

Academic Press is an imprint of Elsevier

32 Jamestown Road, London, NW1 7BY, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2010

Copyright © 2010 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means electronic, mechanical, photocopying, recording or otherwise without the prior written

permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology

Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:

permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web

site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a

matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions or ideas contained in the material herein

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-381025-0

ISSN: 0065-2458
For information on all Academic Press publications

visit our web site at elsevierdirect.com
Printed and bound in USA

10 11 12 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://www.elsevier.com/locate/permissions
http://www.elsevierdirect.com

Contributors
Prof. Hal Berghel is currently Professor and Director of the School of Informatics

and Associate Dean of the Howard R. Hughes College of Engineering, and Professor

and past-Director of the School of Computer Science, all at the University of

Nevada, Las Vegas. He is also founding Director of both the Center for Cyber-

security Research, and the Identity Theft and Financial Fraud Research and Opera-

tions Center. Berghel has held a variety of research and administrative positions in

industry and academia during his 30-year career in computing. His current research

focuses on computing and network security, digital forensics, and digital crime.

Berghel is a Fellow of both the Institute for Electrical and Electronics Engineers and

the Association for Computing Machinery, and serves both societies as ACM

Distinguished Lecturer and an IEEE Distinguished Visitor. He holds a Ph.D. from

the University of Nebraska–Lincoln.

Paul Braeckel has more than 10 years of experience in software development, using

a wide variety of languages, platforms, and technologies, and currently leads the

development of Ephemeral Credentialing Products as Project Manager at the Iden-

tity Theft and Financial Fraud Research and Operations Center in Las Vegas,

Nevada. He specializes in Object Oriented development of cybersecurity applica-

tions using .NET languages and his software development experience is broad,

ranging from desktop business applications to complex web applications. Paul

holds a M.S. in Computer Science from the UNLV and a B.S. in Mechanical

Engineering from Washington University in St. Louis, and is working on his

Ph.D. in Informatics at the UNLV.

Maxine D. Brown is an Associate Director of the Electronic Visualization Labora-

tory at University of Illinois at Chicago (UIC) and coprincipal investigator of the NSF

International Research Network Connections program’s TransLight/StarLight

award. She serves on the External Advisory Committee of Argonne National Labora-

tory’s Leadership Computing Facility and is the UIC representative and President

Elect of the Board of Directors of the Great Lakes Consortium for Petascale

Computing. Brownwas recipient of the 1998ACMSIGGRAPHOutstanding Service
ix

x CONTRIBUTORS
Award. In 2009, Chicago’s TV/radio series ‘‘Chicago Matters: Beyond Burnham’’

designated her 1 of 15 Global Visionaries for her role in codeveloping StarLight.

Her email address is maxine@uic.edu.

Prof. Rama Chellappa is a Minta Martin Professor of Engineering, Professor of

Electrical and Computer Engineering, and a Permanent member of the University

of Maryland Institute for Advanced Computer Studies (UMIACS) at University of

Maryland, College Park. He also directs the Center for Automation Research. Prof.

Chellappa has published numerous book chapters, peer-reviewed journal and con-

ference papers in image and video processing, analysis, and recognition. He has

received several research, teaching, and service awards. He is a Fellow of IEEE,

IAPR, and OSA. He is serving as the President of IEEE Biometrics Council.

His research interests are image processing, image understanding, and pattern

recognition. His email address is rama@umiacs.umd.edu.

Dennis Cobb is retired from the Las Vegas Metropolitan Police Department Deputy

Chief and now president of DCCGroup, Inc. assisting public and private organizations

with critical communications technology, processes, and capabilities. Dennis is a

founding participant in the UNLV/LVMPD Identity Theft and Financial Fraud

Research and Operations Center. Dennis served as Nevada’s Interoperable Commu-

nications Coordinator and chaired Nevada’s Communications Steering Committee,

and as amember of USDHS SAFECOMEmergencyResponse Council. He assisted in

developing the US National Emergency Communications Plan and assists with radio

interoperability issues in National Institute of Justice Technology Working Groups.

Dennis Cobb holds a B.A. in Political Science and M.S. in Crisis and Emergency

Management from the University of Nevada, Las Vegas. He is a graduate of the FBI

National Academy, a 1992 Fulbright Fellow, and 1994 White House Fellow.

Dr. Tom DeFanti is a research scientist at the California Institute for Telecommu-

nications and Information Technology at the University of California, San Diego

and a distinguished professor emeritus of Computer Science at the University of

Illinois at Chicago, where he cofounded the Electronic Visualization Laboratory. He

is principal investigator of the NSF International Research Network Connections

Program TransLight/StarLight Project. DeFanti was recipient of the 1988 ACM

Outstanding Contribution Award and was appointed an ACM Fellow in 1994. He

also shares recognition along with EVL director Daniel J. Sandin for conceiving the

CAVE virtual reality theater in 1991.

Amit Grover has over 14 years of experience in Information Technology and has

played an instrumental role in the development, implementation, and commissioning

CONTRIBUTORS xi
of a wide variety of Defense-related IT applications. He has had the opportunity of

designing and implementing INFOSEC policies in Military units and has worked on

interfacing Information Systems on board warships, submarines, and UAVs

(Unmanned Aerial Vehicles). Amit holds a Master of Science degree in Computer

and Information Science from East Tennessee State University and a Bachelor’s

Degree in Mechanical Engineering. Currently, he is affiliated to the Identity Theft

and Financial Fraud Research and Operations Center at Las Vegas, where he is

contributing on various aspects of a comprehensive secure credentialing system.

Kevin Lindgren is an undergraduate student in the UNLV School of Informatics

concentrating in cybersecurity and an undergraduate research associate in the

Identity Theft and Financial Fraud Research and Operations Center. Kevin returned

to higher education after devoting 5 years of service to the US Army, performing a

tour of duty in Iraq.

Dr. Joe Mambretti is Director of the International Center for Advanced Internet

Research at Northwestern University, which is focused on developing digital com-

munications for the twenty-first Century (iCAIR, www.icair.org). The Center

designs and implements large scale infrastructure and applications. He is also

Director of the Metropolitan Research and Education Network (MREN, http://

www.mren.org), an advanced high-performance network interlinking organizations

in seven upper-midwest states, and he is co-Director of the StarLight communica-

tions exchange. His publications include two books published by Wiley, ‘‘Next

Generation Internet’’ and ‘‘Grid Networks: Enabling Grids with Advanced Com-

munication Technology.’’ His email address is j-mambretti@northwestern.edu.

Prof. Atif M. Memon is an Associate Professor in the Department of Computer

Science, University of Maryland. His research interests include program testing,

software engineering, artificial intelligence, plan generation, reverse engineering,

and program structures. He is the inventor of the GUITAR system for automated

model-based GUI testing. He is the founder of the International Workshop on

TESTing Techniques & Experimentation Benchmarks for Event-Driven Software

(TESTBEDS). He serves on various editorial boards, including that of the Journal of
Software Testing, Verification, and Reliability. He has served on numerous National

Science Foundation panels and international program committees. He is currently

serving on a National Academy of Sciences panel as an expert in the area of

Computer Science and Information Technology, for the Pakistan–US Science and

Technology Cooperative Program, sponsored by United States Agency for Interna-

tional Development (USAID). In addition to his research and academic interests, he

handcrafts fine wood furniture. He can be reached at atif@cs.umd.edu.

http://www.icair.org
http://www.mren.org
http://www.mren.org

xii CONTRIBUTORS
Prof. James Miller received his B.Sc. and Ph.D. degrees in Computer Science from

the University of Strathclyde, Scotland. In 2000, he joined the Department of

Electrical and Computer Engineering at the University of Alberta as a full professor.

He has published over 100 refereed journal and conference papers on Software and

Systems Engineering, currently serves on the program committee for the IEEE

International Symposium on Empirical Software Engineering and Measurement,

and sits on the editorial board of the Journal of Empirical Software Engineering.
He can be reached at jm@ece.ualberta.ca.

Dr. Arilo Dias-Neto is a software engineer with a D.Sc. degree obtained in 2009

from COPPE/Federal University of Rio de Janeiro (Experimental Software Engi-

neering Group), Brazil. He is an Adjunct Professor of Computer Science at Com-

puter Science Department/Federal University of Amazonas, Brazil. He has

conducted research regarding model-based testing, software testing, and experimen-

tal software engineering. Contact him at ariloclaudio@gmail.com.

Bao N. Nguyen is a Ph.D. student in the Department of Computer Science, Univer-

sity of Maryland. He received his B.S. degree in Computer Science with first class

honors from Vietnam National University, Hanoi, in 2005. Before that, he was

awarded the ‘‘The Bridge over Asian Countries’’ scholarship to study in Japan for

1 year. He received the Vietnam Education Foundation fellowship for his Ph.D.

research. His research interests include software engineering, software testing, and

reverse engineering. His email address is baonn@cs.umd.edu.

Ravi I. Singh received his B.Sc. in Computer Science from the University of

Alberta, Canada. He began his M.Sc. in 2008 at the University of Alberta. He is

also a member of IEEE. His major areas of research interest include triangulation,

persuasion and machines, and electronic government. He also has a background in

linguistics and speaks eight languages.

Prof. Guilherme H. Travassos is a Professor of Software Engineering in the

Systems Engineering and Computer Science Program at COPPE/Federal University

of Rio de Janeiro, Brazil. He is also a 1D CNPq, Brazilian Research Council and

FAPERJ researcher. He received his doctorate degree from COPPE/UFRJ in 1994

and spent 2 years in the Experimental Software Engineering Group at the University

of Maryland, College Park for a postdoctoral position from 1998 to 2000. He leads

the Experimental Software Engineering Group at COPPE/UFRJ. His current

research interests include experimental software engineering, e-science and noncon-

ventional web applications, software quality, VV&T concerned with object-oriented

CONTRIBUTORS xiii
software. He is a member of ISERN, ACM, and SBC (Brazilian Computer Society).

Contact him at ght@cos.ufrj.br.

Dr. Pavan Turaga received his B.Tech. in Electronics and Communication Engi-

neering from the Indian Institute of Technology, Guwahati in 2004, and M.S. and

Ph.D. degrees in Electrical and Computer Engineering from the University of

Maryland, College Park in 2007 and 2009, respectively. He is a research associate

in the Center for Automation Research, at the University of Maryland Institute for

Advanced Computer Studies (UMIACS). His research interests are in computer

vision, pattern recognition, machine learning, and their applications. He can be

reached at pturaga@umiacs.umd.edu.

Dr. Ashok Veeraraghavan received his B.Tech. in Electrical Engineering from the

Indian Institute of Technology, Madras in 2002 and M.S and PhD from the Depart-

ment of Electrical and Computer Engineering at the University of Maryland,

College Park in 2004 and 2008, respectively. He is currently a Research Scientist

at Mitsubishi Electric Research Labs in Cambridge, MA. His research interests are

in computational imaging, computer vision, and signal processing. His email

address is veerarag@merl.com.

Prof. Laurie Williams is an Associate Professor at North Carolina State University.
She received her undergraduate degree in Industrial Engineering from Lehigh

University. She also received an MBA from Duke University and a Ph.D. in

Computer Science from the University of Utah. Prior to returning to academia to

obtain her Ph.D., she worked in industry, for IBM, for 9 years. Dr. Williams is the

lead author of Pair Programming Illuminated and a coeditor of Extreme Program-
ming Perspectives. Dr. Williams has done several empirical studies of agile

methodologies and practices, pair programming, and test-driven development.

You can contact Dr. Williams at williams@csc.ncsu.edu.

Preface
This is volume 80 of the Advances in Computers. Annually, three volumes are

produced describing the latest developments in the realm of computer technology.

Each volume contains five to seven chapters, each exploring some new facet of this

ever-changing field. The Advances have been published since 1960 and represent

the longest continuously published series concerning information technology. In this

volume, seven chapters explore two main themes: (1) Current advances in software

development processes are discussed in Chapters 1 through 5 and (2) Computer

understanding of visual information is covered in Chapters 6 and 7.

For the past 10 years, several approaches aimed at increasing the productivity and

reliability of software development have been proposed. Under the general name of

‘‘agile development,’’ these methods all aim at changing the software development

cycle into short manageable pieces. While many organizations claim to be using

agile practices, there is no clear consensus of what that really means. In Chapter 1,

‘‘Agile Software Development Methodologies and Practices,’’ Dr. Laurie Williams

discusses the evolution of agile software development and gives a rundown of the

various practices that go under the general name ‘‘agile.’’

Testing of software during development is well recognized as the most expensive

phase of software development and approaches toward improving testing are active

research areas. Both in Chapter 2 and in Chapter 3, ways to automate the testing

process are discussed. ‘‘A Picture from the Model-Based Testing Area: Concepts,

Techniques and Challenges’’ by Dr. Arilo C. Dias-Neto and Dr. Guilherme

H. Travassos is the content of Chapter 2. By describing software by some formal

model, it is often possible to automatically generate test conditions based on the

model. This greatly shortens the time and effort to generate and run such tests. While

an active research area, model-based testing (MBT) is not a readily used practice in

industry. In Chapter 2, the authors look at the literature and discuss how much

impact the MBT approaches have actually had on industrial practices. They discuss

the various risk factors that MBT must address in order to become more widely

accepted.

In Chapter 3, Dr. Atif M.Memon and BaoN. Nguyen, in ‘‘Advances in Automated

Model-Based System Testing of Software Applications with a GUI Front-End,’’
xv

xvi PREFACE
continue the discussion of MBT, discussed earlier in Chapter 2. In their case, they

focus on graphical user interface (GUI) testing. With much of software development

now focused on interactive software controlled via a user interface running either on a

local machine or via a web browser over the Internet, the testing of such interfaces

becomes crucial. They provide a catalog of various testing strategies useful for

building such MBTs for evaluating such user interfaces.

While the previous three chapters are concerned with new approaches toward

solving software development problems, ultimately the evolution of any science

depends upon experimentation and validation of those theories. In computer science,

especially in software engineering, such experimentation often means studying

several software developments to understand how the new techniques work in

practice. Such experiments are necessarily costly and time consuming. Since they

also involve the efforts of the individual developers with varying talents, the results

of such experiments are often imprecise. In Chapter 4, ‘‘Empirical Knowledge

Discovery by Triangulation in Computer Science,’’ the authors, Ravi I. Singh and

Dr. James Miller, propose methods of triangulation in order to obtain additional

knowledge from each such experiment. By triangulation they mean a multiple

method approach toward understanding a phenomenon more precisely. It is

expected that this multidimensional approach should allow quicker convergence

on the actual effects of each such method.

‘‘StarLight: Next Generation Communication Services, Exchanges, and Global

Facilities’’ byDr. JoeMambretti, Dr. TomDeFanti, andMaxine Brown, in Chapter 5,

looks at the software infrastructure that manages Internet traffic. They are developing

a service-oriented architecture for providing communication services on a network.

Because of the 40-year legacy of the Internet from its ARPANET beginnings in the

early 1970s, there are many inherent designs and implementations limiting its future

growth. They are proposing a design to support an almost unlimited range of services

and capabilities.

The last two chapters in this volume look at various applications of video

processing technologies. In Chapter 6, ‘‘Parameters Effecting 2-D Barcode Scan-

ning Reliability’’ by Amit Grover, Paul Braeckel, Kevin Lindgren, Dr. Hal Berghel,

and Dennis Cobb, the authors look at the various technologies used in barcode

scanning. They look at various forms of barcode systems, from the ubiquitous

barcodes on almost every consumer product today which can hold up to 11 data

digits, to two-dimensional codes that are able to encode several thousand characters

of data. The main focus of this chapter is to evaluate the reliabillity of scanning

such codes.

In the last chapter, ‘‘Advances in Video-based Human Activity Analysis: Chal-

lenges and Approaches’’ by Dr. Pavan Turaga, Dr. Rama Chellappa, and Dr. Ashok

Veeraraghavan, the authors explore the current status of computer technology for

PREFACE xvii
creating and interpreting videos, especially those involving human activities. Appli-

cations of such technologies include security by interpreting actions of those photo-

graphed, neuroscience in developing new prosthetics, video game designs,

animation, search strategies based on video content, among many others. This

chapter provides an overview of these applications, and more, as well as a brief

overview of the underlying technology that currently exists for processing

video data.

I hope that the reader finds these seven chapters interesting. I am always looking

for new topics to explore. If you have an idea for a theme that has not appeared here

recently, or feel qualified to write such a chapter yourself, please contact me at

mvz@cs.umd.edu. I am always open to new ideas for these volumes.

Marvin Zelkowitz

College Park, Maryland

Agile Software Development
Methodologies and Practices
ADVAN

ISSN: 00
LAURIE WILLIAMS
Department of Computer Science, North Carolina State
University, Raleigh, North Carolina, USA
Abstract
Beginning in the mid-1990s, a number of consultants independently created and

evolved what later came to be known as agile software development methodol-

ogies. Agile methodologies and practices emerged as an attempt to more for-

mally and explicitly embrace higher rates of change in software requirements

and customer expectations. Some prominent agile methodologies are Adaptive

Software Development, Crystal, Dynamic Systems Development Method,

Extreme Programming (XP), Feature-Driven Development (FDD), Pragmatic

Programming, and Scrum. This chapter presents the principles that underlie and

unite the agile methodologies. Then, 32 practices used in agile methodologies

are presented. Finally, three agile methodologies (XP, FDD, and Scrum) are

explained. Most often, software development teams select a subset of the agile

practices and create their own hybrid software development methodology rather

than strictly adhere to all the practices of a predefined agile methodology. Teams

that use primarily agile practices are most often small- to medium-sized, colo-

cated teams working on less complex projects.
1.
 A
gile Origins and Manifesto . 4
2.
 A
gile and Lean Principles . 6
2
.1.
CE

65
T

S

-2
he Agile Principles . 6
2
.2.
 T
he Lean Principles . 8
2
.3.
 C
omparison of Agile and Lean Principles 10
3.
 A
gile Practices . 10
3
.1.
 A
cceptance Test-Driven Development . 12
3
.2.
 A
utomation-Driven Root Cause Analysis of Failures 13
IN COMPUTERS, VOL. 80 1 Copyright © 2010 Elsevier Inc.

458/DOI: 10.1016/S0065-2458(10)80001-4 All rights reserved.

2 L. WILLIAMS
3
.3. C
ode Ownership . 14
3
.4. C
ode and Tests . 14
3
.5. C
ollective Code Ownership . 15
3
.6. C
ontinuous Integration . 15
3
.7. D
one Criteria . 16
3
.8. E
nergized Work . 17
3
.9. E
xecutable Documentation . 17
3
.10. F
eatures . 17
3
.11. I
n
cremental Design . 18
3
.12. I
n
spections . 18
3
.13. I
n
formative Workspace . 19
3
.14. I
t
eration Demonstration . 20
3
.15. N
egotiated Scope . 21
3
.16. N
ightly Build . 21
3
.17. P
air Programming . 22
3
.18. P
lanning Poker . 22
3
.19. R
elease and Iteration Backlog . 24
3
.20. R
etrospective . 25
3
.21. S
crum Meeting . 25
3
.22. S
it Together . 25
3
.23. S
hort Iterations . 26
3
.24. S
hort Releases . 26
3
.25. S
print . 26
3
.26. S
tand-Up Meeting . 26
3
.27. S
tories . 27
3
.28. S
ustainable Pace . 27
3
.29. T
en-Minute Build . 27
3
.30. U
nit Test-Driven Development . 27
3
.31. W
hole Team . 28
3
.32. W
ideband Delphi Estimation . 28
3
.33. P
ractices Versus Agile Principles . 29
4.
 E
xamples of Agile Software Development Methodologies 29
4
.1. E
xtreme Programming (XP) . 29
4
.2. F
eature-Driven Development (FDD) . 33
4
.3. S
crum . 36
4
.4. C
omparison of Practices of Three Methodologies 39

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 3
5.
se
S

t

ummary . 39
A
cknowledgments . 41
R
eferences . 41

Beginning in the mid-1990s, a number of consultants independently created and

evolved what later came to be known as agile software development methodologies
after unsuccessful attempts to aid clients with currently available ‘‘plan-driven’’ [1]

development methodologies. Agile methodologies and practices emerged as an

attempt to more formally and explicitly embrace higher rates of change in software

requirements and customer expectations.

Agile methods [2–4] are a subset of iterative and evolutionary methods [5,6] and

are based on iterative enhancement [7] and opportunistic development processes [8].

Each iteration of an agile methodology is a self-contained, mini-project, with

activities that span requirements analysis, design, implementation, test, and cus-

tomer acceptance [5]. Each iteration leads to an iteration release (which may be only

an internal release) that integrates all software across the team and is a growing and

evolving subset of the final system. Agile methods recommend/require short devel-

opment iterations because the feedback obtained before and after iterations N, and
any other new information, can lead to refinement and requirements adaptation for

iteration Nþ1 and beyond. The customer adaptively specifies his or her require-

ments for the next release based on observation of the evolving product, rather than

speculation before the project has begun [9]. Frequent deadlines reduce the variance

of a software process and, thus, may increase its predictability and efficiency [10].

The predetermined iteration length serves as a timebox1 for the team. Scope is

chosen for each iteration to fill the iteration length. Rather than increase the iteration

length to fit the chosen scope, the scope is reduced to fit the iteration length. A key

difference between agile methods and earlier iterative methods is the prescribed

length of each iteration. In previous iterative methods, iterations might have been

3 or 6 months long. With agile methods, iteration lengths vary between 1 and 4 weeks,

and intentionally do not exceed 30 days. Research has shown that shorter iterations

have lower complexity and risk, better feedback, and higher productivity and success

rates [5].

This chapter provides background information on the origins and principles

underlying agile software development. Agile software development practices are

then discussed in Section 3. Teams of all sizes producing large and small systems of

varying criticality may selectively integrate a smaller subset of these agile practices
1 A timebox is an inflexible period of time in which to accomplish a task. The start date and end date is

in stone and may not be changed.

4 L. WILLIAMS
in which it can still be considered a primarily plan-driven [1] methodology. Teams

that choose a larger subset of these practices would use what could be considered an

agile methodology, such as those agile methodologies presented in Section 4.

Boehm and Turner [1] consider smaller, higher skilled teams that are amenable to

change working on noncritical projects with a significant amount of requirements

churn to be best suited for an agile methodology.
1. Agile Origins and Manifesto

In February 2001, 17 software engineering consultants had independently created

change-tolerant methodologies retreated to Snowbird, Utah, to discuss commonalities

between their respectivemethodologies. They classified their methodologies as agile, a
term with a decade of use in flexible manufacturing practices [11,12]. The term

promoted the professed ability for rapid and flexible response to change of

the methodologies. The consultants also formed the Agile Alliance and wrote ‘‘The

Manifesto for Agile Software Development’’ and the ‘‘Principles Behind the Agile

Manifesto’’ [13,14]. The methodologies originally embraced by the Agile Alliance

were Adaptive Software Development (ASD) [15], Crystal [3,16], Dynamic Systems

DevelopmentMethod (DSDM) [17], Extreme Programming (XP) [18], Feature-Driven

Development (FDD) [19,20], Pragmatic Programming [21], and Scrum [22,23].

The Agile Alliance documented its value statement in the succinct Manifesto [13]:

We are uncovering better ways of developing software by doing it and helping others to

do it. Through this work we have come to value:
Individuals and interactions
 over
 processes and tools

Working software
 over
 comprehensive documentation

Customer collaboration
 over
 contract negotiation

Responding to change
 over
 following a plan
That is, while there is value in the items on the right, we value the items on the left more.

Each of the tenets of the Manifesto will now be discussed as they formulate the

basis of agile methodologies.

l Individuals and interactions over process and tools: The implication is that

formalization of the software process and inflexibility hinder the human and

practical component of software development, and thus reduce the chance for

success. An area of commonality among all agile methodologies is the impor-

tance of the people performing the roles and the recognition that, more so than

tiv

de

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 5
any process or tool, these people are the most influential factor in any project.

Brooks acknowledges the same in The Mythical Man Month [24], which he

authored decades ago: ‘‘The quality of the people on a project and their

organization and management, are more important factors in success than are

the tools they use or the technical approaches they take.’’

l Working software over comprehensive documentation: In agile methods, the

progress of the team is measured in working software. Gone are the days of

developers reporting they are ‘‘80% complete’’ with the code that only exists

on their personal workstation or spending 6 months to produce paper docu-

ments, such as a 200-page requirements document and 800-page design speci-

fication of no practical value to a customer2 or user. Instead, the team quickly

produces a partial system that the customer can try and provide feedback on

before the team launches into the next evolution of the working software.

Minimal documentation is produced with agile processes, ‘‘just enough’’ to

support the development of working software and to satisfy the customers’

explicit needs for documentation.

l Customer collaboration over contract negotiation: When requirements are

specified in a contract at the start of a project, assumptions are made such

that (1) the development team can implement those requirements without much

further clarification; and (2) the customer knows enough at the start of the

project to specify the desired product. Conversely agile teams work with a

‘‘give and take’’ as the customer discovers their real requirements as working

software is gradually evolved through the software development lifecycle

(SDLC).

l Responding to change over following a plan: Rather than attempting to produce

a plan for the entire SDLC, agile methods tend to have a high-level release plan

followed by short-term iteration plans created at the start of every iteration. The

iteration plan can reflect any changes that have occurred and new discoveries

and priorities since the last iteration. Customers have a tendency to change what

they want once they see the software ‘‘in action’’ [25].

l . . .while there is value in the items on the right, we value the items on the left
more: The authors of the Manifesto recognize that the items on the right of each

bullet (processes and tools, comprehensive documentation, contract negotia-

tion, and following a plan) have value. The Manifesto states a priority is given

toward the items on the left when resources and time force a choice to be made.
2 The customer can be the organization paying for the software, as with customer software. Alterna-

ely, the role of customer can be ‘‘played’’ by a product owner or business analyst in the software

velopment organization.

6 L. WILLIAMS
2. Agile and Lean Principles

After completing the ‘‘Manifesto for Agile Software Development,’’ the original

group of 17 created the ‘‘Principles Behind the Agile Manifesto’’ [13]. Subse-

quently, Lean Software Development Principles [26] were authored by Mary and

Tom Poppendieck. Principles are basic generalizations that are accepted as true and

that can be used as a basis for reasoning or conduct. Alternatively, principles can be

defined as underlying truths that do not change over time or space [25]. In this

section, both agile and lean principles will be described and compared. These

principles are used as the basis for agile software development practices, as will

be discussed in Section 3.

2.1 The Agile Principles

The Agile Alliance documented the 12 principles they follow that underlie the

Manifesto [13]. As such the agile methods are principle-based [5]. The whole team

is guided by these principles:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software. Early and continuous delivery of software

allows the software development team to get feedback on the evolving

product. Customers also feel more confident in a software development

team when they can ‘‘touch and feel’’ the evolving product. Additionally,

the most valuable features are delivered to the customer. Therefore, custo-

mers are given the flexibility to change lower priority requirements over time

and the team can deliver a partial, fully functioning, valuable product if time

constraints prevent all requirements from being implemented prior to release.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage. Agile methods allow

a team to accommodate change throughout the process because the project is

replanned for every iteration. When a change had a large impact upon the

design/architecture of the working software, the implications and associated

risks and the need for refactoring3 are discussed during the iteration plan.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter time scale. This principle puts some

bounds around the ‘‘early and often delivery’’ first principle.
3 Refactoring is the process of changing a software system in such a way that it does not alter the

external behavior of the code yet it improves its internal structure [27].

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 7
4. Business people and developers must work together daily through the project.
Project managers/business analysts are available to provide feedback and to

answer the questions of the development team. Whenever a software devel-

oper or tester makes an assumption of what the customer desires, the project

is at risk for straying from the desired functionality.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done. Agile methods empha-

size empowering the individuals on the team to make decisions and trusting

that the individuals will do their job for the benefit of the team as a whole.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation. This principle

emphasizes synchronous human communication rather than ‘‘talking’’

through documents. Best case, the communication occurs face-to-face but

phone calls or instant messaging can also be used when face-to-face is

impractical or impossible.

7. Working software is the primary measure of progress. As stated by Cockburn
[3], ‘‘Rely on the honesty that comes with running code rather than on

promissory notes in the form of plans and documents.’’ Initially, the team

may feel that a project cannot be broken down into smaller pieces for which

working code can be produced. However, through group ingenuity, the team

can accomplish the breakdown and achieve the benefits of early and often

software delivery.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely. Sustainable
development means that the team is working at a pace that can be sustained

indefinitely as opposed to teams working excessive overtime. Errors can be

introduced into the product and ingenuity and creativity decline when the

team is too weary. Additionally, if a team member’s personal life is impacted

by his or her profession for too long, the team member may quit leaving a

hole in the team that can be costly to the project.

9. Continuous attention to technical excellence and good design enhances
agility. To remain agile, designers must produce good designs and be ready

to dedicate time to refactor code when the design has diverged from tidy,

well-encapsulated design principles.

10. Simplicity—the art of maximizing the amount of work not done—is essential.
The emphasis is on producing a product that is simple enough to handle

change while fulfilling customer requirements.

11. The best architectures, requirements, and designs emerge from self-organizing
teams. These artifacts emerge because of the knowledge and discovery that

occur throughout a project.

8 L. WILLIAMS
12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly. With each iteration, the team

reflects upon what worked and what did not work about their recent work.

The team makes plans to continue the practices that served the team well and

to alter their practices that were troublesome.

2.2 The Lean Principles

Several years after the Agile Alliance, Manifesto, and Principles were formulated,

Mary and Tom Poppendieck melded the concepts of lean manufacturing with agile

software development through their seven Principles of Lean Software Develop-

ment [25,26]. The use of the word lean was popularized in the early 1990s to refer to
the Japanese approach to automobile manufacturing, particularly Toyota and Honda

[28]. The seven lean principles are summarized:

1. Eliminate waste. ‘‘Waste is anything that interferes with giving customers

what they value at the time and place where it will provide the most value’’

[25]. The focus of this principle is on eliminating waste from the time the team

begins to address a customer’s need and the time when software has been

implemented to address that need. In manufacturing, the inventory of compo-

nent parts is waste. In software development, partially done code implementa-

tion or work-in-process (such as untested code or a partial implementation of a

customer requirement) is waste. Consider a software developer who is given

three large requirements to complete in the next 6 months without the need to

demonstrate any working code in the interim. This developer accumulates a

large inventory of unfinished code for the 6 month period, during which time

the customer is not able to provide intermediate feedback and testing cannot

commence.

Another large source of waste in software development is extra features.

When product managers4 and/or customers5 feel their only time to provide

their requirements is 6 months to 2 years prior to a release, they are likely to

add any requirement to the list that could possibly be conceived of. Otherwise,
4 In this chapter, the term product manager refers to the individual within an organization responsible

for the day-to-day management and welfare of a product or family of products at all stages of the product

lifecycle. A primary responsibility of a product manager is to elicit requirements from external customers

and, based upon these requirements, to provide a development organization with information about the

desired functionality of a new product or the next release of a product. In many teams that do not produce

customer software, the product manager acts as a proxy for the customer set.
5 Primarily in custom software development, the real customer will work with the team to specify the

system requirements.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 9
they could face criticism, contract renegotiation, and an arduous change

control process for adding or changing requirements. As a result, typical

software products can be created with 64% of the features and functions rarely

or never used by a customer [29] at significant expenses. Often the Pareto

Principle [30] will apply and 20% of the requirements will provide 80% of the

value to the customer. The remaining 80% of the code which will provide only

20% of the value should be carefully chosen each iteration to reduce waste.

2. Build quality in. When many defects are found in late-cycle testing, the

software development process is faulty and should be fixed. A defect found

in late-cycle testing is orders of magnitude more expensive to fix than one

found right after the defect is injected [31], or better yet, than the defects that

can be prevented from being injected. The incremental creation of automated

unit tests (the practice referred to as test-driven development [32]), automated

acceptance test, pair programming [33], and continuous integration including

integration tests can be used by organizations to enable efficient defect

removal and defect prevention. Additionally, the defect tracking system is

considered a queue of work-in-process because code with one or more defects

cannot be considered completed code.

3. Create knowledge. As a team progresses through a project, they learn more and

more about what is really desired by the customer and what the system architec-

ture can support. Teams that try to anticipate all requirements and create a

detailed design for those requirements inevitably face requirements changes

and make many design changes in the actual implementation that do not

correspond to the initial architecture and design. Additionally, a large upfront

requirements and design effort may cause a team to feel inertia due to their early

effort which may cause them to not be as flexible as they could be. Agile

processes anticipate the evolution of design and requirements, and therefore

do not waste time locking either down prematurely. Additionally, agile teams

gain knowledge by reflecting upon the success (or lack thereof) of their interim

progress and adapt their software development process accordingly. Finally,

knowledge gained through the iterations can be used to make more accurate

estimates of future work. Estimates based upon desires far in advance of a

product release, conversely, are speculations that can be quite inaccurate.

4. Defer commitment. Planning a project is an important learning exercise, but

sticking to a detailed long-term plan is generally not healthy. Planning does not

need to be considered making a commitment. To prepare for inevitable

change, defer critical design decisions until the last responsible moment,

particularly focusing on maintaining options at the points where change

is likely. The Poppendiecks advise ‘‘. . .plan thoughtfully and commit

sparingly’’ [25].

10 L. WILLIAMS
5. Deliver fast. Companies that compete with others on speed generally have a

cost advantage over their competitors. If a company strives for repeatable and

predictable delivery speed, they must also focus on quality and customer

understanding. Otherwise, their progress could come to a halt with rework

and customer problems. As a result, speed requires the team members to be

empowered to find the best way to do their jobs and to adjust the software

development process.

6. Respect people. Teams should be given general plans and reasonable goals.

The members of the team should then be empowered to self-direct themselves,

to ‘‘use their heads’’ to determine the best way to meet the goals.

7. Optimize the whole. The whole multidisciplinary team responsible for deliver-

ing a product needs to have one common, ultimate goal, such as maximizing

Return on Investment (ROI), which optimizes the overall results. Conversely,

teams might decompose their overall goal into subgoals with different groups

responsible for each. These subgoals might conflict with each other or cause an

overall ROI suboptimization, compromising on the team’s ability to achieve

its ultimate goal. For example, if the developers are measured on productivity,

they might be inclined to send as much code as possible to the testers as rapidly

as possible without concern for the quality of the code. The testers would need

to worry about quality. As a result, the overall quality of the code could

decrease. The Poppendiecks, instead, encourage teams to focusing on their

ultimate team goal, enabling prudent trade-offs between organizations.
2.3 Comparison of Agile and Lean Principles

Table I provides a comparison of agile and lean software development principles.

The Poppendiecks [25,26] have stated that the lean principles can be used to explain

why the agile principles seem to work. An X in the cell between an agile and lean

principle indicate that the two principles support each other.
3. Agile Practices

As stated earlier, principles are underlying truths that do not change over time.

Conversely, practices are the applications of principles to a particular situation.

Practices change as one moves from one environment and situation to another [25].

As a result, software development teams who wish to be agile must first determine

whether they agree with the agile principles. Subsequently, the team can choose

Table I

A COMPARISON OF AGILE AND LEAN PRINCIPLES

Lean principles

Eliminate

waste

Build

quality in

Create

knowledge

Defer

commitment

Deliver

fast

Respect

people

Optimize

the whole

Agile

principles

Early and continuous delivery X X X

Welcome changing requirements X X X

Short iterations/releases X X X

Business/developers work

together daily

X X X X

Motivated individuals X X

Face-to-face communication X X

Working software as measure

of progress

X X

Sustainable development X

Technical excellence/good design X X X

Simplicity X X

Self-organizing teams X X X

Reflections X X X X

12 L. WILLIAMS
among software development practices that support these principles based upon the

team’s preferences, project, and team composition.

In this section, an overview of software development practices that are used by

agile teams is presented. Some of these practices are prevalent only in agile

methodologies, others are used in both agile and plan-driven methodologies. The

practices are presented in alphabetical order. Some practices refer to other practices,

so in this section, a forward reference to another practice may occasionally be

required to understand a practice. At the end of the section, the practices are mapped

to the agile principles supported by the practices. Section 4 of this chapter provides

an overview of agile methodologies, such as Extreme Programming and Scrum.

In Section 4, a mapping of the practices to the two methodologies that utilize the

practices is presented.

3.1 Acceptance Test-Driven Development

Acceptance testing is a formal process that is conducted to determine whether or

not a system satisfies a set of criteria (i.e., ‘‘acceptance criteria’’) that are prede-

termined by the customer to enable the customer to determine whether or not to

accept the system [34]. Acceptance test-driven development is a practice whereby

acceptance tests are written as a collaborative effort between the product manager/

customer, software tester, software developer, and user interface designer early in

the iteration such that development can proceed with more knowledge of the desired

functionality [35,36]. The product manager describes his or her desired functionality

and answers questions of the tester, developer, and user interface designer. The

tester translates the product manager’s desires into discrete steps by creating test

cases documenting the product manager’s desires. The developer provides informa-

tion on the technical feasibility of the desired new functionality. The user interface

designer makes development more concrete by specifying the user interface with

which the system user will interact. The developer provides information about the

technical feasibility of the feature and obtains significant information about the

expectation of the customer. The net result of this collaborative activity is a set of

test cases for each feature that provide examples of the expected behavior of the new

functionality of the system in a variety of scenarios, removing ambiguity from the

feature prior to any significant code development or test case planning.

The set of acceptance test cases that is collaboratively developed by the product

manager, tester, and developer is not all the test cases planned for and run by the

software tester [37]. Software testers plan and execute additional functional, integra-

tion, and system test cases to examine the behavior of the new functionality in a wider

set of possible scenarios. As necessary, the tester contacts the product manager to

obtain additional information about the desired behavior in these additional scenarios.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 13
Most preferably tests written by the tester are automated, particularly the accep-

tance tests. These tests become part of the executable documentation of the system

and can be run periodically (at least daily as part of the nightly build, if not more

often) as regression tests to check whether new functionality has broken previously

working functionality.

The development of acceptance tests and ongoing clarification of these tests drive

collaboration and communication between the product manager, developer, tester,

and user interface designer. The tester who had traditionally been involved toward

the end of the process is now the hub of requirements clarification via acceptance

test creation at the start of the iteration.

Related practices:

l Stories/features: Acceptance tests aid turning a story/feature into a specification

to which the developer can write code and the testers can write tests.
3.2 Automation-Driven Root Cause
Analysis of Failures

In the general sense, the aim of root cause analysis is to identify the underlying

reason(s) for an adverse event has occurred. The premise of root cause analysis is

that problems are best solved by attempting to correct or eliminate root causes, as

opposed to merely addressing the immediately obvious symptoms. By directing

corrective measures at root causes, the aim is that the likelihood of problem

recurrence will be minimized.

Automation-driven root cause analysis of failures focuses on finding the underlying

reason a failure has been found by a tester or has been experienced by a user.

This practice proceeds as follows when a failure has been found:

1. One or more automated functional-level tests are written which will expose the

failure and test the desired behavior.

2. One or more automated unit-level tests are written which will expose the failure.

3. The code is fixed such that the desired behavior is demonstrated through the

passing of the test cases in Steps 1 and 2.

Through automation-driven root cause analysis of failures, the team can examine

both (1) how has a fault been injected into the code or why a requirement

been missed; and (2) what kinds of tests were not written such that testing not

discover the fault or missing requirement. Additionally, the new automated tests

are additions to the executable documentation of the system and the automated

regression tests.

14 L. WILLIAMS
3.3 Code Ownership

The code ownership practice specifies that code is owned by a particular devel-

oper, often based upon a developer’s area of expertise (such as database coding or

user interface development). Teams that use an object-oriented language often

assign ownership of classes to a particular developer. Team members who need to

have a change made to code they do not own must go to the code owner to have the

change made. Developers have specific responsibility for the quality, improvement,

and appearance of a software system or subsystem and for problems, flaws, and

routine maintenance [38].

Advantages of code ownership include ease in establishing a clear and single-

minded vision; opportunity for specialization; pride in the work product; a focus on

the technical excellence of the code; and increased ability to create a simple solution

due to in-depth knowledge of code. Disadvantages include the team having a lower

‘‘truck number6’’; and latency when the person who needs to make a change is

unavailable.

The converse of this practice, collective code ownership, is described below.

Agile teams select their code ownership strategy.
3.4 Code and Tests

The code and tests (or executable documentation) practice advocates that the

primary permanent artifacts that should be invested in for a software system are the

code and automated tests. Other artifacts, such as requirements or design documents,

only become obsolete with time and are not valued by customers. Code and tests

cannot become obsolete due to the need for them to be compiled. New developers to

a project or to a certain area of the system can read automated acceptance tests to see

what scenarios can be handled. Changes made to the code can be checked for

regression and interaction problems by running the automated tests. This practice

also relies on social mechanisms, such as face-to-face communication, to keep alive

the history of the project.

Synonym: Executable documentation.
6 The truck number is the count of the people who possess expertise in a particular area of the system.

If any one of these people were hit by a truck, the organization will have lost a critical resource. With code

ownership, the truck number can be one [39]

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 15
3.5 Collective Code Ownership

With collective code ownership, all code is collectively owned. Every teammember

can contribute to every subsystem and is free to work across all subsystems [38].

Advantages of collective code ownership include distribution of system knowl-

edge; greater team interaction; and increased speed in handling change when key

team members are not available; and ability to respond rapidly and effectively to

changing requirements. Some problems that have been found with collective code

ownership practice include: poor or missing documentation; source code being

unreadable due to a variety of styles; unity of purpose may be difficult to achieve;

and long debugging cycles [38] (presumably because ownership is unclear).

Synonym: Shared code

Related practices. The practices below can provide a ‘‘check-and-balance’’ for

the collective code ownership practice.

l Continuous integration. The continuous integration practice would increase the
likelihood that integration problems due to the code change will surface earlier

in the software development process.

l Automated tests run often/nightly. After a change is made to code, all automated

tests should be run to detect whether the change has caused a regression problem.

l Use of a coding style guideline. Developers can more easily acclimate to the

code of their teammates if all use a common coding style.

l Pair programming. Two people making a change are less likely to inject a new

fault.
3.6 Continuous Integration

Continuous integration is a software development practice where members of a

team integrate their work frequently. Usually each developer integrates at least

daily. Each integration is verified by an automated build involving the running of

all automated tests that should detect integration errors as quickly as possible.

Martin Fowler defines practices for continuous integration7:

1. Maintain a single source repository. The source repository should include code

and tests.

2. Automate the build. The system should be able to be built by checking the

source out of the repository and issuing a single command.

3. Make your build self-testing. Include automated tests as part of the build process.
7 http://www.martinfowler.com/articles/continuousIntegration.html

http://www.martinfowler.com/articles/continuousIntegration.html

16 L. WILLIAMS
4. Everyone commits to the mainline every day. Developers should not ‘‘secretly’’

develop their code in a sandbox which enables them to keep their latest code out

of the build, possibly creating more and more integration problems over time.

5. Every commit should build the mainline on an integration machine. If the

mainline build fails, the problem should be fixed right away rather than wait-

ing for the nightly build.

6. Keep the build fast. If the build is not fast, developers will commit less often

and will be provided feedback on problems less often.

7. Test in a clone of the production environment. Testing in a different environ-

ment introduces risk when the system is deployed in production.

The main benefit of continuous integration is reduced risk of integration problems.

Additionally, regression and integration bugs can be found and fixed more rapidly.

Related practices.

l Unit test-driven development. All automated unit tests should be run as part of

the continuous integration practice.

l Acceptance test-driven development. All automated acceptance tests should be

run as part of the continuous integration practice.
3.7 Done Criteria

With agile methodologies, working code is the primary measure of progress

works. However, teams cannot be satisfied with code that ‘‘works’’ for the accep-

tance tests only. In theory, agile teams strive to have code being in a condition to

release to a customer at the end of every iteration (also known as ‘‘potentially

shippable’’). As a result, code cannot be considered ‘‘working code’’ and ‘‘done’’

until it passes the set of done criteria established by a team at the start of the release.

Once established, the done criteria apply to all features. Some examples of done

criteria include the following:

l Passing all acceptance tests

l 80% unit test coverage

l Testers have run all planned test cases

l No high severity defects are open for the feature

l Help screens for the feature have been developed

During the iteration reviewmeeting, without compromise all done criteria features

must be demonstrated to be considered done; otherwise, the feature must be moved

into the next iteration during which time the done criteria can be completed.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 17
3.8 Energized Work

The energized work practice states that individuals and teams should not work

excessive overtime for long periods of time. The motivation behind this practice is to

keep the code of high quality (tired programmers inject more defects) and all team

members happy (to reduce employee turnover). Tom DeMarco contends that,

‘‘Extended overtime is a productivity-reducing technique’’ [40]. The longer people

stay at work, the less work they do. Kent Beck adds that ‘‘Software development is a

game of insight, and insight comes to a prepared, rested, relaxed mind’’ [35].

Synonym: Sustainable pace
3.9 Executable Documentation

Synonym: Code and tests (defined in Section 3.4)
3.10 Features

Features are short statements of the functionality desired by a system user or

customer. Features are pieces of customer-visible, customer-valued functionality

that can be completed in a single iteration. Some agile methodologies state features

in a specific format. Two of these are now provided.

As a <user role>, I want to <desired functionality> so that I can <goal>.
Example: As a coffee machine owner, I want to provide the recipes for three

coffee types so I can offer a variety of coffee to my customer.

<action> <results> <object>
Example: Input the recipe for a coffee type

The statement of what is desired for the feature is intentionally short. A feature

statement is a ‘‘token for further conversation’’ between the product manager and

customer during which the real desires for the functionality are discussed in greater

detail. Traditionally, requirements have been stated such that a developer can read

the statement and feel he or she knows the expectation of what is to be implemented.

Under this scenario, a requirements statement must be very thorough. Conversely,

the details of the desired behavior for a new feature are intentionally left up to

conversation so that (1) more details than the product owner alone could have

thought to document can be brought out during the conversation; and (2) no time

is spent documenting the details for requirements that may never be chosen for an

iteration due to changing requirements, competition, and changing environments.

As such, the details for a feature are discussed on a ‘‘just-in-time’’ basis.

When a feature is too large to be completed in a single iteration, it can be called an

‘‘epic.’’ A requirement can be stated as an epic until the functionality is to be

18 L. WILLIAMS
developed in the next iteration. At that time a piece of functionality that can be

completed within a single iteration is extracted from the epic and stated as a feature.

The rest of the functionality of the epic remains in the backlog.

As stated, a feature must be completed in a single iteration. By breaking down

desired functionality into iteration-sized ‘‘chunks,’’ the development team can get

feedback on their progress. This feedback is used to guide future functionality.

Developers can demonstrate their new functionality with pride at the iteration

review meeting. Additionally, work-in-process is eliminated each iteration.

Synonym: Story.
3.11 Incremental Design

Rather than develop an anticipatory detailed design prior to implementation,

invest in the design of the system every day in light of the experience of the past

and the current needs. The viability and prudence of large investments in anticipa-

tory design have changed dramatically in our volatile business environment [4].

Teams often develop a ‘‘good enough’’ view of the architecture and design of a

system during what is referred to as ‘‘Iteration 0.’’ The length of Iteration 0 is as

long as the other iterations. Teams then relook at the impacts to the architecture and

design of the system each iteration based upon the features that have been chosen for

that iteration. Rework may be required for the new features. However, teams have

avoided large investments in anticipatory design. Instead, the time for design (and

possibly rework) is shifted to each iteration.

Related practices.

l Refactoring. Refactoring [27] to improve the design of previously written code

is essential when the incremental design practice is used.

l Unit test-driven development. Teams with automated unit tests with relatively

high coverage can safely experiment with refactoring because a safety net is in

place whereby regression faults due to the refactoring can be detected.
3.12 Inspections

Software inspections involve members of the software development team. Inspec-

tions are a static analysis technique that relies on visual examination of development

artifacts to detect errors, violations of development standards, and other problems

[34]. Artifacts that are commonly inspected include requirements documents,

design, code, and test plans. Many organizations utilize Fagan-style [41] inspection.

With a Fagan-style inspection, artifacts that will be inspected are distributed to

participants prior to the meeting. A Fagan-style inspection requires several

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 19
participants to be present, each with a required role to play (for smaller reviews

participants may take on more than one role). The roles are defined below:

l Author: The author is the person who wrote the document being inspected. He or

she is present at the inspection to answer questions to help others understand the

work, but not to ‘‘defend’’ his or her work.

l Moderator: The moderator runs the inspection and enforces the protocols of the

meeting. The moderator’s job is mainly one of controlling interactions and

keeping the group focused on the purpose of the meeting—to discover (but not

fix) deficiencies. The moderator also ensures that the group does not go off on

tangents and sticks to a schedule.

l Reader: The reader calls attention to each part of the document in turn, and thus

paces the inspection.

l Recorder: Whenever any problem is uncovered in the document being

inspected, the recorder describes the defect in writing. After the inspection,

the recorder and moderators prepare the inspection report.

l Inspectors: Inspectors raise questions, suggest problems, and criticize the

document. Inspectors are not supposed to ‘‘attack’’ the author or the document

but should be objective and constructive. Everyone except the author can act as

an inspector.

Organizations that have embraced inspections have often found that they have far

fewer defects discovered in test or by customers once the product is released [42,43].

Inspections have also been shown to reduce SDLC defect detection costs [44].
3.13 Informative Workspace

A team member should be able to walk into the team space or common hallway

and quickly get a general idea of how the project is going [35]. This information can

be provided by ‘‘big, visible charts’’ [35] (or ‘‘information radiators’’ [3]) that

provide updated status information such that it is worth the team member’s time to

look at the display. Two common forms of status information among agile teams are

the burn down chart and the iteration status board. A burn down chart is a graphical

representation of work left to do versus time, as is shown in Fig. 1A. The outstanding

work (or backlog) is often on the vertical axis and time along the horizontal axis. The

iteration status board provides information on features that are to be completed in an

iteration, as is shown in Fig. 1B. Features are written on ‘‘sticky notes.’’ Features

that have not been started yet are in the ‘‘To Do’’ column. When a feature is started,

the sticky note is moved to the ‘‘In Process’’ column. Often the person who now

0

50

100

150

200

250

300

350

400

1

Scrum day

W
or

k
re

m
ai

ni
ng

 (
ho

ur
s)

A

B

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In process Done

c

To do

FIG. 1. Informative workspace. (A) Burndown Chart. (B) Iteration status board.

20 L. WILLIAMS
owns the implementation of the feature will write their name on the note. When a

feature is completed, it is moved to the ‘‘Done’’ column.

Teams also can provide intranet- or Internet-based informative workspaces, such

as team-based task tracking software, which are particularly beneficial for

distributed teams.

3.14 Iteration Demonstration

At the end of each iteration, the development team demonstrates the acceptance

test for the functionality completed during the iteration to the development team, the

customer (or customer proxy, such as the product manager), and other interested

parties. The demonstration serves several purposes. First, the development team

obtains feedback on their latest work from the customer. The customer is more likely

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 21
to be able to think of feedback because a tangible software product is shown. This

feedback can be incorporated into the work of the next iteration. At times, the

feedback may lead to the creation of a new feature for reworking some of the

demonstrated functionality. A second purpose is for team motivation, as the team

can proudly display their completed, working code. Finally, the demonstration is a

means of raising awareness of the evolving product among support groups such as

field service, security engineering, or performance engineering.
3.15 Negotiated Scope

Agile iterations and releases are ‘‘timeboxed’’ such that the end date is known and

is not changed. As a result, time and resources (i.e., the number of people assigned to

a project) are fixed. Additionally, the desired quality level should be known prior to

project inception via the ‘‘done criteria’’ (see Section 3.7). The negotiated scope

practice acknowledges that, time, resources, and quality are fixed and calls for an

ongoing, iteration-based negotiation on the precise scope of the project based upon

the customer’s view of working software and current desires for the project. Formal

contracts can be written as a ‘‘time and materials’’ contract whereby the customer

pays for a certain number of developers for a certain number of iterations. In each

iteration, the customer decides what the team should do. Negotiated scope is a means

for structuring the implementation based upon current desires, reality, and knowl-

edge rather than what was defined in a contract before the project began [35].
3.16 Nightly Build

In the best case, teams that are using the continuous integration practice (see

Section 3.6) render a nightly build unnecessary. However, many teams use a nightly

build system with which the product is built and all automated tests are run

overnight. Upon returning to work in the morning, the development team obtains

feedback on whether anyone has broken the build or has tests that are not passing.

A good build is often considered as having the following characteristics: all files,

libraries, and other components compile successfully; all files, libraries, and other

components link successfully; the program can be launched; and all automated test

cases pass.

The nightly build has been considered a software engineering best practice

for more than a decade [45,46]. Benefits of having a nightly build are stability,

minimization of integration risk, reduction of the risk of a low quality product, early

and continuous quality feedback, early fault detection, and improvement of morale

[45,47].

22 L. WILLIAMS
3.17 Pair Programming

Pair programming is a style of programming in which two programmers work

side-by-side at one computer, continuously collaborating on the same design,

algorithm, code, or test [33]. Pair programming has been practiced sporadically

for decades [33]; however, the emergence of agile methodologies and Extreme

Programming (XP) [35] has recently popularized the pair programming practice.

With pair programing, one of the pair, called the driver, types at the computer or

writes down a design. The other partner, called the navigator, has many jobs. One of

these is to observe the work of the driver—looking for tactical and strategic defects

in the driver’s work. Some tactical defects might be syntax errors, typos, and calling

the wrong method. Strategic defects occur when the driver’s implementation or

design will fail to ultimately accomplish its goals. The navigator is the longer range

thinker of the programming pair. Because the navigator is not as deeply involved

with the design, algorithm, code, or test, he or she can have a more objective point of

view and can better think strategically about the direction of the work. Both in the

pair are constant brainstorming partners.

An effective pair will be constantly discussing alternative approaches and solu-

tions to the problem [33,48]. A sign of a dysfunctional pair is a quiet navigator.

Periodically, the driver and the navigator should switch roles. On a software

development team, team members should pair program with a variety of other

team members to leverage a variety of expertise.

Among practitioners, the practice of pair programming has been shown to

improve product quality, improve team spirit, aid in knowledge management, and

reduce product risk [33].
3.18 Planning Poker

Planning Poker is ‘‘played’’ by the team as a part of the iteration planning

meeting for the purpose of estimating resources required to implement a feature.

For each feature, the customer or marketing representative begins by explaining

each requirement to the extended development team. We use the term extended
development team (often called the ‘‘whole team’’ [35] by agile software devel-

opers) to refer to all those involved in the development of a product, including

product managers, project managers, software developers, testers, usability engi-

neers, security engineers, and others. In turn, the team discusses the work involved

in fully implementing and testing a requirement until they believe that they have

enough information to estimate the effort. Each team member then privately and

independently estimates the effort in units of ‘‘story points’’ (discussed in more

detail below). The team members reveal their estimates simultaneously. Next, the

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 23
team members with the lowest and highest estimate explain their estimates to the

group. Discussion ensues until the group is ready to revote on their estimates. More

estimation rounds take place until the team can come to a consensus on a quantity of

story points for the requirement. Most often, only one or two voting rounds are

necessary on a particular requirement before consensus is reached.

In Planning Poker, estimation is based upon the notion of story points [49]. Story

points are unit-less measures of effort relative to previously completed require-

ments. The unit-less story points do not directly correspond to traditional effort

estimates such as person-hours or person-days. As a result, estimation is generally

done more quickly because participants focus on relative size and not on thinking

about how long the work will take. The latter might depend upon which engineer is

assigned the task and what their work schedule might be. The team can focus on the

estimation with discussions like the following:

l ‘‘<requirement> is similar to <other requirement> which was a 5, so we’ll

give this a 5’’; or

l ‘‘<requirement> is likely to take twice as long as <other requirement>’’; or

l ‘‘<requirement> will take the entire iteration, let’s give it an 8’’

Team members are constrained to estimating from a set of possible story point

values on an exponential scale (most commonly 1, 2, 3, 5, 8, 13, 20, 40, and 100)

[49] that are the relative amount of effort necessary for the correct implementation,

including software development, usability engineering, testing, and document

authoring/updating. There are two reasons behind the use of a limited set of possible

values. First, humans are more accurate at estimating small things, hence there are

more possible small values than large values [49]. Second, estimation can be done

more quickly with a limited set of possible values. For example, why argue over

whether the estimate should be 40 or 46 when our ability to estimate such large

requirements is most likely inaccurate?

The values are often calibrated such that a very small task is given the value of 1,

and a value of 8 indicates that the requirement will take the entire iteration. The

values of 2, 3, and 5 are given relative to these endpoints. A requirement which is

given an estimate of more than 8 is referred to as an epic [49] and can remain an epic

for a future iteration. Once an epic is to be implemented in the next iteration, the epic

must be broken down into small independent stories with estimates of 1, 2, 3, 5, or 8.

A team computes its velocity [35,49]; velocity is a historical number of how many

story points the team is able to implement in an iteration. In an iteration planning

meeting, the team determines which requirements to implement in the next iteration

by choosing the higher priority requirements whose story points fit within the

capacity determined by the velocity estimate.

24 L. WILLIAMS
Practicing Planning Poker has three major benefits:

1. Effort Estimate. The team obtains effort estimates via the expert opinion of all

the members of the extended development team. The incorporation of all

expert opinions leads to improved estimation accuracy [50,51], particularly

over time as the team becomes experienced with Planning Poker.

2. Estimate Ownership. The estimate is developed collaboratively by the

extended development team. Therefore, the members will feel the estimate is

realistic and will feel more accountable since they own the estimate.

3. Communication. The conversations that take place during the process are

useful for sharing knowledge and for structuring conversation between those

on the extended team with a diversity of perspectives. When one or more team

members have a low estimate and others have a high estimate, team members

have a very different perception of what is involved in the implementation and

verification and/or have a range of technical knowledge or experience. As such,

Planning Poker provides a structured means for:

l

l

l

l

l

obtaining a shared understanding;

exposing hidden assumptions of the technical aspects of implementation and

verification;

discussing the implications throughout the system for implementing a

requirement;

surfacing and resolving ambiguities realized via divergent perspectives on

the requirement; and

exposing easy and hard alternatives for achieving desired goals.
Planning Poker is a Wideband Delphi-based practice (see Section 3.32).
3.19 Release and Iteration Backlog

The release backlog [23] is an evolving, prioritized queue of business and

technical requirements that needs to be developed into a system during the release.

For each requirement, the release backlog contains a unique identifier for the

requirement, the category (feature, enhancement, defect), the status, the priority,

and the effort estimate (such as a story point estimate, see Section 3.18) for the

feature. The general scope of the release backlog is formulated prior to a release

beginning, and the features are given an initial prioritization. In each subsequent

iteration, the features can be added or deleted from the release backlog, and the

current feature list is reprioritized.

The iteration backlog [23] is a list of all business and technology features,

enhancements, and defects that have been scheduled for the current iteration.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 25
The iteration backlog is updated each day by team members who implement and test

the features. The features are taken off the backlog when they are accepted by a

customer or product manager and can pass the done criteria (see Section 3.7).
3.20 Retrospective

At the end of each iteration, teams gather for retrospective meetings [52]. In this

meeting, data is presented on how the iteration went, such as how much working

software was produced, if iteration goals were met, and how many defects are in the

defect backlog. Additionally, the team discusses what went well for them during the

iteration and what they should do differently for the next iteration [3]. Specific

action items are taken out of the retrospective and made as stories for the next

iteration so that the team allocates necessary resources toward process improvement.
3.21 Scrum Meeting

Short meetings, called Scrum meetings (or stand-up meetings, see Section 3.26),

are daily meetings that last no more than 10–15 min [39]. While managers and the

product manager may attend the meeting, only the developers, testers, and others

directly contributing to working code speak at the meeting. Each team member

answers the following questions:

l What did you do yesterday?

l What will you do today?

l What is getting in the way of you doing your work?

The purpose of these meetings is for critical information exchange between the

team members, with minimal overhead. The focus is on technical progress and the

work plan for an empowered team to make daily decisions that will lead to the team

being as successful as possible during the iteration. An additional purpose of the

meeting is for the team members to publicly commit to their work plans. Such public

commitment increases the likelihood the work will be completed that day, support-

ing the energized work (see Section 3.8) practice because work is more likely to be

done at a consistent pace rather than clustering at deadlines.
3.22 Sit Together

Teams that utilize the sit together [35] practice sit together in one open space, as in

a ‘‘warroom’’ set up. The purpose of sitting together is to enable communication

between team members. Communication drops off if a team member has to walk

26 L. WILLIAMS
more than 10 m to see colleague [53]. Warrooms have been shown to double the

productivity of a software team [54].

The need for periodic privacy of team members can be achieved by having a

‘‘caves and commons’’ [3] set up whereby there is a ‘‘common’’ area for team

members to work to maximize communication and information transfer. A ‘‘caves’’

area gives people a place to make phone calls, check e-mails, or to work quietly.
3.23 Short Iterations

Each iteration is a self-contained mini-project composed of activities such as

requirements, design, programming, and test [5]. Agile teams generally have time-

boxed iterations that last between 1 and 4 weeks. When an iteration is timeboxed, the

iteration length is fixed and is not allowed to be moved out, even if the team knows

that they have not met their iteration objectives. Rather than move out the schedule,

the scope of the iteration is reduced. At the end of the iteration, the team delivers

working code that passes the done criteria (see Section 3.7) and is considered to be

potentially shippable. The team then obtains feedback on this working code from

their customer, product manager, and other team members.
3.24 Short Releases

The teams deliver code to customers in the form of supported releases more often,

preferably as often as every 3 months [35]. The purpose of having such short releases

is to get the product out to customers as quickly as possible for the customer’s

competitive advantage and so that feedback on the product can be obtained and fed

back into the development process. The short release practice necessitates the team

considering what coherent groupings of functionality can be delivered to the field in

a short period of time.
3.25 Sprint

Synonym: Short iteration (defined in Section 3.23).
3.26 Stand-Up Meeting

Synonym: Scrum meeting (defined in Section 3.21)

The name ‘‘stand up meeting’’ is based upon teams conducting meeting in spaces

without chairs. When the team has to stand for the meeting, the meeting is less likely

to exceed the 15 min maximum time allowance.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 27
3.27 Stories

Synonym: Features (defined in Section 3.10).
3.28 Sustainable Pace

Synonym: Energized work (defined in Section 3.8).
3.29 Ten-Minute Build

Teams that use the 10-min build practice [35] structure the project and its

associated tests such that the whole system can be built and all the automated tests

can be run in 10 min and thus the process can be done often. The purpose of being

able to build and run so rapidly is to enable developers to get feedback on recent

changes. If the build is so quick, the developers are more likely to run the tests and

integrate new code more often and to be able to see the impact of the new code.
3.30 Unit Test-Driven Development

Unit test-driven development [32] is a practice that has been used sporadically for

decades [1,32]. With this practice, a software engineer cycles on a minute-by-minute

basis between writing failing automated unit tests and writing implementation code

to pass those tests.

Case studies [55–58] were conducted with four development teams at Microsoft

(Windows, MSN, Visual Studio, and one unnamed application) developed in Cþþ
and C# and one IBM device driver team that developed in Java. All had transitioned

from an ad hoc unit testing practice to the team-wide use of automated unit testing

using the NUnit8 or JUnit9 frameworks. Table II shows a comparison of the results

of these teams relative to a comparable team in the same organization that did not

use TDD. Except for the Microsoft application, the TDD teams realized a significant

decrease in defects, from 39% to 91%. The main difference between the Windows,

MSN, Visual Studio, and IBM teams versus the Microsoft application team was that

the first four developed automated unit tests incrementally on a minute-by-minute

basis. The Microsoft application team developed their test cases every few days.

These results indicate that writing unit tests more often leads to greater defect

reduction. Developers took from 15% to 35% longer to achieve this quality gain.
8 http://www.nunit.org/index.php
9 http://junit.org/

http://www.ie.lehigh.edu/
http://www.junit.org/

Table II

MICROSOFT AND IBM UNIT TEST-DRIVEN DEVELOPMENT CASE STUDIES

MS Windows MS MSN MS Visual Studio MS App IBM Drivers

Pre-TDD defects/LOC A C C D E

Decrease in defects/LOC 0.38A 0.24B 0.09C 0.80D 0.61 W

Increase in development time 25–35% 15% 25–30% 30% 15–20%

28 L. WILLIAMS
However, the quality improvement due to reduced defects, leading to less debug and

field support time, more than makes up for this increase in development time.
3.31 Whole Team

Agile teams that utilize the whole team practice [35] which consider the cross-

functional team of all those necessary for the product to succeed as one team. The

whole team consists of developers, testers, product managers, project managers, user

interface designers, documentation specialists and anyone else involved in the

production of working code. When operating as a whole team, the ‘‘we-them’’

mentality goes away in favor of the team striving for joint objectives.
3.32 Wideband Delphi Estimation

Wideband Delphi is based upon the Delphi practice [59], developed at The Rand

Corporation in the late 1940s for the purpose of making forecasts rather than

estimates. With the Delphi practice, participants are asked to make their forecast

individually and anonymously in a preliminary round. The first round results are

collected, tabulated, and returned to each participant for a second round, during

which the participants are again asked to make a new forecast regarding the same

issue. This time each participant has knowledge of what the other participants

forecasted in the first round but not any explanation by the participants of the

rationale behind their forecast. The second round typically results in a narrowing

of the range in forecasts by the group, pointing to some reasonable middle ground

regarding the issue of concern. The original Delphi technique avoided group

discussion [60].

Boehm created a variant of this technique called the Wideband Delphi technique

[31]. Group discussion occurs between rounds in Wideband Delphi; participants

explain why they have chosen their value. Wideband Delphi is a useful technique for

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 29
coming to some conclusion regarding an issue when the only information available

is based more on experience than hard empirical data [60].

Planning Poker (see Section 3.18) is a Wideband Delphi technique.
3.33 Practices Versus Agile Principles

Table III below maps the agile practices discussed in this chapter to the agile

principles supported by the practices.
4. Examples of Agile Software Development
Methodologies

This section provides a brief introduction to three agile methodologies: XP, FDD,

and Scrum. The three were chosen to demonstrate the range of applicability and

specification of the agile methodologies. For each methodology we provide an

overview, discuss documents and artifacts produced by the development team, the

roles the members of the development team assume, the process, and a discussion.

The methodology descriptions in this section refer to the agile practices defined in

Section 3.

Often industrial teams create their own hybrid software development process by

picking and choosing among the practices discussed in Section 3, rather than strictly

adhering to the complete set of practices laid out in one of these three methodologies.
4.1 Extreme Programming (XP)

The Extreme Programming (XP) [18,35] originators aimed at developing a

methodology suitable for ‘‘object-oriented projects using teams of a dozen or

fewer programmers in one location.’’ [36]
4.1.1 Documents and Artifacts
In general, XP relies on ‘‘documentation’’ via oral communication, the code

itself, and tacit knowledge transfer rather than written documents and artifacts.

The following relatively informal artifacts are produced:

l Story cards, paper index cards that contain brief requirement descriptions. The

user story cards are intentionally not a full requirement statement but are,

instead, a commitment for further conversation between the developer and

Table III

AGILE SOFTWARE DEVELOPMENT PRACTICES AND THE AGILE PRINCIPLES THEY SUPPORT

Agile principles

Early

delivery

Change

req’mnt

Short

iteration

Business &

development

Motivate

individual

Face–

Face

Work

software

Sustain

dev

Technical

excellence Simplicity Reflection

Agile
practices

Acc Test X X
Root cause X X
Code ownership X X X
Code and tests X X X
Collect code own X X
Cont integ X X
Done criteria X X X X
Energized X
Features X X X
Incremental Design X X X X X
Inspections X
Inform workspace X X X X
Iteration demo X X X X X X X
Negotiate scope X X X X
Nightly build X X X
Pair Program X X X
Planning Poker X X X X X X X
Rel & Iter Backlog X X X X X X
Retrospective X
Scrum meeting X X X X X
Sit together X X X
Short iterations X X X X X
Short releases X X X X X
Ten-minute build X X
Unit TDD X X X X
Whole team X X X

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 31
the customer. During this conversation, the two parties will come to an oral

understanding of what is needed for the requirement to be fulfilled. Customer

priority and developer resource estimate are added to the card. The resource

estimate for a user story must not exceed the iteration duration.

l Task list, a listing of the tasks (typically 1.5–3 days in duration) for the user

stories that are to be completed for an iteration.

l CRC cards [61] (optional), paper index card on which one records the respon-

sibilities and collaborators of classes which can serve as a basis for software

design. The classes, responsibilities, and collaborators are identified during a

design brainstorming/role-playing session involving multiple developers. CRC

stands for Class-Responsibility-Collaboration.

l Customer acceptance tests, textual descriptions and automated test cases which

are developed by the customer. The development team demonstrates the com-

pletion of a user story and the validation of customer requirements by passing

these test cases.

l Visible wall graphs, to foster communication and accountability, progress graphs

are usually posted in team work area. These progress graphs often involve how

many stories are completed and/or how many acceptance test cases are passing.
4.1.2 Roles

l Manager, owns the team and its problems. He or she forms the team, obtain

resources, manages people and problems, and interfaces with external groups.

l Coach, teaches team members about the XP process as necessary, intervenes in

case of issues; monitors whether the XP process is being followed. The coach is

typically a programmer and not a manager.

l Tracker, regularly collects user story and acceptance test case progress from the

developers to create the visible wall graphs. The tracker is a programmer, not a

manager or customer.

l Programmer, writes tests, design, and code; refactors; identifies and estimates

tasks and stories (this person may also be a tester).

l Tester, helps customers write and develop tests (this person may also be a

programmer).

l Customer, writes stories and acceptance tests; picks stories for a release and for
an iteration. A common misconception is that the role of the customer must be

played by one individual from the customer organization. Conversely, a group

of customers can be involved or a customer proxy, such as the product manager,

can play this role.

32 L. WILLIAMS
4.1.3 Process
The initial version of the XP software methodology [18] published in 2000 had 12

programmer-centric, technical practices. These practices interact, counterbalance,

and reinforce each other [4,18]. However, in a survey [62] of project managers, chief

executive officers, developers, and vice-presidents of engineering for 21 software

projects, none of the companies adopted XP in a ‘‘pure’’ form wherein all 12

practices were used without adaptation. In 2005, XP was changed to include 13

primary practices and 11 corollary practices [35]. The primary practices are intended

to be useful independent of each other and the other practices used [35], though the

interactions between the practices may amplify their effect. The corollary practices

are likely to be difficult without first mastering a core set of the primary practices.

The 13 primary technical practices, most described in Section 3, are sit together,

whole team, informative workspace, energized work, pair programming, stories,

short iteration, quarterly release, slack, ten-minute build, continuous integration,

acceptance- and unit test-driven development, and incremental design. The slack

practice, not defined above, guides teams toward including some lower priority tasks

in each iteration. These lower priority tasks would be the last to be completed in the

iteration in case time runs out. In this way, the customer should be able to see their

higher priority stories completed by the end of each iteration.

XP also has 11 corollary technical practices. Four of these are defined in Section 3

due to their commonality with other agile processes: root cause analysis, collective

code ownership, code and tests, and negotiated scope contract. The other seven are

now briefly described:

l Real customer involvement, the customer is available to clarify requirements

questions, is a subject matter expert, and is empowered to make decisions about

the requirements and their priority. Additionally, the customer writes the

acceptance tests.

l Incremental deployment, gradually deploy functionality in a live environment

to reduce the risk of a big deployment.

l Team continuity, keep effective teams together.

l Shrinking team, as a team grows in capacity (due to experience), keep their

workload constant but gradually reduce the size of the team.

l Daily deployment, put new code into production every night.

l Single code base, the team works with only one code stream.

l Pay-per-use, charge the user every time the system is used to obtain their

feedback by their usage patterns.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 33
4.1.4 Discussion
The main advantages of XP relative to small, colocated teams have been demon-

strated by several industrial case studies, including [63–67]:

l Improved quality

l Improved productivity (though the measures were relatively inexact)

l Improved team morale

l Anecdotally, improved customer satisfaction

The possible drawbacks of XP are as follows:

l May not be applicable for other than small, colocated teams developing non-

critical software, though XP has been successfully used with mission-critical

projects [68], distributed teams [69], and for scientific research [70].

l XP deemphasizes documentation and relies upon social mechanisms to keep

alive the important history of the project. Due to his de-emphasis on documenta-

tion, XP must be adapted for projects that require traceability and audit-ability.

l Some developers may not transition to pair programming easily; transitioning to

the test-driven development practice may require technical training for some

developers.

l The real customer involvement practice has shown to be very effective for

communicating and clarifying requirements, but is a pressured, stressful, and

time-consuming role [71].

4.2 Feature-Driven Development (FDD)

FDD [19,20] authors Peter Coad and Jeff de Luca characterizes the methodology as

having ‘‘just enough process to ensure scalability and repeatability and encourage

creativity and innovation all along the way’’ [4]. Throughout, FDD emphasizes the

importance of having good people and strong domain experts. FDD is build around

eight best practices: domain object modeling, developing by feature, individual class

ownership, feature teams, inspections, regular builds, configuration management, and

reporting/visibility of results. UML models [72,73] are used extensively in FDD.
4.2.1 Documents and Artifacts

l Feature lists, consisting of a set of features whereby features are small, useful in

the eyes of the client, results; and a client-valued function that can be imple-

mented in 2 weeks or less. If a feature would take more than 2 weeks to

implement, it must be further decomposed.

34 L. WILLIAMS
l Design packages consist of sequence diagrams and class diagrams and method

design information.

l Track by Feature, a chart which enumerates the features that are to be built and

the dates when each milestone has been completed.

l ‘‘Burn Up’’ Chart, a chart that has dates (time) on the x-axis. On the y-axis is an
increasing number of features that have been completed. As features are

completed this chart indicates a positive slope over time.
4.2.2 Roles

l Project manager, is the administrative lead of the project responsible for

reporting progress, managing budgets, and fighting for and managing resources

including people, equipment, and space.

l Chief architect, is responsible for the overall design of the system including

running workshop design sessions with the team.

l Development manager, is responsible for leading the day-to-day development

activities including the resolution of resource conflicts.

l Chief programmer, as outlined by Brooks’ ideas on surgical teams [24], is an

experienced developer who acts as a team lead, mentor, and developer for a

team of 3–6 developers. The chief programmer provides the breadth of knowl-

edge about the skeletal model to a feature team, participates in high-level

requirements analysis and design, and aids the team in low-level analysis,

design, and development of new features.

l Class owner, is responsible for designing, coding, testing, and documenting

new features in the classes that he or she owns.

l Domain experts, users, clients, sponsors, business analysts, etc. who have deep

knowledge of the business for which the product is being developed.

l Feature teams are temporary groups of developers formed around the classes

with which the features will be implemented. A feature team dynamically forms

to implement a feature and disbands when the feature has been implemented

(2 weeks or less).
4.2.3 Process
The FDD process has five incremental, iterative processes. Guidelines are given

for the amount of time that should be spent in each of these steps, constraining

the amount of time spent in overall planning and architecture and emphasizing the

amount of time designing and building features. Processes 1–3 are done at the start

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 35
of a project and then updated throughout the development cycle. Processes 4 and 5

are done incrementally on 2-week cycles. Each of these processes has specific entry

and exit criteria, whereby the entry criterion of Process N is the exit criteria of

Process N�1.

l Process 1: Develop an overall model (time: 1% initially, 4% ongoing)

Domain and development team members work together to understand the scope

of the system and its context. High-level object models/class diagrams are devel-

oped for each area of the problem domain. Model notes record information about the

model’s shape and why some alternatives were selected and others rejected.

l Process 2: Build a features list (time: 4% initially, 1% ongoing)

Complete list of all the features in the project; functional decomposition which

breaks down a ‘‘business activity’’ requested by the customer to the features that

need to be implemented in the software.

l Process 3: Plan by feature (time: 2% initially, 2% ongoing)

A planning team consisting of the project manager, development manager, and

chief programmer plan the order in which features will be developed. Planning is

based on dependencies, risk, complexity, workload balancing, client-required mile-

stones, and checkpoints. Business activities are assigned month/year completion

dates. Every class is assigned to a specific developer. Features are bundled accord-

ing to technical reasons rather than business reasons.

l Process 4: Design by feature (time: 34% ongoing in 2-week iterations)

The chief programmer leads the development of design packages and refines

object models with attributes. The sequence diagrams are often done as a group

activity. The class diagrams and object models are done by the class owners.

Domain experts interact with the team to refine the feature requirements. Designs

are inspected.

l Process 5: Build by feature (time: 43% ongoing in 2-week iterations)

The feature team implements the classes and methods outlined by the design. This

code is inspected and unit tested. The code is promoted to the build.

Progress is tracked and made visible during the Design by feature/Build by feature

phases. Each feature has six milestones, three from the Design by feature phase

(domain walkthrough, design, and design inspection) and three from the Build by

feature phase (code, code inspection, promote to build). When these milestones are

complete, the date is placed on the Track by Feature chart which is prominently

displayed for the team. When a feature has completed all six milestones, this

36 L. WILLIAMS
completion is reflected on the ‘‘Burn Up’’ chart. All features are scoped to be

completed within a maximum of 2 weeks, including all six milestones.
4.2.4 Discussion
The main advantages of FDD are as follows:

l Teams who value and are accustomed to object-oriented analysis and design

and associated documentation and inspections will transition to FDD more

easily than some of the other agile methods.

l The documentation produced could lead to higher quality projects and enable

traceability and audit-ability.

l Project in which emergent properties, such as security, are important may be

well suited for FDD due to its initial upfront planning. A web development

team found that FDD was capable of dealing with the key challenges of their

development: decreasing life-cycle times, frequently changing requirements,

and risk analysis that can integrate security design throughout the development

process [74].

Possible drawbacks of FDD are as follows:

l The upfront design may not make FDD as agile as other methodologies.

l Teams must purchase and use UML design tools.
4.3 Scrum
4.3.1 Overview
The Scrum process [4,23] puts a project management ‘‘wrapper’’ around a

software development methodology. The methodology is flexible on how much/

how little ceremony but the Scrum philosophy would guide a team toward as little

ceremony as possible. Often Scrum teams are colocated. However, with increasing

frequency Scrum teams are working in a geographically distributed manner (e.g.,

Refs. [75,76]) whereby team members participate in the Scrum meeting via speak-

erphone. Scrum teams are self-directed and self-organizing teams. The team com-

mits to a defined goal for an iteration and is given the authority, autonomy, and

responsibility to decide how best to meet it.

Scrum uses the term ‘‘Sprint’’ to refer to the current iteration. Historically,

Sprints have been 30 days. More recently, Scrum teams are using shorter Sprints,

often 2-week sprints.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 37
4.3.2 Documents and Artifacts
There are three main artifacts produced by Scrum teams, the Product Backlog, the

Sprint Backlog, and the Sprint burn down chart as defined in Section 3.
4.3.3 Roles

l Product Owner, the person who is responsible for creating and prioritizing the

Product Backlog, choosing what will be included in the next Sprint, and

reviewing the system at the end of the Sprint.

l Scrum Master, knows and reinforces the Scrum practices, conducts the Scrum

Meeting and the iteration demonstration (the Sprint Review), listens to progress,

removes impediments (blocks), and provides resources.

l Developer, member of the Scrum team. The Scrum Team is committed to

achieving the Sprint goals and has full authority to do whatever it takes to

achieve the goal.
4.3.4 Process
In release planning, Scrum teams develop high-level stories for the release.

Subsequently, the team estimates the size of these epics and stories for release via

Planning Poker. Based upon the team’s estimated velocity, a feasible release plan is

developed by choosing the most important stories that can be completed during the

release timeframe. Prior to launching into product implementation based upon this

release plan, teams generally have what is referred to as Iteration 0. In Iteration 0, the

team prepares for the ensuing product development. Also, teams estimate the story

points for the first Sprint; and establish their work environment (i.e., build machine,

test machine, continuous integration system) [77]. Additionally, they will establish a

vision for the product architecture and the ‘‘look-and-feel’’ of the system. Teams

also learn about any new technology that will be incorporated into the new release.

Iteration 0 is timeboxed and is the same amount of time as all the other iterations.

Teams may feel the need to make Iteration 0 longer than the Sprints, but keeping

Iteration 0 no longer than the Sprints prevents the team from putting too much work

and design into requirements that are likely to change as the release progresses.

After Iteration 0 has been completed, the Scrum process is composed of the

following steps each Sprint cycle:

l A Sprint Planning meeting is held with the development team, management,

and the Product Owner. The Product Owner is a representative of the customer

or a contingent of customers. The Product Owner creates and prioritizes the

38 L. WILLIAMS
Product Backlog. In the planning meeting, the Product Owner chooses which

features are included in the next Sprint usually driven by highest business value

and risk. The development team estimates the resource required for each

desired feature via Planning Poker. Jointly, they determine a reasonable number

of features to be included in the next Sprint based upon the team velocity. Once

this set of features has been identified, no reprioritization takes place during the

ensuing Sprint.

l In the days following the Sprint Planning meeting, the development team and

Product Owner collaborate on the development of acceptance tests for each Sprint

feature. Additionally, the development team breaks the work required for each

feature down into tasks and estimates the effort required to complete each task.

l During a Sprint, features are designed, implemented, tested integrated, and

regression tested daily.

l The Scrum Meeting is an essential component of the methodology. Social pro-

mises are made in the meeting which seems to increase responsibility and follow-

through and to keep the project on course. However, these meetings can become

unmanageable if they are run with too many people. It is recommended that each

team has a maximum of seven members. For use with larger teams, the team

subdivides into smaller groups, each having its own Scrum meeting. One repre-

sentative from each of the smaller groups attends a ‘‘Scrum of Scrums’’ meeting.

This representative answers the Scrum questions, highlighting the activities of his

or her own subteam. In thisway, essential information is passed between subteams.

l At the end of a Sprint, a Sprint Review takes place to review progress;

demonstrate features to the customer, management, users, and the Product

Owner; and review the project from a technical perspective. The meeting is

conducted by the Scrum Master. The latest version of the product is demon-

strated in which the functions, design, strength, weaknesses, and trouble spots

are shared with the Product Owner.

l The team conducts a retrospective on the activities of the Sprint.
4.3.5 Discussion
The main advantages of Scrum are as follows:

l Teams can adopt Scrum practices, such as the use of a Daily Scrum meeting,

without much disruption to the development team.

l Scrum helps team manage change and eliminate work-in-process. Once the

features have been chosen for a Sprint, no new features can be added to the Sprint,

enabling the team to complete new functionality without direction change.

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 39
Possible drawbacks of Scrum are as follows:

l May not provide enough prescriptive guidance on engineering practices. For

example, Scrum does not prescribe any testing practice.
4.4 Comparison of Practices of Three Methodologies

Table IV below provides a summary of the practices of the three explained agile

software development methodologies. In the table, a practice is annotated as ‘‘no

mention’’ if the methodologies neither include nor preclude the practice such that

some teams may use the practice without ‘‘violating’’ the methodology. A practice

is annotated as ‘‘no’’ when the methodology precludes the use of that practice.
5. Summary

Agile methodologies began to emerge in the mid-1990s in response to increased

requirements and environmental change that was not able to be handled via existing

plan-driven methodologies. In 2001, the agile methodology authors convened at

Snowbird, Utah, USA, to discuss the similarities among their methodologies. They

embodied these similarities in a statement of agile values called the ‘‘Agile Mani-

festo’’ [13]. The Snowbird participants then further defined their similarities by

stating the ‘‘Principles Behind the Agile Manifesto’’ [13]. Subsequently, Mary and

Tom Poppendieck provided a different perspective on agile software development

by stating the Lean Software Development Principles [26]. The Lean Software

Development Principles drew a parallel between agile software development and

lean manufacturing such as was adhered to by automobile manufacturers such as

Toyota.

Overviews of three representative agile methodologies, XP, Crystal, and FDD,

were presented. These and other agile software development methodologies are all

guided by the agile and lean principles. A summary of the distinguishing factors of

these three methodologies is provided in Table V.

Other agile software development methodologies include ASD [15], Agile Mod-

eling [78], and DSDM [17], and Crystal Software Development [3,16]. Additionally,

teams can configure an agile Rational Unified Process (RUP) methodology [79].

Most teams in industry create their own hybrid agile methodology by choosing a

selection of the agile practices presented in this paper rather than strictly adhering to

any of the named agile methodologies.

Table IV

MAPPING OF AGILE PRACTICE TO METHODOLOGY

Agile practice Extreme programming (XP) Scrum Feature-driven development

Acceptance test-driven

development

Yes; primary practice Not specified; often done by

Scrum teams

No mention

Automation-centric root

cause analysis

Yes; corollary practice No mention No mention

Code ownership No No mention Yes

Code and tests Yes; corollary practice No mention No

Collective code ownership Yes; corollary practice No mention No

Continuous integration Yes; primary practice Not specified; often done by

Scrum teams

No mention

Done criteria Yes Yes Yes

Energized work Yes No mention No mention

Features Yes; called stories Yes Yes

Incremental design Yes Yes Yes, but less so than XP or Scrum

Inspections No; sometimes done No; sometimes done Yes; design and code

Informative workspace Yes; primary practice Yes; burndown charts No mention

Iteration demo Yes Yes No mention

Negotiated scope Yes Yes Yes

Nightly build No due to continuous integra-

tion; but common

No mention; but common ‘‘regular build’’ from continuous to weekly;

nightly build common

Pair programming Yes No mention No mention

Planning Poker No mention; done frequently No mention; done frequently No mention

Release and Iteration

Backlog

Yes Yes Yes

Retrospectives No mention; done frequently Yes No mention

Scrum meeting Yes Yes No mention

Sit together Yes No mention No mention

Short iterations Yes Yes Yes

Short releases Yes Yes Yes

Ten-minute build Yes No mention No mention

Unit test-driven develop Yes No mention No mention

Whole team Yes Yes No mention

Table V

COMPARISON OF AGILE METHODOLOGIES

Agile methodology Distinguishing factor

Extreme programming l Intended for 10–12 colocated, object-oriented programmers
l Disciplined, programmer-centric engineering practices that focus on

building quality into the product as it is developed
l Minimal archival documentation
l Rapid customer and developer feedback loops

Feature-driven development l Scalable to larger teams
l Highly specified development practices
l Five subprocesses, each defined with entry and exit criteria
l Developments are architectural shape, object models, and sequence

diagrams (UML models used throughout)
l 2-week feature implementation cycles

Scrum l A project management wrapper
l Accommodating to the engineering practices of choice by the software

development team

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 41
Acknowledgments

Partial funding for the writing of this chapter was provided by the ScrumAlliance.
References

[1] B. Boehm, R. Turner, Balancing Agility and Discipline: A Guide for the Perplexed, Addison

Wesley, Boston, MA, 2003.

[2] P. Abrahamsson, J. Warsta, M.T. Siponen, J. Ronkainen, New directions in Agile methods: a

comparative analysis, in: International Conference on Software Engineering (ICSE 2003), Portland,

OR, 2003, pp. 244–254.

[3] A. Cockburn, Agile Software Development, Addison Wesley Longman, Reading, MA, 2002.

[4] J. Highsmith, Agile Software Development Ecosystems, Addison-Wesley, Boston, MA, 2002.

[5] C. Larman, Agile and Iterative Development: A Manager’s Guide, Addison Wesley, Boston, 2004.

[6] C. Larman, V. Basili, A history of iterative and incremental development, IEEE Comput. 36 (June

2003) 47–56.

[7] V.R. Basili, A.J. Turner, Iterative enhancement: a practical technique for software development,

IEEE Trans. Softw. Eng. 1 (December 1975) 266–270.

[8] B. Curtis, Three problems overcome with behavioral models of the software development process

(Panel), in: International Conference on Software Engineering, Pittsburgh, PA, 1989, pp. 398–399.

[9] B. Boehm, A spiral model for software development and enhancement, Computer 21 (May 1988)

61–72.

42 L. WILLIAMS
[10] T. Potok, M. Vouk, The effects of the business model on the object-oriented software development

productivity, IBM Syst. J. 36 (1997) 140–161.

[11] R. Dove, Response Ability: The Language, Structure and Culture of the Agile Enterprise, Wiley,

New York, NY, 2001.

[12] Lehigh University, Agile competition is spreading to the world. http://www.ie.lehigh.edu/, 1991.

[13] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, et al., The Agile

Manifesto, http://www.agileAlliance.org, 2001.

[14] M. Fowler, J. Highsmith, The Agile Manifesto, in: Software Development, August 2001, pp. 28–32.

[15] J. Highsmith, Adaptive Software Development, Dorset House, New York, NY, 1999.

[16] A. Cockburn, Crystal ‘‘Clear’’: A Human-Powered Software Development Methodology for Small

Teams, Addison Wesley, Boston, MA, 2005.

[17] J. Stapleton, DSDM: The Method in Practice, second ed., Addison Wesley Longman, Reading, MA,

2003.

[18] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA,

2000.

[19] P. Coad, E. LeFebvre, J. DeLuca, Java Modeling in Color with UML, Prentice Hall, Englewood

Cliffs, NJ, 1999.

[20] S.R. Palmer, J.M. Felsing, A Practical Guide to Feature-Driven Development, Prentice Hall PTR,

Upper Saddle River, NJ, 2002.

[21] A. Hunt, D. Thomas, The Pragmatic Programmer: From Journeyman to Master, Addison Wesley,

Reading, MA, 1999.

[22] K. Schwaber, Agile Project Management with SCRUM, Microsoft Press, Redmond, WA, 2004.

[23] K. Schwaber, M. Beedle, Agile Software Development with SCRUM, Prentice-Hall, Upper Saddle

River, NJ, 2002.

[24] F.P. Brooks, The Mythical Man-Month, Anniversary Edition, Addison-Wesley, Boston, MA, 1995.

[25] M. Poppendieck, T. Poppendieck, Implementing Lean Software Development: From Concept to

Cash, Addison-Wesley, Upper Saddle River, NJ, 2007.

[26] M. Poppendieck, T. Poppendieck, Lean Software Development, Addison Wesley, Boston, 2003.

[27] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of

Existing Code, Addison Wesley, Reading, MA, 1999.

[28] J. Womack, D. Jones, D. Roose, The Machine that Changed the World: The Story of Lean

Production, Harper Perennial, New York, 1992.

[29] J. Johnson, Standish Group CHAOS Report, 2002, www.projectsmart.co.uk/docs/chaos-report.pdf.

[30] J.M. Juran, F.M. Gryna, Juran’s Quality Control Handbook, fourth ed., McGraw-Hill, New York,

NY, 1988.

[31] B.W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[32] K. Beck, Test Driven Development—By Example, Addison Wesley, Boston, 2003.

[33] L. Williams, R. Kessler, Pair Programming Illuminated, Addison Wesley, Reading, MA, 2003.

[34] IEEE, IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,

1990, http://standards.ieee.org/reading/ieee/std_public/description/se/610.12-1990_desc.html.

[35] K. Beck, Extreme Programming Explained: Embrace Change, second ed., Addison-Wesley, Reading,

MA, 2005.

[36] R. Jeffries, A. Anderson, C. Hendrickson, Extreme Programming Installed, Addison Wesley, Upper

Saddle River, NJ, 2001.

[37] L. Crispin, J. Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, Addison-

Wesley, Upper Saddle River, NJ, 2009.

[38] M.E. Nordberg III, Managing code ownership, IEEE Softw. 20 (March–April 2003) 26–33.

http://www.ie.lehigh.edu/
http://www.agileAlliance.org
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://standards.ieee.org/reading/ieee/std_public/description/se/610.12-1990_desc.html

AGILE SOFTWARE DEVELOPMENT METHODOLOGIES AND PRACTICES 43
[39] J.O. Coplien, N.B. Harrison, Organizational Patterns of Agile Software Development, Pearson

Prentice Hall, Upper Saddle River, NJ, 2005.

[40] T. DeMarco, Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency, Broadway,

New York, NY, 2002.

[41] M.E. Fagan, Advances in software inspections to reduce errors in program development, IBM Syst. J.

15 (1976) 182–211.

[42] D. Hamlet, J. Maybee, The Engineering of Software, Addison Wesley, Boston, 2001.

[43] W.S. Humphrey, Introduction to the Personal Software Process, Addison-Wesley, Reading, MA,

1997.

[44] C. Wohlin, A. Aurum, H. Petersson, F. Shull, M. Ciolkowski, Software inspection benchmarking—

a qualitative and quantitative comparative opportunity, in: IEEE Symposium on Software Metrics,

Ronneby, Sweden, 2002, pp. 118–127.

[45] S. McConnell, Daily build and smoke test, IEEE Softw. 13 (1996) 144.

[46] S. McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft Press, Redmond,

WA, 1996.

[47] E. Karlsson, L. Andersson, P. Leion, Daily build and feature development in large distributed

projects, in: International Conference on Software Engineering, Limerick, Ireland, 2000,

pp. 649–658.

[48] J. Vanhanen, H. Korpi, Experiences of using pair programming in an Agile project, in: 40th Annual

Hawaii International Conference on System Sciences (HICSS) 2007 Hawaii, 2007, p. 274b.

[49] M. Cohn, Agile Estimating and Planning, Prentice Hall, Upper Saddle River, NJ, 2006.

[50] N.C. Haugen, An empirical study of using Planning Poker for user story estimation, in: Agile 2006,

Minneapolis, MN, 2006, 9pp (electronic proceedings).

[51] K. Mol�kken-�stvold, N.C. Haugen, Combining estimates with Planning Poker—an empirical

study, in: Australian Software Engineering Conference (ASWEC’07), Melbourne, Australia, 2007,

pp. 349–358.

[52] E. Derby, D. Larsen, Agile Retrospectives: Making Good Teams Great, Pragmatic Programmers,

Raleigh, NC, 2006.

[53] T. Allen, Managing the Flow of Technology, MIT Press, Boston, 1984.

[54] G.M. Olson, J.S. Olson, Distance matters, Hum. Comput. Interact. 15 (2001) 139–179.

[55] T. Bhat, N. Nagappan, Evaluating the efficacy of test-driven development: Industrial case studies,

in: ACM/IEEE International Symposium on Empirical Software Engineering, Rio de Janeiro, Brazil,

2006, pp. 356–363.

[56] N. Nagappan, E.M. Maximilien, T. Bhat, L. Williams, Realizing quality improvement through test

driven development: results and experiences of four industrial teams, Empirical Softw. Eng.

13 (June 2008) 289–302.

[57] J. Sanchez, L. Williams, M. Maximilien, A longitudinal study of the test-driven development

practice in industry, in: Agile 2007, Washington, DC, 2007, pp. 5–14.

[58] L. Williams, G. Kudrjavets, N. Nagappan, On the effectiveness of unit test automation at Microsoft,

in: International Symposium on Software Reliability Engineering, Mysuru, India, 2009, pp. 81–89.

[59] U.G. Gupta, R.E. Clarke, Theory and applications of the Delphi technique: a bibliography (1975–

1994), Technol. Forecast. Soc. Change 53 (1996) 185–211.

[60] B. Boehm, C. Abts, S. Chulani, Software development cost estimation approaches—a survey, Ann.

Softw. Eng. 10 (November 2000) 177–205.

[61] D. Bellin, S.S. Simone, The CRC Card Book, Addison-Wesley, Reading, MA, 1997.

[62] K. El Emam, Finding Success in Small Software Projects, Agile Project Management 4, 2003,

http://www.cutter.com/project/fulltext/reports/2003/11/index.html.

http://www.cutter.com/project/fulltext/reports/2003/11/index.html

44 L. WILLIAMS
[63] P. Abrahamsson, Extreme programming: first results from a controlled case study, in: 29th EURO-

MICRO Conference, Belek, Turkey, 2003.

[64] J. Grenning, Launching extreme programming at a process-intensive company, IEEE Softw.

18 (November/December 2001) 27–33.

[65] L. Layman, L. Williams, L. Cunningham, Exploring extreme programming in context: an industrial

case study, in: Agile Development Conference, Salt Lake City, UT, 2004, pp. 32–41.

[66] L. Layman, L. Williams, L. Cunningham, Motivations and measurements in an Agile case study,

J. Syst. Archit. 52 (11) (2006) 654–667.

[67] L. Williams, W. Krebs, L. Layman, A. Antón, P. Abrahamsson, Toward a framework for evaluating

extreme programming, in: Empirical Assessment in Software Engineering (EASE) 2004, Edinburgh,

Scotland, 2004, pp. 11–20.

[68] J. Drobka, D. Noftz, R. Raghu, Piloting XP on four mission-critical projects, IEEE Softw. 21 (2004)

70–75.

[69] L. Layman, L. Williams, D. Damian, H. Buresc, Essential communication practices for extreme

programming in a global software development team, Info. Softw. Technol. (TBD) 48 (9) (2006)

781–794.

[70] W. Wood, W. Kleb, Exploring XP for scientific research, IEEE Softw. 20 (2003) 30–36.

[71] A. Martin, R. Biddle, J. Noble, The XP customer role in practice: three studies, in: Agile Develop-

ment Conference, Salt Lake City, UT, 2004.

[72] M. Fowler, UML Distilled, third ed., Addison Wesley, Reading, MA, 2004.

[73] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison

Wesley, Reading, MA, 1999.

[74] X. Ge, R.F. Paige, F.A.C. Polack, H. Chivers, P.J. Brooke, Agile development of secure web

applications, in: 6th International Conference on Web Engineering, Palo Alto, California, 2006,

pp. 305–312.

[75] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, S. Vishal, Fully distributed Scrum: linear

scalability of production between San Francisco and India, in: Agile 2009, Chicago, IL, 2009,

pp. 277–282.

[76] E. Uy, N. Ioannou, Growing and sustaining an offshore Scrum engagement, in: Agile 2008, Toronto,

Canada, 2008, pp. 345–350.

[77] A. Shalloway, J.R. Trott, Lean–Agile Pocket Guide for Scrum Teams, Net Objectives, Bellevue,

WA, 2009.

[78] S.W. Ambler, Agile Modeling, Wiley, New York, NY, 2002.

[79] P. Kroll, P. Kruchten, The Rational Unified Process Made Easy: A Practitioner’s Guide to the RUP,

Addison Wesley, Boston, 2003.

A Picture from the Model-Based
Testing Area: Concepts,
Techniques, and Challenges
ADVAN

ISSN: 00
ARILO C. DIAS-NETO
Computer Science Department, Federal University of
Amazonas, Brazil
GUILHERME H. TRAVASSOS
Experimental Software Engineering Group,
PESC/COPPE, Federal University of
Rio de Janeiro, Brazil
Abstract
Model-Based Testing (MBT) represents a feasible and interesting testing strat-

egy where test cases are generated from formal models describing the software

behavior/structure. The MBT field is continuously evolving, as it could be

observed in the increasing number of MBT techniques published at the technical

literature. However, there is still a gap between researches regarding MBT and

its application in the software industry, mainly occasioned by the lack of

information regarding the concepts, available techniques, and challenges in

using this testing strategy in real software projects. This chapter presents infor-

mation intended to support researchers and practitioners reducing this gap,

consequently contributing to the transfer of this technology from the academia

to the industry. It includes information regarding the concepts of MBT, charac-

terization of 219 MBT available techniques, approaches supporting the selection

of MBT techniques for software projects, risk factors that may influence the use

of these techniques in the industry together with some mechanisms to mitigate

their impact, and future perspectives regarding the MBT field.
CES IN COMPUTERS, VOL. 80 45 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)80002-6 All rights reserved.

46 A.C. DIAS-NETO AND G.H. TRAVASSOS
1.
 I
ntroduction . 46
2.
 M
odel-Based Testing . 47
2
.1. C
oncepts and Background Regarding MBT 47
2
.2. M
BT Process and Overview of MBT Technique 48
2
.3. B
enefits in Using MBT . 50
2
.4. L
ack of Transferring MBT Technologies into the Software Industry 51
3.
 M
BT Techniques: A Systematic Review 53
3
.1. S
ystematic Review Planning and Execution 53
3
.2. M
BT Techniques Analysis . 55
3
.3. C
haracterization of the Selected MBT Techniques 62
3
.4. S
electing MBT Techniques for Software Projects 62
4.
 C
hallenges in Using MBT Techniques in Software Projects 84
4
.1. R
isk Factors Associated to the Use of MBT Techniques in Software Projects 84
4
.2. M
itigating the Risk Factors in Software Projects 94
5.
 C
onclusions and Future Perspectives . 96
5
.1. F
inal Considerations . 96
5
.2. F
uture Perspectives . 98
A
cknowledgments . 99
R
eferences . 119
1. Introduction

Software testing consists in an experimental investigation conducted to provide

information for users and stakeholders about the quality of the software under test in

the context where it will be deployed. It includes the process to run a software system

aiming at to reveal failures [1]. According to Juristo et al. [2], software testing can be

considered one of the most expensive activities in the software development process.

Considering all issues concerned with testing planning and design [3], it would be

interesting to think about how to simplify or automate the execution and regression

(reexecution after changes in the software or its specification) of tests, because the

test cases generation activity would be the one that impacts more the testing cover-

age. According to Myers [4], one of the main factors influencing the software testing

costs would be the number of identified test cases due to its relation to the resources

that must be allocated for the generation and execution of each one of them.

There are several testing strategies that may be applied to generate test cases for a

software project, such as code-based (test cases generation from software source code),

specification-based (test cases generation from software specification), or model-based

A PICTURE FROM THE MODEL-BASED TESTING AREA 47
(test cases generation from software models) testing strategies, each one with its

specific characteristics, challenges, advantages, and disadvantages. All of these char-

acteristics should be consideredwhile selecting and applying one of these strategies in a

software project. Despite the importance of all these testing strategies for the success of

a software project, this chapter is focused exclusively onModel-Based Testing (MBT).

According to Dalal et al. [5], MBT consists in a feasible strategy to control the

software quality by reducing the testing process costs, because test cases can be

generated from the artifacts (models) produced throughout the software development

process. The MBT application makes possible to software engineers to apply an

additional verification to the models developed throughout the software development

before they can be delivered to the next process stages. By using these models for test

cases generation theymust be correct to assure the success of testing. Therefore,MBT

can contribute for the software quality not just by running the test cases after software

coding but also by allowing the model verification while generating the test cases set.

The intention of this chapter is to provide information regarding MBT that could

allow software engineers to decide on the use of such testing strategy for their software

projects. This text represents a summary of a comprehensive investigation regarding the

selection of MBT techniques best suited for software projects [6]. On the basis of the

results of a secondary study (systematic review) [7], 219 MBT techniques are high-

lighted. So far, this set can represent a picture of the state-of-the-art of such testing until

8/2009. Besides, some indications about risks on using MBT in software projects and

suggestions of approaches that could support the decision aboutwhichMBT techniques

could be used for a software project are also presented. This chapter is organized as

follows: Section 2 presents the concepts concerned with MBT, the benefits introduced

by this testing strategy, and the main difficulties reported at the technical literature

regarding the MBT strategy in software projects. Section 3 describes the planning and

results analysis of a systematic review that made possible the identification and charac-

terization of 219MBT techniques published at the technical literature from years 1990

until 8/2009. Besides, this section also includes the description of three approaches to

support the selection ofMBT techniques for software projects. Section 4 suggests some

risks to bemitigated by researchers and software engineers aiming at to take advantage

of the main benefits provided by the MBT strategy adoption of MBT in a software

project. Finally, Section 5 presents the final considerations, conclusions, and further

perspectives in the MBT field.
2. Model-Based Testing

2.1 Concepts and Background Regarding MBT

The use ofmodels to represent a software system for tests generation and execution

has been an area of study since at least 1976, when Ramamoorthy et al. [8] published

a scientific paper describing the seminal technique for test-data generation.

48 A.C. DIAS-NETO AND G.H. TRAVASSOS
In this approach, given a program graph for a FORTRAN program, a set of paths can

be identified satisfying some given testing criteria. In 1978, Chow published a

scientific paper describing a MBT technique adopting the control-flow criterion to

evaluate software correctness from its representation by a finite state machine [9].

Since then, a number of different definitions regarding MBT have been presented.

According to Utting and Legeard [10], MBT consists in a testing strategy where test

cases are derived totally or partially from a model describing some aspects (e.g.,

functionality, security, performance, etc.) of a software system. In order to make

feasible its use, it is necessary to have software behavioral or structural explicitly

described by models designed with well-defined rules, such as formal models, finite

state machines, UML diagrams, among others.

According to Dalal et al. [5], MBT depends on three key elements: the model used
for the software behavior/structure description, the test-generation algorithm
(criteria), and the tools that provide supporting infrastructure for the tests (including
expected outputs). However, the MBT strategy usually still includes support to

different testing levels (e.g., unit, integration, or system testing), the relationship

between models and source code, and a discussion regarding what can be automated

during the testing [11].

Despite some contexts confoundsMBT with Test Case Generation, it is important

to make clear the difference between these definitions to improve the MBT under-

standing.MBT uses models developed throughout the software development process

that are adapted by the testing team for automatic test cases set generation. On the

other hand, Test Case Generation is just one possible task composing the testing

process, and it may or may not be performed using formal software models.
2.2 MBT Process and Overview of MBT Technique

AMBT technique represents an instance of the MBT strategy described in Fig. 1.

It includes the definitions of some important characteristics concerned with MBT

techniques, such as the type of model (notation) that must be used to represent the

software behavior/structure, the test-generation criteria available in the technique,

and the outputs generated by the technique. The specific activities associated to

MBT are described below:

1. Build the software model (one of the main differences when compared to the

other testing strategies).

2. Generate test cases.
a. Generate inputs.

b. Generate expected results or behaviors.

1. Build the
software model

2. Generate test
cases

3. Run test
cases

4. Compare
the results

5. Decide if:
- Modifying the model
- Generating more tests
- Stopping the tests
- Estimating reliability

Behavioral/
structural model

Test
oracle

System under test and
test infrastructure

Approved tests and
reported incidents

Software
artifacts

Test
cases

Obtained
results

FIG. 1. MBT activities (adapted from Ref. [12]).

Textual software
specification

1. Finite-state machine
modeling

3. Select test
generation criterion (all-
transitions, all-states)

4. Test cases
generation process

Test
results

Test suit (set of test cases)

5. Test cases
execution process

2. Checking the model

0–9

0–9

a-d

n-z

a, b, c

o-z
a-1

a

g

432

1

5 6

8

7

n, m

FIG. 2. Example of MBT technique.

A PICTURE FROM THE MODEL-BASED TESTING AREA 49
3. Run tests.

4. Compare obtained and expected results.

5. Decide further actions (modifying the model, generating more tests, stopping

tests, or estimating software reliability/quality).

Figure 2 presents one example of a hypothetical MBT technique that allows

deriving finite state machine models from the requirements specification. In this

MBT technique, the input artifact is represented by the software specification

written in a textual format. From this input, it is necessary to follow some steps:

1. Modeling a finite state machine. It is the model/notation used to represent the

software behavior.

50 A.C. DIAS-NETO AND G.H. TRAVASSOS
2. Checking the model, by executing an algorithm implemented in the MBT

technique to evaluate if the constructed finite state machine model in step 1 is

in accordance with the rules defined to generate test cases, for instance,

analyzing if all states are connected or if there is at least one final state.

If the model’s validation rules are not attended, the MBT technique cannot

follow to the next steps.

3. If the constructed model is correct, the MBT technique provides two test-

generation criteria to be chosen by the testing team: (1) all-transitions that will
generate test cases evaluating all transitions included in the finite state

machine at least once or (2) all-states that will evaluate all states composing

the model at least once.

4. Continuing, the MBT technique executes an algorithm to generate test cases

according to the criterion selected in the step number 3, creating a test suit.

5. After the software coding, the test suit is executed to evaluate the developed

software, generating a report with the test verdicts separating the approved and

failed test cases and describing the revealed failures.

The results obtained by a secondary study [13] indicate a continuous evolution of

MBT strategies and techniques along the years. This study was able to characterize

71 MBT techniques from the years 1990–1998/2006. As observed, these techniques

use different models to represent the software, and these models usually describe

different software characteristics. This scenario makes the identification, selection,

and using of MBT techniques in software projects a hard decision-making task.

An updated perspective based on the re-execution of Dias-Neto et al. [13] will be

discussed in Section 3.

2.3 Benefits in Using MBT

The use of the MBT strategy may introduce several benefits for the testing process

in a software organization, such as:

l Lower cost and effort for testing planning/execution and shorter testing sched-

ule, because software engineers may reuse artifacts already built throughout the

software development process that need to be just extended to provide the

automatic test case generation;

l Improvement of the final product quality, because we are using models repre-

senting the software behavior/structure as an oracle for testing. Besides, soft-

ware engineers can have the testing process almost fully automated;

l Facilities in the communication between the development and testing teams,

because software engineers can use the same representation format (model) in

the same abstraction level to exchange information about the software project;

A PICTURE FROM THE MODEL-BASED TESTING AREA 51
l Support the exposition of ambiguities in the software specification and design,

because software engineers can make an anticipated checking in the artifacts

used as input for the test cases generation before defects can propagate in the

next software development activities;

l Capacity of automatically generating and running a lot of useful and nonrepe-

titive (nonredundant) tests, because the generation is always based on

predefined test-generation criteria and it is performed without any intervention;

l Facilities for updating the test cases set after the software artifacts used to build the

software model changes, because when a new software model version is devel-

oped, the generation of new test cases can be automatically accomplished, and;

l Capacity of evaluating regression testing scenarios, because the execution of

test cases may happen automatically in any time with low effort.
2.4 Lack of Transferring MBT Technologies into the
Software Industry

Looking specifically at the MBT field, at the same time we can observe research

producing interesting results regarding the development of new techniques and

infrastructures to support MBT, there is a lack of scientific knowledge regarding

these techniques, making hard their transferring to the software industry. According

to Dias-Neto et al. [13], some factors observed in the technical literature seem to

contribute for this scenario:

l High number of MBT techniques available at the technical literature; however,
poor scientific knowledge (evidence) published regarding these techniques

In the survey published by Dias-Neto et al. [13] more than 200 scientific papers

were identified describing MBT techniques published at the technical literature. In

this survey, they observed each MBT technique has different characteristics when

compared to other identified MBT techniques. On the other hand, they observed the

most of MBT techniques has not been experimentally evaluated. Similar behavior

has been observed by Juristo et al. [2] and Vegas and Basili [14] in the context of

general testing techniques. This scenario highlights the need of obtaining scientific

knowledge regarding the performance, scalability, effectiveness, and complexity

of such techniques to support the technology transfer regarding the application of

MBT from the academic to the industrial environment, motivating its use in software

projects.

52 A.C. DIAS-NETO AND G.H. TRAVASSOS
l Inexistence of an updated body of knowledge regarding MBT techniques into
the context of a software organization

It would be interesting to provide a body of knowledge containing information

regarding performance, scalability, effectiveness, complexity, and others character-

istics of MBT techniques contextualized for a software organization scenario. How-

ever, one challenge would be to keep the information regarding the MBT techniques

always updated and correct, allowing the decision-making regarding the selection

and application of MBT techniques for a software project more reliable.

l Existence of external factors influencing the application of MBT techniques in
software projects

The evaluation of MBT techniques presented in their original papers is usually

performed using small examples and contextualized to a specific scenario defined by

their researchers usually not integrated into a real software development process.

However, in real software projects, testing is one activity that must be integrated into

the software development process. Moreover, testing must be in accordance with a set

of factors imposed by the software project planning, like schedule, budget, and team.

From these factors, we could observe at the technical literature the existence of a

set of risk factors that may influence on the selection and application of MBT

techniques in software projects. These factors indicate scenarios included in the

testing process that are not included in the scope of a MBT technique. However, they

need to be managed and considered in the moment of selecting and using a MBT

technique because they can make unfeasible the test cases generated for a software

project. These factors will be presented in the Section 4.1 of this chapter.

l Each software project is unique and has specific characteristics

Another aspect that makes difficult the application of MBT techniques in software

projects is associated to the fact of each software project usually has specific char-

acteristics, what makes it different from any other software project already developed

by the software organization. Moreover, we can observe that usually MBT techniques

are constructed to attend the specific context idealized by their developers, requiring

the conduction of experimental studies aiming at to observe the behavior of these

techniques in different contexts and under different conditions.

However, in order to know how to deal with these different aspects during the

application of MBT techniques, we need to know which MBT techniques are

available to be applied to software projects. Therefore, the next section updates

the results of a systematic review conducted with the purpose of identifying and

characterizing MBT techniques published at the technical literature from years

1990 to 2009.

A PICTURE FROM THE MODEL-BASED TESTING AREA 53
3. MBT Techniques: A Systematic Review

It was planned and executed a systematic review with the purpose of identifying

and characterizing MBT techniques published at the technical literature. A protocol

was defined to support the primary studies’ search and analysis. This protocol was

executed in two different moments: August/2006 (first execution) and August/2009

(MBT techniques set updating).

The systematic review protocol was developed following the guidelines published

by Biolchini et al. [7]. In this section, it will be presented details regarding the

planning, execution, and results analysis of this systematic review, and the complete

list of identified MBT techniques.

The identified and selected MBT techniques were quantitatively and qualitatively

analyzed. It is important to highlight that the goal of this systematic review was not

to compare the quality of the different techniques, but just to extract information

from the scientific papers according to the text published by their authors and

classify the MBT techniques accordingly. Because it represents a characterization

study, without exploring comparison neither meta-analysis, we could refer to it as

quasi-systematic review [15].

3.1 Systematic Review Planning and Execution

The steps followed to plan this systematic review were the definition of goal and

research questions, selection of sources, definition of search strings and papers

inclusion/exclusion criteria, and definition of the strategy to classify and extract

information from the selected papers, summarized below:

l Goal: characterizing MBT techniques published at the technical literature.

l Research Question: which are the MBT techniques available at the technical

literature and what are their main characteristics?

l Sources: six digital libraries—ACM Digital Library, Compendex IE, IEEEX-

plorer, INSPEC, SCOPUS, and Web of Science. It is important to highlight that

some books are very relevant in the MBT field (such as Refs. [10, 16, 17] were

not included as sources, because the purpose of this systematic review would be

to make possible the results repetition among the different executions, and we

cannot assure every software engineers would have access to the cited books.

l Search String: (approach or method or methodology or technique) and (("model

based test") or ("model based testing") or ("model driven test") or ("model

driven testing") or ("specification based test") or ("specification based testing")

or ("specification driven test") or ("specification driven testing") or ("use case

54 A.C. DIAS-NETO AND G.H. TRAVASSOS
based test") or ("use case based testing") or ("use case driven test") or ("use case

driven testing") or ("uml based test") or ("uml based testing") or ("uml driven test")

or ("uml driven testing") or ("requirement based test") or ("requirement based

testing") or ("requirement driven test") or ("requirement driven testing") or ("finite

state machine based test") or ("finite state machine based testing") or ("finite state

machine driven test") or ("finite state machine driven testing")) and (software).

In order to classify the identified scientific papers, five categories were adopted to

separate papers describing MBT techniques using UML diagrams from those papers

describing MBT techniques not using UML. Moreover, the categories separate

papers describing MBT techniques applied for functional testing from those applied

for structural testing (Fig. 3).

A. Model representing information from software requirements (functional test-

ing), described by UML diagrams.

B. Model representing information from software requirements, described using

any non-UML notation.

C. Model representing information from software internal structure (architecture,

components, interfaces, units; structural testing), described by UML diagrams.

D. Model representing information from software internal structure, described

using any non-UML notation.

E. Papers collected during the search, however unrelated toMBT.This categorywas

included because eventually the digital engines used for searching may return

papers containing the search strings, but for different contexts when compared

with the goal of this systematic review.Therefore, these papersmust be excluded.

Considering the two executions of this protocol, at total we identified 599

publications (Table I). However, 328 papers were excluded because their scopes were

not related to this study, they were duplicated, or they were not electronically available.

The inclusion criteria used to identify the papers were

l The paper must be available in the Web (digital libraries or technical data-

bases), because we need to access the original file to extract information

regarding the MBT techniques;
Functional
testing

UML-based

[D]

[E]

[C]

[B][A]

Structural
testing

Non-UML

FIG. 3. Scientific papers categorization [18].

Table I

CLASSIFICATION OF THE IDENTIFIED PAPERS

Papers categories Number of papers Percent of papers

Category ‘‘A’’ 42 7.01

Category ‘‘B’’ 116 19.36

Category ‘‘C’’ 37 6.17

Category ‘‘D’’ 76 12.68

Category ‘‘E’’ or Not classified 328 54.75

Total 599 100

A PICTURE FROM THE MODEL-BASED TESTING AREA 55
l The paper must be written in English;

l The paper must describe model-based software testing techniques, which is the

focus of this systematic review;

l The paper must have been published from 1990. This year has been identified

because it landmarks the publication of UML. Thus, we can classify MBT

techniques as UML or non-UML considering the same period.

Not considering the papers in Category ‘‘E’’ because they do not relate with the

description of MBT techniques, we totalized 271 remained papers. In Appendix A,

it is described the list of 271 selected papers and their references. Among these

papers, all of them were analyzed and they described 219 different MBT techniques,

76 UML-based MBT techniques, and 143 non-UML MBT techniques. The distribu-

tion of the selected papers (Categories ‘‘A’’–‘‘D’’) by publication per year is

presented in Fig. 4, where it is possible to observe the increasing number of papers

describing MBT techniques in the last years.

After the identification, selection, and classification, the next performed step was

to extract the information regarding the MBT techniques from the selected paper.

The list containing the 29 attributes used to extract information from each paper is

described in Table II.

After the extraction of information from each MBT technique, they were analyzed

considering different perspectives.
3.2 MBT Techniques Analysis

Firstly, we performed a statistical analysis regarding several aspects, such as type

of experimental evidence obtained from each MBT technique, testing levels they are

able to evaluate, the use of support tools, nonfunctional requirements (NFR) cate-

gories evaluated by MBT techniques, type of models used by MBT techniques, and

the software execution platform.

(*) This systematic review was re-executed in August/2009. Therefore, only scientific
papers published and available until this month could be identified.

(*
)

19
90

0

5 1 1 2 3
5

1
5

7

16
13

11 12

17

25

31

37

32
35

6

11

10

15

20

25

30

35

40
19

91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Amount of selected papers per year (Total 271 papers)

FIG. 4. Distribution of papers by publication year.

56 A.C. DIAS-NETO AND G.H. TRAVASSOS
l Analysis per Type of Experimental Evidence

To determine how much evidence has been published regarding the usefulness of

these MBT techniques, we categorized the papers according to the level of evidence

they presented. In this analysis, we used the same five type of evidence’s levels

defined by Ref. [13] to make explicit that lessons learned and experiences from the

field—not just academic studies—provide useful evidence. The categories are

l Speculation: These papers describe MBT techniques without presenting any

study or example that would indicate their feasibility in software projects.

l Example: These papers describe MBT techniques and examples of their use.

However, they provide no evaluation criteria against which to compare the

described approach’s performance.

l Proof of concept: These papers describe the use of a MBT technique for a

‘‘toy’’ system or a project without commercial pressure. Some measures might

be collected that show that the approach can be successfully applied, but not

necessarily its effectiveness.

l Experience/industrial reports: These papers describe real team developing

software in industry using the MBT technique, and include some measures or

subjective opinions to understand its utility.

l Experimentation: These papers evaluate the MBT technique in some detail

through an experimental study (such as a case study, rigorous observation of

Table II

INFORMATION EXTRACTED FROM PAPERS DESCRIBING MBT TECHNIQUES

List of collected fields regarding MBT Techniques (alphabetical order)

Abstract

Approach description

Authors

Behavioral/structural model used for test generation

Category (A, B, C, D, or E)

Complexity level of each nonautomated steps

Existence of a model checker

Existence of a traceability mechanism

Inputs required to be used

Limitation/restriction to be used

List of automated and nonautomated steps

Needs of external tools

Programming Language of systems that can be evaluated (e.g., Java, Cþþ, Ruby, .Net)

Results generated by the technique

Skills required to be used

Software development paradigm

Software execution platform (e.g., web application, embedded system)

Software Quality Characteristics the technique is able to evaluate (e.g., functionality,

performance, security)

Source (e.g., Conference, Journal, University)

Supporting tool (name, cost, and platform)

Test cases generation criteria

Testing level (e.g., System, Integration, Unit, Regression)

Tests coverage criteria

Test modeling technology (e.g., UML, Z Language, ADA Language)

Title of paper

Type of failures that can be revealed

Type of experimental evaluation (speculation, example, proof of concept, experience/industrial reports,

experimentation)

Type of testing technique (e.g., functional, structural, error-based)

Use of intermediate model

A PICTURE FROM THE MODEL-BASED TESTING AREA 57
developers, or evaluations against a control approach). They include measures

and analyses regarding the results in a specific environment.

Table III shows our results from the literature review, divided according to the

type of evidence obtained from the MBT techniques.

Looking at Table III, we can see that most MBT techniques evidences fall into the

proof of concept or example categories (�70%), and a small number of MBT

techniques have been evaluated by experimental studies or industrial experience

Table III

TYPES OF EVIDENCES CONCERNED WITH MBT TECHNIQUES

Type of evidence Number of MBT techniques Percent of MBT techniques

Speculation 42 19.17

Example 63 28.76

Proof of concept 90 41.09

Experience/industrial reports 5 2.28

Experimentation 19 8.67

Total 219 100

Table IV

ANALYSIS OF MBT TECHNIQUES PER TESTING LEVEL

Testing levels # MBT techniques

System 155 (71%)

Integration 34 (15%)

Unit 35 (16%)

Regression 7 (3%)

58 A.C. DIAS-NETO AND G.H. TRAVASSOS
reports (�11%). These results suggest we have poor evidence regarding the use of

MBT techniques in loco, and most of the evaluations are performed by who

developed the approaches in small and specific scenarios, where the powerful of

the obtained evidence is lower.

l Analysis per Testing Level

MBT techniques were characterized based on the testing level they can be

applied. This information is very important to visualize the scope where researches

on MBT have been developed.

Tests can be applied to small software units (Unit Testing), unit’s collection (Integra-
tion Testing), or the entire system (System Testing). MBT may support the testing

activities for all levels and in different ways. Moreover, Regression Testing may

be performed with more simplicity, because in the case of changes in the model

(or specification), new test cases may be generated from the automatic generation

process. Table IV describes the results of theMBT techniques analysis per testing level.

MBT was originally designed for System Testing, justifying the high number of

MBT techniques applied to this testing level (71%1). Continuing, MBT techniques
1 The sum of MBT techniques in Table IV is a number greater than 219, because there are techniques

that may be applied to more than one testing level.

A PICTURE FROM THE MODEL-BASED TESTING AREA 59
are more applied to other testing levels, like Unit (16%), Integration (15%), and

Regression (3%) testings. Unit Testing is not a popular abstraction level in MBT yet,

because the purpose of this testing level is to test small modules, functions, or

classes after their coding. Moreover, there are a lot of sounded techniques supporting

structural testing from source code.

Regression Testing would not be, at first, considered a testing level because it

represents a strategy to re-execute test cases that can be applied in all testing levels.

However, some MBT techniques were specifically designed to support regression

testing without indicating for which testing levels it could be applied. This is the

reason regression testing has been classified as a different category to be able to

include these specific MBT techniques.

l Analysis per the Use of Supporting Tool

The MBT techniques were also characterized according to the existence or not of

a CASE tool supporting the test cases generation process. CASE tools may reduce

the cost and effort for the application of MBT techniques, because some steps can be

automated, simplifying the technique use. Table V presents the analysis results per

supporting tool, where we can observe about 70% of the identified MBT techniques

indicate the existence of a supporting tool. For the other techniques it was not

possible to identify the existence of tools, because it was not identified any record

in the selected papers.

However, besides the high number of MBT techniques using supporting tools, a

more detailed analysis identified most of these tools are prototypes, possibly not

representing products ready to be used in industrial software projects.

l Analysis per Nonfunctional Requirements (NFR)

Software requirements can be functional or nonfunctional [19]. Functional

requirements define scenarios and functionalities to be provided by the software

during its execution. On the other hand, NFR are essentials to define architectural

aspects and restrictions during the software development. Both need to be tested,

however, the test cases generation from NFR is sometimes not performed. Table VI

presents an analysis of MBT techniques considering their evaluation of different

NFR categories.

The NFR categories considered in this analysis were defined using the ISO-9126

(2001) standard that defines software quality attributes classified in six groups
Table V

ANALYSIS OF MBT TECHNIQUES PER SUPPORTING TOOLS

Use supporting tool Not cited

153 (69.86%) 66 (30.14%)

Table VI

ANALYSIS OF MBT TECHNIQUES THAT EVALUATE NFR CATEGORIES

Nonfunctional requirements categories

(according to ISO-9126) Total

Efficiency 27

Usability 6

Reliability 2

Maintainability 0

Portability 0

Security 16

60 A.C. DIAS-NETO AND G.H. TRAVASSOS
(Functionality, Reliability, Usability, Maintainability, Portability, and Efficiency).
However, the group Functionality is composed of others subcategories, including

NFR (e.g., security). Therefore, only the Functionality’s subcategory Security was

used to classify NFR in this work. Thus, the categories adopted in this work are

efficiency, reliability, usability, maintainability, portability, and security.

From Table VI, we can observe most of MBT techniques able to evaluate NFR are

applied to support efficiency requirements evaluation. At total, 27 MBT techniques

use description of efficiency in the software models to provide test cases generation.

Most of these MBT techniques are used to evaluate software response-time (perfor-

mance). Moreover, 16 MBT techniques use security requirements during test cases

generation, 6 MBT techniques are applied to usability evaluation, and two techni-

ques evaluate reliability.

l Analysis per model used to represent software behavior/structure

The model used to represent the software behavior or structure is an important

element in the study of MBT. The model defines the limitation of each technique

based on the type of information it is able to represent about the software under test.

Sometimes the model used for a software domain is not adequate to another domain.

Table VII counts the type of models used by MBT techniques, classifying them as

UML models or non-UML models.

Among the UML diagrams, the most adopted by the MBT techniques, in this

order, are Statecharts, Classes, and Sequence Diagrams, followed by the other UML

diagrams. Among the non-UML models, the most adopted are Finite State

Machines, Z Language Specifications, Graphs, Markov Chains, and XML Files.

l Analysis per Software Execution Platform

According to the literature, certain specialized software categories use MBT.

In Table VIII, we analyze the categories of software where MBT techniques can

Table VIII

ANALYSIS OF MBT TECHNIQUES PER SOFTWARE CATEGORIES

Software Categories (*)

Number of MBT techniques

UML-based Non-UML Total

Not defined 42 65 107

Embedded system 5 18 23

Real-Time system 1 15 16

Reactive system 1 14 15

Safety-critical software 4 9 13

Distributed system 5 6 11

Web application 5 5 10

Web service 3 5 8

Concurrent system 2 5 7

COTS 5 1 6

Software product line 2 3 5

SIM smart card 1 3 4

Information system 2 1 3

Aircraft control system 0 2 2

Operating system 0 2 2

Telecommunication system 0 2 2

Medical system 1 0 1

Nondeterministic system 0 1 1

Synchronous software 0 1 1

*These categories are not orthogonal; some MBT techniques

fall under multiple ones.

Table VII

ANALYSIS OF MBT TECHNIQUES PER TYPE OF MODELS

UML models Non-UML models

76 (34.70%) 143 (65.30%)

A PICTURE FROM THE MODEL-BASED TESTING AREA 61
be applied. A high number of MBT techniques (49%) do not indicate a software

system category to which developers could apply them.

Table VIII shows that domains in which we find most of the examples of

non-UML techniques demand high reliability or require the system to react

within certain constraints, such as embedded systems, real-time, or safety-critical

systems. Looking at UML-based techniques, we can observe they are applied for

62 A.C. DIAS-NETO AND G.H. TRAVASSOS
wider ranging software categories, including more recent software development

categories, such as web applications, web services, and COTS.
3.3 Characterization of the Selected MBT Techniques

This section describes the selected MBT techniques characterization, presenting

their category (A–D), testing level that they are applied to, software category,

models used for test cases generation, indication of supporting tool, the categories of

NFR evaluated by each MBT technique, and the complexity level of nonautomated

steps composing the MBT techniques tests generation process. All MBT techniques

have at least one nonautomated step, however, this(these) step(s) may require different

complexity levels to be executed. Therefore, the column ‘‘complexity level’’ is

represented using icons meaning Low, Medium, or High, according to the next

explanation:

l Low (): composed basically of automated steps or manual steps where the

testing team task is just to select small options (e.g., selecting test cases generation

criterion or which test cases should be executed) available by theMBT technique.

l Medium (!): composed basically of manual steps requiring more effort to be

executed, like intermediate model construction/generation or test-data defini-

tion. Several MBT techniques use intermediate models throughout the test

cases generation process, but in most cases they are automatically generated

(low complexity). When this generation is manually done, the step effort

complexity would be medium;

l High (): composed basically of manual steps requiring high complexity, like

manual transformations between models, because this task consists in the

application of transformation rules and restrictions to derive a model, making

the test cases generation process a very hard task in the software project.

Table IX presents a summary of the characterization of 219 MBT techniques

identified by this systematic review. The list of references for these MBT techniques

is presented in Appendix A.
3.4 Selecting MBT Techniques for Software Projects

Besides the large number of available MBT techniques, an additional difficulty

when selecting MBT techniques to be used in a software project would be to identify

which characteristics of MBT techniques should be considered to support the

decision-making. In a survey conducted in 2006, 144 researchers and practitioners

who have published at the technical literature for the development or use of MBT

Table IX

CHARACTERIZATION OF IDENTIFIED MBT TECHNIQUES

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Abdurazik and

Offutt (2000)

C System OO UML collaboration

diagram

ND No

Aichernig and

Delgado (2006)

B Unit Concurrent system Specifications in input–

output labeled

transaction system

Yes No

Al-Amayreh and

Zin (1999)

B System Not defined Specifications in Z and

PROLOG

Yes No

Alagar et al. (2000) B Unit Reactive and real-time

system

Specifications of system

configuration and grid

automaton

Yes Efficiency

Alava et al. (2006) D Integration Web application Design view (DView) and

XML file

Yes No

Ali et al. (2005) C Integration OO UML statechart and

collaboration diagrams

and SCOTEM (State

COllaboration TEst

Model)

Yes No

Ambrosio et al.

(2007)

D System Embedded system State-based model Yes ! Efficiency

Amla and Ammann

(1992)

B Unit Not defined Z specifications ND ! No

Ammann and

Offutt (1994)

B System Not defined Z specifications ND No

Andrews et al.

(2005)

B System Web application Finite state machine Yes No

Auguston et al.

(2005)

B System Reactive and real-time

system

AEG (Attributed Event

Grammar) models

Yes No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Avritzer and

Weyuker (1994)

B System Telecommunication

system

Markov chain Yes Efficiency

Baharom and

Shukur (2008)

D Unit Not defined Interface specification

and model intern design

document

Yes No

Bai et al. (2008) A System Web service TOL (Test Ontology

Language)

Yes ! No

Barbey et al. (1996) B Unit OO CO-OPN/2 Yes No

Basanieri and

Bertolino (2000)

C Integration OO UML use case, classes,

and sequence diagrams

ND No

Bellettini et al.

(2005)

C System Web application UML statechart and

extended classes

diagrams

Yes No

Belli and Guldali

(2005)

B System Not defined Finite state machine,

linear temporal logic

Yes No

Benz (2007) B Integration Distributed system Task models Yes No

Bernard et al.

(2006)

A System Not defined UML classes, object,

statechart diagrams,

and objects constraint

language (OCL)

Yes No

Bertolino et al.

(2000)

D Integration Not defined LTS dynamic models Yes No

Bertolino and

Gnesi (2003)

B System Product line Use cases Yes No

Bertolino et al.

(2003)

C Integration Component-based system UML use cases, sequence,

and classes diagrams

Yes No

Bertolino et al.

(2005)

C Integration OO UML sequence and state-

chart diagrams, rational

complete model

Yes No

Biberstein and

Fitzgerald

(1999)

B System Real-time system DORIS/ADL models Yes Efficiency

Bigot et al. (2006) C System SIM smart card UML statechart diagram Yes ! No

Blackburn and

Busser (1996)

B System Critical system Specification model

T-VEC

Yes ! No

Boden and Busser

(2004)

D System, Unit

and

Integration

Embedded system Simulink models Yes No

Bogdanov and

Holcombe

(2001)

D System Embedded system, avi-

onic control system

Statechart diagrams Yes No

Bonifacio et al.

(2008)

D Unit Not defined Finite state machine ND No

Botaschanjan et al.

(2004)

A System OO UML object and sequence

diagrams and OCL

ND ! No

Botaschanjan et al.

(2008)

D System Automotive system and

safety-critical

AutoFOCUS task models Yes Efficiency

Bouquet et al.

(2005)

B System Smart card SIM and real-

life software

Abstract machine in B

language

Yes ! No

Bouquet et al.

(2006)

B Unit OO Specification in JML Yes No

Bouquet et al.

(2007)

A System OO UML classes, object,

statechart diagrams,

OCL expressions

Yes No

du Bousquet et al.

(1999)

D System Reactive system Environment description Yes Security

Boyd and Ural

(1991)

B System Not defined Finite state machine ND No

Briand and Labiche

(2002)

A System OO UML use casesþ activity,

sequence, collabora-

tion, classes diagrams,

and data dictionary

(OCL)

Yes No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Briand et al. (2002) A Regression OO UML classes, use cases,

and sequence diagrams

Yes No

Briand et al. (2002) C Integration OO UML classes diagram and

graph

ND No

Briand et al. (2004) C System OO UML statechart, classes

diagrams, OCL, and

transaction test

sequences

Yes No

Briand et al. (2004) C System OO UML statechart diagram

þ OCL, event/action

flow graph

ND No

Briand et al. (2006) C Unit COTS UML classes and

sequence diagrams þ
OCL, CSPE (con-

straints on succeeding

and preceding events)

restrictions and graph

Yes ! No

Brinksma (2004) B System Reactive and real-time

system

VIZ Yes Efficiency

Brito et al. (2009) C Integration and

Unit

Embedded system UML collaboration and

sequence diagrams

Yes Efficiency

Buchs et al. (2006) A System OO concurrent system Environment, conceptual,

protocol, operational

CO-OPN (concurrent

object-oriented Petri

nets) models

Yes No

Calame et al.

(2007)

A System OO UML 2.0 diagrams ND No

Carpenter (1999) A System Safety-critical system UML use cases and

sequence diagrams

ND No

Cavarra et al.

(2003)

A System OO UML classes, statechart,

object diagrams, inter-

mediate format

(ASM—Abstract state

machine)

Yes No

Chang et al. (1990) D System Distributed system Petri nets Yes Efficiency

Chang and

Richardson

(1999)

D Unit Not defined ADL specifications and

test-data description

(TDD)

Yes ! No

Chang et al. (1996) D Unit Not defined ADL specifications Yes ! No

Chen et al. (2005) A System OO UML activity diagram Yes No

Chen and Liu

(2004)

D System Not defined Specification in SOFL ND No

Chen et al. (2002) A Regression OO UML activity diagram ND No

Chen et al. (2005) D Integration Not defined Conditions data flow

diagram in SOFL

(structured object-

oriented formal

language)

ND ! No

Chetali and Nguyen

(2009)

D Unit Smart card SyncCharts, Finite state

machine

Yes No

Chevalley and

Fosse (2001)

A System Critical system UML statechart diagram Yes No

Choi (2001) B System OO Extended use cases Yes ! No

Chung et al. (1999) B System Concurrent system System specification in

MSC

Yes No

Chung et al. (1996) D Unit Not defined Basic state machine,

Compost state machine

ND No

Conrad and Krupp

(2006)

B System Embedded system Classification tree Yes No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Crichton et al.

(2001)

C System OO System model (UML

classes, object,

statechart diagrams)

and test directives

(UML object and

Statechart diagrams),

intermediate format

ND No

Dai-Zhe et al.

(2004)

C Integration Embedded system UML interaction, activity,

and statechart diagrams

ND Efficiency

Dalal et al. [5] B System Not defined Requirements described

in AETGSpec

Yes No

Dan and Aichernig

(2005)

D System Not defined RSL specification Yes No

Darmaillacq et al.

(2008)

D System Not defined Failure model ND Security

Deng et al. (2004) A System and

Regression

OO UML use cases, classes,

statechart, sequence,

collaboration, and

activity diagrams

Yes ! No

Dias and Vieira

(2000)

D Integration OO Statechart diagram Yes ! No

Donat (1997) B System Not defined Requirements

specification

Yes No

Dulz and Zhen

(2003)

C Integration Not defined UML annotated sequence

diagram and MCUM

(Markov Chain Usage

Model)

Yes No

Edwards (2000) B Integration OO Control-flow graph ND No

El-Fakih et al.

(2008)

D System Not defined Extended finite state

machine

ND ! No

Ernits et al. (2006) D System Not defined UPPAL models Yes ! No

Fraser and Wotawa

(2007)

D Unit Not defined NuSMV models Yes No

Friedman et al.

(2002)

B System Concurrent system Finite state machine Yes No

Gallagher and

Offutt (2006)

D Integration OO Component flow graph Yes No

Gargantini (2007) D System Not defined Abstract state machine Yes No

Gargantini and

Heitmeyer

(1999)

B System Not defined SCR specification (soft-

ware cost reduction)

Yes No

Gargantini et al.

(2009)

A System Embedded system Abstract state machine Yes Efficiency

Garousi et al.

(2006)

C System

(Stress Testing)

Distributed system UML classes, sequence,

context diagrams, Net

deployment and modi-

fied interaction over-

view, control-flow

model, Net intercon-

nectivity tree, Net traf-

fic standard, and inter-

SD restrictions

ND ! Efficiency

and

Reliability

Gnesi et al. (2004) C System OO UML statechart diagram

and IOLTS (transitions

labeled by input/

output-pairs)

ND No

Gross et al. (2005) C Integration OO U2TP (UML 2.0 Testing

Profile) and TTCN-3

(Testing and Test

Control Notation)

ND No

Guo et al. (2005) B System Not defined Finite state machine ND No

Gutierrez et al.

(2008)

A System Not defined UML use cases and

activity diagrams

Yes No

Hagar and Bieman

(1996)

B System Safety-critical system Anna specification Yes No

Hanna and Munro

(2007)

B System Web service Formal Abstraction model

of XML schema

Yes No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Hartman and Nagin

(2004)

A System Distributed system Combination of UML

statecharts, classes,

object Diagrams, and

XML File

Yes No

Hartmann et al.

(2000)

C Integration and

Unit

OO UML statechart diagram

and graph

Yes No

Hasling et al.

(2008)

A System Medical system UML use cases, classes,

activities, package, and

sequence

Yes No

Hayes and Sankar

(1994)

D Unit Embedded system Model in TDD (test-data

description)

ND No

Hessel and

Pettersson

(2007)

B System Embedded system Communication Net in

extended finite state

machine

Yes No

Hierons et al.

(2009)

B System Not defined Failure model in

stochastic finite

state machine

ND Efficiency

Hong et al. (2000) B System Not defined Statechart diagram and

extended finite state

machine

Yes No

Howe et al. (1997) B System Embedded system Specification in LISP Yes No

Hsia et al. (1997) B System Not defined Finite state machine based

on scenarios, Scenarios

Tree

Yes No

Hungar et al.

(2003)

B System Telecommunication

system

Finite automata Yes No

Ipate and

Holcombe

(2005)

B Unit OO X stream machines, finite

state machine

ND No

Jategaonkar et al.

(1998)

B System Reactive system Finite state machine Yes ! Security

Jeannet et al.

(2007)

B System Reactive system Specifications in input/

output symbolic transi-

tion systems (ioSTS)

Yes No

Jia et al. (2008) A System Web application UML activity diagram Yes Usability

Jia (1993) B System Not defined Abstract Data Types

(ADT)

ND No

Jourdan et al.

(2006)

B System Sun workstation using

Solaris Sparc 5.8

Extended finite state

machine

Yes No

Jurjens (2008) A System Safety-critical system UMLsec models Yes Security

Kahsai et al. (2008) B System Product line Specification in

CSP-CASL

Yes No

Kandl et al. (2007) B System Embedded system NuSMV model Yes Security

Kansomkeat and

Rivepiboon

(2003)

A System OO UML statechart diagram

and test flow graph

ND No

Kaplan et al. (2008) A System OO UML classes, use cases,

and object diagrams

Yes No

Katara and

Kervinen (2007)

B System Embedded system Use case and LTS ND No

Kervinen et al.

(2005)

B System Embedded system Test model Yes No

Kim et al. (1999) C Unit OO UML statechart diagram

and extended finite

state machine

ND No

Kissoum and

Sahnoun (2007)

D Unit Distributed system InterElement require-

ments diagram, Petri

nets

Yes No

Kissoum and

Sahnoun (2008)

C Unit Distributed system UML sequence diagram Yes No

Koo and Mishra

(2008)

D Unit Embedded system Finite state machine ND No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Koopman et al.

(2007)

B System Web application Extended finite state

machine

Yes Usability

Koopman and

Plasmeijer

(2006)

B System Reactive system Extended finite state

machine

Yes No

Korel et al. (2002) D Regression Not defined Extended finite state

machine

ND ! No

Korel et al. (2007) D Unit Not defined Extended finite state

machine

ND No

Kwang and Eun

(2007)

A System,

Integration

OO UML use cases, classes,

sequences diagrams,

OCL, and MM-Path

ND No

Lallali et al. (2008) B Unit Web service BPEL models Yes Efficiency

Leathrum and

Liburdy (1996)

B System Not defined Specification in ADA Yes No

Legeard et al.

(2004)

D System Critical system Formal specification

(B or Z)

Yes No

Leung and Wong

(2000)

D System OO Classes graph ND No

Li et al. (2007) B System Real-time system Intermediate format Yes Security

Li et al. (2007) A System Web application Navigational model

describing user inputs

validation

Yes Usability

Liang (2005) D Regression and

Unit

OO Specifications in TCOZ Yes Efficiency

Lihua et al. (2004) D Regression Not defined Finite state machine and

regression testing

specification

Yes No

Linzhang et al.

(2004)

A System OO UML activity diagram Yes No

Liu et al. (2001) D System Web application Web application test

model and object rela-

tion diagram

ND ! No

Liu et al. (2002) D Unit OO Finite state machine Yes No

Liuying and

Zhichang (1999)

A System OO UML statechart diagram

and finite state machine

Yes No

Lucio et al. (2005) A System OO UML classes diagram

(Fondue), UML collab-

oration and statechart

diagrams, and OCL

operations

ND ! No

Lund and St�len

(2006)

A System Not defined UML sequence diagram ND No

Mandrioli et al.

(1995)

B System Critical and real-time

system

Software specification in

TRIO (Tempo Reale

ImplicitO)

Yes Efficiency

Massicotte et al.

(2007)

C Integration Aspect-oriented UML collaboration

diagram

Yes No

Massink et al.

(2006)

C System Concurrent system UML statechart diagram ND No

Masson et al.

(2007)

B System Smart card System formal model

functional

Yes Security

Memon (2007) B System Information system Flow-event model Yes Usability

Memon et al.

(2000)

B System OO GUI specification Yes No

Merayo and Nunez

(2008)

B System Real-time system Extended finite state

machine

ND Efficiency

Meyer and Sand-

foss (1998)

A System (GUI) Not defined UML use cases þ opera-

tional profile—Test

Engineering Model

Yes No

Mikucionis et al.

(2004)

B System Embedded and real-time

system

Finite automata Yes Efficiency

Mingsong et al.

(2006)

A System Java programs UML activity diagram Yes ! No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Misailovic et al.

(2007)

D System Not defined Directed acyclic graph Yes No

Morasca et al.

(1996)

B System and

Integration

Critical-time system Module specification in

TRIOþ language

ND Efficiency

Murphy et al.

(2009)

B System OO Model in JML Yes No

Murray et al.

(1998)

D Unit OO Finite state machine and

test graph

Yes No

Murthy et al.

(2006)

A System Not defined UML extended statechart

diagram, extended

CTGM

Yes No

Nachmanson et al.

(2004)

D System Nondeterministic system Directed graph Yes ! No

Naslavsky et al.

(2007)

A System OO UML classes and

sequence diagram,

control-flow model,

and inheritance model

Yes No

Nebut and Fleurey

(2006)

A System OO embedded system UML use cases, sequence

diagrams, and simula-

tion model

Yes ! No

Nilson et al. (2004) D System Concurrent and real-time

system

Temporal automata with

task model

Yes Efficiency

Offutt and Liu

(1999)

B System and

Unit

Critical system Condition data flow

diagram (CDFD) in

SOFL (Structured

Object-Oriented

Formal Language)

ND No

Offutt and

Abdurazik

(1999)

A System OO UML statechart diagram Yes Efficiency

Offutt et al. (2003) A System OO UML statechart diagram

and specification graph

Yes No

Okika et al. (2006) D System Embedded system Models in Testing and

Test Control Notation

(TTCN-3)

Yes No

Olimpiew and

Gomaa (2005)

A System Product line Features Model, UML

Use Cases Diagram,

Static (classes) and

Dynamic (statecharts

and object) Models,

component-based soft-

ware architectural

model

ND No

Paiva et al. (2005) B System System in .NET Finite state machine Yes No

Paradkar (2004) B System Interactive system Finite state machine ND No

Paradkar (2004) D System Reactive system Operational Model

(SALT—Specification

and Abstraction Lan-

guage for Testing) and

extended finite state

machine

Yes No

Paradkar et al.

(1997)

D System Real-time system Cause–effect graph ND No

Paradkar et al.

(2007)

B System Web service IOPEs models Yes No

Pari-Salas et al.

(2007)

B System Not defined System/component

behavioral model and

attack model

Yes Security

Parissis and Ouab-

desselam (1996)

B System Reactive system Environment specifica-

tion and security

properties

Yes Security

Parissis and Vassy

(2001)

B System Synchronous

and reactive system

Simulation state machine Yes Security

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Peraire et al. (1998) D Unit OO embedded system Specification in

CO-OPN/2

Yes No

Popovic and

Velikic (2005)

B System System in Java and Cþþ Not defined Yes No

Popovic and Kova-

cevic (2007)

B System Reactive system Stress operational profile

model

Yes No

Poston (1994) B System OO OMT function model Yes No

Pretschner et al.

(2008)

B System Not defined Access policies ND Security

Pretschner et al.

(2001)

B System Reactive and embedded

system

System structure, state

transition and data type

diagrams, and message

sequence charts

Yes Efficiency

Prowell (2003) D Integration Systems in C System usage model in

Markov Chain

Yes No

Rajappa et al.

(2008)

B System Real-time system Directed graph ND No

Reuys et al. (2005) A System OO UML activity, use cases,

and sequence diagrams

Yes No

Reza et al. (2008) A System Web application UML statechart diagram Yes Usability

Richardson et al.

(1992)

D System Reactive system In the case study, RTIL

(Real Time Interval

Logic) and Z

specification

ND ! Efficiency

and

Security

Richardson and

Wolf (1996)

D Integration Not defined CHAM (CHemical

Abstract Machine)

ND No

Riebisch et al.

(2002)

A System OO UML use cases and state-

chart diagrams, graph

and usage model

Yes No

Robinson-Mallett

et al. (2008)

B Integration Distributed and real-time

system

Test models in Markov

chain

Yes No

Rocha and Martins

(2008)

C Integration COTS UML activity diagram Yes No

Rumpe (2003) A System OO UML object and sequence

diagrams, OCL

ND Efficiency

Rutherford and

Wolf (2003)

D Unit and

Integration

OO distributed system System description in

XML

Yes No

Sakurai et al.

(2008)

B System Safety-critical system Customized formal model Yes Efficiency

Santos-Neto et al.

(2008)

A System OO information system UML classes and state-

chart diagrams

Yes Efficiency

and

Usability

Satpathy et al.

(2007)

B System Not defined Specification in B

Language

ND No

Satpathy et al.

(2005)

D System OO State coverage graph (B)

and specification in

PROLOG

Yes No

Satpathy et al.

(2008)

B System Embedded system State flow graph Yes No

Scheetz et al.

(1999)

C Integration OO UML classes and state-

chart diagrams þ OCL

Yes ! No

Schroeder et al.

(2003)

B System Not defined Directed graph, data

models

Yes No

Seifert (2008) C System Embedded system UML statechart diagram Yes No

Shu and Lee (2007) B System Safety-critical system Extended finite state

machine

Yes ! Security

Sinha and Paradkar

(2006)

D Integration Web service WSDL-S and extended

finite state machine

ND No

Sinha and Smidts

(2006)

B System Not defined Specifications in Has-

kellDB, extended finite

state machine

Yes No

Sokenou (2006) C Integration and

Unit

OO UML sequence diagram,

protocol state, and OCL

ND No

(continued)

Table IX (Continued)

Authors Cat Testing level Software category

Behavioral and

structural models Tools

Steps

complexity NFRa testing

Song et al. (2008) B System Web application Navigational model

On-the-fly and finite

state machine

ND Security

Stobie (2005) B System Any category Finite state machine and

Abstract State Machine

Language

Yes No

Stocks and

Carrington

(1996)

D Unit Not defined Test template, describing

inputs and valid results

Yes No

Tahat et al. (2001) B System and

Regression

Distributed and

embedded system

Requirements expressed

in textual format and

SDL (Specification

Description Language),

Extended finite state

machine

ND No

Tan et al. (2004) B System Not defined Software specification in

LTL (linear temporal

logic)

Yes Security and

Efficiency

Tomita and

Sakamura (1999)

D Integration Operational system Deterministic finite state

machine

Yes No

Traore (2003) A System OO UML statechart, classes,

and sequence diagrams

Yes ! No

Vaysburg et al.

(2002)

D System Not defined Extended finite state

machine, static and

dynamic dependency

graph

ND No

Vieira et al. (2006) A System (GUI) Not defined UML use cases þ activity

and classes diagrams

Yes ! No

Vilkomir and

Bowen (2006)

D System Safety-critical system Specification in Z

notation

ND No

Voigt et al. (2007) C System Not defined UML statechart diagram ND ! No

Wang and Huang

(2008)

D Unit Web service OWL-S requirement

models

Yes No

Watanabe and

Sakamura (1996)

D Integration Real-time system Specification in Z nota-

tion using finite state

machine

ND No

Weber et al. (1994) B System Avionic control system Dynamic and static model ND No

Whalen et al.

(2006)

B System Embedded system LTL properties ND No

Wimmel and

Jürjens (2002)

B System Concurrent, reactive, and

safety-critical system

Propositional logic, struc-

ture diagram, autofocus

system model

Yes Security and

Efficiency

Wu et al. (2003) C Integration Component-based system UML collaboration,

sequence, or statechart

ND No

Xie et al. (2006) D Unit OO Object State Abstract

machine

Yes No

Xu and Xu (2006) D Integration Aspect-oriented State model (Aspect-

oriented programming)

ND No

Yan et al. (2004) A System Distributed and Safety-

Critical System

UML use cases and

sequence diagrams,

expressions, Markov

Chain

ND Reliability

Yao and Wang

(2004)

B System Not defined RPTA specifications ND No

Yu et al. (2003) B System Not defined Classification Tree Yes No

Zander et al. (2005) C System Distributed system UML 2.0 testing profile,

testing and test control

notation

Yes No

Zheng et al. (2008) A Unit OO UML interaction and

classes diagrams

Yes No

Zhou et al. (2008) C Integration OO UML classes, sequence

diagrams

ND No

a NFR, nonfunctional requirements.

80 A.C. DIAS-NETO AND G.H. TRAVASSOS
techniques have been invited to take part in this study [20]. In total, 34 experts

participated in this survey, what represents a sample’s confidence level about 85%

considering the initial population using the formula described in Ref. [21]. They

answered about which attributes should be used to characterize MBT techniques and

what could be the relevance of each attribute to select MBT techniques for software

projects. In this survey, it has been identified 25 characterization attributes (a sublist

of the fields presented in Table II), described in Table X with their respective

relevance level for the selection of MBT techniques.

Crossing the MBT techniques’ characteristics with the software project’s character-

istics and requirements, software engineers can make the decision regarding which

techniques to apply to a software project easily, contributing for improving the final

product quality.

The selection of software technologies (e.g., processes, products, techniques,

methods, and tools that can be used to support the software development) for a
Table X

MBT TECHNIQUES’ CHARACTERIZATION ATTRIBUTES

Characterization attributes

Relevance level for the

MBT techniques selection (%)

Behavioral/structural model used for test generation 83.48

Test cases generation criteria 72.57

Testing coverage criteria 74.79

Inputs required to be used 72.54

Limitations/restrictions to be used 69.96

Software quality characteristics the technique is able to evaluate 68.30

Testing level 69.70

Type of testing technique 69.89

Software execution platform 55.85

Software development paradigm 55.85

Programming language of systems that can be evaluated 55.85

Results generated by the technique 69.70

Supporting tool’s name 63.74

Costs associated to the supporting tool 63.74

Supporting tool’s execution platform 63.74

Types of failures that can be revealed 48.80

Use of intermediate models 54.47

Test modeling technology 52.54

Complexity level of nonautomated steps 46.58

Type of experimental evaluation 47.43

Needs of external tools 49.96

List of automated and nonautomated steps 47.48

Existence of a traceability mechanism 34.39

Skills required to be used 33.00

Existence of a model checker 18.71

A PICTURE FROM THE MODEL-BASED TESTING AREA 81
software project is a complex task that may influence directly on the development

process’s effectiveness and consequently the software’s quality [14]. According to

Bertolino [22], the definition of which techniques would be best suited to support a

software development task is still an open question requiring more investigation.

As more information is provided to support this decision, as easier will be the

selection process, reducing the risk of inappropriate choices that may result in a

negative effect for the software quality.

The main challenges regarding this issue should be to understand and decide for

the selection of technologies more adequate for a specific task in a software project.

In this context, several aspects may influence on this decision, such as technical

knowledge, testing team background about these technologies and project domain,

software project schedule, effort and costs associated to the technologies usage,

external software organization political aspects, among others.

For some tasks in the software development process, including software testing,

the combination of two or more software technologies with similar characteristics

and goals may introduce improvements for the software process effectiveness and,

consequently, in the testing activity and final product quality. In the context of

software testing and MBT, the combination of techniques may result in improve-

ments in the testing coverage and software quality. However, it is necessary

to perform a feasibility analysis regarding the use of more than one MBT technique,

because this scenario may introduce risks concerned with the increasing of

testing effort and cost, what may make unfeasible the testing activity in a software

project [23].

In the technical literature, there are some approaches to support the selection of

general software technologies [24] or to specific software development activities,

like requirements elicitation techniques ([25], [38], [39]). Among these approaches,

none of them provides support to the combined selection of more than one software

technology for the same software project, that is, they just provide support to the

individual selection of software technologies. Moreover, because of their specific

characteristics, they are not able to support the selection of testing or MBT techni-

ques, the focus of this chapter. However, other three approaches supporting the

selection of MBT techniques were identified at the technical literature and they are

summarized below.

l Vegas and Basili [14]

Approach supporting the selection of general testing techniques, named Charac-
terization Schema. In this approach, testing techniques attributes are characterized

and stored in a repository. A catalog of testing techniques to support selection can be

generated from this repository accordingly the target software project. The approach

proposed by Vegas and Basili [14] was based on selection strategies applied to other

82 A.C. DIAS-NETO AND G.H. TRAVASSOS
technological areas such as components reuse, and it was adapted for software

testing. The positive aspects of this approach include to make available knowledge

regarding the techniques and to simplify the selection of testing techniques for a

software project. However, its characterization attributes are generic, what makes

difficult its adaptation for subcategories of testing techniques, such as MBT.

Another possible restrictive aspect of this approach would be regarding the non

availability of combined selection of testing techniques for those software projects

demanding it. Therefore, this scenario may introduce risks for a software project

using this approach to select MBT techniques due the lack of specific information

regarding MBT.

l Wojcicki and Strooper [37]

Approach supporting the selection of Verification and Validation (V&V) techni-

ques that evaluates the combination of such techniques with the purpose of:

1. maximizing the techniques completeness, represented by the types of defects/

failures revealed by the selected techniques, and;

2. minimizing the effort, represented by metrics like defects detection effort

(inminutes) and defects detection effectiveness (number of defects perminute).

This approach introduces a process for the selection of V&V techniques com-

posed of three activities (Preselection, Maximize completeness, and Minimize

effort) using a matrix representing the relationship between types of defects/failures

revealed by the techniques and their effort. This matrix is filled step-by-step using

metrics and subjective data collected in a software organization. The main advan-

tage of this approach is its simplicity to analyze the combination of V&V techniques

for a software project. Moreover, it uses cost-efficiency metrics; therefore each

software organization can apply its own set of metrics using the approach.

l Dias-Neto and Travassos [36]

Porantim is an approach to support the selection of MBT techniques for a

software project. It represents an evolution of the previously described characteri-

zation schema for testing techniques [14].

There are three main differences provided by this selection approach. Firstly, the

characterization attributes (and their categories) for the testing technique were

updated with specific MBT characteristics, making Porantim a specific selection

approach for the context of MBT techniques. Secondly, a selection process was

introduced to guide the testing team during the MBT techniques selection task. This

process is responsible for suggesting which MBT techniques would be best suited

for a software project by using an indicator called adequacy level to suggest the

percentage of adequacy between the software project and MBT technique

A PICTURE FROM THE MODEL-BASED TESTING AREA 83
characteristics. And finally, after the selection of MBT techniques, it produces an

estimate regarding the impact of the selected MBT techniques on some variables of

the software testing process (e.g., software project requirements’ coverage, model-

ing effort, and testing team members to be allocated to the software project).

Table XI presents a summary of the main characteristics of the testing techniques

selection approaches published at the technical literature and cited in this section.

The characteristics considered in this summary were

l Scope: is the approach applied to the selection of which software technologies?

l Based on measurement: does the approach provide information supporting the

selection based on the use of metrics collected from the software technologies

or projects?

l Based on adequacy: does the approach provide information supporting the

selection based on the adequacy between the software technology and

the software project where it would be applied to?

l Based on impact: does the approach provide information supporting the selec-

tion based on a possible impact of the software technologies in the development

process?

l Technologies suggestion: does the approach formally suggest/indicate which

software technologies are best suited to the software project from any predefined

criteria?
Table XI

CHARACTERIZATION OF SOFTWARE TECHNOLOGIES SELECTION APPROACHES

Selection

approach Vegas and Basili Wojcicki and Strooper Dias-Neto and Travassos

Scope Testing techniques Verification and valida-

tion techniques

Model-based testing

techniques

Based on

measurement

NO YES NO

Based on

adequacy

YES NO YES

Based on impact NO YES YES

Technologies

suggestion

Provides a catalog

of techniques

Suggests the best suited

techniques

Suggests the best suited

combination of techniques

Technologies

combination

Only individual

selection

Combined selection Combined selection

Supporting tool YES Not found YES

84 A.C. DIAS-NETO AND G.H. TRAVASSOS
l Technologies combination: does the approach analyze the combination of two

or more software Technologies and their influence on the activity to be per-

formed? That is, does it provide support to the combined selection of software

technologies?

l Supporting tool: is there any support tool to use the selection approach?
4. Challenges in Using MBT Techniques
in Software Projects

After identifying the available MBT techniques in the technical literature and

knowing how they can be selected to be used in software projects, one challenge

would be to understand the implications of usingMBT techniques in software projects.

The next subsections describe risk factors associated to the use of MBT techni-

ques. Besides, some mechanisms to mitigate their influence in software projects are

also suggested. We believe this information may be useful for software organiza-

tions making decisions regarding the application of MBT in their projects.
4.1 Risk Factors Associated to the Use of MBT
Techniques in Software Projects

Usually, the MBT techniques related papers describe evaluations of those tech-

niques performed for small examples and directed to a specific scenario defined by

their developers, most of the time not inserted into a complete software project.

However, in real software projects, the testing activity is just one of the several

activities to be executed throughout the software development process and it cannot

be isolated from the other ones. Moreover, the testing activity must attend the

restrictions imposed by the software project planning, such as schedule, costs,

resources, or team availability.

Based on this scenario, we have identified, in the technical literature, 12 risk

factors [26] that can support the impact understanding of using MBT in software

projects. For their description, it will be illustrated the scenarios where these risk

factors may influence, a description of their impact in a software project, their origin

in the technical literature, and the testing process activities influenced by these risk

factors. It can be observed that some of these risk factors are exclusive to the use of

MBT techniques and others concerned with all types of testing strategies. These risk

factors indicate scenarios included in the testing process not in scope of a MBT

technique, but that need to be managed, as they may make unfeasible test cases

generation for a software project.

A PICTURE FROM THE MODEL-BASED TESTING AREA 85
The 12 risk factors were categorized according to their influence to the testing

process activities, listed below:

l Test Planning: activity performed by the test manager. It is responsible for the

definition of test goals, scope, and items, test schedule and team planning, and

selection of testing techniques to be used in the software project.

l Test Design: activity performed by the test designer. It is responsible for

detailing the testing techniques for each software quality characteristic to be

evaluated, and the identification and specification of test cases and procedures.

l Test Execution: activity performed by the tester. It is responsible for the

execution of test procedures as planed and designed, and reporting of incidents

occurred during the tests execution.

l Test Results Analysis: activity performed by the test manager. It is responsible

for summarizing the test results and elaboration of a test report to be sent to the

development team for debugging or to the customer for deployment.

l Test Control: activity performed by the test manager. It is responsible for

monitoring the schedule, tasks, changes in the process, and risks associated to

the testing process.
4.1.1 Factor 1: Quality Assurance of Artifacts
Used by the MBT Technique for Test
Generation
Scenario
 Success of testing is directly associated with the artifacts

quality received as inputs for the building of behavior/

structural models used for test generation. These artifacts

must be reviewed prior to their use in order to obtain a

satisfactory quality level before constructing models for

test generation.
Impact
 Constructing models from incomplete, inconsistent, or

wrong software artifacts may result in the generation and

execution of inappropriate tests to evaluate the software

characteristics. In this case, even when using the most

adequate MBT technique, it will not be possible to ensure

the software quality.
References in the

literature
Dalal et al. [5], Horstmann et al. [27], Pretschner et al. [28],

and Utting et al. [29]
Impacted activities

86 A.C. DIAS-NETO AND G.H. TRAVASSOS
l Test Planning: the selection of MBT techniques to be used,

the test costs, schedule, and effort planning and testing

team allocation.
l Test Design: the choice of tests generation criteria for a

MBT technique.
4.1.2 Factor 2: Efficient Mechanism to Provide
the Right Artifacts to be Used as Inputs by
the MBT Technique
Scenario
 The testing team should always have access to the current

software artifacts version used as inputs by a MBT

technique. Testers need to be notified if any change occurs

in the software artifact, supporting the execution of

regression testing.
Impact
 The use of old software artifacts versions may influence the

testing quality as the generated test cases set may be

prepared to test a nonexisting software product, which

may contribute for problems during the testing activities.
References in the

literature
Santos-Neto et al. [30]
Impacted activities
 l Test Planning: test costs, schedule, and effort planning.
l Test Design: the choice of tests generation criteria for a

MBT technique.
4.1.3 Factor 3: Strategy for Resources Allocation
and Testing Schedule Planning
Scenario
 The software testing process guides the effective and

efficient planning of testing activities, resources, budget,

and scheduling. It must always be in accordance with the

software project planning. However, the skills and

complexity levels required to use each MBT technique are

different, possibly affecting the testing team, budget, and

A PICTURE FROM THE MODEL-BASED TESTING AREA 87
schedule definition in the software project. Therefore, the

testing planning should consider the particularities of each

MBT technique.
Impact
 Imprecise or wrong planning may affect the testing quality,

resulting in extra testing effort. For instance, one

technique requires more effort to construct the models and

a capable professional of using a particular modeling

language; another one may require more effort to

transform its models and a capable professional of

working with a specific programming language and

software domain, and so on.
References in the

literature
Bernard et al. [31] and Utting et al. [29]
Impacted activities
 l Test Planning: test costs, schedule, and effort planning.
l Test Control: the strategies for resource allocation and

schedule definition impact in how the testing process can

be controlled.
4.1.4 Factor 4: Strategy for the Selection of MBT
Techniques
Scenario
 It has been acknowledged that one of the most important

decision-making and harder tasks in the software testing

process is the selection of which technique(s) to use in a

software project. This is not different with MBT

techniques. Different features must be observed when

performing this task, such as the test coverage or software

quality characteristics that need to be evaluated.
Impact
 MBT techniques have limitations that may not make

feasible their use in some software projects. The

combination of MBT techniques may be an interesting

solution, but it needs to be carefully planned as it can

increase the efforts required in the software project.
References in the

literature
Clarke [32], Dalal et al. [5], Juristo et al. [2], Bernard et al.

[31], Blackburn et al. [33], Utting et al. [29], Dias-Neto

and Travassos [36]

Impacted activities
 l Test Planning: the selection of MBT techniques to be used

in the software project.
l Test Design: the test design is directly associated to the

MBT techniques selected for a software project.
88 A.C. DIAS-NETO AND G.H. TRAVASSOS
4.1.5 Factor 5: Strategy Adopted for the
Behavioral/Structural Model Construction
Scenario
 The existence of a behavioral/structural model represents

the main requirement to use MBT techniques. However,

these techniques do not consider the variables related to

cost, effort, or strategy to build the software model used

for test generation. These variables depend on several

factors, such as the software modules that should be

tested, the coverage level desired for each module, the

number of software models used by the MBT technique to

represent the software behavior/structure, whether the

model is shared by developers and testers, or if it is

exclusive for testing, among others.
Impact
 The effort, cost, and strategy adopted for software model

construction directly affect the testing quality. Additional

effort requires additional time and resources for a

software project. The tester must analyze which modules

are more critical and require higher coverage level, and

how to prioritize the software model construction aiming

at attending the desired coverage level. Sometimes the

effort and cost to build the software models may make

unfeasible the use of a specific MBT technique in a

software project.
References in the

literature
Dalal et al. [5], Pretschner et al. [28], and Utting et al. [29]
Impacted activities
 l Test Planning: the strategy adopted for the software model

construction impacts in the definition of test costs,

schedule, and effort, and the testing team allocation,

because it is adequate to select professionals familiarized

with the modeling notation to be used.
l Test Design: during this activity the software models are

built, for in the future to be used for test cases generation.

A PICTURE FROM THE MODEL-BASED TESTING AREA 89
4.1.6 Factor 6: Strategy Adopted for the
Test-Generation Criteria Selection
Scenario
 MBT techniques usually allow the use of several test-

generation criteria to be used. The choice of which one to

use in a software project must be based on the effort and

cost to build and execute test cases, the total number of

generated test cases, and mainly on the test coverage

level. Different software modules may require different

test coverage levels, which makes the choice of the test

generation criteria an important and difficult task.
Impact
 Inappropriate choices of test generation criteria may make

unfeasible the test cases generation and/or execution

according to the test schedule and budget defined for a

software project, impacting on the final product quality.
References in the

literature
Utting et al. [29] and Santos-Neto et al. [30]
Impacted activity
 l Test Design: the test cases identification and generation

activities are impacted by the selected test generation

criteria.
4.1.7 Factor 7: Tracking and Impacting Analysis
of Changes in Software Specification
Scenario
 One of the main MBT techniques’ characteristics is the

automated support for test case generation. In the case of

evolution of the software specification, these techniques

usually consider a new software model that is already

developed to regenerate test cases, regardless the effort to

analyze the impact of these changes and to update the

software model. However, it is necessary to analyze

which changes had been made in the software

specification and what could be their impact in the test

cases set before constructing a new software model. This

scenario suggests the use of a change tracking mechanism.

90 A.C. DIAS-NETO AND G.H. TRAVASSOS
Impact
 The lack of a change tracking mechanism makes the impact

analysis a complex task. This type of analysis is also

essential to support new effort and cost estimates for test

case updating activities (model evolution, test case

regeneration, and execution).
References in the

literature
Dalal et al. [5], Utting et al. [29], and Santos-Neto et al. [30]
Impacted activities
 l Test Planning: in this, activity should be identified the test
items that during the test design would be associated with

test cases by a traceability mechanism.
l Test Design: in this, activity should be generated test cases
that need to be associated with test items by a traceability

mechanism.
l Test Control: in this, activity should be identified the

changes between two different versions of a test model.
4.1.8 Factor 8: Test Suit Evolution After Changes
in the Software Specification
Scenario
 After identifying the software specification changes

(described in risk factor # 7), the test suit must be updated.

In this case, evolving the software model represents the

first task aimed at the test suit updating. However, the

MBT techniques do not explain how to update their

models or what could be the effort or how feasible could

be to perform this task. They usually consider a new

software model is ready to regenerate test cases which

may introduce risks to a project.
Impact
 Not having an adequate effort estimation to update a model

used by a MBT technique directly affects regression

testing quality results. Moreover, this estimate is very

useful because in some situations the effort to update a

model may be higher than building a new one.
References in the

literature
Dalal et al. [5], Utting et al. [29], and Santos-Neto et al. [30]

A PICTURE FROM THE MODEL-BASED TESTING AREA 91
Impacted activities
 l Test Design: after the identification of changes in the test

model and their impact on the test cases set, the test

models need to be updated, a new test cases set should be

generated, and the traces between test items and test cases

should be updated.
l Test Control: it should be performed an impact analysis

regarding the changes in the test models, evaluating

whether it would be necessary to construct new models or

just updating them.
4.1.9 Factor 9: Manual Inclusion of Extra
Test Cases
Scenario
 Eventually, it could be necessary to manually include test

cases to evaluate specific software features or characteristics

not covered by the test cases set generated by a MBT

technique. This facility is very important to allow extending

the test coverage and consequently testing quality.
Impact
 If this facility is not available in the test environment the

software evaluation will be restricted to the test suit

generated by the selected MBT technique(s), which may be

limited or may not cover a desired software feature,

decreasing the testing quality. A solution in this case could

be the combination of different MBT techniques. However,

it may introduce more effort in the testing process.
References in the

literature
Dalal et al. [5] and Santos-Neto et al. [30]
Impacted activities
 l Test Design: test cases must be identified and generated.

Moreover, it is necessary to record the traces between the

test cases and the test items they can evaluate.
l Test Execution: automated and manual test cases are

executed, and their results should be recorded.

92 A.C. DIAS-NETO AND G.H. TRAVASSOS
4.1.10 Factor 10: Test Generation and Execution
Process Control
Scenario
 The testing team should always receive information on the

current testing process stage and its results. It is important

to control the dependency among the testing process

activities. Moreover, the need for a new test trial could be

easily identified and executed.
Impact
 Not following the planned testing process may result in

delays in the testing schedule, and affect the testing

quality.
References in the

literature
Dalal et al. [5], Utting et al. [29], and Santos-Neto et al. [30]
Impacted activities
 l Test Planning, Design, Execution, and Results Analysis:
the test manager should manage the execution of all

testing process activities, including their execution date,

spent effort, responsibility, and results.
l Test Control: a set of information should be provided to

support the controlling of test cases generation and

execution process using MBT techniques.
4.1.11 Factor 11: Tracking of Failures Revealed
by MBT Techniques
Scenario
 Testing reveals failures. It is important to record these failures

and associate them with the test cases responsible for their

identification. This failure tracking should support testing

control and further evaluation of theMBT techniques using,

for example, a causal-analysis approach [34].
Impact
 The lack of a failure tracking mechanism working together

with the MBT technique can make testing control and

management inefficient because relevant historical

information on the MBT techniques in previous software

projects will be lost. Keeping the usage history is essential

for the continuous improvement of the effort, cost, and

coverage level estimative mechanisms associated with the

use of a MBT technique.
References in the

literature
Utting et al. [29] and Santos-Neto et al. [30]

A PICTURE FROM THE MODEL-BASED TESTING AREA 93
Impacted activities
 l Test Execution: failures revealed in the software must be

identified and reported.
l Results Analysis: it summarizes the failures identified

during the test execution, grouping this information to

extract measures regarding the performance of a MBT

technique and their test generation criteria.
l Test Control: it should monitor the identified failures until

they can be fixed by the development team. Moreover, in

this, activity is performed the failure traceability to

identify their origin (test cases that revealed each failure

and test items where the failure was exposed).
4.1.12 Factor 12: Evaluation of MBT Techniques
and Their Test Selection Criteria
Scenario
 The evaluations of MBT techniques and their test selection

criteria are very important in a software organization.

It can simplify their estimation and make it more precise,

and also support the selection of MBT techniques for

future software projects.
Impact
 The MBT technique performance evolves throughout its use

in different software projects. Not managing this

evolution may make the estimative mechanism null or

useless; rendering the criteria used to select techniques

and test generation criteria inefficient.
References in the

literature
Horstmann et al. [27] and Santos-Neto et al. [30]
Impacted activities
 l Test Planning: it needs to consider information regarding

the MBT techniques evaluation in previous software

projects to support the decision-making regarding which

MBT techniques to use in a new software project.
l Results Analysis: it should group information regarding

performance, effort, effectiveness, efficiency of a MBT

technique, and their test generation criteria. Moreover,

this is the moment to evaluate a MBT technique by the

testing team using, for instance, an evaluation form

similar to a postmortem analysis [35] regarding the testing

process.

94 A.C. DIAS-NETO AND G.H. TRAVASSOS
4.2 Mitigating the Risk Factors in Software Projects

The risk factors previously described can influence the testing process results in

software projects using MBT techniques. As it has been illustrated, each risk factor is

associated to one or more testing process activity. Based on this scenario, one possible

contribution aiming at to mitigate these risk factors would be to provide mechanisms

to support the conduction of the software testing process using MBT techniques.

In the next subsections, it will be presented suggestions of mechanisms aiming at

to support the selection, use, and evaluation of MBT techniques in software projects

according to the testing process activities.
4.2.1 Mechanisms Supporting Test Planning
At total, eight risk factors (Factors 1, 2, 3, 4, 5, 7, 10, 12) would influence the

testing planning activity. These factors are associated, mainly, to decisions making

regarding the quality of artifacts used as inputs by MBT techniques and selection of

MBT techniques and the testing team to be allocated in a software project. There-

fore, some mechanisms could be applied throughout the testing process to support

the application of MBT techniques in a software project:

l Application of Verification and Validation (V&V) techniques such as peer-

review or inspections to evaluate the different artifacts produced in the software

development process. Thus, we could reduce the incidence of defects affecting

the use of a MBT technique and, consequently, improving the testing quality.

l Integration of configuration management and test artifacts traceability mechan-

isms. Thus, the testing team would have simplified access to the current

versions of the artifacts produced throughout the software development and

testing process.

l Creation of a strategy supporting the selection of MBT techniques for software

projects, suggesting the best suited MBT techniques according to the character-

istics and particularities of a software project. In the Section 3.4, we presented

three approaches that can be used for the selection of MBT techniques for a

software project: Porantim [36], Characterization Schema [14], and Based on

Completeness/Effort Matrix [37].

l Creation of a mechanism supporting the selection of testing team members to

be allocated for a software projects according to the characteristics and parti-

cularities of the software project and the MBT techniques selected for it. The

selection approach Porantim [36] supports this decision.

A PICTURE FROM THE MODEL-BASED TESTING AREA 95
4.2.2 Mechanisms Supporting Test Design
The test design activity is the moment where the models used by aMBT technique

for test generation are developed. The risk factors (1, 2, 4, 5, 6, 7, 8, 9, 10) concerned

with this activity are associated, mainly, to quality assurance of the artifacts used to

construct the test models, strategy adopted to construct the test models, choice of test

generation criteria, and definition of the test cases final set.

Therefore, the mechanisms supporting this testing process activity could be

l Creation of a strategy supporting the choice of test generation criteria for each

model used by a MBT technique, providing different combinations of criteria to

support the decision-making.

l Mechanism making possible to include and execute extra test cases, that is, test

cases not generated by the selected MBT techniques and that were not included

a priori in the test suit, allowing the increasing of testing coverage.

l Creation of a mechanism to support the traceability between the elements

composing the software development artifacts (e.g., software requirements

use cases, components, classes, etc.) and testing process elements (test cases

and procedures). This mechanism would support several activities, such as test

failures debugging, evaluation of MBT techniques and their test generation

criteria, and impact analysis of changes in the software specification for the

current test cases set.
4.2.3 Mechanisms Supporting the
Test Execution
The use of the MBT strategy in software projects makes the test execution activity

almost fully automated (risk factors 9, 10, 11). The manual interference in this

activity is reduced to a minimum. Therefore, the mechanism supporting this activity

should also be automated and it consists in collecting of testing process metrics to

support future evaluations of MBT techniques and their test generation criteria. The

main interference could be the definition or suggestion of which metrics should be

collected according to the software project characteristics and process.
4.2.4 Mechanisms Supporting the Test
Results Analysis
During the analysis of test results, the focus should be to evaluate the selected

MBT techniques and their test generation criteria (risk factors 10, 11, 12). To

support this task, it could be necessary to create mechanisms similar to those applied

96 A.C. DIAS-NETO AND G.H. TRAVASSOS
in the testing process postmortem analysis, evaluating metrics obtained throughout

the testing process and interacting with the project’s testing team to get their opinion

regarding the use of MBT techniques in the software project.
4.2.5 Mechanisms Supporting Test Control
The test control must be performed throughout all testing process activities

aiming at to support several tasks, such as assuring the activities execution on

schedule, monitoring of testing team tasks and the current status of the testing

process, comparing the results of different test rounds, and supporting the decision

regarding when to stop the tests execution (risk factors 3, 7, 8, 10, 11). Most of the

tasks associated to test control are not influenced by the testing strategy (e.g., MBT,

specification-based, or code-based) used in a software project. However, some

additional tasks are introduced when the MBT strategy is applied. Therefore, the

mechanisms supporting this testing process activity could be

l Impact analysis of changes in the software specification and their impact on the

test cases set. This mechanism should be used before the evolution of the test

models, and it should present indicators and estimates regarding what informa-

tion need to be updated in the test models, which test cases shall be updated, and

the effort to update the test models.

l After the use of the mechanism previously described, the next step should be to

provide support for the regression testing, supporting the selection of new test

generation criteria, and generation/execution of a new test cases set.

The next section will present the conclusions and some future perspectives

regarding the MBT field.
5. Conclusions and Future Perspectives

5.1 Final Considerations

MBT and the behavior of MBT techniques have been important investigation

areas in the software engineering field for years. There is a possible explanation for

this: the quality of a software product is dependent on the test set applied to evaluate

it, and therefore, as discussed in this chapter, MBT is observed to be a feasible and

efficient strategy to conduct software testing.

The high number of MBT techniques available with different characteristics, the

lack of technical knowledge regarding them, the risks associated with their use, and

A PICTURE FROM THE MODEL-BASED TESTING AREA 97
the absence of a central repository containing information concerned with MBT

techniques make the application of such testing techniques in a software project a

hard task for software engineers. Table XII summarizes the relationship between the

risk factors identified in Section 4.1 and the testing process activities.

This chapter presented a discussion regarding the MBT field, describing several

relevant aspects that can support the MBT technology transferring from academia to

the industry. In this context, this chapter presented:

l The main concepts concerned with this area of research, allowing the under-

standing of this testing strategy;

l The test cases generation process according to MBT strategy, making possible

to identify what are the needed steps when performing a MBT process;
Table XII

RISK FACTORS X IMPACT ON TESTING PROCESS ACTIVITIES

Risk factors

Impact on testing process activities

Test

planning

Test

design

Test

execution

Results

analysis

Test

control

1. Quality assurance of artifacts used by

MBT techniques for test generation

2. Efficient mechanism to provide the right

artifacts to be used as inputs by the MBT

technique

3. Strategy for resource allocation and

testing schedule planning

4. Strategy for the selection of MBT

techniques

5. Strategy adopted for the behavioral/

structural model construction

6. Strategy adopted for the test generation

criteria selection

7. Tracking and impacting analysis of

changes in software specification

8. Test suit evolution after changes in the

software specification

9. Manual inclusion of extra test cases

10. Test generation and execution process

control

11. Tracking of failures revealed by MBT

techniques

12. Evaluation of MBT techniques and their

test selection criteria

98 A.C. DIAS-NETO AND G.H. TRAVASSOS
l The possible benefits that can be obtained with the application of MBT in

software projects, highlighting the advantages and drawbacks in the use of this

testing strategy;

l The characterization through a secondary study and analysis of 219 MBT

techniques available in the technical literature until 8/2009;

l Suggestion of three approaches and strategies that can be used to support

software engineers in the selection of best suited MBT techniques for software

projects;

l Finally, a set of 12 risk factors that may influence on the MBT strategy use in

software projects, including possible mechanisms to mitigate the impact of

these risk factors aiming at to obtain success during the application of MBT.
5.2 Future Perspectives

The results described in this chapter, besides the regular reader interested on the

testing area, were intended to be also useful for two different types of software

engineers: researchers working with MBT and practitioners who are trying to apply

MBT in their software projects.

l MBT researcher’s perspective

Under the perspective of a researcher working with MBT, the results provided in

this chapter may contribute for future research in the field, because these data can be

deeply analyzed to contextualize research on MBT described in the technical

literature. Therefore, this information may present scenarios on software engineer-

ing not covered by MBT techniques that require more investigation, including:

○ Analysis of the limitation of the software models used to represent the software

behavior/structure;
○ Conduction of experimental studies to obtain more evidence regarding the effort,

effectiveness, and scalability of MBT techniques for different software domains;
○ To enlarge the investigation about NFR categories not enough evaluated by the

MBT techniques;
○ To enlarge the investigation regarding software execution platforms not

enough covered by MBT techniques.

l MBT practitioner’s perspective

Under the perspective of practitioners trying to apply MBT in their software

projects, the results provided in this chapter may contribute for the understating of

risks, challenges, and limitations of using MBT in software projects, including:

A PICTURE FROM THE MODEL-BASED TESTING AREA 99
○ Skills/background required to use a MBT technique in a software project;
○ Context where each MBT technique would be more adequate;
○ Limitation to use a MBT technique in a software project;
○ Effectiveness and scalability of MBT techniques in similar software projects;
○ Tools available to use a MBT technique.

The MBT field is continuously evolving. Therefore, it would be important to re-

execute periodically the systematic review presented in Section 3 aiming at to keep

it updated, because it can represent the body of knowledge regarding MBT techni-

ques. It is also very important to incentive experience reports describing the use of

different MBT techniques in loco. Thus, software engineers can generate more and

better evidences regarding the performance and scalability of MBT techniques and

the effective benefits in the use of this testing strategy.

Finally, we hope this chapter presented information that can be useful for

researchers and practitioners, contributing for the dissemination of the MBT

strategy.

Acknowledgments

This research has been developed into the context of projects CNPq 475459/2007-5 and 302469/2007-9 -

Experimental Software Engineering and e-Science, FAPERJ, and FAPEAM. We thank SCR/USA

(Marlon Vieira and Rajesh Subramanian) by providing the initial insights and infrastructure for the

starting point of this research.

APPENDIX A

LIST OF PAPERS SELECTED IN THE SYSTEMATIC REVIEW

Category Title Authors Source Year

D A case for test-code generation in model-driven

systems

Rutherford and Wolf GPCE 2003

A A case study for generating test cases from use

cases

Gutierrez et al. ICRCIS 2008

B A choice relation framework for supporting

category-partition test case generation

Chen et al. IEEE Transactions on Software

Engineering

2003

D A formal approach for functional and structural

test case generation in multiagent systems

Kissoum and Sahnoun AICCSA 2007

B A formal approach to requirements-based

testing in open systems standards

Leathrum and Liburdy International Conference on Requirements

Engineering

1996

D A framework for specification-based class

testing

Liu et al. ICECCS 2002

D A framework for specification-based testing Stocks and Carrington IEEE Transactions on Software

Engineering

1996

D A generalized model-based test generation

method

Bonifacio SEFM 2008

D A generic model-based test case generator Popovic and Velikic ECBS 2005

B A global algorithm for model-based test-suite

generation

Hessel et al. Electronic Notes in Theoretical Computer

Science

2007

B A holistic approach to test-driven model

checking

Belli and Guldali International conference on Innovations in

Applied Artificial Intelligence

2005

C A method for model-based test harness

generation for component testing

Rocha and Martins Journal of the Brazilian Computer Society 2008

A A method for the automatic generation of test

suites from object models

Cavarra et al. ACM Symposium on Applied computing 2003

B A method of generating massive virtual clients

and model-based performance test

Kim QSIC 2005

A A methodology and a framework for

model-based testing

Lucio et al. Lecture Notes in Computer Science 2005

A A model-based testing technique to test Web

applications using statecharts

Reza et al. ITNG 2008

B A model-based statistical usage testing of

communication protocols

Popovic et al. Workshop on Engineering of Computer

Based Systems

2006

A A model-driven validation & verification

environment for embedded systems

Gargantini et al. ISIES 2008

B A model-to-implementation mapping tool for

automated model-based GUI testing

Paiva et al. ICFEM 2005

B A new approach to test-case generation based

on real-time process algebra (RTFA)

Yao and Wang Canadian Conference on Electrical and

Computer Engineering

2004

C A practical approach to UML-based derivation

of integration tests

Basanieri and Bertolino QWE 2000

C A recursive colored Petri Nets semantics for

AUML as base of test-case generation

Kissoum and Sahnoun AICCSA 2008

D A specification-based adaptive test case

generation strategy for open operating

system standards

Watanabe and Sakamura ICSE 1996

C A State-based approach to integration testing

for object-oriented programs

Ali et al. Technical Report of Carleton University 2005

B A statistical approach to model-based

robustness testing

Popovic and Kovacevic Workshop on Engineering of Computer

Based Systems

2007

A A subset of precise UML for model-based

testing

Bouquet et al. AMOST 2007

B A test sequence selection method for statecharts Hong et al. Software Testing Verification &

Reliability

2000

D A theory of specification-based testing for

object-oriented software

Barbey et al. EDCC 1996

A A transition-based strategy for object-oriented

software testing

Traore ACM Symposium on Applied computing 2003

A A UML-based approach to system testing Briand and Labiche Technical Report of Carleton University 2002

B Action refinement in conformance testing Van Der Bijl et al. Lecture Notes in Computer Science 2005

D Adding natural relationships to simulink models

to improve automated model-based testing

Boden and Busser AIAA/IEEE Digital Avionics Systems

Conference

2004

D ADLscope: an automated specification-based

unit testing tool

Chang and Richardson ASE 1998

(continued)

Appendix A (Continued)

Category Title Authors Source Year

B Aiding modular design and verification of

safety-critical time-triggered systems by use

of executable formal specifications

Sakurai et al. ISHASE 2008

B An approach for specification-based test-case

generation for Web services

Hanna and Munro AICCSA 2007

B An approach to detecting domain errors using

formal specification-based testing

Chen and Liu Asia-Pacific Software Engineering

Conference

2004

D An approach to integration testing based on data

flow specifications

Chen et al. Lecture Notes in Computer Science 2005

D An automated testing experiment for layered

embedded C code

Chetali and Nguyen Journal on Software Tools for Technology

Transfer

2009

A An automatic execution system for Web

functional test based on modeling

user’s behavior

Jia et al. ISISE 2008

A An evaluation of a model-based testing method

for information systems

Santos-Neto et al. Symposium on Applied Computing 2008

B An event-flow model of GUI-based applications

for testing

Memon Software Testing Verification and

Reliability

2007

D An explorative journey from architectural tests

definition down to code tests execution

Bertolino et al. ICSE 2001

B An extension of the Classification-Tree method

for embedded systems for the description of

events

Conrad and Krupp Electronic Notes in Theoretical Computer

Science

2006

D An overview of Lutess: a specification-based

tool for testing synchronous software

du Bousquet and Zuanon ASE 1999

D Analyzing software architectures with Argus-I Vieira et al. ICSE 2000

D Application of system models in regression test

suite prioritization

Korel et al. ICSM 2008

D Applying conventional testing techniques for

class testing

Chung et al. IEEE Computer Society’s International

Computer Software & Applications

Conference

1996

A Applying use case methodology to SRE and

system testing

Meyer and Sandfoss STAR West Conference 1998

C Architecting fault tolerance with exception

handling: verification and validation

Brito et al. Journal of Computer Science and

Technology

2009

C Aspects-classes integration testing strategy: an

incremental approach

Massicotte et al. Lecture Notes in Computer Science 2006

B Automated boundary test generation from JML

specifications

Bouquet et al. Lecture Notes in Computer Science 2006

B Automated formal verification and testing of C

programs for embedded systems

Kandl et al. ISORC 2007

B Automated functional conformance test gener-

ation for semantic Web services

Paradkar et al. ICWS 2007

A Automated generation of statistical test cases

from UML state diagrams

Chevalley and Fosse COMPSAC 2005

A Automated large-scale simulation test-data

generation for object-oriented software

systems

Zheng et al. ISDPE 2007

D Automated test case generation for programs

specified by relational algebra queries

Tsai et al. IEEE Transactions on Software

Engineering

1990

B Automated test oracles for GUIs Memon et al. ACM SIGSOFT international symposium

on Foundations of software engineering

2000

B Automated testing from object models Poston Communications of the ACM 1994

D Automated testing of classes Buy et al. ISSTA 2000

C Automated TTCN-3 test case generation by

means of UML sequence diagrams and Mar-

kov chains

Beyer et al. ATS 2003

B Automated validation test generation Weber et al. DASC 1994

C Automated, contract-based user testing of com-

mercial-off-the-shelf components

Briand et al. ICSE 2006

A Automated-generating test case using UML

statecharts diagrams

Kansomkeat and

Rivepiboon

SAICSIT 2003

(continued)

Appendix A (Continued)

Category Title Authors Source Year

D Automatic extraction of abstract-object-state

machines from unit-test executions

Xie et al. ICSE 2006

B Automatic generation of model-based tests for a

class of security properties

Masson et al. AMOST 2007

C Automatic model-based generation of

parameterized test cases using data

abstraction

Calame et al. Electronic Notes in Theoretical Computer

Science

2007

A Automatic test case generation for UML

activity diagrams

Mingsong et al. AST 2006

C Automatic test generation on a (U)SIM smart

card

Bigot et al. Lecture Notes in Computer Science 2006

A Automatic test generation: a use case-driven

approach

Nebut and Fleurey IEEE Transaction Software Engineering 2006

D Automatic testing from formal specifications Satpathy et al. Lecture Notes in Computer Science 2007

B Automatic timed test case generation for Web

services composition

Lallali et al. ECOWS 2008

D Automatic validation of Java page flows using

model-based coverage criteria

Alava et al. ICSAC 2006

D Automatically testing interacting software

components

Gallagher and Offutt AST 2006

B Automating formal specification-based testing Donat International Joint Conference

CAAP/FASE on Theory and

Practice of Software Development

1997

A Automating impact analysis and regression test

selection based on UML designs

Briand et al. ICSM 2002

D Automating software module testing for FAA

certification

Santhanam ACM SIGAda International Conference

on Ada

2001

A Automation of GUI testing using a

model-driven approach

Vieira et al. AST 2006

D Black-box testing using flowgraphs: an

experimental assessment of effectiveness

and automation potential

Edwards Software Testing Verification and

Reliability

2000

B Boundary coverage criteria for test generation

from formal models

Kosmatov et al. ISSRE 2004

D Combining algebraic and model-based test case

generation

Dan and Aichernig Lecture Notes in Computer Science 2005

B Combining behavior and data modeling in

automated test case generation

Schroeder et al. QSIC 2003

B Combining test case generation for component

and integration testing

Benz AMOST 2007

C Conformance testing based on UML state

machines: automated test case generation,

execution, and evaluation

Seifert Lecture Notes in Computer Science 2008

B Constructing multiple unique input/output

sequences using metaheuristic optimization

techniques

Guo et al. IEE Proceedings Software 2005

D Controlling test case explosion in test

generation from B formal models

Legeard et al. Software Testing, Verification &

Reliability’

2004

B Coverage metrics for requirements-based

testing

Whalen et al. ISSTA 2006

D Coverage-directed test generation with model

checkers: challenges and opportunities

Devaraj et al. COMPSAC 2005

B Data abstraction and constraint solving for

conformance testing

Calame et al. APSEC 2005

D DeepTrans—a model-based approach to

functional verification of address translation

mechanisms

Adir et al. 4th International Workshop on

Microprocessor Test and Verification

2003

B Dependence analysis in reduction of

requirement-based test suites

Vaysburg et al. International Symposium on Software

Testing and Analysis

2002

B Derivation of tests from timed specifications

according to different coverage criteria

Merayo and Nunez ICONS 2008

(continued)

Appendix A (Continued)

Category Title Authors Source Year

D Deriving test plans from architectural

descriptions

Bertolino et al. ICSE 2000

A Deriving tests from UML 2.0 sequence

diagrams with neg and assert

Lund and St�len AST 2006

D Design and implementation of Triveni: a

process-algebraic API for threads þ events

Colby et al. International Conference on Computer

Languages

1998

D Designing fault injection experiments using

state-based model to test a space software

Ambrosio et al. Lecture Notes in Computer Science 2007

D Developing a TTCN-3 test harness for legacy

software

Okika et al. AST 2006

B Development of a framework for automated

systematic testing of safety-critical

embedded systems

Kandl et al. WISES 2006

D Distributed software testing with specification Chang et al. IEEE Computer Society’s International

Computer Software & Applications

Conference

1990

B Domain-specific test case generation using

higher ordered typed languages for

specification

Sinha and Smidts University of Maryland at College Park 2005

B Efficient software test case generation using

genetic algorithm-based graph theory

Rajappa et al. ICETET 2008

B Employing user profiles to test a new version of

a GUI component in its context of use

Memon Software Quality Journal 2006

B Environment behavior models for scenario

generation and testing automation

Auguston et al. A-MOST 2005

B Evaluating several path-based partial

dynamic analysis methods for selecting

black-box-generated test cases

Chan and Yu QSIC 2004

D Extended finite state machine based test

derivation driven by user defined faults

El-Fakih et al. ICST 2008

B Extending EFSMs to specify and test timed

systems with action durations and time-outs

Merayo et al. IEEE Transactions on Computers 2008

B Extending Stream X-machines to specify and

test systems with time-outs

Merayo et al. SEFM 2008

D Extending test templates with inheritance Murray et al. ASWEC 1997

A Formal test generation from UML models Buchs et al. Lecture Notes in Computer Science 2006

C Formal test-case generation for UML

statecharts

Gnesi et al. IEEE ICECCS 2004

D Formally testing fail-safety of electronic purse

protocols

Jurjens and Wimmel ASE 2001

B From faults via test purposes to test cases: on

the fault-based testing of concurrent systems

Aichernig and Delgado 9th International Conference on Funda-

mental Approaches to Software

Engineering {FASE}

2006

D From MC/DC to RC/DC: formalization and

analysis of control-flow testing criteria

Vilkomir and Bowen Formal Aspects of Computing 2006

D From Object-Z specifications to ClassBench

test suites

Carrington et al. Journal of Software Testing Verification

and Reliability

2000

B Fully automatic testing with functions as

specifications

Koopman and

Plasmeijer

Lecture Notes in Computer Science 2006

B Generating functional test cases in-the-large for

time-critical systems from logic-based

specifications

Morasca et al. ISSTA 1996

D Generating regression tests via model checking Lihua et al. COMPSAC 2004

B Generating test cases for real-time systems from

logic specifications

Mandrioli et al. ACM Transactions on Computer Systems 1995

C Generating test cases from an OOmodel with an

AI planning system

Scheetz et al. ISSRE 1999

B Generating test cases from class vectors Leung et al. Journal of Systems and Software 2003

A Generating test cases from UML activity

diagram based on Gray-box method

Linzhang et al. APSEC 2004

B Generating test data from SOFL specifications Offutt and Liu Journal of Systems and Software 1999

(continued)

Appendix A (Continued)

Category Title Authors Source Year

A Generating test data from state-based

specifications

Offutt et al. Journal of Software Testing, Verification

and Reliability

2003

C Generating test sequences from UML sequence

diagrams and state diagrams

Sokenou Informatik Forschung und Entwicklung 2006

B Generating test suites for software load testing Avritzer and Weyuker International Symposium on Software

testing and analysis

1994

D Generating tests from EFSM models using

guided model checking and iterated search

refinement

Ernits et al. Lecture Notes in Computer Science 2006

A Generating tests from UML specifications Offutt and Abdurazik UML 1999

B Generating, selecting, and prioritizing test cases

from specifications with tool support

Yu et al. QSIC 2003

B HOTTest: a model-based test design technique

for enhanced testing of domain-specific

applications

Sinha et al. ACM Transactions on Software

Engineering and Methodology

2006

B Identification of categories and choices in

activity diagrams

Chen et al. QSIC 2005

D Improving design dependability by exploiting

an open model-based specification

Tomita and Sakamura IEEE Transactions on Computers 1999

C Improving state-based coverage criteria using

data flow information

Briand et al. Technical Report of Carleton University 2004

D Improving test suites via operational abstraction Harder et al. ICSE 2003

B Improving Web application testing with user

session data

Elbaum et al. ICSE 2003

B In-parameter-order: a test generation strategy

for pairwise testing

Lei and Tai IEEE International High-Assurance

Systems Engineering Symposium

1998

C Integration of ‘‘components’’ to test software

components

Bertolino et al. Electronic Notes in Theoretical Computer

Science

2003

B Integration of specification-based and

CR-based approaches for GUI testing

Chen et al. AINA 2005

C Introducing a reasonably complete and coherent

approach for model-based testing

Bertolino et al. Electronic Notes in Theoretical Computer

Science

2005

A ISDGen: an automated simulation data

generation tool for object-oriented

information systems

Zheng et al. ICSC 2007

D JUMBL: a tool for model-based statistical

testing

Prowell Annual Hawaii International Conference

on System Sciences

2003

D Korat: automated testing based on Java

predicates

Boyapati et al. ISSTA 2002

A Less is more: a minimalistic approach to UML

model-based conformance test generation

Kaplan et al. ICST 2008

B Lessons learned from automating tests for an

operations support system

Fecko and Lott Software—Practice & Experience 2002

D Lutess: a specification-driven testing

environment for synchronous software

du Bousquet et al. ICSE 1999

B Making model-based testing more agile: a use

case-driven approach

Katara and Kervinen Lecture Notes in Computer Science 2007

B Mastering test generation from smart card

software formal models

Bouquet et al. Lecture Notes in Computer Science 2005

D MaTeLo—statistical usage testing by annotated

sequence diagrams, Markov chains, and

TTCN-3

Dulz and Zhen International Conference on Quality

Software

2003

B Message confidentiality testing of security

protocols—passive monitoring and active

checking

Shu and Lee Lecture Notes in Computer Science 2006

D Model-based regression test reduction using

dependence analysis

Korel et al. ICSM 2002

B Model-based testing in evolutionary software

development

Pretschner et al. RSP 2001

B Model-based testing in practice at Microsoft Stobie Electronic Notes in Theoretical Computer

Science

2005

A Model-based testing of system requirements

using UML use case models

Hasling et al. ICST 2008

(continued)

Appendix A (Continued)

Category Title Authors Source Year

C Model-based built-in tests Gross et al. Electronic Notes in Theoretical Computer

Science

2005

B Model-based formal specification directed

testing of abstract data types

Jia COMPSAC 1993

D Model-based functional conformance testing of

Web services operating on persistent data

Sinha and Pardkar TAV-WEB 2006

A Model-based security testing using UMLsec.

A case study

Jurjens Electronic Notes in Theoretical Computer

Science

2008

B Model-based security vulnerability testing Pari-Salas et al. ASWEC 2007

B Model-based specification and testing applied

to the ground-based midcourse defense

(GMD) system: an industry report

Lakey A-MOST 2005

B Model-based test case generation for smart

cards

Philipps et al. Electronic Notes in Theoretical Computer

Science

2003

D Model-based test prioritization heuristic meth-

ods and their evaluation

Korel et al. AMOST 2007

B Model-based test selection for infinite-state

reactive systems

Jeannet et al. Lecture Notes in Computer Science 2007

A Model-based testing and maintenance Deng et al. ICMSE 2004

A Model-based testing for applications derived

from software product lines

Olimpiew and Gomaa A-MOST 2005

B Model-based testing for real: the inhouse card

case study

Pretschner et al. International Journal on Software Tools

for Technology Transfer (STTT)

2001

A Model-based testing from UML Models Bernard et al. Informatik Forschung und Entwicklung 2006

B Model-based testing in practice Dalal et al. ICSE 1999

B Model-based testing of a highly programmable

system

Dalal et al. International Symposium on Software

Reliability Engineering

1998

A Model-based testing of object-oriented systems Rumpe Formal Methods for Components and

Objects

2003

B Model-based testing of thin-client Web

applications and navigation input

Koopman et al. Lecture Notes in Computer Science 2007

C Model-based testing with UML applied to a

roaming algorithm for Bluetooth devices

Zhen et al. Journal of Zhejiang University Science 2004

B Model-based tests for access control policies Pretschner et al. ICST 2008

B Modeling requirements for combinatorial

software testing

Lott et al. A-MOST 2005

B Modeling Web browser interactions and

generating tests

Song et al. CIS 2008

B Models for synchronous software testing Lakehal et al. International Workshop on Model, Design

and Validation

2004

D Module documentation based testing using

gray-box approach

Baharom et al. ITSim 2008

B Mutation-based testing criteria for timeliness Nilsson et al. COMPSAC 2004

C On testing UML statecharts Massink et al. Journal of Logic and Algebraic

Programming

2006

B On the complexity of generating optimal test

sequences

Boyd and Ural IEEE Transactions on Software

Engineering

1991

D On the correctness of upper layers of

automotive systems

Botaschanjan et al. Formal Aspects of Computing 2008

B On the effect of test-suite reduction on

automatically generated model-based tests

Heimdahl et al. ASE 2007

B On the effectiveness of mutation analysis as a

black-box testing technique

Murnane and Reed ASWEC 2001

B On the integration of design and test: a

model-based approach for embedded systems

Pfaller et al. AST 2006

B Online testing with model programs Veanes et al. ESEC/FSE 2005

A Ontology-based test modeling and partition

testing of Web services

Bai et al. ICWS 2008

B Optimal strategies for testing nondeterministic

systems

Lev Nachmanson ISSTA 2004

D Parallel test generation and execution with

Korat

Misailovic et al. ESEC/FSE 2007

(continued)

Appendix A (Continued)

Category Title Authors Source Year

D Parameterized unit tests Tillmann and Schulte ESEC/FSE-13 2004

D PKorat: parallel generation of structurally

complex test inputs

Siddiqui and Khurshid ICST 2009

B Plannable test selection criteria for FSMs

extracted from operational specifications

Paradkar ISSRE 2004

D Play to test Blass et al. Formal Approaches to Software Testing 2005

C Polymorphism sequence diagrams test data

automatic generation based on OCL

Zhou et al. ICYCS 2008

D Practical approach to specification and

conformance testing of distributed network

applications

Kuliamin et al. Lecture Notes in Computer Science 2005

B Probe: a formal specification-based testing

system

Amayreh and Zin International Conference on Information

Systems

1999

B Projected state machine coverage for software

testing

Friedman et al. ISSTA 2002

B ProTest: an automatic test environment for B

specifications

Satpathy et al. Electronic Notes in Theoretical Computer

Science

2005

B Randomized directed testing (REDIRECT) for

simulink/Stateflow models

Satpathy et al. EMSOFT 2008

D Redundancy based test-suite reduction Fraser and Wotawa Lecture Notes in Computer Science 2007

D Regression testing of classes based on TCOZ

specification

Liang ICECCS 2005

D Requirement model-based mutation testing for

Web service

Wang and Huang NWeSP 2008

B Requirement-based automated black-box test

generation

Tahat et al. COMPSAC 2001

B Requirements traceability in automated test

generation: application to smart card

software validation

Bouquet et al. A-MOST 2005

B Requirements-based monitors for real-time

systems

Peters and Parnas IEEE Transactions on Software

Engineering

2002

C Revisiting strategies for ordering class

integration testing in the presence of

dependency cycles—an investigation of

graph-based class integration test order

strategies

Briand et al. Technical Report of Carleton University 2002

A Rigorous vertical software system testing in

IDE

Kwang and Eun SERA 2007

D SALT—an integrated environment to automate

generation of function tests for APIs

Paradkar ISSRE 2000

D Security policy testing using vulnerability

exploit chaining

Darmaillacq ICSTW 2008

D Software architecture analysis based on

statechart semantics

Dias and Vieira International Workshop on Software

Specification and Design

2000

D Software testing at the architectural level Richardson and Wolf ISAW-2 and Viewpoints 1996

B Specification-based test sequence generation

with propositional logic

Wimmel et al. Software Testing Verification and

Reliability

2000

D Specification-based class testing with

ClassBench

Murray et al. Asia Pacific Software Engineering

Conference

1998

D Specification-based compaction of directed

tests for functional validation of pipelined

processors

Koo and Mishra CODES 2008

A Specification-based regression test selection

with risk analysis

Chen et al. CASCON 2002

B Specification-based test generation for

security-critical systems using mutations

Wimmel and Jürjens International Conference on Formal

Methods and Software Engineering

2002

D Specification-based test oracles for reactive

systems

Richardson et al. ICSE 1992

B Specification-based testing for real-time

avionic systems

Biberstein and

Fitzgerald

IEE Colloquium on Applicable Modelling,

Verification and Analysis Techniques

for Real-Time Systems

1999

B Specification-based testing for real-time

reactive systems

Alagar et al. TOOLS 2000

(continued)

Appendix A (Continued)

Category Title Authors Source Year

B Specification-based testing for software product

lines

Kahsai et al. ICSEFM 2008

C Specification-based testing method using

testing flow graphs

Voigt et al. ICSEA 2007

B Specification-based testing of reactive software:

a case study in technology transfer

Jagadeesan et al. Journal of Systems and Software 1998

B Specification-based testing of reactive software:

tools and experiments-experience report

Jagadeesan et al. ICSE 1997

B Specification-based testing of synchronous

software

Parissis and

Ouabdesselam

Symposium on the Foundations of

Software Engineering

1996

B Specification-based testing using cause–effect

graphs

Paradkar et al. Annals of Software Engineering 1997

B Specification-based testing with linear temporal

logic

Tan et al. IRI 2004

D Specifying and testing software components

using ADL

Hayes and Sankar Techinical Report at Sun Microsystems 1994

D State-based incremental testing of aspect-

oriented programs

Xu and Xu AOSD 2006

D State-based testing of integration aspects Xu and Xu WTAOP 2006

B Statechart testing method for aircraft control

systems

Bogdanov and

Holcombe

Software Testing Verification &

Reliability

2001

B Strategies for automated specification-based

testing of synchronous software

Parissis and Vassy ASE 2001

D Structural specification-based testing with ADL Chang et al. ISSTA 1996

D Structural specification-based testing:

automated support and experimental

evaluation

Chang and Richardson ESEC 1999

B Symbolic model-based test selection Jeron Electronic Notes in Theoretical Computer

Science

2009

B Synthesis of scenario based test cases from B

models

Satpathy et al. Lecture Notes in Computer Science 2006

B Systematic model-based testing of embedded

control software: the MB3/T approach

Conrad et al. ICSE 2004

B Telecommunication software validation using a

synchronous approach

du Bousquet et al. ASSET 1998

B Test case generation as an AI Planning problem Howe et al. ASE 1997

B Test case generation from formal models

through abstraction refinement and model

checking

Satpathy, M., Ramesh AMOST 2007

C Test cases generation from UML state diagrams Kim et al. IEE Software 1999

D Test generation and execution for security rules

in temporal logic

Darmaillacq et al. ICSTW 2008

B Test generation from security policies specified

in Or-BAC

Li et al. ICSAC 2007

D Test input generation for Java containers using

state matching

Visser et al. ISSTA 2006

D Test input generation with Java PathFinder Visser et al. ISSTA 2004

A Test ready UML statecharts models Murthy et al. SCESM 2006

D Test selection for object-oriented software

based on formal specifications

Peraire et al. International Conference on Programming

Concepts and Methods

1998

A Test selection from UML statecharts Liuying and Zhichang TOOLS 1999

B Test-suite reduction based on dependence

analysis

Jourdan et al. Lecture Notes in Computer Science 2006

D Test template framework: a specification-based

testing case study

Stocks and Carrington ISSTA 1993

D Test templates: a specification-based testing

framework

Stocks and Carrington ICSE 1993

B Test-based model generation for legacy systems Hungar et al. ITC 2003

D TestEra: specification-based testing of Java

programs using SAT

Khurshid and Marinov ASE 2004

A Testing agile requirements models Botaschanjan et al. Journal of Zhejiang University Science 2004

B Testing finite state machines presenting

stochastic time and time-outs

Merayo et al. Lecture Notes in Computer Science 2007

(continued)

Appendix A (Continued)

Category Title Authors Source Year

B Testing from a stochastic timed system with a

fault model

Hierons et al. Journal of Logic and Algebraic

Programming

2009

B Testing of concurrent programs based on

message sequence charts

Chung et al. International Symposium on Software

Engineering for Parallel and Distributed

Systems

1999

B Testing real-time embedded software using

UPPAAL-TRON: an industrial case study

Larsen et al. EMSOFT 2005

B Testing security properties of protocol

implementations—a machine learning based

approach

Shu and Lee ICSCS 2007

B Testing times: on model-driven test generation

for nondeterministic real-time systems

Brinksma, E. ACSD 2004

B Testing Web applications by modeling with

FSMs

Andrews et al. Systems and Modeling 2005

B Test-suite reduction for model-based tests:

effects on test quality and implications for

testing

Heimdahl and George ASE 2004

C TestUml: user-metrics driven Web applications

testing

Bellettini et al. SAC 2005

A The AGEDIS tools for model-based testing Hartman and Nagin ISSTA 2004

B Thoroughness of specification-based testing of

synchronous programs

Parissis and Vassy ISSRE 2003

D TinMan—a test derivation and management

tool for specification-based class testing

Murray et al. TOOLS 1999

B Toward a more efficient way of generating test

cases: class graphs

Leung and Wong Asia-Pacific Conference on Quality

Software

2000

C Toward a tool supporting integration testing of

aspect-oriented programs

Massicotte et al. Journal of Object Technology 2007

C Toward automated support for deriving test data

from UML statecharts

Briand et al. Technical Report of Carleton University 2004

B Toward integration of use case modeling and

usage-based testing

Regnell et al. Journal of Systems and Software 2000

B Toward model-based generation of self-priming

and self-checking conformance tests for

interactive systems

Paradkar Information and Software Technology 2004

D Toward modularized verification of distributed

time-triggered systems

Botaschanjan et al. Lecture Notes in Computer Science 2006

A Toward traceability of model-based testing

artifacts

Naslavsky AMOST 2007

C Traffic-aware stress testing of distributed

systems based on UML models

Garousi et al. ICSE 2006

B T-UPPAAL: online model-based testing of

real-time systems

Mikucionis et al. ASE 2004

B T-VEC: a tool for developing critical systems Blackburn and Busser COMPASS 1996

B T-VECTM product summary Workshop on Industrial Strength Formal

Specification Techniques

1998

C UML-based integration testing Hartmann et al. ISSTA 2000

C UML-based integration testing for

component-based software

Wu et al. ICCBSS 2003

A UML-based statistical test case generation Riebisch et al. NetObjectDays 2002

B Use case-based testing of product lines Bertolino and Gnesi ESEC and FSE-11 2003

B Use case-driven test for object-oriented system Choi Software Engineering and Applications 2001

B Using artificial life techniques to generate test

cases for combinatorial testing

Shiba et al. International Computer Software and

Applications Conference

2004

B Using communication coverage criteria and

partial model generation to assist software

integration testing

Robinson-Mallett et al. Software Quality Journal 2008

B Using formal methods to derive test frames in

category-partition testing

Ammann and Offutt COMPASS 1994

B Using formal specifications as test oracles for

system-critical software

Hagar and Bieman ACM SIGAda Ada Letters 1996

(continued)

Appendix A (Continued)

Category Title Authors Source Year

B Using JML runtime assertion checking to

automate metamorphic testing in applications

without test oracles

Murphy et al. ICST 2009

D Using model checking to generate fault

detecting tests

Gargantini Lecture Notes in Computer Science 2007

B Using model checking to generate tests from

requirements specifications

Gargantini and

Heitmeyer

ESEC/FSE-7 1999

C Using UML collaboration diagrams for static

checking and test generation

Abdurazik and Offutt International Conference of UML 2000

C Using UML for automatic test generation Crichton et al. ASE 2001

B Using Z specifications in category-partition

testing

Amla and Ammann COMPASS 1992

A Verification of requirements for safety-critical

software

Carpenter SIGAda 1999

A Web application model recovery for user input

validation testing

Li et al. ICSEA 2007

B White on black: a white-box-oriented approach

for selecting black-box-generated test cases

Chen et al. Asia-Pacific Conference on Quality

Software

2000

A PICTURE FROM THE MODEL-BASED TESTING AREA 119
References

[1] C. Kaner, Exploratory testing, in: Quality Assurance Institute Worldwide Annual Software Testing

Conference, Florida Institute of Technology, Orlando, FL, 2006 November.

[2] N. Juristo, A.M. Moreno, S. Vegas, Reviewing 25 years of testing technique experiments, Emp.

Softw. Eng.: An Int. J. 9 (1) (2004) 7–44 (March).

[3] W. Perry, Effective Methods for Software Testing, third ed., Wiley, New York, 2006.

[4] G. Myers, The Art of Software Testing, Wiley, New York, 1979.

[5] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton, B. Horowitz, Model-based testing in

practice, in: Proceedings of the 1999 International Conference on Software Engineering (ICSE’99),

May 1999, pp. 285–294.

[6] A.C. DIAS-NETO, Selection of Model-Based Testing Techniques, Systems Engineering and

Computer Science Program. Doctoral Thesis, COPPE. Federal University of Rio de Janeiro,

November 2009 (in Portugese).

[7] J. Biolchini, P.G. Mian, A.C. Natali, G.H. Travassos, Systematic Review in Software Engineering:

Relevance and Utility, 2005. Available at http://www.cos.ufrj.br/uploadfiles/es67905.pdf Techni-

cal Report ES-679/05, PESC-COPPE/UFRJ.

[8] C.V. Ramamoorthy, S.F. HO, W.T. Chen, On the automated generation of program test data, IEEE

Trans. Softw. Eng. SE-2 (4) (1976) 293–300 (December).

[9] T.S. Chow, Testing software design modeled by finite-state machines, IEEE Trans. Softw. Eng.

SE-4 (1978) 178–187 (March).

[10] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan-Kaufmann,

San Francisco, CA, 2007. ISBN-13: 978-0-12-372501-1.

[11] A. Pretschner, Model-based testing, in: Proceedings of 27th International Conference on Software

Engineering, (ICSE’05), 2005, pp. 722–723.

[12] M. Prasanna, S.N. Sivanandam, R. Venkatesan, R. Sundarrajan, Survey on automatic test case

generation, Acad. Open Internet J. 15 2005. Available at http://www.acadjournal.com/2005/v15/

part6/p4/.

[13] A.C. Dias-Neto, R. Subramanyan, M. Vieira, G.H. Travassos, S. Forrest, Improving evidence about

software technologies: a look at model-based testing, IEEE Softw. 25 (3) (2008) 10–13 (May).

[14] S. Vegas, V. Basili, A characterization schema for software testing techniques, Emp. Softw. Eng.

10 (4) (2005) 437–466 (October).

[15] G.H. Travassos, P.S.M. Dos Santos, P.G.M. Neto, J. Biolchini, An environment to support large

scale experimentation in software engineering, ICECCS 2008. 13th IEEE International Conference

on, Eng. Complex Comput. Syst. (2008) 193–202 (March 31–April 3, 2008).

[16] B. Beizer, Black-Box Testing: Techniques for Functional Testing of Software and Systems, Wiley,

New York, 1995.

[17] R.V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley,

Boston, MA, 1999.

[18] A.C. Dias-Neto, R. Subramanyan, M. Vieira, G.H. Travassos, A survey on model-based testing

approaches: a systematic review, in: Proceedings of the 1st ACM international Workshop on

Empirical Assessment of Software Engineering Languages and Technologies (WEASELTech’07):

Held in Conjunction with the 22nd IEEE/ACM International Conference on Automated Software

Engineering (ASE) 2007 (Atlanta, Georgia), 2007, pp. 31–36. http://doi.acm.org/10.1145/

1353673.1353681 (November).

[19] G.C. Roman, A taxonomy of current issues in requirements engineering, IEEE Comput. 18 (4)

(1985) 14–22.

http://www.cos.ufrj.br/uploadfiles/es67905.pdf
http://www.acadjournal.com/2005/v15/part6/p4/
http://www.acadjournal.com/2005/v15/part6/p4/
http://doi.acm.org/10.1145/1353673.1353681
http://doi.acm.org/10.1145/1353673.1353681

120 A.C. DIAS-NETO AND G.H. TRAVASSOS
[20] A.C. Dias-Neto, G.H. Travassos, Surveying on model based testing approaches characterization

attributes, in: No: International Symposium on Empirical Software Engineering and Measurement

(ESEM’08), Kaiserslautern, Germany, October 2008.

[21] M. Hamburg, Basic statistics: a modern approach, J. R. Stat. Soc. Ser. A (Gen.) 143 (1) 1980 (2a Ed).

[22] A. Bertolino, Guide to the knowledge area of software testing. Software engineering body of

knowledge, IEEE Comput. Soc. 2004. http://www.swebok.org (February).

[23] T. Menzies, D. Owen, B. Cukic, Saturation effects in testing of formal models, in: 13th International

Symposium on Software Reliability Engineering (Issre’02), Washington, DC, vol. 15, 2002.

[24] V.R. Basili, H.D. Rombach, Support for comprehensive reuse, Softw. Eng. J. 6 (5) (1991) 303–316

(September).

[25] A. Birk, Modeling the application domains of software engineering technologies, in: Proceedings of

the 12th International Conference on Automated Software Engineering (Formerly: Kbse). Auto-

mated Software Engineering. IEEE Computer Society, Washington, DC, 1997, p. 291.

[26] A.C. Dias-Neto, G.H. Travassos, Model-based testing approaches selection for software projects.

Information and Software Technology, AST’08 special edition, 2009.doi:10.1016/j.

infsof.2009.06.010 (July).

[27] M. Horstmann, W. Prenninger, M. El-Ramly, Case studies. Model-Based Testing—A Tutorial

Volume, Springer LNCS 3472, 2005, pp. 439–461.

[28] A. Pretschner, W. Prenninger, S. Wagner, C. Kuhnel, M. Baumgartner, B. Sostawa, R. Zolch,

T. Stauner, One evaluation of model-based testing and its automation, in: Proc. ICSE’05, 2005,

pp. 392–401.

[29] M. Utting, A. Pretschner, B. Legeard, A Taxonomy of Model-Based Testing, Department of

Computer Science, University of Waikato, Hamilton, New Zealand, 2006, Technical report 04/2006.

[30] P. Santos-Neto, R. Resende, C. Pádua, Requirements for information systems model-based testing

methods, in: ACM Symposium on Applied Computing (ACM SAC), Seoul. Proceedings of the 22nd

ACM Symposium on Applied Computing (ACM SAC), Software Engineering Track (SE), 2007.

[31] E. Bernard, B. Legeard, X. Luck, F. Peureux, Generation of test sequences from formal specifica-

tions: GSM 11.11 standard case-study, Softw. Pract. Exp. 34 (10) (2004) 915–948.

[32] J. Clarke, Automated test generation from behavioral models, in: Proc. 11th Software Quality Week,

1998.

[33] M. Blackburn, R. Busser, A. Nauman, Why model-based test automation is different and what you

should know to get started, in: International Conference on Practical Software Quality and Testing,

PSQT/PSTT’2004 East, EUA, Washington, DC, March 2004.

[34] D.N. Card, Learning from our mistakes with defect causal analysis, IEEE Softw. 15 (1) (1998)

56–63. http://dx.doi.org/10.1109/52.646883 (Jan).

[35] A. Birk, T. Dings�yr, T. Stålhane, Postmortem: never leave a project without it, IEEE Softw.

May–June (2002) 43–45. Special Issue on Knowledge Management in Software Engineering.

[36] A.C. Dias-Neto, G.H. Travassos, Porantim: an approach to support the combination and selection of

model-based testing techniques, in: 4th Workshop on Automation of Software Test, Vancouver,

May 2009.

[37] M.A. Wojcicki, P. Strooper, An iterative empirical strategy for the systematic selection of a

combination of verification and validation technologies, in: Proceedings of the 5th International

Workshop on SoftwareQuality (May 20–26, 2007). International Conference on Software Engineering,

2007. http://dx.doi.org/10.1109/WOSQ.2007.4.

[38] N.A. Maiden, G. Rugg, ACRE: Selecting methods for requirements acquisition, Software Engineer-

ing Journal 11 (3) (1996) 183–192.

[39] G.N. Aranda, A. Vizcaino, A. Cechich, M. Piattini (2006), “Technology Selection to Improve Global

Collaboration”, In: International Conference on Global Software Engineering (ICGSE), Outubro,

pp. 223–232.

http://www.swebok.org
http://dx.doi.org/10.1109/52.646883
http://dx.doi.org/10.1109/WOSQ.2007.4

Advances in Automated
Model-Based System Testing
of Software Applications with
a GUI Front-End
ADVAN

ISSN: 00
ATIF M. MEMON
Department of Computer Science, University of
Maryland, Maryland, USA
BAO N. NGUYEN
Department of Computer Science, University of
Maryland, Maryland, USA
Abstract
Despite the ubiquity of software applications that employ a graphical-user

interface (GUI) front-end, functional system testing of these applications has

remained, until recently, an understudied research area. During ‘‘GUI testing,’’

test cases, modeled as sequences of user input events, are created and executed

on the software by exercising the GUI’s widgets. Because each possible

sequence of user events may potentially be a test case and today’s GUIs

offer enormous flexibility to end-users, in principle, GUI testing requires a

prohibitively large number of test cases. Any practical test-case generation

technique must sample the vast GUI input space. Existing techniques are

largely manual, and hence extremely resource intensive. Several new auto-

mated model-based techniques have been developed in the past decade. All

these techniques develop, either manually or automatically, a model of the GUI

and employ it to generate test cases. This chapter presents the first detailed

taxonomy of these techniques. A small GUI application is used as a running

example to demonstrate each technique and illustrate its relative strengths and

weaknesses.
CES IN COMPUTERS, VOL. 80 121 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)80003-8 All rights reserved.

122 A.M. MEMON AND B.N. NGUYEN
1.
 I
ntroduction . 122
2.
 R
unning Example of GUI Application Under Test 124
3.
 T
est-Case Generation Techniques . 126
3
.1.
 S
tate Machines . 126
3
.2.
 W
orkflows . 134
3
.3.
 P
re- and Postcondition Models . 144
3
.4.
 E
S-Based Models . 145
3
.5.
 P
robabilistic Models . 147
3
.6.
 C
ombinatorial Interaction Models . 149
3
.7.
 H
ierarchical Models . 153
4.
 C
onclusions . 159
A
cknowledgments . 160
R
eferences . 160
1. Introduction

As computers play an increasingly important role aiding end-users, researchers,

and businesses in today’s internetworked world, the class of software that has

a graphical-user interface (GUI) front-end has become ubiquitous [1–3]. A GUI

takes events (mouse clicks, selections, typing in text-fields) as input from users,

and then changes the state of its widgets. GUIs have become popular because of

the advantages this ‘‘event-handler architecture’’ offers to both developers and users

[4–6]. From the developer’s point of view, the event handlers may be created and

maintained fairly independently; hence, complex system may be built using these

loosely coupled pieces of code. From the user’s point of view, GUIs offer many

degrees of usage freedom, that is, users may choose to perform a given task

by inputting GUI events in many different ways in terms of their type, number,

and execution order.

Quality Assurance (QA) is becoming increasingly important for GUIs as their

functional correctness may affect the quality of the entire system in which the GUI

operates [7]. Software testing is a popular QA technique employed during software

development and deployment to help improve its quality [8,9]. During software

testing, test cases are created and executed on the software. One way to test a GUI is

to execute each event individually and observe its outcome, thereby testing each

event handler in isolation [10,11]. However, the execution outcome of an event

handler may depend on its internal state, the state of other entities (objects, event

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 123
handlers), and the external environment. Its execution may lead to a change in its

own state or that of other entities. Moreover, the outcome of an event’s execution

may vary based on the sequence of preceding events seen thus far. Consequently, in

GUI testing, each event needs to be tested in different states. GUI testing therefore

involves generating and executing sequences of events [5,12].

The event-driven nature of GUIs creates several challenges for testing. One

important challenge stems from the enormous space of possible event interactions

with the GUI [13,14]. Because each possible event sequence (ES) may potentially be

a test case, GUI testing, in principle, may require a prohibitively large number of test

cases. Practical GUI testing techniques attempt to sample the vast input space of all

possible sequences with the goal of detecting faults; for effective testing, it is

important to sample this space carefully [15].

In practice, GUI testing is done in two ways. First, testers employ unit testing

tools [13,16] such as JFCUnit [17], Abbot [18], Pounder [19], and Jemmy Module
[20] to manually create unit test cases for GUIs. A unit test case consists of method

calls to an instance of the class under test. Assertions are inserted in the test cases

to determine whether the classes/methods executed correctly. The test cases are

automatically executed on the GUI under test. Assertion violations are reported as

failures. The parts of the GUI state space explored depend largely on the nature of

the test cases. Because manual coding of test cases can be tedious, an alternative,

which is the second popular technique, ‘‘captures’’ sequences of events that testers

perform manually on the GUI. Hence, this technique treats a test case as a sequence

of input events. These test cases can be ‘‘replayed’’ automatically on the GUI. Tools

used for this ‘‘capture’’ and ‘‘replay’’ are called capture/replay tools [21,22].

As was the case with unit testing, the test-case creation is manual (in terms of the

ES) and the tools facilitate only the execution of test cases. The ‘‘goodness’’ of the

test cases depends on the tester’s ability to obtain fault-exposing sequences [14,23].

The last decade has seen some advances in automated model-based GUI testing

techniques. In this chapter, we provide a taxonomy of these techniques, which are

shown in Table I. As the table shows, we discuss 16 techniques. All these techniques

require the creation of a model of the software or its GUI, and algorithms to use the

model to generate test cases. The techniques of interest to us employ six distinct

models, shown in Column 1 of Table I; the ‘‘hierarchical’’ model uses a combina-

tion of these models organized in a hierarchy.

There are two important aspects of each technique that we discuss. First is the model

that it employs. In some cases, the models are created manually; in others, they are

derived in anautomatedmanner.The second important aspect is the test-case generation

approach, which, for some techniques is manual; but for most is automated. Figure 1

shows the set of techniques discussed in this chapter, partitioned along two dimensions:

model creation (manual, automated) and test generation (manual, automated).

Table I

GUI TESTING TECHNIQUES DISCUSSED IN THIS CHAPTER

Model Technique Abbreviation Section

State machine Finite state machine

Variable finite state machine

Complete interaction sequence

Faulty complete interaction sequence

FSM

VFSM

CIS

FCIS

3.1.1

3.1.2

3.1.3

3.1.4

Workflow Event-flow graph

Event interaction graph

Feedback based

Faulty event sequence graph

EFG

EIG

ESIG

FESG

3.2.1

3.2.2

3.2.3

3.2.4

Pre- and Postcondition AI planning AI 3.3

Event sequence Genetic models GA 3.4

Probabilistic Probabilistic event-flow graph PEFG 3.5

Combinatorial Latin squares

Coverage arrays

LS

CA

3.6.1

3.6.2

Hierarchical Keyword-driven model

Hierarchical finite state machines

UML diagram-based

KW

HFSM

UML

3.7.1

3.7.2

3.7.3

Test generation
Model creation

Manual Automated

Manual FSM, VFSM, CIS,
FCIS,

Automated KW, FESG, AI, GA,
PEFG, LS, CA, HFSM,
UML

EFG, EIG, ESIG

FIG. 1. Technique taxonomy.

124 A.M. MEMON AND B.N. NGUYEN
The remainder of this chapter presents these techniques. But first, we present a

small GUI application that we use as a running example, to illustrate the important

aspects of each technique, and its relative strengths and weaknesses.
2. Running Example of GUI Application
Under Test

The simple running example application called ‘‘Radio Button Demo’’ is seen

in Fig. 2. The GUI contains nine widgets labeled w0 through w8. A user can perform

events on almost all the widgets (there is no event available on w4). Table II shows

Table II

EVENTS AVAILABLE ON EACH WIDGET

Widget Event name

w1 circle

w2 square

w3 create
w5 reset

w0 exit

w6 (un)check

w7 yes
w8 no

w1

w2

w3 w0

w6

w7 w8

w5

w4

FIG. 2. The Radio Button Demo application.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 125
the events associated with each widget. We note that in this simple example, each

widget has at most one associated event. In a more complex GUI, a widget may have

multiple associated events.

The application’s functionality is very straightforward—the initial state has

Circle (corresponding to w1) selected, the Rendered Shape area (widget w4) is

empty, and the Reset button is disabled. Events are used to change the state of

the GUI. Event circle sets the radio button to circle; if there is already a square in

the Rendered Shape area, then the shape is immediately changed to a circle.

Event square is similar to circle, except that it changes the shape to a square. Event

create creates a shape in the Rendered Shape area according to current settings

126 A.M. MEMON AND B.N. NGUYEN
ofw1 andw2. Event reset resets the entire software to its initial state. This event is only
available when there is an existing shape. Event exit opens a modal ‘‘ExitConfir-

mation’’ window that contains widgets w6, w7, and w8. This window blocks all

widgets in the main window when it opens. Event (un)check changes the status of the
check-box w6 (originally unchecked) so that when it is checked the exiting time will

be logged to a file before the application is terminated. Event no closes the window

and moves focus back to the main window; and event yes closes the entire application.
TheGUI of this application is simple, yet quite flexible. The numbers of 1-, 2-, 3-,4-,

and 5-way uniqueESs (and hence possible test cases) thatmay be executed in the initial

state of the GUI are 4 (remember that the Exit Confirmation window is initially

closed and w5 is disabled), 17, 66, 253, and 798, respectively.
3. Test-Case Generation Techniques

This section presents an overview of all the techniques listed in Table I. The

techniques are classified according to the underlying model used.
3.1 State Machines

Because GUIs are composed of objects (i.e., the widgets) that maintain state,

in terms of widget properties (e.g., Enabled, Caption, Width) and their values

(e.g., TRUE, ‘‘Cancel’’, 20), many researchers have found it natural to model

GUIs using state machines [10,14,24,25]. For example, the GUI shown in Fig. 2

starts in an ‘‘initial state’’ in which, among other widgets, widget w3 is not selected

andw5 is disabled. If one were to model the state of the GUI as a set of triples (widget,
property, value), the initial state could be represented as {. . ., (w3, Selected, FALSE),
(w3,Enabled, TRUE), (w5,Enabled, FALSE), . . .}. As can be imagined, depending on

how onemodels the state, such machines can get extremely large for nontrivial GUIs.

In this section, we present several techniques that researchers have employed

to control this state space explosion. Shehady et al. [24] use global variables,

White et al. [25] focus on a part of the state machine, and Belli et al. [14] develop

off-nominal test cases. We present these techniques in the following sections.
3.1.1 Finite State Machines
In this section, we present a generic approach to model the GUI as a finite state

machine (FSM). Formally, a FSM can be represented as a quintuple FSM ¼ (S, I, O,
T, F), where S is the finite set of GUI states, I is the set of inputs, that is, events that

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 127
may be performed on the GUI, O is the finite set of outputs, T is the transition

function S � I! S that specifies the next state as a function of the current state and

input event, f is the output function S � I ! O that specifies the resulting output

from a transition.

For GUI testing, a tester is free to select certain aspects of the software to model

in the state. For example, we choose to represent the state of the GUI using four of its

elements: (1) log, which is 1 if w6 is checked, 0 otherwise; (2) exitWinOpen, which
is 1 if the ExitConfirmation window is open, 0 otherwise; (3) created, which is
1 if a shape is created, 0 otherwise; (4) shape, which is either Circle or Square.
We can then represent the state of the GUI using a length 4 vector consisting of

the above four elements in the order specified above. For example, state S000C is the

initial state in which w6 is unchecked, the exit confirmation window is closed, no

shape is created at w4, and the shape radio button for circle is set. Similarly, S111S is
the state in which w6 is checked, the exit confirmation window is open, a shape is

visible at w4, and the shape radio button for square is set.

We use the above definition of GUI state to create an FSM. Figure 3 shows the

FSM of the GUI of Fig. 2. Nodes in the graph represent states and edges represent

transitions; there are two special states (shaded nodes) in the FSM: the initial state

right after the software starts (S000C), and the terminal state when the software has

been terminated (St). Some of the state transitions are as follows: If the Create

button has never been clicked, then the user can transit between S000x states by

selecting different radio button options (x represents any value of the corresponding
state element, in this case x is either C or S). Once Create has been clicked, the GUI

transits to a new state where the third state element turns from 0 is 1 (i.e., a new

shape has been created). The user can transit back and forth between Sx0xC and Sx0xS
by selecting different radio button options (x represents any value of the

corresponding state element). However, the user cannot do the same for the pair

(S01xC, S01xS) or S11xC states because the Exit Confirmation window blocks all

widgets in the main window.

Once the FSM has been created, test-case generation from an FSM is very

intuitive. The test designer may start at the initial state, traverse edges of the FSM

as desired, and record the transitions as events. For example, in Fig. 3, a test case

could be: hsquare, circle, create, exit, (un)check, yesi which takes the software

through states S000S, S000C, S001C, S011C, S111C, and St.
Although FSMs are easy to create, they suffer from some major problems.

First, they do not scale for large GUIs. Moreover, the states may not have any

relationship to the structure of the GUI. Hence, they can be difficult to maintain.

A new model called variable finite state machines (VFSMs), developed by Shehady

et al. [24], presented in the following section, attempts to rectify some of these

problems.

S000C

circle

S000S
square

S010C

exit

S001C

create

circle

square
S010S

exit

S001S

create

no

S110S

(un)check

St

yes

no

S110C

(un)check

Yes

S011S

S111S

(un)check
yes

no

S011C

S111C

(un)check
yes

no

S100S

square

S100C

circle

S101Screate

exit

square

circle

S101C

create

exit

reset

square/create

circle
exit

reset

square

circle/create

exit

(un)check

no

yes

(un)check
no

yes

(un)check

no
yes

(un)check

no

yes

log = 0

exitWinOpen = 0

created = 0

shape = circle

log = 1

exitWinOpen = 1

created = 1

shape = Square

reset
exit

square/create
circle

reset

exit

square

circle/create

FIG. 3. The finite state machine for Radio Button Demo.

128 A.M. MEMON AND B.N. NGUYEN
3.1.2 Variable Finite State Machines
Shehady et al. [24] use VFSMs for testing GUIs. The key difference between

VFSMs and FSMs is that the former allow a number of global variables, each of

which takes values from a finite domain. The values of the variables are used to

compute the next state and the output in response to an input. Transitions may also

modify the values of these variables. In principle, the space of GUIs that can be

modeled using VFSMs is the same as those that can be modeled using FSMs.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 129
Formally, a VFSM is represented as a 7-tuple VFSM ¼ (S, I, O, T, F, V, z), where
S, I, O are similar to their counterparts in FSMs, V¼ {V1, V2, V3, . . ., Vn} (each Vi is

the set of values that the ith variable may assume) and n is the total number of

variables in the VFSM. Let D ¼ S � I � V1 � V2 � . . . � Vn and DT � D; T is the

transition function DT ! S and F is a function DT ! O. Hence, the current state of
each of the variables affects both the next state and the output of the VFSM. z is the set
of variable transition functions. At each transition, z is used to determine whether any

of the variables’ values have beenmodified. Each variable has an initial state at startup.

Figure 4 shows a VFSM of the Radio Button Demo’s GUI. Each state is simply

represented by a length 3 vector, that is, that specifies whether log needs to be

maintained, the Exit Confirmation window is open, and the type of shape that

has been selected.

The states have been simplified because the element created has been removed from

the state. This information is now maintained in a variable V that can take values

0 and 1. Edges of theVFSMare annotatedwith predicates (shown in parenthesis placed

before the edge label) and assignments to the variables (shown in square brackets
S00C

circle
create [V = 1]

(V = = 1) reset [V = 0]

S00S

square circle

S01C

exit

square
create [V = 1]

(V = = 1) reset [V = 0]

exit

no
(un)check

St

yes

no

yes

circle
create[V = 1]

(V = = 1) reset [V = 0]

square/circle

exit

square
create [V = 1]

(V = = 1) reset [V = 0]

exit

(un)check

no

yes

(un)check(un)check

no

yes

log = 0

exitWinOpen = 0

shape = Circle

log = 1

exitWinOpen = 1

shape = Square

S11C

S01S

S11S
S10S

S10C

FIG. 4. Variable finite state machine.

130 A.M. MEMON AND B.N. NGUYEN
placed after the edge label). Initially, V is set to 0. Transitions are taken depending on

the outcome of the predicates. For example, the reset transition is taken from S00C only
if V ¼¼ 1; once taken, it changes V to 0. Similarly, create changes V to 1.

The VFSM created is much more concise (it has nine states) than the original FSM

in Fig. 3 (which has 17 states). This is because several states in the FSM are grouped

and represented by a single state in the VFSM. VFSMs can be converted into their

equivalent FSMs for test-case generation. The key idea is to fold the information of

V and z into S and T. Given a VFSM’s S and V¼ {V1, V2,. . ., Vn}, the new FSM’s set

of states Seq is obtained as Seq ¼ {Si|Si 2 S � V1 � V2 � V3 � . . . � Vn}, that is, this

creates a set of states that combines the information of the states and the variables

into one state. Similarly, the new FSM’s transition function Teq: Seq � I ! Seq may

be created by combining the T and z functions of the VFSM. Since the range of T is S
and the range of z is V ¼ {V1, V2,. . ., Vn}, Seq is the Cartesian product of the two

ranges; also T and S have the same domain.
3.1.3 Complete Interaction Sequences
Another approach to restrict the state space of a state machine is to employ

software usage information. The method proposed by White et al. [25] focuses on

a subset of interactions performed on the GUI. The key idea is to identify respon-
sibilities for a GUI; a responsibility is a GUI activity that involves one or more GUI

objects and has an observable effect on the surrounding environment of the GUI,

which includes memory, peripheral devices, underlying software, and application

software. For each responsibility, a complete interaction sequence (CIS), which is a

sequence of GUI objects and selections that will invoke the given responsibility, is

identified. Parts of the CIS are then used for testing the GUI.

The GUI testing steps for CIS are as follows.

1. Manually identify responsibilities in the GUI.

2. For each responsibility, identify its corresponding CIS.

3. Create an FSM for each CIS.

4. Apply transformations to the FSM to obtain a reduced FSM. These transfor-

mations include the following.
a. Abstracting strongly connected components into a superstate.
b. Merging CIS states that have structural symmetry.

5. Use the reduced FSM to test the CIS for correctness.

The two abstractions mentioned above (Steps 4a and 4b) are useful from a

modeling point of view. They are described in more detail next.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 131
Definition: A part of an FSM, called a sub-FSM, is a strongly connected component
if for every pair (S1, S2), S1, S22 S, there exists a directed path from S1 to S2. Each such
component is then replaced by a superstate and tested in isolation.

A sub-FSM has structural symmetry if the following conditions hold.

1. It contains states S1 and S2 such that S1 has one incoming transition, S2 has one
outgoing transition, and a number of paths reach S2 from S1.

2. For each path in the sub-FSM, context (the path taken to get to S1 from outside

the sub-FSM) has no effect on the states/transitions or output.

3. No transition or state encountered after S2 is affected by paths taken inside the
sub-FSM.

Such a sub-FSM can be reduced into a superstate and tested in isolation.

Given a GUI, the test designer first reduces the FSM after applying the above

transformations, thereby reducing the total number of states in the FSM. This results

in smaller number of paths in the FSM, hence reducing the number of test cases.

Without any loss of generality, each FSM is assumed to have a distinct start state and

distinct terminal state.

As was the case before, a test is a path through the FSM. The test designer creates

two types of tests: design tests that assume that the FSM is a faithful representation

of the GUI’s specifications and implementation tests that for each CIS, consider the

possibility that potential transitions not described in the design may occur in the

implementation.

For design tests, the test designer creates sufficient number of tests starting at the

initial state and ending at the terminal state so that the following conditions hold:

l all distinct paths in the reduced FSM are executed; each time a path enters a

superstate corresponding to a component, an appropriate test path of the

component is inserted into the test case at that point,

l all the design subtests of each component are included in at least one test, which

may require additional tests of the reduced FSM to satisfy this constraint.

The key idea of conducting implementation testing is to check all GUI events in

the CIS to determine whether they invoke any new transitions in the reduced FSM.

To implement the reduced FSM test, the test designer must construct sufficient test

sequences starting at the initial state and stopping at the terminal state so that the

following conditions hold:

l all the paths of the reduced FSM are executed, and

l all the implementation tests for each remaining component are included at least

once.

Initial

Sx00C

Sx00S

Terminal

circle

square

Sx01x

create

circle

square

create

reset

create

FIG. 5. FSM for the create a new shape responsibility.

132 A.M. MEMON AND B.N. NGUYEN
By using the CIS concept, the test designer can test a GUI from various perspectives,

each defined by the CIS. For example, in the Radio Button Demo application, the

tester may design a ‘‘create a new shape’’ responsibility that involves four objects w1,

w2, w3, and w5 (assuming that the Rendered Shape area is empty and the Exit

Confirmation window is not open). Figure 5 shows an FSM for this responsibility

where each node represents aGUI state and each edge represents a state transition.Note

that the states in this FSM are abstract states representing several states in the FSM of

Section 3.1.1. For example, Sx00C is an abstraction of all states where the Circle radio

button is selected (x can be replaced by any value of the corresponding state element).

The sub-FSM consisting of the two states Sx00C and Sx00S is a strongly connected

component. Thus, this sub-FSM can be tested in isolation and then replaced it by a

superstate Sx00x (i.e., a shape is selected). To test the internal behaviors of the sub-

FSM, the state sequence needed to be covered is hSx00C, Sx01Si; which is obtained by
the ES hsquare, circlei. With an assumption that the sub-FSM is well tested, the state

sequence needed to test the reduced FSM is hInitial, Sx00x, Sx01x, Sx00x, Sx01x,
Terminali. This sequence is then translated to an executable test case taking the

GUI from the initial state to the terminal state: hcreate, reset, createi.
3.1.4 Off-Nominal Finite State Machines
The three approaches discussed thus far generate test cases to test the GUI for

legal ESs specified in the state machine model. However, the GUI might have been

coded incorrectly to allow other sequences left unspecified in the state machine.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 133
For example, in our RadioButtonDemo GUI, does the GUI allow the user to click

on the reset button when the application is launched, or after reset has been executed
once? For example, is the sequence hreset, reset, reseti allowed?
The implicit assumption is that such off-nominal sequences are illegal and should

not be allowed by the GUI. Belli et al. [14] argue that these sequences should also be

tested in addition to the legal sequences. They augment the CIS approach to test the

GUI system’s robustness by generating such off-nominal test cases. The augmented

model is called a Faulty Complete Interaction Sequence (FCIS).
As was the case for the CIS, each FCIS can also be specified by an FSM. This

FSM is constructed by the following steps:

1. Build the CIS and the corresponding FSM consisting of all legal sequences of

user–system interactions. Each edge of the FSM is called an InteractionPair (IP).
2. Identify Faulty Interaction Pairs (FIPs) consisting of inputs that are not legal. These

are all the ‘‘missing’’ IPs in the original FSM. Note that FIPs and IPs together

define a complete FSM called the Complete Finite State Automata (CFSA).

Figure 6 shows an FSM of the FCIS corresponding to the CIS in Fig. 5. The solid

lines in the graph represent the FIPs and the dotted lines represent the edges in the

original CIS’s FSM.

Test-case generation for a FCIS is straightforward. The tester can systematically

design test cases for various undesired system behaviors by covering all possible FIPs.

One way to do this is to select an untested FIP, that is, an edge in the FCIS, generate a
Initial

Sx00C

Sx00S

Terminal

circle

square

Sx01x

create

circle

square

create

reset

reset

create

FIG. 6. Faulty complete interaction sequence—dotted edges are transitions in the CIS.

134 A.M. MEMON AND B.N. NGUYEN
sequence of events from the FSM’s start state to the first event in the selected edge, and

prepend this sequence to the edge, creating a test case that will test the selected FIP.

Once this is done for each FIP, all of them would be tested and covered.

As shown in Fig. 6, there is one FIP in the FSM: hSx01x, Sx00Si. By prefixing this FIP
with the state sequence hInitial, Sx00C, Sx01xi, we get a complete sequence in theCFSA to

examine the illegal behavior: hInitial, Sx00C, Sx01x, Sx00Si. The sequence can be translated
to a test case which is a sequence of events starting at the initial state: hcreate, reseti.

3.2 Workflows

Some researchers have used the GUI’s business workflow, that is, a sequence of
connected steps, for test-case generation. A typical GUI workflow is represented by

a set of events (the steps) and some type of sequencing relationship between the

events. In this section, we describe the Event-Flow Graph (EFG) model [26],

a seminal work in this category. Then, we present two variants of this model: the

Event Interaction Graph (EIG) [12] and the Event Semantic Interaction Graph [5].

Finally, we discuss the Faulty Event Sequence Graph [14], an off-nominal model for

the workflow-based approach.
3.2.1 Event-Flow Graph
Intuitively, an EFG represents all possible ESs that may be executed on a GUI [26].

The graph nodes represent events in the GUI and the graph edges represent a

sequencing relationship that shows the set of events that may be performed immedi-

ately after a given event. The concept of the EFG is similar to that of a control-flow or

program-flow graph [27] that captures the flow of all possible executions of program

statements, except that an EFG represents the flow of events, not code, in a GUI.

Definition: An EFG for a GUI G is formally defined as a triple hV, E, Bi where:
1. V is a set of vertices representing all the events in G. Each u 2V represents an

event in G.
2. E � V � V is a set of directed edges between vertices. Event ej follows ei

(or equivalently ej ¼ follows (ei)) iff ej may be performed immediately after

ei. An edge (ux, uy) 2 E iff the event represented by uy follows the event

represented by ux.
3. B � V is a set of vertices representing initial events of G that are available to

the user when the GUI is first invoked.

The EFG for the Radio Button Demo application is shown in Fig. 7. The events

are shown as oval nodes. The shaded nodes are initial events, that is, they are

available to the user when the GUI is first launched. The directed edges show the

circle

square

create

exit

(un)check

yes

no

reset

FIG. 7. Event-flow graph.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 135
follows relationship between the events. For example, a user can click on the Yes

button in the Exit Confirmation window either immediately after clicking on

the Exit button or immediately after clicking on w6; hence there is an edge from

exit to yes, and from (un)check to yes. The user cannot click on the Yes button after

the No button because no closes the dialog; there is no edge from no to yes.
Similarly, there is neither an edge from no to no nor from yes to yes.
An approximation of the EFG for a GUI can be automatically obtained by

a reverse engineering process called GUI ripping [28]. All events available in the

GUI are automatically performed to open the hidden widgets and windows in

a depth-first manner. During the GUI ripping process, the key attributes of each

widget are captured (e.g., whether it opens a modal/modeless window, it opens

a menu, it closes a window). These attributes are then used to automatically

construct the EFG. Because such a process is unable to infer complex state-based

relationships between the events, for example, one enables/disables the other,

a tester has to manually check and edit it to obtain the final EFG.

136 A.M. MEMON AND B.N. NGUYEN
Because the EFG captures all possible sequences of events that may be executed

by a user on the GUI, any path in the EFG is a valid user-executed ES, and hence,

a potential test case. Moreover, any graph traversal technique on the EFG can be

used to yield test cases. Examples of some techniques that have been used in the past

are goal-directed search [11], random walk [12], and bounded breadth-first search
[29]. For example, a random walk of the EFG of Fig. 7 may yield the test case

hsquare, square, circle, square, create, reset, exit, yesi.
3.2.2 Event Interaction Graph
Because the EFG captures all possible ESs that may be executed on the GUI, the

number of ESs that may be generated from an EFG becomes extremely large. In fact,

the number grows exponentially with sequence length [26,30]. It is important to

reduce this number for practical reasons. To address this issue, Xie et al. [29,31]

conducted several empirical studies on the characteristics of test cases derived from

the EFG model. The experiments showed that a large number of faults were detected

by test cases that tested interactions between certain type of events which (1) close a

modal window (termination events) and (2) interact with the underlying code

(system-interaction events). Other events used to manipulate the GUI structure

such as open or close menu/modeless windows, called structural events, are unlikely
to reveal faults. One possible explanation for these results was that the code for

structural events is usually simple and generated automatically by visual GUI-

building tools; therefore, it is less likely to be faulty. Based on these results, a new

model called the EIG was developed.

Intuitively, an EIG contains only termination and system-interaction events;

anedge between two nodes in the EIG shows that one event might be executed after

(not necessarily immediately after) the other along some execution path. Formally, EIG

edges are defined by an interacts-with relation through the following definitions:

Definition: There is an event-flow-path from node nx to node ny iff there exists a
(possibly empty) sequence of nodes nj; njþ1; njþ2; . . .; njþk in the EFG E such that

{(nx, nj), (njþk, ny)} � edges(E) and {(njþi, njþiþ1) for 0 � i � (k�1)} � edges(E).

Definition: An event-flow-path hn1; n2; . . .; nki is interaction-free iff none of

n2, . . ., nk�1 represents termination or system-interaction events.

Definition: A system-interaction (or termination) event ex interacts-with system-

interaction and termination event ey iff there is at least one interaction-free event-

flow-path from the node nx (that represents ex) to the node ny (that represents ey).
The EIG edges actually represent the above interacts-with relationship between

the events. An EFG can be automatically transformed into an EIG by using

circle

square

create

reset

exit

(un)check

yes

no

FIG. 8. Event interaction graph.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 137
graph-rewriting rules (details are presented in Ref. [31]). The EIG for the Radio

Button Demo application is shown in Fig. 8. Note that the EIG does not contain the

window-opening exit event. The graph-rewriting rule used to obtain this EIGwas to (1)

delete exit because it is a window-open event, (2) for all remaining events ex replace
each edge (ex, exit) with edge (ex, ey) for each occurrence of edge (exit, ey), and (3) for
all ey, delete all edges (exit, ey).
As was the case with EFGs, a test case in the EIG model is also a path in the EIG,

starting with an initial event. One possible test case might be hsquare, square, circle,
yesi. Because EIG nodes do not represent events to open or close menus/windows, the

sequences obtained from the EIG may not be executable. For example, the test case

hsquare, square, circle, yesiwill not execute because yes is not available for execution
after circle. For this reason, at execution time, other events needed to reach the EIG

events are automatically inserted using the original EFG. During test-case execution,

the EIG test case above will be expanded to hsquare, square, circle, exit, yesi.

138 A.M. MEMON AND B.N. NGUYEN
3.2.3 Event Semantic Interaction Graph
Although the EIG model is smaller than the EFG, it is still a dense graph and

suffers from the same problems as does the EFG—the number of generated ESs

grows exponentially with length. In more recent work, Yuan et al. [5] create a sparse

graph, where events are connected by edges only if they were shown to influence

each other’s execution behavior. Consider the Radio Button Demo example. The

top-left GUI in Fig. 9 shows the initial state (S0) of the application. After an event

square is executed, the GUI changes its state to the one shown in the top-right

(square(S0)). In this state, the Square radio button is selected. Starting from S0, one
can execute another event (create) and obtain the state shown in the bottom-left

(create(S0)); a circle is created by clicking the Create button. If, however, the

sequence hsquare, createi is executed in S0, a new state (create(square(S0))), shown
in the bottom-right is obtained; a square has been created. This execution is

equivalent to the execution of event create in the state square (S0). The event square
clearly influences the event create. We say that event square ‘‘interacts with’’ event
create, and should be tested together to check for interaction problems.
create

square

<square; create>

FIG. 9. Event semantic interaction example.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 139
The main idea behind observing GUI run-time states and using them to determine

which events to test together can also be justified by examining the code of

event handlers. For example, the event handlers for square and create share two

variables created, which indicates if a shape is created, and currentShape,

which specifies the current selected shape; create setscreated toTRUE and influences

square’s flowofcontrol; square setscurrentShape to a square,which createuses as a
parameter to create a shape; hence, it is not surprising that they influence each other’s

execution.

The example illustrated in Fig. 9 is just one case of how the GUI state may be used

to pinpoint interactions between event handlers. Yuan et al. formally define six cases

that describe (as evaluative predicates) situations in which two events, called e1 and
e2, interact, that is, e1 influences e2. In these six cases, e1 and e2 are system-

interaction events in modeless windows; this situation is referred as Context 1.
Case 1:
P1ð1Þðe1; e2Þ ¼ 9w 2 W; p 2 Pw; v 2 Vp; v0 2 Vp;

s:t: ðv 6¼ v0Þ^ ðw; p; vÞ 2 S0 \ e1ðS0Þ \ e2ðS0Þf gð Þ^ððw; p; v0Þ 2 e2ðe1ðS0ÞÞÞð Þ
there is at least one widget w with property p with initial value u (hence the triple

(w, p, u) is in S0), which is not affected by the individual events e1 or e2 (the triple
is also in e1(S0) and e2(S0)); however, it is modified when the sequence e1; e2h i is
executed, that is, the value of w’s property p changes from u to u0.
Case 2:
P2ð1Þðe1; e2Þ ¼ 9w 2 W; p 2 Pw; v 2 Vp; v0 2 Vp; v00 2 Vp;

s:t:ððv 6¼ v0Þ^ðv0 6¼ v00Þ^ ðw; p; vÞ 2 S0 \ e2ðS0Þf gð Þ^ ðw; p; v0Þ 2 e1ðS0Þð Þ
^ððw; p; v00Þ 2 e2ðe1ðS0ÞÞÞÞ

there is at least one widget w with property p that has an initial value u, which is not
modified by the event e2; it is modified by e1; however, it is modified differently by

the sequence e1; e2h i.
In our running example, widget w4, in the GUI’s initial state, is not modified by

event square, that is, it remains empty; it is modified by event create, that is, a circle
is shown; however, w4 is modified differently by the sequence hcreate, squarei.
Hence, Case 2 applies to create and square.
Case 3:
P3ð1Þðe1; e2Þ ¼ 9w 2 W; p 2 Pw; v 2 Vp; v0 2 Vp; v00 2 Vp;

s:t:ððv 6¼ v0Þ^ðv0 6¼ v00Þ^ððw; p; vÞ 2 S0 \ e1ðS0Þf gÞ^ððw; p; v0Þ 2 e2ðS0ÞÞ
^ððw; p; v00Þ 2 e2ðe1ðS0ÞÞÞÞ

140 A.M. MEMON AND B.N. NGUYEN
there is at least one widget w with property p that has an initial value u, which is not

modified by the event e1; it is modified by e2; however, it is modified differently by

the sequence e1; e2h i. Note that this case is different from Case 2 because the ES

remains the same, that is, e1 is executed before e2.
In our running example, widget w4, in the GUI’s initial state, is not modified by

event square, that is, it remains empty; it is modified by event create, that is, a circle
is shown; however, w4 is modified differently by the sequence hsquare, createi.
Hence, Case 3 applies to square and create.
Case 4:
P4ð1Þðe1; e2Þ ¼ 9w 2 W; p 2 Pw; v 2 Vp; v0 2 Vp; v00 2 Vp; �v 2 Vp;

s:t:ððv 6¼ v0Þ^ðv 6¼ v00Þ^ðv00 6¼ �vÞ^ððw; p; vÞ 2 S0Þ^ððw; p; v0Þ 2 e1ðS0ÞÞ
^ððw; p; v00Þ 2 e2ðS0ÞÞ^ððw; p; �vÞ 2 e2ðe1ðS0ÞÞÞÞ;

there is at least one widget w with property p that has an initial value u, which is

modified by individual events e1 and e2; however, it is modified differently by the

sequence e1; e2h i.
The above four cases handle widgets that persist across the four states being

considered, that is, S0, e1(S0), e2(S0), and e2(e1(S0)). In many cases, event execution

‘‘creates’’ new widgets, for example, by opening menus; the next case handles

newly created widgets.
Case 5:
P5ð1Þðe1; e2Þ ¼ 9w 2 W; p 2 Pw; v 2 Vp; v
0 2 Vp;

s:t: ðv 6¼ v0Þ^ððw; p; vÞ 2 exðS0ÞÞ^ððw; p; vÞ =2 S0Þ^ ðw; p; v0Þ 2 e2ðe1ðS0ÞÞð Þð Þ;
there is at least one new widget w with property p and value u in ex(S0), that is, it was
created by event ex (either e1 or e2) but did not exist in state S0; it was created by the
sequence e1; e2h i but with a different value for some property.

A common occurrence of event interaction in GUIs is enabling/disabling widgets,

which may be modeled as the widget’s ENABLED property being set to TRUE or

FALSE.
Case 6:
P6ð1Þðe1; e2Þ ¼ 9w 2 W; ENABLED 2 Pw; TRUE 2 VENABLED; FALSE 2 VENABLED;

s:t: ðððw; ENABLED; FALSEÞ 2 S0Þ^ððw; ENABLED; TRUEÞ 2 e1ðS0ÞÞ^EXECðe2;wÞÞ;

there exists at least one widget w that was disabled in S0 but enabled by e1. Event e2
is performed on w, represented by a predicate EXEC(e2, w).

In our running example, create enables reset; hence Case 6 applies.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 141
If multiple cases apply, then one of the case numbers is used. Due to the specific

ordering of the events in the sequence e1; e2h i, the ESI relationship is not symmetric.

As demonstrated earlier, for our Radio Button Demo application: square !
create, create ! square, and create ! reset.
Once all of the cases have been implemented, the feedback-based process execu-

tion is straightforward. The steps of the execution are as follows.

1. The seed suite consisting of all two-way interactions ex; ey
� �

between GUI

events is executed on the software in state S0; these test cases are simple

enumerations of all EIG edges. All events ey are also executed in S0. The state
information ex(S0), ey(S0), ey(ex(S0)) is collected and stored.

2. The above predicates are evaluated for each pair of system-interaction events

in the EIG that are either (1) directly connected by an edge (Context 1) or (2)

connected by a path that does not contain any intermediate system-interaction

events (contexts 2 and 3), that is, there is at least one termination event that

closes a modal window on this path. If one of the predicates evaluates to

TRUE, the two events are ESI-related.

Once all the ESIs in a GUI have been identified, a graph model called the ESI

graph (ESIG) is created. The ESIG contains nodes that represent events; a directed

edge from node nx to ny shows that there is an ESI relationship from the event

represented by nx to the event represented by ny. Figure 10 shows the ESIG of the

Radio Button Demo GUI. The solid lines are ESIG edges; for comparison, we also

show the EFG edges (dotted lines) and EIG edges (dashed lines).

As was the case for EFGs and EIGs, the ESIG may be traversed using different

graph traversal algorithms to generate test cases. For our example ESIG in Fig. 10,

two test cases are hcreate, reseti and hsquare, create, square, create, reseti.
3.2.4 Off-Nominal Event Graph
Belli et al. develop a technique to generate off-nominal test cases using the GUI’s

workflow [14]. They define the workflow as an Event Sequence Graph (ESG).

Definition: An ESG ¼ (V, E) is a directed graph where V 6¼ � is a finite set of

vertices (nodes), E � V � V is a finite set of arcs (edges), and X, G � V are finite

sets of distinguished vertices with x 2 X and g 2 G called entry nodes and exit

nodes, respectively, wherein 8u 2 V there is at least one sequence of vertices<x, u0,
. . ., uk > from each x 2 X to uk ¼ u and one sequence of vertices u0; . . . ; ukh i from
u0 ¼ u to each g 2 G with (ui, uiþ1) 2 E, for i ¼ 0, . . ., k�1 and u 6¼ x, g.
Intuitively, the ESG is similar to the EFG, except that there is a notion of exit

nodes in an ESG. Such a workflow allows the definition of an ES.

circle

square

create

reset

exit

(un)check

yes

no

FIG. 10. Event semantic interaction graph.

142 A.M. MEMON AND B.N. NGUYEN
Definition: Let V and E be as defined above. Then any sequence of vertices

u0; . . . ; ukh i is called an ES if (ui, uiþ1) 2 E, for i ¼ 0, . . ., k.
This definition is used to define a complete event sequence (CES) in the ESG.

Definition: An ES is a complete ES (or, it is called a CES), if a(ES)¼ x 2 XÂA is

an entry and b(ES) ¼ g 2 G is an exit.

where a and b are manually defined functions used to determine the entry and exit

vertex of an ES.

These above definitions allow the formal definition of an off-nominal test case (or

faulty event sequence, FES) based on the ESG.

Definition: For an ESG ¼ (V, E), its completion is defined as
_
ESG ¼ ðV; ÊÞ with

Ê ¼ V � V.

Definition: The inverse (or complementary) ESG is then defined as ESG ¼ ðV; �EÞ
with �E ¼ Ê \ E.

circle

square

create

reset

exit

(un)check

yes

no

FIG. 11. Inverse event sequence graph.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 143
Figure 11 shows the inverse ESG of the Radio Button Demo GUI. The dotted

edges are ESG (EFG) edges. The oval shaded nodes represent initial events while the

octagon nodes represent exit events.

The solid edges in Fig. 11 are the ones that are absent from the ESG. More

formally, they represent faulty event pairs (FEPs).

Definition: Any edge of the ESG is a FEP for the ESG.

Definition: Let ES ¼ u0, . . ., uk be an ES of length k þ 1 of an ESG and

FEP ¼ uk; umh i a FEP of the corresponding ESG. The concatenation of the ES and

FEP then forms a FES ¼ u0; . . . ; uk; umh i.
Such an FES can be used as an off-nominal test case. An example of such a test

case for our running example is hsquare, circle, reset, noi. The pair (reset, no)
should not be executable because of the Exit Confirmation modal dialog.

144 A.M. MEMON AND B.N. NGUYEN
3.3 Pre- and Postcondition Models

In an approach presented by Memon et al. [26], the test designer models the GUI

in terms of pre- and postconditions for each event. The test designer then identifies

commonly used tasks for the GUI; these are then input to the test-case generator. The

generator employs the pre- and postconditions and specifications to generate ESs to

achieve the tasks.

The motivating idea behind this approach is that GUI test designers will often find

it easier to specify typical user goals than to specify sequences of GUI events that

users might perform to achieve those goals. The software underlying any GUI is

designed with certain intended uses in mind; thus the test designer can describe those

intended uses. However, it is difficult to manually obtain different ways in which

a user might interact with the GUI to achieve typical goals. Users may interact

in idiosyncratic ways, which the test designer might not anticipate. Additionally,

there can be a large number of ways to achieve any given goal, and it would be

very tedious for the GUI tester to specify even those ESs that s/he can anticipate.

The test-case generator described in this section uses AI planning to generate GUI

test cases for commonly used tasks using a GUI model based on pre- and postcondi-

tions of all GUI events.

The test-case generation process is partitioned into two phases, the setup phase

and plan-generation phase. In the first step of the setup phase, the GUI is used to

identify planning operators, which are used by the planner to generate test cases.

By using knowledge of the GUI, the test designer defines the pre- and postconditions

of these operators. During the second or plan-generation phase, the test designer

describes scenarios (tasks) by defining a set of initial and goal states for test-case

generation. Finally, the AI planning system generates a test suite for the tasks using

the plans. The test designer can iterate through the plan-generation phase any

number of times, defining more scenarios and generating more test cases.

Formally, a planning problem P(L, D, I, G) is a 4-tuple, where L is the set

of operators; D is a finite set of objects, I is the initial state, and G is the goal state.

Note that an operator definition may contain variables as parameters; typically an

operator does not correspond to a single executable action but rather to a family of

actions, one for each different instantiation of the variables. The solution to a

planning problem is a plan: a tuple hS, O, L, Bi where S is a set of plan steps

(instances of operators, typically defined with sets of preconditions and effects), O is

a set of ordering constraints on the elements of S, L is a set of causal links

representing the causal structure of the plan, and B is a set of binding constraints

on the variables of the operator instances in S. Each ordering constraint is of the form
Si< Sj (read as ‘‘Si before Sj’’) meaning that step Simust occur sometime before step

Sj (but not necessarily immediately before). Typically, the ordering constraints

?

Initial state Goal state

FIG. 12. A task specification.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 145
induce only a partial ordering on the steps in S. Causal links are triples < Si, c, Sj >,

where Si and Sj are elements of S and c represents a proposition that is the unification
of an effect of Si and a precondition of Sj. Note that corresponding to this causal link
is an ordering constraint, that is, Si< Sj. The reason for tracking a causal link< Si, c,
Sj > is to ensure that no step ‘‘threatens’’ a required link, that is, no step Sk that
results in c̃ can temporally intervene between steps Si and Sj.
For the Radio Button Demo application, one possible task may be to create a

square shape for w4. This task is shown in Fig. 12. Even with this simple application,

there are several ways to perform this task. In fact, there are an infinite number of

ways—in principle, a user can click on the Square radio button an arbitrary number

of times. This task is input to the planner by describing the state of all the widgets in

the initial and goal states.

Together with a specification of all pre- and postconditions of the events, the task

is used by the planner to output the plan shown in Fig. 13(A). As mentioned above,

most AI planners produce partially ordered plans, in which only some steps

are ordered with respect to one another. The plan in Fig. 13(A) is one such plan.

The ordering constraints are shown as edges and also explicitly stated in Fig. 13(B).

A total-order plan can be derived from a partial-order plan by adding ordering

constraints, induced by removing threats. Each total-order plan obtained in such a

way is called a linearization of the partial-order plan. A partial-order plan is a

solution to a planning problem if and only if every consistent linearization of the

partial-order plan meets the solution conditions. Figure 13(C) shows the two linear-

izations of the plan; each of these linearizations can be used as a test case.
3.4 ES-Based Models

Because GUI test cases are sequences of events, Kasik et al. [32] manipulate such

sequences of events to obtain new test cases. Their approach is based on genetic

algorithms.

Square

Square

Square

Square created

Square created

Square created

Create

Create

Create

Start application

Start application

Start application

Sj

SlSi

Sk

C

B

A

FIG. 13. AI planning. (A) A partial-order plan. Si < Sj; Si < Sk; Sk < Sl; Sj < Si. (B) The ordering

constraints in the plan. (C) The two linearization.

146 A.M. MEMON AND B.N. NGUYEN
The key motivation behind using genetic algorithms is that there is a need to test the

GUI from the perspective of different groups of users, for example, experts and novice

users. Unsophisticated and novice users often exercise GUI applications in ways that

the designer, the developer, and the tester did not anticipate. An expert user or tester

usually follows a predictable path through an application to accomplish a familiar

task. The developer knows where to probe, to find the potentially problematic parts of

an application. Consequently, applications are well tested for state transitions that

work well for predicted usage patterns but become unstable when given to novice

users. Novice users follow unexpected paths in the application, causing program

failures. Such failures are difficult to predict at design and testing time.

One approach to test the GUI for novice interactions is to release the software to a

small community for beta testing. However, this approach is expensive and time-

consuming. Kasik et al.’s approach generates test cases that mimic a novice user.

The key idea behind this approach is that expert users take short paths through an

application’s GUI, using shortcuts when available and perform their tasks quickly.

Novice users, on the other hand, take longer, exploratory paths to complete a task

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 147
and gradually build better ways as they learn more about the application. It is

challenging to automatically generate these paths for GUI testing.

In its simplest form, a genetic algorithm manipulates a table of random numbers;

each row of the table represents a gene. The individual elements of a row (gene)

contain a numeric genetic code and are called alleles. Allele values start as numbers

that define the initial genetic code. The genetic algorithm lets genes that contain

‘‘better’’ alleles survive to compete against new genes in subsequent generations.

The basic genetic algorithm is as follows:

l Initialize the alleles with valid numbers.

l Repeat the following until the desired goal is reached:
� Generate a score for each gene in the table.

� Reward the genes that produce the best results by replicating them and

allowing them to live in a new generation. All others are discarded using a

death rate.
� Apply two operators, mutation and crossover, to create new genes.
For GUIs testing, the ES is represented by a gene, each element being an event. The

primary task of setting up the genetic algorithm is to set the death rates, crossover

styles, and mutation rates so that novice behavior is generated. Also, to use genetic

algorithms to generate meaningful interactions mimicking novice users, a clear and

accurate specification of both the user interface dialog and the program state infor-

mation is needed. The state information controls the legality of specific dialog

components and the names of a legal command during an interaction.Without access

to the state information, the generator may produce many meaningless input events.

Forour runningexample, theRadioButtonDemoGUI, anexpertmight use hsquare,
createi to create a square. The genetic algorithm may convert this sequence into the

longer sequence hcircle, create, square, createi, thereby mimicking a novice user.
3.5 Probabilistic Models

As seen in this chapter, there are several techniques to generate GUI test cases

based on a model of the GUI. In practice, a GUI test designer may use a mix of these

techniques to obtain several test suites. The test designer is faced with two signifi-

cant challenges:

l Overlaps in test suites: As can be imagined, many of these techniques often

overlap in what they test. A test designer who uses two or more GUI testing

techniques may waste valuable resources testing and retesting the same parts of

the GUI. Ideally, the test designer would like to consolidate all the test suites

and obtain one suite that minimizes overlaps.

148 A.M. MEMON AND B.N. NGUYEN
l Large number of short tests and few long tests: The sheer size of the individual
suites presents practical problems for test execution. Because each test case

requires significant overhead in terms of setup and teardown, having a large

number of short tests is inefficient. Ideally, the test designer would like to

obtain longer sequences that combine the strengths of individual short-

sequence suites.

Consider for example, the three test suites shown in Fig. 14, each generated using

a different technique. It may be expensive to execute and maintain all these test

cases. Brooks et al. [33] employ a probabilistic model of the GUI to combine these

suites.

The probabilistic model is based on the EFG model. The model contains a collec-

tion of R paths through the EFG called r1, r2, . . ., rR. Each path ri where 1 � i � R,
consists of a sequence of n events in addition to INIT and FINAL:

ri ¼ INIT; x1; x2; . . . ; xn;FINAL;
8jej 2 fe1; e2; . . . ; en�1g^
followsðejþ1;ejÞ

where x1, x2, . . ., xn and e1, e2, . . ., en�1 are events in the EFG, ri denotes a path, and
each path ri contains only events with a follows relationship between them. Valid

paths can also be formed by the concatenation of two paths, for example, ra and rb,
provided the first event of rb follows the last event of ra in the EFG.

Let count(ei) return the number of times event ei occurs in the paths r1, r2, . . ., rR.
The prior probability that a randomly selected event from any of r1, r2, . . ., rR is ei is:

PðeiÞ ¼ countðeiÞ
SE
j¼1countðejÞ

:

Now, count(ei) and the prior probability calculation are extended from single

events to sequences of events. Let s be a length-S subsequence of some path through

the EFG (not necessarily in r1, r2, . . ., rR):
square, create
create, reset
create, square

exit, yes
exit, (un)check, no

square, circle, create, square
create, exit, (un)check, (un)check, yes
create, circle, reset, exit, no, create

A B

Technique 1 Technique 2 Technique 3

C

FIG. 14. Example test cases.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 149
si ¼ x1; x2; . . . ; xs
8jej 2 INIT; e1; e2; . . . ; en�1;FINALf g^
followsðejþ1; ejÞ:

The prior probability that a randomly selected, length-S subsequence from any of

r1, r2, . . ., rR turns out to be s is

PðsÞ ¼ countðsÞ
Ssi2subsðSÞcountðsiÞ

;

where count(s) returns the number of times s occurs as a subsequence of r1,r2, . . ., rR
and subs(S) is the set of all length-S subsequences in r1,r2, . . ., rR.
Given that s immediately precedes ei, the conditional probability of ei is

PðeijsÞ ¼ Pðs1; s2; . . . ; sS; eiÞ
SE
j¼1Pðs1; s2; . . . ; sS; ejÞ

:

Note that P(ei|s) can be thought of as P(ei) when s has length 0. This is not the

same as P(ei|INIT), which is the probability that event ei is the first event in the

sequence, occurring immediately after INIT. Rather, P(ei|s) is the probability of ei
given no information about the events that precede it.

A probabilistic EFG (PEFG) is created by annotating each event (node) in the

EFG with a table containing the event’s prior probability and its probability condi-

tioned on each subsequence in {r1,r2, . . ., rR} up to some maximum subsequence

length, or history, H.
Figure 15 shows the PEFG obtained for the test suites of Fig. 14. Column 2 of

each table associated with every node shows the probability of executing the event

associated with the node after the length 2 sequence shown in Column 1 of the table.

For example, the entry for node (un)check corresponding to row exit, (un)check is

0.5. This is because the subsequence exit, (un)check appears twice in the original test
suites. Once exit, (un)check has been executed, there is a 0.5 probability that the next
event will be (un)check. These probabilities can be used to generate ESs. One

example sequence is hINIT, exit, (un)check, FINALi. The resulting test case is

hexit, (un)checki.
3.6 Combinatorial Interaction Models

Software system faults are not only caused by individual components working

in isolation but also caused by the interactions between them [34,35]. In its basic

form, GUI interaction testing consists of testing for interactions between all GUI

yes
INIT, create 0.33

INIT, square 0.50

circle, create 1.00

INIT, create 0.33

exit, no 1.00

INIT, square 0.50

square, circle 0.50

circle, reset 1.00

create, circle 1.00

INIT, create 0.33

create, exit 1.00

exit, (un)check 0.50

INIT, exit 0.50

(un)check, (un)check 1.00

INIT, exit 0.50

exit, (un)check 0.50

reset, exit 1.00

(un)check, no 1.00

(un)check, yes 1.00

create, reset 1.00

create, square 1.00

exit, yes 1.00

no, create 1.00

square, create 0.50

(un)check

noFINAL

reset

circle

square

INIT create

exit

FIG. 15. Probabilistic event-flow graph with history H ¼ 2.

150 A.M. MEMON AND B.N. NGUYEN
components and their selections. However, since the number of GUI components

is often huge, the number of tests required to cover the combinational interac-

tions grows large very quickly [5]. Several combinational interaction models

have been proposed to model GUI component interactions and reduce the

number of test cases. This section presents two combinatorial models used for

test-case generation—a Latin square to cover pair-wise interactions [30] and a

Covering Array to cover multiway interactions with an arbitrary coverage

strength [15].

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 151
3.6.1 Latin Squares
White [30] proposes the use of Latin squares to model the GUI inputs and

generate test cases. He identifies two ways in which GUI interactions can arise:

statically and dynamically (or a combination of both). Static interactions are

restricted to one screen whereas dynamic interactions move from one screen to

another to perform events on GUI objects. White makes the assumption that it is

enough to test pair-wise interactions of GUI events. Similar assumptions have led to

success in finding errors efficiently for conventional software [36].

The concept of Latin square is used to maintain the pair-wise interaction coverage

while keeping the number of test cases minimized.

Definition: A Latin square, of order n, is a matrix of n symbols in an n � n cells,

arranged in n rows and n columns, such that every symbol exactly once in each row

and once in each column.

Definition: A pair of Latin squares A ¼ (aij) and B ¼ (bij) are orthogonal iff the
ordered pairs (aij, bij) are distinct for all i and j. In other words, when superimposed

on each other, the ordered elements pairs of two orthogonal squares created in each

cell cover all n2 pairs.
Given k factors F1, F2, . . ., Fk, where each factor is a GUI component from which

selections are made. The GUI inputs are modeled as follow:

l Reorder k factors by cardinality: |F1| � |F2| � . . . � |Fk|.

l Construct k�2 orthogonal Latin squares with size n, where n is the cardinality

of |F1|.

To test k GUI components with maximum n level, we need k�2 orthogonal Latin

squares. The cell entries of the superimposed square represent k�2 components in

the test and the row and column indices represent the additional two components.

Since the generated triples (row index, column index, cell entry) are unique, the pair-
wise coverage requirement is guaranteed.

The original model proposed by White only considered menu items. Because our

running example does not have menus, we cannot use this approach to test our

example GUI.
3.6.2 Covering Arrays
Yuan et al. [15] use covering arrays [26] to generate test cases. The key motiva-

tion behind using covering arrays is to generate longer sequences that are systemati-

cally sampled at a particular coverage strength. This approach is a generalization of

the Latin square discussed in the previous section; a fundamental difference is that in

152 A.M. MEMON AND B.N. NGUYEN
covering arrays, the coverage strength is not limited to two-way interactions.

Furthermore, the use of covering arrays allows fine control over the location of

each event in the test case.

Definition: A covering array CA(N; t, k, u) is an N� k array on u symbols with the

property that every N � t subarray contains all ordered subsets of size t of the u
symbols at least once. In other words, any subset of t-columns of this array will

contain all t-combinations of the symbols.

Constructing a covering array with a minimal number of rows is an optimization

problem. There are both mathematical algorithms [37] as well as computational

techniques such as greedy [35] and meta-heuristic search [36] for this problem.

This test-case generation technique leverages covering arrays to keep the number

of test cases minimized while maintaining a required t-way coverage is between

GUI events. A GUI is taken as input and first partitioned into different parts. Then,

for each GUI part, a covering array is constructed to cover all events inside it. The

output of this process is a set of covering arrays for all GUI partitions. Each array

row becomes a GUI test case.

For our example Radio Button Demo application, we first partition the events

into different groups. For example, the three events (un)check, yes, and no in the

Exit Confirmation window can form the ‘‘Exit’’ group. Suppose we are inter-

ested in two-way coverage (i.e., test all possible two-way interactions shown in

Fig. 16(A)) such that each event occupies all four positions in a length 4 sequence. If

we used exhaustive enumeration, we need 3�3�3�3 ¼ 81 test cases. Formulating

the problem as a covering arrays CA(N; 2, 4, 3), Fig. 16(B), the number of rows is

only nine, each of which becomes a test case.
1. áyes, yes〉
2. áyes, no〉
3. áyes, (un)check 〉
4. áno, no〉
5. áno, (un)check 〉
6. áno, yes〉
7. á(un)check, (un)check 〉
8. á(un)check, yes〉
9. á(un)check, no〉

yes yes yes yes

yes (un)check (un)check no

yes no no (un)check

no yes (un)check (un)check

no (un)check no yes

no no yes no

(un)check yes no no

(un)check (un)check yes (un)check

(un)check no (un)check yes

A B

FIG. 16. Two-waycovering and covering array. (A) 2waycovering. (B)Covering array:CA(9; 2, 4, 3).

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 153
3.7 Hierarchical Models

All of the testing techniques discussed thus far use a single model of the GUI.

However, using only one model may be impractical for a large GUI. Several

researchers have addressed this problem by modeling the GUI at multiple levels

of abstraction. The GUI is broken down into different components and modeled

hierarchically. We now discuss three such hierarchies, namely Keyword-driven

hierarchy [38], Hierarchical finite state machines (HFSM) [39], and UML diagram-

based hierarchy [40].
3.7.1 Keyword-Driven Models
Keyword-driven testing [41] is a script-based testing technique widely used in

Industry. This technique divides the test-case generation process into two phases:

test plan and test implementation. In the test plan phase, the test designers design test

cases using high-level activities called action words. In the test implementation

phase, the test engineers transform the action words into executable events called

keywords. To avoid ambiguities, the selected keywords are unique.

The idea behind using abstract test cases, that is, those that contain high-level

action words, is that domain experts, without any implementation skills, can easily

design test cases using only the action words. This step can be done early, even

before the system implementation has been started. The abstract test cases are also

easier to comprehend; test maintenance is also more efficient.

Inspired by the keyword-driven testing technique, Antti et al. [38] propose a GUI

testing model using Label Transition Systems (LTS). A LTS is a state machine

whose transition names are taken from an alphabet. Formally, a LTS is defined as:

Definition: A LTS is a quadruple (S, S, D, ŝ) where S is a set of states, S is a set of

actions (alphabet), D � S � S � S is a set of transitions, and ŝ 2 S is an initial state.
A GUI is modeled using two sets of LTSs corresponding to the two levels of

abstraction in the keyword-driven approach. The LTSs for the action word level are

called action machines and the LTSs for the keyword level are called refinement
machines. The action machines provide an overview of the system while each

refinement machine describes GUI navigation for certain parts of the GUI.

Figure 17(A) presents an action machine A for the Radio Button Demo appli-

cation GUI. The labels in this machine represent the action words. Figure 17(B) is a

refinement machine for the main window. The labels in this machine are keywords

describing the actual GUI events.

These machines are automatically composed of an executable LTS by a parallel

composition operator defined as follows.

A0

A

A1
awCreateShape

A2awQuit
awReset

awQuit

awCancel

awCancel R0

B

R1

kwClickCreate

R2

kwSelectSquare

kwClickReset

R3

kwSelectSquare

kwClickReset

kwSelectCircle

kwSelectCircle
kwClickCreate

(A0,R0)

(A1,R1)

C

kwClickCreate

(A0,R2)
kwSelectSquare

(A2,R0)

awQuit

kwClickReset

(A1,R3)

kwSelectSquare

(A2,R1)
awQuit

kwSelectCircle

kwClickCreate

(A2,R2)
awQuit

kwClickReset
kwSelectCircle

(A2,R3)
awQuit

awCancel

awCancel

awCancel

awCancel

FIG. 17. Label transition systems. (A) Action machine A. (B) Refinement machine R. (C) Parallel composition C.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 155
Definition: kR(L1, . . .,Ln) is the parallel composition of n LTSs according to rules
R where LTS Li ¼ (SiSi, Di, ŝi) if let SR be a set of resulting actions and

t
be a

‘‘pass’’ symbol such that 8i : t
=2 Si. The rule set R � (S1 [{

t
}) � � � � � (Sn [{

t
})

� SR. Now kR(L1,. . ., Ln) ¼ (S, S, D, ŝ) where:

l S ¼ (S1 � � � � � S)n

l S ¼ {a 2 SR j 9a1, . . ., an : (a1, . . ., an, a) 2 R}

l ((s1, . . ., sn), a, si
0; . . . ; sn0ð Þ) 2 D if and only if there is (a1, . . ., an, a) 2 R such

that for every i (1 < i < n)
� (si, ai, s
0
i 2 D or

� ai ¼
t
and si ¼ s

0
i

l ŝ ¼ ŝ1; . . . ; ŝnh i
Arule in a parallel composition associates anarray of actions (or ‘‘pass’’ symbol

t
) of

input LTSs to an action in the resulting LTS. The action is the result of the synchronous

execution of the actions in the array. If there is a
t
insteadof an action, the corresponding

LTS will not participate in the synchronous execution described by the rule.

Let us assume that the following composition rules are given:

R ¼ {(1) hawCreateShape, kwClickCreate, kwClickCreatei
(2) hawCreateShape, kwSelectCircle, kwClickCirclei
(3) hawCreateShape, kwSelectSquare, kwClickSquarei
(4) hawReset, kwClickReset, kwClickReseti
(5) hawCancel, t

, awCanceli
(6) hawQuit, t

, awQuiti}
Figure 17(C) shows the composition machine C synthesized using the above rules.

As we can see, the states in C are a combination (product) ofA’s states andR’s states.

By applying rules (1)–(4), two action words awCreateShape and awReset are refined
to the corresponding keywords in C. However, the action words awCancel and awQuit
still remain unchanged. The rules (5) and (6) only copy them from A to C. To refine

these action words, we need other refinement machines and composition rules.

After the composition machine is created, the test-case generation is straightfor-

ward. Each path in the composition machine will become a GUI test case, which is a

sequence of keywords. For our example, one possible test case might be

hkwClickCreate, kwSelectSquare, kwSelectCircle, kwClickReseti which translates

to hcreate, square, circle, reseti.
3.7.2 Hierarchical Finite State Machines
Paiva et al. [39] use the hierarchy of GUI dialogs to create a hierarchical state-

machine model for testing. In particular, the GUI is modeled as a hierarchy of FSMs

whose vertices can either represent single states or groups of states in the original

FSM. The model consisting of these FSMs is called a HFSM.

156 A.M. MEMON AND B.N. NGUYEN
The hierarchy is based on GUI dialogs. Consider a GUI represented by k dialogs
D1, D2, . . ., Dk which manipulate a set of variable V: V ¼ {u1, . . ., u|V|}. From
the complete FSM of the application, the tester manually specifies the state machine

Fi for each dialog Di. Given the FSMDi for a dialog Di, it is possible to deduce the

variables manipulated that dialog. A variable ui is written by (or is affected by) a

dialog D if there is a transition in FSMD that changes the value of ui. A variable ui is
read by (or influences the behavior of) a dialog D if at least one of the following

conditions holds:

1. there are two transitions T and T´ in FSMD and a variable uk in V (not

necessarily i 6¼ k) such that (i) the source states of T and T´ are different

only in the value of ui, (ii) T and T´ have the same triggering action (name and

arguments), (iii) the destination states of T and T´ have different values of uk,
and (iv) at least one of the transitions (say T) changes the value of uk,

2. there are two states S and S´ and a transition T with source S in FSMD such that

(i) S and S´ are different only in the value of ui, (ii) there is no transition T´ with
source S´ and the same action as T.

Let PFSMDi be the projection of FSMDi onto the variables manipulated by dialogDi

then we can use PFSMDi to describe the internal behaviors ofDi. Also from PFSMDi, it

is possible to reconstruct FSMDi by taking the union of the instances of PFSMDi for all

possible combinations of variable values that are not manipulated by it.

Using the notation of PFSMs, the original state machine can be organized into a

three-level HFSM:

1. The top level is an abstract FSM representing the relationships between

independent dialogs.

2. The intermediate level is a set of projected FSMs representing internal beha-

viors for each dialog.

3. The bottom level is a complete FSM representing the behaviors of the entire GUI.

Considering the Radio Button Demo application, and its GUI states represented

by a length 4 vector {log, exitWinOpen, created, shape} as done in Section 3.1.1, a

tester may specify a sub-FSM for the main window (dialog DMain) to include all

states where exitWinOpen is set to 0 and the transitions between them. The other

states make up the sub-FSM for the Exit Confirmation window (dialog DExit).

Figure 18(C) shows the complete FSM (bottom level) for the application. The states
are organized into two regions (enclosed by dashed lines) corresponding to two sub-

FSMs. Note that the same full FSM was previously shown in Section 3.1.1, except

that its layout has changed.

We can infer that created and shape are two variables manipulated byDMainwhile

log is the only variable manipulated by DExit. Neither DMain nor DExit manipulates

Level 1

A

No Exit

B

Level 2

S0C

S0S S1S

S1C

S0 S1

create

reset

reset

PFSMmain PFSMexit

create

circlecirclesquare square

check

uncheck

S000C

S001C S001S

S110C

S011C S100S

S100S

S100C

S101S

S101C

S011C S111C

S011S S111S

S010C

S001C

(un)check

(un)check

(un)check

(un)check

(un)check

(un)check

(un)check

createcreate

create

circlecirclecircle circle squaresquaresquare square

create

reset

resetreset

reset

(un)check

exit

exit
exitexit

exit

exit

exit
exit

no

no
no

no

yes

Level 3

yes

yes

Yes

yes
yes

yes
yes

no
no

C

no

no

FSMmain

FSMexit

FIG. 18. Hierarchical finite state machine (self-loops are omitted to increase the readability).

158 A.M. MEMON AND B.N. NGUYEN
exitWinOpen. Using this analysis, the top level and the intermediate level of the
HFSM can be constructed as shown in Fig. 18(A) and (B).

Two dialogs are independent if the set of variables written by one dialog is

disjoint from the set of variables manipulated (read or written) by the other.

In this case, instead of testing the complete FSM, we need to consider only their

PFSMs individually. In other words, those dialogs do not need to be tested every

time if there is a change on variables that they do not depend on. To test a dialog D,
the variables not manipulated by D are fixed to a particular value and the test cases

are generated using the PFSM of D.
Applying this strategy to test the Radio Button Demo’s GUI, we first realize

that DMain and DExit are two independent dialogs. So we can test DMain by fixing

log ¼ 0 (exitWinOpen is already fixed) and generate test case in the PFSMMain.

Similarly, to test DExit we fix created¼ 0 and shape¼ C. Two transiting actions exit
and no also need to be tested once by fixing created ¼ 0, shape ¼ C, and log ¼ 0.

Instead of testing all possible paths of the FSM in Fig. 18(C), we now only need to

examine those in bold.
3.7.3 UML Diagram-based
As seen in previous sections, using formal models to represent GUIs makes it

possible to systematically generate and analyze test cases. However, these models

are often not intuitive, causing difficulties for test designers who are not familiar

with formal Computer Science concepts. Paiva et al. [40] builds another visual layer

on top of formal models to assist testers. The GUI is modeled using familiar UML

notations and then automatically translated to the underlying formal model by tools.

More specifically, the formal model is a set of FSMs which are encoded in

a specification language called Spec# (an extension of the C# programming

language) [42].

The GUI behaviors are specified by four UML diagrams: use case diagrams,
activity diagrams, class diagrams, and state machine diagrams. These diagrams are

enriched with additional stereotypes to enable automatic transformation from the

visual forms to Spec# code.

Use case diagrams provide an overview of the main functionalities and features of

the GUI application. They describe the scenarios in which the GUI is used. The use

case diagrams are used to support other UML diagrams. However, there is no formal

Spec# code directly generated from these diagrams. Figure 19 shows a use case

diagram one might design for the Radio Button Demo example. The diagram

consists of three main use case Edit shape, Reset, and Exit corresponding to three

main scenarios the user may interact with the GUI.

Edit shape

Reset

Exit

include

Log time

Create shape

Select shape

User

Select circle

Select square
include

include

FIG. 19. Use case diagram.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 159
Activity diagrams describe the business logic of use cases. The conditions and

steps in the diagrams are directly encoded in Spec# syntax. Besides the user steps,

they may have parameters that correspond to user inputs, pre/postconditions

(describing use case intent), and assertions. Class diagrams describe the static

structure of the GUI. Each top-level window is modeled as an object. The state

variables are represented by class variables, while the interactive controls are

represented by class methods. State machine diagrams describe the dynamic reac-

tive behaviors of the GUI. The diagrams show GUI states at different levels of

abstraction, the user actions available at each state, their effects on the GUI states,

and the sequences of user actions. Each state of the state machine can be formalized

by a Boolean condition on the state variables. Each transition has a triggering event

that is the call of a method representing a user action. The transitions may addition-

ally have pre- and postconditions on state variables and method parameters. A set of

rules is developed to translate the state machine diagrams into the Spec# code. After

the formal specifications (e.g., Spec# code) are generated for all UML diagrams, an

analyzer tool (e.g., Spec Explorer) is used to analyze the formal models and generate

test cases for each diagram accordingly.
4. Conclusions

GUIs are by far the most popular means used to interact with software today.

Unfortunately, the state-of-the-practice in GUI testing has not kept pace with the

rapidly evolving GUI technology. In practice, GUI testing is largely manual, often

160 A.M. MEMON AND B.N. NGUYEN
resulting in inadequate testing. There have been several research efforts to improve

GUI testing. This chapter presented some of the recent advances in automated

model-based GUI testing. It also provided the first detailed taxonomy of these

techniques. A small GUI application was used as a running example to demonstrate

each technique.

In its very fundamental form, the goal of GUI testing is to determine whether the

GUI executes as expected, as documented in the specifications, or as required by the

intended user. This definition is very broad and may encompass factors such as

testing the GUI’s usability, correctness, and performance. Since GUI testing is a

multifaceted problem, no one technique can be used for GUI testing; in fact, in

practice, a collection of techniques are almost always used.

Finally, the GUI interaction testing problem can be viewed as a search problem

with the state space of the GUI being the search space and the objective of the search

to find errors. Since the number of events that a user may perform on the GUI at any

given time is very large, the search space is extremely large (even infinite in most

cases). Exhaustively traversing the search space is impractical in such cases. The

field of GUI testing remains ripe for the application of upcoming areas of research,

such as search-based software engineering.

Acknowledgments

This work was partially supported by the US National Science Foundation under NSF grants

CNS-0855055, CCF-0447864 and the office of Naval Research grant N00014-05-1-0421.

References

[1] B.A. Myers, User interface software tools, ACM Trans. Comput. Hum. Interact. 2 (1) (1995)

64–103.

[2] M. Grechanik, D.S. Batory, D.E. Perry, Integrating and reusing GUI-driven applications, in: ICSR-7:

Proceedings of the 7th International Conference on Software Reuse, Springer-Verlag, London, UK,

2002, pp. 1–16.

[3] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, Designing the User Interface: Strategies for

Effective Human–Computer Interaction, Addison-Wesley, Boston, MA, 2009.

[4] M.B. Dwyer, V. Carr, L. Hines, Model checking graphical user interfaces using abstractions,

in: ESEC ’97/FSE-5: Proceedings of the 6th European SOFTWARE ENGINEERING Conference

held Jointly with the 5th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, Springer-Verlag New York, New York, NY, 1997, pp. 244–261.

[5] X. Yuan, A.M. Memon, Generating event sequence-based test cases using GUI runtime state

feedback, IEEE Trans. Softw. Eng. 36 (2009) 81–95.

[6] J. Chen, Formal modelling of Java GUI event handling, in: ICFEM ’02: Proceedings of the 4th

International Conference on Formal Engineering Methods, Springer-Verlag, London, UK, 2002,

pp. 359–370.

ADVANCES IN AUTOMATED MODEL-BASED GUI TESTING 161
[7] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University Press, New York,

NY, 2008.

[8] M.J. Harrold, Testing: a roadmap, in: ICSE ’00: Proceedings of the Conference on The Future of

Software Engineering, ACM, New York, NY, 2000, pp. 61–72.

[9] S. McConnell, Best practices: daily build and smoke test, IEEE Softw. 13 (4) (July 1996) 143–144.

[10] S. Esmelioglu, L. Apfelbaum, Automated test generation, execution, and reporting, in: Proceedings

of Pacific Northwest Software Quality Conference, IEEE Press, Portland, Oregon, 1997.

[11] A.M. Memon, M.E. Pollack, M.L. Soffa, Hierarchical GUI test case generation using automated

planning, IEEE Trans. Softw. Eng. 27 (2) (2001) 144–155.

[12] A.M. Memon, Q. Xie, Studying the fault-detection effectiveness of GUI test cases for rapidly

evolving software, IEEE Trans. Softw. Eng. 31 (10) (2005) 884–896.

[13] L. White, H. Almezen, N. Alzeidi, User-based testing of GUI sequences and their interactions,

in: ISSRE ’01: Proceedings of the 12th International Symposium on Software Reliability Engineer-

ing, IEEE Computer Society, Washington, DC, 2001, p. 54.

[14] F. Belli, C.J. Budnik, L. White, Event-based modelling, analysis and testing of user interactions:

approach and case study, Softw. Test. Verif. Reliab. 16 (1) (2006) 3–32.

[15] X. Yuan, M. Cohen, A.M. Memon, Covering array sampling of input event sequences for automated

GUI testing, in: ASE ’07: Proceedings of the Twenty-Second IEEE/ACM International Conference

on Automated Software Engineering, ACM, New York, NY, 2007, pp. 405–408.

[16] M. Finsterwalder, Automating acceptance tests for GUI applications in an extreme programming

environment, in: Proceedings of the 2nd International Conference on eX-treme Programming and

Flexible Processes in Software Engineering, May 2001, pp. 114–117.

[17] Introduction to jfcUnit, http://jfcunit.sourceforge.net, 2009.

[18] Abbot framework for automated testing of Java GUI components and programs, http://jfcunit.

sourceforge.net, 2009.

[19] Pounder Java GUI testing utility, http://pounder.sourceforge.net, 2009.

[20] Jemmy module, https://jemmy.dev.java.net, 2009.

[21] J.H. Hicinbothom, W.W. Zachary, A tool for automatically generating transcripts of human–

computer interaction, in: Proceedings of the Human Factors and Ergonomics Society 37th Annual

Meeting, 1993, p. 1042, vol. 2 of SPECIAL SESSIONS: Demonstrations.

[22] Marathon integrated testing environment, http://www.marathontesting.com, 2009.

[23] M. Grechanik, Q. Xie, C. Fu, Maintaining and evolving GUI-directed test scripts, in: ICSE ’09:

Proceedings of the 2009 IEEE 31st International Conference on Software Engineering, IEEE

Computer Society, Washington, DC, 2009, pp. 408–418.

[24] R.K. Shehady, D.P. Siewiorek, A method to automate user interface testing using variable finite state

machines, in: Proceedings of The Twenty-Seventh Annual International Symposium on Fault-

Tolerant Computing (FTCS’97), IEEE Press, Washington/Brussels/Tokyo, June 1997, pp. 80–88.

[25] L. White, H. Almezen, Generating test cases for GUI responsibilities using complete interaction

sequences, in: Proceedings of the International Symposium on Software Reliability Engineering,

Oct. 8–11, 2000, pp. 110–121.

[26] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, C.J. Colbourn, Constructing test suites for interaction

testing, in: ICSE ’03: Proceedings of the 25th International Conference on Software Engineering,

IEEE Computer Society, Washington, DC, 2003, pp. 38–48.

[27] F.E. Allen, Control flow analysis, SIGPLAN Not. 5 (7) (1970) 1–19.

[28] A. Memon, I. Banerjee, A. Nagarajan, GUI ripping: reverse engineering of graphical user interfaces

for testing, in: WCRE ’03: Proceedings of the 10th Working Conference on Reverse Engineering,

IEEE Computer Society, Washington, DC, 2003, p. 260.

http://jfcunit.sourceforge.net
http://jfcunit.sourceforge.net
http://jfcunit.sourceforge.net
http://pounder.sourceforge.net
https://jemmy.dev.java.net
http://www.marathontesting.com

162 A.M. MEMON AND B.N. NGUYEN
[29] Q. Xie, A.M. Memon, Designing and comparing automated test oracles for GUI-based software

applications, ACM Trans. Softw. Eng. Methodol. 16 (1) (2007) 4.

[30] L. White, Regression testing of GUI event interactions, in: Proceedings of the International Confer-

ence on Software Maintenance (Washington), Nov. 4–8, 1996, pp. 350–358.

[31] Q. Xie, A.M. Memon, Using a pilot study to derive a GUI model for automated testing, ACM Trans.

Softw. Eng. Methodol. 18 (2) (2008) 1–35.

[32] D.J. Kasik, H.G. George, Toward automatic generation of novice user test scripts, in: CHI ’96:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM,

New York, NY, 1996, pp. 244–251.

[33] P.A. Brooks, A.M. Memon, Automated GUI testing guided by usage profiles, in: ASE ’07:

Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software

Engineering, ACM, New York, NY, 2007, pp. 333–342.

[34] R.C. Bryce, C.J. Colbourn, M.B. Cohen, A framework of greedy methods for constructing interac-

tion test suites, in: ICSE ’05: Proceedings of the 27th International Conference on Software

Engineering, ACM, New York, NY, 2005, pp. 146–155.

[35] D.M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, The AETG system: an approach to testing

based on combinatorial design, IEEE Trans. Softw. Eng. 23 (7) (1997) 437–444.

[36] D.M. Cohen, S.R. Dalal, A. Kajla, G.C. Patton, The automatic efficient test generator (AETG)

system, in: Proceedings of the Fifth International Symposium on Software Reliability Engineering,

IEEE Computer Society Press, Monterey, CA, 1994, pp. 303–309.

[37] A. Hartman, Software and hardware testing using combinatorial covering suites, in: Graph Theory,

Combinatorics and Algorithms: Interdisciplinary Applications, 2005, pp. 327–366.

[38] A. Kervinen, M. Maunumaa, T. Pakkonen, M. Katara, Model-based testing through a GUI,

in: Proceedings of the 5th International Workshop on Formal Approaches to Testing of Software

(FATES 2005), Springer, Berlin, 2006, pp. 16–31, number 3997 in Lecture Notes in Computer

Science.

[39] A. Paiva, N. Tillmann, J. Faria, R. Vidal, Modeling and testing hierarchical GUIs, in: Proceedings of

the 12th International Workshop on Abstract State Machines (ASM 2005), Paris, France. Springer

Inc., March 8–11, 2005.

[40] A. Paiva, J. Faria, R. Vidal, Towards the integration of visual and formal models for GUI testing,

Electronic Notes Theor. Comput. Sci. 190 (2) (2007) 99–111.

[41] H. Buwalda, Action figure, STQE Mag. 2003.

[42] M. Barnett, K. Leino, W. Schulte, The Spec# programming system: an overview, Lect. Notes

Comput. Sci. 3362 (2005) 49–69.

Empirical Knowledge Discovery by
Triangulation in Computer Science
ADVAN

ISSN: 00
RAVI I. SINGH
Department of Electrical and Computer Engineering,
The University of Alberta, Edmonton, Alberta, Canada
JAMES MILLER
Department of Electrical and Computer Engineering,
The University of Alberta, Edmonton, Alberta, Canada
Abstract
No one will disagree that solid empirical facts must be acquired from a series of

studies. What constitutes a proper fundamental structure for such a series of

studies is an unsettled issue. However, we are finally starting to see triangulation

from other disciplines emerge as a serious contender to the traditional frame-

work of replication for such studies. We start with two sample problems from

Computer Science that are in need of frameworks other than those provided by

one-shot studies or replication. Using these to open the topic of triangulation, we

see that the mixed methods of triangulation also have room for researcher

acumen. A working example of triangulation is looked at where researchers

were able to derive more findings with triangulation than without it. The

expected outcome of triangulation is convergence, but although it happens

occasionally, it is hardly the norm. We move onto an example of triangulation

in Software Engineering and basic frameworks that exist. Lastly, we take a look

at how triangulation can help with setting goals by providing an established

framework to move deliberation ahead.
1.
 I
ntroduction . 164
2.
 O
bjectification of Concepts in Computer Science 166
2
.1.
CE

65
N

S

-2
ormalized Compression Distance . 167
IN COMPUTERS, VOL. 80 163 Copyright © 2010 Elsevier Inc.

458/DOI: 10.1016/S0065-2458(10)80004-X All rights reserved.

164 R.I. SINGH AND J. MILLER
2
.2. C
ompressors and Images . 168
2
.3. C
omplexity and Imprecise Definitions Abound 169
3.
 T
riangulation: Introduction . 173
3
.1. T
riangulation: The State of the Art . 174
3
.2. C
onvergence and Researcher Acumen . 176
3
.3. T
riangulation: An Actual Study . 178
3
.4. L
ack of Triangulation Examples in the Literature 180
3
.5. C
onvergence, Inconsistency, and Divergence 181
3
.6. T
riangulation: Data Collection . 182
3
.7. A
n Example of Triangulation in Computer Science: Software Engineering . 183
3
.8. V
alidity and Goal Setting . 184
3
.9. C
onclusion . 186
R
eferences . 187
1. Introduction

Computer Science is a young discipline [1,2] and is therefore yet to establish

norms in a number of philosophical areas. One such area is with regard to the limits

of objectification or quantification and their impact on the limits of producing

generalized knowledge from such observations. As a young discipline, it is normal

to fill these gaps in the norms by ‘‘borrowing’’ ideas from other disciplines.

However, it is common to ‘‘borrow’’ ideas without necessarily considering all the

options and without explicitly stating the requirements that the idea must achieve.

This paper argues that quantification has serious limitations in Computer Science,

especially when human subjects are part of the endeavor. This, in turn, requires us to

look for frameworks that embrace these limitations when seeking to generate

empirically derived facts or factoids.

Keep in mind that there is no silver bullet on the path to the uncovering of

knowledge [3]. It is not expected that Computer Science be made as regimented

as electrical or mechanical engineering [4]. That being said, it would be easy to

adopt an attitude of pessimism when reviewing the literature on empirical knowl-

edge research in Computer Science. The findings of this paper, however, lead one to

believe that a healthy skepticism is in order instead [3].

So what are some of these limitations and how have other disciplines gotten

around them? One is that Computer Science in general seems more in line with

EMPIRICAL KNOWLEDGE DISCOVERY 165
Simon’s [5] ‘‘sciences of the artificial’’ than ‘‘sciences of the natural’’ in that it is

knowledge about artificial objects and phenomena [5,6].

Simon also considers Cognitive Science to be a science of the artificial [7]. Yet, in

a literature review, there are numerous examples where mixed quantitative and

qualitative methods have been used in cognitive science research to investigate

new ideas [8]. Since Cognitive Science also contains artificial objects and phenom-

ena, why cannot similar methods be used in Computer Science?

The topic is design centric; and practitioners spend a considerable amount of time,

exploring different avenues for a solution. Many of these avenues will prove

fruitless; others will yield a solution. However, this highly nonlinear, opportunistic

behavior [9] clearly causes significant performance variations within and between

practitioners. The simplistic top-down design approach of Computer Science works

well only in special case well-structured problems where ‘‘the designer already

knows the correct decomposition’’ [6,9].

Take note that Guindon is a cognitive psychologist. While at first glance, it may

be natural to consider design as a cognitive activity, there are a number of situa-

tional, organizational, and social interactions to be considered as well. The authors

proceed to make a case for ‘‘cognitive ethnography’’ stating that ‘‘it is especially

well suited to addressing applied questions of the type which dominate research on

human factors, since it maintains levels of objectivity that enable replication by

other observers, as well as the validation of its findings through a process of

methodological triangulation involving experimental methods’’ [10,11,64].

Most entities have no physical form; instead Computer Science deals with a large

number of virtual concepts (performance, complexity, etc.) that today have impre-

cise definitions and can often be measured only by secondary or even tertiary

proxies [6].

Other disciplines deal with virtual entities as well. Consider a study that collects

data on how a virtual learning environment alleviates isolation in long-distance

learning and provides a means of building contact and support among geographi-

cally disconnected students. Such virtual concepts were indeed measured and done

in such a way that repeated studies could add rigor to the conclusions drawn [2, 64].

These are some of the limitations in Computer Science empirical research and

how other sciences have gotten around the same barriers to knowledge discovery.

Section 2 provides two brief case studies where we attempt to illustrate the limita-

tions to objectification in Computer Science. It is believed that these limitations

place significant limitations on what is achievable via empirical exploration in

Computer Science.

166 R.I. SINGH AND J. MILLER
2. Objectification of Concepts in Computer
Science

Let us look at an example of this process as an illustration. Algorithmic Informa-

tion Theory [10] seems at first glance to be highly precise. Algorithmic Information

Theory looks at the relationship between Shannon’s Information Theory and Turing

Compatibility Theory. Its central concept is to measure the complexity of an abstract

entity by the size of the smallest program that can generate it [12]. Most concepts are

mathematically defined and completely specified. Everything seems exact and

perfect. Within Algorithmic Information Theory, the Kolmogorov Complexity can

be thought of as the minimal description of an arbitrary string which can include

algorithms [13]. Kolmogorov Complexity [63], can be used to provide a theoretical

definition of an objective evaluation of a pseudo-irreducible form of a signal, and

hence to provide precise differences or similarities between two arbitrary signals.

Signals are not required to have any special properties and can be as general as two

arbitrary strings.

While it can be stated that Kolmogorov Complexity is objective, this is clearly a

theoretical position, as Kolmogorov Complexity is uncomputable1 in anything apart

from contrived situations. However, recently Cilibrasi and Vitanyi [14] have demon-

strated that Kolmogorov Complexity can be successfully approximated by current

compression techniques. Kolmogorov Complexity can be viewed as the ultimate

compressor—producing for any arbitrary string (or file or image), a minimum

description of that string, given some form of description language. Hence, practical

compression approaches that compress arbitrary strings or files or images can be

viewed as approximations to the optimal, however unattainable, compressor.

Kolmogorov Complexity can be viewed as the limiting case for compression

technology.

Specifically, Cilibrasi and Vitanyi introduce NID (Normalized information dis-

tance) [2], which approximates Kolmogorov Complexity within known limits.
Further, they prove that NID is a valid metric within these limits. They claim that

NID can ‘‘discover all similarities between two arbitrary entities; and represents

object similarity according to the dominant shared features between two objects.’’

NID can be stated as:

Let KðxjyÞ refer to the Kolmogorov Complexity, that is, the length of the shortest

binary program that accepts as input y and outputs x; and let K(x) refer to the
1 In a Turing sense.

EMPIRICAL KNOWLEDGE DISCOVERY 167
Kolmogorov Complexity of x that is the length of the shortest binary program with

no inputs that outputs x.
The meaning of maxfKðxjyÞ; KðyjxÞg [14] can be explained as the length of the

shortest binary program (with the reference universal prefix Turing machine) that

with input x, computes y, and with input y, computes x. Given these definitions, NID
can be defined as:

NIDðx; yÞ ¼ maxfKðxjyÞ;KðyjxÞg
maxfKðxÞ;KðyÞg :

More details about NID can be found in Li et al. [2]. However, the fact that

Kolmogorov Complexity is incomputable implies again that NID cannot be used

directly. Fortunately, Cilibrasi and Vitanyi provide an approximation to this metric

based upon real-world compressors (C) rather than the ideal compressor (K). Here, a
compressor is an entity that uses an encoding algorithm to produce a representation

that is smaller than the input [15].
2.1 Normalized Compression Distance

Normalized compression distance (NCD) is a parameter-free similarity distance

which is believed to be able to uncover all similarities with a single metric [2] and is

a practical metric approximating NID. It is computed from the lengths of com-

pressed data files, images, strings, etc. [14], using real-world compressors. NCD is

specifically formulated for real-world compressors (C) rather than the ideal com-

pressor (K). For an arbitrary compressor C, NCD is given by

NCDðx; yÞ ¼ CðxyÞ � minfCðxÞ;CðyÞg
maxfCðxÞ;CðyÞg :

Clearly, the relationship between the denominators of NID and NCD is straight-

forward. However, the relationship between the numerators is far from

straightforward.

It is shown that the numerator can be rewritten as [2]:

maxfKðx; yÞ � KðxÞ;Kðx; yÞ � KðyÞg;
while noting that

Kðx; yÞ ¼ KðxyÞ ¼ KðyxÞ;
where xy and yx denote the concatenation of two signals.

168 R.I. SINGH AND J. MILLER
It is then argued [2] that this numerator can be effectively approximated by

minfCðxyÞ;CðyxÞg � minfCðxÞ;CðyÞg
If we now assume that the symmetry property holds for the real-world compressor,

minfCðxyÞ;CðyxÞg ¼ CðxyÞ
Clearly, it is important to understand that NCD is an approximation of NID and

that the symmetry property of real-world compressors will be invalid for a wide
range of compressors.

In addition, many real-world compressors may invalidate common properties found

in theoretical measurement systems, for example, is monotonicity ðCðxyÞ � CðxÞÞ a
guaranteed property of all block-coding compressors? Hence, these approximations

will require empirical verification within any context. That is, while Algorithmic

Information Theory is precise when abstract, when it is ported into a real-world setting

to allow the actual measurement of real quantities, it must go through a number of

transformations which introduce noise (which often does not possess known character-

istics), which may be severe in many situations. Let us imagine that our context is to

measure the actual difference between two arbitrary images.
2.2 Compressors and Images

At first glance, this looks like a no-brainer—just use image encoding algorithms

JPEG [16] or JPEG2000 [17]! However, upon investigation, the situation quickly

becomes a series of decisions often without a solid rationale to guide the decision

maker, a series of compromises, and a series of approximations. The NCD equation

requires that the two sources be concatenated; while this is straightforward, it will

lead to a nonrectangular composite image under most circumstances. Hence, we will

have to introduce some compromise, some padding, to reconstruct a rectangular

image. Constructing the padding again seems relatively straight—add a small image

to the composite image, which will make it rectangular, while making sure that the

contents of the padding image are noncompressible. Is this really justified? If we add

padding that can be compressed, this will affect the NCD value; if we add padding

that cannot be compressed, we are penalizing images with incompatible dimensions.

Is either position absolutely correct? Let us go with the ‘‘cannot be compressed’’

option—perhaps we can add an image to the ‘‘smaller’’ image (as ‘‘smaller’’ we

imply the image with the dimension which needs to be minimally expanded to allow

the two concatenated images to form a rectangle) to align the dimensions. This

padding image could be constructed from colored (white, pink, . . .) noise resulting in
something that is relatively uncompressible—though we have still affected the NCD

EMPIRICAL KNOWLEDGE DISCOVERY 169
value. However, we still have to resolve the spatial relationship between the smaller

image and the padding image:

l Should they abut? If so, which side (top or bottom; right or left)?; or

l Should the smaller image be centered in a padding image?

Again, we are making choices which impact on the result (NCD values). Next, we

need to investigate which 2D compressor to choose. The major characteristic of

compressors is being lossy or lossless; a compressor is lossless if there exists a

decompressor that can construct the original message from its encoded representation,

and lossy otherwise [14].Which type of compressor ismost suitable for use in the NCD

estimation is likely to be problem dependent. If lossy compressors are possible, thenwe

need to form an idea ofwhat is a suitable value for reconstructed image quality, perhaps

using the mean opinion score or the peak signal to noise ratio as metrics to guide us—

but again, we are making decisions and numerical compromises to arrive at a concrete

solution. Perhaps, lossless is the more appropriate choice; now we do not require the

estimation of any parameters. However, the various compressors still give us consid-

erably different results which vary from image pair to image pair. Again, we are left

making decisions, compromises, and numerical approximations.

In conclusion, while algorithm complexity theory and Kolmogorov Complexity are

some of themost precise topics in Computer Science, their precision remains as long as

the ideas are considered as abstract concepts. Once we start attempting to make the

ideas concrete, the precision quickly disappears and the investigator is left to make a

large number of decisions, compromises, and approximations in order to achieve a

concrete solution. These issues imply that other investigators are unlikely to repeat the

numerical observations found by the first investigator. Furthermore, the volume of

issues which impact on the numerical results found by the original investigator is

significant; and hence, the probability of them reporting or even realizing all them is

limited. Please note: the Kolmogorov Complexity situation outlined above is not an

extreme case, and in fact, in many ways, represents an extremely simple situation for a

Computer Science investigator. Areas in Computer Science where humans as subjects

are the norm are in general much more challenging and complex situations for

investigators to explore and possess significantly greater numbers of decisions, com-

promises, and approximations in order to achieve concrete solutions.
2.3 Complexity and Imprecise Definitions Abound

Computer Science differs from many other scientific disciplines because of its

limited number of physical components and concepts. Physical components allow us

to invoke ideas from the physical sciences to produce (pseudo-depends upon the

170 R.I. SINGH AND J. MILLER
degree of abstraction required) precise definitions and relationships. This provides

a solid basis for many empirical investigations and allows results to be easily

reproduced and to have unique interpretations. In contrast, Computer Science

often deals with attributes that are more meta-physical than physical, have imprecise

definitions which vary over time, domain, and problem statement, and often have no

‘‘mechanism’’ to allow us to either observe or measure them directly.

Consider the ‘‘definition’’ of Trust taken from Beatty et al. [18]. This definition

represents a meta-analysis of the literature on the definition of Trust. Points to be

noted are

l The definition considers the attribute only within a limited domain (e-commerce).

So what do the results imply for the definition in say organizational settings?

l To produce the definition, the researchers considered any on-line activity as a

proxy for e-commerce behavior. Using proxies in Computer Science is

extremely common because of imprecision of definitions—however, it is not

without substantial risk.

l Trust seems to be defined in terms of a large number of attributes (anything

with a direct link to trust has potentially a direct relationship. The number on

the link indicates the number of studies that ‘‘found’’ this relationship. The

number in the node is the number of studies which activity considered this

attribute when exploring this question. Some researchers even defined attri-

butes as themselves! See the weights on the self-references to nodes.)

l These defining attributes are highly interrelated with other attributes that define

Trust. Forget linearity.

These defining attributes also have complex, imprecise definitions based upon a

network of attributes. Each of these attributes within this network of attributes has in

turn a definition based upon a network of attributes, and so on.

As can be seen in Fig. 1, most of the variables surrounding trust are ill defined.

Clearly one-shot studies or replication is not going to work here. A more open-ended

framework is needed, as in triangulation (which is defined more fully in Section 3,

below). Triangulation brings many benefits to the table including:

l Consider the large number of judgment calls and small tweaks that have to be

made with compression algorithms. Add to that the complexity of the different

compression algorithms, lossless versus lossy parameters, and dictionary sizes.

All these factors make the problem difficult to deal with in replication settings.

Triangulation is the remaining choice in this scenario and as a bonus, the use of

multiple methods will help by reducing the bias in any particular research

method.

Integrity 12

Reputation 8

Previous actions 7

Ability 6

Social pressures 5

Competence 12

Benevolence 12

Risk 14Ease of use 16

Demographics 2

Usefulness 21

Other 2

Attitude 12

Cognitive enjoyment 4

Predictability 8

Innovativeness 2

Trust 19

1

5
2

6
2

1

1

1

1

1

1

1

3

2
3

3

2

25

4

5

4

1

3

4

3

5

2

2

2

1

1

Use 26

2

5

1

4

3

3

36

2

1
2

4

4
5

1

1

1
1

2

1
1

1

6

1

1

1

2

2

3 6

8

1
1

5

6 2

1

11

1

5

4

2

1

3

21

3

1

1

1

1

3

FIG. 1. Trust attributes.

172 R.I. SINGH AND J. MILLER
l Multiple methods play the weakness of one method off against the strengths of

another. For example, in the study of on-line trust, one could use a combination

of browser plug-ins along with structured interviews to establish a framework

upon which to study on-line trust.

l Triangulation uses unobtrusive measures that do not necessarily require inter-

action with the subject and leave the response pristine. An example of this could

be studying how much time a user of an interactive development environment

(IDE) spends in critical code.

l Another way of checking the data from diversified data sources is to look for

reoccurring patterns in the collected data. In Schadewitz et al. [19], researchers

used discipline-specific methods to collect information on design patterns in

collaborative learning environments. They then used theoretical triangulation to

increase the validity of their findings.

l Gives a framework through which subjects can validate and improve research-

ers’ work and a way for fellow observers to review the researchers’ output [20].

The result of this is lending validity to the academic audience of a study [21].

This has application in the compression problem in attacking difficult issues

such as how to concatenate multidimensional images or data types (e.g., video

with jpeg). The entire compression problem is a messy problem and triangula-

tion provides a framework for its complexities compared to one-shot studies or

replication frameworks.

l A way of dealing with the situation where people say one thing and do

something different.

l A way of including researcher acumen with results. Triangulation is often

looked upon as a convergence strategy. In reality, the data converge only

occasionally and inconsistency and divergence are more the norm. In such

situations, the onus is on the researcher to combine the empirical information

at hand with a comprehensive understanding of the phenomena being studied

and a general grasp of the context surrounding the problem.

l Removing the effects of a confounding variable [22] in a case study by

amassing collusive data.

l Can discover facts through a lack of information. For example, in one study

researchers discovered a lack of quality assurance (QA) procedures in a project

mainly through their own acumen. For example, in Bratthal and Jorgensen [23]

researchers discovered a lack of QA procedures by personally observing that

they did not exist.

l Provides results with a higher validity than those from a single study.

EMPIRICAL KNOWLEDGE DISCOVERY 173
l In Bratthal and Jorgensen [23], the researchers suggest that by building on

several sources of confirmative data, they can produce results that have higher

validity than those built form a single source.

l Its value does not lie as a methodological way of amassing and processing data.

It is simply a way of providing more and better information to the investigator

to offer poignant views about the common world we all share. An example here

is in defining trust. As can be seen in the diagram, trust is a massive intercon-

nection of terms that themselves are highly connected, highly imprecise, and

highly qualitative.

l It can help in goal setting in that it is a progressive technique with a clear

framework for advancing ideas. As an example, part of goal setting is having a

reliable way to measure outcomes. Relying on any single measure can be

misguiding. Using several measures with triangulation can provide a more

total picture than any individual measure alone.
3. Triangulation: Introduction

Triangulation refers to a multiple method research approach originating in the

social sciences that adds rigor to studies. Webb et al. [24] sought to overcome a

‘‘stagnating’’ dependence on single working definitions of theoretical concepts.

They also sought to supplement the classic research techniques of the interview

and questionnaire with inconspicuous measures that do not require interaction with

the respondent and that themselves do not bias the outcome. In maintaining that all

research methods are biased, Webb et al. [24] state the case for the use of a collection

of methods (mixed methods). They believed that the use of multiple methods would

reduce the effect of bias of any one of them. They further argued that if a hypothesis

can withstand a barrage of balanced test methods, then it contains the validity of

a degree unreachable by one verified using the limited framework of a solitary

method [24].

In 1970, Denzin also argued for the use of mixed methods on the same empirical

events. Denzin’s views would go on to be very influential in encouraging social

researchers, from a variety of schools of thought, to use a mixture of methods and

observers to reduce bias and improve validity within the context of empirical

research methods. Specifically, he argues that no individual method can always be

considered the best one. Every method has its good points and bad points. He calls

174 R.I. SINGH AND J. MILLER
on sociologists to realize this and adopt a stance that mobilizes them to tackle

problems with all timely and suitable methods (i.e., multimethod triangulation) [25].

So triangulation comes down to playing the weaknesses of one research method

against the strengths of another. There are several definitions for triangulation, the

one that comes closest to this idea can be found in this passage:

‘‘While a survey study tends to test research assumptions, classroom observation is an

exploratory process of learning, which helps to shape the research design and refine the

observation scheme. This type of multiple method approach provides cross-examina-

tion mechanisms, often referred to as triangulation.’’ [26,27]

The point here is that triangulation is not a complex methodology and that

triangulation data collection techniques are not complex either. The table below

lists a number of triangulation data collection techniques, all of which are familiar.
Data collection techniques suitable for triangulation
Round tables and interest groups

Dialogs

Surveys

Work Journals

Analysis of usage patterns within an IDE

Documentation Studies
3.1 Triangulation: The State of the Art

If one conscientiously collects and second checks data, using a multitude of

sources and modes of confirming data, corroboration mechanisms will, for the

most part, be built into the finding–gathering procedure. There is not much else to

do other than to state the processes used. In this way triangulation can be thought of

as a state of mind [28].

That triangulation is a state of mind is something that most people would at least

partly agree on. As for triangulation actually having a state of the art, fewer people

would agree on this. In the literature reviewed so far, no one has defined a state of

the art so for all practical purposes, it is best to drop the idea. Regarding this ‘‘state

of mind,’’ let us ask instead: What do I need to know about triangulation to be

practical?

One of the first things you will come across are Denzin’s [29] four types of

triangulation. Here it is presented in the context of software engineering:

1. Data triangulation is about gathering data, using multiple sampling methods,

with the aim of varying times and scenarios. It is important to alter subjects,

EMPIRICAL KNOWLEDGE DISCOVERY 175
though this is difficult in Software Engineering situations because the cross-

sectioning frame is poorly understood.

2. Researcher triangulation is about using more than one researcher to work on

findings. Note that as triangulation gains further acceptance in Computer

Science, this definition is open to broader interpretation.

3. Using more than one theory to interpret the finding is called theoretical

triangulation.

4. Methodological triangulation uses more than one procedure for collecting

findings. The author refers to [65] for a description of a general approach

and [30,70] for application to software engineering problem. One further note:

like researcher triangulation, the definition of methodological triangulation is

becoming broader also [6].

It is now good time to review some of the advantages of triangulation. One

advantage states that without triangulation lacking cross-checking by multiple

observers or subjects to enhance and strengthen the researcher’s findings, some

researchers have problems having their work recognized by the academic world

[31,32]. Another reason to use mixed methods is to deal with the situation where

what people do and what they say are entirely different, as in Jorgenson [23] where

project staff were asked how much of their efforts were spent on fault correction in

their software. It was discovered that their estimates were around twice as high as the

amount of time actually spent correcting faults.

Opposition to triangulation falls into the school of thought that it is hard to

compare different evidence. This is a common theme in the literature criticizing

triangulation. Now open this up to further examination. First of all, are people

expecting too much from triangulation? Consider the following: ‘‘Triangulation

is not magic. The researcher ought not to expect that the use of multiple methods

will produce findings that will inevitably come together to form a nice clear

picture’’ [33].

It is important that practitioners of triangulation make their views heard in order

to vanquish the belief that everything in triangulation is cut and dry.

So what is the next logical step? It is to simplify Denzin’s four categories of

triangulation while at the same time silencing his critics. Denzin actually suggests

only three types of triangulation. The fourth, theoretical triangulation, is trouble-

some at the best of times, and in a real-world scenario, probably unachievable

[34–36].

Denzin is the first to question the plausibility of this idea. Note that it can just as

easily apply to Computer Scientists:

‘‘My use of theoretical triangulation must in no way be construed as a defence

of eclecticism. Indeed, sociologists committed to a given perspective will probably

176 R.I. SINGH AND J. MILLER
not employ theoretical triangulation. The great value of this strategy, as I see it,

however, is its assurance that no study will be conducted in the absence of some

theoretical perspective. In this sense it is most appropriate for the theoretically uncom-

mitted, as well as for analysis of areas characterized by high theoretical incoherence.’’

[29,36]

Now consider this critique on triangulation:

Methodological triangulation does not always increase validity and theoretical

triangulation does not always do away with bias. In general, theories are the products

of varied schools of thought and combined together can show a bigger picture but

not an unbiased one. Likewise, different procedures have come from different theory

schools so putting them together can provide greater dimension but not greater

correctness. To put it another way, there is an argument for triangulation although

not the one Denzin puts forward [37].

While the critics above do make some points, it is not clear whether they really

understand the value of theoretical triangulation.
3.2 Convergence and Researcher Acumen

Many texts talk of triangulation as a convergence strategy. What few of them

mention is that it can lead to inconsistent data and contradictory data. Consider the

following passage:

Practicing researchers and evaluators know that the image of data converging

upon a single proposition about a social phenomenon is a phantom image. More

realistically, we end up with data that occasionally converge, but are often inconsis-

tent and even contradictory. And we do not throw our hands up in despair because

we cannot say anything about the phenomenon we have been studying. Rather, we

attempt to make sense of what we find and that often requires embedding the

empirical data at hand with a holistic understanding of a specific situation and

general background knowledge about this class of social phenomena. This concep-

tion shifts the focus on triangulation away from a technological solution for ensuring

validity and places the responsibility with the researcher for the construction of

plausible explanations about the phenomena being studied [36].

So we see that it takes a certain amount of acumen on the part of the researcher to

make sense of the findings. In the face of inconsistent, contradictory, and suspi-

ciously collusive converging data the researcher is by no means at wits end.

A close examination of the explanations offered here suggests that several levels

of evidence are required for the researcher to construct plausible explanations.

There are obviously data on hand. There is also a holistic understanding of the

EMPIRICAL KNOWLEDGE DISCOVERY 177
project itself, its history, the intentions of the developers, the ongoing relationships

within the project, and so on. This understanding about a project or program is

frequently unarticulated, a part of that vast body of tacit knowledge that we all have.

And lastly, the researcher/evaluator has a store of knowledge and understandings

about the social world which allows such projects and their evaluations to exist [36].

Researcher acumen again comes into play in the area of software engineering.

Here, we first focus on a few reasons why software engineering is so different from

the social sciences and then focus on the commonalities that make triangulation

usable.

Some of the key differences between Software Engineering and the Social

Sciences are that Software Engineering seems to have more in common with

Simon’s [5] ‘‘sciences of the artificial’’ than with ‘‘sciences of the natural.’’

Another crucial difference is that real Software Engineering problems are wicked

problems [38]! Also consider that because of the complexity of the problems,

practitioners seek ‘‘good enough’’ solutions rather than optimal solutions, or satis-
fying to utilize Simon’s term from economics [5], or bounded rationality from a

behaviorist perspective [39]. And finally, Software Engineering is in many ways all

about people, be it users, customers, developers, or managers; it is impossible to

consider any aspect of Software Engineering without understanding the humans

involved. Unfortunately, understanding humans, their behavior, motivations, etc., is

extremely difficult and extremely poorly understood. This limitation again places

significant limitations on all Software Engineering empirical approaches. As Gom-

ory [40] put it in his famous essay, ‘‘embedded within our increasingly artificial

world will be large numbers of complex and thoroughly idiosyncratic humans’’ [6].

It is the last point that is of interest. It is the human element that binds all aspects

of software. Software is written by humans to be maintained by humans who will

eventually evolve the software. So, in order to visualize a true picture of what

Software Engineering is about, one must investigate the actual human-software

worker working on real-world problems in real-world settings [41]. There is a

clear human element to software engineering.

So what about using triangulation in software engineering? There is a growing

need for an alternative to ‘‘one-shot studies.’’ The expression ‘‘one-shot studies’’

comes up in software engineering literature and, for our purposes, can be explained

as a single study based on experiments that cannot show anything convincible to

others [42].

In contrast, triangulation brings to the table a plethora of methods with weak-

nesses that do not have a single soft spot and with strengths that augment each other

[65]. The point here is that triangulation is an established research technique in

software engineering, despite not appearing ‘‘conventional’’ on the surface.

178 R.I. SINGH AND J. MILLER
3.3 Triangulation: An Actual Study

Returning to researcher acumen, in the article ‘‘Can you Trust a Single Data

Source Exploratory Software Engineering Case Study?’’ [23], the researchers on

several occasions used their acumen to bring the data to convergence. Case studies

as a research strategy can be challenging [43] for both the researcher doing the study

and the reader in locating particular researcher biases. In a case study, not all of the

variables can be controlled, and so it is difficult to claim that the relationships found

contain validity as it can be said that the variables rely on a per chance complicating

element. There are two ways to deal with this:

1. Do a number of case studies, or use numerous cases inside a single study

2. Perform triangulation inside a solitary study to collect collaborative data [44]

The first approach is not desirable because among other things, it can cause the

researcher to raise the level of abstraction, thus making the case less interesting to

practitioners. However, triangulation with researcher acumen was the more beckon-

ing choice as it does not require multiple cases and it compresses the lead time

needed to study a phenomenon.

Now on to the nuts and bolts of the study. The study analyzes a case study of a

project performed in an organization. This can be seen in Fig. 2 [23].

A list of the individual data sources used is given as follows: Project documents,

information from the time-reporting system, notes from meeting observations,

focused interviews, open-ended interviews, and trouble reports [23].

Basically, triangulation using sources of data within the case study is studied.

The interaction of the data sources is shown in Fig. 3.

And finally, the raw data from Bratthal and Jorgensen [23] are given below:

They can be broken down into three categories:

T1: Factors that decrease project lead time

T2: Factors that add to project lead time

T3: Factors that have repercussions on future projects
This
paper

Takes apart Which looks at Done in

A project An organization

A
case
study

FIG. 2. Case study.

Origin of data examined within case

• Project time data
• Project documents
• Trouble reports
• Highlights of dialogues
• Consultations

Associations:
Affirm
Contravene
Foster
Discovery

Connections
not

studied

FIG. 3. Data sources.

EMPIRICAL KNOWLEDGE DISCOVERY 179
There are a number of findings in this study. Our objective is to focus on those that

involve researcher acumen to illustrate that triangulation is not a deterministic

process.

(T1) Project units located jointly together: Researcher acumen brought this

finding to light. Without colocation, the communications links observed would

have taken longer to set up.

(T1) Generally, the project can get hold of seasoned staff as well as experts. Here

the researchers stayed out of the picture. The only way for them to establish that the

project staff was experienced would be interviews, since there was a low correlation

between years of experience and actual results.

(T1) The project manager was well seasoned. Again the researchers did not

become involved since they realized that it would be difficult to prove that this is

of lead-time benefit without extended researcher involvement.

(T1) The project phases are concurrent: A contradiction appears; the time-report-

ing system and project documentation report contradictory findings. The final

decision lies in the researcher’s experience in what can be performed concurrently

and what cannot.

(T2) Project is without inspections or reviews: An interesting situation, since it

was discovered through lack of information. This is a strong case for triangulation

since it is unlikely that any single data source could confirm this lack of information

with a high degree of reliability. In this finding, the value of inspections/reviews in

respect of lead time was suggested by researcher’s experience.

(T3) The project is missing external QA: Since no QA procedures were in place,

the researchers concluded that the lack of QA was a source of lead time increase.

(T3) Time data could not be used for subsequent projects: Time records for the

project did not follow the structure of the activities of the project. In the researcher’s

experience, this caused a loss to lead time. If it cannot be observed, then it cannot be

benchmarked. If it cannot be benchmarked, it cannot be managed.

180 R.I. SINGH AND J. MILLER
In summary, this study suggests that a case study built on multiple sources of

confirmation can have a higher validity than studies that rely on a single data source.

For example, the finding that the project phases are concurrent could not have been

brought to light unless multiple data sources were used. This finding and the finding

that the project units are jointly located together would not have been made at all

unless multiple methods had been used. In the situation where the project phases are

concurrent, contradictory data decreased the reliability of the case study. The

authors also note that no single data source could have been used to make all the

findings made in the exploratory case study.

So the case study brings to the table hard evidence as to the value of triangulation.

Also we can see for the first time the concrete use of mixed methods and how they

play off each other. Researcher bias is also an issue, if the researchers had known

less than they did, then the results of the case study could have been different. The

project the researchers studied lasted 39 weeks and involved 29 people. Yet only two

researchers were able to produce so many findings.
3.4 Lack of Triangulation Examples in the Literature

At this point the reader may be left with a sentiment echoed in the following

passage:

‘‘Yet those who most strongly advocate triangulation (e.g., Ref. [24,29,69]) fail to

indicate how this prescribed triangulation is actually performed and accomplished.

Graduate training usually prepares us to use one method or another as appropriate and

preferred, but not to combine methods effectively. And even those who use multiple

methods do not generally explain their ‘‘technique’’ in sufficient detail to indicate

exactly how convergent data are collected and interpreted.’’ [45]

The literature review conducted so far indicates that Jick’s sentiment holds as

true now as it did in 1979. None of the literature reviewed thus far provides a

convincing step-by-step play of accounts to explain exactly how triangulation

brings out a desired outcome. By this point we can ask some informed questions

about triangulation. For example, from a researcher point of view, how much do

we need to know? From a data collector’s point of view, how many data sources

do we need to get if we just want a good enough result? We talk a lot about mixed

methods, but how much do we really know about quantitative and qualitative

methods?

A literature review to date has provided no answers to these questions. The best

one can expect from the literature is that it provides enough information to ask the

right questions to the right people. What has been discovered in the literature review

is a central group of concepts that keep coming up different places [46]. What no one

EMPIRICAL KNOWLEDGE DISCOVERY 181
has done is to put all these concepts in one place, until now. For the remainder of this

section we focus on some core concepts around triangulation so that the reader has

them available in one place as a starting point.
3.5 Convergence, Inconsistency, and Divergence

Convergence, inconsistency, and divergence: These are the three possible out-

comes for triangulation. We want convergence but what if we do not get it?

Consider the following passage: Because of the researcher’s inexperience with

triangulation and the positive image it has, people automatically expect that it will

lead to convergence of findings into a single conclusion. In fact there are three

possible outcomes. The first is convergence and due to inexperience with triangu-

lation, it is a widely held belief that it will lead to convergence. The concept is

fairly simple; findings from different forms to triangulation, including other types

not listed in this paper, will produce a solitary conclusion about a studied

happening [36].

The second outcome of triangulation is inconsistency. This is more often the

situation than convergence. When we use a multitude of data suppliers and proce-

dures, we can be left with multiple viewpoints or findings that do not converge to a

single conclusion. Instead we are left with half-baked ideas containing contradic-

tions and vagueness. We are left in a position where we cannot credibly make any

claims about the findings we have collected [36].

It is true that inconsistency can solely be the circumstance of the data collected.

It is also noteworthy that it can be caused by human factors. For example, a

researcher often has to wear many hats and if they try to be an expert on several

types of methods for methodological triangulation, they may be stretching them-

selves too thin. Another example was noted in an interview with a researcher using

triangulation; part of the success in his use of researcher triangulation was that the

other researchers were located in the same room.

The last outcome is divergence. Worse than the data being inconsistent, it can be

contradictory. What that means is that we are left with a collection of findings that

supports conflicting points of view of the concept under study [36].

Should one accept that convergence is the sole aim of triangulation, then it

follows that the second and third outcomes are useless. Of course, we are all

aware that this is not the case. What it comes down to is triangulation providing

additional and excelling confirmation data to the concept under study. The real value

of triangulation is providing confirming data to the scientist so that they can provide

meaningful clarifications about the concept under study [36].

182 R.I. SINGH AND J. MILLER
3.6 Triangulation: Data Collection

Let us examine an actual working document. It is clear that even the mixed

method researcher does not have all the answers offhand. It also brings to mind

some thoughtful questions for the reader:

A Checklist of Questions for Designing a Mixed Methods Procedure [47]
Is a basic definition of mixed methods research provided?

Does the read have the sense for the potential use of a mixed methods strategy?

Are the criteria identified for choosing a mixed methods strategy?

Is the strategy identified, and are its criteria for selection given?

Is a visual model presented that illustrates the research strategy?

Are the procedures of data collection and analysis mentioned as they relate to the

model?

Are the sampling strategies for both quantitative and qualitative data collection

mentioned? Do they relate to the strategy?

Are specific data analysis procedures indicated? Do they relate to the strategy?

Are the procedures for validating both the quantitative and qualitative data

discussed?

Is the narrative structure mentioned, and does it relate to the type of mixed methods

strategy being used?
It is important to remember that a study does not have to be a mix of qualitative

and quantitative methods. A mixed method study, for example, could contain a mix

of qualitative methods.

Here is another passage that brings data collection more down to earth: Treat all

methods, simple and complex, with consideration and diligence. Plan all your

undertakings to ensure that your findings are clear and concise. It is a case of

garbage in-garbage out, that is, a poorly worded question will solicit a similar

quality answer that cannot be evaluated. Treat people like people, humans in a

societal setting. Also be wary that a researcher can be interruptive simply by being

there. The authors cite [48] as a starting point for research ethics in software

engineering studies [41].

Creswell also includes some tips on how to include mixed methods in a proposal.

His suggestions are as follows:

1. Give a brief background of its evolution. Start with its history in [66] and

proceed to ideas about convergence or triangulating different data source types

that can be found in Jick [45].

EMPIRICAL KNOWLEDGE DISCOVERY 183
2. Come up with a definition for mixed methods research, using the definition in

Chapter 1 of Creswell [47] as a base. This definition focuses on collecting

qualitative and quantitative data concurrently.

3. Provide a concise passage about the increasing attention given to mixed

methods, using academic publications, books, etc. as evidence.

4. Make mention of the type of questions likely to confront a researcher.

Priority is another consideration in mixed method studies. Is priority given to

qualitative or quantitative methods? Is equal priority given? A leaning toward the

qualitative or quantitative is based on the investigator’s interests, his onlookers (e.g.,

his academic peers), and what is to be stressed in the research. Realistically,

prioritization occurs through a variety of means. Examples include which data set

is stressed initially, how much processing each data set has been given, and how

theory is used in the research’s framework [47].
3.7 An Example of Triangulation in Computer Science:
Software Engineering

So how is triangulation normally found in sociology, psychology, and education

finding its way into Computer Science? Let us look at software engineering. In the

near past years, there have been some top level requests for further research based

on experience and experiments [46,49,67]. In particular, the International Software

Engineering Research Network (ISERN) has been organized to encourage empiri-

cal work to be done as a group effort [70].

Now consider the difficulty of obtaining empirical evidence in software engineer-

ing [50–52]:

The human side of Software Engineering along with the requirements of

empirical validity leads one to believe that the chances of obtaining conclusive

findings from empirical works are quite low [53,54]. This is especially true for

one-shot studies as mentioned previously [55]. Replication goes further than

one-shot studies but who is to say that the faults in the original study are not

repeated in the replications? [56]. Triangulation or a multimethod modus oper-

andi uses varied but affirming methods in research. It can be said that the a

multimethod approach deals with the shortcoming of one-shot studies by

assaulting problems with an armory of methods without any fixed weaknesses

and strengths that are self reinforcing [65,70].

Now lest the reader be led into a sense that triangulation will save the day,

consider this almost anecdotal passage that highlights the lack of software engineer-

ing research skills to be found in the field:

184 R.I. SINGH AND J. MILLER
‘‘It is essential to know which empirical research paradigm is most suitable to cover all

of the many facets of Software Engineering empirical studies. The paradigm defines

what empirical researchers must aim for in an attempt to demonstrate a rigorous

approach within their study.’’ [6,49]

Which empirical research paradigm covers all dimensions of software engineer-

ing is fundamental to investigations. This paradigm tells investigators what to strive

for so that they can demonstrate rigor in their work. The problem is that most

empirical investigators have no idea what paradigm they are using or do not even

know that they exist. In addition, most Software Engineer empirical investigators are

comfortable with mixing investigative styles (quantitative, qualitative, etc.) inside a

study. Of course, the different styles coincide with different paradigms; it appears

that investigators are devoting more of their energy toward providing insights than

trying to stick with any particular paradigm. So, if Software Engineering is embrac-

ing an ‘‘anything goes’’ empirical approach, how does one include this approach, or

‘‘reality,’’ within a framework of knowledge advancement? [6,57].

Miller goes on to say ‘‘we are fortunate that other domains embrace our approxi-

mate needs, and they have developed frameworks for exploration. It is these frame-

works that give us a useful starting place. Specifically, these domains use

triangulation’’ [6].

So in the case of software engineering, it seems that we are lucky that triangula-

tion fits part of the bill. Really, the exercise to the reader is to think about other fields

and circumstances where triangulation can be used. One example, recently iterated

to the author, is a local nongovernmental organization that uses triangulation in their

funding proposals as a mechanism to measure how the nongovernmental organiza-

tion will ‘‘change the world’’ should their proposal be approved.
3.8 Validity and Goal Setting

There are many different definitions [58] for validity, but there are two types of

validity that are of interest in triangulation. Internal validity is ‘‘the extent to which

causal conclusions can be made from the study’’ [70]. External validity is ‘‘the

extent to which results may be generalized to the population under study and other

settings’’ [70]. In fact, in the research on triangulation, several different types of

validity come up.

Some would argue that construct validity and conclusional validity are also impor-

tant. Construct validity has meaning when what we see in the real world agrees with

our conceptual model of that world. There are a number of blurry concepts that we

theorize from the real world, and when they match those real-world blurry concepts,

EMPIRICAL KNOWLEDGE DISCOVERY 185
we can claim construct validity [59]. An example would be programmer maturity.

Regarding conclusional validity, since it is one of the least understood validities, we

will quote the definition directly. ‘‘Conclusion validity is the degree to which con-

clusions we reach about relationships in our data are reasonable’’ [59]. Conclusional

validity comes into play toward the end of the study, often when there is pressure to

draw a conclusion and a favorable one at that. It is here where researcher triangulation

can lower the odds of a false conclusion being drawn: something it seems that has not

been researched fully.

All research studies begin with establishing a set of clear, thoughtful goals, since

many subsequent design decisions will depend on them. The goals should explain

the purpose of the study and the phenomenon being researched. The study goals

drive the formulation of research questions; these in turn drive research design

[50,60], which in turn influences the selection of data collection techniques

[41,61]. As a general reality, research studies are rarely this organized and the

term ‘‘all over the map’’ has been used to describe some social scientists and their

research approaches. Still, one has to start somewhere. Table I presents a summary

of data collection techniques.

One is not left without options if one’s goal setting efforts come to no avail. In

mixed methods, two primary perspectives are available that among other things can

help a researcher focus on a goal. They are the evolutionary perspective or the

complementary perspective.

An evolutionary perspective is used when little research has been conducted on a

phenomenon or where the research hypotheses require increased focus. Focusing on

a research hypothesis will aid in goal setting if not setting it altogether as a side

effect. The first step is an initial exploratory study gathering qualitative data. At this
Table I

DATA COLLECTION TECHNIQUES

Data

quantity Technique Description

Small Round Table and

product survey groups

An open discussion about ‘‘modus operandi’’ and software

product, useful for gathering ideas and emotional responses

Small Modeling ideas Making ideas about operations and output explicit

Medium Become a team member As a passive team member, you gain a deeper understanding by

learning why things are done the way they are done

Large Data mining project

work repositories

Unfolding of product development, growth of slip-ups

Large Software Gauging Implementing code into the tools of the software engineer to

monitor habits

186 R.I. SINGH AND J. MILLER
stage, the initial study is designed to study a wide variety of topics in the area of

interest. The data are collected, analyzed, and the important findings of the initial

study are refined and used as hypotheses for a following study. Then the process is

repeated, usually using a research method different from the initial study. The

process iterates until a single hypothesis is rigorously investigated. Primary research

methods should have high potential for theory generation; later methods should have

high potential for theory confirmation [70].

In contrast, the complementary perspective’s objective is to enhance the validity

of research findings. This can also help with goal setting as it is an active process

with an articulated framework to push thinking forward. In this perspective, a

phenomenon is studied independently using two or more research methods. These

independent studies do not have to be conducted by the same group; they can be

coordinated as a series of studies by different groups within the discipline. When

results agree, the empirical methods employed are said to have confirmatory power.

In addition, the researchers can have greater confidence that their findings

are not the result of individual methods employed. When results disagree, new

hypotheses should be investigated which take into account the differences in

research methods [70].

3.9 Conclusion

As a field of study, Computer Science has yet to set commonsensical norms due to

its youth. In the areas of objectification or quantification, it is common for Computer

Science to borrow concepts without thought to their limits or not being explicit about

what they are trying to achieve. We saw the limitations that sprung up when humans

were involved. Therefore, this leads us to a search for frameworks that cover the

same limitations. One limitation that was covered was that Computer Science has

more in common with sciences of the artificial than with those of the natural. In this

situation, we looked to Cognitive Science for frameworks. Likewise, we look to

cognitive ethnography and virtual learning environments for frameworks. To over-

come these limitations, we looked to Cognitive Science, Cognitive Ethnography,

and virtual learning environments for frameworks [62, 64].

Next, we looked at two practical examples of Computer Science problems in need

of workable frameworks. First, we turned to Algorithmic Information Theory and in

particular the Kolmogorov Complexity. While the Kolmogorov Complexity appears

precise and uncomplicated, it is impractical and suited only for contrived examples.

Luckily, an approximation to the Kolmogorov Complexity exists. In transforming

the Kolmogorov Complexity into an approximation, noise is introduced by a number

of changes. Also, since it is an approximation, a wide range of real-world compres-

sors will not conform to the symmetry property.

EMPIRICAL KNOWLEDGE DISCOVERY 187
Looking closer at the approximation, we realize that we must make a number of

decisions about its use without any guiding rationale. We realize that when we try to

make solid decisions, we start to become aware of our choices, trade-offs, and

educated guesses that we have made so far. Furthermore, the bulk of issues that

affect the findings are often extensive making the chances of them being noted or

even fully thought through questionable. In closing this section, we saw that although

theKolmogorov Complexity and algorithm complexity theory are among some of the

most exact topics in Computer Science, they stay exact only in a world of abstraction.

In the second example, we looked at the complexities around the definition of trust.

A quick look at Fig. 1 will confirm the complexity. As we look closer at the figure, we

see that each attribute itself is based on a network of attributes. These points and

others make it clear that a suitable framework for trust has yet to be found.

Alas, all is not lost. Triangulation is recommended as a solution framework and

its benefits are listed in point form. The next section on triangulation opened with

an introduction and a discussion of the state of the art. Triangulation we see is

more than a convergence strategy; it is a way for a researcher to include their

acumen into the triangulation results. We then examined an actual study where the

researchers on several occasions used their acumen to bring about convergence

and add rigor to the study. Mention was made of the lack of triangulation

examples in the literature. Moving on, we see that convergence, inconsistency,

and divergence are the three possible outcomes of triangulation with convergence

as the expected outcome but hardly the norm. We then looked at an example of

triangulation in Software Engineering and how important it is to have an empirical

paradigm when conducting investigations. Lastly, we examined how triangulation

can help in goal setting.

As we saw earlier, single shot studies on their own can produce nothing conclu-

sive. Consequently, we can be judgmental about the time and effort spent on them.

Triangulation, on the other hand, brings rigor to studies and obtains more genuine

results. It is necessary to foster community efforts to produce groups who use

triangulation to explore common empirical questions concurrently.

Notes: There are many definitions of ‘‘validity.’’ In this study, validity is defined

according to [68]: ‘‘An account is valid or true if it represents accurately those

features of the phenomena, that it is intended to describe, explain otherwise.’’
References

[1] P.J. Denning, D.E. Comer, D. Gries, M.C. Mulder, A.B. Tucker, A.J. Turner, et al., Computing as a

discipline, Commun. ACM 32 (1) 1989 January.

[2] M. Li, X. Li, B. Ma, P. Vitanyi, The similarity metric, IEEE Trans. Inf. Theory 50 (2004)

3250–3264, December.

188 R.I. SINGH AND J. MILLER
[3] F. Brooks, No silver bullet: Essence and accidents of software engineering, IEEE Comput. 20 (4)

(1987) 10–19, April.

[4] F. Brooks, Three great challenges for half-century-old computer science, J. ACM 50 (1) (2003)

25–26.

[5] H.A. Simon, Sciences of the Artificial, third ed., MIT, Cambridge, 1996.

[6] J. Miller, Triangulation as a basis for knowledge discovery in software engineering, Empir. Softw.

Eng. J. 13 (2) (2008) 224.

[7] H.A. Simon, Cognitive science: The newest science of the artificial, Cogn. Sci. 4 (1) (1980) 33–46.

[8] A.M. Hines, Linking qualitative and quantitative methods in cross-cultural survey research: Tech-

niques from cognitive science, Am. J. Community Psychol. 21 (6) (1993) 729–746.

[9] R. Guindon, Designing the design process: Exploiting opportunistic thoughts, Hum. Comput.

Interact. 5 (1990) 305–344.

[10] G. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987.

[11] I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, M. Twidale, Integrating ethnography into

the requirements engineering process, in: Proceedings of the IEEE Requirements Engineering

Conference, San Diego, 1993.

[12] G. Chaitin, Algorithmic information theory, IBM J. Res. Dev. 21 (1977) 350, (Toward a mathemati-

cal theory of life, in: The Maximum Entropy Formalism (R.D. Levine and M. Tribus, Ed.), MIT

press, Cambridge, MA, 1979).

[13] P. Vitányi,M. Li,Minimumdescription length induction, Bayesianism, andKolmogorov complexity,

1999. arxiv.org cs.LG/9901014.

[14] R. Cilibrasi, P. Vitanyi, in: Clustering by compression, IEEE International Symposium on Informa-

tion Theory Yokohama, Japan, 2003.

[15] G. Blelloch, Introduction to data compression, 2000. (Course notes for: Algorithms for the real

world).

[16] G.K. Wallace, The JPEG Still Picture Compression Standard, Commun. ACM 34 (1991) 30–44,

April.

[17] M.D. Adams, The JPEG-2000 Still Image Compression Standard, ISO/IEC JTC 1/SC 29/WG 1N

2412, Int. Org. for Stand./Org. Int. de Normal, Paris, France, 2001.

[18] P. Beatty, I. Reay, S. Dick, J. Miller, Consumer Trust in E-Commerce Websites: A Meta-Study.

ACM Computing Surveys, 2008 (in print).

[19] N. Schadewitz, A.V. Nguyen-Ngoc, E. Law, Identifying design patterns in international collabora-

tive learning—Two contrasting case studies, 2009.

[20] V. Basili, R. Selby, D. Hutchens, Experimentation in software engineering, IEEE Trans. Softw. Eng.

1986.

[21] R. Glass, I. Vessey, V. Ramesh, Research in Software Engineering: An Analysis of the Literature,

J. Inf. Softw. Technol. 44 (8) (2002) 491–506, June.

[22] V. Basili, F. Shull, F. Lanubile, Building knowledge through families of experiments, IEEE Trans.

Softw. Eng. 25 (4) (1999) 456–473.

[23] L. Bratthall, M. J�rgensen, Can you trust a single data source exploratory software engineering case

study? Empir. Softw. Eng. 7 (1) (2002) 9–26.

[24] E. Webb, D. Campbell, R. Schwartz, L. Sechrest, Unobtrusive Measures: Nonreactive Research in

the Social Sciences, Rand McNally, Chicago, IL, 1966.

[25] N.K. Denzin, The Research Act in Sociology, Butterworth, London, 1970.

[26] L. Cheng, Changing Language Teaching Through Language Testing: A Wash Back Study,

Cambridge University Press, Cambridge, 2005, p. 72.

[27] M. Hammersley, P. Atkinson, Ethnography: Principles in practice, Tavistock, London, 1983.

http://arxiv.org

EMPIRICAL KNOWLEDGE DISCOVERY 189
[28] M.B. Miles, A.M. Huberman, Qualitative Data Analysis, Sage, Beverly Hills, 1984, p. 235.

[29] N.K. Denzin, The Research Act: A Theoretical Introduction to Sociological Methods, McGraw-Hill,

New York, NY, 1978.

[30] J. Daly, Replication and a Multi-Method Approach to Empirical Software Engineering Research,

1996. (Ph.D. Thesis. Department of Computer Science, University of Strathclyde, Glasgow, UK).

[31] N.K. Denzin, Y. Lincoln (Eds.), Collecting and Interpreting Qualitative Materials, Sage Publica-

tions, Thousand Oaks, CA, 1988.

[32] B. Kaplan, D. Duchon, Combining qualitative and quantitative methods in information systems

research: A case study, MIS Q. 1988.

[33] M.Q. Patton, Qualitative Evaluation Methods, Sage, Beverly Hills, CA, 1980.

[34] P. Downward, A. Mearman, Methodological triangulation at the Bank of England: An investigation,

2005. (Discussion Paper 505. University of the West of England press, Bristol School of

Economics).

[35] J. Kimchi, B. Polivka, J.S. Stevenson, Triangulation: Operational definitions, Nurs. Res. 40 (6)

(1991) 364–366.

[36] S. Mathison, Why triangulate? Educ. Res. 77 (2) (1988) 13–17.

[37] N.G. Fielding, J.L. Fielding, Linking Data: Qualitative and Quantitative Methods in Social

Research, Sage, Beverley Hills, CA, 1986.

[38] H. Rittel, M. Webber, Dilemmas in a general theory of planning, Policy Sci. 4 (1973) 155–169.

[39] G. Gigerenzer, R. Selten, Bounded Rationality, MIT, Cambridge, MA, 2002.

[40] R.E. Gomory, An essay on the known, the unknown and the unknowable, Sci. Am. 272 (1995) 120.

[41] T.C. Lethbridge, S.E. Sim, J. Singer, Studying software engineers: Data collection techniques for

software field studies, Empir. Softw. Eng. 10 (3) (2005) 311–341.

[42] G. Dickson, A programmatic approach to information systems research: An experimentalist’s view,

in: The Information Systems Research Challenge: Experimental Research Methods, I. Benbasat

(Ed.), Harvard Business School, 1989.

[43] B. Kitchenham, L. Pickard, S.-L. Pfeeger, Case studies for method and tool evaluation, IEEE Softw.

(1995) 52–62.

[44] R.K. Yin, Case Study Research: Design and Methods, second ed., Sage Publications, USA, 1984.

[45] T. Jick, Mixing qualitative and quantitative methods: Triangulation in action, Admin. Sci. Quart.

24, 1979.

[46] R. Glass, The software research crisis, IEEE Softw. 11 (6) 1994.

[47] J. Creswell, Research Design: Qualitative, Quantitative and Mixed Methods Approaches, second

ed., Sage publications, 2003.

[48] J. Singer, N.G. Vinson, Ethical issues in empirical studies of software engineering, IEEE Trans.

Softw. Eng. 28 (12) (2002) 1171–1180, December.

[49] V. Basili, The role of experimentation in software engineering: Past, current, and future, in: 18th

International Conference on Software Engineering, IEEE, Berlin, Germany, 1996, pp. 442–449.

[50] J. Miller, J. Daly, M. Wood, M. Roper, A. Brooks, Statistical power and its subcomponents—

Missing andmisunderstood concepts in empirical software engineering research, Inf. Softw. Technol.

4 (39) (1997) 285–295.

[51] J. Miller, Statistical significance testing—A panacea for software technology experiments? J. Syst.

Softw. 2 (73) (2004) 183–192.

[52] M. Zelkowitz, D. Wallance, Experimental validation in software engineering, Inf. Softw. Technol.

11 (39) (1997) 735–743.

[53] T. Dyba, V. Kampenes, D. Sj�berg, A systematic review of statistical power in software engineering

experiments, Inf. Softw. Technol. 8 (48) (2006) 745–755.

190 R.I. SINGH AND J. MILLER
[54] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, et al., Preliminary

guidelines for empirical research in software engineering, IEEE Trans. Softw. Eng. 8 (28) (2002)

721–734.

[55] J. Miller, Replicating software engineering experiments: A poisoned chalice or the Holy Grail, Inf.

Softw. Technol. 47 (4) (2005) 233–244.

[56] A. Brooks, J. Daly, J. Miller, M. Roper, W. Wood, Replication’s role in experimental computer

science, 1994. (Technical Report EFoCS-5-941 [RR/94/172], Department of Computer Science,

University of Strathclyde, Glasgow, Scotland, UK).

[57] M. Oivo, New opportunities for empirical research, in: V.R. Basili, H.D. Rombach, K. Schneider,

B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical Software Engineering Issues. LNCS,

vol. 4336, Springer, Heidelberg, Germany, 2007, p. 22.

[58] B. Curtis, Measurement and experimentation in software engineering, in: Proceedings of IEEE,

Los Alamitos, CA, 1980, pp. 1144–1157.

[59] W.M.K. Trochim, Research Methods: The Concise Knowledge Base, Atomic Dog Publishing, 2006.

[60] V. Mandic, J. Markkula, M. Oivo, Towards Multi-Method Research Approach in Empirical Soft-

ware Engineering, 2009. (University of Oulu, Department of Information Processing Science,

Rakentajantie 3, 90014 University of Oulu, Finland).

[61] M. Shaw, What makes good research in software engineering? Int. J. Softw. Tools Technol.

Transf. 4 (1) (2002) 1–7.

[62] A. Hramiak, Initial evaluation and analysis of post graduate trainees’ use of a virtual learning

environment in initial teacher training, Electron. J. e-Learn. 5 (2) (2007) 103–112.

[63] M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, second ed.,

Springer, New York, NY, 1997.

[64] L. Ball, T. Ormerod, Putting ethnography to work: The case for a cognitive ethnography of design,

Int. J. Hum. Comput. Stud. 53 (1) (2000) 147–168.

[65] J. Brewer, A. Hunter, Multimethod Research: A Synthesis of Styles, Sage, Thousand Oaks, 1989.

[66] D.T. Campbell, D.W. Fiske, Convergent and discriminant validation by the multitrait-multimethod

matrix, Psychol. Bull. 56 (1959) 81–105.

[67] N. Fenton, S. Peeger, R. Glass, Science and substance: A challenge to software engineers, IEEE

Software 11 (4) (1994) 86–95.

[68] M. Hammersley, What’s wrong with ethnography? London, Routledge, 1992.

[69] H.W. Smith, Strategies of Social Research: The Methodological Imagination, Prentice Hall,

Englewood Cliffs, NJ, 1975.

[70] M. Wood, J. Daly, J. Miller, M. Roper, Multi-Method Research: An Empirical Investigation of

Object-Oriented Technology, Syst. Softw. 48 (1) (1999) 13–26.

StarLight: Next-Generation
Communication Services,
Exchanges, and Global Facilities
ADVAN

ISSN: 00
JOE MAMBRETTI
Northwestern University, Illinois, USA
TOM DEFANTI
University of California, San Diego, USA
MAXINE D. BROWN
University of Illinois at Chicago, USA
Abstract
Communication services, architecture, and technologies are rapidly evolving in

response to application demand and research innovation. These changes are

motivating a fundamentally new approach to the design and provisioning of

services, facilities, and infrastructure. Traditionally, such resources have been

designed and implemented as centralized fixed utility services, with almost no

options for specialization and customization, especially by processes at the

network edge. Supporting infrastructure has been created and deployed much

like buildings are constructed, using a set of highly defined plans, resulting in

hardened structures intended to exist basically unchanged for many years.

However, this approach leads to severe restrictions on the creation, deployment,

enhancement, and customization of services. Furthermore, this approach does

not recognize the inherent potential of digital resources for affecting ongoing

improvements through rapid continual change and for specialization and cus-

tomization. Consequently, a new communication design model is being created,

implemented in prototype, and placed into production at select sites around the

world. This new model is based on multiple emerging trends in advanced

network research. This model supports a much broader range of communication

services than traditional systems and highly versatile functionality by providing
CES IN COMPUTERS, VOL. 80 191 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)80005-1 All rights reserved.

192 J. MAMBRETTI ET AL.
a structural programmable framework. This structure encapsulates network

resources as addressable modules that can be discovered, integrated, and custo-

mized to create many different types of communication services in advance or

dynamically, in direct response to changing requirements.
1.
 I
ntroduction . 192
1
.1. T
raditional Communication Services

Architecture . 193
1
.2. D
river Applications . 195
1
.3. E
merging Network Services Architecture 196
1
.4. M
ultiservices Architecture . 197
1
.5. A
rchitecture: Communication Services Signaling 198
2.
 F
uture Network Services and Facility Prototypes 200
2
.1. N
etwork Facilities . 200
2
.2. N
etwork Access Point and MREN . 200
2
.3. S
TAR TAP . 201
2
.4. T
he StarLight International Exchange Facility 201
2
.5. S
tarLight as a Partitionable Environment 202
2
.6. O
peration Issues . 203
2
.7. G
lobal Lambda Integrated Facility . 204
3.
 F
uture Directions . 204
3
.1. I
n
ternational Global Environment for Network Innovations 204
3
.2. N
SF IRNC Experimental Networks Program 205
3
.3. E
merging Architecture, Technologies, and Concepts 205
4.
 S
ummary . 205
A
cknowledgments . 206
R
eferences . 206
1. Introduction

Communication services, architecture, and technologies are rapidly evolving to

take advantage of major potentials for improvements at all levels. This chapter

presents an overview of these major changes, which are motivated by both responses

to new application demands and to a desire to take advantage of research innovation.

These topics are important for anyone involved in developing, operating, or using

STARLIGHT 193
digital communication services. These changes are motivating a fundamentally new

approach to the design and provisioning of services, facilities, and infrastructure.

Traditionally, communication systems have been designed and implemented as

centralized fixed utility services, with almost no options for specialization and

customization, especially by processes at the network edge. Supporting infrastruc-

ture has been created and deployed much like buildings are constructed, using a set

of highly defined plans, resulting in hardened structures intended to exist basically

unchanged for many years. However, this approach is highly limiting in a world that

requires rapid responses to ongoing changes in service requirements. Traditional

inflexible designs lead to severe restrictions in the creation, deployment, enhance-

ment, and customization of services. Furthermore, this approach does not recognize

the inherent potential of digital resources for affecting ongoing improvements

through rapid continual change and for specialization and customization.

Consequently, a new communication designmodel is being created, implemented in

prototype, and placed into production at select sites around the world. This new model

is based on multiple emerging trends in advanced network research [1,2]. This model

supports a much broader range of communication services than traditional systems and

highly versatile functionality by providing a structural, programmable framework.

This structure encapsulates network resources as addressable modules that can be

discovered, integrated, and customized to create many different types of communica-

tion services in advance or dynamically, in direct response to changing requirements.

A major attribute of this design model is a high level of abstraction that separates

functional capabilities from underlying physical infrastructure and configurations.

In part, this objective is achieved by using a service-oriented architecture (SOA)

along with sophisticated intermediate network middleware—intermediate software

components that allow for high degrees of flexibility, adjustability, and customiza-

tion. This model also supports techniques to take advantage of new innovative

technologies that provide for much more flexibility than traditional network

resources. It also supports innovative operational processes to allow for the support

of more sophisticated and distributed processes, and new methods for optimal

resource utilization. These new models of communication services are being imple-

mented at advanced facilities, including the StarLight international communications

exchange in Chicago, which is part of the Global Lambda Integrated Facility (GLIF).

1.1 Traditional Communication Services
Architecture

For many decades, the traditional communication services architecture was ori-

ented to optimize support for analog-based services. Given the massive installed

base of this architecture and its technology infrastructure, the development and

194 J. MAMBRETTI ET AL.
deployment of alternative digital-based communication services has been a fairly

gradual process. These digital services and technologies were initially designed for

communications among computers, which required an alternative approach to

existing analog-based communications. This alternative was developed initially

through the ARPAnet program and later through the National Science Foundation’s

(NSF) NSFnet. During the early years of their development, digital communications

comprised only a very small part of all communication systems. In the early 1990s,

when the NSFnet was evolving from a private research network to the commercial

Internet, the majority of the installed base consisted of multiple analog-oriented

communication systems. As a result, the Internet was implemented as an overlay

network on widely deployed mid-level bearer systems, such as ATM (Asynchronous

Transfer Mode), supported by core wide-area transport used on analog-oriented

technologies, such as SONET/SDH (Synchronous Optical Networking/Synchronous

Digital Hierarchy), which are multiplexing protocols for sending digital bits over

optical networks. Each of these layers operated fairly independently with minimal

interactivity among layers. One consequence of this approach is that traditional

network architecture has provided support for only a restricted, small range of

communication services, each with only a minimal number of attributes. These

services have been closely integrated with specific underlying physical hardware

deployed with rigid configurations. As a result, enhancing existing services, deploy-

ing new services, and customizing services have been difficult and costly projects.

Also, many advanced new services could not be deployed on existing infrastructure,

especially those that required autonomous intradomain signaling for resource

utilization.

Although the Internet has been the most successful communication service

in history, its full potential has not yet been realized. Even today, wide-area

implementations are still being designed to accommodate the restrictions of under-

lying legacy communications systems. The current Internet is operated as an overlay

with common, undifferentiated, centrally managed communication services, sup-

ported by a highly restrictive underlying infrastructure. Because of the inherent

design and implementation restrictions of this infrastructure, traditional architectural

models have become barriers to future applications and services developments.

However, over the last two decades, much progress has been made in creating a

new architectural model, driven in large part by several macro trends, including

advanced driver applications, powerful new innovations in core technologies, and

new communications services architectural models that enable high levels of func-

tional abstraction. Unlike the restricted legacy approaches, these new models pro-

vide for a significant degree of programmability and they can be designed to support

an almost unlimited range of services and capabilities, including those that are based

on highly distributed implementations [3].

STARLIGHT 195
1.2 Driver Applications

The Internet was originally developed during a time when bandwidth was highly

limited. It was designed to support extremely large numbers of small, short-duration

content streams.Also, current Internet service quality parameters areminimal, support-

ing primarily undifferentiated best-effort capabilities. However, increasingly applica-

tions require capabilities that support high-volume, long-duration streams with

guaranteed assurances of high-quality communication services. Increased capacity is

a requirement not only for overall aggregate traffic but also for individual data streams.

Data-intensive science applications have always been major drivers of technology

because they encounter technical barriers long before these limitations are experi-

enced within other application domains. Currently, multiple science domains are

motivating the creation of new advanced communication services to meet the

requirements of the most data-intensive applications in the world, including those

in high-energy physics, astronomy, computational astrophysics, genomics, compu-

tational chemistry, and others. Also, the current Internet does not provide adequate

quality support for digital media, although digital media applications are one of the

fastest growing segments of communications. Many of current network capabilities

support digital media as a highly special, not common, service. New services are

required to support large-volume, high-quality digital media, 3D digital media, and

ultra-high-definition digital media. Digital media must be supported as a common,

ubiquitous service, not as a highly specialized capability.

Another driver consists of data-intensive analytic applications, such as those

employing advanced data-mining techniques. Increasingly, important data is hosted

in large-scale repositories around the globe. The value of that data is often not

realized by its use at any single location, but through combined use with other data

from other distributed locations. These globally distributed yet highly integrated

data streams are becoming the basis of the digital economy.

Cloud computing is another driver for next-generation communications. Advanced

cloud-computing applications are being deployed in commercial and consumer

environments. Cloud computing allows large-scale generic information technology

resources to be accessed and utilized by tens of thousands of distributed applications,

on computers, mobile devices, and smart objects, using high-performance commu-

nications. Because cloud computing is network dependent, its full benefits can only

be realized by utilizing a more sophisticated model of communication.

Multiple medical applications are being developed that require multiple advanced

capabilities that are not provided by commodity Internet services. These applica-

tions must be implemented in highly distributed environments, with high quality and

exceptional security. They integrate distributed databases with multiple devices

ranging from instruments, to monitoring equipment, to specialized sensors.

196 J. MAMBRETTI ET AL.
1.3 Emerging Network Services Architecture
1.3.1 An Overview
To address the requirements of next-generation applications, it is essential to

create an architecture that allows for the design of communications environments

that can support not only a small range of static communication services but a very

wide range of services that can be continually expanded and enhanced. This goal is

only possible by providing a communications environment that has multiple,

extremely flexible, programmable capabilities. Such an architecture can be designed

to provide for high levels of abstraction and virtualization, attributes which elevate

functionality above the particular characteristics of individual physical resources,

software implementations, and configurations. This approach is a major departure

from traditional communications systems, which are essentially designed and imple-

mented for specific highly defined capabilities, with a limited number of services

that are tightly integrated with underlying defined sets of physical resources.

Consequently, any change is complex and cost prohibitive.

The alternative approach provides for a highly distributed, multidomain program-

mable communications environment that can be used to create an unlimited number

of services. Essentially, this environment is comprised of multiple resource compo-

nents that can be discovered, assembled, configured, reconfigured, and discarded

after use. The characteristics of the environment can change dynamically and

continually in response to altered conditions and requirements. In this environment,

all physical components are encapsulated as software objects with APIs.

These components can be programmed to create many different types of services,

including highly specialized custom services. This environment allows services to

be created and controlled directly and deterministically not only by the organization

that manages the environment but also by second parties, edge sites, end users, and

individual applications. This approach frees service creation and control from the

constraints of communication services provided as a centralized utility. This model

provides major opportunities for creating multiple types of decentralized, peer-to-

peer, ad hoc, and mobile implementations.
1.3.2 Network Services Architecture:
Architectural Structure
The development of this architecture is proceeding within the larger context of

information technology activities related to both R&D and standards development,

especially those oriented toward distributed systems. Multiple communities are

developing general frameworks for a SOA based on emerging industry standards

STARLIGHT 197
and on methods being developed in research laboratories. These architectural frame-

works are being developed for many service-oriented designs based on functionality

supported by multiple modular processes that can be gathered and implemented into

high-level capabilities [3,4].

These frameworks provide an environment in which a high level of service

abstraction of capabilities and functions can be made known to processes through

advertisements transmitted as standard, open communication messages. These high-

level services interact with intermediate software components positioned between

those services and core facilities and resources encapsulated as addressable software

objects. This intermediate software can support specialized workflow languages

related to communication services. Increasingly, advanced services require main-

taining state, and workflow languages can assist in maintaining state and providing

state information to processes, including support for context-aware automated

response capabilities. Using this approach for communication services fundamen-

tally improves advanced capabilities at all levels. This approach provides a potential

for supporting many different types of communication services, and allows for

precise selection of specific service attributes for a high degree of customization.

1.4 Multiservices Architecture

The standard network architecture model is described, in part, as a series of seven

layers, with different sets of functions placed at each layer. Traditionally, these

layers have been kept fairly separate, supporting services at a single layer with

minimal interoperability among layers. This traditional hierarchical architectural

model limits signaling among layers [5]. New architectural models provide methods

for transitioning away from this traditional model to less rigid approaches [6]. Other

initiatives are developing advanced concepts of ‘‘hybrid networking,’’ or ‘‘multi-

service networking,’’ which allows for coordinated services at all levels [3]. These

hybrid techniques can support new types of extremely high-performance, high-

quality services.

For example, the exceptional success of the Internet is based on its support for a

reliable, highly scalable, common Layer 3 (L3) service for many types of applica-

tions. However, even though the capabilities of this service have been well demon-

strated, it does not meet all of the requirements of all applications. Currently, themost

widely deployed and used Internet services are implemented and supported as best-

effort, nondeterministic, packet-routed services, with almost no ability to adjust those

services at the edge of the network.Using traditional architecturalmodels, specialized

services usually can be implemented only within a single domain, and they are almost

always limited in scalability, difficult to manage, and costly to operate. As a result,

deterministic, differentiated services have rarely been implemented.

198 J. MAMBRETTI ET AL.
An increasingly wide range of L3 services exist, including those based on TCP,

UDP, SCTP, and their variants, composites, and alternatives, supported by IPv4 and

IPv6, unicast, multicast, with or without DiffServ capabilities, and various types of

tunneling and packet-switching protocols. In addition, multiservice techniques make

possible providing L3 services that are complemented by those at L2 and L1, and

provide options for substituting L3 paths with L1 and L2 paths. However, ‘‘multi-

service’’ should not imply an environment that merely supports multiple services,

but one in which applications and processes can individually discover, select, and

use those services, even blending different streams supported by different integrated

services within a single application. Also, basic services should be able to adjust

dynamically by ad hoc integrations with other types of services; for example, L3

streams enhanced by L2/L1 streams.

A multiservices environment should enable options to accept a predefined default

service, to select and blend different services, to ensure specific levels of determin-

ism, and to highly customize individualized network services (e.g., setting precise

levels of latency, jitter, security, redundancy, and path direction). The environment

should also provide options for discovering, integrating, utilizing, and reconnecting

individual core components, including specialized L3 services with customized

attributes, specific L2 channels and crossconnections, and addressable lightpaths.

Options would include those for national- and global-scale point-to-point L2

services, and L1 wavelength-based transport, such as end-to-end lightpaths, and

options for assigning single dedicated wavelengths, multiple wavelengths, and

sublambdas and specific physical network elements, such as ports. The environment

should enable these communications capabilities to be extended directly into and

integrated with edge devices, such as instruments, sensors, computers, clusters,

storage devices, and individual applications.
1.5 Architecture: Communication Services Signaling

Currently, no standard signaling mechanism exists for discovering, obtaining, and

integrating network resources by external processes, which is required for provi-

sioning distributed services within and across domains. Although a SOA approach

provides for a high level of process abstraction and eliminates many requirements

for specialized signaling, it does not completely address all requirements. A partic-

ular challenge is developing an interdomain signaling method.

The required architecture must allow for edge-initiated signaling and must be

integrated with processes that optimize matches between application requirements

and available network resources. This signaling should be accomplished using

specialized communications, either in-band or out-of-band. This architecture should

STARLIGHT 199
enable both link state and stateless protocol implementations, and provide for

information propagation channels among core network elements.

To address these issues, multiple network architecture research projects have been

established, using in-band and out-of-band IP communications and signaling as a

foundation, to undertake functions previously provided only by management and

control processes, through traditional management and control planes. These func-

tions include those dealing with access policy, scheduling, resource discovery,

reservations, allocations, and overall resource management, traffic engineering,

physical configurations, addressing, routing at L1, L2, and L3 (including topology

discovery), protection, fault detection, and restoration.

Currently, the majority of these research activities are basing these capabilities on

emerging SOA standards. For example, the World Wide Web Consortium has

created the Web Services Definition Language (WSDL) and the Web Services

Resource Framework (WSRF) [7]. Implementations have been developed that use

a SOA based on WSRF to provision multiservice network environments, enabling

network services and related core resources to be exposed as Web Services; for

example, employing web tags to describe those services. With this approach, a Web

Services ‘‘wrapper’’ encapsulates a resource, which is advertised as a module that

can be used by other services. The Open Grid Services Architecture, created by the

Open Grid Forum [8], is leveraging the work of the OASIS (Organization for the

Advancement of Structured Information Standards) group to create standardized

software tools to be used for encapsulation so that processes can be abstracted

and integrated with other processes, including network services [9]. Multiple inter-

national networking research organizations have established activities to examine

optimal designs for WSDL schema that can implement supersets of Network Service

Interface functionality, including those using WSRF stateful elements. Also, the

OASIS organization is creating the UDDI (Universal Description, Discovery, and

Integration) protocol, which can be integrated into a Web Services stack as a

standard method for publishing and for discovering the network-based software

components of a SOA. The Web Services-Inspection Language (WSIL) is a related

standard that specifies an XML format, or ‘‘grammar,’’ which examines a location

for available services as well as rules that indicate how the information discovered

through that process can be made available. Keyword searching for service descrip-

tions and Uniform Resource Identifiers can be effective tools for building UDDI or

WSIL interconnections. Another project is leveraging these efforts as part of an

effort to create a Network Description Language.

Integrating these high-level processes with mid-level intermediate network

processes and techniques for distributed resources programming and partitioning

provides communication environments that are significantly more powerful and

flexible than traditional centralized systems.

200 J. MAMBRETTI ET AL.
2. Future Network Services and Facility
Prototypes

2.1 Network Facilities

Multiple advanced network research communities have been investigating and

experimenting with more flexible communication environments described in the

previous sections for many years. More importantly, they have also been implement-

ing them as prototypes and operating them as production facilities, beginning in the

early 1990s with the implementation of facilities designed to support scientific

research. The next few sections describe several of these facilities.
2.2 Network Access Point and MREN

In 1993, when the NSF began transitioning the NSFnet to the commercial sector,

the research community in the Chicagometro area established one of the nation’s first

Internet exchange points, the Network Access Point (NAP). This NAP was one of

three originally planned, although four eventually were established initially. Unlike

other early exchange points, the Chicago NAPwas based on ATM technology, which

allowed participating networks to avoid, as an option, multiple intermediate routers.

Consequently, the Chicago research community created the Metropolitan Research

and Education Network (MREN) with a core facility at the NAP and L2 circuits to

multiple universities and national research labs. Each participating organization

could stream L3 traffic over the L2 circuits to any of the other organizations with

only one intermediate node. By eliminatingmultiple core routers and basing transport

on L2 paths, this approach provided a unique high-performance streaming service,

required by data-intensive science projects. This approach also allowed for

specialized communication channels to be implemented, not shared by commodity

Internet traffic, to ensure that all resources could be dedicated to the highest priority

traffic. In addition, this model allowed for a higher degree of service customization,

as these channels could be implemented with specialized protocols. A few years later,

this model was established on a national scale by the NSF through the vBNS (very-

high-performance Backbone Network Service) initiative. MREN also assisted in

creating the first exchange facility for US federal agency networks, the Next-Gener-

ation Internet eXchange (NGIX), at the NAP. This facility was the first instance of a

special type of major exchange facility that subsequently became known as a ‘‘Giga-

POP,’’ because it could support gigabit per second transport. Although these facilities

minimized the number of core routers used for transport, like all major exchanges,

STARLIGHT 201
they were based on routed core nodes. However, these wide-area network facilities

demonstrated the changing balance between L2 and L3 transport methods, primarily

locating L3 nodes only at the network edge.
2.3 STAR TAP

This approach was expanded on an international scale through the Science,

Technology And Research Transit Access Point (STAR TAP), which was initially

created at the NAP in 1997 as the world’s first persistent infrastructure for the long-

term interconnection and interoperability of advanced international networks, sup-

porting applications, performance measuring, and technology evaluations [10]. The

STAR TAP facility, by 2000, became a model for international exchanges. STAR

TAP was the first facility in the world to demonstrate the potential of minimizing

core routers for international traffic. Participating organizations from other countries

used this facility to interconnect, using L2 SONET/SDH channels to support long-

haul transport channels that were interconnected at STAR TAP. Once again, this

time at a global scale, the potential to provide high-quality, high-performance

services while minimizing the number of core routers in long-haul networks was

demonstrated. For the data-intensive science community, the STAR TAP facility

provided the highest performance services in the world; for example, the highest

performance paths among countries in Europe was through the STAR TAP

exchange. Similarly, it was the highest performance exchange among Asian

countries.
2.4 The StarLight International Exchange Facility

By the late 1990s, it became clear that over the next decade, a next-generation

exchange based on optical networking would be required to meet the aggressive

demands of advanced applications and to take advantage of emerging technologies,

especially new optical components. At that time, all data network exchanges were

exclusively L3 exchanges, as almost all are today. However, application require-

ments and new optical technologies motivated the consideration of a multiple

service communications exchange. The MREN and STAR TAP facilities demon-

strated the potential of minimizing core routers to achieve not only high-perfor-

mance and high-quality communication services, even for large-scale, high-volume

data flows, but also for a much greater degree of service and network programming

and customization. The next step was to design and implement a facility that

provided options for eliminating all core routers end-to-end internationally.

202 J. MAMBRETTI ET AL.
The StarLight national and international communications exchange was the first

such facility in the world. This facility was specifically designed to provide such

options and to exchange traffic at all basic layers, including interconnecting and

switching lightpaths at 1, 2.5, and 10 Gbps [11]. StarLight was designed as a highly

flexible customizable environment to support multiple, programmable, customized

networks. The facility was designed primarily to support large-scale, data-intensive

global science research [12,13].

2.5 StarLight as a Partitionable Environment

Traditional communication architectural models assume that all aspects of the

services and supporting infrastructure are known in advance. The StarLight facility

was designed to not only support known communication services but to also support

future services not yet conceptualized. The facility allows for the ad hoc creation of

new services using the repositories of available resources. In addition, this design

allows not only basic network resources to be provided to external processes but also

capabilities for managing, controlling, and monitoring these resources.

When StarLight was designed, almost all communication exchanges were closed,

tightly integrated, monolithic environments. In contrast, the StarLight facility was

designed by researchers, for researchers. It was implemented to be an open flexible

environment comprised of resources that could be partitioned and devoted to individ-

ual networks, communication services, projects, and applications. Furthermore, its

design allowed for each partition to have allocated its own core resources as well as all

requisite management and control functions. Within this environment, unique sets of

specialized communication capabilities could be customized by edge processes,

including individual applications. This approach directly addresses the challenge of

supporting multiple applications with diverse requirements, including those require-

ments that vary at different times. This approach enables specialized applications to be

supported within their own partitioned environments. A flexible environment can

automatically and continually change to adjust to fluctuating demands.

The design of the StarLight facility enabled the development of globally

distributed network environments within which it is possible to create customized

integrated heterogeneous networks. For example, the StarLight facility enables

multiple distributed network resources, including major international- and

national-scale services, such as 10 Gbps optical lightpaths, to be partitioned and

subpartitioned and integrated into separate domains, each with defined sets of

management and engineering functions [14–17]. Such partitioned resources can be

allocated to external processes (e.g., networks, organizations, projects, and applica-

tions) that interact with and design their own networking environment. Currently,

the mechanisms used to provide these partitioning functions are a combination of

STARLIGHT 203
automated services and manual provisioning methods. However, almost all the

partitioned domains are completely managed and controlled by external processes

related to discovery, acquisition of resources, provisioning, management, engineer-

ing, reconfigurations, and even protection and restoration. As a result of this design

approach, the StarLight facility successfully supports dozens of major national and

international advanced networks as well as over 20 major experimental network

research test beds.

At this time, there is no agreement on the best architectural design approach for the

complete set of tools for an exchange facility as a whole or for partitioned segments.

However, the StarLight consortium, including its international partners, participates in

a number of projects that are developing new, innovative suites of tools to enable

dynamic services and infrastructure provisioning at major national and international

exchange facilities. These tools support processes that establish continuous interactions

among top-level services, intermediate software, and software-encapsulated physical

resources. Such tools include direct dynamic path provisioning, such as protocols, edge

APIs, external process signaling, physical resource encapsulation, state information

capture, andmonitoring processes. The StarLight facility uses a larger,more diverse set

of tools than at any other communications exchange in the world.

While these tool sets differ in some respects, they have many common attributes.

For example, they can communicate messages that allow ad hoc services and paths

to be created, deleted, and monitored. They transmit defined messages that can be

sent to a compatible server process that can establish paths among network elements.

They can interrogate the network about current basic state information. They can

identify and establish the appropriate paths through a controlled network topology,

and configure and reconfigure those paths. They can determine specific paths and

topologies and store those topologies for later use, or they can create topologies

dynamically. These techniques can be used for L3 tunnels, MPLS paths, vLANs,

dynamic lightpath provisioning, and dynamic L2 path provisioning, implemented

within environments based on IEEE standards, for example, 802.1p, 802.17, and

802.1q (Virtual Bridged Local Area Networks), which is an architecture that enables

traffic from multiple subnets to be supported by a single physical circuit and defines

a method of explicit frame tagging. These and related methods are being used to

create large-scale highly programmable networks [3].
2.6 Operation Issues

The StarLight facility represents a major departure from traditional communica-

tions infrastructure support methods, which are supported by highly centralized,

hierarchical, and expensive Network Operation Centers (NOCs), incorporating

204 J. MAMBRETTI ET AL.
management planes and control planes designed specifically for that centralized

operations model. To move beyond these NOC limitations, StarLight implemented

distributed operation processes, which is an important attribute for future advanced

networks. This approach allows provisioning and support decisions to be placed at

the network edge instead of at a centralized site.
2.7 Global Lambda Integrated Facility

The international advanced networking community is also implementing next-

generation multiservice communications infrastructure based on the concepts

described here. The StarLight consortium and its international partners are creating

and operating a global foundation for next-generation large-scale communication

services and infrastructure, based on flexible, international exchange facilities,

including StarLight [18,19]. The StarLight community is a founding partner of an

international consortium that is creating a large-scale distributed ‘‘facility,’’ within

which multiple networks and services can be created—the Global Lambda

Integrated Facility (GLIF). GLIF participants are National Research and Education

Networks, consortia and institutions involved in optical networking and research,

and are engaged in creating and exploring prototypes of multiple, innovative

communication services and technologies.
3. Future Directions

3.1 International Global Environment for
Network Innovations

The StarLight consortium is participating in the NSF Global Environment for

Network Innovations (GENI) initiative. GENI is an open and broadly inclusive

research initiative, whose mission is to provide a virtual laboratory for exploring

future internets at scale. GENI provides opportunities for academia, industry, and

the public to understand, innovate, and transform networks for twenty-first-century

communications. GENI is prototyping a major national infrastructure for network

research experimentation and early advanced prototypes.

The StarLight consortium is developing the International GENI (iGENI), a unique

distributed infrastructure to support worldwide research and development for next-

generation network communication services and technologies. To a large degree,

this initiative extends much of the existing innovative network research, including

experimental activities, supported by the StarLight facility. This infrastructure will

STARLIGHT 205
be integrated with current and planned GENI resources, and operated for use by

GENI researchers conducting experiments that involve multiple aggregations and

federations (at multiple sites). iGENI infrastructure will connect distributed network

research resources with other GENI national backbone transport resources, with

current and planned GENI regional transport resources, and with international

research networks and projects.

3.2 NSF IRNC Experimental Networks Program

The StarLight consortium is also participating in the NSF’s International

Research Network Connections (IRNC) Experimental Networks Program. This

initiative encourages the development of data-intensive scientific applications and

supporting communication services and technologies. This initiative provides

another opportunity to migrate StarLight innovations to advanced networking

communities around the world.

3.3 Emerging Architecture, Technologies,
and Concepts

Currently, the most advanced concepts in communication services and network

design are being driven by data-intensive science projects. Increasingly, these issues

are being recognized by the developers of communication services and networks for

other application areas, including those focused on organizations, buildings, auto-

mobiles, homes, and exterior environments, including those that are sensor based

[20]. In all of these areas, there are common issues that must be addressed, such as

mechanisms for advertising available network resources, providing network policy

authentication and authorization, interconnecting resources, and implementing

highly distributed management and control processes. The advanced methods and

techniques being developed at StarLight and related facilities have a major potential

to be useful to these other areas. The experimental projects noted here may assist in

expediting this type of technology transition.
4. Summary

Traditionally, communication services and networks have been designed and

deployed as rigid resources, with minimal options for enhancement, specialization,

and customization. Consequently, this approach has not been sufficiently flexible to

meet multiple new application demands or to take advantage of many new

206 J. MAMBRETTI ET AL.
innovations emerging from research laboratories. In response, a new communication

design model is being created, implemented in prototype, and placed into production

at selected sites around the world. This approach envisions communications

resources not as rigid infrastructure but as a flexible, programmable environment

that can be continually changed to meet new requirements.

Acknowledgments

For supporting the initiatives described here, the authors thank the National Science Foundation, the

Department of Energy, Northwestern University, the University of Illinois at Chicago, Argonne National

Laboratory, Fermi National Accelerator Laboratory, SURFnet, and CANARIE.

References

[1] K. Bergman, J. Mambretti, J. St Sauver, B. Wing, Networking Research Challenges Workshop

Report, 2008. Large Scale Networking Coordinating Group, Networking and Information Technol-

ogy Research and Development Program, (NITRD) (Department of Energy: Office of Science,

National Science Foundation Directorate for Computer and Information Science and Engineering).

[2] T. Ndousse, N. Ghani, J. Mambretti, D. Petravick, B. Wing, N. Rao, et al., Workshop Report on

Advanced Networking for Distributed Petascale Science: R&D Challenges and Opportunities, 2008.

[3] F. Travostino, J. Mambretti, G. Karmous-Edwards (Eds.), Grid Networks: Enabling Grids with

Advanced Communication Technology. John Wiley & Sons, New York, 2006 (July).

[4] J. Mambretti, Infrastructure as Platform: Services-Oriented Architecture, Virtualization, and 21st

Century Communications, vol. 59. Annual Review of Communications, International Engineering

Consortium, 2006 (Reprinted in ‘‘Analysts Corner’’ IEC Newsletter, May 2006).

[5] H. Zimmerman, OSI reference model—The ISO model of architecture for open systems intercon-

nection, IEEE Trans. Commun. 28 (1980) 425–432.

[6] General Principles and General Reference Model for Next Generation Networks, ITU-T Y. 2011,

October, 2004.

[7] Web Services Resource Framework (WSRF) Technical Committee, Organization for the Advance-

ment of Structured Information Standards. www.oasis-open.org.

[8] www.ogf.org.

[9] www.oasis-open.org.

[10] STAR TAP received major funding from NSF awards ANI-9980480 and ANI-9712283 to UIC, and

DOE funding to ANL. www.startap.net/starlight.

[11] StarLight received major funding from NSF award ANI-0229642 to UIC and NU, and DOE funding

to ANL. www.startap.net/starlight.

[12] M. Brown, Blueprint for the future of high-performance networking, Commun. ACM 46 (11) (2003)

30–77. (Special issue, November).

[13] T. DeFanti, C. De Laat, J. Mambretti, B. St Arnaud, TransLight: A global scale lambda grid for

e-science, Commun. ACM 46 (11) (2003) 34–41. (Special issue on ‘‘Blueprint for the future of high

performance networking, November).

[14] T. DeFanti, M. Brown, J. Leigh, O. Yu, E. He, J. Mambretti, et al., Optical switching middleware for

the OptIPuter, IEICE Trans. Commun. E86-B (8) (2003) 2263–2272. (Special issue on photonic IP

network technologies for next-generation broadband access, August).

http://www.oasis-open.org
http://www.ogf.org
http://www.oasis-open.org
http://www.startap.net/starlight
http://www.startap.net/starlight

STARLIGHT 207
[15] J. Mambretti, D. Lillethun, J. Lange, J. Weinberger, Optical dynamic intelligent network services

(ODIN): An experimental control plane architecture for high performance distributed environments

based on dynamic Lightpath provisioning, IEEE Commun. Mag. (Special Issue with Feature Topic

on Optical Control Planes for Grid Networks: Opportunities, Challenges and the Vision).

[16] ITU G.8080/Y.1304. Architecture for the automatically switched optical network (ASON).

[17] D.B. Hoang, T. Lavian, S. Figueira, J. Mambretti, I. Monga, S. Naiksatam, et al., DWDM-RAM: An

architecture for data intensive services enabled by next generation dynamic optical networks, in:

Proceedings of the Global Telecommunications Conference Workshops, IEEE, 2004, pp. 400–409.

(December).

[18] www.glif.is.

[19] T. DeFanti, M. Brown, J. Mambretti, J. Silvester, R. Johnson, TransLight: A major US component of

the GLIF, CTWatch Q. 1 (2) 2005. (May).

[20] P. Vicat-Blanc Primet, T. Kudoh, J. Mambretti (Eds.), in: Networks for Grid Applications, Second

International Conference, GridNets 2008, Beijing, China, October 8–10, 2008. Revised Selected

Papers in Springervol. XIII, 2009, p. 264. (Lecture Notes of the Institute for Computer Sciences,

Social-Informatics and Telecommunications, Engineering, vol. 2).

http://www.glif.is

Parameters Effecting 2D Barcode
Scanning Reliability
ADVAN

ISSN: 00
AMIT GROVER
Identity Theft and Financial Fraud Research and
Operations Center, University of Nevada, Las Vegas,
Nevada, USA
PAUL BRAECKEL
Identity Theft and Financial Fraud Research and
Operations Center, University of Nevada, Las Vegas,
Nevada, USA
KEVIN LINDGREN
Identity Theft and Financial Fraud Research and
Operations Center, University of Nevada, Las Vegas,
Nevada, USA
HAL BERGHEL
Identity Theft and Financial Fraud Research and
Operations Center, University of Nevada, Las Vegas,
Nevada, USA
DENNIS COBB
Identity Theft and Financial Fraud Research and
Operations Center, University of Nevada, Las Vegas,
Nevada, USA
CES IN COMPUTERS, VOL. 80 209 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)80006-3 All rights reserved.

210 A. GROVER ET AL.
Abstract
This paper describes a case study to identify the various parameters that affect

the scanning reliability of 2D barcodes for high content density applications.

A review of the numerous options for 2D symbologies showed that, in theory,

these symbologies are capable of encoding relatively large amounts of data, but

in practice, barcode scan-ability decreases as the encoded content increases.

With specific attention to higher content (or capacity) applications, a case study

was performed to identify the 2D symbologies with the highest scanning reli-

ability, to be termed ‘‘scan-ability,’’ as well as the various parameters that

impact this scan-ability. The paper is divided into four logical sections. The

introduction section covers the goal and the specific requirements of the project.

Section 2 discusses in detail the various parameters that impact the scan reliability

of high-capacity 2D barcodes. Section 3 focuses on the testing methodology

employed and Section 4 summarizes the conclusions of the detailed testing.

Based on our requirements, our findings indicated that the best three scan reliability

measurements of 96%–99% were all obtained using the PDF417 symbology with

different media types and scanners.
1.
 I
ntroduction . 210
2.
 F
actors that Affect Barcode Scan Ability 212
2
.1. B
arcode Symbologies . 212
2
.2. C
ontent Density . 218
2
.3. E
rror Correction . 219
2
.4. S
can Grade and Reflectance Profile . 219
2
.5. S
ymbol Grade . 219
2
.6. E
ncoder . 220
2
.7. P
rinter . 220
2
.8. M
edia . 221
2
.9. D
ecoder/Scanner Characteristics . 222
3.
 T
esting Methodology . 223
3
.1. I
n
ternal Testing . 223
3
.2. E
xternal Testing . 232
4.
 C
onclusion . 233
R
eferences . 234

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 211
1. Introduction

A barcode is a symbol that contains encoded plaintext data that can be read by

standard optical scanners/decoders, thereby automating data representation and

retrieval while eliminating potential human error. Common barcode applications

include tracking of consumer goods at grocery stores, checkout terminals, document

management tools, inventory management, ticketing, mobile tagging, mobile airline

boarding passes, etc. The corelation between the barcodes and the corresponding

messages is termed as symbology. Symbologies are classified as linear and two-

dimensional (2D).

The goal of this case study was not only to identify the various parameters that

affect the scanning reliability of 2D barcodes but also to identify the most reliable

barcode and its appropriate configuration for high content density applications. The

need for this study is rooted in a project for developing a secure credentialing

system, where there is a need to have data encoded in high-capacity 2D barcodes

on viz. Polyvinyl chloride (PVC) and polyester media.

Initial experimentation showed that the scanning reliability of these high-capacity

2D barcodes was not as high as a typical ‘‘grocery store checkout’’ system. Since the

average user’s typical experience with barcodes is the checkout line at the grocery

store, the expectation from using a barcode is quick and reliable scanning. The

primary difference between this expected result and a second-generation 2D barcode

was in the data content density. The typical ‘‘grocery store’’ items use a very small

amount of data in the barcode, mainly a ‘‘primary key,’’ which requires referencing

a backend database to read the complete information about the scanned item. Our

particular application required eliminating this dependency on a backend database,

thereby requiring a large amount of data to be encoded directly in the barcode itself.

Even though the barcodes that we used were within the theoretical data capacity

limits for different barcode symbologies, the less than perfect scan reliability

prompted us to explore other potential factors.

These secondary factors included the barcode symbology itself, the encoder

which conforms to the relevant barcode symbology, the printer which creates the

physical barcode, the media on which the barcode is printed, and the decoder that

interprets the encoded content. This case study describes a series of internally

designed tests, and interpretation of the test results, to precisely identify the impact

of data content density, error correction level, type of encoding, scanner character-

istics, type of media, and printer on the scan-reliability of 2D barcodes.

212 A. GROVER ET AL.
2. Factors that Affect Barcode Scan Ability

As per the Layman’s guide toANSI, CEN, and ISObar code print quality documents

published by the Association for Automatic Identification and Mobility (AIM) [1],

‘‘through the years, bar codes had been printed that met the existing standards, but
would not scan. And often bar codes printed out of specified standards did scan.’’

Years of extensive testing by different groups from ANSI, Committee for Euro-

pean Normalization (CEN), and ISO, have identified the following critical para-

meters for bar code scan reliability: Aperture and wavelength of the scanner,

reflectance and surface opacity of the media, printer characteristics, scan grade and

reflectance profile, and symbol grade and the operative scanning environment. In

addition to these factors, our case study considered other parameters such as the type

of symbology used, the content density of the encoded data, the error correction level

used, and the method of encoding. Each of these factors, as they relate to this

particular case study, is examined in detail in the subsequent sections. The symbol-

ogies used may be linear or 2D. Error correction techniques are used to increase the

scan-ability to handle partial data corruption. The barcode may be printed on

different kinds of media such as paper, polyester, and PVC. Each of these media

offer different benefits and are typically selected based on the intended usage profile

for the barcode. Once the barcode is physically printed on the media, various

decoders or scanners may be used to decode it based on the type of barcode used.

2.1 Barcode Symbologies

While linear symbologies, such as Universal Product Code (UPC), Code 39, Code

128, EAN, MSI, Intelligent Mail Barcode, Pharmacode, to name a few, were limited

in their data-carrying capacity, the 2D symbologies enable large amounts of data to

be encoded and decoded in machine-readable formats [2, 25]. Common examples of

2D symbologies include DataMatrix, PDF417, Aztec Code, Codablock, MaxiCode,

QR Code (Quick Response Code), Datastrip 2D, etc. [3]. Some common examples

of various barcode symbologies are shown in Table I (the Kaywa website [20] was

used to generate the QR Code).

Based on the volume of usage, the symbologies may be classified as:

l 1D or stacked symbologies, such as UPC and Code 128. These barcodes are not

the focus of this study and will not be discussed in detail.

l Symbologies having widespread industry usage such as PDF417, QR Code,

DataMatrix, and Aztec Code.

l Proprietary and Emerging symbologies such as Datastrip 2D [24] and Micro-

soft’s High Capacity Color Barcode (HCCB).

Table I

BARCODE SAMPLES

UPC-A

2 50 65431

Code 128 PDF417 QR code

DataMatrix Aztec code
High capacity
color barcode

(HCCB)
DataStrip 2-D

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 213
2.1.1 SymbologiesHavingWidespread Presence
One of the most widely known barcode symbologies is the UPC symbology,

which is a linear barcode used for tracking retail merchandise and other point-of-sale

management functions. UPC implementation has different variations, including

UPC-A, UPC-B, UPC-D, UPC-E, and UPC-5, although UPC-A is by far the most

widely used symbology [28]. It is able to encode 12 bytes of numeric data wherein

11 digits constitute the data and 1 extra digit is used as a check digit for error

correction [4]. Each digit is represented graphically as a combination of two bars and

two spaces. While UPC-B does not use a check digit, UPC-D differs from UPC-A in

that it uses a variable-length code instead of the standard 12 digits used by UPC-A.

UPC-E is optimized for applications that require a smaller barcode and produces a

compressed code with only 6 digits as opposed to 12 digits [5]. UPC-5 is a 5-digit

extension to standard UPC codes used for encoding retail pricing for books. The

printed symbol contains both a machine-readable part as well as a human-readable

part. The structural breakdown of a typical UPC barcode is shown in Fig. 1.

The following sections provide a brief overview of the 2D symbologies evaluated

for this particular project as well as a comparative summary, which may be refer-

enced for quick interpretation.

Product
prefix

0 0 0 0 0 6 4 1 8 5 2 6

Manufacturer
identification

number

Product
identification

number

Error
correction
check digit

Structure of a ‘‘UPC-A’’ barcode symbol highlighting different parts

FIG. 1. UPC-A barcode structure.

214 A. GROVER ET AL.
2.1.1.1 The PDF417 Symbology. Portable Data File 417,

though classified as a 2D barcode, is in fact a multirow, variable-length ‘‘stacked’’

symbology developed in 1992 by Symbol Technologies. This unique characteristic

allows it to be decoded by many 1D hybrid scanners, apart from regular 2D scanners.

The symbol is composed of 3–90 stacked rows. A PDF417 symbol character, or

codeword, is the individual building block for the barcode and consists of 17

modules arranged into four bars and four spaces, thereby giving it the name of

417 [17]. The integral sections of the barcode as depicted in Fig. 2 include clearly

defined Start and Stop patterns, the data columns, and the quiet zone.

PDF417 offers encoding a maximum data character capacity of 1850 text ASCII

characters, 2710 numerals, or 1108 bytes [2]. This amount of data encoded is a result

of the manner in which the algorithm encodes the type of data, for example, numerals

require a smaller codeword size to encode than an alphabet letter (Table II).

PDF417 uses Reed Solomon error correction [6]. Error correction levels are user

selectable and can be set from 0 (zero) for no error correction to 8 (eight), which is

the highest level. This level indicates the amount of redundancy that is added to the

encoded barcode. The benefit is the increased scan-ability; however, the downside is

that the effective content size is reduced because the error correction takes up

content space. Table III illustrates the specifications [2] pertaining to codewords

and error correction.

Table II

PDF417 CODEWORDS PER CHARACTER TYPE

Character type Character Codeword

Alphabetical 1 0.5263

Numeric 1 0.3448

ASCII 1 0.8333

Table III

COMMONLY USED ERROR CORRECTION LEVELS FOR PDF417

No. of data codewords Error correction level No. of error correction codewords

1–40 2 8

41–160 3 16

161–320 4 32

321–863 5 64

Quiet zone

Start pattern

Start and stop pattern, data columns,
and quiet zone

Enlarged portion of barcode indicates one
codeword (depicted by the red rectangle)

Stop pattern

FIG. 2. PDF417 barcode characteristics.

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 215
2.1.1.2 The QR Code Symbology. QR Code, or Quick

Response code, is a 2D matrix code created in 1994 by the Japanese Denso

Corporation. As opposed to a stacked barcode, a matrix code is one in which

encoding is based on the positioning of the elements or black dots in the matrix.

These are among the most popular barcodes being used for mobile tagging

(providing information using 2D barcodes on cell phones) applications today. The

QR Code data capacity for different encodings is shown in Table IV [7].

Table IV

DATA ENCODING CAPACITY FOR QR CODE

Data encoding Max. number of characters

Numeric 7089

Alphanumeric 4296

Binary 2953

Japanese Kanji characters 1817

Table V

QR CODE ERROR CORRECTION LEVELS

Level of error correction

Data retrievable (%)

(% CW that can be restored)

Level L 7

Level M 15

Level Q 25

Level H 30

Table VI

DATA ENCODING CAPACITY FOR DATAMATRIX

Data encoding Max. number of characters

Numeric 3116

Alphanumeric 2335

216 A. GROVER ET AL.
The QR Code uses Reed Solomon error correction and supports four different

levels of error correction as detailed in Table V [29].

2.1.1.3 The DataMatrix Symbology. DataMatrix, shown in

Table I, is a highly scalable 2D matrix symbology popularly used for marking

small inventory articles and electronic components [18,19]. As shown in Table I,

it is characterized by an ‘‘L’’ shaped centering pattern which has solid black lines

along the left and bottom sides of each of its square or rectangular data regions [31].

Each data region is composed of a collection of modules arranged in an even number

of rows and columns. Based on data content density, a data matrix code can have a

symbol from 1 mil to 14 in. per side [26]. The newer version of DataMatrix supports

Reed Solomon error correction and reconstructs data by using polynomial—over-

sampling [21]. The DataMatrix Code data carrying capacity for different encodings

is shown in Table VI [8].

Table VII

DATA ENCODING CAPACITY FOR AZTEC CODE

Data encoding Max. number of characters

Numeric 3832

Alphabetic 3067

Bytes 1914

Table VIII

COMPARISON OF THE DATA CAPACITIES OF VARIOUS SYMBOLOGIES

2-Dimensional barcode

symbology

Data carrying capacity (max number of characters)

Numeric

Alphanumeric/

alphabetical

ASCII/binary/

bytes

Japanese Kanji

characters

PDF 417 2710 1850 1108

QR Code 7089 4296 2953 1817

DataMatrix 3116 2335

Aztec Code 3832 3067 1914

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 217
2.1.1.4 The Aztec Code Symbology. The Aztec Code, shown

in Table I, is another popular 2D matrix symbology that has been in use since 1995.

Based on a square grid, its characteristic ‘‘bulls-eye’’ pattern of concentric square

rings facilitates quick centering for the encoder irrespective of the barcode orienta-

tion. The grid grows in size around the bulls-eye center with additional square

modules as more data are added. Based on the data content density, the symbol

size varies from 15�15 to 151�151 modules per square. The Aztec Code supports

Reed Solomon error correction and the permissible values are 5–95% [9].The Aztec

Code data capacity for different encodings is shown in Table VII.

A quick comparison of the data capacities of these symbologies is shown in

Table VIII.
2.1.2 Proprietary and Emerging Symbologies
A number of emerging 2D symbologies are optimized for high content density

applications. The following symbologies were considered but not included for actual

testing as they include proprietary elements that did not fit our vision of the secure

credentialing project.

218 A. GROVER ET AL.
2.1.2.1 The Datastrip 2D Symbology. Datastrip 2D is a high-

density 2-dimensional matrix symbology optimized to hold high-capacity data

including encrypted color photographs and other biometric data used for secure

credentialing [3,27]. It was developed by Softstrip Systems and was originally

known as Softstrip. It can support a data density of up to 1000 bytes/sq. in. Its biggest

advantage is that it can store large amounts of data in a fraction of the space used by

other popular 2D barcode symbologies [30]. However, since certain implementation

aspects were not in conformance with the project requirements, this symbology was

not considered for our testing.
2.1.2.2 The HCCB Symbology. Announced at CES in 2009,

Microsoft’s High Capacity Color Barcode (HCCB) is currently one of the newer

symbologies that was developed with the intention of enhancing the encoding of

higher capacity content. Similar to the matrix barcodes, HCCB uses a grid of colored

triangles referred to as symbols to encode data and has an announced capacity of

encoding 3500 characters per square inch [10]. The factors that impact on this

encoding amount are the grid size, the symbol density, and the number of colors

used for the symbols, which is either eight or four. The actual encoding and

decoding however is proprietary and must be licensed. Printing may be performed

with off-the-shelf inkjet or color printers. Current usages of this symbology is

limited because of its proprietary status and include the Microsoft Tag, which is a

mobile tagging service that accesses product information, and the ISAN-IA, which

is a version method for audio and video products. Somewhat unique to this particular

symbology, the HCCB incorporates tamper-proof quality through the use of digital

signing based on Elliptic Curve Cryptography. All in all, the HCCB addresses the

concern of encoding higher capacities and is also rumored to be more forgiving

when it comes to poor barcode image quality.
2.2 Content Density

Testing showed that data content density played an important role in the scanning

reliability of 2D barcodes. Barcodes can be classified based on their data content

density or capacity. For the purpose of this case study, lower content density is

defined as content density, including optimum error correction, that does not exceed

50% of the theoretical data capacity limit of the respective barcode type. On the

other hand, higher content density is defined as content density including optimum

error correction that exceeds 50% of the theoretical data capacity limit of the

respective barcode type.

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 219
2.3 Error Correction

Error correction is an important feature supported bymost 2D barcode symbologies.

This involves encoding additional data in the barcode that helps in reconstructing the

data in case of partial damage or defect in the generated barcode. This ability to

compensate for partial damage improves the credibility of barcodes as a reliable

machine-readable format. There are error corrections settings associated with most

symbologies with the intention of increasing the readability. However, there is a fine

balance when selecting the desired setting because of an increase in the overall

encoded barcode content (and a corresponding decrease in the actual information

that can be encoded within the prescribed capacity limits) that results from using the

error correction. One must balance this value with the string to be encoded in order to

stay in line with the capacities associated with the specific symbology. Error correction

levels for PDF417 and QR Code are tabulated in Table III and Table V, respectively.

2.4 Scan Grade and Reflectance Profile

A scan reflectance profile (SRP) is a collection of % reflectance values measured

across a barcode by a scan line. As per the American National Standards Institute bar

code print quality specification, ANSI X3.182 [11], the SRP considers the following

eight parameters to obtain a scan grade:

l Edge determination

l Minimum reflectance

l Minimum edge contrast

l Symbol contrast

l Modulation

l Defects

l Decode-ability (printing accuracy as compared to the algorithm)

l Decode (pass/fail)

The minimum grade achieved by any of the parameters above represents the

overall SRP grade.

2.5 Symbol Grade

The average of 10 SRP grades gives what is known as the ‘‘Symbol Grade.’’ As

per the ISO/IEC 15416 and ANSI X3.182, and EN 1635 standards, these 10 scans

should be conducted at different heights [16].

The numeric values and the corresponding symbol grades are defined as given in

Table IX.

Table IX

SYMBOL GRADE AND NUMERIC VALUE CORRESPONDENCE

Numeric value (x)

4.0=x=3.5

3.5>x=2.5

2.5>x=1.5

1.5>x=0.5

0.5>x

Symbol grade

A

B

C

D

F

220 A. GROVER ET AL.
2.6 Encoder

For the purpose of this chapter, barcodes were printed using two separate enco-

ders, viz, Bartender Enterprise edition 9.01 from Seagull Scientific and CardFive

Vision 8.1 Professional from Number Five Software. While Bartender is an indus-

try-standard software optimized for encoding barcodes, CardFive Vision is primar-

ily an ID card design software that also supports encoding of barcodes. While initial

testing suggested 100% positive results for barcodes generated using Bartender, the

encoding quality achieved through CardFive was not found to be that encouraging.

Hence, for reliability and consistency, all further tests including the preliminary as

well as extensive tests detailed below were done using barcodes generated by

Bartender. It may be noted here that apart from Bartender, any standard commercial

barcode encoder may be suitable as long as the barcodes generated are of a high

quality. To eliminate any potential of the encoder adversely impacting the readabil-

ity, independent external testing using barcode verifiers indicated that our barcodes

received a quality grading of ‘‘A.’’
2.7 Printer

The scanning reliability of barcodes is impacted significantly by the quality of

printing which is determined to a great extent by the printer resolution and the type

of print head being used. As per the AIM and GS1 publications [1,12], the following

print considerations are important:

l The generated barcodes should always be an even multiple of printer pixels.

l There must be sufficient quiet zones around the bar code as required by the

respective barcode specifications

Table X

COMPARISON OF PRINTER SPECIFICATIONS

Name and model

number Media type

Resolution

(DPI)

Dot

shape Printing technology

Zebra S4M Label printer 203 Square Direct thermal

DataCard SP75 Card printer 300 Square Dye-sublimation/resin thermal

transfer

Xerox Phaser 6360

DN

Document

printer

600 Round Laser

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 221
l The distortion introduced by general-purpose printers (with round dot shape)

should be catered for. The round dot-shape results in printing wider bars and

narrower spaces because the printed dot size is bigger than the pixel size.

For the purpose of this case study, the following printers were used for printing

the barcodes:

(i) Zebra S4M label printer

(ii) DataCard SP75 card printer

(iii) Xerox Phaser 6360 DN laser printer

A brief comparison of the relevant specifications of these printers is tabulated in

Table X [13–15].

When considering the printer as a factor, it must be noted that a direct comparison

of resolution alone without taking the printing technology into consideration would

be misleading, since a square dot-shape produces a straight edge thus having the

ability to print higher density barcodes more accurately as opposed to a printer with

a round dot shape of the same DPI value. Since the direct thermal and thermal

transfer technologies are optimized for printing high-capacity bar codes and since

our target media for the case study was labels and PVC cards, only the first two

printers mentioned above were used for most of the tests. The laser document printer

was used for testing the effect of glossiness on scan reliability as it allowed a direct

comparison between glossy and nonglossy media.
2.8 Media

For the purpose of this case study, we focused on our target media, viz. labels

and PVC cards that are both glossy in nature. The absorbance or the optical density

of the media affects the quantum of refraction and is thus another important factor

that impacts on the scan-ability of the barcodes. There is a marked difference in

222 A. GROVER ET AL.
the optical density of glossy as well as nonglossy media and though glossy

media provide a much higher optical density, they also provide a higher level

of reflectivity from the printed surface. While reflectivity is the fraction of incident

light reflected by the surface in question; the optical density or absorbance, A, is

defined as

Al ¼ � log10 I=I0ð Þ
where I is the intensity of the transmitted light at a given wavelength l and I0 is the
intensity of the incident light.

To cater for the difference in absorbance and reflectivity of different media, a

specific test, the ‘‘Effect of Glossiness on scan reliability test,’’ was carried out with

the following two types of media:

l Normal nonglossy paper

l Glossy paper
2.9 Decoder/Scanner Characteristics

The scan reliability of barcodes is also affected by the type of scanner/decoder, or

the actual hardware that will decode the encoded barcode. The scan reliability is

greatly affected by the combination of the scanner light-wavelength and aperture

size (size of the scanning spot relative to the bar-width) used. The angle at which

scanner light is incident on the surface affects the reflectance. Light incident at 45�

to the surface will minimize reflection from glossy surfaces, thereby producing

optimum scan reliability. As per the Layman’s guide [1], variations in these two

parameters might drastically alter the overall scan grade quality (Table XI).

As per GS1, a global leader involved in the design and implementation of

standards including those of bar codes, depending on scanner technology, there

are six functional bands. For optimum scan-reliability, scanners should be chosen on

the basis of applications that pertain to these bands [12].
Table XI

SCAN GRADE W.R.T. APERTURE DIAMETER AND WAVELENGTH

Aperture diameter (mil) Aperture diameter (mm) Wavelength (nm) Scan grade Quality

5 0.125 633 1/D Poor

10 0.25 633 3/B Good

10 0.25 900 0/F Fail

Table XII

COMPARISON OF SCANNER SPECIFICATIONS

Characteristic Symbol DS 6707SR Symbol DS 3478

Light source 650-nm laser diode 650-nm laser diode

Field of view 40� horizontal 30� horizontal
30� vertical 22.5� vertical

Yaw tolerance �60� from nominal �50� from nominal

Pitch tolerance �65� from nominal �60� from nominal

Roll tolerance �360� from nominal �180� from nominal

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 223
Since Motorola (a.k.a. Symbol) scanners possess a majority of the scanner

hardware market share; the following two different Symbol scanners were used

for testing:

l Symbol DS 6707SR wired scanner with SE6707 scan engine

l Symbol DS 3478 wireless scanner with SE4400 scan engine

The specific difference between these two scanners is the embedded scan engine,

which is the heart and soul of the scanner and responsible for the actual decoding

process [22, 23]. A brief comparison of the technical specifications that are directly

relevant to our tests is given in Table XII.
3. Testing Methodology

Our comprehensive testing involved internal as well as external testing. The

internal testing methodology, which is described in Section 3.1, used a series of

carefully designed tests to evaluate the impact of various parameters that influence

barcode scanning reliability. The internal testing comprised several stages including

preliminary sampling followed by more extensive testing with the results of each

test leading to the need for the successive tests.

The external testing, which is described in Section 3.2, was used to assess the

quality–grade of the barcodes by using an independent and verifiable industry

standard process. This external testing augmented the internal testing where

resources were not available to actually perform the testing.

3.1 Internal Testing

To provide a point of reference and for the sake of comprehensive testing, 1D as

well as 2D barcodes with lower content density were also tested. Since the focus of

this paper is higher capacity barcodes, the results of the lower capacity testing are

224 A. GROVER ET AL.
mentioned without going into further details. Testing was performed by performing

individual scans, termed iteration, of the sample barcodes and then calculating

success rate, which is called the barcodes scan-ability.
3.1.1 Barcodes with Lower Content Density
Multiple scan iterations using different types of scanners as well as encoders for

all 1D as well as lower content density 2D barcodes tested produced 100% scan

reliability.
3.1.2 Barcodes with Higher Content Density
Samples of various barcode symbologies were subjected to preliminary testing

involving twenty scan-iterations each and all samples that achieved a scan reliability

of 40% or more were then subjected to extensive testing involving fifty scan-

iterations each. The testing methodology is explained in detail in the succeeding

sections.

3.1.2.1 Preliminary Testing. In order to narrow the scope of via-

ble barcodes, and based on the specific requirements of our project wherein the

physical print size was a limiting factor, the four commonly used 2D barcodes

(Table XIII) were encoded for preliminary testing. This test involved twenty scan

iterations of each barcode sample and the result was a percentage of successful scan
Table XIII

PRELIMINARY TESTING

S. No. Barcode type
Scanning
reliability

1

2

3

4

5

6

7

95 %

90 %

45 %

80 %

90 %

50 %

0 %

PDF417 9.8 mil 2x, 13 col EC : 6

QR cvode 14.8 mil error correction M (15%)

Aztec 14.8 mil with error correction 40%

Aztec 14.8 mil with error correction 45%

Aztec 19.7 mil (no image)

DataMatrix 14.8 mil with ECC 200

DataMatrix 9.8 mil

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 225
reliability. This preliminary scan test served as a smoke test to provide a quick initial

point of reference, based on a wide range of possible barcodes and the settings

associated with each particular barcode. In particular, the suggested settings for each

symbology were used to encode the barcode.

Based on the results of this preliminary testing, the low-performing barcode

namely DataMatrix 9.8 mil (S. No. #7) was eliminated from further testing. On

the other hand, for the mediocre-performing Aztec 14.8 mil with error correction
40% (S. No. #3), an additional sample with a 50% error correction was added for

further testing. Similarly, an additional QR Code sample with an error correction of
30% was also included for further testing.

3.1.2.2 Extensive Testing. This involved fifty scan iterations for

each sample barcode and enumerating the results as a percentage scan reliability

value. The number of scans was suggested by the scanner vendor as being sufficient

to successfully sample the success rate. For a better understanding of scan results

and to ensure that our testing results were not biased by the use of only one type of

scanner, reliability was enumerated separately for different scanners, viz. the Sym-

bol DS 6707SR (SE6707) wired and the Symbol DS 3478 (SE4400) wireless

scanners. For the purpose of this testing, a ‘‘good scan’’ is defined as a successful

scan in less than 2 s, a ‘‘delayed scan’’ is a successful scan that takes 2–7 s, and a

‘‘No scan’’ is failure to scan even after 7 s. The delayed scan measurement was

introduced to account for the fact that while not actually a ‘‘No Scan,’’ longer than a

2-s scan time is less than optimal in a deployed situation; however, the tracking of

such scans becomes valuable for measurement when longer scan times are accept-

able. Delayed scans are acting as a buffer between the two possibilities.

3.1.2.2.1 Reliability testing. The first in a series of specific extensive tests,

‘‘Reliability Testing’’ involved extensive scanning of different types of 2D barcodes,

viz. the PDF417, DataMatrix, Aztec, and QR Code with both the scan engines. The

goal of reliability testing was to identify barcode symbologies along with the

corresponding scan engine that produced the highest percentage scan reliability.

These test results, summarized in Table XIV with the relevant rows highlighted

with the arrow marking , indicate that PDF417 9.8 mil 13 col, error correction: 6

with SE6707 and QR Code 14.9 mil, error correction (30%) with SE4400 emerged

as the most reliable scans, which were then subjected to further testing.

3.1.2.2.2 Content density testing. Having shortlisted PDF417 and QR Codes

based on the reliability testing results, each of the two barcode symbologies was

subjected to rigorous ‘‘content density testing.’’ The purpose of this test was to

determine the impact of the content density on the scan reliability of the barcodes.

Table XIV

RELIABILITY TESTING

Symbology
Scan

engine
% Good

scan
% Delayed

scan
% No
scan

PDF417 9.8 mil 13 col EC:6
(label)

SE6707 94% 6%

22%68%

60%

70%

40%

82%

56%

94%

60%

70%

32%

52%

22%

60%

28%

32%

38%

18%

38%

16%

32%

2%

26%

22%

12%

36%

8%

26%

48%

10%

0%

10%

2%

12%

22%

2%

12%

4%

14%

8%

56%

12%

70%

14%

24%

58%

SE4400

SE6707

SE6707

SE6707

SE6707

SE6707

SE6707

SE6707

SE6707

SE4400

SE4400

SE4400

SE4400

SE4400

SE4400

QR code 14.8 mil error
correction M (15%) (Label)

QR code 14.8 mil, error
correction M (15%) (Card)

QR code 14.8 mil, error
correction (30%) (card)

Aztec 14.8 mil with error
correction 40% (label)

Aztec 14.8 mil with error
correction 45% (label)

Aztec 14.8 mil with error
correction 50% (label)

DataMatrix 14.8 mil with
ECC 200 (label)

Aztec 19.7 mil (no image)
(label)

226 A. GROVER ET AL.
We designed different capacity barcodes ranging from 162 bytes to 929 bytes. The

different byte sizes were selected based on the specific requirements of the project

and thus subsequent test samples do not have a uniform data capacity difference.

In Table XV, the rows indicating test results for a data capacity of 844 bytes are

highlighted with the arrow marking, as that is the preferred data capacity for our

project. This test indicated that for PDF417, the scan reliability starts dropping after

content density increases more than approx. 60% when the wireless scanner

(SE4400) is used. However, the content density has no effect whatsoever on scan

reliability with the wired scanner (SE6707).

For the QR Code, the testing indicated a substantial drop in scan reliability as the

content density increased to more than 844 bytes with either the SE6707 or SE4400

Scan Engines (Table XVI). This indicates mixed results for the effect of content

density on scan reliability of QR Code. There is a trend toward a decrease in the

reliability as the content of the barcode increases. The success rate is higher with the

Table XV

CONTENT DENSITY TESTING FOR PDF 417

SE 4400
Size in
bytes,

%capacity

% Good
scan

% Delayed
scan

% No
scan

SE 6707
Size in
bytes,

%capacity

% Good
scan

% Delayed
scan

% No
scan

PDF4179.8 mil EC = 6 162, 14%

224, 20%

492, 45%

625, 56%

694, 63%

844, 76%

929, 84%

100%

100%

98%

100%

96%

88%

78%

0%

0%

2%

0%

2%

8%

16%

0%

0%

0%

0%

2%

4%

6%

162, 14%

224, 20%

492, 45%

625, 56%

694, 63%

844, 76%

929, 84%

100%

100%

100%

100%

100%

100%

100%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

PDF4179.8 mil EC = 6

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 227
wired scanner when one takes into account the delayed scans because in essence

these are successful scans though just not as ideal.

3.1.2.2.3 Error correction level based testing for QR Code and PDF417.
To fine-tune the results of the previous test and to achieve high scan reliability with

high content density barcodes, the required 844 byte samples (of PDF417 and QR

Code) were tested with different levels of error correction encoded into them. The

purpose of this test was to determine the impact of error correction level on the scan

reliability of the 2D barcodes. For QR Code, samples with a content density of 844

bytes with error correction levels of 7%, 15%, 25%, and 30% were tested. The

results are tabulated in Table XVII.

The rows highlighted with the arrow marking indicate the best scan results for

the two different scanners. It was observed that the size of the actual barcode, not

just the amount of data, seemed to play a role in the scanning reliability. It was

observed that barcodes with a 30% error correction were so big that it seemed to

Table XVI

CONTENT DENSITY TESTING FOR QR CODE

QR code 14.8 mil
EC = 15%

SE 4400 162

224

492

625

694

844

929

162

224

492

625

694

844

929

98%

94%

66%

92%

96%

76%

44%

100%

92%

88%

50%

74%

82%

46%

2%

6%

22%

6%

2%

12%

24%

0%

8%

12%

46%

26%

18%

48%

0%

0%

12%

2%

2%

12%

32%

0%

0%

0%

4%

0%

0%

6%

SE6707

Size in
bytes

% Good
scan

% Delayed
scan

% No
scan

228 A. GROVER ET AL.
adversely affect the scan reliability. Based on data content requirements of the

present project, our recommendation is to use 25% error correction to achieve

optimum scan reliability.

For PDF417, samples with a content density of 844 bytes with error correction

levels of 3, 4, 5, and 6 were tested with both the scan engines. The results are

tabulated in Table XVIII.

For PDF417, the results indicate that the higher the error correction, better the

scan reliability.

3.1.2.2.4 Effect of Glossiness on scan reliability. After taking into consider-

ation the primary factor of data content density, we shifted our focus to other

secondary factors that impact on the scan reliability of barcodes. Since the primary

technique used by most 2D scanners is imaging, which involves taking a photo of the

barcode before trying to decode it, the difference in absorbance and reflectivity of

glossy and nonglossy media impacts on their readability. The purpose behind this

Table XVII

IMPACT OF ERROR CORRECTION LEVEL FOR QR CODE

QR Code
844 Bytes

Error
correction

% Good
scan

% Delayed
scan

% No
scan

SE 6707

SE 4400

7% 88%

84%

60%

90%

88%

74%

92%

20%

10%

10%

40%

2%

16%

12% 0%

0%

0%

0%

0%

2%

2%

6%

6%

98%

15%

25%

30%

15%

25%

30%

7%

Table XVIII

IMPACT OF ERROR CORRECTION LEVEL FOR PDF 417

SE4400

SE6707

94%

84%

98%

98%

26%

60%

78%

86%

14%

18%

26%

22%

48%

8%

4%

2%

2%

6%

10%

16% 0%

0%

0%

0%

3

4

5

6

6

3

4

5

PDF417
844 bytes

Error
correction

%
Good
scan

%
Delayed

scan

% No
scan

230 A. GROVER ET AL.
test was to determine the potential impact of the finish of the physical media, in

particular glossy versus nonglossy, on the scanning reliability. To resolve this

concern, the symbologies were scanned separately on a ‘‘glossy’’ as well as a

‘‘nonglossy’’ media. The results are tabulated in Table XIX.

3.1.2.2.4.1 Effect of glossiness testing for QR Code 844 bytes data capacity. The

highlighted rows indicate the best scan reliability for glossy as well as nonglossy

paper using different scan engines. The results indicate a clear drop in the scan

reliability of QR Code barcodes when printed on glossy surface (cards as well as

labels) as compared to nonglossy plain surface.

3.1.2.2.4.2 Effect of glossiness testing for PDF417 844 bytes data capacity. The
test results indicate a significant degradation in the scan reliability on glossy surface

compared to nonglossy surface at lower error correction levels for the SE6707 as

shown in rows highlighted by a⌫ marking. For the SE4400, the corresponding

rows highlighted by the arrow marking indicate significant degradation in the

scan reliability on glossy surface at all levels of error correction (Table XX).

3.1.2.2.5 Comparison of target media (card and label) with optimal scan
settings. Since our target media (label or PVC card) are glossy, we decided to do yet

another test to determine which of the two target media (card or label) produced a

Table XIX

EFFECT OF GLOSSINESS TESTING FOR QR CODE

Non-glossy paper

Glossy paper

7%

7%

7%

15%

15%

25%

25%

98%

98%

30%

30%

7%

15%

15%

25%

25%

30%

30%

60%

66%

90%

92%

82%

96%

40%

10%

14%

20% 36%

10%

20%

28%

30%

34%

44% 12%

4%

84%

44%

74%

44%

70%

70%

16%

6%

88%

88%

12% 0%
0%

0%

0%

0%

0%
0%

0%

0%

2%

2%

2%

2%

2%

4%

6%

SE 6707

SE 4400

SE4400

SE6707

Error
correction

% Good
scan

% Delayed
scan

%
No
scan

Error
correction

Good
scan %

Delayed
scan %

No
scan

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 231
better scan reliability. It may be pertinent to mention here that there is a difference

not only in the glossiness of the media (card and label) but also in the printing quality

as cards were printed using the DataCard SP75 card printer while the labels were

printed using the ZebraS4M label printer having different characteristics (as men-

tioned in Section 2.7).

These results in Table XXI indicate that PDF417 is the better choice for labels;

however, for badges, the wireless scanner produced identical scan reliability results

of 76% for both PDF417 and QR Code.

Table XX

EFFECT OF GLOSSINESS TESTING FOR PDF 417

Media Scan
engine

Error
correction

%
Good
scan

%
Delayed

scan

%
No
scan

Non
glossy

Glossy

SE6707

SE4400

SE4400

SE6707

3

4

5

6

6

6

6 86%

60%

26%

78%

98%

98%

94%

94%

94%

98%

94%

84%

80%

50%

100%

100%

6%

0%

2%

14%

16%

6%

0%

0%

0%

0%

2%

2%

6%

2%

20%

0%

0%

0%

0%

2%

26%

18%

8%

22%

48%

14%

10% 4%

4%

4%

0%

30%3

3

3

4

4

4

5

5

5

232 A. GROVER ET AL.
3.2 External Testing

In order to address the potential for the encoder or the printers to influence the

performed testing, it is necessary to set a baseline for the quality of created barcodes.

This took the form of grading the test samples that was performed independently and

externally by Motorola Technical and Engineering Services using barcode verifiers and

they confirmed the quality of the internally encoded barcodes as ‘‘Grade A.’’ This

eliminates thepotentialofencoderandprintererrorson thescanreliabilityof thebarcodes.

Table XXI

COMPARISON OF TARGET MEDIA

PDF 417 844 EC
6

QR code 844
14.8 25%

SE 6707

Symbology Scan engine
No
scan
%

Good
scan
%

Delayed
scan %

Media
printed

on

Label

Label

Card 96%

76%

76% 14%

10%
36%

40%

12% 12%

12%
26%

8%

2%

4%

0%

0%

0%

1%

10%

52%

52%
64%

98%

99%

Card

Label

Card
Label

Card

SE 6707

SE 4400

SE 4400

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 233
4. Conclusion

For our target material (card or label, which are both glossy), and with a data

content capacity of 844 bytes,

l The best case scenario is a 96–99% scan reliability for cards and labels,

respectively, using PDF417 Barcodes with the SE6707 scan engine.

l The scanning reliability of PDF417 with the SE4400 scan engine varied from

76% for cards to 98% for labels.

l For QR Code with 844 bytes and 25% error correction, the SE4400 scan engine

produced a success rate of 76% for cards and 64% for labels, whereas the

SE6707 Scan engine produced a success rate of 52% for both labels and cards.

These results are summarized in Table XXII.

Comparing these results to the standards for each of the tested symbologies,

theoretically they are capable of encoding high content-data; however, testing

showed that the content for readable symbols was greatly impacted by many factors.

The results thus indicate that for our specific application, the scan reliability of

PDF417 barcodes was much better than that of QR Code barcodes with high-

capacity data encoding (more than 800 bytes) printed on glossy media and read

using either SE6707 scan engine or SE4400 scan engine.

Table XXII

SUMMARY OF RESULTS

Rank

PDF 417 SE 6707 Label

Label

Card

Card

Card

Card & Label

SE 6707

SE 6707

SE 4400

SE 4400

SE 4400

PDF 417

PDF 417

QR Code

QR Code

QR Code

99%

96%

76%

76%

64%

52%

Best

3rd

4th

5th

6th

Worst

Symbology Scanner MediaScan-reliability

LabelSE 4400PDF 41798%2nd

234 A. GROVER ET AL.
References

[1] Layman’s Guide to ANSI, CEN, and ISO Bar Code Print Quality Documents, Association for

Automatic Identification and Data Capture Technologies (AIM), Pittsburg, PA, 2002 (November).

[2] Sizing Applications for 2D Barcode Symbols, 2007. http://www.intermec.com/learning/content_

library/white_papers/index.aspx (Intermec Technologies Corporation, Available from: accessed

07.12.09).

[3] http://www.aimglobal.org/technologies/barcode/2d_symbologies_matrix.asp (accessed 07.12.09).

[4] http://www.morovia.com/education/symbology/upc-a.asp (accessed 07.12.09).

[5] http://www.computalabel.com/aboutupc.htm (accessed 07.12.09).

[6] http://www.morovia.com/education/symbology/pdf417.asp (accessed 07.12.09).

[7] http://www.denso-wave.com/qrcode/qrfeature-e.html (accessed 07.12.09).

[8] http://www.idautomation.com/fonts/datamatrix/faq.html#Data_Matrix_Specifications (accessed

07. 12.09).

[9] http://www.barcode.ro/tutorials/barcodes/aztec.html (accessed 07.12.09).

[10] http://research.microsoft.com/en-us/projects/hccb/about.aspx (accessed 07.12.09).

[11] American National Standards Institute, Bar Code Print Quality Specification, ANSI X3.182, 1990.

[12] GS1 General Specification, v 7.0, v 7.0, Jan 2006: Bar Code Production and Quality Assessment,

2006.

[13] http://www.zebra.com/id/zebra/na/en/index/products/printers/industrial_commercial/s4m.1.tabs.

html (accessed 07.12.09).

[14] http://www.cdatacard.com/id-card-printers/sp75-plus-id-card-printer?contentId¼null (accessed

07. 12.09).

[15] http://www.office.xerox.com/printers/color-printers/phaser-6360/enus.html (accessed 07.12.09).

http://www.intermec.com/learning/content_library/white_papers/index.aspx
http://www.intermec.com/learning/content_library/white_papers/index.aspx
http://www.aimglobal.org/technologies/barcode/2d_symbologies_matrix.asp
http://www.morovia.com/education/symbology/upc-a.asp
http://www.computalabel.com/aboutupc.htm
http://www.morovia.com/education/symbology/pdf417.asp
http://www.denso-wave.com/qrcode/qrfeature-e.html
http://www.idautomation.com/fonts/datamatrix/faq.html#Data_Matrix_Specifications
http://www.barcode.ro/tutorials/barcodes/aztec.html
http://research.microsoft.com/en-us/projects/hccb/about.aspx
http://www.zebra.com/id/zebra/na/en/index/products/printers/industrial_commercial/s4m.1.tabs.html
http://www.zebra.com/id/zebra/na/en/index/products/printers/industrial_commercial/s4m.1.tabs.html
http://www.cdatacard.com/id-card-printers/sp75-plus-id-card-printer?contentId=null
http://www.cdatacard.com/id-card-printers/sp75-plus-id-card-printer?contentId=null
http://www.office.xerox.com/printers/color-printers/phaser-6360/enus.html

PARAMETERS EFFECTING 2D BARCODE SCANNING RELIABILITY 235
[16] GS1 Systems, GS1 Bar Code Verification for Linear Symbols, v 4.3, 2009. (May).

[17] ISO/IEC 15438:2001, Information Technology—Automatic Identification and Data Capture Tech-

niques—Bar Code Symbology Specifications—PDF417.

[18] Laser Marking: Matrix Codes on PCBS, 2005. (Rick Stevenson, Printed Circuit Design & Manufac-

ture, December).

[19] http://www.spec2000.com/50.html (accessed 07.12.09).

[20] http://qrcode.kaywa.com/ (accessed 07.12.09).

[21] http://www.idautomation.com/datamatrixfaq.html#Data_Matrix_Overview (accessed 07.12.09).

[22] Symbol DS 6707SR Manual. Available from: http://support.symbol.com/support/product/manuals.

do (accessed 07.12.09).

[23] Symbol DS 3478 Manual. Available from: http://support.symbol.com/support/product/manuals.do

(accessed 07.12.09).

[24] http://www.adams1.com/stack.html (accessed 07.12.09).

[25] http://www.barcodeman.com/faq/2d.php (accessed 07.12.09).

[26] http://www.mecsw.com/specs/datamatx.html (accessed 07.12.09).

[27] http://www.aimglobal.org/members/news/templates/template.aspx?articleid¼3312&zoneid¼26

(accessed 07.12.09).

[28] http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcsymbol.htm (accessed 07.12.09).

[29] http://mdn.morovia.com/manuals/qrcode-fontware/ch02s01.php#id4817307 (accessed 07.12.09).

[30] http://www.datastrip.com/index.html (accessed 07.12.09).

[31] http://barcodes.gs1us.org/dnn_bcec/Standards/Barcodes/GS1DataMatrix/tabid/452/Default.aspx

(accessed 07.12.09).

http://www.spec2000.com/50.html
http://qrcode.kaywa.com/
http://www.idautomation.com/datamatrixfaq.html#Data_Matrix_Overview
http://www.adams1.com/stack.html
http://www.barcodeman.com/faq/2d.php
http://www.mecsw.com/specs/datamatx.html
http://www.aimglobal.org/members/news/templates/template.aspx?articleid=3312&zoneid=26
http://www.aimglobal.org/members/news/templates/template.aspx?articleid=3312&zoneid=26
http://www.aimglobal.org/members/news/templates/template.aspx?articleid=3312&zoneid=26
http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcsymbol.htm
http://mdn.morovia.com/manuals/qrcode-fontware/ch02s01.php#id4817307
http://www.datastrip.com/index.html
http://barcodes.gs1us.org/dnn_bcec/Standards/Barcodes/GS1DataMatrix/tabid/452/Default.aspx

Advances in Video-Based Human
Activity Analysis: Challenges
and Approaches
ADVAN

ISSN: 00
PAVAN TURAGA
Department of Electrical and Computer Engineering,
Center for Automation Research, UMIACS University of
Maryland, College Park, Maryland, USA
RAMA CHELLAPPA
Department of Electrical and Computer Engineering,
Center for Automation Research, UMIACS University of
Maryland, College Park, Maryland, USA
ASHOK VEERARAGHAVAN
Mitsubishi Electric Research Labs, Cambridge,
Massachusetts, USA
Abstract
Videos play an ever increasing role in our everyday lives with applications

ranging from news, entertainment, scientific research, security, and surveillance.

Coupled with the fact that cameras and storage media are becoming less

expensive, it has resulted in people producing more video content than ever

before. Analysis of human activities in video is important for several important

applications. Interpretation and identification of human activities requires

approaches that address the following questions (a) what are the appropriate

atomic primitives for human activities, (b) how to combine primitives to produce

complex activities, (c) what are the required invariances for inference algo-

rithms, and (d) how to build computational models for each of these. In this

chapter, we provide a broad overview and discussion of these issues. We shall
CES IN COMPUTERS, VOL. 80 237 Copyright © 2010 Elsevier Inc.

65-2458/DOI: 10.1016/S0065-2458(10)80007-5 All rights reserved.

238 P. TURAGA ET AL.
review state-of-the-art computer vision algorithms that address these issues and

then provide a unified perspective from which specific algorithms can be

derived. We will then present supporting experimental results.
1.
 I
ntroduction . 239
2.
 C
hallenges . 240
3.
 A
pplications . 242
3
.1. B
ehavioral Biometrics . 242
3
.2. A
ctivity-Based Indexing of Video . 243
3
.3. S
ecurity and Surveillance . 243
3
.4. I
n
teractive Applications and Environments 243
3
.5. A
nimation and Synthesis . 244
4.
 F
eature Extraction . 244
4
.1. O
ptical Flow . 244
4
.2. P
oint Trajectories . 245
4
.3. B
ackground Subtracted Blobs and Shape 245
4
.4. F
ilter Responses . 246
4
.5. P
art-Based Approaches . 248
5.
 M
odels for Actions . 249
5
.1. H
idden Markov Models . 249
5
.2. L
inear Dynamical Systems . 251
6.
 C
omplex Activities . 251
6
.1. T
ime-Varying Dynamical Systems . 252
6
.2. S
emantic Models . 252
7.
 A
 Unified Approach for Recognizing Simple Actions and

Complex Activities . 256
8.
 U
nderstanding the Space of Primitives 257
8
.1. T
he Manifold Structure of Subspaces 259
8
.2. S
upervised and Unsupervised Learning of Activities from Videos 261
8
.3. A
ctivity Recognition Experiments . 262
9.
 C
omplex Activity Models: Cascade of Dynamical Systems 263
9
.1. M
odeling Action Elements . 263
9
.2. L
earning Model Parameters . 264
9
.3. E
xperiments: Video Summarization Using Cascade Models 267
10.
 M
ore General Activity Models: Time-Varying Models 271
1
0.1. E
stimating the Time-Varying Parameters 272
1
0.2. E
xperiments: Video Summarization and Clustering 275

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 239
11.
 V
iew and Rate Variations . 278
1
1.1.
 A
ffine and View Invariance . 279
1
1.2.
 I
nvariance to Execution Rate of Activity 282
12.
 S
ummary . 284
A
cknowledgments . 284
R
eferences . 284
1. Introduction

Recent years have seen a tremendous explosion of video content fueled by

inexpensive video cameras and the growth of the Internet. Video installations are

found in airports, stores, offices, and hospitals. Home video content has witnessed a

large growth due to the rising popularity of several video-sharing websites. Auto-

matic recognition of human activities from video in these varied domains is one of

the most promising applications of computer vision. In recent years, this problem

has caught the attention of researchers from industry, academia, security agencies,

consumer agencies, and the general populace. One of the earliest investigations into

the nature of human motion was conducted by the contemporary photographers

Etienne Jules Marey and Eadweard Muybridge in the 1850s who photographed

moving subjects and revealed several interesting and artistic aspects involved in

human and animal locomotion. The classic Moving Light Display experiment of

Johansson [1] provided a great impetus to the study and analysis of human motion

perception in the field of neuroscience. This then paved the way for mathematical

modeling and recognition of human actions, which naturally fall into the purview of

computer vision and pattern recognition.

To state the problem in simple terms, given a sequence of images with one or

more persons performing an activity, can a system be designed that can automati-

cally recognize what activity is being or was performed? As simple as the question

seems, the solution has been that much harder to find. In this chapter, we review the

major approaches that have been pursued over the last 20 years to address this

problem, and provide a unifying perspective.

The rest of the chapter is organized as follows. In Section 2, we discuss the

challenges in automatic analysis of human activities. Potential applications that

illustrate the impact of the activity recognition technology are presented in

Section 3. In Section 4, we discuss low-level feature extraction methods which

form the lower level of any activity recognition method. Midlevel models for

representing simple human actions are discussed in Section 5. In Section 6, we

240 P. TURAGA ET AL.
discuss models for higher level complex activities. A unified perspective of these

approaches based on features, primitives, and conjunctions of primitives is presented

in Section 7. In Section 8, we present a detailed understanding of the primitive space

constructed from linear dynamical systems (LDSs). In Section 9, we show how

complex activities can be represented using a cascade of dynamical systems. A

generalization of this approach by incorporating time-varying models is discussed in

Section 10. Finally, in Section 11, we present a discussion pertaining to invariances

within the framework of dynamical systems.
2. Challenges

Several factors contribute toward the complexity of understanding human activ-

ities. Firstly, human actions vary widely in their temporal and spatial extents. The

term ‘‘action’’ typically refers to simple motion patterns usually executed by a single

person and lasting for short duration. Examples of actions include bending, walking,

swimming, etc. (e.g., Fig. 1). ‘‘Activities’’ refer to the complex sequence of actions

performed by humans who could be interacting with each other in a constrained
FIG. 1. Near-field video: Example of walking action. Figure taken from Veeraraghavan et al. [54].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 241
manner. They are typically characterized by much longer temporal durations, for

example, two persons shaking hands, a football team scoring a goal, or multiple

robbers attacking a bank (Fig. 2). However, the gestures of a music conductor or the

constrained dynamics of a group of humans (Fig. 3) are neither as simple as an

‘‘action’’ nor as complex as an ‘‘activity.’’ Real-life activity recognition systems

typically follow a hierarchical approach. At the lower levels are feature extraction

modules such as background–foreground segmentation, tracking, and object detec-

tion. At the midlevel are action-recognition modules. At the high level are the

reasoning engines which encode the activity semantics/structure based on the

lower level action primitives.

Next, it is preferable if activity recognition systems are invariant to a variety of

transformations including (a) viewpoint, (b) execution rate, and (c) anthropometry.

Camera deployments vary significantly in their physical locations and viewing angles.

Surveillance cameras in airports are typically ceiling mounted, whereas consumer

webcams are near frontal. One needs to devise representations not just for a single

view, but generalize them to other views. The wide variation in motion-based features
A B C D

FIG. 2. Medium-field video: Example video sequence of a simulated bank attack. (A) Person enters

the bank, (B) robber is identified to be an outsider. Robber is entering the bank safe, (C) a customer

escapes, (D) robber makes an exit.

FIG. 3. Far-field video: Modeling dynamics of groups of humans as a deforming shape. Figure taken

from Vaswani et al. [9].

242 P. TURAGA ET AL.
induced by camera perspective effects and occlusions will otherwise make any

reasoning engine brittle in performance. The second major source of observed varia-

bility in features arises from the individual differences in execution styles or rates

while performing the same action. Variations in execution style exist both in inter-

person and intraperson settings. The same action may be different at different times of

the day, or can be influenced by external factors such as shoes, carrying a load, etc., or

internal factors such as health, mental states, and so forth. Needless to say, variations

across different individuals are even more pronounced. Finally, anthropometric varia-

tions such as those induced by the body size, body shape, gender, etc. are other

important variables that require careful attention. Unlike viewpoint and execution-rate

variabilities which have received significant attention, a systematic study of anthro-

pometric variations has been undertaken only in recent years.

Analysis of videos containing human activities typically proceeds from a

sequence of images to a higher level interpretation in a series of steps. The major

steps involved are the following:

1. Extraction of robust low-level features

2. Midlevel action descriptions from low-level features

3. High-level semantic interpretations from primitive actions

These issues have received significant attention in computer vision literature [2–6].

It is not possible to discuss the entire breadth of efforts in this area. In the remainder of

this chapter, we shall provide an overview of each of these stages of processing and

discuss how they contribute toward holistic activity recognition. First, we discuss

some applications that highlight the potential impact of this research agenda.
3. Applications

In this section, we present a few applications that highlight the potential impact of

vision-based activity recognition systems.
3.1 Behavioral Biometrics

Biometrics involves the study of approaches and algorithms for uniquely recog-

nizing humans based on physical or behavioral cues. Traditional approaches are

based on fingerprint, face, iris, and can be classified as physiological biometrics, that

is, they rely on physical attributes for recognition. These methods require coopera-

tion from the subject for collection of the biometric. Recently, ‘‘behavioral

biometrics’’ have been gaining popularity, where the premise is that behavior is as

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 243
useful a cue to recognize humans as their physical attributes. The advantage of this

approach is that subject cooperation is not necessary and it can proceed without

interrupting or interfering with the subject’s activity. Since observing behavior

implies longer term observation of the subject, approaches for action recognition

extend naturally to this task. Currently, the most promising example of vision-based

behavioral biometric is human gait [7].

3.2 Activity-Based Indexing of Video

Video has become a part of our everyday life. With video-sharing websites

experiencing relentless growth, it has become necessary to develop efficient

indexing and storage schemes to improve user experience. This requires learning

of patterns from raw video and summarizing a video based on its content. One of the

significant sources of information in most videos is human activities. Human

activities can be used as keys to index videos, which will then enable searching

according to the activity of interest. This is particularly useful for content such as

sports videos, home videos, and news.

3.3 Security and Surveillance

Security and surveillance systems have traditionally relied on a network of video

cameras monitored by a human operator who needs to be aware of the activity in the

camera’s field of view. With recent growth in the number of cameras and deploy-

ments, the workload of human operators has been stretched. Hence, security agen-

cies are seeking vision-based solutions to these tasks which can replace or assist a

human operator. Automatic recognition of anomalies in a camera’s field of view is

one such problem that has attracted attention from vision researchers (cf. Refs.

[8,9]). A related application involves searching for an activity of interest in a large

database by learning patterns of activity from long videos [10,11].

3.4 Interactive Applications and Environments

Understanding the interaction between a computer and a human remains one of

the enduring challenges in designing human–computer interfaces. Visual cues are

the most important mode of nonverbal communication. Effective utilization of

gestures and activities holds the promise of helping in creating computers that can

better interact with humans. Similarly, interactive environments such as smart

rooms [12] that can react to a user’s activities can benefit from vision-based

methods. However, such technologies are still not mature enough to stand the

‘‘Turing test’’ and thus continue to attract research interest.

244 P. TURAGA ET AL.
3.5 Animation and Synthesis

The gaming and animation industry relies on synthesizing realistic humans and

human motion, where the requirement is to produce a large variety of motions with

some compromise on the quality. The movie industry, on the other hand, has

traditionally relied more on human animators to provide high-quality animation.

However, this trend is changing [13]. With improvements in algorithms and hard-

ware, much more realistic motion synthesis is now possible. A related application is

learning in simulated environments. Examples of this include training of military

soldiers, firefighters, and other rescue personnel in hazardous situations with

simulated subjects.
4. Feature Extraction

In this section, we will briefly discuss some relevant aspects of low-level feature

extraction. Videos consist of massive amounts of raw information in the form of

spatiotemporal pixel intensity variations. But most of this information is not directly

relevant to the task of understanding and identifying the activity occurring in the

video. A classic experiment by Johansson [1] demonstrated that humans can per-

ceive gait patterns from point light sources placed at a few limb joints with no

additional information. Extraneous factors such as the color of the clothes, illumi-

nation conditions, background clutter do not aid in the recognition task. We briefly

describe a few popular low-level features and refer the readers to other sources for a

more in-depth treatment as we progress.
4.1 Optical Flow

Optical flow is defined as the apparent motion of individual pixels on the image

plane. It often serves as a good approximation of the true physical motion projected

onto the image plane. Most methods that compute optical flow assume that the color/

intensity of a pixel is invariant under the displacement from one video frame to the

next. We refer the reader to Beauchemin and Barron [14] for a comprehensive

survey and comparison of optical flow computation techniques. Optical flow pro-

vides a concise description of both the regions of the image undergoing motion and

the velocity of motion. In practice, computation of optical flow is susceptible to

noise and illumination changes. Applications include [15] which used optical flow

to detect and track vehicles in an automated traffic surveillance application.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 245
4.2 Point Trajectories

Trajectories of moving objects have been used as features to infer the activity of

an object (see Fig. 4). The image-plane trajectory itself is not very useful as it is

sensitive to translations, rotations, and scale changes. Alternative representations

such as trajectory velocities, trajectory speeds, spatiotemporal curvature, relative-

motion, etc. that are invariant to some of these variabilities have been proposed. A

good survey of these approaches can be found in Cedras and Shah [3]. Extracting

unambiguous point trajectories from video is complicated by several factors such as

occlusions, noise, and background clutter. Accurate tracking algorithms need to be

employed for obtaining motion trajectories [6].
4.3 Background Subtracted Blobs and Shape

Background subtraction is a popular method for isolating the moving parts of a

scene by segmenting it into background and foreground (cf. Ref. [16]). As an

example, from the sequence of background subtracted images shown in Fig. 1, the

human’s walking action can be easily perceived. The shape of the human silhouette

plays a very important role in recognizing human actions, and it can be extracted from

background subtracted blobs (see Fig. 5). Severalmethods based on global, boundary,
FIG. 4. Trajectories of a passenger and luggage-cart. The wide difference in the trajectories is

indicative of the difference in activities. Figure taken from Roy-Chowdhury and Chellappa [120].

FIG. 5. Silhouettes extracted from the walking sequence shown in Fig. 1. Silhouettes encode sufficient

information to recognize actions. Figure taken from Veeraraghavan et al. [54].

246 P. TURAGA ET AL.
and skeletal descriptors have been proposed to quantify the shape of the silhouette.

Global methods such asmoments [17] consider the entire shape region to compute the

shape descriptor. Boundary methods, on the other hand, consider only the shape

contour as the defining characteristic of the shape. Such methods include chain

codes [18] and landmark-based shape descriptors [19]. Skeletal methods represent a

complex shape as a set of 1D skeletal curves, for example, the medial axis transform

[20]. These methods have found applications in shape-based modeling of the human

silhouette as in Bissacco et al. [21] for modeling human gait. Bobick and Davis

[22,23] proposed ‘‘temporal templates’’ for action recognition. In their approach,

the first step involved is background subtraction, followed by an aggregation of a

sequence of background subtracted blobs into a single static image. They propose two

methods of aggregation—the first method gives equal weight to all images in the

sequence, which gives rise to a representation called the ‘‘Motion Energy Image’’.

The secondmethod gives decaying weights to the images in the sequence with higher

weight given to new frames and low weight to older frames. This leads to a represen-

tation called the ‘‘Motion History Image’’ (MHI) (e.g., see Fig. 6). Blank et al. [24,25]

proposed using background subtracted blobs stacked together to create an (x, y, t)
binary space-time (ST) volume (e.g., see Fig. 7). From this ST volume, 3D shape

descriptors are extracted by solving a Poisson equation [24,25].
4.4 Filter Responses

These approaches are based on filtering a video volume using a large filter bank.

The responses of the filter bank are further processed to derive action-specific

features. These approaches are inspired by the success of filter-based methods on

other still image recognition tasks such as texture segmentation [26]. Chomat and

0

50

40
20

0

100

100

Y
T

X

80

60

40

20

0

FIG. 6. 3D space-time object, similar to Blank et al. [24], obtained by stacking together binary

background subtracted images of a person waving his hand.

FIG. 7. Temporal templates similar to Davis and Bobick [22]. Left: Motion energy of a sequence of a

person raising both hands, right: Motion history of the same action.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 247
Crowley [27]model a segment of video asa (x, y, t) spatiotemporal volumeand compute

local appearance models at each pixel using a Gabor filter bank at various orientation

and spatial scales and a single temporal scale. A given action is recognized using a

248 P. TURAGA ET AL.
spatial average of the probabilities of individual pixels in a frame. Since actions are

analyzed at a single temporal scale, this method is not applicable to variations in

execution rate. As an extension to this approach, local histograms of normalized ST

gradients at several temporal scales are extracted by Zelnik-Manor and Irani [28]. The

sum of the chi-squaremetric between histograms is used tomatch an input videowith a

stored exemplar. Filtering with the Gaussian kernel in space and the derivative of the

Gaussian on the temporal axis followed by thresholding of the responses and accumu-

lation into spatial-histograms was found to be a simple yet effective feature for actions

in a far field settings [8]. Spatiotemporal filter structures such as oriented Gaussian

kernels and their derivatives [29] and oriented Gabor filter banks [30] have been

suggested for describing the spatiotemporal properties of cells in the visual cortex.

Filtering approaches are fast and easy to implement due to efficient algorithms for

convolution. Inmost applications, the appropriate bandwidth of the filters is not known

a priori, thus a large filter bank at several spatial and temporal scales is required for

effectively capturing the action dynamics. Moreover, the response generated by each

filter has the same dimensions as the input volume, hence using large filter banks at

several spatial and temporal scales is prohibitive.

4.5 Part-Based Approaches

Several approaches have been proposed thatmodel a video volume as a collection of

local parts, where each part consists of some distinctive motion pattern. Laptev and

Lindeberg [31,32] proposed a spatiotemporal generalization of the well-known Harris

interest point detector [33], which is widely used in object recognition applications and

applied it to modeling and recognizing actions in ST. This method is based on a 3D

generalization of scale-space representations. A given video is convolved with a 3D

Gaussian kernel at various spatial and temporal scales. Then, spatiotemporal gradients

are computed at each level of the scale-space representation which are then combined

within a neighborhood of each point to yield stable estimates of the spatiotemporal

second-moment matrix. Local features are then derived from these smoothed estimates

of gradient moment matrices. In a similar approach, Dollar et al. [34] model a video

sequence by the distribution of ST feature prototypes. The feature prototypes are

obtained by k-means clustering of a large set of features—ST gradients—extracted at

ST interest points from the trainingdata.Neibles et al. [35] use a similar approachwhere

they use a bag-of-words model to represent actions. The bag-of-words model is learnt

byextracting spatiotemporal interest points and clustering of the features. These interest

points can be used in conjunctionwithmachine learning approaches such as SVMs [36]

and graphical models [35]. Since the interest points are local in nature, longer term

temporal correlations are ignored in these approaches. To address this issue, a method

based on correlograms of prototype labels was presented in Savarese et al. [37].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 249
In a slightly different approach Nowozin et al. [38] consider a video as a sequence of

sets—where each set consists of the parts found in a small temporally sliding window.

These approaches do not directly model the global geometry of local parts, instead

considering themas a bag-of-features.Different actionsmaybe composedof similarST

parts but may differ in their geometric relationships. Integrating global geometry into

the part-based video representation was investigated by Boiman and Irani [39] and

Wong et al. [40]. This approachmay be termed as a constellation-of-parts as opposed to

the simpler bag-of-parts model. Computational complexity can be large for constella-

tion models with a large number of parts which is typically the case for human actions.

Song et al. [41] addressed this issue by approximating the connections in the constella-

tion via triangulation.Niebles andFei-Fei [42] proposed a hierarchicalmodelwhere the

higher level is a constellation-of-partsmuch smaller than the actual number of features.

Each of the parts in the constellation consists of a bag-of-features at the lower level. This

approach combines the advantages of both the bag-of-features and the constellation

model and preserves computational efficiency at the same time.

In most of these approaches the detection of the parts is usually based on linear

operations such as filtering and spatiotemporal gradients, hence the descriptors are

sensitive to changes in appearance, noise, occlusions, etc. It has also been noted that

interest points are extremely sparse in smooth human actions and certain types of

actions do not give rise to distinctive features [34,35]. However, due to their local

nature they are more robust to nonstationary background.
5. Models for Actions

Once features have been extracted from videos, concise descriptions that encode

how the features evolve with time are needed. A powerful class of approaches

imposes parametric models for this variation. Parameters of the model are estimated

from the training data. Examples of such parametric methods are hidden Markov

models (HMMs) and LDSs. These are also referred to as state-space approaches,

where the temporal evolution of features is modeled as a trajectory in some config-

uration space, and each point on the trajectory corresponds to a particular ‘‘configu-

ration’’ or ‘‘state’’—for instance, a particular pose or stance of the human.
5.1 Hidden Markov Models

One of the most popular state-space models is the HMM. In the discrete HMM

formalism, the state space is considered to be a finite set of discrete points. The

temporal evolution is modeled as a sequence of probabilistic jumps from one discrete

250 P. TURAGA ET AL.
state to the other (Fig. 8). HMMs have found wide applications in speech recognition

since the early 1980s. An excellent source for a detailed description of HMMs and its

associated three problems—inference, decoding, and learning—can be found in

Rabiner [43]. Beginning in the early 1990s, HMMs began to find wide applicability

in computer vision systems. One of the earliest approaches to recognize human actions

via HMMs was proposed by Yamato et al. [44] where they recognized tennis shots

such as backhand stroke, backhand volley, forehand stroke, forehand volley, smash,

etc. by modeling a sequence of background subtracted images as outputs of class-

specific HMMs. Several successful gesture recognition systems such as those reported

in Schlenzig et al. [45,46] make extensive use of HMMs by modeling a sequence of

tracked features such as hand blobs as HMM outputs.

HMMs have also found applications in modeling the temporal evolution of human

gait patterns both for action recognition and biometrics (cf. Refs. [47, 48]). All these

approaches are based on the assumption that the feature sequence being modeled is a

result of a single person performing an action. Hence, they are not effective in

applications where there are multiple agents performing an action or interacting with

each other. To address this issue, Brand et al. [49] proposed a coupled HMM to

represent the dynamics of interacting targets. They demonstrated the superiority of

their approach over conventional HMMs in recognizing two-handed gestures.

Incorporating domain knowledge into the HMM formalism has also been investi-

gated by several researchers. Moore et al. [50] used HMMs in conjunction with

object detection modules to exploit the relationship between actions and objects.

Hongeng and Nevatia [51] incorporate a priori beliefs of state duration into the

HMM framework and the resultant model is called Hidden semi-Markov Model

(semi-HMMs). Cuntoor and Chellappa [52] have proposed a mixed-state HMM

formalism to model nonstationary activities, where the state space is augmented

with a discrete label for higher level behavior modeling.
X(t− 1)

Y(t− 1)

X(t)

Y(t)

X(t+ 1)

Y(t+ 1)

FIG. 8. Graphical illustration of a hidden Markov model.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 251
5.2 Linear Dynamical Systems

LDSs are a more general form of HMMs where the state space is not constrained

to be a finite set of symbols but can take on continuous values in R
k, where k is the

dimensionality of the state space. The simplest form of LDS is the first-order time-

invariant Gauss–Markov processes which is described by Equations (1) and (2)

xðtÞ ¼ Axðt� 1Þ þ wðtÞ; w � Nð0;QÞ ð1Þ
yðtÞ ¼ CxðtÞ þ vðtÞ; v � Nð0;RÞ ð2Þ

where x 2 R
d is the d-dimensional state vector and y 2 R

n is the n-dimensional

observation vector with d � n. w and u are the process and observation noise,

respectively, which are Gaussian distributed with zero-means and covariance matrices

Q and R, respectively. The LDS can be interpreted as a continuous state-space

generalization of HMMs with a Gaussian observation model. Several applications

such as recognition of humans and actions based on gait [53–55], activity recognition

[56], and dynamic texture modeling and recognition [57,58] have been proposed using

LDSs. First-order LDSs were used by Vaswani et al. [9] to model the configuration of

groups of people in an airport tarmac setting by considering a collection of moving

points (humans) as a deforming shape. Advances in system identification theory for

learning LDS model parameters from data [57,59–62] and distance metrics on the

LDS space [63–65] have made LDSs popular for learning and recognition of high-

dimensional time-series data. More recently, an in-depth study of the LDS space has

enabled the application of machine learning tools on that space such as dynamic

boosting [66], kernel methods [67,68], and statistical modeling [69]. Newer methods

to learn the model parameters [57] have made learningmuchmore efficient than in the

case of HMMs. Like HMMs, LDSs are also based on assumptions of Markovian

dynamics and conditionally independent observations. Thus, as in the case of HMMs,

the time-invariant model is not applicable to nonstationary actions.
6. Complex Activities

While time-invariant HMMs and LDSs are efficient modeling and learning tools,

they are restricted to linear and stationary dynamics. Consider the following activity—

a person bends down to pick up an object, then he walks to a nearby table and places

the object on the table and finally rests on a chair. This activity is composed of a

sequence of short segments each of which is governed by a simple model. The entire

activity can be seen as switching between simpler models. This forms the basic

approach toward modeling more complex, temporally extended activities.

252 P. TURAGA ET AL.
6.1 Time-Varying Dynamical Systems

The most general form of the time-varying LDS is given by Equations (3) and (4)

xðtÞ ¼ AðtÞxðt� 1Þ þ wðtÞ; w � Nð0;QÞ ð3Þ
yðtÞ ¼ CðtÞxðtÞ þ vðtÞ; v � Nð0;RÞ ð4Þ

which looks similar to the LDS in Equations (1) and (2), except that the model

parameters A and C are allowed to vary with time. To tackle such complex dynamics,

a popular approach is to model the process using switching linear dynamical systems

(SLDSs) or jump linear systems. An SLDS consists of a set of LDSs with a switching

function that causes model parameters to change by switching between models.

Bregler [70] presented a multilayered approach to recognize complex movements

consisting of several levels of abstraction. The lowest level is a sequence of input

images. The next level consists of ‘‘blob’’ hypotheses where each blob is a region of

coherent motion. At the third level, blob tracks are grouped temporally. The final level

consists of a HMM for representing the complex behavior. North et al. [71] augment

the continuous state vector with a discrete state component to form a ‘‘mixed’’ state.

The discrete component represents a mode of motion or more generally a ‘‘switch’’

state. Corresponding to each switch state, a Gaussian autoregressive model is used to

represent the dynamics. A maximum likelihood (ML) approach is used to learn the

model parameters for each motion class. Pavlovic and Rehg [72,73] model the

nonlinearity in human motion in a similar framework, where the dynamics are

modeled using LDS and the switching process is modeled using a probabilistic

finite-state machine. Other applications of this framework include the work of Del

Vecchio et al. [74] who used this framework for classifying drawing tasks. Though the

SLDS framework has greater modeling and descriptive power than that of HMMs and

LDSs, learning and inference in SLDS is much more complicated, often requiring

approximate methods [75]. In practice, determining the appropriate number of switch-

ing states is challenging and often requires large amounts of training data or extensive

hand tuning. Apart from ML approaches, algebraic approaches that can simulta-

neously estimate the number of switching states, the switching instants, and also the

parameters of the model for each state have been proposed by Vidal et al. [76].

However, algebraic approaches are often not robust to noise and outliers in the data.
6.2 Semantic Models

Most activities of interest in applications such as surveillance and content-based

indexing involve several actors, who interact not only with each other, but also with

contextual entities. The approaches discussed so far are mostly concerned with

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 253
modeling and recognizing actions of a single actor. Modeling a complex scene, its

relation with the objects in the scene, and the semantics of complex activities require

higher level representation and reasoning methods. The previously discussed

approaches are not suited to deal with the complexities of spatiotemporal constraints

on actors and actions, temporal relations such as sequencing and synchronization,

and the presence of multiple execution threads. Thus, structural and syntactic

approaches such as dynamic belief networks (DBNs), grammars, Petri-nets, etc.

are well suited to tackle these problems. Moreover, some amount of domain

knowledge can be exploited to design concise and intuitive structural descriptions

of activities.
6.2.1 Graphical Models
Graphical models such as Bayesian networks (BN) [77] encode complex condi-

tional dependencies between a set of random variables which are encoded as local

conditional probability densities. DBNs are a generalization of the simpler BN by

incorporating temporal dependencies between random variables. DBNs encode

more complex conditional dependence relations among several random variables

as opposed to just one hidden variable as in a traditional HMM. Huang et al. [15]

used DBNs for vision-based traffic monitoring. Buxton and Gong [78] used BN to

capture the dependencies between scene layout and low-level image measurements

for a traffic surveillance application. Modeling two-person interactions such as

pointing, punching, pushing, hugging, etc. was proposed by Park and Aggarwal

[79] in a two-stage DBN framework.

Petri-nets were defined by Petri [80] as a mathematical tool for describing

relations between conditions and events. Petri-nets are particularly useful to model

and visualize behaviors such as sequencing, concurrency, synchronization, and

resource sharing. Petri-nets are bipartite graphs consisting of two types of nodes—

places and transitions. Places refer to the state of an entity and transitions refer to

changes in the state of the entity. Petri-nets were used by Castel et al. [81] to develop

a system for high-level interpretation of image sequences. In their approach, the

structure of the Petri-net was specified a priori. This can be tedious for large

networks representing complex activities. Albanese et al. [82] proposed a probabi-

listic Petri-net, where the transitions are associated with a weight which encodes the

probability with which that transition fires. By using skip transitions and penalizing

them with a low probability, robustness to missing observations in the input stream

is achieved. Further, the uncertainty in the identity of an object or the uncertainty in

the unfolding of an activity can be efficiently incorporated into the tokens of the

Petri-net.

254 P. TURAGA ET AL.
6.2.2 Grammars
Grammars express the structure of a process using a set of production rules. To

draw a parallel to grammars in language modeling, production rules specify how

sentences (activities) can be constructed from words (activity primitives), and how

to recognize if a sentence (video) conforms to the rules of a given grammar (activity

model). One of the earliest use of grammars for visual activity recognition was

proposed by Brand [83], who used a context-free grammar (CFG) to recognize hand

manipulations in sequences containing disassembly tasks. They made use of simple

grammars with no probabilistic modeling. Algorithms for detection of low-level

primitives are frequently probabilistic in nature. Thus, stochastic context-free gram-

mars (SCFGs) which are a probabilistic extension of CFGs were found to be suitable

for integration with real-life vision modules. SCFGs were used by Ivanov and

Bobick [84] to model the semantics of activities whose structure was assumed to

be known. They used HMMs for low-level primitive detection. The grammar

production rules were augmented with probabilities and a ‘‘skip’’ transition was

introduced. This resulted in increased robustness to insertion errors in the input

stream and also to errors in low-level modules. Moore and Essa [85] used SCFGs to

model multitasked activities—activities that have several independent threads of

execution with intermittent dependent interactions with each other as demonstrated

in a Blackjack game with several participants. In syntactic approaches, one only

needs to enumerate the list of primitive events that need to be detected and the set of

production rules that define higher level activities of interest. Once the rules of a

CFG have been formulated, efficient algorithms to parse them exist [86,87] which

have made them popular in real-time applications.

In many cases, it is desirable to associate additional attributes or features to the

primitive events. For example, the exact location in which the primitive event occurs

may be significant for describing an event, but this may not be effectively encoded

in the (finite) primitive event set. Thus, attribute grammars achieve greater expres-

sive power than traditional grammars. Probabilistic attribute grammars have been

used by Joo and Chellappa [88] for multiagent activities in surveillance settings.
6.2.3 Logic and Linguistic Models
Logic-based methods rely on formal logical rules to describe commonsense

domain knowledge to describe activities. Logical rules are useful to express domain

knowledge as input by a user or to present the results of high-level reasoning in an

intuitive and human-readable format. Declarative models [89] describe all expected

activities in terms of scene structure, events, etc. The model for an activity consists

of the interactions between the objects of the scene. Medioni et al. [90] propose a

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 255
hierarchical representation to recognize a series of actions performed by a single

agent. Symbolic descriptors of actions are extracted from low-level features through

several midlevel layers. Next, a rule-based method is used to approximate the

probability of occurrence of a specific activity by matching the properties of the

agent with the expected distributions (represented by a mean and a variance) for a

particular action. In a later work, Hongeng et al. [91] extended this representation by

considering an activity to be composed of several action threads. Each action thread

is modeled as a stochastic finite-state automation. Constraints between the various

threads are propagated in a temporal logic network. Shet et al. [92] propose a system

that relies on logic programming to represent and recognize high-level activities.

Low-level modules are used to detect primitive events. The high-level reasoning

engine is based on Prolog and recognizes activities which are represented by logical

rules between primitives. These approaches do not explicitly address the problem of

uncertainty in the observation input stream. To address this issue, a combination of

logical and probabilistic models was presented in Tran and Davis [93] where each

logical rule is represented as first-order logic formula. Each rule is further provided

with a weight, where the weight indicates a belief in the accuracy of the rule.

Inference is performed using a Markov-logic network.

While logic-based methods are a natural way of incorporating domain knowledge,

they often involve expensive constraint satisfaction checks. Further, it is not clear how

much domain knowledge should be incorporated in a given setting—incorporating

more knowledge can potentially make the model rigid and nongeneralizable to other

settings. Further, the logic rules require extensive enumeration by a domain expert for

every deployment.

In most practical deployments that use any of the aforementioned approaches,

symbolic activity definitions are constructed in an empirical manner, for example,

the rules of a grammar or a set of logical rules are specified manually. Though

empirical constructs are fast to design and even work very well in most cases, they

are limited in their utility to specific deployments for which they have been

designed. Hence, there is a need for a centralized representation of activity defini-

tions or ontologies for activities which are independent of algorithmic choices.

Ontologies standardize activity definitions, allow for easy portability to specific

deployments, enable interoperability of different systems, and allow easy replication

and comparison of system performance. Though ontologies provide concise high-

level definitions of activities, they do not necessarily suggest the right ‘‘hardware’’

to ‘‘parse’’ the ontologies for recognition tasks. We refer the reader to Akdemir et al.

[94] for a more detailed discussion of issues related to design and evaluation of

ontologies.

We also refer the reader to Turaga et al. [95] for a more detailed review of action

and activity recognition methods.

256 P. TURAGA ET AL.
7. A Unified Approach for Recognizing
Simple Actions and Complex Activities

In this section, we propose a general framework for activity perception and

recognition, from which specific algorithms can be derived. The perception of

activities can be seen as proceeding from a sequence of 2D images to a semantic

description of the activity. Activity perception can be naturally decomposed into the

following three stages:

1. Dynamic sketch

2. Action sketch

3. Semantic sketch

Dynamic sketch: The purpose of early stages of vision is to construct primitive

descriptions of the action contents in the frame. These primitive descriptions must be

rich enough to allow for inference and recognition of activities [96]. A significant

portion of information that is available invideos is actuallyuninteresting for the purpose

of activity-based video indexing and only serves to confound the latter stages of the

algorithms. One very important characteristic of this stage is to weed out all the

unnecessary sensory information and retain just those elements that are relevant for

activity-based video indexing. Visual encoding mechanisms present in the human brain

mimic this phenomenon and this is called predictive coding. Barlow [97] and Srinivasan

et al. [98] contend that predictive coding is not just a mechanism for compression but

actually goes much further and enables animals to process information in a timely

manner.We refer the interested reader to earlyworks ofMarr andFreeman [96],Barlow

[97], and Srinivasan et al. [98] on the importance of this stage of visual processing in

order to enable vision systems to react and process information in a timely manner.

Action sketch: Studies into human behavior show that human actions can be

temporally segmented into elementary units, where each unit consists of function-

ally related movement [99]. For example, a car parking activity may be considered

to be formed of the following primitives—‘‘Car enters a parking lot,’’ ‘‘Car stops in

the parking slot,’’ ‘‘Person walks away from the car.’’ Such a description requires the

ability to segment an activity into its constituents and then develop a description for

each of the constituent actions. Each constituent action is like a word describing a

short, consistent motion fragment. Hence, this stage can be interpreted as providing

a ‘‘vocabulary’’ with which to create sentences (activities).

Representing activities using such linguistic models has been in existence in

various other fields and disciplines. Several dance notation schemes are used in

practice to interpret complex dance moves. Though not extremely detailed, they are

easy to interpret and reproduce in actual steps. It has also been found that the most

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 257
commonly observed human activities in surveillance settings such as reaching,

striking, etc. are characterized by distinctive velocity profiles of the limbs that can

be conveniently modeled as a specific sequence of individual segments—constant

acceleration followed by constant velocity followed by constant deceleration [100].

This lends credence to the fact that human actions can be modeled as a sequence of

primitive actions, where each action is governed by a simple model.

Semantic sketch: Semantic descriptions perform the same function as grammatical

rules that characterize a language. They detail how several constituent action primi-

tives may be combined together in order to construct or recover complex activities.

The most common rules for creating complex activities from constituent actions are

sequencing, co-occurrence, and synchronization. For example, a single-threaded

activity can be said to consist of a linear sequence of a few primitives. An example

of a single-threaded activity is ‘‘Person approaches a door’’! ‘‘Person swipes the

access card’’! ‘‘Person enters a building.’’ Similarly, a complex multithreaded activ-

ity can be seen as a collection of several single-threaded activities with some con-

straints such as concurrence and synchronization among them. Thus, this stage can be

seen as providing the rules for combining the primitives—similar to a set of grammat-

ical rules needed to construct meaningful sentences from individual words.

Based on the above discussions, we assume that a complex activity can be broken

down into its simpler action elements. During each action element, the motion of the

human remains consistent. Each action element is modeled using a LDS. More

complex activities can then be constructed using the primitives using a variety of

conjunction operations on the primitives. In our approach, we will discuss a discrete-

time switching model, and a time-varying model built from the simpler primitives.

First, we give an overview of modeling primitives using LDSs.
8. Understanding the Space of Primitives

Let us consider the LDS model discussed in Section 5.2. Let f(t) be a sequence of
features extracted from a video indexed by time t, the LDS model parameterizes the

evolution of the features f(t) using the following equations:

f ðtÞ ¼ CzðtÞ þ wðtÞ wðtÞ � Nð0;RÞ ð5Þ
zðtþ 1Þ ¼ AzðtÞ þ vðtÞ vðtÞ � Nð0;QÞ ð6Þ

where, z 2 R
d is the hidden state vector, A 2 R

d�d the transition matrix, and

C 2 R
p�d the measurement matrix. f 2 R

p represents the observed features while

w and v are noise components modeled as normal with 0 mean and covariances

R 2 R
p�p and Q 2 R

d�d, respectively. For high-dimensional time-series data

258 P. TURAGA ET AL.
(dynamic textures, etc.), the most common approach is to first learn a lower

dimensional embedding of the observations via PCA, and learn temporal dynamics

in the lower dimensional space. Closed form solutions for learning the

model parameters (A, C) from the feature sequence (f1:T) have been proposed by

Doretto et al. [57,60] and are widely used in the computer vision community. Let

observations f(1), f(2), . . ., f(t), represent the features for the time indices 1, 2, . . ., t.
Let [f(1), f(2), . . ., f(t)]¼USVT be the singular value decomposition of the data.

Then Ĉ¼U, Â¼SVTD1V(V
TD2V)

�1S�1, where D1¼ [00;It�1 0] and

D2¼ [It�1 0;00].

For the model of Equation (6), starting from an initial condition z(0), it can be

shown that the expected observation sequence is given by

E

f ð0Þ
f ð1Þ
f ð2Þ
:
:

2
66664

3
77775
¼

C
CA
CA2

:
:

2
66664

3
77775
zð0Þ ¼ O1ðMÞzð0Þ ð7Þ

Thus, the expected observation sequence generated by a time-invariant model

M¼ (A, C) lies in the column space of the extended observability matrix given by

OT
1 ¼ ½CT; ðCAÞT; ðCA2ÞT; . . . ; ðCAnÞT; . . .� ð8Þ

Several distance metrics exist to measure the distance between linear dynamic

models. The simplest method to measure distance is the L�2 norm between model

parameters. Martin [65] proposed a more principled method to measure the distance

between ARMA models based on cepstral coefficients. A unifying framework based

on subspace angles of observability matrices was presented in Cock and Moor [63]

to measure the distance between ARMA models. Specific metrics such as the

Frobenius norm and the Martin metric [65] can be derived as special cases based

on the subspace angles. Recently, Vishwanathan et al. [67] presented a framework to

extend the Cauchy–Binet kernels to the space of dynamical systems and incorporated

the dependence on initial conditions of the dynamical systems as well. Subspace

angles (yi, i¼1, 2, . . ., n) between two ARMAmodels are defined in Cock and Moor

[63] as the principal angles (y, i¼1, 2, . . ., n) between the column spaces generated

by the observability spaces of the two models extended with the observability

matrices of the inverse models [63]. The subspace angles (y1, y2, . . .) between the

range spaces of two matrices A and B is recursively defined as follows [63],

cos y1 ¼ max
x;y

jxTATByj
jjAxjj2jjByjj2

¼ jxT1ATBy1j
jjAx1jj2jjBy1jj2

ð9Þ

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 259
cos yk ¼ max
x;y

jxTATByj
jjAxjj2jjByjj2

¼ jxTk ATBykj
jjAxkjj2jjBykjj2

fork ¼ 2; 3; . . . ð10Þ

subject to the constraints xTi A
TAxk ¼ 0 and yTi B

TByk ¼ 0 for i¼1, 2, . . ., k�1. The

subspace angles between two ARMA models [A1, C1, K1] and [A2, C2, K2] can be

computed by the method described in Cock and Moor [63]. Using these subspace

angles yi, i¼1, 2, . . ., n, three distances, Martin distance (dM), gap distance (dg), and
Frobenius distance (dF) between the ARMA models are defined as follows:

d2M ¼ ln
Yn
i¼1

1

cos2ðyiÞ ; dg ¼ sin ymax; d2F ¼ 2
Xn
i¼1

sin2 yi ð11Þ

In experimental implementations, we approximate the extended observability matrix

by the finite observability matrix as is commonly done [64].

OT
m ¼ CT; ðCAÞT; ðCA2ÞT; . . . ; ðCAm�1ÞT

h i
ð12Þ

The size of this matrix ismp�d. The column space of this matrix is a d-dimensional

subspace of Rmp, where d is the dimension of the state-space z in Equation (6). d is

typically of the order of 5–10. To numerically represent the subspace spanned by the

columns of this matrix, we store an orthonormal basis computed by Gram–Schmidt

orthonormalization.

The set of all d-dimensional linear subspaces of R
n is called the Grassmann

manifold which will be denoted as Gn,d. The set of all n�d orthonormal matrices is

called the Stiefel manifold and shall be denoted as S
n ;d
. Since, a subspace is a point

on a Grassmann manifold—an LDS can be alternately identified as a point on the

Grassmann manifold corresponding to the column space of the observability matrix.

Now, the goal is to devise methods for classification and recognition using these

model parameters. This implies that we are interested in computing statistical,

linguistic, and semantic statistical models over the primitive space—the Grassmann

manifold. To do this, we need a deeper understanding of the geometry of this space.

We discuss this in the next section.
8.1 The Manifold Structure of Subspaces

On a computer, a subspace is stored as an orthonormal matrix which forms a basis

for the subspace. As mentioned earlier, orthonormal matrices are points on the

Stiefel manifold. However, since the choice of basis for a subspace is not unique,

any notion of distance and statistics should be invariant to this choice. This requires

us to interpret each point on the Grassmann manifold as an equivalence of points on

260 P. TURAGA ET AL.
the Stiefel manifold, where all orthonormal matrices that span the same subspace are

considered equivalent. This interpretation is more formally described as a quotient
interpretation, that is, the Grassmann manifold is considered a quotient space of the

Stiefel manifold. Quotient interpretations allow us to extend the results of the base

manifold such as tangent spaces, geodesics, etc. to the new quotient manifold. In our

case, it turns out that the Stiefel manifold itself can be interpreted as a quotient of a

more basic manifold—the special orthogonal group SO(n). A quotient of Stiefel is

thus a quotient of SO(n) as well. Thus, we shall study the Grassmann as a quotient of

SO(n). In what follows, first we review relevant results of SO(n), then present the

required concepts from differential geometry that enables us to derive distances and

statistical models on the special manifolds.

Let GL(n) be the set of n�n nonsingular matrices; this set is called the

generalized linear group because it is also a group with the group operation given

by matrix multiplication. The set GL(n) possesses an additional structure that makes

it a differentiable manifold. One of its properties is that although it is not a vector

space, it can be locally approximated by subsets of a vector space. The dual proper-

ties of being a group and a differentiable manifold make it a Lie group. If we

consider the subset of all orthogonal matrices, and further restrict to the ones with

determinantþ1, we obtain a subgroup SO(n), called the special orthogonal group. It
can be shown that this is a submanifold of GL(n) and, therefore, also possesses the

Lie group structure. Since it has n2 elements and nþn(n�1)/2 constraints (unit

length columns!n constraints and perpendicular columns!n(n�1)/2 constraints),

it is an n(n�1)/2D Lie group.

The Grassmannmanifold is the set of all d-dimensional subspace of Rn. Here, we

are interested in d-dimensional subspaces and not in a particular basis. In order

to obtain a quotient space structure for Gn,d, let SO(d)�SO(n�d) be a subgroup of

SO(n) using the embedding fb: (SO(d)�SO(n�d))!SO(n):

fbðV1;V2Þ ¼ V1 0

0 V2

� �
2 SOðnÞ: ð13Þ

A point U on S
n ;d

is represented as a tall–thin n�d orthonormal matrix. The

corresponding equivalence class of n�dmatrices [U]¼UR, for R 2 GLðdÞ is called
the Procrustes representation of the Stiefel manifold. Thus, to compare two points in

Gn,d, we simply compare the smallest squared distance between the corresponding

equivalence classes on the Stiefel manifold according to the Procrustes representa-

tion. Given matrices U1 and U2 on S
n ;d
, the smallest squared Euclidean distance

between the corresponding equivalence classes is given by

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 261
d2Procrustð½U1�; ½U2�Þ ¼ min
R

trðU1 � U2RÞTðU1 � U2RÞ ð14Þ

¼ min
R

trðRTR� 2UT
1U2Rþ IkÞ ð15Þ

When R varies over the orthogonal group O(d), the minimum is attained at

R ¼ H1H
T
2 ¼ AðATAÞ�1=2

, where A ¼ H1DH
T
2 is the singular value decomposition

of A. We refer the reader to Chikuse [101] for proofs and alternate cases.

8.2 Supervised and Unsupervised Learning
of Activities from Videos

Many of the video-based analysis tasks of interest involve one of two tasks (a)

recognition of an input video as one of several classes or (b) finding underlying

structural similarities in a large collection of videos. Given videos of activities, the

LDS model parameters M¼ (A, C) are estimated using the methods described in

Section 8. Subsequently, the finite observability matrix Om(M) is computed. Then for

each observability matrix, an orthonormal basis is computed using standard SVD-based

algorithms. So, we now have a set of subspaces, or in other words a point cloud on the

Grassmannmanifold. In recognitionproblems,wealso havecorrespondingactivity class

labels provided with each point. In this section, we shall provide methods that follow

from the theory described above to solve the supervised and unsupervised learning

problems. Toward this task, one can use the Riemannian geometry of the Grassmann

manifold to perform calculus. This leads to principledmethods for computation ofmean

of a set of points, estimating class-conditional probability density function (pdfs),

clustering, etc.We refer the reader to Turaga [102] for an overview of these approaches.

For brevity, here we shall discuss a simpler extrinsic way of statistical modeling.

Given several examples from a class (U1, U2, . . ., Un) on the manifold, the class

conditional density can be estimated using an appropriate kernel function. We first

assume that an appropriate choice of a divergence on the manifold has been made

such as the one above. For the Procrustes measure, the density estimate is given by

Chikuse [101] as

f̂ ðU;MÞ ¼ 1

n
CðMÞ

Xn
i¼1

K½M�1=2ðIk � UT
i UU

TUiÞM�1=2� ð16Þ

where K(T) is the kernel function, M is a d�d positive definite matrix which plays

the role of the kernel width or a smoothing parameter. C(M) is a normalizing factor

chosen so that the estimated density integrates to unity. The matrix valued kernel

function K(T) can be chosen in several ways. We have used K(T)¼exp(� tr(T)) in all

262 P. TURAGA ET AL.
the experiments reported in this chapter. In this nonparametric method for density

estimation, the choice of kernel width M becomes important. Thus, though this is a

noniterative procedure, the optimal choice of the kernel width can have a large

impact on the final results. In general, there is no standard way to choose this

parameter except for cross-validation.
8.3 Activity Recognition Experiments

We performed a recognition experiment on the publicly available INRIA dataset

[103]. The dataset consists of 10 individuals performing 11 actions, each action

executed three times at varying rates while freely changing orientation. We used the

view-invariant representation and features as proposed in Weinland et al. [103].

Specifically, we used the 16�16�16 circular FFT features proposed by Weinland

et al. [103]. Each activitywasmodeled as a LDS. Testingwas performed using a round-

robin experiment, where activitymodelswere learnt using nine actors and tested on one

actor. For the kernelmethod, all available training instances per classwere used to learn

a class-conditional kernel density as described in Section 8.2. In Table I, we show the

recognition results obtained using four methods. The first column shows the results

obtained using dimensionality reduction approaches of Weinland et al. [103] on
Table I

COMPARISON OF VIEW INVARIANT RECOGNITION OF ACTIVITIES IN THE INRIA DATASET USING (A) BEST

DIM. RED. [103] ON 16�16�16 FEATURES, (B) BEST DIM. RED. [103] ON 64�64�64 FEATURES, (C)

NEAREST NEIGHBOR USING ARMA MODEL DISTANCE (16�16�16 FEATURES), (D) NEAREST NEIGHBOR

USING PROCRUSTES DISTANCE (16�16�16 FEATURES), AND (E) EXTRINSIC KERNEL METHOD M¼ I

Activity

Best Dim.

Red. [103] 163

volume

Best Dim.

Red. [103] 643

volume

Subspace

angles 163

volume

Procrustes

metric 163

volume

Extrinsic

kernel

Check watch 76.67 86.66 93.33 90 100

Cross arms 100 100 100 96.67 100

Scratch head 80 93.33 76.67 90 96.67

Sit down 96.67 93.33 93.33 93.33 93.33

Get up 93.33 93.33 86.67 80 96.67

Turn around 96.67 96.67 100 100 100

Walk 100 100 100 100 100

Wave hand 73.33 80 93.33 90 100

Punch 83.33 96.66 93.33 83.33 100

Kick 90 96.66 100 100 100

Pick up 86.67 90 96.67 96.67 100

Average 88.78 93.33 93.93 92.72 98.78

These results were first presented in Turaga et al. [69].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 263
16�16�16 features.Weinland et al.[103] reports recognition results using a variety of

dimensionality reduction techniques (PCA,LDA,Mahalanobis) andherewechoose the

row-wise best performance from their experiments (denoted ‘‘Best Dim. Red.’’) which

were obtained using 64�64�64 circular FFT features. The third column corresponds

to themethod of using subspace angles-based distance between dynamicalmodels [63].

Column 4 shows the nearest-neighbor classifier performance using Procrustes distance

measure (16�16�16 features).We see that themanifoldProcrustes distance performs

as well as ARMA model distance [63]. Statistical modeling using the extrinsic kernel

method outperforms all other methods.
9. Complex Activity Models: Cascade of
Dynamical Systems

Most activities involving a single human in surveillance settings consist of the

human executing a series of action elements in order to achieve a certain goal. For

example, a man driving a car into a parking lot, parking the car, alighting from it,

and walking out of the parking lot (series of action elements) contributes to a typical

activity. Moreover, several multihuman activities may also be adequately repre-

sented by a sequence of actions. Thus, the cascade of LDS (CLDS) model [104] is an

appropriate model for representing a wide variety of common activities.

The model for an activity must be able to represent each of the action elements

separately while simultaneously being able to detect the boundaries between them.

As mentioned earlier, we use the consistency of features within each action element

as a cue to discover the boundaries between them. The specific way the action

elements interact with each other is used to discover the activities themselves. The

overall system overview is shown in Fig. 9. Each of the components will be

described in detail in the ensuing discussion.
9.1 Modeling Action Elements

As already discussed, the dynamics of each action element can be modeled using a

time-invariant dynamical system. In several scenarios (such as far-field surveillance,

objects moving on a plane, etc.), it is reasonable to model constant motion in the real

world, using a LDS on the image plane. Given the boundaries between action

elements, we model each of these segments using a LDS. An activity is composed

of a series of action elements. The activity model is now composed of a cascade or a

sequence of such dynamical systems. In reality, most activities have a very specific

temporal order for the execution of action elements. For example, if our goal is to get

Input video

Dynamic sketch

A

B

C

D

E

F

G

Action sketch

Refine

Semantic sketch

Temporal
segmentation

Model
k

(Ak,Ck) Model
k + 1

Map to
model space

Cluster in model
space with invariances

Identify repetitive
sequences

Model
k + 2

Low level
features

Model Space

12212334154

54321

1

12

15

12

10 10

10

8
5

8

6

0
−5

6

4

4

2

−1

−2

−2

2

0

0

0

5

10

15

2
3

4
5

•• •
N-gram

statistics

B
ou

nd
ar

y

(Ak+ 1,Ck+ 1)

FIG. 9. System overview: (A) Input video, (B) feature extraction (dynamic sketch), (C) temporal seg-

mentation, (D) build and learndynamicalmodels, (E, F) cluster inmodel space taking into account invariances

on the data, and (G) identify repetitive activities. Figure courtesy Turaga et al. [104].

264 P. TURAGA ET AL.
to an office building, then the sequence of actions executed might be—drive into

parking lot, park car, alight from car, and walk away from the parking lot. Therefore,

we model an activity as a cascade of action elements, with each action element

modeled as an LDS. Figure 10 illustrates the complete model for such an activity.
9.2 Learning Model Parameters

Now, we have modeled an activity as a cascade of dynamical systems. But given a

video sequence, we first need to segment the video into action elements and discover

the relationship among them. The challenge is to accomplish all of this in a

Switching time
T1

A1, C1 A2, C2

Observed flow feature f(t)

A3, C3

Switching time
T2

FIG. 10. Illustration of a cascade of three linear dynamical systems. The temporal order of the

execution of these dynamical models and their switching times are shown with arrows. Figure courtesy

Turaga et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 265
completely unsupervised manner while being invariant to variabilities in an activity

like execution rate, resolution of video, rotation and translation, etc. We will now

describe an algorithm to automatically segment the video and learn the model

parameters in an unsupervised manner.

As mentioned earlier, we use ‘‘consistency’’ of features within each action

element as a cue to discover boundaries between them. Naturally, the exact measure

of ‘‘consistency’’ is tied to the specific feature at hand. For example, ST curvature

[105] is a widely used metric to discover boundaries for point trajectories. Measures

for shape deformation such as Yezzi and Soatto [106] are suited for discovering

segment boundaries in shape sequences. In this section, we describe a simple method

for discovering action boundaries that works well for background subtracted silhou-

ettes and optical flow.

For each time-instant t, we predict the current observation f̂ t using a set of K past

observations { ft�1, . . ., ft�K}. If the observation ft deviates significantly from the

predicted value by a threshold, that is, if ft � f̂ t > thresh
�� , then a boundary is

detected at the time-instant t. In our case, the prediction f̂ t is derived from the past

observations as follows. For the first few (about 5) set of frames after the beginning

of a new segment, we cumulatively learn a single set of affine parameters for the

change in the feature. For every incoming new frame, we predict the new feature

using the estimated set of affine parameters. Learning the affine parameters for

each segment can be achieved in closed form using the properties of the Fourier

transform [107].

This segmentation scheme is suboptimal due to the assumption of affine motion.

To overcome this, we iterate back and forth between learning the LDS model for

each segment and tweaking the segment boundaries till convergence is reached.

266 P. TURAGA ET AL.
Taking the output of this initial segmentation as a starting point, we learn the

LDS model for each segment. Without loss of generality, let S1¼ (A1, C1) and

S2¼ (A2, C2) be two adjacent segments and their corresponding LDS models.

Suppose the temporal span of S1 is [t1, tb] and that of S2 is [tb, t2]. Here tb denotes
the boundary between the segments. As described in Section 8, columns of Ck

correspond to the top d principal components (PCs) of the observations in segment

k. To evaluate the boundary according to the learnt models, we compute the

reconstruction error of all the observations according to the PCs in the corresponding

segments. We move the boundary by an amount t in forward and backward direc-

tions and choose the one that minimizes this error. Thus, we search for the minima of

the following cost functional:

DðtÞ ¼
Xtbþt

t¼t1

����
����C1ðCT

1 ftÞ � ft

����
����
2

þ
Xt2
t¼tbþt

����
����C2ðCT

2 ftÞ � ft

����
����
2

ð17Þ

where ft is the observation at time t and t2 [�T, T]. In our experiments, we typically

chose T to be 10. The new boundary is found as tnewb ¼ toldb þ argmintDðtÞ. With the

new boundary the models are learnt again, and the process is repeated till conver-

gence, that is, the boundary does not change anymore arg mintD(t)¼0.

Once a long video of activities has been segmented into its primitives, we can

estimate a vocabulary of prototypes that will be used to learn linguistic models of

human activities. Since, the atomic actions are represented as LDSs, we need a

clustering algorithm on this space to provide us with the action prototypes. Here, we

used the normalized cuts clustering algorithm with the Procrustes measure on the

Grassmann manifold to obtain the clusters. After clustering the action elements

each segment is assigned a label. Suppose we have the following sequence of labels

(L1, L3, L2, L6, L7, L8, L1, L3, L5, L2, L6, L1, L7, L8). Persistent activities in the video

would appear as a repetitive sequence of these labels. From this sequence, we need

to find the approximately repeating patterns. We say approximate because over-

segmentation may cause the patterns to be not exactly repetitive. We can say that

(L1, L3, L2) and (L6, L7, L8) are the repeating patterns, up to one insertion error. To

discover the repeating patterns, we build the n-gram statistics of the segment labels

as shown in Fig. 9G. We start by building a bigram, trigram, and tetragram models.

In our experience, oversegmentation of the video is more common than under-

segmentation. Thus, we allow for up to one insertion error while building the n-
gram statistics. We prune the bigrams which appear as a subsequence of a trigram.

We prune the trigrams in a similar fashion. Finally, we declare the n-grams with a

count above a threshold (depending on the length of the video) as the repeating

patterns in the video. The cascade structure of individual activities is the exact

sequence of the prototypes in the n-grams.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 267
9.3 Experiments: Video Summarization
Using Cascade Models

Most video-sharing websites feature user-supplied tags. It is assumed that the tags

describe what is going on in a video. This has several drawbacks, since tags are

subjective and the same meaning may be conveyed by a multitude of tags. Further, it

is not uncommon to encounter tags whose meaning is not known to a user and are

sometimes irrelevant to the video. The idea of user-generated tags would also not

scale with the increasing size of the dataset. Instead of providing such textual

descriptions, we propose to analyze the patterns of motion in a video and automati-

cally extract ‘‘clusters’’ which when visually presented to a user can convey

maximum information about the contents of the video. For example, given a tennis

video, short segments depicting elements such as forehand, backhand, smash, etc.

when visually presented to a user would convey more information than a set of

textual descriptions.

We show some clustering results on a near-field video sequence of a human

performing five different complex activities—throw, bend, squat, bat, and pick

phone. We were able to learn the cascade of dynamical systems model in a

completely unsupervised manner. We manually validated the segment boundaries

and the corresponding discovered activities. We call each discovered repetitive

pattern a motif. The classification of the activities into motifs is tabulated in

Table II. We see that the table has a strong diagonal structure, indicating that

each of the discovered motifs corresponds to one of the activities in the dataset.

Motifs 1–5 correspond to ‘‘bending,’’ ‘‘squatting,’’ ‘‘throwing,’’ ‘‘pick up phone,’’

and ‘‘batting,’’ respectively. This demonstrates that the algorithm does indeed

discover semantically meaningful boundaries and also is able to distinguish between

various activities by learning the right cascade structure of the action prototypes.
Table II

COMPOSITION OF THE DISCOVERED CLUSTERS IN THE UMD DATABASE

Activity type Motif 1 Motif 2 Motif 3 Motif 4 Motif 5

Bending 10 1 0 2 1

Squatting 2 8 2 0 0

Throwing 0 0 7 0 1

Pick phone 3 0 0 9 0

Batting 0 0 0 1 9

Results first presented in Turaga et al. [104].

Automatically discovered labels (unsupervised−clustering)

Manual labeling

A

B

FIG. 11. Color coded activity labeling for a 4000 frame video sequence of the UMD database: (A)

Manual labeling and (B) unsupervised clustering result. Image best viewed in color. Figure courtesy

Turaga et al. [104].

268 P. TURAGA ET AL.
Figure 11 shows activity labels for the entire video sequence extracted manually

and automatically. Matching of the colors in the figure indicates that the algorithm is

able to discover and identify activities in an unsupervised manner. We found that the

errors in labeling are typically near the transition between two activities, where the

actual labeling of those frames is itself subject to confusion. To visualize the clusters

and to see the trajectories of each activity, we embedded each segment into a 6D

Laplacian eigenspace. Dimensions 1–3 are shown in Fig. 12A and dimensions 4–6 in

Fig. 12B. We see that the trajectories of the same activity are closely clustered

together in the Laplacian space.
9.3.1 INRIA: Free-Viewpoint Database [103]
As described earlier, the INRIA multiple-camera multiple video database of the

PERCEPTION group consists of 11 daily-live motions performed each 3 times by

10 individuals. The actors freely change position and orientation. Every execution

of the activity is done at a different rate. For this dataset, we extract 16�16�16

circular FFT features as described in Weinland et al. [103]. Instead of modeling

each segment of activity as a single motion history volume as in Weinland et al.

[103], we build a time series of motion history volumes using small sliding

windows. This allows us to build a dynamic model for each segment. We use

the segmentation method proposed in Weinland et al. [108]. Using these features,

we first performed a recognition experiment on the provided data. Next, we

performed a clustering experiment on all 30 sequences (10 actors�3 sequences

per actor). Segmentation was performed using the method described in Weinland

et al. [108]. The clustering results are shown in Table III. The strong diagonal

structure of the table indicates that meaningful clusters are found. We also see that

some activities such as ‘‘Check Watch’’ and ‘‘Cross Arms’’ are confused. Simi-

larly, ‘‘Scratch Head’’ is most often confused with ‘‘WaveHand’’ and ‘‘Cross Arms.’’

B

10

8

6

4

2

0

−2
5

0

−5

−10 −4 −2 0 2 4 6

Bat

Phone

A

−2
0

2
4

−4−5

0

5

10
−10

−8

−6

−4

−2

0

2

Bend

Squat

Throw

FIG. 12. (A) Visualization of the Clusters in Laplacian space dimensions 1–3. (B) Visualization of

Clusters in Laplacian space dimensions 4–6. Best viewed in color. Figure courtesy Turaga et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 269
Such a confusion may be attributed to the similar and also sparse motion patterns that

are generated by those activities.

We also show the actual summarization results obtained on two of the actors—

‘‘Florian’’ and ‘‘Alba’’ in Figs. 13 and 14.

Table III

CONFUSION MATRIX SHOWING VIEW-INVARIANT CLUSTERING USING THE PROPOSED

ALGORITHM ON THE INRIA DATASET

Motifs 1 2 3 4 5 6 7 8 9 10 11

Sit down 28 3 0 0 0 1 0 0 0 0 0

Get up 0 31 0 0 0 0 0 0 0 0 0

Turn around 0 0 28 0 0 0 1 0 0 0 0

Check watch 0 0 0 17 5 2 0 6 4 0 0

Cross arms 0 0 0 0 16 3 0 10 1 0 1

Scratch head 1 0 0 3 9 3 0 7 4 0 1

Walk 0 0 0 0 0 0 30 0 0 0 0

Wave hand 0 0 0 6 0 4 0 10 1 0 0

Punch 0 0 0 0 0 4 0 7 9 5 0

Kick 0 0 0 1 0 1 0 0 2 26 0

Pick up 2 2 0 1 0 1 0 0 4 0 23

Results first presented in Turaga et al. [104].

Ground truth

A

B

C

Ground truth

Check watch
Cross arms
Scratch head
Sit down
Get up
Turn around
Walk
Wave hand
Punch
Kick
Pick up

Ground truth

Discovered labeling

Discovered labeling

Discovered labeling

FIG. 13. Color coded activity labeling for three sequences by actor ‘‘Florian’’. First row in each is the

ground truth, second row is the discovered labeling. Image best viewed in color. Figure courtesy Turaga

et al. [104].

270 P. TURAGA ET AL.

Ground truth

A

B

C

Ground truth

Ground truth

Discovered labeling

Discovered labeling

Discovered labeling

Check watch
Cross arms
Scratch head
Sit down
Get up
Turn around
Walk
Wave hand
Punch
Kick
Pick up

FIG. 14. Color coded activity labeling for three sequences by actor ‘‘Alba’’. First row in each is the

ground truth, second row is the discovered labeling. Image best viewed in color. Figure courtesy Turaga

et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 271
10. More General Activity Models:
Time-Varying Models

Complex human activities have frequently been modeled as a composition of

simpler events. In several domains, it has been observed that human activities are

better described as a continuum of actions where the individual boundaries between

actions are often blurry [109]. To draw a parallel to language processing, it has been

long known in the speech community that words spoken in isolation sound quite

different when spoken in continuous speech. This is commonly attributed to ‘‘coar-

ticulation’’ and ‘‘assimilation’’ effects. Similarly, when actions appear in a

connected form, it is hard to identify precisely where an action ends and where

another begins. Consider the action shown in Fig. 15A and a synthesized version

which relies on finding segment boundaries and fitting models to each segment in

Fig. 15B. As can be seen, segmentation followed by modeling causes abrupt changes

B
A

C

FIG. 15. (A) Original sequence taken from the common activities dataset [119], (B) synthesis by a

sequence of linear dynamic models with boundaries shown by vertical yellow lines, and (C) synthesis by a

continuous time-varying model. It can be seen that when actions are segmented and modeled using

switching models, the synthesis results show abrupt changes in pose across boundaries whereas the time-

varying model results in a much more natural evolution of poses. Results first presented in Turaga and

Chellappa [110].

272 P. TURAGA ET AL.
to appear at segment boundaries during synthesis. This effect is also observed in sign

language where gestures are influenced by adjacent gestures [109], making segmen-

tation and recognition difficult. Unconstrained human activities are characterized by

a complex evolution of poses which is governed by an underlying dynamic process.

The underlying process is potentially highly nonlinear and time varying. We model

complex activities as outputs of a time-varying linear dynamical process. At each

time instant, we assume that the dynamical process is linear. We then allow the

parameters of the LDS to vary at each time instant. Let f ðtÞ 2 R
m denote the

observations (flow/silhouette, etc.) at time-instant t. Then, the time-varying dyna-

mical model is represented as Turaga and Chellappa [110]

f ðtÞ ¼ CðtÞzðtÞ þ wðtÞ; wðtÞ � Nð0;RðtÞÞ ð18Þ
zðtþ 1Þ ¼ AðtÞzðtÞ þ vðtÞ; vðtÞ � Nð0;QðtÞÞ ð19Þ

where zðtÞ 2 R
d is the hidden state vector of dimension d, A(t) is the time-varying

transition matrix and C(t) is the time-varying measurement matrix. w(t) and v(t) are
noise components modeled as normal with 0 mean and covariance R(t) and Q(t),
respectively. When the model parameters A, C, Q, R are constant, the model reduces

to the well-known time-invariant LDS which has been successfully applied in

several vision tasks [57]. In summary, the model consists of a sequence of para-

meters: the measurement matrix C(t) and the transition matrix A(t) and the noise

covariances R(t), Q(t).

10.1 Estimating the Time-Varying Parameters

For the time-invariant case, it is easily shown that there are infinitely many

choices of parameters that give rise to the same sample path f (t). Resolving this

ambiguity requires one to impose further constraints and choose a canonical model.

The conditions as proposed in Doretto et al. [57] are that m�d, rank(C)¼d and

CTC¼ I. The number of unknowns that need to be solved for are:md � ðdðd þ 1Þ=2Þ

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 273
forC, d2 forA, dðd þ 1Þ=2 forQ: resulting inmdþd2 unknowns (we have ignored the
observation noise covariance as of now). For each observed frame we get m equa-

tions. Hence, dþ1 linearly independent observations are sufficient to solve for the

required parameters (m(dþ1)>mdþd2 since m�d). As seen before, the parameter

estimates can be obtained in closed form using prediction error methods.

Estimation of time-varying models for time-series have been studied in various

domains such as speech processing, econometric data, and communication channels.

A commonly used assumption in these domains is that the time-varying AR (auto-

regressive) and ARMA (autoregressive moving average) parameters can be expressed

as linear combinations of known deterministic functions of time such as the Fourier

basis or the exponential basis [111].Other approaches includeTaylor-series expansions

of the model parameters such as in Rao [112] for econometric applications. Estimation

of time-varying single-input single-output (SISO) AR models have been proposed by

estimating an equivalent time-invariant single-input multiple-output (SIMO) process

[113] and was applied for channel estimation in communication networks. These

approaches are restricted to single-dimensional time-series data. Multidimensional

time-varying dynamical models traditionally arise as a result of linearizing a non-

LDS. In such cases, the time-varying parameters can be solved for analytically using

Taylor-series expansions around a ‘‘nominal trajectory’’ [62]. However, inmost practi-

cal applications including activity modeling, one does not know what the underlying

nonlinear equations are nor does one have the knowledge of a nominal trajectory.

Recently, linear parameter varying (LPV) systems have been proposed to model time-

varying processes. In these approaches, the time-varyingmodel parameters are consid-

ered to be linear combinations of a small set of time-invariant parameters. The linear

combination weights, also called the scheduling weights, change with time [114,115].

However, identification of LPV systems is computationally very expensive [115]. In

the following, we propose a computationally efficient and conceptually simple method

to estimate the time-varying parameters of a dynamical system without making strong

assumptions on the nature of the time-varying process.

To begin with, it is easily seen that even in the time-varying case there are

infinitely many choices of the model parameters that can give rise to the same

sample path f (t). So, we impose the same set of conditions as in the time-invariant

case, that is, m�d, rank(C(t))¼d and C(t)TC(t)¼ I. Based on the analysis given

above, there are mdþd2 unknowns for each time instant and m equations per time

instant. Obviously this is an ill-posed problem since there are far more unknowns

than there are equations. Hence, we impose another condition that the model

parameters stay constant in local temporal neighborhoods. The temporal neighbor-

hood in which the parameters are assumed to stay constant should also ensure that

dþ1 linearly independent observations can be obtained within the neighborhood.

In general, it cannot be guaranteed that a fixed dþ1 sized neighborhood will satisfy

274 P. TURAGA ET AL.
this condition. However, in our experience we found that a neighborhood of size

1.5d�2d was sufficient to meet this condition in most real-world human activities.

Typically, d is of the order of 5–10 and complex human activities extend to several

hundred frames. It is reasonable to assume that in short windows of about 15–20

frames the dynamics can be easily modeled by simple time-invariant dynamical

processes. We now have a sequence of dynamical systems which defines a trajectory

on the space of LDS. Before we discuss how we model this trajectory, we first

discuss the Grassmann manifold formulation of the LDS space.

Given a video of a long activity, first the time-varying model parameters

Mt¼ (At, Ct) are estimated using small temporal sliding windows and the method

described in Section 10.1. Subsequently, for each window the observability matrix

On(Mt) is computed. Then for each observability matrix, an orthonormal basis is

computed using standard SVD-based algorithms. So, we now have a sequence of

subspaces, or in other words a trajectory on the Grassmann manifold. To com-

pactly parameterize the subspace trajectories, we propose the following approach.
10.1.1 Grassmann Switching Model
Corresponding to an activity class C, suppose we are givenM subspace sequences

fSCi ðtÞgMi¼1. We consider the dynamics to be described by a set of K hidden states

L(1), . . ., L(K). The state at time t is denoted by Q(t) and the observation at time t is
denoted by S(t). The overall model for the activity consists of the K hidden states, the

intracluster pdfs f(S(t)|Q(t)¼L(i)), the transition probability matrix, and the prior

probability. In general, the Baum–Welch algorithm provides solutions for the above

problems in a ML sense. This requires one to have analytical expressions for the

intracluster pdfs and the gradient of the likelihood of a sequence in terms of

these parameters. In our case, we solve these problems in a much simpler,

although suboptimal way, as follows. Given a sequence of subspaces fSCi ðtÞgMi¼1,

the following procedure is adopted to estimate the switching model.

1. Cluster the points into K clusters or hidden-states L(1), . . ., L(K).
2. Estimate a pdf within each cluster f(S(t)|Q(t)¼L(i)).
3. Estimate the transition probabilities p(Q(t)¼L(i)|Q(t�1)¼L(j)) between the

clusters.

4. Estimate the prior probability p(Q(0)).

As before, we can use any standard clustering algorithm such as normalized cuts.

Within each cluster, we can use parametric or nonparametric density estimates as

described in Section 8.2 to estimate the intracluster pdf. Once the clusters are found,

we form the sequence of cluster labels corresponding to the sequence of subspaces.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 275
The sequence of labels is used to estimate the transition probabilities by bigram

counts. Thus, we have now learnt a switching model on the Grassmann manifold for

each activity class. Given a new subspace sequence, we need a method to classify it

into one of the action classes. In the case of standard HMMs, this problem is solved

by the forward–backward algorithm and its variants. We use a simpler version that

works much faster and using fewer computations. Given a sequence S(t) and an

activity model, we first assign each S(t) into one of the clusters of the model. Let us

denote by Q(t) the sequence of cluster labels thus obtained. Then, we compute the

likelihood of the sequence as p(Q(0))Pk f(S(k)|Q(k))p(Q(k)|Q(k�1)). Though this is

suboptimal than the forward–backward algorithm, we found that we obtain signifi-

cant computational advantages using these approximations. We refer to Turaga and

Chellappa [110] for more details of this approach.
10.2 Experiments: Video Summarization
and Clustering

We performed a clustering experiment on the figure skating dataset reported in Ref.

[116]. This data is very challenging since it is unconstrained and involves rapid motion

of both the skater and real-world motion of the camera, including pan, tilt, and zoom.

Some representative frames from the raw video are shown in Fig. 16. It should be noted

that the authors of Ref. [116] consider discovering action classes from static images.

Since, theydonot use temporal information, the results ofourmethodbasedondynamic

models cannot be directly compared with those of Wang et al. [116].
10.2.1 Low-Level Processing
We built color models of the foreground and background using normalized color

histograms. The color histograms are used to segment the background and fore-

ground pixels. Median filtering followed by connected component analysis is
FIG. 16. Sample images from the skating video from Wang et al. [116].

276 P. TURAGA ET AL.
performed to reject small isolated blobs. From the segmented results, we fit a

bounding box to the foreground pixels by estimating the 2D mean and second-

order moments along x and y directions. We perform temporal smoothing of the

bounding box parameters to remove jitter effects. The final feature is a rescaled

binary image of the pixels inside the bounding box.
10.2.2 Clustering Experiment
Most figure skating videos consist of a few established elements or moves such as

jumps, spins, lifts, and turns. A typical performance by skater or pair of skaters includes

several of these elements each performed several times. Due to the complex body

postures involved, it is a challenge even for humans to identify clear boundaries

between atomic actions. It is difficult to semantically define temporal boundaries of

an activity and define a metric for temporal segmentation, making it very difficult to

break the video into temporally consistent segments. Instead of performing explicit

segmentation, we build models for fixed length subsequences using sliding windows.

The results of a temporal segmentation algorithm that can split, such a complex video

intomeaningful segments, can be easily plugged in.We use 20 frame long overlapping

windows for building models of the video. For each segment, we store an orthonormal

matrix corresponding to the observability matrix of the model parameters. Then, we

performed k-means clustering on theGrassmannmanifold using normalized cuts. Also,

most of the ‘‘interesting’’ activities such as sitting spins, standing spins, leaps, etc. are

usually few and far between. Further, due to the subsequence approach, there will

necessarily be several segments that do not contain anymeaningful action. As a simple

example, a subsequence that contains the transition froma spin to a jumpwill not fit into

either of these action clusters. To discover the ‘‘interesting’’ activities, we first need to

remove these outlier segments. First, we cluster all the available subsequences into a

fixed number of clusters (say 10). Then, from each cluster we remove the outliers using

a simple criterion of average distance to the cluster. Then, we recluster the remaining

segments.We show the obtained clusters in Figs. 17–21. We observe that Clusters 1–4

correspond dominantly to ‘‘Sitting Spins’’, ‘‘Standing Spins,’’ ‘‘Camel Spins,’’ and

‘‘Spirals,’’ respectively, (in a spiral the skater glides on one foot while raising the free

leg above hip level). Cluster 5 on the other hand seems to capture the rest of the

‘‘uninteresting’’ actions.

Next, we present experiments demonstrating the strength of the model for

summarizing and recognizing complex activities. We show the results of summariz-

ing a long video containing a complex activity—the game of Blackjack. For this, we

used the dataset reported in Zhong et al. [8]. The game of Blackjack consists of a few

elements such as dealing cards, waiting for bids, shuffling the cards, etc. The goal is

to estimate a Grassmann switching model for the entire video of Blackjack. The

FIG. 17. Shown above are a few sequences from Cluster 1. Each row shows contiguous frames of a

sequence. We see that this cluster dominantly corresponds to ‘‘Sitting Spins.’’ Image best viewed in color.

See http://www.umiacs.umd.edu/�pturaga/VideoClustering.html for video results. Figure courtesy

Turaga et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 277
Grassmann switching model would then represent a ‘‘summary’’ of the game, where

the clusters of the model represent various elements of the game and the switching

structure represents how the game progresses. This video consists of about 1700

frames. We extracted the motion-histogram features as proposed in Zhong et al. [8]

for each frame of the video. The time-varying model parameters are estimated in

sliding windows of size 10. The dimension of the state vector is chosen to be d ¼ 5.

To estimate the Grassmann switching model for the game of Blackjack, we manually

set the number of clusters to 5. In Fig. 22, we show an embedding of the video

obtained from the model parameters using Laplacian eigenmaps. Each point corre-

sponds to a time-invariant model parameter (A, C) pair or equivalently a point on

the Grassmann manifold. Each cluster was found to correspond dominantly to a

http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html

FIG. 18. Shown above are a few sequences from Cluster 2. Each row shows contiguous frames of a

sequence. Notice that this cluster dominantly corresponds to ‘‘Standing Spins.’’ Image best viewed in

color. See http://www.umiacs.umd.edu/�pturaga/VideoClustering.html for video results. Figure courtesy

Turaga et al. [104].

278 P. TURAGA ET AL.
distinct element of the game as shown. The switching structure between the clusters

is encoded in the transitionmatrix and is shown in Fig. 23. As can be seen the switching

structure corresponds to a normal game of Blackjack. Since this is a data-driven

procedure, it should be noted that the switching structure will not necessarily be the

same for every individual Blackjack game. However, given two distinct Blackjack

games we can now quantify the notion of how similarly the two games proceeded.
11. View and Rate Variations

The distance metrics defined in Section 8 will break down when there is a change

in viewpoint or there is an affine transformation of the low-level features. Some

features such as shape are invariant to affine transformations by definition. Features

http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html

FIG. 19. Shown above are a few sequences from Cluster 3. Each row shows contiguous frames of a

sequence. Notice that this cluster dominantly corresponds to ‘‘Spirals.’’ Image best viewed in color.

See http://www.umiacs.umd.edu/�pturaga/VideoClustering.html for video results. Figure courtesy

Turaga et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 279
such as point trajectories can be easily made invariant to view and affine transforms.

But, in general, it is not guaranteed that a given feature is invariant under these

transformations (optical flow, background subtracted masks, motion history [23],

and other ‘‘image-like’’ features). Reliance on the feature to provide invariance to

these factors will tie the rest of the processing to that particular feature, which is not

desirable as different features are appropriate for different domains and video

characteristics. Thus, instead of relying on the feature, we propose a technique to

build these invariances into the distance metrics defined above. This allows the

algorithm flexibility in the choice of features.
11.1 Affine and View Invariance

In our model, under feature level affine transforms or view-point changes, the

only change occurs in the measurement equation and not in the state equation. As

described in Section 8, the columns of the measurement matrix (C) are the PCs of the
observations of that segment. Thus, we need to discover the transformation between

http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html

FIG. 20. Shown above are a few sequences from Cluster 4. Each row shows contiguous frames of a

sequence. This cluster dominantly corresponds to ‘‘Camel Spins.’’ Image best viewed in color. See http://

www.umiacs.umd.edu/�pturaga/VideoClustering.html for video results. Figure courtesy Turaga

et al. [104].

280 P. TURAGA ET AL.
the corresponding C matrices under an affine/view change. We begin by stating a

theorem that relates low-level feature transforms to transformation of the PCs.
Theorem 1

Let fXð�pÞg be a zero-mean random field where �p 2 D1 � R2. Let flXng and ffX
ng

be the eigenvalues and corresponding eigenfunctions in the K–L expansion of the
covariance function of X. Let T: D2!D1, where D2 � R2 be a continuous, differen-
tiable one-to-one mapping. Let fGð�qÞg, �q 2 D2 be a random field derived from X as
Gð�qÞ ¼ XðTð�qÞÞ. If the Jacobian of T, denoted by JTð�rÞ, is such that detðJTð�rÞÞ is
independent of �r, then the eigenvalues and eigenfunctions of G are given by
lGn ¼ lXn=jJT j1=2 and fG

n ð�qÞ ¼ fX
n ðTð�qÞÞ=jJT j1=2.
Proof

Refer to Turaga et al. [104].

http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html

FIG. 21. Shown above are a few sequences from Cluster 5. Each row shows contiguous frames of a

sequence. This cluster did not dominantly correspond to any ‘‘interesting’’ skating pose but seemed to

capture the ‘‘usual’’ postures. Image best viewed in color. See http://www.umiacs.umd.edu/�pturaga/

VideoClustering.html for video results. Figure courtesy Turaga et al. [104].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 281
The utility of this theorem is that if the low-level features like flow/silhouettes

undergo a spatial transformation which satisfies the conditions stated in the theorem,

then the corresponding PCs also undergo the same transformation. It is important to

note that we are not considering transformations of the pixel intensities, but we are

interested in transformations of the ‘‘image-grid.’’
11.1.1 Modified Distance Metric
Proceeding from the above, to match two ARMA models of the same activity

related by a spatial transformation, all we need to do is to transform the C matrices

(the observation equation). Given two systems S1¼ (A1, C1) and S2¼ (A2, C2) we

modify the distance metric as

dcompensatedðS1; S2Þ ¼ min
T

dðTðS1Þ; S2Þ ð20Þ

http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html
http://www.umiacs.umd.edu/~pturaga/VideoClustering.html

−2

−1

0

1

−2−10123

−3

−2

−1

0

1

2

Idle
Shuffle
Deal left
Deal right
Deal self

Deal self

Idle

Deal right

Deal left

Shuffle

FIG. 22. An embedding of the entire Blackjack video sequence. Figure best viewed in color.

Figure courtesy Turaga et al. [110].

282 P. TURAGA ET AL.
where d(., .) is any of the distance metrics given in Section 8, T is the transformation.

T(S1)¼ (A1, T(C1)). Columns of T(C1) are the transformed columns of C1. The

optimal transformation parameters are those that achieve the minimization in Equa-

tion (20). Depending on the complexity of the transformation model, one can use

featureless image registration techniques such as those in Refs. [107,117] to arrive at

a good initial estimate of T.
11.2 Invariance to Execution Rate of Activity

While building models for activities, one also needs to consider the effect of

different execution rates of the activity [118]. In the general case, one needs to

consider warping functions of the form g(t)¼ f(w(t)) such as in Veeraraghavan et al.
[119] where dynamic time warping is used to estimate w(t). We consider linear

warping functions of the form w(t)¼qt for each action segment. Linear functions for

each segment give rise to a piece-wise linear warping function for the entire activity,

which accounts for variabilities in the execution rate well. It can be shown that,

under linear warps the stationary distribution of the Markov process in Equation (6)

0.08

0.64

0.07

Idle

0.27

0.17

0.08

0.180.18

0.18

0.47

0.12

0.65

0.19

0.40

Deal
rightDeal

left

Deal
self

Collect
and

shuffle 0.74

FIG. 23. Estimated structure of the game of Blackjack. For the sake of clarity arcs with low weights

have not been shown. Figure courtesy Turaga et al. [110].

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 283
does not change. Hence, a linear warp will affect only the state equation and not the

measurement equation, that is, the A matrices and not the C matrices. Consider the

state equation of a segment: X1(k)¼A1X1(k�1)þv(k). Ignoring the noise term for

now, we can write X1ðkÞ ¼ Ak
1Xð0Þ. Now, consider another sequence that is related

to X1 by X2(k)¼X1(w(k))¼X1(qk). In the discrete case, for noninteger q this is to be
interpreted as a fractional sampling rate conversion as encountered in several areas

of DSP. Then, X2ðkÞ ¼ X1ðqkÞ ¼ Aqk
1 Xð0Þ, that is, the transition matrix for the

second system is related to the first by A2 ¼ Aq
1.
11.2.1 Estimating q
Given two transition matrices of the same activity but with different execution

rates, we need a technique to estimate the warp factor q. Consider the eigendecom-

position of A1 ¼ V1D1V
�1
1 , and A2 ¼ V2D2V

�1
2 . Then, for rational q,

A2 ¼ Aq
1 ¼ V1D

q
1V

�1
1 . Thus, D2 ¼ Dq

1, that is, if l is an eigenvalue of A1, then lq is
an eigenvalue of A2 and so forth. Thus, we can get an estimate of q from the

eigenvalues of A1 and A2 as

284 P. TURAGA ET AL.
q̂ ¼
P

i logjlðiÞ2 jP
i logjlðiÞ1 j

ð21Þ

where lðiÞ2 and lðiÞ1 are the complex eigenvalues of A2 and A1, respectively. Thus, we

compensate for different execution rates by computing q̂. In the presence of noise, the
above estimate of q may not be accurate, and can be taken as an initial guess in an

optimization framework similar to the one proposed in Section 11.1. Note that compen-

sation for execution rate is done only for segments which have very similar Ĉmatrices.
12. Summary

Understanding human actions is part of the bigger goal of providing a machine the

ability to see and understand as humans do. Synergistic research efforts in various

scientific disciplines—computer vision, AI, neuroscience, linguistics, etc.—have

contributed and enriched our understanding of this complex problem. Several

technical and intellectual challenges need to be tackled before we get to the point

of building an automatic system with these goals. The advances made so far need to

be consolidated, in terms of their robustness to real-world conditions and real-time

performance. This would then provide a firmer ground for further research. Methods

that can leverage large unstructured databases such as those found on video-sharing

websites form a fertile ground for further research. Contextual priming—for exam-

ple, what activities can or cannot happen given that the scene is a snowy mountain—

is another area that can significantly improve the performance of activity recogni-

tion algorithms.

Acknowledgments

We would like to thank Prof. Anuj Srivastava (Florida State University) for helpful discussions. Research

efforts summarized in this chapter were supported by the following grants and contracts: ONR MURI

(N00014-08-1-0638), ARO MURI (W911NF0910408), NSF ITR (IIS-03-25715, CCF-03-25119), and a

ONR grant (N00014-09-1-0664).

References

[1] G. Johansson, Visual perception of biological motion and a model for its analysis, Percept.

Psychophys. 14 (2) (1973) 201–211.

[2] J.K. Aggarwal, Q. Cai, Human motion analysis: A review, Comput. Vis. Image Underst. 73 (3)

(1999) 428–440.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 285
[3] C. Cedras, M. Shah, Motion-based recognition: A survey, Image Vis. Comput. 13 (2) (1995)

129–155.

[4] D.M. Gavrila, The visual analysis of human movement: A survey, Comput. Vis. Image Underst.

73 (1) (1999) 82–98.

[5] T.B. Moeslund, A. Hilton, V. Krüger, A survey of advances in vision-based human motion capture

and analysis, Comput. Vis. Image Underst. 104 (2) (2006) 90–126.

[6] A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Comput. Surv. 38 (4) (2006) 13–57.

[7] S. Sarkar, P.J. Phillips, Z. Liu, I.R. Vega, P. Grother, K.W. Bowyer, The HumanID gait challenge

problem: Data sets, performance, and analysis, IEEE Trans. Pattern. Anal. Mach. Intell. 27 (2)

(2005) 162–177.

[8] H. Zhong, J. Shi, M. Visontai, Detecting unusual activity in video, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2004, pp. 819–826.

[9] N. Vaswani, A.K. Roy-Chowdhury, R. Chellappa, ‘‘Shape Activity’’: A continuous-state HMM for

moving/deforming shapes with application to abnormal activity detection, IEEE Trans. Image.

Process. 14 (10) (2005) 1603–1616.

[10] C. Stauffer, W.E.L. Grimson, Learning patterns of activity using real-time tracking, IEEE Trans.

Pattern. Anal. Mach. Intell. 22 (8) (2000) 747–757.

[11] W. Hu, D. Xie, T. Tan, S. Maybank, Learning activity patterns using fuzzy self-organizing neural

network, IEEE Trans. Syst. Man. Cybern. 34 (3) (2004) 1618–1626.

[12] A. Pentland, Smart rooms, smart clothes, in: Proceedings of International Conference on Pattern

Recognition, vol. 2, 1998, pp. 949–953.

[13] D.A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, D. Ramanan, Computational studies of human

motion: Part 1, tracking and motion synthesis, Found. Trends Compu. Graph. Vis. 1 (2–3) (2005)

77–254.

[14] S.S. Beauchemin, J.L. Barron, The computation of optical flow, ACM Comput. Surv. 27 (3) (1995)

433–466.

[15] T. Huang, D. Koller, J. Malik, G.H. Ogasawara, B. Rao, S.J. Russell, J. Weber, Automatic symbolic

traffic scene analysis using belief networks, in: Proceedings of National Conference on Artificial

Intelligence, 1994, pp. 966–972.

[16] A.M. Elgammal, D. Harwood, L.S. Davis, Non-parametric model for background subtraction, in:

Proceedings of IEEE European Conference on Computer Vision, 2000, pp. 751–767.

[17] M. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inf. Theory 8 (1962) 179–187.

[18] H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. Electron. Comput.

10 (2) (1961) 260–268.

[19] D.G. Kendall, Shape manifolds, procrustean metrics and complex projective spaces, Bull. Lond.

Math. Soc. 16 (1984) 81–121.

[20] H. Blum, R.N. Nagel, Shapedescriptionusingweighted symmetric axis features, PatternRecogn. 10 (3)

(1978) 167–180.

[21] A. Bissacco, P. Saisan, S. Soatto, Gait recognition using dynamic affine invariants, in: International

Symposium on Mathematical Theory of Networks and Systems, 2004.

[22] J.W. Davis, A.F. Bobick, The representation and recognition of human movement using temporal

templates, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997,

pp. 928–934.

[23] A.F. Bobick, J.W. Davis, The recognition of human movement using temporal templates, IEEE

Trans. Pattern. Anal. Mach. Intell. 23 (3) (2001) 257–267.

[24] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions as space-time shapes, in:

Proceedings of IEEE International Conference on Computer Vision, 2005, pp. 1395–1402.

286 P. TURAGA ET AL.
[25] L. Gorelick, M. Blank, E. Shechtman, M. Irani, R. Basri, Actions as space-time shapes, IEEE Trans.

Pattern. Anal. Mach. Intell. 29 (12) (2007) 2247–2253.

[26] J. Malik, P. Perona, Preattentive texture discrimination with early vision mechanism, J. Opt. Soc.

Am. A 7 (5) (1990) 923–932.

[27] O. Chomat, J.L. Crowley, Probabilistic recognition of activity using local appearance, in: Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 104–109.

[28] L. Zelnik-Manor, M. Irani, Event-based analysis of video, in: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, vol. 2, 2001, pp. 123–130.

[29] R.A. Young, R.M. Lesperance, W.W. Meyer, The Gaussian derivative model for spatial-temporal

vision: I. Cortical model, Spat. Vis. 14 (3–4) (2001) 261–319.

[30] H. Jhuang, T. Serre, L. Wolf, T. Poggio, A biologically inspired system for action recognition, in:

Proceedings of IEEE International Conference on Computer Vision, 2007, pp. 1–8.

[31] I. Laptev, T. Lindeberg, Space-time interest points, in: Proceedings of IEEE International Confer-

ence on Computer Vision, 2003, pp. 432–439.

[32] I. Laptev, On space-time interest points, Int. J. Comput. Vis. 64 (2–3) (2005) 107–123.

[33] C. Harris, M. Stephens, A combined corner and edge detector, in: Proceedings of the 4th Alvey

Vision Conference, 1988, pp. 147–151.

[34] P. Dollár, V. Rabaud, G. Cottrell, S. Belongie, Behavior recognition via sparse spatio-temporal

features, in: Proceedings of IEEE International Workshop on Visual Surveillance and Performance

Evaluation of Tracking and Surveillance (VS-PETS), 2005, pp. 65–72.

[35] J.C. Niebles, H. Wang, L. Fei Fei, Unsupervised learning of human action categories using spatial-

temporal words, Proc. Br. Mach. Vis. Conf. 3 (2006) 1249–1258.

[36] C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: A local SVM approach, in: Proceed-

ings of International Conference on Pattern Recognition, vol. 3, 2004, pp. 32–36.

[37] S. Savarese, A.Del Pozo, J.C.Niebles, L. Fei-Fei, Spatial-temporal correlations for unsupervised action

classification, in: Proceedings of IEEEWorkshop on Motion and Video Computing, 2008, pp. 1–8.

[38] S. Nowozin, G. Bakir, K. Tsuda, Discriminative subsequence mining for action classification, in:

Proceedings of IEEE International Conference on Computer Vision, 2007, pp. 1–8.

[39] O. Boiman, M. Irani, Detecting irregularities in images and in video, Int. J. Comput. Vis. 74 (1)

(2007) 17–31.

[40] S.F. Wong, T.K. Kim, R. Cipolla, Learning motion categories using both semantic and structural

information, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

2007, pp. 1–6.

[41] Y. Song, L. Goncalves, P. Perona, Unsupervised learning of human motion, IEEE Trans. Pattern.

Anal. Mach. Intell. 25 (7) (2003) 814–827.

[42] J.C. Niebles, L. Fei-Fei, A hierarchical model of shape and appearance for human action classification,

in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[43] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition,

Proc. IEEE 77 (2) (1989) 257–286.

[44] J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-sequential images using hidden

Markov model, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

1992, pp. 379–385.

[45] J. Schlenzig, E. Hunter, R. Jain, Recursive identification of gesture inputs using hidden Markov

models, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994,

pp. 187–194.

[46] T. Starner, J. Weaver, A. Pentland, Real-time American sign language recognition using desk and

wearable computer based video, IEEE Trans. Pattern. Anal. Mach. Intell. 20 (12) (1998) 1371–1375.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 287
[47] A. Kale, A. Sundaresan, A.N. Rajagopalan, N.P. Cuntoor, A.K. Roy-Chowdhury, V. Kruger,

R. Chellappa, Identification of humans using gait, IEEE Trans. Image. Process. 13 (9) (2004)

1163–1173.

[48] Z. Liu, S. Sarkar, Improved gait recognition by gait dynamics normalization, IEEE Trans. Pattern.

Anal. Mach. Intell. 28 (6) (2006) 863–876.

[49] M. Brand, N. Oliver, A. Pentland, Coupled hidden Markov models for complex action recognition,

in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997,

pp. 994–999.

[50] D.J. Moore, I.A. Essa, M.H. Hayes, Exploiting human actions and object context for recognition

tasks, in: Proceedings of IEEE International Conference on Computer Vision, 1999, pp. 80–86.

[51] S. Hongeng, R. Nevatia, Large-scale event detection using semi-hidden Markov models, in:

Proceedings of IEEE International Conference on Computer Vision, 2003, pp. 1455–1462.

[52] N.P. Cuntoor, R. Chellappa, Mixed-state models for nonstationary multiobject activities, EURASIP

J. Appl. Signal Process. 2007 (1) (2007) 106–119.

[53] A. Bissacco, A. Chiuso, Y. Ma, S. Soatto, Recognition of human gaits, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, vol. 2, 2001, pp. 52–57.

[54] A. Veeraraghavan, A. Roy-Chowdhury, R. Chellappa, Matching shape sequences in video with an

application to human movement analysis, IEEE Trans. Pattern. Anal. Mach. Intell. 27 (12) (2005)

1896–1909.

[55] M.C. Mazzaro, M. Sznaier, O. Camps, A model (in)validation approach to gait classification, IEEE

Trans. Pattern. Anal. Mach. Intell. 27 (11) (2005) 1820–1825.

[56] N.P. Cuntoor, R. Chellappa, Epitomic representation of human activities, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[57] G. Doretto, A. Chiuso, Y.N. Wu, S. Soatto, Dynamic textures, Int. J. Comput. Vis. 51 (2) (2003)

91–109.

[58] A.B. Chan, N. Vasconcelos, Modeling, clustering, and segmenting video with mixtures of dynamic

textures, IEEE Trans. Pattern. Anal. Mach. Intell. 30 (5) (2008) 909–926.

[59] R.H. Shumway, D.S. Stoffer, An approach to time series smoothing and forecasting using the EM

algorithm, J. Time Ser. Anal. 3 (4) (1982) 253–264.

[60] P.V. Overschee, B.D. Moor, Subspace algorithms for the stochastic identification problem, Auto-

matica 29 (3) (1993) 649–660.

[61] Z. Ghahramani, G.E. Hinton, Parameter estimation for linear dynamical systems, 1996. (Tech. Rep.

CRG-TR-96-2, Department of Computer Science, University of Toronto, Technical Report).

[62] L. Ljung (Ed.), System Identification: Theory for the User, second ed., Prentice Hall PTR, Upper

Saddle River, NJ, 1999.

[63] K.D. Cock, B.D. Moor, Subspace angles between ARMA models, Syst. Control Lett. 46 (2002)

265–270.

[64] P. Saisan, G. Doretto, Y.N. Wu, S. Soatto, Dynamic texture recognition, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, vol. 2, 2001, pp. 58–63.

[65] R.J. Martin, A metric for ARMA processes, IEEE Trans. Signal Process. 48 (4) (2000) 1164–1170.

[66] R. Vidal, P. Favaro, Dynamicboost: Boosting time series generated by dynamical systems, in:

Proceedings of IEEE International Conference on Computer Vision, 2007, pp. 1–8.

[67] S.V.N. Vishwanathan, A.J. Smola, R. Vidal, Binet-Cauchy kernels on dynamical systems and its

application to the analysis of dynamic scenes, Int. J. Comput. Vis. 73 (1) (2007) 95–119.

[68] A. Bissacco, S. Soatto, On the blind classification of time series, in: Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

288 P. TURAGA ET AL.
[69] P. Turaga, A. Veeraraghavan, R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds

with applications in computer vision, in: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2008, pp. 1–8.

[70] C. Bregler, Learning and recognizing human dynamics in video sequences, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 1997, pp. 568–574.

[71] B. North, A. Blake, M. Isard, J. Rittscher, Learning and classification of complex dynamics, IEEE

Trans. Pattern. Anal. Mach. Intell. 22 (9) (2000) 1016–1034.

[72] V. Pavlovic, J.M. Rehg, J. MacCormick, Learning switching linear models of human motion, Adv.

Neural. Inf. Process. Syst. (2000) 981–987.

[73] V. Pavlovic, J.M. Rehg, Impact of dynamic model learning on classification of human motion, in:

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000,

pp. 1788–1795.

[74] D. Del Vecchio, R.M. Murray, P. Perona, Decomposition of human motion into dynamics based

primitives with application to drawing tasks, Automatica 39 (2003) 2085–2098.

[75] S.M. Oh, J.M. Rehg, T.R. Balch, F. Dellaert, Data-driven MCMC for learning and inference in

switching linear dynamic systems, in: Proceedings of National Conference on Artificial Intelligence,

2005, pp. 944–949.

[76] R. Vidal, A. Chiuso, S. Soatto, Observability and identifiability of jump linear systems, in:

Proceedings of IEEE Conference on Decision and Control, vol. 4, 2002, pp. 3614–3619.

[77] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann Publishers Inc., San Francisco, CA, 1988.

[78] H. Buxton, S. Gong, Visual surveillance in a dynamic and uncertain world, Artif. Intell. 78 (1–2)

(1995) 431–459.

[79] S. Park, J.K. Aggarwal, Recognition of two-person interactions using a hierarchical

Bayesian network, ACM J. Multimed. Syst. 10 (2) (2004) 164–179 (Special issue on video

surveillance).

[80] C.A. Petri, Communication with automata, 1966. (Tech. rep., DTIC research report AD0630125.)

[81] C. Castel, L. Chaudron, C. Tessier, What is going on? A high-level interpretation of a sequence of

images, in: ECCV Workshop on Conceptual Descriptions from Images, 1996, pp. 13–27.

[82] M. Albanese, R. Chellappa, V. Moscato, A. Picariello, V.S. Subrahmanian, P. Turaga, O. Udrea, A

constrained probabilistic Petri net framework for human activity detection in video, IEEE Transac-

tions on Multimedia 10 (8) (2008) 1429–1443.

[83] M. Brand, Understanding manipulation in video, in: Proceedings of the 2nd International Confer-

ence on Automatic Face and Gesture Recognition, 1996, pp. 94–99.

[84] Y.A. Ivanov, A.F. Bobick, Recognition of visual activities and interactions by stochastic parsing,

IEEE Trans. Pattern. Anal. Mach. Intell. 22 (8) (2000) 852–872.

[85] D. Moore, I. Essa, Recognizing multitasked activities from video using stochastic context-free

grammar, in: Eighteenth national conference on Artificial intelligence, 2002, pp. 770–776.

[86] J. Earley, An efficient context-free parsing algorithm, Commun. ACM 13 (2) (1970) 94–102.

[87] A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing,

Prentice-Hall, Englewood Cliffs, NJ, 1972.

[88] S.W. Joo, R. Chellappa, Recognition of multi-object events using attribute grammars, in: Proceed-

ings of International Conference on Image Processing, 2006, pp. 2897–2900.

[89] N. Rota, M. Thonnat, Activity recognition from video sequences using declarative models, in:

Proceedings of the 14th European Conference on Artificial Intelligence, 2000, pp. 673–680.

[90] G. Medioni, I. Cohen, F. Brémond, S. Hongeng, R. Nevatia, Event detection and analysis from video

streams, IEEE Trans. Pattern. Anal. Mach. Intell. 23 (8) (2001) 873–889.

ADVANCES IN VIDEO-BASED HUMAN ACTIVITYANALYSIS 289
[91] S. Hongeng, R. Nevatia, F. Bremond, Video-based event recognition: Activity representation and

probabilistic recognition methods, Comput. Vis. Image Underst. 96 (2) (2004) 129–162.

[92] V.D. Shet, D. Harwood, L.S. Davis, VidMAP: Video monitoring of activity with prolog, in:

Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS),

2005, pp. 224–229.

[93] S. Tran, L.S. Davis, Visual event modeling and recognition using Markov logic networks, in:

Proceedings of IEEE European Conference on Computer Vision, 2008.

[94] U. Akdemir, P.K. Turaga, R. Chellappa, An ontology based approach for activity recognition from

video, in: ACM International Conference on Multimedia, 2008, pp. 709–712.

[95] P. Turaga, R. Chellappa, V.S. Subrahmanian, O. Udrea, Machine recognition of human activities: A

survey, IEEE Trans. Circuits Syst. Video Technol. 18 (11) (2008) 1473–1488.

[96] D. Marr, W. H. Freeman, Vision, 1982.

[97] H.B. Barlow, The coding of sensory messages, in: W.H. Thorpe, O.L. Zangwill (Eds.), Current

Problems in Animal Behaviour, 1960. Cambridge University Press, pp. 331–360 (Chapter 12).

[98] M.V. Srinivasan, S.B. Laughlin, A. Dubs, Predictive coding: A fresh view of inhibition in the retina,

Proc. R. Soc. Lond. B Biol. Sci. 216 (1205) (1982) 427–459.

[99] M.R. Lemke, M. Schleidt, Temporal segmentation of human short-term behavior in everyday

activities and interview sessions, Naturwissenschaften 86 (6) (1999) 289–292.

[100] V.S.N. Prasad, V. Kellokumpu, L.S. Davis, Ballistic hand movements, in: Proceedings of Confer-

ence on Articulated Motion and Deformable Objects (AMDO), 2006, pp. 153–164.

[101] Y. Chikuse, Statistics on Special Manifolds, Springer, New York, NY, 2003. (Lecture notes in

statistics.)

[102] P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical analysis on manifolds and its

applications to video analysis, in: D. Schonfeld, C. Shan, D. Tao, L. Wang (Eds.), Video Search and

Mining, Studies in Computational Intelligence, Springer, New York, NY, 2010, Chapter 5.

[103] D. Weinland, R. Ronfard, E. Boyer, Free viewpoint action recognition using motion history

volumes, Comput. Vis. Image Underst. 104 (2) (2006) 249–257.

[104] P.K. Turaga, A. Veeraraghavan, R. Chellappa, Unsupervised view and rate invariant clustering of

video sequences, Comput. Vis. Image Underst. 113 (3) (2009) 353–371.

[105] C. Rao, A. Yilmaz, M. Shah, View-invariant representation and recognition of actions, Int. J.

Comput. Vis. 50 (2) (2002) 203–226.

[106] A. Yezzi, S. Soatto, Deformotion: Deforming motion, shape average and the joint registration and

approximation of structure in images, Int. J. Comput. Vis. 53 (2) (2003) 153–167.

[107] B.S. Reddy, B.N. Chatterji, An FFT-based technique for translation, rotation, and scale-invariant

image registration, IEEE Trans. Image. Process. 5 (8) (1996) 1266–1271.

[108] D. Weinland, R. Ronfard, E. Boyer, Automatic discovery of action taxonomies from multiple

views, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2006,

pp. 1639–1645.

[109] C. Vogler, D. Metaxas, ASL recognition based on a coupling between HMMs and 3D motion

analysis, in: Proceedings of IEEE International Conference on Computer Vision, 1998,

pp. 363–369.

[110] P.K. Turaga, R. Chellappa, Locally time-invariant models of human activities using trajectories on

the Grassmannian, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2009, pp. 2435–2441.

[111] M. Hall, A.V. Oppenheim, A. Willsky, Time-varying parametric modeling of speech, in: Proceed-

ings of IEEE Conference on Decision and Control, vol. 16, 1977, pp. 1085–1091.

290 P. TURAGA ET AL.
[112] T.S. Rao, The fitting of nonstationary time-series models with time-dependent parameters, J. R.

Stat. Soc. Series. B Stat. Methodol. 32 (2) (1970) 312–322.

[113] M. Tsatsanis, G. Giannakis, Subspace methods for blind estimation of time-varying FIR channels,

IEEE Trans Signal Process. 45 (12) (1997) 3084–3093.

[114] L.H. Lee, Identification and Robust Control of Linear Parameter-Varying Systems, Ph.D. thesis at

University of California, Berkeley, CA, 1997.

[115] V. Verdult, M. Verhaegen, Subspace identification of multivariable linear parameter-varying

systems, Automatica 38 (5) (2002) 805–814.

[116] Y. Wang, H. Jiang, M.S. Drew, Z.N. Li, G. Mori, Unsupervised discovery of action classes, in:

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2006,

pp. 1654–1661.

[117] S. Mann, R.W. Picard, Video orbits of the projective group: A simple approach to featureless

estimation of parameters, IEEE Trans. Image. Process. 6 (9) (1997) 1281–1295.

[118] Y. Sheikh, M. Sheikh, M. Shah, Exploring the space of a human action, in: Proceedings of IEEE

International Conference on Computer Vision, 2005, pp. 144–149.

[119] A. Veeraraghavan, A. Srivastava, A.K. Roy Chowdhury, R. Chellappa, Rate-invariant recognition

of humans and their activities, IEEE Trans. Image. Process. 18 (6) (2009) 1326–1339.

[120] A.K. Roy-Chowdhury, R. Chellappa, A factorization approach to activity recognition, in: CVPR

Workshop on Event Mining, vol. 4, 2003, pp. 41–48.

Author Index
A

Abrahamsson, P., 3, 33

Abts, C., 28–29

Adams, M. D., 168

Aggarwal, J. K., 242, 253

Aho, A. V., 254

Akdemir, U., 255

Albanese, M., 253

Allen, F. E., 134

Allen, T., 26

Almezen, H., 123, 126, 130

Alzeidi, N., 123

Ambler, S. W., 39

Ammann, P., 122

Anderson, A., 29

Andersson, L., 21

Antón, A., 33

Apfelbaum, L., 122, 126

Aranda, G. N., 81

Arikan, O., 244

Atkinson, P., 174

Aurum, A., 19
B

Bakir, G., 249

Balch, T. R., 252

Ball, L., 165, 186

Banerjee, I., 135

Barlow, H. B., 256

Barnett, M., 158

Barron, J. L., 244

Basili, V. R., 3, 51, 81–82, 94, 172, 183–184
29
Basri, R., 246–247

Batory, D. S., 122

Baumgartner, M., 85, 88

Beatty, P., 170

Beauchemin, S. S., 244

Beck, K., 4, 6, 9, 17–19, 21–22,

25–28, 32, 39

Beedle, M., 4, 6, 24, 39

Beizer, B., 53

Belli, F., 123, 126, 133–134, 141

Bellin, D., 31

Belongie, S., 248–249

Bentley, R., 165

Bergman, K., 193

Bernard, E., 87

Bertolino, A., 81

Bhat, T., 27

Biddle, R., 33

Binder, R. V., 53

Biolchini, J., 47, 53

Birk, A., 81, 93

Bissacco, A., 246, 251

Blackburn, M., 87

Blake, A., 252

Blank, M., 246–247

Blelloch, G., 167

Blum, H., 246

Bobick, A. F., 246–247, 254, 279

Boehm, B. W., 3–4, 9, 28–29

Boiman, O., 249

Booch, G., 33

Bowyer, K. W., 243

Boyer, E., 262–263, 268
1

292 AUTHOR INDEX
Brand, M., 250, 254

Brant, J., 6, 18

Bratthall, L., 172–173, 175, 178

Bregler, C., 252

Brémond, F., 254–255

Brewer, J., 175, 177, 183

Brooke, P. J., 36

Brooks, A., 183, 185

Brooks, F. P., 5, 34, 164

Brooks, P. A., 148

Brown, M., 202, 204

Bryce, R. C., 149

Budnik, C. J., 123, 126, 133–134, 141

Buresc, H., 33

Busser, R., 87

Buwalda, H., 153

Buxton, H., 253
C

Cai, Q., 242

Campbell, D. T., 173, 180, 182

Camps, O., 241

Caputo, B., 248

Card, D. N., 92

Carr, V., 122

Castel, C., 253

Cechich, M., 81

Cedras, C., 242, 245

Chaitin, G., 165–166

Chatterji, B. N., 265, 282

Chaudron, L., 253

Chellappa, R., 240–241, 245–246, 250–251,

253–255, 261–265, 267–272, 275,

277–283

Cheng, L., 174

Chen, J., 122

Chen, W. T., 47

Chikuse, Y., 261

Chiuso, A., 251–252, 258, 272

Chivers, H., 36

Chomat, O., 247

Chow, T. S., 48

Chulani, S., 28–29
Cilibrasi, R., 166–167, 169

Ciolkowski, M., 19

Cipolla, R., 249

Clarke, J., 87

Clarke, R. E., 28

Coad, P., 4, 33

Cockburn, A., 3–4, 6–7, 19, 25–26, 39

Cock, K. D., 251, 258–259, 263

Cohen, D. M., 149, 151–152

Cohen, I., 254

Cohen, M. B., 51, 122–123, 134, 136,

144, 149–151

Cohn, M., 23

Colbourn, C. J., 134, 136, 144, 149, 151

Comer, D. E., 164

Coplien, J. O., 14, 25

Cottrell, G., 248–249

Creswell, J., 182–183

Crispin, L., 12

Crowley, J. L., 247

Cukic, B., 81

Cunningham, L., 33

Cunningham, W., 4, 6, 39

Cuntoor, N. P., 250–251

Curtis, B., 3, 184
D

Dalal, S. R., 47–48, 68, 85, 87–88,

90–92, 149, 151–152

Daly, J., 175, 183–186

Damian, D., 33

Davis, J. W., 246–247, 279

Davis, L. S., 245, 255, 257

DeFanti, T., 202, 204

De Laat, C., 202

Dellaert, F., 252

Del Pozo, A., 248

DeLuca, J., 4, 33

Del Vecchio, D., 252

DeMarco, T., 17

Denning, P. J., 164

Denzin, N. K., 174–176, 180

Derby, E., 25

AUTHOR INDEX 293
Dias-Neto, A. C., 47, 50–51, 54, 56,

80, 82, 84, 87, 94

Dick, S., 170

Dickson, G., 177

Dings�yr, T., 93
Dollár, P., 248–249

Doretto, G., 251, 258–259, 272

Dos Santos, P. S. M., 53

Dove, R., 4

Downward, P., 175

Drew, M. S., 275

Drobka, J., 33

Dubs, A., 256

Duchon, D., 175

Dwyer, M. B., 122

Dyba, T., 183
E

Earley, J., 254

El Emam, K., 32, 183

Elgammal, A. M., 245

El-Ramly, M., 85, 93

Esmelioglu, S., 122, 126

Essa, I. A., 250, 254
F

Fagan, M. E., 18

Faria, J., 153, 155, 158

Favaro, P., 251

Fei-Fei, L., 248–249

Felsing, J. M., 4, 33

Fenton, N., 183

Fielding, J. L., 176

Fielding, N. G., 176

Figueira, S., 202

Fiske, D. W., 182

Forrest, S., 50–51, 56

Forsyth, D. A., 244

Fowler, M., 4, 6, 18, 33, 39

Fredman, M. L., 149, 152

Freeman, H., 246

Freeman, W. H., 256
G

Gavrila, D. M., 242

George, H. G., 145

Ge, X., 36

Ghani, N., 193

Giannakis, G., 273

Gibbons, P. B., 134, 136,

144, 151

Gigerenzer, G., 177

Glass, R., 172, 180, 183

Gomory, R. E., 177

Goncalves, L., 249

Gong, S., 253

Gorelick, L., 246–247

Grechanik, M., 122

Gregory, J., 12

Grenning, J., 33

Gries, D., 164

Grimson, W. E. L., 243

Grother, P., 243

Gryna, F. M., 9

Guindon, R., 165

Gupta, U. G., 28
H

Hall, M., 273

Hamburg, M., 80

Hamlet, D., 19

Hammersley, M., 174, 187

Harris, C., 248

Harrison, N. B., 14, 25

Harrold, M. J., 122

Hartman, A., 152

Harwood, D., 245, 255

Haugen, N. C., 24

Hayes, M. H., 250

He, E., 202

Hendrickson, C., 29

Hicinbothom, J. H., 123

Highsmith, J., 3–4, 18,

33, 39

Hilton, A., 242

294 AUTHOR INDEX
Hines, A. M., 165

Hines, L., 122

Hoaglin, D., 183

Hoang, D. B., 202

Hongeng, S., 250, 254–255

Horowitz, B., 47–48, 68, 85, 87–88, 90–92

Horstmann, M., 85, 93

HO, S. F., 47

Hramiak, A., 186

Huang, T., 244, 253

Huberman, A. M., 174

Hu, M., 246

Humphrey, W. S., 19

Hunt, A., 4

Hunter, A., 175, 177, 183

Hunter, E., 250

Hutchens, D., 172

Hu, W., 243
I

Ikemoto, L., 244

Ioannou, N., 36

Irani, M., 246–249

Isard, M., 252

Ishii, K., 250

Ivanov, Y. A., 254
J

Jacobson, I., 33

Jacobs, S., 122

Jain, A., 47–48, 68, 85, 87–88, 90–92

Jain, R., 250

Javed, O., 242, 245

Jeffries, R., 29

Jhuang, H., 248

Jiang, H., 275

Jick, T., 180, 182

Johansson, G., 239

Johnson, J., 9

Johnson, R., 204

Jones, D., 8

Jones, P., 183
Joo, S. W., 254

J�rgensen, M., 172–173, 175, 178

Juran, J. M., 9

Juristo, N., 46, 51, 87
K

Kajla, A., 151–152

Kale, A., 250

Kampenes, V., 183

Kaner, C., 46

Kaplan, B., 175

Karlsson, E., 21

Karmous-Edwards, G., 194, 197, 203

Karunanithi, N., 47–48, 68, 85, 87–88,

90–92

Kasik, D. J., 145

Katara, M., 153

Kellokumpu, V., 257

Kendall, D. G., 246

Kervinen, A., 153

Kessler, R., 9, 22

Kimchi, J., 175

Kim, T. K., 249

Kitchenham, B., 178, 183

Kleb, W., 33

Koller, D., 244, 253

Krebs, W., 33

Kroll, P., 39

Kruchten, P., 39

Krüger, V., 242, 250

Kudoh, T., 205

Kudrjavets, G., 27

Kuhnel, C., 85, 88

Kumar, N., 36
L

Lange, J., 202

Lanubile, F., 172

Laptev, I., 248

Larman, C., 3, 6, 26

Larsen, D., 25

Laughlin, S. B., 256

AUTHOR INDEX 295
Lavian, T., 202

Law, E., 172

Layman, L., 33

Leaton, J., 47–48, 68, 85, 87–88, 90–92

Lee, L. H., 273

LeFebvre, E., 4, 33

Legeard, B., 48, 53, 85, 87–90, 92

Leigh, J., 202

Leino, K., 158

Leion, P., 21

Lemke, M. R., 256

Lesperance, R. M., 248

Lethbridge, T. C., 177, 182, 185

Lillethun, D., 202

Li, M., 164–168

Lincoln, Y., 175

Lindeberg, T., 248

Liu, Z., 243, 250

Li, X., 164–168

Li, Z. N., 275

Ljung, L., 273

Lott, C., 47–48, 68, 85, 87–88, 90–92

Luck, X., 87
M

Ma, B., 164–168

MacCormick, J., 252

Maiden, N. A., 81

Malik, J., 244, 246, 253

Mambretti, J., 193–194, 197, 202–205

Mandic, V., 185

Mann, S., 282

Markkula, J., 185

Marr, D., 256

Martin, A., 33

Martin, R. J., 258

Mathison, S., 175–177, 181

Maunumaa, M., 153

Maximilien, E. M., 27

Ma, Y., 251

Maybank, S., 243

Maybee, J., 19
Mazzaro, M. C., 241

McConnell, S., 21, 122

Mearman, A., 175

Medioni, G., 254

Memon,A.M.,51,122–123,134–137,148,150

Menzies, T., 81

Metaxas, D., 271–272

Meyer, W. W., 248

Mian, P. G., 47, 53

Miles, M. B., 174

Miller, J., 165, 170, 175, 177, 183–186

Moeslund, T. B., 242

Mol�kken-�stvold, K., 24

Monga, I., 202

Moor, B. D., 251, 258–259, 263

Moore, D. J., 250, 254

Moreno, A. M., 46, 51, 87

Mori, G., 275

Moscato, V., 253

Mugridge, W. B., 134, 136, 144, 151

Mulder, M. C., 164

Murray, R. M., 252

Myers, B. A., 122

Myers, G., 46
N

Nagappan, N., 27

Nagarajan, A., 135

Nagel, R. N., 246

Naiksatam, S., 202

Natali, A. C., 47, 53

Nauman, A., 87

Ndousse, T., 193

Neto, P. G. M., 53

Nevatia, R., 250, 254–255

Nguyen-Ngoc, A. V., 172

Niebles, J. C., 248–249

Noble, J., 33

Noftz, D., 33

Nordberg III, M. E., 14–15

North, B., 252

Nowozin, S., 249

296 AUTHOR INDEX
O

O’Brien, J., 244

Offutt, J., 122

Ogasawara, G. H., 244, 253

Oh, S. M., 252

Ohya, J., 250

Oivo, M., 184–185

Oliver, N., 250

Olson, G. M., 26

Olson, J. S., 26

Opdyke, W., 6, 18

Oppenheim, A. V., 273

Ormerod, T., 165, 186

Owen, D., 81
P

Pádua, C., 86, 89–93

Paige, R. F., 36

Paiva, A., 153, 155, 158

Pakkonen, T., 153

Palmer, S. R., 4, 33

Pandey, V., 36

Park, S., 253

Patton, G. C., 47–48, 68, 85, 87–88, 90–92,

149, 151–152

Patton, M. Q., 175

Pavlovic, V., 252

Pearl, J., 253

Peeger, S., 183

Pentland, A., 243, 250

Perona, P., 246, 249, 252

Perry, D. E., 122

Perry, W., 46

Petersson, H., 19

Petravick, D., 193

Petri, C. A., 253

Peureux, F., 87

Pfleeger, S.-L., 178, 183

Phillips, P. J., 243

Piattini, M., 81

Picard, R. W., 282

Picariello, A., 253
Pickard, L., 178, 183

Plaisant, C., 122

Poggio, T., 248

Polack, F. A. C., 36

Polivka, B., 175

Pollack, M. E., 136

Poppendieck, M., 5–6, 8–10, 39

Poppendieck, T., 5–6, 8–10, 39

Potok, T., 3

Prasad, V. S. N., 257

Prasanna, M., 49

Prenninger, W., 85, 88, 93

Pretschner, A., 48, 85, 87–90, 92
R

Rabaud, V., 248–249

Rabiner, L. R., 250

Raghu, R., 33

Rajagopalan, A. N., 250

Ramamoorthy, C. V., 47

Ramanan, D., 244

Ramesh, V., 172

Rao, B., 244, 253

Rao, C., 265

Rao, N., 193

Rao, T. S., 273

Reay, I., 170

Reddy, B. S., 265, 282

Rehg, J. M., 252

Resende, R., 86, 89–93

Rittel, H., 177

Rittscher, J., 252

Roberts, D., 6, 18

Rodden, T., 165

Roman, G. C., 59

Rombach, H. D., 81

Ronfard, R., 262–263, 268

Ronkainen, J., 3

Roose, D., 8

Roper, M., 175, 183–186

Rota, N., 254

Roy-Chowdhury, A. K., 240–241, 245–246,

250–251, 272, 282

AUTHOR INDEX 297
Rugg, G., 81

Rumbaugh, J., 33

Russell, S. J., 244, 253
S

Saisan, P., 246, 251, 259

Sanchez, J., 27

Santos-Neto, P., 86, 89–93

Sarkar, S., 243, 250

Savarese, S., 248

Sawyer, P., 165

Schadewitz, N., 172

Schleidt, M., 256

Schlenzig, J., 250

Schoonheim, G., 36

Schuldt, C., 248

Schulte, W., 158

Schwaber, K., 4, 24

Schwartz, R., 173, 180

Sechrest, L., 173, 180

Selby, R., 172

Selten, R., 177

Serre, T., 248

Shah, M., 242, 245, 265, 282

Shalloway, A., 37

Shaw, M., 185

Shechtman, E., 246–247

Shehady, R. K., 126–128

Sheikh, M., 282

Sheikh, Y., 282

Shet, V. D., 255

Shi, J., 248, 276–277

Shneiderman, B., 122

Shull, F., 19, 172

Siewiorek, D. P., 126–128

Silvester, J., 204

Simone, S. S., 31

Simon, H. A., 165, 177

Sim, S. E., 177, 182, 185

Singer, J., 177, 182, 185

Siponen, M. T., 3

Sivanandam, S. N., 49
Sj�berg, D., 183
Smith, H. W., 180

Smola, A. J., 258

Soatto, S., 246, 251–252, 258–259,

265, 272

Soffa, M. L., 136

Sommerville, I., 165

Song, Y., 249

Sostawa, B., 85, 88

Srinivasan, M. V., 256

Srivastava, A., 261, 272, 282

Stålhane, T., 93

Stapleton, J., 4, 39

St Arnaud, B., 202

Starner, T., 250

Stauffer, C., 243

Stauner, T., 85, 88

Stephens, M., 248

Stevenson, J. S., 175

Strooper, P., 82, 94

St Sauver, J., 193

Subrahmanian, V. S., 253, 255

Subramanyan, R., 50–51, 54, 56

Sundaresan, A., 250

Sundarrajan, R., 49

Sutherland, J., 36

Sznaier, M., 241
T

Tan, T., 243

Tessier, C., 253

Thomas, D., 4

Thonnat, M., 254

Tillmann, N., 153, 155

Tran, S., 255

Travassos, G. H., 47, 50–51, 53–54, 56,

82, 84, 87, 94

Travostino, F., 194, 197, 203

Trochim, W. M. K., 185

Trott, J. R., 37

Tsatsanis, M., 273

Tsuda, K., 249

Tucker, A. B., 164

298 AUTHOR INDEX
Turaga, P. K., 251, 253, 255, 261–265,

267–272, 275, 277–283

Turner, A. J., 3, 164

Turner, R., 3–4

Twidale, M., 165
U

Udrea, O., 253, 255

Ullman, J. D., 254

Utting, M., 48, 53, 85, 87–90, 92

Uy, E., 36
V

van Bennekum, A., 4, 6, 39

Vaswani, N., 241, 251

Veeraraghavan, A., 240–241, 246, 251,

261–265, 267–272, 277–282

Vega, I. R., 243

Vegas, S., 46, 51, 81–82, 87, 94

Venkatesan, R., 49

Verdult, V., 273

Verhaegen, M., 273

Vessey, I., 172

Vicat-Blanc Primet, P., 205

Vidal, R., 153, 155, 158, 251–252, 258

Vieira, M., 50–51, 54, 56

Vinson, N. G., 182

Vishal, S., 36

Vishwanathan, S. V. N., 258

Visontai, M., 248, 276–277

Vitányi, P., 164–169

Vizcaino, A., 81

Vogler, C., 271–272

Vouk, M., 3
W

Wagner, S., 85, 88

Wallace, G. K., 168

Wallance, D., 183

Wang, H., 248–249

Wang, Y., 275
Warsta, J., 3

Weaver, J., 250

Webb, E., 173, 180

Webber, M., 177

Weber, J., 244, 253

Weinberger, J., 202

Weinland, D., 262–263, 268

White, L., 123, 126, 130, 133–134, 141,

150–151

Williams, L., 9, 22, 27, 33

Willsky, A., 273

Wing, B., 193

Wohlin, C., 19

Wojcicki, M. A., 82, 94

Wolf, L., 248

Womack, J., 8

Wong, S. F., 249

Wood, M., 175, 183–186

Wood, W., 33, 183

Wu, Y. N., 251, 258–259, 272
X

Xie, D., 243

Xie, Q., 134, 136–137
Y

Yamato, J., 250

Yezzi, A., 265

Yilmaz, A., 242, 245, 265

Yin, R. K., 178

Young, R. A., 248

Yuan, X., 51, 122–123, 150

Yu, O., 202
Z

Zachary, W. W., 123

Zelkowitz, M., 183

Zelnik-Manor, L., 248

Zhong, H., 248, 276–277

Zimmerman, H., 197

Zolch, R., 85, 88

Subject Index
A

Acceptance test-driven development, 12–13

Activity diagrams, 159

Agile and lean principles, comparison, 10–11

Agile software development methodologies

agile vs. lean principles, 10–11

comparison of, 39, 41

examples
extreme programming (XP), 29, 31–33

feature-driven development (FDD),

33–36

mapping of agile practice to

methodology, 39–40

scrum, 36–39

iterative methods, 3

lean principles, 8–10

origins and manifesto, 4–5

practices

acceptance test-driven development,

12–13

versus agile principles, 29, 30
automation-driven root cause analysis

of failures, 13

code and tests, 14

code ownership, 14

collective code ownership, 15

continuous integration, 15–16

‘‘done criteria’’, 16

energized work, 17

executable documentation, 14

features, 17–18

incremental design, 18
29
informative workspace, 19–20
inspections, 18–19
iteration demonstration, 20–21

negotiated scope, 21
nightly build, 21

pair programming, 22
planning poker, 22–24
release and iteration backlog, 24–25

retrospective and scrum meeting, 25
short iterations and releases, 26
‘‘sit together’’, 25–26

sprint, 26

stand-up meeting, 26, 27

unit test-driven development, 27–28

whole team, 28

wideband Delphi estimation, 28–29

principles, 6–8

Algorithmic Information Theory, 166, 168,

186

Asynchronous transfer mode (ATM), 194,

200

Automated model-based system testing

GUI application under test
9

events associated with widget, 125–126

radio button demo, 124–125

GUI testing techniques, 123–124,

159–160

quality assurance (QA), 122–123

test-case generation techniques

combinatorial interaction models,

149–152

ES-based models, 145–147

hierarchical models, 153–159

300 SUBJECT INDEX
Automated model-based system testing
(Continued)

pre-and post-condition models,

144–145

probabilistic models, 147–149

state machines, 126–134

workflows, 134–143
Autoregressive moving average (ARMA)

activity recognition experiments, 262

modified distance metric, 281

primitive space, 258–259

time-varying models, 273

Aztec code, 216–217
B

Barcode scanning reliability. See 2D barcode

scanning reliability
C

Characterization schema, 81–82

Class diagrams, 159

Class-responsibility-collaboration (CRC)

cards, 31

Cloud computing, 195

Cognitive ethnography, 165

Communication services. See StarLight
Complete interaction sequence (CIS)

GUI testing steps, 130

sub-FSM, 131–132

Covering arrays, 151–152

Customer acceptance tests, 31
D

Data-intensive science and analytic

applications, 195

DataMatrix code, 216

Datastrip 2D symbology, 218

Data triangulation, 174–175

2D barcode scanning reliability

barcode symbologies
Aztec code, 216–217
classification, 212

DataMatrix code, 216

Portable Data File 417, 214–215

Quick Response code, 215–216

samples, 213

UPC-A, 213–214

data content density, 218

encoder, 220

error correction, 219

external testing, 232

internal testing

higher content density barcodes (see
Higher content density barcodes)

lower content density barcodes, 224

media, 221–222

printer, 220–221

proprietary and emerging symbologies,

217–218

scan reflectance profile (SRP), 219

symbol grades, 219–220

Discrete HMM, 249–250
E

Encoder, 220
Extreme programming (XP)
advantages and drawbacks, 33
documents and artifacts, 29, 31
process, 32
roles, 31

Event-flow graph, 134–136
Event interaction graph (EIG), 136–137
Event semantic interaction graph
case studies, 139–141
feedback-based process execution, 141
radio button demo example, 138

Event sequence graph (ESG), 141–143
F

Feature-driven development (FDD)
advantages and drawbacks, 36
documents and artifacts, 33–34
process, 34–36

roles, 34

SUBJECT INDEX 301
Finite state machines (FSM)

hierarchical, 155–158

off-nominal, 132–134

for radio button demo, 127–128

variable, 128–130
G

Generalized linear group, 260
Genetic algorithms, 146–147

Giga-POP, 200

Global Lambda Integrated Facility (GLIF),

204

Graphical-user interface (GUI), definition,

122

Grassmann switching model

Blackjack video, 276–278

procedure, 274

sequence of labels, 275

Grocery store checkout system, 211

GUI. See Graphical-user interface
GUI front-end, software applications

event-driven nature, 123

quality assurance (QA), 122–123

radio button demo, 124–126

technique taxonomy, 123–124

test-case generation techniques
combinatorial interaction models,

149–152

ES-based models, 145–147

hierarchical models, 153–159

pre-and post-condition models,

144–145

probabilistic models, 147–149

state machines, 126–134

workflows, 134–143

testing techniques, 123–124, 159–160

testing tools, 123

GUI workflows

event-flow graph, 134–136

event interaction graph, 136–137

event semantic interaction graph, 138–141

off-nominal event graph, 141–144
H

Hidden Markov models (HMM)

applications, temporal evolution, 250

discrete, 249–250

graphical illustration, 250

linear dynamical systems, 251

High Capacity Color Barcode (HCCB), 218

Higher content density barcodes

extensive testing
content density testing, 225–227

glossiness effect, 228, 230–232

QR code and PDF417, error correction,

227–230

reliability testing, 225, 226

target media vs. optimal scan settings,

230–231, 233

preliminary testing, 224–225

Hybrid/multi-service networking, 197
I

INRIA database

clustering experiment, 268, 270

color coded activity labeling, 270–271

motion history volumes, 268

International Global Environment for

Network Innovations (iGENI), 204–205

Iteration backlog, 24–25
K

Keyword-driven testing, 153

Kolmogorov complexity

compression technology, 166

compressors and images, 168–169

normalized compression distance (NCD),

167–168

normalized information distance, 166–167
L

Label transition systems (LTS), 153–155

Latin squares, 151

302 SUBJECT INDEX
Linear dynamical systems (LDS)

primitive space
expected observation sequence, 258

feature evolution, 257

high-dimensional time-series data,

257–258

observability matrix, 258
Linear parameter varying (LPV) systems,

273

Lower content density barcodes, 224

LTS. See Label transition systems
M

MBT. See Model-based testing

MBT techniques

analysis
per nonfunctional requirements (NFR),

59–60

per testing level, 58–59

per type of experimental evidence,

56–58

software behavior/structure, 60

software execution platform, 60–62

using supporting tool, 59

challenges in software projects (see also
Risk factors, MBT)

mitigating mechanism, risk factor,

94–96

risk factors, 84–93

characterization of selected, 62–79

selection for software projects

characterization attributes, 80

characterization schema, 81–82

Porantim, 82–83

selection approach characteristics,

83–84

verification and validation (V&V)

techniques, 82

systematic review planning and execution

scientific papers categorization, 54–56

steps, 53–54

systematic review protocol, 53

Medical applications, 195
Methodological triangulation, 175, 176

Metropolitan Research and Education

Network (MREN), 200–201

Model-based testing (MBT)

benefits in using, 50–51

concepts and background, 47–48

future perspectives, 98–99

lack of transferring, software industry,

51–52

process and overview
hypothetical MBT technique, 49–50

MBT activities, 48–49

risk factors and impact on testing process

activities, 96–98

software testing strategies, 46–47

techniques (see also MBT techniques)

analysis, 55–62

challenges in software projects, 84–96

characterization of selected, 62–79

selection for software projects, 62,

80–84

systematic review planning and

execution, 53–55

systematic review protocol, 53
N

National Science Foundation’s (NSF)

NSFnet, 194

Negotiated scope, 21

Network Access Point (NAP), 200–201

Next-Generation communication services.

See StarLight
Normalized compression distance (NCD),

167–168

NSF IRNC Experimental Networks

Program, 205
O

Objectification

Algorithmic Information Theory, 166

complexity and imprecise definitions,

169–173

SUBJECT INDEX 303
compressors and images, 168–169

normalized compression distance (NCD),

167–168

normalized information distance (NID),

166–167

Off-nominal event graph. See Event
sequence graph
P

Pair programming, 22

Planning poker

benefits, 24

resource estimation, 22–23

Porantim, 82–83

Portable Data File 417

characteristics, 214–215

codewords, 215

content density testing, 226–227

error correction level, 215, 228, 230

glossiness testing, 230, 232

Probabilistic event-flow graph (PEFG),

148–150
Q

Quality assurance (QA) 122

Quick Response (QR) code, 215

content density testing, 226, 228

data encoding capacity, 216

error correction level, 216, 227, 229

glossiness testing, 230–231
R

Release backlog, 24

Researcher triangulation, 175

Risk factors, MBT

behavioral/structural model

construction, 88

categorization, testing process

activities, 85

efficient mechanism, right input

artifacts, 86
impact on testing process activities, 97

manual inclusion of extra test cases, 91

mitigation mechanisms, software projects

supporting test control, 96

supporting test design, 95

supporting test planning, 94

supporting test results analysis, 95–96

supporting the test execution, 95

quality assurance, 85–86

resources allocation and testing schedule

planning, 86–87

selection strategy, 87–88

test generation and execution process

control, 92

test-generation criteria selection, 89

test selection criteria, 93

test suit evolution, software specification,

90–91

tracking and impacting analysis, software

specification, 89–90

tracking of failures, 92–93
S

Scan reflectance profile (SRP), 219

Science, Technology And Research Transit

Access Point (STAR TAP), 201

Scrum

advantages, 38

documents and artifacts, 37

overview, 36

process, 37–38

roles, 37

Scrum meeting, 25

Semantic models

grammars, 254

graphical models, 253

logic and linguistic models, 254–255

Single-input multiple-output (SIMO)

process, 273

Software testing

model-based testing (MBT)
benefits in using, 50–51

304 SUBJECT INDEX
Software testing (Continued)
concepts and background, 47–48
future perspectives, 98–99

lack of transferring, software industry,

51–52

process and overview, 48–50

risk factors and impact on testing

process activities, 96–98

software testing strategies, 46–47

techniques, 53–96
StarLight

communication services signaling,

198–199

directions
emerging architecture, technologies,

and concepts, 205

International GENI (iGENI), 204–205
NSF IRNC Experimental Networks

Program, 205

driver applications, 195

emerging network services architecture

architectural structure, 196–197

overview, 196

multiservices architecture, 197–198

network services and facility

prototypes

Global Lambda Integrated Facility

(GLIF), 204

Network Access Point and MREN,

200–201

operation issues, 203–204

partitionable environment, 202–203
Science, Technology And Research

Transit Access Point (STAR TAP),

201

StarLight International Exchange

Facility, 201–202

traditional communication services

architecture, 193–194

StarLight International Exchange Facility,

201–202
State machine diagrams, 159

Story cards, 29, 31
Synchronous Optical Networking/

Synchronous Digital Hierarchy

(SONET/SDH), 194
T

Test-case generation techniques

combinatorial interaction models
covering arrays, 151–152

Latin squares, 151

ES-based models, 145–147

hierarchical models

finite state machines, 155–158

keyword-driven models, 153–155

UML diagram-based, 158–159

pre-and post-condition models

partially ordered and total-ordered

plans, 145–146

setup and plan-generation phase, 144

probabilistic models, 147–149

state machines

complete interaction sequences,

130–132

finite, 126–128

off-nominal finite, 132–134

variable finite, 128–130

workflows

event-flow graph, 134–136

event interaction graph, 136–137

event semantic interaction graph,

138–141

off-nominal event graph, 141–144

Theoretical triangulation, 175

Time-varying models

clustering experiment, skating video
complex activity, Blackjack, 276–278

Grassmann manifold, 276

temporal segmentation, 276

common activities dataset, 271–272

Grassmann switching model

procedure, 274

sequence of labels, 275

low-level processing, 275–276

SUBJECT INDEX 305
parameter estimation

conditions involved, 272–273

linear parameter varying (LPV)

systems, 273

observability matrix, 274

parameter choice, 273–274

single-input multiple-output (SIMO)

process, 273

synthesized version, 271–272

Triangulation

advantages, 175

convergence, 181

data collection, 182–183

Denzin’s views, 175–176
multimethod triangulation, 173–174

triangulation data collection

techniques, 174

triangulation types, 174–175

divergence, 181

goal setting

complementary perspective, 186

data collection techniques, 185

evolutionary perspective, 185–186

inconsistency, 181

opposition, 185

validity

conclusion, 184–185

construct, 184

external, 184

internal, 184

Trust

attributes, 170–171

definition, 170

triangulation benefits, 170–173
U

Unit test-driven development, 27–28

Universal Product Code (UPC)-A barcode

structure, 213–214

Use case diagrams, 158–159
V

Variable finite state machines (VFSM),

128–130

Verification and validation (V&V)

techniques, 82

Video-based human activity analysis

activity perception
action sketch, 256–257

dynamic sketch, 256

semantic sketch, 257

activity recognition

anthropometric variations, 242

execution rate, 242

experiments, 262–263

higher level interpretation, video

analysis, 242

viewpoint, 241

complex activities

action element modeling, 263–264

learning model parameters, 264–266

semantic models, 252–255

system overview, 264

time-varying dynamical systems, 252

far-field video, shape deformation, 241

general activity models (see Time-varying

models)

low-level feature extraction

background subtracted blobs and shape,

245–246

filter responses, 246–248

optical flow, 244

part-based approaches, 248–249

point trajectories, 245

low-level processing, 275–276

medium-field video, bank attack

simulation, 241

models for action

hidden Markov models, 249–250

linear dynamical systems (LDS), 250

near-field video, walking, 240

306 SUBJECT INDEX
Video-based human activity analysis

(Continued)

subspaces, Grassmann manifold
d-dimensional subspaces, 260

Euclidean distance, 260–261

generalized linear group, 260

quotient interpretation, 260

supervised and unsupervised learning,

261–262

video summarization

confusion matrix, view-invariant

clustering, 270

INRIA database (see INRIA database)

Laplacian space dimensions, cluster

visualization, 269

UMD database, 267–268

user-supplied tags, 267

view and rate variations

affine transforms, 279–281

execution rate activity, invariance,

282–284
modified distance metric, 281–282

vision-based activity recognition systems

activity-based indexing, 243

animation and synthesis, 244

behavioral biometrics, 242–243

interactive applications and

environments, 243

security and surveillance systems, 243
W

Web services-Inspection Language (WSIL),

199

Wideband Delphi estimation, 28–29
X

XP. See Extreme programming

Contents of Volumes in This Series
Volume 60

Licensing and Certification of Software Professionals

DONALD J. BAGERT

Cognitive Hacking

GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics

WARREN HARRISON

Survivability: Synergizing Security and Reliability

CRISPIN COWAN

Smart Cards

KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER

Shotgun Sequence Assembly

MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition

GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures

ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors

LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems

A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications

STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing

DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods

DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development

PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing

DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications

GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN
307

308 CONTENTS OF VOLUMES IN THIS SERIES
Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)

DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning

TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems

SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW

JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip

THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems

SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI, NOAH BECK,

LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER, JAMES P. ROBERTSON,

MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing

BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI

Search and Retrieval of Compressed Text

AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services

ABDUR CHOWDHURY

Web Services

SANG SHIN

A Protocol Layer Survey of Network Security

JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability

ROLAND T. RUST, P. K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize

DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?

PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

CONTENTS OF VOLUMES IN THIS SERIES 309
Early Cognitive Computer Vision

JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence

TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases

MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning

DAVID N. CARD

Function Points

CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education

PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment

RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems

WILLIAM G. BAIL

Mechanics of Managing Software Risk

WILLIAM G. BAIL

The PERFECT Approach to Experience-Based Process Evolution

BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and

Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions

A. R. HURSON, Y. JIAO, AND B. A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications

AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future

ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement

JEFF TIAN AND LI MA

Wireless Insecurities

MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics

DARIO FORTE

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement

YING CHIH LIN AND CHUAN YI TANG

310 CONTENTS OF VOLUMES IN THIS SERIES
Models and Methods in Comparative Genomics

GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity

LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions

DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins

JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry

XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach

RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power

KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories

WEI ZHANG

Mobile Games: Challenges and Opportunities

PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON, AND

OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI

Volume 70

Designing Networked Handheld Devices to Enhance School Learning

JEREMY ROSCHELLE, CHARLES PATTON, AND DEBORAH TATAR

Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information

Filtering

JOHN ATKINSON AND ANITA FERREIRA

A Tour of Language Customization Concepts

COLIN ATKINSON AND THOMAS KÜHNE

Advances in Business Transformation Technologies

JUHNYOUNG LEE

Phish Phactors: Offensive and Defensive Strategies

HAL BERGHEL, JAMES CARPINTER, AND JU-YEON JO

Reflections on System Trustworthiness

PETER G. NEUMANN

Volume 71

Programming Nanotechnology: Learning from Nature

BOONSERM KAEWKAMNERDPONG, PETER J. BENTLEY, AND NAVNEET BHALLA

Nanobiotechnology: An Engineer’s Foray into Biology

YI ZHAO AND XIN ZHANG

CONTENTS OF VOLUMES IN THIS SERIES 311
Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small,

Ultra-Dense Sensing Systems

BRIGITTE M. ROLFE

Simulation of Nanoscale Electronic Systems

UMBERTO RAVAIOLI

Identifying Nanotechnology in Society

CHARLES TAHAN

The Convergence of Nanotechnology, Policy, and Ethics

ERIK FISHER

Volume 72

DARPA’s HPCS Program: History, Models, Tools, Languages

JACK DONGARRA, ROBERT GRAYBILL, WILLIAM HARROD, ROBERT LUCAS, EWING LUSK, PIOTR LUSZCZEK,

JANICE MCMAHON, ALLAN SNAVELY, JEFFERY VETTER, KATHERINE YELICK, SADAF ALAM, ROY

CAMPBELL, LAURA CARRINGTON, TZU-YI CHEN, OMID KHALILI, JEREMY MEREDITH, AND

MUSTAFA TIKIR

Productivity in High-Performance Computing

THOMAS STERLING AND CHIRAG DEKATE

Performance Prediction and Ranking of Supercomputers

TZU-YI CHEN, OMID KHALILI, ROY L. CAMPBELL, JR., LAURA CARRINGTON, MUSTAFA M. TIKIR, AND

ALLAN SNAVELY

Sampled Processor Simulation: A Survey

LIEVEN EECKHOUT

Distributed Sparse Matrices for Very High Level Languages

JOHN R. GILBERT, STEVE REINHARDT, AND VIRAL B. SHAH

Bibliographic Snapshots of High-Performance/High-Productivity Computing

MYRON GINSBERG

Volume 73

History of Computers, Electronic Commerce, and Agile Methods

DAVID F. RICO, HASAN H. SAYANI, AND RALPH F. FIELD

Testing with Software Designs

ALIREZA MAHDIAN AND ANNELIESE A. ANDREWS

Balancing Transparency, Efficiency, AND Security in Pervasive Systems

MARK WENSTROM, ELOISA BENTIVEGNA, AND ALI R. HURSON

Computing with RFID: Drivers, Technology and Implications

GEORGE ROUSSOS

Medical Robotics and Computer-Integrated Interventional Medicine

RUSSELL H. TAYLOR AND PETER KAZANZIDES

Volume 74

Data Hiding Tactics for Windows and Unix File Systems

HAL BERGHEL, DAVID HOELZER, AND MICHAEL STHULTZ

Multimedia and Sensor Security

ANNA HAĆ

312 CONTENTS OF VOLUMES IN THIS SERIES
Email Spam Filtering

ENRIQUE PUERTAS SANZ, JOSÉ MARÍA GÓMEZ HIDALGO, AND JOSÉ CARLOS CORTIZO PÉREZ

The Use of Simulation Techniques for Hybrid Software Cost Estimation and Risk Analysis

MICHAEL KLÄS, ADAM TRENDOWICZ, AXEL WICKENKAMP, JÜRGEN MÜNCH,

NAHOMI KIKUCHI, AND YASUSHI ISHIGAI

An Environment for Conducting Families of Software Engineering Experiments

LORIN HOCHSTEIN, TAIGA NAKAMURA, FORREST SHULL, NICO ZAZWORKA,

VICTOR R. BASILI, AND MARVIN V. ZELKOWITZ

Global Software Development: Origins, Practices, and Directions

JAMES J. CUSICK, ALPANA PRASAD, AND WILLIAM M. TEPFENHART

Volume 75

The UK HPC Integration Market: Commodity-Based Clusters

CHRISTINE A. KITCHEN ANDMARTYN F. GUEST

Elements of High-Performance Reconfigurable Computing

TOM VANCOURT ANDMARTIN C. HERBORDT

Models and Metrics for Energy-Efficient Computing

PARTHASARATHY RANGANATHAN, SUZANNE RIVOIRE, AND JUSTIN MOORE

The Emerging Landscape of Computer Performance Evaluation

JOANN M. PAUL, MWAFFAQ OTOOM, MARC SOMERS, SEAN PIEPER, AND MICHAEL J. SCHULTE

Advances in Web Testing

CYNTRICA EATON AND ATIF M. MEMON

Volume 76

Information Sharing and Social Computing: Why, What, and Where?

ODED NOV

Social Network Sites: Users and Uses

MIKE THELWALL

Highly Interactive Scalable Online Worlds

GRAHAM MORGAN

The Future of Social Web Sites: Sharing Data and Trusted Applications with Semantics

SHEILA KINSELLA, ALEXANDRE PASSANT, JOHN G. BRESLIN, STEFAN DECKER,

AND AJIT JAOKAR

Semantic Web Services Architecture with Lightweight Descriptions of Services

TOMAS VITVAR, JACEK KOPECKY, JANA VISKOVA, ADRIANMOCAN, MICK KERRIGAN, AND DIETER FENSEL

Issues and Approaches for Web 2.0 Client Access to Enterprise Data

AVRAHAM LEFF AND JAMES T. RAYFIELD

Web Content Filtering

JOSÉMARÍA GÓMEZ HIDALGO, ENRIQUE PUERTAS SANZ, FRANCISCO CARRERO GARCÍA, AND MANUEL DE

BUENAGA RODRÍGUEZ

Volume 77

Photo Fakery and Forensics

HANY FARID

Advances in Computer Displays

JASON LEIGH, ANDREW JOHNSON, AND LUC RENAMBOT

CONTENTS OF VOLUMES IN THIS SERIES 313
Playing with All Senses: Human–Computer Interface Devices for Games

JÖRN LOVISCACH

A Status Report on the P Versus NP Question

ERIC ALLENDER

Dynamically Typed Languages

LAURENCE TRATT

Factors Influencing Software Development Productivity—State-of-the-Art and Industrial Experiences

ADAM TRENDOWICZ AND JÜRGEN MÜNCH

Evaluating the Modifiability of Software Architectural Designs

M. OMOLADE SALIU, GÜNTHER RUHE, MIKAEL LINDVALL, AND CHRISTOPHER ACKERMANN

The Common Law and Its Impact on the Internet

ROBERT AALBERTS, DAVID HAMES, PERCY POON, AND PAUL D. THISTLE

Volume 78

Search Engine Optimization—Black and White Hat Approaches

ROSS A. MALAGA

Web Searching and Browsing: A Multilingual Perspective

WINGYAN CHUNG

Features for Content-Based Audio Retrieval

DALIBOR MITROVIĆ, MATTHIAS ZEPPELZAUER, AND CHRISTIAN BREITENEDER

Multimedia Services over Wireless Metropolitan Area Networks

KOSTAS PENTIKOUSIS, JARNO PINOLA, ESA PIRI, PEDRO NEVES, AND SUSANA SARGENTO

An Overview of Web Effort Estimation

EMILIA MENDES

Communication Media Selection for Remote Interaction of Ad Hoc Groups

FABIO CALEFATO AND FILIPPO LANUBILE

Volume 79

Applications in Data-Intensive Computing

ANUJ R. SHAH, JOSHUA N. ADKINS, DOUGLAS J. BAXTER, WILLIAM R. CANNON, DANIEL G. CHAVARRIA-

MIRANDA, SUTANAY CHOUDHURY, IAN GORTON, DEBORAH K. GRACIO, TODD D. HALTER, NAVDEEP

D. JAITLY, JOHN R. JOHNSON, RICHARD T. KOUZES, MATTHEW C. MACDUFF, ANDRES MARQUEZ,

MATTHEW E. MONROE, CHRISTOPHER S. OEHMEN, WILLIAM A. PIKE, CHAD SCHERRER, ORESTE VILLA,

BOBBIE-JO WEBB-ROBERTSON, PAUL D. WHITNEY, AND NINO ZULJEVIC

Pitfalls and Issues of Manycore Programming

AMI MAROWKA

Illusion of Wireless Security

ALFRED W. LOO

Brain–Computer Interfaces for the Operation of Robotic and Prosthetic Devices

DENNIS J. MCFARLAND AND JONATHAN R. WOLPAW

The Tools Perspective on Software Reverse Engineering: Requirements, Construction, and Evaluation

HOLGER M. KIENLE AND HAUSI A. MÜLLER

	Cover
	Copyright
	Contributors
	Preface
	Agile Software Development Methodologies and Practices
	Agile Origins and Manifesto
	Agile and Lean Principles
	The Agile Principles
	The Lean Principles
	Comparison of Agile and Lean Principles

	Agile Practices
	Acceptance Test-Driven Development
	Automation-Driven Root Cause Analysis of Failures
	Code Ownership
	Code and Tests
	Collective Code Ownership
	Continuous Integration
	Done Criteria
	Energized Work
	Executable Documentation
	Features
	Incremental Design
	Inspections
	Informative Workspace
	Iteration Demonstration
	Negotiated Scope
	Nightly Build
	Pair Programming
	Planning Poker
	Release and Iteration Backlog
	Retrospective
	Scrum Meeting
	Sit Together
	Short Iterations
	Short Releases
	Sprint
	Stand-Up Meeting
	Stories
	Sustainable Pace
	Ten-Minute Build
	Unit Test-Driven Development
	Whole Team
	Wideband Delphi Estimation
	Practices Versus Agile Principles

	Examples of Agile Software Development Methodologies
	Extreme Programming (XP)
	Documents and Artifacts
	Roles
	Process
	Discussion

	Feature-Driven Development (FDD)
	Documents and Artifacts
	Roles
	Process
	Discussion

	Scrum
	Overview
	Documents and Artifacts
	Roles
	Process
	Discussion

	Comparison of Practices of Three Methodologies

	Summary
	Acknowledments
	References

	A Picture from the Model-Based Testing Area: Concepts, Techniques, and Challenges
	Introduction
	Model-Based Testing
	Concepts and Background Regarding MBT
	MBT Process and Overview of MBT Technique
	Benefits in Using MBT
	Lack of Transferring MBT Technologies into the Software Industry

	MBT Techniques: A Systematic Review
	Systematic Review Planning and Execution
	MBT Techniques Analysis
	Characterization of the Selected MBT Techniques
	Selecting MBT Techniques for Software Projects

	Challenges in Using MBT Techniques in Software Projects
	Risk Factors Associated to the Use of MBT Techniques in Software Projects
	Factor 1: Quality Assurance of Artifacts Used by the MBT Technique for Test Generation
	Factor 2: Efficient Mechanism to Provide the Right Artifacts to be Used as Inputs by the MBT Technique
	Factor 3: Strategy for Resources Allocation and Testing Schedule Planning
	Factor 4: Strategy for the Selection of MBT Techniques
	Factor 5: Strategy Adopted for the Behavioral/Structural Model Construction
	Factor 6: Strategy Adopted for the Test-Generation Criteria Selection
	Factor 7: Tracking and Impacting Analysis of Changes in Software Specification
	Factor 8: Test Suit Evolution After Changes in the Software Specification
	Factor 9: Manual Inclusion of Extra Test Cases
	Factor 10: Test Generation and Execution Process Control
	Factor 11: Tracking of Failures Revealed by MBT Techniques
	Factor 12: Evaluation of MBT Techniques and Their Test Selection Criteria

	Mitigating the Risk Factors in Software Projects
	Mechanisms Supporting Test Planning
	Mechanisms Supporting Test Design
	Mechanisms Supporting the Test Execution
	Mechanisms Supporting the Test Results Analysis
	Mechanisms Supporting Test Control

	Conclusions and Future Perspectives
	Final Considerations
	Future Perspectives

	Acknowledments
	References

	Advances in Automated Model-Based System Testing of Software Applications with a GUI Front-End
	Introduction
	Running Example of GUI Application Under Test
	Test-Case Generation Techniques
	State Machines
	Finite State Machines
	Variable Finite State Machines
	Complete Interaction Sequences
	Off-Nominal Finite State Machines

	Workflows
	Event-Flow Graph
	Event Interaction Graph
	Event Semantic Interaction Graph
	Off-Nominal Event Graph

	Pre- and Postcondition Models
	ES-Based Models
	Probabilistic Models
	Combinatorial Interaction Models
	Latin Squares
	Covering Arrays

	Hierarchical Models
	Keyword-Driven Models
	Hierarchical Finite State Machines
	UML Diagram-based

	Conclusions
	Acknowledments
	References

	Empirical Knowledge Discovery by Triangulation in Computer Science
	Introduction
	Objectification of Concepts in Computer Science
	Normalized Compression Distance
	Compressors and Images
	Complexity and Imprecise Definitions Abound

	Triangulation: Introduction
	Triangulation: The State of the Art
	Convergence and Researcher Acumen
	Triangulation: An Actual Study
	Lack of Triangulation Examples in the Literature
	Convergence, Inconsistency, and Divergence
	Triangulation: Data Collection
	An Example of Triangulation in Computer Science: Software Engineering
	Validity and Goal Setting
	Conclusion

	References

	StarLight: Next-Generation Communication Services, Exchanges, and Global Facilities
	Introduction
	Traditional Communication Services Architecture
	Driver Applications
	Emerging Network Services Architecture
	An Overview
	Network Services Architecture: Architectural Structure

	Multiservices Architecture
	Architecture: Communication Services Signaling

	Future Network Services and Facility Prototypes
	Network Facilities
	Network Access Point and MREN
	STAR TAP
	The StarLight International Exchange Facility
	StarLight as a Partitionable Environment
	Operation Issues
	Global Lambda Integrated Facility

	Future Directions
	International Global Environment for Network Innovations
	NSF IRNC Experimental Networks Program
	Emerging Architecture, Technologies, and Concepts

	Summary
	Acknowledments
	References

	Parameters Effecting 2D Barcode Scanning Reliability
	Introduction
	Factors that Affect Barcode Scan Ability
	Barcode Symbologies
	Symbologies Having Widespread Presence
	The PDF417 Symbology
	The QR Code Symbology
	The DataMatrix Symbology
	The Aztec Code Symbology

	Proprietary and Emerging Symbologies
	The Datastrip 2D Symbology
	The HCCB Symbology

	Content Density
	Error Correction
	Scan Grade and Reflectance Profile
	Symbol Grade
	Encoder
	Printer
	Media
	Decoder/Scanner Characteristics

	Testing Methodology
	Internal Testing
	Barcodes with Lower Content Density
	Barcodes with Higher Content Density
	Preliminary Testing
	Extensive Testing
	Reliability testing
	Content density testing
	Error correction level based testing for QR Code and PDF417
	Effect of Glossiness on scan reliability
	Effect of glossiness testing for QR Code 844 bytes data capacity.
	Effect of glossiness testing for PDF417 844 bytes data capacity.

	Comparison of target media (card and label) with optimal scan settings

	External Testing

	Conclusion
	References

	Advances in Video-Based Human Activity Analysis: Challenges and Approaches
	Introduction
	Challenges
	Applications
	Behavioral Biometrics
	Activity-Based Indexing of Video
	Security and Surveillance
	Interactive Applications and Environments
	Animation and Synthesis

	Feature Extraction
	Optical Flow
	Point Trajectories
	Background Subtracted Blobs and Shape
	Filter Responses
	Part-Based Approaches

	Models for Actions
	Hidden Markov Models
	Linear Dynamical Systems

	Complex Activities
	Time-Varying Dynamical Systems
	Semantic Models
	Graphical Models
	Grammars
	Logic and Linguistic Models

	A Unified Approach for Recognizing Simple Actions and Complex Activities
	Understanding the Space of Primitives
	The Manifold Structure of Subspaces
	Supervised and Unsupervised Learning of Activities from Videos
	Activity Recognition Experiments

	Complex Activity Models: Cascade of Dynamical Systems
	Modeling Action Elements
	Learning Model Parameters
	Experiments: Video Summarization Using Cascade Models
	INRIA: Free-Viewpoint Database [103]

	More General Activity Models: Time-Varying Models
	Estimating the Time-Varying Parameters
	Grassmann Switching Model

	Experiments: Video Summarization and Clustering
	Low-Level Processing
	Clustering Experiment

	View and Rate Variations
	Affine and View Invariance
	Modified Distance Metric

	Invariance to Execution Rate of Activity
	Estimating q

	Summary
	Acknowledments
	References

	Author Index
	Subject Index
	Contents of Volumes in This Series

