µ2(ft) + µ1(ft).
Now by 3.12

λ0(Ft) = e(J(Ft), (w, ft)) + e(JM(V (w, ft))) = µ3(ft) + (µ2(ft) + µ3(ft)).

The first equality shows that the AF condition holds by Theorem 3.5. However
λ0(Ft) and λ1(Ft) vary with t. It is not hard to check by a vector field argument
that the family of functions Ft are topologically trivial; however this can be seen
directly by the following argument which was pointed out to me by J.N. Damon.
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We know that there exists a topological trivialization φ(z, t) : C4 → C3 of ft, by
[2], so ft(φ(z, t)) = f0(z) Then, we can define Φ(z, w, t) = (φ(z, t), w) : C5 → C4,
which gives a topological trivialization of Ft since

Ft(Φ(x,w, t)) = ft(φ(x, t)) + w2 = f0(x) + w2 = F0(x).

Now we turn to the Wf condition. It is a paradox, but because this condition
is stronger, it is easier to prove results about it.

Theorem 4.10. Suppose F : Ck ×Cn+1,Ck × 0, 0 → C, 0, 0, suppose the singular
set of F , S(F ) is V (I) where I defines a family of complete intersections with
isolated singularities of fiber dimension d, and every component of V (I) contains
Y = Ck × 0. Suppose further that J(F ) = I off Y . Then:

1) If the pair (Ck × Cn+1 − S(F ),Ck × 0) satisfies the WF condition then
e(mn+1J(fy), Iy , (y, 0)) is independent of y.

2) If e(mn+1J(fy), Iy, (y, 0)) is independent of y, then the pair (Ck × Cn+1 −
S(F ),Ck × 0) satisfies the WF condition, and {Ck ×Cn+1 − V (F ), V (F )−
V (I), V (I)− Y, Y } is a Whitney stratification on some neighborhood of Y .

Proof. 1) Suppose the pair (Ck×Cn+1−S(F ),Ck×0) satisfies the WF condition,
then by Theorem 2.1 p. 23 of [8], the dimension of the fiber of the exceptional
divisor over Y of BmY J(F )(Ck ×Cn+1) is independent of y and is n. This implies
that the polar of dimension k of mY J(F ) is empty; hence by the multiplicity polar
theorem e(mn+1J(fy), Iy , (y, 0)) is independent of y.

2) Suppose e(mn+1J(fy), Iy , (y, 0)) is independent of y. Off Y , mn+1J(fy) =
J(fy), so off Y by the same arguments found in the proof of 3.6, J(fy) = Iy, so
by the multiplicity polar theorem, Γk(mY J(F )) is empty, hence the dimension of
the fiber of the exceptional divisor over Y of BmY J(F )(Ck × Cn+1) is n, hence
is constant over Y . Then by Corollary 2.1, p. 19 of [8], the pair (Ck × Cn+1 −
S(F ),Ck × 0) satisfies the WF condition. This implies V (F ) − V (I) is Whitney
over Y . Since F is of type A∞ off Y it follows that V (F )− V (I) is Whitney over
V (I)− Y . It remains to show V (I)− Y is Whitney over Y . Suppose not; then for
each C and neighborhood U of the origin there exists a sequence of points xi ∈ U
on some component of V (I), converging to the origin, and hyperplanes Hi which
are tangent hyperplanes to V (I) at xi such that

dist (Y,Hi) > Cdist (x, Y ) .

From the proof of theorem 3.6, we have C(V (I)) ⊂ BJ(F )(Ck ×Cn+1). This
implies we can find points x̃i ∈ U ∩ (Ck × Cn+1 − S(F )) and hyperplanes H̃i

tangent to the fibers of F at xi, such that the distance between xi and x̃i, Hi and
H̃i is as small as desired. Then a similar inequality holds for x̃i and H̃i, hence
WF fails, which is a contradiction. �

Corollary 4.11. Suppose in the above setup e(mn+1J(fy), Iy , (y, 0)) is independent
of y, then the family of functions {fy} is topologically trivial.
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Proof. Since e(mn+1J(fy), Iy , (y, 0)) is independent of y, we have the pair (Ck ×
Cn+1−S(F ),Ck×0) satisfies the WF condition, and {Ck×Cn+1−V (F ), V (F )−
V (I), V (I) − Y, Y } is a Whitney stratification on some neighborhood of Y . Then
we can lift the constant fields over V (F ), to the ambient space in such a way that
the resulting fields can be integrated to give homeomorphisms. �

There is a nice geometric interpretation of the number e(mn+1J(fy)) which
we now describe. We denote the multiplicity of the relative polar variety of fy of
dimension i by mi(fy).

Theorem 4.12. Suppose f : Cn+1, 0 → C, 0, J any ideal in On+1 such that
dimC J/J(f) <∞, then

e(mn+1J(f), J) = e(J(f), J) + 1 +
n∑

i=1

(
n + 1
i

)
mi(fy).

Proof. This is exactly the content of the formula in Theorem 9.8 (i) p. 221 [20]. �

Corollary 4.13. Suppose f : Cn+1, 0 → C, 0, S(f) is V (I) where I defines a com-
plete intersection with isolated singularities of dimension d, and suppose further
that J(f) = I off Y . Then

e(mn+1J(f), I) = e(J(f), I) + 1 +
n∑

i=1

(
n + 1
i

)
mi(fy).

Proof. Follows immediately from Theorem 3.12 �

Corollary 4.14. Suppose F : Ck ×Cn+1,Ck, 0 → C, 0, 0, suppose the singular set
of F , S(F ) is V (I) where I defines a family of complete intersections with isolated
singularities of fiber dimension d, and every component of V (I) contains Y =
Ck × 0. Suppose further that J(F ) = I off Y . Then the following are equivalent:

1) e(J(fy), Iy) and the relative polar multiplicities of fy are independent of y.
2) AF holds for the pair (Ck × Cn+1 − V (I), Y ), and the relative polar multi-

plicities of fy are independent of y.
3) The pair (Ck ×Cn+1 − V (I),Ck × 0) satisfies the WF condition.

Proof. 1) and 2) are equivalent by Theorem 3.5, while 2 and 3 are equivalent by
Corollary 3.13 and Theorem 3.9. �
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Almost all applications of singularity theory are related to wave fronts and caustics:
they can be visualized and recognized in many physical models.

Suppose, for example, that a disturbance (such as a shock wave, light, an
epidemic or a flame) is propagating in a medium from a given submanifold (called
the initial wave front). To determine where the disturbance will be at time t,
according to the Huygens principle, we must lay a segment of length t along every
normal to the initial front. The resulting variety is called an equidistant or a wave
front.

Along with wave fronts, ray systems may also be used to describe propagation
of disturbances. For example, we can consider the family of all normals to the initial
front. This family has the envelope, which is called caustic – “burning” in Greek
– since the light concentrates at it. A caustic is clearly visible on the inner surface
of a cup put in the sunshine. A rainbow in the sky is the caustic of a system of
rays which have passed through drops of water with the total internal reflection.

Generic caustics in three-dimensional space have only standard singularities.
Besides regular surfaces, cuspidal edges and their generic (transversal) intersec-
tions, these are: the swallowtail, the ‘pyramid’ (or ‘elliptic umbilic’) and the ‘purse’
(or ‘hyperbolic umbilic’). They are a part of R.Thom’s famous list of simple catas-
trophes. It is not so difficult to see that the singularities of a propagating wave
front slide along the caustic and trace it out.

The study of singularities of wave fronts and caustics was the starting point
of the theory of Lagrangian and Legendrian mappings developed by V.I.Arnold
and his school some thirty years ago. Since then the significance of Lagrangian and
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Legendrian submanifolds of symplectic and respectively contact spaces has been
recognized throughout all mathematics, from algebraic geometry to differential
equations, optimization problems and physics.

Symplectic space is essentially the phase space (space of positions and mo-
menta) of classical mechanics, inheriting a rich set of important properties.

It turns out that caustics and wave fronts are the critical value loci of special
non-generic mappings either between manifolds of the same dimension or between
n- and (n + 1)-dimensional manifolds. The general definitions of such mappings
were introduced by V.I. Arnold in terms of projections of Lagrangian and Leg-
endrian submanifolds embedded into symplectic and contact spaces. These con-
structions describe many special classes of mappings, such as Gauss, gradient and
others.

A Lagrangian or Legendrian mapping is determined by a single family of
functions. This crucial feature makes the theory transparent and constructive.

In particular, stable wave fronts and caustics are discriminants and bifurca-
tion diagrams of function singularities. That is why their generic low-dimensional
singularities are governed by the famous Weyl groups.

Recently new areas in theory of integrable systems and mathematical physics
(for example, Frobenius structures, D-modules etc.) opened up new fields for ap-
plications of theory of Lagrangian and Legendrian singularities.

In these lecture notes, we do not touch the fascinating results in symplectic
and contact topology, a young branch of mathematics which answers questions on
global behavior of Lagrangian and Legendrian submanifolds. An interested reader
may be addressed to the book [4] and paper [5] forming a good introduction to that
area. Our lectures were designed as an introduction to the original local theory.
We hope that they will inspire the reader to do more extensive reading. Items
[1, 3, 2] on our bibliography list may be rather useful for this.

1. Symplectic and contact geometry

1.1. Symplectic geometry

A symplectic form ω on a manifold M is a closed 2-form, non-degenerate as a
skew-symmetric bilinear form on the tangent space at each point. So dω = 0 and
ωn is a volume form, dimM = 2n.
Manifold M equipped with a symplectic form is called symplectic. It is necessarily
even-dimensional.
If the form is exact, ω = dλ, the manifold M is called exact symplectic.

Examples

1. Let K = M = R2n = {q1, . . . , qn, p1, . . . , pn} be a vector space, and

λ = pdq =
n∑

i=1

pidqi , ω = dλ = dp ∧ dq .
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In these co-ordinates the form ω is constant. The corresponding bilinear form on
the tangent space at a point is given by the matrix

J =
(

0 −In

In 0

)
.

Notice: for any non-degenerate skew-symmetric bilinear form on a linear space,
there exists a basis (called Darboux basis) in which the form has this matrix.
2. M = T ∗N . Take for λ the Liouville form defined in an invariant (co-ordinate-
free) way as

λ(α) = π(α)
(
ρ∗(α)

)
,

where
α ∈ T (T ∗N) , π : T (T ∗N)→ T ∗N and ρ : T ∗N → N .

This is an exact symplectic manifold. If q1, . . . , qn are local co-ordinates on the
base N , the dual co-ordinates p1, . . . , pn are the coefficients of the decomposition
of a covector into a linear combination of the differentials dqi:

λ =
n∑

i=1

pidqi .

3. On a Kähler manifold M, the imaginary part of its Hermitian structure ω(α, β) =
Im(α, β) is a skew-symmetric 2-form which is closed.
4. Product of two symplectic manifolds. Given two symplectic manifolds (Mi, ωi),
i = 1, 2, their product M1×M2 equipped with the 2-form (π1)∗ω1−(π2)∗ω2, where
the πi are the projections to the corresponding factors, is a symplectic manifold.

A diffeomorphism ϕ : M1 → M2 which sends the symplectic structure ω2 on M2

to the symplectic structure ω1 on M1,

ϕ∗ω2 = ω1 ,

is called a symplectomorphism between (M1, ω1) and (M2, ω2). When the (Mi, ωi)
are the same, a symplectomorphism preserves the symplectic structure. In partic-
ular, it preserves the volume form ωn.

Symplectic group

For K = (R2n, dp ∧ dq) of our first example, the group Sp(2n) of linear symplec-
tomorphisms is isomorphic to the group of matrices S such that

S−1 = −JStJ .

Here t is for transpose. The characteristic polynomial of such an S is reciprocal: if
α is an eigenvalue, then α−1 also is. The Jordan structures for α and α−1 are the
same.
Introduce an auxiliary scalar product (·, ·) on K, with the matrix I2n in our Dar-
boux basis. Then

ω(a, b) = (a, J̃b) ,



172 V.V. Goryunov and V.M. Zakalyukin

where J̃ is the operator on K with the matrix J . Setting q = Re z and p = Im z
makes K a complex Hermitian space, with the multiplication by i =

√
−1 being

the application of J̃ . The Hermitian structure is

(a, b) + iω(a, b) .

From this,

Gl(n,C)
⋂

O(2n) = Gl(n,C)
⋂

Sp(2n) = O(2n)
⋂

Sp(2n) = U(n) .

Remark. The image of the unit sphere S2n−1
1 : q2 +p2 = 1 under a linear symplec-

tomorphism can belong to a cylinder q2
1 + p2

1 ≤ r only if r ≥ 1.
The non-linear analog of this result is rather non-trivial: S2n−1

1 ∈ T ∗Rn (in
the standard Euclidean structure) cannot be symplectically embedded into the
cylinder {q2

1 + p2
1 < 1}×T ∗Rn−1. This is Gromov’s theorem on symplectic camel.

Thus, for n > 1, symplectomorphisms form a thin subset in the set of diffeo-
morphisms preserving the volume ωn.

The dimension k of a linear subspace Lk ⊂ K and the rank r of the restriction of
the bilinear form ω on it are the complete set of Sp(2n)-invariants of L.

Define the skew-orthogonal complement L∠ of L as

L∠ = {v ∈ K|ω(v, u) = 0 ∀u ∈ L} .

So dimL∠ = 2n− k. The kernel subspace of the restriction of ω to L is L
⋂
L∠.

Its dimension is k − r.

A subspace is called isotropic if L ⊂ L∠ (hence dimL ≤ n).
Any line is isotropic.

A subspace is called co-isotropic if L∠ ⊂ L (hence dimL ≥ n).
Any hyperplane H is co-isotropic. The line H∠ is called the characteristic direction
on H .

A subspace is called Lagrangian if L∠ = L (hence dimL = n).

Lemma. Each Lagrangian subspace L ⊂ K has a regular projection to at least
one of the 2n co-ordinate Lagrangian planes (pI , qJ), along the complementary
Lagrangian plane (pJ , qI). Here I

⋃
J = {1, . . . , n} and I

⋂
J = ∅.

Proof. Let Lq be the intersection of L with the q-space and dimLq = k. Assume
k > 0, otherwise L projects regularly onto the p-space. The plane Lq has a regular
projection onto some qI -plane (along qJ) with |I| = k. If L does not project
regularly to the pJ -plane (along (q, pI)) then L contains a vector v ∈ (q, pI) with a
non-trivial pI -component. Due to this non-triviality, the intersection of the skew-
orthogonal complement v∠ with the q-space has a (k−1)-dimensional projection to
qI (along qJ) and so does not contain Lq. This contradicts to L being Lagrangian.

�



Lagrangian and Legendrian Singularities 173

A Lagrangian subspace L which projects regularly onto the q-plane is the graph of
a self-adjoint operator S from the q-space to the p-space with its matrix symmetric
in the Darboux basis.
Splitting K = L1

⊕
L2 with the summands Lagrangian is called a polarisation.

Any two polarisations are symplectomorphic.
The Lagrangian Grassmanian GrL(2n) is diffeomorphic to U(n)/O(n). Its funda-
mental group is Z.
The Grassmanian Grk(2n) of isotropic k-spaces is isomorphic to U(n)/(O(k) +
U(n− k)).
Even in a non-linear setting a symplectic structure has no local invariants (unlike
a Riemannian structure) according to the classical

Darboux Theorem. Any two symplectic manifolds of the same dimension are locally
symplectomorphic.

Proof. We use the homotopy method. Let ωt, t ∈ [0, 1], be a family of germs
of symplectic forms on a manifold coinciding at the distinguished point A. We
are looking for a family {gt} of diffeomorphisms such that g∗tωt = ω0 for all t.
Differentiate this by t:

Lvtωt = −γt

where γt = ∂ωt/∂t is a known closed 2-form and Lvt is the Lie derivative along
the vector field to find. Since Lv = ivd + div, we get

divtωt = −γt .

Choose a 1-form αt vanishing at A and such that dαt = −γt. Due to the non-
degeneracy of ωt, the equation ivtωt = ω(·, vt) = αt has a unique solution vt

vanishing at A.qed

Weinstein’s Theorem. A submanifold of a symplectic manifold is defined, up to a
symplectomorphism of its neighborhood, by the restriction of the symplectic form
to the tangent vectors to the ambient manifold at the points of the submanifold.

In a similar local setting, the inner geometry of a submanifold defines its
outer geometry:

Givental’s Theorem. A germ of a submanifold in a symplectic manifold is defined,
up to a symplectomorphism, by the restriction of the symplectic structure to the
tangent bundle of the submanifold.

Proof of Givental’s Theorem. It is sufficient to prove that if the restrictions of two
symplectic forms, ω0 and ω1, to the tangent bundle of a submanifold G ⊂ M at
point A coincide, then there exits a local diffeomorphism of M fixing G point-wise
and sending one form to the other. We may assume that the forms coincide on
TAM .

We again use the homotopy method, aiming to find a family of diffeomor-
phism-germs gt, t ∈ [0, 1], such that

gt|G = idG , g0 = idM , g∗t (ωt) = ω0 (∗) where ωt = ω0 + (ω1 − ω0)t .
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Differentiating (∗) by t, we again get

Lvt(ωt) = d(ivtωt) = ω0 − ω1

where vt is the vector field of the flow gt. Using the “relative Poincaré lemma”, it
is possible to find a 1-form α so that dα = ω0−ω1 and α vanishes on G. Then the
required vector field vt exists since ωt is non-degenerate. �

The Darboux theorem is a particular case of Givental’s theorem: take a point
as a submanifold.
If at each point x of a submanifold L of a symplectic manifold M the subspace
TxL is Lagrangian in the symplectic space TxM , then L is called Lagrangian.

Examples

1. In T ∗N , the following are Lagrangian submanifolds: the zero section of the
bundle, fibres of the bundle, graph of the differential of a function on N .
2. The graph of a symplectomorphism is a Lagrangian submanifold of the prod-
uct space (it has regular projections onto the factors). An arbitrary Lagrangian
submanifold of the product space defines a so-called Lagrangian relation.
3. Weinstein’s theorem implies that a tubular neighborhood of a Lagrangian sub-
manifold L in any symplectic space is symplectomorphic to a tubular neighborhood
of the zero section in T ∗N .

A fibration with Lagrangian fibres is called Lagrangian.
Locally all Lagrangian fibrations are symplectomorphic (the proof is similar

to that of the Darboux theorem).
A cotangent bundle is a Lagrangian fibration.

Let ψ : L → T ∗N be a Lagrangian embedding and ρ : T ∗N → N the fibration.
The product ρ ◦ ψ : L→ N is called a Lagrangian mapping. It critical values

ΣL = {q ∈ N |∃p : (p, q) ∈ L, rank d(ρ ◦ ψ) < n}
form the caustic of the Lagrangian mapping. The equivalence of Lagrangian map-
pings is that up to fibre-preserving symplectomorphisms of the ambient symplectic
space. Caustics of equivalent Lagrangian mappings are diffeomorphic.

Hamiltonian vector fields

Given a real function h : M → R on a symplectic manifold, define a Hamiltonian
vector field vh on M by the formula

ω(·, vh) = dh .

This field is tangent to the level hypersurfaces Hc = h−1(c):

∀a ∈ Hc dh(TaHc) = 0 =⇒ TaHc = v∠
h , but vh ∈ v∠

h .

The directions of vh on the level hypersurfaces Hc of h are the characteristic
directions of the tangent spaces of the hypersurfaces.
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Associating vh to h, we obtain a Lie algebra structure on the space of functions:

[vh, vf ] = v{h,f} where {h, f} = vh(f) ,

the latter being the Poisson bracket of the Hamiltonians h and f .

A Hamiltonian flow (even if h depends on time) consists of symplectomor-
phisms. Locally (or in R2n), any time-dependent family of symplectomorphisms
that starts from the identity is a phase flow of a time-dependent Hamiltonian.
However, for example, on a torus R2/Z2 (the quotient of the plane by an integer
lattice) the family of constant velocity displacements are symplectomorphisms but
they cannot be Hamiltonian since a Hamiltonian function on a torus must have
critical points.

Given a time-dependent Hamiltonian h̃ = h̃(t, p, q), consider the extended space
M × T ∗R with auxiliary co-ordinates (s, t) and the form pdq − sdt. An auxiliary
(extended) Hamiltonian ĥ = −s + h̃ determines a flow in the extended space
generated by the vector field

ṗ = −∂ĥ

∂q
q̇ = −∂ĥ

∂p

ṫ = −∂ĥ

∂s
= 1 ṡ =

∂ĥ

∂t
.

The restrictions of this flow to the t = const sections are essentially the flow
mappings of h̃.
The integral of the extended form over a closed chain in M ×{to} is preserved by
the ĥ-Hamiltonian flow. Hypersurfaces −s + h̃ = const are invariant. When h̃ is
autonomous, the form pdq is also a relative integral invariant.

A (transversal) intersection of a Lagrangian submanifold L ⊂ M with a Hamil-
tonian level set Hc = h−1(c) is an isotropic submanifold Lc. All Hamiltonian
trajectories emanating from Lc form a Lagrangian submanifold expH(Lc) ⊂ M .
The space ΞHc of the Hamiltonian trajectories on Hc inherits, at least locally, an
induced symplectic structure. The image of the projection of expH(Lc) to ΞHc is a
Lagrangian submanifold there. This is a particular case of a symplectic reduction
which will be discussed later.

Example. The set of all oriented straight lines in Rn
q is T ∗Sn−1 as a space of

characteristics of the Hamiltonian h = p2 on its level p2 = 1 in K = R2n.

1.2. Contact geometry

An odd-dimensional manifold M2n+1 equipped with a maximally non-integrable
distribution of hyperplanes (contact elements) in the tangent spaces of its points
is called a contact manifold.

The maximal non-integrability means that if locally the distribution is deter-
mined by zeros of a 1-form α on M then α∧(dα)n �= 0 (cf. the Frobenius condition
α ∧ dα = 0 of complete integrability).
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Examples

1. A projectivised cotangent bundle PT ∗Nn+1 with the projectivisation of the
Liouville form α = pdq. This is also called the space of contact elements on N .
The spherisation of PT ∗Nn+1 is a 2-fold covering of PT ∗Nn+1 and its points are
co-oriented contact elements.
2. The space J1N of 1-jets of functions on Nn. (Two functions have the same m-jet
at a point x if their Taylor polynomials of degree k at x coincide). The space of
all 1-jets at all points of N has local co-ordinates q ∈ N , p = df(q) which are the
partial derivatives of a function at q, and z = f(q). The contact form is pdq − dz.

Contactomorphisms are diffeomorphisms preserving the distribution of contact
elements.

Contact Darboux theorem. All equidimensional contact manifolds are locally con-
tactomorphic.

An analog of Givental’s theorem also holds.

Symplectisation

Let M̃2n+2 be the space of all linear forms vanishing on contact elements of M .
The space M̃2n+2 is a “line” bundle over M (fibres do not contain the zero forms).
Let

π̃ : M̃ →M

be the projection. On M̃ , the symplectic structure (which is homogeneous of degree
1 with respect to fibres) is the differential of the canonical 1-form α̃ on M̃ defined as

α̃(ξ) = p(π̃∗ξ) , ξ ∈ TpM̃ .

A contactomorphism F of M lifts to a symplectomorphism of M̃ :

F̃ (p) := (F ∗
F (x))

−1p .

This commutes with the multiplication by constants in the fibres and preserves α̃.
The symplectisation of contact vector fields (= infinitesimal contactomorphisms)
yields Hamiltonian vector fields with homogeneous (of degree 1) Hamiltonian func-
tions h(rx) = rh(x).
Assume the contact structure on M is defined by zeros of a fixed 1-form β. Then
M has a natural embedding x �→ βx into M̃ .
Using the local model J1Rn, β = pdq−dz, of a contact space we get the following
formulas for components of the contact vector field with a homogeneous Hamilton-
ian function K(x) = h(βx) (notice that K = β(X) where X is the corresponding
contact vector field):

ż = pKp −K, ṗ = −Kq − pKz, q̇ = Kp,

where the subscripts mean the partial derivations.
Various homogeneous analogs of symplectic properties hold in contact geometry
(the analogy is similar to that between affine and projective geometries).
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In particular, a hypersurface (transversal to the contact distribution) in a
contact space inherits a field of characteristics.

Contactisation

To an exact symplectic space M2n associate M̂ = R×M with an extra co-ordinate
z and take the 1-form α = λ− dz. This gives a contact space.
Here the vector field χ = − ∂

∂z satisfies iχα = 1 and iχdα = 0. Such a field is
called a Reeb vector field. Its direction is uniquely defined by a contact structure.
It is transversal to the contact distribution. Locally, projection along χ produces
a symplectic manifold.

A Legendrian submanifold L̂ of M2n+1 is an n-dimensional integral submanifold
of the contact distribution. This dimension is maximal possible for integral sub-
manifolds.

Examples

1. To a Lagrangian L ⊂ T ∗M associate L̂ ⊂ J1M :

L̂ = {(z, p, q) | z =
∫

pdq, (p, q) ∈ L} .

Here the integral is taken along a path on L joining a distinguished point on L

with the point (p, q). Such an L̂ is Legendrian.
2. The set of all covectors annihilating tangent spaces to a given submanifold (or
variety) W0 ⊂ N form a Legendrian submanifold (variety) in PT ∗N .

3. If the intersection I of a Legendrian submanifold L̂ with a hypersurface Γ in a
contact space is transversal, then I is transversal to the characteristic vector field
on Γ. The set of characteristics emanating from I form a Legendrian submanifold.

A Legendrian fibration of a contact space is a fibration with Legendrian fibres.
For example, PT ∗N → N and J1N → J0N are Legendrian. Any two Legendrian
fibrations of the same dimension are locally contactomorphic.

The projection of an embedded Legendrian submanifold L̂ to the base of a Legen-
drian fibration is called a Legendrian mapping. Its image is called the wave front
of L̂.

Examples

1. Embed a Legendrian submanifold L̂ into J1N . Its projection to J0N , wave front
W (L̂), is a graph of a multivalued action function

∫
pdq + c (again we integrate

along paths on the Lagrangian submanifold L = π1(L̂), where π1 : J1N → T ∗N
is the projection dropping the z co-ordinate). If q ∈ N is not in the caustic ΣL of
L, then over q the wave front W (L̂) is a collection of smooth sheets.

If at two distinct points (p′, q), (p′′, q) ∈ L with a non-caustical value q,
the values z of the action function are equal, then at (z, q) the wave front is a
transversal intersection of graphs of two regular functions on N .
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The images under the projection (z, q) �→ q of the singular and transversal
self-intersection loci of W (L̂) are respectively the caustic ΣL and so-called Maxwell
(conflict) set.

2. To a function f = f(q), q ∈ Rn, associate its Legendrian lifting L̂ = j1(f) (also
called the 1-jet extension of f) to J1Rn. Project L̂ along the fibres parallel to the
q-space of another Legendrian fibration

π∧
1 (z, p, q) �→ (z − pq, p)

of the same contact structure pdq − dz = −qdp − d(z − pq). The image π∧
1 (L̂)

is called the Legendre transform of the function f . It has singularities if f is not
convex.

This is an affine version of the projective duality (which is also related to Leg-
endrian mappings). The space PT ∗Pn (Pn is the projective space) is isomorphic
to the projectivised cotangent bundle PT ∗Pn∧ of the dual space Pn∧. Elements
of both are pairs consisting of a point and a hyperplane, containing the point.
The natural contact structures coincide. The set of all hyperplanes in Pn tangent
to a submanifold S ⊂ Pn is the front of the dual projection of the Legendrian
lifting of S.

Wave front propagation

Fix a submanifold W0 ⊂ N . It defines the (homogeneous) Lagrangian submanifold
L0 ⊂ T ∗N formed by all covectors annihilating tangent spaces to W0.

Consider now a Hamiltonian function h : T ∗N → R. Let I be the intersec-
tion of L0 with a fixed level hypersurface H = h−1(c). Consider the Lagrangian
submanifold L = expH(I) ⊂ H which consists of all the characteristics emanating
from I. It is invariant under the flow of H .

The intersections of the Legendrian lifting L̂ of L into J1N (z =
∫
pdq) with

co-ordinate hypersurfaces z = const project to Legendrian submanifolds (varieties)
L̂z ⊂ PT ∗N . In fact, the form pdq vanishes on each tangent vector to L̂z. In
general, the dimension of L̂z is n− 1.

The wave front of L̂ in J0N is called the big wave front. It is swept out by
the family of fronts Wz of the L̂z shifted to the corresponding levels of the z-co-
ordinate. Notice that, up to a constant, the value of z at a point over a point (p, q)
is equal to z =

∫
p∂h

∂pdt along a segment of the Hamiltonian trajectory going from
the initial I to (p, q).

When h is homogeneous of degree k with respect to p in each fibre, then zt = kct.
Let It ⊂ L be the image of I under the flow transformation gt for time t. The
projectivised It are Legendrian in PT ∗N . The family of their fronts in N is {Wkct}.
So the Wt are momentary wave fronts propagating from the initial W0. Their
singular loci sweep out the caustic ΣL.

The case of a time-depending Hamiltonian h = h(t, p, q) reduces to the above by
considering the extended phase space J1(N ×R), α = pdq − rdt− dz. The image
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of the initial Legendrian subvariety L̂0 ⊂ J1(N × {0}) under gt is a Legendrian
Lt ⊂ J1(N × {t}).
When z can be written locally as a regular function in q, t it satisfies the Hamilton-
Jacobi equation −∂z

∂t + h(t, ∂z
∂q , q) = 0.

2. Generating families

2.1. Lagrangian case

Consider a co-isotropic submanifold Cn+k ⊂ M2n. The skew-orthogonal comple-
ments T∠

c C, c ∈ C, of tangent spaces to C define an integrable distribution on C.
Indeed, take two regular functions whose common zero level set contains C. At
each point c ∈ C, the vectors of their Hamiltonian fields belong to T∠

c C. So the
corresponding flows commute. Trajectories of all such fields emanating from c ∈ C
form a smooth submanifold Ic integral for the distribution.

By Givental’s theorem, any co-isotropic submanifold is locally symplectomorphic
to a co-ordinate subspace pI = 0, I = {1, . . . , n− k}, in K = R2n. The fibres are
the sets qJ = const.

Proposition. Let Ln and Cn+k be respectively Lagrangian and co-isotropic subman-
ifolds of a symplectic manifold M2n. Assume L meets C transversally at a point a.
Then the intersection X0 = L

⋂
C is transversal to the isotropic fibres Ic near a.

The proof is immediate. If TaX0 contains a vector v ∈ TaIc, then v is skew-
orthogonal to TaL and also to TaC, that is to any vector in TaM . Hence v = 0.

Isotropic fibres define the fibration ξ : C → B over a certain manifold B of dimen-
sion 2k (defined at least locally). We can say that B is the manifold of isotropic
fibres.

It has a well-defined induced symplectic structure ωB. Given any two vectors
u, v tangent to B at a point b take their liftings, that is vectors ũ, ṽ tangent to C
at some point of ξ−1(b) such that their projections to B are u and v. The value
ω(ũ, ṽ) depends only on the vectors u, v. For any other choice of liftings the result
will be the same. This value is taken for the value of the two-form ωB on B.

Thus, the base B gets a symplectic structure which is called a symplectic
reduction of the co-isotropic submanifold C.

Example. Consider a Lagrangian section L of the (trivial) Lagrangian fibration
T ∗(Rk × Rn). The submanifold L is the graph of the differential of a function
f = f(x, q), x ∈ Rk, q ∈ Rn. The dual co-ordinates y, p are given on L by y = ∂f

∂x ,
p = ∂f

∂q . Therefore, the intersection L̃ of L with the co-isotropic subspace y = 0 is
given by the equations ∂f

∂x = 0. The intersection is transversal iff the rank of the
matrix of the derivatives of these equations, with respect to x and q, is k. If so,
the symplectic reduction of L̃ is a Lagrangian submanifold Lr in T ∗Rn (it may
not be a section of T ∗Rn → Rn).
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This example leads to the following definition of a generating function (the
idea is due to Hörmander).

Definition. A generating family of the Lagrangian mapping of a submanifold L ⊂
T ∗N is a function F : E → R defined on a vector bundle E over N such that

L =
{

(p, q) | ∃x :
∂F (x, q)

∂x
= 0, p =

∂F (x, q)
∂q

}
.

Here q ∈ N , and x is in the fibre over q. We also assume that the following Morse
condition is satisfied:

0 is a regular value of the mapping (x, q) �→ ∂F

∂x
.

The latter guarantees L being a smooth manifold.

Remark. The points of the intersection of L with the zero section of T ∗N are in
one-to-one correspondence with the critical points of the function F . In symplectic
topology, when interested in such points, it is desirable to avoid a possibility of
having no critical points at all (as it may happen on a non-compact manifold E).

Therefore, dealing with global generating families defining Lagrangian sub-
manifolds globally, generating families with good behavior at infinity should be
considered.

A generating family F is said to be quadratic at infinity (QI) if it coincides
with a fibre-wise quadratic non-degenerate form Q(x, q) outside a compact.

On the topological properties of such families and on their rôle in symplectic
topology see the papers by C.Viterbo, for example [5].

Existence and uniqueness (up to a certain equivalence relation) of QI gen-
erating families for Lagrangian submanifolds which are Hamiltonian isotopic to
the zero section in T ∗N of a compact N was proved by Viterbo, Laundeback and
Sikorav in the 80s:

Given any two QI generating families for L, there is a unique integer m and
a real � such that Hk(Fb, Fa) = Hk−m(Fb−�, Fa−�) for any pair of a < b. Here Fa

is the inverse image under F of the ray {t ≤ a}.
However, we shall need a local result which is older and easier.

Existence

Any germ L of a Lagrangian submanifold in T ∗Rn has a regular projection to
some (pJ , qI) co-ordinate space. In this case there exists a function f = f(pJ , qI)
(defined up to a constant) such that

L =
{

(p, q) | qJ = − ∂f

∂pJ
, pI =

∂f

∂qI

}
.

Then the family FJ = xqJ +f(x, qI), x ∈ R|J|, is generating for L. If |J | is minimal
possible, then HessxxFJ = HesspJpJ f vanishes at the distinguished point.
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Uniqueness

Two family-germs Fi(x, q), x ∈ Rk, q ∈ Rn, i = 1, 2, at the origin are called
R0-equivalent if there exists a diffeomorphism T : (x, q) �→ (X(x, q), q) (i.e., pre-
serving the fibration Rk ×Rn → Rn) such that F2 = F1 ◦ T .

The family Φ(x, y, q) = F (x, q)± y2
1 ± · · · ± y2

m is called a stabilisation of F .

Two family-germs are called stably R0-equivalent if they are R0-equivalent to
appropriate stabilisations of the same family (in a lower number of variables).

Lemma. Up to addition of a constant, any two generating families of the same
germ L of a Lagrangian submanifold are stably R0-equivalent.

Proof. Morse Lemma with parameters implies that any function-germ F (x, q)
(with zero value at the origin which is taken as the distinguished point) is stably
R0-equivalent to F̃ (y, q)± z2 where x = (y, z) and the matrix HessyyF̃|0 vanishes.
Clearly F̃ (y, q) is a generating family for L if we assume that F (x, q) is.

Since the matrix ∂2F̃ /∂y2 vanishes at the origin, the Morse condition for F̃

implies that there exists a subset J of indices such that the minor ∂2F̃ /∂y∂qJ is
not zero at the origin. Hence the mapping

Θ : (y, q) �→ (pJ , q) = (∂F̃ /∂qJ , q)

is a local diffeomorphism. The family G = F̃ ◦ Θ−1, G = G(pJ , q), is also a
generating family for L.

The variety ∂F̃/∂y = 0 in the domain of Θ is mapped to the Lagrangian
submanifold L in the (p, q)-space by setting p = ∂F̃/∂q and forgetting y. Therefore,
the variety X = {∂G/∂pJ = 0} in the (pJ , q)-space is the image of L under its
(regular) projection (p, q) �→ (pJ , q).

Compare now G and the standard generating family FJ defined above (with
pJ in the role of x). We may assume their values at the origin coinciding. Then the
difference G− FJ has vanishing 1-jet along X . Since X is a regular submanifold,
G− FJ is in the square of the ideal I generated by the equations of X , that is by
∂FJ/∂pJ .

The homotopy method applied to the family At = FJ + t(G−FJ ), 0 ≤ t ≤ 1,
shows that G and FJ are R0-equivalent. Indeed, it is clear that the homological
equation

−∂At

∂t
= FJ −G =

∂At

∂pJ
ṗJ

has a smooth solution ṗJ since FJ −G ∈ I2 while the ∂At/∂pJ generate I for any
fixed t. �

2.2. Legendrian case

Definition. A generating family of the Legendrian mapping π|L of a Legendrian
submanifold L ⊂ PT ∗(N) is a function F : E → R defined on a vector bundle E
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over N such that

L =
{

(p, q) | ∃x : F (x, q) = 0 ,
∂F (x, q)

∂x
= 0 , p =

∂F (x, q)
∂q

}
,

where q ∈ N and x is in the fibre over q, provided that the following Morse
condition is satisfied:

0 is a regular value of the mapping (x, q) �→ {F, ∂F
∂x
} .

Definition. Two function family-germs Fi(x, q), i = 1, 2, are called V -equivalent
if there exists a fibre-preserving diffeomorphism Θ : (x, q) �→ (X(x, q), q) and a
function Ψ(x, q) not vanishing at the distinguished point such that F2 ◦Θ = ΨF1.

Two function families are called stably V -equivalent if they are stabilisations of a
pair of V -equivalent functions (may be in a lower number of variables x).

Theorem. Any germ π|L of a Legendrian mapping has a generating family. All
generating families of a fixed germ are stably V -equivalent.

Proof. For an n-dimensional N , we use the local model π0 : J1N ′ → J0N ′, N ′ =
Rn−1, for the Legendrian fibration.

Consider the projection π1 : J1N ′ → T ∗N ′ restricted to L. Its image is
a Lagrangian germ L0 ⊂ T ∗N . If F (x, q) is a generating family for L0, then
F (x, q) − z considered as a family of functions in x with parameters (q, z) ∈
J0N ′ = N is a generating family for L and vice versa. Now the theorem follows
from the Lagrangian result and an obvious property: multiplication of a Legendrian
generating family by a function-germ not vanishing at the distinguished point
gives a generating family. After multiplication by an appropriate function Ψ, a
generating family (satisfying the regularity condition) takes the form F (x, q) − z
where (q, z) are local co-ordinates in N . �
Remarks

A symplectomorphism ϕ preserving the bundle structure of the standard La-
grangian fibration π : T ∗Rn → Rn, (q, p) �→ q has a very simple form

ϕ : (q, p) �→
(
Q(q), DQ−1∗(q)(p + df(q))

)
,

where DQ−1∗(q) is the dual of the derivative of the inverse mapping of the base
of the fibration, Q ◦ π = π ◦ ϕ, and f is a function on the base.
To see this, it is sufficient to write in the co-ordinates the equation ϕ∗λ− λ = df.

The above formula shows that fibres of any Lagrangian fibration possess a
well-defined affine structure.

Consequently, a contactomorphism ψ of the standard Legendrian fibration
PT ∗Rn → Rn acts by projective transformations in the fibres:

ψ : (q, p) �→ (Q(q), DQ−1∗(q)p) .

Hence, there is a well-defined projective structure on the fibres of any Legendrian
fibration.



Lagrangian and Legendrian Singularities 183

We also see that Lagrangian equivalences act on generating families as R-equiva-
lences (x, q) �→ (X(x, q), Q(q)) and additions of function in parameters q.
Legendrian equivalences act on Legendrian generating families just as R-equiva-
lences.
We see that the results of this section relate local singularities of caustics and wave
fronts to those of discriminants and bifurcation diagrams of families of functions
depending on parameters. In particular, this explains the famous results of Arnold
and Thom on the classification of stable singularities of low-dimensional wave
fronts by the discriminants of the Weyl groups.

The importance of the constructions introduced above for various applica-
tions is illustrated by the examples of the next section.

2.3. Examples of generating families

1. Consider a Hamiltonian h : T ∗Rn → R which is homogeneous of degree k with
respect to the impulses p: h(τp, q) = τkh(p, q), τ ∈ R.

An initial submanifold W0 ⊂ Rn (initial wave front) defines an exact isotropic
I ⊂ Hc = h−1(c). Assume I is a manifold transversal to vh. Put c = 1.

The exact Lagrangian flow-invariant submanifold L = exph(I) is a cylinder
over I with local co-ordinates α ∈ I and time t from a real segment (on which the
flow is defined).

Assume that in a domain U ⊂ T ∗Rn ×R the restriction to L of the phase
flow gt of vh is given by the mapping (α, t) �→ (Q(α, t), P (α, t)) with ∂P

∂α,t �= 0.
Then the following holds.

Proposition.

a) The family F = P (α, t)(q−Q(α, t)) + kt of functions in α, t with parameters
q ∈ Rn is a generating family of L in the domain U .

b) For any fixed t, the family F̃t = P (α, t)(q−Q(α, t)) is a Legendrian generating
family of the momentary wave front Wt.

The proof is an immediate verification of the Hörmander definition using the fact
that value of the form pdq on each vector tangent to gt(I) vanishes and on the
vector vh it is equal to p∂h

∂p = kh = k.

2. Let ϕ : T ∗Rn → T ∗Rn, (q, p) �→ (Q,P ) be a symplectomorphism close to the
identity. Thus the system of equations q′ = Q(q, p) is solvable for q. Write its
solution as q = q̃(q′, p).

Assume the Lagrangian mapping of a Lagrangian submanifold L has a gen-
erating family F (x, q). Then the following family G of functions in x, q, p with
parameters q′ is a generating family of ϕ(L):

G(x, p, q; q′) = F (x, q̃) + p(q̃ − q) + S(p, q′) .

Here S(q′, p) is the “generating function” in the sense of Hamiltonian mechanics
of the canonical transformation ϕ, that is

dS = PdQ− pdq .
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Notice that, if ϕ coincides with the identity mapping outside a compact, then G
is a quadratic form at infinity with respect to the variables (q, p).

The expression p(q̃ − q) + S(p, q′) from the formula above is the generating
family of the symplectomorphism ϕ.

3. Represent a symplectomorphism ϕ of T ∗Rn into itself homotopic to the identity
as a product of a sequence symplectomorphisms each of which is close to the
identity. Iterating the previous construction, we obtain a generating family of
ϕ(L) as a sum of the initial generating family with the generating families of
each of these transformations. The number of the variables becomes very large,
dim(x)+2mn, where m is the number of the iterations. Namely, consider a partition
of the time interval [0, T ] into m small segments [ti, ti+1], i = 0, . . . ,m − 1. Let
ϕ = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1 where ϕi : (Qi, Pi) �→ (Qi+1, Pi+1) is the flow map on
the interval [ti, ti+1]. Then the generating family is

G(x,Q, P, q) = F (x,Q0) +
m−1∑
i=0

(Pi(U(iQi+1, Pi)−Qi) + Si(Pi, Qi+1)) ,

where:
• Q = Q0, . . . , Qm−1, q = Qm, Qi ∈ Rn, q ∈ Rn,
• Si is a generating function of ϕi,
• Ui(Qi+1, Pi) are the solutions of the system of equations Qi+1 = Qi+1(Qi, P1)

defined by ϕi.

One can show that if ϕ is a flow map for time t = 1 of a Hamiltonian function
which is convex with respect to the impulses then the generating family G is
also convex with respect to the Pi and these variables can be removed by the
stabilisation procedure. This provides a generating family of ϕ(L) depending just
on x,Q, q which are usually taken from a compact domain. Therefore, the function
attains minimal and maximal values on the fibre over point q, this property being
important in applications.
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1. Introduction

In this note we show how to endow the base of a versal deformation of a composite
singularity with an F -manifold structure, as defined by Hertling and Manin in
[9], and in particular with a pointwise, integrable multiplication on the tangent
bundle. This is closely related to, but not a special case of, K. Saito’s construction
of a Frobenius manifold structure on the base-space of a versal deformation of a
function with isolated critical point.

Let us clarify the notion of versality we are concerned with. Consider a func-
tion f : (Y, y0) → C and a map-germ F : (X,x0) → (Y, y0). Deformations of F
give rise to some, but not all, of the possible deformations of the composite f◦F .
In this context, a deformation F of F is versal if, up to the usual notion of equiva-
lence, it contains all the deformations of f◦F which can be achieved by deforming
F . A precise definition is given below. For now, we point out that even when f◦F
has non-isolated singularity, F may have a finite-dimensional versal deformation
in the sense being considered. Exactly this is the case in Damon’s theory of almost
free divisors, [4].

The ideas of the previous paragraph are made precise by means of the action
on the space of map-germs (X,x0) → (Y, y0) of the subgroup Kf of the contact
group K. We give the definition at the start of Section 2. The Kf -equivalence of F1

and F2 equivalence implies (though it is not implied by) right-equivalence of the
composites f◦F1 and f◦F2. A Kf -miniversal deformation F : (X × S, (x0, 0)) →
(Y, y0) of F : (X,x0) → (Y, y0) can be constructed by the usual procedures of
singularity theory; loosely speaking, the tangent space T0S is isomorphic to the
quotient T 1

Kf
F of the space θ(F ) of infinitesimal deformations of F by the tangent

space to the Kf -orbit of F .
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If f : (Cn, 0) → C is a germ of function with isolated singularity, T 1f :=
OCn/Jf is naturally a ring, and it is this that Saito uses to define the multiplicative
structure on the tangent bundle of the base of a versal deformation of f . It turns
out (see Section 2) that T 1

Kf
F is equal to

θ(F )
tF (θX) + F ∗(Der(− log f))

and does not appear to carry a multiplicative structure. However, contraction with
F ∗(df) defines an OX -linear epimorphism

θ(F ) = F ∗(θY ) → F ∗(Jf )

which passes to the quotient to give a natural OX -linear epimorphism

T 1
Kf

F → F ∗(Jf )
Jf◦F

,

whose target does have a multiplicative structure. Once again, let F : (X ×
S, (x0, 0)) → (Y, y0) be a Kf -versal deformation of F . Write Fs(x) = F (x, s). A
multiplicative structure on TS is therefore defined at those points s ∈ S such that
for all x ∈ suppT 1

Kf
Fs, the epimorphism(

T 1
Kf

Fs

)
x
−→

(F ∗
s (Jf )
Jf◦Fs

)
x

(1)

is injective. From Proposition 3.3 (due to Jim Damon) it follows that under certain
rather weak conditions on the divisor E := f−1(0),

(∗)
there is a proper analytic subset B of S, such that for s ∈ S −B

suppT 1
Kf

Fs ∩ V (F ∗
s (Jf )) = ∅.

If s ∈ S−B, the image of (1) is all of OX,x/Jf◦Fs . Less obviously, if s ∈ S−B the
morphism of (1) is also injective (Lemma 4.3 of [6]). We will use (1) and the relative
Kodaira-Spencer map of the deformation to endow T (S − B) with a well-defined
multiplication with unit. In Section 3 we prove a transversality lemma which allows
us to show that for s in a certain non-empty open set in S, the critical points of
f◦Fs off F−1

s (E) are generically non-degenerate and that the critical values are
generically pairwise distinct.

To transfer the multiplicative structure to the tangent sheaf of the base, the
relative Kodaira-Spencer map

θS → π∗(T 1
Kf /SF )

must be an isomorphism, and in particular T 1
Kf /SF must be free over the base.

Section 4 recalls the arguments given in [5] and [6] to prove freeness in three
cases: where E := f−1(0) is a free divisor, and where dimX is equal to m0 :=
dimY − dimESing or to m0 − 1.

If dimX ≥ m0, the generic fibres Ds = F−1
s (E) will contain singularities;

they are only partial smoothings of D := F−1(E). The most extreme case is where
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E is a (singular) free divisor. In this case, Ds, like E, will be singular in codimension
1. Nevertheless, in all cases every fibre Ds has the homotopy type of a wedge of
spheres of middle dimension. This is because we have “triviality at the boundary”
(recall that under the assumption that suppT 1

Kf
= {0}, F is transverse to E away

from 0), and thus the vanishing homology of Ds is accounted for by the isolated
critical points which move off D as s moves away from 0 (cf [11]). The number
of spheres in this wedge for a generic parameter-value s is called by Damon the
“singular Milnor number” of D. We will denote it by µE(F ). In Section 3, we show,
following the argument of [5] Section 5, that if

(i) T 1
Kf /SF is free over OS , and

(ii) condition (∗) holds,
then µE(F ) = dimC T 1

Kf
F . Hence, in these favorable circumstances, our F -mani-

fold S −B supports a locally trivial holomorphic fibration whose fibre Ds has ho-
mology concentrated in middle dimension, where its rank is equal to the dimension
of S. We expect that using the Gauss-Manin connection on this fibration it will be
possible to go some way further towards endowing S with a Frobenius structure,
but here we do not attempt this.

The authors are grateful to the referee for a very careful reading of the man-
uscript and a number of helpful comments.

2. Background and notation

Throughout this paper, X and Y will denote the germs (Cm, 0) and (Cn, 0) re-
spectively. We consider a fixed map f : Y → C, and classify map-germs X → Y
as follows: F1 : X → Y and F2 : X → Y are Kf -equivalent if there exists a germ
of diffeomorphism Φ : X × Y → X × Y such that

(i) Φ covers a diffeomorphism φ : X → X (i.e., there is a germ of diffeomorphism
φ : X → X such that πX◦Φ = φ◦πX)

(ii) Φ preserves the level sets of f ; more precisely, f◦πY ◦Φ = f◦πY , and
(iii) Φ(graph(F1)) = graph(F2).
Observe that Kf contains the group R of right-equivalences. One calculates that
the extended tangent space to the group action on a germ F : X → Y is

TKfF = tF (θX) + F ∗(Der(− log f))

where Der(− log f) is the OY -module of germs of vector-fields tangent to all the
level sets of f . We denote the quotient θ(F )/TKfF by T 1

Kf
F . It is easy to show

that
F1 ∼Kf

F2 ⇒f◦F1 ∼R f◦F2,

but the converse does not always hold.
The group Kf is geometric, in the sense of Damon [1], and so the usual

properties hold; in particular, if T 1
Kf

F has finite length then a deformation F :
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X ×U → Y of F is versal if the initial velocities ∂F/∂si|s=0 generate T 1
Kf

F over
C, and miniversal if they form a basis.

Closely related to Kf is the group KE , introduced by Damon in [2], in which
part 2 of the definition above is weakened to the requirement that Φ preserve only
the level set X×E of f◦πY . It is an immediate consequence of Nakayama’s lemma
that

suppT 1
KE

F = {x ∈ X : F ��E at x},
where transversality to E is understood to mean transversality to the distribution
Der(− logE).

Damon showed in [3] that if

Y0
H−→ Y1

↑ ↑ F
X0

h−→ X1

is a fibre square in which H is a right-left stable map-germ with discriminant (or
image, if dimY0 < dim Y1) equal to E, and F�H , then

T 1
KE

F � T 1
h:X0 → X1

:=
θ(h)

th(θX0) + ωh(θX1)
.

Our F -manifold structure is therefore closely related to the theory of right-left
equivalence of map-germs, and of right-left versal unfoldings.

3. Transversality

To prove a number of properties of Kf -versal deformations, we will use a local
transversality lemma. Recall that X(r) is the subset of the r-fold cartesian prod-
uct Xr consisting of r-tuples of pairwise distinct points, that rJ

k(X,Y ) is the
restriction of (Jk(X,Y ))r to X(r), and that

rj
k
xF : X(r) × S → rJ

k(X,Y ),

the relative r-fold multi-jet extension map, is defined by

rj
k
xF (x1, . . . , xr, s) =

(
jkFs(x1), . . . , jkFs(xr)

)
.

Lemma 3.1. Let W ⊂ rJ
k(X,Y ) be a Kf invariant submanifold. If F : X×S → Y

is a Kf -versal deformation of a germ F : X → Y , then rj
k
xF�W .

Proof. It is possible to find a deformation F̃ : X × S × U → Y of F such that
rj

k
xF̃ : X × S × U → Jk(X,Y ) is transverse to W . For example, identifying X

and Y with Cm and Cn respectively, we take as U the space of polynomial maps
p : Cm → Cn with each component of degree ≤ N , and define

F̃ (x, s, p) = F (x, s) + p(x).

If N is sufficiently large then rj
k
xF̃ is a submersion, and in particular transverse

to W .
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As F is Kf -versal, so is F̃ . Versality of F implies that F̃ is Kfun-equivalent
to the deformation i∗F induced from F by some map of base-spaces i : S×U → S.
Versality of F̃ implies that i is a submersion, and in particular locally surjective.
As W is Kf -invariant, the transversality of jk

xF̃ to W implies that jk
xi

∗(F ) :
X × S ×U → Jk(X,Y ) is also transverse to W . But jk

xi
∗(F ) = (jk

xF )◦(idX × i).
As idX × i is surjective, it follows that jk

xF is transverse to W . �
In what follows, when we consider a map F : X → Y , we write D = V (f◦F ).

If F : X×S → Y is a deformation of F , we write Fs(x) := F (x, s), D := F−1(E)
and Ds = F−1

s (E).
From our transversality lemma we derive first a statement about the behavior

of perturbations Fs of F off the zero set Ds of f◦Fs. The reason we want this is
that typically, Ds will have non-isolated singularities.

Here is a simple example. Define f : C4 → C by f(y1, y2, y3, y4) = y1y2y3y4,
let E = f−1(0) and let F : C3 → C4 be given by F (x1, x2, x3) = (x1, x2, x3, x1 +
x2 + x3). Der(− logE) is well known to be generated by the vector fields yi∂/∂yi

for i = 1, . . . , 4, and Der(− log f) consists of all linear combinations
∑

aiyi∂/∂yi

where
∑

i ai = 0. Thus TKfF is generated over OX by
∂

∂y1
+

∂

∂y4
,

∂

∂y2
+

∂

∂y4
,

∂

∂y3
+

∂

∂y4

and by

x1
∂

∂y1
− x2

∂

∂y2
, x1

∂

∂y1
− x3

∂

∂y3
, x1

∂

∂y1
− (x1 + x2 + x3)

∂

∂y4
.

The quotient T 1
Kf

F has length 1, and is generated by the class of ∂/∂y4. The two
drawings below show the real part of D = F−1(E) and Ds = F−1

s (E), where Fs

is the deformation Fs = F + s∂/∂y4, for s < 0. Both surfaces have non-isolated
singularities; the defining equation x1x2x3(x1 +x2 +x3 + s) = 0 of the second also
has an isolated singularity at (−s/4,−s/4,−s/4) with Milnor number 1, inside the
chamber which has opened up as s moves away from zero.

Proposition 3.2. If F : X × S → Y is a Kf -miniversal deformation of F , then

(i) the variety
∑rel

f◦F defined by the ideal Jrel
f◦F := ({∂(f◦F )/∂xi : i = 1, . . . ,m})

is non-singular off D .
(ii) for s ∈ S −B1, each critical point of f◦Fs off Ds is non-degenerate, and
(iii) for s ∈ S −B2,
the values of f◦Fs at these critical points are all distinct.
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Proof. Apply 3.1 taking as W the submanifold of J1(X,Y ) consisting of 1-jets
(x, y, A) with the property that y /∈ E and the image of the linear map A lies
in ker dyf . For each y /∈ E, ker dyf has dimension n − 1, and so the space of
admissible matrices A has dimension m(n − 1). Thus the codimension of W in
J1(X,Y ) is m. Clearly

∑rel
f◦F−D = (j1

xf ◦F )−1(W ) and is therefore smooth by
3.1. This proves (i).

Let W1 ⊂ J2(X,Y ) be the set consisting of jets j2H(x) such that H(x) /∈ E,
dx(f◦H) = 0 and the Hessian determinant of f◦H vanishes at x. Although not
a manifold, W1 is an analytic set and can be stratified. Its open stratum has
codimension m + 1. The set B1 is the closure of πS

(
(j2F )−1(W1)

)
.

The projection π :
∑rel

f◦F −D → S is finite. If it were not, then for some
s ∈ S, f◦Fs would have a non-isolated singularity off Ds. But the length of T 1

Kf
Fs

is upper semi-continuous, and for s = 0 it is finite. Thus, B1 is a hypersurface.

To ensure that the critical values of the critical points off the zero level
are all distinct, let us consider the submanifold W2 ⊂ 2J

1(X,Y ) consisting of
jets (x1, y1, A1, x2, y2, A2) such that f(y1) = f(y2) �= 0, and dyif◦Ai = 0 for
i = 1, 2. As Kf leaves the level sets of f unchanged, W2 is indeed Kf -invariant.
The codimension of W2 in 2J

1(X,Y ) is 2m + 1, so transversality of 2j
1
xF to W2

means that the set (x1, x2, s) ∈ X(2)×S such that x1, x2 are critical points of f◦Fs

not in Ds and with equal critical values, is empty or has dimension dimS − 1. In
particular, the closure B2 of its projection to S is a hypersurface (or empty), and
if s is not in B2 then the values of f◦Fs at its critical points off Ds are pairwise
distinct. �

A divisor E is holonomic at x if the logarithmic partition of E is locally
finite (and thus a stratification) in some neighborhood U of E. Holonomicity is an
analytic condition, and thus the set of points where it fails is an analytic subset
of E. We say that E is holonomic in codimension k if this subset has codimension
at least k + 1.

In similar vein, E is Euler-homogeneous at x if there is a germ of vector field
χ at x such that

(i) χ(x) = 0, and
(ii) χ · f = f (where f is a reduced equation for E).

Note that this property is independent of the choice of defining equation f . We
say that E is strongly Euler-homogeneous in codimension k if there is a Whitney
stratification of E such that E is Euler-homogeneous at every point of each stratum
of codimension ≤ k.

Proposition 3.3. (J.N. Damon, [4]) Suppose that E = V (f) is holonomic and
strongly Euler-homogeneous in codimension m. Then there is a proper analytic
subset ∆ of the semi-universal base-space S of F such that if s /∈ ∆,

supp
(
T 1
Kf

Fs

)
∩ Ds = ∅.
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Proof. Let S = {Eα} be a Whitney stratification of E, in which each stratum of
codimension≤ m is logarithmic. Any Kf -versal deformation of F is logarithmically
transverse to E, and thus is transverse to S . By Sard’s Theorem, the set ∆α of
critical values in S of the projection F−1(Eα) → S has measure zero, and so also
does ∆ :=

⋃
α ∆α. If s /∈ ∆ then Fs is transverse to each stratum Eα of S . Since

E is holonomic in codimension m, this means that Fs meets only holonomic strata
of E, and so in fact Fs is logarithmically transverse to E itself.

For s ∈ S −∆, we have

dxFs(TxX) + T log
Fs(x)E = TFs(x)Y (2)

for all x ∈ F−1
s (E). Let be a germ of Euler vector field, vanishing at Fs(x), such

that χ · f = f . Then Der(− logE)Fs(x) = 〈χ〉Fs(x) + Der(− log f)Fs(x), where 〈χ〉
is the OY module generated by χ. Since χ vanishes at Fs(x), from (2) we obtain

dxFs(TxX) + Der(− log f)(Fs(x)) = TFs(x)Y (3)

and now Nakayama’s Lemma gives (TKfFs)x = θ(Fs)x. �

Corollary 3.4. With the condition of Proposition 3.3, suppose that F : X×S → Y
is a Kf -versal deformation of F : X → Y . If also T 1

Kf /SF is free over S, then
the generic fibre Ds := F−1

s (E) has the homotopy type of a wedge of τ = dim S
spheres of dimension m− 1.

Proof. By a theorem of Siersma, ([11]), Ds has the homotopy type of a wedge of
(m− 1)-spheres, whose number is equal to the sum of the Milnor numbers of the
critical points of f◦Fs which move off Ds as s moves off 0. By the hypothesis of
freeness, we have

τ := dimC T 1
Kf

F =
∑

i

dimC(T 1
Kf

Fs)xi

where the xi are the points of the support of T 1
Kf

Fs. These fall into two subsets:
those in Ds and those outside it. If s ∈ S −∆, the first subset is empty.

If xi /∈ Ds then the morphism (1)

F ∗(df) : (T 1
Kf

Fs)xi → OX,xi/Jf◦Fs

is an isomorphism. It follows that if s /∈ ∆, all points of suppT 1
Kf

Fs are outside
Ds and moreover

τ =
∑

i

dimCOX.xi/Jf◦Fs . �

Let
B = {s ∈ S : supp

(
T 1
Kf

Fs

)
∩ V

(
F ∗(Jf )

)
�= ∅}.

Since V
(
F ∗

s (Jf )
)
⊂ Ds, (3.3) assures us that if V (f) is holonomic and strongly

Euler homogeneous in codimension m, then B is a proper analytic subset of S.
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4. When is the relative T 1 free over the base?

Suppose that OY /Jf is Cohen-Macaulay, and let m0 be the codimension of V (Jf )
in Y . Let F : X × S → Y be a deformation of a germ F : X → Y for which
suppT 1

Kf
F = {0}. There are three cases where we can show that the relative

module T 1
Kf /SF is free over S. These are

(i) where f is a defining equation for a free divisor E, such that f ∈ Jf ,
(ii) where dimX = m0, and
(iii) where dimX = m0 − 1.

Proofs of all three are straightforward, and may be found, for example, in [5], [6],
though for completeness we sketch them here.

1. Free divisors: Der(− log f) is a direct summand of the free module Der(− logE),
with complementary summand generated by a vector field χ such that χ · f = f ,
and so is free on n− 1 generators. Thus, the presentation

θX×S/S ⊕F ∗(Der(− log f)) → θ(F ) → T 1
Kf/SF → 0

can be read as
Om

X×S ⊕On−1
X×S → On

X×S → T 1
Kf /SF → 0. (4)

Since suppT 1
Kf/SF is finite over S, dim T 1

Kf/SF ≤ dimS; on the other hand,
from (4) it follows that the codimension of suppT 1

Kf /SF is no greater than dim X .
Thus dimT 1

Kf/SF = dimS, and now from (4) it follows, by the theorem of Eagon-
Northcott, that T 1

Kf/SF has depth equal to dim S. Since it is finite over OS , it is
a free OS-module.

2. The cases m = m0 and m = m0 − 1

Lemma 4.1. If m ≤ m0 and T 1
Kf

F has finite length then f◦F has an isolated
singularity.

Proof. First, because suppT 1
Kf

F = {0}, the restriction of F to X−{0} is transverse
to every level set of f . We have dimX ≤ codimV (Jf ) ≤ codimEα for each stratum
Eα of any Whitney stratification of E contained in V (Jf ), and so F−1(Eα) must
consist of isolated points. Thus the germ of F−1(V (Jf )) consists at most of {0}. At
every point x /∈ F−1(V (Jf )), the transversality of F to the level set of f through
F (x) means that x is not a critical point of f◦F . �

The multiplicity, µ, of the critical point of f◦F is preserved in any deforma-
tion. When m = m0, the exact sequence of Corollary 1.3 of [6] reduces to

0 → T 1
Kf

F → OX/Jf◦F → OX/F ∗(Jf ) → 0. (5)

The lengths of the second and third non-trivial terms in this short exact sequence
are conserved (the latter because OY /Jf is Cohen-Macaulay), and hence so is the
length of the first. This implies that T 1

Kf /SF is free over OS .
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When m = m0 − 1, the exact sequence acquires an extra term, and becomes

0 → TorOY
1 (OY /Jf ,OX) → T 1

Kf
F → OX/Jf◦F → OX/F ∗(Jf ) → 0 (6)

An easy argument ([6] Lemma 4.3(i)) shows that the lengths of the modules
TorOY

1 (OY /Jf ,OX) and OX/F ∗(Jf ) are equal, so that the length of T 1
Kf

F is
equal to µ. As µ is conserved, so is the length of T 1

Kf
F , and so once again T 1

Kf /SF

is free over OS .

5. Multiplication on the tangent bundle of the base

Let F be a Kf -miniversal deformation of some germ F : X → Y for which T 1
Kf

F

has finite length. Suppose that E is strongly Euler-homogeneous and holonomic
in codimension m, and that T 1

Kf /SF is free over S. By Prop. 3.3, there is a proper
analytic subset B of the base space S, such that for s ∈ S − B, suppT 1

Kf
Fs does

not meet V
(
F ∗

s (Jf )
)
. For such s,

(T 1
Kf

Fs)x � OX,x/Jf◦Fs

for each x ∈ suppT 1
Kf

Fs, and indeed

π∗(T 1
Kf /SF ) � π∗(O(X×S)−D/J rel

f◦F ). (7)

Because T 1
Kf /SF is free over S, the Kodaira-Spencer map gives an isomorphism

of free sheaves
θS � π∗(T 1

Kf/SF )

on all of S. Composing this with the isomorphism (7) we get an isomorphism

θS−B � π∗(O(X×S)−D/J rel
f◦F )

∣∣
S−B

(8)

and it is this that we use to define a multiplication on the tangent sheaf, just as
in the case of deformations of isolated hypersurface singularities.

Hertling and Manin introduced the notion of F -manifold in [9]. A complex
manifold with an associative and commutative multiplication � on the tangent
bundle is called an F -manifold if:

(i) (unity) there exists a global vector field e such that e � u = u for any u ∈ θM

and,
(ii) (integrability) Lieuv(�) = u � Liev(�) + Lieu(�) � v for any u, v ∈ θM .

The main consequence of this definition is the integrability of multiplicative sub-
bundles of TM , namely, if in a neighborhood U of a point p ∈M we can decompose
TU as a sum A⊕B of multiplicatively closed subbundles with unity, then A and
B are integrable.

An Euler vector field E for M is defined by the condition

LieE(�) = �



196 I. de Gregorio and D. Mond

Theorem 5.1. The complement S − B with the multiplication induced from (8)
is an F -manifold with Euler vector field ES coming from the class of f ◦ F in
O(X×S)−D/Jrel

f◦F via the isomorphism

θS−B � π∗
(
O(X×S)−D/Jrel

f◦F

)
.

Proof. It is enough to show that the integrability condition holds in an open and
dense subset of S − B. According to Prop. 3.2, there exists a proper analytic
subvariety B1 such that for s ∈ S − B1, the composite f ◦ Fs has only non-
degenerate critical points. In a neighborhood U ⊂ S − B of such a point, the
integrability condition is equivalent to the image L of the map

supp T 1
Kf

F * (x, s) �→ d(x,s)(f ◦F ) ∈ T ∗
s S (9)

being a Lagrangian subvariety of T ∗S (see [8], Th. 3.2). If α denotes the canonical
1-form on T ∗S and p : T ∗S → S the projection, it is easy to check that the diagram

π∗(T 1
Kf /SF ) �� p∗OL

θS

��������

�������

is commutative. The homomorphism on the right-hand side is given by evaluation,
so that it can also be expressed as u �→ α(ũ) where ũ is a lift of u ∈ θS to θT∗S .
Hence α|L is the relative differential of (f ◦F ) when thought of as a map on L
via the identification (9). It follows that α|L is exact and hence closed, so that L
is Lagrangian.

The statement about the Euler vector field is an easy calculation that we
leave to the reader (see [8], Th. 3.3.). �

Remark 5.2. It follows that the critical values of f ◦F are local coordinates around
a generic point in the base. For a point s where suppT 1

Kf
Fs consists of m different

points, the algebra TsS decomposes in 1-dimensional subalgebras with unity. Hence
there exist coordinates (u1, . . . , um) such that (∂/∂i) � (∂/∂j) = δij∂/∂i. These
special coordinates are known as canonical coordinates. Writing the Euler vector
field E in these coordinates and using the fact that d(f ◦F) = α|L, we see that the
canonical coordinates coincide, up to a constant, with the critical values of f ◦F .

6. Morphisms of F -manifolds

In the cases where f◦F has an isolated singularity, we can compare itsR-miniversal
deformation with the Kf -versal deformation F of F . Suppose that f ◦F , thought
of as a deformation of f ◦F , is (up to Re-un-equivalence) induced from some other,
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say G : X ×W → C. Then we have a fiber square

X × S
Φ ��

πS

��

f◦F

�����
�� X ×W

G

��					

πW

��

C

S
i

�� W

(10)

where Φ is the Re-un-equivalence, of the form

Φ(x, s) = (ϕ(x, s), i(s)) = (ϕs(x), i(s)),

and i is the inducing map from the base-space of f ◦F to the base space of G.

Lemma 6.1. There is a commutative diagram

(πS)∗(T 1
Kf /SF ) �� (πS)∗(OX×S/J

rel
f◦F )

θS
ti ��

		

θ(i)

		
(11)

The vertical arrow on the left-hand side is the Kodaira-Spencer map of F as a Kf -
deformation whereas the one on the right-hand side is the pull-back (by a morphism
explained below) of that of G as an R-deformation of f ◦F . The right-hand vertical
morphism is an isomorphism when G is miniversal.

Proof. The morphism of the top row is just F ∗(df), defined on a section ξ =∑
j ξj∂/∂yj of θ(F ) by

n∑
i=1

ξj∂/∂yj �→
∑

j

(
(∂f/∂yj) ◦F

)
ξj

and passing to the quotient as before. The vertical morphism of the right is defined
on the generators ∂/∂wj by

(∂/∂wj) �→
(
∂G/∂wj

)
◦ Φ

and extended by OS-linearity. It is straightforward to check that the diagram
commutes.

Recall that T 1
Kf /SF and OX×S/J

rel
f◦F are both finite over S, so that in par-

ticular

π∗
(
OX×S/J

rel
f◦F

)
s
�

⊕
x

OX×S,(x,s)/J
rel
f◦F .

Reducing the right-hand vertical morphism modulo the maximal ideal mS,s, we
obtain the reduced Kodaira Spencer map of G at i(s), or rather, its translation by
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the isomorphism ϕ∗
s (composition with ϕs), as shown in the diagram⊕

x

(
OX,x/Jf◦Fs

)
↖

↑
⊕

x

(
OX,ϕs(x)/Jgi(s)

)
↗

Ti(s)W

(12)

in which the northeast arrow is the reduced Kodaira-Spencer map of G at s and
the northwest arrow is ϕ∗

s. Miniversality of G implies that the northeast arrow in
(12) is an isomorphism. Hence, so is the right-hand vertical map in (11), since its
source and target are both free modules of rank µ(f ◦F ) and its reduction modulo
mS,s is an isomorphism. �

Proposition 6.2. Assume that G in (10) is an Re-miniversal deformation of the
isolated singularity f ◦F , and that F is a Kf -miniversal deformation of F . Then

(i) if m = m0, i is a local immersion into the discriminant ∆G of G,
(ii) if m = m0−1, the critical locus C of i is πS(V (F ∗Jf )) and i : S−C → T −∆

is an unramified covering.

Proof. In each of the two cases, since G is aRe-miniversal deformation, the vertical
arrows of (11) are both isomorphisms. The exact sequences (6) and (5) show that
the support of the cokernel of ti is exactly the projection to S of supp OX×S/F ∗Jf .
As this last module is Cohen-Macaulay and supported inside D = V (f ◦F ) we see
that Ds = V (f ◦Fs) is singular. Hence the set of values where i is not submersive
is contained in ∆G.

To conclude, the exact sequence (6) says that i is a local immersion in the
case m = m0, whereas for m = m0−1, (5) says the critical locus C is the projection
by πS of supp TorOY

1 (OY /Jf ,OX×S) and hence equal to πS(V (F ∗Jf )). �

Remark 6.3. Let G : X × T → C be a miniversal deformation of the composite
function f◦F . The Kodaira-Spencer map ρG : θT → OX×T /J

rel
G defines Saito’s F -

manifold structure on T (see, e.g., [8] Chapter 5), and hence on θ(i) = θT ⊗ OS .
The Euler vector field ET of this F -manifold is given by the class of G in the
relative Jacobian algebra. The mapping i respects the multiplication and Euler
vector field in the sense that

ti(u � v) = ti(u) � ti(v)

ti(ES) = ET ◦ i
(13)

Thus, the restriction of i to S −B is a morphism of F -manifolds.
Note that in the case m = m0 the multiplication in TS is defined even at

the points of B, since now TorOY
1 (OY /Jf ,OX) vanishes and (T 1

Kf
Fs)x can be

identified with
(
F ∗

s (Jf )/Jf◦F

)
x

for each x ∈ suppT 1
Kf

Fs. Nevertheless, since the
multiplication at a point s ∈ B lacks a unit, the unit vector field is not defined
at s, and we cannot refer to all of S as an F -manifold. Similarly, the Euler field
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on S − B, which corresponds to the class of f◦F in π∗
(
OX×S/Jf◦F

)
under the

identifications

θS−B � π∗
(
T 1
Kf /SF

)
� π∗

(
O(X×S)−D/Jf◦F

)
,

is no longer defined at points of B where the class of f◦F does not lie in the sheaf
π∗

(
F ∗(Jf )/J rel

f◦F

)
.

Remark 6.4. The statement (2) in 6.2 implies a conjecture in [7]. Let F : C2 →
Symn be a family of n×n-symmetric matrices and f : Symn → C the determinant.
Then the subvariety

∑
⊂ S corresponding to values of the parameter space for

which Fs intersects the set of matrices of corank at least 2 is (πS)∗V (F ∗Jf ) and
hence coincides with C.
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On Equisingularity of Families
of Maps (Cn, 0) → (Cn+1, 0)
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Abstract. A classical theorem of Briançon, Speder and Teissier states that a
family of isolated hypersurface singularities is Whitney equisingular if, and
only if, the µ∗-sequence for a hypersurface is constant in the family. This
paper shows that the constancy of relative polar multiplicities and the Euler
characteristic of the Milnor fibres of certain families of non-isolated singulari-
ties is equivalent to the Whitney equisingularity of a family of corank 1 maps
from n-space to n+1-space. The number of invariants needed is 4n−2, which
greatly improves previous general estimates.
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1. Introduction

Given a family of maps it is useful to have conditions that imply that the family
is, in some sense, trivial. Suppose that we have a family of complex hypersurfaces
such that each member has an isolated singularity. The family is called Whitney
equisingular if the singular set of the variety formed by the whole family is a
stratum in a Whitney stratification. This implies, for example, that, for each pair
of hypersurfaces, there is a homeomorphism between the ambient spaces that takes
one hypersurface to the other.

An overall aim of the theory is to find invariants of the elements of the family,
the constancy of which implies, or is equivalent to, this Whitney equisingularity.
In the isolated hypersurface case the constancy of the µ∗-sequence of Teissier (see
for example [13]) is equivalent to the Whitney equisingularity of the family.

This work was initially carried out when the author visited ICMC at USP in São Carlos, Brazil.
He is grateful to Maria Ruas for the hospitality during his stay and expresses his thanks to

EPSRC for funding (Grant reference GR/S48639/01). Thanks are also due to the referee who
made a number of useful comments.
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One can consider what happens for maps, rather than varieties, i.e., when is
a family of complex analytic maps F : Cn × C → Cp × C equisingular? There is
again a notion of Whitney equisingularity. This time the parameter spaces {0}×C
in Cn ×C and {0} ×C in Cp ×C have to be strata in a stratification of the map.

In a series of papers Gaffney, (and also in conjunction with others such as
Gassler and Massey) has produced some sterling work in answering this question
for families where the members have an isolated instability at the origin. In [1] he
introduced some new invariants, and proved that the constancy of these invariants
within a family is equivalent to Whitney equisingularity.

However, the invariants are very difficult to manipulate, even in low dimen-
sional cases, as the number of invariants is quite large and the method of de-
scription varies greatly from one invariant to another. For C2 to C3 we need 10
invariants; for C3 to C4 we need 20. At present there is no formula in the literature
that allows one to calculate the number required.

Nonetheless, because of relationships between them, it is possible to reduce
considerably the number of invariants needed in each case. For example, for a
family of corank 1 maps from C2 to C3 the constancy of only one invariant is
required. It should be noted that there was a significant amount of investigation
done in [1] to show that this really is the only invariant needed. The C3 to C4 case
is tackled in [8] where the 20 invariants are reduced to only 8. (The definition of
‘reducing’ is somewhat vague; one could reduce to one invariant merely by adding
together all these upper semi-continuous invariants. The heuristic requirement is
that the invariants should be calculable and that they should not be decomposable
into other ones.)

The main result (Theorem 3.3) is that we can use relative polar multiplicities
and the Euler characteristic of hypersurfaces to produce a Whitney equisingularity
result in the case of p = n+1, i.e., the image of F is a hypersurface, and where the
stable singularities of F have corank 1, (i.e., the differential of F at these points
is, at worst, corank 1). So, in particular, the theorem holds when n ≤ 5.

We reduce the number of invariants to 4n−2, which is a considerable saving,
when n is large (which here means bigger than 3). This saving is achieved, not
through using Gaffney’s work in [1], but his subsequent work with Gassler, [3],
and Massey, [2].

2. Notation and basic definitions

In this section we give the definitions related to equisingularity for the sets and
the complex analytic maps that concern us, and we reproduce the definitions
of two sequences from [3], which in the main theorem will be used to control
equisingularity.

Standard definitions from Singularity Theory, such as finite A-determinacy,
can be found in [16]. A differentiable map is called corank 1 if its differential has
corank at most 1 at all points.
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Often we shall need to move from a germ and choose a representative, or a
smaller neighborhood, etc. Since this is entirely standard and is obvious when it
occurs, no explicit mention shall be made of the details as they will be distracting
to the exposition.

Definition 2.1. Let X be complex analytic set and Y a subset of X. We say that
X is Whitney equisingular along Y if Y is a stratum of some Whitney stratifica-
tion of X.

This has been the subject of considerable investigation, see [2] for a survey.
Gaffney has studied the notion for the more general case of maps, see [1]. We recall
Thom’s condition Af before stating the definition of Whitney equisingularity.

Definition 2.2. Let f : X → Y be a complex analytic map. Two strata A and B of a
Whitney stratification of X are said to satisfy the Thom Af condition with respect
to f at a point p ∈ B if the differential df has constant rank on A and for any
sequence of points pi ∈ A such that pi converges to p and ker dpi(f |A) converges
to some T (in the appropriate Grassmannian), then ker dp(f |B) ⊆ T . We say f
satisfies the Thom Af condition if all pairs of strata satisfy the condition.

Example 2.3. Let f : X → Y be a finite complex analytic map such that X and Y
are Whitney stratified so that strata map to strata by local diffeomorphisms. Then,
f satisfies the Thom Af condition as the kernels are all {0}.

Now, the main definition is given.

Definition 2.4. Let F : (Cn × C, 0 × 0) → (Cp × C, 0 × 0) be a family of maps
F (x, t) = (ft(x), t) such that each ft : (Cn, 0)→ (Cp, 0) has an isolated instability
at the origin, (i.e., each ft is finitely A-determined).

We say that F is Whitney equisingular if Cn×C and Cp×C can be Whitney
stratified so that

(i) F satisfies Thom’s AF condition, and
(ii) the sets S = {0}×C ⊆ Cn×C, and T = {0}×C ⊆ Cp×C are strata. (That

is the ‘parameter axes’ are strata.)

Remark 2.5. This means, by the Thom-Mather Second Isotopy Lemma, that the
members of the family are topologically equivalent.

Let f : (CN , 0) → (C, 0) be a complex analytic function, and denote the
Jacobian ideal by J(f):

J(f) =
(

∂f

∂z1
, . . . ,

∂f

∂zN

)
for coordinates z1, . . . , zN in CN .

Definition 2.6. The blowup of CN along the Jacobian ideal, denoted BlJ(f)C
N , is

the closure in CN × PN−1 of the graph of the map

CN\V (J(f))→ PN−1, x �→
(

∂f

∂z1
(x) : · · · : ∂f

∂zN
(x)

)
,

where V (J(f)) is zero-set of J(f).
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A hyperplane h in PN−1 can be pulled back by the natural projection p :
CN ×PN−1 → PN−1 to a Cartier divisor, H , on BlJ(f)C

N , (provided BlJ(f)C
N is

not contained in the product of CN and h). We call this a hyperplane on BlJ(f)C
N .

Let b : CN×PN−1 → CN be the other natural projection. For suitably generic
hyperplanes h1, . . . , hk in PN−1, the multiplicity at the origin of b(H1∩· · · ∩Hk ∩
BlJ(f)C

N ) is an analytic invariant of V (J(f)), see [3].

Definition 2.7. The kth relative polar multiplicity of f is the multiplicity of the
variety b(H1 ∩ · · · ∩Hk ∩BlJ(f)C

N) at the origin. It is denoted by mk(f).

Remark 2.8. Full details of this construction and proofs of the various assertions
can be found in [3] where the authors also show that the situation can be generalized
to ideals other than the Jacobian.

We can now define another sequence of invariants; again these have a topo-
logical nature.

Definition 2.9. ([2] p. 238) Let f : (Cn+1, 0) → (C, 0) be a complex analytic func-
tion and Li ⊆ Cn+1 be a generic i-dimensional linear subspace. Denote the Euler
characteristic of the Milnor Fibre of f |Li by χi(f).

From this we can define a sequence

χ∗(f) :=
(
χn+1(f), . . . , χ2(f)

)
.

In the case of an isolated singularity, this (effectively) reduces to the standard
µ∗-sequence in Equisingularity Theory.

Remark 2.10. It transpires that the number χ1(f) is not needed in the theory in
[3] and so is omitted.

Example 2.11. If f defines the Swallowtail singularity, (i.e., the image of the stable
map (x, y, z) �→ (x, y, z4 + xz2 + yz)), then χ3(f) = 1, (see, for example, [11] page
54), and χ2(f) = 6. The latter can be calculated using a program such as Singular.

In general, it is not known how to calculate the homology of the Milnor
Fibre of a non-isolated singularity. In some cases it is possible to calculate the
Euler characteristic in practice, for example, using Massey’s theorem that it is
equal to the alternating sum of the Lê numbers, see [11].

3. Main theorems

Let X ⊆ CN×C be a family of hypersurface germs defined by H : CN×C → C×C,
and where H(x, t) = (ht(x), t) and Y is the parameter stratum {0}×C ⊆ CN ×C.

We can now tease out the important elements of the proof of Theorem 6.6 of
[2] to prove the following.
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Lemma 3.1. Suppose that X\Y is Whitney stratified such that, at each point of
a stratum in X\Y , X is locally analytically a product of a normal slice and the
stratum. Suppose further that the complex link of every stratum in X\Y , and not
in the non-singular part of X, is not contractible.

Then, the family is Whitney equisingular along Y if, and only if, the sequence(
mN−1(ht), . . . ,m1(ht), χN (ht), . . . , χ2(ht)

)
is independent of t ∈ Y .

Proof. Suppose that the sequence is constant. Theorem 6.5 of [2] states that the
sequence being constant in the family implies that the non-singular part of X is
Whitney regular along Y .

We can now deal with the strata in the singular part of X . Suppose that R
is a stratum of X of dimension r. Take the normal slice to R at the point p, i.e.,
the set M ∩X where M is a manifold transverse to R with M ∩ R = {p}. Since
X has a product structure we can assume that (M,p) is (CN−r, p). Then, M ∩X
will be a hypersurface defined locally at p by the germ g : (CN−r, p)→ (C, 0) say.

By definition, the complex link of the stratum R is the complex link of M ∩
X at the point p. This complex link is homotopically equivalent to a wedge of
spheres (since the space is a hypersurface, see [4] p187), the number of which is
the multiplicity of the relative polar curve of g, see Massey [10] page 365. Since, by
assumption, this number is positive, the polar curve is non-empty. The example
on page 235 of [2] shows that this implies that the origin of CN−r is the image of
a component of the exceptional divisor of BlJ(g)C

N−r. Since X has an analytic
product structure along R this means that the closure of R is the image of a
component of the exceptional divisor of BlJ(H)(CN ). Thus, by the assumptions of
the statement of the lemma and by using Theorem 6.5 of [2], we conclude that R
is Whitney regular along Y .

The converse is just Theorem 6.3 of [3]. �

It seems likely that requiring that the complex links are non-contractible is
necessary. This is because the topology of functions is intimately connected with
complex links. (In [14], Tibăr shows that the Milnor fibre of a function with an
isolated singularity on a complex analytic set is homotopically equivalent to a
bouquet of suspensions of the complex links of the strata of the set.)

There are not many general results on the non-contractibility of complex
links, see Section 4 of [15] for examples of hypersurfaces with a stratum that has a
contractible complex link and for a theorem that states that complete intersections
with a singular locus of dimension less than 2 have non-contractible complex links.

We can use the above lemma to prove our main theorem. First we need a
definition:

Definition 3.2. Let p : A→ B be a continuous map. Then the double point space
of p in the source is the set

closure {a ∈ A | there exists a′ ∈ A such that p(a) = p(a′), a �= a′} .
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For a finitely A-determined map-germ f : (Cn, 0) → (Cn+1, 0) the double
point space is a hypersurface in Cn.

Theorem 3.3. Let F : (Cn×C, 0×0)→ (Cn+1×C, 0×0) be a 1-parameter family of
finitely A-determined map-germs whose locus of instability is {0}×C ⊆ Cn+1×C.

Suppose that the stable singularity types appearing in F are corank 1 (e.g.,
n ≤ 5 or each ft is corank 1).

Then, F is Whitney equisingular if, and only if,(
mn(ht), . . . ,m1(ht), χn+1(ht), . . . , χ2(ht)

)
and(

mn−1(gt), . . . ,m1(gt), χn(gt), . . . , χ2(gt)
)

are independent of t ∈ Y , where ht is the function defining the image of ft, and
gt is the function defining the double point set in the source of ft.

Proof. Since the stable types are corank 1 and the map F is stable outside the
instability locus of the members, we can stratify the source and target by stable
type to get a Whitney stratification outside S and T (the parameter axes), such
that the double point set in the source is a union of strata. (The stratification is
finite as there are only finitely many right-left equivalence classes of stable germs
of corank 1.) Furthermore, this stratification by stable types means that locally the
spaces have a product structure – the one arising from unfolding minimal stable
maps. Also, since F is finite, the strata map to strata by a local diffeomorphism.
Thus, outside S and T the map is Thom AF , see Example 2.3.

Theorem 7.3 of [6] states that the complex link of a stratum of the image of a
corank 1 stable map is homotopically equivalent to a single sphere (except for the
‘top’ stratum which is the non-singular part of the image and hence has an empty
complex link). Thus, we can apply Lemma 3.1 to the family of hypersurfaces giving
the image of F to show that the image of F is Whitney equisingular along T .

Now, the double point set of F is also a family of hypersurfaces. Furthermore,
outside S, it is also the image of a stable corank 1 map, see Proposition 3.5.1 of
[5]. Thus, again applying Lemma 3.1, the double point set is Whitney equisingular
along S.

Since S maps to T and this map is a local diffeomorphism we see that F is
Thom AF . Since source and target are Whitney stratified we conclude that F is
Whitney equisingular. �

Thus we can reduce the number of invariants required to 4n− 2 invariants.
This is a considerable saving. For example, for n = 2 we get 6 invariants compared
to Gaffney’s original 10, and for n = 3 we get 10 rather than the original 20. Note
however, that in the former case Gaffney reduced to 1 invariant and in the latter
Pérez reduced the number of invariants to 8. It is in the cases where n > 3 that
the theorem comes into its own. So far no-one has attempted to tackle the large
task of enumerating precisely Gaffney’s invariants for n = 4 or the even greater
task of reducing through utilizing relationships between them.
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Whilst at the meeting in Luminy Marcelo Saia informed me that, in [9],
Jorge Pérez and Saia show how the number of Gaffney’s original invariants can
be cut, more or less, in half for corank 1 maps. This is rather suggestive as, in a
similar vein, Corollary 8.8 of [1] states that, for maps in the theorem with n = 2,
the map F is Whitney equisingular if its image is Whitney equisingular along the
parameter axis. Combining this observation with the result in [9] we can conjecture
that the same is true for more general n. If this were the case, then it would
imply that the theorem above could be improved further as we could drop the
assumption concerning the sequences associated with the double point set, i.e., we
would require only the 2n invariants controlling the Whitney equisingularity of
the image and could discard those in the source.
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Abstract. Consider a periodic function f of two variables with symmetry Γ
and let L ⊂ Γ be the subgroup of translations. The Fourier expansion of a
periodic function is a sum over L∗, the dual of the set L of all the periods of
f . After projecting f , some of its original symmetry remains. We describe the
symmetries of the projected function, starting from Γ and from the structure
of L∗.
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1. Introduction and preliminaries

Patterns with spatial periodicity are observed in many physical systems such as
crystals, convection experiments, chemical reactions, Faraday wave experiments
(see Rucklidge et al. [10]), or magnetic perturbation of a liquid crystal (Chilling-
worth and Golubitsky [3]). Moreover, one method used in the study of bifurcation
[6] of problems equivariant under the Euclidean group E(2) is to look for periodic
solutions – see [2, 4, 5]. The patterns observed in reaction-diffusion experiments
in thin layers of gel are usually explained by two-dimensional models. However,
some observed periodic solutions, like black-eye patterns, are not expected in two-
dimensions. Gomes [7] suggests that black-eye patterns are the projection into the
plane of a three-dimensional repetitive solution.

We may ask in general how a projection transforms repetitive patterns. This
paper presents a first step in answering this question.
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If f : R2 −→ R has two noncolinear periods then its symmetry group is a
plane crystalographic group, Γ ≤ E(2), and its level sets form a periodic pattern.
We start with a pattern in R2 and project it into R. The new pattern, the level
sets of a function in R, may be periodic or invariant under reflections. We relate
the existence of these symmetries to properties of Γ and of L∗, the dual of the set
L of all the periods of f . The set L∗ arises naturally in the Fourier expansion of f
and the symmetries in Γ impose restrictions on Fourier coefficients.

The result is formulated in a form that simplifies the generalization to di-
mension n instead of 2. At the end of the paper we indicate the main technical
complications appearing in higher dimension.

We write elements of E(2) = R2+̇O(2) in the form (vδ, δ), with vδ ∈ R2

representing a translation and δ ∈ O(2). They act in f : R2 −→ R with the scalar
action (see [8]):

(vδ, δ) · f(x) = f((vδ, δ)−1) · x) = f(δ−1x− δ−1vδ).

We assume that Γ is a plane crystalographic group – see [1, 11] for general results
and definitions. Denote by L the subgroup of the translations in Γ, a module over
the integers, also called a lattice. If f is Γ-invariant, then in particular elements of
L are periods of f . A pattern and the lattice L may not have the same symmetries:
see Figure 1.

a) b)

Figure 1. a) The lattice (black dots) is not invariant under the glide re-
flection transforming the grey motif into the darker one. However this is a
symmetry of the lighter pattern. b) The lighter pattern is not invariant under
the reflection on the black line, although this is a symmetry of the lattice
(black dots).
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2. Symmetries and projection

Let XΓ be a vector space of Γ-invariant functions f : R2 −→ R, having unique
formal Fourier expansions of the form:

f(x, y) =
∑

k∈L∗
ωk(x, y)C(k),

where L∗ is the dual lattice and ωk(x, y) = e2πi<k,(x,y)>.
The elements of L∗ are those k ∈ R2 such that < k, l >∈ Z for all l ∈ L,

where < k, l > is the usual inner product in R2.
Given y0 > 0, define the projection of a function f ∈ XΓ to be the function

Πy0(f)(x) =
∫ y0

0

f(x, y)dy x, y ∈ R.

We assume that in XΓ we have,

Πy0(f)(x) =
∑

k∈L∗

∫ y0

0

ωk(x, y)C(k)dy

and that XΓ contains, for all k ∈ L∗, the real and imaginary parts of Ik(x, y) =∑
δ∈J ωδk(−vδ)ωδk(x, y), where J ∼ Γ/L is the largest subgroup of O(2) that

leaves L invariant. Notice that these are the simplest Γ-invariant functions.
The first step in obtaining the symmetries of the projected functions is to

relate the (vα, α)-invariance to restrictions on Γ and on L∗. This is the main result
in this paper – Proposition 2.1 below – where we characterize situations giving rise
to (vα, α)-invariance of the projected function. Here (vα, α) is either a reflection
(α = −1) or a translation (α = 1) so we are asking for conditions ensuring that
projected functions are even or periodic, respectively.

For α ∈ {1,−1}, let α+ ∈ {I,−σ} and α− = σα+ ∈ {σ,−I}, where

α+ =
(

α 0
0 1

)
and σ =

(
1 0
0 −1

)
.

Thus, an element (v+, α+) ∈ Γ is either a (glide) reflection on a vertical line when
α = −1, or a translation when α = 1. Similarly (v−, α−) ∈ Γ is either a rotation of
π (α = −1) or a reflection on a horizontal line when α = 1 (and therefore α− = σ).
Note that α± = α−1

± and σ = σ−1.

Proposition 2.1. All functions in Πy0(XΓ) are invariant under the action of
(vα, α) ∈ R+̇O(1) if and only if one of the following conditions holds:

A. (v+, α+) ∈ Γ and for each k ∈ L∗,
either 〈k, (0, y0)〉 ∈ Z− {0} or 〈k, v+ − (vα, 0)〉 ∈ Z,

B. (v−, α−) ∈ Γ and for each k ∈ L∗,
either 〈k, (0, y0)〉 ∈ Z− {0} or 〈k, v− − (vα, y0)〉 ∈ Z,

C. (vσ, σ), (v+, α+) ∈ Γ and, for each k ∈ L∗, one of the conditions C1, C2 or
C3 below holds:
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C1. 〈k, (0, y0)〉 ∈ Z− {0},
C2. 〈k, v+ − (vα, 0)〉 ∈ Z,
C3. 〈k, vσ − (0, y0)〉+ 1

2 ∈ Z.

Parity of projected functions arises through the presence of either a (glide)
reflection or a rotation by π in Γ, plus conditions relating its translation part to
the projection width and to L∗. Similarly, periods of the projected functions arise
either from reflections in Γ, or from periods of the original function, plus extra
conditions on these and on y0 in relation to L∗.

A more concise formulation of this result is possible using the subsets of L∗

defined below. Let M∗
+ and M∗− be the modules

M∗
+ = {k ∈ L∗ : 〈k, v+ − (vα, 0)〉 ∈ Z} and

M∗
− = {k ∈ L∗ : 〈k, v− − (vα, y0)〉 ∈ Z} ,

and let

N ∗
y0

= {k ∈ L∗ : 〈k, (0, y0)〉 ∈ Z− {0}} ,
N ∗

σ = {k ∈ L∗ : 〈k, vσ − (0, y0)〉+ 1/2 ∈ Z} .
The last two sets are not modules. The smallest modules generated by each of
them are, respectively, N ∗

y0
= N ∗

y0
∪ M∗

y0
and N ∗

σ = N ∗
σ ∪ M∗

σ, where all the
unions are disjoint and M∗

y0
and M∗

σ are the modules

M∗
y0

= {k ∈ L∗ : 〈k, (0, y0)〉 = 0} and

M∗
σ = {k ∈ L∗ : 〈k, vσ − (0, y0)〉 ∈ Z} .

Properties of N ∗
σ : Let m1,m2 ∈ Z. If g1, g2 ∈ N ∗

σ then

m1g1 + m2g2 ∈
{
M∗

σ if m1 + m2 even
N ∗

σ if m1 + m2 odd . (1)

Proposition 2.1 can therefore be written the following way:

Proposition 2.2. All functions in Πy0(XΓ) are invariant under the action of
(vα, α) ∈ R+̇O(1) if and only if one of the following conditions holds:

A. (v+, α+) ∈ Γ and L∗ = N ∗
y0
∪M∗

+,
B. (v−, α−) ∈ Γ and L∗ = N ∗

y0
∪M∗

−,
C. (vσ, σ), (v+, α+) ∈ Γ and L∗ = N ∗

y0
∪M∗

+ ∪ N ∗
σ .

For D(k1) =
∑

k2:(k1,k2)∈L∗ C(k1, k2)
∫ y0

0
ωk2(y)dy, the projection of f ∈ XΓ

may be written, with L∗
1 = {k1 : (k1, k2) ∈ L∗}, as

Πy0(f)(x) =
∑

k1∈L∗
1

ωk1(x)D(k1).

Thus Πy0(f) is (vα, α)-invariant if and only if∑
k1∈L∗

1

ωk1(x)D(k1) =
∑

k1∈L∗
1

ωk1(α x)ωk1(−α vα)D(k1), (2)

or, equivalently, D(k1) = ωk1(−vα)D(α k1), for all k1 ∈ L∗
1.
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In the next section we show that each condition of Proposition 2.1 leads to the
restrictions on the coefficients D(k1) above. Reciprocally, when those restrictions
are imposed on the projection of Ik(x, y), for all k ∈ L∗, this implies the conditions
of Proposition 2.1.

3. Proof of Proposition 2.2

Let f ∈ XΓ and (vα, α) ∈ R+̇O(1). If Πy0(f) is (vα, α)-invariant then Πy0(f)(x) =
Πy0(f)(α x − α vα), which is equivalent to (2). The right-hand side of (2) equals∑

k1∈L∗
1
ωαk1(x)ωαk1 (vα)D(k1). Since α(L∗

1) = L∗
1 and Fourier expansions are

unique, then for each k1 ∈ L∗
1, we have:

D(k1)− ωk1(−vα)D(α k1) = 0. (3)

Proof – sufficiency. The difference in (3) may be written as∑
k2:(k1,k2)∈L∗

C(k1, k2)G(k1, k2)
∫ y0

0

ωk2(y)dy. (4)

In each case we compute G(k1, k2) and use the conditions on L∗.
Suppose α+ ∈ J. Then all the Fourier coefficients of any f ∈ XΓ satisfy

C(k) = ωk(−v+)C(α+ k) and G(k1, k2) = 1−ωk(v+− (vα, 0)). Thus G(k1, k2) = 0
if 〈k, v+ − (vα, 0)〉 ∈ Z.

If (v−, α−) ∈ Γ then G(k1, k2) = 1− ωk(v− − (vα, y0)), since∫ y0

0

ω−k2(y)dy = ωk2(−y0)
∫ y0

0

ωk2(y)dy. (5)

Then G(k1, k2) = 0 if 〈k, v− − (vα, y0)〉 ∈ Z.
When both (v+, α+) and (v−, α−) lie in Γ then

G(k1, k2) = 1 + ωk(vσ)ωk2(−y0)− ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) .

Using ωk(v−) = ωk(vσ)ωk(σv+) and ωk(σv+ − v+) = 1 we get

G(k1, k2) = (1− ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) .

If either 1− ωk(v+ − (vα, 0)) = 0 or 1 + ωk(vσ − (0, y0)) = 0 then G(k1, k2) = 0.
It follows from the conditions on L∗ that for each k ∈ L∗ either

∫ y0

0 ωk2(y)dy =
0 or G(k1, k2) = 0 and thus (3) holds for all k ∈ L∗. �
Proof – necessity. For D′(δ, k) = ωδk(−vδ)

∫ y0

0
ωδk|2(y)dy, the projections of Ik,

with k ∈ L∗, are

Πy0(Ik)(x) =
∑

k̃1∈Jk|1
ωk̃1

(x)
∑

k̃2:(k̃1,k̃2)∈Jk

D′(δ, k̃),

where δk|j denotes the jth coordinate of δk. If Πy0(Ik) is (vα, α)-invariant then,
by (3), ∑

δ∈JI(k)

D′(δ, k)− ωk1(−vα)
∑

δ∈Jα(k)

D′(δ, k) = 0,
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where JI(k) = {δ ∈ J : δk|1 = k1} and Jα(k) = {δ ∈ J : δk|1 = α k1} . Let
JI = {I, σ} ∩ J and Jα = {α+, α−} ∩ J. We list some properties of JI(k) and
Jα(k) in Lemma 3.1 below. Then, in Lemma 3.2, we describe the set

O∗ =
{
k ∈ L∗ : JI(k) = JI ∧ Jα(k) = Jα

}
.

A geometrical characterization of the complement ofO∗ in L∗ is given in Lemma 3.3
and in Lemma 3.4 we reformulate the cases of Lemma 3.2 in terms of L∗ instead
of O∗, completing the proof. �

Lemma 3.1. For k ∈ L∗, the sets JI(k) and Jα(k) satisfy:

1. JI(k) = {δ ∈ J : δk = k ∨ δk = σk}.
2. Jα(k) = {δ ∈ J : δk = α+k ∨ δk = α−k}.
3. JI ⊂ JI(k) , Jα ⊂ Jα(k) and JI(0, 0) = Jα(0, 0) = J.
4. Let k = (k1, k2) �= (0, 0). If δ ∈ JI(k) − JI then δk = (k1,−|δ|k2) and if

δ ∈ Jα(k)− Jα then δk = α(k1,−|δ|k2), where |.| is the determinant.

Proof. Properties 1 and 2 follow by orthogonality of J and Property 3 is immediate
from this and the definitions.

For Property 4, let δ ∈ JI(k) − JI and k �= (0, 0). If δk = k then |δ| = −1,
since an element of O(2) with determinant 1, other than the identity, does not
fix any point besides the origin. Similarly if δk = σk then |σδ| = −1 and |δ| = 1.
Now suppose δ ∈ Jα(k) − Jα and k �= (0, 0). Thus, either α+δ = k or α+δ = σk.
As α+δ ∈ JI(k)− JI , we may apply the previous result to α+δ, and the property
follows. �

Lemma 3.2. Suppose that
∑

δ∈JI(k) D
′(δ, k) = ωk1(−vα)

∑
δ∈Jα(k) D

′(δ, k) for all
k = (k1, k2) ∈ L∗. Then one of the following cases holds:

1. JI = {I}, Jα = ∅ and O∗ ⊂ N ∗
y0

,
2. JI = {I, σ}, Jα = ∅ and O∗ ⊂

(
N ∗

y0
∪N ∗

σ

)
,

3. JI = {I}, Jα = {α+} and O∗ ⊂
(
N ∗

y0
∪M∗

+

)
,

4. JI = {I}, Jα = {α−} and O∗ ⊂
(
N ∗

y0
∪M∗

−
)
,

5. JI = {I, σ}, Jα = {α+, α−} and O∗ ⊂
(
N ∗

y0
∪M∗

+ ∪ N ∗
σ

)
.

Proof. If Jα = ∅ and k ∈ O∗ then by hypothesis
∑

δ∈JI D′(δ, k) = 0. By (5),
if σ ∈ J then (1 + ωk(vσ − (0, y0)))

∫ y0

0
ωk2(y)dy = 0 and

∫ y0

0
ωk2(y)dy = 0 if

σ �∈ J. Cases 1 and 2 follow because
∫ y0

0
ωk2(y)dy = 0 implies k ∈ N ∗

y0
and

1 + ωk(vσ − (0, y0)) = 0 implies k ∈ N ∗
σ .

In case 3 we have (1− ωk1(−vα)ωk(v+))
∫ y0

0
ωk2(y)dy = 0 and the result

follows because 1− ωk1(−vα)ωk(v+) = 0 implies k ∈M∗
+.

In case 4, (1− ωk1(−vα)ωk(v−)ωk2(−y0))
∫ y0

0 ωk2(y)dy = 0 and either k ∈
N ∗

y0
or 1− ωk1(−vα)ωk(v−)ωk2(−y0) = 0, which implies k ∈ M∗−.
The hypothesis in case 5 yields G(k1, k2)

∫ y0

0
ωk2(y)dy = 0, where

G(k1, k2) = 1 + ωk(vσ)ωk2(−y0)− ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) ,
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as in the proof of sufficiency in Proposition 2.1. Therefore, either k ∈ N ∗
y0

or
G(k1, k2) = 0. In the second case the result follows because either

(1− ωk(v+ − (vα, 0))) = 0 or (1 + ωk(vσ − (0, y0))) = 0. �

Let P∗ =
{
k ∈ L∗ : JI(k) �= JI ∨ Jα(k) �= Jα

}
be the complement of O∗ in L∗.

Lemma 3.3. P∗ lies in a finite union of lines through the origin.

Proof. P∗ may be written as a finite union of submodules

P∗ =
⋃

δ∈J−JI

M∗
δ,I ∪

⋃
δ∈J−Jα

M∗
δ,α

for M∗
δ,ξ = {k ∈ L∗ : δk = ξ(k1,−|δ|k2)} and ξ = I, α. If δ is a rotation then for

k ∈M∗
δ,ξ we have δk = ±(k1,−k2), i.e., k lies on the line fixed by ±σδ. Therefore

M∗
δ,ξ is the intersection of those lines with L∗. Similarly, if δ is a reflection then

M∗
δ,ξ is the intersection of L∗ with a line fixed either by δ or by −δ. �

Lemma 3.4. If
∑

δ∈JI (k) D
′(δ, k) = ωk1(−vα)

∑
δ∈Jα(k) D

′(δ, k) for all k = (k1, k2)
in L∗, then one of the following cases holds:

A. Jα = {α+} and L∗ = N ∗
y0
∪M∗

+,
B. Jα = {α−} and L∗ = N ∗

y0
∪M∗

−,
C. Jα = {α+, α−} and L∗ = N ∗

y0
∪M∗

+ ∪ N ∗
σ .

Proof. Let k ∈ L∗ − {(0, 0)} and observe that(
M∗

y0
∩ P∗)− {(0, 0)} = ∅. (6)

Let g = (1/n)k ∈ L∗, n ∈ Z, have minimal norm and choose h ∈ L∗ such that
L∗ = {g, h}Z . Let Q∗

k = {k + mh : m ∈ Z}. Since Q∗
k is contained in a line in R2

that does not go through the origin, by Lemma 3.3, the set Q∗
k ∩ P∗ is finite.

For k ∈ L∗ − {(0, 0)} there are three possibilities for Q∗
k ∩ N ∗

y0
: it is either

the empty set, or a set with only a point, or an infinite set of equally spaced
points. This happens because N ∗

y0
is a module and if k + m1h �= k + m2h ∈

Q∗
k ∩ N ∗

y0
, then (m2 − m1)h ∈ N ∗

y0
and {k + m1h + m(m2 −m1)h : m ∈ Z} is

a subset of
(
Q∗

k ∩ N ∗
y0

)
. A characteristic period, τy0 , is given by the smallest

difference between two elements of Q∗
k ∩ N ∗

y0
.

The same three possibilities hold for Q∗
k ∩N ∗

σ . Although N ∗
σ is not a module,

the smallest difference between two elements of Q∗
k∩N ∗

σ defines a period τσ ∈M∗
σ,

by (1). Thus, whenever Q∗
k ∩ N ∗

σ has more than one element, if k + m1h ∈ N ∗
σ

then {k + m1h + mτσ : m ∈ Z} = Q∗
k ∩ N ∗

σ .

Repeating the construction for Q∗
k ∩M∗

+ and Q∗
k ∩M∗

− we may define char-
acteristic periods τ+ and τ−, respectively, when these sets have more than one
element.
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We complete the proof following the cases of Lemma 3.2.
Case 1) From L∗ = N ∗

y0
∪ P∗, we get M∗

y0
⊂ P∗ and, by (6), M∗

y0
= {(0, 0)}.

Moreover, Q∗
k ∩ N ∗

y0
must be infinite because Q∗

k ∩ P∗ is finite. Thus, the period
τy0 exists and Q∗

k−N ∗
y0

is either empty or infinite. From
(
Q∗

k −N ∗
y0

)
⊂ (Q∗

k ∩ P∗)
it follows that L∗ = N ∗

y0
. Since σ ∈ J, then M∗

y0
�= {(0, 0)} and so case 1) cannot

occur.
Case 2) Here L∗ = N ∗

y0
∪ N ∗

σ ∪ P∗ which implies M∗
y0
⊂ (N ∗

σ ∪ {(0, 0)}), by (6).
Moreover, M∗

y0
�= {(0, 0)} since σ ∈ J. Suppose k̃ ∈ M∗

y0
and k̃ �= (0, 0), then,

k̃ ∈ N ∗
σ and 2k̃ ∈ M∗

y0
. However, 2k̃ /∈ N ∗

σ , by (1), and so case 2) is also impossible.

Case 3) We follow the arguments of case 1) using the least common multiple of
the existing periods, τy0 or τ+, instead of τy0 . Therefore k ∈

(
N ∗

y0
∪M∗

+

)
and

condition A follows because (0, 0) ∈M∗
+.

Case 4) This is like case 3) with M∗
− and τ− instead of M∗

+ and τ+, yielding
condition B.
Case 5) Here Q∗

k −
(
N ∗

y0
∪M∗

+ ∪ N ∗
σ

)
= ∅ because at least one of the periods τy0 ,

τ+ or τσ exists and condition C follows. �

The extension of this result to functions f : Rn −→ R, with n > 2, is in
preparation [9]. Condition C of the Proposition has a more complicated formulation
because σv+ − v+ ∈ L is not always true. Moreover, σ(L∗

1) = L∗
1 may also fail,

and thus condition (3) does not always hold. In higher dimension Lemma 3.3 no
longer holds and this in turn changes the proof of Lemma 3.4. However, the overall
structure of the proof remains.
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Modular Lines for Singularities of the T -series

Bernd Martin

Abstract. Unimodular functions have a µ-constant line in their miniversal
unfoldings. Their miniversal deformations on the other hand contain a non-
trivial τ -constant stratum only for the three cases of elliptic singularities. In
computer experiments we found six sub-series of the T -series, which have a
modular line in the their miniversal deformations. The singular locus of the
family restricted to such a line splits into an elliptic singularity and another
one of Ak-type, such that the deformation is τ -constant along the modular
line. Each modular line can be patched together with the modular line of the
associated elliptic singularity, completing it at infinity. All computations are
based on the author’s algorithm for computing modular spaces as flatness
stratum of the relative cotangent cohomology inside a deformation.

Mathematics Subject Classification (2000). Primary 14B07; Secondary 32S30.

Keywords. Unimodal Singularities, Deformations of singularities, Modularity.

1. Introduction

The notion of a modular space has been introduced for complete complex varieties
and for analytic polyhedron by Palamodov, and in a formal context by Laudal, cf.
[Pal78], [Pal93], [Lau79]. One possible approach to constructing a kind of moduli
of isolated singularities is restricting the miniversal family to subgerms that have
a universal property for all families induced from it.

The author has developed an algorithm for calculating non-trivial examples
of modular deformations for complete intersection singularities and for space curve
singularities by connecting the modular property with flatness of the relative Tju-
rina module, [Mar02], [Mar03]. Further extensions of that concept are described
in [HM04]. The flatness stratum may be computed by an obstruction calculus
for lifting flatness of relative Artinian modules. Hence we can compute the jets
of the flatness stratum. In general a power series representation of the defining
ideal of the stratum is unavoidable as output of the algorithm. But an algebraic
defining ideal of the flatness stratum is seen for small examples, as in the cases
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discussed below. The implementation and all computations are done in Singular,
[GPS02]. This has been described in detail elsewhere. Here we restrict ourselves
to applications of this algorithm.

We present a new perspective on the classification of complex unimodular
hypersurface singularities with respect to analytic K-equivalence of germs. In par-
ticular we can compute series of compactifications of the moduli line of the three
elliptic hypersurface singularities at infinity to a global modular deformation over
a projective line. Hence, the compactification of a modular family is not unique.
We find various splittings of the singularity under a modular deformation into a
multi-germ. They have inspired the idea for a general combinatorial pattern of
the modular strata of all T-series singularities. The existence of splitting lines can
be checked afterwards by hand. Other examples give rice to the formulation of
several hypotheses that are unproven so far. For completeness we also mention ex-
perimental results on the modular strata of the exceptional unimodular functions
obtained by computer experiments.

2. Modular deformations

First, recall the definition and some basic properties of modularity, cf. for instance
[Pal93], [Mar03], [HM04].

Definition 2.1. Let F : X → S be a deformation of a complex germ X0. A subgerm
M ⊆ S of the base germ is called modular if the following universal property holds:
If ϕ : T → M and ψ : T → S are morphisms such that the induced deformations
ϕ∗(F|M ) and ψ∗(F ) over T are isomorphic, then ϕ = ψ.

Note that a unique maximal modular germ exists with respect to any de-
formation. The maximal modular germs in different miniversal deformations of
X0 are isomorphic with a unique isomorphism of germs, by definition. Hence we
can speak of the modular space of the singularity X0. It is sufficient to check the
modular property for deformations over Artinian germs T . A representation of a
deformation X →M is called (globally) modular if any subgerm of the deforma-
tion is modular.

The above definition coincides with Laudal’s notion of a pro-representing
substratum of a deformation functor. The basic characterizations of modularity in
terms of the cotangent cohomology were already discussed by Palamodov and by
Laudal in different contexts.

Proposition 2.2. Given a miniversal deformation F : X → S of an isolated singu-
larity X0, the following conditions are equivalent for a subgerm of the base space
M ⊆ S:

i) M is modular.
ii) M is infinitesimally modular, i.e., injectivity of the relative Kodaira-Spencer

map T 0(S,OM ) −→ T 1(X/S,OS)|M holds.
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iii) M has the lifting property of vector fields of the special fiber: T 0(X/S,OS)|M
−→ T 0(X0,C)|M is surjective.

The tangent space of the modular space is identified with those tangent di-
rections in T (S) ∼= T 1(X0) on which the Lie bracket [−,−] : T 0 × T 1 → T 1 of the
tangent cohomology in degree (0, 1) vanishes.

The motivation for this notion is the following observation: Take a small
representation M of the modular germ M(X0). Isomorphisms of the fibers over
M induce a discrete equivalence relation onM. If there would be a ‘moduli space’
of singularities its germ at X0 must coincide with the quotient of M by the induced
equivalence relation. Hence, up to a finite covering the modular germ M should
coincide with the germ of the moduli space. If a separated moduli space were to
exist a modular family would have to have the following property:

A modular deformation over a punctured disc can be induced by at most
one modular deformation over the complete disc.

Below we give several counter examples to that property.
The third characterization implies that the support of the modular space

is the τ -constant stratum. The modular space of a quasihomogeneous isolated
complete intersection singularity is reduced, [Ale85]. Hence it is the smooth τ -
constant stratum corresponding to deformations on the Newton face. The ADE-
singularities (i.e., the simple ones) are all quasihomogeneous. Their zero-graded
part of the Tjurina algebra T 1(X0)0 vanishes and there are no deformations on
the Newton face, hence the modular spaces are simple points.

In general, we have to expect a complicated non-reduced structure on the
modular space. While the singular locus of a µ-constant family is always irreducible
a splitting singular locus over a τ -constant family was first found in [Mar02] by
computing non-trivial examples of modular spaces. More examples are given below.

Our algorithm for computing the modular spaces is based on the flatness
criterion, here formulated for our situation.

Proposition 2.3.
Let X0 be an isolated complete intersection singularity with miniversal deformation
F : X → S. Then the modular space coincides with the flatness stratum of the
relative Tjurina module T 1(X/S) as OS-module.

3. Unimodular singularities

Recall the classification of the unimodular hypersurface singularities. We find 14
exceptional singularities and the singularities of the T -series, [AGZV85]. We may
restrict the discussion to three variables, because the co-rank of the Hessian of these
singularities is either 2 or 3. It is easy to check that any exceptional one-parameter
unimodular unfolding is written as f0(x)+λh(x), where f0(x) is quasihomogeneous
and h(x) the associated Hesse monomial, i.e., the class of the determinant of the
Hesse matrix of f0 modulo the Jacobian ideal J(f0). Such a family splits into two
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K-classes: A quasihomogeneous one (λ = 0) and a semi-quasihomogeneous one of
Hesse-type (λ �= 0).

The singularities of the T -series are defined by the equations

Tp,q,r : xp + yq + zr + λxyz,
1
p

+
1
q

+
1
r
≤ 1.

For
1
p

+
1
q

+
1
r
< 1, λ �= 0, the singularity Tp,q,r is called hyperbolic and its K-

class is independent of λ. The Newton boundary has three maximal faces and
the singularity is neither quasihomogeneous nor semi quasihomogeneous. We have
τ(Tp,q,r) = µ(Tp,q,r)− 1 = p + q + r − 2.

In exactly three cases we have
1
p

+
1
q

+
1
r

= 1 and the singularities are quasi-

homogeneous. They are called the parabolic singularities P8, X9 and J10 in Arnold’s
notation or elliptic hypersurface singularities Ẽ6, Ẽ7 and Ẽ8, in K. Saito’s paper,
[Sai74]:

Ẽ6 = P8 = T3,3,3 : x3 + y3 + z3 + λxyz, λ3 �= −33, τ = µ = 8;
Ẽ7 = X9 = T4,4,2 : x4 + y4 + z2 + λxyz, λ4 �= 26, τ = µ = 9;
Ẽ8 = J10 = T6,3,2 : x6 + y3 + z2 + λxyz, λ6 �= 2433, τ = µ = 10.

It is well known that the K-class is not determined by λ. The K-equivalence induces
a discrete equivalence relation on the λ-line with the indicated gaps. Its quotient is
an affine line parametrized by the classical j-invariant of elliptic curves, i.e., a real
sphere with one gap. Other normal forms of the elliptic singularities exists, where
the connection to elliptic curves and the j-invariant is better seen, for instance:

Ẽ6 : x(x − y)(x− νy)− yz2,
Ẽ7 : xy(x − y)(x− νy)− z2,
Ẽ8 : x(x − y2)(x− νy2)− z2,

and ν ∈ C− {0, 1}, j =
4
27

(ν2 − ν + 1)3

ν2(ν − 1)2
, see [Sai74].

Note, that the families T4,4,2(λ) and T6,3,2(λ) are not contained in a miniver-
sal family. They form a double covering of the τ -constant line in a miniversal
deformation, which can be realized by the substitution z �→ z − (1/2)λxy:

x4 + y4 + z2 + λxyz �→ x4 + y4 + z2 − 1
4
λ2x2y2,

x6 + y3 + z2 + λxyz �→ x6 + y3 + z2 − 1
4
λ2x2y2.

In all three cases the K-equivalence relations on the ν-lines are induced by an
action of the permutation group S3, while on the λ-lines the relations are induced
by more complicated actions of finite groups. The tetrahedron group A4 acts on
the λ-line of the Hesse normal form of cubics T3,3,3. The action is described with
all details in the book of Brieskorn and Knörrer, cf. [BK81]. The obvious action
by the third (resp. 4th and 6th root of unity) does not give the full equivalence
relation.
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4. Modular spaces of hyperbolic singularities

Hyperbolic singularities are the first type, that has a Newton boundary with more
than one maximal face. We want to find the modular spaces, expecting either a
fat point or a germ of a curve. A miniversal deformation is given by the family

F (x, y, z, t, u, v) := f + t0 +
p−1∑
i=0

tix
i +

q−1∑
j=0

ujx
j +

r−1∑
k=0

vkx
k.

By a direct computation of the Lie bracket we obtain the dimension of the tangent
space of the modular spaces equal to the co-rank of the singularity.

Proposition 4.1. For a hyperbolic singularity Tp,q,r, 1
p + 1

q + 1
r < 1, the tangent

directions of the modular space in miniversal family F given above are correspond-
ing to the monomials {xp−1, yq−1, zr−1} if p ≥ q ≥ r > 2, or {xp−1, yq−1} if
p ≥ q ≥ r = 2 respectively.

Proof. We only discuss the case r > 2. The annihilator of f in the Milnor alge-
bra is the maximal ideal, Ann(f) = (x, y, z) mod (J(f)), because τ = µ − 1.
Consequently T 0(f) is generated as module by three derivations δx, δy, δz. A
derivation δx with δx(f) = xf is given by δx := ( 1

px
2 + εyq−2zr−2) ∂

∂x + (1
qxy −

εzr−1) ∂
∂y + (1

rxz + εyz) ∂
∂x , with ε := (1 − 1

p −
1
q −

1
r )(1 + xp−3yq−3zr−3)−1 a

unit. Interchanging the variables cyclically we find the other derivations. The Lie
bracket [δ, t], δ ∈ T 0(f) and t ∈ T 1(f), is defined by the class of (δ(t) − hδt) in
T 1(f) ∼= C{x, y, z}/(f, J(f)), where δ(f) = hδf . We get [δx, x

p−1] = ( 1
p − 1)xp

mod (f, J(f)) and [δx, t] = 0 for all t �= xp−1 from a monomial basis of T 1(f). �

Careful inspection identifies six hyperbolic singularities with a τ -constant
line in the miniversal deformation. They are characterized by the condition that
exactly one of the parameters (p, q, r) differs by one from one of the elliptic types:

Proposition 4.2. The following hyperbolic singularities are adjacent to an elliptic
singularity with the same Tjurina number:

T4,3,3 =⇒ Ẽ6,

T4,4,3, T5,4,2 =⇒ Ẽ7,

T6,3,3, T6,4,2, T7,3,2 =⇒ Ẽ8.

They have a one-parameter τ-constant family in their miniversal deformations.

For instance the family ft := x4 + y3 + z3 + xyz + tx3 in t is a τ -constant
deformation, hence the base line-germ is contained in the modular space of T4,3,3.
The generic fiber singularity is Ẽ6. Moreover, this modular deformation fits into
the λ-line of Ẽ6(λ) at infinity: ft ∼K Ẽ6(t(−1/3)) for t �= 0. More exactly, the
inducing morphism is a threefold covering from the t-line, t �= 0, to the λ-line,
λ �= 0. The same holds in the other cases in a similar way. At least for Ẽ7 and Ẽ8

there are, hence, different ways to compactify the j-line at infinity.
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The t-line is the reduced τ -constant stratum over the zero-section of the
miniversal family, but it cannot be the whole modular space, because of the em-
bedding dimension is greater than one. Indeed we find by computer in four cases
as modular space the t-line with an embedded fat point. For the remaining two
cases the Hilbert function of the local ring of the modular space stabilizes with
value 2 for T6,4,2 and with value 3 for T6,3,3, causing two or three branches in the
modular space. Clearly we have two copies of a τ -constant line by symmetry in
y, z for T6,3,3. The other two components turn out to be splitting lines, see below.
We list the equations of modular spaces and their primary decomposition for three
of the indicated cases as example:

The ideal of the modular space of T4,3,3 is given by
(t0,t1,t2,7u1 + 6t3v2,v1 + 6v2

2 ,t3u2 − 7v2
2 ,7u2

2 − t3v2,u2v2,t23v2,t3v2
2 ,v3

2).
It has two primary components: The line defined by the ideal

(t0,t1,t2,u1,u2,v1,v2)
and a fat point of multiplicity 6 with equations

(t0,t1,t2,7u1 + 6t3v2,v1 + 6v22,t23,t3u2 − 7v2
2 ,7u

2
2 − t3v2,u2v2,t3v2

2 ,v
3
2).

The ideal of the modular space of T4,4,3 has the following form
(v1,t0,u3v2−14t1,u2v2,u1v2,t3v2−14u1,t2v2,t1v2,3u2

3−16u2,u2u3+12u1,
u1u3, t3u3,t2u3,t1u3,u2

2,u1u2,t3u2,t2u2,t1u2,u2
1,t3u1,t2u1,t1u1,3t23−16t2,-

t2t3 + 12t1,t1t3,t22,t1t2,t
2
1).

It has two primary components: The line defined by ideal
(v1, u3, u2, u1, t3, t2, t1, t0)

and a fat point of multiplicity 8 with equations
(v1, t0, v2

2 , u3v2 − 14t1, u2v2, u1v2, t3v2 − 14u1, t2v2, t1v2, 3u2
3 − 16u2,

u2u3 + 12u1, u1u3, t3u3, t2u3, t1u3, u2
2, u1u2, t3u2, t2u2, t1u2, u2

1, t3u1,
t2u1, t1u1, 3t23 − 16t2, t2t3 + 12t1, t1t3, t22, t1t2, t

2
1).

The modular space of T6,4,2 is given by the ideal
(u2,u1,t3,t2,t1,t0,v2

1 ,u3v1,t5v1,t4v1,t5u3 − 20v1,t4u3,t25 − 4t4).
It has three primary components: The expected line defined by the ideal

(v1, u2, u1,t5,t4,t3,t2,t1,t0) ,
another line (a splitting line, see below) defined by

(v1,u3,u2,u1,t3,t2,t1,t0,t25 − 4t4),
and a fat point of multiplicity 4 with equations

(u2,u1,t4,t3,t2,t1,t0,v2
1 ,u3v1,t5v1,u2

3,t5u3 − 20v1,t25).
For all other hyperbolic singularities the Tjurina number at the origin drops

outside the special fiber (t, u, v) �= 0. Hence, one should expect a zero-dimensional
modular space. Using the computer we obtain the jet of the modular space up to
high order for all small values of the parameters (p, q, r). In many cases the output
was a fat point as expected, but in various cases the Hilbert function stabilized
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at a value of 1, 2 or 3. This would imply one or more curve components in the
modular space.

A careful analysis of the computable examples yields a combinatorial pattern
of modular curves. Any of the six exceptional cases from above is the first member
of a sub-series: These series are characterized by the property that two indices
coincide with the indices of an elliptic singularity:

Tk,3,3, k > l = 4, associated to Ẽ6,
Tk,4,2, k > l = 5, associated to Ẽ7,
Tk,4,4, k > l = 3, associated to Ẽ7,
Tk,3,2, k > l = 7, associated to Ẽ8,
Tk,6,2, k > l = 4, associated to Ẽ8,
Tk,6,3, k > l = 3, associated to Ẽ8.

We can determine the curve components as smooth branches, such that the critical
locus of the induced deformation over any branch is reducible and has constancy
of the global Tjurina number of the singular multi-germ of the fibers.

Proposition 4.3. Let f0 be one singularity of one of the above series, d := k − l,
then

i) the ideal

(t0, . . . tl−1, g2, . . . , gd, u, v), gi :=
(
d

i

)
tik−1 − ditk−i,

defines a modular line of the singularity f0,
ii) the corresponding modular family of multi-germs fa = f0 +xl(x+a)d, a ∈ C,

is τ-constant, and
iii) the modular family has a splitting singular locus if d > 1: the singularity at the

origin of the special fiber {f0 = 0} splits for a �= 0 into the associated elliptic
singularity at the origin of the general fiber {fa = 0} and an Ad−1-singularity
at the point (−a, 0, 0).

Proof. The last statement is checked by inspection. The equation fa = 0 defines
obviously at zero the associated elliptic singularity. Substituting x := x − a we
obtain fa(x − a, y, z) = xd(x − a)l + yq + zr + xyz − ayz. This function has an
Ad−1-point at the origin. Moreover the critical point (−a, 0, 0) of fa moves to the
origin with a→ 0.

Consider an affine family of hypersurfaces V (fa(x)) ⊂ An × A1, a ∈ A1.
Its global Tjurina number, i.e., the sum of Tjurina numbers of all singularities in
the fiber is semi-continuous: τa =

∑
p∈Sing(fa) τ(fa, p) ≤ τ0. Consider only those

components of the relative singular locus V (fa, ∂fa/∂x) that contain the origin
(0, 0) ∈ An × A1. We add only the Tjurina numbers of singular point of these
components. This restricted Tjurina number is a global Tjurina number of a multi-
germ formed by the associated singularities of the fiber. It is still semi-continuous.
The germ at the origin of the special fiber deforms into this multi-germ. If the
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restricted Tjurina number of the multi-germ is equal to τ(f0, 0), it has to be a
τ-constant family of multi-germs.

The difference of τ(f0, 0) and the Tjurina number of the associated elliptic
singularity is (d−1). By semi-continuity any other component besides that of the
Ad−1-points of the relative singular locus of the affine family cannot contain the
origin. Hence the singularity of the special fiber splits exactly into two singularities,
this splitting is τ -constant and the family is modular. �

Note that only the leading singularity of each sub-series does not have a
splitting locus. On the other hand five special cases exist which have more than
one modular line: three cases with two modular lines and two cases with three
modular lines. They correspond either to overcrossings of the series or to extra
symmetries with respect to variables:

Corollary 4.4.

i) T6,3,3 has three modular lines, one line of splitting singular type Ẽ6 +A2 and
two lines of singular type Ẽ8.

ii) T4,4,4 has three modular lines all of splitting singular type Ẽ7 + A1.
iii) T6,4,2 has two modular lines, one of splitting singular type Ẽ7 + A1 and one

line of singular type Ẽ8.
iv) T6,6,2 has two modular lines, both of splitting singular type Ẽ8 + A2.
v) T6,6,3 has two modular lines, both of splitting singular type Ẽ8 + A3.

We cannot proof that we have found all modular spaces of the T -series with
a one-dimensional support. But all computed examples underline this hypothesis:

The above modular lines are all occurring modular curves. The modular
lines are primary components of the modular spaces.

The modular spaces of these singularities has another embedded fat point at the
origin in all known examples with the exception of the very symmetric case T4,4,4.
All other modular spaces are expected to be zero-dimensional.

5. Modular fat points of exceptional unimodular functions

For completeness we give the result for the 14 exceptional unimodular singularities.
We already pointed out that the modular space for the quasihomogeneous K-
class of an exceptional singularity is a simple point. The semi-quasihomogeneous
ones are of Hesse type and have a trivial τ -constant stratum, too. This holds for
nearly all singularities of Hesse type, apart from few exceptional cases, where a
monomial of type h(x)/xi lies on the quasi-homogeneous face. Our list does not
contain any such exceptions. Hence their modular spaces are fat points. They
are all computable. The results are listed below. We get the following surprising
coincidence of Hilbert functions of the Milnor algebra Q(f) = C{x}/J(f) and the
local ring of the modular space:
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Proposition 5.1. The 14 exceptional unimodular semi-quasihomogeneous functions
f = f0 + h have a fat point modular space M(f) of multiplicity τ + 1. It holds

hilb(OM(f)) = hilb(Q(f)) = hilb(Q(f0)).

We shall discuss one example:
S11 : f0 = x4 + y2z + xz2, h = x3z, τ(f) = 10.

A miniversal deformation is given by
F = f + t1 + t2x+ t3y+ t4z+ t5x

2 + t6xy+ t7xz+ t8x
3 + t9x

2y+ t10x
2z.

We compute the reduced standard basis of the ideal of the fat point modular space.
It is generated by 12 polynomials:

p1 = 4t1 + t310t8,
p2 = 132300 t2− 44100 t210t8+ 40729 t310t8,
p3 = 11t3− 3t210t9,
p4 = 19404000 t4− 3880800 t310+ 12012000 t210t8− 5681813 t310t8,
p5 = 465696000 t5+ 232848000 t10t8− 279417600 t310+ 744282000 t210t8

− 386202211 t310t8,
p6 = 1617 t6+ 693 t10t9− 359 t210t9,
p7 = 1397088000 t7+ 465696000 t210− 1047816000 t10t8+ 312404400 t310

− 811849500 t210t8+ 409182569 t310t8,
p8 = 7276500 t29+ 3234000 t10t8− 1455300 t310+ 4398625 t210t8− 2053928 t310t8,
p9 = 231t9t8− 52t210t9,
p10 = 1293600 t28− 1293600 t310+ 3742200 t210t8− 1893181 t310t8,
p11 = 1155 t410− 4121 t310t8,
p12 = t310t9.

The first 7 polynomials are of the form ti + gi(t8, t9, t10), i = 1, . . . , 7. Hence
the local ring OM of the fat point is isomorphic to C{t8, t9, t10}/(p8, . . . , p12). Its
Hilbert sequence (1, 3, 3, 3, 1) coincides with that of the Milnor algebra. It is not
clear if OM and Q(f) are isomorphic.

6. More questions than answers

The computer based investigation of the unimodular function open a number of
new questions and hypotheses. Any splitting line of a hyperbolic singularity can be
considered as a compactification of the j-line of the associated elliptic singularity
that induces a (globally) modular family. Hence the gap of the j-line can be closed
by a singularity of arbitrarily high Tjurina number and possibly with greater
corank 3 > 2. One may ask:
• Are there other singularities compactifying the j-lines (of higher co-rank or

non-hypersurfaces)?
• Are there other types of the splitting singular point than Ak?
• Are there examples with more than one splitting point?
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Hyperbolic singularities, which do not belong to one of the above sub-series
are expected to have a fat point modular space. As all examples fulfil the statement
(5.1), one may hypothesise:

Any hyperbolic singularity f0 not belonging to one of the six sub-series
fulfill the Hilbert function equality: hilb(OM(f0)) = hilb(Q(f0)).

These singularities are not of Hesse type. The only similarity of these singularities
is the difference of Milnor number and Tjurina number µ − τ = 1. Whilst the
involved computations are highly non-trivial, there is some hope to show that it
is more than a strange coincidence.
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Do Moduli of Goursat Distributions Appear
on the Level of Nilpotent Approximations?

Piotr Mormul

Abstract. It is known that Goursat distributions (subbundles in the tangent
bundles having the tower of consecutive Lie squares growing in ranks very
slowly, always by one) possess, from corank 8 onwards, numerical moduli of
the local classification, in both C∞ and real analytic categories. (Whereas
up to corank 7 that classification is discrete, as shown in a series of papers,
the last in that series being [13].)
A natural question, first asked by A.Agrachev in 2000, is whether the moduli
of Goursat distributions descend to the level of nilpotent approximations:
whether they are stiff enough to survive the passing to the nilpotent level.
In the present work we show that it is not the case for the first modulus
appearing in corank 8 (and the only one known to-date in that corank).

Mathematics Subject Classification (2000). Primary 58A30; Secondary 58K50,
17B66, 17B30.

Keywords. Nilpotent approximation, Goursat distribution, local classification,
continuous invariant, modulus.

1. Introduction

We want to use throughout the present work several notions related to the nilpotent
approximations of geometric distributions. Those approximations have been, over
the past 30 years, rather painfully finding their way to the mathematical usage, in
different contexts and under different names. We just say that they can be viewed
as a far reaching generalization of the notion of linearization of a single vector field.
The linearization of a vector field v at a point, although simplifying geometry a big
deal, retains some basic local properties of v. Likewise, the nilpotent (or graded)
approximations simplify enormously the geometry of distributions without losing
the most essential (mainly nonholonomic) traits of them.

Research supported by Polish KBN grant 2 P03A 010 22.
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In a coordinate language, first steps bringing those objects to existence were
made in [9] and decisive ones in [4], [2], [8], with substantial later simplifications
proposed in [6]. Local coordinates in which nilpotent approximations can be viewed
(something like night glasses in nonholonomic geometry) have a separate history
of their own. They are useful in sub-Riemannian geometry, too, from the basic
(nonholonomic) Ball-Box Theorem onwards – see [6] and the entire book Sub-
Riemannian Geometry containing that contribution. We note that there exists
also a purely sub-Riemannian version of nilpotent approximations, introduced (and
used) in [3]. On the coordinate-free side there exists a keystone (if not published)
short text [1] and recent contribution [5], itself a forerunner to a bigger work.

The adjective ‘nilpotent’ is related to the fact that, whatever local gener-
ators of a given distribution D, the simplified (or: trimmed) generators of the
approximation around a point p generate a nilpotent Lie algebra, over the reals, of
precisely known nilpotency order stemming from the geometry of D in the vicinity
of p – equal to the nonholonomy degree of D at p. (In [5] there is given a much
deeper explanation and interpretation of nilpotent approximations making refer-
ence to the concept of nonholonomic tangent spaces.) In the present paper, we will
consequently use the abbreviation NA for ‘nilpotent approximation’.

Until recently, not many examples of NAs have been effectively computed in
dimensions exceeding four (in [2] examples are just illustrating definitions and are
mainly in dimension 3, in [19] – in dimension 5, in [14] – in dimension 6). The
analysis of invariant parameters (moduli) in families of distributions and their
hypothetical surviving after descending to the simpler level of NAs has – to our
knowledge – not yet been investigated.

An ideal environment for these directions of research seems to be the world
of Goursat distributions. On the one side, they are sufficiently tight and possessing
clear polynomial presentations as to allow for efficient computations. For instance,
they are free of functional moduli. On the other, are abundant with numeric
moduli, found not earlier than in the end of XX century. In fact, the very question
of the descending of moduli of Goursat objects to the nilpotent level was asked by
Agrachev in the year 2000 and has since sparked an entire line of work, like [14]
or [17], leading also to the present text.
It is known that the moduli of Goursat objects show up not earlier than in corank 8.
As a matter of fact, in corank 8, to-date only one 1-parameter family F of pairwise
nonequivalent (and also unimodal in Arnold’s sense) germs has been found; in
certain appropriate local coordinates these are the objects (5.1).

The aim of the paper is to show, in our Theorem 5.1, that, despite strong
opposite expectations, that modulus of Goursat distributions does not descend to
the nilpotent approximations. The message of the paper is that all NAs of the
objects in the family F can be computed to the very end and turn out to be
pairwise equivalent, hence moduliless.

The techniques used in the paper can be divided into two categories. In the
(more elementary) beginning they consist of our shortcuts to a procedure proposed
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by Belläıche in [6]. Those shortcuts were developed recently in [14] and [17] for
the computation of NAs of Goursat germs in dimensions not exceeding 8. When
applied to the objects treated in [17], they quickly lead to the very output of
the (long) algorithm of [6]. The objects addressed in the present paper live in
dimension 10 but have some affinity to those handled in [17] (are their two steps’
prolongations, or: grandchildren). Because of that computing the NAs for them
can spring from those previously done computations.
In the (more advanced) continuation the handling of the members of F goes well
beyond the Belläıche procedure. In that advanced part we have not even attempted
to apply his algorithm to F .1 Instead, we exploit to the limit the particular Goursat
character of our distributions and produce needed adapted coordinates in a concise
way. That main body of the paper is included in Section 5, with all turning points
(but not all underlying computations) presented.
We note here that our procedures work thanks to a series of surprising properties
of the members of F which enormously simplify computations. In Section 5.5, we
nickname those mysterious properties ‘the flatness of Goursat distributions’.

2. Nilpotent approximation of a distribution at a point

For any distribution D of rank d on an n-dimensional, smooth or real analytic,
manifold M (i. e., a rank-d subbundle in the tangent bundle TM) its small flag is
the nested sequence

V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ · · ·
of modules (or: presheaves of modules) of vector fields, of the same category as M ,
tangent to M : V1 = D, Vj+1 = Vj + [D, Vj ] for j = 1, 2, . . . The small growth
vector at p ∈M is the sequence (nj) of linear dimensions at p of the modules Vj :
nj = dimVj(p). Naturally, n1 = d independently of p.

D is completely nonholonomic when at every point of M its small growth
vector attains (sooner or later) the highest value n = dimM . We truncate that
vector after the first appearance of n in it. The length dNH of the truncated vector
is called the nonholonomy degree of D at p.

In the theory that we only sketch here (cf. [9], [2], [8], [6]; this list is not
complete) important are the weights wi related to the small flag at a point: w1 =
· · · = wd = 1, wd+1 = · · · = wn2 = 2 (no value 2 among them when n2 = n1 (=
d), and generally

wnj+1 = · · · = wnj+1 = j + 1
(no value j + 1 among the w’s when nj = nj+1) for j = 1, 2, . . .

Definition 2.1. For a completely nonholonomic distribution D on M , coordinates
z1, z2, . . . , zn around p ∈ M (centered at p) are linearly adapted at p when
D(p) = (∂1, . . . , ∂d), V2(p) = (∂1, . . . , ∂d, . . . , ∂n2), and so on until VdNH(p) =

1 When applied with naked force, it quickly becomes cumbersome. There will be, in our opinion,
no Belläıche algorithm’ software for many years to come.
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(∂1, . . . , ∂n) = TpM . Here and in the sequel we skip writing ‘span’ before a set of
vector fields’ generators.
For such linearly adapted coordinates one defines (as in [6]) their weights w(zi) =
wi, i = 1, . . . , n.

On the other hand, given a completely nonholonomic D, every smooth function f
on M has, at any point p ∈ M , its nonholonomic order nord(f) with respect to
D (for simplicity of notation, we skip writing its dependence on p). By definition,
it is the minimal order of a nonholonomic derivative of f that is non-zero at p.2

It follows directly from the above definitions that, for linearly adapted coordinates,
their nonholonomic orders do not exceed their weights.

Definition 2.2. Linearly adapted coordinates z1, . . . , zn are adapted when nord(zi)
equals w(zi) for i = 1, . . . , n.

It is rather laborious to show, but adapted coordinates always exist, see in this
respect [2], [8], [6], [19]. (This last and recent reference summarizes on Belläıche’s
variables in a way perhaps more readable than [6] itself.) Moreover, adapted vari-
ables are by far not unique; there remains plenty of freedom behind the requirement
being imposed on linearly adapted coordinates that the nonholonomic orders be
maximal possible. On the other hand, by certain omissions, there occasionally
appear in the literature (e.g., Theorem 1.5 in [7]) too simplistic formulae for up-
grading linearly adapted variables to adapted ones.

ln adapted coordinates it is reasonable to attach quasihomogeneous weights
also to monomial vector fields (this definition goes back to the work [18] in the
theory of differential operators; for geometric distributions see in this respect [2],
p. 215). Namely,

w(zi1 · · · zik
∂j) = w(zi1 ) + · · ·+ w(zik

)− w(zj) . (2.1)

The gist of the concept of adaptedness resides in the following

Proposition 2.3. Every smooth vector field X with values in D has in its Taylor
expansion, in arbitrary coordinates adapted for the relevant germ of D, only terms
of weights not smaller than −1 that can be grouped in homogeneous summands
X = X(−1) + X(0) + X(1) + · · ·
(superscripts mean the weights defined by (2.1) ). We denote by X̂ the lowest
(‘nilpotent’) summand X(−1). That is, X̂ = X(−1).
When a distribution D has around p local generators (vector fields) X1, . . . , Xd,
then

Definition 2.4. The distribution D̂ =
(
X̂1, . . . , X̂d

)
, defined on M locally around

p, is called the nilpotent approximation of D at p.

It is proved in Proposition 5.20 in [6] that this object D̂ is well defined, indepen-
dently of the adapted coordinates being used. Its basic property is

2 +∞ is not excluded.
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Proposition 2.5. At the reference point p, the small flag of D̂ coincides with that
of D at p. Hence D̂ has at p the same small growth vector as D (and hence the
same nonholonomy degree dNH, too).

This property is crucial. It shows that, in the occurrence, much simpler ob-
jects retain some basic geometric characteristics of the initial objects. One can
deeply trim a distribution germ without losing essential information! This op-
portunity can only support one’s hope for the survival of moduli in nilpotent
approximations.

Attention. There is, however, one warning pointing in the opposite direction: un-
like the small growth vector at the reference point, the big growth vector of a
distribution D at a point (the sequence of linear dimensions at a point of the
big flag of D – the tower of modules of vector fields – consecutive Lie squares
D ⊂ [D, D] ⊂ [[D, D], [D, D]] ⊂ · · · ) is not preserved under passing to the
approximation. See in this respect Corollary 4.3 later on, and also pp. 258–59 in
[14]. One time the proof of Theorem 5.1 finished, Corollary 5.3 shows that poor
performance of the big flag also for the members of the family F .

3. Kumpera-Ruiz normal forms for Goursat distributions

In the sequel we deal uniquely with Goursat distributions – a rather restricted
class of objects for which preliminary (local) polynomial normal forms of [11] exist
with real parameters only, and no functional moduli.

A distribution D ⊂ TM is Goursat when it is rank-2 and the big growth
vector of D is, at every point p ∈M , just [2, 3, 4, . . . , n−1, n], where n = dimM ≥
4. The number n− 2 ≥ 2 is called the length of the [big] flag of D.
(Sometimes the assumption rkD = 2 is being dropped in this definition, like, for
instance, in [12], [15], [16]. Both variants locally lead to the same theory, because
there always splits off an integrable corank-2 subdistribution in D. In fact, that
splitting object is the Cauchy-characteristic subdistribution of D.)

There exists a very basic partition of Goursat germs into disjoint geometric
classes encoded by words of length n− 2 over the alphabet G, S, T, with two first
letters always G and such that never a T goes directly after a G. Their construction
has its roots in the pioneering work [10] of Jean, in which the author used a
trigonometric, not polynomial, presentation of Goursat objects. That construction,
with some natural subsequent improvements, has been reproduced in detail in
Section 1.1 of [16].

In dimension 4 there is but one class GG, in dimension 5 – only GGG and
GGS, in dimension 6 – GGGG, GGSG, GGST, GGSS, GGGS.

The union of all geometric classes (‘quarks’) of fixed length with letters S in
fixed positions in the codes is called, after [12], a Kumpera-Ruiz class (a ‘particle’)
of Goursat germs of that corank. For instance, in dimension 6 the two geometric
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classes GGSG and GGST build up one KR class ∗ ∗ S ∗. In dimension 7 the
geometric classes GGSGG, GGSTG, and GGSTT build ∗ ∗ S ∗ ∗, etc.

What are the mentioned polynomial (local) presentations of Goursat ob-
jects? The essence of the contribution [11], given in the notation of vector fields
and taking into account posterior works, is as follows. One constructs first a
(not unique, depending on a number of real parameters) rank-2 distribution on
(Rn(x1, . . . , xn), 0) departing from the code of a geometric class C.

When the code starts with precisely s letters G, one puts
1

Y = ∂1,
2

Y =
1

Y + x3∂2 , . . . ,
s+1

Y =
s

Y + xs+2∂s+1. When s < n− 2, then the (s + 1)st letter in

C is S. More generally, if the mth letter in C is S, and
m

Y is already defined, then
m+1

Y = xm+2
m

Y + ∂m+1 .

But there can also be T’s or G’s after an S. If the mth letter in C is not S, and
m

Y
is already defined, then

m+1

Y =
m

Y +
(
cm+2 + xm+2

)
∂m+1 ,

where a real constant cm+2 is not absolutely free but
• equal to 0 when the mth letter in C is T,
• not equal to 0 when the mth letter is G going directly after a string ST. . .T

(or after a short string S).

Now, on putting X = ∂n and Y =
n−1

Y , and understanding (X, Y) as the germ
at 0 ∈ Rn, we have

Theorem 3.1 ([11]). Any Goursat germ D on a manifold of dimension n, sitting in a
geometric class C, can be put (in certain local coordinates) in a form D = (X, Y),
with certain constants in the writing of the field Y corresponding to G’s past the
first S in C.

This will be the main tool for us. In the next Section it will be applied to
one particular geometric class in length 6 whose NAs have been computed in [17].
We mean the class C = GGSGSG. It is the (double) prolongation by the sequence
SG of the very class GGSG in length 4 in which there was discovered, [14], the
phenomenon of the loss of strong nilpotency among nilpotentizable (that is, in our
terminology, weakly nilpotent) distributions. Note also that one more sequence
SG of prolongations makes from C the family F = GGSGSGSG – the object of
the present work.

In order to show how quickly the complexity of the nilpotent matter grows,
let us mention that the NAs for GGSG were computed in hours and just waited
for an interpretation. Later the NAs for C were computed in weeks, then still
needed a substantial simplification, and eventually suggested that the loss of strong
nilpotency was likely to be frequent in Goursat world. Whereas the computation
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of NAs for GGSGSGSG was scattered over an interval of years (Section 5 shows
the essence of those developments) and the answer it brought was unexpected.

Open Question. In the paper’s end, in Remark 5.4 we list an infinite series of mul-
ti-modal Goursat distributions for which Agrachev’s question is widely open. And
right here point to one geometric class GGGSGSGGG that also conceals, [15], a
modulus of the local classification. This class, although living in the underlying di-
mension 11, not 10, is simpler than F . For it is of codimension 2, not 3 like F (codi-
mension of a geometric class, cf. [16], is the number of not G letters in its code).
This notwithstanding, we do not know if its modulus descends to the NA’s level.

4. Nilpotent approximation in the class GGSGSG

In order to close up the subject, we apply Theorem 3.1 to Goursat distributions liv-
ing on 8-dimensional manifolds, around points where their germs sit in the geomet-
ric class GGSGSG. For a given such germ D, in certain coordinates x1, x2, . . . , x8

in R8, one has

D = (X, Y) =
(
∂8, x5x7∂1+x3x5x7∂2+x4x5x7∂3+x7∂4+X6x7∂5+∂6+X8∂7

)
,

(4.1)
the germ at 0 ∈ R8, where, for simplicity, the constant in X6 = 1 + x6 is already
normalized to 1, and the constant c in X8 = c+x8 is not zero.3 The small growth
vector of D at the reference point can be either computed directly or found in the
literature. It is, and independently of c, [2, 3, 4, 52, 62, 74, 8], where the subscripts
in this context mean (here and in the sequel) the numbers of repetitions of a given
integer. Therefore, the weights wi (i = 1, . . . , 8) are

1, 1, 2, 3, 4, 6, 8, 12. (4.2)

Due to nonzero constants present in (4.1), the original variables x1, . . . , x8 are
not linearly adapted. Watching the small flag of the distribution (4.1) at 0 and
improving the x variables accordingly, the coordinates

x8, x6, x7 − cx6, x4, x5 − x4, x1, x3, x2 (4.3)

already are linearly adapted and so get their respective weights (4.2). One of
objectives in [17] was to improve further the functions (4.3), keeping their linear
parts at 0, to certain adapted coordinates z1, z2, . . . , z8. To that end, we firstly
applied the recursive procedure from [6]. Later we found a much shorter way,
consequently exploiting the Goursat character of the objects. Arriving in both
cases at exactly the same adapted variables upgrading (4.3). Namely,

z1 = x8 , z2 = x6 , z3 = x7 − cx6 , z4 = x4 − c

2
(
x6

)2
, (4.4)

3 this c could also be normalized to 1 but we refrain from doing so in order to better follow the
further corrections and improvements of the coordinates. In the pseudo-normal form (5.1) for

GGSGSGSG in Section 5, a similar constant c will already be crucial, not superfluous. That is
to say, that Kumpera-Ruiz form will be just normal.
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z5 = x5 − x4 − c

3
(
x6

)3
, z6 = x1 − c

2
x4

(
x6

)2 +
c2

8
(
x6

)4 − c2

15
(
x6

)5
, (4.5)

z7 = x3 − c2

4
x4

(
x6

)4 +
c3

12
(
x6

)6 − c3

42
(
x6

)7
, (4.6)

z8 = x2 − c4

48
x4

(
x6

)8 +
c5

120
(
x6

)10 − 13 c5

5544
(
x6

)11
.

Remark 4.1. It is also important to note that z1 through z5 in (4.4) and (4.5)
are but replicas, with only an upward shift in indices, of the relevant formulae,
obtained by the Belläıche algorithm, for the NAs of the objects in the class GGSG,
see p. 258 in [14]. (The departure objects sitting in GGSG have to be written in
Kumpera-Ruiz coordinates with the additive constant next to x6 not as 1, but as
c �= 0. In [14] that constant is normalized to 1.)

Now one can write D in these z coordinates, cf. [17], then extract D̂. In the
outcome, X̂ = X = ∂1, and

Ŷ = ∂2 + z1∂3 + z3∂4 + z2z3∂5 +
(
z3z4 +

c

3
z 3
2 z3 + cz2z5

)
∂6 +

(
cz2z

2
4 + cz 2

2 z3z4

+
c2

2
z 3
2 z5 +

c2

3
z 4
2 z4 +

c2

6
z 5
2 z3

)
∂7 +

(
c3

4
z 5
2 z

2
4 +

c3

6
z 6
2 z3z4 +

c2

2
z 3
2 z7

+
c4

24
z 7
2 z5 +

3 c4

28
z 8
2 z4 +

13 c4

504
z 9
2 z3 +

c5

126
z 11
2

)
∂8 .

It is an explicitly given vector field, although its expression is illegible. It turns
out that among sets of adapted coordinates there are good and better ones, and
certain are as good as night glasses. In fact,

Proposition 4.2 ([17]). The nilpotent approximations of Goursat germs in the geo-
metric class GGSGSG can be written down using only two adapted coordinates
z1, z2.

In the proof, p. 1620 in [17], one passes to newer, still adapted coordinates
z1, z2, . . . , z10 in which X̂ = ∂1 and

Ŷ = ∂2+z1∂3−z1z2∂4−
1
2
z1z

2
2 ∂5+

c

24
z1z

4
2 ∂6+

c2

240
z1z

6
2 ∂7−

c4

34560
z1z

10
2 ∂8 . (4.7)

There is still the constant c in (4.7) which can clearly be eliminated by a rescaling
of variables. Reiterating, that constant has been redundant in the input objects
(4.1) and it is redundant in the output.

Corollary 4.3. The nilpotent approximations of germs in GGSGSG have the big
growth vector at the reference points equal to the small one, hence equal to
[2, 3, 4, 52, 62, 74, 8] .

(Compare Proposition 2.5 above and the proof of Proposition 3 in [17].) This is to
be compared with the fact that the initial germs are Goursat, hence have the big
growth vector [2, 3, 4, 5, 6, 7, 8] .
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5. Nilpotent approximation in the geometric class GGSGSGSG

The aim of the present work is to prove the following

Theorem 5.1. The modulus of the local classification residing in the geometric
class GGSGSGSG disappears on the level of nilpotent approximations. That is,
the nilpotent approximations of the members of this class are all equivalent.

Our proof will firstly focus on finding certain adapted coordinates, in order
to get hold of the NAs of distributions in GGSGSGSG. We will start with our
shortcut to Belläıche (by extending and extrapolating Remark 4.1) but later di-
verge radically from [6]: the last three, most involved adapted coordinates will be
sought in a new, Goursat-motivated way. The obtained NAs will at first be illegi-
ble. Special efforts will be needed, like those underlying Proposition 4.2, to make
them legible. A key role will be played by resonances among coefficients of quasi-
homogeneous polynomials, similar to those holding true for GGSGSG, which have
made possible the radical simplifications of [17], recalled in the previous chapter.

Proof. To get started, let us write the Kumpera-Ruiz pseudo-normal forms that
in the occurrence are exact local models,

D = (X, Y) =
(
∂10, x9x7x5∂1 + x9x7x5x3∂2 + x9x7x5x4∂3 + x9x7∂4

+ x9x7X6∂5 + x9∂6 + x9X8∂7 + ∂8 + X10∂9

)
, (5.1)

where X6 = 1+x6, X8 = 1+x8, X10 = c+x10 with the value c �= 0 being univo-
cally tied to D (different values parametrizing different and pairwise nonequivalent
D’s). It is a matter of some computations (with the underlying papers [10], [16] at
hand) that the small growth vector of D at the reference point 0 ∈ R10 is, regard-
less of the value of c �= 0, [2, 3, 4, 52, 62, 74, 84, 98, 10], and hence the weights
w1, w2, . . . , w10 are

1, 1, 2, 3, 4, 6, 8, 12, 16, 24. (5.2)

Clearly, the KR variables used in (5.1) are not linearly adapted. After some Lie
bracket manipulations over the distribution (5.1), one quickly improves them to
linearly adapted coordinates

x10, x8, x9 − cx8, x6, x7 − x6, x4, x5 − x4, x1, x3, x2 . (5.3)

Then, an upgrading to adapted coordinates happens to be waiting for us, as regards
the first seven variables in this list. We mean that the affinity observed between
the NAs in GGSG and GGSGSG (Remark 4.1) extends onto the pair GGSGSG
and GGSGSGSG, too. The formulas for adapted z1, z2, . . . , z7 are, modulo a shift
in indices, due replicas of (4.4), (4.5), (4.6) (hence, formally, come from Belläıche,
too). In fact,

z1 = x10, z2 = x8, z3 = x9−cx8, z4 = x6− c

2
(
x8

)2
, z5 = x7−x6− c

3
(
x8

)3
,
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z6 = x4 − c

2
x6

(
x8

)2 +
c2

8
(
x8

)4 − c2

15
(
x8

)5
,

z7 = x5 − x4 − c2

4
x6

(
x8

)4 +
c3

12
(
x8

)6 − c3

42
(
x8

)7
.

The justification repeats word for word the one given in [17] for GGSGSG. We
know, therefore, that the functions z1, z2, . . . , z7 are already of nonholonomic or-
ders w1, w2, . . . , w7 (see (5.2) ) at 0, respectively.

How a check would look like for, say, z7? Clearly, Xz7 = 0 identically and the
function Yz7 satisfies nord(Yz7) ≥ 7, implying nord(z7) ≥ w7 (whereas the ≤
inequality holds for any linearly adapted coordinate). Indeed,

Yz7 = X6x7x9 − x7x9 − c2

4
x9

(
x8

)4 − c2x6
(
x8

)3 +
c3

2
(
x8

)5 − c3

6
(
x8

)6 (5.4)

and X6x7x9 − x7x9 = x6x7x9. To check orders, it suffices to express the RHS of
(5.4) in the z variables, x6 = z4 + c

2z
2
2 , x7 = z5 + z4 + c

2z
2
2 + c

3z
3
2 , x8 = z2,

x9 = z3 + cz2 and open all brackets, finding only terms of nonholonomic orders
≥ 7 at 0.

Note that, in parallel, the first seven components of the generator Y are got
expressed in the z variables,

Y = ∂2 + z1∂3 + z3∂4 + z2z3∂5

+
((

a term of order > 5
)

+ z3z4 +
c

3
z 3
2 z3 + cz2z5

)
∂6

+
((

terms of orders > 7
)

+ cz2z
2
4 + cz 2

2 z3z4 +
c2

2
z 3
2 z5 +

c2

3
z 4
2 z4 +

c2

6
z 5
2 z3

)
∂7 + · · · ,

these seven components being formally identical with those in [17] (compare (6),
(7), (9) there).

5.1. Upgrading of x1

Starting from handling x1, we put forward – solely in the Goursat environment –
shorter ways of improving functions than via the Belläıche algorithm. In fact, in
[6] the terms correcting a given linearly adapted coordinate, say yq, were sought
in the pool of monomials yα1

1 yα2
2 · · · yαl

l defined by the condition

2 ≤ α1w1 + α2w2 + · · ·+ αlwl < wq .

Concerning x1, for our correcting terms there will happen an equality = wq , and
there will even be inequalities > wq for the ones correcting x3 and x2.

The variable x1 is of nonholonomic order 8 instead of 12 (= w8), because
Xx1 = 0 and Yx1 = x9x7x5 has order 1 + 2 + 4 = 7. Its upgrading to an adapted
z8 is short, if surprising. In the beginning, a try z8 = x1 − 1

2

(
x4

)2
+ · · · prompts
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by itself, for

Y
(
x1 − 1

2
(
x4

)2 + · · ·
)

= x9x7x5 − x9x7x4 + · · · = x9x7(x5 − x4) + · · · ,

and x5 − x4 is among the functions (5.3). Now

x9x7(x5 − x4) = x9x7

(
z7 +

c2

4
z 4
2 x

6 − c3

12
z 6
2 +

c3

42
z 7
2

)
(5.5)

has order 9 and its to-be-removed terms are (in the z variables that are still under
construction) z 9

2 , z
10
2 , z 8

2 z3, z
7
2 z4. Hence further improvements are necessary. A

natural idea is to get rid in (5.5) of the entire term x9x7z 6
2 (of order 9). We seek

it via z8 = x1 − 1
2

(
x4

)2 + ∗ x4
(
x8

)6 + · · · and expand

Yz8 = x9x7
(
x5 − x4 + ∗

(
x8

)6
)

+ 6 ∗ x4
(
x8

)5 + · · ·

= x9x7

(
z7 +

c2

4

(
z4 +

c

2
z 2
2

)
z 4
2 +

(
∗ − c3

12

)
z 6
2 +

c3

42
z 7
2

)
+ 6 ∗ x4

(
x8

)5 + · · · .

There does to have c3

8 + ∗ − c3

12 = 0, or ∗ = − c3

24 . With this correction,

Y
(
x1 − 1

2
(
x4

)2 − c3

24
x4

(
x8

)6 + · · ·
)

= x9x7
(
z7 +

c2

4
z 4
2 z4 +

c3

42
z 7
2

)
+

− c3

4
z 5
2

(
z6 +

c

2
z 2
2

(
z4 +

c

2
z 2
2

)
− c2

8
z 4
2 +

c2

15
z 5
2

)
+ · · ·

=
(
z3 + cz2

)(
z5 + z4 +

c

2
z 2
2 +

c

3
z 3
2

)(
z7 +

c2

4
z 4
2 z4 +

c3

42
z 7
2

)
+

− c3

4
z 5
2 z6 −

c4

8
z 7
2 z4 −

c5

32
z 9
2 −

c5

60
z 10
2 + · · ·

After opening brackets, the only terms here of orders smaller than 11 are z 9
2 and

z 10
2 . One eliminates them instantly by taking, eventually,

z8 = x1 − 1
2
(
x4

)2 − c3

24
x4

(
x8

)6 +
c5

320
(
x8

)10 +
c5

2310
(
x8

)11
. (5.6)

Indeed,

Yz8 =
(
terms of orders > 11

)
+

c2

2
z 3
2 z7 −

c3

4
z 5
2 z6 +

c3

4
z 5
2 z

2
4 +

c3

8
z 6
2 z3z4

+
3 c4

28
z 8
2 z4 +

c4

84
z 9
2 z3 +

c5

126
z 11
2 .

All terms explicited here are of order 11, while this function z8 keeps being lin-
early adapted, hence of nonholonomic order not exceeding its weight 12. These
arguments together imply that nord(z8) = 12.
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5.2. Upgrading of x3

We improve the function x3 of order 12 (Yx3 = x9x7x5 ·x4 is of order 7+4 = 11)
to an adapted z9 of order 16. The first correcting term also prompts itself, z9 =
x3 − 1

3

(
x4

)3 + · · · , and causes

Y
(
x3 − 1

3
(
x4

)3 + · · ·
)

= x9x7x5x4 − x9x7
(
x4

)2 + · · ·

= x9x7x4
(
x5 − x4

)
+ · · ·

= x9x7x4

(
z7 +

c2

4
z 4
2 z4 +

c3

24
z 6
2 +

c3

42
z 7
2

)
+ · · · . (5.7)

After opening brackets and writing in the z variables, the unwanted terms in
(5.7) are, quite like in the previous section, z 13

2 , z 14
2 , z 12

2 z3, z
11
2 z4. Our idea was

to eliminate in (5.7) the entire term x9x7x4z 6
2 (of order 13) by means of z9 =

x3 − 1
3

(
x4

)3 + ∗
(
x4

)2(
x8

)6 + · · · . Then

Yz9 = x9x7x4

(
z7 +

c2

4
z 4
2 z4 +

( c3

24
+ 2∗

)
z 6
2 +

c3

42
z 7
2

)
+ 6 ∗

(
x4

)2
z 5
2 + · · · ,

implying ∗ = − c3

48 . So for z9 = x3 − 1
3

(
x4

)3 − c3

48

(
x4

)2(
x8

)6 + · · · one has

Yz9 = x9x7x4
(
z7 +

c2

4
z 4
2 z4 +

c3

42
z 7
2

)
− c3

8
z 5
2

(
x4

)2 + · · ·

=
(
z3 + cz2

)(
z5 + z4 +

c

2
z 2
2 +

c

3
z 3
2

)(
z6 +

c

2
z 2
2 z4 +

c2

8
z 4
2 +

c2

15
z 5
2

)
×

(
z7 +

c2

4
z 4
2 z4 +

c3

42
z 7
2

)
− c3

8
z 5
2

(
z6 +

c

2
z 2
2 z4 +

c2

8
z 4
2 +

c2

15
z 5
2

)2

+ · · · . (5.8)

After opening all brackets in (5.8), there show up only terms of orders not smaller
than 15 and two benign terms z 13

2 , z 14
2 . Consequently, we take

z9 = x3 − 1
3
(
x4

)3 − c3

48
(
x4

)2(
x8

)6 +
c7

7168
(
x8

)14 +
c7

25200
(
x8

)15 (5.9)

and obtain

Yz9 =
(
terms of orders > 15

)
+

c4

16
z 7
2 z7 −

c5

32
z 9
2 z6 +

c5

16
z 9
2 z

2
4 +

c5

64
z 10
2 z3z4

+
13 c6

672
z 12
2 z4 +

c6

672
z 13
2 z3 +

31 c7

25200
z 15
2

in which all evidenced summands are of orders ≥ 15, implying nord(z9) = 16.
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5.3. Refining x2 to z10

This is the most involved part; naked x2 has at zero order 20 instead of 24 (for
nord

(
Yx2

)
= nord

(
x9x7x5 · x3

)
= 7 + 12 = 19). Having sought z10 = x2 + · · · , or

else

Yz10 = x9x7
(
z7 + x4 + · · ·

)(
z9 +

1
3
(
x4

)3 + · · ·
)

+ · · · ,

we wanted to have in Yz10 no order-19 term x9x7x4 1
3

(
x4

)3. Hence, tentatively,
took z10 = x2− 1

15

(
x4

)5 + · · · . And, needless to say, this improvement has proved
insufficient.

In fact, the nonholonomic derivative Y
(
x2 − 1

15

(
x4

)5
)

= x9x7x5x3− 1
3x

9x7
(
x4

)4,
when expressed in the (adapted!) variables z1, . . . , z9 (a fairy long procedure), has
the following terms of orders smaller than 23:

13 c11

516096
z 21
2 +

1387 c11

19353600
z 22
2 +

13 c10

516096
z 20
2 z3 +

65 c10

129024
z 19
2 z4 . (5.10)

On the grounds of formulas (5.6) and (5.9) one guesses that, in z10, there should
also be used a term ∗

(
x4

)4(
x8

)6. This time, however, unlike for z8 and z9 in the
previous sections, there is no quick guess concerning the value of ∗. The way out
is to express the derivative

Y
((

x4
)4(

x8
)6
)

= 4 x9x7
(
x4

)3(
x8

)6 + 6
(
x4

)4(
x8

)5

likewise in the coordinates z1, . . . , z9 and then notice that the terms of orders
smaller than 23 are precisely

11 c8

2048
z 21
2 +

23 c8

1920
z 22
2 +

c7

256
z 20
2 z3 +

5 c7

64
z 19
2 z4 . (5.11)

In both expressions (5.10) and (5.11) the coefficients at z 20
2 z3 and z 19

2 z4 are in the
same proportion 1:20. In fact, the second pair of them times 13 c3

2016 equals the first
pair. This observation prompts the value ∗ = − 13 c3

2016 . Then, for

z10 = x2 − 1
15

(
x4

)5 − 13 c3

2016
(
x4

)4(
x8

)6 + · · ·

one has in Yz10, as the low orders’ terms, only (possibly) z 21
2 and z 22

2 . After
handling the coefficients at z 21

2 and z 22
2 in (5.10) – (5.11), the eventual formula

reads

z10 = x2 − 1
15

(
x4

)5 − 13 c3

2016
(
x4

)4(
x8

)6 +
13 c11

30277632
(
x8

)22 +
c11

4121600
(
x8

)23
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The derivative of this z10 along Y is Yz10 =(
terms of orders > 23

)
+

c4

16
z 7
2 z9 +

c8

3072
z 15
2 z7 −

c9

6144
z 17
2 z6 +

17 c9

21504
z 17
2 z 2

4

+
13 c9

86016
z 18
2 z3z4 +

229 c10

1075200
z 20
2 z4 +

47 c10

3225600
z 21
2 z3 +

(
c12

258048
+

293 c11

24192000

)
z 23
2 ,

with all displayed terms of order 23. Hence z10 is of order 24 as needed.

Remark 5.2. The common ‘resonant’ proportion of coefficients 1:20 is crucial for
the above upgrading. Realizing this, one can better interpret the surprising oppor-
tunities met in upgrading of x1 and x3. Indeed, similar mechanisms have been
in action for the pairs of functions x1 − 1

2

(
x4

)2, x4
(
x8

)6 and x3 − 1
3

(
x4

)3,(
x4

)2(
x8

)6. In the Y-derivatives of the former pair, the terms z 8
2 z3 and z 7

2 z4

appear in the same proportion 1:8. And in the Y-derivatives of the latter pair, the
terms z 12

2 z3 and z 11
2 z4 appear in the same proportion 1:12.

At this moment the entire nilpotent approximation is got hold of, albeit
the modulus c still shows up in many places. In order to proceed, we write the
approximation down as (X̂, Ŷ), where X̂ = ∂1, and

Ŷ = ∂2 + z1∂3 + z3∂4 + z2z3∂5 +
(
z3z4 +

c

3
z 3
2 z3 + cz2z5

)
∂6 +

(
cz2z

2
4 + cz 2

2 z3z4

+
c2

2
z 3
2 z5 +

c2

3
z 4
2 z4 +

c2

6
z 5
2 z3

)
∂7 +

(
c2

2
z 3
2 z7 −

c3

4
z 5
2 z6 +

c3

4
z 5
2 z

2
4

+
c3

8
z 6
2 z3z4 +

3 c4

28
z 8
2 z4 +

c4

84
z 9
2 z3 +

c5

126
z 11
2

)
∂8 +

(
c4

16
z 7
2 z7 −

c5

32
z 9
2 z6

+
c5

16
z 9
2 z

2
4 +

c5

64
z 10
2 z3z4 +

13 c6

672
z 12
2 z4 +

c6

672
z 13
2 z3 +

31 c7

25200
z 15
2

)
∂9

(5.12)

+
(
c4

16
z 7
2 z9 +

c8

3072
z 15
2 z7 −

c9

6144
z 17
2 z6 +

17 c9

21504
z 17
2 z 2

4 +
13 c9

86016
z 18
2 z3z4

+
229 c10

1075200
z 20
2 z4 +

47 c10

3225600
z 21
2 z3 +

( c12

258048
+

293 c11

24192000

)
z 23
2

)
∂10 .

5.4. Improving z10, z9, z8, z7, z6

The issue is whether (5.12) can be simplified. • In the first round we eliminate there
the variable z9, taking as a new 10th coordinate z10 − c4

128z
8
2 z9. This expression is

labelled z10 again (until the end of paper we will use, for compactness, the same
letters for newer and newer coordinates). • In the second round we get rid of the
variables z7, z6. This is obtained by passing to the new 8th, 9th, and 10th variables

z8 +
c3

24
z 6
2 z6 −

c2

8
z 4
2 z7 , z9 +

c5

320
z 10
2 z6 −

c4

128
z 8
2 z7 ,

z10 +
c8

98304
z 16
2 z7 −

c9

221184
z 18
2 z6 ,
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respectively. • In the third round the variable z5 is left out by passing to the, new
again, 6th, 7th, 8th, 9th, and 10th variables

z6 −
c

2
z 2
2 z5 , z7 −

c2

8
z 4
2 z5 , z8 +

c4

384
z 8
2 z5 ,

z9 +
c6

15360
z 12
2 z5 , z10 −

c10

35389440
z 20
2 z5 ,

respectively. At this point the expression (5.12) gets reduced to

Ŷ = ∂2 + z1∂3 + z3∂4 + z2z3∂5 +
(
z3z4 −

c

6
z 3
2 z3

)
∂6

+
(
cz2z

2
4 + cz 2

2 z3z4 +
c2

3
z 4
2 z4 +

c2

24
z 5
2 z3

)
∂7

+
(
c3

8
z 5
2 z

2
4 +

c3

24
z 6
2 z3z4 +

11 c4

168
z 8
2 z4 +

61 c4

8064
z 9
2 z3 +

c5

126
z 11
2

)
∂8

+
(

7c5

128
z 9
2 z

2
4 +

7c5

640
z 10
2 z3z4 +

15 c6

896
z 12
2 z4 +

139 c6

107520
z 13
2 z3 +

31 c7

25200
z 15
2

)
∂9

+
(

215 c9

688128
z 17
2 z 2

4 +
215 c9

6193152
z 18
2 z3z4 +

481 c10

7372800
z 20
2 z4 +

11539 c10

3715891200
z 21
2 z3

+
( c12

258048
+

121 c11

48384000

)
z 23
2

)
∂10 . (5.13)

5.5. Flatness of the nilpotent approximations in question

It is clear that •passing to the new 6th variable z6 − 1
2z

2
4 eliminates the term

z3z4 in the ∂6-component of (5.13). Then a natural wish is to eliminate the terms
with z3z4 and with z 2

4 in the 7th, 8th, 9th, and 10th components in (5.13) – the
terms underlined there.
The coefficients with which these terms appear – coefficients emerging from a long
line of preceding simplifications! – are flat, or: perfectly bound together. Because
of that it is possible to kill them in pairs, by just • taking new 7th, 8th, 9th, and
10th coordinates

z7 −
c

2
z 2
2 z

2
4 , z8 −

c3

48
z 6
2 z

2
4 , z9 −

7c5

1280
z 10
2 z 2

4 , z10 −
215 c9

12386304
z 18
2 z 2

4

(in the last ∂10-component, because 18 · 688128 = 12386304 = 2 · 6193152).4

4 We want to underline that without that kind of flatness the nilpotent approximations in ques-
tion would have had much different properties, and the modulus have been likely to persist after
taking the approximation. That possibility can be turned into a rigorous construction in a some-
what perturbed Goursat world that we intend to present elsewhere. Thus producing uni-, bi-, etc.

-modal families of pairwise non-equivalent, strongly nilpotent in the sense of [14], distribution
germs.
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After these simplifications,

Ŷ = ∂2 + z1∂3 + z3∂4 + z2z3∂5 −
c

6
z 3
2 z3∂6 +

(c2
3
z 4
2 z4 +

c2

24
z 5
2 z3

)
∂7

+
(

11 c4

168
z 8
2 z4 +

61 c4

8064
z 9
2 z3 +

c5

126
z 11
2

)
∂8 +

(
15 c6

896
z 12
2 z4 +

139 c6

107520
z 13
2 z3

+
31 c7

25200
z 15
2

)
∂9 +

(
481 c10

7372800
z 20
2 z4 +

11539 c10

3715891200
z 21
2 z3

+
( c12

258048
+

121 c11

48384000

)
z 23
2

)
∂10 .

Now the way is open towards the eventual simplification – getting rid of z4 and z3.
In fact (after tracing the coefficients down with care), the following – new again –
4th through 10th coordinates are appropriate:

z4 − z2z3 , z5 −
1
2
z 2
2 z3 , z6 +

c

24
z 4
2 z3 , z7 −

c2

15
z 5
2 z4 +

c2

240
z 6
2 z3 ,

z8 −
11 c4

1512
z 9
2 z4 −

c4

34560
z 10
2 z3 −

c5

1512
z 12
2 ,

z9 −
15 c6

11648
z 13
2 z4 −

c6

2795520
z 14
2 z3 −

31 c7

403200
z 16
2 ,

z10 −
481 c10

154828800
z 21
2 z4 +

c10

16349921280
z 22
2 z3 −

( c12

6193152
+

121 c11

1161216000

)
z 24
2 .

In the previous coordinates z1, z2, z3 and the above-described new ones, the gen-
erators of the nilpotent approximations in question are X̂ = ∂1 and

Ŷ = ∂2 + z1∂3 − z1z2∂4 −
1
2
z1z

2
2 ∂5 +

c

24
z1z

4
2 ∂6 +

c2

240
z1z

6
2 ∂7 (5.14)

− c4

34560
z1z

10
2 ∂8 −

c6

2795520
z1z

14
2 ∂9 +

c10

16349921280
z1z

22
2 ∂10 .

This strikingly resembles the expressions (4.7) for the nilpotent approximation
within the class GGSGSG, remembering of course that the meanings of c in Sec-
tions 4 and 5 are different. There c was just the highest constant in the departure
KR form (reducible in itself and kept just for better readability of the algebraic side
of computations), here c is a modulus of the local classification. In fact, we were
sticking in Section 4 to a redundant constant for the purpose of this comparison.
The algebra in Goursat world is so rigid that also in (4.7) the first six components
are nothing but those of the nilpotent approximation in the class GGSG, when the
additive constant standing next to x6, in the relevant KR form, is kept as c �= 0,
and not normalized to 1 as in (4.1).

Endly, it is a matter of simple rescaling (if cardinal because getting rid of the
modulus c) to reduce the description (5.14) to the form X̂ = ∂1 and

Ŷ = ∂2+z1∂3+z1z2∂4+z1z
2
2 ∂5+z1z

4
2 ∂6+z1z

6
2 ∂7+z1z

10
2 ∂8+z1z

14
2 ∂9+z1z

22
2 ∂10 .

At this moment, at long last, Theorem 5.1 is proved. �
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Corollary 5.3. The nilpotent approximations of germs in GGSGSGSG have the
big growth vector at the reference points equal to the small one, hence equal to
[2, 3, 4, 52, 62, 74, 84, 98, 10].

This information should be compared with the fact that the initial germs
have the big growth vector [2, 3, 4, 5, 6, 7, 8, 9, 10] .

Remark 5.4. The answer to Agrachev’ question is not known already for the
bimodal geometric class GGSGSGSGSG living in dimension 12, having moduli in
flag’ members denoted by the underlined letters. Nor is it known for the trimodal
class GGSGSGSGSGSG in dimension 14, with independent moduli related to the
G’s, and so on onwards, with arbitrarily long strings of SG in the codes. This
infinite series of geometric classes of quickly growing modalities (see Remark 4 in
[13] which covers all these classes) is very representative for Goursat, offering the
highest known to-date ratio modality : length in Goursat world.

All we have at present is an organized plan, shortcutting and replacing repetitions
of our procedures from Section 5, for computing the NAs in these classes. The
answer to question, however, depends on the realization of that plan. At present
it is impossible to predict the outcome of this project.
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Abstract. In this article we introduce algorithms which compute iterations
of Gauss-Manin connections, Picard-Fuchs equations of Abelian integrals and
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1. Introduction

The theory of abelian integrals which arises in polynomial differential equations
of the type ẋ = P (x, y), ẏ = Q(x, y) is one of the most fruitful areas which needs
a special attention from algebraic geometry and in particular singularity theory.
The reader is referred to the articles [6], [10] and [3] for a history and applications
of such abelian integrals in differential equations. The book [1] and its references
contains the theory of such integrals in the local case. In this article we deal with
computational aspects of such integrals. All polynomial objects which we use are
defined over C.

Let us be given a polynomial f in n+1 variables x1, x2, . . . , xn+1, a polynomial
differential n-form ω and a continuous family of n-dimensional oriented cycles
δt ⊂ Lt := f−1(t). The protagonist of this article is the integral

∫
δt
ω, called the

abelian integral. Computations related to these integrals become easier when we
put a certain kind of tameness condition on f (see §2). For such a tame polynomial
we can write

∫
δt
ω as: ∑

β∈I

pβ(t)
∫

δt

ηβ , (1.1)
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where ηβ , β ∈ I is a class of differential n-forms constructed from a basis of the
Milnor vector space of f and pβ ’s are polynomials in t (see §5 for the algorithm
which produces pβ ’s). The Gauss-Manin connection ∇ω has the following basic
property

∂

∂t

∫
δt

ω =
∫

δt

.∇ω. (1.2)

The above term can be written in the form (1.1) with pβ ’s rational functions in t
with poles in the critical values of f (see §6 for the algorithm which produces pβ ’s).
The nth cohomology of a smooth fiber Lt is canonically isomorphic to Ωn

Lt
/dΩn−1

Lt
,

where Ωi
Lt

is the restriction of polynomial differential i-forms to Lt, and carries
two natural filtrations called the weight and the Hodge filtrations (a mixed Hodge
structure consists of these filtrations and a real structure satisfying certain axioms).
These filtrations are generalizations of classical notions of differential forms of the
first, second and third type for Riemann surfaces in higher dimensional varieties.
The reader who is not interested in the case n > 1 is invited to follow the article
with n = 1 and with the usual notions of differential forms of the first, second and
third type. How to calculate these filtrations by means of differential forms is the
main theorem of [9] and related algorithms are explained in §7. Last but not least,
our protagonist satisfies a Picard-Fuchs equation

∑k
i=0 pi(t) ∂i

∂ti = 0, where pi’s are
polynomials in t. The algorithm which produces pi’s is explained in §8. The theory
of abelian integrals can be studied even in the case n = 0, i.e., f is a polynomial in
one variable. Since some open problems, for instance infinitesimal Hilbert Problem
(see [6]), can be also stated in this case, we have included §9. All the algorithms
explained in this article are implemented in a library of Singular. This together
with some examples are explained in §10. Applications of our computations in
differential equations and particularly in direction of the article [3] is a matter of
future work.

2. Tame polynomials and Brieskorn modules

We start with a definition.

Definition 2.1. A polynomial f ∈ C[x] is called (weighted) tame if there exist
natural numbers α1, α2, . . . , αn+1 ∈ N such that Sing(g) = {0}, where g = fd is
the last homogeneous piece of f in the graded algebra C[x], deg(xi) = αi.

The multiplicative group C∗ acts on Cn+1 in the following way:

λ∗ : (x1, x2, . . . , xn+1)→ (λα1x1, λ
α2x2, . . . , λ

αn+1xn+1), λ ∈ C∗.

The polynomial (resp. the polynomial form) ω in Cn+1 is (weighted) homogeneous
of degree d ∈ N if λ∗(ω) = λdω, λ ∈ C∗. Fix a homogeneous polynomial g of
degree d and with an isolated singularity at 0 ∈ Cn+1. Let Ag be the affine space
of all tame polynomials f = f0 +f1 + · · ·+fd−1 +g. The space Ag is parameterized
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by the coefficients of fi, i = 0, 1, . . . , d− 1. The multiplicative group C∗ acts on Ag

by

λ • f =
f ◦ λ∗

λd
= λ−df0 + λ−d+1f1 + · · ·+ λ−1fd + g.

The action of λ ∈ C∗ takes λ • f = 0 biholomorphically to f = 0.
Let f ∈ Ag. We choose a basis xI := {xβ | β ∈ I} of monomials for the

Milnor C-vector space
V := C[x]/jacob(g).

Define

wi :=
αi

d
, 1 ≤ i ≤ n + 1, η := (

n+1∑
i=1

(−1)i−1wixid̂xi), Lt := f−1(t), t ∈ C, (2.1)

Aβ :=
n+1∑
i=1

(βi + 1)wi, ηβ := xβη, ωβ = xβdx, (β ∈ I),

where d̂xi = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1. Note that Aβ = deg(xβ+1)
d .

It turns out that xI is also a basis of Vf := C[x]/jacob(f) and so f and g have
the same Milnor numbers (see the conclusion after Lemma 4 of [9]). We denote it
by µ . We denote by P the set of critical points of f and by C := f(P ) the set
of critical values of f . We will also use P for a polynomial in C[x]. This will not
make any confusion.

Let Ωi, i = 1, 2, . . . , n + 1 (resp. Ωi
j , j ∈ N ∪ {0}) be the set of polynomial

differential i-forms (resp. homogeneous degree j polynomial differential i-forms)
in Cn+1. The Milnor vector space of f can be rewritten in the form V := Ωn+1

df∧Ωn .
The Brieskorn modules

H ′ = H ′
f :=

Ωn

df ∧ Ωn−1 + dΩn−1
, H ′′ = H ′′

f =
Ωn+1

df ∧ dΩn−1

of f are C[t]-modules in a natural way: t.[ω] = [fω], [ω] ∈ H ′ resp. ∈ H ′′. They
are defined in the case n > 0. The case n = 0 is treated separately in §9.

3. Mixed Hodge structures

In this section we assume that the reader is familiar with the notion of mixed
Hodge structure in the cohomologies of an affine variety (see [7, 2]).

Definition 3.1. Let H be one of H ′ or H ′′. If H = H ′′ then by restriction of ω
on Lc, c ∈ C\C we mean the residue of ω

f−c in Lc and by
∫

δ
ω, δ ∈ Hn(Lc,Z)

we mean
∫

δ residue( ω
f−c ). It is natural to define the Hodge and weight filtrations

of H as follows: WmH, m ∈ Z (resp. F kH, k ∈ Z) consists of elements ω ∈ H
such that the restriction of ω on all Lc, c ∈ C\C belongs to WmHn(Lc,C) (resp.
F kHn(Lc,C)).
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Each piece of the mixed Hodge structure of H is a C[t]-module. In the same
way we define the mixed Hodge structure of the localization of H over multiplica-
tive subgroups of C[t]. In the case n = 1 our definition can be simplified as follows:
We have the filtrations {0} = W0 ⊂ W1 ⊂ W2 = H and 0 = F 2 ⊂ F 1 ⊂ F 0 = H ,
where

W1 = {ω ∈ H | ω restricted to a regular fiber has not residue at infinity },
F 1 = {ω ∈ H | ω restricted to a regular fiber has poles of order ≥ 1 at infinity}.
In particular, W1 ∩ F 1 is the set of all ω ∈ H such that ω restricted to a regular
compactified fiber is of the first kind. For the notion of compactification of C2 and
infinity see [3] and [8]. The projection of F • in GrW

m H := Wm/Wm−1 gives us the
filtration F̄ • in GrW

m H and we define Grk
F GrW

m H = F̄ k/F̄ k+1.

Definition 3.2. Suppose that H is a free C[t]-module. The set B = ∪m,k∈ZB
k
m ⊂ H

is a basis of H compatible with the mixed Hodge structure if Bk
m form a basis of

Grk
F GrW

m H .

For a C[t]-module M and a set C ⊂ C, we denote by MC the localization
of M on the multiplicative subset of C[t] generated by {t − c | c ∈ C}. The
following theorem gives a basis of a localization of H which is compatible with the
mixed Hodge structure. It is proved in [9]. Our aim in this article is to explain the
algorithms which lead to the calculation of such a basis.

Theorem 3.3. Let b ∈ C\C be a regular value of f ∈ C[x]. If f is a (weighted )
tame polynomial then GrmH ′ = 0 for m �= n, n+1 and there exist a map β ∈ I →
dβ ∈ N ∪ {0} and C ⊂ C̃ ⊂ C such that b �∈ C̃ and

∇kηβ , β ∈ I, Aβ = k (3.1)

form a basis of Grn+1−k
F GrW

n+1H
′
C̃

and the forms

∇kηβ , Aβ +
1
d
≤ k ≤ Aβ +

dβ

d
(3.2)

form a basis of Grn+1−k
F GrW

n H ′
C̃
. The same is true for H ′′

C̃
replacing ∇kηβ with

∇k−1ωβ.

In the above theorem ∇ : H → HC is the Gauss-Manin connection associated
to f (see §6).

4. Quasi-homogeneous singularities

Let f = g be a weighted homogeneous polynomial with an isolated singularity at
origin. It is well known that H ′ (resp. H ′′) is freely generated by ηβ , β ∈ I (resp.
ωβ, β ∈ I). In this section we explain the algorithm which writes every element in
H ′ (resp. H ′′) of g as a C[t]-linear combination of ηβ ’s (resp. ωβ’s). Recall that

dg ∧ d(P ̂dxi, dxj) = (−1)i+j+εi,j (
∂g

∂xj

∂P

∂xi
− ∂g

∂xi

∂P

∂xj
)dx,
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where εi,j = 0 if i < j and = 1 if i > j and ̂dxi, dxj is dx without dxi and dxj (we
have not changed the order of dx1, dx2, . . . in dx).

Proposition 4.1. For a monomial P = xβ we have

∂g

∂xi
Pdx =

d

d · Aβ − αi

∂P

∂xi
gdx + dg ∧ d(

∑
j �=i

(−1)i+j+1+εi,jαj

d ·Aβ − αi
xjP ̂dxi, dxj). (4.1)

Proof. The proof is a straightforward calculation.∑
j �=i

(−1)i+j+1+εi,jαj

d · Aβ − αi
dg ∧ d(xjP ̂dxi, dxj)

=
−1

d · Aβ − αi

∑
j �=i

(αj
∂g

∂xj

∂(xjP )
∂xi

− αj
∂g

∂xi

∂(xjP )
∂xj

)dx

=
−1

d · Aβ − αi
((d · g − αixi

∂g

∂xi
)
∂P

∂xi
− P

∂g

∂xi

∑
j �=i

αj(βj + 1))dx

=
−1

d · Aβ − αi
(d · g ∂P

∂xi
− αiβiP

∂g

∂xi
− P

∂g

∂xi

∑
j �=i

αj(βj + 1))dx.

In the above equalities ds means the differential of s and d · s means the
multiplication of d, the degree of g, with s. �

We use the above Proposition to write every Pdx ∈ Ωn+1 in the form

Pdx =
∑
β∈I

pβ(g)ωβ + dg ∧ dξ, (4.2)

pβ ∈ C[t], ξ ∈ Ωn−1, deg(pβ(g)ωβ , dg ∧ dξ) ≤ deg(Pdx).
• Input: The homogeneous polynomial g and P ∈ C[x] representing [Pdx] ∈
H ′′. Output: pβ , β ∈ I and ξ satisfying (4.2). We write

Pdx =
∑
β∈I

cβx
β .dx + dg ∧ η, deg(dg ∧ η) ≤ deg(Pdx). (4.3)

Then we apply (4.1) to each monomial component P̃ ∂g
∂xi

of dg ∧ η and then

we write each ∂P̃
∂xi

dx in the form (4.3). The degree of the components which
make Pdx not to be of the form (4.2) always decreases and finally we get the
desired form.

To find a similar algorithm for H ′ we note that if η ∈ Ωn is written in the form

η =
∑
β∈I

pβ(g)ηβ + dg ∧ ξ + dξ1, pβ ∈ C[t], ξ, ξ1 ∈ Ωn−1, (4.4)

where each piece in the right-hand side of the above equality has degree less than
deg(η) then

dη =
∑
β∈I

(pβ(g)Aβ + p′β(g)g)ωβ − dg ∧ dξ (4.5)
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and the inverse of the map C[t] → C[t], p �→ Aβ .p + p′.t is given by
∑k

i=0 ait
i �→∑k

i=1
ai

Aβ+i t
i.

Since in the case of a quasi-homogeneous singularity f = g we have ∇(ωβ) =
Aβ−1

t ωβ and ∇(ηβ) = Aβ

t ηβ (see §6), Theorem 3.3 in this case reduces to:

Theorem 4.2. (Steenbrink, [11]) For a weighted homogeneous polynomial g, the set

B = ∪n
k=1B

k
n+1 ∪ ∪n

k=0B
k
n

with

Bk
n+1 = {ηβ | Aβ = n− k + 1}, Bk

n = {ηβ | n− k < Aβ < n− k + 1},
is a basis of H ′ compatible with the mixed Hodge structure. The same is true for
H ′′ replacing ηβ with ωβ.

5. A basis of H ′ and H ′′

Proposition 5.1. For every tame polynomial f ∈ Ag the forms ωβ , β ∈ I (resp.
ηβ , β ∈ I) form a basis of the Brieskorn module H ′′ (resp. H ′) of f . More precisely,
every ω ∈ Ωn+1 (resp. ω ∈ Ωn) can be written

ω =
∑
β∈I

pβ(f)ωβ + df ∧ dξ, pβ ∈ C[t], ξ ∈ Ωn−1, deg(pβ) ≤ deg(ω)
d

−Aβ (5.1)

(
resp. ω =

∑
β∈I

pβ(f)ηβ + df ∧ ξ + dξ1, pβ ∈ C[t],

ξ ∈ Ωn−1, deg(pβ) ≤ deg(ω)
d

−Aβ

)
.

(5.2)

This proposition is proved in [9] Proposition 1. The proof also gives us the
following algorithm to find all the unknown data in the above equalities.
• Input: The tame polynomial f and P ∈ C[x] representing [Pdx] ∈ H ′′. Out-

put: pβ , β ∈ I and ξ satisfying (5.1).
We use the algorithm of §4 and write an element ω ∈ Ωn+1, deg(ω) = m

in the form:

ω =
∑
β∈I

pβ(g)ωβ +dg∧dψ, pβ ∈ C[t], ψ ∈ Ωn−1, deg(pβ(g)ωβ), deg(dg∧dψ) ≤ m

This is possible because g is homogeneous. We have

ω =
∑
β∈I

pβ(f)ωβ + df ∧ dψ + ω′, ω′ =
∑
β∈I

(pβ(g)− pβ(f))ωβ + d(g − f) ∧ dψ.

The degree of ω′ is strictly less than m and so we repeat what we have done
at the beginning and finally we write ω as a C[t]-linear combination of ωβ’s.

The algorithm for H ′ is similar. The statement about degrees is the direct conse-
quence of the proof and (4.2).



Calculation of Mixed Hodge Structures 253

6. Gauss-Manin connection

Let S(t) ∈ C[t] such that

S(f)dx = df ∧ ηf , ηf =
n+1∑
i=1

(−1)i−1pid̂xi ∈ Ωn−1.

For instance one can take S(t) := det(Af − t.I), where Af is the multiplication
by f linear map from Vf := C[x]/jacob(f) to itself. The Gauss-Manin connection
∇ = ∇ ∂

∂t
associated to the fibration f = t, t ∈ C on H ′′ turns out to be the map

∇ : H ′′ → H ′′
C ,∇([Pdx]) =

[(QP − P.S′(f))dx]
S

, P ∈ C[x],

where

QP =
n+1∑
i=1

(
∂P

∂xi
pi + P

∂pi

∂xi

)
(6.1)

satisfying the Leibniz rule, where for a set C̃ ⊂ C by H ′′
C̃

we mean the localization
of H ′′ on the multiplicative subgroup of H ′′ generated by t− c, c ∈ C̃. Using the
Leibniz rule one can extend ∇ to a function from H ′′

C to itself and so the iteration
∇k = ∇ ◦∇ · · ·∇ k times, makes sense. It is given by

∇k =
∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0

S(t)k
, (6.2)

where
∇k : H ′′ → H ′′, ∇k([Pdx]) = [(QP − (k + 1)S′(t)P )dx].

To calculate ∇ : H ′ → H ′
C we use the fact that

∇kω =
∇k−1dω

df
, ω ∈ H ′,

where d : H ′ → H ′′ is taking differential and is well defined. The main property of
∇ is (1.2). Usually the iteration of the Gauss-Manin connection produces polyno-
mial forms with huge number of monomials. But fortunately our Brieskorn module
H ′′ (resp. H ′) has already the canonical basis ωβ, β ∈ I (resp. ηβ , β ∈ I) and
after writing ∇ the obtained coefficients are much more easier to read. In H ′′ one
can write

S(t)∇(ωβ) =
∑
β′∈I

pβ,β′ωβ′ , pβ,β′ ∈ C[t], deg(pβ,β′) ≤ deg(S)−1+Aβ−Aβ′ . (6.3)

The bound on degrees can be obtained as follows:

S(f)ωβ = df ∧ η, ⇒ d · deg(S) + d · Aβ = d + deg(η).

deg(pβ,β′) ≤ deg(dη)
d

−Aβ′ = deg(S)− 1 + Aβ −Aβ′ .

The Gauss-Manin connection ∇ has two nice properties:
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1. Griffiths transversality theorem: For all i = 1, 2, . . . , n + 1 we have

S(t)∇(F i) ⊂ F i−1.

2. Residue killer: For all ω ∈ H there exists a k ∈ N such that ∇kω ∈ Wn

For the first one see [5]. The second one for n = 1 is proved in Lemma 2.3 of [8].
The proof for n > 1 is similar and uses the fact that the residue as a function in t
for a cycle around infinity is a polynomial in t.

7. The numbers dβ, β ∈ I

Let f be a tame polynomial with the last homogeneous part g, F be its homoge-
nization and

V = C[x, x0]/ <
∂F

∂xi
| i = 1, 2, . . . , n + 1 > .

We consider V as a C[x0]-module and it is easy to show that V is freely generated
by xI := {xβ, β ∈ I}. Let

AF : V → V, AF (G) =
∂F

∂x0
G, G ∈ V.

Proposition 7.1. The matrix of AF in the basis xI is of the form d · [xKβ,β′
0 cβ,β′],

where Kβ,β′ := d − 1 + deg(xβ) − deg(xβ′
) and Af := [cβ,β′] is the multiplication

by f in the Milnor vector space of f . In particular, if Aβ′ −Aβ ≥ 1 then cβ,β′ = 0
and

det(AF − t.xd−1
0 I) = det(Af − t.I)x(d−1)µ

0 .

Proof. Since the polynomial F is weighted homogeneous, we have
∑n+1

i=0 αixi
∂F
∂xi

=
d · F and so x0

∂F
∂x0

= d.F in V (note that α0 = 1 by definition). Let

F.xβ =
∑
β′∈I

xβ′
cβ,β′(x0) +

n+1∑
i=1

∂F

∂xi
qi, cβ,β′(x0) ∈ C[x0], qi ∈ C[x0, x]. (7.1)

Since the left-hand side is homogeneous of degree d+ deg(xβ) we can assume that
the pieces of the write hand side are also homogeneous of the same degree. This
can be done by taking an arbitrary equation (7.1) and subtracting the unnecessary
parts. �

Let C̃ be a finite subset of C and C[t]C̃ be the localization of C[t] on its
multiplicative subgroup generated by t − c, c ∈ C̃ and Ft = F − t.xd

0. From now
on we work with C[t]C̃ [x0, x] instead of C[x0, x] and redefine V using C[t]C̃ [x0, x].
Let

VC̃ = C[t]C̃ [x0, x]/
〈
∂Ft

∂x0
,
∂F

∂xi
, | i = 1, 2, . . . , n + 1

〉
.
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It is useful to reformulate VC̃ in the following way: Let R := C[t]C̃ [x0] be the set
of polynomials in x0 with coefficients in C[t]C̃ and At = AF − t.d.xd−1

0 I. We have

VC̃ = V/

〈
∂Ft

∂x0
q | q ∈ V

〉
= Rµ/At.R

µ.

Here Rµ is the set of µ× 1 matrices with entries in R. We consider the statement:
∗(C̃): There is a function β ∈ I → dβ ∈ N ∪ {0} such that the C[t]C̃ -module

VC̃ is freely generated by

{xβ0
0 xβ , 0 ≤ β0 ≤ dβ − 1, β ∈ I}. (7.2)

To prove the statement ∗(C̃) we may introduce a kind of Gaussian elimination in
At and simplify it. For this reason we introduce the operation GE(β1, β2, β3). For
β ∈ I let (At)β be the β-th row of At.
• Input: At, β1, β2, β3 ∈ I with Aβ1 ≤ Aβ2 . Output: a matrix A′

t and a finite
subset B of C.

We replace (At)β2 with

− (At)β2,β3

(At)β1,β2

∗ (At)β1 + (At)β2

and we set B = zero(c(t)), where (At)β1,β2 = c(t).xKβ1,β2
0 . Since for all β4 ∈ I

we have
Kβ2,β3 + Kβ1,β4 = Kβ1,β3 + Kβ2,β4 .

The obtained matrix A′
t is of the form [x

Kβ,β′
0 c′β,β′ ] and c′β2,β3

= 0. If the
matrix Bt is obtained from At by applying the above operation and B ⊂ C̃
then At.R

µ = BtR
µ.

We give an example of algorithm which calculates dβ ’s for for some finite set
C̃ ⊂ C:
• Input: At. Output: dβ , β ∈ I and a finite set C̃ ⊂ C.

We identify I with {1, 2, . . . , µ} and assume that

β1 ≤ β2 ⇒ Aβ1 ≥ Aβ2 .

The algorithm has µ steps indexed by β = µ, µ− 1, . . . , 1. We define the set
C̃ to be empty. In β = µ we have A(β) = At. In the step β we find the first
β1 such that A(β)β,β1 �= 0 and put dβ1 = d − 1 + deg(xβ) − deg(xβ1). For
β2 = β−1, . . . , 1 we make GE(β, β2, β1) and define C̃ = C̃∪∪β−1

β2=1Bβ2 , where
Bβ2 is obtained during GE(β, β2, β1). The numbers dβ ’s obtained in this way
prove the statement ∗(C̃).

The advantage of this algorithm is that in many cases it gives C̃ = C. We do not
have a proof for ∗(C). One can also fix a value c ∈ C\C and apply the above
algorithm for Ac. In this case we do not care about C̃ during the algorithm. The
obtained dβ ’s make the statement ∗(C̃) true for some C̃ ⊂ C with c �∈ C̃. We prove
the following weak statements:
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Proposition 7.2. There is a function β ∈ I → dβ ∈ N ∪ {0} such that the C[t]C-
module V ′ is generated by {xβ0

0 xβ , 0 ≤ β0 ≤ dβ − 1, β ∈ I}.
Proof. We have

V ′ = Rµ/AtR
µ

b∼= A−1
t Rµ/Rµ =

Aadj
t Rµ

x
µ(d−1)
0

/Rµ.

The isomorphism b in the middle is obtained by acting A−1
t from left on Rµ and

adj makes the adjoint of a matrix. Now for β ∈ I let dβ be the pole order of βth

arrow of Aadj
t

x
µ(d−1)
0

. The numbers dβ are the desired numbers. It is easy to see that

{xβ0
0 xβ , 0 ≤ β0 ≤ dβ , β ∈ I} generates V ′. �

Proposition 7.3. There is a subset C̃ ⊂ C such that the statement ∗(C̃) is true
with dβ = d− 1, β ∈ I.

Proof. We identify I with {1, 2, . . . , µ} and assume that

β1 ≤ β2 ⇒ Aβ1 ≥ Aβ2 .

By various use of operation GE on At we make all the entries of (At)β,µ = 0, β ∈
I\{µ}. We repeat this for (At)β,µ−1 = 0, β ∈ I\{µ, µ − 1} and after µ-times we
get a lower triangular matrix. We always divide on a polynomial on t with leading
coefficient one and so division by zero does not occur. �
Proposition 7.4. Let ∗(C̃) be valid with dβ , β ∈ I. Then

Aβ < n + 1, dβ < d(n + 2−Aβ),
∑
β∈I

dβ = µ(d− 1).

Proof. The first one is already in Steenbrink’s Theorem 4.2. The second inequality
is obtained by applying the first inequality associated to F−cxd

0 for some c ∈ C\C̃:

A(dβ−1,β) = Aβ +
dβ − 1 + 1

d
< n + 2.

The Milnor number of F − cxd
0 is

∑
β∈I dβ and equals to the Milnor number of

g − cxd
0 which is µ(d− 1). �

Suppose that ∗(C̃) is valid with dβ , β ∈ I. Define

Ik
n+1 = {β ∈ I | Aβ = n+ 1− k}, Ik

n = {β ∈ I | Aβ +
1
d
≤ n + 1− k ≤ Aβ +

dβ

d
}.

We can restate Theorem 3.3 in the following way: For a tame polynomial f , the
set

B = ∪n
k=1B

k
n+1 ∪ ∪n

k=0B
k
n

with
Bk

n+1 = {∇n−kωβ | β ∈ Ik
n+1}, Bk

n = {∇n−kωβ | β ∈ Ik
n},

is a basis of H ′′
C̃

compatible with the mixed Hodge structure. The same is true
for H ′

C̃
replacing ∇n−kωβ with ∇n+1−kηβ . Unfortunately, this theorem gives us a
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basis of a localization H compatible with the mixed Hodge structure. In §10 we
have computed such bases for the Brieskorn module itself.

To handle easier the pieces of the mixed Hodge structure of HC̃ we make the
following table.

0 1 2 · · · n n + 1

In
n In

n+1 In−1
n In−1

n+1 In−2
n · · · I1

n I1
n+1 I0

n

In the case n = 1 we have the table

0 1 2

I1
1 I1

2 I0
1

I1
1 =

{
β ∈ I | Aβ +

1
d
≤ 1 ≤ Aβ +

dβ

d

}
, I0

1 =
{
β ∈ I | Aβ +

1
d
≤ 2 ≤ Aβ +

dβ

d

}
,

I1
2 = {β ∈ I | Aβ = 1}.

The forms ωβ, β ∈ I1
1 form a basis of F 1∩W1 and the forms ωβ, β ∈ I2

1 form a basis
of H ′′/W1. Now to obtain a basis of W1/(F 1 ∩W1) we must modify ∇ωβ, β ∈ I0

1 .

8. Picard-Fuchs equations

It is a well-known fact that for a polynomial f ∈ C[x] and ω ∈ H the integral
I(t) :=

∫
δt
ω satisfies (

k∑
i=0

pi(t)
∂i

∂ti

)
It = 0, pi(t) ∈ C[t] (8.1)

called Picard-Fuchs equation, where δt ∈ Hn(Lt,Z) is a continuous family of topo-
logical cycles. When f is tame, it is possible to calculate pi’ as follows:

We write

∇i(ω) =
∑
β∈I

pi,βωβ

and define the k×µ matrix A = [pi,β ], where i runs through 1, 2, . . . , k and β ∈ I.
Let k be the smallest number such that the the rows of Ak−1 are C(t)-linear
independent. Now, the rows of Ak are C(t)-linear dependent and this gives us
(after multiplication by a suitable element of C[t])

k∑
i=0

pi(t)∇i(ω) = 0, pi(t) ∈ C[t].

Using the formula (1.2) and integrating the above equality, we get the equation
(8.1).



258 H. Movasati

9. Polynomials in one variable, n = 0

The theory developed in §2 does not work for the case n = 0. For a polynomial
of degree d in one variable dim(H0(Lt,C)) = d but µ = d − 1. However, if we
use the following definition of homology and cohomology for a discrete topological
space M ,

H0(M,Z) =
{
m =

∑
i

aimi | ai ∈ Z, mi ∈M | deg(m) =
∑

i

ai = 0
}
,

H0(M,C) = {f : H0(M,Z) → C linear}/{f | f is constant on M},
then

H ′ = C[x]/C[f ], H ′′ = C[x]dx/f ′C[f ]dx, I = {1, x, x2, . . . , xd−2}, µ = d− 1.

In this case∫
δ

ω =
∑

i

aiω(pi), where δ =
∑

i

aipi, ai ∈ Z, pi ∈ f−1(t), ω ∈ H ′.

If, for instance, f ′ = 0 has d distinct roots then every vanishing cycle in Lt is a
difference of two points of Lt. The set B = {x, x2, . . . , xd−1} form a basis of H ′

and its ∇ which is {dx, xdx, . . . xd−2dx} (up to multiplication by some constants)
form a basis of H ′′. The first fact is easy to see. We write f = adx

d + f0 and for a
polynomial p(x) ∈ C[x] whenever we find some xd we replace it with f−f0

ad
and at

the end we get p(x) = p0(f) +
∑d−1

i=1 pi(f)xi or equivalently p =
∑d−1

i=1 pi(t)xi in
H ′. There is no C[t]-linear relation between the elements of B because B restricted
to each regular fiber is of dimension d. We write

p(x)dx =
d−2∑
i=0

qi(f)xidx + qd−1(f)xd−1dx

=

(
d−2∑
i=0

qi(f)xidx− qd−1(f)f ′
0

d.ad
dx

)
+

qd−1(f)f ′

d.ad
dx

and this proves the statement for H ′′.
Proposition 4.1 can be stated in the case n = 0 as follows: The only case in

which dAβ − αi = 0 is when n = 0 and P = 1. In the case n = 0 for P �= 1 we
have

∂g

∂xi
.Pdx =

d

d.Aβ − αi

∂P

∂xi
gdx

and if P = 1 then ∂g
∂xi

.Pdx is zero in H ′′. The argument in (4.4) and (4.5) can be
done also in the case n = 0. In this case if

η =
∑
β∈I

pβ(g)ηβ + p(g), p, pβ ∈ C[t], (9.1)
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where each piece in the right-hand side of the above equality has degree less than
deg(η) then

dη =
∑
β∈I

(pβ(g)Aβ + p′β(g)g)ωβ + p′(g)dg. (9.2)

In the case n = 0, we have only the set I0
0 = {Aβ + 1

d ≤ 1 ≤ Aβ + dβ

d } and
this is equal to I. We have dβ < d.(n + 2 − Aβ) = 2d − β − 1 = and Aβ = β+1

d .
We conclude that

d ≤ dβ + β + 1 < 2d.
Now the infinitesimal Hilbert problem (see [6] Problem 7) can be stated in the
case n = 0. Can one give an effective solution to this problem in this case? The
positive answer to this question may give light into the the problem in the case
n = 1. It is worked out in [4].

10. Examples

All the algorithms explained in this article are implemented in a library of Sin-
gular. It can be downloaded from the authors homepage. The procedure okbase
makes a permutation on the output of kbase and gives us the set xI with deg(xβ)
decreasing. The algorithms in §4 after (4.2) are implemented in the procedures
linear1, linear2. The procedures linear and linearp are for the algorithms in
§5. Based on the observations in §9, these procedures work also for the case n = 0.
The procedure nabla uses the formulas (6.1) and (6.2) and computes∇ and its iter-
ations. The procedure nablamat calculates the matrix 1

S(t) [pβ,β′] in (6.3). The cal-
culation of the polynomial S in §6 is implemented in the procedure S. Using Propo-
sition 7.1, the procedure muldF calculates AF . The algorithm for dβ ’s is imple-
mented in the procedure dbeta. The procedure changebase calculates the matrix
of the basis of the Brieskorn module H ′′

C̃
obtained in Theorem 3.3 in the canonical

basis ωβ, β ∈ I. The procedure Imk gives us xβ , β ∈ Ik
m, m = n, n+1, k = 0, 1, . . . n

with the order In
n , I

n−1
n , . . . , I0

n, I
n
n+1, I

n−1
n+1 , . . . , I

1
n+1. The procedure PFeq calcu-

lates pi’s in (8.1).
Theorem 3.3 does not give a basis of the Brieskorn module compatible with

the mixed Hodge structure. In the following examples we obtain such bases for
some examples of f by modifying the one given in §3.3 (we do not have a general
method for every f).

For all the examples below we download the
author’s library and matrix.lib.

10.1. Examples, n = 0

Example. f = x5 − 5x, P = {εi | i = 0, 1, 2, 3},
C = {−4εi | i = 0, 1, 2, 3}, where ε = e

2πi
d−1 is the

d-th root of unity.

> ring r0=(0,t),x, dp;

> int d=5; poly f=x^d-d*x;

> poly Sf=S(f); Sf;

(t4-256)

> list l=nablamat(f,Sf);

> l[1]; print(l[2]);

1/(5t4-1280)

(-t3), 128, (-48t),(16t2),

(4t2), (-2t3),192, (-64t),

(-16t),(8t2), (-3t3),256,

64, (-32t),(12t2),(-4t3)

//This is the matrix of nabla in the canonical

//basis x^3,x^2,x^1,1.

>PFeq(f,1);

_[1,1]=6144

_[1,2]=(35625t)

_[1,3]=(33375t2)
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_[1,4]=(8750t3)

_[1,5]=(625t4-160000)

The residues of dx
f−t

at its poles satisfy the Picard-

Fuchs equation

6144 + 35625t
∂

∂t
+ 33375t

2 ∂2

∂t2
+ 8750t

3 ∂3

∂t3
+

(625t
4 − 160000)

∂4

∂t4
= 0.

10.2. Examples, n = 1

For the examples below we define

ring r1=(0,t), (x,y), dp;

Example. f = xy(x + y − 1).

> poly f= x2y+xy2-xy ;

> poly g=lasthomo(f); g;

x2y+xy2

> okbase(std(jacob(g)));

_[1]=y2

_[2]=y

_[3]=x

_[4]=1

> print(muldF(f-par(1)));

(-3t+1/18)*x2,-1/18*x3, 0, 0,

1/6*x, (-3t-1/6)*x2,0, 0,

1/6*x, -1/6*x2, (-3t)*x2,0,

1/2, -1/2*x, 0, (-3t)*x2

> poly Sf=S(f); Sf;

(t4+1/27t3)

//We can take Sf=t*(t+1/27);

> list l1=nablamat(f,Sf);

> l1[1]; " "; print(l1[2]);

1/(54t2+2t)

(18t+1),(-18t-1),0,(-2t),

1, -1, 0,(-6t),

1, -1, 0,(-6t),

3, -3, 0,(-18t)

//--------------

> dbeta(f,par(1));

0,2,2,4

> Imk(f,par(1));

[1]:

[1]:

[1]:

1

[2]:

[1]:

1

[2]:

[1]:

[1]:

x

[2]:

y

> list l3=changebase(f,Sf,par(1));

> print(l3[1]); " "; print(l3[2]); det(l3[2]);

1,3/(54t2+2t),1,1

0,0, 0,1,

1,-1,0,(-6t),

0,0, 1,0,

0,1, 0,0

1

//--------------

> dbeta(f);

2,2,2,2

> Imk(f);

[1]:

[1]:

[1]:

1

[2]:

[1]:

y2

[2]:

[1]:

[1]:

x

[2]:

y

> list l2=changebase(f,Sf);

> print(l2[1]); " "; print(l2[2]); det(l2[2]);

1,1/(54t2+2t),1,1

0, 0, 0,1,

(18t+1),(-18t-1),0,(-2t),

0, 0, 1,0,

0, 1, 0,0

(18t+1)

//The obtained basis does not work for the

//fiber c=-1/18.

//--------------

> PFeq(f,1, Sf);

_[1,1]=6

_[1,2]=(54t+1)

_[1,3]=(27t2+t)

_[1,4]=0

_[1,5]=0

We get the following basis of H′′ compatible with
mixed Hodge structure.

f = xy(x + y − 1)

Gr1F GrW
1 H′′ [1]

Gr0F GrW
1 H′′ [y2] − [y] − 6t[1]

Gr1F GrW
2 H′′ [x], [y]

The integrals I =
R

δt

dx∧dy
f−t

satisfy the Picard-Fuchs

equation

6 + (54t + 1)
∂I

∂t
+ (27t

2
+ t)

∂2I

∂t2
= 0

Example. f = 2(x3 + y3) − 3(x2 + y2), P =
{(0, 0), (0, 1), (1, 0), (1, 1)}, C = {0, −1, −1, −2},
> poly f= 2*x3+2*y3-3*x2-3*y2 ;

> poly g=lasthomo(f); g;

2*x3+2*y3

> okbase(std(jacob(g)));

_[1]=xy

_[2]=y

_[3]=x

_[4]=1

>S(f);

(t4+4t3+5t2+2t)

//We can put

>poly Sf=t*(t+1)*(t+2);

> list l2=changebase(f,Sf);

> print(l2[1]); " "; print(l2[2]); det(l2[2]);

1,-1/(6t+12),1,1

0, 0,0,1,

-2,1,1,0,

0, 0,1,0,

0, 1,0,0

-2

f = 2(x3 + y3) − 3(x2 + y2)

Gr1F GrW
1 H′′ [1]

Gr0F GrW
1 H′′ [2xy − x − y]

Gr1F GrW
2 H′′ [x], [y]

Example. f = x4 + y4 − x.
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> poly f= x4+y4-x ;

> poly g=lasthomo(f);

> okbase(std(jacob(g)));

_[1]=x2y2

_[2]=xy2

_[3]=x2y

_[4]=y2

_[5]=xy

_[6]=x2

_[7]=y

_[8]=x

_[9]=1

> poly Sf=S(f); Sf;

(t9+81/256t6+2187/65536t3+19683/16777216)

//We can take

>Sf=t^3+27/256;

> dbeta(f,par(1));

2,2,2,5,2,2,5,2,5

> Imk(f,par(1));

[1]:

[1]:

[1]:

1

[2]:

x

[3]:

y

[2]:

[1]:

y

[2]:

y2

[3]:

x2y2

[2]:

[1]:

[1]:

x2

[2]:

xy

[3]:

y2

> list l3=changebase(f,Sf,par(1));

> print(l3[1]); " "; print(l3[2]); det(l3[2]);

1,1,1,4/(256t3+27),24/(256t3+27),1/(256t3+27),1,1,1

0, 0, 0,0,0,0,0, 0,1,

0, 0, 0,0,0,0,0, 1,0,

0, 0, 0,0,0,0,1, 0,0,

0, 0, 9,0,0,0,(-16t2),0,0,

3, (-2t),0,0,0,0,0, 0,0,

(128t2),9, 0,0,0,0,0, 0,0,

0, 0, 0,0,0,1,0, 0,0,

0, 0, 0,0,1,0,0, 0,0,

0, 0, 0,1,0,0,0, 0,0

(2304t3+243) // 9*256*Sf;

> matrix A=l3[2];

> A[6,1..ncols(A)]=

((-128*t2)/3)*submat(A,5,1..ncols(A))+

submat(A,6,1..ncols(A));

> A[5,1..ncols(A)]=

2*t*submat(A,6,1..ncols(A))+submat(A,5,1..ncols(A));

print(A);

0,0,0,0,0,0,0, 0,1,

0,0,0,0,0,0,0, 1,0,

0,0,0,0,0,0,1, 0,0,

0,0,9,0,0,0,(-16t2),0,0,

1,0,0,0,0,0,0, 0,0,

0,1,0,0,0,0,0, 0,0,

0,0,0,0,0,1,0, 0,0,

0,0,0,0,1,0,0, 0,0,

0,0,0,1,0,0,0, 0,0

We obtain the following table

f = x4 + y4 − x

Gr1F GrW
1 H′′ [1], [x], [y]

Gr0F GrW
1 H′′ 9[x2y] − 16t2[y], [x2y2], [xy2]

Gr1F GrW
2 H′′ [x2], [xy], [y2]

We make the following remark

> reduce(9*x2*y-16*(f^2)*y, std(jacob(f)));

0
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Whitney Equisingularity, Euler Obstruction
and Invariants of Map Germs
from Cn to C3, n > 3

Victor H. Jorge Pérez, Eliris C. Rizziolli and Marcelo J. Saia

Abstract. We study how to minimize the number of invariants that is sufficient
for the Whitney equisingularity of a one parameter deformation of any finitely
determined holomorphic germ f : (Cn, 0) → (C3, 0), with n > 3. Gaffney
showed in [3] that the invariants for the Whitney equisingularity are the 0-
stable invariants and the polar multiplicities of the stable types of the germ.
First we describe all stable types which appear in these dimensions. Then
we find relationships between the polar multiplicities of the stable types in
the singular set and also in the discriminant. When n > 3, for any germ f
there is an hypersurface in Cn, which is of special interest, the closure of the
inverse image of the discriminant by f , which possibly is with non isolated
singularities. For this hypersurface we apply results of Gaffney and Gassler
[6], and Gaffney and Massey [7], to show how the Lê numbers control the polar
invariants of the strata in this hypersurface. Gaffney shows that the number
of invariants needed is 4n+10. In the corank one case we reduce this number
to 2n + 2. The polar multiplicities are also an interesting tool to compute the
local Euler obstruction of a singular variety, see [12]. Here we apply this result
to obtain explicit algebraic formulae to compute the local Euler obstruction
of the stable types which appear in the singular set and also for the stable
types which appear in the discriminant, of corank one map germs from Cn to
C3 with n ≥ 3.
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1. Introduction

Gaffney describes in [3] the following problem: “Given a 1-parameter family of
map germs F : C×Cn, (0, 0)→ C×Cp, (0, 0), find analytic invariants whose con-
stancy in the family implies the family is Whitney equisingular.” He shows that
for the class of finitely determined map germs of discrete stable type, the Whitney
equisingularity of such a family is guaranteed by the invariance of the zero stable
types and the polar multiplicities associated to all stable types.

The number of invariants depends on the dimensions (n, p) and it can be very
big according to n and p are big. Then a natural question arises: “For a fixed pair of
dimensions (n, p), what is the minimum number of invariants in Gaffney’s theorem
that are necessary to guarantee the Whitney equisingularity of the family?”

In the case of corank one map germs, Vohra in [8] used Gaffney’s approach
to study map germs from n-space (n ≥ 3), to the plane. Recently the case n < p
was described by Jorge Perez and Saia and the case n = p by Levcovitz, Jorge
Perez and Saia.

In this paper we also consider germs of corank one and investigate the case
(n, 3) with n > 3. We reduce the number of invariants needed by finding relations
among them and using the fact that they are upper semi-continuous. To obtain
these relations we apply a result of Lê-Greuel to all strata which are related with
complete intersections with isolated singularity, ICIS for short. When n ≥ p, there
are some stable types which appear in the source which, possibly are with non
isolated singularities, for these sets we apply results of Lê and Teissier to show
how the Lê numbers control the invariants of these strata.

Another invariant that is associated to the polar varieties is their local Euler
obstruction. Here we apply results of Gonzales-Sprinberg [9] and Lê and Teissier
(see [12]), to obtain explicit algebraic formulae for the Euler obstruction of the
stable types of map germs from Cn to C3.

2. Notation and preliminaries

We follow Gaffney in [3] and denote by O(n, p) the set of origin preserving germs
of holomorphic mappings from Cn to Cp, Oe(n, p) denotes the set of germs at the
origin but not necessarily origin preserving.

For a germ f ∈ Oe(n, p), We denote the singular set of f by S(f). It consists of
all points where the rank of the derivative of f is less than min(n, p), J(f) denotes
the ideal generated by the set of p× p minors of the derivative of f . The critical
set Σ(f) of f is the set of points x ∈ Cn such that J(f)(x) = 0. The discriminant
∆(f) of f is the image of Σ(f) by f . The determinant of the derivative of a germ
f in Oe(n, n) is denoted by J [f ].

Our interest is in A-finitely determined map-germs, A denotes the usual
Mather group of germs of holomorphic diffeomorphisms in the source and in the
target.
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Let F : (Cs × Cn, (0, 0)) → (Cs × Cp, (0, 0)) be a versal unfolding of such a
map germ f .

Definition 2.1. A stable type Q appears in F if for any representative F =
(id, fu(x)) of F , there exists a point (u, y) ∈ Cs × Cp such that the germ fu :
(Cn, S) → (Cp, y) is a stable germ of type Q, S = f−1(y) ∩ Σ(fu). The points
(u, y) and (u, x) with x ∈ S are called points of stable type Q in the target and in
the source, respectively.

Definition 2.2. If f ∈ O(n, p) is stable, denote the set of points in Cp of type Q
by Q(f) and QS(f) = f−1(Q(f))−QΣ(f), where QΣ(f) = f−1(Q(f)) ∩ Σ(f).

If f is finitely determined, denote

Q(f) = ({0} × Cp) ∩ Q(F )

and
QS(f) = ({0} × Cn) ∩ QS(F ),

QΣ(f) = ({0} × Cn) ∩ QΣ(F ),

the bar means the closure of this set. We say that a stable Q is a zero-dimensional
stable type for the pair (n, p) if Q(f) has dimension 0, where f is a representative
of the stable type Q.

We observe that the set Q(F ) = ∩F (j(p+1)F−1(Azi)) is closed and analytic,
where zi is the p + 1 jet of the stable type Q and Azi is the A-orbit of zi.

A finitely determined germ f has discrete stable type if there exist a versal
unfolding F of f in which appears only a finite number of stable types. If (n, p) is
in the nice range of dimensions or in this boundary, then any finitely determined
germ f has a discrete stable type.

Suppose that Q(F ) = {p1, . . . , pr} is the set of points of zero-dimensional
type, where F is a versal unfolding of f . The 0-stable invariant of type Q of f, de-
noted by m(f ;Q) is the multiplicity of the ideal msOQ(F ),(0,0) in OQ(F ),(0,0), where
ms denotes the ideal generated by the coordinates of the space of parameters Cs.

Let F : (C×Cn, (0, 0))→ (C×Cp, (0, 0)), F = (t, f(t, x)), be a 1-parameter
unfolding of a finitely determined germ f , such that f(t,−) preserves the origin for
all t. Let T := C× {0}. F is a good unfolding of f if there exist neighborhoods U ,
W of the origin in C×Cn and C×Cp respectively such that F−1(W ) = U, F maps
U ∩Σ(F )−T to W −T and if (t0, y0) ∈W −T , then the germ ft0 : Cn, S → Cp, y0

is stable, where S = F−1(t0, y0) ∩ Σ(F ).
A good unfolding is excellent if all the 0-stable invariants are constant in the

unfolding and f is of discrete type. In the equidimensional case n = p, it is also
assumed that the degree of f , δ(f) = dimC

On

f∗(mn)On
, is constant in the unfolding.

An unfolding F of f is Whitney equisingular along the parameter space T if
there exists a regular stratification of the source and the target, with T a stratum
of the source and the target and these stratifications are Whitney equisingular
along T , i.e., satisfy the Whitney conditions a and b and Thom’s AF condition.
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It is shown in [3] that if f has discrete stable type, and F is a versal unfolding
which only a finite number of stable types, then there exists a regular stratification
of the source and the target given by the stable types of F , but the unfolding F is
not Whitney equisingular, since T is not a stratum of the source and the target.

One of the questions of main interest is to show when an excellent unfolding
F : (C × Cn, (0, 0)) → (C × Cp, (0, 0)) of a finitely determined germ f ∈ O(n, p)
is Whitney equisingular. Using the polar invariants, i.e., the polar multiplicities
of the polar varieties of the stable types (defined by Teissier in [20]) and Thom’s
isotopy lemmas, Gaffney showed the following principal result.

Theorem 2.3. ([3], p. 207) Suppose that F : (C × Cn, (0, 0)) → (C × Cp, (0, 0)) is
an excellent unfolding of a finitely determined germ f ∈ O(n, p). Also suppose that
the polar invariants of all stable types defined in:

1. the discriminant ∆(ft) = ft(Σ(ft)),
2. the singular set Σ(ft) and also in the set
3. X(ft) =

(
f−1

t (∆(ft))− Σ(ft)
)
,

are constant at the origin for all t. Then the unfolding is Whitney equisingular.

The theorem remains valid if we replace “an excellent unfolding” in the hy-
pothesis by “a 1-parameter unfolding which, when stratified by stable types and
by the parameter axis T , has only the parameter axis T as 1-dimensional stratum
at the origin” ([8]).

Here we reduce the number of invariants needed by finding relations among
them. From the fact that they are upper semi-continuous the relations will allow
us to reduce the number of invariants required in Gaffney’s theorem.

We remark that in the case of corank one map germs, the stable types which
appear in the set Σ(ft) are ICIS and the stable types which appear in ∆(ft) are
also related to ICIS which are in Cn. For these sets we shall apply the following
results.

Theorem 2.4. (Lê-Greuel, [11], page 47) Let X1 be an ICIS, with a singularity at
0 ∈ Cn. Let X be an ICIS defined in X1 by fk = 0, and let f1, . . . , fk−1 be the
generators of the ideal that defines X1 at 0 in Cn. Then

µ(X1, 0) + µ(X, 0) = dimC

On

(f1, . . . , fk−1, J(f1, . . . , fk))
.

In the case of a zero-dimensional ICIS we can use the following simpler for-
mula.

Let f : Ck, 0 → Ck, 0 be a germ such that X = f−1(0) is an ICIS. Then
µ(X, 0) = δ(f) − 1 (see [13] p. 78). Another elementary result that we use here
is the following. Let f : Cn, 0 → Cn, 0 be a finitely determined germ. Then f :
Σ(f) ⊂ Cn, 0→ ∆(f) ⊂ Cn, 0 is bimeromorphic (see [4] p. 154, or [13]).

When n ≥ 3, the stable types which appear in X(F ) = (F−1(∆(F )) − Σ(F ))
possibly are not ICIS. In this case, we use the associate Lê numbers to control
all invariants needed to show the Whitney equissingularity of these stable types
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along T . We apply the results of Lê and Teissier given in [12] and of Gaffney and
Gassler in [6].

3. The stable types in O(n, 3)

According to the theorem of Gaffney, the constancy of the polar invariants of all
stable types defined in ∆(ft), Σ(ft) and X(ft) is the condition for the Whitney
equisingularity. The first step in the strategy to minimize the number of invariants
is to describe all stable types which appear in these sets, as (n, 3) is in the range
of the nice dimensions of Mather, any finitely determined map germ f ∈ O(n, 3) is
of discrete type, hence the stratification has a finite number of strata. In general,
for any pair of dimensions (n, p) the description of the stable types can be done in
terms of subschemes of multiple points of a germ f , as we can see in [18] for the
case n = p or in [19] for the case n < p.

Here we use the Thom-Boardman stratification of the singular set to describe
the stable types which appear in Σ(f), then we show the stable types in the
discriminant ∆(f) of f and finally the stable types of X(f) = (f−1(∆(f))− Σ(f)).
For any Boardman symbol i = (i1, . . . , ir), we denote by Σi(f) the set of points in
Σ(f) of type i.

Stratification of source

In the source there are two sets which are stratified, one of them is the singular
set Σ(f) whose stratification is done by the smooth parts of the following sets:

1. The 2-dimensional set Σn−2(f) = Σ(f);
2. The 1-dimensional set Σn−2,1(f);
3. The 1-dimensional set of double points D2

1(f |Σ(f)), which we describe below.
The construction of the set of multiple points for any finitely determined map
germ from (Cn, 0) to (Cp, 0), with n ≥ p, is described in details by Goryunov in
[10]. Here we resume this construction for the case (n, 3).

First, consider the set of double points of the restriction of f to Σ(f), denoted
by D2(f |Σ(f)), which is a subset of C2n:
D2(f |Σ(f)) =

{
(p1, p2) ∈ C2n, p1 �= p2 , with p1, p2 ∈ Σ(f), and f(p1) = f(p2)}.

Then denote by D2
1(f |Σ(f)) the projection of D2(f |Σ(f)) to Cn. We remember

that the set D2
1(f |Σ(f)) is part of the singular set of f .

If f is of corank 1, write f(x1, x2, z3, . . . , zn) = (x1, x2, g(x1, x2, z3, . . . , zn)),
therefore we can describe D2(f |Σ(f)) as the set (x1, x2, z3, . . . , zn, z

1
3 , . . . , z

1
n) such

that g(x1, x2, z3, . . . , zn) = g(x1, x2, z
1
3 , . . . , z

1
n), which is in fact a subset of Cn ×

Cn−2 and D2
1(f |Σ(f)) is the projection of D2(f |Σ(f)) to Cn with coordinates

(x1, x2, z3, . . . , zn).
The other set to be stratified in the source is X(f) = f−1(f(Σ(f))) − Σ(f),

which has its interior in the regular set of f . This stratification is obtained by the
inverse image of f of the stable types in the target and also the inverse image of
the multiple points. It is formed by the smooth parts of the following sets.



268 V.H. Jorge Pérez, E.C. Rizziolli and M.J. Saia

1. The (n− 1)-dimensional set X(f) = (f−1(f(Σ(f))− Σ(f));
2. the (n−2)-dimensional set X1(f) = (f−1(f(Σn−2,1(f)))− Σ(f) ∩ Σn−2,1(f));
3. the (n− 2)-dimensional set

X2(f) = (f−1(f(D2
1(f |Σ(f)))) − Σ(f) ∩D2

1(f |Σ(f)));

4. the (n− 3)-dimensional set f−1(0).

We remark that the set f−1(0) is an ICIS, while the other, possibly are not.

Stratification of the target

In the target the stratification is done in the discriminant of f , ∆(f) = f(Σ(f)).
It is formed by the smooth parts of the following sets.

1. The discriminant ∆(f) = f(Σ(f)), which is 2-dimensional;
2. The 1-dimensional set f(Σ(n−2,1)(f));
3. The image of the double points of f , which is 1-dimensional and denoted by

f(D2
1(f |Σ(f))).

Example: Let F (x, y, z, w) = (x, y, g(x, y, z, w)) with g(x, y, z, w) = z5 + xz2 +
yz + w2. Here Σ(f) = {(x, y, z, w) : gz = 0 = gw} = {5z4 + 2xz + y = 0, and w =
0} is a surface in C4, the set ∆(f) = f(Σ(f)) ⊂ C3 is two-dimensional and
a parametrization for ∆(f) is given by (x, z) → (x,−5z4 − 2xz,−4z5 − xz2).
Therefore, the set X(f) is an hypersurface in C4, with

X(f) =
{
(x, y, z, w) : y = −4z4 − 2xz

}
.

We remark that, in this example the set f−1(0) is a curve in X(f) with equations
x = 0, y = 0, z5 + w2 = 0.

To a k-dimensional variety are associated k + 1 polar invariants. Since Σ(f)
and ∆(f) are of dimension 2, the sets D2

1(f |Σ(f)), Σn−2,1(f), f(Σn−2,1(f)) and
f(D2

1(f |Σ(f))) are of dimension 1, there are 14 polar invariants defined on these
sets. We also have 3n− 2 polar multiplicities of the sets X(f), X1(f), X2(f) and
n − 2 polar multiplicities of the set f−1(0). Therefore to apply Theorem 2.3. to
germs in O(n, 3) we need the constancy of 4n + 10 invariants. In the following
sections we show how they are related.

4. Polar invariants of the stable types in the discriminant

To show how the stable types are related in the discriminant we also follow the
method developed by Gaffney in the cases n = p = 2 and n = 2, p = 3. The main
idea is to compute the polar multiplicities associated to the stable types. The fact
that Σ(f), Σn−2,1(f) and D2

1(f |Σ(f)) are ICIS is strongly used here. From this we
can apply Theorem 2.4 and also the results shown in the final part of Section 2.

The first relation is for the polar multiplicities of the discriminant, as it is
2-dimensional, there are 3 polar multiplicities, that we describe here:
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We follow the definition done by Teissier in [20]. To compute m1(∆(f)) it
is needed to choose a generic projection p1 : C3 → C2 such that the degree of
p1|∆(f) is the the multiplicity of ∆(f) at 0 and also the polar variety P1(∆(f)) is
Σ(p1|∆0(f)); denote by m1(∆(f)) its multiplicity.

To compute m2(∆(f)), choose another linear generic projection p2 : C2 → C
such that the degree of (p2 ◦ p1)|P1(∆(f)) is m1(∆(f)) and we also require (p2 ◦ p1)
to be a generic projection which gives m2(∆(f)).

To obtain the multiplicity m0(∆(f)), consider the following diagram:

Σ(f) ⊂ Cn f−→∆(f) ⊂ C3

↘p1◦f ↙p1

(C2, 0)

From the choice of p1, m0(∆(f)) = deg(p1|∆(f)).
Next we give a relation between the polar multiplicities of ∆(f) in terms of

the Milnor number of the singular set.

Theorem 4.1. Let f ∈ O(n, 3), n > 3 be a finitely determined map germ. Then:

m2(∆(f)) −m1(∆(f)) + m0(∆(f)) = µ(Σ(f)) + 1. (I)

Proof. We have the following diagram:

Σ(f) ⊂ Cn f→ ∆(f) ⊂ C3 p1→ C2 p2→ C.

Now call X2 = V (p2 ◦ p1 ◦ f, J(f)) and X1 = V (p1 ◦ f, J(f)). As X1 and X2

are ICIS and subsets of V (J(f)) = Σ(f), we apply Theorem 2.4 to obtain:

µ(X2) + µ(X1) = dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])
. (1)

We remember that J(f) denotes the ideal generated by the p×p minors of the
derivative of f and J [f ] denotes the determinant of the derivative of f ∈ Oe(n, n).

Since Σ(f) is also an ICIS we apply again Theorem 2.4 to Σ(f) = V (J(f))

and X2 to get µ(Σ(f)) + µ(X2) = dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
.

Then

µ(X2) = dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
− µ(Σ(f)) (2)

and

dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
− µ(Σ(f)) + µ(X1)

= dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])
. (3)

But, X1 is 0-dimensional then

µ(X1) = deg(p1 ◦ f, J(f))− 1 (4)
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and

dimC

On

(J(f), J(p2◦ p1 ◦f,J(f)))
− µ(Σ(f)) + deg(p1 ◦ f, J(f))− 1

= dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])
. (5)

From the equation (5) we shall obtain the equation (I) which gives the rela-
tionship between the polar multiplicities of the discriminant. In fact these multi-
plicities are implicitly described in the equation (5), as we shall see now.

Since f : Σ(f)→ ∆(f) is finite and bimeromorphic, deg(p1|∆(f)) = deg(p1 ◦
f |Σ(f)) = deg(p1 ◦ f, J(f)). Therefore

deg(p1 ◦ f, J(f)) = m0(∆(f)). (i)

Now we find m1(∆(f)), let V ′ = V (J(f), J [p1 ◦ f, J(f)]) and call g : C3 →
C the defining equation of ∆(f), that is g−1(0) = ∆(f). As f|V ′ is finite and
bimeromorphic we can also obtain P1(∆(f)) = V (J [g, p1], J(f)).

From this definition of P1(∆(f)), since V ′ = V (J(f), J [p1 ◦ f, J(f)]) we have
that the projection of p2 ◦p1 ◦f(V ′) in C gives the same image than the projection
of p2(P1(∆(f))) in C.

V ′ ⊂ Σ(f)
f−→ ∆(f) ⊃ P1(∆(f))

↘p2◦p1◦f ↙p2

C

Then deg(p2 ◦ p1 ◦ f |V ′) = deg(p2|P1(∆(f))), from the choice of p2, we have
deg (p2|P1(∆(f))) = m1(∆(f)) and m1(∆(f)) = deg(p2 ◦ p1 ◦ f |V ′).

Since V ′ is I.C.I.S, the ring OV ′ is Cohen-Macaulay, then

m1(∆(f)) = deg(p2 ◦ p1 ◦ f |V ′) = dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])
. (ii)

Now we shall show that

m2(∆(f)) = dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
.

Since this multiplicity involves the stable types, choose an s parameters versal
unfolding F of f , to get

F : Σ(F ) ⊂ Cs × Cn −→ ∆(F ) ⊂ Cs × C3

(x, u) �−→ (u, fu(x)).
From the fact that p2 is generic and linear, we have

Σ(((πs, p2 ◦ p1) ◦ F )|Σ(F )) = V (J [F ], J((πs, p2 ◦ p1) ◦ F, J [F ])) = V ⊂ Cn × Cs.

We remark that m2(∆(f)) is controlled by the degree of the projection
(πs, p2 ◦ p1)|V , or in other words, by the length eJ(f) of the maximal ideal ms

in Os. Then eJ(f) = dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
.
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The possible components of V are the closure of the sets: F−1(P2(∆(F ), πs)),
F−1(A3), F−1(A(1,2)) and F−1(A(1,1,1)), therefore we need to count the contribu-
tion for the degree of the projection (πs, p2 ◦ p1) restrict to each one of these
components.

To do this we choose a generic parameter u and neighborhoods U2 ⊂ Cs ×
Cn, U1 ⊂ Cs such that for all point in U1 there exist eJ(f) pré-images in V ∩ U2,
counting its multiplicities.

Then we obtain

eJ(f) =
∑
x∈S

dimC

Os+n,x

(ms, J(f), J((πs, p2 ◦ p1) ◦ f, J(f)))

=
∑
x∈S

dimC

On,x

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu)))
,

where S = πs
−1(0) ∩ V .

Since the parameter u is generic we can consider that fu is stable. Then to
count the contribution of these components we need to use the normal forms of
the stable types which appear in the dimensions (n, 3).

We present here an explicit description of the normal forms of all corank
one stable map germs in O(n, 3), n > 3. First we describe the mono germs, we
remember that they are suspensions of the stable mono map germs which appear
in O(3, 3).

Stable Germs

1. Submersion Σ0, (A0): f(x1, x2, . . . , xn) = (x1, x2, xn)

2. Fold Σn−2, (A1): f(x1, x2, . . . , xn) = (x1, x2,±x2
3 ± · · · ± x2

n−1 ± x2
n)

3. Cuspidal edge Σn−2,1, (A2): f(x1, x2, . . . , xn) = (x1, x2,±x2
3 ± · · · ± x2

n−1 ±
x3

n + x1xn)

4. Swallowtail Σn−2,1,1, (A3): f(x1, x2, . . . , xn) = (x1, x2,±x2
3 ± · · · ± x2

n−1 ±
x4

n ± x1xn ± x2x
2
n).

To describe the stable multigerms we consider the normal crossing between
the stable mono germs.

Stable multigerms

1. Double points, (A(1,1)):{
(x1, x2,±x2

3 ± · · · ± x2
n−1 ± x2

n)(x1,±x2
2 ± x2

4 ± · · · ± x2
n−1 ± x2

n, x3)
}
.

2. Plane with a cuspidal edge, (A(1,2)):{
(x1,±x2

2 ± x2
4 ± · · · ± x2

n−1 ± x2
n, x3) ;

(x1, x2,±x2
3 ± · · · ± x2

n−1 ± x3
n + x1xn)

}
.

3. Triple points, (A(1,1,1)):{
(x1, x2,±x2

3 ± · · · ± x2
n−1 ± x2

n) ; (x1,±x2
2 ± x2

4 ± · · · ± x2
n−1 ± x2

n, x3) ;
(±x2

1 ± x2
4 ± · · · ± x2

n−1 ± x2
n, x2, x3)

}
.
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Now we return to count the contribution of the stable types: we remark that
these points can or not appear in V , depending of the type of the singularity.

• Singularity of type A3, here

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu))) =
(
x3, . . . , xn−1, 4xn

3 + 2x2xn + x1, . . . , 1
)

Hence

dimC

On,x

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu)))

= dimC

On,x

(x3, . . . , xn−1, 4xn
3 + 2x2xn + x1, . . . , 1)

= 0,

and we obtain that there is no contribution of this stable type.

• Singularity of type A(1,2), here the ideal J(fu) is generated by the generators
of the Jacobian ideals of the germs which define fu, then

J(fu) =
(
x2, x3, . . . , xn−1, xn, 3xn

2 + x1

)
= (x1, x2, x3, . . . , xn−1, xn) .

Hence

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu))) = (x1, x2, x3, . . . , xn−1, xn, 1)

and

dimC

On,x

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu)))

= dimC

On,x

(x1, x2, x3, . . . , xn−1, xn, 1)
= 0.

And we obtain again that there is no contribution of the stable type A(1,2).

• Singularity of type A(1,1,1). Here J(fu) = (x1, x2, x3, . . . , xn−1, xn) and

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu))) = (x1, x2, x3, . . . , xn−1, xn, 1) .

Then

dimC

On,x

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu)))

= dimC

On,x

(x1, x2, x3, . . . , xn−1, xn, 1)
= 0.

Again we obtain that there is no contribution of the stable type A(1,1,1).

Therefore we conclude that the components of V are in the closure of
F−1(P2(∆(F ), πs)), then

eJ(f) =
∑
x∈S

dimC

On,x

(J(fu), J(p2 ◦ p1 ◦ fu, J(fu)))
= deg(((πs, p2 ◦ p1) ◦ F )|V ).

Since F|V is finite and bimeromorphic we get

deg(((πs, p2 ◦ p1) ◦ F )|V ) = deg((πs, p2)|P2(∆(F ), πs)) = m2(∆(f)).



Whitney Equisingularity, Euler Obstruction and Invariants 273

On the other side,

m2(∆(f)) = eJ(f) = dimC

On

(J(f), J(p2 ◦ p1 ◦ f, J(f)))
. (iii)

Now we use (i), (ii) and (iii) in the equation (5) to obtain (I):

m2(∆(f)) −m1(∆(f)) + m0(∆(f)) = µ(Σ(f)) + 1. �
Next we give the relation for the polar multiplicities of f(Σn−2,1(f)), as it

is 1-dimensional, there are 2 polar multiplicities and the relation between them is
given in terms of the Milnor number of the set Σn−2,1(f) and also of the number
of singularities of type A3.

Remark 4.2. Defining ideal of Σn−2,1(f) is J(n−2,1)(f) = In(d(f, I3(d(f)))), where
d(h) denotes the Jacobian matrix of a map germ h and Is(M) denotes the ideal
generated by the s minors of some matrix M .

Then, for any corank one map germ f(x1, . . . , xn) = (x1, x2, g(x1, . . . , xn)) we
obtain J(n−2,1)(f) = (gx3 , gx4 , . . . , gxn ,M), where gxi denotes the partial derivative

of g in the variable xi, M is the determinant

∣∣∣∣∣∣∣∣∣
gx2

3
. . . gx3xn

gx4x3 . . . gx4xn

...
. . .

...
gxnx3 . . . gx2

n

∣∣∣∣∣∣∣∣∣ and gxixj denotes

the partial derivative of gxi in the variable xj .

Theorem 4.3. For any corank one map germ f from Cn to C3:

m0(f(Σn−2,1(f)))−m1(f(Σn−2,1(f))) = �A3 − µ(Σn−2,1(f)) + 1. (II)

Proof. Since f is finitely determined, Σn−2,1(f) has reduced structure, from the
fact that f is of corank one Σn−2,1(f) = V (J(n−2,1)(f)) is an ICIS, then to get
the equation (II) we apply again Theorem 2.4. Choose a generic linear projection
p : C3 → C such that X := Σn−2,1(f) ∩ (p ◦ f−1(0)) is an ICIS and

m0(f(Σn−2,1(f))) = deg(p|(f(Σn−2,1(f)))) = V (J(n−2,1)(f), p ◦ f).

We apply Theorem 2.5. for the sets Σn−2,1(f) and X to obtain

µ(Σn−2,1(f)) + µ(X) = dimC

On(
J(n−2,1)(f), J [J(n−2,1)(f), p ◦ f ]

) . (1)

From this equation we obtain the equation (II).
First we remark that X is an 0-dimensional ICIS, then

µ(X) = dimC

On(
J(n−2,1)(f), p ◦ f

) − 1 = deg((p ◦ f)|Σn−2,1(f)).

Since f |Σn−2,1(f) is bimeromorphic and finite,

deg((p ◦ f)|Σn−2,1(f)) = deg(p|f(Σn−2,1(f))).

On the other side, from the choice of p, we obtain deg(p|f(Σn−2,1(f))) =
m0(f(Σn−2,1(f))).
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Therefore deg((p ◦ f)|Σn−2,1(f)) = m0(f(Σn−2,1(f))) and

µ(X) = dimC

On(
J(n−2,1)(f), p ◦ f

) − 1 = m0(f(Σn−2,1(f)))− 1.

Then we have

m0(f(Σn−2,1(f))) = dimC

On(
J(n−2,1)(f), p ◦ f

) . (i)

Our next step is to work with m1(f(Σn−2,1(f))) to get the equation (II).

Since dim(f(Σn−2,1(f))) = 1 we need to consider all stable types which
appear here, then we need to count the contribution of each one of the 0-stable
types in m1(f(Σn−2,1(f))).

To obtain this, we consider a s-parameters versal unfolding F of f

F : Σn−2,1(F ) ⊂ Cs × Cn −→ F (Σn−2,1(F )) ⊂ Cs × C3

(u, x) �−→ (u, fu(x)).

From the linearity of the generic projection p, Σ(((πs, p) ◦F )|Σ(n−2,1)(F )) =
V (J(n−2,1)(F ), J [(πs, p) ◦ F, J(n−2,1)(F )]) = V ⊂ Cs × Cn and we conclude that
the m1(f(Σn−2,1(f))) is controlled by the degree of the projection πs restrict to
V , that is, by the length eJ(f) of the maximal ideal ms in the source Os. Then

eJ(f) = dimC

On(
J(n−2,1)(f), J [p ◦ f, J(n−2,1)(f)]

) .
Since the possible components of V are the closure of the sets F−1(A3),

F−1(A(1,2)), F−1(A(1,1,1)) and F−1(P1(F (Σ(n−2,1)(F )), πs)), we need to count the
contribution for the degree of the projection (πs, p) restrict to each one of these
components.

To do this we choose a generic parameter u and neighborhoods U2 ⊂ Cs ×
Cn, U1 ⊂ Cs such that for each point in U1 there exist eJ(f) pre-images in V ∩U2,
counting its multiplicities.

Therefore, for S = πs
−1(0) ∩ V :

eJ(f) =
∑
x∈S

dimC

Os+n,x(
ms, J(n−2,1)(F ), J [(πs, p) ◦ F, J(n−2,1)(F )]

)
=

∑
x∈S

dimC

On,x(
J(n−2,1)(fu), J [p ◦ fu, J(n−2,1)(fu)]

) .
From the genericity of the parameter u we suppose that fu is stable and to

count the contribution of the components we use the normal forms.

Contribution of the stable types: For the type A3, we have J(n−2,1)(fu) = (x3, x4,

. . . , xn−1, 4xn
3 + 2x2xn + x1, 12xn

2 + 2x2

)
and(

J(n−2,1)(fu), J [p ◦ fu, J(n−2,1)(fu)]
)
=
(
x3, . . . , xn−1, 4xn

3 + 2x2xn + x1,

12xn
2 + 2x2, J(x2, x3, . . . , xn−1, 4xn

3 + 2x2xn + x1, 12xn
2 + 2x2)

)
.
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But J(x2, x3, . . . , xn−1, 4xn
3 + 2x2xn + x1, 12xn

2 + 2x2) = 24xn and(
J(n−2,1)(fu), J [x2, J(n−2,1)(fu)]

)
=

(
x3, x4, . . . , xn−1, 4xn

3 + 2x2xn + x1,

12xn
2 + 2x2, 24xn

)
.

Therefore

dimC

On,x(
J(n−2,1)(fu), J [x2, J(n−2,1)(fu)]

) = 1

and we conclude that, here the contribution of the stable type A3 is 1.
For the type A(1,2). Since fu is a multi germ, the ideal J(n−2,1)(fu) is gener-

ated by the generators of the iterated Jacobian ideals J(n−2,1)(f1) and J(n−2,1)(f2)
of the germs which define fu. Consider f1(x1, . . . , xn) = (x1,±x2

2±x2
4±· · ·±x2

n−1±
x2

n, x3), and f2(x1, . . . , xn) = (x1, x2,±x2
3 ± · · · ± x2

n−1 ± x3
n + x1xn).

Here J(n−2,1)(f1)= (x2, x4, . . . , xn−1, xn, 1) and J(n−2,1)(f2)= (x2, . . . , xn,1)
then

dimC

On,x(
J(n−2,1)(fu), J(p ◦ fu, J(n−2,1)(fu))

) = dimC

On,x

(x2, . . . , xn,1)
= 0

and there is no contribution of the stable type A(1,2).
Now we consider the type A(1,1,1), let f1(x1, . . . , xn) = (x1, x2,±x2

3 ± · · · ±
x2

n−1±x2
n), f2(x1, . . . , xn) = (x1,±x2

2±x2
4±· · ·±x2

n−1±x2
n, x3) and f3(x1, . . . , xn) =

(±x2
1 ± x2

4 ± · · · ± x2
n−1 ± x2

n, x2, x3).
Here use the results done for the ideal J(n−2,1)(f1) in the case A(1,2) to

conclude also that there is no contribution of the stable type A(1,1,1).

Therefore

eJ(f) =
∑
x∈S

dimC

On,x(
J(n−2,1)(fu), J [p ◦ fu, J(n−2,1)(fu)]

) = deg(((πs, p) ◦ F )|V ).

Since F |V is finite and bimeromorphic, we get

deg(((πs, p)◦F )|V ) = deg((πs, p)|P1(F (Σ(n−2,1)(F ), πs) = m1(f(Σ(n−2,1)(f))+�A3

On the other side

eJ(f) = dimC

On(
J(n−2,1)(f), J [p ◦ f, J(n−2,1)(f)]

) .
Then

m1(f(Σ(n−2,1)(f)) + �A3 = dimC

On(
J(n−2,1)(f), J [p ◦ f, J(n−2,1)(f)]

) . (ii)

Using (i) and (ii) in the equation (1) we obtain the equation (II):

m0(f(Σn−2,1(f)))−m1(f(Σn−2,1(f))) = �A3 − µ(Σn−2,1(f)) + 1. �
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Corollary 4.4. From these results we obtain the following equality:

m1(∆(f)) = m0(f(Σn−2,1(f))) (III)

Proof. Since f ∈ O(n, 3), n > 3 is finitely determined and of corank one, we have
f(x1, x2, . . . , xn) = (x1, x2, g(x1, x2, . . . , xn)) and J(n−2,1)(f) = (J(f),M), where

M is the determinant

∣∣∣∣∣∣∣∣∣
gx2

3
. . . gx3xn

gx4x3 . . . gx4xn

...
. . .

...
gxnx3 . . . gx2

n

∣∣∣∣∣∣∣∣∣.
In the proof of Theorems 4.1 e 4.3 we see that

m1(∆(f)) = dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])

and

m0(f(Σn−2,1(f))) = dimC

On(
J(n−2,1)(f), p ◦ f

)
= dimC

On(
J(n−2,1)(f), p ◦ f

) .
To obtain the equality m1(∆(f)) = m0(f(Σn−2,1(f))), or

dimC

On

(p2 ◦ p1 ◦ f, J(f), J [p1 ◦ f, J(f)])
= dimC

On

(p1 ◦ f, J(f),M)

we need to show that J [p1 ◦ f, J(f)] = 〈M〉.
Since f is of corank one, we choose p1(y1, y2, y3) = (a1y1 +a2y2 +a3y3, b1y1 +

b2y2 + b3y3), then (p1 ◦ f)(x1, x2, . . . , xn) = (a1x1 + a2x2 + a3g(x1, . . . , xn), b1x1 +
b2x2 + b3g(x1, . . . , xn)). Then as p1 is a generic projection we can choose a1 �= 0
and b2 �= 0 to get the result. �

Remark 4.5. Since all these invariants are upper semi continuous, from Theorem
4.1 we see that if m1(∆(ft)) and µ(Σ(ft)) are constants in the family, we obtain
that m2(∆(ft)) and m0(∆(ft)) are also constants in the family.

Now we show how the polar multiplicities of f(D2
1(f |Σ(f))) are related. For

this set there are two polar multiplicities and the relation between them is given
in terms of the Milnor number of the set f(D2

1(f |Σ(f))) and also of the number
of singularities of type A3.

Theorem 4.6. Let f(Cn, 0)→ (C3, 0) be a finitely determined map germ of corank
one. Then:

2m0(f(D2
1(f |Σ(f))))− 2m1(f(D2

1(f |Σ(f)))) + µ(D2
1(f |Σ(f)))

= 3�A(1,2) + 3�A3 + 6�A(1,1,1) + 1.
(IV)
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Proof. Call I = f∗(m3)OD2
1(f |Σ(f)), from 8.1 of ([3], p. 209) and ([20], p. 294), we

choose a linear generic projection p : C3 → C in such a way that

e(I) = deg(p ◦ (f |(D2
1(f |Σ(f)))) and deg(p|(f((D2

1(f |Σ(f)))))) = m0(f(D2
1(f |Σ(f)))).

Since f |(D2
1(f |Σ(f))) − {0} is a two sheets recovering of f(D2

1(f |Σ(f))) − {0}
we know that e(I) = 2 deg(p|(f((D2

1(f |Σ(f)))))) = 2m0(f(D2
1(f |Σ(f)))).

Therefore

2m0(f(D2
1(f |Σ(f)))) = deg(p ◦ (f |(D2

1(f |Σ(f)))) = deg(p ◦ f, I2
1 (f |Σ(f)))

where I2
1 (f |Σ(f)) is the defining ideal of (D2

1(f |Σ(f))).

Call X2 = V (I2
1 (f |Σ(f))) = D2

1(f |Σ(f)) and X1 = V (I2
1 (f |Σ(f)), p ◦ f) =

D2
1(f |Σ(f)) ∩ (p ◦ f)−1(0).

As D2
1(f |Σ(f)) is an ICIS, X2 and X1 are also ICIS, then applying Theorem

2.4 to X2 and X1,

µ(X2) + µ(X1) = dimC

On

(I2
1 (f |Σ(f)), J [I2

1 (f |Σ(f)), p ◦ f ])
. (1)

Since X1 is 0-dimensional, we obtain

µ(X1) = deg(p ◦ f, I2
1 (f |Σ(f)))− 1 = 2m0(f(D2

1(f |Σ(f))))− 1. (2)

Then
µ(D2

1(f |Σ(f))) + 2m0(f(D2
1(f |Σ(f)))) − 1

= dimC

On

(I2
1 (f |Σ(f)), J [I2

1 (f |Σ(f)), p ◦ f ])
.

(3)

To finish we need to show that

dimC

On

(I2
1 (f |Σ(f)), J [I2

1 (f |Σ(f)), p ◦ f ])

= 2m1(f(D2
1(f |Σ(f)))) + 3�A(1,2) + 3�A3 + 6�A(1,1,1).

This equality appears when we study m1(f(D2
1(f |Σ(f)))), we remember that

this is the multiplicity where the 0-stable types appear.
Choose a s-parameters versal unfolding F of f ,

F : D2
1(F |Σ(F )) ⊂ Cs×Cn −→ F (D2

1(F |Σ(F ))) ⊂ Cs×C3, F (x, u) = (u, fu(x)).

From the linearity of the generic projection p we have

Σ(((πs, p) ◦ F )|D2
1(F |Σ(F ))) = V (I2

1 (F |Σ(F )), J((πs, p) ◦ F, I2
1 (F |Σ(F )))) = V.

Since the multiplicity m1(f(D2
1(f |Σ(f)))) is controlled by the degree of the

projection πs : Cn × Cs → Cs restrict to V , or in other words, by the length of
eJ(f) of the maximal ideal ms in Os. Then

eJ(f) = dimC

On

(I2
1 (f |Σ(f)), J [I2

1 (f |Σ(f)), p ◦ f ])
.
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The possible components of V are the closure of the sets:

F−1(P1(F (D2
1(F |Σ(F ))), πs)), F−1(A3), F−1(A(1,2)) and F−1(A(1,1,1)).

Then we need to count the contribution of the degree of the projection (πs, p)
restrict to each one of these components. Choose a generic parameter u and neigh-
borhoods U2 ⊂ Cs ×Cn, U1 ⊂ Cs in such a way that for any point in U1 there are
eJ(f) pre-images in V ∩ U2 counting multiplicities.

Hence

eJ(f) =
∑
x∈S

dimC

Os+n,x

(ms, I2
1 (F |Σ(F )), J [(πs, p) ◦ f, I2

1 (F |Σ(F ))])

=
∑
x∈S

dimC

On,x

(I2
1 (fu|Σ(fu)), J [p ◦ fu, I2

1 (fu|Σ(fu))])

where S = πs
−1(0) ∩ V . From the genericity of the parameter u, we consider

that fu is stable. First we remark that F−1(P1(F (D2
1(F |Σ(F ))), πs)) contributes

2m1(f(D2
1(f |Σ(f)))) with this degree, we need now to count the contribution of the

0-stable types. To count this contribution, we use the fact that the stable germs
in O(n, 3), with n > 3 are the suspension of an Ak singularity which appears
in O(3, 3), and in this case, the double points set of this singularity in O(n, 3)
coincides with the double points set of the singularity in O(n, 3), see [[10], p. 378]
for more details.

Therefore we use the calculation done by Jorge Pérez in [[17], p. 912] to get
that the contribution of the type A3 is 3, the contribution of the type A(1,2) is also
3 and of the type A(1,1,1) is 6. Then, since

eJ(f) =
∑
x∈S

dimC

On,x

(I2
1 (fu|Σ(fu)), J [p ◦ fu, I2

1 (fu|Σ(fu))])
= deg(((πs, p) ◦ F )|V )

and F |V is finite and bimeromorphic, we get

deg(((πs, p) ◦ F )|V ) = deg((πs, p)|P1(F (D2
1(F |Σ(F ))), πs)

= 2m1(f(D2
1(f |Σ(f)))) + 3�A3 + 3�A(1,2) + 6�A(1,1,1).

On the other side,

eJ(f) = dimC

On

(I2
1 (f |Σ(f)), J [p ◦ f, I2

1 (f |Σ(f))])
.

Then

dimC

On

(I2
1 (f |Σ(f)), J [p ◦ f, I2

1 (f |Σ(f))])

= 2m1(f(D2
1(f |Σ(f)))) + 3�A3 + 3�A(1,2) + 6�A(1,1,1). (4)

From these, we get the equality (IV)

2m0(f(D2
1(f |Σ(f))))− 2m1(f(D2

1(f |Σ(f)))) + µ(D2
1(f |Σ(f)))

= 3�A(1,2) + 3�A3 + 6�A(1,1,1) + 1. �
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5. Relations among the invariants of the stable types in Σ(f)

To obtain the relations among the invariants in Σ(f) we use the result of Teissier,
given in [20] p. 481, where it is shown how the absolute polar multiplicities of a
d-dimensional hypersurface X with isolated singularity are related to the Milnor
numbers µ(k)(H) = µ(X ∩Hk), with Hk being a generic hyperplane of dimension
k, we have

mk(X) = µ(k+1)(X) + µ(k)(X), 0 ≤ k ≤ d− 1. (∗)
We remark that this result is also valid for ICIS, as we see in [5], p. 210.
To apply these results we remember that the strata of Σ(f) are the regular

parts of Σ(f), Σ(n−2,1)(f) and D2
1(f |Σ(f)), Σ(f) is a two dimensional ICIS and

for corank one map germs, the set Σ(n−2,1)(f) is also an ICIS.
Gaffney in [5] defines the d-th polar multiplicity for spaces that are ICIS as

follows. Let (Xd, 0) be an ICIS of dimension d, then the dth polar multiplicity of
(Xd, 0), is md(Xd) = dimC

OX

J(p1,f) , where f : (Cn, 0) → (Cn−d, 0), f−1(0) = Xd

and p1 : Cn → C is a generic linear projection. We note that as V (p1, f) is ICIS,
then by Lê-Greuel theorem, we have

md(Xd) = µ(Xd) + µ(Xd ∩ p−1
1 (0)). (∗∗)

We remark that this equality was first noticed by Gaffney in [5], p. 211.

Theorem 5.1. Let f ∈ O(n, 3) with n > 3 be a finitely determined map germ, then:

m2(Σ(f))−m1(Σ(f)) + m0(Σ(f)) = µ(Σ(f)) + 1. (I)

Moreover, if f is of corank one,

m1(Σn−2,1(f))−m0(Σn−2,1(f)) = µ(Σn−2,1(f))− 1, (II)

m1(Σ(f)) = m0(Σn−2,1(f)), (III)

m1(D2
1(f |Σ(f)))−m0(D2

1(f |Σ(f))) = µ(D2
1(f |Σ(f)))− 1. (IV)

Proof. To show the first equality we use the fact that Σ(f) is an ICIS with dimen-
sion 2. From (∗)

m0(Σ(f)) = µ(1)(Σ(f)) + µ(0)(Σ(f)) (1)

m1(Σ(f)) = µ(2)(Σ(f)) + µ(1)(Σ(f)). (2)
From (1) we obtain

µ(1)(Σ(f)) = m0(Σ(f))− 1 (3)
and from (2):

µ(2)(Σ(f)) = m1(Σ(f))− µ(1)(Σ(f)). (4)
Moreover, from (∗∗) we get

m2(Σ(f)) = µ(Σ(f) ∩ p−1
2 (0)) + µ(Σ(f)). (5)

Then we obtain

m2(Σ(f))− µ(Σ(f) ∩ p−1
2 (0)) = µ(Σ(f)), (6)
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But
µ(Σ(f) ∩ p−1

2 (0)) = µ(2)(Σ(f)). (7)

From (7) and (6) we get

m2(Σ(f))− µ(2)(Σ(f)) = µ(Σ(f)). (8)

From (4) and (8), we obtain

m2(Σ(f))−m1(Σ(f)) + µ(1)(Σ(f)) = µ(Σ(f)). (9)

From (3) and (9):

m2(Σ(f))−m1(Σ(f)) + m0(Σ(f))− 1 = µ(Σ(f))

and the equality (I) follows.
If we suppose that f is of corank 1, Σn−2,1(f) is a 1-dimensional ICIS, then

(∗) and (∗∗) hold, or

m0(Σn−2,1(f)) = µ(1)(Σn−2,1(f)) + µ(0)(Σn−2,1(f)) (10)

and this is equivalent to

µ(1)(Σn−2,1(f)) = m0(Σn−2,1(f))− 1 (11)

and
m1(Σn−2,1(f)) = µ(Σn−2,1(f) ∩ p−1

1 (0)) + µ(Σn−2,1(f)). (12)

But
µ(Σn−2,1(f) ∩ p−1

1 (0)) = µ(1)(Σn−2,1(f)) (13)

from (13) and (12) it follows that

m1(Σn−2,1(f)) = µ(1)(Σn−2,1(f)) + µ(Σn−2,1(f)). (14)

Then, from (11) and (14) we obtain

m1(Σn−2,1(f))−m0(Σn−2,1(f)) = µ(Σn−2,1(f))− 1.

Therefore the equality (III) follows from the definition of the polar multi-
plicities and using the genericity of the projections, as we can see in the proof
of 4.4.

The proof of the equality (IV) is analogous to the proof of the equality (II),
since D2

1(f |Σ(f)) is 1-dimensional and is also an ICIS. �

We remark that, as the set f−1(0) is also an ICIS of dimension n − 3 we
obtain, in a similar way to the proof of the above theorem, the following equation

Σn−3
i=0 (−1)imi(f−1(0))− 1 = (−1)n−3µ(Σ(f))

and from this equation we reduce the number of polar invariants needed for f−1(0).
However, as this set is a subset of X(f), we shall show in the next section that
the associated Lê numbers of X(f) control all these polar multiplicities.
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6. The invariants in the stable types of X(ft)

We consider now sets X(ft) = f−1
t (∆(ft)) and X(F ) = F−1(∆(F )). Call ht :

(Cn, 0) → (C, 0) the function that defines X(ft) = f−1 (∆(ft)) in Cn and H :
Cn × C → C the function that defines X(F ) = F−1(∆(F )).

As we are considering n > 3 the set X(ft) is an hypersurface, possibly with
non-isolated singularities, then we cannot apply Theorem 2.4 to the hypersurface
X(ft) in {t} × Cn.

On the other side, we apply the results of Lê and Teissier given in [12], and
of Gaffney and Gassler in [6] to prove the Whitney equisingularity of the regular
set of X(F ) along the parameter space T = C× {0}.

The main invariants used to obtain the Whitney equisingularity of the family
X(ft) are the Lê numbers, which are the generalization of the Milnor number for
handling non-isolated hypersurface singularities. See [15] for the definition of these
numbers.

Proposition 6.1. The pair (X(F )− Σ(H), T ) is Whitney equisingular if, and only
if, the Lê numbers λi(ht/H

k) and λi(ht) are constants on T for all i = 1, . . . , k−1,
k = 1, . . . , n− 2, where Hk is a generic k-dimensional linear subspace in Cn.

Proof. To proof this result we follow the proof done in [18] for the case n = p.
From Gaffney and Gassler in [6], p. 726 we see that

χ(k) = mk(ht) +
k∑

i=0

(−1)k−iλi(ht), (6.1)

here χ(k) denotes the reduced Euler characteristic of the Milnor fibre of ht re-
stricted to a generic k-dimensional linear subspace in Cn.

We denote by χ∗ the sequence χ∗ =
(
χ(n), . . . , χ(2)

)
. From Theorem (5.3.1) p.

95 of [21], we see that X(F )−Σ(H) is Whitney equisingular along the parameter
space if, and only if, χ∗ is constant.

If the Lê numbers of X(ft) and the Lê numbers of all generic planar sections
of X(ft) are constant on T , we apply the equality (6.1) for χ(k) and the following
equalities given by Gaffney and Gassler in [6], p. 710:

λ0(ht/H
j) = λn−j(ht) + mn−j(ht), for j = 2, . . . , n− 1,

λk−i(ht/H
k) = λn−i(ht) for i = 1, . . . , k − 1,

(6.2)

to obtain that χ∗ is constant, hence the pair (X(F )− Σ(H)) , T ) is Whitney eq-
uisingular.

We remark that here mk(ht) denotes the relative polar multiplicity, defined
by Teissier in [20].

On the other side, if the pair (X(F )− Σ(H), T ) is Whitney equisingular,
then χ∗ is constant. Moreover we obtain that all relative polar multiplicities are
also constant, see [20], Chapter V, Theorem 2.1. From the equality (6.1) we obtain
that λj are constant for all j. From the equality (6.2) we obtain that λj(ht/H

k)
are constants for each generic k-plane Hk. �
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Remark 6.2. From this proposition and also from Theorem (5.3.1) of [21] we obtain
that the total space X(F ) has a stratification by the stable types and the parameter
space T , such that the condition Wf , therefore the Whitney equisingularity, holds
for every pair of strata, except possibly over T .

If the singular set of X(F ) is Cohen Macaulay (for the structure given by
J(H)), however, we can use the Lê Numbers associated to the sets X(ft) to obtain
the Whitney equisingularity of the full set X(F ) along the parameter space.

Let F : (C × Cn, (0, 0)) → (C × C3, (0, 0)) with n > 3 be a 1-parameter
unfolding of a finitely determined map germ f ∈ O(n, 3).

Theorem 6.3. Suppose that the stratification by the stable types of F has only the
parameter space T = C× {0} in C× C3 as a locus of instability and the singular
set of X(F ) is Cohen Macaulay.

Then the pair (X(F ), T ) is Whitney equisingular if, and only if, the sequence
(m1(ht), . . . ,mn−1(ht), χ∗) is independent of t.

Proof. First we remark that if the closure of a stratum S of V (H) = X(F ) is the
image of a component of the exceptional divisors of the Blow up B = BlJ(H)C

n+1,
from the fact that the condition AF of Thom is generic and also from dimensional
reazons, this component is the conormal space of S̄. Then, applying Theorem 6.3
of [7], the Blow up of this component by the pullback of mT has a exceptional
divisor which is equidimensional over T . From Theorem V.1.2 of [20]), the pair
(S, T ) satisfies the condition WF , hence the Whitney equisingularity.

Therefore it is enough to show that each stable type is the image of a com-
ponent of the exceptional divisor of the Blow up B = BlJ(H)C

n+1.
First we show this for the mono germs. Here it is sufficient to show that if fQ

represents a minimal stable type Q which appears with positive dimension in F ,
then the relative polar curve of X(fQ) at the origin is not empty, but this curve
is empty if and only if the intersection H1 ∩ · · · ∩Hn−1 ∩ BlJ(h)C

n is empty if,
and only if, the fiber over the origin is not a component.

Therefore we conclude that the origin is the image of a component of the
exceptional divisor. Since X(fQ) is a cartesian product along the strata of X(F )
which are different from T , the stratum which represents the stable type X(fQ)
is also the image of a component of the exceptional divisor.

We remember that if the multiplicity of the relative polar curve is not zero,
then the polar curve is not empty. Massey showed in ([16], p. 365) that this multi-
plicity is the number of spheres in the homotopy type of the link of the singularity,
independently of the dimension of the singular locus. Here we only need to show
now that this number is greater than zero.

From the hypothesis we see that each set X(fQ) is Cohen Macaulay, then we
apply Theorem 2.5 of Damon in [2], to get that X(fQ) is a free divisor, and from
Theorem 3.3 of [2], we obtain that this number is the Ae codimension of X(fQ),
which is greater than zero.
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Therefore the multiplicity of the relative polar curve is not zero, and we finish
the proof for mono germs.

Now we consider the stable types of the multi germs. Here we have that
if two smooth sheets of X(F ) intersect, then this has codimension 0 in Σ(H),
so this stratum must be the image of a component of the exceptional divisor.
Otherwise, we can assume that the set X(ft) is locally the union of two hypersur-
faces X1 and X2 embedded in Ck × Cn−k, with equations g1(z1, . . . , zk) = 0 and
g2(zk+1, . . . , zn) = 0. There are two cases: one with k = n − 1 and g2 = zn and
the other is with both g1, g2 defining singular hypersurfaces.

Suppose first that h2 = zn. Then we can assume that φ1 parametrizes a
branch of the polar curve of h1 and h1z1 ◦ φ1 is zero for 1 ≤ i ≤ n − 2. As h1

is in the integral closure of J(h1) we obtain that (h1/h1zn−1) ◦ φ1 is an analytic
germ ψn. Call ϕ = (φ1, ψn) then if f = znh1fzi ◦ ϕ = 0 for 1 ≤ i ≤ n − 2 and
(fzn − fzn−1) ◦ ϕ = (h1 − znh1zn−1) ◦ ϕ = 0. Hence ϕ parametrizes the branch of
the polar curve of f .

Now suppose that f = h1h2 and assume that φ1 and φ2 are parametrizations
of the branches of the polar curves h1 and h2, respectively. Then ϕ = (φ1, φ2)
parametrizes a polar surface of f and we obtain fz1 ◦ ϕ = 0 for 1 ≤ i ≤ k and
k+ 1 ≤ i ≤ n. Therefore, for an appropriate choice of A and B, (Afzk

+Bfzn) ◦ϕ
defines a curve of singularities which branch is parametrized by ψ, then ϕ ◦ ψ
parametrizes a branch of the polar curve of f and we are done. �

From the equivalence between the sequences

(m1(ht), . . . ,mn−1(ht), χ∗)

and
(m1(ht), . . . ,mn−1(ht), λ2(ht), . . . , λn(ht))

and the equations 6.2, we obtain the following:

Corollary 6.4. The pair par (X(ft), T ) is Whitney equisingular if and only if the
Lê numbers λn−j(ht), and λ0(ht|Hj), 2 ≤ j ≤ n− 1 are constant in the origin
for any t.

7. The main results

From the main theorem of Gaffney, we need the constancy of (4n+ 10) invariants
to guarantee the Whitney equisingularity, for example, in the case n = 4 we need
26 invariants.

To minimize this number we apply all results shown here to obtain first a
result for the case of map germs with any corank.

Theorem 7.1. Let F : (C × Cn, (0, 0)) → (C × C3, (0, 0)) with n > 3 be a 1-
parameter unfolding of a finitely determined map germ f ∈ O(n, 3). Suppose that
the stratification by the stable types of F has only the parameter space T = C×{0}
in C×C3 as a locus of instability and the singular set of X(F ) is Cohen Macaulay.
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Then the family is Whitney equisingular if and only if the following numbers
are constant at the origin for all ft:

1. In the singular set: µ(Σ(ft)),m1(Σ(ft)),m0(Σ(n−2,1)(ft)),m1(Σ(n−2,1)(ft)),
m0(D2

1(ft|Σ(ft))),m1(D2
1(ft|Σ(ft))).

2. In the discriminant: m1(∆(ft)),m0(ft(Σ(n−2,1)(ft))), m1(f(Σ(n−2,1)(ft))),
m0(ft(D2

1(ft|Σ(ft)))),m1(ft(D2
1(ft|Σ(ft)))).

3. In the set X(ft): The Lê numbers λi(ht), for 1 ≤ i ≤ n and λk(ht|Hn−k),
for 1 ≤ k ≤ n− 1.

In the case of corank one map germs, we minimize the number of invariants
to obtain the following:

Theorem 7.2. Let F (t, x) = (t, ft(x)) be an unfolding of a finitely determined map
germ and of corank one f ∈ O(n, 3), n > 3. Suppose that the stratification by the
stable types of F has only the parameter space T = C× {0} in C× C3 as a locus
of instability and the singular set of X(F ) is Cohen Macaulay.

Then the family is Whitney equisingular if and only if the following numbers
are constant at the origin for all ft:

1. In the singular set: µ(Σ(ft)), µ(Σ(n−2,1)(ft)), m1(Σ(ft)), m0(D2
1(ft|Σ(ft))),

m1(D2
1(ft|Σ(ft))),

2. In the discriminant: m1(∆(ft)), m0(ft(D2
1(ft|Σ(ft)))),m1(ft(D2

1(ft|Σ(ft)))).
3. In the set X(ft): The Lê numbers λn−j(ht), and λ0(ht|Hj), 2 ≤ j ≤ n− 1.

Here we reduce the number of invariants from 4n+10 to 2n+2. For instance,
if n = 4 we reduce this number from 26 to 10, if n = 5, we reduce the number
from 30 to 17.

8. The local Euler obstruction of the stable types

The local Euler obstruction for nonsingular varieties, introduced in [14] by R. Mac-
Pherson in a purely obstructional way, is an invariant that is also associated to
the polar invariants.

Lê and Teissier in [12], with the aid of Gonzales-Sprinberg’s purely algebraic
interpretation of the local Euler obstruction, showed that the local Euler obstruc-
tion is an alternate sum of the multiplicity of the local polar varieties.

Here we apply these results to obtain explicit and algebraic formulae for the
Euler obstruction of the stable types which appear in stable mappings from Cn

to C3.
Suppose that X ⊂ Cn is an analytic space of dimension d, ν the transforma-

tion of Nash of X . Let p ∈ X and z = (z1, . . . , zn) be local coordinates in Cn such
that zi(p) = 0.

Let ‖ z ‖2 = Σzizi. Since ‖ z ‖2 is a real-valued function, d‖ z ‖2 may be
considered as a section of (TCn)∗ where ∗ denotes the real dual bundle retaining
only its orientation from the complex structure. We can also consider d‖ z ‖2
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as a restriction to a section r of (TX)∗. In [1] it is showed that for small ε,
the section r is non zero over ν−1 where 0 ≤ ‖ z ‖ ≤ ε. Therefore let Bε =
{z/‖ z ‖ ≤ ε} and Sε = {z/‖ z ‖ = ε}. The obstruction to extending r as a non
zero section of TX∗ from ν−1(Sε) to ν−1(Bε), which we denote by Eu(TX∗, r),
lies in Hd(ν−1(Bε), ν−1(Sε); Z). If O(ν−1(Bε),ν−1(Sε)) denotes the orientation class
in Hd(ν−1(Bε), ν−1(Sε); Z), then we define the local Euler obstruction of X at p
to be Eu(TX∗, r) evaluated on O(ν−1(Bε),ν−1(Sε)) or symbolically

Eup(X) =
〈
Eu(TX∗, r), O(ν−1(Bε),ν−1(Sε))

〉
to ν−1(Bε) (see [14] or [9] for the definition and more details).

The following result shows how the local Euler obstruction and the polar
multiplicities are related.

Theorem 8.1. (Lê Dũng Trang et Teissier, [12]) Let X be a reduced analytic space
at 0 ∈ Cn+1 of dimension d. Then

Eu0(X) = Σd−1
i=0 (−1)d−i−1mi(X)

where mi(X) denotes the absolute polar multiplicity of the polar variety Pi(X).

From this theorem, we can now deduce the formulae for the Euler obstructions
of the stable types at ∆(f) from Theorems 4.1, 4.3, 4.6 and 5.1.

Corollary 8.2. Let f ∈ O(n, 3), n > 3 be a finitely determined map germ. Then:

Eu0(∆(f)) = m2(f(Σ(f)))− µ(Σ(f))− 1,

Eu0(f(Σn−2,1(f))) = m1(f(Σn−2,1(f)))− µ(Σn−2,1(f)) + 1 + �A3,

2Eu0(f(D2
1(f |Σ(f)))) = 2m1(f(D2

1(f |Σ(f))))− µ(D2
1(f |Σ(f)))

+ 3�A(1,2) + 3�A3 + 6�A(1,1,1) + 1,

Eu0(Σ(f)) = m2(Σ(f))− µ(Σ(f))− 1,

Eu0(Σn−2,1(f)) = m1(Σn−2,1(f))− µ(Σn−2,1(f)) + 1,

Eu0(D2
1(f |Σ(f))) = m1(D2

1(f |Σ(f)))− µ(D2
1(f |Σ(f))) + 1.
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Universidade de São Paulo,
Caixa Postal 668,
CEP 13560-970,
São Carlos (SP), Brazil
e-mail: vhjperez@icmc.usp.br

Eliris C. Rizziolli
Instituto de Geociências e Ciências Exatas
Universidade Estadual Paulista ”Júlio Mesquita Filho”
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Versality Properties
of Projective Hypersurfaces

Andrew A. du Plessis

Abstract. Let X be a hypersurface of degree d in P n(C) with isolated singu-
larities, and let f : Cn+1 → C be a homogeneous equation for X.

The singularities of X can be simultaneously versally deformed by de-
forming the equation f , in an affine chart containing all of the singularities,
by the addition of all monomials of degree at most r, for sufficiently large r;
it is known (see, e.g., §1) that r ≥ n(d−2) suffices. Conversely, if the addition
in the affine chart of all monomials of degree at most n(d− 2)− 1− a, a ≥ 0,
fails to simultaneously versally deform the singularities of X, then we will say
that X is a-non-versal.

The first main result of this paper shows that X is a-non-versal if, and
only if, there exists a homogeneous polynomial vector field with coefficients
of degree a, which annihilates f but is not Hamiltonian for f .

Our second main result is a sufficient condition for an a-non-versal hy-
persurface to be topologically a-versal.

Let X be a hypersurface of degree d in Pn(C) with isolated singularities, and let
f : Cn+1 → C be a homogeneous equation for X .

The singularities of X can be simultaneously versally deformed by deforming
the equation f , in an affine chart containing all of the singularities, by the addition
of all monomials of degree at most r, for sufficiently large r; it is known (see, e.g.,
§1) that r ≥ n(d − 2) suffices. Conversely, if the addition in the affine chart of
all monomials of degree at most n(d − 2) − 1 − a, a ≥ 0, fails to simultaneously
versally deform the singularities of X , then we will say that X is a-non-versal.

The first main result of this paper shows that X is a-non-versal if, and only
if, there exists a homogeneous polynomial vector field with coefficients of degree
a, which annihilates f but is not Hamiltonian for f .

There has been much research both on versality properties of hypersurfaces
and on vector fields preserving hypersurfaces; the connection between them is
somewhat surprising, and appears to have many applications.
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A case of particular interest is when a = n(d − 2) − 1 − d; in this case a-
non-versal hypersurfaces are those which fail to have their singularities versally
unfolded by the family of all hypersurfaces of degree d.

Necessary conditions for this non-versality in terms of the sum of the Tjurina
numbers of the singularities of the hypersurface have been studied by Shustin [11],
Shustin and Tyomkin [12], and du Plessis and Wall [5], [9]. In [9], the result of this
paper are used to conclude that the best possible conditions are obtained. The
result is also essential in [3], where it is used to provide many examples of exotic
geometry in families of hypersurfaces of as low codimension as possible.

We note also the case a = n(d−2)−d; in this case a-non-versal hypersurfaces
X are those which fail to have their singularities versally unfolded by the family of
all hypersurfaces of degree d which agree with X on a fixed hyperplane transverse
to X . Best possible necessary conditions for this non-versality in terms of the sum
of the Tjurina numbers of the singularities are also obtained in [9], again with help
from the results of this paper.

Detecting non-versality in this situation gives information about the strat-
ification of [4] for the stratum containing the restriction of f to a hyperplane
transverse to X . The conclusion for the case n = 2, d = 5, a = 1 supplies the
proof for the argument alluded to (but not used) in [13].

As regards more degenerate singularities, it follows easily from the stated
result that X is 0-non-versal if and only if it is a cone, and that X is 1-non-
versal if and only if it admits an algebraic one-parameter subgroup of PGLn(C)
as symmetry group. It is not difficult, at least in principle, to enumerate sym-
metric hypersurfaces with isolated singularities; and they have many interesting
properties; see [7] and [8].

Our second main result is a sufficient condition for an a-non-versal hypersur-
face to be topologically a-versal.

This result is applied in [7], §3, in discussing the topological 1-versality of
curves.

1. Vector fields and non-versality

Let X be a hypersurface of degree d in Pn(C) with isolated singularities, and let
f ∈ C[x0, . . . , xn] be a homogeneous equation for X . The first aim of this section
is to prove:

Theorem 1.1. Let a ≥ 0. Then X is a-non-versal if, and only if, there exists a
homogeneous vector field on Cn+1 with coefficients of degree a, which annihilates
f but is not Hamiltonian for f .

We will make use of some ideas from [2] in proving this.
We sketch the theory. Let F1, . . . , Fn ∈ C[x0, . . . , xn] be homogeneous poly-

nomials of degrees d1, . . . , dn, whose zero-set in Pn(C) is zero-dimensional. Write
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K for the ideal generated by these polynomials. Let J ⊃ K be another ideal de-
fined by homogeneous polynomials. Write J̃ for the saturation of J , that is, the
ideal generated by homogeneous polynomials φ ∈ C[x0, . . . , xn] such that, for some
k ≥ 0, (x0, . . . , xn)kφ ∈ J . Set S = C[x0, . . . , xn]/J̃ , and write HS for its Hilbert
function. Finally, let I = AnnK(J).

We have:

Proposition 1.2. Let � be a linear form whose only common zero with K is 0 ∈
Cn+1, and let S̄ = C[x0, . . . , xn]/(J̃ , �). Write m =

∑n
i=1(di − 1). Then

dimC S̄ −HS(m− a− 1) = dimC(I/K)a,

where (I/K)a is the ath graded piece of I/K.

This statement is in fact equivalent to the ‘Cayley-Bacharach’ theorem [2,
CB7]. It looks very different from the statement of that theorem, however, so we
prove it directly.

We begin with some information on saturated ideals.

Lemma 1.3. Let Q ⊂ C[x0, . . . , xn] be a homogeneous ideal whose zero-set Z(Q) ⊂
Pn(C) is of dimension 0, � ∈ C[x0, . . . , xn] a linear form such that Z(�)∩Z(Q) = ∅.

Then the following are equivalent:
(1) Q is a saturated ideal,
(2) � is not a zero divisor modulo Q,
(3) C[x0, . . . , xn]/Q is a free C[�]-module.

Proof. We prove (1)⇒(2), (2)⇒(3), and (3)⇒(1):

(1)⇒(2): Q and � vanish together only at 0 ∈ Cn+1, so by the Nullstellensatz there
exists k > 0 such that (x0, . . . , xn)k ⊂ (Q, �). Thus if �φ ∈ Q, then

(x0, . . . , xn)kφ ⊂ (Qφ, �φ) ⊂ Q;

whence, since Q is saturated, φ ∈ Q. So � is not a zero divisor modulo Q.

(2)⇒(3): Let the homogeneous polynomials φ1, . . . , φr ∈ C[x0, . . . , xn] project to
a C-basis for C[x0, . . . , xn]/(Q, �).

Then any homogeneous polynomial ψ ∈ C[x0, . . . , xn] can be written in the
form

∑r
i=0 αiφi + �ψ′ modulo Q, with the αi ∈ C, and ψ′ homogeneous and of

lower degree than ψ. Thus the obvious induction shows that the φi C[�]-span
C[x0, . . . , xn] modulo Q.

Now suppose
∑r

i=1 α(�)φi ∈ Q, with the αi ∈ C[�] and not all zero. Dividing
through by a suitable power of � gives, because � is not a zero divisor modulo Q,
a relation of the same form where at least one of the αi has non-zero constant
term. Reducing modulo � then gives a non-trivial C-linear combination of the φi

in (Q, �), which is impossible. So the φi give a free C[�]-basis for C[x0, . . . , xn]
modulo Q.

(3)⇒(1): Let ψ ∈ C[x0, . . . , xn] \ Q. Let φ1, . . . , φr ∈ C[x0, . . . , xn] project to a
free basis for C[x0, . . . , xn]/Q as C[�]-module. We can write ψ =

∑r
i=1 αi(�)φi
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modulo Q, with at least one of the polynomials αi(�) non-zero. Multiplying by
�k, �kψ =

∑r
i=1 �

kαi(�)φi modulo Q. Since at least one of the �kα(�) is non-zero,
�kψ �∈ Q. Thus (x0, . . . , xn)kψ �∈ Q for any k ≥ 0. So Q is saturated. �

Proof of 1.2. We claim that K is saturated. Suppose � ∈ AnnK(φ) with φ �∈ K
Then � is contained in an associated prime P of K. Since it also contains K, P ’s
only zero in Cn+1 is 0, so codimP = n + 1. But this contradicts the unmixedness
theorem ([1], 18.14), which implies that all associated primes of K have the same
codimension as K, i.e., n. So � is not a zero divisor modulo K, and K is saturated.

It follows that I is also saturated. For if (x0, . . . , xn)kφ ∈ I for some k ≥ 0,
then (x0, . . . , xn)kφJ ⊂ K, so that φJ ⊂ K.

We may observe, also, that I = AnnK(J̃). For if φ ∈ J̃ , then for some k ≥ 0
(x0, . . . , xn)kφ ⊂ J , whence (x0, . . . , xn)kφI ⊂ K. Since K is saturated, φI ⊂ K.

With these details taken care of, the rest of the argument proceeds as in
[2, pp. 315–6].

Let A = C[x0, . . . , xn]/(K, �), and define the ideals Ī = (I, �)/(K, �) and
J̄ = (J̃ , �)/(K, �) in A.

Because � is not a divisor of zero modulo J̃ , the Hilbert function HA/J̄ for
A/J̄ is the difference function of the Hilbert function HS for S, so that

HS(m) =
m∑

i=0

HA/J̄(i).

We can calculate the Hilbert functions of C[x0, . . . , xn]/K, C[x0, . . . , xn]/I
similarly, because � is not a divisor of zero modulo I or K. Subtracting, we find

dim(I/K)a =
a∑

i=0

Īi.

Now A is a graded Gorenstein ring, with (1-dimensional) socle in degree m:
for a proof, see [2, CB8, CB9]. This means ([2, pp. 313, 316]) that if σ is any
linear map A → C vanishing on all the graded pieces of A except the socle, then
composing σ with multiplication on A yields a perfect pairing Q of A with itself,
such that Aj is paired with Am−j for 0 ≤ j ≤ m.

Now Ī , J̄ are orthogonal complements with respect to the pairing Q (they
are clearly orthogonal; and the graded nature of the pairing shows that the sum
of their dimensions is dimA), so dim Īj = codimAm−j J̄m−j = HA/J̄ (m− j).

Thus

HS(m− 1− a) + dim(I/K)a =
m−1−a∑

i=0

HA/J̄ (i) +
a∑

j=0

dim Īj

=
m−1−a∑

i=0

HA/J̄(i) +
a∑

j=0

HA/J̄ (m− j) =
m∑

i=0

HA/J̄(i) = dimA/J̄.

Since A/J̄ is isomorphic to S̄, the argument is complete. �
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We return to the hypersurface X ⊂ Pn(C) with isolated singularities, and
equation f .

Let H be a hyperplane transverse to X ; changing coordinates, we may sup-
pose H = {x0 = 0}. X has no singularities on H , so to study its singularities it
suffices to work in the affine coordinate chart x0 = 1; and define the polynomial
function g : Cn → C by g(x1, . . . , xn) = f(1, x1, . . . , xn).

The singularities of X are represented by the singularities Σ(g) ∩ g−1(0) of
g−1(0) as a set, and by the ring R = C[x1, . . . , xn]/(g, J(g)) as a variety, where
J(g) = (∂g/∂x1, . . . , ∂g/∂xn) is the Jacobian ideal of g.

There is a natural isomorphism of C-vector spaces

R→
⊕

p ∈ Σ(g) ∩ g−1(0)
Rmp ,

where mp is the maximal ideal of polynomials vanishing at p. Since the germs
of g at the points p ∈ Σ(g) ∩ g−1(0) are finitely R-determined, Rmp is naturally
isomorphic to Op/(g, J(g))Op.

We now contemplate deforming f in the affine chart x0 = 1 by unfolding g by
all monomials in x1, . . . , xn of degree≤ k. The Kodaira-Spencer map τk of the germ
of this unfolding at Σ(g)∩g−1(0) maps these monomials to ⊕p∈Σ(g)∩g−1(0)Rmp = R
by projection. Thus τk is surjective, which is equivalent to the unfolding being
versal, if and only if the projections of the monomials span R.

Returning to homogeneous coordinates, let J̃(f) be the saturation of
J(f) = (∂f/∂x0, . . . , ∂f/∂xn), and let K(f) = (∂f/∂x1, . . . , ∂f/∂xn).

Proposition 1.4. Set s = n(d− 2). Then

dimC coker τk = dimC(AnnK(f)(J(f))/K(f))s−1−k.

Proof. The Euler relation df = Σn
i=0xi∂f/∂xi shows that J̃(f) is also the satura-

tion of (f, ∂f/x1, . . . , ∂f/∂xn). By 1.3, x0 is a not a zero divisor modulo J̃(f), so
setting x0 = 1 sends J̃(f) to (g, J(g)), and hence induces a surjection from the
ring S(f) = C[x0, . . . , xn]/J̃(f) to R. This surjection maps the kth graded piece
S(f)k of S(f) bijectively to the image of τk, so that

dimC cokerτk = dimC R−HS(f)(k).

Let S̄(f)t = C[x0, . . . , xn]/(J̃(f), � − t) t ∈ C. By 1.3 S(f) is a free C[�]-module,
so dimC S̄t is constant for all t ∈ C. In particular, since R ∼= S̄(f)1, dimC R =
dimC S̄(f)0; and we have

dimC cokerτk = dimC S̄(f)0 −HS(f)(k).

Applying 1.2 with K = K(f), J = J(f) and a = s−1−k shows that the left-hand
side of this equation is equal to dimC(AnnK(f)(J(f))/K(f))s−1−k, completing the
proof. �
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The C[x0, . . . , xn]-module H(f) of polynomial vector fields Hamiltonian for
f is generated by the vector fields Hi,j = ∂f/∂xi∂/∂xj − ∂f/∂xj∂/∂xi for 0 ≤
i < j ≤ n. These annihilate f , so H(f) is a submodule of ∆(f), the C[x0, . . . , xn]-
module of all polynomial vector fields annihilating f .

We have:

Lemma 1.5. Projection on the coefficient of ∂/∂x0 induces a graded isomorphism
of C[x0, . . . , xn]-modules

∆(f)/H(f)→ AnnK(f)(J(f))/K(f).

Proof. It is clear that AnnK(f)(J(f)) = AnnK(f)(∂f/∂x0), and equally clear
that projection to the coefficient of ∂/∂x0 maps ∆(f) onto AnnK(f)(∂f/∂x0).
Furthermore, the coefficient of ∂/∂x0 of any vector field Hamiltonian for f is
contained in K(f). It follows that the projection induces a graded surjection
∆(f)/H(f) → AnnK(f)(J(f))/K(f). To see that this is injective, we need to
see that any vector field ξ annihilating f whose ∂/∂x0-coefficient ξ0 is in K(f), is
Hamiltonian. So suppose that we can write ξ0 in the form

∑n
i=1 αi∂f/∂xi. Define

η = ξ −
∑n

i=1 αiH0,i. Then η annihilates f , and has zero ∂/∂x0-coefficient. Thus
its other coefficients give a relation amongst the ∂f/∂xi, i = 1, . . . , n. Since these
form a regular sequence, there are only trivial relations amongst them, so that
η has the form

∑
1≤i<j≤n βi,jHi,j ; in particular it is Hamiltonian for f . So ξ is

Hamiltonian for f , and the proof is complete. �

Proof of 1.1. Combining 1.4 (for k = s− 1− a) with 1.5 shows that

dimC(∆(f)/H(f))a = dimC coker τs−1−a. (1)

Since X is a-non-versal if and only if τs−1−a is not surjective, 1.1 follows. �

It is also possible to derive 1.1 from the existence of symmetric discrimi-
nant matrices for versal unfoldings of weighted homogeneous functions; indeed the
derivation from [5, 1.4] was the original proof, and is rather shorter than the argu-
ments above. However, this derivation would not yield the application of 1.2 which
will be required in the proof of 2.1.

Consider first the case a = 0. Then 1.1 shows that X being 0-non-versal is
equivalent to f being annihilated by a non-zero constant vector field, which we
may take as ∂/∂x0. But this in turn is equivalent to f being independent of x0,
so to X being a cone singularity.

Now consider the case a = 1.

Corollary 1.6. X is 1-non-versal if and only if it is invariant under a 1-parameter
algebraic subgroup of PGLn+1(C).

Proof. If X is invariant under a 1-parameter subgroup of PGLn+1(C), then the
infinitesimal generator of the group is a non-zero linear vector field annihilating
f , and 1.1 gives the failure of versality claimed.
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Conversely, if X is 1-non-versal, then the theorem yields a non-zero linear
vector field ξ which annihilates f . Since the linear vector fields form the tangent
space to GLn+1(C), exponentiating ξ yields a 1-parameter subgroup of GLn+1(C)
which preserves f , and hence X .

If this subgroup is not algebraic, f must also be invariant under its Zariski
closure, which has positive dimension, and so contains algebraic 1-parameter sub-
groups. �

2. Topological versality

A projective hypersurface with isolated singularities is topologically a-versal if, in
some affine chart containing its singularities, deforming its equation by adding all
monomials of degree at most n(d− 2)− a− 1 induces a simultaneous topologically
versal deformation of the singularities.

In this section we will prove the following sufficient condition for an a-non-
versal hypersurface to be topologically a-versal.

Theorem 2.1. Let X ∈ Pn(C) be a hypersurface with isolated singularities, and let
f = 0 be an equation for X.

Suppose that ξ ∈ ∆(f)a\H(f) generates (∆(f)/H(f))a. If there exists a non-
simple singular point P of X at which ξ does not vanish, then X is topologically
a-versal.

We can suppose, as in §1, that x0 = 0 is transverse to X ; and we will use the
notation developed in §1 for this situation. We will write p for the representation
of P in the affine chart x0 = 1. We write ξ in coordinates as

∑n
i=0 ξi∂/∂xi; and

write ξ̄i for the polynomial obtained from ξi by setting x0 = 1.
We will prove 2.1 via four lemmas.

Lemma 2.2. ξ̄0(p) �= 0.

Proof. Since df =
∑n

i=0 xi∂f/∂xi, we have

0 = x0ξ · f = ξ0(df −
n∑

i=1

∂f/∂xi) + x0

∑
i=1

ξi∂f/∂xi.

Setting x0 = 1 gives

ξ̄0dg =
n∑

i=1

(ξ̄0xi − ξ̄i)∂g/∂xi;

so that
∑n

i=1(ξ̄0xi − ξ̄i)∂/∂xi is a vector field tangent to g−1(0). It must thus
vanish at the singular points of g−1(0), so in particular at p.

Suppose ξ̄0(p) = 0. Then ξ̄i(p) = 0 for i = 1, . . . , n also; so ξ vanishes at P ,
a contradiction. So ξ̄0(p) �= 0. �

Lemma 2.3. The germ gp of g at p is quasi-homogeneous.
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Proof. Since ξ̄0(p) �= 0, ξ̄ is invertible in Rmp
∼= Op/(g, J(g))Op. Now ξ0 ∈

AnnK(f)(f), so ξ̄0 ∈ AnnJ(g)(g). Thus, taking germs at p, gp ∈ J(gp). Thus by
Saito’s theorem [10], gp is quasi-homogeneous. �

Lemma 2.4. Let h ∈ C[x1, . . . , xn] represent the Hessian of gp in Rmp , and rep-
resent 0 in Rmq for q ∈ Σ(g) ∩ g−1(0) \ {p}. Then h projects to a generator for
Coker τs−a−1.

Proof. Since the germ of g at p is quasi-homogeneous, its Hessian generates the
socle of Rmp . It follows that dimC((h, g, J(g))/(g, J(g)) = 1.

Write R̄ for the ring C[x1, . . . , xn]/(h, g, J(g)). Showing that h projects to a C-
generator for Coker τs−1−a is equivalent to showing that the projection π : R→ R̄
maps Im τs−1−a onto R̄.

Let H be the homogenisation of h with respect to x0, L the saturation of
(H, J(f)), and T = C[x0, . . . , xn]/L. Then setting x0 = 1 maps L onto (h, g, J(g)),
and so induces a surjection T → R̄, which maps the (s− 1− a)th graded piece of
T injectively onto the C-subspace of R̄ spanned by the images of all monomials in
x1, . . . , xn of degree ≤ s−1−a; that is, onto π(Im τs−1−a). It follows that showing
that π(Im τs−1−a) = R̄ is equivalent to showing that HT (s− 1− a) = dimC R̄.

Let T̄ = C[x0, . . . , xn]/(L, x0). According to 1.3, dimC T̄ = dimC R̄, whilst
according to 1.2,

dimC T̄ −HT (s− a− 1) = dimC(AnnK(f)(H, J(f))/K(f))a,

so that showing HT (s− 1− a) = dimC R̄ is equivalent to showing

(AnnK(f)(H, J(f))/K(f))a = {0}.

Now ξ̄0h is non-zero in R, so ξ̄0 �∈ Ann(g,J(g))(h), and so, a fortiori, ξ̄0 �∈
AnnJ(g)(h, g, J(g)). Homogenising this gives ξ0 �∈ AnnK(f)(H, f,K(f)). Now
AnnK(f)(H, f,K(f)) = AnnK(f)(H, J(f)), because (H, f,K(f)) and (H, J(f))
have the same saturation. Thus (AnnK(f)(H, J(f))/K(f))a is a proper subspace
of the one-dimensional space (AnnK(f)(J(f))/K(f))a, so is {0}, completing the
proof. �

Write {G : N → P ; i, j} for the unfolding of g by all monomials of degree at
most s−a−1 in x1, . . . , xn. Here N = Cn×Cm, P = C×Cm, m being the number
of monomials, and i, j are the natural embeddings of Cn, C in N, P , respectively,
as Cn × 0m, C× 0m. Set S = Σ(g) ∩ g−1(0).

Lemma 2.5. The germ of G at i(S) has jet-extension multi-transverse to the K-
invariant submanifold generated by {gp + t · H(g) : t ∈ C} and the K-classes of
gq, q ∈ S \ {p}.

Proof. We will make the usual translation of multi-transversality in jet-space of
sufficiently high order to transversality in the target of a versal unfolding. Let
{G̃, I, J} be a versal unfolding of the germ of G at i(S). Then the presentations
by G̃ of the K-invariant submanifolds named intersect transversely in the target
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of G̃, and the result claimed is equivalent to showing that J is transverse to their
intersection P .

Since h projects to a generator for the Kodaira-Spencer map for the germ of
G at i(S), such an unfolding (G̃ : (N × C, i(S) × 0) → (P × C, j(0) × 0); I, J) is
obtained by unfolding the germ of G at i(p) with H(gp), and the germs of G at the
other points of i(Σ(g)∩g−1(0)) trivially; here we take I, J as the appropriate germs
of the natural embeddings of N, P in N ×C, P ×C, respectively, as N × 0, P × 0.
With this choice of G̃, P contains the unfolding axis (j(0)×C, j(0)× 0). It follows
that J is transverse to P , as required. �

Proof of 2.1. We make use of the complex avatars of a definition and result of [4].
We define civilization for a K-invariant complex submanifold of complex jet-space
as in [4, p.347, ll.1-7], except that R is replaced by C whenever it occurs.

The proof of [4, 9.1.3] (in [4, 9.4]) can then be followed more or less word
for word to conclude that, if a complex multi-germ G has jet extension multi-
transverse to a collection of civilized submanifolds containing the K-classes of
the germs at its base-points, then there exists a V -tame retraction of any versal
unfolding of G to G; it follows immediately that G is topologically versal.

It is clear that K-classes are civilized; thus to prove 2.1, it remains to show
that the K-invariant submanifold S generated by {gp+t·H(g) : t ∈ C} is civilized.

Since gp is quasi-homogeneous but not simple, Wirthmüller’s theorem [14, 3.6]
gives the required model retraction. For the retraction in the target is obtained
by integrating a pair of continuous vector fields (the real and imaginary parts of a
complex vector field), analytic off the presentation of S, which are weighted homo-
geneous in appropriate coordinates. It follows that these vector fields can be chosen
to preserve level sets of the associated weighted distance from this presentation.
Thus the retraction is smooth, so tame, on these level sets, and the conclusion
follows from [4, 9.6.4]. The proof is complete. �
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Minimal Intransigent Hypersurfaces

Andrew A. du Plessis

Abstract. We give examples of hypersurfaces of degree d in P n(C), whose
singularities are not versally deformed by the family Hd(n) of all hypersur-
faces of degree d in P n(C), and which are of minimal codimension with this
property.

In the three cases (n, d) = (2, 6), (3, 4) and (5, 3), such hypersurfaces
necessarily have one-parameter symmetry. We list the possibilities. The singu-
larities of these hypersurfaces are not all simple, and they are simultaneously
topologically versally deformed by Hd(n).

In less degenerate cases the examples we give are hypersurfaces with only
simple singularities. The failure of versality can be expected to show itself in
the geometry of Hd(n), either because the µ-constant stratum S containing
the hypersurface is of codimension less than µ in Hd(n), or because S is
not smooth. We will see elsewhere that this is the case for the examples we
consider here. In particular, the singularities of these hypersurfaces are not
topologically versally deformed by Hd(n).

1. Introduction

Let X be a hypersurface of degree d in Pn(C) with only isolated singularities,
and let f ∈ C[x0, . . . , xn] be a homogeneous equation for X . We will say that
X is intransigent if the family Hd(n) of all hypersurfaces of degree d does not
simultaneously versally deform the singularities of X , and transigent otherwise.
(The use of “intransigent” here is patterned on the use of “rigid” for varieties
with no deformations within the class under consideration). We recall some earlier
results on such hypersurfaces.

The C[x0, . . . , xn]-module H(f) of polynomial vector fields Hamiltonian for
f is generated by the vector fields

Hi,j = ∂f/∂xi∂/∂xj − ∂f/∂xj∂/∂xi for 0 ≤ i < j ≤ n.

These annihilate f , so H(f) is a submodule of ∆(f), the C[x0, . . . , xn]-module of
all polynomial vector fields annihilating f . The grading of C[x0, . . . , xn] by degree
induces a grading on these modules in the obvious way.



300 A.A. du Plessis

Proposition 1.1. [6, 1.1] X is intransigent if and only if there exists a homogeneous
vector field which annihilates f , is not Hamiltonian for f , and is of degree (n −
1)(d− 2)− 3.

We will denote by τ(X) the sum of the Tjurina numbers of the singularities
of X .

Proposition 1.2. [9, 1.1] If X is intransigent then τ(X) ≥ δ(d), where

δ(3) = 16, δ(4) = 18, and δ(d) = 4(d− 1) for d ≥ 5.

An intransigent hypersurface X for which τ(X) = δ(d) will be called minimal.

In cases where (n−1)(d−2) ≤ 2, so when d = 2 or d = 3, n = 2, no intransi-
gent hypersurfaces can exist. In all other cases, minimal intransigent hypersurfaces
do exist: algebraically simple, but for the most part geometrically rather uninter-
esting, examples are given in [9, §3]. The aim of this paper is to present rather
more revealing examples, which will illustrate some unusual geometry in the fam-
ilies Hd(n).

If (n − 1)(d − 2) = 3 – there are just two cases, (n, d) = (2, 5), (4, 3) – the
annihilating vector field must be of degree 0, so a constant vector field. Changing
coordinates, this may be taken as ∂/∂x0, showing that f is independent of x0, so
X is a cone. Conversely, since any cone is annihilated by a constant vector field, it
is intransigent when (n−1)(d−2) ≥ 3 – but not minimal when (n−1)(d−2) > 3. It
follows from a theorem of Wirthmüller [17] (see also [7, 9.1.4]) that the singularities
of the cones in these two cases are topologically versally deformed by the family
Hd(n) – we say that these hypersurfaces are topologically transigent.

If (n − 1)(d − 2) = 4 – there are just three cases, (n, d) = (2, 6), (3, 4) and
(5, 3) – the annihilating vector field must be linear. It was shown in [6, 1.6] that
the existence of such a vector field is equivalent to the hypersurface admitting
a one-dimensional subgroup of PGLn(C) as symmetries. Thus when (n − 1)(d −
2) ≥ 4, any symmetric hypersurface is intransigent, but is not minimal when
(n− 1)(d− 2) > 4. All the symmetric hypersurfaces in the three cases above (and
many others) have been enumerated (see [8], [10]). The following can be extracted
from the enumeration.

Proposition 1.3. In the three cases (n, d) = (2, 6), (3, 4), (5, 3), a minimal intran-
sigent hypersurface has a semi-simple symmetry group, of form [w0, 0, . . . , 0, wn].

The notation for the symmetry groups used above reflects the fact that if a
one-dimensional algebraic subgroup of PGLn(C) is semi-simple, then its infinites-
imal generator has, in appropriate coordinates, diagonal form

∑n
r=0 wrxr∂/∂xr,

where the weights wr are integers. We denote such a subgroup by [w0, w1, . . . , wn].

We list below the symmetry groups, their invariant monomials, and the sin-
gularities possible for minimal intransigent hypersurfaces.
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Group Monomials Singularities
[−2, 0, 3] x6

1, x
3
0x1x

2
2 Z13 + D7

[−1, 0, 5] x6
1, x

5
0x2 NF20

[−1, 0, 4] x6
1, x

4
0x1x2 NC19 + A1

[−1, 0, 2] {x3
1, x

2
0x2}2 W1,0 + A5

[−1, 0, 1] {x2
1, x0x2}3 2T2,3,6

[−1, 0, 0, 3] x3
0x3, {x1, x2}4 V ′(1, 1, 1, 1)

[−1, 0, 0, 2] x2
0x3{x1, x2}, {x1, x2}4 V A0,0 + A3

[−1, 0, 0, 1] x2
0x

2
3, x0x3{x1, x2}2, {x1, x2}4 2T2,4,4

[−1, 0, 0, 0, 0, 2] x2
0x5, {x1, x2, x3, x4}3 O16

[−1, 0, 0, 0, 0, 1] x0x5{x1, x2, x3, x4}, {x1, x2, x3, x4}3 2T3,3,3

In the lists of invariant monomials, the expression {X1, . . . , Xk}r (the superscript
is omitted when r = 1) denotes the set of homogeneous monomials of degree r
in X1, . . . , Xk; and, if m is a monomial, then m{X1, . . . , Xk}r denotes the set
of products of m with elements of {X1, . . . , Xk}r. A generic linear combination
of the monomials listed gives a minimal intransigent hypersurface with exactly
the singularities shown. The notations for these singularities, where they are not
standard, are those of [16].

We observe that in all these cases a non-simple singularity is present. It follows
from [6, 2.1], [10, 2.8] that the singularities of these hypersurfaces are topologically
transigent. Indeed, it seems likely that all intransigent hypersurfaces in these cases,
including the cones, are topologically transigent; for more information on this see
[8], [10].

The cases where (n − 1)(d − 2) > 4 are the subject of the remainder of the
paper. In §2 we will exhibit, in each case, minimal intransigent hypersurfaces with
isolated singularities, all of which are simple.We will see elsewhere how to describe
the intransigence of these hypersurfaces geometrically: we will see that either the
µ-constant stratum S containing the hypersurface is of codimension strictly less
than µ in Hd(n), or S is not smooth near the hypersurface. In particular, the
hypersurfaces we exhibit are not topologically transigent. Such µ-constant strata
have previously been observed. For the first type, an early example in P 2(C)
is due to Segre [11], whilst in higher dimensions the number of nodes on some
hypersurfaces of degree d discovered recently (see, e.g., [1, pp. 419-20], [2], [14])
exceeds the dimension of Hd(n). For the second type there are examples (though
only of curves) due to Luengo [5] and Greuel, Lossen and Shustin [4], [13]. However,
these examples are of higher codimension than those we exhibit, where, of course,
the codimension is the least possible.

The possibilities of the constructions described in §2 are far from exhausted
by the examples we describe; and comparison with exceptional deformations in
other situations (see, e.g., [7, pp. 510-4]) suggests than many other mechanisms
will also give rise to intransigence. It seems that intransigence is very widespread.

It is a pleasure to acknowledge T. Wall’s help with the preparation of this article.
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2. Construction of examples

The following simple lemma is the key to our constructions.

Lemma 2.1. Let F : Cm → C be an analytic function, annihilated by the vector
fields ξi, for i = 1, . . . , r, let g : Cn+1 → Cm be an analytic map, and let f = F ◦g.

Suppose m = n + r. Then the determinant of the (m + 1)× (m + 1) matrix

M =

⎛⎜⎜⎜⎜⎝
∂f
∂x0

. . . ∂f
∂xn

0 . . . 0
∂g1
∂x0

. . . ∂g1
∂xn

ξ11 ◦ g . . . ξr1 ◦ g
...

...
...

...
∂gm

∂x0
. . . ∂gm

∂xn
ξ1m ◦ g . . . ξrm ◦ g

⎞⎟⎟⎟⎟⎠
vanishes identically, so that the determinants of the m × m minors adjoint to
the first n + 1 entries in the first row of Mgive the coefficients of a vector field
θ annihilating f . Moreover, θ is non-zero at p ∈ Cn+1 if, and only if, the vec-
tors ξ1(g(p)), . . . , ξr(g(p)) are linearly independent and Im dgp + C · {ξ1(g(p)), . . .,
ξr(g(p))} = Cm.

Proof. Let p ∈ Cn+1. By the chain rule, ∂f
∂xj

(p) =
∑m

l=1
∂F
∂yl

(g(p)) · ∂gl

∂xj
(p). Also,

since ξk annihilates F , we have 0 =
∑m

l=1
∂F
∂yl
·ξkl; so 0 =

∑m
l=1

∂F
∂yl

(g(p)) ·ξkl(g(p)).
Hence the rows M1, . . . ,Mm+1 of M satisfy M1 =

∑m
l=

∂F
∂yl

(g(p)) ·Ml+1 at p. Thus
M has rank less than m+1 at p, so its determinant vanishes there. Since p ∈ Cn+1

was arbitrarily chosen, detM vanishes identically, as claimed.
Write M ′ for the matrix obtained by removing the first row of M . Then, at

p ∈ Cn+1, at least one of the minors adjoint to the first n + 1 entries in the first
row of M has rank m if, and only if, M ′ has rank m and the final r columns of
M ′ are linearly independent. Thus θ(p) �= 0 exactly when the stated conditions
hold. �

Specializing to a (weighted) homogeneous situation yields a somewhat sharper
statement. In what follows, Gn+1(w1, . . . , wm) will denote the vector space of maps
Cn+1 → Cm whose coordinate functions are homogeneous polynomials of positive
degrees w1, . . . , wm.

Proposition 2.2. Let F : Cm → C be a polynomial function, weighted-homogeneous
with respect to weights w1, . . . wm/d, and annihilated by r linearly independent
weighted-homogeneous vector fields ξ1, . . . , ξr, of weights c1, . . . , cr respectively.
Write n = m− r, s =

∑m
i=1 wi − n +

∑r
j=1 cj.

Let g ∈ Gn+1(w1, . . . , wm), and set f = F ◦ g, so f is a homogeneous polyno-
mial of degree d. Then ∆(f)s �= 0 for generic choice of g from Gn+1(w1, . . . , wm).
Moreover, if either s < d − 1 or there exists a point q ∈ Σ(F ) such that ξ1(q),
. . ., ξr(q) are linearly independent, then ∆(f)s/H(f)s �= 0 for any g ∈ Gn+1(w1,
. . ., wm) such that the projective hypersurface {f = 0} in Pn(C) has only isolated
singularities.
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Proof. Let M(g) be the matrix of 2.1 for F, ξ1, . . . , ξr, and g. For 1 ≤ i ≤ m, 0 ≤
j ≤ n, ∂gi

∂xj
has degree wi−1, while for 1 ≤ i ≤ m, 1 ≤ k ≤ r, ξki has degree wi+ck.

It is immediate that the determinants of the m×m minors of M(g) adjoint to the
first n entries in the first row of M(g) are homogeneous of degree s; so that the
vector field θ(g) annihilating f = F ◦ g implied by detM(g) = 0 is of degree s.

To simplify notation, we will write G for Gn+1(w1, . . . , wm) for the rest of the
proof. Let C ⊂ G consist of of those g ∈ G for which θ(g) �= 0, and, for any q ∈ Cm,
let Cq ⊂ C consist of of those g ∈ G for which there exists p ∈ Cn+1 with g(p) = q
and θ(g)(p) �= 0. Each Cq is clearly a Zariski-open subset of G, so C = ∪q∈CmCq is
too. Thus to see that θ(g) is non-zero for generic choice of g ∈ G, we only need to
see that Cq is non-empty for some q ∈ Cm. We show that Cq is non-empty for any q
such that the vectors ξ1(q), . . . , ξr(q) are linearly independent. For this, write such
q as (q1, . . . , qm) and let L = (L1, . . . , Lm) be an injective linear map Cn → Cm

such that ImL+C ·{ξ1(q), . . . , ξr(q)} = Cm. Define g = (g1, . . . , gm) : Cn+1 → Cm

by setting gi(x0, x2, . . . , xn) = xwi
0 qi + xwi−1

0 Li(x1, . . . , xn) for 1 ≤ i ≤ m, and set
p = (1, 0, . . . , 0). Then q = g(p), and dgp|Cn = L, so that Im dgp ⊃ ImL. Thus, by
2.1, θ(g)(p) �= 0, and g ∈ Cq, as required.

For the final statement, let D ⊂ G consist of those g ∈ G such that the zeroes
of f = F ◦ g define a projective hypersurface with isolated singularities. Clearly
D is Zariski-open in G. We suppose in what follows that D is not empty. Let E
be the subset of D such that if g ∈ X , then fg = F ◦ g is not annihilated by
a vector field of degree s not Hamiltonian for fg. Then E too is Zariski-open in
G. For suppose g ∈ E. Choose coordinates x0, . . . , xn in Cn+1 so that x0 = 0 is
transverse to {fg = 0}, define the function kg by setting x0 = 1 in fg, and let Kg

be the deformation of kg obtained by adding arbitrary monomials in x1, . . . , xn of
degree at most n(d−2)−1−s. Then, according to 1.1, Kg induces a simultaneous
versal deformation of the singularities of kg. By openness of versality ([15, p. 640]),
the corresponding construction induces a simultaneous versal deformation Kg′ of
kg′ , for g′ in some Zariski-open neighborhood Eg of g in G. Thus, by 1.1 again,
Eg ⊂ E.

If s < d−1 let D′ = C∩D. Then D′ is Zariski-dense in G, and if g ∈ D′, then
θ(g) is non-zero. It is thus non-Hamiltonian for f , because the module of vector
fields Hamiltonian for f is generated by vector fields of degree d− 1. Thus in this
case E must be empty.

If there exists a point q ∈ Σ(F ) such that ξ1(q), . . . , ξr(q) are linearly inde-
pendent, then let D′ = D∩Cq . Thus D′ is Zariski-dense in G. If g ∈ Cq, let p ∈ Cn

be the corresponding point with g(p) = q. Then θ(g) is non-zero at p, which is a
critical point of f = F ◦ g. Thus θ(g) is not Hamiltonian for f , since vector fields
Hamiltonian for f have coefficients in J(f), so vanish at Σ(f). Thus E is empty
in this case too, and the proof is complete. �

All our examples of intransigent hypersurfaces are derived from a special case
of 2.2:
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Corollary 2.3. Suppose m ≥ 2r. Let F : Cm → C be a function of form

F = F0 +
r∑

i=1

yai

2i−1y
bi

2iFi,

where ai ≥ 1, bi ≥ 2 for 1 ≤ i ≤ r, and F0, . . . , Fr are polynomials in y2r+1, . . . , ym

alone. Suppose also that F is weighted-homogeneous with respect to weights w1, . . .,
wm/d, where wi < d for i ≤ i ≤ m. Write n = m− r, s =

∑m
i=1 wi − n.

Let g ∈ Gn+1(w1, . . . , wm), and set f = F ◦ g, so f is a homogeneous poly-
nomial of degree d. Then ∆(f)s/H(f)s �= 0 for any g such that the projective
hypersurface {f = 0} has only isolated singularities.

Proof. Let p ∈ Cm have y2i−1-coordinate 1 for 1 ≤ i ≤ r, and its other coordinates
0. It is clear that p ∈ Σ(F ).

Now observe that F is annihilated by the vector fields ξr = biy2i−1
∂

∂y2i−1
−

aiy2i
∂

∂y2i
, for 1 ≤ i ≤ r; and that the vectors ξ1(p), . . . , ξr(p) are linearly indepen-

dent.
Since the vector fields ξ1, . . . , ξr are of weight zero, 2.2 now gives the result.

�

In the examples based on 2.3 which follow, we exhibit just one g0 ∈ Gn+1(w1,
. . ., wm) such that {F ◦ g0 = 0} is a minimal intransigent hypersurface. This will
be enough to ensure that {F ◦ g = 0} is a minimal intransigent hypersurface for
generic choice of g:

Lemma 2.4. Let m, r and F satisfy the hypotheses of 2.3; and define also s, n
as in those hypotheses. Suppose that s = (n − 1)(d − 2) − 3, and that g0 ∈
Gn+1(w1, . . . , wm) is such that {F ◦ g0 = 0} is a minimal intransigent hyper-
surface. Then {F ◦ g = 0} is a minimal intransigent hypersurface in Pn(C) for
a generic choice of g from Gn+1(w1, . . . , wm). Moreover, if the singularities of
{F ◦ g0 = 0} are simple, then the singularities of {F ◦ g = 0} are of the same
analytic types as those of {F ◦ g0 = 0}.

Proof. Write G for Gn+1(w1, . . . , wm), and D ⊂ G for the Zariski-open subset
consisting of those g ∈ G for which the projective hypersurface {F◦g = 0} in Pn(C)
has only isolated singularities. According to 1.1 and 2.3, {F ◦g = 0} is intransigent
if g ∈ D. Thus, according to 1.2, τ({F ◦g = 0}) ≥ δ(d). Now g → τ({F ◦g = 0}) is
an upper semi-continuous function on D, so D0 = {g ∈ D | τ({F ◦ g = 0}) = δ(d)}
is a Zariski-open subset of D, so of G. Since g0 ∈ D0, D0 is non-empty, and hence
dense in G. But D0 consists exactly of those g ∈ G for which {F ◦ g = 0} is a
minimal intransigent hypersurface, so the first statement is proved. For the second,
we note that D0 is connected, and that a path γ in D0 containing g0 yields, taking
germs at the singularities of {F ◦ γ(t) = 0}, a τ -constant family of multi-germs.
Since this family contains a K-simple multi-germ, all its elements lie in the same
multi-K-class, as claimed. �
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As a final preparation for the examples, we describe a kind of suspension.
Let m, r and F satisfy the hypotheses of 2.3; and define also n, s as in 2.3. Define
F̃ : Cm+2 → C by

F̃ (y1, . . . , ym+2) = F (y1, . . . , ym) + y2
m+1ym+2;

so F̃ is weighted-homogeneous with respect to w1, . . . , wm, 1, d− 2/d. Then m+
2, r + 1 and F̃ also satisfy the hypotheses of 2.3; and hence its conclusion, with n
and s replaced by n + 1 and s + d− 2.

Lemma 2.5. Let F, F̃ be as above, and suppose that g ∈ Gn+1(w1, . . . , wm) is such
that X = {F ◦ g = 0} is a projective hypersurface in Pn(C) with isolated singular-
ities. Let � be a linear function on Cn such that {� = 0} is transverse to X. Define
g̃ : Cn+2 → Cm+2 by

g̃i =

⎧⎨⎩
gi if 1 ≤ i ≤ m,

xn+1 if i = m + 1,
c (xd−2

n+1 − �d−2) if i = m + 2,

where c ∈ C \ {0}.
Then, for all but finitely many values of c, X̃ = {F̃ ◦ g̃ = 0} is a projective

hypersurface in Pn+1(C) whose isolated singularities are analytically isomorphic
to the Thom suspensions of the singularities of X; so τ(X̃) = τ(X). In particular,
if s = (n−1)(d−2)−3 and X is a minimal intransigent hypersurface, then so is X̃.

Proof. Changing coordinates in Cn+1, we can suppose that � = x0. Write f = F ◦g,
f̃ = F̃ ◦ g̃; we have

f̃(x0, . . . , xn+1) = f(x0, . . . , xn) + c (xd
n+1 − xd−2

0 x2
n+1).

Thus at a singularity of X̃, ∂f/∂x1, . . . , ∂/∂xn must vanish, together with either
xn+1 and ∂f/∂x0 or dxd−2

n+1 − 2xd−2
0 and ∂f/∂x0 − c(d− 2)x2

n+1x
d−3
0 .

By the transversality assumption, ∂f/∂x1, . . . , ∂/∂xn have only finitely many
common zeroes, [z1], . . . , [zk] say, in Pn(C); and none of these are also zeroes of
both x0 and ∂f/∂x0. Hence the second possibility occurs only for finitely many
values of c; these are given by c = (∂f/∂x0(zi))/((d − 2)α2xd−3

0 ), for i = 1, . . . , k
and α such that αd−2 = 2/d.

Thus, ruling out this finite collection of values for c, the first possibility for
singularities of X̃ is the only one, and [p] is a singular point of X if and only if
[(p, 0)] is a singular point of X̃ . Also, because x0 �= 0 at p, the singularity of X̃ at
[(p, 0)] is analytically equivalent to the Thom suspension of the singularity of X
at [p]. Since Thom suspension does not affect Tjurina number, the first statement
is proved; the second statement follows from 1.1, 1.2 and 2.3. �
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Examples 2.6. We suppose k ≥ 0.

(i) (a) Let F : C2k+2 → C be given by

F (y1, . . . , y2k+2) = y8
1 + y2

2 +
∑k

j=1 y
2
2j+1y2j+2.

For generic g ∈ Gk+3(1, 4, . . . , 1, 6), {F ◦ g = 0} is a minimal intran-
sigent hypersurface of degree 8 in P k+2(C), with simple singularities
4A7.

(b) Let F : C2k+3 → C be given by

F (y1, . . . , y2k+3) = yd
1 + y2

2y3 +
∑k

j=1 y
2
2j+2y2j+3,

where d > 8. For generic g ∈ Gk+3(1, 4, d−8, . . . , 1, d−2), {F ◦g = 0} is
a minimal intransigent hypersurface of degree d in P k+2(C), with simple
singularities 4Ad−1.

(ii) (a) Let F : C2k+2 → C be given by

F (y1, . . . , y2k+2) = y7
1 + y1y

2
2 +

∑k
j=1 y

2
2j+1y2j+2.

For generic g ∈ Gk+3(1, 3, . . . , 1, 5), {F ◦ g = 0} is a minimal intran-
sigent hypersurface of degree 7 in P k+2(C), with simple singularities
3D8.

(b) Let F : C2k+3 → C be given by

F (y1, . . . , y2k+3) = yd
1 + y1y

2
2y3 +

∑k
j=1 y

2
2j+2y2j+3,

where d > 7. For generic g ∈ Gk+3(1, 3, d−7, . . . , 1, d−2), {F ◦g = 0} is
a minimal intransigent hypersurface of degree d in P k+2(C), with simple
singularities 3Dd+1 + (d− 7)A1.

Proof. By 2.5, it suffices to treat the cases k = 0. Setting k = 0, we apply 2.3,
and find that in each case n is 2 and s is d− 5, d being the degree of F ◦ g. Since
d−5 = (n−1)(d−2)−3, it follows from 1.2 and 2.4 that it suffices to exhibit just
one example for each case with exactly the singularities claimed. These examples
follow:

(i) (a) Define g0(x0, x1, x2) = (x1, x
4
2 − x4

0), so that

F ◦ g0(x0, x1, x2) = x8
1 + (x4

2 − x4
0)

2.

Then C = {F ◦ g0 = 0} has just four singularities, at the points with
coordinates satisfying x1 = 0, x4

2 = x4
0, and these singularities are of

type A7.
(b) Define g0(x0, x1, x2) = (x1, x

4
2 − x4

0, 2x
d−8
2 − xd−8

0 ), so that

F ◦ g0(x0, x1, x2) = xd
1 + (x4

2 − x4
0)

2(2xd−8
2 − xd−8

0 ).

Then C = {F ◦ g0 = 0} has just four singularities, at the points with
coordinates satisfying x1 = 0, x4

2 = x4
0, and these singularities are of

type Ad−1.
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(ii) (a) Define g0(x0, x1, x2) = (x1, x
3
2 − x3

0), so that

F ◦ g0(x0, x1, x2) = x7
1 + x1(x3

2 − x3
0)

2.

Then C = {F ◦ g0 = 0} has just three singularities, of K-type D8, at
the points with coordinates x1 = 0, x3

2 = x3
0.

(b) Define g0(x0, x1, x2) = (x1, x
3
2 − x3

0, 2x
d−7
2 − xd−7

0 ), so that

F ◦ g0(x0, x1, x2) = xd
1 + x1(x3

2 − x3
0)

2(2xd−7
2 − xd−7

0 ).

Then C = {F ◦ g0 = 0} has just d − 4 singularities; three, of K-type
Dd+1, at the points with coordinates x1 = 0, x3

2 = x3
0, and d − 7, all

nodes, at the points with coordinates x1 = 0, 2xd−7
2 = x7

0. �
Interesting intransigent (but not minimal) hypersurfaces are also revealed by

non-generic choice of g in the above.
For example, take k = 0 in (i), and define

g(x0, x1, x2) =

{
(x1, x1x

3
0 + x4

2) in case (a), when d = 8,

(x1, x1x
3
0 + x4

2, 2x
d−8
2 − xd−8

0 ) in case (b), when d > 8.

Then the curve {F ◦ g = 0} has a single A4d−1-singularity; the case d = 9 is
one of the examples of Luengo [5]. Here the line {g1 = 0} intersects the quartic
{g2 = 0} at [(1, 0, 0)] with multiplicity four. Less degenerate intersections yield less
degenerate singularities; replacing g2 by x1x

3
0 +x3

2(x2−x0), x1x
3
0 +(x2

2−x2
0)2, and

x1x
3
0 +x2

2(x
2
2−x2

0) yields singularities A3d−1 +Ad−1, 2A2d−1, and A2d−1 +2Ad−1,
respectively.

Further examples will be presented in more compact form. The equation f0

of a minimal intransigent hypersurface of degree d in Pn(C) with the constellation
∆ of simple singularities will be given, together with a function F : Cm → C
satisfying the hypotheses of 2.3. Comparison of the forms of f0 and F will make
it clear for which w1, . . . , wm and g0 ∈ Gn(w1, . . . , wm), the identity f0 = F ◦ g0

holds. It will be left to the reader to apply 1.2 and 2.3 to see that {f0 = 0} is
indeed minimal and intransigent, and to apply 2.4 and 2.5 to obtain the full range of
associated examples, also in higher dimensions. Extended in this way, the examples
2.7 below give, together with 2.6, minimal intransigent hypersurfaces with simple
singularities in all cases (n− 1)(d− 2) > 4, as promised in the introduction.

Examples 2.7.

∆ f0 F

n = 3, d = 5 4A4 x5
1 + x2(x

4
2 + x4

3 − x4
0) y5

1 + y2y3

d > 5 (d − 1)A4 x5
1(x

d−5
1 + xd−5

0 ) + x2(x
d−1
2 + xd−1

3 − xd−1
0 ) y5

1y2 + y3y4

n = 4, d = 4 6A3 x4
1 + x2(x

3
2 + x3

3 − x3
0) + (x2

4 − x2
0)

2 y4
1 + y2y3 + y2

4

3E6 x4
1 + x2(x

3
2 + x3

3 − x3
0) + x0x

3
4 y4

1 + y2y3 + y4y
3
5

n = 6, d = 3 4D4 x3
1 + x3

2 + x3(x
2
3 + x2

4 − x2
0)

+x5(x
2
5 + x2

6 − 2x2
0) y3

1 + y3
2 + y3y4 + y5y6
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A natural question arises: which other constellations of simple singularities
are possible on minimal intransigent hypersurfaces? For example, can all the sin-
gularities be nodes? No intransigent curve with all singularities nodes can exist, by
a classical result of Severi [12]; the examples below show, however, that minimal
intransigent hypersufaces of this type exist when n = 3 and d ≥ 8, n = 4 and
d ≥ 5, n ≥ 5 and d = 4, and n ≥ 8 and d = 3.

Examples 2.8. In each case, ∆ = δ(d)A1.

f0 F

n = 3, d = 8 x1(x
7
1 + x7

2 − x7
0) + (x4

3 − x4
0)

2 y1y2 + y2
3

d > 8 x1(x
d−1
1 + xd−1

2 − xd−1
0 ) + c1(2xd−8

3 − xd−8
0 )(x4

3 − x4
0)

2 y1y2 + y3y
2
4

n = 4, x1(x
d−1
1 + xd−1

2 − xd−1
0 ) + c2(2xd−4

3 − xd−4
0 )(x2

3 − x2
0)

2

d ≥ 5 + c3(2xd−4
4 − xd−4

0 )(x2
4 − x2

0)
2 y1y2 + y3y

2
4 + y5y

2
6

n = 5, d = 4 x1(x
3
1 + x3

2 − x3
0) + x3(x

3
3 + x3

4 − x3
0) + (x2

5 − x2
0)

2 y1y2 + y3y4 + y2
5

n = 8, d = 3
P4

i=1 x2i−1(x
2
2i−1 + x2

2i − ix2
0)

P4
i=1 y2i−1y2i

To ensure that the examples in which they appear do not have more singu-
larities than claimed, the constants c1, c2, c3 ∈ C must be chosen so that they,
and the quotient c2/c3, avoid, for each relevant d, a finite set of algebraic numbers.
In particular, then, it suffices to choose c1 to be transcendental, and c2, c3 to be
algebraically independent and transcendental.

There are similar examples with all singularities cusps:

Examples 2.9. In each case, ∆ = { 1
2δ(d)}A2.

f0 F

n = 3, d = 6 x1(x
5
1 + x5

2 − x5
0) + (x2

3 − x2
0)

3 y1y2 + y3
3

d > 6 x1(x
d−1
1 + xd−1

2 − xd−1
0 ) + c1(2xd−6

3 − xd−6
0 )(x2

3 − x2
0)

3 y1y2 + y3y
3
4

n = 4, x1(x
d−1
1 + xd−1

2 − xd−1
0 ) + c2(2xd−3

3 − xd−3
0 )x3

3

d ≥ 5 + c3(2xd−4
4 − xd−4

0 )(x2
4 − x2

0)
2 y1y2 + y3y

3
4 + y5y

2
6

n = 5, d = 4 x1(x
3
1 + x3

2 − x3
0) + x3(x

3
3 + x3

4 − x3
0) + x0x

3
5 y1y2 + y3y4 + y5y

3
6

n = 7, d = 3
P3

i=1 x2i−1(x
2
2i−1 + x2

2i − ix2
0) + x3

7

P3
i=1 y2i−1y2i + y3

7

As in the remark following 2.8, c1, c2, c3 ∈ C must be chosen so that they,
and the quotient c2/c3, avoid, for each relevant d, a finite set of algebraic numbers;
again it suffices to choose c1 to be transcendental, and c2, c3 to be algebraically
independent and transcendental.

There are also intransigent curves with just cusp singularities: Segre gave, in
[11], the examples f = g2

1 + g3
2 , where g1, g2 are generic homogeneous polynomi-

als in three variables, of degrees 2k, 3k, respectively. Then {f = 0} has just 6k2

cusp singularities; applying 2.3 with F (y1, y2) = y2
1 + y3

2 , we see that this curve is
intransigent when k ≥ 3. It is not, however, minimal; indeed, no minimally intran-
sigent curve with just cusp singularities exists. For by 1.2 such a curve would have
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2(d − 1) cusps, whilst a result of Greuel and Karras [3, 6.3, 6.4 (1)], generalising
the result of Segre cited above and results of Zariski [18], shows that any curve
with p nodes and q cusps as its singularities is transigent whenever q < 3d.
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On the Link Space of a Q-Gorenstein
Quasi-Homogeneous Surface Singularity

Anna Pratoussevitch

Abstract. In this paper we prove the following theorem: Let M be the link
space of a quasi-homogeneous hyperbolic Q-Gorenstein surface singularity.
Then M is diffeomorphic to a coset space Γ̃1\G̃/Γ̃2, where G̃ is the 3-dimen-

sional Lie group gPSL(2, R), while Γ̃1 and Γ̃2 are discrete subgroups of G̃, the

subgroup Γ̃1 is co-compact and Γ̃2 is cyclic. Conversely, if M is diffeomor-
phic to a coset space as above, then M is diffeomorphic to the link space of
a quasi-homogeneous hyperbolic Q-Gorenstein singularity. We also prove the
following characterisation of quasi-homogeneous Q-Gorenstein surface singu-
larities: A quasi-homogeneous surface singularity is Q-Gorenstein of index r
if and only if for the corresponding automorphy factor (U, Γ, L) some tensor
power of the complex line bundle L is Γ-equivariantly isomorphic to the rth
tensor power of the tangent bundle of the Riemannian surface U .

Mathematics Subject Classification (2000). Primary 32S25; Secondary 14J17,
14J60.

Keywords. Q-Gorenstein singularity, quasi-homogeneous singularity.

1. Introduction

Graded affine coordinate rings of quasi-homogeneous surface singularities can be
identified with graded rings of generalised automorphic forms. The description in
terms of automorphy factors was found in 1975–77 by Dolgachev, Milnor, Neumann
and Pinkham [Dol75, Dol77, Mil75, Neu77, Pin77].

For some special classes of quasi-homogeneous surface singularities as Goren-
stein and Q-Gorenstein singularities one can obtain more precise descriptions of
the corresponding automorphy factors.

In Theorem 3 we obtain a characterisation of hyperbolic and spherical Q-
Gorenstein quasi-homogeneous surface singularities in terms of their automorphy

Research partially supported by SFB 611 of the DFG.
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factors. This characterisation leads to a description of their links as biquotients of
certain 3-dimensional Lie groups by discrete subgroups. More precisely, we prove
the following statement:

Theorem 1. The link space of a hyperbolic Q-Gorenstein quasi-homogeneous sur-
face singularity of index r is diffeomorphic to a biquotient

Γ̃1\G̃/Γ̃2,

where G̃ is the universal cover P̃SL(2,R) of the 3-dimensional Lie group PSL(2,R),
while Γ̃1 and Γ̃2 are discrete subgroups of the same level in G̃, Γ̃1 is co-compact,
and the image of Γ̃2 in PSL(2,R) is a cyclic subgroup of order r. Hereby the level
of a discrete subgroup Γ̃ ⊂ G̃ is the index of Γ̃ ∩ Z(G̃) as a subgroup of Z(G̃).

Conversely, any biquotient as above is diffeomorphic to the link space of a hy-
perbolic Q-Gorenstein quasi-homogeneous surface singularity.

These statements are generalisations of the results of Dolgachev [Dol83] on
Gorenstein quasi-homogeneous surface singularities. The Gorenstein quasi-homo-
geneous surface singularities correspond to the case of the trivial group Γ̃2.

Similar statements are also true in the case of Euclidean automorphy factors
and corresponding singularities. This case was already discussed by Dolgachev
in [Dol83].

The description of the link space of a hyperbolic Gorenstein quasi-homoge-
neous surface singularity as a quotient of the Lie group P̃SL(2,R) by the action of
a discrete subgroup was the motivation for the study in [Pra], [BPR03] of a certain
construction of fundamental domains for such actions. This construction leads to
interesting results on the combinatorial geometry of the link spaces of Gorenstein
quasi-homogeneous surface singularities.

We expect that our construction of fundamental domains can be generalised
in order to study the combinatorial geometry of the link spaces of Q-Gorenstein
quasi-homogeneous surface singularities. We shall discuss the combinatorial geom-
etry of the link spaces in the Q-Gorenstein case in an ongoing paper.

The paper is organised as follows: In Section 2 we explain the description
of quasi-homogeneous surface singularities via automorphy factors. In Section 3
we define Q-Gorenstein quasi-homogeneous surface singularities and introduce our
characterisation of the corresponding automorphy factors (Theorem 3). Then in
Section 4 we prove some technical results needed to prove this characterisation.
After that we prove Theorem 3 in Section 5. Finally we prove Theorem 1 in
Section 6.

Notation: In this paper we use R+ for {x ∈ R
∣∣ x > 0}. We denote by L∗

the associated C∗-bundle of a complex line bundle L, while L∨ is the dual bundle
of L.
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2. Automorphy factors

In this section we recall the results of Dolgachev, Milnor, Neumann and Pinkham
[Dol75, Dol77, Mil75, Neu77, Pin77] on the graded affine coordinate rings, which
correspond to quasi-homogeneous surface singularities.

Definition. A (negative unramified) automorphy factor (U,Γ, L) is a complex line
bundle L over a simply connected Riemann surface U together with a discrete co-
compact subgroup Γ ⊂ Aut(U) acting compatibly on U and on the line bundle L,
such that the following two conditions are satisfied:

1) The action of Γ is free on L∗, the complement of the zero section in L.
2) Let Γ′  Γ be a normal subgroup of finite index, which acts freely on U , and

let L̄→ C be the complex line bundle L̄ = L/Γ′ over the compact Riemann
surface C = U/Γ′. Then L̄ is a negative line bundle.
A simply connected Riemann surface U can be C P1, C, or H , the real hyper-

bolic plane. We call the corresponding automorphy factor and the corresponding
singularity spherical , Euclidean, resp. hyperbolic.

Remark. There always exists a normal freely acting subgroup of Γ of finite index.
In the hyperbolic case the existence follows from the theorem of Fox-Bundgaard-
Nielsen. If the second assumption in the last definition holds for some normal freely
acting subgroup of finite index, then it holds for any such subgroup.

The simplest examples of such a complex line bundle with group action are
the cotangent bundle of the complex projective line U = C P1 and the tangent
bundle of the hyperbolic plane U = H equipped with the canonical action of
a subgroup Γ ⊂ Aut(U).

Let (U,Γ, L) be a negative unramified automorphy factor. Since the bun-
dle L̄ = L/Γ′ is negative, one can contract the zero section of L̄ to get a complex
surface with one isolated singularity corresponding to the zero section. There is
a canonical action of the group Γ/Γ′ on this surface. The quotient is a complex
surface X(U,Γ, L) with an isolated singular point o, which depends only on the
automorphy factor (U,Γ, L).

The following theorem summarises the results of Dolgachev, Milnor, Neu-
mann, and Pinkham:

Theorem 2. The surface X(U,Γ, L) associated to a negative unramified automor-
phy factor (U,Γ, L) is a quasi-homogeneous affine algebraic surface with a normal
isolated singularity. Its affine coordinate ring is the graded C-algebra of generalised
Γ-invariant automorphic forms

A =
⊕
m�0

H0(U,L−m)Γ.

All normal quasi-homogeneous surface singularities (X,x) are obtained in this way,
and the automorphy factors with (X(U,Γ, L), o) isomorphic to (X,x) are uniquely
determined by (X,x) up to isomorphism.
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3. Q-Gorenstein quasi-homogeneous surface singularities

In this section we recall the definition of Q-Gorenstein singularities and the cha-
racterisation of the corresponding automorphy factors.

A normal isolated singularity of dimension n is Gorenstein if and only if there
is a nowhere vanishing n-form on a punctured neighborhood of the singular point.
For example all isolated singularities of complete intersections are Gorenstein.

A natural generalisation of Gorenstein singularities are the Q-Gorenstein
singularities (compare [Rei87, Ish87, Ish00]). A normal isolated singularity of di-
mension at least 2 is Q-Gorenstein if there is a natural number r such that the
divisor r · KX is defined on a punctured neighborhood of the singular point by a
function. Here KX is the canonical divisor of X . The smallest such number r is
called the index of the singularity. A normal isolated surface singularity is Goren-
stein if and only if it is Q-Gorenstein of index 1.

In Section 5 we prove the following characterisation of hyperbolic and sphe-
rical Q-Gorenstein quasi-homogeneous surface singularities in terms of the corre-
sponding automorphy factors:

Theorem 3. A hyperbolic resp. spherical quasi-homogeneous surface singularity is
Q-Gorenstein of index r if and only if for the corresponding automorphy factor
(U,Γ, L) there is an integer m (called the level or the exponent of the automorphy
factor) without common divisors with r and a Γ-invariant isomorphism Lm ∼= T r

U .

We call an automorphy factor with properties as in Theorem 3 a Q-Gorenstein
automorphy factor of level m and index r.

4. The associated bundle of the quotient bundle

Let (U,Γ, L) be a spherical or hyperbolic negative unramified automorphy factor.
As in the definition let Γ′  Γ be a normal subgroup of Γ acting freely on U , and
let p : L̄ → C be the complex line bundle with total space L̄ = L/Γ′ and base
C = U/Γ′. In this section we consider the associated C∗-bundle of the bundle p,
i.e., p|L̄∗ : L̄∗ → C. For ease of notation we set W := L̄∗ and q := p|W . We first
present some technical lemmas, which will be used later to determine

Ω2,r(W ) := (Ω2(W ))⊗r.

Lemma 4. The following OC-algebras are isomorphic

q∗(OW ) ∼=
⊕
m∈Z

OC(L̄m).

Lemma 5. We have Ω2(W ) ∼= q∗(Ω1
C).

Lemma 6. If the bundle L̄ is non-trivial and the sheaf Ω2,r(W ) is trivial, then there
exists up to complex multiples only one nowhere vanishing section in Ω2,r(W ).
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We postpone the proofs of these lemmas until the end of this section and
discuss first the main result of the section, the description of (Γ/Γ′)-invariant
sections in Ω2,r(W ).

Proposition 7. The sheaf Ω2,r(W ) is trivial if and only if there exists an integer m
and an isomorphism L̄m ∼= T r

C .
Assume that Ω2,r(W ) is trivial and let m be the integer such that L̄m ∼= T r

C.
Then the global nowhere vanishing sections in Ω2,r(W ) are (Γ/Γ′)-invariant if and
only if the isomorphism L̄m ∼= T r

C is (Γ/Γ′)-equivariant.

Proof. We first prove that Ω2,r(W ) ∼= OW implies L̄m ∼= T r
C for some m ∈ Z. Then

we prove that L̄m ∼= T r
C for some m ∈ Z implies Ω2,r(W ) ∼= OW . To this end we

first consider the cases m = 1 and m = −1, and then we look at the case m �= 0.

1) Let us prove that Ω2,r(W ) ∼= OW implies L̄m ∼= T r
C for some m ∈ Z. Assume

that Ω2,r(W ) ∼= OW . On the one hand, using Lemma 4, we have

q∗(Ω2,r(W )) ∼= q∗(OW ) ∼=
⊕
i∈Z

OC(L̄i).

On the other hand, using Lemma 5, we have

q∗(Ω2,r(W )) ∼= q∗((q∗(Ω1
C))⊗r).

Now we obtain for Ω1,r
C := (Ω1

C)⊗r

q∗((q∗(Ω1
C))⊗r) ∼= q∗(q∗(Ω

1,r
C )),

because q∗ is compatible with tensor products. The projection formula implies

q∗(q∗(Ω
1,r
C )) ∼= q∗(OW ⊗OW q∗(Ω1,r

C )) ∼= q∗(OW )⊗OC Ω1,r
C .

Using Lemma 4 again, we obtain finally

q∗(Ω2,r(W )) ∼= q∗(OW )⊗OC Ω1,r
C

∼=
( ⊕

m∈Z

OC(L̄m)
)
⊗OC Ω1,r

C

∼=
⊕
m∈Z

OC(L̄m ⊗ T−r
C ).

Comparing both equations for q∗(Ω2,r(W )) we obtain⊕
i∈Z

OC(L̄i) ∼=
⊕
m∈Z

OC(L̄m ⊗ T−r
C ),

hence

OC(L̄m ⊗ T−r
C ) ∼= OC(L̄0) ∼= OC

for some m ∈ Z. This implies L̄m ∼= T r
C .
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2) We now assume that L̄ ∼= T r
C , i.e., m = 1. The Riemann surface U is then the

real hyperbolic plane H . We study the tangent bundle TC of the hyperbolic
surface C = H/Γ′. We define a 2-form on (TC)∗ in local coordinates by

η =
1
t2
· (dz ∧ dt).

Using the fact that any change of coordinates is of the form

(z, t) �→ (ϕ(z), ϕ′(z) · t)

we can verify that this local definition gives rise to a global nowhere vanishing
2-form on (TC)∗, and that this 2-form is invariant under an action of g ∈ Γ
if and only if the action is given by

(z, t) �→ (g(z), g′(z) · t),

i.e., the action coincides with the canonical action of g on TC . The 2-form
on (TC)∗ induces a nowhere vanishing section η in Ω2,r((T r

C)∗), which is
invariant under an action of g ∈ Γ if and only if the action is given in local
coordinates by

(z, t) �→ (g(z), (g′(z))r · t),
i.e., the action coincides with the canonical action of g on T r

C . Hence if the
isomorphism L̄ ∼= T r

C is (Γ/Γ′)-equivariant, there exists a (Γ/Γ′)-invariant
nowhere vanishing section in Ω2,r(W ).

3) We now assume that L̄ ∼= T−r
C
∼= (T∨

C )r, i.e., m = −1. The Riemann surface U
is then the complex projective line C P1. We study the cotangent bundle T∨

C of
the surface C = C P1/Γ′. We define a 2-form on (T∨

C )∗ in local coordinates by

η = dz ∧ dt.

Using the fact that any change of coordinates is of the form

(z, t) �→ (ϕ(z),
1

ϕ′(z)
· t)

we can verify that this local definition gives rise to a global nowhere vani-
shing 2-form on (T∨

C )∗. We continue in the proof as for m = 1 and obtain
a nowhere vanishing section η in Ω2,r((T−r

C )∗), which is invariant under an
action of g ∈ Γ if and only if the action coincides with the canonical action
of g on (T∨

C )r. Hence if the isomorphism L̄ ∼= T−r
C is (Γ/Γ′)-equivariant, there

exists a (Γ/Γ′)-invariant nowhere vanishing section in Ω2,r(W ).
4) As the next step of the proof we consider the case L̄m ∼= T r

C with m �= 0.
Let η be the nowhere vanishing section in Ω2,r((T±r

C )∗), i.e., in Ω2,r((L̄|m|)∗),
constructed in Subsections 2 and 3. We consider the covering τ : L̄→ L̄m. The
pull-back τ∗(η) of the section η under the covering τ is a nowhere vanishing
section in Ω2,r(L̄∗) = Ω2,r(W ). If the isomorphism L̄m ∼= T r

C is (Γ/Γ′)-
equivariant, the induced section in Ω2,r(W ) is (Γ/Γ′)-invariant.
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5) We now assume that Ω2,r(W ) is trivial and that there exists a nowhere va-
nishing section ω in Ω2,r(W ), which is (Γ/Γ′)-invariant. Then in particular
there exists an integer m such that L̄m ∼= T r

C . Let η be the nowhere vani-
shing section in Ω2,r((T±r

C )∗) constructed before. By Lemma 6 the sections ω
and η are complex multiples of each other, hence the isomorphism L̄m ∼= T r

C

is (Γ/Γ′)-equivariant. �

Now it remains to show the technical lemmas, which we have used in the proof of
Lemma 7. We first prove Lemma 4:

Proof. We have to prove that the following OC -algebras are isomorphic

q∗(OW ) ∼=
⊕
m∈Z

OC(L̄m).

Let us consider a local trivialisation ϕ : L̄|V → V ×C of the complex line bundle L̄
over an open affine subset V ⊂ C. This trivialisation induces trivialisations

ϕ : W |V → V × C∗

of the C∗-bundle W → C and

ϕ⊗m : L̄m|V → V × C⊗m

of the complex line bundle L̄m = L̄⊗m → C. Then we obtain

q∗(OW )(V ) = (pr ◦ϕ)∗(OW )(V ) = ϕ∗OW (V × C∗)
∼= OV ×C∗(V × C∗) ∼= OC(V )⊗C OC∗(C∗)

∼= OC(V )⊗C C[t, t−1] ∼=
⊕
m∈Z

OC(V ) · t−m.

This implies that any section of q∗(OW ) can be locally uniquely represented as
a finite sum of the form

∑
fm · t−m with fm ∈ OC(V ). Using the induced local

trivialisations of W and L̄⊗m over V together with the identifications C⊗m ∼= C
and C⊗(−1) ∼= Hom(C,C) ∼= C we can construct a bijection between sections in L̄m

over V and functions in OC(V ). We obtain a family of isomorphisms

(q∗(OW )(V ) →
⊕
m∈Z

OC(V ) · t−m)V ,

which does not depend on the chosen trivialisations, is compatible with the re-
striction maps and hence induces an isomorphism of OC -algebras

q∗(OW ) ∼=
⊕
m∈Z

OC(L̄m). �

Now we prove Lemma 5:

Proof. We have to prove that Ω2(W ) ∼= q∗(Ω1
C). To this end we consider the sheaf

of relative forms Ω1
W |C . This sheaf is trivial and generated by a relative form



318 A. Pratoussevitch

given in local coordinates by dt
t . The following short exact sequence of locally free

sheaves of ranks 1, 2, and 1

0 → q∗(Ω1
C)→ Ω1

W → Ω1
W |C → 0

implies
Λ2(Ω1

W ) ∼= Λ1(q∗(Ω1
C))⊗ Λ1(Ω1

W |C) ∼= q∗(Ω1
C). �

Finally we prove Lemma 6:

Proof. We have to prove that if the bundle L̄ is non-trivial and the sheaf Ω2,r(W )
is trivial, then the nowhere vanishing section in Ω2,r(W ) is unique up to complex
multiples. Consider two nowhere vanishing sections in Ω2,r(W ). There quotient
is a nowhere vanishing regular function. It remains to prove that all nowhere
vanishing regular functions on W are constant. Using Lemma 4 we obtain

OW (W ) ∼= q∗(OW )(C) ∼=
⊕
m∈Z

OC(L̄m)(C).

Nowhere vanishing functions on W correspond to nowhere vanishing sections
in L̄m. A non-homogeneous section in L̄m can not be nowhere vanishing. A homo-
geneous nowhere vanishing section in L̄m exists if and only if L̄m is trivial. But
the bundle L̄ is negative, hence L̄m is trivial if and only if m = 0. �

5. Automorphy factors of Q-Gorenstein quasi-homogeneous
surface singularities

In this section we use the results of Section 4 to prove Theorem 3:

Theorem. A hyperbolic resp. spherical quasi-homogeneous surface singularity is
Q-Gorenstein of index r if and only if for the corresponding automorphy factor
(U,Γ, L) there is an integer m (called the level or the exponent of the automorphy
factor) without common divisors with r and a Γ-equivariant isomorphism

Lm ∼= T r
U .

Proof. We first assume that for some positive integer r and integer m there is a
Γ-equivariant isomorphism Lm ∼= T r

U . This isomorphism induces a (Γ/Γ′)-equiva-
riant isomorphism L̄m ∼= T r

C . Then according to proposition 7 there exist global
nowhere vanishing (Γ/Γ′)-invariant sections in Ω2,r(W ). Such a section induces a
nowhere vanishing section in Ω2,r(W/(Γ/Γ′)) = Ω2,r(X∗), hence the corresponding
singularity (X(U,Γ, L), o) is Q-Gorenstein.

Now let us assume that singularity (X,x) with automorphy factor (U,Γ, L)
is Q-Gorenstein of index r, i.e., there exist nowhere vanishing sections in

Ω2,r(X∗) ∼= Ω2,r(W/(Γ/Γ′)).

We consider the singularity (X̄, x̄), which corresponds to the automorphy factor
(U,Γ′, L). For this singularity we have X ∼= X̄/(Γ/Γ′). The pull-back of a nowhere
vanishing section in Ω2,r(X∗) along the unramified covering X̄∗ → X∗ is a nowhere
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vanishing (Γ/Γ′)-invariant section in Ω2,r(X̄∗), hence the singularity (X̄, x̄) is also
Q-Gorenstein of index r.

A nowhere vanishing (Γ/Γ′)-invariant section in Ω2,r(X̄∗) induces a nowhere
vanishing (Γ/Γ′)-invariant section in Ω2,r(W ) = Ω2,r(L̄∗). Then proposition 7
implies the existence of an (Γ/Γ′)-equivariant isomorphism L̄m ∼= T r

C for some
integer m, i.e., the induced action of (Γ/Γ′) on L̄m ∼= T r

C coincides with the ca-
nonical action of (Γ/Γ′) on T r

C . Hence the action of Γ on Lm ∼= T r
U also coincides

with the canonical action of Γ on T r
U , i.e., there exists a Γ-equivariant isomorphism

Lm ∼= T r
U . �

Remark. Theorem 3 also follows from the following result of K. Watanabe [Wat81],
appearing in the context of the theory of commutative rings: Let R = R(X,D)
be a normal graded ring, which is presented by the Pinkham-Demazure method.
Then the canonical module KR of R is Q-Cartier of index r, if and only if, there
exists a rational function φ on X such that r(K + D′)−mD = divX(φ) for some
integer m and r is the minimum of such r. In our case, X = C = U/Γ′ and
π : U → C is the Galois cover associated to the automorphy factor, and the
result is translated to the relation on U as equivariant isomorphism T−r

U
∼= Lm.

Our proofs of Proposition 7 and Theorem 3 give a more direct description of the
automorphy factors in question.

6. From hyperbolic automorphy factors to biquotients

In this section we prove Theorem 1:

Theorem. The link space of a hyperbolic Q-Gorenstein quasi-homogeneous surface
singularity of index r is diffeomorphic to a biquotient

Γ̃1\G̃/Γ̃2,

where G̃ is the universal cover P̃SL(2,R) of the 3-dimensional Lie group PSL(2,R),
while Γ̃1 and Γ̃2 are discrete subgroups of the same level in G̃, Γ̃1 is co-compact,
and the image of Γ̃2 in PSL(2,R) is a cyclic subgroup of order r. Conversely,
any biquotient as above is diffeomorphic to the link space of a quasi-homogeneous
hyperbolic Q-Gorenstein singularity.

Before we explain the proof of this theorem, we give a description of the Lie
group G = PSL(2,R) and its coverings.

As topological space PSL(2,R) is homeomorphic to the solid torus S1 × C.
The fundamental group of the solid torus G is infinite cyclic. Therefore, for each
natural number m there is a unique connected m-fold covering

Gm = G̃/(m · Z(G̃))

of G, where Z(G̃) is the central subgroup of G̃. For m = 2 this is the group
G2 = SL(2,R).
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We identify the group G = PSL(2,R) with the group Aut(H) of automor-
phisms of the hyperbolic plane. We think of an element g ∈ G as a map g : H → H .

We use the following description of the covering groups Gm of G = PSL(2,R),
which fixes a group structure. Let Hol(H,C∗) be the set of all holomorphic func-
tions H → C∗.

Proposition 8. The m-fold covering group Gm of G can be described as

{(g, δ) ∈ G×Hol(H,C∗)
∣∣ δm(z) = g′(z) for all z ∈ H}

with multiplication

(g2, δ2) · (g1, δ1) = (g2 · g1, (δ2 ◦ g1) · δ1).

Remark. This description of Gm and the description of G̃ that we give later are
inspired by the notion of automorphic differential forms of fractional degree, intro-
duced by J. Milnor in [Mil75]. For a more detailed discussion of this fact see [LV80],
Section 1.8.

We now explain the connection between automorphy factors in question and
lifts of Fuchsian groups into the finite coverings of G̃.

Definition. A lift of the Fuchsian group Γ into Gm is a subgroup Γ∗ of Gm such that
the restriction of the covering map Gm → G to Γ∗ is an isomorphism between Γ∗

and Γ.

Proposition 9. There is a 1-1-correspondence between hyperbolic Q-Gorenstein au-
tomorphy factors (H,Γ, H ×C) of level m and index r and the lifts of Γ into Gm.

Proof. Using the description of the covering Gm from Proposition 8, we see, on
the one hand, that there is a 1-1-correspondence between lifts of Γ into Gm and
families {δg}g∈Γ of holomorphic functions δg : H → C∗ such that for any g ∈ Γ

δm
g = g′

and for any g1, g2 ∈ Γ
δg2·g1 = (δg2 ◦ g1) · δg1 .

Let D be the set of all such families (δg).
On the other hand there is a 1-1-correspondence between hyperbolic Q-Go-

renstein automorphy factors (H,Γ, H × C) of level m and index r and fami-
lies {eg}g∈Γ of holomorphic functions eg : H → C∗ such that for any g ∈ Γ

em
g = (g′)r

and for any g1, g2 ∈ Γ
eg2·g1 = (eg2 ◦ g1) · eg1 .

Let E be the set of all such families (eg)g∈Γ.
It remains to establish a 1-1-correspondence between the sets D and E . This

correspondence is defined as follows: Let us assign to a family (δg) ∈ D the fami-
ly (eg) given by eg := δr

g . One checks easily that (eg) ∈ E .
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If the images (eg), (ẽg) ∈ E of (δg), (δ̃g) ∈ D coincide then on the one hand(
δ̃g

δg

)r

=
δ̃r
g

δr
g

=
ẽg

eg
= 1,

on the other hand (
δ̃g

δg

)m

=
δ̃m
g

δm
g

=
g′

g′
= 1.

But the integers m and r are relatively prime, hence there exists only one complex
number ξ with the property ξm = ξr = 1, namely ξ = 1. Hence for any g ∈ Γ

δ̃g

δg
≡ 1,

i.e., the families (δg) and (δ̃g) coincide. So we have shown that the mapping D → E
is injective.

Now let us consider a family (eg) ∈ E . It holds g′(z) �∈ R+∪{0} for all z ∈ H ,
hence there exist functions ρg : H → R∗ and ϕg : H → (0, 1) such that

g′ = ρg · exp(2πiϕg).

The chain rule implies
ρg2·g1 = (ρg2 ◦ g1) · ρg1

and
ϕg2·g1 − ϕg2 ◦ g1 − ϕg2 ∈ Z.

The function eg is then of the form

eg = ρ
r
m
g · exp

(
2πi · r · ϕg + kg

m

)
for some function kg : H → Z. The function kg is continuous and hence constant.
The integers m and r are relatively prime, hence there is an integer ng such that

r · ng ≡ kg mod m.

Let us define a family (δg) by setting

δg = ρ
1
m
g · exp

(
2πi · ϕg + ng

m

)
.

We now prove that the family (δg) is in D. The first property

δm
g = ρg · exp (2πi · (ϕg + ng)) = ρg · exp (2πi · ϕg) = g′

is satisfied. The second property

δg2·g1 = (δg2 ◦ g1) · δg1

is equivalent to

ρ
1
m
g2·g1 = (ρg2 ◦ g1)

1
m · ρ

1
m
g1
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and

(ϕg2·g1 − ϕg2 ◦ g1 − ϕg1) + (ng2·g1 − ng2 ◦ g1 − ng1) ≡ 0 mod m.

The first of these equations follows from

ρg2·g1 = (ρg2 ◦ g1) · ρg1 .

To prove the second equations we observe that

eg2·g1 = (eg2 ◦ g1) · eg1

implies that m is a divisor of the integer

r · (ϕg2·g1 − ϕg2 ◦ g1 − ϕg1) + (kg2·g1 − kg2 ◦ g1 − kg1 ).

Because of r · ng ≡ kg mod m also the integer

r ·
(
(ϕg2·g1 − ϕg2 ◦ g1 − ϕg1) + (ng2·g1 − ng2 ◦ g1 − ng1)

)
is divisible by m. Since m and r are relatively prime, the number m must be a
divisor of the integer

(ϕg2·g1 − ϕg2 ◦ g1 − ϕg1 ) + (ng2·g1 − ng2 ◦ g1 − ng1).

So the family (δg) is in D. The image of the family (δg) under the map D → E is

δr
g = ρ

r
m
g · exp

(
2πi · r · ϕg + r · ng

m

)
= ρ

r
m
g · exp

(
2πi · r · ϕg + kg

m

)
= eg.

So we have proved that the mapping D → E is surjective. �

Now we explain the connection between lifts of Fuchsian groups into the finite
coverings of G̃ and discrete subgroup of finite index in G̃.

We use the following description of the covering groups G̃ of G = PSL(2,R),
which fixes a group structure. Let Hol(H,C) be the set of all holomorphic func-
tions H → C.

Proposition 10. The universal covering group G̃ of G can be described as

{(g, δ) ∈ G×Hol(H,C)
∣∣ e ◦ δ = g′},

where e(w) = exp(2πiw). The multiplication is given by

(g2, δ2) · (g1, δ1) = (g2 · g1, δ2 ◦ g1 + δ1).

The covering map G̃→ Gm is given by

(g, δ) �→ (g, e(δ/m)).

Remark. The center of the group G̃ is infinite cyclic and is equal to the preimage
of the unit element in G:

Z(G̃) = {(g, δ) ∈ G̃
∣∣ g = Id, δ is an integer constant}.

Definition. The level of a discrete subgroup Γ̃ ⊂ G̃ is the index of Γ̃ ∩ Z(G̃) as
a subgroup of Z(G̃).
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The following fact is well known (see for example Section 4 in [KR85]):

Proposition 11. There is a one-to-one correspondence between discrete co-compact
subgroups of level m in G̃ and liftings of discrete co-compact subgroups in PSL(2,R)
into the m-fold covering of PSL(2,R). The correspondence is given by mapping
a subgroup in G̃ into its image under the covering map G̃→ Gm.

We now prove Theorem 1.

Proof. Let (X,x) be a hyperbolic Q-Gorenstein quasi-homogeneous surface sin-
gularity. Let (H,Γ1, L) be the corresponding Q-Gorenstein automorphy factor of
level m and index r. Let us consider a trivialisation L � H × C of the bundle L.
Combining the results of Propositions 9 and 11 we see that there is a discrete
co-compact subgroup Γ̃1 of level m in G̃ such that the action of the group Γ1 can
be described as

g · (z, t) = (g(z), e(δ(z)r/m) · t),
where δ : H → C is a holomorphic function such that (g, δ) is an element of Γ̃1.
This action of Γ̃1 can be obtained as a restriction of the action of the group G̃
on L via

(g, δ) · (z, t) = (g(z), e(δ(z)r/m) · t).
It is easy to check, that this is an action of G̃. The unit subbundle of L can be
identified with the subbundle

S = {(z, t) ∈ H × C
∣∣ |t|m = (Im(z))r}.

The bundle S is invariant under G̃: For

(z′, t′) = (g, δ) · (z, t) = (g(z), e(δ(z)r/m) · t)
we have

|t′|m
|t|m =

∣∣∣e(δ(z) · r
m

)∣∣∣m = |e(δ(z))|r = |g′(z)|r =
(

Im g(z)
Im z

)r

=
(Im(z′))r

(Im(z))r
.

The stabiliser of a point (z0, t0) ∈ S is

Γ̃2 := StabG̃((z0, t0)) =
{
(g, δ) ∈ G̃

∣∣ g(z0) = z0, δ(z) · r
m
∈ Z

}
.

We now determine the level of the subgroup Γ̃2:

Γ̃2 ∩ Z(G̃) = {(g, δ) ∈ Z(G̃)
∣∣ δ is an integer constant divisible by m}

= m · Z(G̃).

The map (g, δ) �→ (g, δ) · (i, 1) defines a Γ̃1-equivariant diffeomorphism G̃/Γ̃2 → S.
Here Γ̃1 acts on G̃ by left multiplication. We obtain the following commutative
diagram

G̃/Γ̃2 −−−−→ L∗/R+
∼= S⏐⏐= ⏐⏐=

Γ̃1\G̃/Γ̃2 −−−−→ X∗/R+
∼= M.
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Hence we have
M ∼= Γ̃1\G̃/Γ̃2.

Conversely, let Γ̃1 and Γ̃2 be discrete subgroups of level m in G̃, let Γ̃1 be
co-compact, and let the image of Γ̃2 in PSL(2,R) be a cyclic subgroup of order r.
Then Γ1 = Γ̃1/(Γ̃1 ∩ Z(G̃)) is a discrete co-compact subgroup of PSL(2,R). We
can define an automorphy factor (H,Γ1, H × C) by setting

g · (z, t) = (g(z), e(δ(z)r/m) · t),
where δ : H → C is a holomorphic function such that (g, δ) is an element of Γ̃1.
¿From the first part of the proof we know that the link of the corresponding quasi-
homogeneous Q-Gorenstein surface singularity is diffeomorphic to Γ̃1\G̃/Γ̃2. �
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Singularity Exchange at the
Frontier of the Space

Dirk Siersma and Mihai Tibăr

Abstract. In deformations of polynomial functions one may encounter “sin-
gularity exchange at infinity” when singular points disappear from the space
and produce “virtual” singularities which have an influence on the topology
of the limit polynomial. We find several rules of this exchange phenomenon,
in which the total quantity of singularity turns out to be not conserved in
general.
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1. Introduction

The study of the singular fibration produced by a polynomial in the affine space was
pioneered by Broughton [6] more than 20 years ago, and took a certain ampleness
ever since (over 40 papers). More recently, several papers go beyond this and
consider the more complex situation of families of polynomial functions [8, 17, 18,
11, 4, 15, 5, 7]. In this topic, one may pose many natural questions in analogy
to the ones which have been treated in the local case, that of families of local
holomorphic functions. Moreover, the first classification results in the global affine
case and the first lists of families of polynomials [13, 3] showed new phenomena
and gave rise to more open questions.

We study here families of polynomial functions by focussing on the trans-
formation of singularities in the neighborhood of infinity, a phenomenon which
we have already remarked in [15]. This is a natural and challenging topic inside
mathematics since the atypical fibres of a polynomial turn out to be not only due
to the “visible” singularities, but also to the “bad” asymptotic behavior at the
infinite frontier of the space. We deal here with the evolution and interaction of
singularities in deformations at the infinite frontier of the space, in what concerns
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the phenomenon of conservation or non-conservation of certain numbers attached
to singularities (that we recall below).

Let {fs}s be a holomorphic family of complex polynomial functions fs : Cn →
C, for s in a small neighborhood of 0 ∈ C. For a fixed polynomial function fs there
is a well defined general fibre Gs, since the set of atypical values Λ(fs) is a finite
set. When specializing to f0, the number of atypical values may vary (decrease,
increase or be constant) and the topology of the general fibre may change. We
consider constant degree families within certain classes of polynomials (F-class ⊂
B-class ⊂ W-class, cf. Definition 3.1) which have the property that the vanishing
cycles of fs (i.e., the generators of the reduced homology of Gs) are concentrated
in dimension n−1 and are localisable at finitely many points, in the affine space or
in the part at infinity of the projective compactification of some fibre of fs. In the
affine space Cn, such a point is a singular point of fs. The sum of all affine Milnor
numbers is the total Milnor number µ(s), which has an algebraic interpretation as
the dimension of the quotient algebra C[x1, . . . , xn]/( ∂f

∂x1
, . . . , ∂f

∂xn
). Singularities

at infinity are equipped with so-called Milnor-Lê numbers (cf. [14]) and their sum
is denoted by λ(s). Then the Euler characteristic of the generic fiber Gs is 1 +
(−1)n−1(µ(s) + λ(s)).

A natural problem which arises is to understand the behavior, when s → 0,
of the µ and λ-singularities, which support the vanishing cycles of fs. It is well
known and easy to see that, for singularities which tend to a µ-singular point,
the total number of local vanishing cycles is constant, in other words the local
balance law is conservative. However some µ-singularities may tend to infinity and
change into λ-singularities; this is the phenomenon we address here. First, in full
generality, for any deformation, we get the:

− global lower semi-continuity of the highest Betti number:
bn−1(G0) ≤ bn−1(Gs) (Proposition 2.1).

Next, focussing on constant degree deformations inside the B-class, we prove sev-
eral facts on the singularity exchange at infinity:

− the number of local vanishing cycles of µ and λ-singularities tending to a
λ-singular point is lower semi-continuous, but it is not conserved in general
(Theorem 4.2). The proof consists in counting vanishing cycles after sur-
rounding the problem of the non-isolated singularities which might appear.

− in (µ + λ)-constant deformations, the local balance law at any λ-singularity
of f0 is conservative and atypical values cannot escape to infinity (Corollary
6.1).

− in (µ+λ)-constant deformations, the monodromy fibrations over any admis-
sible loop (in particular, the monodromy fibrations at infinity) are isotopic
in the family, whenever n �= 3 (Theorem 6.5).

− in deformations with constant generic singularity type at infinity, λ-singulari-
ties of f0 are locally persistent in fs but cannot split such that more than one
λ-singularity occurs in the same fibre (Theorem 5.2).
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− in deformations inside the F-class, a λ-singularity cannot be deformed into
only µ-singularities (Corollary 6.4).

The semi-continuity results (first two of the above list) are certainly related
to the semi-continuity of the spectrum, a result proved by Némethi and Sabbah [11]
for the class of “weakly tame” polynomials. Their class excludes by definition the
λ-singularities, but on the other hand the spectrum (defined with Hodge theoretical
ingredients) gives more refined information than the total Milnor number. It is also
interesting to remark that the lower semi-continuity in all these results is opposite
to the upper semi-continuity in case of deformations of holomorphic function germs.

We end by supplying with several examples which illustrate the above de-
scribed aspects of the exchange phenomenon.

2. Deformations in general

It is well known that the (n − 1)th Betti number of the Milnor fibre of a holo-
morphic function germ is upper semi-continuous, i.e., it does not decrease under
specialization. In case of a polynomial fs : Cn → C, the role of the Milnor fibre is
played by the general fibre Gs of fs. This is a Stein manifold of dimension n−1 and
therefore it has the homotopy type of a CW complex of dimension ≤ n− 1, which
is also finite, since Gs is algebraic. Moreover, the (n− 1)th homology group with
integer coefficients is free. We prove the following general specialization result.

Proposition 2.1. Let P : Cn × Ck → C be any holomorphic deformation of a
polynomial f0 := P (·, 0) : Cn → C. Then the general fibre G0 of f0 can be naturally
embedded into the general fibre Gs of fs, for s �= 0 close enough to 0. The embedding
G0 ⊂ Gs induces an inclusion Hn−1(G0) ↪→ Hn−1(Gs) which is compatible with
the intersection form.

Proof. It is enough to consider a 1-parameter family of hypersurfaces {f−1
s (t)}s∈L

⊂ Cn, for fixed t, where L denotes some parametrised complex curve through
0. We denote by Xt the total space over a small neighborhood Lε of 0 in L.
By choosing t generic enough, we may assume that f−1

s (t) is a generic fibre of
fs, for s in a small enough neighborhood of 0. Let σ : Xt → Lε denote the
projection. Now Xt is the total space of a family of non-singular hypersurfaces.
Since σ−1(0) is an affine hypersurface, by taking a large enough radius R, we get
∂B̄R′ � σ−1(0), for all R′ ≥ R. Moreover, the sphere ∂B̄R is transversal to all
nearby fibres σ−1(s), for small enough s. It follows that the projection σ from the
pair of spaces (Xt ∩ (BR ×C), Xt ∩ (∂B̄R ×C)) to Lε is a proper submersion and
hence, by Ehresmann’s theorem, it is a trivial fibration. By the above transversality

argument, we have BR ∩ σ−1(0)
diff� BR ∩ σ−1(s). This shows the first claim.

The affine hypersurfaces σ−1(s) are finite cell complexes of dimension ≤
n − 1. By the classical Andreotti-Frankel [2] argument for the distance function,
the hypersurface σ−1(s) is obtained from BR ∩ σ−1(s) by adding cells of index at
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most n−1. This shows that Hn(Gs, G0) = 0, so the second claim. The compatibility
with the intersection form is standard. �

Under certain conditions we can also compare the “monodromy fibrations at
infinity” in the family, see §6.2. Proposition 2.1 will actually be exploited through
the semi-continuity of the highest Betti number, as a consequence of the inclusion
of homology groups:

bn−1(Gs) ≥ bn−1(G0), for s close enough to 0. (2.1)

3. Compactification of families of polynomials

We shall now focus on polynomials for which the singularities at infinity are iso-
lated, in a sense that we make precise here.

Let P be a deformation of f0, i.e., P : Cn×Ck → C is a family of polynomial
functions P (x, s) = fs(x) such that f0 = f . We assume in the following that our
deformation depends holomorphically on the parameter s ∈ Ck. We also assume
that deg fs is independent on s, for s in some neighborhood of 0, and we denote
it by d. We attach to P the following hypersurface:

Y = {([x : x0], s, t) ∈ Pn × Ck × C | P̃ (x, x0, s)− txd
0 = 0},

where P̃ denotes the homogenized of P by the variable x0, considering s as param-
eter varying in a small neighborhood of 0 ∈ Ck. Let τ : Y → C be the projection
to the t-coordinate. This extends the map P to a proper one in the sense that
Cn×Ck is embedded in Y (via the graph of P ) and τ|Cn×Ck = P . Let σ : Y → Ck

denote the projection to the s-coordinates.
Notations. Ys,∗ := Y∩σ−1(s), Y∗,t := Y∩τ−1(t) and Ys,t := Ys,∗∩τ−1(t) = Y∗,t∩
σ−1(s). Note that Ys,t is the closure in Pn of the affine hypersurface f−1

s (t) ⊂ Cn.
Let Y∞ := Y ∩ {x0 = 0} = {Pd(x, s) = 0} × C be the hyperplane at infinity

of Y, where Pd is the degree d homogeneous part of P in variables x ∈ Cn. Remark
that for any fixed s, Y∞

s,t := Ys,t ∩ Y∞ does not depend on t.

Definition 3.1. We consider the following classes of polynomials:
(i) f is a F-type polynomial if its compactified fibres and their restrictions to the

hyperplane at infinity have at most isolated singularities.
(ii) f is a B-type polynomial if its compactified fibres have at most isolated sin-

gularities.

It follows that F-class ⊂ B-class. They are both contained into the W-class,
which consists polynomials for which the proper extension τ : X → C has only
isolated singularities with respect to some Whitney stratification of X such that
X∞ is a union of strata, see [14]. The notation X stands for Y when a single
polynomial is considered (i.e., there is no parameter s).

In two variables, if f has isolated singularities in C2, then it is automatically
of F-type. Deformations inside the F-class were introduced in [15] under the name
FISI deformations. Broughton [6] considered for the first time B-type polynomials
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and studied the topology of their general fibers. The W-class of polynomials ap-
pears in [14]. In deformations of a polynomial f0 we usually require to stay inside
the same class but we may also deform into a “less singular” class (like B-type
into F-type, Example 8.6).

The singular locus of Y, Sing Y := {x0 = 0, ∂Pd

∂x (x, s) = 0, Pd−1(x, s) =
0, ∂Pd

∂s (x, s) = 0}×C is included in Y∞ and is a product-space by the t-coordinate.
It depends only on the degrees d and d−1 parts of P with respect to the variables x.

Let Σ := {x0 = 0, ∂Pd

∂x (x, s) = 0, Pd−1(x, s) = 0} ⊂ Pn−1 × Ck. If we fix s,
the singular locus of Ys,∗ is the analytic set Σs×C, where Σs := Σ∩{σ = s}, and
it is the union of the singularities at the hyperplane at infinity of the hypersurfaces
Ys,t, for t ∈ C.

We denote by Ws := {[x] ∈ Pn−1 | ∂Pd

∂x (x, s) = 0} the set of points at infinity
where Y∞

s,t is singular, in other words where Ys,t is either singular or tangent to
{x0 = 0}. It does not depend on t and we have Σs ⊂Ws.

Remark 3.2. From the above definition and the expressions of the singular loci
we have the following characterisation:

(i) f0 is a B-type polynomial ⇔ dimSing f0 ≤ 0 and dim Σ0 ≤ 0,
(ii) f0 is a F-type polynomial ⇔ dimSing f0 ≤ 0 and dimW0 ≤ 0.

Let us also remark that dimΣ0 ≤ 0 (respectively dimW0 ≤ 0) implies that
dimΣs ≤ 0 (respectively dimWs ≤ 0), whereas dimSing f0 ≤ 0 does not imply
automatically dim Sing fs ≤ 0 for s �= 0.

4. Semi-continuity at infinity

Let P be a deformation of f0 such that fs is of W-type, for all s close enough to 0.
It is shown in [12, 14] that the vanishing cycles of fs (for fixed s) are concentrated
in dimension n−1 and are localized at well-defined points, either in the affine space
or at infinity. We shall call them µ-singularities and λ-singularities respectively. To
such a singular point p ∈ Ys,∗ one associates its local Milnor number denoted µp(s)
or its Milnor-Lê number λp(s). Let µ(s) be the total Milnor number, respectively
λ(s) be the total Milnor-Lê number at infinity, where bn−1(Gs) = µ(s) + λ(s).

By [14], the atypical fibers of a W-type polynomial fs are exactly those
fibers which contain µ or λ-singularities; equivalently, those of which the Euler
characteristic is different from χ(Gs). We denote by Λ(fs) the set of atypical
values of fs.

The above-cited facts together with our semi-continuity result (2.1) show
that, for s close to 0 we have:

µ(s) + λ(s) ≥ µ(0) + λ(0).

Remark 4.1. The total Milnor number µ(s) is lower semi-continuous under spe-
cialization s→ 0. In case µ(s) decreases, we say that there is loss of µ at infinity,
since this may only happen when one of the two following phenomena occur:
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(a) the modulus of some critical point tends to infinity and the corresponding
critical value is bounded ([15, Example 8.1]);

(b) the modulus of some critical value tends to infinity ([15, Examples (8.2) and
(8.3)]).

In contrast to µ(s), it turns out that λ(s) is not semi-continuous; under specializa-
tion, it can increase or decrease (Example 8.1, 8.3). Moreover, the λ-values may
behave like the critical values in case (b) above, see Example 8.6.

To understand the behavior of λ(s) in more detail, we focus on the B-class.
The following result extends our [15, Theorem 5.4] and needs a more involved
proof, which will be given in §7.

Theorem 4.2. (Lower semi-continuity at λ-singularities)
Let P be a constant degree one-parameter deformation inside the B-class. Then,
locally at any λ-singularity p ∈ Y0,t of f0, we have:

λp(0) ≤
∑

i

λpi(s) +
∑

j

µpj (s),

where pi are the λ-singularities and pj are the µ-singularities of fs which tend to
the point p as s→ 0.

5. Persistence of λ-singularities

In order to get further information on the µ �→ λ exchanges we focus on two sub-
classes of the B-class. In this section we define cgst-type deformations and in the
next section we study deformation with constant µ + λ.

Let us first remark that for a deformation {fs}s inside the B-class the com-
pactified fibres of fs have only isolated singularities. The positions of these singu-
larities depend only on s (and not on t). When s→ 0 these singularities can split
or disappear.

Let us take some x(0) ∈ Σ0. Take t �∈ Λ(f0) and assume without dropping
generality that t �∈ Λ(fs) for all small enough s. Lazzeri’s non-splitting argument,
see [9] and also [1, 10], tells us that the Milnor number of Y0,t at (x(0), t) is strictly
larger than the sum of the Milnor numbers of Ys,t at all points (xi(s), t) ∈ Σs×{t}
such that xi(s) → x(0), if these points are more than one. In other words, if we
have x(s) → x(0) and t �∈ Λ(f0) such that the Milnor number of Ys,t at (x(s), t)
is constant, then there can be only one point x(s) ∈ Σs which tends to x(0) ∈ Σ0

as s→ 0.

Definition 5.1. We say that a constant degree deformation inside the B-class has
constant generic singularity type at infinity at some point x(0) ∈ Σ0 if we have
the constancy of the Milnor number of Ys,t at (x(s), t) for s varying in some small
neighbourhood of 0, where x(s) → x(0) and t �∈ Λ(f0) is fixed. We also say in this
case that the cgst assumption holds at x(0).
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If the cgst assumption holds at all points in Σ0, then we say that the germ
at s = 0 of the deformation P has (or is) cgst at infinity.

We shall see that the cgst assumption does not imply that bn−1(Gs) is con-
stant (see Example 8.6). We send to Remark 6.2 for further comments on cgst.

We want to see what happens with a λ-singularity of f0 in a deformation fs.
We say that a λ-singularity is persistent if it splits into one or more singularities,
out of which at least a λ-singularity. For such a splitting we refer to §8. We have
the following result:

Theorem 5.2. Let P be a constant degree deformation, inside the B-class, with
constant generic singularity type at infinity. Then:
(a) the λ-singularities of f0 are persistent in fs.
(b) a λ-singularity of f0 cannot split such that two or more λ-singularities belong

to the same fiber.

Remark 5.3. The case which is not covered by part (b) can indeed occur, i.e.,
some λ-singularity may split into λ-singularities in several fibres, see Example 8.2.

Proof. (a) Let (z, t0) ∈ Σ0×C be a λ-singularity of f0. Let us denote by G(y, s, t)
the localization of the map P̃ (x, x0, s)− txd

0 at the point (z, 0, t0) ∈ Y. Let y0 = 0
be the local equation of the hyperplane at infinity of Pn. The idea is to consider the
2-parameter family of functions Gs,t : Cn → C, where Gs,t(y) = G(y, s, t). Then
G(y, s, t) is the germ of a deformation of the function G0,t0(y).

We consider the germ at (z, 0, t0) of the singular locus Γ of the map (G, σ, τ) :
Cn → C3. This is the union of the singular loci of the functions Gs,t, for varying s
and t. We claim that Γ is a surface, more precisely, that every irreducible compo-
nent Γi of Γ is a surface. We secondly claim that the projection D ⊂ C3 of Γ by
the map (y0, σ, τ) is a surface, in the sense that all its irreducible components are

surfaces. Moreover, the projections Γ
(y0,σ,τ)→ D and D

(s,t)→ C2 are finite (ramified)
coverings.

All our claims follow from the following fact: the local Milnor number con-
serves in deformations of functions. The function germ G0,t0 with Milnor number,
say µ0, deforms into a function Gs,t with finitely many isolated singularities, and
the total Milnor number is conserved, for any couple (s, t) close to (0, t0).

Let us now remark that the germ at (z, 0, t0) of Σ×C is a union of components
of Γ and projects by (y0, s, t) to the plane D0 := {y0 = 0} of C3. However, the
inclusion D0 ⊂ D cannot be an equality, by the above argument on the total
“quantity of singularities” and since we have a jump λ > 0 at the point of origin
(z, 0, t0). So there must exist some other components of D. Every such component
being a surface in C3, has to intersect the plane D0 ⊂ C3 along a curve. Therefore,
for every point (s′, t′) of such a curve, the sum of Milnor numbers of the function
G on the hypersurface {y0 = 0, σ = s′, τ = t′} (where the sum is taken over the
singular points that tend to the original point (z, 0, t0) when s′ → 0) is therefore
strictly higher than the one computed for a generic point of the plane D0. Therefore
our claim (a) will be proved if we prove two things:
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(i) the singularities of G on the hypersurface {y0 = 0, σ = s′, τ = t′} that tend
to the original point (z, 0, t0) when s′ → 0 are included into G = 0, and

(ii) there exists a component Di ⊂ D such that Di ∩D0 �= D ∩ {s = 0}.
To show (i), let gk(y, s) denote the degree k part of P after localizing it at p

and note that G(y, s, t) = gd(y, s) + y0(gd−1(y, s) + · · · )− tyd
0 . Then observe that

the set:
Γ ∩ {y0 = 0} = {∂gd

∂y
= 0, gd−1 = 0} (5.1)

does not depend on the variable t and its slice by {σ = s, τ = t} consists of
finitely many points. These points may fall into two types: (I). points on {gd = 0},
and therefore on {G = 0}, and (II). points not on {gd = 0}. We show that type
II points do not actually occur. This is a consequence of our hypothesis on the
constancy of generic singularity type at infinity, as follows. By choosing a generic
t̂ such that t̂ �∈ Λ(s) for all s, and by using the independence on t of the set (5.1),
this condition implies that type II points cannot collide with type I points along
the slice {y0 = 0, σ = s, τ = t̂} as s → 0. By absurd, if there were collision, then
there would exist a singularity in the slice {G = 0, y0 = 0, σ = 0, τ = t̂} with
Milnor number higher than the generic singularity type at infinity. It then follows
that:

Γ ∩ {y0 = 0} = Γ ∩ {G = y0 = 0} (5.2)
which proves (i). Now observe that the equality (5.2) also proves (ii), by a similar
reason: if there were a component Di such that Di ∩D0 = D∩ {s = 0} then there
would exist a singularity in the slice {G = 0, y0 = 0, σ = 0, τ = t̂} with Milnor
number higher than the generic singularity type at infinity. Notice that we have
in fact proved more, namely:
(ii′) there is no component Di �= D0 such that Di ∩D0 = D ∩ {s = 0}.

This ends the proof of (a).
(b) Suppose that there were collision of some singularities out of which two or
more λ-singularities are in the same fibre. Then there are at least two different
points zi �= zj of Σs which collide as s→ 0. This situation is excluded by the cgst
assumption (Definition 5.1). �

6. Specificity of µ + λ constant deformations

6.1. Local conservation and behavior of λ

In §8 we comment a couple of examples where the of Theorem 4.2 is strict. Let us
first show that, when imposing the constancy of µ + λ, this inequality turns into
an equality.

Corollary 6.1. Let P be a constant degree deformation inside the B-class such that
µ(s) + λ(s) is constant. Then:
(a) As s→ 0, there cannot be loss of µ or of λ with corresponding atypical values

tending to infinity.



Singularity Exchange at the Frontier of the Space 335

(b) λ is upper semi-continuous, i.e., λ(s) ≤ λ(0).
(c) there is local conservation of µ + λ at any λ-singularity of f0.

Proof. (a) If there is loss of µ or of λ, then this must necessarily be compensated
by increase of λ at some singularity at infinity of f0. But Theorem 4.2 shows that
the local µ + λ cannot increase in the limit.
(b) is clear since µ(s) + λ(s) is constant and µ(s) can only decrease when s→ 0.
(c) Global conservation of µ+ λ together with local semi-continuity (by Theorem
4.2) imply local conservation. �

Remark 6.2. It is interesting to point out that within the class of B-type poly-
nomials there is no inclusion relation between the properties “constant generic
singularity type” and “µ(s) + λ(s) constant”, see Examples 8.4, 8.6. We shall see
in the following that in the F-class the two conditions are equivalent because of
the relation (6.2).

For B-type polynomials, we have the formula:

bn−1(Gs) = µ(s) + λ(s) = (−1)n−1(χn,d − 1)−
∑

x∈Σs

µx,gen(s)− (−1)n−1χ∞(s),

(6.1)
where χn,d = χ(V n,d

gen ) = n+1− 1
d{1+(−1)n(d−1)n+1} is the Euler characteristic

of the smooth hypersurface V n,d
gen of degree d in Pn and χ∞(s) := χ({fd(x, s) = 0}).

We denote by µx,gen(s) the Milnor number of the singularity of Ys,t at the point
(x, t) ∈ Σs ×C, for a generic value of t. The change in bn−1(Gs) can be described
in terms of change in µx,gen(s) and χ∞(s). Since the latter is not necessarily semi-
continuous (cf. Examples 8.4–8.6), we may expect interesting exchange of data
between the two types of contributions.

Proposition 6.3. Let ∆χ∞ denote (−1)n(χ∞(s)− χ∞(0)).
(a) If ∆χ∞ < 0 then the deformation is not cgst.
(b) If ∆χ∞ = 0 and the deformation has constant µ + λ then, for all x ∈ Σs,

µx,gen(s) is constant.
(c) If ∆χ∞ > 0 then the deformation cannot have constant µ + λ. �

For F-type polynomials, formula (6.1) takes the following form, see also [15,
(2.1) and (2.4)]:

µ(s) + λ(s) = (d− 1)n −
∑

x∈Σs

µx,gen(s)−
∑

x∈Ws

µ∞
x (s), (6.2)

where µ∞
x (s) denotes the Milnor number of the singularity of Ys,t ∩ H∞ at the

point (x, t) ∈ Ws × C, which is actually independent on the value of t. Note that
in the F-class we have ∆χ∞ ≥ 0.

The relation 6.2 shows that the change in the Betti number bn−1(Gs) can
be described in terms of change in the µx,gen(s) and change in µ∞

x (s). Both are
semi-continuous, so they are forced to be constant in µ + λ constant families.



336 D. Siersma and M. Tibăr

Consequently, the class of F-type polynomials such that µ+λ =const. verifies
the hypotheses of Theorem 5.2. It has been noticed by the first named author that
in the deformations with constant µ+λ which occur in Siersma-Smeltink’s lists [13]
the value of λ cannot be dropped to 0. Since these deformations are in the F-class
and in view of the above observation, this behavior is now completely explained
by Theorem 5.2(a). More precisely, we have proved:

Corollary 6.4. Inside the F-class, a λ-singularity cannot be deformed into only
µ-singularities by a constant degree deformation with µ + λ = const. �
6.2. Monodromy in families with constant µ + λ

For some polynomial f0, one calls monodromy at infinity the monodromy around
a large enough disc D containing all the atypical values of f0. The locally trivial
fibration above the boundary ∂D̄ of the disc is called monodromy fibration at
infinity.

The global Lê-Ramanujam problem consists in showing the constancy of the
monodromy fibration at infinity in a family with constant µ + λ. Actually one
can state the same problem for any admissible loop γ in C, i.e., a simple loop
(homeomorphic to a circle) such that it does not contain any atypical value of fs,
for all s close enough to 0.

The second named author proved a Lê-Ramanujam type result for a large
class of polynomials, including the B-class (cf. [17, 18]), with the supplementary
condition that there is no loss of µ at infinity of type 4.1(b). This hypothesis can
now be removed, due to our Corollary 6.1(a). Moreover, the same result clearly
holds over any admissible loop. Therefore, by revisiting the statement [18, Theorem
5.2], we get the following more general one:

Theorem 6.5. Let P be a constant degree deformation inside the B-class. If µ+ λ
is constant and n �= 3 then:
(a) the monodromy fibrations over any admissible loop are isotopic in the family.
(b) the monodromy fibrations at infinity are isotopic in the family. �

7. Proof of Theorem 4.2

For the proof, we need to define a certain critical locus. First endow Y with the
coarsest Whitney stratificationW . Note that (unlike the case of a single polynomial
and its attached space X treated in [14]) we do not require here that Y∞ is a union
of strata. Let Ψ := (σ, τ) : Y → C×C be the projection. The critical locus Crit Ψ
is the locus of points where the restriction of Ψ to some stratum of W is not a
submersion. When writing Crit Ψ we usually understand a small representative
of the germ of Crit Ψ at Y0,∗. It follows that Crit Ψ is a closed analytic set and
that its affine part Crit Ψ ∩ (Cn × C × C) is the union, over s ∈ C, of the affine
critical loci of the polynomials fs. Notice that both Crit Ψ and its affine part
Crit Ψ∩ (Cn ×C×C) are in general not product spaces by the t-variable. In case
of a constant degree one-parameter deformation in the B-class, the stratification
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W has a maximal stratum which contains the complement of the 2-surface Σ×C.
At any point of this complement, all the spaces Y, Ys,∗ and Ys,t are nonsingular
in the neighborhood of infinity. Therefore Crit Ψ ∩ (Y∞ \ Σ × C) = ∅. Since our
deformation is in the B-class, it follows that the affine part Crit Ψ∩ (Cn ×C×C)
is of dimension at most 1. Next, the map is Ψ is submersive over a Zariski-open
subset of any 2-dimensional stratum included in Σ×C. It follows that the part at
infinity of Crit Ψ has dimension < 2. We altogether conclude that dim Crit Ψ ≤ 1.

Nevertheless, this fact does not insure that the functions σ and τ have isolated
singularity with respect to our stratification W . (It is precisely not the case in
“almost all” examples.) Nevertheless, in the pencil σ+ ετ , ε ∈ C, all the functions
except finitely many of them are functions with isolated singularity at p with
respect to the stratificationW . Let us fix some ε close to zero and consider locally,
in some good neighborhood B of (p, 0) ∈ Y, the couple of functions Ψε = (σ +
ετ, τ) : B → C2.

The function τ| : (σ + ετ)−1(0) → C defines an isolated singularity at p and
(σ + ετ)−1(0) is a germ of a complete intersection at p. By applying the strati-
fied Bouquet Theorem of [16] we get that the Milnor-Lê fibre of τ| is homotopy
equivalent to a bouquet of spheres

∨
Sn−1. It follows that the general fiber of Ψε

– that is B ∩ Ψ−1
ε (s, t), for some (s, t) �∈ Disc Ψ – is homotopy equivalent to the

same bouquet
∨
Sn−1; let ρ denote the number of Sn−1 spheres in this bouquet.

On the other hand, the Milnor fiber at p of the function σ + ετ is homotopy
equivalent to a bouquet

∨
Sn, by the same result loc. cit.; let ν denote the number

of Sn spheres.
In the remainder, we count the vanishing cycles (I): along (σ + ετ)−1(0),

respectively (II): along (σ+ετ)−1(u), for u �= 0 close enough to 0, and we compare
the results. The vanishing cycles are all in dimension n− 2. One may use Figure 1
in order to follow the computations; in this picture, the germ of the discriminant
locus Disc Ψ at Ψ(p) is the union of the τ -axis, σ-axis and some other curves.

(I) We start with the fiber B ∩Ψ−1
ε (0, δ), where δ is close enough to 0. To obtain

B ∩ (σ + ετ)−1(0), which is contractible, one attaches to B ∩ Ψ−1
ε (0, δ) a certain

number of (n− 1) cells corresponding to the vanishing cycles at infinity, as t→ 0,
in the family of fibers Ψ−1

ε (0, t). This is exactly the number ρ defined above and
it is here the sum of two numbers, corresponding to the attaching in two steps, as
we detail in the following. One is the number of cycles in B∩Ψ−1

ε (s, δ), vanishing,
as s→ 0, at points that tend to p when δ tends to 0; we denote this number by ξ.
The other number is the number of cycles in B∩Ψ−1(0, t), vanishing as t→ 0; this
number is λp(0), by definition. From this one may draw the inequality: λp(0) ≤ ρ.

(II) Here we start with the fiber B ∩ Ψ−1
ε (u, δ), which is homeomorphic to B ∩

Ψ−1
ε (0, δ) and to B∩Ψ−1(u, δ). The Milnor fiber B∩{σ+ ετ = u} cuts the critical

locus CritΨ at certain points pk. The number of points, counted with multiplicities,
is equal to the local intersection number intp({σ+ ετ = 0},CritΨ). When walking
along B∩{σ+ ετ = u}, one has to add to the fiber B∩Ψ−1

ε (u, δ) a number of cells
corresponding to the vanishing cycles at points {σ + ετ = u} ∩ {σ = 0}, which is
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Disc Ψ

σ+ετ=0

τ=δ

τ

σΨ(α)

σ+ετ=u

σ=u

Figure 1. Counting vanishing cycles.

just the number ξ defined above, and to the vanishing cycles at points {σ + ετ =
u}∩CritΨ \ {σ = 0}. The intersection number intp({σ+ετ = 0},CritΨ \ {σ = 0})
is less or equal to the intersection number intp({σ = 0},CritΨ \ {σ = 0}). Now,
when walking along B ∩ {σ = u}, one has to add to B ∩ Ψ−1(u, δ) a number
of cells corresponding to the vanishing cycles at points pi and pj , which number
is, by definition,

∑
i λpi(u) +

∑
j µpj (u). We get the inequality: ξ +

∑
i λpi (u) +∑

j µpj (u) ≥ ρ + ν.
Finally, by collecting the inequalities obtained at steps (I) and (II), we obtain:

λp(0) = ρ− ξ ≤ ρ + ν − ξ ≤
∑

i

λpi(u) +
∑

j

µpj (u), (7.1)

which proves our claim. �

8. Examples

8.1. F-class examples; behavior of λ

Example 8.1. fs = (xy)3 + sxy + x, see Figure 2(a).
This is a deformation inside the F-class, with constant µ + λ, where λ increases.
For s �= 0: λ = 1 + 1 and µ = 1. For s = 0: λ = 3 and µ = 0.

Example 8.2. fs = (xy)4 + s(xy)2 + x, see Figure 2(b).
This deformation has constant µ = 0, λ(0) = 2 at one point and λ(s) = 1 + 1 at
two points at infinity which differ by the value of t only, namely ([0 : 1], s, 0) and
([0 : 1], s,−s2/4).

Example 8.3. fs = xy4 + s(xy)2 + y, see Figure 2(c).
Here λ decreases. For s �= 0: λ = 2 and µ = 5. For s = 0: λ = 1 and µ = 0.
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τ τ τ

σ σ σ

λ=2

λ=3 λ=2
λ=1

λ=1

λ=1

µ=5

λ=2

increasesλ is constantλ decreasesλ(a) (b) (c)

µ=1

Figure 2. Mixed splitting in (a) and (c); pure λ-splitting in (b).

8.2. B-class examples

We use in this section formula (6.1). We pay special attention to the sign of ∆χ∞

and illustrate the difference between cgst-type deformations and (µ+ λ)-constant
deformations.

Example 8.4. fs = x4 + sz4 + z3 + y.
This is a deformation inside the B-class with constant µ + λ, which is not cgst
at infinity (Definition 5.1). We have λ = µ = 0 for all s. Next, Ys,t is singular
only at p := [0 : 1 : 0] and the singularities of Y∞

0,t change from a single smooth
line {x4 = 0} with a special point p on it into the isolated point p which is a Ẽ7

singularity of Y∞
s,t. We use the notation ⊕ for the Thom-Sebastiani sum of two

types of singularities in separate variables.

We have:

s = 0: the generic type is A3 ⊕ E7 with µ = 21 and χ(Y∞
0,t) = 2.

s �= 0: the generic type is A3 ⊕ E6 with µ = 18 and χ(Y∞
s,t) = 5.

The jumps of +3 and −3 compensate each other.

Example 8.5. fs = x4 + sz4 + z2y + z.
This is a µ + λ constant B-type family, with two different singular points of Y0,t

at infinity, and where the change in one point interacts with the other. It is locally
cgst in one point, but not in the other. We have that λ = 3 and µ = 0 for all
s, Ys,t is singular at p := [0 : 1 : 0] ∈ H∞ for all s (see types below) and at
q := [1 : 0 : 0] ∈ H∞ with type A3. The singularities of Y∞

s,t change from a single
smooth line {x4 = 0} into the isolated point p with Ẽ7 singularity.

For the point p we have for all s the generic type A3 ⊕ D5 if t �= 0, which
jumps to A3 ⊕D6 if t = 0. This causes λ = 3.

At q, the A3-singularity for s = 0 gets smoothed (independently of t) and
here the deformation is not locally cgst. The change on the level of χ(Y∞

s,t) is from
2 to 5, so ∆χ∞ = −3, which compensates the disappearance of the A3-singularity
from Y0,t to Ys,t.
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Example 8.6. fs = x2y + x + z2 + sz3.
This is a cgst B-type family, where µ+ λ is not constant. Notice that fs is F-type
for all s �= 0, whereas f0 is not F-type (but still B-type). The generic type at
infinity is D4 for all s and there is a jump D4 → D5 for t = 0 and all s. For s �= 0
a second jump D4 → D5 occurs for t = c/s2, for some constant c.

There are no affine critical points, i.e., µ(s) = 0 for all s, but λ(s) = 2 if
s �= 0 and λ(0) = 1. We have that Λ(fs) = {0, c/s2} for all s �= 0, and that χ∞

changes from 3 if s = 0 to 2 if s �= 0, so ∆χ∞ = +1.
There is a persistent λ-singularity in the fibre over t = 0 and there is a branch

of the critical locus CritΨ which is asymptotic to t =∞.

8.3. Cases of lower semi-continuity at λ-singularities

In Theorem 4.2 we have an inequality which we may write in short-hand as follows,
by referring to its proof (formula 7.1):

λ = Igen − ν ≤ Igen ≤ Is=0 (8.1)

This inequality can have two different sources:

– the nongeneric intersection number Is=0 and its difference to the generic
one Igen,

– the number ν, which is related to the equisingularity properties of Y.

So the excess in the formula is ν + (Is=0 − Igen). The following examples
illustrate the different types of excess: ν �= 0, respectively ν = 0 and Is=0−Igen > 0.
In the latter case, the space Y is singular.

Example 8.7. We start with a F-type polynomial f0 and consider a Yomdin
deformation f0 − sxd

1 for sufficient general x1. In this case the space Y is non-
singular and the function σ + ετ behaves locally as a linear function. It follows
that ν = 0. Moreover in this case Is=0 − Igen turns out to be positive because of
the tangency of some components of the discriminant set to the s-axis. Compare
to [15, Theorem 5.4], where the local lower semi-continuity was proved in the case
of Yomdin deformations.

Example 8.8. fs = x2yb + x + sxyk.
In the range b

2 < k ≤ b, this has the following data:

s = 0: λ = b, µ = 0, λ + µ = b;
s �= 0: λ = 0, µ = 2k, λ + µ = 2k.

Both intersection numbers Igen and Is=0 are the same and equal to 2k. We read
the inequality (8.1) as: b = 2k− ν ≤ 2k ≤ 2k. So ν = 2k− b and this is positive in
case b

2 < k ≤ b.
For the complementary range 1 < k < b

2 we have a family with an extra
λ-discriminant branch at t = 0.
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There is the following data here:
s = 0: λ = b, µ = 0, λ + µ = b ;
s �= 0: λ = b− 2k, µ = 2k, λ + µ = b.

In this range one has ν = 0, λ = b = Is=0, which gives equality in Theorem 4.2.
This local conservation is characteristic to families with constant global µ+λ, see
Corollary 6.1(c).
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[12] A. Parusiński, On the bifurcation set of complex polynomial with isolated singu-
larities at infinity, Compositio Math. 97 (1995), no. 3, 369–384.

[13] D. Siersma, J. Smeltink, Classification of singularities at infinity of polynomials
of degree 4 in two variabales, Georgian Math. J. 7 (1) (2000), 179–190.
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Mackey Functors on Provarieties

Shoji Yokura

Abstract. MacPherson’s Chern class transformation on complex algebraic va-
rieties is a certain unique natural transformation from the constructible func-
tion covariant functor to the integral homology covariant functor, and it can
be extended to a category of provarieties. In this paper, as further exten-
sions of this we consider natural transformations among Mackey functors on
provarieties and also on “indvarieties” and discuss some notions and examples
related to these extensions.
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1. Introduction

In [Y2] we considered a Chern class of proalgebraic varieties and in particular we
have related its construction to motivic measures ([Cr], [DL1, DL2], [Lo], [Ve],
etc.). To define such a Chern class, we first need to consider a “proalgebraic”
version of constructible function, which is called proconstructible function in [Y2].
One key for defining such a Chern class is that the correspondence F assigning
to a variety X the abelian group F (X) of constructible functions satisfies “base
change isomorphism” or what is called “Mackey property” of the Mackey functor,
which was for the first time introduced by Andreas W. M. Dress ([Dr1], [Dr2]) in
the theory of representations of finite groups. This is a bifunctor from the category
of G-sets (where G is a finite group) to the abelian category. For Mackey functors,
also see [Bo], [Lin], [TW], [Yo], etc.

In this paper, we shall discuss extensions of Mackey functor to proalgebraic
varieties and discuss some notions and examples related to these extensions.

Partially supported by Grant-in-Aid for Scientific Research (No.17540088), the Ministry of Ed-
ucation, Culture, Sports, Science and Technology (MEXT), Japan.
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2. Constructible functions and MacPherson’s Chern class
transformations

In the following we work in the context of complex algebraic varieties.
Let F (X) be the abelian group of constructible functions on a variety X .

Then the assignment F : V → A is a contravariant functor (from the category of
varieties to the category of abelian groups) by the usual functional pullback: for a
morphism f : X → Y

f∗ : F (Y ) → F (X) defined by f∗(α) := α ◦ f.
For a constructible set A ⊂ X , we define

χ(A;α) :=
∑
n∈Z

nχ(A ∩ α−1(n)).

Here the Euler–Poincaré characteristic of a constructible set A is defined by
χ(A) :=

∑
i

χ(Ai), if A is the disjoint union of finitely many locally closed al-

gebraic subsets Ai, for which we use the Euler–Poincaré characteristic of the coho-
mology with compact support. This is well defined by the additivity of the Euler–
Poincaré characteristic (with compact support). In addition, it has the following
“generalized multiplicativity property”: for an algebraic morphism f : A → B
such that the Euler–Poincaré characteristics of all the fibers χ(f−1(y)) are equal,
χ(A) = χ(B) × χ(f−1(y)).

It turns out that the assignment F : V → A also becomes a covariant functor
by the following pushforward:

f∗ : F (X)→ F (Y ) defined by f∗(α)(y) := χ(f−1(y);α).

For more details on constructible functions and, in particular, for compar-
ison with standard Grothendieck operations on constructible sheaves, see [Sch2,
Chapter 2] (and also [Dim], [KS], [Scha]).

The main importance of this functor F is that we need it to define the so-
called MacPherson’s Chern class transformation. P. Deligne and A. Grothendieck
conjectured and R. MacPherson [Mac] solved the following:

Theorem 2.1. Let H∗ be the Borel-Moore homology theory and the morphisms we
consider are proper morphisms. Then there exists a unique natural transformation

c∗ : F → H∗

from the constructible function covariant functor F to the homology covariant func-
tor H∗ satisfying the “normalization” that the value of the characteristic function
1X of a smooth complex algebraic variety X is the Poincaré dual of the total Chern
cohomology class:

c∗(1X) = c(TX) ∩ [X ].

The above natural transformation c∗ : F → H∗ is called MacPherson’s Chern
class transformation.
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J.-P. Brasselet and M.-H. Schwartz [BrSc] showed that the distinguished value
c∗(1X) of the characteristic function of a variety under this transformation is
isomorphic to the Schwartz class [Sc1, Sc2] via the Alexander duality, if X is
embedded into a complex manifold. Thus, for a complex algebraic variety X ,
singular or nonsingular, the homology class c∗(1X) is called the total Chern–
Schwartz–MacPherson class of X and denoted simply by c∗(X).

3. “Indconstructible” functions and motivic measures

Let I be a directed set and let C be a given category. Then a projective system
is, by definition, a system {Xi, πii′ : Xi′ → Xi(i < i′), I} consisting of objects
Xi ∈ Obj(C), morphisms πii′ : Xi′ → Xi ∈ Mor(C) for each i < i′ and the index
set I. The object Xi is called a term and the morphism πii′ : Xi′ → Xi a bonding
morphism or structure morphism ([MS]). The projective system {Xi, πii′ : Xi′ →
Xi(i < i′), I} is sometimes simply denoted by {Xi}i∈I .

Given a category C, Pro-C is the category whose objects are projective systems
X = {Xi}i∈I in C and whose set of morphisms from X={Xi}i∈I to Y ={Yj}j∈J is

Pro-C(X,Y ) := lim←−
J

(lim−→
I

C(Xi, Yj)).

Given a projective system X = {Xi}i∈I ∈ Pro-C, the projective limit X∞ :=
lim←−Xi may not belong to the source category C. For a certain sufficient condition
for the existence of the projective limit in the category C, see [MS] for example.
For a study of pro-objects, also see [AM] and [Grot].

An object in Pro-C is called a pro-object. A projective system of algebraic
varieties is called a pro-variety and its projective limit is called a provariety, which
may not be an algebraic variety but simply a topological space.

Let T : C → D be a covariant (contravariant, resp.) functor between two
categories C,D. Obviously the covariant (contravariant, resp.) functor T extends
to a covariant (contravariant, resp.) pro-functor

Pro-T : Pro-C → Pro-D

defined by Pro-T ({Xi}i∈I) := {T (Xi)}i∈I . Let T1, T2 : C → D be two covariant
(contravariant, resp.) functors and N : T1 → T2 be a natural transformation
between the two functors T1 and T2. Then the natural transformation N : T1 → T2

extends to a natural pro-transformation

Pro-N : Pro-T1 → Pro-T2.

From here on, for the sake of simplicity, we only deal with the case when the
directed set Λ is the natural numbers N and a pro-morphism {fn} of two pro-
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varieties {Xn} and {Yn} is such that for each n the following diagram commutes:

Xn+1
fn+1−−−−→ Yn+1

ρn(n+1)

⏐⏐= ⏐⏐=πn(n+1)

Xn −−−−→
fn

Yn.

Definition 3.1. For a proalgebraic variety X∞ = lim←−n
Xn, the inductive limit of

the inductive system {F (Xn), π∗
nm : F (Xn) → F (Xm)(n < m)} is denoted by

F ind(X∞);

F ind(X∞) := lim−→
n

F (Xn) =
⋃
n

πn (F (Xn))

where πn : F (Xn) → lim−→n
F (Xn) is the homomorphism sending αn to its equiv-

alence class [αn]∞ of αn. An element of the group F ind(X∞) is called an “ind-
constructible” function on the proalgebraic variety X∞. As a function on X∞, the
value of [αn]∞ at a point (xm) ∈ X∞ is defined by

[αn]∞
(
(xm)

)
:= αn(xn),

which is well defined.

Remark 3.2. The above “indconstructible” was called “proconstructible” in [Y2],
but in this paper we name it so since it is defined via the “inductive limit” and
also in order to avoid some possible confusions; later we also discuss similar ones
defined via the projective limits.

Remark 3.3. F ind(X∞) certainly depends on the given projective system S =
{Xn, πnm : Xm → Xn(n < m)}, so in this sense it should be denoted by some-
thing like F ind

S (X∞) with reference to the projective system S, but for the sake of
simplicity the subscript S is dropped.

Lemma 3.4. For each positive integer n, let Gn = Z be the integers and hn(n+1) :
Gn → Gn+1 be the homomorphism defined by multiplication by a non-zero integer
pn, i.e., hn(n+1)(m) = mpn. Then there exists a unique (injective) homomorphism

Ψ : lim−→
n

Gn → Q

such that
Ψ (hn(rn)) =

rn

p0p1 · · · pn−1
.

Here hn : Gn → lim−→
n

Gn is the homomorphism sending rn to its equivalence class

gn(rn) of rn and we set p0 := 1.

Using this lemma, together with the “generalized multiplicativity property”
of the Euler–Poincaré characteristic, we can show the following theorem:
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Theorem 3.5. Let X∞ = lim←−n∈N
Xn be a provariety such that for each n the

structure morphism πn(n+1) : Xn+1 → Xn satisfies the condition that the Euler–
Poincaré characteristics of the fibers of πn(n+1) are non-zero (which implies the
surjectivity of the morphism πn(n+1)) and the same; for example, πn(n+1) : Xn+1 →
Xn is a locally trivial fiber bundle with fiber variety being Fn and χ(Fn) �= 0. Let
us denote the constant Euler–Poincaré characteristic of the fibers of the morphism
πn(n+1) : Xn+1 → Xn by χn and we set χ0 := 1.

(i) The canonical Euler–Poincaré (ind)characteristic homomorphism, i.e., a
“canonical realization” of the inductive limit of the Euler–Poincaré char-
acteristic homomorphisms {χ : F (Xn) → Z}n∈N, is described as the homo-
morphism

χind : F ind(X∞)→ Q

defined by

χind ([αn]∞) =
χ(αn)

χ0 · χ1 · χ2 · · ·χn−1
.

(Here “canonical realization” means “through the injective homomorphism in
the above lemma”.)

(ii) In particular, if the Euler–Poincaré characteristics χn are all the same, say
χn = χ for any n, then the canonical Euler–Poincaré (ind)characteristic
homomorphism χind : F ind(X∞) → Q is described by

χind ([αn]∞) =
χ(αn)
χn−1

.

In this special case, the target ring Q can be replaced by the ring Z
[

1
χ

]
.

In a more special case, the target ring Q in the above theorem can be replaced
by the Grothendieck ring of varieties.

Let K0(VC) be the Grothendieck ring of algebraic varieties, i.e., the free
abelian group generated by the isomorphism classes of varieties modulo the sub-
group generated by elements of the form [V ]− [V ′]− [V \ V ′] for a closed subset
V ′ ⊂ V with the ring structure [V ] · [W ] := [V × W ]. There are distinguished
elements in K0(VC): 1 is the class [p] of a point p and L is the Tate class [C] of
the affine line C. From this definition, we can see that any constructible set of a
variety determines an element in the Grothendieck ring K0(VC). Provisionally the
element [V ] in the Grothendieck ring K0(VC) is called the Grothendieck “motivic”
class of V and let us denote it by Γ(V ). Hence we get the following homomorphism,
called the Grothendieck “motivic” class homomorphism: for any variety X

Γ : F (X)→ K0(VC), which is defined by Γ(α) =
∑
n∈Z

n
[
α−1(n)

]
.

Or Γ (
∑

aV 1V ) :=
∑

aV [V ] where V is a constructible set in X and aV ∈ Z. From
now on, we sometimes write [α] for Γ(α) for a constructible function α.
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This Grothendieck “motivic” class homomorphism is tautological and a more
“geometric” one is the Euler–Poincaré characteristic homomorphism χ : F (X) →
Z. Note that the homomorphism χ : F (X) → Z factors into the homomorphism
Γ : F (X) → K0(VC) followed by the (universal Euler–Poincaré characteristic)
homomorphism χGr : K0(VC) → Z defined by χGr([V ]) := χ(V ), which is well
defined; namely, we have χ = χGr ◦ Γ.

The above theorem is about extending the Euler–Poincaré characteristic ho-
momorphism χ : F (X)→ Z to the category of proalgebraic varieties. Thus a very
natural problem is to generalize the Grothendieck “motivic” class homomorphism
Γ : F (X)→ K0(VC) to the category of proalgebraic varieties.

Theorem 3.6. Let X∞ = lim←−n∈N
Xn be a proalgebraic variety such that each struc-

ture morphism πn,n+1 : Xn+1 → Xn satisfies the condition that for each n there
exists a γn ∈ K0(VC) such that [πn(n+1)

−1(Sn)] = γn · [Sn] for any constructible
set Sn ⊂ Xn, for example, πn(n+1) : Xn+1 → Xn is a Zariski locally trivial fiber
bundle with fiber variety being Fn (in which case γn = [Fn] ∈ K0(VC)).

(i) The canonical proalgebraic Grothendieck class homomorphism,

Γind : F ind(X∞)→ K0(V)G
is described by

Γind ([αn]∞) =
[αn]

γ0 · γ1 · γ2 · · · γn−1
.

Here γ0 := 1 and K0(V)G is the ring of fractions of K0(V) with respect to
the multiplicatively closed set consisting of finite products of powers of γm

(m = 1, 2, 3, . . . ), i.e.,

G :=
{
γm1

j1
γm2

j2
· · · γms

js
|ji ∈ N,mi ∈ N

}
.

(ii) In particular, if γn are all the same, say γn = γ for any n, then the canonical
proalgebraic Grothendieck class homomorphism

Γind : F ind(X∞)→ K0(V)G
is described by

Γind ([αn]∞) =
[αn]
γn−1

.

In this special case the quotient ring K0(V)G shall be simply denoted by
K0(V)γ .

Remark 3.7. In the above theorem one should be a bit careful: the target ring
K0(VC)G cannot be replaced by the “total quotient ring” of the Grothendieck ring
K0(VC) unlike in the previous theorem, because the Grothendieck ring K0(VC) is
not a domain unlike the ring Z of integers as shown recently by B. Poonen [Po,
Theorem 1] and thus one cannot define the total quotient ring of K0(VC).

For more generalized versions of the above Theorem 3.5 and Theorem 3.6 ,
see [Y2] and also [Y3].
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4. Mackey functors and bivariant theories

In [Y2] we extended the above Euler–Poincaré characteristic χind : F ind(X∞) →
Q to “classes”, in other words a MacPherson’s Chern class transformation on
proalgebraic varieties, in the study of which we needed two keys:
(†) The first one is the following simple fact about constructible functions: for

any fiber square

X ′ g′
−−−−→ X

f ′
⏐⏐= ⏐⏐=f

Y ′ g−−−−→ Y,

the following diagram commutes ([Er, Proposition 3.5], [FM, Axiom (A23)])

F (X)
g′∗

−−−−→ F (X ′)

f∗

⏐⏐= ⏐⏐=f ′
∗

F (Y )
g∗

−−−−→ F (Y ′).

(‡) The second one is the so-called Verdier–Riemann–Roch formula for Chern
class (e.g., [FM], [Sch1] and [Y1]).

In this section, instead of reviewing the construction of MacPherson’s Chern
class transformation on proalgebraic varieties, we consider the abstract situation
for which these two properties are satisfied.

Let C1 and C2 be two categories. A bifunctor M : C1 → C2 is defined to be
a pair M = (M∗,M∗) of a covariant functor M∗ : C1 → C2 and a contravariant
functor M∗ : C1 → C2 such that they agree on objects of C1; thus for any object
X ∈ obj(C1) we have one object M∗(X) = M∗(X) =: M(X) ∈ obj(C2) and for
any morphism f : Y → X in mor (C1) we have two morphisms

f∗ := M∗(f) : M(Y )→M(X) and f∗ := M∗(f) : M(X)→M(Y ).

A natural transformation τ : M → N of bifunctors M and N is a family of
morphisms τX : M(X) → N(X) such that τ is both a natural transformation
from M∗ to N∗ and from M∗ to N∗ ([Dr2]). For bifunctors, e.g., see [Be].

In this paper, we restrict ourselves to C1 = the category V of complex al-
gebraic varieties and C2 = the category A of abelian groups. In this sense, our
bifunctor is a more geometrical one.

Definition 4.1 (Mackey functors). If a bifunctor M = (M∗,M∗) : V → A satisfies
the following two conditions (M-I) and (M-II), then the bifunctor M is called a
Mackey functor:
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(M-I) for any fiber square in the category V

X ′ g′
−−−−→ X

f ′
⏐⏐= ⏐⏐=f

Y ′ −−−−→
g

Y

it holds that f ′∗g′
∗ = g∗f∗ . (This property is called the Mackey property.)

(M-II) M : V → A preserves finite coproducts, i.e.,

M(X / Y ) = M(X)⊕M(Y ).

Remark 4.2. If M satisfies only (M-I), then M is called a pre-Mackey functor.

A typical model of a Mackey functor for us in this paper is the Mackey functor
F of constructible functions.

There is another notion of “bifunctor” (not in the true sense) dealing with
both a covariant theory and a contravariant theory at the same time. That is the
Bivariant Theory which was introduced by W. Fulton and R. MacPherson [FM].

Let C be a category with fiber products, a final object pt and a class of
“proper” maps, which is closed under composition and base change, and contains
all identity maps. A bivariant theory B on such a category C with values in the
category of abelian groups is an assignment to each morphism X

f−→ Y in the
category C an abelian group B(X

f−→ Y ), which is equipped with the following
three basic operations:
Product operations: For morphisms f : X → Y and g : Y → Z, the product
operation

• : B(X
f−→ Y )⊗B(Y

g−→ Z)→ B(X
gf−→ Z)

is defined.
Pushforward operations: For morphisms f : X → Y and g : Y → Z with f proper,
the pushforward operation

f : B(X
gf−→ Z)→ B(Y

g−→ Z)

is defined.
Pullback operations: For a fiber square

X ′ g′
−−−−→ X

f ′
⏐⏐= ⏐⏐=f

Y ′ −−−−→
g

Y,

the pullback operation

g : B(X
f−→ Y )→ B(X ′ f ′

−→ Y ′)
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is defined. Here, for simplicity, we take all fiber squares as “independent squares”
in the sense of [FM].

And these three operations are required to satisfy the seven compatibility
axioms (see [FM, Part I, §2.2] for details).

Let B,B′ be two bivariant theories on a category C. Then a Grothendieck
transformation from B to B′

γ : B→ B′

is a collection of homomorphisms

B(X → Y )→ B′(X → Y )

for a morphism X → Y in the category C, which preserves the above three basic
operations:

(i) γ(α •B β) = γ(α) •B′ γ(β),

(ii) γ(fα) = fγ(α), and

(iii) γ(gα) = gγ(α).

B∗(X) := B(X id−→ X) becomes a contravariant functor, whereas B∗(X) :=
B(X → pt) is covariantly functorial for proper maps. And a Grothendieck trans-
formation γ : B → B′ induces natural transformations γ∗ : B∗ → B′∗ and
γ∗ : B∗ → B′∗. If we have a Grothendieck transformation γ : B → B′, then
via a bivariant class b ∈ B(X f−→ Y ) we get the commutative diagram

B∗(Y )
γ∗−−−−→ B′

∗(Y )

b•
⏐⏐= ⏐⏐=γ(b)•

B∗(X) −−−−→
γ∗

B′
∗(X).

This is called the Verdier-type Riemann–Roch formula associated to the bivariant
class b.

Definition 4.3. Let S be a class of maps in C, closed under compositions and
containing all identity maps. If there exists an assignment θ assigning to each map
f : X → Y an element θ(f) ∈ B(X → Y ) such that

(i) θ(g ◦ f) = θ(f) • θ(g) for f : X → Y and g : Y → Z in S and
(ii) θ(idX) = 1X for all X

where 1X is the unit of B(X idX−−→ X) which satisfies that α • 1X = α for all
maps g : W → X and for any α ∈ B(W

g−→ X), then the assignment θ is called a
canonical orientation for S.
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Given a fiber square

X ′ g′
−−−−→ X

f ′
⏐⏐= ⏐⏐=f

Y ′ −−−−→
g

Y

with g, g′ ∈ S, it is not necessarily true that fθ(g) = θ(g′) (see [FM, Remark.,
page 28]). If such a relation holds, the canonical orientation θ shall be called a nice
canonical orientation for S.

Example. Let C be the category of complex algebraic varieties with “proper” mean-
ing the usual one and let B = F be the abelian group of constructible function
of the source variety of a morphism, i.e., B(X → Y ) := F (X). We associate to a
morphism f : X → Y the orientation 1f := 1X . Then for any such a class S of

maps the association θ(X
f−→ Y ) := 1f is a nice canonical orientation.

Example. Let C be as in the above example and let B be the Fulton–MacPherson’s
bivariant homology theory [FM] or the operational bivariant theory of Chow groups
[FM] (also see [Fu]). If we consider the class S of “smooth” morphisms, then
taking the corresponding relative orientation or fundamental class [f ] of a smooth
morphism gives rise to a “nice canonical orientation” for S.

Let B be a bivariant theory on C and θ a nice canonical orientation for S.
Such data give rise to a “conditional” pre-Mackey functor in the following sense:

(i) For a map g : Y ′ → Y in S, the “pullback” homomorphism θ(g)• : B∗(Y ) →
B∗(Y ′) is contravariant (because of the requirement (i) of the above definition),
and

(ii) For a fiber square

X ′ g′
−−−−→ X

f ′
⏐⏐= ⏐⏐=f

Y ′ −−−−→
g

Y

with g, g′ ∈ S, and f, f ′ proper, we get the following commutative diagram:

B∗(X ′)
θ(g′)•←−−−− B∗(X)

f ′
	

⏐⏐= ⏐⏐=f	

B∗(Y ′) ←−−−−
θ(g)•

B∗(Y )

which is a “conditional” Mackey property because g and g′ have to belong to S.
Here we note that this conditional Mackey property, i.e., f ′

(θ(g
′)•?) = θ(g) • f?,

follows from the fact that θ is a nice canonical orientation for S, i.e., fθ(g) = θ(g′),
and the projection formula [FM, Axiom (A123)] of the bivariant theory B. Such a
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conditional pre-Mackey functor shall be denoted by Bθ
∗; namely Bθ

∗(X) := B∗(X)
and the pushforward f∗ : B∗(X)→ B∗(Y ) is considered for any proper morphism
f : X → Y and the pullback homomorphism g∗ := θ(g)• : B∗(Y ) → B∗(Y ′) is
considered only for a morphism g : Y ′ → Y belonging to the chosen class S.

Let (B, θ) and (B′, θ′) be two bivariant theories on a category C with nice
canonical orientations for a class S. If a natural transformation τ : B∗ → B′

∗
between the associated covariant functors satisfies the condition that for any mor-
phism g : Y ′ → Y ∈ S the following diagram commutes

B∗(Y ) τ−−−−→ B′
∗(Y )

θ(g)•
⏐⏐= ⏐⏐=θ′(g)•

B∗(Y ′) −−−−→
τ

B′
∗(Y

′),

which is called the Verdier-type Riemann–Roch formula associated to the nice
canonical orientations θ and θ′ for S, then the transformation τ : B∗ → B′

∗
becomes a natural transformation between two conditional pre-Mackey functors
Bθ

∗ and B′
∗
θ′

.

Example. Let C be as in the above examples with S being the class of smooth
morphisms. Let B = F and B′ the Fulton–MacPherson’s bivariant homology the-
ory [FM] or the operational bivariant theory of Chow groups ([FM] and [Fu]) and
let θ be the nice canonical orientation described in the above Example 4. Let θ′(g)
be the nice canonical orientation c(Tg) • [g] for a smooth morphism g, where c(Tg)
is the total Chern class of the relative tangent bundle Tg of the smooth morphism
g. Then MacPherson’s Chern class transformation c∗ : F → H∗, where H∗ is the
homology theory or the Chow group (or the Chow homology group, i.e., the im-
age of the cycle map from the Chow group to the homology group), becomes a
natural transformation of the two conditional pre-Mackey functors Bθ∗(= F ) and
B′∗

θ′
(= H∗). And the Verdier-type Riemann–Roch formula associated to the nice

canonical orientations θ and θ′ for S is the following commutative diagram (which
is called the Verdier-type Riemann–Roch formula for Chern class for a smooth
morphism):

F (Y ) c∗−−−−→ H∗(Y )

f∗
⏐⏐= ⏐⏐=c(Tf )∩f∗

F (Y ′) −−−−→
c∗

H∗(Y ′).

5. (Pre-)Mackey functors on provarieties

There are at least two possible extensions of (pre-)Mackey functors to provarieties.
First, using the covariance of a (pre-)Mackey functor M , we can define the

following:
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Definition 5.1. Let M : V → A be a (pre-)Mackey functor. For a provariety
X∞ = lim←−n∈N

Xn,

Mproj(X∞) := lim←−
n∈N

M(Xn)

and for a promorphism f∞ : X∞ → Y∞

f∞∗ : Mproj(X∞)→Mproj(Y∞)

is defined by the projective limit

f∞∗ := lim←−
n∈N

{fn∗ : M(Xn) →M(Yn)} .

It is obvious that Mproj is a covariant functor. When it comes to contravari-
ance of Mproj, we cannot expect it for an arbitrary promorphism f∞ : X∞ → Y∞.
We need a certain requirement for the promorphism:

Definition 5.2. A promorphism f∞ : X∞ → Y∞ is called a fiber-square promor-
phism (abbr., f.s. promorphism) if for each n ∈ N the following commutative
diagram is a fiber square

Xn+1
fn+1−−−−→ Yn+1

ρn(n+1)

⏐⏐= ⏐⏐=πn(n+1)

Xn −−−−→
fn

Yn.

With this definition, the Mackey property of M implies the following

Lemma 5.3. For a f.s. promorphism f∞ : X∞ → Y∞, we define

f∞∗ := lim←−
n∈N

{fn
∗ : M(Yn)→M(Xn)} .

Then Mproj is a contravariant functor for f.s.promorphisms.

Hence we can have the following

Proposition 5.4. Let Prov be the category of provarieties. Then the correspondence
Mproj : Prov → A is a bifunctor provided that the contravariance is considered
only for f.s. promorphisms.

Definition 5.5. The following commutative diagram of promorphisms

X ′
∞

g′
∞−−−−→ X∞

f ′
∞

⏐⏐= ⏐⏐=f∞

Y ′
∞ −−−−→

g∞
Y∞
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with g∞ : Y ′
∞ → Y∞ being a f.s. promorphism is called a fiber square if for each

n ∈ N the following diagram is a fiber square

X ′
n

g′
n−−−−→ Xn

f ′
n

⏐⏐= ⏐⏐=fn

Y ′
n −−−−→

gn

Yn.

Remark 5.6. Being a f.s.promorphism is preserved by the base change, i.e., in the
above commutative diagram g∞ : Y ′

∞ → Y∞ being a f.s. promorphism implies that
g′∞ : X ′∞ → X∞ becomes also a f.s. promorphism.

If we consider the Mackey property for the above fiber square, we can show
the following

Theorem 5.7. Mproj : Prov → A is a (pre-)Mackey functor.

On the other hand, using the contravariance of a (pre-)Mackey functor M ,
we can define the following:

Definition 5.8. Let M : V → A be a (pre-)Mackey functor. For a provariety
X∞ = lim←−n∈N

Xn

M ind(X∞) := lim−→
n∈N

M(Xn)

and for a promorphism f∞ : X∞ → Y∞

f∞∗ : M ind(Y∞) →M ind(X∞)

is defined by the inductive limit

f∞∗ := lim−→
n∈N

{fn
∗ : M(Yn)→M(Xn)} .

It is obvious that M ind is a contravariant functor.

Lemma 5.9. For a f.s.promorphism f∞ : X∞ → Y∞, we define

f∞∗ := lim−→
n∈N

{fn∗ : M(Yn)→M(Xn)} .

Then M ind is a covariant functor for f.s.promorphisms.

Hence we can have the following

Proposition 5.10. The correspondence M ind : Prov → A is a bifunctor provided
that the covariance is considered only for f.s.promorphisms.

As in the case of Mproj, if we consider the Mackey property for the above
fiber square, we can show the following

Theorem 5.11. M ind : Prov → A is a (pre-)Mackey functor.
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Theorem 5.12. Any natural transformation τ : M → N of two (pre-)Mackey func-
tors M,N : V → A can be extended to two natural transformations of
(pre-)Mackey functors of provarieties

(IND) τ ind : M ind → N ind, (PROJ) τproj : Mproj → Nproj

such that
(IND-i) (covariance) for a f.s.promorphism f∞ : X∞ → Y∞ the following

diagram commutes:

M ind(X∞) τ ind

−−−−→ N ind(X∞)

f∞∗

⏐⏐= ⏐⏐=f∞∗

M ind(Y∞) −−−−→
τ ind

N ind(Y∞),

(IND-ii) (contravariance) for any promorphism f∞ : X∞ → Y∞ the following
diagram commutes:

M ind(Y∞) τ ind

−−−−→ N ind(Y∞)

f∞∗
⏐⏐= ⏐⏐=f∞∗

M ind(X∞) −−−−→
τ ind

N ind(X∞),

(PROJ-i) (covariance) for any promorphism f∞ : X∞ → Y∞ the following
diagram commutes:

Mproj(X∞) τproj

−−−−→ Nproj(X∞)

f∞∗

⏐⏐= ⏐⏐=f∞∗

Mproj(Y∞) −−−−→
τproj

Nproj(Y∞),

(PROJ-ii) (contravariance) for a f.s. promorphism f∞ : X∞ → Y∞ the fol-
lowing diagram commutes:

Mproj(Y∞) τproj

−−−−→ Nproj(Y∞)

f∞∗
⏐⏐= ⏐⏐=f∞∗

Mproj(X∞) −−−−→
τproj

Nproj(X∞).

The homology theory or the Chow group (or the Chow homology group)
H∗ is not a pre-Mackey functor. However, as observed in the previous section,
it becomes a conditional pre-Mackey functor with S being the class of smooth
morphisms and MacPherson’s Chern class transformation c∗ : F → H∗ becomes
a natural transformation of the two (pre-)Mackey functors. Hence we get the fol-
lowing theorem:
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Theorem 5.13. Let X∞ = lim←−n∈N
Xn and Y∞ = lim←−n∈N

Yn be provarieties of
smooth proper morphisms πn(n+1) : Xn+1 → Xn and ρn(n+1) : Yn+1 → Yn.

(i) (covariance) for a “proper” f.s.promorphism f∞ : X∞ → Y∞ (i.e., all fn are
proper) the following diagram commutes:

F ind(X∞)
cind
∗−−−−→ H ind∗∗ (X∞)

f∞∗

⏐⏐= ⏐⏐=f∞∗

F ind(Y∞) −−−−→
cind∗

H ind∗∗ (Y∞),

(ii) (contravariance) for any “smooth” promorphism f∞ : X∞ → Y∞ (i.e., all fn

are smooth) the following diagram commutes:

F ind(Y∞)
cind
∗−−−−→ H ind∗∗ (Y∞)

f∞∗
⏐⏐= ⏐⏐=f∞∗

F ind(X∞) −−−−→
cind∗

H ind∗∗ (X∞).

Here H ind
∗∗ (X∞) := lim−→n

{c(Tπn(n+1)) ∩ π∗
n(n+1) : H∗(Xn)→ H∗(Xn+1)}.

Remark 5.14. Instead of projective systems, we can consider the dual notion,
i.e., inductive systems. The inductive limit of an inductive system {πnm : Xn →
Xm(n < m)} shall be denoted by X ind∞ . Such a variety shall be called an indvariety,
and our provariety shall be denote by Xproj

∞ to avoid confusion. We can consider
the same things as above for indvarieties: for a (pre-)Mackey functor M , we can
consider at least two things

Mproj(X ind
∞ ) and M ind(X ind

∞ ).

The details are left for the reader.
In fact, a special indvariety has been already studied (e.g., see [DP], [DPW],

[Kum1], [Kum2], [Sha], etc.). Let k be an algebraic closed filed. A set X is called
an ind-variety over k if there exists a filtration X0 ⊂ X1 ⊂ X2 ⊂ · · · such that
(i) X =

⋃
n≥0

Xn and (ii) each Xn is a finite-dimensional variety over k and the

inclusion Xn ↪→ Xn+1 is a closed embedding. And the ring of regular functions
k[X ] is defined by

k[X ] := lim←−
n∈N

k[Xn].

Hence, in our terminology, the above ind-variety is an indvariety and k[X ] corre-
sponds to Mproj(X ind∞ ).

Further investigations on general objects

Mproj(Xproj
∞ ),M ind(Xproj

∞ ),Mproj(X ind
∞ ),M ind(X ind

∞ )

and their applications will be done in a different paper.
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Université, Nancy 1
hertling@iecn.u-nancy.fr

Kevin HOUSTON,
University of Leeds
k.houston@leeds.ac.uk

Alain JACQUEMARD,
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