


15 

The past decade has seen a technological revolution in facilities for betting on 
horseracing and other sports. From the proliferation of online information to the advent of 
betting exchanges, such as Betfair, which matches 15 times as many daily transactions 
as the London Stock Exchange, it is now possible to analyse form and betting odds; run 
selection systems; place bets and track results electronically. Crucially, the availability of 
programmatic access to exchange markets via an application programming interface 
(API) enables the final piece in reliable automation of the entire betting process.  
 
Automatic Exchange Betting examines each stage of the betting process and shows how 
it can be automated, with numerous examples applied to horseracing, all implemented 
using the Betfair API. Betting strategies, best practice and pitfalls are presented which 
illustrate the concepts of betting automation, together with practical, re-useable code 
examples written in open source software to work with Betfair's Free Access API.  
 
A combination of speed of execution, consistency and scalability means hitherto 
impossible betting strategies become feasible, and methodical approaches to betting can 
be implemented without manual intervention.  
 
Automatic Exchange Betting introduces an entirely new paradigm for betting.  
 
 

Colin Magee has worked for international finance, e-commerce and statistical software 
companies for over 15 years. He is a lifelong horseracing enthusiast (as racegoer, 
occasional owner and punter), and proprietor of www.betwise.co.uk 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

  

 
 



 
 

   
 

 

 
 

 



 

  

 
 

First published 2008 
 

High Stakes Publishing 
21 Great Ormond Street 

London WC1N 3JB 
 

www.highstakespublishing.com 
 
 
  

© Colin Magee 2008 
 
 

The right of Colin Magee to be identified as the author of this work has been asserted in 
accordance with the Copyright, Designs and Patents Act 1988. 

 
All rights reserved. No part of this book may be reproduced, stored 
in or introduced into a retrieval system, or transmitted, in any form 

or by any means (electronic, mechanical, photocopying, recording or 
otherwise) without the written permission of the publishers. 

 
Any person who does any unauthorised act in relation to this publication 

may be liable to criminal prosecution and civil claims for damages. 
 

 
A CIP catalogue record for this book is available from the British Library. 

 
 

ISBN 978-1-84344-041-3 
 
 

2  4  6  8  10  9  7  5  3  1 
 
 

Printed and bound in the UK 
 



 
 

   
 

 

 

Acknowledgements 
 
Thanks to The Betfair API Product Development Team, in particular Tom Johnson, Mark 
Leavitt and Kirsty Frampton, for their review and support for the book. 
 
To Laura Stevens and The Racing Post internet team for permission to use and publish 
data from www.racingpost.co.uk in order to show the generation of an automatic 
oddsline. 
 
To Sandy Paterson of www.equiformratings.co.uk for his comments, and for being a 
good sport in supplying his ratings for automation and scrutiny in Part 3, Automated 
Strategies in Practice. 
 
Thanks also to those who I contacted in order to pass comment on the example Perl 
code, including Randal Schwartz for finding time to make some general pointers, and to 
Mike Houghton, who also developed the Betwise website.  Any remaining errors or 
idiosyncrasies are the author’s.  Further improvements and additions to code are also 
welcome at www.betwise.co.uk. 
 
Last but not least, I thank my wonderful wife for her support and encouragement during 
the writing of this book.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

 



 
 

   
 

 

CONTENTS 
 
 
Preface ......................................................................................................................... 11 

Structure of This Book........................................................................................... 11 
Example Programs and other resources ............................................................... 12 
Conventions Used ................................................................................................. 12 

Introduction ................................................................................................................... 15 
The IT revolution in horseracing betting................................................................. 16 
The Quest for Automation ..................................................................................... 17 

PART 1:  EXPLORING REQUIREMENTS FOR BETTING AUTOMATION ................... 19 
Chapter 1:  Exploring the betting process...................................................................... 21 

“Traditional” betting and automated betting ............................................................... 21 
Betting on one event ................................................................................................. 22 
Using Data to predict performance............................................................................ 23 

Form and Ratings.................................................................................................. 23 
Looking for Winners .................................................................................................. 27 

Betting systems..................................................................................................... 27 
Third party sources................................................................................................ 30 
Observations prior to an event............................................................................... 31 

Assessing Winning Chances..................................................................................... 33 
Predictive models .................................................................................................. 33 

Defining value and using oddslines ........................................................................... 35 
Using Market Information .......................................................................................... 37 
Deciding whether and what to Bet ............................................................................. 39 

Staking .................................................................................................................. 40 
Placing Bets .............................................................................................................. 43 
Record Keeping ........................................................................................................ 44 

Chapter 2 :  The Automatic Betting Process.................................................................. 45 
Chapter 3 :  Tools of the Trade - Hardware, Software and Data Sources...................... 47 

Personal Computer: .............................................................................................. 48 
Infrastructure for internet access: .......................................................................... 48 
Back up policy and media:..................................................................................... 49 
Uninterrupted Power Supply (UPS): ...................................................................... 49 
Third party hosting services................................................................................... 49 

Software.................................................................................................................... 50 
Operating Systems................................................................................................ 50 
Programming Languages ...................................................................................... 52 
Database Management Systems........................................................................... 53 

Data sources............................................................................................................. 54 
Data Formats ........................................................................................................ 55 
Screen scraping – retrieving data from the web..................................................... 55 
Commercial Form Databases................................................................................ 56 
The Betfair API...................................................................................................... 56 

PART 2:  IMPLEMENTING A FRAMEWORK FOR BETTING AUTOMATION............... 59 
Chapter 4:  Using Betfair API services .......................................................................... 61 

How the Betfair API works......................................................................................... 61 
Description of Betfair API services ............................................................................ 63 
A library of Perl functions to call the services ............................................................ 66 

Building service call functions................................................................................ 67 



 

  

Review of the login example function .................................................................... 68 
Review of the get_market_prices_compressed example function.......................... 74 
Arguments and outputs for example functions....................................................... 84 
Exchange specific services and betting on Australian events ................................ 85 

Chapter 5:   Betting process 101 - Daily event data ...................................................... 89 
Purpose of event data ............................................................................................... 90 
Example Code for capturing Daily event data............................................................ 93 

Creation of races database table and other program dependencies: ..................... 93 
Code listing and commentary ................................................................................ 94 
Running the program............................................................................................. 98 
Extending the scope............................................................................................ 101 

Chapter 6:  Assessing Contenders.............................................................................. 103 
Generating an example oddsline using Racing Post Postdata................................. 104 

Background to the Postdata Oddsline ................................................................. 104 
Automating the oddsline ...................................................................................... 106 
Code Walkthrough for oddsline format ................................................................ 111 
Formatted oddsline output................................................................................... 114 

Chapter 7:   Scheduling – The Key to Automation....................................................... 119 
Linux Scheduling Facilities ...................................................................................... 122 

Crontab ............................................................................................................... 122 
At ........................................................................................................................ 123 
System Log Files................................................................................................. 124 

Setting the daily time............................................................................................... 124 
Dynamic scheduling for event specific programs..................................................... 125 

Creating the Events Schedule ............................................................................. 125 
Generating dynamic tasks using the events_schedule file................................... 128 
Example Scenario: .............................................................................................. 128 
Example Dynamic Scheduling Program .............................................................. 130 
Picking the right event per scheduled task or program ........................................ 132 
An alternative scheduling case for simple system or third party picks.................. 137 

Common Scheduling “gotchas” ............................................................................... 138 
Extending scheduling concepts ............................................................................... 139 

Scaling for multiple strategies by using multiple directories and user accounts ... 139 
Handling events at the program level .................................................................. 141 
Using sleep ......................................................................................................... 141 
Timekeeping within a program............................................................................. 142 

Chapter 8: Capturing and Using Market Information.................................................... 145 
Example code for capturing current market prices................................................... 146 
Running the program............................................................................................... 150 
Extending the program............................................................................................ 152 

Market prices for multiple events ......................................................................... 152 
Fetching prices at regular intervals for an event .................................................. 154 
Using a “market-in-play” test to fetch prices before or after offtime...................... 159 
Calculating average price and weight of money................................................... 161 
Calculating Market Overround or Percentage Book............................................. 167 

Analysing the entire price ladder per runner ............................................................ 171 
Chapter 9:   Automating Betting Decisions .................................................................. 183 

Example betting decisions based on an oddsline .................................................... 183 
Comparing an Oddsline with the Market; Correcting for Non-Runners................. 184 
Basing betting decisions on the oddsline............................................................. 185 

Example Oddsline Decision Program...................................................................... 188 



 
 

   
 

 

Program Context ................................................................................................. 190 
Code Walkthrough............................................................................................... 191 

Extending Decision Criteria ..................................................................................... 197 
Number of selections and minimum price............................................................ 197 
Dutching.............................................................................................................. 198 
Changing the price dynamically........................................................................... 200 
Using the Market Overround for Optimal Pricing.................................................. 203 
Price Prediction and Unmatched Bet Considerations .......................................... 203 
The Betfair SP Market and Bet Persistence......................................................... 204 
Automating staking plans using a betting bank.................................................... 206 

Automating trading decisions .................................................................................. 209 
Chapter 10:   Betting Execution................................................................................... 211 

Betting Execution on Oddsline Example.................................................................. 212 
Collecting the Bet Identification ........................................................................... 216 

Placing unmatched bets outside current market prices or volumes ......................... 217 
Checking on outstanding (unmatched) bets and positions................................... 218 
Updating and Cancelling Bets ............................................................................. 222 
Hedging, and taking a partial profit on a position ................................................. 226 

Chapter 11:   Automated Record Keeping................................................................... 229 
Capturing settled bet details .................................................................................... 230 

Retrieving Betting Records by Betting Strategy ................................................... 231 
Extending the examples for bet analysis ................................................................. 235 

PART 3:  AUTOMATED STRATEGIES IN PRACTICE ............................................... 239 
Chapter 12: Bringing the automated framework together......................................... 241 

Testing The Framework .......................................................................................... 241 
Testing The Example Strategy ................................................................................ 243 

Rules for the example strategy ............................................................................ 244 
Summary of set up: ............................................................................................. 245 
And They’re Off! .................................................................................................. 246 
Results summary................................................................................................. 252 

Chapter 13:   Assessing and Improving the Implementation........................................ 255 
Assessing Output from the Live Test....................................................................... 255 
Improving the Implementation ................................................................................. 260 

Conclusion .......................................................................................................... 264 
Chapter 14:   Oddsline Strategies in Production.......................................................... 267 

Background on Oddslines used............................................................................... 267 
Postdata oddsline................................................................................................ 267 
Equiformratings oddsline ..................................................................................... 268 
Production run rules ............................................................................................ 269 

Automatic Betting Diary........................................................................................... 270 
Week 1................................................................................................................ 271 
Conclusions and Adjustments at end of week 1 .................................................. 288 
Week 2:............................................................................................................... 294 
Summary............................................................................................................. 303 

Chapter 15:  Next steps for the automatic bettor ......................................................... 307 
Testing Strategies without risk................................................................................. 307 
Betfair Account Management .................................................................................. 309 

Stop loss limits: ................................................................................................... 309 
More than one account........................................................................................ 309 
Don’t Forget to Pay Yourself ............................................................................... 310 

Avoiding Cognitive Bias........................................................................................... 310 



 

  

The Automatic Betting Portfolio ............................................................................... 311 
Bibliography ................................................................................................................ 313 

Online Sources........................................................................................................ 313 
Further Reading: ..................................................................................................... 315 

The betting process:............................................................................................ 315 
Systematic betting on horseracing....................................................................... 315 
Probability and Games of Chance ....................................................................... 315 
Programming - Perl ............................................................................................. 316 
Linux and Ubuntu ................................................................................................ 316 
MySQL ................................................................................................................ 317 

Appendix 1:  Software configuration for example code................................................ 319 
Notes for installing Ubuntu ...................................................................................... 319 

Installing Perl and requisite Perl modules in Ubuntu............................................ 320 
Installing MySQL in Ubuntu ................................................................................. 322 

Notes for Installing to other Linux distributions ........................................................ 322 
Notes for Installing to Mac OS X ............................................................................. 323 
Notes for installing to Windows ............................................................................... 323 
Configuration for Example Scripts, Betfair API Functions and Example Database .. 324 

General ............................................................................................................... 324 
Paths................................................................................................................... 325 
Creating the Example autodb Database .............................................................. 325 
Example Crontab Entries for Automation of Oddsline Betting.............................. 326 

Appendix 3:  Betfair API services ................................................................................ 345 
Appendix 5:  Betfair Price Increments ......................................................................... 349 
Index To Figures, Tables and Examples ..................................................................... 351 

Index to Figures................................................................................................... 351 
Index to Tables:................................................................................................... 352 
Index to Examples............................................................................................... 352 

Index........................................................................................................................... 355 
 



 11 

Preface 
 

Structure of This Book 
 
The concepts, code and explanations in the book are presented as far as possible to be 
accessible to the developer and the non-developer, as well as the experienced and 
inexperienced bettor.  Whilst an existing appreciation of both is definitely helpful, 
especially if wanting to implement automated betting strategies, it is assumed that an 
understanding of the whole process is within the grasp of the layperson, with resources 
and other references provided to delve deeper where required. 
 
The aim is to build up a complete picture of automating betting strategies from first 
concepts to implementing them by risking real capital.    Pitfalls, best practice, ideas for 
improvement and examples are discussed along the way, corresponding to each part of 
the automatic betting process.     
 
The book is organised in 3 parts, in order to build up that picture, as described below: 
 
 
 
Part 1: Exploring 
Requirements for 
Betting Automation 

Part 1 provides an overview of the betting process and a 
discussion of the elements involved.    Based on this 
discussion we offer a logical framework for automating the 
betting process consisting of key stages.  We consider what is 
required for automation of each stage and the whole strategy, 
in terms of methods used, an IT environment and data access. 
 

Part 2: Implementing 
A Framework for 
Betting Automation 

In Part 2 of the book we delve deeper into the specifics of 
implementing a framework for automatic betting.    
 
Starting with general coverage of the Betfair API (or 
Application Programming Interface, our means of connecting 
automatically to the Betfair exchange), we go on to describe 
and implement a specific strategy for automatically generating 
and then betting an oddsline.  This is used as a persistent 
example for each stage of the betting process.   The example 
code is explained with sufficient depth so as to be suitable for 
those starting with the Betfair API for the first time, or starting 
with Perl and Linux, although it is also possible to run most of 
the code “as is”, or simply to follow the discussion.     
 
We also cover many other possibilities for adapting the code 
and the framework to suit different betting strategies. 
 
 



AUTOMATIC EXCHANGE BETTING 

12  

Part 3: Automated 
Strategies in Practice 

In Part 3 we start testing and running our example strategy on 
a live basis, risking real capital and iteratively improving the 
implementation.    
 
Subsequently, we introduce a third party set of ratings and 
tissue prices, then run two strategies in parallel over a two 
week period, leading to a review of all bets and an 
examination of successes and failures. 
 
Finally, we look at lessons learned from the implementation 
and running further automated strategies going forward. 

 

Example Programs and other resources 
 
All the example programs, together with sample output from automated strategies 
referred to in the text, can be downloaded by registering for free at www.betwise.co.uk.    
 
Whilst the programs have been used as the basis for implementing effective automated 
strategies, they are provided here as examples, not as supported software.    
 
Readers are free to use and adapt the software as they wish, provided that the copyright 
information remains (full licence terms are included with the examples online).  All the 
code in Automatic Exchange Betting is provided on an “as is” basis, and comes with 
absolutely no warranty whatsoever.    
 
Other useful resources for automatic betting, including updates to code, errata and 
services such as the Smartform Racing Database (the automated form database 
referenced in Parts 1 and 3), can be found at www.betwise.co.uk.   
 
See also the Bibliography for learning resources and the Appendices for notes on 
installation of example software. 
 

Conventions Used  
 
Italics 
Italics are used for urls, the first instance of some names, and proper nouns such as 
horse names. 
 
Monospace 
A monospace font is used for code listings and shell commands. 
 
Monospace italics 
Monospace italic is used for program names, file names, path names and other input to 
be supplied by the user (e.g. program variables such as username). 
 
Bold monospace 
Bold monospace is used for highlighting or emphasising key elements of code, program 
names and shell commands. 



PREFACE 

13 
 

 

 
Naming conventions for Betfair API Services and XML elements 
Betfair API Services such as GetMarketPricesCompressed appear in bold with all 
words capitalised and no spaces (as per the general Betfair convention).    
 
XML elements from Betfair API Services such as marketId also appear in bold as per 
the general Betfair convention (the first word for an XML element is in lower case with 
subsequent words capitalised). 
  
Naming conventions for example Perl programs, functions and variables: 
Example Perl programs are assigned the .pl suffix.   Example Perl functions to call 
Betfair services are listed in the library of functions BetfairAPI6Examples.pm in 
Appendix 2.   Each function shares the name of the Betfair API service it is accessing, 
but the Perl name is in lower case and separated by underscores for each word. 
 
For example, the Betfair API Service GetMarketPricesCompressed has a 
corresponding Perl function in get_market_prices_compressed.   
 
Perl variables are usually given the same name as the Betfair XML elements whose 
content they refer to.  For example, marketId refers to the Betfair XML element whose 
content is a Betfair market ID number.   The Perl scalar variable $marketId or hash 
value {‘marketId’} refers to the same content, assigned within the context of a 
program. 
 
Chapter 4 covers available Betfair API Services and example Perl functions in more 
depth. 



  



15  

Introduction 
 
 
It seems that the use of computers, the art of programming and The Sport of Kings were 
made for each other, right from the beginning.    
 
Charles Babbage’s plans for a general purpose, programmable computer in the mid-
nineteenth century, known as The Analytical Engine, are widely seen as the forerunner 
of the modern computer.    
 
Ada Lovelace, the daughter of Lord Byron, is accredited with describing the first 
computer program by virtue of her collaboration with Babbage, specifically in her notes 
on the “Sketch of the Analytical Engine”.    
 
Perhaps less well known is that Babbage tried mathematically handicapping horse 
races, and using the Analytical Engine for the purpose of profitable betting. 
 
By all accounts, Ada was more passionate if not more obsessed about horseracing than 
Babbage.   When the British government’s funding for the Analytical Engine ran out, the 
pair turned with vigour to finding alternative funding at the racecourse – and failed, 
miserably.   We note, soberly, that attempting to predict outcomes of unknown events is 
a risky business. 
 
So, using computers for horseracing and betting analysis is an idea that is not new, 
despite some notable advances in technology and the quality of data available since the 
mid-nineteenth century, not to mention some successes using analytical methods alone 
to make profitable selections. 
 
However, the idea of using computers to automate the whole betting process has only 
been possible in the few years since betting execution has gone online, at the turn of the 
twenty-first century. 
 
For those who wish to understand or take advantage of this opportunity, there is very 
little material on how to make this happen or what stages are involved.  For those who 
are not sure what the advantages are, the same is true.     
 
This book seeks to redress that balance by discussing the betting process and showing 
how to automate it from the ground up, with particular reference to horseracing in the UK 
and Ireland.    The idea of what a “betting process” is can vary, so we provide a 
framework for the betting process, and cover automation within the context of that 
framework.  (Suffice to say for now, it covers everything from selection of a bet to 
placement of a bet). 
 
Specifically, readers may find the stages of the framework useful in defining what needs 
to be done to create and automate their own systems for profit, or, if wishing to 
concentrate on automation in one area only (for example, if already happy with a 
selection method but wanting to automate staking and execution), may find a useful 
starting point for that process in the discussion and coding examples provided.   
 



AUTOMATIC EXCHANGE BETTING 

16  

Although the focus is on horseracing, the framework and the discussion of principles 
involved should make it easy to see how automated betting can be applied to 
horseracing in other countries, and indeed to other forms of sports betting.   So let’s 
continue by providing some further context on how complete automation of the betting 
process is now possible. 
 

The IT revolution in horseracing betting 
 
Much has been written about how the advent of betting exchanges has revolutionised 
the betting world.   This is true in many ways that have become common knowledge to 
anyone with even a passing interest in betting – since exchanges are effectively a form 
of person to person betting, the odds available are truly determined by what the market 
is willing to offer.  Now we can all act as bookmakers and punters, with the opportunity to 
lay as well as bet.  The market is transparent, so you can win or lose as much money as 
exists in the market at the prices available – there is no such thing as a bookmakers limit 
or being “knocked back”, you can get on for the prices and amounts shown.   Last but 
not least, because the odds on offer are truly formed by a market (with the exchange 
taking a commission on winnings as opposed to formulating the odds itself) the prices 
are typically much better than those offered by fixed odds bookmakers, absent the 
margins built into bookmakers’ overrounds on the sum probability of all horses winning 
the event.   
 
One important aspect of online betting exchanges, (in particular Betfair, the world’s 
largest betting exchange and the focus of examples provided in this book), is that they 
are primarily IT companies, with Betfair being one of the few success stories from the 
multitude of internet ventures that sprang up in the dotcom boom.    How much betting 
exchanges owe to the general IT revolution is implicit in their existence.  Without the 
widespread rise of the internet, broadband services, and advances in website and 
browser technology, there would be no possibility for a successful on-line betting market.      
 
Since these markets are electronic and transparent, a number of other opportunities are 
opened up to any backer and layer of horses, over and above the advantages already 
listed, when exchanges are compared to traditional betting mediums.   These 
opportunities are less immediately obvious, and require more work on behalf of the 
player, but can bring great advantage when part of an overall strategy, relating to betting 
automation.   At the simplest level, betting automation on the exchanges involves 
placement and then execution of a bet without the need to be there or to interact with the 
exchange application.   But automation on its own is of dubious benefit without being 
linked to a strategy.   Typically, the automatic execution of bets results from the 
implementation of trading models, systems or rule-based selection methods which would 
be too difficult, if not impossible and/or tedious to execute manually, since they require 
constant and vigilant monitoring of market conditions.    
 
The IT revolution in betting is not just limited to exchanges, of course - it is part of a 
deeper trend which affects all areas of betting.   Not left behind in the new betting ring 
are of course the traditional bookmakers, who still account for the largest percentage of 
the horseracing betting market in terms of money wagered.   All now offer a significant 
online betting presence, with the ability to bet at fixed odds, including multiple bets, and 



INTRODUCTION 

17 
 

 

to manage your account, alongside significant new media such as spread betting firms, 
offering the same facilities in the spread markets. 
 
So much for the act of betting.   The analysis of horseracing, however, has always been 
about much more than the execution of a bet.   Indeed, as we mentioned earlier, the 
raison d’etre for automatic execution is often to implement the underlying analysis, 
where there is usually a model, system or set of rules in operation to determine what to 
bet on.    Devising such systems relies upon the availability of appropriate data in the 
appropriate form.   Nowadays, more information is available electronically than ever 
before – from all aspects of horseracing form to market prices - although as we will see, 
some forms are more useful than others for the purposes of automation.    
 
In summary, the IT revolution is transforming betting and horseracing analysis, as it has 
the rest of daily life.   Players commonly access information electronically, place bets 
electronically and use various applications to be more productive in their betting 
activities, from form databases to spreadsheets.     
 
However, this book will take the process one stage further: to show how the player can 
take advantage of this revolution to automate the whole betting process from selection to 
execution. 
 

The Quest for Automation 
 
Like any other process that has been automated, “betting automation” is perhaps best 
thought of as describing a process which was once manual, and now is not – or at least 
does not have to be.   Automation, or creating programs to perform previously manual 
tasks, is usually a natural extension to a successful manual process, rather than sitting in 
opposition to a manual process.   As such, any betting strategy which relies on data and 
execution mechanisms which are available electronically can, in theory, be completely 
automated.    
 
How much of the betting process is automated is of course down to the preferences, not 
to mention limitations, of the individual bettor.     
 
We can make all parts of the betting process more efficient, or create useful utilities to 
help with certain tasks.   In the case of creating a useful utility, such as for trading 
purposes, the objective is not to remove all user interaction for the task at hand, but to 
create useful applications which require, and indeed rely on, the user’s interaction – 
although they may still speed up what was possible manually. 
 
The perspective of Automatic Exchange Betting is to look at automating the entire 
betting process (which implicitly deals with the smaller as well as larger definitions of 
what is meant by automation) and supply examples for each stage, with the emphasis on 
making each stage work within the context of a complete strategy. 
 
Whilst complete automation may not be the correct approach for every type of betting 
strategy (a strategy based on physical conformation as observed in the paddock, 
coupled with behaviour going to post springs to mind), it is surely the ultimate example of 
betting automation based upon a data driven approach.      



AUTOMATIC EXCHANGE BETTING 

18  

 
Automating a strategy in this way not only saves time, but introduces an entirely new 
paradigm for betting.   
 
A combination of speed of execution (e.g. obtaining prices before it is possible to do so 
manually), consistency of approach (so that a program can take a disciplined approach 
to betting on behalf of the bettor), and scalability (so that the computer can calculate and 
execute a number of bets which would be impossible to do manually) creates a level of 
reliability which is otherwise impossible and means hitherto impossible betting strategies 
become feasible. 
. 
Implementing an automated strategy also creates a different interaction with the activity 
of betting itself.   A bettor can now be absent from the computer or bookie for an 
indefinite period of time, perhaps enjoying the spectacle of racing itself, or doing 
something more pressing.  Of course, there is still interaction with an automated 
strategy, in order to review, modify and improve it, but this can happen on a timescale 
determined by the bettor - rather than by the next race, the next meeting, or even the 
next day. 
 
 



 

                             

PART 1:  EXPLORING 
REQUIREMENTS FOR BETTING 

AUTOMATION 



 

  



 

21  

Chapter 1:  Exploring the betting process 
 
Here we explore the betting process in order to uncover the essential ingredients 
required for implementing a betting strategy.   We will assess each of these elements in 
turn and look towards the key points to be gleaned as far as process and potential for 
automation are concerned.    
 
The objective is to identify a repeatable path to automating profitable strategies, by 
defining a logical framework that can be used as a general reference for implementation 
of programs.   The framework is therefore rooted in fundamental principles that apply to 
manual as well as automated betting.    

 

“Traditional” betting and automated betting 
 
We begin with the premise that any manual betting process that can be described can 
potentially be automated.   The deciding factor is the extent to which each stage of the 
process can be quantified, or measured, and, in the case of data used to make that 
assessment, whether that data is electronically available for consumption by a computer. 
 
The good news is that competitive, professional sport is generally a very quantitative 
business – both supporters and regulatory bodies tend to be obsessed with which 
contenders are the best, better than others, under what conditions, by what margins and 
according to what criteria.   At a professional level, such measures are usually recorded 
wherever possible, thereby creating useful data.    
 
In a traditional betting environment, all such data can form input to the betting decision 
making process, however it is stored, electronically or otherwise.   Our job is to consider 
how closely best practice in finding winners and betting on them uses this data, and 
whether such approaches lend themselves towards automation. 
 
Typically, traditional betting approaches, and by definition the majority of literature on 
betting in a pre-exchange world (where laying a contender to lose enters the equation), 
focus on the practice of picking and backing winners.    
 
However, any bettor knows that finding winners alone does not, of course, guarantee 
any profit whatsoever.  Since profit can only be produced if the returns from winners 
exceed stakes on the number of losers, it follows that any sound process must consider 
price relative to winning chance, as well as staking.  This requires some assessment of 
what the winning chances are prior to betting, together with a staking plan. 
 
Thus, the traditional, savvy bettor, is looking to identify the winner of any given event, 
and then only to back such winners that can deliver a long term return on investment - or 
in other words, in any event on which they are betting, they are looking to beat the 
market assessment of price.    To beat the market, there must be a notion of fair price 
and therefore value about any potential bet.   This is therefore the process we will 
attempt to mimic for our automated betting strategy.



AUTOMATIC EXCHANGE BETTING 

22  

 
Additionally, if we say that defining fair value is a feature of the traditional betting 
process, we can see that it simultaneously provides a viable approach for identifying 
laying opportunities, since backing one or more contenders in the same race is 
effectively the same as laying all the others.   
 
In other words, backing a horse (or multiple horses), to win a race is effectively the same 
as betting everything else to lose, or laying everything else.   This point, not so well 
understood before betting exchanges arrived on the scene, is now crystal clear in 
looking at the P&L position on any given race. 
 
Trading is the only other possibility for an automated betting process that does not seem 
at first sight to be covered by reference to the traditional betting process.   Although the 
possibility for active trading on every race did not exist before exchanges, a betting ring 
has always been subject to market forces of supply and demand, and looking for the 
best available price has always been part of the betting process, including an awareness 
of market forces lengthening or shortening the price.   Bookmakers of course will hedge 
and trade with each other to offset their liabilities.    
 
Aside from using knowledge of form to predict likely drifters or steamers, trading on a 
betting exchange has more in common with financial markets than traditional betting 
activities.    Thus we will give the activity of trading a placeholder at this point – as an 
automated opportunity, it will be placed in the context of exploring market prices in the 
automated framework, since all trading relies on price and volume data – and explored 
in more detail in Part 2, in Chapter 8, in Capturing and Using Market Information, and 
also in Chapter 9, Automating Betting Decisions. 
 
In the meantime, what key stages from the traditional betting process can we identify to 
take forward into our automatic betting framework? 
 

Betting on one event 
 
An event has a start, an end, and a definite outcome.   It is clear a betting opportunity 
cannot exist without these parameters.   The betting process focuses on one event at a 
time, with the objective being to identify the winner of that event.     
 
It is true that a bettor might bet on multiples (i.e. on outcomes of more than one race, 
combined), but such decisions still rely upon the independence and integrity of the 
individual events that make up the multiple.   Moreover, the bettor can only consider 
what chances any contender has within the context of the event in which it is competing, 
and then combine individual bets afterwards. 
 
Considering the event type is also a first level of decision making that may apply to any 
bettor’s strategy.   We may choose to bet or ignore races on this basis;  for example, 
ignoring Hunter Chases or amateur riders’ races and considering all others, or ignoring 
all types except 2 year old Flat races.   Such specialisation is often deemed to be a 
shrewd strategy. 
 



EXPLORING THE BETTING PROCESS 

23  

Starting with the event details is a key point for us as far as automation is concerned, 
since it gives us the highest level entry point possible.   Whatever else follows, we need 
to start with the event and consider one event at a time.  The event conditions 
themselves are also our first decision point on deciding whether or not to bet.    So 
retrieving the details of an event – whatever we subsequently define those to be - 
constitutes the beginning of the process.     
 
Filtering by event type  (e.g. To exclude types of races with a majority of contenders 
typically lacking previous form such as maiden races or national hunt flat races) on the 
exchanges is a simple matter.   
 
Race descriptions are available data on Betfair, similarly selection of event type may 
occur in a bettor’s own database, prior to interaction with the exchange API. 
 
Simultaneous activity on multiple events is also feasible; this would simply be a case of 
running multiple processes.   Events can be linked from a betting strategy perspective 
(e.g. Altering staking plans depending on recent profit or loss, or executing the 
automated equivalent of combination bets), which would involve providing additional 
inputs at a later stage of the automated process for bet execution.   Such inputs vary 
depending on the overall betting strategy - from a framework point of view this does not 
alter our starting point of considering an individual event per betting process.    We 
discuss automation in detail within the context of Chapter 5, Betting Process 101: Daily 
Event Data 
 

Using Data to predict performance 
 
We have stated that the traditional bettor is typically trying to identify the winner of the 
event, but the question that concerns us most in terms of automation is how.    Of 
course, how this is done varies greatly according to the bettor’s methods and is a huge 
subject in its own right.   However, the good news from an automation point of view is 
that most attempts to find winners in a manual process involve using data either as an 
indicator of ability or likely future performance    Therefore, we are interested in the 
extent to which profitable betting decisions can be made on the basis of data alone, 
whether these decisions can be described, and, if so, how they can be automated. 
 
For the purposes of our discussion, we will first look at some of the most important 
common data elements that are used in an effort to indicate and compare winning 
chances, and then at the types of quantitative methods applied to those data elements to 
determine bets.   
 

Form and Ratings 
 
In the case of horseracing our standard unit of measurement is form.   On one level, we 
have all the data attributes that appear on a racecard for any given event, from all the 
details pertaining to the race itself (e.g. race type, prize money, going, distance etc) and 
the attributes for each contender (e.g. weight carried on the day, stall number, jockey 
trainer etc through to the saddlecloth number) of each runner competing in it.   
 



AUTOMATIC EXCHANGE BETTING 

24  

On another level, we can access the detailed historic performance (i.e. previous results) 
of every runner in the race, and how they fared in those races.  The racecard usually 
lists data relating to raceday factors (although summaries of results, if only positions 
achieved, are usually included), with detailed results and analysis of previous races 
sitting separately to the racecard itself. 
 
All of this data, once limited to specialist publications, is now available electronically, as 
we discuss in Chapter 3, and can be updated automatically as a data service.   For our 
purposes, we are concerned that the data can be automatically accessed by programs 
which use the data to assess and bet selections.   The objective in complete automation 
of the betting process is that there should be no manual intervention necessary.    The 
challenge, however, for the manual as well as would-be automatic bettor, remains how 
the data should be used to do that. 
 
Historic results can provide useful statistics not only about the runners themselves, of 
course, but also to build up a summary of other data elements which might be influential 
in predicting future outcomes – from performance statistics on trainers and jockeys, 
broken down by race type, course, time period etc, to statistics related to the percentage 
of winning favourites at different courses, broken down by race type.   This type of 
information is particularly useful when historic form directly relating to the runner is 
absent, as in the case of debutantes. 
 
Where contenders have a racing history, racecard form alone, in the form of 
summarising previous placings in races, gives us little to go on in terms of deciding the 
answer to the questions on which contenders are likely to fare best, better than others, 
or worst in any given event.  
 
Nonetheless, basic attempts have been made to use raw form data from the racecard in 
the form of systems in order to answer these questions, including some of the most 
popular betting systems sold in the 1980s.   One prime example involves assigning 
scores to the previous finishing position attributes available for each runner from the 
racecard.    This simple scoring system can be exercised by any manual bettor with a 
racing card or newspaper since it takes as its input the previous 2 finishing positions of 
each contender (within the current racing season only), and also whether each 
contender has gained a course and/ or distance win.     Points are awarded as follows:   
5 points for finishing 1st (including a disqualified first), 4 points for second, 3 for 3rd, and 1 
point for 4th place, scores being awarded for each of the previous 2 runs, provided that 
they occurred within the current season, with additional points awarded for any previous 
distance win (2 points) and any previous course win (1 point).     
 
Applying such a model to any race gives us a set of scores for any contender between 0 
and 13 points, where the highest rated might be considered a bet.   
 
The model emulates what many traditional bettors have always done in analysing only 
those variables most common in the level of racecard form.  By quantifying the approach 
in this way, we can see how it can be automated. 
 
Defining a manual process, working out what are the most important elements in the 
manual process and whether they can be quantified are the fundamental prerequisites to 
automation.    In this case, provided we have the data, such a method is easy to 
automate, but falls short of being useful or profitable.  Amongst many issues, rating 



EXPLORING THE BETTING PROCESS 

25  

finishing positions alone is usually comparing apples to oranges, since finishing positions 
may have been achieved in small or big fields, in different conditions, and above all in 
different racing classes.    
 
It is interesting to note that using previous finishing positions alone looks basic now 
because racing websites such as www.racingpost.co.uk provide ready access to a 
wealth of information.   Therefore most bettors have a more sophisticated view of what 
data variables should be considered – including a better way to compare the chances of 
contenders who have previously competed in different events, i.e. ratings. 
 
Ratings methods establish a rating for each horse by assessing the merit of a horse’s 
run in every race according to a known benchmark, typically against standard time or 
known competition within the race itself.     
 
Unlike racecard data or a simple listing of previous finishing positions, one of the key 
advantages of using ratings for each horse is that they provide us with an absolute 
means of comparing one runner’s ability with another.    A further advantage of this 
approach is the potential to convert a rating into a probability of success, or odds, 
enabling us to compare an estimated price with the actual market, which we will explore 
in more detail later. 
 
In the case of handicap ratings, the class of race and known form of horses who already 
have ratings will be considered, and other horses’ ratings adjusted accordingly once a 
benchmark has been established.   In the case of speed ratings, the time of the winner 
will be compared to benchmark standard times, and normalised for going (usually 
determined by the variation against other times on the day); similarly, once a benchmark 
has been set for the winning time, beaten horses will have their ratings adjusted 
according to distance beaten, translated into pounds.    
 
The ratings are generally expressed in terms of weight, i.e. pounds, enabling ratings to 
be adjusted to a common scale for weight carried in handicaps.   This follows the 
handicap ratings system or Official Ratings (OR) which are implemented and governed 
by the British Horseracing Authority.    Measuring in terms of pounds enables us to allow 
for weight carried when assessing a new race, or to express superiority of one horse 
over another - so that we can for example refer to horse A being 10 pounds better than 
horse B.    The official handicap scale runs between 0 – 140 for flat and 0 – 175 for 
jumps racing, so that Flat group races and Grade 1 jumps races would match the upper 
end of the scale in both.   The assessment of the official handicapper is continuous, as 
more races unfold revealing further information about horses’ abilities, such that a horse 
may have its rating continually revised without setting foot on a racecourse.  The British 
Horseracing Authority runs a useful site which explains the handicapping system in more 
detail and also carries files showing the current official rating of each horse in training at 
http://www.britishhorseracing.com 
 
However, since the official rating is set for the purpose of handicaps in order to equalise 
different abilities, the efficacy of using this rating to predict winners is questionable.   The 
bettor is ideally looking for races in which there is demonstrable superiority and 
differentiation.   Useful rankings are possible by using official ratings as a measure of 
ability in non-handicaps.  Further analysis is possible by reviewing previous official 
ratings for the horses in question and how they performed against those ratings.    
 



AUTOMATIC EXCHANGE BETTING 

26  

Since the greatest interest in identifying the winner is what advantage horses have 
outside the official handicap rating, some will compile their own or use private handicap 
ratings.   There are a number of private handicapping rating services, one of the best 
used being Racing Post Ratings, widely publicised in the newspaper and on The Racing 
Post website.   Ratings are produced for each race, as per the official handicapper, but 
unlike the official handicapper, they are also combined with a measure of interpretation 
in order to predict the likely rating that can be expected in a given forthcoming race, 
depending on the horse and the race conditions.    Indeed, if compiling your own ratings, 
or using those of others, this approach highlights one of the greatest problems with 
which the bettor is faced:  which rating to use for each contender in the current race? 
 
In principal, the idea of using a single number which reflects a horse’s likely performance 
in a forthcoming event is the perfect quantitative measure from which to base any 
manual or automated process.   But of course, arriving at that number is not so simple, 
plus we need to consider how to account for ranges of performance.   For private 
handicap ratings to be effective, it is argued that they must take into account a whole 
host of factors not immediately evident in simply benchmarking any performance against 
a known performer who ran to its form within the race.  This requires a large degree of 
interpretation of each run – e.g. whether the horse was flattered or hampered by its 
draw, jockey tactics, the ground, the pace of the race; whether the race was up to the 
standard that might be expected within its grade etc.    Also, using one rating to compile 
odds does not take into account any expected variation in performance, which is another 
important consideration.    
 
Speed ratings are the other most common form of ratings used.   Where speed ratings 
are compiled in the UK, the scale is often adjusted to reflect the same scale as used by 
the official handicapper, as with the Racing Post Topspeed ratings, or on a different 
scale but where each unit is still measured in terms of pounds, as with Timeform ratings.    
Essentially the objective is the same as with handicap ratings:  to produce a rating which 
reflects the performance of every horse in every race which can then be adjusted to 
enable comparison between contenders for a forthcoming event.    
 
With either a speed or handicap ratings approach, it should be clear there are many 
limitations regarding the type of race where they can be applied.   Not least of the 
limitations of ratings as a universal approach exist where there is little (if any) previous 
form to go on, as is often the case with maiden and novice races, as well as early and 
late season races for younger horses at the start of their careers.    For this reason, 
other attributes such as trainer trends (recent form, record in the type of race in 
question), sire form (suitability of sire’s progeny to prevalent distance, going, maturity), 
and even movement in market prices as an indicator of “inside” knowledge, can be used 
to score potential ability as a number which can be translated to probability. 
 
Even where ratings are relevant and sufficient previous form exists for meaningful 
comparisons, the most difficult question is often which rating from a horse’s previous 
performance to use.  For example, if a horse has run 40 times in its life, over the past 4 
years, should we use the best rating, the best rating from the current season, the most 
recent rating, the best rating that relates to today’s conditions (going and/or distance), 
and so on? 
 
For this reason bettors may compile their own original ratings, based on detailed 
analysis of historic results (which may evolve into a completely automated process), to 



EXPLORING THE BETTING PROCESS 

27  

take into account such questions in order to produce a rating that is representative of a 
horse’s expected performance in today’s contest.   This is effectively representing a 
predictive model, in that it seeks to predict expected performance, which we refer to 
again in the section on Assessing Chances. 
 
Whether compiling originally or re-using the handicap or speed ratings of others, it can 
be strongly argued that representing performance as a rating is an effective shorthand of 
form study - particularly when the rating is taking into account the factors that would 
normally be judged in any manual study.    
 
If we argue that a quantitative rating method embodies an analysis of collateral form, 
then it would also follow that using ratings is a way of automating the manual study of 
form, which is an integral part of the traditional betting process. 
 

Looking for Winners 
 
To realise the potential value of form and ratings requires a method to identify winners or 
assess relative chances within a race, either for manual or automated betting. 
 
At this point, many bettors argue that their own method for using form attributes or 
ratings in order to assess contenders cannot be defined in a systematic way, and varies 
race by race, depending upon their own interpretation of raw data – therefore defying 
attempts at automation. 
 
There are equally many attempts in a traditional betting process to do precisely the 
opposite – to apply methods to data to systematically create profitable strategies.   There 
are two sides to this coin – one is looking for winners and one is assessing chances.  
They are both related, but the emphasis is different.   We will look first at the systems 
approach and in the next section consider approaches that do not attempt to identify the 
winner of the race alone, but rather use the same data to assess the relative chance of 
all the contenders, where price is key. 
 

Betting systems 
 
Although definitions can vary, the typical objective of a betting system is to identify 
horses to bet by applying a predetermined set of rules, based upon previous analysis of 
form variables and ratings, or to pass on the race if there are no candidates to which the 
rules apply.      
 
The motivation is to rapidly – even automatically - identify a system bet by applying the 
rules, rather than evaluating all contenders’ relative chances.    In this sense, using a 
betting system alone does not provide a generic approach to identifying the winner of 
any given race, and can only be seen as one tool in a bettor’s kitbag rather than as best 
practice.    
 
On the other hand, a betting system could be to back the top rated speed horse in a 
race.   If that is the case, we would be combining an existing method of ranking all the 
contenders relative to an absolute benchmark, and a system for identifying the winner. 



AUTOMATIC EXCHANGE BETTING 

28  

 
Systems can therefore be a short cut to identifying a bet as quickly as possible, following 
easy to interpret rules, as opposed to the lengthy time spent in front of the form that may 
be required to manually weigh up the chances of all runners.   The appeal is summed up 
neatly (and it should be added with some irony, since the author advocates using 
systems as an educational tool and taking a dynamic approach to devising systems) by 
the title of Nick Mordin’s book on the subject, Winning Without Thinking.    
 
Indeed, profitable betting systems will often start by identifying some aspect of form or 
consistent variable in results that can be measured (such as the statistically significant 
winning strike rate of favourites) or looking at unusual changes in circumstance (e.g. 
wearing blinkers for the first time, changing trainers etc.) which are then combined with 
various qualifying factors, such as race attributes (e.g. Maiden and/or handicap) or horse 
attributes (gender, age etc).   The principal in any profitable betting system is that the 
significance of the system’s factors is overlooked and therefore undervalued when other 
bettors are making selections.   Lack of betting support leads to longer market prices 
than the systematic chance of winning has predicted, meaning that if bet over the long 
term, a profit will be made equivalent to the difference in the two (provided of course that 
the market always significantly undervalues such factors as are exposed by the betting 
system).    
 
From the automatic betting point of view, it may also seem at first sight as if any betting 
system that has shown a past profit, with easy to implement, unambiguous rules 
provides an ideal candidate for automation (so that bets are never again missed, rules 
are consistently applied, multiple systems can be implemented at once, time can be 
saved etc.) 
 
However, to coin a phrase, showing a past profit for a system is no guarantee of future 
success.  At a minimum it is useful to see the profit made (not always forthcoming in 
some third party systems), the length of time over which the system was tested, the 
number of qualifying bets, the average price and the strike rate.    
 
If the system has stood up to real tests in the field, all the better.   When devising 
systems it is easy to succumb to “overfitting”, particularly where profitability is the main 
criteria for success.   Thus, any betting system’s results can be skewed by the presence 
of one or more very large prices within the qualifying data set.     Since the prime 
motivation of the analyst is to find a profitable system, there is a constant danger that he 
will devise a system that only fits the historic data and has no relevance for the future.  
 
Clear danger signs are limited data sets and convoluted rules that seem to have no 
logical basis (e.g. back the favourite in all 2 yr old races at Salisbury if the last form 
figure is a 3 and the trainer is based within 30 miles of the course).    The corollary is 
also true – if the reasons for success of the system are evident in the rules used, then 
we may have the basis for a profitable system.  For example, betting all contenders over 
a certain dosage index score as an indicator of stamina, to identify potential Derby 
winners and St Leger winners where most race contenders are previously untried at the 
distance, contains logic within the rules.    
 
There is also the question of how long a system may remain effective.   Even if the 
profits, strike rate and average price yielded by a betting system are impressive, any 
edge in price produced by a winning method relies on the market remaining unaware of 



EXPLORING THE BETTING PROCESS 

29  

that edge.   Thus systems are transitory insofar as a market is not constant and can 
adapt to flatten out profitable angles.     
 
Use of speed figures is a good case in point.   When the Racing Post first published the 
Topspeed ratings in the 1990s, they were not widely used as a means of predicting 
winners in the UK, despite being a good indicator of ability and therefore performance.   
Systems based around speed figures therefore had a profitable edge.   For example, 
blindly betting the contender with the best overall Topspeed figure in a race where the 
contender had also attained the best last time out Topspeed produced a healthy profit.   
The strike rate on such selections remains more or less consistent, showing the raw 
power of the rating, but over time as more and more bettors incorporate these variables 
the market opportunity, and therefore profitability, disappears.   So, although the number 
of winners thrown up by a reliable system will be a constant, the price of winners is 
always what gives a system its edge – or not.    Hence the “contrarian investing” 
elements of betting systems, where developers of systems look for significant angles 
that are ignored or underestimated by the crowd (or market as a whole), leading to 
overpriced selections. 
 
Assuming for a moment that a bettor has identified significant systems – i.e. the system 
is effective in making a profit, and the caveats applying to the system have been 
reviewed - automation is a very effective method of execution.     
 
Any bettor who has attempted to follow systems manually is aware of the sheer tedium 
and room for error in browsing daily racecards and form in order to apply any given 
system.    Even where a form database is used by the bettor, following a betting system 
can still be very inefficient without complete automation.   Depending on the form 
database, and the way it is set up, searches may be interactive, the latest results or 
racecards may be missing, or it may be necessary to check results or apply rules daily, 
and so on.    This in itself can be an inhibitor to following a system and reaping profits, 
and is an obstacle removed by complete automation. 
 
The benefits of automation for betting systems are several and tie in with general 
themes discussed earlier.   Since any system requires rigid adherence in order to 
produce the same results as a test run, automation enables selections to be generated 
automatically, freeing up the time of the bettor and ensuring errors or omissions are not 
made.  Likewise, time will be saved and errors avoided in betting the selection(s).   
 
Often the bugbear of followers of betting systems is that they have missed betting a 
selection due to other commitments, or that it is not feasible to follow a system in the first 
place because of the manual intensity of the process and the time required.   If starting 
to follow a system, there is a constant tension in the case of missing the winners – 
especially those at big prices - which rely on a system making its returns, particularly in 
the case of those systems with low strike rates.    
 
Given that the betting system has already been developed, there are three parts to the 
process of automation that are generic – automating the selection process for the betting 
system, specifying bet conditions and executing bets according to those conditions.     
 
The feasibility of generating selection system picks is the same for simple or complex 
criteria.    Provided that the data upon which selections are based is readily available 
and well structured then there should be no issue.   Development of a system is a 



AUTOMATIC EXCHANGE BETTING 

30  

different question, and will require at least some interactivity on the part of the developer 
Once a system has been developed there is preparatory work to construct and set up 
the correct queries to run against the data on a daily basis (and possibly more work for 
complex systems).   
 
The required output from any system must identify the runner in question (by which we 
include the event and any other parameters necessary for execution on Betfair) and 
specify some betting conditions, so that it can be bet automatically.   The question of 
data sources and accessibility is covered in Chapter 3.   We discuss the requirements 
for implementation together with examples fully in Part 2. 
 
Missing from the discussion for betting systems so far is any reference to building in a 
minimum price requirement.     Expected return on any system is key to profitability.   
Ways to quantify would include looking at strike rate of the system when tested over a 
reasonable period of time or applying any minimum price filters that have been applied in 
the selection rules. 
 
In a manual process, obtaining minimum price on a system selection is often ignored as 
a requirement.   However, it is a fair assumption that most system bettors if presented 
with the prospect of an extreme scenario (e.g. their selection picks are only available at 
1/100) would of course decide that the bet was “not worth it”, in other words that it is 
below a minimum acceptable price.  If we imagine offering bigger and bigger prices 
about a selection in which there is no interest, as a layer would, we can imagine there 
will be a point at which the system bettor would deem a bet as being great value – the 
question for any system is what is that point and how do we determine it? 
 
Given that relative probability of winning, and therefore price, is so pivotal to profitability, 
it makes sense to consider it explicitly and to look at best practice for doing so, so that it 
can be applied within the automatic betting process.    A discussion of assessing 
chances enables us to progress to that. 
 

Third party sources 
 
Standing outside the previous discussion whereby the bettor is employing his own 
methods to identify winners is the reliance of many bettors in a traditional setting on third 
party advice or ratings – these also can be viable candidates for automated strategies. 
 
There is no shortage of information sites, ratings and tipping services dedicated to racing 
and other sports now on the internet.    An automatic bettor has the choice of deciding 
whether to use any such information where they have found it to be valid or useable “as 
is”, or to use their own methods to adapt it, or a combination of both.   
 
Whilst following independent advice curtails many stages in the betting process that are 
being considered (effectively outsourcing responsibility for such stages), it is perfectly 
well suited to an automated approach, provided that the advice can be represented as 
an electronic input, such as a text file containing relevant bet details that can be 
collected and manipulated automatically.    
 



EXPLORING THE BETTING PROCESS 

31  

At a minimum, if using third party advice or ratings, information relating to race, time, 
contender, and price is again required.   If the data is a rating or odds, the bettor’s own 
program can apply further logic to convert the ratings to acceptable odds, or to apply 
other rules in terms of minimum acceptable price.    In Chapter 3 we discuss screen 
scraping, use of APIs and so on which can enable retrieval of this type of information, 
assuming it is electronically available. 
 
From an automation point of view, programs will need to be scheduled to retrieve the 
data, then set up further tasks to apply betting decision rules and execute bets as 
appropriate, matching the selections with the Betfair identifiers for market and selection 
Id, as required.     
 
We cover these processes in Part 2, with particular reference to Chapter 7, Scheduling – 
The Key To Automation, and execution of bets from any input file in Chapter 10, Betting 
Execution. 
 
Thus, there is no reason why third party selections or recommendations at certain prices 
cannot be automated; this would effectively replace the stage of selection by the bettor. 

 

Observations prior to an event 
 
Bettors who attend the races have a unique opportunity to assess the chances of 
contenders according to their appearance or behaviour prior to the race.    Typically, the 
key stages are behaviour and appearance in the pre-parade ring, in the paddock, 
behaviour on jockey mounting, behaviour and appearance going to post and entering the 
stalls, or prior to the off.     
 
Information from these observations can have a significant bearing on performance, 
from horses that look particularly well, move to post well and have a relaxed demeanour 
to those that look unfit, move to post badly, or have reacted badly to some aspect of 
racing preliminaries.   None of this influential behaviour will typically be taken directly into 
account in an automated betting system, ratings method or predictive model, since the 
variables used are based on historic data.       
 
Additionally, last minute changes in going, weather (including factors such as wind 
speed), draw bias, which can have a profound effect on results, are typically not taken 
into account in methods which rely on automation, and can be more difficult to pick up in 
the automated betting process.    Some of these factors can be quantified.   For 
example, draw bias at tracks can be pronounced and particular to multiple day meetings 
depending on the ground preparation for that meeting – so it is possible to assess that 
from the first few races; likewise with going. 
 
The ability to take into account last minute observations before events is a good 
argument for saying that the human brain is the ultimate decision making tool for all bets.   
Indeed, this should be the case in terms of being able to take into account all possible 
factors and come to a conclusion based on the latest evidence.   However, there is no 
guarantee in the case of last minute information that all factors, including historic 



AUTOMATIC EXCHANGE BETTING 

32  

performance, will be equally balanced in the decision making process, or that any 
decision would be consistent given all similar inputs in a future case.    
 
In some cases, careful balancing of decisions and inputs is not needed and it will be 
obvious to on-course bettors that certain horses are disadvantaged by new information 
relating to their chances (e.g. the horse bolts before the off, expends great energy yet is 
still allowed to compete), so that information can occasionally be missed, if up to the 
minute observations are not part of an automated strategy.    
 
On the other hand, as with many of the arguments over whether an automated strategy 
can be effective, the question is not whether the strategy is without flaw, but whether the 
edge gained from the strategy outweighs the impact of missing certain inputs.    
 
Notwithstanding the above, there is information that is available to the automatic bettor 
that can take account of changing variables.    The possibility always exists to inform the 
automated program, or a number of automated programs, via reports from the track, 
although in the case of paddock and going to post observations, this information may not 
be readily available and can be very subjective.    More reliable is information on such 
variables as intra day going, which can be picked up in an intraday results service, and 
is available in a format on a number of websites that can be picked up live.    



EXPLORING THE BETTING PROCESS 

33  

 

Assessing Winning Chances 
 
If we use betting systems to pick potential winners, we get a selection but have no idea 
of its relative chance within the race in question, only the past performance or 
profitability of previous qualifiers for the system over many different races.    
 
The greatest limitation of this type of approach is that it does not account for the relative 
strength of the competition in the race, and therefore ignores the probability of the 
selection’s winning chance compared to its closest rival, or the next ranked rival to the 
one below that, and so on.   The impact this has upon the bettor’s ability to make a 
profitable betting decision is significant, since any concept of a “value price” is based 
upon the run of previous systems qualifiers, rather than the competition within the race.   
Similarly, an approach that only looks for the winner limits the bettor in taking advantage 
of other betting opportunities – such as dutching, backing to variable stakes and laying - 
where an assessment of each contender’s relative chance, or probability of winning, is 
crucial. 
 

Predictive models 
 
We use the term “predictive models” somewhat broadly here, mainly as a contrast to 
betting systems, to cover any model that attempts to predict each horse’s likely 
performance in a given race. 
 
The key differentiator, as we discussed in the section on ratings, is that the ideal output 
from such a model will enable us to compare each contender in an upcoming race 
according to a numeric value – this can be a rating which can be converted to a 
probability, or an estimate of the probability itself, between 0 – no chance, and 1 - the 
winner. 
 
Unlike speed and handicap ratings, the objective is not simply to provide a scale by 
which we can measure a horse’s performance in any given race, past or present, or to 
compare a horse’s performance from one run to the next.     
 
Rather, the objective is to define a model which determines the relative chance of 
winning the race in question, so that we can assess the range of difference between 
each contender in that race – and thereafter estimate the probability of winning.  The two 
types of rating are related, but differ in purpose.   
 
In the case of building a predictive model, there are many variables which we have not 
yet considered that may be relevant, in particular suitability of the contender to the race 
in question.   This may include suitability of the contender to the going on the day; 
suitability to distance; suitability to course; the class or ability of the animal – that is 
whether it is up to the standard generally required by the type of race - and so on.   We 
can score attributes on a binary or categorical basis (i.e. yes or no, 1 or 0) or on a sliding 
scale.   Whether we choose to do so will depend to some extent on how we want to 
weight or attach relative importance to the different variables in determining the overall 
score, and also on the characteristics of the variable itself (e.g. Suitability to going is not 



AUTOMATIC EXCHANGE BETTING 

34  

usually binary, so that a horse that acts well on good ground may also run well on good 
to soft or good to firm) 
 
Furthermore, there is no reason why we cannot adjust the weighting given to different 
variables.    This can be done manually (e.g. We might experiment with the value of one 
variable, such as trainer form, and see if increasing this value has more predictive 
power) or by using predictive modelling techniques with the aid of computer software.     
 
The purpose of using formal predictive modelling techniques, such as statistical 
modelling methods, like linear regression, or machine learning methods, such as neural 
networks, is to help us determine what influence specific variables and combinations of 
variables have on performance, with what “weighting” they should be applied, and 
therefore what “scores” or probabilities should be produced as the output. 
 
In the case of statistical modelling, the creation of the model is in the hands of the 
statistician or analyst, who will use statistical methods to explore the data, which must 
include the variables and results, in order to assess which variables or combination 
thereof have the greatest predictive influence.    From there, a model can be created that 
can take future variables of the same type and range in order to forecast probabilities for 
each contender based on that model.   Of course, it may well be appropriate to create 
different models for different types of races, and certain inputs may be more relevant for 
some race types than others.     
 
In the case of machine learning and data mining methods, the principal is the same 
except the emphasis is on automatic or semi-automatic generation of the models.  This  
means that the prediction process can be treated as more of a “black box” that will “just 
work”.    
 
Datasets will consist of a row per horse, in the form of a series of numeric values relating 
to each variable to be used, and a desired output relating to the result of the race, either 
in binary format (for won or lost) or some form of relative performance (the placing or 
lengths beaten for example).    Data preparation will still be done by the developer, but 
applying modelling techniques such as neural networks to correctly formatted data, also 
known as “training” the model, will create a model automatically.    Some understanding 
and experimentation will still be needed.   Subsequently, it is considered best practice to 
save some of the dataset to test the model which has been created, to ensure similar 
accuracy in identifying the winner or assessing probabilities has been attained.    
 
Thereafter the model can be applied to new races.     
 
Later, in Chapter 6, Assessing Contenders, we will look at automatically repurposing the 
available data in the Racing Post’s Postdata service, which broadly measures ability and 
suitability of each contender to prevailing conditions on the day, for the purposes of 
creating a simple example to predict winning chances in the form of an oddsline.   In Part 
3, we also introduce a set of third party ratings, which apply a predictive model based on 
handicapping methods, and compare the two approaches. 
 



EXPLORING THE BETTING PROCESS 

35  

Defining value and using oddslines 
 
Following the logic of assessing chances in the betting process comes the concept of 
defining value by comparing the “true price” for each selection with the market price.      
 
The archetypal example for explaining the concept of value is to use the example of the 
toss of a coin, where we know the true probability.   Barring the possibility of deformities 
in the coin, and given a fair throw, we can agree that the probability of a coin landing on 
heads or tails is 50/50.  In other words, there is an even probability on either outcome.   
Therefore, accepting odds offered by any layer on such a toss of less than evens, or in 
other words less than 50/50 on one of the outcomes occurring, would mean a bad value 
bet.     
 
The bettor may still be prepared to bet at less than evens (at this point he is more of a 
gambler), and may also win, but we know that when he is consistently betting at a return 
which is less than the probability of the event itself occurring, then the layer will win in 
the long run, and the backer will lose in the long run.   The key is that given enough 
trials, we will expect to see the distribution of heads and tails converge towards the “true” 
probability of the event occurring. 
 
Similarly, if the layer were offering odds on heads or tails at a price greater than evens, 
say 2/1, we would expect that is a good value bet.   The backer may lose the next toss 
he bets on, (there is still a 50/50 chance that he will lose, after all, despite the attractive 
odds) but if the return on every successful bet in these circumstances is 2/1, it should 
not be long before the layer is broke and the bettor has taken all his money.   The key 
factor again is that if there are enough trials, and the bettor leaves enough money to 
back on each trial, there is inevitability to making or losing money in this way. 
 
So far, so good - as far as the concept of value is concerned.   The problem – or 
perhaps the opportunity - with horseracing is that no-one can say with certainty what the 
probability is that any given contender will win.    But we can define some boundaries, 
and having done so can start to move closer to a solution.   To go again from the toss of 
a coin, we can say that if all contenders have an equal chance, in other words if we 
assume that horseracing is just a random game, then the probability of any contender 
winning is 1/Size of Field, or in terms of fractional odds, it is (Size of Field-1)/1.     
 
Therefore, if we are convinced that any contender has a better chance than random (i.e. 
better than the probability determined by N runners in the race), and the odds being 
offered are (Size of Field-1)/1, then we have found a value bet.     
 
By the same token, this means that - given the probability of each contender winning 
must add up to 1 in the event – in this event there must also be at least one horse in the 
field with a worse chance than the random chance.    Which horse or horses are they?    
What about the other runners in the field, do any of them have a better probability than 
the reciprocal of the number of runners in the race?     
 
In an iterative manual process, we can imagine poring through all the runners, adjusting 
and readjusting our view on each of their chances in order to determine this.   At each 
pass, we would be creating a new oddsline.    



AUTOMATIC EXCHANGE BETTING 

36  

 
An oddsline therefore tends to provide a summary view of what the real chances are of 
any contender in a race.   Examples of oddsline outputs are repeated through Parts 2 
and 3, in particular Chapter 6, Assessing Contenders.   We can use an oddsline as a 
map in order to determine what a value price is when we go to the market.   Here, we 
are concerned with the ability to determine value automatically. 
 
We have seen from all methods of assessing chances of winning that each method 
implicitly produces a price or set of prices which can be compared to the actual market.    
 
Sometimes the bettor’s notion of prices for all runners can be vague, depending on how 
quantitative is the method of assessment, but it is still present – for example, in the 
bettor’s mind it can be an assessment of price which applies only to one runner, in the 
case of establishing a minimum price for a betting system pick.    Once present, the 
remaining probabilities in the race belong to all the other runners, thus, even when we 
start with a vague idea, there is still a concept of prices for all.   With methods where the 
analysis determines a score or explicit probability for every runner in the race, producing 
a set of prices for all runners is a logical outcome of applying the method. 
 
As we discussed at the beginning of the exploration of the betting process, identifying 
winners is not enough to ensure profitability.   Since the savvy bettor is looking to identify 
winning chances in any given event, but only to back such winners that can deliver a 
long term return on investment, there must be a notion of fair price and therefore value 
about any potential bet.    Therefore, a set of prices based on probabilities for all 
contenders summing up to 1 makes for a bettor’s oddsline which can serve as a map to 
use to navigate the actual market.   We can convert these probabilities to odds, in order 
to use them as a set of “tissue prices” with which to compare to the actual market. 
 
For automating the entire strategy, we can generate an oddsline automatically using 
predictive modelling techniques, either devised by the bettor or using third party sources, 
or converting a set of ratings or scores to odds.  In order to arrive at the most accurate 
prices possible in the oddsline, we can assist the process by backtesting actual results 
from races against our predictions, then making adjustments in the method used.   We 
look further at this process after running live oddsline strategies in Part 3. 
 
Generating an automated oddsline is therefore a useful starting point for our 
implementation examples – since using betting systems, and other strategies can be 
seen as a subset of the implementation tasks that have to be set up for any betting 
strategy using an oddsline.    
 
We use the oddsline as the basis of our example automated strategy for the framework 
in Part 2, and run live automated betting strategies based upon oddslines in Part 3. 
 
 



EXPLORING THE BETTING PROCESS 

37  

Using Market Information 
 
Traditionally, using market information in the betting process has been a matter of 
assessing which prices represent the best value about any particular selection – which 
as we have seen requires an assessment of a fair or “true” price about contenders first.   
Or, having decided to bet, analysing market information was about obtaining the best 
offer available on our selection. 
  
Until the advent of exchanges, the betting ring or on-course market (shaped in large part 
by the off-course bookmakers), was the only market worthy of consideration in terms of 
real liquidity, barring the most popular races where the ante-post or morning markets 
would also play a part.    
 
Bettors in this market, whilst having the possibility of dutching, could not lay, and had to 
go to multiple bookmakers in order to find best price.   Comparing prices to the bettor’s 
oddsline or assessment of value and “getting on” was a frenetic activity.    
 
In the age of the exchange, the market information available has in many ways moved 
closer to that of financial markets than the betting ring from which it has evolved, 
opening up many more money-making opportunities to bettors in addition to 
consolidating those mentioned.   
 
Three parameters on the exchanges are of critical importance to inform the decisions of 
the bettor, mirrored in real time and historically.   In real time, we have the back and lay 
price offered to various depths of price, the volume available to the various prices, and 
the timing, or time at which those offers are available. 
 
Additionally, we have the traded market history in terms of all matched (rather than 
simply offered) bets, the prices and volumes at which they were matched, and the time 
at which the bets were matched.    
 
These parameters enable us to assess the liquidity and competitiveness of the overall 
market, which again is an input to any betting decisions, as well as trends and 
momentum in the market, and a fair overround (i.e. the most advantageous set of prices 
to bet into). 
 
The advent of exchanges and a proliferation of online betting sites, both for assessing 
latest bookmakers’ odds and betting online, have opened up other opportunities to 
benefit from trading or hedging on price alone, including arbitrage opportunities between 
all odds providers.     
 
However, from an automated betting perspective, whilst obtaining prices is easy enough, 
ensuring we can get on, or execute bets with multiple odds providers is not. Arbitrage 
between differing providers of odds falls outside our definition of backing, laying and 
trading on the exchange, since there are many challenges – not least that fixed odds 
providers can refuse bets, and automation via fixed odds providers’ sites, whilst 
possible, is not reliable or supported.   To reliably automate capture and use of market 
information, we therefore focus on using the exchange API.    
 



AUTOMATIC EXCHANGE BETTING 

38  

The bettor intending to back or lay one or more runners in a race will typically compare 
his assessment of winning chances for each contender, or oddsline, with market 
information, before taking a betting decision, as before the advent of exchanges.    
 
However, since markets are now dynamic, he can realistically decide whether to use 
market information to help decide where the market will be, not just where it is now, and 
speculate on obtaining a price not yet available, specifying a conditional price at SP, and 
so on (options regarding betting execution that we leave to that stage of the betting 
process). 
 
For the trader, capturing and using market information can be considered the start of the 
betting process, if we are looking to make a profit based on movement in price, and lock 
that in before the race is run.    So there may be multiple visits to the market to achieve 
this.    
 
Of course, there are many shades of grey in what can be done with market information,  
combining the approaches of backing, laying and trading.   This can include hybrid 
strategies which may centre around trading a particular contender or set of contenders’ 
prices which are deemed value by the oddsline, but where price fluctuation allows 
locking in a profit as well as the possibility of achieving a “bet to nothing”.   
 
If the bettor can find a method of assessing contenders’ fundamental chances which 
reliably predict price movement, then betting and trading lock together.  Similarly, the 
presence of in-running markets and bet persistence allows other “back to lay” or “lay to 
back” strategies that can be considered a hybrid between trading a price and betting on 
an outcome. 
 
We discuss programs to enable a range of betting and trading strategies in Chapter 8, 
Capturing and Using Market Information. 
 



EXPLORING THE BETTING PROCESS 

39  

 

Deciding whether and what to Bet 
 
A qualitative betting decision can be taken at any time for any reason.  However, in 
terms of describing a quantitative betting process, the decision on whether to bet is in 
logical sequence to the rest of the process we have described, relying on previous 
stages being completed.    
 
Typically this will mean the bettor comes to this decision point having assessed 
contenders in the race, resulting in a view of probable performance, and having 
reviewed the market.   In the betting decision making process, the bettor combines these 
inputs and determines whether or not to bet, what types of bet to place, and how much 
to stake according to his betting strategy.  This may be laying, backing, dutching, or the 
strategy itself may be determined by the inputs received – based on where the market 
offers the greatest value or opportunities.   Although the stake is also determined at this 
point in the process, we will comment further on the subject of staking within the next 
subsection.    
 
Therefore, the betting decision may be simple or complex, depending upon the betting 
strategy itself.    
 
Where we are working from an oddsline, the first step is to compare the selections in the 
oddsline with market prices.    However, determining whether to bet, how much to bet 
and the selections to be bet will be triggered by the rules of the betting strategy itself.   
 
Theoretically, any price over the oddsline’s assessment of probability is good value; any 
price under the assessment is bad value – at least in a perfect oddsline.   Since the 
perfect oddsline does not exist (some information is always unknown, even assuming 
our method is flawless), the objective is to beat the market with any edge gained in the 
method.    There are many decision points in this process that lend themselves to a 
multitude of different strategies.   Some of the factors to be considered include: 
 

• Should the comparison only consider a limited number of runners in the 
oddsline?    Or for what proportion of the field should we apply it (e.g. Top 
quarter)? 

• What absolute difference or proportional difference in price must exist in order to 
determine a value selection and therefore a bet? 

• For value selections, is this a backing or laying strategy, or both? 
• Do we want to go with or against the oddsline?   In other words, do we trust our 

oddsline well enough to lay the top rated horse from our oddsline, even if it is 
rated as having the best chance, if the market price is lower than the price or 
probability we give the contender? 

• What are the maximum odds in the oddsline at which we are prepared to play? 
For example, if backing we may want to concentrate only on the upper part of the 
market to avoid the possibility of punitive losing runs (To take an extreme 
example, can the bettor really be confident in a strategy which has more than a 
50% + chance of a losing run of 100 + before a return?), even if there is value 
identified in longer priced selections.     

 



AUTOMATIC EXCHANGE BETTING 

40  

Many of these questions will be determined by how confident the bettor is in his 
assessment of probability, and therefore how far they want to push reliance upon the 
oddsline.    
 
Testing strategies in advance to determine what has proved profitable in the past can 
therefore help greatly with these decisions, as we demonstrate Part 3 of the book, 
Automated Strategies in Practice. 
 
From the perspective of automation, once we have defined the logic of the betting 
strategy, as in the examples above, it is a matter of creating the program to take the 
inputs and apply the decision-making process.   This stage can be the creative part of 
the programming process, where the bettor’s own thinking, or strategies based on the 
bettor’s research, will be implemented within the automated strategy.   For the examples 
described, such as comparative analysis of oddslines versus the market, as well as 
applying various filters, the process is relatively straightforward.     
 
For more complex strategies which rely on market movements to generate profits such 
as hybrid trading strategies, deciding whether and what to bet can be an iterative 
process taking more inputs, such as recorded bet details, revisiting the market and 
applying logic on staking and execution in order to lock in profits.     
 
Implementation examples and discussion within the context of the automated framework 
are provided in Chapter 9, Automating Betting Decisions. 
 

Staking 
 
One of our earliest statements in exploring the betting process was that picking winners 
is not a profitable activity unless the collective price obtained on winners bet outstrips the 
number of losers bet   By the same token, it doesn’t matter how many winners are 
picked if staking is inconsistent - which is often the case in a manual process.    So 
automating staking in order to produce consistency can really help profitability – 
especially so for any bettor whose staking is inconsistent but whose methods are sound 
and can also be automated.    
 
The simplest - and often soundest - staking plan is to bet level stakes, in other words 
placing the same amount on each bet.   That will minimize the effects of erratic staking, 
so that any method which produces a unit profit will in fact produce an actual profit.    To 
begin, even for level stakes, we have to determine the size of the unit stake.    A 
practical way to do this is to predict the longest losing run in unit stake terms that we 
might expect from our betting strategy, and ensure that the bank can endure this, with a 
margin of safety built in on top.   Alternatively, during backtesting, we can assess the 
longest unprofitable period and ensure the bank can withstand this.    
 
Thus we might begin with a bank of 100 points.    To ensure that the bank grows with 
profitability of bets placed, we can go further, and divide the bank by the number of units 
appropriate to our strategy at some regular interval – every bet, every 10 bets, or at a 
time interval. 
  



EXPLORING THE BETTING PROCESS 

41  

More complex staking plans are designed to increase returns beyond level stakes 
depending on the edge of the bettor over the market.    To operate such methods 
quantitatively requires a more detailed analysis of expected return or a very accurate 
assessment of chance in order to work properly, e.g. the precise edge given in the 
oddsline versus the probability predicted by the actual market.   In the case of operating 
complex staking plans within a manual process, the bettor is effectively increasing the 
difficulty of their task, since not only does he have to find a profitable method, but, for a 
staking plan to work well, he has to determine the exact edge in the method prior to 
betting.   Again, automation brings significant benefits if operating such methods since 
calculations can be implemented automatically in milliseconds prior to betting.   As we 
discuss in our automated framework, an API implementation can retrieve the current 
Betfair balance to use as the bank, which is an important variable in any such 
calculation.  
 
Provided that the bettor has confidence in the edge over the market for any given 
contender in any given event, the so-called “Kelly Criterion”, named after the methods 
devised by John L Kelly, is generally recognized as an answer to the problem of what is 
the optimal staking strategy in order to make the bankroll grow over the long term.    The 
answer is fairly simple in principal, although the exact implementation can be more 
complex.    
 
Kelly showed that the proportion of bank to be wagered on any particular event in order 
to optimise your bank's growth rate is edge/odds.    By way of an example, suppose we 
have identified a 5-1 shot as being a good bet. In this context, for it to be a 'good' bet, we 
must believe that the 5-1 price available is generous. Let's say we believe that a price of 
3-1 is a better reflection of it's true winning chances. 
 
The 3-1 implies a win probability of 1 in 4, or 0.25 
This means that the edge is .25 x 5 - (1 - .25) = .50 
…and any wager should be 0.5/5 =  0.1 or 10% of the betting bank. 
 
Estimating win probabilities is an extremely difficult task however, and many serious 
bettors prefer to wager somewhat less than the theoretical optimal proportions of bank - 
many opting for 'half-Kelly'. This would mean wagering 5% of bank in the above 
example. 
 
Thus, using the Kelly Criterion with an oddsline strategy would dictate the stake to be 
used, determined by the implied edge between “true chance” and the market price.   The 
maths for implementing “Kelly” over multiple selections means that on occasions a horse 
with no individual implied edge on the oddsline may be backed.   John Haigh’s Taking 
Chances, covers a fuller explanation of Kelly and an exact implementation for Kelly in 
the instance of backing multiple contenders with an edge, although in the absence of a 
perfect oddsline, Kelly should be treated with caution. 
 
Aside from level stakes, betting a progressive percentage of the bank to level stakes and  
a Kelly strategy, more complicated staking plans should also be treated with caution.   
Like betting systems, there is no shortage of methods employing quackery – the promise 
being to take an average or even poor betting system and turn it into a profitable one 
through application of a staking plan.   Nowhere is this worse than in plans that advise 
increasing stakes by some proportion in the event of losing bets in order to recoup 
previous losses, whilst maintaining the same profit target.     



AUTOMATIC EXCHANGE BETTING 

42  

 
Of course, any staking plan can be made to work with the benefit of foresight, so that if 
we knew which bets were losers and winners in advance, a staking system could be 
devised to compensate for losses, but this is the same as overfitting a betting system – it 
will only work on a specific dataset.   In any case, if the bettor knew which horses would 
lose and which would win in what sequence, there would hardly be a need for a staking 
plan to ensure profitability! 
 
 



EXPLORING THE BETTING PROCESS 

43  

 

Placing Bets 
 
Arriving at a point where we are ready to place a bet is a culmination of the betting 
process but not an end to the decisions that have to be taken in order to “get on”. 
 
In the traditional betting process, the bettor will obtain a price at the time the bet is 
struck, whether this is simply to accept SP or take fixed odds (through the live market or 
an early price, or even to negotiate their preferred price in the ring).  The bookmaker is 
the counterparty to the bet, and the bet is either agreed or not.   If the bettor wants to 
hold out for a better price, he can wait for the market to move in his favour, but must 
then engage in the process again.    
 
In the exchange, on the other hand, many options for execution now exist, split between 
the Exchange and Betfair SP (BSP) markets.   In Exchange betting, the counterparty to 
the bet is unknown and offers can be placed and accepted, and left pending agreement.    
In this case, the bettor will only know if their bets have been matched or partially 
matched if they revisit the market.    Although there is now the option to let bets persist 
through to the in-running markets, the same principal applies if wanting to ensure what 
has happened.   Alternatively, a bettor can now place bets at a Betfair SP, or conditional 
BSP depending upon a minimum price, where the Exchange is effectively acting as the 
counterparty to the bet in the period between the bet being placed and a reconciliation of 
all bets placed.    Although in this case there is no way of determining either the price 
obtained in advance, or knowing if the bet has been accepted prior to the off.     
 
In the world of the exchange, it is not far to go from attempting to bet selections at the 
highest (if backing) or lowest (if laying) prices and revisiting the market to verify what has 
or has not been matched, to trading.     We simply require an opposite bet, provided the 
market has moved in our favour, in order to lock in a profit at some later point. 
 
Depending on whether we are attempting to get matched at the current market or go for 
a better price (either to back or to lay), the automated execution process will be more 
simple or complex. 
 
The first stage of execution is to place a bet, which requires one call to the API, provided 
event, selection name, price and other parameters relating to the bet requirements (back 
or lay, stake etc) are known.    
 
If going for a match at market price within currently available to bet volumes, there is an 
excellent chance by using the API that the bet will be matched at once – provided that 
the price has been retrieved immediately beforehand.  In such cases the automatic 
bettor may be content to leave the execution process at that and run a program at the 
end of the day to report all matched bets. 
 
On the other hand, if there is a requirement to place high volumes or amounts at prices 
outside the current market range, it will certainly be necessary to enquire again on the 
bet and market prices, and may be necessary to engage in a second stage of execution.   
This will determine whether or not the bet has been matched, and if so how much of the 
bet is still outstanding.   A reassessment of the market will then be required, to establish 



AUTOMATIC EXCHANGE BETTING 

44  

new parameters for executing the bet, referring back to the strategy logic attempting to 
match the remaining amounts. 
 
The good news as far as automation is concerned is that all such operations are 
possible, and more, given that we are dealing entirely within the Betfair API at this stage.   
Efficiency of execution will all come down to our automated implementation and the 
logistics of programming each strategy correctly.   We cover this in detail in Part 2. 
 

Record Keeping 
 
We include record keeping as a final step in our exploration of the betting process.   If 
we view betting as one off process, then recording and analysing bets is of no 
consequence.   However, we have taken the view that if the process is to be repeated, 
then the objective is to make profits in the long term.   The importance of recording bets 
is also referred to in the best literature on the subject as well as by successful bettors.    
Not only is it critical to keep an eye on profit and loss, but also to refine and improve 
strategies by understanding successes and failures within a given strategy. 
 
For our automated process, record keeping takes on an additional dimension of 
recording the betting process itself, since the bettor - in a traditional sense - is absent!  
This includes program output to record the process of generating selections right 
through to the prices obtained, an audit trail for betting decisions made, and recording 
any bets placed.   Equally important in this process is trapping any errors which may 
occur.    Thus the automatic bettor is interested in improving execution of the process as 
well as the strategy behind the bets. 
 
One of the main benefits in automating record keeping as opposed to manual tracking 
comes from the ability to capture and store many characteristics of an individual bet.  
This includes the standard bet details from the date, time, event type (code, handicap, 
and distance), conditions on the day (e.g.  Going, number of runners, draw), as well as 
the elements that led to the bet in the first place (for example, top rated horse, 
percentage overlay etc), so that the bettor can analyse their betting by slicing and dicing 
these factors in the future.   Furthermore, if different systems or strategies are being 
operated, then the bettor can set up programs to track how well each system or strategy 
is doing separately from the main betting record, adding further dimensions for analysis.   
By reviewing such information, the bettor can optimise their strategy over the long term 
to focus on strengths and eliminate weaknesses.     
 
 
 



 

45  

Chapter 2 :  The Automatic Betting Process 
 
We explored the essential ingredients of the betting process in Chapter 1 and the 
process by which each of these elements could operate together within an automated 
framework.   
 
Betting on one event, selected from a universe of events: 

• Identifying opportunities within the event and assessing contenders’ chances, 
applying: 

o Betting Systems 
o Ratings Methods 
o Predictive Models 
o Third party advice and ratings 

• Determining “value price” and creating oddslines 
• Capturing Market Information 
• Betting Decision  
• Execute Bets 

 
We can represent the way in which these elements interact for a strategy as below, in 
Figure 2-1.  This is simply an overview of how various elements are connected to get to 
bet execution rather than a literal or comprehensive representation.   As we will see in 
Part 2, there are efficiencies to be gained at many stages in the actual process, and the 
“building blocks” used can be combined within one program rather than several. 

Form Database Rate/Model
Contenders

Exchange 
Market Prices

Betting 
Decision 
Program

Execute Bets
Via API

Third party 
ratings/ 

selections
Betfair API

Select Event 
From Universe

Oddsline 
Contender(s) / 

Minimum 
Price(s)

Betting 
Strategy

Rules

 
Figure 2-1:   An Automated Betting Process



AUTOMATIC EXCHANGE BETTING 

46  

 
If we consider that each bet or series of bets comes from a single event, the starting 
point for the process is retrieving the relevant event details for the betting strategy from 
the universe of events available on a daily basis.    In practice, we retrieve all applicable 
events and event details from Betfair at the start of the day, rather than one at a time, 
and generate our own events schedule, which is then accessed at scheduled times 
through the day. 
 
The events inputs can come from the Betfair API, a form database (of a type that is 
updated automatically in order to avoid manual intervention, as we discuss in the next 
Chapter), or a combination of both. 
 
Next we assess contenders within the race.  Depending on the strategy, this may be 
done by accessing the form database and programmatically applying an existing model, 
or there may be third party input to retrieve (for example from a website or external 
ratings system).    
 
Depending on the strategy and source of selection inputs, these are fed to the process 
that deals with formation of an oddsline to use as a basis for betting decisions. 
 
The Betting Decision program takes the oddsline, retrieves market prices and applies a 
given set of rules or betting criteria - depending on the strategy - to determine whether or 
not to make a bet, on which selections, and on at which terms. 
 
This information is fed to the betting execution program which executes bets and 
retrieves bet details for storing to a database. 
 
We cover all these stages in more detail within Part 2, Implementing An Automated 
Betting Framework.   Next, however, we will look at what tools we need to implement 
that Framework. 
 



 

47  

 

Chapter 3 :  Tools of the Trade - Hardware, Software and 
Data Sources 
 
In this chapter we will consider the IT environment for developing, testing and running 
completely automated betting strategies.   We can break this down further into hardware 
and software components needed, as well as data sources. 
 
The set up is focussed on the requirements necessary to run the type of strategies and 
examples in this book, where the emphasis is on complete rather than partial automation 
or running third party applications, putting control of the process entirely in the hands of 
the bettor’s programs.     
 
Using this set up, almost any modern PC can be repurposed as a betting machine, 
dedicated to running betting strategies which are proprietary to its owner.    
 
In terms of software, we focus on widely used, powerful, freely available and well 
documented open source software tools, where many texts also exist for the beginner. 
 
Whilst making some specific choices for the examples used in terms of Linux, Perl and 
MySQL, we also consider that these can be used in heterogeneous environments (i.e. 
within existing Linux, Windows and Mac systems).    Further notes on installation and 
configuration are provided in Appendix 1.    
 
In terms of the logic described for the examples in Part 2, it should also be clear that 
they can be readily adapted to other programming languages and operating systems in 
order to achieve similar objectives.     
 
Finally, since none of the IT infrastructure is of use without appropriate data available on 
a timely basis, we look at the types of data that are required and typical sources for such 
data.



AUTOMATIC EXCHANGE BETTING 

48  

 
 
  
Hardware 
 
At a basic level a computer and internet access is all that is needed, although the speed 
of both makes a difference to the effectiveness of any strategy.   The hardware set up 
also needs to be such that the computer can be left unattended.   Therefore, the 
hardware itself should be reliable enough that it can always be left on (on appropriate 
powersaving options, so that programs run as background processes), depending on the 
time that the bettor will be absent.    
 
Ideally, there will be a back up strategy and media, as well as an Uninterrupted Power 
Supply to ensure the PC continues to run and back up programs and data in the event of 
program and/or power failure. 
 
Alternatively, the bettor can set up their configuration within a hosted service, where the 
hardware is maintained by a third party. 
 

Personal Computer:  
 
Given the recommended development environment, most desktop PCs or laptops that 
are newly or recently acquired will be more than up to the task of running automated 
betting strategies, although a high specification is always useful.   However, a more 
interesting question can be repurposing older, less expensive PCs as standalone betting 
machines without any significant loss in performance. 
 
At a minimum, for the examples shown where we will be running Perl programs and 
connecting to the Betfair API, the PC should have sufficient memory, CPU capacity and 
disk space for a comfortable installation of Linux, Perl and MySQL – meaning the 
programs (all light overhead) can be executed rapidly and the data needed for automatic 
betting can be stored.   Staying safely above the Recommended Minimum Hardware 
Requirements for one of the latest releases of a specific Linux distribution – such as 
Ubuntu (www.ubuntu.com) - would be a fair benchmark to use.   For specifics, go to (for 
example) https://help.ubuntu.com/community/Installation/SystemRequirements.   Of 
course this benchmark should be scaled where significant amounts of data are to be 
stored and accessed, or the bettor’s programs become significantly more 
computationally intensive than the examples used.  
 

Infrastructure for internet access: 
 
Speed of connection to the Betfair API is paramount in execution, for capturing market 
prices and volumes with the minimum of delay, similarly in executing bets.  Therefore the 
fastest, most reliable “always on” broadband option that is affordable is recommended, 
as is the most reliable, responsive Internet Service Provider (ISP), since routing of 
requests from the ISP can be an issue with regard to fast access to the exchange. 
 



TOOLS OF THE TRADE 

49  

The extent to which an automated betting strategy has access to fast, reliable internet 
access generally has far more impact on the performance and efficiency of an 
automated strategy than any improvement in the specification of the hardware (over and 
above the recommended minimum). 
 
Even with such a set up, there will most likely be occasional issues, e.g. the connection 
can be lost due to issues with the line provider, the ISP or the bettor’s own infrastructure.  
 
Strictly speaking, a dial up modem can also suffice for activity which is not particularly 
time critical and for basic betting strategies which just involve “getting on”, perhaps at 
Betfair SP, but this is a sub-optimal set up which will limit possibilities. 
 

Back up policy and media: 
 
Whether this is an automated back up procedure to external media devices (e.g. 
dedicated external hard drive or other back up media) or intermittent manual back up 
(e.g. via a USB flash drive), we will repeat the usual caveats associated with 
maintenance of any useful system:  programs can take a long time to develop, data can 
take a long time to collect, and both can take a very short time to disappear.   
 
Back ups can generally be scheduled automatically via the operating system, (e.g. using 
efficient utilities such as rsync in Linux to incrementally back up only files that have 
changed). 
  

Uninterrupted Power Supply (UPS): 
 
For development and testing, a UPS may be a nice to have, but if implementing a 
production strategy, the bettor will want to minimize the impact of predictable risks such 
as power failure.  An easy way to mitigate such problems is by connecting an 
Uninterrupted Power Supply for the PC, with a battery life that budgets can afford. 
 

Third party hosting services 
 
This section has focused on hardware requirements for personal use of custom 
automation programs, assuming a complete “Do It Yourself” approach.    
 
Another option is to use a third party, hosted server environment for configuring set up 
and automating betting strategies, particularly for prediction. 
 
This may be attractive where there are glitches in the hardware environment or internet 
infrastructure used by the bettor; however, maintaining a viable home environment will 
still be necessary for connecting to the third party server for maintenance and possibly 
remote back up. 
 



AUTOMATIC EXCHANGE BETTING 

50  

 

Software 
 
In terms of choosing an appropriate software environment on which to develop and then 
run automated betting strategies, there are a number of viable choices, without a right or 
wrong answer.     
 
An idiom from horseracing is apt, being a case of “horses for courses”.  In other words, 
the choice of software may depend on the betting strategy and the tasks that come from 
that or simply upon the developer’s preferences in terms of what they already know.     
 
We should be aware of some constraints in that the operating system, choice of 
programming language(s) and database management system should be fit for the 
purpose we have in mind, including scheduling tasks via the operating system, extensive 
data manipulation and so on, which we will cover in the sections below. 
 
Additionally, the operating system and any programming languages or applications used 
should “all play nicely together”.   This means that there are no interoperability issues, 
and all tools taken together enable us to achieve what we want when it comes to setting 
up an automated betting environment, rather than considering each piece in isolation. 
 
To run our examples we use well known and well supported tools (both commercially 
and by the open source community), that lend themselves very well to the principles of 
automation in computing.   Many products fit the bill within this remit, amongst them 
Linux as an operating system, MySQL as a database and Perl as an interpreted 
programming language.   These are now mature open source products used by millions 
throughout the world, with stable releases that can be freely installed, excellent 
documentation, and many texts for the novice as well as advanced user, some of which 
are listed in the Bibliography.  
 
They are also increasingly used as an ensemble, (as in the LAMP environment) and 
most Linux distributions (or “distros”) will include a compatible release of Perl and 
MySQL as part of the distribution, meaning that the effort required to set up the whole 
environment is reduced.   Despite the mention of Linux as the operating system, many 
options now exist to run Linux on PCs with an existing Windows installation, and Perl 
and MySQL have stable Windows releases, so if required, the examples can be adapted 
for Windows with some tweaking and further work, as we discuss in Appendix I. 
 

Operating Systems  
 
Since the Operating System (OS) manages access to the computer’s resources, 
controlling all processes and enabling them to work with each other, including automatic 
scheduling, the choice of operating system is as critical as the programs used.    Prime 
concerns for the automatic bettor are reliability, security, ability to troubleshoot easily, 
flexibility and, most of all, support for automation.     
 
Typically, our existing OS in a home computing environment will be Linux, Apple 
Macintosh or Windows, or a combination in the case of dual boot systems.   On a Mac 



TOOLS OF THE TRADE 

51  

nowadays, with any version of OS X, the operating system is also UNIX based, 
accessible via the Terminal application (and now also uses an Intel chip).    
 
Linux (within which definition we include the Mac OS X family, being based on Unix and 
equally able to run our example programs) is therefore the chosen operating system for 
the examples in the book for all the above reasons, at a minimum to facilitate excellent 
support for scheduling, running multiple processes and reliability.     
 
For the purposes of converting our machine to a tailored automatic betting environment 
we are usually working from the command line.   The Linux environment gives us such a 
shell (or command line) environment with powerful UNIX commands at our disposal.    
We will also adopt the UNIX philosophy of creating small functional programs or utilities 
that can be used and tested on a standalone basis to fulfil elements of our automated 
framework for the betting process, and then linked together to create automated 
applications.   Adopting the idea of creating small, useful programs or scripts also makes 
for ease of prototyping and maintenance, since it can be easier to write, diagnose and fix 
a small program, or replace it, than to do the same for a big program.     
 
From the point of view of automation, we have the flexibility of the powerful cron utility 
and the Linux at command, as well as the possibility of creating daemon processes.   
Linux gives us this as part and parcel of the operating system, as well as playing nicely 
with other applications and programming languages, such as Perl, which was created 
initially on a UNIX platform. 
 
Whilst the Windows OS is ubiquitous, it is not our first choice OS for the bettor setting up 
a betting machine at home, since in the ideal case we want to leave systems to run 
reliably unattended for long periods of time.    
 
In this sense, Windows and Linux come from different design perspectives, both making 
different assumptions about the way home users wish to interact with computers, for 
different use cases.   The emphasis in Windows is creating out of the box applications 
with emphasis on interaction through the GUI, whereas coming from UNIX, Linux is 
about reliability, control through the command line and enabling multi-user production 
systems with security built in.  For the automatic bettor who wants to focus on optimising 
their betting strategy, automation via the OS should “just work”, rather than spending 
time ensuring the appropriate Windows virus software is up to date, for example.   
Similarly, if there are any issues they need to be able to “get under the hood” and 
address them quickly in order to avoid downtime in betting strategies.   
 
Having pointed out some of the potential drawbacks with using a Windows OS in this 
way, we should also note that there are many other options to install Linux to sit 
alongside Windows as a dual boot system, or even as a virtual machine within Windows, 
so it is not necessary to change computers if going down this route.    The examples can 
also be adapted to run natively on Windows if required. 
 
For those who already use Linux, they will have their own favoured distribution, under 
which all the coding examples should work, provided the correct Perl modules and 
MySQL are installed (as detailed in Appendix 1).   For those who do not currently use 
Linux, the distribution recommended is Ubuntu (installation notes also in Appendix 1).  
 



AUTOMATIC EXCHANGE BETTING 

52  

The reasons for recommending Ubuntu are the ease of install and support for the OS 
itself, automatic partitioning for dual boot with Windows (if required), and the availability 
of Perl, relevant Perl modules and MySQL versions which can be installed directly from 
the Package Management System, as if “out of the box”.  Also, Ubuntu is now a 
supported OS that is supported pre-installed with new computers by some major PC 
manufacturers. 
 
Finally, whether currently a Windows, Mac or Linux user, it is well worth considering 
setting up a separate betting machine or server in the long term purely for running 
automated strategies, since this can be maintained independent of a home PC that may 
be in constant use for other applications.   
 

Programming Languages  
 
As with Linux, where any existing user of Linux will have their own favoured distribution, 
so any existing developer will often have their own favoured programming language(s).   
 
Perl is used for the examples in this book both as a common language to use for 
explaining the principles of automation and interaction with the API, as well as being a 
useful starting point for non-developers who want to explore the process, where plenty of 
literature is available to pursue further.   
 
There are many other well-respected scripting languages with similar attributes (and of 
course advantages and disadvantages) such as Python and Ruby, leaving aside 
compiled languages for a moment, which can also be used in this context.   For those 
who wish to pursue other routes, the intention is that the examples can serve as pseudo 
code to illustrate some concepts and methods of implementation.    
 
However, the attributes of Perl – which stands for “Practical Extraction and Reporting 
Language” – serve particularly well in automating the betting process, since very often 
we are simply trying to extract relevant information in one part of the process, clean it, 
repurpose it, and move it to another part of the process, ensuring that the data can be 
compared on a like for like basis at each stage.    Perl provides high and low level tools 
to help the user accomplish such tasks quickly. 
 
For example, at a basic level we are often faced with the problem of matching relevant 
information – such as a horse name on Betfair that is missing an apostrophe or a capital 
letter and has to be matched to a horse name on a form database which has it included.     
Or, we may need to process a stream of unstructured data from a website and bring 
some order to it.   Or, in the case of the Betfair API, we need to work at a low level to 
retrieve data in XML and parse the returned data.    Perl has few equals for such text 
processing and data manipulation tasks.   
 
However, the task of betting automation is not data manipulation alone.    Another 
important area for us in terms of scheduling, communication and process flow, and again 
Perl is a great “glue” as an all purpose language.    Additionally, any programming 
language must enable the bettor to easily write rules and algorithms for decision making 
- for example determining what to bet on and how much to bet.   
 



TOOLS OF THE TRADE 

53  

Although this may seem the crux of any program, it is often a tiny fraction in terms of 
percentage of code and time spent.    In any case, programming complex algorithms, 
where needed, also fits well within Perl’s compass, tying in with the Perl philosophy of 
“Making Easy Things Easy and Hard Things Possible”. 
 
In the case of harder to code functions and algorithms, Perl benefits from being one of 
the more mature and popular languages available so that there are many contributed 
extensions or modules which can be added to a standard Perl installation that already 
accomplish such tasks, mostly available at the Comprehensive Perl Archive Network 
http://www.cpan.org.    A number of such modules will be used for the example code 
provided, and those that are not installed as standard are listed in Appendix 1.    
 
Last but not least, despite being an interpreted language, the speed of execution in our 
Perl scripts is excellent for the purposes of betting automation.  This too, is an important 
element to consider in choosing any other programming language for this use case. 
 

Database Management Systems 
 
There is a need to capture, store and reuse data throughout the automated betting 
process.   This may be recording oddsline selections, events data and corresponding bet 
details (from Betfair) for further analysis, or to make data persistent for use between 
different programs.   Persistent data elements might include events, prices, Betfair 
runner identification numbers and so on.  Whilst some of these elements can be passed 
from program to program as flat files or simple “key-value” pairs, it is clear we should be 
storing some variables that are required on a long term basis – such as detailed records 
of all bets placed - in a database for ease of management and reporting.    
 
Moreover, where the bettor is running programs to analyse form and rank contenders 
ready for submission to the rest of the betting process, there will of course be a 
necessity for an up to date form database from the beginning of the process.    We will 
come back to the case of data sources for the form database under the “Data Sources” 
section, although the comments here on the type of database management system to be 
used are also applicable 
 
It is likely that as automated betting strategies grow in complexity, and the number of 
transactions grows in volume, working with a database will play an increasing role in any 
strategy.    Further, if the bettor wants to enhance strategies by re-using some or all of 
the data which is collected on a daily basis, rather than simply discarding it, the size of 
the database will grow rapidly.   For example, for research into price movements, a 
database will be essential to capture and store exchange price information for later 
retrieval and analysis.    
 
However, perhaps the most fundamental requirement for using any database 
management system within the automation framework is that it should be possible to 
automate all database operations, ideally via an interface to a programming language.   
This means that inserting data and querying it can be performed automatically.   Once 
data is automatically extracted it can be analysed in other programs or passed to other 
parts of the betting process, depending on the purpose of retrieving it. 
 



AUTOMATIC EXCHANGE BETTING 

54  

This is not always the case with proprietary database formats, where data manipulation 
and automated queries via non-proprietary languages may be unsupported and 
unreliable, without time consuming and specialist programming effort.  Any lack of 
interoperability wherever such a database is used or lack of common standards can lead 
to a serious breakdown in the automation process.   To keep a proprietary database 
within the set up which does not “play nicely with others” could require a stage of manual 
intervention at every turn, and render the objective of total automation in the bettor’s 
absence null and void.     
 
Fortunately there are a number of highly robust databases now available on an open 
source basis, two of the most popular being MySQL www.mysql.com and Postgres 
www.postgresql.org.  These databases are more than sufficient for most applications 
which the bettor would wish to implement.   Moreover, many programming languages 
include supported interfaces to them, including Perl’s database integration module, the 
DBI.  This means programmatic control of database operations is achievable, and can 
therefore be scheduled or automated. 
        
The references made in this book focus on MySQL which is a symptom of its popularity, 
documentation, ease of use and interoperability with Perl.  However, the examples can 
easily be adapted for other databases. 
 

Data sources 
 
The need for relevant data persists through all stages of the betting process:  historic 
form for assessing contenders, daily racecard data for identifying suitable events, market 
data to assess prices, account data for money management – the list goes on. 
 
The choice of data sources will typically be determined by the bettor’s particular strategy 
(i.e. by the data needed to execute the strategy) and where more than one appropriate 
source is available, the cost and/ or format in which the data is available.   For 
automation, we rely in all cases upon data being available in some electronic form.  
Typical sources that might be of use include: 
 

• Betting Exchange Data 
• Commercial Form Databases 
• Online Form, Results and Racecards 
• Market data from Fixed odds, Spread firm and Odds comparison websites 
• Miscellaneous websites – anything from tipster selections to sectional timing 

statistics and meteorological reports to predict going 
 
This is not intended to be an exhaustive list, although the vast majority of data that can 
be of use falls into one of these categories.    
 
For many stages of the betting process, the choice of data source and the format is clear 
cut - particularly for retrieval of Betfair data elements via the Betfair API.   However, 
navigating for other sources, accessing and using the rest of the cornucopia of electronic 
data available for automatic betting programs is another question again.   Within the text 
we provide some specific references where appropriate, but first we consider the 
question of data formats and programmatic access generically. 



TOOLS OF THE TRADE 

55  

 

Data Formats 
 
Technically, there are challenges to overcome with many of the formats used for the 
data sources listed, which typically fall into one of the following categories: 
 
• Website technologies (HTML, XML, Javascript etc) 
• Proprietary applications, including databases and spreadsheets 
• APIs 
• XML feeds 
 

Screen scraping – retrieving data from the web 
 
Taking for a moment the case of the web, any data required from the body of website 
content requires us to write a webscraping or screen scraping program, which involves 
custom work to retrieve data automatically, from parsing HTML to managing cookies and 
handling forms. Each program must be tailormade to the website in question. 
 
All these challenges can be overcome, since most modern programming languages 
have high level modules to somewhat simplify the process, including Perl. 
 
However, automatically parsing text, cleaning and polishing it to retrieve the exact data 
elements required will always be a job of work.  
 
In the case of using Perl, our recommended programming language, Perl’s LWP (Library 
for the world wide web in Perl) is a collection of modules for accomplishing the task of 
creating a program in Perl to extract and parse any data that is normally accessible via a 
browser.  Perl’s modules are organised to enable programs to download and extract 
information from the Web on an automated basis, including automated navigation, 
submitting forms, and providing authentication information (i.e. for sites requiring login 
and password details).   In Perl’s case, such modules build on Perl’s unparalleled 
reputation for text processing and as an all purpose “IT glue”. 
 
On the other hand, whatever tools are at the developer’s disposal, websites provide a 
very fragile interface for data extraction, primarily because they are designed for user 
interaction rather than screen scraping applications.   Thus, the organisation, display and 
information available on any given website is subject to change without notice. This 
means that any such programs are by definition unreliable and in potential need of 
constant maintenance. 
 
Moreover, whilst almost anything we can do on the web interactively can also be 
automated, that is not the same as saying that any data found on the web can be freely 
used, or that access to all sites is permitted (even if it is possible) via automated 
programs.    
 
Terms of user interaction are different from terms of programmatic interaction and 
making “electronic copies”. At the end of the day, websites dictate their own terms of use 
and the automatic bettor must satisfy themselves that such terms are covered.    



AUTOMATIC EXCHANGE BETTING 

56  

 

Commercial Form Databases 
 
For extensive research on results, predictive modelling, systems creation and 
programmatic assessment of contenders, there is no real substitute for using a reliable 
source of form data, which will generally mean the bettor maintaining their own form 
database.   In fact, unless strategies rely only on third party sources, it is to be 
recommended.   Generally, website retrieval of form data is not reliable or legitimate for 
such uses, and besides, there are a large number of useful providers available 
 
However, commercial form databases can pose similar problems to website access for 
the automatic bettor with regard to data formats and the purpose of use.   Without 
attempting to review the many commercial databases available, let’s assume for now 
that all these sources and others not mentioned contain the data attributes we need to 
run betting systems or build predictive models, (although clearly that is a case for the 
buyer to validate).  
 
There is no issue with legitimate access, but there can be issues to automatically extract 
data stored within proprietary database formats or applications for use in programs 
without extensive custom work.  Even where such facilities exist to export data from 
some databases, automating the process is another issue. 
 
Another challenge is to ensure that form is automatically kept up to date, and racecards 
can be evaluated in time for daily betting strategies.   The delivery mechanism is 
therefore a key concern for the automatic bettor, since this should be reliable but also 
compatible with an automated process which requires no manual intervention. 
 
However, there is light at the end of the tunnel, since at the other end of the spectrum, 
various formats (which are used on an increasing basis) are specifically designed to 
enable automated access – or designed to be “machine readable”. 
 
The brave new world of data access is signalled by the latter formats on our list, 
namely APIs (application programming interfaces), XML (extensible markup language) 
feeds, and, in terms of local installation, many open source applications which can be 
updated and provide for programmatic access. 
 
The accompanying website to the book provides its own contribution to the list in the 
form of an automated results and racecards database, SmartForm for use with MySQL -  
www.betwise.co.uk/smartform.html.    
 
It is not just the technology behind the use of open standards which is useful, but the 
thought process behind the technology.  When these formats are used it is often with 
programmatic access at the front of the list.  This makes life ideal for automating betting. 
 

The Betfair API 
 
Whether we generate systems for ourselves or use other inputs for the purpose of 
selections or trading, the majority of the process is still left to do and requires interaction 



TOOLS OF THE TRADE 

57  

with the exchange, extracting market information, making a decision based upon that 
information, and then placing a bet.   The same is true for record keeping after placing 
bets.    
 
Even runner and all basic race information can effectively be gleaned from here, without 
using other sites.  In fact, since the rules of each market depend on it, Betfair is often 
quickest off the mark with regard to listing non-runners, so is a good port of call for that 
from an up to date racecard perspective.   Therefore, much of our automated betting 
process relies on interaction with the Betfair API.    
 
It is worth mentioning at this point that APIs exist for other exchanges, notably Betdaq 
www.betdaq.co.uk, but we focus on the specifics of Betfair since it is by far the most 
liquid of the exchanges, and the Betfair API is particularly well supported.   Nonetheless, 
the principles of implementing automated betting strategies are applicable to exchanges 
in general. 
 
Now, it is technically possible to capture this information by screen scraping, as we have 
described earlier, and if that were the only method available of capturing and using the 
data, then we would be including all the caveats associated with that process.   
Fortunately, the Betfair API provides us with a reliable well documented interface which 
is not subject to changes in the website, outages, or changes in access policy. 
 
In short, the API is designed to enable reliable machine to machine access of Betfair 
data and functions, which is what we are interested in as automatic bettors.  The 
Exchange API is independent of the Betfair web interface; therefore the bettor can build 
custom programs to suit their betting strategy.    
 
In the next part of the book we will cover the creation of reuseable libraries and scripts 
with which to implement the different stages of the betting process, starting with a more 
thorough overview of how we can use the Betfair API programmatically.     
 
 
 



 

  



 

   

PART 2:  IMPLEMENTING A 
FRAMEWORK FOR BETTING 

AUTOMATION 
 
 
 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

Chapter 4:  Using Betfair API services 
 
In this chapter, we will consider what Betfair API services are, the different services 
available, and ways of calling those services using Perl.    Having considered how 
Betfair API services work, we will discuss creating Perl functions to make those services 
available to programs, using an example library of functions.    The example library is 
printed in Appendix 2 and is also available for download at www.betwise.co.uk.    
 
Since the Perl functions are stored in a library which can be called at the start of other 
programs, these functions can be maintained separately and reused by any Perl 
program which is implementing a betting strategy thereafter.    The library therefore 
provides us with one of the essential building blocks that we will use again and again in 
implementing different parts of the automated betting framework, from selecting 
available events to bet in to retrieving details of bets made.    So this chapter will deal 
with implementing the library that deals with the API generally, and in subsequent 
chapters we will look at example programs to implement specific parts of the betting 
process, which - in the case of programs accessing information from Betfair or 
performing transactions (such as executing bets on the Betfair exchange) - will also use 
this library.    
 
First, a word on semantics – the terms call, service and function essentially refer to 
doing the same thing but from different perspectives.   The Betfair API provides a 
number of services, which can be called by client programs.   Functions, or subroutines 
in the programming language, may implement those calls in order to get results (i.e. 
data) back from the Betfair servers and process that data,  so that it can be used 
generically within any given program.   This is what our library of Perl functions, or 
subroutines will do for each API call.    
 

How the Betfair API works 
 
For those familiar with the Betfair website interface but new to the Betfair API, or new to 
using any API, this section provides a general overview of how the Betfair API works. 
 
At a basic level, the website and the API are simply alternate means of accessing the 
Betfair Exchange.   The same exchange that many users are familiar with accessing 
interactively on the website can be accessed programmatically via the SOAP (Simple 
Object Access Protocol) API, as represented in Figure 4-1:



AUTOMATIC EXCHANGE BETTING 

62  

 
 
Figure 4-1:    Communicating with the Betfair Exchange 
 
Whatever mechanism is used to access the exchange - website or API - the starting 
point is a client program.      In the case of using the website, the client program is simply 
our web browser of choice.   In the case of the API, the client program is up to the 
individual developer, or the company providing an application which has been developed 
for the user. 
 
For a client program to access the exchange by using the API, the client program must 
send the API an XML request using the SOAP protocol to transmit that request.    XML 
(extensible mark up language) and the SOAP protocol are simply the format required to 
transmit messages reliably (we cover the calls available and the use of XML in 
subsequent examples in this Chapter).    The Betfair servers process and validate the 
XML request and retrieve the appropriate data from the Betfair Exchange.   The Betfair 
Exchange returns the information requested which the API packages into a properly 
formatted XML response and sends to the client – it is up to the client program to 
decipher this response.    Our functions will make the validated requests to the exchange 
and decipher the response. 
 
We can therefore see the website and the API as two different “front ends” to the Betfair 
Exchange.   The processing of any bets, including matching, ordering, etc all happen 
within the Betfair Exchange, not in the client program or in the ether between the 
exchange and client program. 



USING BETFAIR API SERVICES 

63 

 
Speed of execution for any client program using the API is greatly accelerated by 
eliminating manual point and click processing, as well as menus that the programmer 
may deem superfluous.    In the case of complete automation, there is no need for 
production programs to interact at all with the user, so the speed at which betting 
strategies can be executed is down purely to connectivity.   
 
In terms of speed of connection to the exchange generally, which can be critical for 
many strategies, in particular trading strategies, there are many exogenous factors to 
consider, some of which are: caching differences, delays in network protocols, ISP 
routes to Betfair, browser speeds, SOAP proxy libraries.    With the functions shown as 
examples, any overhead in processing is confined to milliseconds.   Usually, if there is  
an issue with speed, this is down to the user’s network and ISP routes to Betfair - but 
here it should also be possible to reduce delays to milliseconds.     
 
    

Description of Betfair API services 
 
The Betfair API has different service calls available, and levels of availability for those 
services, depending on the Betfair account holder’s subscription to the API.    All Betfair 
users have access to the Free Access API (provided they have an “active” account, 
defined below).     Access to the Free Access API can be enabled in client programs by 
specifying a product code of “82” to the Login service, together with the Betfair account 
username and password.   Most of the available services within the API are accessible 
at the Free Access API subscription level, as can be seen from the table listing which 
calls are available at each subscription level in Appendix 3, Betfair API Services. 
  
The service level for certain calls varies in terms of the number of times per minute that 
a call to a Free Access API service can be made.   When a call is restricted this is 
referred to as “throttling”.   Throttling limits for each of the Free Access API calls are also 
shown in Appendix 3.   However, no automated betting strategy or example shown in the 
book relies on any service which is not available via the Free Access API, or which must 
be called with greater frequency than the throttling limits available, although we do refer 
to cases when other services and call frequencies are useful.    
 
Essentially many useful strategies can be executed ‘as is’ on the Free Access API, and 
many others tested in principal.   Users may at some point decide to change their level 
of access, either directly with Betfair (for general development access) or with a 
Software Vendor supporting specific applications, or programs to be developed.   
Generally such considerations will be down to running more intensive betting strategies 
(e.g. applications which must access the exchange multiple times per second), how 
much the user wants to do themselves, and the availability of support. 
 
The Free Access API requires that the user’s account is “active”, i.e.  that they have 
deposited some money, placed a bet that’s been matched and settled, etc within the last 
three months. If they haven’t the API will return 
“PRODUCT_REQUIRES_FUNDED_ACCOUNT” and the login fails.  
 



AUTOMATIC EXCHANGE BETTING 

64  

In order to implement a successful automated strategy, it should be noted that it is not  
necessary to use all services, or even the majority – a few key services crop up again 
and again, whilst others may be hardly, if ever, relevant.   For example, logging on, 
obtaining market information (event and runner details), then market prices, and bet 
placement can form the foundation of many successful strategies, albeit used in different 
combinations and on a repeated basis.   For such strategies, there are only 4 or 5 
different services needed.    There is also more than one way to skin a cat by using 
different services for the same purpose.    For example, we show how to use 2 services 
in concert when retrieving the list of all horseracing events in the UK and Ireland in the 
next Chapter.   The GetAllMarkets call would be an alternative way of doing this.    
 
In the above sense, we can look at the services like an analogy to language.   The 
availability of words that can be used in any language far exceeds common daily usage, 
or even common knowledge – and yet we can express complicated concepts for which 
other words exist by using a mixture of those commonly used.   We will see this more 
closely when we look at example strategies in Part 3. 
 
In the meantime, a list of the most commonly used services available from the API is 
provided with a corresponding description in the table below.   This provides a useful 
reference by which to think about calling services in different combinations in order to 
implement different strategies. 
 
 
Table 4-1: Description of Betfair API Services 
 
Name Description 

Login 

The API Login service enables customers to log in to the 
Exchange API service and initiates a secure session for the user. 
Users can have multiple sessions alive at any point in time. 

Logout The API Logout service allows you to explicitly end your session. 

KeepAlive 

The keep alive service can be used to stop a session timing out. 
Normally a session is expired if it has been idle for a period of time. 
Issuing periodic KeepAlive requests will stop this occurring. 

GetActiveEventTypes 

The Exchange API Get Active Event Types service allows the 
customer to retrieve all Sports (Games, Event Types) which have 
at least one active/suspended market associated with it currently. 
This service would for example always return the event types 
Soccer and Horse Racing but would not include Olympics 2012. 

GetAllEventTypes 

The Exchange API Get All Event Types service allows the 
customer to retrieve all Sports (Games, Event Types) regardless of 
whether they have an active market associated with them. This 
service would for example always return the event types Soccer 
and Horse Racing and would also include Swimming, Olympics 
2004 or EURO 2004 even when the events have finished or have 
no current events. This is to allow API programmers to be aware of 
the full range of potential sports that may be available in future. 

GetEvents 

GetEvents is used to navigate through the menu structure. It 
allows you to input a Sport or Event and retrieve all Events or 
Markets which have the input event id as a parent. 

GetMarket 
The API Get Market service allows the customer to input a Market 
ID and retrieve all static market data for the market. 



USING BETFAIR API SERVICES 

65 

Table 4-1: Description of Betfair API Services (continued) 
 

GetAllMarkets 

The API GetAllMarkets service allows you to retrieve information 
about all of the markets that are currently active or suspended on 
the given exchange. You can use this service to quickly analyse 
the available markets on the exchange, or use the response to 
build a local copy of the Betfair.com navigation menu. You can limit 
the response to a particular time period, country where the event is 
taking place, and event type. Otherwise, the service returns all 
active and suspended markets. 

GetMarketPrices 
The API Get Market Prices service is used to retrieve dynamic 
market data for a given Market ID. 

GetMarketPricesCompressed 

The Exchange API Get Market Prices Compressed service is 
used to retrieve dynamic market data for a given Market ID. This 
service returns the same information as the Get Market Prices 
service but returns it in a ~ (tilde) delimited String. 

GetAccountFunds 
The Exchange API Get Account Funds service allows the 
customer to retrieve financial information about their account. 

GetDetailAvailableMktDepth 
The Get Detail Available Market Depth service returns the current 
odds and available bet/lay amounts on a runner in an event. 

GetMarketTradedVolumeCompressed 

The API GetMarketTradedVolumeCompressed service allows 
you to obtain the current price (odds) and matched amounts at 
each price on all of the runners in a particular market.  

GetCompleteMarketPricesCompressed 

The API GetCompleteMarketPricesCompressed service allows 
you to retrieve all back and lay stakes for each price on the 
exchange for a given Market ID in a compressed format. The 
information returned is similar to the 
GetDetailAvailableMarketDepth, except it returns the data for an 
entire market, rather than just one selection. 

GetSubscriptionInfo 
The Get Subscription Info service returns information on your API 
subscription. 

GetAccountStatement 
The Get Account Statement service allows the user to obtain 
information on transactions that have occurred on an account. 

GetCurrentBets 

The Get Current Bets service allows the user to retrieve 
information about bets that have been placed. Information can 
either be retrieved from a single market or across all markets. This 
request supports paging through the result set through the use of 
the Starting Record and Record Count parameters. 

GetBet 

The Get Bet service is used to retrieve information a specific bet 
that has been placed. Each request will retrieve all components of 
the desired bet. 

GetMUBets 

The GetMUBets service allows you to retrieve information about all 
your matched and unmatched bets on a particular exchange 
server. 

GetMarketProfitAndLoss 

The Get Market Profit and Loss service allows you  to retrieve 
Profit and Loss information for the user account in a given market.   
The limitations for the service in the initial release are:  
- Profit and loss for single and multi-winner odds markets is 
implemented however it won’t calculate worstCaseIfWin nor 
futureIfWin.  
- The calculation for Asian Handicap markets will include 
worstCaseIfWin but not futureIfWin. 

GetMarketTradedVolume 
The Get Market Traded Volume service is used to obtain all the 
current odds and matched amounts on the runners in an event. 

GetAllCurrencies 

The Exchange API Get All Currencies service allows the 
customer to retrieve all the available currencies and their exchange 
rates. 

WithdrawToPaymentCard 

The API WithdrawToPaymentCard service allows you to withdraw 
funds from your UK wallet using a previously registered payment 
card. 



AUTOMATIC EXCHANGE BETTING 

66  

Table 4-1: Description of Betfair API Services (continued) 
 

DepositFromPaymentCard 

The API DepositFromPaymentCard service allows you to deposit 
funds into your UK wallet from a previously registered payment 
card. You cannot deposit funds directly into your Australian wallet.  

TransferFunds 
The TransferFunds service is for transferring funds between your 
UK and Australian account wallets.  

ConvertCurrency 
The Exchange API Convert Currency service allows the customer 
to convert a currency 

WithdrawToPaymentCard 

The API WithdrawToPaymentCard service allows you to withdraw 
funds from your UK wallet using a previously registered payment 
card. 

DepositFromPaymentCard 

The API DepositFromPaymentCard service allows you to deposit 
funds into your UK wallet from a previously registered payment 
card. You cannot deposit funds directly into your Australian wallet.  

PlaceBets 

The Exchange API Place Bets service allows multiple bets to be 
placed on a single Market. There is an instance of PlaceBetsResp 
returned in the output for each instance of PlaceBets in the input.  

UpdateBets 

The Exchange API Update Bets service allows editing of multiple 
bets on a single Market. There is an instance of UpdateBetsResp 
returned in the output for each instance of UpdateBets in the input.  

CancelBets 

The Exchange API Cancel Bets service allows you to cancel 
multiple bets on a single Market. There is an instance of 
CancelBetsResp returned in the output for each instance of 
CancelBets in the input. 

CancelBetsByMarket 

The Exchange API CancelBetsByMarket service allows you to 
cancel all unmatched bets(or unmatched portions of bets) placed 
on one or more Markets. You might use this service to quickly 
close out a position on a market. 

 

A library of Perl functions to call the services 
 
So we know how the API works in principal, we have a description of the services 
available, but we have still to make the connection between the Betfair exchange and 
the client program so that automation can happen.   For this we need to use a 
programming language, which applies whether we are using a point and click, semi-
automated application, or one that runs invisibly to the user.    
 
The mechanism by which the Betfair API services are provided and accessed so that the 
data extracted can be used on a client machine is broadly defined as web services.   We 
are retrieving information from a specific internet server using protocols designed for the 
secure and reliable transportation of data, in this case the SOAP standard, which is a 
wrapping mechanism for passing data defined in XML format.    
 
There is a processing overhead on each side to manage such tasks.   We must make 
any request by complying with the service protocols used, specifying the correct 
parameters and XML format which the service will respond to, as generally defined in 
the WSDL (Web Services Definition Language) for whatever service we are interested in 
accessing.   Additionally, we must process and interpret the results of the call, which are 
returned in XML format, within our function.  This is taken care of in the example library.      
 



USING BETFAIR API SERVICES 

67 

Perl, as with many languages, has high level user contributed functions and modules to 
make the task of using web services easier, as well as being able to handle the process 
from a low level (without specialist modules taking care of everything).   For some other 
programming languages and platforms (such as .NET for Windows), examples of calls 
are also shown on the BDP (Betfair Developers Program) website. 
 
For our purposes, we will build functions or subroutines in Perl to access each of the 
important services in the Betfair API.   As with anything in Perl, “There Is More Than One 
Way To Do It”, which of course includes both more messy and more elegant ways.   In 
terms of creating functions to call API services, not only do we have a number of choices 
over how to write each function, we also have many choices when it comes to 
implementing the functions and methods of accessing them.    
 
In this case, we will create the functions or subroutines and store the functions in a 
common library, or module, enabling that library to be called by other programs in the 
future.   This is far more efficient than writing individual subroutines within individual 
programs – since we will use the service calls again and again and will want to maintain 
them in one spot.  No doubt the subroutines can be improved, having evolved over time 
and from various Perl discussions on the Developers Forum as the API versions were 
revised.   However, the acid test is that they are fit for purpose and can be maintained, 
since we are mainly concerned with implementing something that works and which is 
transparent.   The great thing about Perl is it that the “P” stands for Practical.   For the 
individual, making something work in the least time possible is generally the first priority.    
 
The next subsection provides further background about how the service call functions 
are constructed, whilst the full script for the library of functions called in the examples is 
shown in Appendix 2.   
 

Building service call functions 
 
To understand the mechanics of how the functions work, let’s take a quick look at the 
essential elements to be considered when building such functions within any language. 
 
First, we should refer to the comprehensive technical documentation for the Betfair API 
provided at the Betfair Developers’ Forum, in particular the main source of technical 
reference for using API services, which is the Betfair Sports Exchange API 6 Reference 
Guide (or subsequent versions as they arise).   This is freely available for download 
(along with other useful materials) at http://bdpsupport.Betfair.com (then click on the 
Downloads link under the Support Centre tab). 
 
This is the main technical reference for creating and troubleshooting service calls, 
although of course the documentation relates to the API only rather than any specific 
programming language.   Some general background is provided, but in the main all of 
the documentation refers specifically to the parameters of each API call using the 
following structure: 
 
Service name:     Specifies the name of the service to be called and whether the 

service is available through the Global or Exchange URL 
endpoints (i.e. server addresses). 



AUTOMATIC EXCHANGE BETTING 

68  

 
Input: Table showing which parameters have to be specified in order to 

call this service, and a full description of those parameters. 
 
Output: Table showing which parameters are returned by a successful call 

to the relevant service, and a full description of those parameters. 
 
ErrorCode: Table showing error codes returned in the event of an 

unsuccessful call, and a full description of those codes. 
 
The official documentation provides generic information about the data structure passed 
to and from the service; implementing that within any given program and deciding how to 
retrieve or present the information returned is all left for the user of the API.    This is 
precisely what our library of functions should take care of.     
 
In the next sections we’ll take a look at a couple of example functions from the Perl 
library attached with the book (without repeating the process for all) to get a flavour of 
how they work and are put together.   The library of which the functions are part is just 
one way to do it, so can be readily changed, adapted or improved to suit any user’s 
particular preferences.     
 
A quick note on naming conventions used:   each example Perl function (from the library 
of functions BetfairAPI6Examples.pm listed in Appendix 2) shares the name of the 
Betfair API service it is accessing, but the Perl name is in lower case (whereas all words 
in Betfair services are capitalised) and separated by underscores for each word 
(whereas there are no spaces by convention in the Betfair API Service names).    
 
For example, the Betfair API Service GetMarketPricesCompressed, finds the parallel  
Perl function which calls it in get_market_prices_compressed.   Sometimes the 
Perl function will also appear in bold for emphasis, but always in lower case and in a 
monospace font.   
 
First we will look at the most fundamental example function, login, for logging into the 
exchange, (since that is a prerequisite for making any other service calls) followed by an 
example covering one of the most frequently used functions to retrieve market prices, 
get_market_prices_compressed.   Since the structure of each function is similar, 
many of the comments regarding the code for the login function and the 
get_market_prices_compressed function apply generally to all the functions in the 
library.    Finally, without further ado, we’ll list and summarise the inputs (or arguments) 
required for the other example functions in the Perl library, together with the outputs from 
those functions – in other words, we will provide a summary for setting the other 
functions to work. 
 

Review of the login example function 
 
The majority of work in all the API function calls is ensuring that our code is passing valid 
XML requests and using the specific protocols and mark up language (XML within a 
SOAP Envelope) that is required for each service we want to call, together with the 
correct parameters for that service.  Once the call is successful, we need to process the 



USING BETFAIR API SERVICES 

69 

XML that is returned from that service, since it contains the information we want, and put 
that in a form where we can readily access it.    Combining these elements will 
subsequently enable us to call the subroutine in the context of any relevant program, as 
we discuss for some of our later example betting strategies. 
 
Thus, when reviewing the functions there is a spaghetti soup of required data and mark 
up tags confronting the reader.   It’s useful to bear in mind our objectives when faced 
with this.   With regard to this section, and the login function, our specific objective in 
writing and using the service call is to obtain a so-called sessionToken that we can use 
to make any subsequent service call, be that getting market prices or placing a bet.       
The session token is a string containing encrypted information, by which to authenticate 
any future service request.   The session token is all we’re after - but we can’t use any 
other API function without it. 
 
A couple of further points about the sessionToken that are worth bearing in mind when 
running and modifying programs:   
 

• Each session token is only guaranteed good for a single API request.  Therefore, 
each subsequent service that is called after login contains a session token (which 
can be retrieved from the response header) that must be used in the next service 
request.   

• Usually the sessionToken actually remains the same from one service to the 
next, but if we are calling more than one service within one program it is good 
practice to check after each service whether the session token is the same or 
has changed and use the relevant one.   (N.B. In the examples shown we often 
use separate programs for separate calls, passing the output to files which can 
then be picked up by subsequent programs.   It’s easier to demonstrate the 
principles involved and the output at each stage by doing this, including error 
checking.  For many strategies, the same results can be achieved as if using 
multiple calls within one program).      

 
Before stepping through the functions, a brief note on the first group of statements within 
the library BetfairAPI6Examples.pm.   These simply define the library itself, as in  
 

package BetfairAPI6Examples; 

  
followed by the Perl modules which are required in order for all functions to operate, as 
denoted by the group of use commands, each of which is followed by a module name.   
Next, we ensure that all the functions and variables can be exported to any program 
which requires naming each of the functions which are to be made available within a list 
to export, using Exporter.   In subsequent programs, the library can be used by 
defining the path to the library (here our example path is /home/aeb/lib/, along with 
the command to use the relevant package of functions within the library, as in: 
 

use BetfairAPI6Examples; 

 
Adding further subroutines to the library is a matter of defining the subroutine and adding 
the function name to the list of those to be exported.  
 
So, let’s start by examining the function call login for the Login service, step by step, 
that is found in the library, in order to review how it works in principal (the full function is 



AUTOMATIC EXCHANGE BETTING 

70  

printed in Appendix 2, so here we do not reprint it again but walkthrough the key 
elements line by line).        
 

sub login 
 { 
  my ($username,$password,$productid)=@_; 

 
To start with we are defining the name of the subroutine (sub) or function (which is 
called login), and then in the next line specifying the arguments that the function will 
take when we use it (and which must therefore be supplied when using the function in 
any particular program.  In this case, three values are expected to be defined in any 
program where we use this function, namely the Betfair username, password and the 
productId with which we are accessing the API (in the case of the Free Access API that 
is “82”).     
 
Next we will prepare to get the sessionToken (the objective of this function) that will 
enable us to continue making calls to other services when it is put to use.     
 
First we create a variable called $xml that will contain the valid XML structure in order to 
call this service successfully, to be passed within a SOAP (Simple Object Access 
Protocol) Envelope.   The XML will reuse the arguments that we have already specified 
as variables within the program for username etc.    
 

my $xml= 
'<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 <SOAP-ENV:Body> 
  <m:login 
xmlns:m="http://www.Betfair.com/publicapi/v3/BFGlobalService/"> 
   <m:request> 
    <password>'.$password.'</password> 
    <productId>'.$productid.'</productId> 
    <username>'.$username.'</username> 
    <vendorSoftwareId>0</vendorSoftwareId> 
    <locationId>0</locationId> 

<ipAddress>0</ipAddress> 
   </m:request> 
  </m:login> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 

 

Next we prepare the client for sending the XML off to the relevant Betfair server, the 
same client which will handle the response from it.   In practice, this means creating a 
user agent (as in the variable $userAgent) which can be set to work remotely and 
automatically on our behalf, using the Perl class for automatically doing so.    This class 
is a subset of the LWP library (or Library for Programming the World Wide Web, being 
one of the modules that extend Perl, making our job much easier than it would otherwise 
be).    The UserAgent class will also be our friend when it comes to interacting with 
other websites to retrieving data programmatically.      

So, the next line creates an LWP::UserAgent object for us, for which we can later set 
various parameters in order to make the request and then process the response. 



USING BETFAIR API SERVICES 

71 

my $userAgent = LWP::UserAgent->new();  
 

In the same way as we saved an XML message for later use within the variable $xml to 
make for easier manipulation of the code, so we now create a variable that we will use to 
request the Login service, including the address to “post” the request to.    This time the 
variable is an object called $request which inherits all the methods associated with the 
module HTTP::Request.   The request will go to the Betfair Global Exchange Server 
that provides this service at     https://api.Betfair.com/global/v3/BFGlobalService  
 

my $request = HTTP::Request->new(POST => 
'https://api.Betfair.com/global/v3/BFGlobalService');  
$request->header(SOAPAction => '" 
https://api.Betfair.com/global/v3/BFGlobalService 
"');  

In passing we should note that so-called “global services” (for generic functions such as 
logging in) are denoted by v3 within the URL in API version 6, and exchange specific 
services (e.g. accessing specific markets) by v5 within the URL.   We cover the endpoint 
URLs and accessing exchange specific services for the Australian exchange in more 
detail later in this chapter. 

Next we set up the methods for the $request object, passing in our user details, as 
previously saved in the variable $xml, so that they can be supplied when the request is 
posted, using the content method to our $request object.   

$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  

Next the request is made to the relevant Betfair Global Service server, using our 
$request object which is itself now a method of our user agent.   The user agent 
dispatches the call for the service and returns a HTTP::Response object, saved to the 
variable $resp.  

my $resp = $userAgent->request($request);  

At this point we are now done with the connection to Betfair as far as this call is 
concerned.    In other words, we have all the information we need in computer memory -  
stored within the $resp variable, rather than residing on a Betfair server (including our 
sessionToken, provided that the call was successful).   If we were to add in the 
command print Dumper ($resp) the printed output would show us the full result of 
our request, written to standard output.    

As a general note for all the functions calling the API, using the statement print 
Dumper ($response variable) is an indispensible utility for troubleshooting 
response values and parsing values from API calls.    It is enabled by the 
Data::Dumper module that is specified as one of the prerequisite modules to the 
library. The print Dumper statement will show the structure of the data returned by 
any successful call, and therefore how we should handle that data within the Perl 
functions, so that it can be used by our programs. 



AUTOMATIC EXCHANGE BETTING 

72  

Various print Dumper statements are therefore made within the code and commented 
out (i.e. prefixed with a hash # symbol so they are ignored by the compiler at run time) in 
the final library.  Of course, these can be switched on again in order to review the full 
data structure returned by each call at each stage, or to incorporate data within functions 
that is not currently included (not all data elements from the call are extracted in the 
examples, just the most frequently used, others can be incorporated by consulting the 
API documentation). 

With regard to the login function, if we were to use Dumper to print the $resp variable 
to standard output we would see that the response object is represented as a complex 
data structure, with a set of key value pairs, separated by the => operator, with keys 
such as ‘_protocol’, ‘_header’ and ‘_content’ representing values from our response 
object.    At the moment, the response object contains everything returned from our 
response to the call, but we don’t need everything.   Specifically we need the data within 
the ‘_content’ part of the response.   So the next part of the code uses the method 
available for extracting the content of the call from the response object and saves it to its 
own variable, $content. 

my $content=$resp->content; 

 
Needless to say we would like to represent the variable as a Perl data structure so we 
can access it using straightforward Perl code - as opposed to the current tag soup of the 
SOAP envelope.   Note, we say data since, in addition to the session token, we need to 
capture any errorCodes associated with the call; these are also captured and held in 
the $content variable.     
 
Since the message is in XML format we use a method from the module XML::Simple, 
namely XMLin, in order to transform the XML data format – complete with mark up soup 
- to a Perlish one – that is, containing values accessible as Perl data types.    As an 
interim step, the first variable to which the transformed data will be assigned is a 
reference to a Perl data structure, represented by $ref, so next we declare that variable 
(as in my $ref).   At this point we must remember we are working with a Perl reference 
to the data as opposed to the data itself, and therefore to dereference the data to arrive 
at individual variables of use.    This is a common feature for all the functions.   First, 
however, as a final check that the content is valid, we wrap our XMLin function within an 
eval statement, so if there is a problem with the content (for example, if the call has 
failed and an XML data structure is not represented within the $content variable), we 
do not necessarily have to exit the program, but can capture the problem, as follows: 
 

eval { $ref = XMLin($content) }; 
if ($@) { print Dumper ($content);  

print "$@\n";  
die "login failed to retrieve valid XML"}; 

 

 
The objective is to subsequently define a Perl data structure containing the variables 
which we are interested in returning from the function.    So this is the last part of the 
function.   First, we set up the empty hash that we want to populate with key value pairs: 
 

my %login_hash = (); 

 



USING BETFAIR API SERVICES 

73 

Then, we populate with the required key value pairs for our hash by searching the data 
structure represented by $ref.   These values can be found by using the statement 
print Dumper(\$ref) (note that it is necessary to insert a backslash \ before the 
variable $ref in order to dereference it and get at the values). 

 
$login_hash{sessionToken} = 
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'header'} 
{'sessionToken'}{'content'}; 
$login_hash{headererrorCode} = 
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'header'}{'errorCode'} 
{'content'}; 
$login_hash{errorCode}  = 
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'errorCode'}{'content'}; 
 return %login_hash; 
 } 

 
By specifying our required value using the form $ref->{etc}{etc}{content}  we 
store the actual value as opposed to a reference to it, and store that within the key 
{sessionToken} to our %login_hash.   Likewise, with the headererrorCode and 
errorCode keys and values.      
 
There we have it.   To use the call in separate programs we first call the library, as 
discussed above, then specify the arguments to the function (i.e. Function name 
followed by arguments within brackets) and save the output to a variable.   The variable 
must be the required return data type from the function - in this case a hash (we list all 
the data types returned from the examples subsequently.    Thus, to use login within a 
separate program, assign the relevant variables and make the following statement: 

 
%login = login($username, $password, $productId); 
 

To obtain individual values, we look in the return variable, in this case the %login 
hash, and extract the values as shown in the library (or by interrogating the output of the 
response variable for other values).    So, for the objective of our function, to extract the 
sessionToken as a result of logging in, enabling further calls to be made within the 
program, we state: 
 

 $our_token = $login{sessionToken}   
 

Simple enough.   Although all the above may seem like a lot of work to get at the 
sessionToken alone, once each function is defined and stored away in a library it is 
reuseable, so we don’t have to specify subroutines again (with the exception of 
modifying for changes in the Betfair API, of course).   Fortunately, we also have a finite 
vocabulary to deal with in terms of services, leaving us free to concentrate on the 
programs which use the calls to implement a particular betting strategy – an infinitely 
more interesting exercise.      
 
The arguments and outputs for all functions in the library (including login) are 
summarised in the last section of this Chapter, Arguments and Outputs for Example 
Functions.   Next let’s review a more complicated service in similar detail, 
GetMarketPricesCompressed, and the Perl function which calls it: 
get_market_prices_compressed. 
 



AUTOMATIC EXCHANGE BETTING 

74  

Review of the get_market_prices_compressed example function 
 
Having reviewed the function for the Login service, the good news is that we don’t have 
to start from scratch to understand other Perl functions in the library that call API 
services.   The approach is a common one for all services, with the major differences 
being the exchange endpoint URLs that have to be called (depending on which service 
is required and for which markets), and the complexity of the data that is returned by a 
successful call.   The latter can have quite an impact on the size and complexity of the 
function, as is the case for get_market_prices_compressed. 
 
We are considering the GetMarketPricesCompressed service for our next function to 
highlight the difference in the complexity of the response data returned, so it can serve 
for other subroutines the user might create, and because it is probably the most 
frequently used information service across all betting strategies.    
 
The objective of the function is to get the current market prices for all contenders on any 
given market event.   The information returned is exactly the same as the 
GetMarketPrices service in this respect, so the data descriptions for the service apply to 
both calls.     
 
The difference between the two services is purely the way the data is presented in the 
response from the server.   A call to GetMarketPricesCompressed returns, as the 
name suggests, a compressed form of market data where all information is presented, 
within the XML tags, on one line; within the line, data is separated by colon :, semicolon 
; tilde ~ and pipe symbols |.   We show a function to call GetMarketPricesCompressed 
in preference to GetMarketPrices here since there is no difference in the values that 
can be obtained, but the condensed form of the data means we can ensure that prices 
are returned by this function quickest in order to make a betting decision. 
    
One way of thinking about the data available from calling this service (or indeed any 
service) if employing it for the first time is in terms of the information we can obtain via 
the normal Betfair web interface and how that relates to the data that can be obtained 
from the service requested.   In the case of calling GetMarketPricesCompressed, we 
can obtain the full range of market prices and corresponding volumes that are normally 
displayed on the standard Betfair user interface for every runner in the market - from the 
currently available back and lay prices, and corresponding volumes for each runner, to a 
further depth of the next 2 available back prices and volumes, along with the next 2 
available lay prices and volumes.   In other words, all the price and volume information 
that is available by contender as per the example screenshot in Figure 4-2. 
 
 
 
 
 
 
 
 
 
 
 



USING BETFAIR API SERVICES 

75 

5 (8)  
Red Opera  
J P Spencer 

  

3.9 
£34 

3.95 
£252 

4 
£499  

4.1 
£11  

4.2 
£109 

4.3 
£227 

1 (4)  
Missoula  
J Quinn 

  

5.1 
£66 

5.2 
£402 

5.3 
£31  

5.4 
£49  

5.5 
£67 

5.6 
£58 

3 (3)  
Plane Painter  
Greg Fairley 

  

5.1 
£77 

5.2 
£349 

5.3 
£809  

5.5 
£158  

5.6 
£158 

5.7 
£482 

2 (7)  
Valance  
N De Souza 

  

9.4 
£192 

9.6 
£91 

9.8 
£26  

10 
£37  

10.5 
£78 

11 
£67 

9 (2)  
Hows Business  
F Norton 

  

8.6 
£31 

9 
£8 

9.6 
£40  

10.5 
£91  

11 
£30 

11.5 
£13 

6 (6)  
Sweetheart  
Jim Crowley 

  

15.5 
£75 

16 
£105 

16.5 
£15  

17.5 
£9  

18 
£10 

18.5 
£44 

4 (5)  
Love Brothers  
D Holland 

  

17 
£34 

17.5 
£75 

18 
£20  

18.5 
£3  

19 
£15 

19.5 
£27 

7 (9)  
The Composer  
D Sweeney 

  

17.5 
£5 

18 
£16 

18.5 
£12  

21 
£6  

22 
£11 

23 
£2 

8 (1)  
My Legal Eagle  
T Dean 

  

36 
£23 

38 
£9 

40 
£2  

42 
£3  

44 
£3 

46 
£9 

 
Figure 4-2:   Betfair Live Price and Volume data, corresponding to data returned by the 

GetMarketPricesCompressed API Service 
 
In addition, as we will see when we examine the example Perl function call to 
GetMarketPricesCompressed, other information is returned by the API service that is 
only available in the website user interface by clicking on other hyperlinks.   For 
example, the GetMarketPricesCompressed service returns the summary market data, 
as displayed in the header of the Market Summary screenshot in Figure 4-3, for each 
horse that can normally be found by clicking besides any horse’s details.     
 
 
 
 
 
 
 
 
 
 
 
 



AUTOMATIC EXCHANGE BETTING 

76  

Betting on: Red Opera
 

Total matched on this event: £31,405 
Reduction Factor 23.2% 

Betting summary - Volume: £10,228 
Last price matched: 4.10 

 
 
Figure 4-3:    Betfair Live Market Summary Data corresponding to the 

GetMarketPricesCompressed API Service 
 
 
 
The GetMarketPricesCompressed service also returns information about the rules of 
the market, including any runners which have been removed from the market (i.e. Non-
runners) such as we would normally find under the “Rules” tab on the right of the market 
interface screen, as below: 
 
 

Race card No. Reduction factor Withdrawal time 

   
8. Magnum Opus 2.7% 08:42 (UKT) 

 
Figure 4-4:   Betfair Live Market Non Runner Information corresponding to the 

GetMarkets and GetMarketPricesCompressed Services 
 
 
Mapping information between available services and the website user interface is a good 
way for the automatic bettor to start thinking about what services might be useful to 
automate their own strategies; however, the examples shown - in terms of how the user 
interface relates to the API service for GetMarketPricesCompressed - also 
demonstrate that the services need to be digested and treated as a vocabulary in their 
own right.   Certain information we might associate as being of the same type in the user 
interface can in fact be found in the API only by calling more than one service, just as 
using more than one service can bring together information that is found in disparate 
places on the user interface.   The difference when using API services is of course that 



USING BETFAIR API SERVICES 

77 

we have complete control over how and what information is available and – if we wanted 
to program a new user interface, for example, as opposed to automating our betting - 
how it is displayed. 
 
Note, for example, that the all the data required to make the Price/Volume over time 
graphic shown in Figure 4-4 (which represents all prices and volumes matched for any 
particular runner) is not available from the GetMarketPricesCompressed service, which 
rather returns the prices and volumes available to bet (either backing or laying) as 
opposed to what has been matched.     
 
For that data, on matched prices and volumes (although not timestamped), we must look 
to the total trading history for each horse, which can be retrieved by the 
GetMarketTradedVolume service.   In the same vein, we should note that the price 
information returned by the GetMarketPricesCompressed service for each contender is 
returned according to the contender’s Betfair identification number rather than the 
contender’s name.    To retrieve the runner name, not just the Betfair selection ID, we 
also need to call the GetMarkets service.  This is frequently a requirement in the context 
of automated betting strategies where we wish to compare our own odds, which will be 
stored by horse name, to the Betfair prices for those horses.    Thus it is necessary to 
retrieve the static data (i.e. the runner name matched to the Betfair runner identification 
number for that contender) by using the GetMarkets service, prior to calling 
GetMarketPricesCompressed and matching prices according to the runner or selection 
ID.   There are many choices as to how and when this is done (for example mapping 
names to identification numbers before racing begins, or dynamically when the program 
is run), but clearly it is necessary to know what information each service provides in the 
first place.   We will explore common combinations for such functions in subsequent 
chapters describing how to setup the automatic betting framework - prior to 
implementing strategies in Part 3. 
 
Code review: 
So much for an overview of the GetMarketPricesCompressed service, and some of the 
services that are typically used in conjunction with it.    
 
Let’s now look at the implementation of the Perl function that calls this service, 
get_market_prices_compressed.   To begin, we define our subroutine, or function, 
and the arguments to the function, as we did previously for the first function described, 
login.   
 

sub get_market_prices_compressed 
 { 
  my ($sessionToken,$marketId)=@_; 

 
In this case, the first argument is the session token, which will be a common argument 
for any service call in the library subsequent to calling the login function itself.   This 
variable we must have obtained as per the previous section (as one of the return values 
from the Login service), and here supply it as the first argument to the call, as denoted 
by the variable $sessionToken.  The second argument is the Betfair market 
identification number ($marketId) for the market we wish to retrieve prices for.     
 
To obtain the value of the Betfair market ID as an argument to supply to this function, we 
would normally run the function to call GetEvents or the GetAllMarkets service call 



AUTOMATIC EXCHANGE BETTING 

78  

prior to requesting market prices, in order to capture the Betfair identification of all the 
events that we are interested in.   How we then go about choosing and specifying the 
market identification numbers in which we are interested depends on our betting 
strategy.    
 
In terms of process, which marketId we choose depends upon the other stages in the 
framework that come before making any call for market information and upon betting 
strategy.   Capturing, storing and subsequently re-using event data for daily markets is 
covered in the next chapter.    For now, we can take it as read that there is a process of 
capturing events and automatically choosing the required event prior to using 
get_market_prices_compressed, and we cover this in detail later.   Here, however, 
we will consider the function in isolation, therefore assuming we already have a market 
ID to supply as a second argument to call the function. 
 
The first part of the function call itself, shown below, is similar in structure to login, in 
order to specify and make a valid request to the Betfair servers for the required 
information.   Of course, the specific XML that must be used within the SOAP envelope 
for a valid request to this service is different, and includes the name of the service and 
parameters particular to it, as detailed in the Betfair Sports Exchange API 6 Reference 
Guide.      
 
my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmln$ 
        <SOAP-ENV:Body> 
                <m:getMarketPricesCompressed 
xmlns:m="http://www.Betfair.com/publicapi/v5/BFExchangeService/"> 
                        <m:request> 
                                <header> 
                                        <clientStamp>0</clientStamp> 
                                        <sessionToken>'.$sessionToken.'</sessionToken> 
                                </header> 
                                <marketId>'.$marketId.'</marketId> 
                        </m:request> 
                </m:getMarketPricesCompressed> 
        </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
 

As per the login function, we also initialise the user agent to which we will pass the 
XML data in order to request the service. 
 

my $userAgent = LWP::UserAgent->new();  

 
And again as per the login function, we specify our request, this time to the exchange 
specific server from which we can retrieve the data relating to events.    

 
my $request = HTTP::Request->new(POST => 
'https://api.Betfair.com/exchange/v5/BFExchangeService'); 
$request->header(SOAPAction => 
'"https://api.Betfair.com/exchange/v5/BFExchangeService"'); 
$request->content($xml); 
$request->content_type("text/xml; charset=utf-8"); 
);  

 

Note in particular the endpoint URL which is used to direct the request to the Betfair 
servers:  https://api.Betfair.com/exchange/v5/BFExchangeService 
This endpoint specifies the UK exchange, which means that we are calling the 
GetMarketPricesCompressed  service for the all events which are taking place outside 



USING BETFAIR API SERVICES 

79 

Australia.   In order to access Australian specific events with this service, we would 
specify a URL in substitute of wherever the above is used as follows:  
https://api-au.Betfair.com/exchange/v5/BFExchangeService. 
This split in service calls between the UK exchange and the Australian exchange is as a 
result of changes Betfair has had to make to its business operations in order to be 
compliant with the Tasmanian Gaming Commission, which were introduced in API 
version 5.   Now there are global services via the Global Exchange URL (such as 
Login, and non-event specific services such as checking Account balances and so forth) 
and exchange specific services, meaning any service specific to an event (e.g. getting 
prices or betting in an event) via the UK or AUS Exchange URL.   Therefore the services 
available under the API are the same for both exchanges, but the exchange (and thus 
the events) that are accessed depend upon which exchange is specified in the Perl 
function calling the service.    
 
We cover specification of the relevant exchange as a general topic for all service call 
functions in more detail in the last section of this chapter.   For now, suffice to say there 
are many ways of handling this, including the ability to specify which exchange service 
we want to use, on a program by program basis (depending on whether we want prices 
on an Australian event or not).   This will be up to the bettor, and their preferred set up.   
In the code above, the XML specifies the UK exchange, meaning the setting is for 
accessing prices for an event outside Australia.    
 
Next we make our request, check the results by enclosing it within an eval statement, 
then convert the response from XML to a Perlish data structure, stored in the reference 
variable $result. 

 
my $resp = $userAgent->request($request); 
my $content=$resp->content; 
#print Dumper(\$content); 
my $result; 
#print Dumper(\$result); 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n";  
die "GetMarketPricesCompressed failed to retrieve valid XML"}; 

 
The objective is now to define and return the values from the call to the 
GetMarketPricesCompressed service that will be useful to other programs, so we 
create a Perl data structure containing all the variables we need to access market and 
price information returned for the relevant event from this service.   First, we set up the 
empty hash that we want to populate: 
 

  my %prices_hash; 
 

The nature of making reference to a complex data structure means, by definition, we 
have to deal with referencing and dereferencing issues.   Next we dereference the part 
of our $result variable which is itself a reference to the data structure we need – a 
hash containing the results of the response to the GetMarketPricesCompressed 
service:   
 
my $response=  
\%{$result-> {'soap:Body'}{'n:getMarketPricesCompressedResponse'}{'n:Result'}}; 

   



AUTOMATIC EXCHANGE BETTING 

80  

Now we are able to assign keys and extract values from the response which can be 
stored within the %prices_hash that will be our principal data structure returned by the 
function.     
 
First we extract the new sessionToken that is returned in the header to the response 
(likely as not to be the same as the sessionToken with which we made the request, but 
possibly not, as we explained for the login function, so we want to save it).   
Additionally we save the variables for any errors relating to the call as well as the Betfair 
timestamp detailing the time (as kept by the Betfair servers) when the data was 
retrieved. 
 
$prices_hash{'errorCode'     = $response->{'errorCode'}{'content'}; 
$prices_hash{'timeStamp'}    = $response->{'header'}->{'timestamp'}{'content'}; 
$prices_hash{'sessionToken'} = $response->{'header'}->{'sessionToken'}{'content'}; 

 
Capturing then making provision to use this header information in betting strategies is 
generally good practice.   The sessionToken value is a necessity for longer programs 
which will stay hooked to the API for some time, the error messages are useful for 
program checks and debugging, and the timestamp is critical in monitoring and 
assessing the feasibility of betting strategies (e.g. if there is a significant lag between 
functions updating price information in a trading application, it would be better not to 
implement the automated strategy). 
  
The next, sizeable, part of the code deals with parsing the string of information that is 
returned by GetMarketPricesCompressed, which represents all the market prices for 
each contender, and some other information besides, as in the sample string shown in 
the documentation for the  GetMarketPricesCompressed function in the API Reference 
Guide. 
 
The fact that all the information is presented in a long string is what gives the function 
the right to its “Compressed” suffix.     To get at the market information we essentially 
have to “decode” the string and separate it into specific prices and volumes for each 
contender within the event.    Fortunately, Perl excels at pattern matching and data 
manipulation.   Essentially this sums up the rest of the work in the program:  namely, 
sorting, parsing and storing variables from the string.   We will therefore comment in 
summary: 
 
Save the long string as a single variable called $runner_price.  
 
my $runner_price = 
$result->{'soap:Body'}{'n:getMarketPricesCompressedResponse'}{'n:Result'} 
{'marketPrices'}{'content'}; 
 
Get rid of colons preceded by double backslashes (refers to a specific item of 
information in the reduction factor field) since colons (:) otherwise signify delimiters of 
information about each runner in the string 
 

        $runner_price=~ s/\\:/colon/g; 

 
Set the count for the number of runners to zero, and create the array @price_split, 
by which we will create an array of each runner’s market info - since each runner’s info is 
separated by a colon (:) and we split the string into an array separated by colons.    
 



USING BETFAIR API SERVICES 

81 

print $runner_price,"\n"; 
         $prices_hash{'noRunners'}=0; 
         my @price_split=split(/:/,$runner_price); 

         
Next we can see the number of values in the array by treating this array as a scalar, so 
the size of the list which contains all our information is saved in the $size variable 
 
  my $size=@price_split; 

# print $size,"\n"; 

 
However, the first value in the array $price_split[0] refers to generic market 
information, so let’s deal with that first, parsing the string to split out all the individual 
values within it, which are separated by a tilde ~, and saving that in turn to another array 
@market_attributes, from which we will subsequently extract each significant value 
and store in keys of   %prices_hash, so such values can be accessed directly by 
relevant betting programs that use our function. 
 
my @market_attributes=split(/\~/,$price_split[0]); 
        $prices_hash{'marketId'}        =$market_attributes[0]; 
        $prices_hash{'currencyCode'}    =$market_attributes[1]; 
        $prices_hash{'delay'}           =$market_attributes[3]; 
        $prices_hash{'marketStatus'}    =$market_attributes[2]; 
        $prices_hash{'marketInfo'}      =$market_attributes[5]; 
        $prices_hash{'numberOfWinners'} =$market_attributes[4]; 
        $prices_hash{'lastRefresh'}     =$market_attributes[8]; 

 $prices_hash{'IsBSP'}           =$market_attributes[10];        
                                   #returns a value of Y or N 

 
The relevance of each of the variables can be referenced in the Betfair Sports Exchange 
API 6 Reference Guide.    Note in particular that we can enquire on whether the event in 
question is subject to BSP (Betfair Starting Price) bets, with the attribute 
prices_hash{IsBSP}. 
 
Now that market attributes are out of the way, we know that the rest of the array 
@price_split contains elements each of which represent a runner’s details, so we 
loop through the remaining number of elements in the array with the for statement, 
dealing with each runner, $t and applying the full code block to each until no more 
runners are left.    
 
For each runner, we split out arrays of market data about that runner to @prices.   
Each type of market data is separated by a pipe – in the order of Header 
Information|Back Prices|Lay Prices, relating to our original long string.   For 
each of these elements of our array, we create further arrays splitting out the individual 
elements in Header, Back and Lay, each of which is separated by the tilde ~ separators 
used in the string for delimiting the individual fields (i.e. Values) we are interested in.   
Note that $header[0] which is used in the references to find each value, is the first 
value in the @header array and holds the selection identification number – so all values 
can be referenced by this in future. 

 
for ( my $t =1 ; $t < $size ; $t++) 
                { 
   my @prices =split(/\|/,$price_split[$t]); 
   my @header =split(/\~/,$prices[0]); 
   my @back   =split(/\~/,$prices[1]); 
   my @lay    =split(/\~/,$prices[2]); 
   $prices_hash{'noRunners'}++; 



AUTOMATIC EXCHANGE BETTING 

82  

   my $runnerId = $header[0]; 
   $prices_hash{'prices'}{$runnerId}{'orderIndex'}          =$header[1]; 
   $prices_hash{'prices'}{$runnerId}{'totalAmountMatched'} =$header[2]; 
   $prices_hash{'prices'}{$runnerId}{'lastPriceMatched'}   =$header[3]; 
   $prices_hash{'prices'}{$runnerId}{'asianHandicap'}      =$header[4]; 
   $prices_hash{'prices'}{$runnerId}{'reductionFactor'}    =$header[5]; 
   $prices_hash{'prices'}{$runnerId}{'vacantTrap'}         =$header[6]; 
   $prices_hash{'prices'}{$runnerId}{'farBSP'}             =$header[7]; 
   $prices_hash{'prices'}{$runnerId}{'nearBSP'}            =$header[8]; 
   $prices_hash{'prices'}{$runnerId}{'actualBSP'}          =$header[9]; 
   $prices_hash{'prices'}{$runnerId}{'backDepth'}=0; 
   my $back_size=@back; 
   my $lay_size =@lay; 
 

  
Since the size of the arrays @back and @lay containing market information vary 
according to how many levels of depth there are specified in each array, we know that 
the number of elements, or size of the array indicates the available market depth 
information in that array.   So we can use the size of both the back and lay arrays in the 
remainder of the function in order to split out the variables for back depth, price at that 
depth, and the amount available to bet (or volume) available at the depth – which is what 
the rest of the function does, for both back and lay prices. 
 
if ( $back_size == 0 ) 
    { 
$prices_hash{'prices'}{$runnerId}{'backDepth'}=0; 
    } 
if ( $back_size == 4 ) 
   { 
$prices_hash{'prices'}{$runnerId}{'backDepth'}=1; 
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'} =$back[0];           
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'} = $back[1]; 
   } 
if ( $back_size == 8 ) 
  { 
$prices_hash{'prices'}{$runnerId}{'backDepth'}=2;                 
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'}=$back[0];                    
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'}=$back[1];                      
$prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'price'} =$back[4];                        
$prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'amountAvailable'}=$back[5]; 
   } 
if ( $back_size == 12 ) 
  {                        
$prices_hash{'prices'}{$runnerId}{'backDepth'}=3;                        
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'} =$back[0];                     
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'}=$back[1];                     
$prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'price'}=$back[4];                     
$prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'amountAvailable'}=$back[5];                     
$prices_hash{'prices'}{$runnerId}{'back'}{'3'}{'price'}         =$back[8];                        
$prices_hash{'prices'}{$runnerId}{'back'}{'3'}{'amountAvailable'}=$back[9]; 
  } 
if ( $lay_size == 0 ) 
 { 
$prices_hash{'prices'}{$runnerId}{'layDepth'}=0; 
  } 
if ( $lay_size == 4 ) 
 { 
$prices_hash{'prices'}{$runnerId}{'layDepth'}=1;                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}          =$lay[0];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}=$lay[1]; 
 } 
if ( $lay_size == 8 ) 
 {                        
$prices_hash{'prices'}{$runnerId}{'layDepth'}=2;                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}          =$lay[0];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}=$lay[1];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'price'}          =$lay[4]; 



USING BETFAIR API SERVICES 

83 

$prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'amountAvailable'}=$lay[5]; 
 } 
if ( $lay_size == 12 ) 
 { 
$prices_hash{'prices'}{$runnerId}{'layDepth'}=3;                       
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}          =$lay[0];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}=$lay[1];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'price'}          =$lay[4];                       
$prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'amountAvailable'}=$lay[5];                       
$prices_hash{'prices'}{$runnerId}{'lay'}{'3'}{'price'}          =$lay[8];                        
$prices_hash{'prices'}{$runnerId}{'lay'}{'3'}{'amountAvailable'}=$lay[9]; 
    } 
 } 
 
my $prices = 'prices'; 
 

Finally we return our data structure to the program for reuse 
 
 return %prices_hash; 
} 

 
All done.     
 
To retrieve any of the values from the %prices_hash within a program (assuming we 
have made the call to the GetMarketPricesCompressed and returned the hash of price 
values as the output from using the get_market_prices_compressed function), we 
can now use standard Perl data extraction methods applied to the hash.   In principal, 
this is a matter of specifying the relevant key (or key sequence in the case of price 
information) to the data hash in order to return the value.   We can hunt down “the 
relevant key” by inspecting the function definition above (or using Dumper at any point 
on the XML structure).   So, for a couple of examples to illustrate use of the hash 
returned by get_market_prices_compressed:    
 
1. To retrieve the current back price and store it to $back_price1 for a particular 
selection (assuming we have extracted and specified the runner ID available for that 
selection), our statement might read: 
 
$back_price1 = $prices_hash{prices}->{runnerID}->{back}->{1}->{price} 

 
2. To retrieve the available lay volume at a depth of 3 (i.e. Not the volume available 
for the current lay price, or the next available lay price, but the last shown in the queue 
for any particular selection on the Betfair website interface), and then to save it in the 
variable  $lay_vol3, our statement might read: 

 
$lay_vol3 = $prices_hash{prices}->{runnerID}->{lay}->{3}-> {amountAvailable} 

 
In the above we have presupposed that we have known Betfair runner identification 
numbers.   However, to emulate a betting process, the task of obtaining market prices 
would typically begin with all runner names for a race, then proceed to “look up” the 
Betfair runner ID (or selectionId, for its proper API reference, and $runnerId in the 
example code snippet) using another service, such as GetMarkets.    
 
Having saved all runner names with their corresponding Betfair ID numbers, we could 
set up a loop to retrieve market information for each of the runner names, using the 
Betfair runner ID (i.e. selectionId) as the key in the prices hash.   However, 
remembering there is always more than one way to do it, it’s worth mentioning that our 



AUTOMATIC EXCHANGE BETTING 

84  

price data structure contains all the information we need to extract all runner IDs with 
prices, so we can map IDs to names at a later stage.   Although we have one main 
$prices_hash, we have lots of “sub-hashes”, one of which contains all the runner IDs 
as keys within it - accessed by %{prices_hash{prices}}.   Thus we can simply 
return each runner ID within its own array, and then loop over that array to return 
whatever price and volume information we want for each runner ID. 

  
@runnerIds =  %{prices_hash{prices}}; 
foreach my $id (@runnerIds)  { 
 

#--------Insert statements to extract the market prices required for each runner… 
 

}; 

 
That’s enough code explanation and walkthrough for now – the intention has been to  
show the way in which example service call functions – i.e. login and 
get_market_prices_compressed can be built to interact with Betfair API Services – 
in this case Login and GetMarketPricesCompressed. 
  
All the code for the functions in the library is provided “as is” for the reader in Appendix 
2.   The essential elements have been covered in examples in this Chapter.  From a 
uniquely Perl perspective, we should mention again the references in the bibliography 
remain the most valuable material with which to come up to speed on what the language 
is doing.     
 
We will concentrate now on setting the library functions to work where appropriate.    
 
The next section therefore provides a summary overview of the arguments and outputs 
for all functions in the library, as a quick reference to using those functions, without 
getting bogged down in the function detail.    We also consider the different Exchanges 
(representing events in different countries) which each service can call, and how to 
implement that functionality if required. 
 

Arguments and outputs for example functions 
 
Table 4-2  lists the subroutines (or functions) included in the library, corresponding to 
API services of the same name.   For each function, the arguments to be supplied to the 
function are given, along with the type of data structure returned by the function call.   
This can serve as a summary reference when using these functions. 
 
There are fewer examples listed than all the API services available (see Appendix 3), but 
these are all that is needed for developing the majority of automated betting strategies.   
Any other services which may be used in addition are usually about improving 
performance and/or maintainability of code, or using the same services under different 
subscription levels in order to avoid throttling limits on data intensive strategies.   The 
example functions described and used for example strategies are all available under the 
Free Access API (except get_bet, which is included as an example of a convenience 
function from the Full Access API, although we also show how to extract betting 
information using the Free Access API with get_account_statement in Chapter 11).   
 
 



USING BETFAIR API SERVICES 

85 

Table 4-2:  Example Library Functions with Arguments and Return Data  
 
Perl Subroutine Name Subroutine Arguments Data structure 

returned 
login  $username, $password, $product Id %login_hash 

 
get_events $sessionToken, $eventParentId %events_hash 
get_markets $sessionToken, $marketId @hashes; 

 
@hashes consists of  
(\%names_hash, 
\%market_hash) 

get_market_prices_compressed $sessionToken, $marketId %prices_hash 
get_detailed_market_depth $sessionToken, $marketId, $selectionId %depth_hash 

 
N.B.: All market depth info in 
@ { depth_hash{depthArray} } 

get_market_traded_volume $sessionToken, $marketId, $selectionId %traded_hash 
 
N.B.: All volume info in  
@{ $traded_hash{volArray} } 

place_bet $sessionToken, $asianLineId, 
$betType, $marketId, $price_asked, 
$selectionId, $stake, 
$betCategoryType, 
$betPersistenceType, $bspLiability 

%bet_hash 

update_bet $sessionToken, $betId, $newPrice, 
$newSize, $oldPrice, $oldSize,  
$persistType, $oldPersistType 

%update_hash 

cancel_bet $sessionToken, $betId %cancel_hash 
get_mubets $sessionToken, $marketId, $betId %mubets_hash 
get_market_pandl $sessionToken, $marketId %pandl_hash 
get_account_statement $sessionToken,  $startDate,  $endDate %statement_hash 
get_bet $sessionToken, $betId %getbet_hash 
get_account_funds $sessionToken,  $startDate,  $endDate %statement_hash 
 
 
For more detail on what data is returned within the data structure for each call, refer to 
the library itself in Appendix 2 (an up to date version of which can also be downloaded at 
www.betwise.co.uk), and in particular the code for each subroutine.    The subroutines 
show the most commonly used variables saved to the data structure that is returned by 
the subroutine. 
 
To see the full data structure and all variables described, the reference returned from the 
API service call within the Perl code can simply be dumped to standard output (using 
Data::Dumper, as explained in the previous section). 

 

Exchange specific services and betting on Australian events 
 
All the services we have mentioned and listed in the previous section are available for all 
Betfair markets whatever the location.   However, some services, namely for Australian 
events or events operating under an Australian licence, require that the server which is 
accessed by those services is different from the UK server. 



AUTOMATIC EXCHANGE BETTING 

86  

 
For the sake of clarification, we will paraphrase the following excerpt from the Betfair API 
documentation: 
  
The Betfair sports betting API services are available only over SSL secure connections. 
For release 6.0 of the API, from which point Betfair Starting Prices and Bet Persistence 
is supported, there are three connection end-point URLs:  
 

• https://api.Betfair.com/global/v3/BFGlobalService  
• https://api.Betfair.com/exchange/v5/BFExchangeService 
• https://api-au.Betfair.com/exchange/v5/BFExchangeService 

 
The first URL is for requesting the API’s global services.  The global services are used to 
log in and out, administer your Betfair account and funds, and to navigate to the sports 
events you want to bet on.  
 
The second URL is for requesting the API’s exchange services that enable you to view 
and bet on UK and other (but not Australian) sports events. 
 
The third URL is for requesting the API’s exchange services that enable you to bet on 
Australian sports events (that is, on events that are taking place in Australia or that - for 
some other reason - have a betting market that operates under an Australian licence). 
 
Therefore, as we saw in the function walkthrough for 
get_market_prices_compressed, any function requesting a service must specify 
the required exchange within the body of the function, specifically in the SOAP request.   
In the case of the default library we have used the general (i.e. Non AUS specific) URL.   
This means any service call will automatically apply to non-Australian markets.   There 
are any number of choices available if we want to change this behaviour to incorporate 
AUS events.    
 
For example, to alter our preferences completely we can do the equivalent of a search 
and replace on the library functions, substituting the AUS URL for the non-AUS URL.   
This will now allow access only to Australian events, so we could rename our library of 
functions as BetfairAPI6AUS.pm.    By the same token, we could save our existing 
library as BetfairAPI6UK.pm, or leave it at the default of 
BetfairAPI6Examples.pm.    
 
Given that the designer of an automated betting strategy will generally know in advance 
which exchange they wish to use (whatever the method of implementing services), using 
2 different libraries is perhaps the most practical solution for those wishing to bet on 
Australian events using the examples provided.   Subsequently, at the start of any 
program, we would simply have to state use BetfairAPI6ExamplesUK.pm or use 
BetfairAPI6ExamplesAUS.pm, but not both.    A further approach is to maintain one 
library and add new subroutine names for each exchange specific service, such as 
get_aus_market_prices_compressed. 
 
A more elegant solution for the code in the library is to supply an exchange parameter to 
each function’s arguments, and specify within each function a choice of endpoint URLs 
to be used, depending on whether the new argument supplied contains “au” or “uk”.     



USING BETFAIR API SERVICES 

87 

 
Or, more succinct still, we could remove the SOAP call part of every function, currently 
repeated within the body of each function call, and define that as a function in its own 
right, with its own arguments – one of which would be the exchange to be used, with the 
choice of endpoint URLs again defined within the function.     The advantage of this last 
named method is that it makes for easier maintenance of the library – we are splitting 
out of the function any elements that are subject to future change.     However, this is not 
implemented in the example library, since whilst it makes the library code more elegant it 
also means we have to explicitly define an $exchange variable within every program 
that uses these functions; moreover, it is not needed in the example strategies shown, 
since these use UK and Irish races.      
 
All of this goes to show, again, there is more than one way to do it, and most questions 
we encounter have multiple answers – the right answer often depends on the use case 
and the user’s own preferences.   Now the options are on the table, the reader can make 
their own choice.     
 
From this point, we have the technical background to implementation of functions.   The 
important takeaway point is that we now have a library of functions available to us that 
should “just work”, regardless of how deep into those functions the user wishes to go, so 
we can retrieve data from the API at will.   Now we can start to implement the framework 
for automatic betting activity, which starts with the retrieval of event information. 
 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

Chapter 5:   Betting process 101 - Daily event data 
 
We said in Part 1 that the first stage of any betting process begins with consideration of 
a particular event.   From two raindrops falling down a window to the World Cup Final, 
betting activity ultimately boils down to individual events (even when multiple events are 
combined in one bet) each of which are bound by their own rules.    
 
However, for our process to be truly automated, the manual selection of events to bet 
defeats the object; the idea of complete automation necessitates the selection of events 
automatically, based on an appropriate automated betting strategy.     
 
As with other aspects of the automated framework, there are occasions when bettors 
may want some manual intervention (such as picking and choosing events in the 
morning, then leaving the system to it), and a partially automated approach is of course 
possible, leaving aside any discussion as to whether it is desirable.   However, we first 
proceed on the basis that all elements of the framework should execute perfectly without 
any intervention once they have been configured for any betting strategy (it is possible to 
remove some of the automated elements once they are all in place if requiring semi-
automation).    In this case the strategy should be programmatically able to select 
events, as we would, based on the same criteria that we would exercise.    Therefore, 
the only viable way to automate event selection is to select event types (and, afterwards, 
individual events within those types) according to criteria which can only be determined 
by a betting strategy.    
 
At a high level, criteria for automatically selecting events that fall within a strategy are: 
 

• Event type (i.e. type of sport, horseracing, football etc) 
• Event filter (e.g. non-handicaps, all races under one mile, premier league games) 
• Event location  
• Event time    

 
A betting strategy can be wide reaching – for example, applying to all UK and Irish 
horseracing on any given day, which would assume that we had a betting method which 
could potentially consider all these events.    Alternatively it could be very specific and 
low level, for example applying to Handicap Hurdles in Ireland in the first half of the 
National Hunt season.     
 
We have a choice as to when to apply any filters to events to be used by a given betting 
strategy.    Any filter can for example be applied after all events for a given sport have 
been captured and stored locally (be it horseracing or any other sport), immediately prior 
to the event start.    To be as general and accommodating as possible for different 
betting strategies, it can therefore be better practice to apply filters per strategy, having 
first captured all events within a certain type.    
 
For example, one strategy in a bettor’s portfolio may be to bet on Irish handicap hurdles 
for which Ms. A.N.Other tipster specialises and publishes selections on her website 
immediately prior to racing (here the strategy may automatically download the website 
selections and bet them blindly against any qualifying races on the day, first having 
picked up and stored all potential qualifying events).    Another strategy in the portfolio 



AUTOMATIC EXCHANGE BETTING 

90  

may be betting on all weather sprint races at Wolverhampton with over 10 runners 
(where the bettor is applying their own algorithm for determining the value of the low 
draw bias and then comparing this to the prices available, either backing or laying 
overlaid or underlaid contenders).   A third strategy in development may calculate and 
then apply an oddsline to all races in both the UK and Ireland. 
 
In general, we therefore want to pick up and store the wider spectrum of given events on 
the day in order to accommodate the widest range of potential strategies.   It doesn’t 
cost us anything to do so, and further logic can subsequently be applied to filter out 
events which are not required.    This presupposes that we have a betting strategy in 
place which has been programmed to cope with handling the event type in the first 
place.   From a wide remit, our decision making programs will narrow down the events 
on which bets are actually placed. 
 
Therefore, before programs can consider contenders within an event, or bet someone 
else’s selections, our automatic betting process must have all the available events at its 
disposal, within the remit of the betting strategy being pursued.    On the other hand, 
there is no point in capturing mixed doubles tennis events if the bettor is only interested 
in UK horseracing.        
 
We will therefore discuss the general principle of capturing any type of event, provided 
that the events are available as Betfair markets.   In keeping with the other examples, we 
will concentrate on automatically capturing events that enable us to pursue betting 
strategies for daily horseracing, with particular reference to racing in the UK. 
 
Before we dive into the detail of capturing daily events, and discussing what we can do 
next to filter that event data for particular strategies, we should remember that the 
process of automating the capture of daily event data relies as much on our 
programming of the operating system as the programs that actually retrieve the data.   
This is also true of most other elements within our automated betting strategy. 
 
To run the programs daily, untouched by human hand, we need to set up automated 
execution of our programs at specific times, typically by using or programming the 
scheduling facilities found in the operating system.   
 
The scheduling process needs to cover all the programs which pull together a particular 
strategy, of which event capture will be the first part, and recording bets which have 
been executed on a particular event at a certain time will be the last part.   We cover the 
scheduling process in Chapter 7, Scheduling – The Key to Automation.   

 

Purpose of event data 
 
Leaving aside the analysis of contenders within an event to determine what to back or 
lay, what are we trying to achieve with event summary data?   At a minimum, we need to 
know the universe of events available on a daily basis that fit the remit of our betting 
strategy.  We need to know the time and course of each event that is a potential 
candidate for any betting strategy, primarily so that we can run programs to 



BETTING PROCESS 101 – DAILY EVENT DATA 

91 

automatically schedule runner analysis, price gathering and betting activity around these 
times. 
 
We have many choices over where to get event data, as discussed in Chapter 3, Tools 
of the Trade - Hardware, Software and Data Sources.   Retrieving data from Betfair is 
only one option, but will provide us with the minimum summary we need to retrieve 
events for each daily racing market.   Unsurprisingly, since it is not its objective, the 
Betfair event data does not tell us everything about an event that can be gleaned from a 
dedicated data source.     
 
For example, prize money for the event would be one such data element typically 
available from a dedicated source.   If form analysis is the driving method for a betting 
strategy, we can usually assume that the higher the prize money, the more that horses 
will have been prepared by their handlers to reproduce or exceed their best form.   
Similarly, an applied data filter could be the class of the race, if we only want to bet on 
quality racing (for much the same reasons as prize money).    To apply such filters 
automatically requires access to comprehensive daily racecard data, and the ability to 
manipulate the data programmatically, as discussed in Chapter 3.  
 
There is good reason for obtaining summary daily event data from Betfair, regardless of 
any other data sources used in addition, since later in the execution of any betting 
strategy we need to know the Betfair identification number of any given event, or market, 
in Betfair terms.  We refer to this identification number for the market as the market ID, 
or marketId if referring literally to the XML element in the Betfair data structure that 
contains this number.   Ultimately we can only bet automatically on events where 
electronic markets are available, so we need to know what those are.    
 
We can do this by retrieving and then storing the market ID within a data structure on 
disk or a database management system.   Subsequently, this identification number can 
be queried by any other program according to the time and course where the event is 
taking place.   Looking up the Betfair market ID for any race by the time of the event and 
the racecourse is also necessary to compare and amalgamate Betfair information with 
other information indexed by time and course, from using third party recommendations 
to generating our own selections or oddslines from a programmable data source.   
 
Note that all must be indexed by both time and course, since there are occasionally 
common racetimes at different courses on busy days’ racing (usually on Saturdays and 
bank holidays) so that any event needs to be referenced by both, whether it is the Betfair 
market ID, or the data source for the oddsline.     
 
Matching the Betfair market ID to a course and time can be achieved programmatically 
through service calls at any time in the day, but it makes sense to do so early in the day 
for all races and then preserve the data in a database.      
 
We can save time in the program itself and the programming tasks by doing this.   For 
example, we can avoid unnecessary service calls to the API in execution programs, 
since we will already have the market ID number available locally.   Retrieving static data 
early also means there will be fewer service calls and postprocessing of the results of 
those calls in our program code, making maintenance of programs more efficient.  
 



AUTOMATIC EXCHANGE BETTING 

92  

As a general rule, the more we can split tasks of certain types into their own dedicated 
programs, the more we can isolate any potential problems.   By splitting out the capture 
of static data (as opposed to dynamic data such as price or other time sensitive 
execution tasks) we can make the rest of the betting process more efficient and run 
checks on the data for our betting strategies, before racing begins.  Likewise, we can 
also extend the scope of our capture of event data to include the Betfair identification 
numbers for each contender (or selection ID) within the event.      
 
However, in our examples, we do not choose to capture selection information at this 
stage, preferring instead to return the runners lining up for the race (i.e. identifying any 
non-runners).   In other words, runner information is treated as dynamic as opposed to 
static, and retrieved prior to the race.    The retrieval of each runner’s identification is 
done as part of the betting strategy at a designated interval before the race, then runner 
information is used as part of the betting decision making process.    This is of particular 
importance to an oddsline strategy, since a pre-built oddsline will need to be readjusted 
to account for the price impact of removing any non-runners.     
 
There is no hard and fast rule, it is up to the particular strategy when such data is 
captured.    We can still treat the selection ID as static data and store it for use at the 
same time as obtaining the event (a.k.a. market) IDs.  Selection IDs for the day never 
change, so in that sense they are always static data.  There are occasions when non-
runner information may not be relevant to a betting strategy if, for example, we are 
betting a system selection where we have set a minimum price threshold based upon 
the historic performance of the system, rather than relative merits of the other 
contenders.   Any non-runners will not affect our price, if the minimum price is 
determined by system performance over its history rather than a tissue created for the 
contenders on the day.   If the selection is itself a non-runner, it will simply be returned 
as a “no bet” by our program.     
 
In similar fashion to the event ID, whatever selection methods or data sources we use, at 
some point we will have to translate our selection to a Betfair identification number, so 
similar arguments apply for doing so early on.   Alternatively, we can use other services 
such as GetMarketPricesCompressed to return non-runner names (as opposed to their 
selection IDs), and although there is more work to do to clean up the data, if using this 
call to match non-runners, we could also treat all selection (i.e. runner) IDs as static 
data.   This would mean we could retrieve the IDs early and avoid a call to the 
GetMarkets service in our later execution programs. 
 
Although as a topic it sits to one side of automating a strategy we already have, another 
clear purpose for capturing daily event data is to set up a pricing database that can be 
referenced by market ID, in order to help build future betting strategies.   That is, by 
building up our own database of prices, we can research potential profit and loss 
according to Betfair prices as well as SP; we can look at optimal timing of bet execution 
(which can vary for different strategies, depending on whether backing favourites or 
longshots, for example), and backtest strategies, including trading strategies to profit 
from the price movements of various contenders.    
 
Maintaining such a database is not a trivial task, due to the amount of data that has to be 
handled, and there are now vendors who supply historic data under a separate Betfair 
licence as a result.  Nonetheless, the potential exists to grab price data for your own use, 
and if so doing, one of the database tables that needs to be created is for race specific 



BETTING PROCESS 101 – DAILY EVENT DATA 

93 

information, which will be used as a reference for other tables in the database, such as 
those containing price information, in order to present a full picture of an event.    
 
Finally, we can also use the Betfair race description as a prefilter for those events we are 
interested in pursuing for our betting strategy, dropping those in which we are not, as 
discussed in the introduction.   If not augmenting the automated process with specialist 
data, the Betfair event description can still fulfil some filter needs.    For example, we 
may have decided in advance that our betting strategy will not play in maidens or 
national hunt flat races, where there is often little form to go on – such events can be 
filtered out from the Betfair event description, and only those races that pass this test 
can remain in the universe of events which later stages of our betting strategy will 
consider.      
 
With a richer data source, there is more choice in the range of data elements we can 
filter out, in order to be very specific before analysing contenders within an event.    We 
will concentrate at this point on the minimum requirements for daily event data, sticking 
with the idea that the first stage of the betting process is identifying suitable events and 
capturing Betfair static data, for the reasons already outlined.    However, it should be 
clear that the order of these stages and the data sources used for daily events can easily 
be adapted by the bettor, as in the Perl trademark, TIMTOWTDI (“There Is More Than 
One Way To Do It”). 
 

Example Code for capturing Daily event data 
 
In this section we consider a program to capture all daily horseracing markets in the UK 
and write them to a database.    The code is commented “in line” to make it clear what 
each part is doing.    

Creation of races database table and other program dependencies: 
 
To run the script and several others in the examples for our automated framework, it is 
assumed that a database autodb has been created in MySQL (installing MySQL for this 
purpose and setting up the database is discussed in Appendix 1), where the user has 
appropriate permissions.    
 
Further, within that database, and specifically for the purposes of this example, we will 
write to a table races, that should also be created.   A script to run from the shell or 
command line to create the races table is described below:    
 
Example 5-1:   Script to create the races table within the autodb database 

(create_races_table.sql) 
 
#CREATE table for each Betfair race event in the automatic betting example database 
 
DROP TABLE IF EXISTS races; 
#@ _CREATE_TABLE_     
CREATE TABLE races 
( 
  date   date NOT NULL DEFAULT ‘0000-00-00’, 
  country   VARCHAR(10) NOT NULL, 
  course   VARCHAR(25) NOT NULL, 



AUTOMATIC EXCHANGE BETTING 

94  

  time   time NOT NULL DEFAULT ’00:00:00’, 
  marketId  int(11) NOT NULL DEFAULT ‘0’, 
  description  VARCHAR(25) NOT NULL 
 
); 
#@ _CREATE_TABLE_ 

 
To run the script and create the table, assuming you do not have to specify a password 
to access your database (in which case that would be added under the –p flag), the 
command is: 
 
> mysql –u username autodb < create_races_table.sql 
 
The example database table is a simple one which can be used “as is” for the purposes 
of storing event information which can be used to generate queries for individual betting 
strategies.  Such an events table could also be an integral part of an automated betting 
database (e.g. including historic prices and bets placed as additional tables) 
 
The file abbrevs, is also used within the body of the script, and is listed in Appendix 4.      
The abbrevs file is simply a list of the abbreviations used by Betfair for racecourse 
names, with the full names that they correspond to.    The racecourse names that 
appear on the Betfair website interface and in the API are always abbreviated, but if we 
want to look up the market ID, based upon having time and course information for an 
event from another source, we can only do so with the course name that corresponds to 
the actual course name used in other sources.   Thus we want to save the full course 
name in our database table, races, for future look up from other data sources, be they 
other databases or files from third parties, such as ratings or oddslines.   The abbrevs 
file contains a hash data structure that is “read in” and subsequently evaluated within our 
program example, stored in the program as %bf_course_abbrevs. 

 

Code listing and commentary 
 

Example 5-2:   Capturing Daily Racing Event Data for Betfair win markets in the UK and 
Ireland (get_betfair_races.pl)    

 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee 2004-2008.  All rights reserved.        # 
# The code from this example is available under the terms of the Artistic License 2.0   #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
# Objective of script: 
# Find all today's UK and IRE horseracing events from Betfair 
# Fetch all event details - BetfairID, race time, course & description of event;  
# Store details to MySQL database, also create a dbm hash for shortened details and 
# data retrieval  
# N.B..  Script requires the file "abbrevs" has also been downloaded and is  
# available, and that a database has been set up (or a dbm file can be used to store 
# race details, in this case the database #lines should be commented out). 
 
 
# prerequisite modules to run this script 
use lib "/home/AEB/lib"; 
use BetfairAPI6Examples; 



BETTING PROCESS 101 – DAILY EVENT DATA 

95 

use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies;  
use SOAP::Lite +trace => "all"; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
# login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";   #productId is for Betfair's Free Access API 
 
 
# declare other variables that will be used in this script 
my %login; 
my $token; 
my $login_error; 
my $event_menu;   #"13" is the current menu ID for horseracing events;  
my @races; 
my %daily_card;  
my $market_name; 
my $full_course_name;        
my $race; 
my $event_time; 
my $startTime; 
my $hours; 
my $minutes; 
my $time; 
my $course;   
my %races;     
my %bf_course_abbrevs; 
 
# Evaluate a text file (which contains Betfair abbreviations for English and Irish  
# course names) as a hash 
 
# Creates the hash %bf_course_abbrevs which will be used later - course abbreviation 
# is the key, the full course name is value. 
{ 
open (FILE, '/home/aeb/abbrevs'); 
local $/; 
eval <FILE>; 
close FILE; 
} 
 
# Retrieve today's date using 'localtime' functions and convert to Betfair format 
my $year = ((localtime)[5] + 1900); 
my $month = ((localtime)[4] + 1); 
my $day = (localtime)[3]; 
my $date_today = sprintf ("$year-%02d-%02d", $month, $day); 
 
#  Open the database handle for storing today's race event details 
my $dbh = DBI->connect("DBI:mysql:autodb", “username”) or die ("Error:  $DBI::errstr");  
#substitute your database and user credentials 
 
# Open a hash to be stored as a dbm file (alternate, UNIX style method of storing 
and re-accessing data to using dbase)  
dbmopen (%races, '/home/aeb/daily_cardID', 0644);      
 
# login 
%login = login($username, $password, $productId); 
$token = $login{sessionToken}; 
$login_error = $login{errorCode}; 
 
# Get all markets in horseracing, irrespective of country and date, using GetEvents 
# API service call 
my %markets_hash = get_events($token, $event_menu); 
 



AUTOMATIC EXCHANGE BETTING 

96  

#  Use the return value from GetEvents to create an array of Betfair id numbers for  
# all events 
 
# Loop through the array of event ids to capture only the event details we are 
# interested in - in this case, the events are for today's date, and events which 
# are UK and Ireland WIN horseracing markets only 
 
my $market_ref = $markets_hash{markets}; 
 
my @Betfair_keys = keys ( %{$market_ref} ); 
 
foreach my $event_id (@Betfair_keys) {       
 #my $event_id is the Betfair market ID for each race 
 
$event_id =~ s/^\s+|\s+$//g;   
$market_name = $markets_hash{markets}->{$event_id}->{marketName}; 
$market_name =~ s/^\s+|\s+$//g;   
$startTime = $markets_hash{markets}->{$event_id}->{startTime}; 
 
# Parse the information in start time to give the date and start time of the race 
 
my ($event_date, $start) = split (/T/, $startTime); 
$event_date =~ s/^\s+|\s+$//g;   
$start =~ s/^\s+|\s+$//g;   
my ($event_hour, $remaining_time1) = split (/:/, $start); 
my ($event_minutes, $remaining_time2) = split (/:/, $remaining_time1); 
$event_hour = $event_hour + 1; # All Betfair times are in GMT, use +1 on BST, 

# comment out this line if not summertime 
my $event_time = "$event_hour:$event_minutes"; 
 
# Filter out any event that is not a win only event (e.g. markets for place only,  
# forecasts, distances, betting without the favourite) 
# Capture further event details by a call to GetMarkets, giving us all the static 
# data associated with the event. 
 
# For our purposes any event name that is not followed by further info in  
# parantheses is a win only market for UK and Irish racing. 
#  This line can of course be changed to choose whatever events are of interest, or 
# indeed to capture all of them. 
# We will choose events for today's date only by comparing today's date with the 
# event date and discarding any events which do not match 
 
 
unless ($market_name =~ /\([A-Z]+|F\/C|Fav|Place|W\/o/) { 
 
#  Call the GetMarkets service, which returns 2 hashes within an array, the first of 
# which provides more event details. 
 
sleep 12; #overcomes throttling limit on using get_markets with Free Access API 
my @market_array = get_markets($token, $event_id);    
my %event_data = %{$market_array[1]}; 
            
     
my $country = $event_data{countryISO3}; 
my $race_description = $event_data{name}; 
my $course = $bf_course_abbrevs{$market_name}; 
 
# May further exclude events after this point, here we exclude any that do not fit with 
# today's date, e.g. for GBR only, the next line would read:   
# if ($date_today eq $event_date && $country =~/GBR/) { 
 
if ($date_today eq $event_date) { 
 
#to see output while running script: 
print "$date_today, $country, $course, $event_time, $event_id, $race_description\n";  
#dbm file general usage to look up Betfair id given a course and race time as a key: 
#$races{"$course,$event_time"} = $event_id;   
 
my $sql = qq(INSERT INTO races VALUES  
('$date_today', '$country', '$course', '$event_time', '$event_id', '$race_description') 
);  



BETTING PROCESS 101 – DAILY EVENT DATA 

97 

my $query = $dbh->prepare($sql); 
$query->execute; 
 
  
} 
} #end foreach marketId key... 
}   #end 'unless this is a WIN market on a UK or Irish horserace...' 
 
#dbmclose(%races); #if using dbm         
 
In keeping with all the scripts we are using to call Betfair services, we first import our 
library of functions to call services, login to the Betfair API, and make a call to the service 
GetEvents, specifying our sport of interest as a hard coded variable within the program 
(in this case “13” for horseracing), so that all horseracing events – for all times (today 
and future), types (win, place, forecast, special and so on), and from every country within 
the exchange - are returned and stored in memory within the Perl data structure 
%markets_hash.    
 
That’s a lot of events to consider, and for our example strategies even at this stage we 
know that we will not use all of them (for a different strategy or research into different 
event types, we could amend our criteria as appropriate).    
 
Specifically for our examples, we want to capture today’s racing in the UK and Ireland – 
that determines our choices in terms of geography and sport.   In terms of timing, we 
need to specify the date of events that we want to capture and filter out only those that 
we are interested in.  On the assumption that this program is run on a daily basis, we 
grab the current date using Perl’s localtime function and format it in the same way as 
the Betfair time format, so that it can be compared to the Betfair event date, and only 
today’s events captured. 
 
We also want to capture win markets only.   When we have hitherto referred to a market 
we have done so homogenously, but the fact is that are many different Betfair markets 
related to individual sporting events.   For example, a typical horserace can produce a 
win market, a place market, (as the two most relevant and popular markets), but also a 
slew of less popular markets, such as betting without the favourite, reverse forecasts, 
winning distances and match bets for each race.     
 
Each market is a unique event in Betfair terms (as opposed to all markets derived from 
the horse race), so we must therefore be careful to specify it is the Betfair win market 
details that we wish to capture (by default, we will henceforth assume when we refer to a 
market in a horse race that it is the win market, unless otherwise specified).    However, 
the win market is the parent of other markets in the sense that it carries the description 
of the race, and all other market descriptions are suffixed with qualifying words if the 
event in question is not the win market (e.g. Place, Wo Fav etc).    
Place markets will also no doubt be the next most popular markets of interest, after the 
win, in automated betting strategies.   In such cases, for the code in Example 5-2, we 
can alter our criteria to say “if the market contains the word place” (i.e. if (/Place/)  
) rather than excluding the place market – the same goes for any of the other market 
types currently excluded if wanting to capture those instead.   In any event (no pun 
intended), we can effectively interpolate Place market identification numbers by 
capturing the win market, since the place market identification number is usually plus 
one, as we discuss in the next section Running the Program.    
 



AUTOMATIC EXCHANGE BETTING 

98  

Any non-UK and Irish events are followed by parantheses indicating the country of origin 
in the event description.   Since we only want to capture UK and Irish races in this 
example, we can therefore go with the flow and exclude anything that is followed by a 
suffix (meaning all other countries and non-win markets will be dropped).   At this point, 
having selected the subset of events we are interested in, we can use a second service, 
GetMarkets, to retrieve specific details about the events we are interested in, with a 
view to saving these to the database, for the reasons described in the previous section.     
 
The last part of the program applies some more filters, namely checking that the events 
are occurring today, before finally saving the data we want to keep and writing it to the 
races database table.    
 

Running the program 
 
The program is designed to be run prior to daily racing and automated as a daily 
scheduled task.   Such a scheduled task can be configured once and then set to work 
daily by an appropriate scheduling facility or daemon, as discussed in detail for Linux 
systems using command line scheduling facilities in Chapter 7, Scheduling – The Key To 
Automation. 
 
Running the program on an scheduled basis will automatically populate the database 
table races (and/or a hash file saved as a .dbm file, depending on whether the user 
chooses to uncomment and use these lines in the script).   We point out the possibility to 
create a local dbm file for convenience (effectively saving our program hashes to disk on 
UNIX type systems).   This is because creating a database table extends the 
applications to be used and is not strictly necessary if all we want to do is to look up the 
Betfair ID numbers for the days’ races.    
 
On the other hand, being able to query the database for race details is a useful feature 
to interrogate and provide error checking, as well as for the reasons listed previously in 
discussing the uses to which event data can be applied.   Moreover, we can use the 
database table to generate useful queries that will help with our other scheduling and 
automation tasks.     
 
Let’s fire up MySQL from the shell (see Appendix 1 regarding setup and configuration of 
MySQL) and have a look at our formatted data from running the example program.   For 
the queries that follow we use the interactive command prompt from within MySQL 
(represented by mysql> in the example queries), although the same query syntax can 
be used when we access the database programmatically (and thus automatically) by 
using the Perl DBI (database interface) to retrieve query results.   
 
mysql> SELECT * FROM races WHERE date=”2007-10-13” ORDER BY country, course, time; 

 
We did not care about the order in which we stored the races for the day, so when we 
issue the query to look up our races, we need to be explicit about how the information is 
presented by using the ORDER BY statement.    In this case we order the events 
captured first by country (so British races (GBR) will appear first), then by course, and 
then the time within each course - much as we would expect to view racecard data, but 



BETTING PROCESS 101 – DAILY EVENT DATA 

99 

in this case it is metadata relating to each event (as opposed to the runners, riders and 
other racecard information) as below: 
 
+------------+---------+------------+----------+------------+-----------------+ 
| date       | country | course     | time     |   marketId | description     | 
+------------+---------+------------+----------+------------+-----------------+ 
| 2007-10-13 | GBR     | Ascot      | 13:10:00 |   20631293 | 5f Grp 3        |  
| 2007-10-13 | GBR     | Ascot      | 13:45:00 |   20631295 | 1m4f Grp 3      |  
| 2007-10-13 | GBR     | Ascot      | 14:20:00 |   20631297 | 1m4f Hcap       |  
| 2007-10-13 | GBR     | Ascot      | 15:00:00 |   20631299 | 1m Grp 3        |  
| 2007-10-13 | GBR     | Ascot      | 15:35:00 |   20631301 | 7f Cond Stks    |  
| 2007-10-13 | GBR     | Ascot      | 16:10:00 |   20631303 | 1m2f Hcap       |  
| 2007-10-13 | GBR     | Ascot      | 16:40:00 |   20631305 | 5f Hcap         |  
| 2007-10-13 | GBR     | Bangor     | 14:25:00 |   20634384 | 2m1f Hcap Hrd   |  
| 2007-10-13 | GBR     | Bangor     | 14:55:00 |   20634386 | 2m4f Nov Hrd    |  
| 2007-10-13 | GBR     | Bangor     | 15:25:00 |   20634388 | 3m Hcap Chs     |  
| 2007-10-13 | GBR     | Bangor     | 16:00:00 |   20634390 | 2m4f Nov Chs    |  
| 2007-10-13 | GBR     | Bangor     | 16:35:00 |   20634392 | 2m1f Nov Hrd    |  
| 2007-10-13 | GBR     | Bangor     | 17:10:00 |   20634394 | 2m1f Hcap Chs   |  
| 2007-10-13 | GBR     | Bangor     | 17:40:00 |   20634396 | 2m1f NHF        |  
| 2007-10-13 | GBR     | Chepstow   | 13:25:00 |   20633172 | 3m Hcap Chs     |  
| 2007-10-13 | GBR     | Chepstow   | 14:00:00 |   20633174 | 2m Hcap Hrd     |  
| 2007-10-13 | GBR     | Chepstow   | 14:35:00 |   20633176 | 3m Nov Chs      |  
| 2007-10-13 | GBR     | Chepstow   | 15:05:00 |   20633178 | 2m4f Hcap Hrd   |  
| 2007-10-13 | GBR     | Chepstow   | 15:40:00 |   20633180 | 2m Nov Hrd      |  
| 2007-10-13 | GBR     | Chepstow   | 16:15:00 |   20633182 | 2m Nov Hrd      |  
| 2007-10-13 | GBR     | Chepstow   | 16:45:00 |   20633184 | 2m NHF          |  
| 2007-10-13 | GBR     | Hexham     | 14:15:00 |   20633191 | 2m Beg Chs      |  
| 2007-10-13 | GBR     | Hexham     | 14:45:00 |   20633193 | 2m Nov Hrd      |  
| 2007-10-13 | GBR     | Hexham     | 15:15:00 |   20633195 | 3m1f Class Chs  |  
| 2007-10-13 | GBR     | Hexham     | 15:50:00 |   20633197 | 3m Hcap Hrd     |  
| 2007-10-13 | GBR     | Hexham     | 16:25:00 |   20633199 | 2m4f Mdn Hrd    |  
| 2007-10-13 | GBR     | Hexham     | 17:00:00 |   20633201 | 2m4f Hcap Chs   |  
| 2007-10-13 | GBR     | Hexham     | 17:30:00 |   20633203 | 2m NHF          |  
| 2007-10-13 | GBR     | Kempton    | 18:50:00 |   20633266 | 5f Hcap         |  
| 2007-10-13 | GBR     | Kempton    | 19:20:00 |   20633268 | 1m2f Claim Stks |  
| 2007-10-13 | GBR     | Kempton    | 19:50:00 |   20633270 | 7f Mdn Stks     |  
| 2007-10-13 | GBR     | Kempton    | 20:20:00 |   20633272 | 6f Mdn Stks     |  
| 2007-10-13 | GBR     | Kempton    | 20:50:00 |   20633274 | 1m4f Hcap       |  
| 2007-10-13 | GBR     | Kempton    | 21:20:00 |   20633276 | 1m Hcap         |  
| 2007-10-13 | GBR     | York       | 14:10:00 |   20634370 | 1m1f Hcap       |  
| 2007-10-13 | GBR     | York       | 14:40:00 |   20634372 | 2m2f Hcap       |  
| 2007-10-13 | GBR     | York       | 15:10:00 |   20634374 | 6f Listed       |  
| 2007-10-13 | GBR     | York       | 15:45:00 |   20634376 | 6f Hcap         |  
| 2007-10-13 | GBR     | York       | 16:20:00 |   20634378 | 1m Mdn Stks     |  
| 2007-10-13 | GBR     | York       | 16:50:00 |   20634380 | 1m2f Hcap       |  
| 2007-10-13 | GBR     | York       | 17:20:00 |   20634382 | 1m6f Hcap       |  
| 2007-10-13 | IRL     | Fairyhouse | 14:30:00 |   20633505 | 2m2f Mdn Hrd    |  
| 2007-10-13 | IRL     | Fairyhouse | 15:00:00 |   20633507 | 2m2f Hcap Hrd   |  
| 2007-10-13 | IRL     | Fairyhouse | 15:30:00 |   20633509 | 2m5f Beg Chs    |  
| 2007-10-13 | IRL     | Fairyhouse | 16:00:00 |   20633511 | 3m Beg Chs      |  
| 2007-10-13 | IRL     | Fairyhouse | 16:30:00 |   20633513 | 2m5f Hcap Chs   |  
| 2007-10-13 | IRL     | Fairyhouse | 17:05:00 |   20633515 | 2m INHF         |  
| 2007-10-13 | IRL     | Fairyhouse | 17:35:00 |   20633517 | 2m INHF         |  
+------------+---------+------------+----------+------------+-----------------+ 

 
Figure 5-1:    Daily Horseracing Events, automatically captured, shown by country, 

course and time 
 
Betfair horseracing place markets are generally referenced by convention with an 
identification of +1 on the Betfair market ID, with the exception of all weather courses, 
which can be -1 to the Betfair win market identification number.   This can be a quick 
solution to accessing a place market within a program, saving “Betfair win marketId+1” to 
a new variable to represent the place market.   However, given that such conventions 
can change or may not always be observed, the only 100% surefire solution is to capture 
place markets explicitly if wanting to use them in automated strategies. 



AUTOMATIC EXCHANGE BETTING 

100  

 
In the table above, we captured Irish events (just to show we could), though we are not 
using Irish events for example betting strategies on this day.   If we just want UK races 
as a subset of the races available we can say:  
 
mysql> SELECT * FROM races WHERE date=”2007-10-06” AND country = “GBR” ORDER BY  course, 
time; 
 

Similarly, if we want to bet only on handicaps in the UK, excluding all other races, we 
can use the MySQL syntax for simple pattern matching on text, to find any races today 
which contain “Hcap” anywhere in the description, as in: 
 
mysql> SELECT * FROM races WHERE date=”2007-10-13” AND description LIKE “%Hcap%” AND 
country = “GBR” ORDER BY course, time; 

 
Let’s have a look at the results of the last query, which cuts down the qualifying events 
by more than half.     
 
 
 
+------------+---------+----------+----------+------------+---------------+ 
| date       | country | course   | time     |   marketId | description   | 
+------------+---------+----------+----------+------------+---------------+ 
| 2007-10-13 | GBR     | Ascot    | 14:20:00 |   20631297 | 1m4f Hcap     |  
| 2007-10-13 | GBR     | Ascot    | 16:10:00 |   20631303 | 1m2f Hcap     |  
| 2007-10-13 | GBR     | Ascot    | 16:40:00 |   20631305 | 5f Hcap       |  
| 2007-10-13 | GBR     | Bangor   | 14:25:00 |   20634384 | 2m1f Hcap Hrd |  
| 2007-10-13 | GBR     | Bangor   | 15:25:00 |   20634388 | 3m Hcap Chs   |  
| 2007-10-13 | GBR     | Bangor   | 17:10:00 |   20634394 | 2m1f Hcap Chs |  
| 2007-10-13 | GBR     | Chepstow | 13:25:00 |   20633172 | 3m Hcap Chs   |  
| 2007-10-13 | GBR     | Chepstow | 14:00:00 |   20633174 | 2m Hcap Hrd   |  
| 2007-10-13 | GBR     | Chepstow | 15:05:00 |   20633178 | 2m4f Hcap Hrd |  
| 2007-10-13 | GBR     | Hexham   | 15:50:00 |   20633197 | 3m Hcap Hrd   |  
| 2007-10-13 | GBR     | Hexham   | 17:00:00 |   20633201 | 2m4f Hcap Chs |  
| 2007-10-13 | GBR     | Kempton  | 18:50:00 |   20633266 | 5f Hcap       |  
| 2007-10-13 | GBR     | Kempton  | 20:50:00 |   20633274 | 1m4f Hcap     |  
| 2007-10-13 | GBR     | Kempton  | 21:20:00 |   20633276 | 1m Hcap       |  
| 2007-10-13 | GBR     | York     | 14:10:00 |   20634370 | 1m1f Hcap     |  
| 2007-10-13 | GBR     | York     | 14:40:00 |   20634372 | 2m2f Hcap     |  
| 2007-10-13 | GBR     | York     | 15:45:00 |   20634376 | 6f Hcap       |  
| 2007-10-13 | GBR     | York     | 16:50:00 |   20634380 | 1m2f Hcap     |  
| 2007-10-13 | GBR     | York     | 17:20:00 |   20634382 | 1m6f Hcap     |  
+------------+---------+----------+----------+------------+---------------+ 
 

Figure 5-2:   Daily Horseracing Events, queried to return UK Handicaps only 
 
 
As it happens, the last query contains some interesting high class (and valuable) 
handicaps at Ascot and York.   If the betting strategy was to bet races over a certain 
value or class, we would therefore need to augment this data with more daily racecard 
details from a richer programmatic data source, enabling us to filter by prize money, 
class of event etc.   For now, this data provides a useful summary for betting framework 
purposes. 
  
These examples should give a taster of the type of data we are working with and how it 
is presented (for those unfamiliar with the data source) and the way in which we can 
work with it (for those unfamiliar with databases) if going down this route. 
 



BETTING PROCESS 101 – DAILY EVENT DATA 

101 

The results we have looked at so far from MySQL have been returned by issuing 
interactive queries from within MySQL.   However, the really useful thing about using 
MySQL in conjunction with Perl and its Database Interface (DBI) module (as we 
discussed in Chapter 3, Tools of the Trade - Hardware, Software and Data Sources) is 
that we have reliable programmatic access to the database.    
 
In other words, we can run any of the interactive queries shown above by using a Perl 
program to do so on an automated basis, and then use the query results within our 
programs.   We can also run various MySQL commands from the Linux shell prompt, 
meaning that we can save a MySQL query statement within a file, make the file 
executable, and schedule that to run at a time of our choosing.   This gives us many 
choices when it comes to scheduling queries on our data to run automatically.   
 
Later, in order to schedule programs around racetimes, we build a “ladder” of racetimes 
by querying the races database table and saving the results to a file.    For this query, 
the results we are really interested in are all daily race times, so that further programs 
can be scheduled as a consequence of the race time.   Therefore, the race times, sorted 
in the correct order, in addition to the course (since sometimes a time can be common to 
more than one race) is all we return from the query.  For now, to see these results from 
our interactive mysql prompt (later we shall show programmatic queries from Perl), we 
can say: 
 
mysql> SELECT time, course FROM races WHERE date=”2007-10-13” AND country = “GBR” ORDER 
BY time; 
 

We discuss in Chapter 7, Scheduling – The Key to Automation, how to programmatically 
generate and use such a query to schedule betting programs. 
 

Extending the scope 
 
There are many ways the program can be extended in scope, as with all the programs in 
the framework; here we point out a few of the options. 
 
The first point of note is more of an adaptation as opposed to extension.    GetEvents is 
a global call, so all horseracing events are returned from around the world by using the 
identifier for horseracing.   If we wanted to look at specific geographies or market types 
to those chosen for this example, we could take a different parsing route with our event 
details.   For example, instead of using the unless statement to eliminate events we do 
not want, we could explicitly say (in pseudocode terms): “if the $market_name 
variable contains an text identifier for events we want, such as Australian races, then  
use the GetMarkets service to acquire those event details”.    
 
Note that GetMarkets is a local exchange service as opposed to a global service, so 
any corresponding get_markets function in Perl would need to be Australian (AU) 
specific if calling an AU event, or the function would need to be modified to accept an 
argument for the exchange required.   We can also change the timing and type of 
markets returned by the program, bearing in mind we don’t really have to do anything 
different to return place markets since they are generally win market identification 
number +1 and can thus be accessed by using our existing win market data.    If we 



AUTOMATIC EXCHANGE BETTING 

102  

chose a different event menu identifier, we could pursue the same options above in 
terms of filtering the events data criteria, but with a different sport. 
 
Capturing static data for all runners in race:    We mentioned in the introduction to 
this chapter the option of retrieving and storing static data for each runner ID within a 
particular market, at this stage of the framework.    
 
In fact the way in which the get_markets function call is implemented makes it easy to 
extend get_betfair_races.pl to do this.  Our get_markets implementation 
returns two hashes, the first of which is a hash containing all current runners in the race 
and the Betfair selectionId number of each – where the hash key is the runner name 
and the hash value is the runner’s Betfair ID number.   So we can get the runner 
information for every event at the same time as we get the event details – since it simply 
involves bringing into play the second hash that is returned by the example Perl function, 
get_markets, that has already been called.   In terms of Example 5-2, we already 
returned the second hash and saved it as %event_data to get the event details above, 
as in: 
 

my @market_array = get_markets($token, $event_id);    
my %event_data = %{$market_array[1]}; 

 

So to get the static data for runners from the first hash and save it as %runner_data 
we simply need to add: 
 

my %runner_data = %{$market_array[0]}; 

 
Now we can extract static runner data from the hash.   For the examples in the book, we 
also make this call when we get prices, so we will see the runner data returned using the 
syntax as above when we look at obtaining market information in Chapter 8.   Returning 
runner names with the prices makes that stage more self-complete for explanation 
purposes, but as with Perl, there is always “more than one way to do it”. 
 
 
 



 

103 

Chapter 6:  Assessing Contenders 
 
In betting on outcomes, there must be an assessment of the relative chances of 
contenders in any event before a betting decision can be taken.   It is true that this may 
be an implicit as opposed to explicit stage of the framework (e.g. if taking as inputs 
someone else’s assessment or selections), but we can still say it has formed part of the 
overall betting process.   
 
In Part 1, we discussed some of these methods for assessing contenders and winning 
chances.    It may be that most contenders in an event are practically ignored by 
systematic methods and all the available data attributes used in other approaches.   
Some approaches rely on implementing a statistical model, others on hypothetical and 
rule based approaches, and so on.   The simple, unifying theme of all methods is to 
identify an edge in predicting the outcome of a sporting event.  
 
An exception to this process is pure price and volume trading, which can happily ignore 
the fundamental chances of each contender in the race, thus rendering this stage of the 
framework redundant for trading strategies.   However, there are a number of hybrid 
strategies which can usefully employ data related to an assessment of contenders in an 
event, such as identifying front running characteristics for example, for “back to lay” 
strategies. 
 
Of course, it can also be that there is more than one successful outcome in the age of 
the exchange and the spread bet - a loser, a winner, or subset of losers or winners.   
Thus there is more to the objective of assessing contenders than that of identifying the 
winner alone.   
 
This stage of the framework is therefore one of the most difficult to nail down with a 
generic example due to the variety of ways in which bettors can assess contenders.   
 
The variety of methods used is not surprising, especially if we consider that such 
methods are the “secret sauce” of any particular bettor’s strategy, combined with the 
decision making process for that strategy.    
 
However, from an automated betting standpoint, we are primarily concerned that the 
methods which show the most promise can be implemented, and that our automation 
framework is general enough to accommodate promising methods that will arise in the 
future.      
 
From this point of view, our objective in covering this stage within the framework is to 
demonstrate typical input, processing and useful output.     
 
From the perspective of using the most coherent method of assessing contenders to 
produce the most versatile output (i.e. that can readily be adapted to different betting 
strategies), we will therefore look at creating and using an automated oddsline.   
Although many other approaches, such as identifying individual contenders with certain 
attributes, can be profitable, unless there is a representation of the probability of that 
contender winning, expressed as a percentage chance, odds to one, or decimal odds, 



AUTOMATIC EXCHANGE BETTING 

104  

there is no final representation of how a contender has been assessed available to other 
parts of the framework. 
 
In particular, we are concerned with the characteristics of an oddsline and the logistics 
for using one within subsequent parts of the framework, be it to back or lay, make a 
book, or dutch the field.   
 
Within the context of producing oddslines, there are again many different approaches 
possible, even with exactly the same input data, although the output will consistently 
give us a ranking, or predicted finishing order, and a probability of winning.     
 
For our example in the next section, we use the Postdata service from the Racing Post.   
The source is chosen due to being freely accessible, rather than as an example of best 
practice or predictive significance, although it also has merits for use in an oddsline 
context.     
 
Indeed, for the automatic bettor to generate oddslines themselves, best practice would 
suggest using a form database where strategies can be devised and tested using the 
bettor’s own methods.   An alternative oddsline generated using an automated database 
is also reviewed and compared against the current example in Part 3.     
 
In general, the subject of improving and pricing oddslines is also revisited when it comes 
to testing and improving strategies, including the Postdata oddsline generated in this 
Chapter (which is tested live) in Part 3 of the book. 
 
In the meantime, we will start the process off by generating the basic oddsline that will 
be tested further from the ground up. 
 
 

Generating an example oddsline using Racing Post Postdata 
 
In this section we discuss creating an example oddsline from well known predictors that 
already represent a summary of each horse’s comparative chances, as opposed to 
creating the predictors from the raw data using our own database.   We are particularly 
interested in automating output from the oddsline that can be used within the context of 
the framework as a whole and can therefore be representative of any oddsline.     As a 
method for generating oddslines, this is a starting prototype designed to show the way in 
which an oddsline can generally be used within the context of an automated betting 
strategy.    A comparison with more mature oddslines is discussed in Part 3, Automated 
Strategies in Practice. 

 

Background to the Postdata Oddsline 
 
We reuse the variables shown in the Racing Post Postdata table, and transform these 
into a simple scoring system.   This information is accessible in tabular format on the 
Racing Post website, at www.racingpost.co.uk, and also published in the newspaper for 
each race on a daily basis.    



ASSESSING CONTENDERS 

105 

 
The variables assessed within the Postdata service are: 
 

• Ability  
• Recent form 
• Suitability to going 
• Suitability of distance 
• Suitability of course 
• Draw (if flat race) 
• Current trainer form 
• Trainer‘s first time out record (if debutante) 
• Group Entry 

 
The strength and weakness of each contender is assessed against each significant 
factor which is deemed to be predictive of the requirements for winning that particular 
race.   Each contender is listed in the rows, and the significant variables in columns, as 
shown in Figure 6-1 below, for the runners in The Hungerford Stakes, a Group 2 race at 
Newbury run on 18th August 2007.     
 
 

TRAINER GOING DIST RECENT GROUP 
HORSE FORM G 7.0F COURSE DRAW ABILITY FORM ENTRY 
Per Incanto    ? -  ? G1 
Stronghold     -  ?  
Silver Touch     -   G1 
Caradak     -  ? G1 
Wake Up Maggie    ? -   G1 
Dark Islander X   ? -   G1 
Red Evie     -   G1 
Welsh Emperor     -   G1 
Assertive     -    
Dubai´s Touch     -   G1 
Beckermet     -    

 
Figure 6-1:   Example Racing Post Postdata Table 
 
 
Postdata ranks each horse against the predictive variables in terms of ticks and crosses, 
in the range of a cross (out of form), a question mark (unknown form), and 1 to 3 ticks as 
a measure of strength, depending on the variable.     
 
We can very quickly build up a useful scoring mechanism from this information by 
assigning a points system to replace the ticks and crosses, converting each tick to one 
point, any question mark to 0 points, and a cross to a negative (the presence of a group 
entry might also be converted to 1 point, or 0 for none).   Adding up all the points in each 
row, or in other words scoring all the variables, produces a score per horse.    This is a 
manually intensive task, which we automate for the purposes of this example, but could 
just as easily be done from a form database.    
 



AUTOMATIC EXCHANGE BETTING 

106  

Once we have converted each ranking to a score we can reuse each score in order to 
produce a ranking of comparative chances within any UK race, which can be converted 
easily to a basic oddsline for each contender as follows: 

 
Decimal odds for each horse = 1/(Score per horse/ Sum of all scores) 

 
Postdata is of course based on the Racing Post’s own choice of variables and its own 
scoring system for each variable.    However, the idea of scoring runners according to 
strengths and weaknesses in order to assess chance has been well used by bookies 
and punters for some time.    Clearly we can extend or reduce the factors used to 
incorporate other data using our own form database, or recalculate the values from the 
ground up, since here we simply use the weightings for the value of each variable “as 
is”.   The question is how to build up the most accurate prediction by deciding exactly 
what combination of variables to use and the relative importance which should be 
assigned to each.    
 
Furthermore, whatever variables are finally used, this oddsline will simply be a working 
hypothesis, since no adaptation of the scoring mechanism (which produces a tight 
numerical range) or testing against historic results has been done at this point.   We will 
explore this further in Part 3,      
 
For now, there is a lot to recommend the approach as a working hypothesis, as we will 
discuss during the course of the next section.   However, it is not suggested as a 
substitute to the bettor developing their own “secret sauce”, using original data sources.    
 

Automating the oddsline 
 
For this example, we use Perl scripts to log into the Racing Post website and download 
the required data.    The Postdata table provides a convenient shortcut for building an 
example oddsline by repurposing summary statistics and metadata to create oddsline 
output, as opposed to building and applying a model from the raw data up.    
 
Since website data is subject to change, all the caveats mentioned in Part 1, relating to 
the brittle nature of screen scraping, apply here.   The website may change and break  a 
script at any time (although the Racing Post layout has been stable for some time), and 
the policy on retrieving data automatically can be ambiguous, although permission was 
obtained for the purposes of generating the Racing Post examples in this book.   Since 
we want to show how to create an oddsline for use elsewhere rather than how to capture 
Racing Post proprietary data from the website, we do not list the complete screen 
scraping script that captures the Postdata table automatically, rather we discuss the key 
elements and list the script which turns the data into an useable oddsline.    
 
The automated screen scraping script was run for the duration of the trial shown in Part 
3.   It is a sympathetic scraping script, in that it takes all of 20 seconds to run per day 
and saves its results to local files which are clobbered (i.e. replaced) by each 
subsequent day’s files, so that a permanent record is not kept offline.   The principle 
components use Perl’s LWP and Mechanize modules, which are generally the way to 
go (if using Perl) for any screen scraping application, since we can automatically 
navigate the site by “looking” (i.e. using text processing) for the links we are interested 
in.   To do that, we must have such search terms – being the names of courses, for 



ASSESSING CONTENDERS 

107 

example -  available to the screen scraping program.   Daily course names can be found 
on the website and parsed by the scraping application or retrieved from other sources 
such as the races table in the autodb database as shown in the examples in the 
previous chapter.  Further reading on building sympathetic screen scraping and 
spidering scripts using the Perl modules LWP and Mechanize is listed in the 
Bibliography. 
 
Those notes aside, let’s continue with our example.   The objective is to capture the 
Postdata table for each race and then generate an automatic oddsline.   The Postdata 
table also includes the Topspeed, Official Rating and the Racing Post Rating for each 
horse, elements we can add to the mix.   To do this we schedule our screen scraping 
script to run automatically each morning (further details on the mechanics of scheduling 
this can be found in Chapter 7). 
 
Purely in terms of number of pages requested, being one for each race, this exercise 
involves no more or less interaction with www.racingpost.co.uk  than we might have 
expected on a typical morning’s manual browsing, although since we are following no 
further links into any form, it’s probably fewer.   By the same token, since no time is 
required in analysis (or counting ticks and crosses), there is a huge saving on time spent 
in front of the computer.     
 
After we have captured the data for each race, we do some text processing on the 
returned data in memory, and extensive data manipulation to arrange all the information 
from the table in the correct order for each horse.     
 
The “value added” piece of this exercise from a content point of view is in transforming 
all the ticks and crosses which normally constitute each Postdata variable (which can 
also be seen as metadata) into numeric values or scores for each Postdata variable, for 
each horse.   Each score is represented electronically in the form of tick.gif images 
(representing one tick each), crosses (X) for negative scores and question marks(?).   
Our preferred scoring system will involve converting the various symbols to a numerical 
rating as shown in the following text parsing excerpt, together with explanatory notes,  
from the code: 
 
s/^X\s/-1\n/g;       #replace X with "-1"  
$_ =~ s/.*tick\.gif.*tick\.gif.*tick\.gif.*/3\n/g;  #replace x3 ticks with "3" 
$_ =~ s/.*tick\.gif.*tick\.gif.*/2\n/g;   #replace x2 ticks with "2" 
$_ =~ s/.*tick\.gif.*/1\n/g;     #replace x1 ticks with "1" 
s/^-\s/0\n/g;       #dashes go to zero 
s/^\?\s/0\n/g;       #question marks go to zero 
 

 
Finally, we add up all the Postdata ratings for each variable, subtract any negative 
scores, and represent this as an overall numerical rating for the horse.     
 
The resulting scoring band is quite narrow (we can change this when we test and 
improve the oddsline, but for now we translate everything verbatim), so we capture and 
use other variables in the Postdata table for extra granularity.    
 
In this case, since we format topspeed, official ratings and RPR (Racing Post private 
handicap ratings) also, we also  write these, together with the overall Postdata score, to 
a local file.    
 



AUTOMATIC EXCHANGE BETTING 

108  

Figure 6-2 is an excerpt of the resulting file, showing the start of the file from all UK race 
meetings on the 13th October, being Ascot, Bangor, Hexham, Chepstow, York and 
Kempton, with the first two meetings from Ascot shown below (the full files are available 
at www.betwise.co.uk) 
 
Ascot, 1:10, Spirit Of Sharjah,8, 123, 121, 110 
Ascot, 1:10, Captain Gerrard,5, 121, 119, 108 
Ascot, 1:10, Cute Ass,7, 120, 118, 105 
Ascot, 1:10, Reel Gift,6, 120, 101, 97 
Ascot, 1:10, Cake,7, 116, 114, 100 
Ascot, 1:10, Hitchens,4, 114, 104, 99 
Ascot, 1:10, Littlemisssunshine,2, 114, 112, 98 
Ascot, 1:10, Dubai Princess,2, 110, 109, 87 
Ascot, 1:10, Carleton,7, 108, 106, 96 
Ascot, 1:10, Hammadi,5, 106, 100, 93 
Ascot, 1:10, Lindoro,2, 104, 100, 89 
Ascot, 1:10, Thunder Bay,7, 103, 101, 88 
Ascot, 1:10, Your Pleasure,0, 93, ,  
NEXT RACE 
Ascot, 1:45, Rising Cross,4, 126, 102, 105 
Ascot, 1:45, Brisk Breeze,9, 126, 123, 108 
Ascot, 1:45, Queen's Best,8, 121, 113, 109 
Ascot, 1:45, Samira Gold,5, 121, 108, 106 
Ascot, 1:45, Trick Or Treat,9, 120, 119, 101 
Ascot, 1:45, Athenian Way,4, 119, 116, 97 
Ascot, 1:45, Kayah,5, 118, 117, 100 
Ascot, 1:45, Dash To The Front,4, 114, 72, 97 
Ascot, 1:45, Satulagi,5, 114, 108, 94 
Ascot, 1:45, Winter Sunrise,6, 114, 103, 98 
Ascot, 1:45, Party,3, 111, 76, 100 
Ascot, 1:45, Loulwa,4, 98, 81, 82 

 
Figure 6-2:  Excerpt of data file showing repurposed Postdata variables 
 
 
Each row in the file now refers to the following: 
 

• Racecourse,  
• Racetime,  
• Horse name (as it appears in The Racing Post),  
• Aggregated Postdata score (i.e. the sum of all the variables, as described 

above),  
• Racing Post Rating,  
• Racing Post Topspeed Rating    
• Official rating  

 
We are gradually working towards representing each horse’s chances based upon a 
summary of its relative chances from a starting point where the data is already at 
summary level for each horse, as opposed to a process which uses raw data.     
 
Within these concentrated variables, it is also worth noting that the data is race specific 
rather than general – which again is a few levels above using raw data alone.   
Therefore, the data are of little general use outside the context of the race in question -  
so that, for example, we cannot compare total Postdata scores across different races on 
the basis of their scores – each score is relative to the race conditions.   For the 
purposes of a race specific oddsline, this is all as it should be, since we are interested in 
the chances of contenders relative to each other, rather than relative to an absolute  



ASSESSING CONTENDERS 

109 

value.   Anyone who bets in Class 7 races at one of the evening All Weather meetings 
will understand the emphasis. 
 
Now all we have to do is turn these variables into a prototype oddsline.    The oddsline, 
whilst a prototype in terms of testing, and whilst at this stage we will make no claim to its 
predictive ability, will still be of a format that makes it suitable as an example input for the 
rest of the betting framework – in other words it will be of the same format as a well 
tested oddsline. 
 
For our initial take on pricing up the race, we will therefore make a literal interpretation of 
the Postdata scores, and assume that the probability of any contender winning the race 
is represented by the sum of all the scores.   Therefore, we also assume that each 
contender’s individual chance of winning is represented by its percentage score of the 
total Postdata score.    
 
Additionally, since the band for all scores is quite tight  - and more than one contender 
will end up on the same score - we will also rank any contenders with the same Postdata 
score by their best ever topspeed rating as a means of splitting them.   The idea of an 
oddsline is concurrent with the idea of a creating a ranking or predicted finishing order, 
with the expectation being that our shortest priced contender has the best chance of 
finishing first, down to the longest priced contender.    
 
If the range of prices produced by the oddsline creates a number of duplicates, 
producing a ranking order in addition to tissue prices means that when we later decide to 
base betting strategies around the oddsline, we also have a means of determining cut off 
points for the number of runners we will consider.    (Ultimately, such additional data 
could also be used to improve the numerical range of the oddsline itself, creating a more 
precise superiority ranking). 
 
The purpose of our script, then, is relatively straightforward.   We must read in the data 
for every race, as above, produce prices based on Postdata scores for each contender 
within each race, and finally present all the contenders in ranked, anticipated finishing 
order. 
 
Our second script, taking the concentrated variables we showed earlier, will produce an 
oddsline for each race from the raw data file.   It will print out the bare bones needed by 
subsequent betting programs, so the course, time, horse name, and tissue price or odds. 
 
 
Example 6-1:        Creating an oddsline from summary data 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#This script converts summary data to tissue prices for each horse and creates a standard 
#oddsline format expected by example programs that act upon the oddsline, standardising: 
# a) Time formats 
# b) Course names (eg. Stratford On Avon becomes Stratford) and most important, 
# c) Oddsline tissue prices 
 



AUTOMATIC EXCHANGE BETTING 

110  

 
open (IN, '/home/aeb/final_scores'); 
open (OUT, '>/home/aeb/formatted_oddsline'); 
 
while (<IN>) { 
 
unless (/NEXT/) {($course, $time, $horse, $pdscore, $PM, $TS, $OR) = split (/,/); 
 
$time =~ s/^\s+|\s+$//g; 
$time =~ s/:/\./g; 
$time =~ s/^\s+|\s+$//g; 
 
$horse =~ s/^\s+|\s+$//g; 
$course =~ s/^\s+|\s+$//g; 
$pdscore =~ s/^\s+|\s+$//g; 
$PM =~ s/^\s+|\s+$//g; 
$TS =~ s/^\s+|\s+$//g; 
$OR =~ s/^\s+|\s+$//g; 
 
#insert rules for converting input course names to expected oddsline standards here 
if ($course =~ /Bangor/) {$course = "Bangor"}; 
if ($course =~ /Stratford/) {$course = "Stratford"}; 
if ($course =~ /Newton/) {$course = "Newton_Abbot"}; 
if ($course =~ /Leighs/) {$course = "Great_Leighs"}; 
if ($course =~ /Rasen/) {$course = "Market_Rasen"}; 
 
$scores{$horse} = $pdscore; 
$TS{$horse} = $TS; 
 
#$PM{$horse} = $PM; 
#$OR{$horse} = $OR; 
 
        }       #end unless NEXT 
 
###### 
 
if (/NEXT/) {                                           #Print out everything and reset 
everything 
 
#print OUT "NEXT\n"; 
                foreach $horse (sort byscore_then_speed keys %scores) { 
                        push (@scores_only, $scores{$horse}); 
                        push (@horses, $horse); 
        };      #end foreach 
 
## adjustment all ratings to get odds based on ratings 
 
$lowest_rating=$scores_only[-1]; 
$adjustment = 1 - $lowest_rating; 
        foreach $item (@scores_only) { 
                if ($lowest_rating < 1) { 
                $adjusted_score = $item+$adjustment; 
                push (@adjusted_scores, $adjusted_score)} 
else 
                {push (@adjusted_scores, $item)}; 
 
} 
 
map {$total_score += $_} @adjusted_scores; 
 
#       Now we have @adjusted_scores holding all ratings rebased to lowest value as 1,  
# plus $total_score for each. 
 
$count = 0; 
foreach $final_score (@adjusted_scores) { 
 
$percent_chance = ($final_score/$total_score)*100; 
$decimal_odds = 100/$percent_chance; 
$decimal_odds = sprintf("%.2f", $decimal_odds); 
 
$contender = $horses[$count]; 



ASSESSING CONTENDERS 

111 

$contender_TS = $TS{"$contender"}; 
 
$contender_score=$scores_only[$count]; 
 
print OUT "$time, $course, $contender, $decimal_odds\n"; 
 
$count++; 
} 
 
%scores = (); 
%TS = (); 
@scores_only = (); 
@speeds = (); 
@horses = (); 
$final_score = (); 
$contender_score = (); 
$contender_TS = (); 
$lowest_rating = (); 
$decimal_odds = (); 
$percent_chance = (); 
$total_score = (); 
$adjustment = (); 
@adjusted_scores = (); 
$total_score= (); 
$contender = (); 
$count = (); 
$item = (); 
$adjusted_score = (); 
 
} 
} 
sub byscore_then_speed {                 #This sub to rank toprated Postdata, then speed 
        $scores{$b} <=> $scores{$a} 
                || 
        $TS{$b} <=> $TS{$a} 
        }  #end 2nd sub 

 

Code Walkthrough for oddsline format 
 
First, we read in all our variables from the appropriate file and open a file to write out to.  
Every time we encounter NEXT in the input file we know we have to consider a new 
race.    If we don’t encounter NEXT, we need to save all the variables for the race, 
before processing them.   Since in this case we are at the final stage of preparation prior 
to an automated betting program picking up this file and using the horse names, tissue 
prices, course and time information to automatically bet, we must pay particular attention 
to ensuring all the variables are correctly prepared, stripping whitespace that may exist, 
correcting formats for times,  courses and so on.    
 
Exactly how the automatic bettor decides to do this will depend on the conventions they 
wish to use.   Typically we will be comparing one set of horse names with another (in this 
case the Racing Post’s and then subsequently comparing these with Betfair’s when it 
comes to formatting the programs for betting), and the same with course names.    There 
are always niggling differences in working with more than one data source - this 
program, or when we capture events, is the place to iron these out.   
 
A case in point is “Bangor-On-Dee”, since Bangor-On-Dee is the current course name in 
use by the Racing Post.   Bangor racecourse is indeed situated by the River Dee, but in 
most sources, including in Betfair listings, it is simply referred to as “Bangor”.   The same 
with “Stratford-Upon-Avon” and Stratford.    Failing to deal with such discrepancies can 



AUTOMATIC EXCHANGE BETTING 

112  

and does result in missing betting opportunities on whole meetings, where a program 
fails in matching course names from different sources – so we need to test for it.   
 
while (<IN>)   { 
 
unless (/NEXT/) {($course, $time, $horse, $pdscore, $PM, $TS, $OR) = split (/,/); 
 
$time =~ s/^\s+|\s+$//g; 
$time =~ s/:/\./g; 
$time =~ s/^\s+|\s+$//g; 
 
$horse =~ s/^\s+|\s+$//g; 
$course =~ s/^\s+|\s+$//g; 
$pdscore =~ s/^\s+|\s+$//g; 
$PM =~ s/^\s+|\s+$//g; 
$TS =~ s/^\s+|\s+$//g; 
$OR =~ s/^\s+|\s+$//g; 
 
if ($course =~ /Bangor/) {$course = "Bangor"}; 
if ($course =~ /Stratford/) {$course = "Stratford"}; 
if ($course =~ /Newton/) {$course = "Newton_Abbot"}; 
if ($course =~ /Leighs/) {$course = "Great_Leighs"}; 
if ($course =~ /Rasen/) {$course = "Market_Rasen"}; 
 

There are any number of places in the automated set up where we can change names 
from one source to a common convention.   For example, when reading in our course 
name abbreviations from Betfair in the previous chapter, we used an abbreviations file to 
map abbreviations to full course names.    
 
Next we create some hashes for data we will use subsequently, for ease of access: 
 
$scores{$horse} = $pdscore; 
$TS{$horse} = $TS; 
 

Remembering that there are some others variables we are currently discarding but can 
use in future in order to mix things up a little: 
 
#$PM{$horse} = $PM; 
#$OR{$horse} = $OR; 
 
 } #end unless NEXT 
 
if (/NEXT/) {    #Print out everything and reset everything 
 

Now it’s time to create the oddsline.  Since we have hit the NEXT marker in the file it’s 
time for our next race, but first we have to deal with the one whose data we have just 
processed.   Given we are reading the whole file in line by line we can achieve all we 
need to – i.e. determining the oddsline for the race we have just dealt with and writing it 
out to a file - before we hit the first line of the next race.    
 
The few lines below will rank each horse in the race from the highest scoring horse (in 
aggregated Postdata terms)  right down to the lowest.    
 
We preserve that order for each horse in the list or array @horses and the scores for 
each horse to another array, @scores_only.   We know that the size and order of both 
arrays will be the same.   We split them out since we want to rebase the scores for our 
oddsline.   We know as long as we preserve the order that we can remarry these arrays 
subsequently. 
 
  foreach $horse (sort byscore_then_speed keys %scores) { 



ASSESSING CONTENDERS 

113 

   push (@scores_only, $scores{$horse}); 
   push (@horses, $horse); 
 }; #end foreach 
 

Note in the middle of the code we used a short subroutine to sort topspeed scores, as 
below:  
 
sub byscore_then_speed {      #This sub to rank toprated 

#Postdata, then speed 
 $scores{$b} <=> $scores{$a}      
  || 
 $TS{$b} <=> $TS{$a} 
 }  #end sub 
 

Essentially this takes as input a hash of scores and a hash of speed ratings, each 
indexed by the horse’s name, and sorts them for us in that order – scores first, where 
scores are the same, speed rating takes precedence, where horses are still ranked 
equal, rare though that is.  We rely on Perl’s default sort mechanism to let the alphabet 
to make a distinction in rank.   (Not an ideal solution, but one which occurs more often 
than not in the absence of data; where data is absent, we may not wish to bet at all.) 
 
So far we have only ranked the horses.   We have made our best attempt to predict the 
finishing order in the race, but we have no idea of the likelihood of each contender’s 
chances.     In short we have no tissue price, so let’s get to that, using the method we 
discussed earlier.    
 
First, we have a small problem of negative scores to overcome.  Negatives are fine for 
ranking one contender relative to another, but they mess up our maths when it comes to 
looking at percentages and converting these to relative chances of winning.    
 
Since, in probability and odds terms, all possible outcomes are represented between the 
range of 0 and 1 (with 0 being a definite loser and 1 a definite winner), negative scores 
have no place.     So we determine whether negative scores, or zero scores exist, and if 
so, we rebase the scores by the difference in the lowest one.     (Note that whilst zero is 
not negative it has no place in an oddsline before a race starts, since we can agree that 
even the biggest “rags” have some, albeit infinitesimally small, chance if lining up for any 
horse race, where anything can potentially happen).      
 
In the code below, if any score is below 1, we work out a simple adjustment factor to 
rebase the lowest (either negative or zero score) to 1, and simply add the same factor to 
the score of every contender in the race.   Whilst this does not keep exactly the same 
relationship between scores and final probability, within a small error margin it is close 
enough for our prototype example, which has yet to be tested and calibrated properly.   
 
If the lowest score is already above zero, (as in the else clause below), we simply leave 
the scores as they are.   In either case we are a left with a final array of our ranked 
scores, in @adjusted_scores. 
 
$lowest_rating=$scores_only[-1]; 
$adjustment = 1 - $lowest_rating; 
 foreach $item (@scores_only) { 
  if ($lowest_rating < 1) { 
  $adjusted_score = $item+$adjustment; 
  push (@adjusted_scores, $adjusted_score)}  
else  
  {push (@adjusted_scores, $item)};  
 



AUTOMATIC EXCHANGE BETTING 

114  

} 
 
We also need the total aggregated Postdata score for all runners in the race before we 
are in a position to calculate the percentage chance each contender has, that being a 
fraction of the total score.   So we get that total score by adding every element of the 
array, as in the subsequent line: 
 
map {$total_score += $_} @adjusted_scores; 
 
# Now we have @adjusted_scores holding all ratings rebased where necessary, and total 
# scores 
 
Last but not least, let’s loop through our scores, calculate the percentage chance of each 
runner and represent this as decimal odds, shown to 2 decimal places. 
 
$count = 0; 
foreach $final_score (@adjusted_scores) { 
 
$percent_chance = ($final_score/$total_score)*100; 
$decimal_odds = 100/$percent_chance; 
$decimal_odds = sprintf("%.2f", $decimal_odds);  
 
Now we extract the variables we will need to write to a file…. 
 
$contender = $horses[$count]; 
$contender_TS = $TS{"$contender"}; 
 
$contender_score=$scores_only[$count]; 

 
Then print them out to said oddsline file, in this case simply referred to as 
formatted_oddsline.   We refer to this file as an example of input for an oddsline 
strategy in Chapter 9, Automating Betting Decisions.) 
 
print OUT "$time, $course, $contender, $decimal_odds\n"; 
 
$count++; 
} 

 
The remainder of the program simply closes the loop for the race we have just evaluated 
and proceeds to wipe out values associated with any variables so they are empty for the 
next race, when the oddsline process starts again. 
 
 

Formatted oddsline output 
 
By this stage we have an output file, formatted_oddsline, containing a tissue price 
for all daily races in the UK, generated automatically.   Furthermore, we can and will use 
the tissue prices to compare to actual market prices and determine overlays and 
underlays, as determined by a further betting decision making program.    The file is 
written so that it contains the variables we will need in that program.    Figure 6-3 shows 
an excerpt from the output file, corresponding to the race order and data that we started 
with from the Racing Post Postdata tables, now repurposed, with the last column 
representing the all important tissue price per runner.   As with other example output we 
have discussed, the option of writing such values to a database as opposed to a flat file 
is always available to us (usually depending on the future availability required of the 



ASSESSING CONTENDERS 

115 

data), remembering that subsequent betting strategy programs would have to query the 
database instead of reading a flat file.    

 
1.10, Ascot, Spirit Of Sharjah, 8.33 
1.10, Ascot, Cute Ass, 9.37 
1.10, Ascot, Cake, 9.37 
1.10, Ascot, Carleton, 9.37 
1.10, Ascot, Thunder Bay, 9.37 
1.10, Ascot, Reel Gift, 10.7 
1.10, Ascot, Captain Gerrard, 12.5 
1.10, Ascot, Hammadi, 12.5 
1.10, Ascot, Hitchens, 15.0 
1.10, Ascot, Littlemisssunshine, 25.0 
1.10, Ascot, Dubai Princess, 25.0 
1.10, Ascot, Lindoro, 25.0 
1.10, Ascot, Your Pleasure, 75.0 
1.45, Ascot, Brisk Breeze, 7.33 
1.45, Ascot, Trick Or Treat, 7.33 
1.45, Ascot, Queen's Best, 8.25 
1.45, Ascot, Winter Sunrise, 11.0 
1.45, Ascot, Kayah, 13.2 
1.45, Ascot, Satulagi, 13.2 
1.45, Ascot, Samira Gold, 13.2 
1.45, Ascot, Athenian Way, 16.5 
1.45, Ascot, Rising Cross, 16.5 
1.45, Ascot, Loulwa, 16.5 
1.45, Ascot, Dash To The Front, 16.5 
1.45, Ascot, Party, 22.0 
2.20, Ascot, Ladies Best, 13.9 
2.20, Ascot, Dubai Twilight, 15.4 
2.20, Ascot, Zaif, 15.4 
2.20, Ascot, Akarem, 15.4 
2.20, Ascot, Font, 15.4 
2.20, Ascot, Peruvian Prince, 17.3 
2.20, Ascot, Castle Howard, 17.3 
2.20, Ascot, Red Gala, 17.3 
2.20, Ascot, Crossbow Creek, 19.8 
2.20, Ascot, Millville, 19.8 
2.20, Ascot, Strategic Mount, 19.8 
2.20, Ascot, Pevensey, 19.8 
2.20, Ascot, Tropical Strait, 19.8 
2.20, Ascot, St Savarin, 19.8 
2.20, Ascot, Players Please, 23.1 
2.20, Ascot, Nosferatu, 23.1 
2.20, Ascot, Buccellati, 23.1 
2.20, Ascot, Leslingtaylor, 27.8 
2.20, Ascot, Mariotto, 34.7 
 

Figure 6-3:   Excerpt of formatted oddsline, ready for use as a betting input file 
 
 
This file format will be used as the input for our betting decision making programs later.   
We need to be conscious about formatting when preparing any file for the final betting 
program, so that such files are formatted in tandem with the decision-making programs 
that will take them.   
 
In this case, we have dispensed with our “NEXT” separators between each race, simply 
because the betting decision making program that we show as an example looks in this 
file for course and time information, irrespective of how it is ordered.   If there is a match 
on time and course, the decision making program will save the details for that contender.    
In this way, the whole file could be jumbled up in terms of order of each race and runner, 
provided each line retained its integrity. 
 



AUTOMATIC EXCHANGE BETTING 

116  

In terms of seeing how we arrived at the all important tissue prices on which betting 
decisions can be made, a reformatted file generated by a different script to create a 
report with a few more columns will show the results of our calculation and ranking 
process somewhat more clearly.   This file is displayed for the first few races of the day 
for illustration purposes in Figure 6-4: 
 

 
 

Course  Time  TS  Horse PD_new PD_first #run Tissue 

Ascot     1:10  121  Spirit Of Sharjah   9 8 13 8.33 

Ascot     1:10  118  Cute Ass            8 7 13 9.37 

Ascot     1:10  114  Cake                8 7 13 9.37 

Ascot     1:10  106  Carleton            8 7 13 9.37 

Ascot     1:10  101  Thunder Bay         8 7 13 9.37 

Ascot     1:10  101  Reel Gift           7 6 13 10.7 

Ascot     1:10  119  Captain Gerrard     6 5 13 12.5 

Ascot     1:10  100  Hammadi             6 5 13 12.5 

Ascot     1:10  104  Hitchens            5 4 13 15 

Ascot     1:10  112  Littlemisssunshine  3 2 13 25 

Ascot     1:10  109  Dubai Princess      3 2 13 25 

Ascot     1:10  100  Lindoro             3 2 13 25 

Ascot     1:10        Your Pleasure       1 0 13 75 

NEXT        

Ascot     1:45  123  Brisk Breeze        9 9 12 7.33 

Ascot     1:45  119  Trick Or Treat      9 9 12 7.33 

Ascot     1:45  113  Queen's Best        8 8 12 8.25 

Ascot     1:45  103  Winter Sunrise      6 6 12 11 

Ascot     1:45  117  Kayah               5 5 12 13.2 

Ascot     1:45  108  Satulagi            5 5 12 13.2 

Ascot     1:45  108  Samira Gold         5 5 12 13.2 

Ascot     1:45  116  Athenian Way        4 4 12 16.5 

Ascot     1:45  102  Rising Cross        4 4 12 16.5 

Ascot     1:45  81  Loulwa              4 4 12 16.5 

Ascot     1:45  72  Dash To The Front   4 4 12 16.5 

Ascot     1:45  76  Party               3 3 12 22 

NEXT        

Ascot     2:20  113  Ladies Best         10 10 19 13.9 

Ascot     2:20  112  Dubai Twilight      9 9 19 15.4 

Ascot     2:20  111  Zaif                9 9 19 15.4 

Ascot     2:20  110  Akarem              9 9 19 15.4 

Ascot     2:20  109  Font                9 9 19 15.4 

Ascot     2:20  110  Peruvian Prince     8 8 19 17.3 

Ascot     2:20  108  Castle Howard       8 8 19 17.3 

Ascot     2:20  103  Red Gala            8 8 19 17.3 

Ascot     2:20  110  Crossbow Creek      7 7 19 19.8 

Ascot     2:20  103  Millville           7 7 19 19.8 

Ascot     2:20  100  Strategic Mount     7 7 19 19.8 

Ascot     2:20  92  Pevensey            7 7 19 19.8 

Ascot     2:20  68  Tropical Strait     7 7 19 19.8 



ASSESSING CONTENDERS 

117 

Ascot     2:20  57  St Savarin          7 7 19 19.8 

Ascot     2:20  104  Players Please      6 6 19 23.1 

Ascot     2:20  101  Nosferatu           6 6 19 23.1 

Ascot     2:20  99  Buccellati          6 6 19 23.1 

Ascot     2:20  80  Leslingtaylor       5 5 19 27.8 

Ascot     2:20  106  Mariotto            4 4 19 34.7 

NEXT        

Ascot     3:00  116  Yahrab              9 9 8 5.78 

Ascot     3:00  117  Ibn Khaldun         8 8 8 6.5 

Ascot     3:00  112  Ramona Chase        8 8 8 6.5 

Ascot     3:00  111  Naomh Geileis       7 7 8 7.43 

Ascot     3:00  106  Jedediah            6 6 8 8.67 

Ascot     3:00  98  Meeriss             6 6 8 8.67 

Ascot     3:00  105  Paveroc             5 5 8 10.4 

Ascot     3:00  92  Redolent            3 3 8 17.3 
…rest of file truncated 

 
Figure 6-4:   Oddsline formatted as a report 
 
 
For all races, the oddsline is calculated to a 100% book, plus or minus fractional 
rounding errors to 2 decimal places.      
 
We can also see above that where the lowest Postdata score is a positive number, we 
leave it, and derive odds from that point, yet where it is less than 1 we rebase the scores 
and base an oddsline from that (as with Your Pleasure, who scores zero on our 
conversion of Postdata attributes to numbers, running in the 1:10 at Ascot.)    
 
This is something of a crude method, but at this point the mechanism for using the 
oddsline within the automated framework is the key objective.       The mechanism is 
generic whilst the oddsline content will be determined by the individual bettor’s methods.    
(Nonetheless, we introduce more sophisticated methods for assessing the oddsline, as 
well as comparing oddslines for the same races, in Part 3, Automated Strategies in 
Practice.) 
 
Next, we look at scheduling the example oddsline to work within the context of a betting 
strategy, to illustrate the concept of automating the entire betting process. 



 

  

 
 
 



 

119 

Chapter 7:   Scheduling – The Key to Automation 
 
Each stage of the framework, including the stages we have already covered in retrieving 
event details and creating an oddsline, forms a discrete piece of the puzzle in terms of 
automating an entire betting strategy.    However, each stage cannot succeed without 
applying a wider logic to the automation of the strategy as a whole.  Specifically, the 
programs within each stage must be scheduled to run automatically and to act in concert 
with each other.   
 
This chapter is therefore about that logic and the glue required to bring all the stages of 
the framework together to make automation possible.   In terms of IT skills needed, we 
can refer to this in terms of scheduling tasks, although that is perhaps too narrow a 
definition to cover all that is required – a bettor could happily use scheduling facilities but 
still struggle to automate a complete strategy as required.    A broader view would be 
that automating betting strategies first requires planning and careful consideration given 
to timing of each aspect of the strategy. 
 
The scheduling concept itself is simple enough: provided your operating system enables 
you to state in advance a specific date and time to run a program, it can run the program 
for you at that time.    
 
In practice, there is more work to automating our betting strategies than a simple use of 
scheduling features implies, not least that we want the computer to automatically change 
the times at which we want programs to run every day (depending on the betting 
strategy) without manual editing, and to automatically know which programs we want to 
run at those times.   However, the essential tools are available to us in order to achieve 
this goal.    Most important is that our computer should contain a wonderful device called 
a clock; still more relevant is that we can read this clock programmatically.    Combined 
with a sensible strategy and the fact that we can automatically find out when sporting 
events occur, we have the ingredients needed to make progress.     
 
Linux and Perl provide us with the utilities we need to take advantage of the computer’s 
timepiece, from cron - which is constantly looking to see if it should be doing anything in 
any month, week, day, hour or minute, so we don’t have to - to shell functions like at 
and sleep, and a host of functions to access the system clock and operating system 
available from Perl programs (and any other mainstream programming language), some 
of which we have already seen.     
 
Whilst we concentrate on Linux for examples, it should be noted that the raw tools also 
exist in other operating systems to automate and schedule tasks, and the general 
principles are common.   (For example, on Windows XP systems, the main scheduling 
facility is schtasks, help for which can be found at the dos command line by typing 
schtasks /?, and full documentation at the Microsoft website.   Additionally, further 
control on scheduling is available at the programming level, including for Perl on 
Windows systems.   Most programming languages also have built in functions to enable 
interaction with the computer clock.) 
 



AUTOMATIC EXCHANGE BETTING 

120  

In this chapter we discuss the main utilities and functions available, and how to combine 
these with an understanding of betting strategies on sporting events in order to provide 
solutions to the problem of complete automation of those strategies. 
 
Note that the examples in this Chapter refer to some subsequent stages of the 
automated framework, so readers may wish to visit this Chapter again after the other 
aspects of the framework have been covered in the remaining chapters of Part 2. 
 
Let’s sum up one of the trickier problems we are trying to solve in terms of using 
standard scheduling facilities to completely automate a strategy: 
 
Scheduling requires planning in advance when programs or tasks are going to be 
executed.  That’s great for scheduling tasks where we know in advance the specific 
times that tasks have to be executed (and those times never change), but what if the 
tasks are dependent upon events which change daily?     
 
This is the problem we face with sporting events.  The exact times that events start and 
finish vary every day.   As we discussed earlier, the time at which the betting market is 
strongest (read: most liquid, and therefore the time in which we are most likely to bet at a 
favourable percentage book on any selection, back or lay) is in the 10 minutes leading 
up to the race, and therefore we would like to schedule our betting programs to run in 
relation to the offtime when the market presents the greatest opportunities.    
 
We could of course ignore the possibility of time dependent programs and set everything 
to run in the same way at the same time every day, placing all bets very early, for 
example, before any racing begins.     However, doing so would mean playing the 
market at its most illiquid, and largely ignoring any appropriate market information that 
might inform a betting strategy.    This applies not only to price information when the 
market is strongest, but also to the latest market information available for the event, such 
as non-runners, as well as considerations relating to adjusting our own staking according 
to a growing or diminishing betting bank.   Moreover, execution of various strategies, 
including trading strategies, without revisiting the market, is somewhat redundant.   To 
revisit the market, of course, we have to be able to schedule our programs to act in 
relation to the event time, which is dynamic.     
 
Even in those cases where it is appropriate for a strategy to visit the market early, the 
most appropriate time for doing so is still generally determined by a relationship to the 
time of the race – e.g.  2 hours or 30 minutes beforehand, as opposed to a fixed daily 
time (for example, a late Saturday night all weather meeting will tend to have little 
liquidity at 10 am on a Saturday, whereas a Group 1 race occurring at a afternoon 
meeting on the same day will generally be liquid at that time), so we therefore need to be 
able to schedule based on the race time and/or the event details.     
 
In conclusion, whenever we decide to execute a program, it is usually the case that the 
time for capturing information and taking critical decisions, and therefore the time for 
running automated programs -  to retrieve prices, make a betting decision, or bet, 
whatever - is driven by the event or race offtime.    
 
We have another issue, related to scheduling changing event times automatically, in that 
whatever time we state that we want to run a program (given that we will use the same 
programs applied to different races), the programs that run also have to know which 



SCHEDULING – THE KEY TO AUTOMATION 

121 

event that is and therefore choose the correct race details – specifically the right market 
and runner identification in Betfair terms - for any part of our strategy.   Again, such 
information is specific to the runners and riders on the day, and cannot be determined 
any further in advance than the night before the race day. 
 
Fortunately for us, there is a degree of regularity around racing and race planning, 
together with available data that enables us at least to retrieve each day’s events on the 
day or the night before.    Once we have retrieved a list of events, we can use it to drive 
further aspects of automation.    For example, this characteristic enables us to 
automatically schedule betting strategy programs from a daily list of race times that we 
know we can retrieve automatically.   Thus, whilst we cannot schedule all programs to 
run for the right events every day in one go (since events will vary every day), we know 
we can rely on that information being available to do it automatically in two stages. 
 
Using the examples from the framework, programs such as collecting daily event data 
and making it persistent, as in Chapter 5, as well as creating oddslines, as in Chapter 6, 
can be scheduled to run at a fixed time each day (let’s call this a static schedule) which 
will themselves create a schedule for other programs.   Programs running in the static 
schedule can retrieve event details, as discussed in the previous chapter, create the 
daily events list from the example races database table, then take the race times and 
input to another program which can schedule further programs to run around those 
times.  This will effectively create a dynamic scheduling facility, in that we cannot know 
in advance when our programs will be executed, but we can schedule them based upon 
different daily times, provided these are available as an input.    We need to construct 
rules around how other elements of the strategy will respond to those times.   The output 
of our dynamic scheduling program will be thus be a sequence of programs scheduled 
for the operating system to pick up and execute in relation to each race time or event. 
 
In the case of racing, all events can be uniquely referenced by the time of the race and 
the course at which the race occurs.   Final declarations, being the final list of runners 
and riders, are determined the day before racing, so anytime after that (and before our 
dynamic daily programs have to run) we can happily fix a point in time to schedule the 
program that retrieves all required daily events prior to racing and makes that data 
persistent (e.g. stores it within a database).     Such a program was discussed Chapter 
5, in Example 5-2, get_betfair_races.pl.    We will look at scheduling this program 
to run on a daily basis when we examine the utilities available to do so in the next 
section of this Chapter, Linux Scheduling Facilities. 
 
Once we have captured daily races, we can run our dynamic scheduling program.   This 
will depend to some extent on our betting strategy, since we can preselect a list of 
events that are interesting to us, and build a dynamic schedule of programs around this 
list to implement the automated strategy we are interested in.   For the sake of 
argument, let us say that every race in the day is interesting to us, and a suitable 
candidate for betting activity.    Therefore, we need to build a dynamic schedule based 
upon assessing every race of the day.   Before going further however, let’s look at some 
of the scheduling utilities we have been referring to. 
 
 
 



AUTOMATIC EXCHANGE BETTING 

122  

Linux Scheduling Facilities 
 
This section provides a brief overview of the facilities at our disposal to schedule 
programs, and how they can be of use in order to automate tasks relating to betting 
strategies.    As for any command in Linux, we should also point out that there is also 
extensive documentation available from the shell (e.g. by typing man cron, man 
crontab, or man at) and further explanation within most Linux reference manuals. 

Crontab 
Let’s deal with the crontab facility first since it is usually synonymous with the concept of 
scheduling in Linux.     
 
Crontab is simply a file that can be edited by each user to specify tasks (executable 
programs, shell commands etc) to be run at a future time for that user. 
 
Cron, derived from the word chronos, being greek for time, is the daemon (or 
background monitoring process) in Linux that checks constantly for scheduled 
commands in each user’s crontab file and then executes them.   For our purposes it is 
the crontab files that will be edited by the user to specify cron jobs (i.e. scheduled 
tasks).    

To add or edit a crontab entry by user, the relevant user simply needs log in and type 
crontab –e at the shell prompt (or, we could administer accounts via root, and switch 
to the account of the user in question, then type crontab –e).   

Note that the default editor for crontab is vi, however if the user prefers another text 
editor this can be changed from the default by running the following command  
export VISUAL='nano', the text editor nano (based on pico, which is more or less 
equivalent) being much simpler for simple editing needs. 
 
For the purposes of our automatic betting examples, we will use the crontab file to 
specify static scheduling tasks, or tasks which we know we can run at the same time 
every day.   Let’s look at an example and briefly cover the syntax used to specify 
scheduled tasks at the same time. 
 
Example: 
We want to schedule the program get_betfair_races.pl to fetch daily events and 
daily event summary details from Betfair - as discussed in Example 5-2 in Chapter 5, 
Betting Process 101:  Daily Event Data. 
 
Our requirements are simply to run this every day before racing begins, and before any 
interaction with Betfair that may be required by any of our betting strategies.     
 
Let’s say then that the program will run at 8 am every morning, and that this is the first 
requirement for any betting strategy.    In this case, our first entry in crontab will read: 
 
00 08 * * * /home/aeb/get_betfair_races.pl;   #replace /home/aeb/  with your system path 

 



SCHEDULING – THE KEY TO AUTOMATION 

123 

Left to right, this states that the program should run at zero minutes (00) in hour 8 in the 
24 hour clock (08), every day of the month (*), every month (*), every day of the week(*). 
 
The syntax for crontab therefore has five fields for specifying time frequency, left to right, 
with permissible values shown in brackets: 

• minutes (0-59), 
• hours (0-23) 
• day of month (1-31) 
• month (1-12) 
• day of week (0-6, e.g. Sunday = 0) 

 
A wildcard * value has to be specified where the instruction is to mean every or “all”.   
 
This scheduling syntax is followed by the full path name of the command or executable 
file (in this case a Perl program) which is to be run.   In the case of our example the 
program to  go fetch Betfair events will be run at 8 am every morning (provided our 
system time is set correctly, as per the next section Setting The Daily Time), writing the 
events retrieved to a database, so we can reuse them later.   Specifically, as we will 
discuss in Dynamic Scheduling for Race Specific Programs, we will go on to generate a 
file of times from the database that we can then use for scheduling other programs.       
 

At 

The at command can be used to schedule a command or executable file (e.g. Perl 
program script) to run once per command.   As such, it is an appropriate command to 
use to schedule one-off dynamic scheduling tasks per race.   

By default, only the root user can use the at command. However, the root user can use 
two files to allow regular users the command:  
 
/etc/at.allow: If this file exists, only users listed in it can use the command. 
/etc/at.deny: If this file exists, users listed in it cannot use the command. 
 
The time for a task can be set using several formats. The simplest is a 24 hour clock in 
hh:mm format, followed by the date in mm:dd:yyyy format.    If the date is not set, the 
command will be run whenever the time is next reached.   We will be using the at 
command typically to schedule programs to be run within the current day, so simply 
using the time format. 
 
We also use the –f option frequently to indicate that at should execute a file which 
contains other commands.   The file must be executable, as must any commands, 
programs or scripts within the file. 
 
The syntax is therefore of the form: 
 
at –f filename time 
 

Broadly speaking, we use at for dynamic scheduling and cron for static scheduling  
(where jobs do not need to be determined by daily race times).   at is useful for 
scheduling around times that change since our programs can themselves write out 



AUTOMATIC EXCHANGE BETTING 

124  

scheduled commands on the fly, by using the –f filename syntax as we will see in 
Dynamic Scheduling for Race Specific Programs. 
  
Two other options in the filename that are useful for controlling at jobs are: 
 
atq which lists the queue of at tasks for the current user, or all at jobs scheduled on the 
system if typed by the root user. 
 
atrm which removes all jobs or tasks which have been scheduled by the current user, or 
all jobs if scheduled by the root user. 
 

System Log Files 
 
Since any scheduled task is usually executed by daemons run from root on behalf of 
named users, as in the case of cron and at, the root account will also send a message 
to the user’s mailbox – location of which varies according to the user setup and Linux 
distribution (consult your documentation) - but usually somewhere like 
/var/username/mail or home/username/Maildir.   Such files record a log related to 
running the task in the form of a mail sent from the user as well as any error messages 
normally sent to the user terminal or standard output (STDOUT) relating to the scheduled 
task.    The log file also captures any program output that would normally be sent to the 
user’s terminal, or STDOUT.  
 
Thus, any output from the Perl program that would normally go to STDOUT when running 
interactively is captured here instead when that Perl program is run as a scheduled task.   
In the case of our example to fetch daily races this output would be a list of event times 
and courses, since we print this to STDOUT for each line prior to writing it to the 
database.   Capturing such output from the logfile (in general) and then being able to 
review it (programmatically if needed) is a useful debugging tool and enables us to 
check that programs have executed as anticipated.    When running automated systems, 
such records are indispensable. 
 

Setting the daily time 
 
If everything about automation relies on timing, it is important to ensure that before we 
do anything else, our computer clock is telling the correct time.    
 
Like most timekeeping devices, computers lose or gain time on a daily basis.   Again like 
most watches, the amount of time they gain or lose can depend on the age of the 
timepiece.    
 
For example, one of the home PCs I use, and which ran my first automated betting 
programs, is getting on a bit.   Built from top of the range components in late 1998 with 
an early version of Linux installed, it now looks lame compared to what can be bought as 
a low end modern computer at the bottom of the range in any high street – although the 
components, despite being lower specification, may be more reliable. 
 



SCHEDULING – THE KEY TO AUTOMATION 

125 

Specifically, and getting back to the point in question, the old computer loses an average 
of 20 seconds a day if left to its own devices.    This soon mounts up – so resetting the 
time, especially for any jobs which are scheduled in relation to real events, is therefore a 
necessity on a regular basis - best practice being to do this daily well before any time 
critical tasks begin.    
 
A useful utility for the purpose of resetting the computer clock is ntpdate, which takes 
as a specification the name of the server which is telling the real time, whatever that is…     
 
You should consult your system documentation for this, however, one way of 
maintaining this is to save the following command within an executable file: 
 

Ntpdate –b time.apple.com 

 
Where the executable file is called time.cron.   Plenty of other public time servers can 
also be used to synchronise the computer clock, such as the pool of servers at 
http://www.pool.ntp.org.  Take your pick. 
 
The file containing the command should be set to execute daily, at any time of the user’s 
choice, preferably before any scheduling which is determined by the day’s timed events 
begins.     We store this entry, since it will apply to (and be needed by) all user accounts, 
in the crontab for the root user. 
 

Dynamic scheduling for event specific programs 
 
We often need to automate the execution of programs for a betting strategy where the 
programs to be run (such as revising tissue prices based on non-runners before the off) 
are completely dependent upon the time of the events, and yet the event times 
themselves change daily.   How to do this automatically?     
 
Our approach to setting up any strategy which is dependent upon event times is to start 
with a list of events for the day that we are interested in betting.   That list itself must be 
automatically generated in order for our process to be completely automated.   As an 
optional step, we can filter the list for any further qualifying features before arriving at our 
final list of events.   We then use the final list of events to generate a dynamic schedule. 
 
Note that the examples provided later in this section refer to subsequent stages of the 
automated framework, so readers may wish to revisit this Chapter again after other 
programs within the framework have been covered in the rest of Part 2. 

 
 
 

Creating the Events Schedule 
 
We will assume for this example that we already captured relevant event details for the 
day from Betfair automatically, using the program get_betfair_races.pl which has 
been scheduled to run using the example crontab entry in the previous section, at 8 am 



AUTOMATIC EXCHANGE BETTING 

126  

every day.    We now need to repurpose the captured data as a list of times that we can 
manipulate within other programs to create an automated, dynamic schedule for our 
betting strategies.    
 
For the time being, we will also assume that we are not interested in applying further 
filters to the list of races at this stage (e.g. we could if we wanted filter the list from 
Betfair based on the race description to either explicitly exclude or include courses or 
race types such as handicaps, sellers, maidens etc).    Rather, that we have a strategy in 
place that will enable us to assess every race of the day against predetermined criteria 
and potentially to bet on every race, provided that certain conditions are met. 
 
For illustration we will also use the specific list of events captured for 13th October 2007 
and shown in Figure 5-1 in Chapter 5.     
 
Within our program, the next step is to capture this list of events by programmatically 
accessing the database, and then to order the list by time, showing the time of the race 
and the name of the course.    
 
Our objective is to create a file containing this information that can be read by other 
programs through the day to determine which event they should be processing at which 
time.    When racing begins, the same file will be reused by each set of scheduled 
programs, which will also rewrite the file having processed it,  with one less event each 
time an event has passed.    We add to the file the course name and the marketId, since 
our programs can later read in this information from the file and save extra processing 
steps.    However, it is irrelevant as far as creating the dynamic schedule is concerned:  
all we are interested in is the sequence of times. 
 
We have a number of choices in automatically generating the sequence of times 
described.   In this case, however, we will issue a database query from within a Perl 
program and write the results to a file.  The meat of the program is straightforward, as 
shown in Example 7-1. 
 
Example 7-1: Generating a file of event details ordered by time 

(generate_events_schedule.pl) 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
 
use DBI; 
use strict; 
 
#       Open the database handle 
#substitute your database and user credentials 
my $dbh = DBI->connect("DBI:mysql:autodb", “username”) or die ("Error:  $DBI::errstr"); 
 
#       Issue the query, based on automatically using today's date: 
#       Retrieve today's date using 'localtime' functions and convert to Betfair format 
my $year = ((localtime)[5] + 1900); 
my $month = ((localtime)[4] + 1); 
my $day = (localtime)[3]; 
my $date = "$year-$month-$day"; 



SCHEDULING – THE KEY TO AUTOMATION 

127 

 
open (EVENTS, '>/home/aeb/events_schedule');  #replace with your output path 
my $sql = qq(SELECT DATE_FORMAT(time, '%H:%i'), course, marketId FROM races WHERE 
date="$date" AND country = "GBR" ORDER BY time); 
my $query = $dbh->prepare($sql); 
$query->execute; 
 
while ( my ($time, $course, $marketId) = $query->fetchrow_array) { 
 
print EVENTS "$time, $course, $marketId\n"; 
 
} 

 
Note the use of the DATE_FORMAT command in MySQL which enables us to display the 
time in HH:MM format, as opposed to the format in which the event time is stored in by 
the database (HH:MM:SS).   HH:MM format is of course more appropriate to actual 
event times and also to scheduling using at, since seconds are superfluous. 
 

The directory to which the file is written is the home directory for our default user 
/home/aeb.   There is no significance in this path, all the example programs and files 
are shown as written to the /home/aeb directory.   The file could of course be written to 
any directory, or even multiple directories, depending on what we want to use it for.    
 
Below we use the nano text editor to display our file, so typing at the shell prompt 
 
>nano /home/aeb/events_schedule      #replace with your system path to events_schedule 

 
Will show us our events schedule for the day separated by the newline terminator as 
follows… 
 
13:10, Ascot, 20633129 
13:25, Chepstow, 20633172 
13:45, Ascot, 20631295 
14:00, Chepstow, 20633174 
14:10, York, 20634370 
14:15, Hexham, 20633191 
14:20, Ascot, 20631297 
14:25, Bangor, 20634384 
 
#------rest of file omitted... 

 
There are many other options as to how we could generate this file such as using our  
original program to write out each event, time and Betfair market ID to a file, sorted by 
race time, at the point of retrieving events rather than as a separate step. 
 
Whatever way we go about achieving this, we will simply end up with an automatically 
generated file which lists one line per event.    For the sequence of events alone, this 
could be generated from any other data source for daily events (such as electronically 
available racecards within a form database), provided it is afterwards sorted by time.    
We want above all to preserve the order in which the events occur in order to generate a 
schedule of tasks that consider each event in turn.    For the time being, we’ll add the 
generation of the events_schedule to our list of scheduled tasks in crontab, as the 
second entry to be run 10 minutes after retrieving the daily list of events. 
 
10 08 * * * /home/aeb/generate_events_schedule.pl;  #replace /home/aeb/  with your system 

#path to your program name 
 

 



AUTOMATIC EXCHANGE BETTING 

128  

Generating dynamic tasks using the events_schedule file 
 
In this section, we look at an example scenario for a betting strategy (described in the 
next subsection), to illustrate scheduling programs for execution in relation to changing 
daily event times.   The individual programs are all drawn from the general framework 
and detailed further within Part 2.    The programs are grouped together as the dynamic 
part of the betting strategy in order to execute as one.   In the subsequent section, 
Example Dynamic Scheduling Program, we describe programs that schedule the 
dynamic part of the betting strategy on a daily automated basis, despite the changing 
times. 
 

Example Scenario: 
 
The example strategy is based on generic programs taken from each stage of the 
framework, which perform the following tasks:  choosing events to bet in; assessing or 
selecting contenders to bet on within each event; capturing market information for those 
events; making a betting decision based on the assessment of chance and market 
information, and, finally, executing bets.   We will not dwell on the merits of the strategy, 
rather concentrating on the overall process for automation. 
 
Essentially, we want to schedule some programs to analyse and bet in each event, 
assuming that each program must play its part in the strategy according to each event’s 
starting time.     
 
Generically, our betting strategy has to do the following: 
 

• Create an oddsline for every race in the UK based on applying a pre-existing 
model to daily racecard data and each horse’s history, as discussed in Chapter 
6.  In the case of our illustrative example, we use data from the Racing Post 
website, but ideally this would be generated from a model based on a 
comprehensive database, or a third party oddsline based on the same – as 
illustrated in Part 3.    

• The oddslines for every race in the UK are generated every morning before 
racing, the programs for doing so being scheduled by a cron job.        

• Get market prices for each contender in every UK horserace 5 minutes before 
the race’s starting time 

• Immediately compare market prices with the oddsline tissue prices 
• Decide whether or not to place a back bet.   For now the criteria are not relevant, 

but let’s say this is based upon determining whether or not an oddsline selection 
is “an overlay” or value bet. 

• Place the bet 
 
An example crontab file showing the order of entries to automate this betting strategy as 
described is listed in the last section of Appendix 1. 
 
Scheduling every program in the strategy above (after the creation of the oddsline) to 
execute at the correct time before every event is the challenge that we will address in 



SCHEDULING – THE KEY TO AUTOMATION 

129 

this section.    Subsequently, we will address the challenge of ensuring the scheduled 
programs choose the right events.    
 
We assume we have a simple file containing our daily horseracing events, one event per 
line, as in the example events_schedule file created by the program 
generate_events_schedule.pl presented in Example 7-1.    It is also assumed that 
any event that made it into this file is an event we want to analyse and potentially bet in.    
 
In this case, “the correct time” for our betting strategy has been determined as 5 minutes 
before the race.   The example programs to be executed (all of which will become more 
familiar in subsequent Chapters in Part 2) to implement the strategy as a whole are as 
follows: 
 

• get_market_prices.pl:     get_market_prices.pl is the core Perl 
program shown in Chapter 8, Capturing and Using Market Information.    It 
captures and writes out market prices for a given event to a file called 
inter_prices that can be evaluated by other programs afterwards (or the 
prices can be held in a data structure in memory when creating composite 
programs).  This program is set to run in the strategy 5 minutes before every 
event.    
get_market_prices.pl must have a way of knowing which event it is getting 
prices for.   The events_schedule file is therefore altered after each event is 
read in by the program (eliminating the event just gone) so that the next event to 
consider, the next time the program runs,  is always the first in the file.    We 
cover the steps required for this in more detail in the next section.      

• bet_formation.pl:   This program is run immediately after 
get_market_prices.pl, reading in the file of prices for the appropriate event 
(from inter_prices) and evaluating it as a hash.   It also reads in an oddsline 
for the event from a separate file such as our formatted_oddsline (the output 
from running Example 6-1), and compares each tissue price to that of the market 
price, determining whether or not the price for the contender is an overlay or 
underlay, according to the rules of the betting strategy.   Clearly the oddsline file 
is a prerequisite to the strategy, and must be made available by a separate 
process that can be scheduled on a permanent basis (i.e. generating the 
oddsline can be done before racing begins).   However, one of the reasons why 
the strategy is time critical, and therefore executed close to the off, is that 
bet_formation.pl will find any non-runners from the actual market compared 
to the oddsline (which is based on overnight declarations).    The oddsline tissues 
presented by formatted_oddsline are then revised to account for any non-
runners and made available within the program.   bet_formation.pl outputs a 
file of bets for pick up by the next program in the sequence and is the type of 
core program we will see as an example in Chapter 9, Automating Betting 
Decisions. 

• execute_bets.pl: Our final program reads in the selections file created by 
bet_formation.pl and executes bets based according to those criteria.   This 
program is discussed as an example in Chapter 10, Betting Execution. 

 
Before we schedule these programs to be executed by the operating system, they are 
grouped to a single executable file called bet_oddsline_strategy.   There is no 



AUTOMATIC EXCHANGE BETTING 

130  

particular reason to run 3 programs (as opposed to one) for the production strategy, 
although both approaches will work    Grouping them in this way means that each part 
can be illustrated, tested, and the output analysed, whilst developing a strategy, and it is 
possible to run them sequentially to execute that strategy.   Later we amalgamate them 
to remove redundant elements (as we discuss in Chapter 13).   Here, the file listing the 3 
programs will be executed as a command by the shell and thus needs to list the tasks 
we want to run, in the order that we want to run them.     In this way the listing for 
bet_oddsline_strategy is as follows: 
 
#Replace with your own system path  
 
/home/aeb/get_market_prices.pl; 
/home/aeb/bet_formation.pl; 
/home/aeb/execute_bets.pl; 
 
#Nb. One program in the sequence after get_market_prices needs to include code to move 
#the events file events_schedule on to the next event, for the next time this set of 
#programs is executed 

 
In other words, all three programs will be executed consecutively when the file is 
executed.   If this were just one program the principal would be the same – that is, 
executing the all the steps needed at one point in time.    Now we know what steps we 
are trying to execute in one go, let’s look at scheduling them. 
 

Example Dynamic Scheduling Program 
 
Given that the dynamic part of our strategy has been defined, as explained in the 
previous subsection (and per the programs in the executable file 
bet_oddsline_strategy), let’s look at one way of scheduling this part of the strategy 
dynamically, prior to the start of racing each day, so that it will execute 5 minutes before 
each event, based on each day’s event schedule without manual intervention. 
 
First, we will write a program solely for the purpose of executing the dynamic schedule.   
This time, in contrast to our events_schedule file which simply lists static event 
details, the program will translate the event details to a series of at commands, write 
these to an executable file and then have the operating system execute that file.    This 
last step will commit the scheduled tasks to be executed by the operating system at the 
appointed time.    
 
This schedule will be dynamic, meaning it will change every day, based on the changing 
times of events.   However, the program which calculates the times for the programs to 
run and commits them to the operating system will be static, meaning it can be 
scheduled to be run at the same time every day, provided this is always before racing 
begins.    
 
Let’s call the program which does this write_schedule.pl.   So, we need to add this 
program to our crontab file, running it daily at 8:15 am, for example, well before racing 
begins at any time of year:    
 
15 08 * * * /home/aeb/write_schedule.pl;     #replace /home/aeb/  with your system 

#path to your program name 
 



SCHEDULING – THE KEY TO AUTOMATION 

131 

Bearing in mind that our strategy requires that all the programs in  
bet_oddsline_strategy are executed 5 minutes before each race, the 
write_schedule.pl program has to do the following specific tasks: 
 

• Take in each event time and calculate the time that is 5 minutes before it 
• Write the correct format for each at job out to a file execute_schedule (that 

can be read by the shell to execute the program before each event).    
• For each at job we need to specify a time that is 5 minutes before our event time 

in the correct format (HH:MM), and specify the command we want to run at this 
time (in this case bet_oddsline_strategy). 

• Run two Perl system calls to Linux shell commands from within 
write_schedule.pl: 

o The first command makes our newly created file execute_schedule 
executable by the shell. 

o The second command is simply to execute the file with all our scheduling 
information detailed as at jobs.   At this point 
bet_oddsline_strategy will be written as a command to be run 5 
minutes before each event as planned. 

 
Prerequisites for write_schedule.pl are that the executable file which groups the 
programs to be executed must have been created – i.e. the file 
bet_oddsline_strategy, containing the listing of the 3 programs described in the 
example scenario must have been created. 
 
Example 7-2:  Creating a dynamic schedule (write_schedule.pl) 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
use strict; 
 
open (IN, '/home/aeb/events_schedule'); 
open (OUT, '>/home/aeb/execute_schedule'); 
 
my @times = <IN>; 
 
foreach my $event (@times) { 
 
# get time for each event 
my ($time, $course) = split(/,/, $event); 
my ($hours, $minutes) = split(/:/, $time); 
 
#  format time for output 5 minutes before start of race 
my $ante_post = 5;         #time to set strategy in minutes before race 
 
my $total_mins = ($hours*60)+$minutes - $ante_post; 
 
my $schedule_hour = int($total_mins/60); 
my $schedule_minute = sprintf("%02d", ($total_mins % 60) );        #gets remainder 
 
my $schedule_time = "$schedule_hour:$schedule_minute"; 
 
#  format "at" statements to execute strategy program 5 minutes before start of each race 
 
print OUT "at -f /home/aeb/bet_oddsline_strategy $schedule_time\;\n"; 



AUTOMATIC EXCHANGE BETTING 

132  

 
} 
 
close IN; 
close OUT; 
 
system("chmod uo+rwx /home/aeb/execute_schedule"); 
system("/home/aeb/execute_schedule"); 
 
 

If this program is run manually from the command line as a test, a whole bunch of at 
commands fly past as the operating system schedules the batch command 
bet_oddsline_strategy to execute for each event time.   We have a friendly 
warning that each command will be executed by /bin/sh, which tells us that a separate 
shell will be invoked to run the at jobs in the background come execution time, and also 
that there will be no output displayed when these commands run – instead the output will 
be directed to the system mailbox of the appropriate user running the jobs. 
 
To check our dynamic schedule at any point, we can list the current at queue, by typing 
atq.   The command atq lists all task details, one per line according to the job id.     
 
The syntax for deleting a job is of the form atrm job.    In the case of testing and 
generating what may be many instances of at jobs by running write_schedule.pl, 
therefore, it is useful to note that we can delete the entire atq – assuming all jobs are 
definitely unwanted, noting that this will delete all at jobs for the current user - with the 
following Perl one-liner (so called for Perl programs invoked from the shell, using the 
command perl with the –e argument).    
 
atq | perl -e 'while (<STDIN>){ ($job, $rest) = split /\s+/; system("atrm $job"); } ' 

 
Although the programs within bet_oddsline_strategy will now execute 5 minutes 
before each race as planned, we have more work to do before 
bet_oddsline_strategy will work correctly whenever it is executed, within the 
context of the programs themselves.  Specifically, we need to ensure that the generic 
programs within bet_oddsline_strategy will pick up the correct event details each 
time they are executed.   
 
The next section explains one way to do that by reading in details of every event within 
the events_schedule file for each program in the strategy, and deleting any event 
from the file that has already been processed. 
 

Picking the right event per scheduled task or program 
 
Now we have a list of events that we wish to bet in, and a number of programs that are 
going to execute at the scheduled time before each event.    However, each program, 
since it is general (i.e. written to take any event as an input rather than a named event), 
must still be able to locate the event corresponding to the time it has been scheduled for, 
then apply its part of the betting strategy to it.     We need some generic code to do this, 
which will be run within the context of each program, and can again approach the 
problem in a number of ways.     
 



SCHEDULING – THE KEY TO AUTOMATION 

133 

In the case of this example, we will work from the event file events_schedule that we 
already have gone to the trouble of producing, relying on the fact that we are betting 
each event in sequence, with the earliest event always listed first.     
 
One way to approach using this file would be to leave it untouched and create a counting 
mechanism to keep a tally of where we are in terms of events passed and “to go”, every 
time one of the programs accesses events_schedule.    However, doing this adds 
more complexity, such as storing a counter in an external file, and also removing the file 
acting as the counter before the end of the day in order to ensure it is ready to start at 
zero again. 
 
For a simpler solution which also enables easy testing and monitoring, we will simply 
read in the list of events from the existing events_schedule file and treat it as a Perl 
array within each program.    Then, when every program within the betting strategy is 
done reading event details for that scheduled time, we will write out the contents of the 
array again, this time as a file back to the hard disk with the same name, 
events_schedule, to be picked up at the next scheduled time -  minus the event we 
have just processed.    
 
Provided that the events_schedule file is only reduced by one event each time it is 
accessed, we can be sure that the correct event is always first in the queue.    This will 
happen until there is one event left, corresponding to the final scheduling of the program.  
Thus, synchronisation is achieved between the scheduled programs and the events that 
are being bet. 
 
To review some code that does this at the program level, let’s take the retrieval of 
market prices.    When we discuss this program in its core form in Chapter 8 we “hard 
code” a specific event within the script for the example, as follows: 
 
 
 
# For this example we pick one event and type it in, normally this is an  
# automatically created variable 
 
$marketId = "20625238";    #use your example event ID to test the program 

 
Instead, to automatically schedule the capture of market prices for an event, we want to 
replace the code above in order to make it generic; in other words, so that the program 
can work out for itself which event it should be betting on whenever it is scheduled to 
run.    The example code snippet below will enable our scheduled program to choose the 
first event from our file and use the marketId it picks up as the current one, so that no 
manual intervention is necessary.    Whilst the purpose of the code is for appropriate 
inclusion within any of other program (where automatic capture of the most current event 
is required), it can also be tested “as is” prior to inclusion. 
 
 
Example 7-3: Generic code to include in  programs to capture current event details 
 
#!/usr/bin/perl -w 

 
#---------Start of program, prerequisite modules etc. omitted 
 
use strict; 



AUTOMATIC EXCHANGE BETTING 

134  

 
open (EVENTS, "/home/aeb/events_schedule"); 
 
my @events = (<EVENTS>); 
close(EVENTS); 
 
#the first event in the file (and therefore the array) always refers to the current event 
#subsequently we will remove this event from the file, so that the next event will be 
#first again, for the next time the program is executed. 
 
my $event_details = shift(@events); 
$event_details =~ s/^\s+|\s+//g;        # to get rid of dangerous invisible characters 
my ($time, $course, $marketId) = split (/,/, $event_details); 
 
print "$marketId\n";  #test we have read in the correct event 
#Since $marketId now exists as a variable we can do what we like with it 
 
#---------End of code to read in right event details from events schedule file 
 
 

Now we have the $marketId available as a variable in the program we can use the rest 
of the code in get_market_prices.pl (or adapt it as required, depending on the 
frequency of prices required, as discussed in Chapter 8) in order to retrieve prices for 
this event automatically.      
 
In our example strategy, once the get_market_prices.pl program has finished, our 
group of scheduled tasks in bet_oddsline_strategy continues by running the 
second program in the sequence, bet_formation.pl (bet_formation.pl is an 
example program described in more detail in Chapter 9, Automating Betting Decisions).   
The output of bet_formation.pl is either a number of selections which will be read 
by the next program in the sequence (execute_bets.pl) or nothing at all, in the case 
the program determines that there is no viable bet for this particular strategy.    
 
As with get_market_prices.pl, in order for bet_formation.pl to work 
automatically, we require a given course, time and set of prices to make decisions on 
whether or not to place a bet.   In order to schedule bet_formation.pl to take those 
decisions dynamically, we must again give the program the ability to find the event for 
which it has been scheduled.   Again, we do this by reading in our file, 
events_schedule.    
 
As in the case of get_market_prices.pl, we require details for the current event (i.e. 
the event due to start in 5 minutes) from events_schedule.   However, for 
bet_formation.pl, our concern is with retrieving the variables for the course and 
time (as opposed to the Betfair market ID, which was the critical event information 
required by get_market_prices.pl) for the current event.  This is so that the 
program retrieves the correct oddslines for the race from our formatted_oddsline 
file (produced in Example 6-1), which it does by matching the course and time from 
events_schedule to the course and time for all races in formatted_oddsline.   
Subsequently, we extract and compare tissue prices from the relevant oddsline 
contenders with actual prices from Betfair.   However, bet_formation.pl  does not 
need to connect with the Betfair API to do this, since the prices were already collected 
by get_market_prices.pl and made available locally within the file inter_prices.   
Betfair information is required by subsequent programs to write out any recommended 
bets  – namely the Betfair event id and the selection id – that bet_formation.pl  may 
decide to make, but this information is also available from the inter_prices file we 



SCHEDULING – THE KEY TO AUTOMATION 

135 

are reading in.   This is fine, we can pick and choose what we want from each line in 
events_schedule.    
 
However, there is more to do with events_schedule, since, unlike the case of 
get_market_prices.pl, we not only want to read from it, but to rewrite it.   Why?   
Since bet_formation.pl is the last program in the sequence that will need to read 
the current event within this betting strategy, the events file needs to move on for the 
benefit of the next scheduled execution of bet_oddsline_strategy and the next 
iteration of these programs, so that it is ready for the next event (or race) time in the 
sequence. 
 
Note that execute_bets.pl (which is in fact the last program in the 
bet_oddsline_strategy sequence, based on the example program outlined in 
Chapter 10) will simply read from a recommended bets file written by 
bet_formation.pl called selections, and place bets using the Betfair API.   Since 
the selections file itself contains all the information needed to execute bets on the 
current event, there is no need for execute_bets.pl to interact with the 
events_schedule file to retrieve that data.    The selections file will be overwritten 
by the next scheduled instance of bet_oddsline_strategy, so execute_bets.pl 
will always receive data relating to the event it should be betting on from here, not from 
events_schedule. 
 
As above, there is no need to preserve the current event information past the point at 
which bet_formation.pl has gathered it.    However, bet_formation.pl does 
have a service to perform for all the other instances of bet_oddsline_strategy that 
are scheduled to run according to upcoming race times.   That is, to delete the event 
whose details have just been read by the program, so that the first event in the list will be 
the event that will be considered by the next iteration of bet_oddsline_strategy. 
 
Example 7-4 shows the code for one way of doing that, i.e. saving the current event data 
for the program using it, but deleting it from the list and writing out the list again, minus 
the event just captured, so that the next scheduled  considers the next event.   Whilst the 
purpose of the code is for appropriate inclusion within any of other program (where 
automatic event capture and deletion is required), it can also be tested “as is” prior to 
inclusion. 
 
The code shares the same starting point as the code snippet we just saw in Example 7-3 
except that this time we also open up a temporary file for writing out our new list of 
events, minus the one we are using, as in open(TEMP ‘>.    The shift operation is 
still applied to the array created after we have read the events_schedule, in order to 
capture the current event information held by the first value of the array.   However, 
since shift also automatically reduces the array by its first element, the array is ready to 
be written back out to disk. 
 
Finally, we write out the data in the array to the temporary file by setting up a quick 
foreach loop to print out the new array, followed by using the rename function to 
replace the current data in events_schedule with the new data that was held for a 
moment in the temporary file.    The events_schedule file is now ready for the next 
scheduled instance of bet_oddsline_strategy. 



AUTOMATIC EXCHANGE BETTING 

136  

 
Example 7-4: Generic code to capture, use and then remove current event details for a 

scheduled program 
 
#!/usr/bin/perl -w 
 
#---------Normally include in betting strategy program, this an example of dealing with  
#    events only 
#---------Can be run "as is" to demonstrate the principal of polling through the  
#    events_schedule file 
 
use strict; 
 
open (EVENTS, "/home/aeb/events_schedule"); 
open (TEMP, ">/home/aeb/temp_schedule"); 
 
my @events = (<EVENTS>); 
 
my $event_details = shift(@events); 
$event_details =~ s/^\s+|\s+//g;        # to get rid of dangerous invisible characters 
my ($time, $course, $marketId) = split (/,/, $event_details); 
 
#check we captured the right market, which will subsequently be deleted from the schedule 
#can comment out next line if incorporating within betting programs 
print "$marketId ($time, $course) is the current marketId, and will now be removed from 
events_schedule\n"; 
 
foreach my $event (@events) { 
print TEMP $event; 
} 
 
close(EVENTS); 
close(TEMP); 
rename("/home/aeb/temp_schedule", "/home/aeb/events_schedule"); 
 
#temp is the file with the correct data, but we want to rename it since it is expected by 
#the next program, again with the name events schedule 
#The variables - $time and $course - expected by bet_formation are now available within  
#the context of the current program and the file events schedule has been rewritten for  
#the next scheduled instance of bet_oddsline_strategy. 
 
 

For a fleeting moment the events_schedule file is being used within the program and 
is also accessible at this time for alteration by other programs.   Usually there is no 
concern here unless event times clash (which does happen on busy racedays such as 
bank holidays and some Saturdays), or programs accessing event times clash, so to be 
safe we can also lock the file (using flock) for all programs that attempt to access it.    
 
Alternatively, we can split the events schedule into different directories per meeting 
(where each directory or meeting has its own events_schedule file) to avoid 
conflicting racetimes occurring, or wrap more elements within the control of single 
programs - as we do for the production runs of betting strategies in Part 3.   
Nonetheless, the principles of scheduling the combined programs according to event 
times, with a controlling file to monitor events that have been bet, remain the same. 
 
 
 



SCHEDULING – THE KEY TO AUTOMATION 

137 

 

An alternative scheduling case for simple system or third party picks 
 
As a brief aside to our process for scheduling programs around each event, let’s briefly 
consider an alternative for the case of simple betting strategies where scheduling needs 
may be more simple.    For example, this may occur where there are few events to 
consider, the selections for each event are known before the race and, most importantly, 
if the need for time critical or market information to drive the betting strategy is minimal 
(e.g. the presence of non runners within the race will not change the selection strategy).       
 
This can often be the case for simple betting system picks.   Whilst it depends on the 
system, the general aim of selection systems as we defined them is to throw up 
individual selections based on fixed selection criteria rather than to compare multiple 
contenders in one race.   Also, a rules based system identifying a specific combination of 
characteristics may produce few, if any, selections on a daily basis.    
 
In such cases, the automation work to identify selections can be done in advance based 
upon racecard declarations, once the system rules are programmed into a database, or 
a program that interacts with the database.   As such, the automation effort will be on 
programmatically applying system criteria to daily racing data (and of course creating the 
system in the first place), using an appropriately updated database.   Once selections 
are generated from a data source, these can be combined with the static marketId and 
selectionId from Betfair within a database or a file so that selections are already 
prepared for betting.    In other words, selections can be prepared well in advance of 
event times, with all information for betting execution in place. 
 
Unless a system relies on some criteria that are time specific, such as the number of 
runners or the state of the going, it can be convenient to generate both the list of events 
for a specific betting system together with all the details necessary to bet the selections, 
making the Betfair calls for all static data early.   
 
Once we are done with the systematic selection process from the database, together 
with all the Betfair details needed to bet those selections, the selections are ready to be 
bet.    We can still create a list of events as discussed previously.   The list of those 
events which are to be bet (even if the list is only one in length), can still be used for 
preparing to automatically schedule system picks, only the programs can take all their 
details from the file that is presented, as opposed to requiring separate input files such 
as an oddsline. 
 
An alternative for a simple selection strategy is to execute all bets as soon as the file is 
ready, simply looping through the file, and executing bets (as described in Betting 
Execution in Chapter 10), thereby avoiding the need for dynamic scheduling altogether.    
 
Such a strategy could place all bets for all system selections at once, no matter what the 
time, provided that the betting market is available.    Whether or not it makes sense to 
place all bets for different races at once is up to the bettor’s view of obtaining reasonable 
prices and the betting strategy itself.   The danger with placing bets on the exchange 
well in advance of the market can be illiquid markets with large overrounds and thus 
poorer prices.    On the other hand, the possibility now exists to be assured of 



AUTOMATIC EXCHANGE BETTING 

138  

reasonable prices (not per selection but within the context of a reasonable overround) by 
executing bets at the Betfair Starting Price (BSP).    
 
Betting at BSP has the disadvantage of execution price being unknown, although the 
extent to which that is a disadvantage depends on the strategy – e.g. it is not necessarily 
a disadvantage for systems where selections have no minimum price stipulation, 
although any strategy which does not consider price is itself suspect.   For systems that 
do stipulate a minimum price, Betfair SP bets can be placed with a minimum price 
stipulation, as we cover later in Chapter 10.   If that is the case for a simple betting 
strategy and the bettor does not think they lose an edge by betting in the exchange 
market, the betting process can be scheduled for all bets to be identified and 
automatically bet in one process, in seconds, every morning before racing begins.    
 

Common Scheduling “gotchas” 
 
For the avoidance of doubt, the recommendation is also to consult the operating system 
reference material if the reader is unfamiliar with automating tasks.    However, there are 
some simple errors (though vexatious if a beginner) which can occur in getting started 
which are passed on here from the benefit of those engaged in early trial and error with 
scheduling.     
 

1. Failing to specify either the full path name and/or the correct path name for 
the executable program in at or cron jobs, e.g.  
betting_strategy_oddsline instead of 
/home/username/betting_strategy_oddsline. 

2. Remembering the difference between executing files and executing shell 
commands from a permissions point of view.   In the case of files, all the files 
must themselves be made executable.    Use the chmod command to set 
appropriate permissions (type man chmod for all the arguments) and if in 
any doubt on a system where you are the only user, chmod ugoa+rwx 
filename – will make a file executable for reading, writing and execution by 
every user.   Of course this will need more thought if there are other users on 
the system; we generally make the assumption that the reader is the sole 
user of the system through this book. 

3. Use a step by step process for creating scheduled tasks in order to test and 
diagnose problems.    Assuming we are running strategies on a daily basis, 
we could characterise the process for all tasks as prepare -> schedule ->  
test -> clean up:     
a. Prepare:   In particular, what are the dependent data, files or programs on 

which scheduling of the betting strategy relies?    
b. Schedule:   Suffice to say it is worth thinking out how each task will run in 

detail beforehand; as discussed in this chapter, sometimes it is necessary 
to schedule tasks with a degree of indirection, so that we need to 
schedule tasks that themselves schedule other tasks. 

c. Test:    When the programs executing the betting strategy are executed, 
what will happen within our strategy, step by step?   It is worth breaking 
the programs and scheduling down into atomic steps and testing each 
part, so that the bettor is sure what will happen when the betting strategy 
is live.     



SCHEDULING – THE KEY TO AUTOMATION 

139 

d. Clean Up:    Once a job is done we need to ensure there are no loose 
ends and that any contingent files are ready for the next betting cycle – as 
well as any end of day preparation which is necessary for the following 
day’s cycle (e.g. ensuring all files are cleared down at the end of the day). 

 

Extending scheduling concepts 
 
Depending upon the imagination of the bettor and the complexity of the strategies and 
tasks that they want to implement, we can think up infinitely more complex cases than 
those shown so far.   However, the chances are that the basic methods and tools 
already described, together with other facilities at our disposal, can more than keep pace 
with the complexity or number of betting strategies required.   Let’s therefore consider 
some of the ways of scaling and extending the concepts to keep pace with more 
complex scheduling requirements.     
 
So far we considered one strategy applied to one set of daily events.    The strategy had 
three steps, each step consisting of a short program, run consecutively.    At this point, 
the betting strategy for that event was complete,  and the schedule could move on to the 
next event.     
 
What if our strategy had far more than 3 steps, such as a trading strategy, where we 
might want to revisit the same market again and again, and deal with partially matched 
bets?   Our simpler strategy was executed in milliseconds for a specific event time and 
then done, with the events_schedule modified ready for set of programs to deal with 
the next event.    What if we wanted to run a strategy for a market that itself extended 
over the time of other events,  for example starting much earlier than 5 minutes before a 
race – how could we ensure it was automated and did not interfere with other strategies 
that had to start alongside it?     What if, instead of running one strategy, we want to 
apply different strategies to different events on the same day, or even different strategies 
(e.g. a betting system, dutching an oddsline, price arbitrage etc) to the same event?    
How could we go about implementing all these in order to meet the objectives of 
complete automation? 
 

Scaling for multiple strategies by using multiple directories and user 
accounts 
 
Without doing anything much different outside the current framework and scheduling 
facilities already described, we can create many more possibilities to cope with 
increasing the number of automated betting strategies, simply by paying attention to 
careful organisation of the filesystem.    
 
In the examples shown so far, we have run all events for a strategy from one directory, 
using as our parameters for automation the events_schedule file, containing all 
events for the day, so that the timing of at jobs is written around the events schedule for 
the entire strategy.    As the number of different strategies and events grows, combined 
with potentially more complex strategies which are visiting the market more times, it will 
become more of a struggle to use a single file which is manipulated by each strategy to 



AUTOMATIC EXCHANGE BETTING 

140  

indicate which event is next.   There is the potential of file access conflicts, moreover of 
pushing forward to an incorrect event, or reading an event which has been incorrectly 
appointed.    It will be a challenge for each strategy to keep track of which events have 
gone or are next if many programs are attempting to take their cue from them.  However, 
there is nothing to stop us automating strategies and/ or events within discrete 
directories.     
 
If common files are used for common strategies, such as our events_schedule 
example file, we can replicate such common files across directories.    A static 
scheduling program can be set up in advance to copy files or populate multiple 
directories before racing begins, along with any other files needed for betting.   The 
strategies themselves can be set to run by static scheduling programs within the 
directories within which they are contained, as we have already seen for one strategy.     
 
The wisdom of other approaches really depends on the strategy, but we can 
accommodate any amount of complexity by setting up multiple directories, for example 
to cover one meeting each day – say meeting1 through to meeting8, and generate a 
version of the events_schedule file that creates a time ordered list of races on a per 
meeting basis, copied to each directory.     In the case of a UK racing strategy there are 
rarely more than 8 meetings in a day.    This gives us 30 minutes between events in 
each directory, without overlap, so we can read from the same events schedule and 
schedule many activities around each specific race.    
 
An end of day process could pick up any relevant files from the directories, clean the 
directories up and prepare them for the next day’s betting, or delete them altogether.   
Since we can create directories within directories ad infinitum, the issue with this 
strategy is less the operating system’s capacity to keep up with the bettor’s plans but the 
bettor’s own capacity to organise appropriately.   By and large, simple is best, not least 
due to the consideration of maintenance. 
 
What about if we want to run several different strategies off the same event?    As well 
as the organisation of directories, we can create different users per strategy.   Since 
Linux is a true multi user system, everything is set up to treat a user as the owner of a 
different strategy, even if the bettor is the sole user of the actual system.    
 
This can be a convenient way to schedule different strategies, either modifying entire 
directories of existing programs and files or creating distinct strategies, or trading 
activities, from scratch.    We should bear in mind also that any scheduled process will 
send the output of its jobs automatically to each user’s mail directory, meaning 
troubleshooting or log analysis is nicely separated by user account, which as we have 
said could represent different strategies.   The whole organisation can be monitored by 
the root or superuser.    
 
We will not go further at this point on the theme of creating directories and user accounts 
for scheduling purposes, since the wisdom of doing so is down to the particular set of 
strategies in question.   Suffice to say the tools are at our disposal should we need them. 
 
 



SCHEDULING – THE KEY TO AUTOMATION 

141 

Handling events at the program level  
 
As any betting strategy becomes more complex there is a decision point regarding what 
tasks are appropriate to handle through the scheduling facilities of the operating system 
and what tasks should be handled within the context of individual programs.    The 
scheduling of any activity can be characterised by the need for the automated strategy to 
respond to time driven events, but for the most part there is nothing to stop these being 
handled by the programming language interacting with the operating system, rather than 
running separately to the program. 
 
Although the framework examples generally demonstrate the smallest components 
within each stage of the betting strategy, programs inevitably become longer and more 
complex as betting strategies evolve, combining elements of the framework in one.    
When this happens, it can be simpler to handle all the data retrieval for a single event 
within the context of a single program, along with other time specific information and file 
inputs, rather than relying on separate programs to collect data.    As ever, it depends on 
the strategy, but single programs can reduce the number of external files generated and 
the number of times we need to rely on passing on information about what event the 
program should be dealing with.   Putting all event driven information into one program 
simplifies our scheduling task to kicking off the program at the appropriate time, rather 
than kicking off the program and several others, then monitoring which events each is 
acting upon. 
 
Provided the program receives the required information once, it can act in relation to that 
event thereafter, and we can still maintain the stepping mechanism whereby the current 
event information is read once and the file is shifted to the next event.   The fact that the 
program itself will become an ongoing process for a number of minutes in order to 
execute on the strategy is neither here nor there as far as the scheduling process is 
concerned. 
 
As discussed for the examples above, we can initiate any number of activities within the 
context of a single program, revisiting the market several times, making multiple bets 
and multiple revisions.   This can be achieved by keeping a program open to make many 
calls to the same event, and to program it to behave according to our strategy 
dependent upon that information.    This will involve more careful programming, of 
course, for example to ensure that the session with Betfair is maintained correctly (using 
the correct returned session tokens from other calls to the API), and if the program can 
be idle for some time, using the KeepAlive service call to maintain the session as well 
as creating checks and failsafes in the case of failed calls.     
 
From a scheduling point of view, several mechanisms are at the bettor’s disposal to 
control how time is handled within the program, to the degree where we can create 
programs that behave as the bettor would manually. 
 

Using sleep 
 
Both the operating system and Perl put at our disposal respectively the basic command 
or function sleep, which is proceeded by a number, representing seconds of elapsed 



AUTOMATIC EXCHANGE BETTING 

142  

time.  Essentially sleep tells the program or shell how many seconds it must remain 
inactive before continuing with the next command or statement. 
 
We have already used sleep within a Perl program for the get_betfair_races.pl 
program, where, in order to use the Free Access API for the example, it was necessary 
to wait for 12 seconds before calling another market.   The sleep function was able to 
buy that 12 seconds, before repeating the request for another market.   Likewise when 
used from the shell, sleep is often useful to wait awhile before executing the next 
command in a sequence of commands; those commands could equally well be 
programs.    
     

Timekeeping within a program 
 
For many of the programs in the framework, the examples are framed in small units to 
illustrate specific points, and are by and large executed and exited within milliseconds.   
However, keeping a program alive for a long period of time, executing many tasks and 
maintaining its own timekeeping can be a more common solution as strategies become 
more complex and there are more of them.  
 
As we use the scheduling facilities less and rely less on scheduling multiple programs, 
so we rely on our one program to do more of the heavy lifting with regard to timekeeping 
-  in other words, dictating what the betting strategy should be doing and when it should 
be doing it.    
 
Of course, the program itself must still be initiated at the correct time, which is what we 
will still use cron to achieve, or an at job.   The scheduling will be combined with a 
mechanism within the program to specify the course, event and time information which 
the rest of the program will use - such as the manipulation of our events_schedule 
file specified earlier. 
 
Subsequently, we need to keep track of time with a view to the strategy, depending on 
what the strategy is.   Let’s throw a few possibilities together to make this more concrete 
- say we want to run a program to begin 10 minutes before the start of a race which will 
do any combination of the following, and to some level of repetition:   track prices for a 
certain amount of time, make a predictive analysis, place bets, analyse which bets have 
been matched, track prices, monitor which bets have been matched or unmatched from 
the original set, make a decision on which bets to cancel or modify and so on, right up 
until the offtime.    If the offtime is T and 10 minutes prior to the race is  represented as 
T-10, then let’s say that the strategy translates to knowing in advance that we want to 
track prices at T-10, make bets at T-9, track prices again at T-8, reconcile unmatched 
bets at T-7 and so on.    
 
In order to know what T-N is equal to and set off tasks relating to it, we have to keep 
track of time throughout the program’s execution.    An example of tracking time in 
relation to an event (within a program) and corresponding walkthrough, together with  
executing tasks based upon that is shown in Chapter 8, Example 8-4. 
 



SCHEDULING – THE KEY TO AUTOMATION 

143 

Much can be achieved for any betting strategy at the program level using the facilities 
discussed, and for more esoteric tasks there are plenty more modules available within a 
Perl context, for timekeeping and event handling, available from www.cpan.org. 
 
Summary: 
 
We’ve looked at the basic tools available - scheduling using cron and at, scheduling for 
individual users, and basing scheduling programs on changing daily event information.  
 
We’ve looked at ways of combining these tools, as per a general example to bet 
oddslines, based on the generic elements of the whole framework, to give us an 
effective automatic strategy.  We’ve looked at ways we might start to scale further, using 
different directories and user accounts, as well as creating more complex betting 
programs. 
 
It is impractical to cover every permutation which will be created by every betting 
strategy and therefore every way we might wish to schedule that betting strategy, but we 
can see through the raw material that we can start to contemplate any specific betting 
strategy which can be quantified - and moreover be confident in the potential to 
automate it.    
 
Subsequent stages of the framework can be picked out and put together for any 
particular strategy.   However, all will require an umbrella for automatic operation such 
as covered by the basics of scheduling and automation covered within this Chapter. 



 

  

 
 
 



 

145 

Chapter 8: Capturing and Using Market Information 
 
Reviewing market prices is generally a prerequisite before proceeding with any betting 
strategy.    In general, this stage in the betting process occurs after choosing an event to 
consider for betting and assessing the contenders within that event, or choosing a 
contender which conforms to some selection criteria.    For an oddsline betting strategy, 
comparing market prices with the oddsline tissue is the foundation of the strategy.    
Even when betting a system religiously, a minimum price is usually required.   
 
However, market information is wider than price alone.    Although the most common 
form of market information in the exchange world is the current back and lay price for all 
given contenders in the market, there is much intelligence that can be derived from 
volume information and by going deeper into the market than currently available prices 
and volumes.    Below, we recap on some of the most common uses for market 
information, before going into examples to illustrate this stage of the framework. 
 
Whenever market data is captured, the automatic bettor has an opportunity to validate 
the health of the market itself in order to decide the timing of a betting decision.   
Typically we might calculate the overround for back prices or underround for lay prices, 
or the volumes or spreads between prices that is available to inform this view.    For 
example, whatever the view of the bettor about the price of an individual contender, it is 
generally true that a market which is close to 100% will offer the backer much better 
opportunities than one which is not.    An overround or underround calculation is 
therefore a useful piece of information to pass on to the betting decision making process, 
and can be derived at the market information stage.     
 
It is worth noting that capturing and using market information can be a stage in the 
framework that is repeated again and again for the same event.  This is self-evident for a 
trading strategy, but as above can also be the case in visiting the market multiple times 
to secure best price.  
 
Looking at current back and lay prices, the volume available, and the “price ladder” for 
each contender (or the total amount matched, and the available amount to back and lay 
at every price on the “ladder” since the market began) can tell us much about trends and 
opportunities in the current market and therefore what strategies are best suited to 
playing it at any given point in time.     
 
Similarly, interpreting the 3 levels of back and lay price information which are visible from 
the user interface (and via the API, using the GetMarketPricesCompressed service 
call) is a useful “quick take” on current trends, and can help us to determine market 
momentum or relative strength for each contender.   Calculating average prices across 
all volumes is impossible to do on a timely basis from a manual perspective, but trivial if 
done with computer assistance, and easy to automate.   Visibility to market trends is 
clearly critical for trading but also can help determine if we are to put in an offer for a 
better price than the current back or lay price available when betting on outcomes. 
 
Every runner’s detailed trading history, together with all amounts to back and lay at 
every price range also constitutes market information.   As with the 3 levels of immediate 
price information, interpreting this information quickly and consistently is tricky to 



AUTOMATIC EXCHANGE BETTING 

146  

impossible from a manual perspective.   For the detailed price history, it is also 
impossible to view for all runners manually, so using the API is a big advantage, 
depending upon how any analysis is programmed.    From an API perspective, the 
required data is available via the GetAvailableMarketDepth and GetTradedVolume 
services that are reviewed later in the chapter.  The newer function 
GetCompleteMarketPricesCompressed, to give all levels of liquidity for all runners, 
can also be used in this regard. 
 
Outside the context of executing a particular betting strategy on an event, capturing and 
storing market information can also provide us with a useful resource to research, 
develop and test future strategies.   In this case we could be looking to build up a 
comprehensive picture of each market at various time points, or simply to capture one or 
two sets of prices and volumes close to the off, depending on the objectives of the 
research. 
 
For example, we might backtest a betting strategy using Betfair prices as opposed to 
SP, or we might be looking at different returns for betting strategies based on market 
timing.    Such research culminates in the case of looking at market information alone for 
developing and testing trading strategies.   Although betting on outcomes is our primary 
focus, the overlap between betting and trading strategies is nowhere clearer in the 
framework than when looking at capturing and using market information (we briefly 
discuss adapting the framework for trading in the last section of Chapter 9, Automating 
Betting Decisions).    
 
Last but not least, obtaining market information also enables us to test any betting 
strategy prior to risking any money by creating “what if” scenarios that can subsequently 
be compared to a results database. 
 
In the next section, we will look at example code for capturing prices and then consider 
what further value we can add to the information captured, plus how we can make the 
information available for further usage.  Subsequent sections deal with running the code 
to capture market prices in practice; extending the scope of this function to look at 
weighted average prices, weight of money indicators and calculating overrounds, and   
finally, working with the complete price and trading history for all runners in a market. 
 

Example code for capturing current market prices 
 
The most fundamental information on the exchange is the current trading price and 
volume available to back and lay.   In terms of API functions, this and other market 
information is accessible through one service call that we have already come across, 
GetMarketPricesCompressed.   We reviewed this function in some detail in Chapter 4, 
in the section Review of the GetMarketPricesCompressed example function. 
 
The arguments for using this function require a relevant marketId to be supplied.     To 
automate, we pick from one of the relevant daily events, a process which we covered for 
retrieving daily markets in Chapter 5.   
 
For convenience, we also show calling GetMarkets in conjunction with this function, 
since GetMarketPricesCompressed retrieves only the Betfair identification numbers of 



CAPTURING AND USING MARKET INFORMATION 

147 

selections and GetMarkets lets us retrieve their names also.   Since we would like to 
present prices along with the real names of each contender, we use this second call.  
 
The first example program uses these services to get prices for one market at one point 
in time.   It is therefore a single, if key, component that needs to be expanded to be part 
of a practical strategy.    Typically, it would be made generic to work for multiple 
timepoints and multiple markets, as well as automatically being supplied with the 
required market ID, without the need to explicitly state the market ID in the script.    
 
We cover the elements relating to multiple markets and multiple timepoints in the next 
section, Extending the Program.  Regarding automation of the program - both to 
automate execution of the program at the required time and to choose the correct 
market details automatically - we refer back to Chapter 7, Scheduling – The Key To 
Automation.   Example 7-3 in that chapter covers how to capture events automatically, 
so that the explicit $marketId in the script can be replaced with an automatically 
chosen one. 
 
Back to our current example:   We retrieve a set of market prices for a given market 
within a few lines code, and need to deal with the output, which can be the greater part 
of the script, depending on what information is to be stored and how granular it is.   For 
example, if we wish to retrieve data for all levels of the market that are visible within the 
website interface, that increases our storage requirements (in terms of setting up the 
data structures required) by three times what would be needed be if using current back 
and lay, price and volume information only, if storing the whole “market ladder”, 
significantly more. 
 
In this example we will look at the most fundamental case, for the currently available 
market, and write these values to a simple database table, as well as “dumping” a set of 
values to a file as a perl data structure that can be read back in to another perl script.    
This is an alternative temporary data structure to using a dbm file which we looked at 
when using the events data (and one which will be useful if users are trying to set up on 
Windows, since the dbm file is a UNIX construct).    
 
Setting up the database table to store prices is a prerequisite to running the script, 
although an alternative for data which is not intended to persist for more than one day is 
simply store prices in a flat file.    
 
Example 8-1 creates a simple example table to store current market prices.   This table 
is used in conjunction with Example 8-2, and other subsequent examples, for retrieving 
and storing currently available prices.    
 
 
Example 8-1: Create price table within the autodb database (create_price_table.sql) 

 
#CREATE price table for currently available Betfair prices within AUTODB database 
 
DROP TABLE IF EXISTS price; 
#@ _CREATE_TABLE_ 
CREATE TABLE price 
( 
        marketId   INT(11) NOT NULL, 
        runnerId        INT(11) NOT NULL, 
        runner          VARCHAR(25) NOT NULL, 



AUTOMATIC EXCHANGE BETTING 

148  

        date            date NOT NULL DEFAULT '0000-00-00', 
        timestamp       time NOT NULL, 
        back            DECIMAL(6,2), 
        backvol         DECIMAL(10,0), 
        lay             DECIMAL(6,2), 
        layvol          DECIMAL(10,0), 
        PRIMARY KEY (marketId, runnerId, timestamp) 
); 
#@ _CREATE_TABLE_ 
 

 
Assuming you do not have to specify a password to access your database (in which 
case that would be added under the –p flag), the command is: 
 
> mysql –u username autodb < create_price_table.sql 
 
Note that one of the fields used as the primary key for the table is the Betfair marketId.   
To obtain full data from queries on this table, we assume that we also have the races 
database table set up (as described in Example 5-1) in order to join the tables by that 
key and therefore display information on the course and time which any market prices 
relate to.    
   
 
Example 8-2: Retrieve and store Level 1 market prices and volumes 

(get_market_prices.pl) 
 

#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Available for free download with full licence terms at http://www.betwise.co.uk       # 
#---------------------------------------------------------------------------------------# 
 
 
#       Objective of script: 
#       Fetch market prices for a given Betfair market ID, calling the 
#  get_mArket_prices_compressed function 
#       To test this script the event must be explicitly named, for production scripts  
#  this is captured automatically using code from Example 7-3 
#       Finally, save the market information to a database, and to a hash of arrays which 
#       is dumped to a file for later use 
 
 
#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";           #Free Access API access code 
 
#       other program variables not declared in line 
my $back_price; 
my $lay_price; 



CAPTURING AND USING MARKET INFORMATION 

149 

my $lay_vol; 
my $back_vol; 
my $marketId; 
my $timestamp; 
my $date; 
my $discard; 
my %prices; 
my %inter_prices; 
 
#       open our database handle for a permanent record of the prices 
 
my $dbh = DBI->connect("DBI:mysql:autodb", “username”) or die ("Error:  $DBI::errstr");  
#substitute your database and user credentials 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
#       For this example we pick one event and type it in to demonstrate price capture 
#       Eg. Run Example 5-2 and choose an ID, then hard code it as below 
 
$marketId = "20625238";        #your example market ID for testing price retrieval 
 
#       To automate capture of the relevant event, see Chapter 7, and Example 7-3, or 7-4 
#       Eg. if wishing to automate capture of the next event from an events_schedule file 
#       Uncomment code below, within context of other programs in the framework 
 
#       Code snippet to include from Example 7-3 for automating event capture 
#open (EVENTS, "/home/aeb/events_schedule");   #use your path to your schedule of events 
#my @events = (<EVENTS>); 
#close(EVENTS); 
#my $event_details = shift(@events); 
#$event_details =~ s/^\s+|\s+//g;        # to get rid of dangerous invisible characters 
#my ($time, $course, $marketId) = split (/,/, $event_details); 
#       end of snippet for automating event capture 
 
#       Get market information for this event, and save the array for runner names 
my @market_array = get_markets($token, $marketId);       #runner_name is key, runner ID 
is value 
my %static_runner_data = %{$market_array[0]};                                   
#runner_name is key, runner ID is value 
 
#      Get current market prices 
# runner ID is key, runner prices are a value of hashes 
 
my %prices_hash = get_market_prices_compressed($token, $marketId);          
$timestamp = $prices_hash{timeStamp}; 
($date, $timestamp) = split (/T/, $timestamp); 
($timestamp, $discard) = split (/Z/, $timestamp); 
print $timestamp; 
# N.B.:  hashes for static data and dynamic prices are now in memory, all market 
# information now retrieved from Betfair 
 
my @names = keys(%static_runner_data); 
foreach my $runner (@names) { 
 
my $runnerId = $static_runner_data{$runner}; 
 
$back_price = $prices_hash{prices}->{$runnerId}->{back}->{1}->{price}; 
$back_vol = $prices_hash{prices}->{$runnerId}->{back}->{1}->{amountAvailable}; 



AUTOMATIC EXCHANGE BETTING 

150  

$lay_price = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{price}; 
$lay_vol = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{amountAvailable}; 
 
#       test all captured variables are correct 
print "$marketId, $runnerId, $runner, $date, $timestamp, $back_price, $back_vol, 
$lay_price, $lay_vol\n"; 
 
 
#       Save the information now, first for a persistent record in our database 
my $sql = qq(INSERT INTO price VALUES 
('$marketId', '$runnerId', '$runner', '$date', '$timestamp', '$back_price', '$back_vol', 
'$lay_price', '$lay_vol') ); 
my $query = $dbh->prepare($sql); 
$query->execute; 
 
#       also create a hash of arrays to represent our runner prices that we subsequently 
# dump to a file: 
$inter_prices{$runner} = [$back_price, $lay_price, $lay_vol, $back_vol, $runnerId, 
$marketId]; 
 
} 
 
#       Dump out prices to a file which can be read into an example decision making 
# program later, as an alternative to database access 
 
use Data::Dumper; 
$Data::Dumper::Purity=1; 
open (FILE, '>/home/aeb/inter_prices'); 
print FILE Data::Dumper->Dump([\%inter_prices], ['*inter_prices']); 
close FILE; 

 

Running the program 
 
The example captures one set of current prices for a specific event (using the Betfair 
market identification number) and writes the output to a data structure which is held in 
memory for the duration of the program and is stored to a persistent format such as a 
database for reuse when the program has exited.    
 
Retrieving prices for a single market using GetMarketPricesCompressed in conjunction 
with GetMarkets is the core routine for all the price programs, capturing names with 
prices, then extracting them to a database.    This core routine is more useful from a 
practical point of view when the program is scheduled to run at the desired time and 
automatically captures prices for relevant events at that time (without having to explicitly 
state the market identification number to use).    We discuss both these aspects of 
automation for the appropriate events in Chapter 7, since it applies to many other 
functions, showing the appropriate code to add in Examples 7-3, through 7-4.   In 
Example 8.2, the appropriate code is included in the correct position but shown 
commented out, so that the program can first be tested to show it works correctly for an 
explicitly named market, before being allowed to run automatically as a scheduled task. 
 
Once we have called the get_market_prices_compressed function, we have the 
option of using all the levels of information returned and calculating derived variables, 
such as, for example, the average price and volume for back and lay prices.    Typically, 
we might use changing information on average price to indicate momentum on one side 
of the market or the other, in conjunction with currently available back or lay prices.   
This data could feed through to our betting decision making process for further 
consideration.   We consider calculating average price for all back and lay amounts to 



CAPTURING AND USING MARKET INFORMATION 

151 

the 3 levels of price that can be retrieved by get_market_prices_compressed in the 
upcoming section below, Extending the program. 
 
Likewise, in terms of derived variables, we can use the market overround in our betting 
decision making process, and have all the information available to calculate it at this 
point.  We also consider calculating the overround later in this Chapter at the point 
where prices are captured (it could also be done from the database).   Once we have 
data relating to the overround, it can inform later stages of the framework. 
 
Let’s look at the output from this example (which is of course the same for the 
appropriate timestamp whether the program is run interactively or on an automated 
basis) by querying the MySQL table used to store the data. 
 
Using the interactive command line in MySQL, we retrieve current price and volume 
information for each runner in the race, ordered by the back price.    
 
mysql> SELECT runner, timestamp, back, backvol, lay, layvol FROM price WHERE 
marketId="20634376" ORDER BY back; 
 

 
+------------------+-----------+--------+---------+--------+--------+ 
| runner           | timestamp | back   | backvol | lay    | layvol | 
+------------------+-----------+--------+---------+--------+--------+ 
| Dabbers Ridge    | 15:37:53  |   6.40 |     579 |   6.60 |    119 | 
| Fonthill Road    | 15:37:53  |   7.40 |      41 |   7.60 |    169 | 
| Commando Scott   | 15:37:53  |  12.50 |     115 |  13.50 |     59 | 
| Tawaassol        | 15:37:53  |  13.50 |      36 |  14.00 |     43 | 
| Dhaular Dhar     | 15:37:53  |  15.00 |      16 |  15.50 |     22 | 
| Rising Shadow    | 15:37:53  |  16.50 |     108 |  17.00 |     20 | 
| Conquest         | 15:37:53  |  17.00 |     156 |  17.50 |     33 | 
| Philharmonic     | 15:37:53  |  18.00 |     153 |  19.00 |     69 | 
| Zomerlust        | 15:37:53  |  19.00 |      52 |  19.50 |      6 | 
| River Falcon     | 15:37:53  |  22.00 |       2 |  23.00 |     40 | 
| Hoh Hoh Hoh      | 15:37:53  |  26.00 |      18 |  29.00 |      2 | 
| Viking Spirit    | 15:37:53  |  26.00 |      60 |  27.00 |     13 | 
| Turnkey          | 15:37:53  |  27.00 |      19 |  29.00 |     10 | 
| Obe Brave        | 15:37:53  |  28.00 |       3 |  32.00 |     42 | 
| Somnus           | 15:37:53  |  36.00 |      10 |  38.00 |     27 | 
| Tournedos        | 15:37:53  |  42.00 |      12 |  48.00 |      5 | 
| King Orchisios   | 15:37:53  |  50.00 |     474 |  55.00 |      4 | 
| Golden Dixie     | 15:37:53  |  65.00 |      13 |  70.00 |     40 | 
| Chicken Soup     | 15:37:53  |  75.00 |       8 |  80.00 |      3 | 
| Invincible Force | 15:37:53  | 130.00 |      10 | 140.00 |     10 | 
+------------------+-----------+--------+---------+--------+--------+ 

 

Figure 8-1:   Market data ordered by back price for a single timestamp 
 
 
Ordering runners by their back price is the same way that horses are ranked on the 
Betfair interface, with those trading at the lowest prices shown first.     Ordering by the 
back price gives us a useful view on the market, as well as enabling us to automatically 
apply criteria where betting strategies require “knowledge” of where a runner stands in 
the betting, which is often the case for systems or trading strategies devised around the 
favourite in the market: 
 



AUTOMATIC EXCHANGE BETTING 

152  

 

Extending the program 
 
The program in Example 8-2 can be scheduled to run automatically as it stands but 
every time prices for a new event are needed we would have to enter the new event 
manually.   In practice we will always specify the events (for which prices are to be 
captured) automatically.  How we do so depends upon our betting strategy and therefore 
what events we are interested in.     Our scheduling programs therefore need to “know” 
when the events in the betting strategy are happening, without us specifying them on a 
daily basis, and what tasks (such as capturing prices at different time intervals) must be 
executed in relation to the event.   This we explored in detail in the previous Chapter 
Scheduling – The Key to Automation. 
 
Leaving aside the actual scheduling of the program in relation to the event, there are 
many options at the program level for extending the core routine to capture prices for 
multiple events in one program, and multiple price points for those events.     
 

Market prices for multiple events 
 
In this section we discuss the differences that enable us to capture market prices for 
multiple events, as opposed to a single event.    The principle here is to capture a list of 
events within the program and then iterate through them one by one, capturing the 
required price data along the way.    To illustrate automatically passing event details to 
our program, we could use our existing database handle to connect to the race events 
database table races that we created in Betting Process 101:  Daily Events Data, then 
issue a query to retrieve all events.   
 
Note here that we are using the Perl DBI module again to retrieve data via programmatic 
queries (that can thus be automated), as opposed to via the MySQL command line. 
 
Creating a list of events and selecting from that or passing in each one would clearly 
mean replacing the “hard coded” event (a.k.a. market) ID from our script in Example 8-2, 
as below: 
 
#       For this example we pick one event and type it in, normally this is an  
# automatically created variable 
 
$marketId = "20625238";           #your example event ID 

 
Instead, we can insert code to amend Example 8-2 in order to capture market prices for 
all the day’s events by substituting in the code in Example 8-3 at this point. 
 
 
 
 
 
 
 
 



CAPTURING AND USING MARKET INFORMATION 

153 

Example 8-3:   Capturing prices for multiple events   
 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#   Additional code for Example 8-2 to fetch prices on multiple events 
#   Full example incorporating this code available at www.betwise.co.uk 
 
#       Adapt Example 8-2 to automatically retrieve all prices for daily events 
#       Delete hard coded marketId and instead query database for all events, as below 
 
#       Get today's date 
 
my ($day, $month, $year) = (localtime) [3,4,5]; 
$year+=1900; $month+=1; 
$date = "$year-$month-$day"; 
#$date = "2007-10-06"; 
 
#       Form and execute query to retrieve Betfair event ids 
my $daily_bf_events = qq(SELECT marketId FROM races WHERE date="$date"); 
my $IDs = $dbh->prepare($daily_bf_events); 
$IDs->execute; 
 
 
#       Pass each event ID to the main body of our market price capture program 
while (my ($marketId) = $IDs->fetchrow_array) { 
 
print "$marketId\n"; #check we are successfully retrieving the correct events 
 
sleep 12;       #if using the Free Access API, to account for service throttling 
 
#       continue where we left off before in Example 8-2 
#       Get market information for this event, and save the array for runner names 
};       #Remember to accommodate the new while loop outside body of Example 8-2 
 
 

Note we have inserted the Perl code to get today’s date, so that the date variable can be 
passed automatically to our database query.   
 
Next, we set up a while loop to process each element of the array (each element is of 
course a separate Betfair market) and pass that to the main body of our example 
function, to fetch prices for each market.    Finally, if adapting the code in Example 8-2 to 
add this functionality, we need to remember to close the new loop }; at the point in the 
original code before writing out (dumping) to the file the %inter_prices data structure. 
 
Now that we are retrieving prices for all races, the emphasis is on storing to a database 
rather than writing out a file of the prices, so the inter_prices file can also be 
dropped.   This file is simply a database alternative in the event of dealing with a light 
amount of data, and passing it conveniently to the next stage of the betting framework.   
We will, however, come back to using this data structure for consistency in running the 
example oddsline strategy discussed for bet_oddsline_strategy in Chapter 7 and 
run live in Part 3, Automated Strategies in Practice. 
 
The modified program now enables us to retrieve all prices for all races that exist in the 
events table, in other words for every event on the day, depending upon the events 
criteria that we specified.   We write out all runners and price information, together with a 



AUTOMATIC EXCHANGE BETTING 

154  

timestamp, to our database table price.   The organisation of the database tables could 
no doubt be improved and more error checking put in place, but in principal it works.   
Note that the GetMarkets call is subject to service throttling for the Free Access API of 5 
calls per minute.   So there is the addition of the statement 
 
 sleep 12; 

 
..before each function call to the GetMarkets and GetMarketPricesCompressed 
services begins, within the context of a loop, so that we are able to use the Free Access 
API.    This makes our loop wait for 12 seconds before passing in another market ID.   If 
this is not done, the calls will simply fail due to throttling of the service.      Alternatively, 
subscribers to read only services (since GetMarkets is a read only service), can delete 
this line, and the script will whiz through all markets in seconds or less, picking up all 
prices. 
 
Running this program at any time before any event begins will consistently update our 
database with market prices for each event - although is somewhat inefficient if using the 
Free Access API due to service throttling.  
 
Thereafter, events will disappear with increasing frequency until there is no data left to 
return.   In this sense, the program is a scattergun approach rather than a specific one, 
attempting to grab everything at one point in time without much sense of purpose, 
returning void results for those markets that have lapsed, in-running prices if markets 
have turned in running and prices only for the timestamp at the point where the program 
is executed.    
 
Without regular scheduling, our database would therefore give a very sketchy picture of 
what is happening in each market.   Therefore, for a useful implementation, the program 
needs to be scheduled with a predictable frequency, and attention paid to markets 
passed.   For example, we might specify the current time for the database query to 
events, and loop only through those that exceed the current time.   Alternatively, we can 
manipulate the array of events within the context of the program as required – e.g. check 
the event status before collecting prices, otherwise move on).    

 

Fetching prices at regular intervals for an event 
 
In this subsection we highlight the adaptations required to our core price capture routine 
(shown in Example 8-2) in order to automate the capture of prices at regular, specified 
time intervals, as opposed to one specific time only, for any given event.    As with the 
previous example for retrieving multiple events, the while construct is the looping 
mechanism used to repeat our core price fetching routine – on this occasion, repeatedly 
getting prices for the same event but at regular time intervals.   As per the adaptation 
discussed in the previous section, any application of this program will seek to automate 
the event that is chosen by the program rather than hard coding a particular marketId.   
However, testing for different time intervals with one marketId is a useful exercise to 
determine that the program behaves as required prior to automating execution of the 
program and automating capture of market IDs. 
 



CAPTURING AND USING MARKET INFORMATION 

155 

On the basis that the core program to fetch each set of prices uses the code in Example 
8-2, we can look at the principals involved to repeatedly call prices at given intervals up 
to a certain event time.   We start with the code listing below and continue with a full 
explanation thereafter. 
 
 
 
Example 8-4:     Fetching prices at regular intervals up to a given event time 
 
#!/usr/bin/perl -w 
 
#---------Adaptation for Example 8-2 to fetch prices more than once on the same event 
#---------See code walkthrough in book 
#---------Requires specification of market Id and race time, usually read from dbase 
#---------See Example 8-3 for an example reading in database variable instead 
 
use strict; 
 
my $race_time = "14:10";        #$race_time variable should be supplied automatically, 
                                #either from a database or flat file 
                                #The hard-coded variable 14:10 for $race_time is supplied 
                                #only for explaining the example code in the book 

  #To test code snippet, run "as is", specifying your own   
  #race time close to the current time 

 
my ($race_hour, $race_minute) = split (/:/, $race_time); 
 
#convert the race time from HH:MM to a digital format, e.g. 14.0 
$race_time = "$race_hour.$race_minute"; 
 
my ($current_minute, $current_hour) = (localtime)[1,2]; 
my $current_time = "$current_hour.$current_minute"; 
 
unless ($current_time < $race_time) { 
        print "Race time $race_time has passed\n"} 
else {print "Collecting prices for race time $race_time\n"}; 
 
while ($current_time < $race_time)  { 
 
#wait 15 seconds before taking a snapshot of the market 
#this is our example time interval between each set of prices captured 
 
sleep 15; 
 
#let’s get the time again now the loop has started, otherwise the loop will never end: 
 
my ($current_minute, $current_hour) = (localtime)[1,2]; 
 
$current_time = "$current_hour.$current_minute"; 
 
#for testing 
print 
"$current_time is still less than $race_time, so collecting more market prices now\n"; 
 
 
#-----------now we are ready to collect prices, as per the body of Example 8-2 
#-----------write the prices out to a database or a file as shown before 
 
}; #remember to close the while loop outside body of Example 8-2 after writing out prices 
   #the program will end when the race time is beyond the current time 
 

 
First, before crafting any program to fetch prices repeatedly we need to decide what we 
want to achieve in collecting prices repeatedly and adapt the program to suit.    Typical 
considerations might be how many iterations we want to go through, or simply what time 
intervals we want to specify between capturing prices on a single event.   We should 



AUTOMATIC EXCHANGE BETTING 

156  

also decide when we want the program to stop capturing prices – e.g. should it continue 
through a market “in-running” status?  Of course we may never stop, in which case the 
program will simply cease to do anything useful after the event time has passed.   If 
using the Free Access API, there are also practical considerations to consider on service 
throttling, but we will leave these out of the equation for a second, since our most 
important consideration is what we actually want to achieve. 
 
There are many ways of attacking the problem of repeating the same loop for a certain 
frequency and time period, using counters for the number of iterations we want, using 
the sleep function to pause between requests for prices (or combining both and 
counting the cumulative sleep time until a specific total or stopping point), and so on.   It 
is of course possible to retrieve market prices in milliseconds on a single market and 
repeat ad infinitum, repeating the call as soon as the first call is finished, with no pause. 
 
The maximum frequency with which we can capture prices with no pause in the loop will 
depend on the bettor’s computing set up.   In this case, that maximum frequency 
comprises the elapsed time of the program, including capturing the output, with a 
GetMarkets call and a GetMarketPricesCompressed call over the internet.    
 
As an indication, setting the market prices loop off repeatedly from the Betwise server 
took under 0.1 seconds in the timestamp between market iterations, doing so from an 
older (late ‘Nineties) home PC on 2 gigabyte broadband was variable and sometimes 
just over a second.     Whilst sub-second market intervals can be useful for trading 
activities, this is not the case for picking up trends in market prices as far as betting on 
outcomes is concerned where a regular sustained frequency is the main asset.   Even 
longer intervals can be useful for identifying trends – and are often more informative as a 
summary view.     
 
For the purposes of the example, we’ll imagine there is a race starting at 2.10 pm, and 
our program to monitor the prices for it has been scheduled to execute automatically at 
2.00 pm.   Since most market activity increases exponentially in the 10 minutes leading 
up to the off, the objective of the program is to capture the trending data so that it can be 
used at any point up until the time that the race starts.   
 
We therefore want to get current market prices and volumes (as per our core routine) at 
a specified frequency and write these to the database.    The prices can be used by any 
other program in our framework, such as a betting decision making program.   Such a 
program can be running in parallel to our example, querying prices from the database 
whenever needed whilst the price capture program continues to write prices to the 
database until it is finished.    
   
First, we assume we have passed in our marketId for the 2.10 pm race (automatically 
reading this from the database or a file on the system), and that our scheduling 
programs have done their job, ensuring that when the program starts at 2.00 pm, it is the 
2.10 pm race that the program considers (we explained how to do this in Chapter 7 
Scheduling – The Key to Automation).    
 
Additionally, so that the “test condition” for the loop can be specified, we will need to 
pass in the race time in HH:MM (24 hour format) along with the marketId for the event.   
The race time is available within the database table races that we created in Chapter 5, 
so if incorporating this routine as part of an automated strategy, we would typically select  



CAPTURING AND USING MARKET INFORMATION 

157 

the market ID and the race time from the database on an automated basis, or select this 
from a flat file, as discussed for the example automation strategies in Chapter 7. 
 
Then, we start our while loop, to constantly iterate through the core routine already 
shown in Example 8-2 to fetch prices.  But first we need to do more work to specify the 
conditions for running the loop.    
 
Since we want the program to stop at 2.10 pm, when the race is due to start, we will 
have to obtain the system time at every new iteration of the while loop, and check to 
see whether or not it is 2.10 pm.   The behaviour we want to implement can be 
paraphrased as, “as long as it is before 2.10 pm, collect prices every N seconds”.   The 
test condition for the loop is the time being before 2.10 pm.    Testing against the current 
time and performing some action dependent on the test is a generally useful construct 
for automation of betting strategies within the context of a program and we refer to it 
elsewhere in the book.     However, for the particular objectives of this program, there is, 
as ever, more than one way to do it, and one way is to change this condition to instead 
test for the time that the market turns in play (which can of course be rather different 
from the scheduled off time), as we discuss in the next section, Using a Market In-Play 
Test to Fetch Prices Before or After Offtime after the program walkthrough below. 
 
After the loop conditions have been specified we specify a pause for the frequency of 
collecting the data, using the sleep statement.  The example specifies 15 seconds since 
we are using the GetMarkets call in every loop, which has restrictions on frequency in 
the Free Access API.   (N.B.. Since Example 8-4 is calling the same market repeatedly, 
the program could be rewritten to make the GetMarkets call before executing the loop, 
thus executing GetMarkets only once, although we would lose any current information 
returned by that call). 
 
So, before the loop begins let’s reformat our 24 hour format race time as a number - so 
that it can be compared using Perl’s numerical comparison operators to the system time.  
Then we get the system time, also in 24 hour format, and do the same thing – i.e. 
convert it to a number which can be compared to our race time.    
 
 

my $race_time = "14:10";    #assume a $race_time variable has been read in here 
my ($race_hour, $race_minute) = split (/:/, $race_time); 
 
#convert the race time from HH:MM to a digital format, e.g. 14.1 
$race_time = “$race_hour.$race_minute”;  
 
my ($current_minute, $current_hour) = (localtime)[1,2]; 

 my $current_time = “$current_hour.$current_minute”; 

 
That gives us the information we need for the first iteration of the loop.   Now we execute 
the loop, according to the test condition in brackets, checking to see whether the system 
time is yet at the time of the race.   When it is, the program will exit.    When it’s not, we 
carry on.   
 
Next we get the system time yet again.   Since we need to test the loop on the system 
time for each iteration of the while loop, this will clobber our previous value and be 
passed into the test condition on the next iteration.  Then we sleep for 15 seconds, 
giving the market a chance to do something different.  This is a completely arbitrary time 
period.   In illiquid markets the market may not move, or the same for “illiquid runners” 



AUTOMATIC EXCHANGE BETTING 

158  

i.e. that are unfancied and/or untraded.  On the other hand, on the more popular races, 
on most Saturdays or at big midweek meetings like Royal Ascot or Cheltenham, 15 
seconds maybe too long a pause and will mean missing informative tick movements.  So 
the reader can implement their own rules for this, depending on their strategy.     
 
As a rule of thumb, the more data requested and collected, the more maintenance can 
be expected on both the programs to collect the data and the database itself.    In 
addition, data request charges have recently been introduced by Betfair, which apply in 
the event of the user making copious calls to the Betfair API (generally relating to a high 
frequency of calls on the same market).    So, the objective is to retrieve a useful amount 
of data rather than data for its own sake – and that needs to be judged in line with the 
betting strategy and the likely state of the markets.    Testing and refining the strategy is 
a good way to decide what data is needed, as we discuss in Part 3, Automated 
Strategies in Practice.    
 
 while ($current_time < $race_time)  { 
 
 
 #wait 15 seconds before taking a snapshot of the market 
  sleep 15; 
 
 #let’s get the time again now the loop has started: 

my ($current_minute, $current_hour) = (localtime)[1,2]; 
 $current_time = “$current_hour.$current_minute” 
 
 
 # and collect prices, as per the body of the example function, i.e.: 
 

The program now returns to the core example we started with, collecting current market 
prices using get_market_prices_compressed and saving them to a database.  
 
# Get market information for this event, and save the array for runner names 

 
Next we simply close the new while loop }; before the last lines of the original code to 
dump the hash of prices to a file, which is now the end of the script.  The code creating 
the hash and dumping it out to a file is now irrelevant, so is deleted  ( otherwise we 
would be overwriting the hash key, i.e. the runner name, each time we collect the new 
set of prices for the runner). 
  
Let’s query our database to have a look at some sample output, in this case for a single 
runner, Fonthill Road,  whose market data was captured - along with all the other 
runners in the 15:45 race at York on the 13th October 2007 - using a program based on 
Example 8-4.    In the query whose results are shown in Figure 8-2, we concentrate on  
showing the changing prices (together with volumes) for one runner over different points 
in time.    These are all extracted from our price table, filtered for a single runner, at all 
timestamp values captured in the last few minutes’ run up to a race.   So, the MySQL 
query at the interactive MySQL prompt mysql> reads as follows:  
 
mysql> SELECT runner, timestamp, back, backvol, lay, layvol FROM price WHERE 
marketId="20634376" AND runnerId="346969" AND timestamp>="15:41:30"; 

 
Such a query can also be executed programmatically (and therefore scheduled to run 
automatically) within the context of a Perl script.     
 



CAPTURING AND USING MARKET INFORMATION 

159 

Figure 8-2 shows the output from this particular query.    The runner in question, Fonthill 
Road, was the second favourite in the market - and in fact won the race in question. 
 
+---------------+-----------+------+---------+------+--------+ 
| runner        | timestamp | back | backvol | lay  | layvol | 
+---------------+-----------+------+---------+------+--------+ 
| Fonthill Road | 15:41:43  | 7.80 |     664 | 8.00 |    156 |  
| Fonthill Road | 15:42:00  | 7.80 |     469 | 8.00 |    141 |  
| Fonthill Road | 15:42:16  | 7.80 |     433 | 8.00 |     36 |  
| Fonthill Road | 15:42:33  | 8.00 |    1508 | 8.20 |    165 |  
| Fonthill Road | 15:42:51  | 8.20 |     269 | 8.40 |    190 |  
| Fonthill Road | 15:43:07  | 8.00 |     759 | 8.20 |    270 |  
| Fonthill Road | 15:43:32  | 8.00 |     517 | 8.20 |    453 |  
| Fonthill Road | 15:43:57  | 8.20 |     338 | 8.40 |    515 |  
| Fonthill Road | 15:44:18  | 8.60 |      18 | 8.80 |    163 |  
| Fonthill Road | 15:44:35  | 8.40 |     404 | 8.60 |    311 |  
| Fonthill Road | 15:44:53  | 8.20 |      72 | 8.40 |   1476 |  
| Fonthill Road | 15:45:10  | 8.00 |     552 | 8.20 |    135 |  
| Fonthill Road | 15:45:26  | 7.80 |     139 | 8.00 |     11 |  
+---------------+-----------+------+---------+------+--------+ 
 

Figure 8-2:   Market data for a single runner ordered by timestamp 
 
 
Despite no particular market move in the betting for Fonthill Road in the run up to the off, 
which opened at 6/1 in the betting on course and was returned at a steady (fixed odds) 
starting price of 6/1, there were still some interesting price movements to fair volume on 
the betting exchange.   We can see movement of nearly a whole point on the back side, 
from 7.8 to 8.60 and back again in less than 4 minutes.     
 

Using a “market-in-play” test to fetch prices before or after offtime 
 
In the code walkthrough for Example 8-4 we mentioned that testing to see if the market 
is in-running or “in-play” is a useful test condition, as an alternative to using the event 
start time, in order to set up a loop for capturing prices before a race begins.    
 
In fact, there is a drawback with using the offtime as a test condition to capture all prices 
before or after the actual race begins (as opposed to the scheduled event start).    This 
is due to the frequent delays in starts, especially in horseracing – be it problems with 
loading the horses into stalls or lining them up over jumps, as well as false starts and 
longer delays which can push race offtimes out for every race at a meeting.    
 
As well as being an alternative test to use for the type of loop construct used in Example 
8-4, an “in-play” test is also a test condition that can be used to begin a loop for 
retrieving market prices.    In other words, it can be used specifically to identify events 
that have already started.    This can either be to capture in-running prices for further 
analysis, or to execute a betting strategy that relies on in-running markets.    An example 
might be a strategy for identifying front runners, which may back a contender before the 
event start and attempt to lay off at a shorter price in running (N.B.. This strategy can 
also be executed by using bet persistence in suitable markets for the “lay leg” of the bet 
before the event begins.) 
 
To ensure all prices are captured up until the actual start or that prices captured for in-
running markets when the event has started, we can therefore use a test condition 



AUTOMATIC EXCHANGE BETTING 

160  

extracted from the Betfair market data already captured.    One of the variables we can 
return from get_market_prices_compressed is the “betting delay” indicator used for 
in-running markets.   Before the event starts, this indicator indicates a delay of zero 
seconds.   After the event turns in-play, there is a delay of more than zero seconds 
before any bet is released to the market.    Thus, we can create a variable to use as a 
test for whether the event has started by extracting this value. 
 
In order to replace the “scheduled event time” test condition given in Example 8-4 with 
an “in-play” test condition, we first create a variable, $pre_event that already tests true 
(i.e. with a value of 1), stating that the event is not in play (since we will always schedule 
the program to start before an event).   This variable must be declared before the loop 
starts, effectively replacing the construct we used for determining the current time 
before, as in: 
 
my $pre_event = 1; 

 
Next, we start the loop to fetch prices, setting the test condition for the loop according to 
the $pre_event variable: 
 
 while ($pre_event)  { 
 
 #wait 15 seconds before taking a snapshot of the market 
  sleep 15; 
 
 # and collect prices, as per the body of the core example 

 
Whilst $pre_event is true, we collect prices.   When it is not true, we stop.   When 
prices are collected on every iteration of the loop, therefore, we must also now test for 
whether or not the event has started, just as previously we tested to see what the time 
was on every iteration of the loop. 
 
Thus, after we have made the usual call as follows: 
 
my %prices_hash = get_market_prices_compressed($token, $marketId);          
 
We also extract the market delay variable that is saved by the subroutine, and use it to 
set the variable $pre_event to its correct value: 
 
my $event_delay = $prices_hash{'delay'} 
if ($event_delay > 0) { #i.e. if the market has turned in play 
$pre_event = 0};  #the pre_event variable becomes false, and the loop stops 
 
 

For this example, to avoid the possibility that prices are collected after the sleep period, 
we could explicitly exit the loop on the first occasion that 
get_market_prices_compressed returns an in-play indicator, stating    
 
if ($event_delay > 0) {exit}; 
 

 
On the other hand, we can also use this construct for the opposite reason to Example 8-
4, in order to start to collect in-running prices, as opposed to stopping before an event 
goes in running.   In this case, a program to do so could be scheduled to begin at the 
scheduled race offtime and test for whether or not the market is in-play immediately.      
 



CAPTURING AND USING MARKET INFORMATION 

161 

As soon as it becomes in-play, a new variable should be collected,  the market status 
variable $prices_hash{'marketStatus'}, which returns a status of active, 
suspended or inactive.   Whilst the event is in-running it will be active, and prices should 
be collected   When it becomes inactive or suspended, the price collection program 
should stop.  The criteria chosen to exit the program is up to the bettor’s preferred 
strategy, since in-running markets can come back after suspension in the event of 
photographs or stewards’ enquiries for example.  
  
Price collection can of course be set to continue during an in-play market, but in this 
case it is worth bearing in mind that for rapidly changing in-running markets, an interval 
of 15 seconds is too long, so the price collection loop itself should be set to a much 
higher frequency. 
 

Calculating average price and weight of money 
 
Whilst capturing current market prices enables us to view the current market action, it 
can give an incomplete picture of trends in the market as a whole.   Any one of our 
automated programs, (such as those collecting multiple prices in the above section) may 
happen to read prices at a point where the market is shifting.   When this happens we 
may catch a fragment of the last volume available at the previous price, or a price that is 
available only fleetingly, so that the market information returned is unrepresentative. 
  
Moreover, we need to consider volumes in the market in order to represent what prices 
are available to “real money”.   For example, let’s say that we wish to place a back bet of 
£50.   Currently available volumes to prices are: £2 at 10.0, £2 at 9.0 and £46 at 8.0.   
Clearly our average price is not the average of the prices available (9.0) but the average 
price to real money, or rather the weighted average market price (8.12), which we 
calculate for each runner within the context of a program in Example 8-6. 
 
There are many instances where the average price itself may be directly useful, for 
example if we are looking to “get on” to a higher volume than is currently available at the 
head of the market, we will want to know the average price available to real money.  
Whilst this is rarer for a favourite in a popular market, our automated betting program 
does not have to be a “high roller” for such data to make sense.   In the instance where a 
market is illiquid, there may be insufficient liquidity at the current price, especially a long 
time before the off, but nonetheless the average price may be deemed “good value” by 
the betting strategy in play. 
 
Of course, we can also use the weighted average and total volume information (in this 
case we are considering the top 3 levels returned by a call to 
GetMarketPricesCompressed) as part of a strategy to determine market movements, 
for betting or trading strategies.   For example we may interpret the total lay volume 
versus the total back volume, to indicate that there is more “price pressure” on the lay 
side or the back side of the market, depending on whichever volume is greater.     Such 
an indicator can be used within a betting program to take a position or wait for best price, 
either to back or lay.   In our general betting framework, we would consider such data 
within the context of the betting decision making stage, as discussed in Chapter 9.     
 



AUTOMATIC EXCHANGE BETTING 

162  

All the information required to create the necessary variables is returned in our 
get_market_prices_compressed function, but has not been extracted so far.   To 
keep matters simple, we will rewrite the core example so that, instead of returning the 
current market values to the database, we calculate the following variables which have 
been discussed in the background to this section: 
 

• Total back volume 
• Total lay volume 
• Average back price 
• Average lay price 

 
These new variables are written in the example script to a separate database table 
average_price, as apart from our previous database table price, which was for 
current prices only.   Of course, we could also perform all operations, including returning 
current prices, in one program as opposed to two, and store all the values, including 
average price and current price in one table if required.   Alternatively, the actual data 
could be stored in the database (i.e. all 3 levels of price and volume information), and 
the derived data (i.e. average prices and weight of money) could be calculated by any 
programs accessing the data.    
 
It’s worth mentioning before continuing with this example that a call to the newer Betfair 
API service GetCompleteMarketPricesCompressed (introduced in version 6 of the API 
in 2008) will also return all available levels to back and lay for all runners in the current 
market.   This is a heavier call in terms of returning more data and then having our 
programs process it, but can be useful where we want to reflect all the liquidity in the 
market in terms of our average price and volume information (although the downside is 
that it will be skewed by weight of money left at the extremes of the market, that is 
unlikely ever to be matched).   
 
 
Example 8-5:   Create Average Prices Table 

 
#CREATE average price table for top 3 levels of back and lay prices/ volumes within 
AUTODB database 
 
DROP TABLE IF EXISTS average_price; 
#@ _CREATE_TABLE_ 
CREATE TABLE average_price 
( 
        marketId   INT(11) NOT NULL, 
        runnerId        INT(11) NOT NULL, 
        runner          VARCHAR(25) NOT NULL, 
        date            date NOT NULL DEFAULT '0000-00-00', 
        timestamp       time NOT NULL, 
        av_back         DECIMAL(6,2), 
        total_back      DECIMAL(10,0), 
        av_lay          DECIMAL(6,2), 
        total_lay       DECIMAL(10,0), 
        PRIMARY KEY (marketId, runnerId, timestamp) 
); 
#@ _CREATE_TABLE_ 

 
The script to create the average_price database table can be executed as shown for 
the other examples creating database tables (in Example 5-1 and Example 8-1) in the 
autodb database. 
 



CAPTURING AND USING MARKET INFORMATION 

163 

 
Example 8-6:   Retrieve 3 levels of market data, calculate average prices and volumes 

then save to database 
 

#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";           #Free Access API access code 
 
#       other program variables not declared in line 
my $back_price; 
my $lay_price; 
my $lay_vol; 
my $back_vol; 
my $marketId; 
my $timestamp; 
my $date; 
my $discard; 
my %prices; 
my %inter_prices; 
 
#       open our database handle for a permanent record of the prices 
 
my $dbh = DBI->connect("DBI:mysql:autodb", “username”) or die ("Error:  $DBI::errstr");  
#substitute your database and user credentials 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
#       For this example we pick one event and type it in, normally this is an  
# automatically created variable 
$marketId = "20625238";           #your example event ID 
 
#       Get market information for this event, and save the array for runner names 
my @market_array = get_markets($token, $marketId);       #runner_name is key, runner ID 
is value 



AUTOMATIC EXCHANGE BETTING 

164  

my %static_runner_data = %{$market_array[0]};                                   
#runner_name is key, runner ID is value 
 
# Get current market prices 
my %prices_hash = get_market_prices_compressed($token, $marketId);   
# n.b. in return hash runner ID is key, runner prices are a value of hashes 
 
$timestamp = $prices_hash{timeStamp}; 
($date, $timestamp) = split (/T/, $timestamp); 
($timestamp, $discard) = split (/Z/, $timestamp); 
print $timestamp; 
# Data now in memory, calling Betfair services is finished 
 
my @names = keys(%static_runner_data); 
foreach my $runner (@names) { 
           
my $runnerId = $static_runner_data{$runner}; 
 
#  capture 3 levels of prices and volumes for back and lay markets 
my $back_price1 = $prices_hash{prices}->{$runnerId}->{back}->{1}->{price}; 
my $back_vol1 = $prices_hash{prices}->{$runnerId}->{back}->{1}->{amountAvailable}; 
my $lay_price1 = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{price}; 
my $lay_vol1 = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{amountAvailable}; 
 
my $back_price2 = $prices_hash{prices}->{$runnerId}->{back}->{2}->{price}; 
my $back_vol2 = $prices_hash{prices}->{$runnerId}->{back}->{2}->{amountAvailable}; 
my $lay_price2 = $prices_hash{prices}->{$runnerId}->{lay}->{2}->{price}; 
my $lay_vol2 = $prices_hash{prices}->{$runnerId}->{lay}->{2}->{amountAvailable}; 
 
my $back_price3 = $prices_hash{prices}->{$runnerId}->{back}->{3}->{price}; 
my $back_vol3 = $prices_hash{prices}->{$runnerId}->{back}->{3}->{amountAvailable}; 
my $lay_price3 = $prices_hash{prices}->{$runnerId}->{lay}->{3}->{price}; 
my $lay_vol3 = $prices_hash{prices}->{$runnerId}->{lay}->{3}->{amountAvailable}; 
 
#   calculate weighted average prices, back and lay, and total back and lay volume 
 
my $total_back_vol = ($back_vol1 + $back_vol2 + $back_vol3); 
my $total_lay_vol = ($lay_vol1 + $lay_vol2 + $lay_vol3); 
 
my $back_multiples = 
($back_price1*$back_vol1)+($back_price2*$back_vol2)+($back_price3*$back_vol3); 
my $lay_multiples = 
($lay_price1*$lay_vol1)+($lay_price2*$lay_vol2)+($lay_price3*$lay_vol3); 
 
my $av_back_price = sprintf ("%.2f", $back_multiples/$total_back_vol);  
my $av_lay_price = sprintf ("%.2f", $lay_multiples/$total_lay_vol);  
 
 
#  test we are getting the right output 
print "$runnerId, $av_back_price, $total_back_vol, $av_lay_price, $total_lay_vol\n"; 
 
# Deal with saving this information now, first for a permanent record to our database 
my $sql = qq(INSERT INTO average_price VALUES  
('$marketId', '$runnerId', '$runner', '$date', '$timestamp', '$av_back_price', 
'$total_back_vol', '$av_lay_price', '$total_lay_vol') );  
my $query = $dbh->prepare($sql); 
$query->execute; 
 
# also create a hash of arrays to represent our runner prices that we subsequently  
# dump to a file: 
$inter_prices{$runner} = [$av_back_price, $av_lay_price, $total_lay_vol, $total_back_vol, 
$runnerId, $marketId];  
      
} 
   
# Dump out horse IDs to a file which can be read into our decision making program 
# later 
 
use Data::Dumper; 
$Data::Dumper::Purity=1; 
open (FILE, '>/home/aeb/inter_prices'); 



CAPTURING AND USING MARKET INFORMATION 

165 

print FILE Data::Dumper->Dump([\%inter_prices], ['*inter_prices']); 
close FILE; 
 
 

Here again, in Example 8-6, we have a variation on the core routine that captures 
current market prices as shown in Example 8-2.   The script is the same up to and 
including the point where the Betfair calls to GetMarkets and 
GetMarketPricesCompressed are made, differing in the data extracted after the calls 
are made, and then in what is done with that data to derive further variables of use.    
 
The previous comments made for Example 8-2 and Example 8-4 also apply to Example 
8-6 in using a “hard coded” market ID within the script – normally we would let this 
variable be captured automatically, according to the order of events to be used for a 
particular betting strategy, as explained in Chapter 7.    Any market ID can be chosen 
and inserted to test the script “as is”, however.   
 
As per Example 8-2 we call the relevant functions to capture the data structure relating 
to this market.   Then, in contrast to Example 8-2, we extract data to more levels of 
depth in the market than previously.   So, not only the current back price, volume, lay 
price and lay volume, but the same for position 2 and position 3 in the market on each 
side.    The current prices and volumes are labelled $back_price1, and so on, within 
this script. 
 

The implementation of the algorithm for calculating the weighted average price needs 
little further explanation, since it is documented within the code itself, in the following 
lines: 
 
#  capture 3 levels of prices and volumes for back and lay markets 
#----capture variables, code shown in Example 8-6 

 
#   calculate weighted average prices, back and lay, and total back and lay volume 
 
my $total_back_vol = ($back_vol1 + $back_vol2 + $back_vol3); 
my $total_lay_vol = ($lay_vol1 + $lay_vol2 + $lay_vol3); 
 
my $back_multiples = 
($back_price1*$back_vol1)+($back_price2*$back_vol2)+($back_price3*$back_vol3); 
my $lay_multiples = 
($lay_price1*$lay_vol1)+($lay_price2*$lay_vol2)+($lay_price3*$lay_vol3); 
 
my $av_back_price = sprintf ("%.2f", $back_multiples/$total_back_vol);  
my $av_lay_price = sprintf ("%.2f", $lay_multiples/$total_lay_vol);  

 
Calculating total back volumes and total lay volumes is a simple case of adding all the 
available volumes together.   To calculate averages, we work out how much money can 
be won and lost on each side of the market, by multiplying the price at each level by the 
volume available for each level, then adding these figures together for each side of the 
market and dividing by total money available, for each side of the market, in order to 
calculate average price. 
 
The weight of money is the difference between the total amounts to back and lay, which 
can be expressed any way we choose, such as a percentage on the back or the lay side 
against the total money available.   If the back side is a low percentage, we might 
conclude that the pressure on the market is downward, i.e. the price is likely to shorten.   
If the reverse and the back side is a high percentage of the total money in the immediate 
market, then we might conclude the opposite, and that the price is likely to lengthen. 



AUTOMATIC EXCHANGE BETTING 

166  

 
It is important of course to remember that whatever is shown on the back side 
represents money that has been placed by layers, and whatever exists on the lay side 
represents money placed by backers.   Thus, the pressure of a large amount shown on 
the lay side of the market compared to a small back amount means there are many 
people trying to back the horse and few trying to lay it at current prices.    Should that 
situation persist there will be an inevitable decrease in price. 
 
Let’s therefore look at the output from running the program,  querying the database 
within an interactive MySQL session. 
 
We run the following query, for the results shown in Figure 8-3: 
 
mysql> SELECT runner, timestamp, av_back, total_back, av_lay, total_lay FROM 
average_price WHERE marketId="20634376" ORDER BY av_back; 
 

 
 

+------------------+-----------+---------+------------+--------+-----------+ 
| runner           | timestamp | av_back | total_back | av_lay | total_lay | 
+------------------+-----------+---------+------------+--------+-----------+ 
| Dabbers Ridge    | 15:37:56  |    6.31 |       1149 |   7.00 |       412 |  
| Fonthill Road    | 15:37:56  |    7.06 |       2100 |   7.82 |       760 |  
| Commando Scott   | 15:37:56  |   11.99 |        735 |  13.36 |       127 |  
| Tawaassol        | 15:37:56  |   12.78 |        269 |  14.48 |       274 |  
| Dhaular Dhar     | 15:37:56  |   14.20 |        633 |  16.21 |       217 |  
| Rising Shadow    | 15:37:56  |   16.15 |        224 |  17.75 |       136 |  
| Conquest         | 15:37:56  |   16.72 |        264 |  17.93 |       214 |  
| Philharmonic     | 15:37:56  |   17.52 |        254 |  19.26 |       129 |  
| Zomerlust        | 15:37:56  |   18.47 |        162 |  20.72 |       308 |  
| River Falcon     | 15:37:56  |   21.27 |        118 |  23.58 |        84 |  
| Hoh Hoh Hoh      | 15:37:56  |   24.30 |         76 |  30.87 |        55 |  
| Viking Spirit    | 15:37:56  |   24.85 |        335 |  28.47 |       124 |  
| Turnkey          | 15:37:56  |   25.99 |        545 |  31.09 |       159 |  
| Obe Brave        | 15:37:56  |   26.77 |        113 |  33.86 |        86 |  
| Somnus           | 15:37:56  |   29.02 |        558 |  40.46 |       100 |  
| Tournedos        | 15:37:56  |   40.16 |        102 |  48.48 |        37 |  
| King Orchisios   | 15:37:56  |   49.61 |        530 |  63.29 |        97 |  
| Golden Dixie     | 15:37:56  |   58.92 |         49 |  70.88 |        46 |  
| Chicken Soup     | 15:37:56  |   68.76 |         34 |  95.29 |        17 |  
| Invincible Force | 15:37:56  |  122.35 |         19 | 150.48 |        38 |  
+------------------+-----------+---------+------------+--------+-----------+ 
 

Figure 8-3:   Market data ordered by back price for a single timestamp 
 
 
A couple of points are worthy of note.      
 
Firstly, the average back and lay prices shown can be compared to the current prices 
that we displayed earlier for the same race.   It can be interesting to compare the two to 
see if there is underlying weakness in the market for any contender, beneath its current 
price.   In this case, there is no difference in ranking between average and current 
prices.    
 
Also, we have only one point in time captured for this example.    Looking back to 
capturing current prices for multiple timestamps, we can see that the same can be done 
for average prices.   The method is the same, again within a loop that encloses the block 
of code that performs the task for a single iteration; however, it contains rules for 
repeating that block of code at regular intervals. 



CAPTURING AND USING MARKET INFORMATION 

167 

 
If we look at Figure 8-3, we can see that the highest average amount of money available 
in the top 3 levels of the market at this particular point in time is for Fonthill Road on the 
back side of the market.    The total amount to back is almost twice that of the favourite, 
Dabbers Ridge, and far more than any of the current lay amounts in the market.   
Moreover, the total back amount for Fonthill Road is almost three times the total lay 
amount.    This indicates upward pressure on the price, with more layers than backers 
across all 3 levels.    
 
A few minutes later, we can see that the price has indeed gone out, as shown in Figure 
8-2 which shows the results of a query giving a snapshot of prices for Fonthill Road 
alone, taken at regular time intervals.   Indeed, if volumes at the current prices are used, 
we can see that the same pressure from layers also continues in Figure 8-2, bearing 
some relation to price increases, before significant back amounts (shown as the lay 
volume) bring the price in just before the off.      
 
Summary: 
We have looked at looping through multiple events to capture prices, capturing prices at 
regular intervals before and after an event begins, and extracting varying levels of 
market information.   This has included calculating derived variables such as weight of 
money and average prices, and in all cases saving retrieved values to a database.    All 
these examples were derived from the same basic routine to make a call to the 
GetMarkets and GetMarketPricesCompressed API services for a given market ID.     
 
In general, it should therefore be evident from the examples that price and volume 
information on a given market at any frequency required can be captured using small 
programs.   The exact combination of variables and the frequency with which programs 
extract data of course depends on the demands of the betting strategy or subsequent 
market data analysis required.      
 
Moreover, the final code to capture market information for any strategy can be 
completely automated for any of the example programs.   This is achieved by replacing 
the $marketId variable (or a number of variables, if addressing more than one market 
at a time) with an automatically generated value assigned to $marketId, following the 
guidelines in the previous Chapter, Scheduling – The Key to automation.   Once we 
have a $marketId variable automatically supplied for a strategy, we can use looping 
structures to capture prices on that market at any frequency. 
 
In the next section we look at deriving further variables from raw market data that can 
also be used to inform later stages of the automatic betting framework. 
 

Calculating Market Overround or Percentage Book 
 
Another key indicator that can influence any betting decision is the current market 
overround.    As we have discussed in Part 1, Exploring Requirements For Betting 
Automation, it follows that the better the price obtained about any contender, win or lose, 
the more profitable any strategy will be in the long term.     If a system (albeit very 
hypothetical) has produced 1000 selections, each with a price of 2/1, and a strike rate of 
33%, or 300 winners, there is a return of 900 points including stake and excluding any 



AUTOMATIC EXCHANGE BETTING 

168  

commissions, and a total loss on the system of 100 points.   For the same system, all 
other factors being equal, an increase in the average price to 3/1 should produce a profit 
of 200 points before any commissions.    Price, in this sense, is all that matters for 
profitable strategies.     Whilst this may seem obvious, certain indicators for ensuring that 
the best price is obtained, such as the market overround, are not always well used.     
 
The market overround, or percentage book, specifically tells us how close the sum of all 
probabilities (or odds) in the market are to summing up to 100%.   If the odds were to 
sum up to 100%, leaving exchange commission to one side for a moment, we would 
have a completely fair game, since probability of an outcome where any runner wins the 
race is of course 100%.  The overround therefore refers to the difference between the 
percentage book and true probability (i.e. 100%) whilst the percentage book refers to the 
absolute percentage which the market adds up to. 
 
If we are backing, we will seek a market that is as close to, or under 100%, whereas if 
we are laying we will seek the opposite (also referred to as an overbroke book, in 
bookmaking or laying terms).    Theoretically, a back market under 100% offers the 
possibility of making a profit whichever contender wins (to varying stakes on each 
contender, a calculation which is the equivalent of dutching the whole field).     
 
Before getting too excited about dutching any time the market dips below a 100% 
overround, it should be pointed out that any market rarely stays under 100% for any 
length of time.    Further, there is no guarantee that if we, or rather our automated 
proxies, do spot such an opportunity that we can get on to the right stakes with every 
contender.    This is due to the fact that:  
 
a) The overround is a price calculation, not a viable volume comparison of prices to the 
money available, (e.g. so we could dutch a market which was a 98% book, but to do so 
would require a £20 stake on one of the contenders where only £2 was available to the 
required price)  
 
b) there is still a time lag, albeit very small, between any “bot” spotting an overbroke 
market by capturing all prices, and then successfully matching bets to the available 
volumes on all of those bets.   Even the quickest bots can lose out to a market 
movement that occurs in the milliseconds between completing bet execution and a price 
changing.    
 
Notwithstanding the above, there are many automated programs that attempt to dutch 
such markets, although some risk of being left with an unwanted position always 
remains. 
 
Whilst we may not have the chance to play the perfect book on many occasions, when 
looking at betting on outcomes, we can nevertheless use the market overround to help 
with decisions on obtaining best prices for bets we have already decided we want to 
make.    
 
Of course, the market overround is only one piece of information.   It cannot tell us 
anything about the chances of an individual selection, or whether or not it is a good bet – 
that is if it is over or under-priced when measured against its ”true” probability of winning. 
 



CAPTURING AND USING MARKET INFORMATION 

169 

However, the bottom line, taking the example of backing for an instant, is that any price 
obtained in a 100% market is likely to be better than a price obtained in a 120% market – 
a market overround which is not unusual in the traditional bookmaking world.    It would 
be unlikely in such instances that the 20% difference in the book will be uniform across 
all runners (the current tendency being for prices to be closer between Betfair and 
bookmakers at the head of the market and more divergent further away), but 
nonetheless, there is likely to be some price advantage across the board that makes 
betting generally more favourable, whatever runner has been selected, at such times.    
 
Before looking at Perl code to calculate the overround, we should also bear in mind that 
the lay market overround (or percentage book) and the back market percentage book 
are always different due to the existence of spreads between the prices, given that the 
exchange world presents a different set of probabilities with regard to winning or losing.   
This is unlike a traditional bookmakers’ percentage book, with only one set of prices that 
are the watermark between the punter and his traditional foe – i.e. there are no price 
spreads.    On the same theme, exchange spreads can be more divergent than one 
price tick.   So, it is important to calculate overrounds for the side of the market that is to 
be played,  depending on whether a back or lay strategy is in operation. 
 
In the code snippet shown in Example 8-7, we again assume that we are building upon 
the basic example program shown in Example 8-2 from the beginning of this section, this 
time adding code in order to calculate the overround or percentage book.    
 
First, however, we will need to consider some new variables, and add these to the 
beginning of the script.     
 
#----------------start of script for Example 8-2 not shown 
 
my $percent_book; 
my $percent_takeout; 
my $lay_percent_takeout; 
my $lay_percent_book; 

 
After defining other variables to be used in the program and logging in,  we call 
GetMarkets followed by GetMarketPricesCompressed as per Example 8-2, then loop 
through each of the runner names in the market, also as before.   It is during this loop 
that we will calculate the market overround. 
 

 
Example 8-7:   Adding calculation of market overround within context of other examples 
 
#!/usr/bin/perl -w 

 
# Assume we are looping through each runner as per Example 8-2, 8-3, 8-4 and 8-6 
# All variables in Example 8-2 are available and new variables added as follows: 
#my $percent_book; 
#my $percent_takeout; 
#my $lay_percent_takeout; 
#my $lay_percent_book; 
 
#------Calls to Login, GetMarkets, GetMarketPricesCompressed 
 
# After capturing current (or level 1) prices for each runner, as in: 
#foreach my $runner (@names) { 
 
#my $runnerId = $static_runner_data{$runner}; 
 



AUTOMATIC EXCHANGE BETTING 

170  

#$back_price = $prices_hash{prices}->{$runnerId}->{back}->{1}->{price}; 
#$back_vol = $prices_hash{prices}->{$runnerId}->{back}->{1}->{amountAvailable}; 
#$lay_price = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{price}; 
#$lay_vol = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{amountAvailable}; 
 
# Calculate the overround for this contest 
 
$percent_takeout = (100/$back_price); 
$lay_percent_takeout = (100/$lay_price); 
$percent_book += $percent_takeout; 
$lay_percent_book += $lay_percent_takeout; 
 
$percent_takeout = ();   #wipe value of percent takeout for each runner 
$lay_percent_takeout = ();  #before moving onto the next runner 
 
} #end foreach my $runner 

 
#  now do something with the overround values available 
#print "OVERROUND = $percent_book\n";   
#print "LAY OVERROUND = $lay_percent_book\n"; 

Using the variables for the current market price and volume, our method is to calculate 
the percentage of the book that each runner “takes out”, or in other words what the 
probability is of the runner winning the race, purely according to the market.     
 
We then store this probability, or $percent_takeout, in bookmaker parlance, to its 
own variable, and in turn add that runner’s percent takeout to an ongoing total for 
$percent_book.    
 
$percent_book += $percent_takeout; 

 
We clear the variable for $percent_takeout, before it is assigned a new value by the 
next iteration of the loop for the next runner, which is in turn added to percent book, until 
we have been through all runners.   In parallel, we also undertake the same procedure 
for the lay side of the market, saving each runner’s takeout to 
$lay_percent_takeout  and tracking the total in $lay_percent_book.    
 
 

Once the loop is done, our values for the overround are available in these variables.   
We can write them to a database table, add them to our hash, or whatever we want, as 
we have discussed in previous examples.   Below, we just show the print statement, to 
test they have been captured correctly: 
 
print "OVERROUND = $percent_book\n";   
print "LAY OVERROUND = $lay_percent_book\n"; 

 
We can also calculate the overround in another part of the betting process, for example 
within the betting decision making process, using the same method, provided we also 
read in the price file or database query within that stage of the process, such that we are 
able to calculate the overround as above. 
 
This statement applies to most examples showing derived variables based upon market 
information – i.e. we can capture the raw data at this stage, but if that data is made 
persistent in a file or database, we can decide at which stage of the betting process we 
create and use derived variables.   As data items they belong to the market information 
stage, since they can be calculated based on all information we collect in these phases.   
However, the use of such variables as the overround, weight of money, average price 
and so on (at least within a betting strategy, as opposed to research) is in the additional 



CAPTURING AND USING MARKET INFORMATION 

171 

information they provide to the betting decision making process.   So that is where they 
are used.   
 
 

Analysing the entire price ladder per runner 
 
Using the GetMarketPricesCompressed API service gets us so far in analysis of the 
current market but to be thorough about the market for each runner we should look to 
the entire trading history for each horse (which, aggregated, of course gives us the entire 
market history) as well as all the outstanding offers for the horse on the back and lay 
side, at all price levels. 
 
GetMarketTradedVolume and GetDetailAvailableMktDepth are the services that can 
be used to retrieve this information, equating, in terms of the website User Interface, to 
the Traded and Available table for each runner.   
 
The newer function GetCompleteMarketPricesCompressed can also be used to 
retrieve all current liquidity information, (just as its namesake, 
GetMarketPricesCompressed does for the first 3 levels to back and lay in the market) 
for all runners in the market.   This can avoid the need to call 
GetDetailAvailableMktDepth for each runner, if wishing to analyse the price ladder for 
all runners at the same time.   Similarly, a single  GetCompleteMarketTradedVolume 
API function will in future be able to retrieve traded volumes at all levels for every runner, 
avoiding the need to call GetMarketTradedVolume for each if the required analysis is 
over the whole market – although the latter function remains a viable solution. 
 
We refer to a “price ladder”, since that is what the table shows us for each runner, and 
the type of interface which is also adopted by trading software.    Within the Betfair user 
interface, the table is simply a static report.    An example table is shown below for those 
unfamiliar with this data.  In terms of the user interface, the table is shown alongside 
some other market information we have already covered in the 
GetMarketPricesCompressed overview, including the summary market information for 
the runner on the left and Price/Volume over time graphic.    
 
However, we are interested in the table represented by the columns on the right hand 
side of Figure 8-4, Traded and Available: 
 
 

Betting on:  Best Alibi
 

Total matched on this event:  £559,798 

Reduction Factor  28.5% 
Betting summary - Volume:  £281,766  

Last price matched:  3.85 

 

Traded and Available 

Odds To back To lay Traded 

1.01 £1,830     

1.04 £27     

1.05 £12     

1.06 £15     

1.10 £33     

1.19 £853     

1.20 £5     



AUTOMATIC EXCHANGE BETTING 

172  

 

Inverse Axis 

 
The information on this page may be slightly delayed.  

1.39 £154     

1.50 £10     

1.65 £5     

1.76 £5     

1.96 £104     

1.99 £800     

2.00 £2     

2.06        

2.10 £273     

2.12 £43     

2.14 £614     

2.16 £1,585     

2.18 £339     

2.20 £17     

2.24 £202     

2.26 £5     

2.28 £1     

2.30      £1 

2.38 £2     

2.40 £574     

2.46      £55 

2.48      £70 

2.50      £370 

2.52 £94   £449 

2.54 £1   £332 

2.56      £250 

2.58 £3   £82 

2.60 £50   £562 

2.62 £187   £94 

2.64      £120 

2.66 £2   £557 

2.68      £286 

2.70 £159   £535 

2.72      £80 

2.74 £187   £381 

2.76 £170   £121 

2.78 £32   £60 

2.80 £15   £723 

2.82      £471 

2.84 £9   £1,274 

2.86 £100   £1,337 

2.88 £196   £2,383 

2.90 £10   £5,825 

2.92 £100   £6,117 

2.94 £51   £6,884 

2.96 £48   £6,505 



CAPTURING AND USING MARKET INFORMATION 

173 

2.98 £37   £5,990 

3.00 £616   £14,873 

3.05 £103   £5,936 

3.10      £2,467 

3.15 £350   £1,343 

3.20 £50   £499 

3.25 £793   £422 

3.30 £125   £169 

3.35 £122   £424 

3.40 £475   £1,976 

3.45 £47   £2,277 

3.50 £794   £1,807 

3.55 £1,151   £6,503 

3.60 £1,082   £11,515 

3.65 £61   £19,814 

3.70 £579   £27,965 

3.75 £761   £19,596 

3.80 £909   £11,733 

3.85   £729 £11,799 

3.90   £1,048 £6,327 

3.95   £1,450 £7,098 

4.00   £1,866 £24,438 

4.10   £4,771 £29,487 

4.20   £3,931 £19,945 

4.30   £587 £11,309 

4.40   £452 £129 

4.50   £789   

4.60   £371   

4.70   £27   

4.80   £20   

4.90   £16   

5.00   £113   

5.10   £83   

5.30   £23   

5.50   £20   

6.00   £12   

7.00   £1   

11.00   £20   

90.00   £3   

1,000.00   £167    
 
Figure 8-4:    Traded and Available Prices/Volume on Betfair, corresponding to 

GetTradedMarketVolume and GetDetailAvailableMktDepth API functions 
 
. 



AUTOMATIC EXCHANGE BETTING 

174  

 
There are 2 calls to cover this data in terms of using the API, and each call is made for a 
particular runner in a market, rather than for returning the market as a whole. 
 
Dealing with each of the 4 columns in turn, column 1 gives us the prices for amounts 
matched and available on this horse, column 2 shows us what is available at each price 
in the current market to back, column 3 what is available in the current market to lay, and 
column 4 the total volume traded at each price. 
. 
What can we do with this information in automated programs?   We can use it as we 
earlier discussed for other indicators, such as weight of money, average price and 
market overround (although the prices for GetDetailAvailableMktDepth are cached, so 
do not give the same live picture as GetMarketPricesCompressed, but do give greater 
context in terms of the entire pricing ladder), to help us determine automatically either 
which way the market will move for a particular runner, or what odds offer the best 
potential for being matched. 
 
Note that for Betfair SP markets, two additional columns are added to represent bets 
placed in the SP markets before the off, being Backers’ stake and Layers’ liability.   
This data can also be retrieved within the calls mentioned, as we show in Example 8-8 
for all levels of traded volume 
 
In one respect, the data allows us to calculate the same type of statistics we used 
earlier, but for all levels of depth.   This is what we can achieve with the data retrieved 
from GetDetailAvailableMktDepth, although since this is more detailed offer 
information, this is cached every 20 seconds.   Additionally, we can see more clearly at 
which price levels an opportunity might exist at which to place speculative offers.   In the 
market shown in Figure 8-4, for example, we can see that there is no offer available to 
back at a price of 3.10, despite the fact that over £2000 has been matched previously at 
this amount, and there is over £10000 waiting in the market to be matched at lower 
prices.    So there is an opportunity to be “first in the queue” at that price. 
 
There are a few further useful differences in the data available in the price ladder as 
opposed to the data we were dealing with in the previous section, and it is these that we 
will focus on.   Most important is that we are not dealing only with offers, but with how 
the market has actually behaved, as represented by the volume traded, as returned by 
the service GetMarketTradedVolume, the Perl function for which is also available in our 
library of functions. 
 
Offer information in the market is all well and good, but only traded volumes are the 
equivalent of punters “putting their money where their mouth is”.    Making any large 
offer to be matched at a level well away from the current market (to take the extreme 
case, at odds of 1.01 or 1000) does not generally tell us anything about the market or 
the level of market confidence in any particular contender at any point in time.    Since 
any amount, available at any price other than the current market, may be put up and 
removed at whim, it is questionable to what extent we should use any information that is 
far removed from current levels of activity in order to predict price movements.   We can 
rely on traded volume in the exchange markets, however, since we know that market 
participants have traded at whatever prices and volume levels are returned by this 
function. 
 



CAPTURING AND USING MARKET INFORMATION 

175 

Therefore, we can use GetMarketTradedVolume to calculate a number of statistics 
from the traded volumes rather than the offers, which may help us better understand and 
predict the market.    For example, we can calculate the weighted average price, as we 
showed for the available 3 levels of offers in the market in the previous section, but this 
time for all the amounts in the historically traded market.   We refer to this value as the 
average traded price, representing the average for all prices, at their respective volumes 
traded, which have been matched.    In one sense, this is the most representative price 
as to any runner’s chance in the market, since the average price represents all risk that 
has been taken.    In addition, we can retrieve the highest and lowest prices at which 
runners have been traded to date, in order to give ourselves a handle on the trading 
range for any given runner.     
 
 
The example code below shows the calculation of these values from the 
GetMarketTradedVolume function, shown in the context of adapting the core routine for 
extracting market prices by marketId, Example 8-2, with which we started the Chapter.  
This time we go further than showing an example which demonstrates one call only, to 
show how we can build up a program using functionality we have already covered.  We 
also generate a report to show the output rather than saving it to a database or creating 
a data structure within a flat file (as per options covered in previous examples).   The 
function call for GetMarketTradedVolume is designed to be used for one runner; but in 
Example 8-8 we calculate average prices for all runners in the market, and return those 
with other market information for each runner.     
 
The  objective is to create a report for each runner in the race listing: 
 

• Current back price 
• Current lay price 
• Calculated average price based on all trading history 
• The lowest price at which each selection has traded 
• The highest price at which each selection has traded.     

 
 
 
Example 8-8:   Producing runner price statistics with market traded volumes 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       Objective of script: 
#       Fetch market prices for a given Betfair market ID, 
#       Fetch all traded volume information for each runner in the market; 
#       Calculate average traded price, lowest odds matched and highest odds matched 
#       for each runner in the market; 
#       Print out the variables captured to a report or save in persistent data structure 
 
#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 



AUTOMATIC EXCHANGE BETTING 

176  

use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";           #Free Access API access code 
 
#       other program variables not declared in line 
my $back_price; 
my $lay_price; 
my $lay_vol; 
my $back_vol; 
my $marketId; 
my $timestamp; 
my $date; 
my $discard; 
my %odds_array; 
 
#       open our database handle for a permanent record of the prices 
open (REPORT, ">/home/aeb/runner_price_statistics_report"); 
 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
 
#       For this example we pick one event and type it in, normally this is an 
#       automatically created variable 
$marketId = "20625238";           #your example event ID 
 
#       Get market information for this event, and save the array for runner names 
my @market_array = get_markets($token, $marketId);       #runner_name is key, runner ID 
is value 
my %static_runner_data = %{$market_array[0]};                                   
#runner_name is key, runner ID is value 
 
#      Get current market prices 
#       runner ID is key, runner prices are a value of hashes 
 
my %prices_hash = get_market_prices_compressed($token, $marketId); 
$timestamp = $prices_hash{timeStamp}; 
($date, $timestamp) = split (/T/, $timestamp); 
($timestamp, $discard) = split (/Z/, $timestamp); 
print "$timestamp\n"; 
# N.B.:  hashes for static data and current market prices are now in memory 
 
my @names = keys(%static_runner_data); 
foreach my $runner (@names) { 
 
my $runnerId = $static_runner_data{$runner}; 
 
#print "$runnerId\n"; 
my $back_price = $prices_hash{prices}->{$runnerId}->{back}->{1}->{price}; 



CAPTURING AND USING MARKET INFORMATION 

177 

my $lay_price = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{price}; 
my $back_amount = $prices_hash{prices}->{$runnerId}->{back}->{1}->{amountAvailable}; 
my $lay_amount = $prices_hash{prices}->{$runnerId}->{lay}->{1}->{amountAvailable}; 
 
 
#capture all trading history for the runner 
 
my %traded_hash = get_market_traded_volume($token, $marketId, $runnerId); 
my $traded_array = $traded_hash{volArray}; 
 
#print Dumper ($traded_array); 
 
 
#declare variables that will be used outside the loop 
my $total_vol; 
my $total_amount; 
my @odds; 
 
foreach my $traded_vol (@ {$traded_array} ) { 
 
my $amount = $traded_vol->{totalMatchedAmount}{content}; 
my $odds = $traded_vol->{odds}{content}; 
my $vol = $amount * $odds; 
 
#any bets requested "blind" at starting price can be picked up as follows 
#to pick up all bsp bets a running total should be kep as per $total_vol 
#my $bsp_liability = $traded_vol->{totalBspLiabilityMatchedAmount}{content}; 
#my $bsp_back = $traded_vol->{totalBspBackMatchedAmount}{content}; 
 
push @odds, $odds; 
 
#print "$amount\n"; 
#print "$odds\n"; 
 
$total_vol += $vol; 
$total_amount += $amount; 
 
}       #end foreach traded_vol for runner name 
 
#print "$total_vol\n"; 
#print "$total_amount\n"; 
 
my $lowest_traded = $odds[0]; 
my $highest_traded = $odds[-1]; 
my $av_traded_price = sprintf ("%.2f", $total_vol/$total_amount); 
 
#my $traded_timestamp = $traded_hash{timeStamp}; 
#print "$traded_timestamp\n"; 
 
#print "$runner, $back_price, $lay_price, $av_traded_price, $lowest_traded, 
$highest_traded\n"; 
$odds_array{$runner} = [$back_price, $lay_price, $av_traded_price, $lowest_traded, 
$highest_traded]; 
 
} #end foreach runner in market loop 
 
#create an array of runners ranked by back price (i.e. the first value in the odds_array) 
 
my @ranked_runners =  
sort { $odds_array{$a}->[0] <=> $odds_array{$b}->[0] } keys %odds_array; 
 
foreach my $ranked_runner (@ranked_runners) { 
 
#print "@{ $odds_array{$ranked_runner} }\n";     #test 
 
my ($back_price, $lay_price, $av_traded_price, $lowest_traded, $highest_traded) =  
@{ $odds_array{$ranked_runner} }; 
 
format REPORT_TOP = 
RUNNER            BACK  LAY   AVG   LOW   HIGH 
. 



AUTOMATIC EXCHANGE BETTING 

178  

 
format REPORT = 
@<<<<<<<<<<<<<<<  @<<<  @<<<  @<<<  @<<<  @<<< 
$ranked_runner, $back_price, $lay_price, $av_traded_price, $lowest_traded, 
$highest_traded 
. 
 
write(REPORT); 
 
} 
 

The script starts much like our others, with the exception of a couple of new variables to 
be used at the start of the program.    The point at which it starts to vary from our core 
example for fetching prices for a given market is after looping through the usual array of 
market runner names, converting each to its corresponding runner ID, as below: 
 
my $runnerId = $static_runner_data{$runner}; 

 
At this point, as before, we extract all the values we want from 
GetMarketPricesCompressed in terms of currently offered price and volume for each 
runner, and then start a new loop with runner ID, session token and market ID supplied 
as arguments to GetMarketTradedVolume, in order to extract and calculate traded 
volumes for each runner.    
 
Now we have a loop running within a loop, since each time we take the market runner 
name, calling the GetMarketTradedVolume for that runner, as well as extracting the 
last called values for current prices.     
 
Here’s how that second loop works: 
 
foreach my $traded_vol (@ {$traded_array} ) { 
 
my $amount = $traded_vol->{totalMatchedAmount}{content}; 
my $odds = $traded_vol->{odds}{content}; 
my $vol = $amount * $odds; 

 
The variable $traded_array is a value from the hash returned by our function call.  
This value is itself a reference to an array; so first we dereference that array in order to 
loop through it.    
 
The array itself is a list of all price levels traded, from the lowest to the highest price, and 
the volumes that were traded for each of those levels.   We therefore access two useful 
elements of information for each level – the $amount traded and the price, or $odds 
matched for that volume. 
 
Note that to find any bets specified for starting price we can extract those values too – by 
extracting the variables that are commented out below 
 
#my $bsp_liability = $traded_vol->{totalBspLiabilityMatchedAmount}{content}; 
#my $bsp_back = $traded_vol->{totalBspBackMatchedAmount}{content}; 

 
However, given that we are calculating the average price matched at the time of running 
the function, and that BSP bets are only matched to any price once the BSP takes effect 
at the beginning of a race, we can safely leave these from our calculation. 
 



CAPTURING AND USING MARKET INFORMATION 

179 

To calculate our average, we do the same as with our earlier example of offers, working 
out the volume multiplied by price for every price level, then keeping a running total of 
that number, as well as the total volume traded: 
 
my $vol = $amount * $odds; 
$total_vol += $vol; 
$total_amount += $amount; 

 
After the loop for this particular runner has finished, and before iterating the loop for any 
remaining runners, we take the traded volume variables created for the runner and 
calculate the average price, using the sprintf function to format it to 2 decimal places. 
 
}       #end foreach traded_vol for runner name 
 
my $av_traded_price = sprintf ("%.2f", $total_vol/$total_amount); 
 

Another variable that is created in the example script and is worthy of comment is an 
array for all the odds amounts at which trades have been matched.    As we go through 
each array element, we add each set of odds traded to this array @odds, as in: 
 
my $odds = $traded_vol->{odds}{content}; 
push @odds, $odds; 
 
 

The array persists when the loop to extract traded values for each runner has finished, 
since we declared the array before the loop began.   Thus, once all the values have 
been added within the foreach loop, @odds gives us the facility to extract a number of 
useful statistics about the trading range of this particular runner.    Here, we simply take 
the highest and lowest values. 
 
}       #end foreach traded_vol for runner name 
 
my $lowest_traded = $odds[0]; 
my $highest_traded = $odds[-1]; 

 
The trading range is simply the difference between the two values.   However, it can 
often be that the highest traded value and lowest traded values are outliers which are 
unrepresentative of the real trading range, being matched to small money, early in a 
market, or simply by user error (e.g. matched trades at 1.01 before an event).    
Therefore a more useful value can instead be the second and penultimate values for the 
array (or some other rank of choice), as in 
 
my $pen_lowest_traded = $odds[1]; 

 
…or we can calculate instead values for a high and low range using a minimum volume 
(e.g. calculating the average price of the lowest and highest matched amounts to at least 
£100).   All this will help determine whether a market price is comfortably within its 
trading range, or pushing new boundaries, which itself can be a useful price indicator. 
 
Finally, before closing the loop for each runner, we push all the price values that have 
been calculated to a new data structure, (a hash of anonymous arrays), so that we can 
subsequently sort the data structure by a price ranking, and extract any values to write to 
a report. 
 
$odds_array{$runner} = [$back_price, $lay_price, $av_traded_price, $lowest_traded, 
$highest_traded]; 



AUTOMATIC EXCHANGE BETTING 

180  

 
 
} #end foreach runner in market loop 

 
This ends the main section of the program, the next part deals with sorting the data and 
writing it out to a report. 
 
Previously we have written the data structure to a flat file which can be picked up for 
reuse by a subsequent program, or written values to a database for a more persistent 
record.   There is no special reason for writing the values out in a report format below, 
apart from the fact this can also be another useful output type that has not yet been 
touched upon.  In an actual betting strategy, we would typically write out to a database 
for persistence as we have already shown, and/or reuse the data structures created 
within the program for the next part of a betting strategy (e.g. making a decision to back 
or lay based upon price). 
In practice, a betting strategy using the GetMarketTradedVolume service is likely to 
focus on a few selections at the head of the market, where liquidity is highest.    Thus we 
may well prefer to use it for a subset of selections within an event.   The subset can be 
chosen by ranking contenders by order of market price, as discussed for the MySQL 
query shown in Figure 8-1, or, within the context of a data structure in program memory, 
by sorting market prices as an array, then taking the first element(s) of that array as the 
top of the market. 
 
We perform such a sort (i.e. within a program context) in the next line of Example 8-8, in 
this case purely to rank the runners by back price for more logical display within the 
context of the report: 
 
my @ranked_runners =  
sort { $odds_array{$a}->[0] <=> $odds_array{$b}->[0] } keys %odds_array; 
 

This line of code sorts all the keys of our data structure, which are of course names of 
runners, by order of back price.   Normally in a hash, it would be enough to sort by 
values, so $odds_array{$a} with $odds_array{$b}.  Here, since we have stored 
an anonymous array as the value of each key, we have to go further and specify the first 
value of that array (i.e. back price) by referring to the relevant element of the array, i.e. 
$odds_array{$a}->[0]. 
 
Lastly we loop through @ranked_runners, printing all values out to a file, whose 
handle is REPORT, for subsequent inspection.   Perl lets us specify a simple format for 
spacing the printed variables and creating a title line – we could of course make this 
much more sophisticated with a little programming if needed. 
 
In this final example we can see how it is possible to start bringing a number of different 
price variables, which are pertinent to each runner, together in one place.   This can 
create quite a rich picture of the overall market and its trends, any or all of which can be 
used in an automated environment. 
 
As with the other examples from this chapter we can make any number of 
enhancements or adaptations, depending on the use required for the data structures 
within the context of a betting strategy. 
 



CAPTURING AND USING MARKET INFORMATION 

181 

For example, we make the call for getting current market prices only once before the 
loop begins, although we could also make a new call to GetMarketPricesCompressed 
every time we call GetMarketTradedVolume.    This would enable us to be very precise 
about comparing current market prices with average traded prices for each timestamp - 
which we might want to do if executing trades based upon differences in these variables.   
In the run up to the off, the traded history can be a lot of data for each runner, so these 
calls take longer than others (thus creating a potential lag between the first current 
market price obtained and the last traded history data captured).  However, this lag is 
still in the region of milliseconds, so not significant enough to distort the general trend or 
for the purposes of the example report.  
  
To repeat the call for regular time intervals (thus capturing the data required to create a 
moving average and other indicators), as well as to choose the correct event 
automatically, refer to the earlier sections of this chapter on extending the program, as 
well as the previous chapter on automatic scheduling. 
Summary: 
 
Having looked at how market data can be captured iteratively and how to derive 
variables for a single point in time (such as average traded price and weight of money), it 
should be clear that many possibilities exist to amalgamate the capture of variables with 
the frequency of capture to create moving averages, trading envelopes and so on.    We 
can imagine producing and working with many more derived variables, and analysing 
the relationships between them, which will take us firmly down the route of producing 
indicators for trading strategies. 
 
Indeed, when looking at market information alone, there are clear parallels with the 
analysis of financial market data, which opens up a whole range of additional 
possibilities to explore in terms of market analysis and price prediction.     
 
Such analysis, although entirely market oriented, can be useful to help determine market 
confidence in a contender which may be predictive of its chance, as well as short term 
price movements.   In bookmaker terms we have a “steamer”, which is a very obvious 
observation of a horse’s odds tumbling, or a drifter (the reverse).    In exchange markets 
at one point, backing all drifters was more profitable than the reverse, although that does 
not indicate that drifters win more, simply that the price determines long term profitability.    
In the exchange markets, as well as clear price movements for steamers and drifters, we 
also have subtle, shorter term levels of information, from which the trader hopes to take 
advantage, with price movements in either direction, determined by weight of money in 
the market at any particular time. 
 
As we observe elsewhere, betting and trading strategies overlap in the world of the 
exchange, where at the extremes we have single bets on outcomes versus iterative 
trading on price movements.   Whilst our emphasis is on automating the betting process, 
rather than trading per se, it is important to note that in this overlap, the same functions 
are used, so can be pursued for creating trading strategies, and there are lots of useful 
possibilities enabled by an exchange where the edges blur.    These possibilities create 
the opportunity to hedge and profit where market information can be used in conjunction 
with a view on the fundamental chance of each contender.



 

  

 
 



 

183 

Chapter 9:   Automating Betting Decisions 
 
Before taking an automated betting decision, as with an interactive decision, we require 
a selection or a method of assessing winning chances as well as data inputs taken from 
the market.   Whilst we can’t document every type of betting decision, and by implication 
discuss every possible betting strategy, we can highlight some of the key characteristics 
and the ways that manual decisions can be automatically implemented.    
 
At a high level, this part of our automated framework draws together any information that 
is relevant to the strategy and applies the rules of the betting strategy to that data.  The 
information supplied to the decision program can include: 

 
• The details of the event (and contenders) from a horseracing database or other 

data format 
• An assessment of each contender’s chances in any given event, translated into 

tissue prices OR 
• A selection made automatically at the race analysis stage or captured from a 

third party source  
• The current set of market prices and volumes to back and to lay (to any level of 

market depth – from first in queue onwards)  
• Price indicators based on historic price, trade and volume information for each 

contender such as average traded price.     
• Previous results from the days’ racing for the purposes of updating variables 

such as going and draw bias 
• Previous results from the betting strategy during the day to inform staking plans 

such as stop/ loss 
• Account or betting bank information for the purposes of automatic staking. 
 

Aside from the overall method in the betting strategy we must determine optimal 
execution, which will include timing in visiting the market, and the frequency with which 
we visit the market.    Of course, a betting strategy may be designed in order to explicitly 
take advantage of anomalies or fluctuations in the market, as with a strategy that 
involves elements of trading or hedging bets.  
 
Using the oddsline that we created in Chapter 6 as an example for input, we will illustrate 
some of the aspects involved in implementing a decision making process, since many 
different strategies, and therefore decision criteria, are possible when betting an 
oddsline.   
 

Example betting decisions based on an oddsline 
 
In this section we consider the process for basing betting decisions upon an oddsline 
such as the one we generated as an example in Chapter 6, Assessing Contenders and 
discussed in the context of an example strategy for automation in Chapter 7, Scheduling 
– The Key to Automation.    
 



AUTOMATIC EXCHANGE BETTING 

184  

Of course, creating an oddsline in itself is not a betting strategy, but simply a means of 
representing an assessment of winning chances.  Each oddsline will differ depending on 
the methods used for assessment, and for calculating chances based upon that 
assessment.   However, the key operations required with regard to betting an oddsline at 
this stage of the process – namely taking an oddsline as an input from an external file, 
adjusting for non-runners, and comparing the oddsline to the market – are general for 
any oddsline strategy.    
 
The general principle is based around comparing oddsline tissue prices with market 
prices and looking for “overlays” – US racing parlance for horses whose odds are higher 
than their true price – i.e. for which there are too many layers in the market.    These are 
the kind of bets we also hear referred to as “value” selections for the same reasons.   
Although the word “value” has become something of a cliché in racing circles for 
justifying a bet, this is usually because there is no quantification of how value is 
determined; here that is not the case.    We should be able to pull every aspect of an 
automated strategy apart and quantify it.   Equally, an oddsline can be used to identify 
contenders who are “overbet”, or “poor value”, in order to determine lay bets. 
 
To do this automatically we therefore require an oddsline which has been automatically 
generated by the bettor or been supplied by a third party; in terms of logistics the 
parentage of the oddsline is of less importance than that it is available as a clean input 
file to our decision making program.    
 
The oddsline will represent winning chances for each of the declared runners in each 
qualifying race on the day.    The betting strategy will determine what type of races are 
qualifiers and on what basis the tissue prices in the oddsline are calculated.   The 
oddsline methods are the “secret sauce” of the strategy, as we discussed in Chapter 6; 
at the decision making stage, the question is on what basis would we like to use that 
information to create a profit.        
 
The example oddsline we generated in Chapter 6 was based on the Racing Post’s 
Postdata table; every race in the UK each day is a qualifying race, and oddslines are 
produced for all - in reality a betting strategy might be more selective.   Since only 
qualifying races will be written to the oddsline file, then whatever exists in the input file is 
what is presented to the program for consideration - in this case that is all races; again, 
considering the widest case first means we have more scope for possible improvements 
later. 
 

Comparing an Oddsline with the Market; Correcting for Non-Runners 
 
Our decision making process will find the oddsline for any given race 5 minutes before 
the race is due to start.    Automating execution will be subject to an appropriate 
scheduling process such as described for this strategy in Chapter 7, Scheduling – The 
Key to Automation.   
 
The first step after retrieving the appropriate race oddsline is to work out whether there 
are any non-runners in the race.   To be precise, we need to determine whether there is 
any difference between the declared contenders represented in the oddsline and the 
actual contenders at the time we wish to bet.    So, our  decision making program goes 



AUTOMATING BETTING DECISIONS 

185 

to the relevant market for the race and captures the names of those runners who are 
going to post (metaphorically speaking, but that’s more or less where they should be 5 
minutes before a race) together with their prices.   We compare each runner’s name in 
the oddsline with the corresponding runner name in the market, and if there is no match 
we know it is a non-runner.   Otherwise, if every runner is matched, we know that all go 
to post – at least this is true at the time we make the decision; afterwards, the price of 
any contender which we bet in a race that is affected by non-runners will be taken care 
of by a reduction factor automatically applied to our odds by the exchange. 
 
However, if there are non-runners before we have made a betting decision, we need to 
make a reduction in the oddsline equivalent to the price of the removed runners.   This is 
the bookmaking or betting exchange equivalent of making reductions to prices that are 
already taken on contenders when the field size is subsequently reduced.     
 
Since we calculated all the tissue prices in the oddsline on the basis of declared runners 
to a 100% book, we will need to reduce the prices of the remaining runners to reflect the 
fact there is now a greater probability that any of the contenders will win – i.e. maintain a 
100% book for the remaining contenders.   We thus work out the overround based on 
the tissue prices of the remaining runners, then as a “quick fix” work out the factor 
needed to increase the new overround to a 100% book.   Finally we apply that factor to 
the tissue price of all runners in the race.    We will therefore expect that if there are any 
non-runners, the percentage chance of each runner who remains will increase, and the 
odds will decrease (i.e. move closer to 1).    N.B. It would also be possible to calculate 
the oddsline on the basis of actual runners going to post rather than in advance, 
however splitting up the tasks is more convenient for the examples. 
 

Basing betting decisions on the oddsline 
 
Firstly, we will consider the rules applied to the oddsline used for our example strategy, 
then look at some of the possibilities for basing betting decisions on oddslines in 
general. 
 
For our example oddsline, having adjusted for any non-runners, we ensure that the 
oddsline is ranked from those contenders with the greatest to the lowest chance (i.e. our 
tissue price favourite is the first in the list).    Then we take the top third of the field in 
terms of this order.  Thus, we will divide the field size by three (rounding down as 
opposed to up in the event of a resulting number of runners that is not an integer).   
Whatever number is produced will be the top N contenders to consider betting from the 
oddsline ranking (eg, in a field of 12, 13, and 14 runners we will consider the top 4 
horses).    
 
Next, we compare each oddsline tissue price for that runner with the market price, with 
the objective being to look for overlays, or horses that are have been made too long in 
price by the market compared to their real chance.   
 
At this point in determining rules for the decision making process we are dependent on  
the logic behind any betting strategy, which is bound to the input data.   In the case of 
our example the input data is an oddsline which is underpinned by Postdata variables.         
The logic of our betting strategy in limiting choice to the top third only is to take the most 



AUTOMATIC EXCHANGE BETTING 

186  

strongly rated horses and only consider those for backing.   We could do the same with 
overbet horses, and create a laying strategy.   We could take the top 3, or the top 5 in 
the oddsline and look for overlays or overbet horses, regardless of field size.   Or only 
the top rated, or all horses in the oddsline.   Or any of these combinations, coupled with 
the application of a percentage “value buffer”, in case of error. 
 
There really are any number of ways to play an oddsline from a decision making point of 
view – which avenues we pursue and whether we pursue them depends on our 
confidence in the oddsline and the way it was put together.   So it is in the case of the 
example we are using.   The reason that we do not look at overbet horses in our 
strategy, or apply the oddsline any further than the top third in the field, is all down to our 
example input.   The Postdata scores used to build it explicitly state strengths for each 
contender but in many cases leave weaknesses open to question – for example any 
question mark or blank value is translated to zero.    
 
A question mark or a blank is fine if we are considering a race manually, it indicates we 
may have to do further research in order to form an opinion, but in the case of producing 
an automated score any such contender will receive a zero for this attribute.   Does that 
mean we should have confidence in laying it?   By definition, we can be more confident 
that a contender is well suited to the conditions of the race if it appears near the top of 
the oddsline, since we know that in most cases any contenders near the top of the 
oddsline have been explicitly rated with positive scores for each attribute.    In the middle 
or bottom of the ranking, where a bunch of horses may have negative attributes or 
attributes that are simply unknown, differentiation can be uncertain.       This also 
accounts for the reason that we take the top third of the oddsline, in our Postdata 
produced example,  as opposed to a fixed number, such as the top 5 in the field.   In 
smaller fields, a fixed size would mean us dabbling automatically with selections towards 
the middle or bottom of the rankings, where we have more doubts about the oddsline’s 
predictability. 
 
By the same token, there is a potential weakness in that we will bet more in races with 
big fields than small fields, and maintain level stakes on all bets.    Given the number of 
contenders we are considering is related to field size, we therefore risk more.   This is a 
deliberate part of our strategy, however, in that the prices of longshots on Betfair, is at 
the time of writing where the biggest overlays are to be found.   So the strategy is 
somewhat biased towards obtaining big prices on longer shots which we think we have a 
hope of significantly beating SP and getting a bigger price than their true chance.   By 
the same token, we still limit to the top third of the field, so are avoiding complete “no-
hopers”. 
 
There are many weaknesses in the example oddsline based on the above, an obvious 
one being that it does better rating horses with lots of known form (so for example a 
horse who has never encountered a certain going type will score lower though not 
necessarily be inferior than one who has performed on it).    In this sense, the oddsline is 
simply betting on known form over unknown form in many race types.     It is not a 
disastrous strategy, in any case, to go with contenders with known form over unknown 
form in any event, but it might be foolish to base a universal strategy around it.   On the 
other hand, in races where the majority of horses are exposed and tried in many 
conditions, such as is often the case in handicap races, the oddsline can be seen as 
more interesting.    
 



AUTOMATING BETTING DECISIONS 

187 

For more universal applications of an oddsline strategy – going further down the 
rankings, laying etc -  we will do better with a more comprehensive backtesting approach 
to producing the oddsline, and we look at using such examples in Part 3, Automated 
Strategies in Practice.    
 
So, it is clear we can play in many ways around an oddsline.   In this case, having 
chosen the top third of the field, if the oddsline price on a top ranked contender is lower 
than the market price, (that is to say our oddsline makes the percentage chance of 
winning higher than the market does), the betting decision making program will save the 
runner details to place a bet on it.  
 
After we have assessed our runners against the market prices available and saved 
those that we wish to bet on, we simply bet them.   We have to stipulate event details, 
runner details, stake, required price and whether a back or lay bet.    The variables that 
most concern us within the context of applying the betting strategy logic are the stake 
and the back price.    
 
We could apply any staking plan we wished at this point, or we could leave it to the next 
stage of the framework (i.e. betting execution); the same applies to obtaining the 
required price.   Many possibilities are open for stipulating different prices and 
automatically calculating stakes based on available bank size, or using other algorithms.    
In the standard example we will simply take the currently available back price if it offers 
better value than the tissue price, and stipulate a flat, level stake with regard to the 
staking plan.   Taking a value price and using a level stake are both sensible options for 
any betting strategy, although the level stake here is within the context of backing a 
variable number of horses per race, and is thus a dutching strategy.   We discuss this 
further later in the chapter. 
 
What about timing - do we play the market as it is or wait awhile?    For our standard 
example, we simply take the current price inputs (from the inter_prices file created 
by supplying a marketId automatically to Example 8-2) and specify the last back price 
captured (i.e. stored within that file).    By the same token, any of the price indicators 
discussed in Chapter 8, Capturing and Using Market Information, could be inputs at this 
stage and a decision about whether or not to take current market prices based upon 
those (e.g. to only take the current price if the market overround is within a certain 
range).  Alternatively, we can program our strategy to take a higher incremental price in 
relation to current prices, as we show in Example 9-2. 
 
In general, however, asking for the back price in the last 5 minutes before a race time 
usually guarantees a good overround, and, given the time lapse in obtaining the price 
and a computer program executing, we are also pretty sure to get on, as we see when 
we review live results in Part 3, Automated Betting Strategies in Practice.   
 
Finally, we write out all the details necessary for executing the bet, so that it can be 
picked up by the betting execution program discussed in the next chapter.    Splitting the 
programs into their atomic parts enables us to test the decision making strategy to 
ensure we are writing out the correct bet details before pressing ahead and creating a 
production version which can amalgamate both parts of the process, if required. 
 
  



AUTOMATIC EXCHANGE BETTING 

188  

Example Oddsline Decision Program 
 
In this section we walk through an example betting decision program 
bet_formation.pl.   The basis of the strategy for the example is described in the 
previous section.   The code shown in this section implements that logic, and can be 
adapted to any oddsline that we could use as an input file.    
 
For the betting decision process, we require an example oddsline file, here referred to as 
formatted_oddsline which itself contains times and names of courses for each 
contender.    This oddsline file is the one first discussed in Chapter 6, Assessing 
Contenders. 

 
 

Example 9-1: Selecting bets based on an oddsline (bet_formation.pl)  
 

#!/usr/bin/perl -w 
use strict; 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       input oddsline 
open (ODDSLINE, '/home/aeb/formatted_oddsline'); 
 
#       write to a report to show what has happened 
open (REPORT, '>>/home/aeb/betting_report'); 
 
#       output any selections to bet 
open (SELECTIONS, '>/home/aeb/selections'); #only converts Postdata ratings 
 
#declare variables 
my $percent_takeout; 
my $total_overround; 
my $runner; 
my $runners; 
my $total_takeout; 
my @ranking; 
my %final_tissues; 
my %tissues; 
my %inter_prices; 
my %bfair_odds; 
my @horse; 
my @horses; 
 
print REPORT “################   NEW ODDSLINE  ##################\n”; 
 
#       read in market information (captured in an earlier program 
{ 
open (PRICES, '/home/aeb/inter_prices'); 
local $/; 
eval <PRICES>; 
close PRICES; 
} 
 
#       Read in the current event and write out events schedule ready for the next event 
open (EVENTS, "< /home/aeb/events_schedule"); 
open (TEMP, "> /home/aeb/events_temp"); 
my @events = <EVENTS>; 
my $event_details = shift(@events); 
foreach my $details (@events) { print TEMP "$details";} 
close (EVENTS); 



AUTOMATING BETTING DECISIONS 

189 

close (TEMP); 
rename("/home/aeb/events_temp", "/home/aeb/events_schedule"); 
 
$event_details =~ s/^\s+|\s+//g; 
print "$event_details\n"; 
my ($race_time, $race_course, $marketId) = split(/,/, $event_details); 
 
 
#      Ensure the $race_time format from the schedule is common 
# to the input time from the oddsline 
        

 my ($hours, $minutes) = split(/:/, $race_time); 
        if ($hours>12) {$hours = $hours-12}; 
        $race_time = "$hours.$minutes"; 
 
#       loop through oddsline 
while (<ODDSLINE>) { 
 
my ($offtime, $course, $horse, $tissue) = split (/,/); 
        $offtime =~ s/^\s+|\s+$//g; 
        $horse =~ s/^\s+|\s+$//g; 
        $tissue =~ s/^\s+|\s+$//g; 
        $course =~ s/^\s+|\s+$//g; 
if ($offtime =~ /$race_time/ && $course =~ /$race_course/) { 
my $horse_bfname = $horse; 
 
#rules for comparing horse names to be implemented here: 
#N.B.:  The below *should* work but in practice we need to add more rules, to pick up on 
#errors in Betfair horse data, as discussed in part 3, Chapter 13. 
$horse_bfname =~ s/'//g; #removes apostrophes and compares without them 
my $horse_bfname_odds = @ {$inter_prices{$horse_bfname} }[0]; 
 
#calculate oddsline overround here: 
$percent_takeout = 100/$tissue; 
$total_overround += $percent_takeout; 
push (@horses, $horse); 
 
##      Revalue tissue and ratings for non-runners if necessary: 
if ($horse_bfname_odds > 1) { #This means some odds were found - if less than one, the 
horse is a non-runner 
print REPORT "$offtime, $course, $horse, $tissue, $horse_bfname_odds\n"; #check they were 
all captured 
$runner = $horse_bfname; 
$runners++;  
$percent_takeout = 100/$tissue; 
$total_takeout += $percent_takeout; 
$tissues{$runner} = $tissue; 
$bfair_odds{$runner} = $horse_bfname_odds; 
# print "$runner\n"; 
push (@ranking, $runner); 
}       #end if horse_bfname_odds 
 
else { print REPORT "$offtime, $course, $horse, $tissue, NON_RUNNER\n"; 
} 
#3 data structures have been created for reuse; @ranking, %tissue and %bfair_odds 
 
}       #end if odds have been found for the horse 
};      #end while oddsline 
 
#revalue tissue prices for non-runners,  
#store in hash %final_tissues whether non-runners or not 
 
#print REPORT "Tissues = $total_takeout\n";  #if required 
 
if (@horses > @ranking) { 
print REPORT "NON_RUNNERS\n"; 
#revalue here by increasing $tissue price 
my $divisor = $total_overround/$total_takeout; 
foreach my $horse (@ranking) { my $new_tissue = $tissues{$horse}/$divisor; 
$final_tissues{$horse} = $new_tissue; 
#print REPORT "$horse, $new_tissue\n"; $new_overround += 100/$new_tissue; 



AUTOMATIC EXCHANGE BETTING 

190  

}  #end foreach @ranking 
 
} #end if #horses exceeds @ranking 
 
else {print REPORT "ALL RUN\n"; 
%final_tissues = %tissues; 
} 
 
#    print "@ranking\n"; 
#insert alternative selection code here as per section “Extending Decision Criteria”  
#for current example oddsline strategy,  divide #runners by 3 and discount the fraction, 
#then push to @ranking and loop through it 
 
my $third =  int ($runners/3); 
 
if ($runners > $third) {      
@ranking = splice(@ranking, 0, $third); 
} 
 
foreach my $contender (@ranking) { 
#Get the relevant information to bet... 
if ($bfair_odds{$contender} > $final_tissues{$contender}) {  
 
#$bfair_odds = @ {$inter_prices{$contender} }[0];  #more data available if needed 
#$bfair_lay = @ {$inter_prices{$contender} }[1]; 
 
my $bfair_race = @ {$inter_prices{$contender} }[5]; 
my $bfair_horse = @ {$inter_prices{$contender} }[4]; 
my $stake = "5.00"; #or generate automatically, e.g. take the stake from a database 
 
#the following additional parameters are required for bet execution 
my $price_asked = $bfair_odds{$contender};    #just making the variable name meaningful 
my $betType = "B"; 
my $betCategoryType = "E"; 
my $betPersistenceType = "NONE"; 
my $bspLiability = "0.0"; 
 
 
#print out selections to the betting report if required 
#most important is to selections file for subsequent execution 
print REPORT "\n$contender, $bfair_race, $bfair_horse, $price_asked, $betType, $stake\n"; 
print SELECTIONS "$race_time, $race_course, $contender, $bfair_race, $bfair_horse, 
$price_asked, $betType, $stake, $betCategoryType, $betPersistenceType, $bspLiability\n"; 
}       #end if the odds are greater than the tissue 
}       #end foreach contender within the top third of the field (i.e. within @ranking) 
 
 
close ODDSLINE; 
close REPORT; 
close SELECTIONS; 

 

Program Context 
 
For each race, we want to run the program bet_formation.pl in order to determine 
selections 5 minutes before the race time.   This program presupposes that we have first 
collected market prices for this race using the program get_market_prices.pl and 
that after the program is finished, any selections for the race will be bet by the program 
bet_execution.pl.    
 
To determine selections for betting, the program brings together inputs from a file 
holding market prices (inter_prices), a file containing the oddsline for all daily races 
(formatted_oddsline), and it writes out a file containing selection details ready for 
betting, as well as a report on the decisions taken by the program.    



AUTOMATING BETTING DECISIONS 

191 

 
In Part 3, we dispense with the interim files and merge this program to run the strategy 
to collect prices, make a decision and bet within one program.   However, the betting 
decision part of the program is still based entirely on the logic in Example 9-1; the 
programs are more or less concatenated “as is”.   Thus we can review all the moving 
parts better by dealing with the decision-making process as a discrete element of the 
framework, and testing betting decision making alone.    In this way, the program or any 
adapted version of the program can be tested to determine it is producing the correct 
output based on the received inputs, and only put into production when the bettor is 
content that everything works and tests as intended    
 
Nonetheless, all programs in the framework can also be run sequentially “as is”, relying 
on the various files produced as inputs and outputs interacting with each other in order 
to automate the whole strategy.   At this stage we assume this is the method of 
automation, and that our program has been set to run automatically at 5 minutes before 
the race begins combined with the other programs mentioned, in one executable 
command, bet_oddsline_strategy, as discussed in Chapter 7, Scheduling – The 
Key to Automation.  Also, as part of that dynamic scheduling process, we anticipate that 
a file will already have been automatically generated called events_schedule which 
will show all events for the strategy to bet in for the day, listed in the order in which they 
occur.   
 
Our program, bet_formation.pl, is set up to read this file to determine which event 
we are betting on (it will be the first in the list), then to amend the file so that when 
bet_oddsline_strategy is scheduled to run again, the first program to collect prices 
will read in the next event (i.e. this will become the first event listed) in the file.   N.B.  
The last program bet_execution.pl in the current sequence of 
bet_oddsline_strategy has no need to read the events_schedule file, so it 
doesn’t matter that the current event information is now changed by 
bet_formation.pl.    This is because all information required to bet is supplied in the 
output file selections created by bet_formation.pl, as we discuss further in the 
next section. 
 

Code Walkthrough 
 
Once we have found the relevant event, the objective is to extract and compare the 
event details, namely the time and course name, with the event details held in the 
oddsline file, so that we can then find all the contenders with their tissue prices for the 
race in question, as below: 
 
$event_details =~ s/^\s+|\s+//g; 
#print "$event_details\n"; 
my ($race_time, $race_course, $marketId) = split(/,/, $event_details); 
 
#       Ensure the $race_time format from the schedule  
# is common to the input time from the oddsline 

 
 my ($hours, $minutes) = split(/:/, $race_time); 

        if ($hours>12) {$hours = $hours-12}; 
        $race_time = "$hours.$minutes"; 

 



AUTOMATIC EXCHANGE BETTING 

192  

Dealing with different inputs – such as different data sources with times stored in 
different formats as above - is a recurring theme once we get to the decision making 
process.    In particular, course names, times of races and horse names that are 
extracted from different sources need to be standardised in order to compare them.    
The data can of course be cleaned and standardised at an earlier stage, so that this type 
of code can be dropped from the decision making program – however, something similar 
will still have to be written earlier in the day to reconcile Betfair conventions with the data 
sources used for oddslines, and the resulting values stored in a file or database for later 
use. 
 
Our program does this for the times above, converting the time format received from 
events_schedule to the 12 hour clock which is used to represent the times of races in 
the file formatted_oddsline (filehandle ODDSLINE), separating hours and minutes 
by a decimal point as opposed to a colon.   This means we are now in a position to 
compare the times with each other, as below, reading in the ODDSLINE line by line and 
looking for all lines where the course and time match those of the current event we are 
assessing for betting purposes: 
 
while (<ODDSLINE>) { 
 
($offtime, $course, $horse, $tissue) = split (/,/); 
 
        $offtime =~ s/^\s+|\s+$//g; 
        $horse =~ s/^\s+|\s+$//g; 
        $tissue =~ s/^\s+|\s+$//g; 
        $course =~ s/^\s+|\s+$//g; 
 
if ($offtime =~ /$race_time/ && $course =~ /$race_course/) { 

 
Where there is a match on course and time, we want to extract the runner details from 
the oddsline and apply our betting decision logic to the information associated with those 
runners.   As discussed in the introduction, the first step is to establish which of the 
declared contenders within the oddsline are running within the race in question (since 
the oddsline has been put together some time before the runners go to post), and to 
adjust the tissue prices for non-runners where relevant.      
 
Next, to determine the runner information from the current market, we use the file 
containing runners and prices for the race that has just been captured from Betfair, 
inter_prices.     
 
This file was generated by the get_market_prices.pl program, as shown in Chapter 
8.   Note that bet_formation.pl itself makes no calls to the API, emphasising the 
point that this stage of the framework is all about manipulating existing inputs to 
implement the rules relating to any particular strategy.    In general for production 
programs, we will typically make the call for prices and then use that information within 
the context of one program, as we discuss in Part 3, so as to avoid redundancy between 
programs and to minimise any delay between information changing on the exchange 
and being used within a betting strategy.    
 
For the purposes of bet_formation.pl we assume that the file inter_prices 
exists, and in terms of context that this is the second program to be run after 
get_market_prices.pl.   In fact, get_market_prices.pl and 
bet_formation.pl can be set to run sequentially with little difference in practical 



AUTOMATING BETTING DECISIONS 

193 

delay for the purposes of this specific strategy, so the programs can also be 
implemented “as is”.    
 
We evaluate the inter_prices file below,  so that the Perl data structure, a hash of 
prices called %inter_prices, is available to the program just as if it had been retrieved 
dynamically (note that this code is shown out of sequence within the context of the 
program, since it is actually executed before the while loop):    
 
# read in market information from external file (captured by get_market_prices.pl) 
{ 
open (FILE, '/home/aeb/inter_prices'); 
local $/; 
eval <FILE>; 
close FILE; 
} 

 
This data structure returned is a hash of arrays, so we can look up a number of elements 
within the array by the hash key (which is a horse name).   Before we can look up the 
price for each runner, however, we must first ensure our oddsline horse name matches 
the horse name retrieved from Betfair.   Of course, a horse has only one name (at the 
risk of bringing to mind “a horse is a horse, of course, of course”), but it can be 
represented differently (i.e. inaccurately) by different data sources.   Here, we know it is 
the Betfair convention to remove apostrophes from horse names, so that is what we do, 
creating another horse name variable by copying our input file’s horse name and 
removing apostrophes, so that we can then match to any horse name in 
%inter_prices conforming to the transformed name, and also grab the correct price 
by specifying the correct horse name within the key to the lookup hash, as in the next 
code snippet. 
 
# note the below does not ensure matching horses without fail 
 
$horse_bfname = $horse; 
$horse_bfname =~ s/'//g; 
 
# To be absolutely sure we should also strip then compare names without whitespace  
# or caps, as per Chapter 13 
 

In practice, whilst this should match every horse name according to the convention used, 
there are occasionally other errors, such as capitalisation of names, within the names 
loaded to Betfair.   We highlight this fact when running a live test on all the framework 
programs at the start of Part 3.  To guard against this we must therefore add in more 
transformation code in order to match names correctly, as we do with the production 
version of the code in Part 3.    These anomalies, although rare, are also dealt with in the 
commented lines above.   
 
Next, the code moves on to the job of identifying any non-runners – using the matched 
horse Betfair names, as discussed above - and making a simple adjustment in the tissue 
price as a result of that.   Based on the new runner information we could also recalculate 
all tissues from the ground up, using the original input data, according to the method 
used to generate the oddsline in the first place.    The method in the example program is 
more generic, if blunter, in that we readjust prices based upon the first tissue calculated. 
 
First we calculate the percentage takeout of each runner in the book using the tissue for 
all the declared runners, and save the $total_overround in a separate variable (this 
should already be at, or very near to, 100%, of course). 
 



AUTOMATIC EXCHANGE BETTING 

194  

my $horse_bfname_odds = @ {$inter_prices{$horse_bfname} }[0]; 
 
#calculate oddsline overround here: 
$percent_takeout = 100/$tissue; 
$total_overround += $percent_takeout; 
 

In order that all the contenders for the particular race we want to assess are available 
later, we save the horse names for this race to a discrete array also. 
 
push (@horses, $horse); 
 

Next step is to check for non-runners, if any, in the race.   We do this by seeing if a back 
price exists for each Betfair horse name.   If a price does not exist (i.e. 
$horse_bfname_odds is not greater than 1), then we assume that the horse is a non-
runner.    
 
##      Revalue tissue and ratings for non-runners if necessary: 
 
#This means some odds were found - if less than one, the horse is a non-runner 
if ($horse_bfname_odds > 1)     {        
 
#check they were all captured 
print REPORT "$offtime, $course, $horse, $tissue, $horse_bfname_odds\n";    
 

Provided we have made all attempts to match to the correct horse name, a simultaneous 
test for the presence of a back price is a useful short cut to determine non-runners for 
any British or Irish horseracing market 5 minutes prior to the off.     Even from the 
earliest phases in such markets (i.e. when they are made available the day before 
racing) there is a back amount, even if only 1.01, although lay amounts – i.e. amounts 
on the exchange asking for a layer – may frequently be missing.    By the same token, it 
should be employed carefully on sporting events with no liquidity, e.g. some US racing.    
In such events, perhaps where the bettor wants to be one of the earliest layers, a call to 
GetMarkets first, in order to explicitly extract and then match non-runners (since this is 
also a method of retrieving non-runner information) is preferred. 
 
Having captured the horse details, we print to the filehandle REPORT, which is our 
betting log, a row of information for the horse details captured, including the tissue price 
from the oddsline for each horse captured and the Betfair odds for the horse.   
 
Next, we create a new array @ranking corresponding to all the Betfair horse names we 
have, those being the runners in the race (we already have one array @horses 
corresponding to our oddsline of declared runners); we again will calculate the percent 
takeout of each runner and the total takeout, or overround, for the remaining runners, as 
we did for the declared runners.    
 
$runner = $horse_bfname; $runners++;            # 
$percent_takeout = 100/$tissue; 
$total_takeout += $percent_takeout; 
$tissues{$runner} = $tissue; 
$bfair_odds{$runner} = $horse_bfname_odds; 
#                                       print "$runner\n"; 
push (@ranking, $runner); 
}       #end if horse_bfname_odds 
 
Note that @ranking above is an array which has all our actual contenders ranked in 
order of best chance to least (since that is the way that we wrote the input file).   We 
therefore use a slice of this array in order to extract the top third runners who are ranked 
the highest. 



AUTOMATING BETTING DECISIONS 

195 

 
At this point we are done with processing runners in the race, provided that there are no 
non-runners, and are ready to proceed to selecting those horses we want to back as part 
of this strategy.   However, if there are non-runners found according to our criteria, we 
print those out to the program report, including the same oddsline details as for a runner, 
appending NON_RUNNER in place of the price information, so this can easily be 
reviewed.    
 
else { 
print REPORT "$offtime, $course, $horse, $tissue, NON_RUNNER\n"; 
 
} 
 
Output from the report can be seen in the first Chapter of Part 3, when this program is 
used in sequence with the other examples in the framework to run this strategy on a live 
basis. 
 
Having set up data structures to deal with the event of non-runners (and the adjustments 
needed to the oddsline as a result) we now see if there are any.    The acid test is to 
compare the size of the array @horses against @ranking.   If the declared horses in 
@horses are more than the actual runners “going to post” in @ranking, we know that 
there are non-runners, and therefore must revalue all the tissue prices from our oddsline, 
creating new tissue prices.    If that is the case, the code in the next block does this 
simply by calculating the percentage difference in the overround between the oddsline 
and actual prices (as represented in the code below by the variable $divisor). 
 
#3 data structures have been created for reuse; @ranking, %tissue and %bfair_odds 
 
} 
}; 
 
#revalue tissue prices for non-runners, store in hash %final_tissues whether non- 
#runners or not 
 
if (@horses > @ranking) { 
print REPORT "NON_RUNNERS\n"; 
#revalue here by increasing $tissue price 
$divisor = $total_overround/$total_takeout; 
foreach $horse (@ranking) { 
$new_tissue = $tissues{$horse}/$divisor; 
$final_tissues{$horse} = $new_tissue; 
#print REPORT "$horse, $new_tissue\n"; 
#$new_overround += 100/$new_tissue; 
} 
 
The tissue price is adjusted by $divisor which has the effect of lowering the sum of 
tissue prices for each contender by the sum of probabilities that have been removed 
from the book.  Of course, each individual contender’s odds will also be reduced – these 
are calculated and saved to a new hash, %final tissues.  We also state again in the 
report summary that non-runners have been found in the race, printing NON_RUNNERS 
to the betting report. 
 
The second part of the if statement deals explicitly with the situation where all go to 
post.   Here we save our hash of tissue prices with the same name as the tissue hash for 
non-runners, so we can use the same selection process later in the program.  That is, 
we can refer to the final_tissues hash of tissue prices for each name, and that it will just 
work.     
 



AUTOMATIC EXCHANGE BETTING 

196  

} else {print REPORT "ALL RUN\n"; 
%final_tissues = %tissues; 
} 
 
#               print "@ranking\n"; 

 
Finally we are ready to make selections by applying the strategy to consider any overlay 
opportunities in the top third of the field.    
 
First, we work out what a third of the (remaining) field is, saving the integer result to a 
variable by which to peel out the first third of runners in the next step.   This means we 
will consider the top 2 horses in a field of 8, the top 3 horses in a field of 11, and so on.  
Alternatively it is clear we could consider any number of contenders at this point, chosen 
in many different ways - this is simply the rule for the example strategy. 
 
$third =  int ($runners/3); 

 
Next, we take an array slice from @ranking, effectively reducing @ranking only to the 
top third of the field.     (N.B..  By stating that the number of runners must be greater than 
the variable $third, we are effectively eliminating 2 horse races, since there have to be at 
least 3 runners for $third to be an integer and to implement a strategy that considers the 
top third of field.   If $third is not an integer of at least 1, the @ranking array will be 
spliced by nothing, so nothing will be left in it.     If wanting to consider the top horse in a 
two horse race we could instead say if($runners > 3), meaning that @ranking 
would be unchanged for any runners which did not fulfil this condition.) 
 
if ($runners > third) {      
@ranking = splice(@ranking, 0, $third); 
} 
 
Finally we are ready to compare the back price odds from Betfair with the final tissue 
prices (readjusted where necessary) from any oddsline.   
 
Below we do that for each contender in the candidates for betting left in @ranking by 
looking up the relevant prices from the hashes we have created earlier.  If the Betfair 
price is greater than the oddsline, we get the relevant details for that horse and write it to 
a new file, ready to be picked up by a betting execution program, as covered in the next 
chapter, Betting Execution.   The details are all those we need for the PlaceBets call, 
which we use in the next Chapter, including the Betfair identification numbers for 
marketId, runnerId, and stake.   We also write the same details to our program report. 
 
foreach my $contender (@ranking) { 
#Get the relevant information to bet... 
if ($bfair_odds{$contender} > $final_tissues{$contender}) {  
 
#$bfair_odds = @ {$inter_prices{$contender} }[0];  #more data available if needed 
#$bfair_lay = @ {$inter_prices{$contender} }[1]; 
 
my $bfair_race = @ {$inter_prices{$contender} }[5]; 
my $bfair_horse = @ {$inter_prices{$contender} }[4]; 
my $stake = "5.00"; #or generate automatically, e.g. take the stake from a database 
 
#the following additional parameters are required for bet execution 
my $price_asked = $bfair_odds{$contender};    #just making the variable name meaningful 
my $betType = "B"; 
my $betCategoryType = "E"; 
my $betPersistenceType = "NONE"; 
my $bspLiability = "0.0"; 
 



AUTOMATING BETTING DECISIONS 

197 

#print out selections to the betting report if required 
#most important is to selections file for subsequent execution 
print REPORT "\n$contender, $bfair_race, $bfair_horse, $price_asked, $betType, $stake\n"; 
print SELECTIONS "$race_time, $race_course, $contender, $bfair_race, $bfair_horse, 
$price_asked, $betType, $stake, $betCategoryType, $betPersistenceType, $bspLiability\n"; 
}       #end if the odds are greater than the tissue 
}       #end foreach contender within the top third of the field (i.e. within @ranking) 
 
 
close ODDSLINE; 
close REPORT; 
close SELECTIONS; 
 

That’s it for this example; we have produced a file with selections ready for betting by the 
next program in the sequence, and a report stating what those selections are.    
 

Extending Decision Criteria 
 
There are any number of input variables to consider which we can use to dramatically 
change the nature of the betting decision to be taken, and hence the strategy.   
However, any betting decision will have in common the need to stipulate the number of 
selections, the price required, and stake for each.    
 
To give a flavour of how we can start to adapt existing code to transform the original 
example bit by bit to incorporate these elements, (until at a certain point it actually looks 
like a different strategy altogether), let’s consider changing only the final block of code in 
Example 9-1 (at the point where we are determining the total number of selections to bet 
in the oddsline, the price that we wish to back each selection at, and the stake we wish 
to use).  
 
 
 
 

Number of selections and minimum price 
 
Using Example 9-1 as a base, we can keep 90% of the code but substantially alter the 
decision criteria and betting strategy for any number of parameters by slightly altering 
the final block of code.    
 
For example, the strategy shown implies considering and usually backing more than one 
horse in any race, and to variable total stakes per race, despite fixed unit stakes per 
runner.   Therefore, bigger fields have the potential to create far more bets.    
 
Changing the criteria – for example to consider the top contender alone – might bring a 
consistent number of bets per race (a maximum of one per race, in this case) combined 
with a consistent maximum stake for every race.    We can keep the oddsline intact as 
the input file, but change the strategy to consider only the strongest selection made by 
the underlying data, in the form of the highest rated contender   
 
To implement this in the final block of code for Example 9-1, we can remove the foreach 
loop: 
 



AUTOMATIC EXCHANGE BETTING 

198  

foreach $contender (@ranking) { 

 
and simply modify the next line consider whether or not the top contender as 
represented by the variable $ranking[0] is an overlay, as in: 
 
if ($bfair_odds{$ranking[0]} > $final_tissues{$ranking[0]}) 
{                                                 
 

If it’s an overlay we write it out as a selection, if it’s not we leave it.   Limiting the 
selection to one potential bet per race makes for more straightforward backtesting of our 
estimated odds over time.   We compare the expected number of wins predicted by the 
oddsline top selection with the number of times the top rated selection actually wins, 
then see if the proportions tally, and therefore whether there is indeed an edge in the 
oddsline over the market.   Refining the oddsline in this way is discussed further in Part 
3. 
 
Finally, let’s say that the top rated selection was not produced by an oddsline but a 
system method.   For example, one which had been shown to be profitable through 
backtesting results for horses conforming to certain criteria, with an added price 
condition - such as “starting prices must always be greater than odds on”.   
 
Provided we have applied the rules of the system to an appropriate data source in order 
to generate a file of selections (in place of the oddsline), the program can be adapted to 
process any set of contenders with the appropriate rules to back them.    
 
In this case, the line from the input file containing the selection would also specify the 
race time and course, so it can be picked up at the relevant event time, as well as 
stipulating the minimum price for the systems method (this would replace the 
formatted_oddsline file imported at the beginning of Example 9-1).   Implementation 
of the system rules are thus to capture selection details  (much as we do for our existing 
oddsline example), and then apply a simple minimum price condition – thus the condition 
that the price for the top ranked selection is greater than evens (for example), in order to 
constitute a bet:    
 
if ($bfair_odds{$ranking[0]} > 2]}) 
 
 

Dutching 
 
In the strategy implemented in Example 9-1, we are always (potentially) betting more 
than one contender, depending on how many overlays are found for the oddsline versus 
the market, which in turn can increase dependent upon the field size (given we always 
consider a fixed proportion of the field).      As such, the standard example is dutching to 
a level unit stake, and variability in overall outlay per race is high.     We can, however, 
implement a dutching method in many other ways including: 
 

• Level stakes for a varying number of horses 
• Targeting a maximum outlay per race, with staking divided amongst the resulting 

contenders 
• Targeting outlay to ensure the same profit if any of the overlays wins. 

 



AUTOMATING BETTING DECISIONS 

199 

To implement such a dutching strategy for the example oddsline, we can again adapt the 
final block of code in Example 9-1 by closing the block before we write out staking 
information, in order to first determine how many contenders are final bets (or 
selections).   To do this, we create another array @selections, to contain the name of 
each contender.   Then, we act upon this array to apply dutching rules and determine 
final stakes according to one of the criteria above: 
 
foreach $contender (@ranking) { 
if ($bfair_odds{$contender} > $final_tissues{$contender}) 
 
#for dutching for the same profit, work out sum of odds first 
$bfair_odds = $bfair_odds{$contender}; 
$total_odds += bfair_odds ; 
{                                                        
push @selections, $contender;} 
 
foreach $contender (@selections)  { 
 
#Determine the stake according to the dutching strategy, as described in text below 
#Calculate stake here, according to method 
#eg: 
#$max_outlay = 30;  
#$number_selections = @selections; 
#$stake = $max_outlay/$number_selections  
                                  
$bfair_race = @ {$inter_prices{$contender} }[5]; 
$bfair_horse = @ {$inter_prices{$contender} }[4]; 
 
#the following additional parameters are required for bet execution 
my $price_asked = $bfair_odds{$contender};    #just making the variable name meaningful 
my $betType = "B"; 
my $betCategoryType = "E"; 
my $betPersistenceType = "NONE"; 
my $bspLiability = "0.0"; 
 
print REPORT "$contender, $bfair_race, $bfair_horse, $price_asked, $betType, $stake\n"; 
print SELECTIONS "$race_time, $race_course, $contender, $bfair_race, $bfair_horse, 
$price_asked, $betType, $stake, $betCategoryType, $betPersistenceType, $bspLiability\n"; 
 
} 
} 
close ODDSLINE; 
close REPORT; 
close SELECTIONS; 
 

 
To stake the same amount for each runner, we can stipulate our maximum outlay as a 
variable, let’s say £30 per race  
 
$max_outlay = 30;  

 
then divide by the number of selections  
 
$number_selections = @selections; 
$stake = $max_outlay/$number_selections  
 

So that we have the same outlay on every race, but a variable outcome, depending on 
how many runners to divide the stake over and what horse wins at what price.    
 
We could also stipulate a desired return for each contender, in the same fashion: 
 
$desired_return = 100;  
 
#within context of loop 



AUTOMATIC EXCHANGE BETTING 

200  

$stake = $desired_return/$bfair_odds{$contender};  

 
This method of dutching can be useful if dutching the field in the event of an overbroke 
book, e.g. For a market at 98%, where we know by successfully backing all runners 
using the method shown we will guarantee a 2% profit on our $desired_return.    
 
In the case of executing our oddsline strategy on a number of races however, stipulating 
a desired return would mean our total stake is still variable depending on how many 
runners we want to dutch. 
 
To dutch bets in order ensure the same profit no matter which of our oddsline selections 
wins (assuming of course that one of them wins), and to ensure that our stake is fixed for 
every race, we can use a different method again.   We still work off our $max_outlay 
variable but in the first instance need to calculate what proportion of that outlay we need 
to stake for each contender. 
 
Here, we simply need to sum the total decimal odds of all selections and retain that as a 
variable, on our first loop through the code to determine overlays, as in: 
 
$bfair_odds = $bfair_odds{$contender}; 
$total_odds += bfair_odds ;   

 
Subsequently, when going through the selections loop for each contender, we determine 
stake proportion allocated to that contender as follows: 
 
$stake_proportion = $bfair_odds{$contender}/ $total_odds; 
 
Finally, the stake is calculated by taking the relevant proportion of  $max_outlay, and 
formatting the stake value to two decimal places (so it will be accepted in the PlaceBets 
call during betting execution, a process covered in Chapter 10). 
 
$stake = $stake_proportion * $max_outlay; 
$stake = sprintf(“%.2f”, $stake); 

 

Changing the price dynamically 
 
The currently available back price was taken as the price at which we want to “get on” in 
Example 9-1.   What if we want to put in a price for each selection above that, in an 
attempt to beat what the market is currently prepared to offer?  
 
Of course, attempting to do so will grant no guarantees that we will be matched at a 
higher price, and indeed, unless there is a very good reason to suspect otherwise, there 
is every chance we could end up with a worse price - being left “unmatched” and still 
faced with the problem of getting on for the strategy.   Creating unmatched bets also 
adds complexity to any automated implementation in that we will need to track them 
after the betting execution stage, and perhaps update them if the price goes against us 
and we still want to “get on”. 
 
However, bearing in mind those caveats there are circumstances where this may make 
sense.   For example, if a predictive mechanism for prices has also been implemented 
(and works, which is another matter) and the automatic bettor is confident such a price 
will be reached.    



AUTOMATING BETTING DECISIONS 

201 

 
Or we may surmise that it if we are betting early it is worth putting in speculative prices 
on the basis that they may be matched due simply to the increased chance of volatility 
between execution of the bet and the event off time.    
 
A practical example for changing the price in an attempt to beat the market (which does 
not require complex prediction based upon price history) is attempting to be first in the 
queue at the next market price where the market spread (the spread being the difference 
between the back and lay price) is more than one tick size.    For example. if the back 
price is 10 and the lay price is 11, we would prefer to be first in the queue to back at the 
next Betfair tick value, which is 10.5, as opposed to taking the freely available 10.0. 
 
The acid test is if the bettor is convinced they have a method which produces better 
prices over time than settling for the currently available back price alone.    Such a 
method can of course be researched and tested prior to implementation.    
 
There are a number of ways of automatically specifying what that better price should be. 
Staying with the spirit of making small changes to the final block of code in Example 9-1 
in order to produce some quite dramatic differences in results, we can simply specify 
that a back bet should be placed at the current lay price rather than the back price 
before writing out our bets to file, i.e.  $back_price = $lay_price    
 
This will have the effect of incrementing the price by the size of the current spread. 
 
For a more generic solution to extend options for stipulating bid and offer prices in 
relation to current prices, we can implement a simple subroutine to increment or 
decrement prices by specific tick sizes.    This subroutine can easily be adapted to 
accommodate other requirements for changing the price dynamically in betting 
strategies, such as increasing the price by percentage amounts. 
 
It is worth pointing out again that the reason for implementing a subroutine to take care 
of this is that any price must correspond to the exact format of the Betfair price 
increment, otherwise bet execution will fail.   If we are taking the current back price 
returned by a function to capture market prices this is not an issue, since the format is 
already compliant.   However, to change the price it is not enough to add or subtract 
from this price.   Specifically, the Betfair price must correspond to one of the 350 
incremental prices – from 1.01 to 1000 - in the Betfair price array.   Adding 0.1 to a back 
price of 8.4 will result in a rejected bet (since 8.5 is not a valid Betfair price) so we have 
to specify “+1 tick”, for the next valid increment, or a price of 8.6.  
 
We can think of this array as a ladder of prices.   In order to automatically move up and 
down that ladder of prices, we simple need to create as an array (in Perl terms, or 
whatever other programming language is being used) all the Betfair prices available.   
The incremental table for Betfair prices is shown in Appendix 5; prices must be entered 
in the exact format shown.    
 
We must make this array present to the program, and a number of possibilities are 
available once it is.   For example, let’s specify a subroutine to increment a currently 
available back price by a number of ticks, as discussed above.    
 
 



AUTOMATIC EXCHANGE BETTING 

202  

Example 9-2:  Subroutine to increment back price dynamically 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 

 
sub step_odds { 
 
my ($price_to_increment, $step_size) = @_; 
$price_to_increment =~ s/^\s+|\s+$//g; 
$step_size =~ s/^\s+|\s+$//g; 
my $count = 0; 
my $array_position = (); 
foreach my $odd (@Betfair_odds) { 
if ($odd == $price_to_increment) {$array_position = $count}; 
$count++; 
} 
 
 
my $ladder_value = $array_position+$step_size; 
if ($ladder_value <0) {$ladder_value = 0}; 
if ($ladder_value > $#Betfair_odds) {$ladder_value = $#Betfair_odds}; 
my $stepped_odds = $Betfair_odds[$ladder_value]; 
return $stepped_odds; 
 
} 

 
The above subroutine loops through the array of Betfair prices in order to find the array 
index of the first argument (i.e. the price to increment) and then adds or subtracts the 
second argument (depending on whether we wish to move up or down the price ladder), 
from that index position.   
 
Since we are working with the array index position, as opposed to the array of prices 
itself, we are working in terms of the 350 ticks available, not adding or subtracting prices 
themselves.    Using our supplied arguments gives us the array index of the required 
price, so we can return the value (i.e. price) associated with it, as follows:  
 
my $stepped_odds = $Betfair_odds[$array_index]).   

 
The subroutine is written to take arguments for the price to be modified (it could be a 
back or a lay price), and the number of Betfair ticks by which to modify the price.     
 
How is this implemented in practice?    Let’s say we have good reason to believe the 
current back price of 15.5 may drift by a further 2 ticks prior to the off, or simply want to 
speculate on matching at a higher price:   
 
$price_to_increment = $back_price; 
$ticks = 2; 
$new_back_price =  step_odds ($price_to_increment, $ticks); 

 
Remembering that step_odds is the name of the subroutine, it gives us a 
$new_back_price with a value two ticks higher than our current back price of 15.5, so 
16.5, which we can write out to our selections file ready to bet, if used within the context 
of Example 9-1. 
  
Such a subroutine can equally be implemented at the betting execution stage, or used 
within the context of one program to fetch prices, make decisions and bet. 



AUTOMATING BETTING DECISIONS 

203 

 

Using the Market Overround for Optimal Pricing 
 
Without changing the price acceptance criteria on our example program we can use the 
market overround to determine whether or not the price being offered is “a good deal”.     
If, in the case of our example, we are pursuing a backing strategy, we will only decide to 
accept back prices that are available within the context of a minimum market overround, 
as close to 100% (and in an ideal world less) as possible    Whilst the market overround 
will not guarantee the best price available on any particular selection, it will over the long 
run guarantee that the best prices within the market are consistently obtained for a given 
strategy. 
 
To obtain a price conditional on a market overround we need to wrap any decision 
making process that writes out bets within a  loop that requires the minimum overround 
is attained first.    
 
The level of the overround is up to the bettor.   It can be used as a constraint – under 
100% would ensure most bets were unmatched – or as a “sanity check”; for example, 
less than 103% is usually achievable in most UK horseracing markets near the off, 
meaning we are likely to be matched but will still avoid taking a price within a poor 
market or, in the worst case, when a market anomaly occurs.   Market anomalies would 
be, for instance, when a runner is withdrawn and the market reforms, temporarily 
creating a large overround.   This is a problem for an overlay strategy, since the price 
may still be determined as a value bet if the program visits the market during this 
transition time, even if the price has temporarily halved and will soon return to near its 
previous level. 
 
Obtaining the market overround was discussed in Chapter 8, Capturing and Using 
Market Prices.   We also showed a loop through process of obtaining prices with calls to 
the GetMarkets and GetMarketPricesCompressed services in that chapter.   By 
amalgamating the betting decision making process with the capture of market prices, we 
can enclose the whole within a loop that only moves forward to betting execution if a 
certain overround is reached.   We show examples of this in Part 3. 
 

Price Prediction and Unmatched Bet Considerations 
 
Putting in offers that are not accepted will add complexity to our implementation, but, as 
we discussed in the section on changing prices, it can be worthwhile depending on 
whether the methods used mean that the bet is matched at better prices in the long run.     
 
Within the context of an overlay strategy, there is a further dilemma over whether 
obtaining a better price is speculative or conditional to the betting strategy.   For 
example, a contender may be deemed an overlay at 10.5 to back, yet the price is 
currently 10.     In such cases it seems prudent to put in an offer at 10.5 (provided the 
rules of the strategy require an overlay only, with no percentage buffer).    However, 
what to do if the current price is 8?   Should offers be put in on all bets? 
 



AUTOMATIC EXCHANGE BETTING 

204  

If the motivation behind the decision to obtain a better price is speculative then the 
payoff has to be weighed against the downside (of not being matched) and additional 
implementation considerations.    We can define a speculative decision to do this as the 
automated equivalent of “chancing our arm” on obtaining a better price (in other words, if 
we have already determined that the bet is value but want to see if we can get a better 
price).    By contrast, to determine whether or not it is worthwhile to pursue a conditional 
price to fulfil the betting strategy, we might wish to build some logic into the program that 
assessed the prices available to determine: 
 

a) If the market was close to the price, putting an offer in a price to the nearest tick 
that fulfilled the value criteria 

b) Putting together some logical criteria to determine the likelihood of such a bet 
being matched.  If the spread between bid and offer price is 2 ticks and the 
nearest tick (which we want to occupy) has no money available, that could 
qualify. 

 
So with those caveats defined, useful considerations to determine whether to go down 
the route of putting in a bet outside the current market (i.e. outside the current bid and 
offer prices) are: 
 

• Whether it is conditional or speculative to the strategy 
• Within this context, assessing the likelihood that the price and volume we are 

asking for will be matched 
 
Within the context of “how likely the price is to be matched”, of course we cannot “know” 
whether we can achieve a price or not but we can attempt to make a prediction.    
Parameters to consider within such a prediction are: 
 

• How far the current market price is from the required price 
• How long the market has to run – in trading terms – until the event starts.     
• How informative market price and liquidity information can be  

     
Indicators which can help with such decisions are discussed in Chapter 8, Capturing and 
Using Market Information.   The last section of this chapter discusses the overlap with 
trading strategies in using such indicators. 
 

The Betfair SP Market and Bet Persistence 
 
In the example strategy we specify use of the exchange when writing the bets out to a 
file, therefore ensuring that the bets expire, if unmatched, at the time of the off.   Other 
options, in using the Betfair SP Market and Bet Persistence (still using the exchange but 
letting a bet ride unmatched into the “in-running” market), are also available to our 
strategy.   We explore these options briefly below and cover implementation and 
parameters for these options in more detail in Chapter 10, Betting Execution. 
  
The Betfair SP Markets offer the prospect of automatic matching but at an unknown 
price.    However, we can stipulate a minimum price for whether or not a bet will be 
placed at SP.   In this sense the SP market with a minimum price requirement is similar 
to specifying an unmatched bet at a conditional exchange price.    It poses the same 



AUTOMATING BETTING DECISIONS 

205 

issue for the automatic bettor executing a strategy prior to the off as whether or not to 
take the currently available back price or wait for a better exchange price.     
 
As far as the automatic bettor is concerned in trying to back or lay the result of an 
outcome, any offer outside the currently available price, where we know we will be 
matched, is a case of swapping certainty for uncertainty, with no guarantee of a 
preferable result. 
 
On the other hand, the advantage of the SP market is that there is guaranteed liquidity, 
and some certainty in “getting on”.   Therefore, we can pursue a strategy to see if a bet 
can first be matched within the exchange market, asking for a better price than is 
currently available, or switch the bet to the currently available best price, or the SP 
market prior to the off.   This can be an option to ensure that bets are matched, but still 
leaves uncertainty on the price.   To be sure of executing the example strategy, we thus 
take the available back price.  
 
The Bet Persistence Markets enable the bettor to maintain bets placed on the 
exchange market once those markets have turned to “in-play”.    These markets provide 
an interesting extension to automated strategies, which also offer the possibility of 
creating a further trading or hedging strategy.    For example, an objective in this case 
could be to use the bet persistence feature for an automated trade which predicts price 
behaviour based on the fundamentals of a horse’s in-running characteristics as opposed 
to studying price movements.    For example, we can identify likely front runners in a 
race based on fundamental data analysis, and back them in the exchange markets prior 
to the off (ensuring the bet is placed), at the same time placing a lay bet at a much lower 
price with the condition of bet persistence.    This would be a “back to lay” strategy, with 
the intention that the lay price becomes available during the in running markets (on the 
basis that any front runner’s price will contract once “in-play”), thus providing a profitable 
hedging or trading opportunity.    Of course, such a strategy requires its own research 
into what reasonable price drops can be expected and insofar as what risk the bettor is 
prepared to accept that the bet is unmatched.   
 
However, for a strategy concerned simply with obtaining best price on an outcome prior 
to the race, using Bet Persistence is rather a “shot in the dark” in order to obtain a better 
price without any reference to the horse’s running style.    There is of course the 
possibility of a match at a higher asking price, provided the runner lengthens in-play.   By 
the same token there is a good chance that the runner will lengthen in price because it is 
clearly going to lose, as opposed to getting on at the required price when it still has 
every chance.    To cap it all, there is no guarantee, even if the horse wins, that the in-
running market will produce a better price than that available on the exchange before the 
off.   
 
Thus bet persistence may offer little advantage and high risk for obtaining optimal price 
on a single bet - unless there is very good reason to think that the contender may 
lengthen or shorten in price due to its running style, or due other factors related to the 
way the race will develop in-running.  At this point, the logic is less geared towards 
obtaining best price alone for our first strategy betting on a particular conclusion to the 
race, but on a combination of separate predictions.  In such cases, a better opportunity 
for using Bet Persistence can exist in lay to back or back to lay strategies.   Such a 
strategy can be used to provide a hedging opportunity (if leaving some of the stake on 
the outcome) or used to profit on trading movements in prices alone.  This type of 



AUTOMATIC EXCHANGE BETTING 

206  

trading strategy differs from the norm in that the underlying reasons for the trade rest on 
using fundamental data to predict how the race will be run, as opposed to using 
“anonymous” price data obtained from the market alone.    
 

Automating staking plans using a betting bank 
 
Example 9-1 uses a fixed level stake in order to back each selection from the strategy.        
The dutching strategies analysed in the previous sections would further divvy our stakes 
on a per race basis, changing the strategy to some extent and making stakes 
proportional to the dutching method, with an overall limit suggested per race.   However, 
whether we choose to bet on a per race or a per bet basis, there is ultimately a wider 
logic to be applied to the question of staking in terms of how to determine what overall 
stake to put at risk within any given risk.   This does not form part of our example 
strategy, but any production strategy should consider the question of automation with 
regard to staking plans. 
 
An ideal staking plan seeks to avoid the risk of ruin and maximize returns.    At a basic 
level any staking plan is related to the concept of using a betting bank.    
 
As discussed in Part 1, staking plans have always been fertile ground for debate with 
regard to the difference they can make to profitability of any given strategy.   The general 
consensus, and a consensus which it is as well to heed, is that no staking plan can turn 
a strategy which does not show a profit at level stakes into a profitable one.   Of course, 
if a sequence of winning and losing bets is known in advance, it is possible to construct 
such a plan, but this is backfitting par excellence.      Alternatively, with theoretically 
unlimited funds and unlimited liquidity in markets (such as the infamous Martingale-
based strategies), it is possible to increase stakes to cover losing runs, but in the real 
world with practical limitations on market liquidity and funds this can be a rapid path to 
ruin. 
 
More accepted staking plans to maximize returns rely on quantifying the advantage 
which a selection method has over the actual probability of an event occurring.   The 
most widely touted of these is the Kelly Criterion, discussed in Part 1, Chapter 1, in the 
subsection Staking, which concentrates on the advantage which each individual bet has 
over the market, and aims to stake a higher proportion of the betting bank whenever that 
advantage is greatest.     
 
Since the example strategy is itself based on an estimated probability for each 
contender, resulting in a tissue price, the full range of staking plans, including Kelly, is 
potentially available to us within our example strategy.   However, it needs to be 
stressed that the level of confidence in the edge remains a critical factor to test and 
validate if pursuing Kelly, and so far in our example this has not been established.   So 
we have an input to calculate Kelly, but it is possibly unreliable.   To implement a full 
Kelly strategy the advantage would have to be absolutely tested and reliable; otherwise, 
the method may still bring advantage over level stakes, but needs to be diluted in 
accordance with the level of confidence in the testing of the oddsline; hence moderated 
Kelly strategies, such as “half Kelly”, “quarter Kelly” and so on. 
 
The important elements to consider from an implementation point of view are: 



AUTOMATING BETTING DECISIONS 

207 

 
• Dynamic calculation of betting bank 
• Definition of perceived edge 
• Algorithm for calculating stake 

 
Other widely used staking plans (in addition to level stakes) are betting a percentage of 
the betting bank to level stakes with each bet.   
 
As with record keeping, the manual process of recalculating stakes associated with a 
betting strategy (even if a simple staking plan, let alone calculating Kelly for multiple 
contenders prior to each race) is a tedious one, which can be resolved simply and as 
often as we like within the context of an automated program.     
 
We can set a program to calculate stakes as a proportion of the betting bank after every 
bet, day, week, month, season, or year.   We can adjust stakes based upon probability 
or “edge” of each bet, as with Kelly, implement stop loss rules, and so on. 
 
Any staking algorithm can generally be implemented programmatically (a good 
discussion on implementing Kelly is covered in John Haigh’s Taking Chances in the 
Bibliography).   The definition of perceived edge – and also confidence level in that edge 
- is down to testing of the strategy, and can be supplied as an input.   The final piece of 
the jigsaw, if wishing to automate the whole process, is that we need to have a betting 
bank balance available as an input. 
 
A betting bank can be maintained automatically in a database table that is updated with 
results of each bet, and keeps a running total – or, more simply, it can be a betting 
exchange account balance, or a combination of the two (e.g.  we may not wish to tie all 
capital in a betting exchange account, preferring instead to take the outstanding balance 
and combine it with a residual bank balance that does not sit on the exchange, or with 
other accounts that reside elsewhere).   In terms of using a betting bank for staking 
plans, the betting bank itself need not constitute all available betting funds, but those 
available for the purpose of any particular strategy, and thus setting up one betting bank 
for a strategy applied to one account is often an expedient solution. 
 
As far as using functions from the Betfair API to help with this process is concerned, 
calls such as GetAccountFunds will provide a balance as an input for an automated 
staking plan to work with.    If we wish to split the betting bank balance according to 
those bets placed by strategy (and use different staking plans per strategy, but within 
one account), we can also use GetAccountStatement for a detailed betting history.    
We cover the use of GetAccountStatement for the purpose of record keeping, split by 
betting strategy and other parameters, in Chapter 11.    
 
In the meantime, to show how we can implement dynamic staking within the context of 
the framework, let’s choose a simple staking example which uses account funds and 
therefore assumes one account is used for the strategy.    We therefore assume that 
available funds in an account reflect the betting bank, and in terms of the staking plan, 
that we want to stake a fixed percentage of the betting bank as the unit stake for each 
bet.        
 
The context of the decision making program is a great place to insert a block or a few 
lines of code to implement such a plan.   Therefore, going back to our original Example 



AUTOMATIC EXCHANGE BETTING 

208  

9-1, to see how we can incorporate dynamic staking into the context of the decision 
making program, we can see that it is easy to alter one line of code to add such 
functionality.   We could use the following (instead of $stake = £5 to stipulate a fixed level 
unit stake) to calculate the stake dynamically: 
 
#stake = available betting bank/N OR algorithm to determine proportion of bank to use 
 
my $funds = get_account_funds($token) 
my $availBalance = $funds{availBalance}; 
my stake  = sprintf (“%.2f”, $availBalance/200); 
 

To test this functionality, we show a program which only uses the above lines to 
demonstrate the get_account_funds function combined with a staking plan in 
Example 9-3. 
 
Example 9-3:   Automatically determining stakes using an account balance 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";           #Free Access API access code 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
#stake = available betting bank/N OR algorithm to determine proportion of bank to use 
 
my %funds = get_account_funds($token); 
my $availBalance = $funds{availBalance}; 
print "Available betting balance is:  £$availBalance\n"; 
my $stake  = sprintf ("%.2f", $availBalance/200); 
print "Stake for the next bet (based on staking 0.5% of betting bank) is:  £$stake\n"; 
 



AUTOMATING BETTING DECISIONS 

209 

Note in Example 9-3 we use “available balance” from the account as opposed to 
“balance” in order to play on the safe side of the betting bank (e.g. it may be that bets 
which have won have not yet been settled, in which case they would still be liabilities on 
the overall bank, thereby reducing the available balance and limiting stakes – we instead 
assume that all liabilities are just that). 
 
For Kelly and other plans, the program logic remains the same (get account funds, then ; 
apply a staking algorithm to the balance based on other inputs);  we simply need a more 
complex algorithm, and to rely on the probabilities assigned by our oddsline. 
  
Further use of automatic account functions is also explored in Chapter 11, Automating 
Record Keeping. 
 

Automating trading decisions 
 
We have generally made a distinction thus far between betting and trading.   The 
distinction is that the focus of automatic betting is to profit from outcomes of events 
rather than price changes in markets; due to differences in objectives, we concentrate on 
betting and consider elements of automated trading when it crosses over.    
 
However, as pointed out in the introduction, there is clear overlap between the tools and 
mechanisms used for both trading and betting strategies within the context of capturing 
and using market prices, then making decisions about placing bets at this stage of the 
framework.       
 
Therefore, a brief summary on some of the differences in implementation between 
betting and trading strategies, plus how the reader might use the framework to develop 
trading strategies is appropriate at this stage. 
 
In terms of using API services programmatically, there is of course no difference in the 
raw services that are used, such that the atomic elements available for trading are 
already available.   Building upon some of the derived functions for market overround, 
price momentum, average traded price, and so on will develop an armoury of tools 
needed by the trader at the market information stage.   However, these need to be 
combined with other stages of the framework, also adapted for pure trading.    
 
The following stages in the framework can be taken as a “mini-framework” for trading in 
their own right.    
 

• Capture of market prices 
• Decision making process  
• Betting execution 

 
We cover elements of the betting process that can be adapted for trading within each of 
the chapters relating to the above stages of the framework. 
 
In terms of programming effort, the emphasis shifts to where the bulk of the 
implementation is concentrated – in trading, the process is entirely about predicting (or 
profiting on the volatility of) the market itself; in betting on outcomes the process starts 



AUTOMATIC EXCHANGE BETTING 

210  

with a prediction or an assessment of the probability of the outcome, and goes to the 
exchange to ensure maximum profit on that assessment of probability.     
 
It’s analogous to different objectives in financial markets, where algorithmic trading can 
be used for execution only, to break up orders on electronic exchanges for achieving the 
best price on financial instruments (where there has been a decision to invest based on 
fundamental analysis), or can be used entirely as a vehicle for predicting and profiting on 
movements in tick prices. 
 
The critical difference in the complete automation of trading strategies is generally that  
there is a need to visit the market multiple times, to take and then close a position - and 
thus to loop through the “mini-framework” multiple times.      
 
Simple trading strategies – for example placing a simultaneous back and lay bet in the 
right circumstances, or delayed by some margin determined by an automated analysis of 
prices – are simple to implement.    On the return leg of the trade we might “green out” or 
take a loss on the position, or wait until a subsequent visit    As we add more loops to 
emulate the decision making process that an exchange trader might use, however, the 
implementation becomes more complex.    
 
It should also be remembered that the preferred option for many betting exchange 
traders is to use automated utilities that provide shortcuts to tasks that are impossible 
manually, such as real time price indicators (average prices, momentum, and so on) 
combined with utilities that enable efficient interactive execution such as one-click 
trading, viewing the entire price ladder for each contender, viewing multiple market 
favourites (since these are the candidates for highest liquidity and trading potential), and 
so on.    Many packaged products provide such utilities based upon the API.    All such 
utilities can be created or tailored to the individual within the context of API services 
discussed (with the addition of a GUI).     However, the critical point is that the overall 
control mechanism remains with the trader in interactive mode, so that any risk on 
positions retains human control.     
 
In other words, all of these options can be programmed for complete automation.   The 
question is rather down to the trader’s mindset and an examination of their own strategy, 
to determine how much of a successful approach is currently done by “feel” (or even 
luck), responding to the presence of multiple indicators, and taking quick decisions.  Or,  
how much of a strategy is down to a significant indicator (or combination of indicators) 
that can be programmatically spotted and traded for profit.   No doubt some nuance and 
flexibility will be lost in automating a series of complex trading interactions.    Keeping it 
simple is therefore a good approach – complexity can always be added if the 
fundamental strategy is sound. 
 
 



 

211 

Chapter 10:   Betting Execution 
 
There has been a lot of preparation up to this stage – with about 50% of the effort on 
implementing the method and rules of the strategy and 50% on complete automation of 
that process.   At last, we are finally in a position where our automated betting strategy 
or “robot” is ready to execute bets - be it to back or to lay, put in a price at the market or 
a speculative offer.  In short, we are ready to execute on the decisions made during the 
last phase of the framework, and translate them to an actual bet or series of bets on the 
exchange.   Within this stage of the framework, we also include monitoring and updating 
bets after placing them, since this is all part of ensuring effective execution.  
 
In terms of the traditional betting process (still available at a licensed betting office near 
you!), we are engaged in the automated equivalent of scribbling out a betting slip, 
shielded from prying eyes (but no longer in a smoky corner) on which is transcribed the 
stake, name of the horse, meeting and time of race.   We are about to visit the counter.    
This would be true of a backing strategy; of course, if laying, we are in the more unusual 
position of sitting in the manager’s office totting up our liabilities on the slips that are 
coming in.      
 
Similarly, in the automated process, we have all the details needed to execute the bet – 
or a few bets - stored now in a file on a computer disk, instead of a betting slip.   (Later in 
Part 3, when we join stages of the framework to create single programs embodying the 
whole framework, we will not bother writing the bets to file, but rather store and reuse the 
details in the context of a program using available memory).   
 
Moving on from the analogy, there are a few more parameters to consider in automated 
execution than within the traditional process, such as the flexibility that exists on the 
exchange with regard to asking for better odds either to back or to lay and for bets to 
persist during in-play markets.      Some elements persist with an analogy with the 
traditional process even so – the ability since the end of 2007 on Betfair to take a Betfair 
Starting Price, for example, as well as whatever price is available at the current market, 
or indeed an early price – just as we can with a traditional bookmaker.       
 
Those observations aside, on the exchanges we soon enter a different world in terms of 
betting execution (as well as the obvious difference that we can also place lay bets).  
This is primarily in the possibility to place bets outside the market that are unmatched, 
and with certain conditions attached, and then to alter them after they are placed.    
 
In that sense we can never be sure if we are “on” or not, unless we make a separate call 
to the market to find out, and act accordingly.    Presumably, this would be the equivalent 
in a traditional betting process of a bettor constantly returning to the counter and asking 
the cashier if her bet had been matched or not, and therefore whether she could have 
her counterfoil back.   “Sorry, come back later”.   Tracking unmatched bets manually on 
an exchange is no less tedious.     
 
So, we will cover the use of automatic functions to enquire on both matched and 
unmatched bets placed as a result of our betting strategy.    Once an enquiry has been 
executed, we have options for updating unmatched bets (i.e. asking for a new exchange 



AUTOMATIC EXCHANGE BETTING 

212  

price, requesting bet persistence through in-play markets, or leaving to SP) and 
cancelling them, which we will also cover as part of an automated strategy. 
 
As we can see in touching upon the issue of unmatched bets, the execution stage may 
be an iterative affair, as opposed to marking the end of our strategy.   By definition, as 
discussed in the last section of Chapter 9, Automating Trading Decisions, this is always 
the case in trading, since more than one bet must be placed to qualify as a trade, and 
execution of any single bet will always be only one element of execution - unless it 
marks the closing of a position.      
 
In any case, the mechanisms used for enquiring on matched and unmatched bets, 
updating and then cancelling bets are no different whether used within a trading context 
or, for example, in trying to obtain a qualifying price for a selection in a betting strategy 
which is consistent with the desired strike rate and strike price for that system.     
 
However, we begin by concentrating on betting execution for our automated scenario, 
namely betting on outcomes.     
 
In the simplest case, we want to get on at the current back price or lay price in the 
current market and stand the best chance of fulfilling the bet.   In this case, we are 
continuing the example strategy we have been using throughout the framework, for 
betting on a oddsline.    Thereafter, we will move on to the case of conditional bets and 
bets outside the current market (simply changing the input parameters supplied to the 
functions for placing bets).    Finally, we consider the more complicated case of dealing 
with unmatched bets and closing out positions to take advantage of market fluctuations.   
 
 

Betting Execution on Oddsline Example 
 
Betting execution is the final piece of the jigsaw for the completion of our example 
oddsline strategy.   However, most of the work has already been done for this particular 
strategy, since all the instructions needed to place each qualifying bet were printed out 
line by line to the file selections during the betting decision making process, as 
shown in Example 9-1.     
 
All that remains to be done for the execution program is to pick up the file, read in all the 
variables from the selections file that were previously written by 
bet_formation.pl (i.e. the program name for Example 9-1) and pass these variables 
into the function for placing a bet.    
 
Next we will cover the purpose of those variables, and the function used to process them 
and place our bet – essentially this is all the program in Example 10-1 does, together 
with appending further information to a betting report. 
 
The key call as far as the Betfair API is concerned is the aptly named PlaceBets.    
 
The key parameters that we need to keep in mind for placing bets - and indeed all 
related functions such as UpdateBets that we cover later – are, in no particular order: 
 



BETTING EXECUTION 

213 

• Selection Id 
• Market Id 
• BetType 
• Stake 
• Price 
 

The unique identifiers for selectionId and marketId will ensure the bet is placed on the 
correct selection running in the correct market.   The other parameters are determined 
by our strategy and staking plan – being  

 
• BetType, to determine whether we are taking on a ‘L’ (for lay) or binary ‘B’ (for 

back) liability,  
• Stake, to two decimal places 
• The Betfair price, using the exact format for one of the Betfair odds increments 

discussed in the Chapter 9 in the section Changing The Price Dynamically. 
 

Additionally, for specifying whether the bet is for the exchange market, to persist during 
the in play market (bet persistence type), or the effective stake in the event of an SP bet 
(the same as the back stake if a back bet, or the total liability if a lay bet), we have, 
respectively: 
 

• BetCategory 
• Bet Persistence Type 
• BSP Liability  

 
Lastly, the AsianLineId is a mandatory argument for this function, but does not concern 
us for horseracing markets (so we simply specify a value of zero when making the call). 
 
As with all the other stages in the framework, this part of the process can be tested and 
used independently provided there is a valid input file available.    Indeed, no matter how 
we get to the point where we are placing bets - whether that be through years of 
research and creating an oddsline method from the ground up; data scraping from a 
tipster’s webpage, or selecting all horses whose name begins with “Z” from the daily 
form dataset – as long as the listed parameters are simply presented for each selection 
in the right format, our betting execution program will not bother with their provenance, 
but simply execute such bets on the exchange.     
 
 
Example 10-1:    Executing Bets from a list of selections 
 
#!/usr/bin/perl –w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       prerequisite modules to run this script 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 



AUTOMATIC EXCHANGE BETTING 

214  

use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";                   #productId is for Betfair's Free Access API 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
#    open files for reading in selections, writing out a report and record of bets placed 
open(SELECTIONS, '/home/aeb/selections'); 
open(REPORT, '>>/home/aeb/betting_report'); 
open(STRATEGY_RECORD, '>>/home/aeb/daily_bets'); 
 
my $date = `date`; #call to system time at start of program, alt = use localtime 
$date =~ s/^\s+|\s+$//g; 
 
print REPORT " 
------------------------------  Bet horses 
$date\n"; 
 
#Go through selections file and parse bet parameters on each line 
my ($time, $course, $horse, $marketId, $selectionId, $price_asked, $betType, $stake, 
$betCategoryType, $betPersistenceType, $bspLiability); 
 
 
while(<SELECTIONS>) { 
 
($time, $course, $horse, $marketId, $selectionId, $price_asked, $betType, $stake, 
$betCategoryType, $betPersistenceType, $bspLiability) = split (/,/,); 
 
#    clean all parameters ready for betting 
 
$selectionId =~ s/^\s+|\s+$//g; 
$marketId =~ s/^\s+|\s+$//g; 
$price_asked =~ s/^\s+|\s+$//g; 
$stake =~ s/^\s+|\s+$//g; 
$betType =~ s/^\s+|\s+$//g; 
$time =~ s/^\s+|\s+$//g; 
$course =~ s/^\s+|\s+$//g; 
$betType =~ s/^\s+|\s+$//g; 
$betCategoryType =~ s/^\s+|\s+$//g; 
$betPersistenceType =~ s/^\s+|\s+$//g; 
$bspLiability =~ s/^\s+|\s+$//g; 
 
#print "$selectionId, $marketId, $stake, $price_asked, $betType\n"; 
 
#Setup missing parameters for the PlaceBet call 
my $asianLineId = 0; 
 
#Set up variables for the return values from the call 
my $bet_error = 'errorCode'; 
my $bet_ref = 'bets'; 



BETTING EXECUTION 

215 

my $betId = 'betId'; 
my $bet_placed; 
 
my @params= ($token,$asianLineId,$betType,$marketId,$price_asked,$selectionId,$stake, 
$betCategoryType,$betPersistenceType,$bspLiability); 
 
#make the call and return values to a hash 
my %bets = place_bet(@params); 
 
#print Dumper (%bets);          #to inspect returned data structure 
 
#Check for errors and write reports 
 
if ( !($bets{$bet_error} =~ /OK/) ) 
 { 
   print REPORT "Failed bet placement:\n"; 
   print REPORT " $bets{$bet_error}\n" 
 
           } 
 else 
 { 
my $bet_placed = $bets{betId}; 
 
                      print REPORT "Following bets placed:\n"; 

print REPORT "$course, $time, $horse, $betType, $price_asked, 
$stake, $bet_placed\n"; 

                      print STRATEGY_RECORD "$bet_placed\n"; 
 
}       #end else for printing out successful bets 
 
 
        }       #end while reading in selections 
 
 
 
#quick and dirty test for determining selections input 
if ($time =~ /[0-9]/) {  
print REPORT "Bet horses finished for $time\n\n"} 
else {print REPORT "\"Selections\" file is not written or blank\n\n"; 
} 

 
 
The first part of the code in Example 10-1 simply logs in ready to bet and then reads in 
and cleans the variables from the selections file that were already written out by 
Example 9-1.     
 
We are agnostic to the input, which could be from any source, as long as it is provided in 
the correct form – meaning this example can more easily be adapted for different or non-
oddsline based betting strategies.   The program simply requires the inputs, hence why 
this stage is a question of execution only and can be joined to any method.   All the parts 
of the program relating to reporting REPORT are specific to our example strategy, and 
can safely be ignored or adapted otherwise. 
 
In Part 3, we combine the decision making and betting execution programs for this 
particular example strategy, thereby making some code – which is effectively repeated in 
both examples - redundant.    However, maintaining discrete programs when putting 
strategies together means that each stage in the framework can be tested individually.     
 
By scheduling the programs in the framework, including this one, to run sequentially, the 
example program will place any bets received like a relay runner, accepting the baton 
from the program that preceded it, provided that the bets received are in a certain 
format, just as the baton must be passed in a certain manner in a relay race – although 



AUTOMATIC EXCHANGE BETTING 

216  

perhaps that’s enough about batons for now.  An example of the output from running all 
the framework programs, including this one, is demonstrated in the first Chapter of Part 
3, Automated Strategies in Practice.    
 
The betting function in Example 10-1, takes parameters for one bet at a time, enabling 
us to open up a loop for reading in selections one at a time, and betting on them 
sequentially.   However, it is worth noting that the PlaceBets API call itself is designed to 
read an array of up to 60 multiple bets at one time.    
 
The call can easily be altered to accommodate reading an array of bets (as opposed to 
one) for additional speed, which would be of particular importance in a trading strategy.   
It’s worth noting that we could alter our program to accommodate that method with a 
little extra work to save the bets we want as an array or arrays, then looping through 
each bet element, extracting the details and passing that into a revised function which 
expects an array of arrays as one of its arguments.    
 
For convenience however we will stick with the single version for now.   Not only is it 
simpler from a programming point of view, it is also relatively efficient when making only 
one to a few bets, as per our examples.   How this function is executed in practice all 
depends on the user’s strategy. 
 
The rest of the code leads up to using the Perl place_bet function which implements a 
single call to PlaceBets for one set of bet details,  first preparing all the arguments for 
the function discussed at the start of the section, thus: 
 
@params=($token,$asianLineId,$betType,$marketId,$price_asked,$selectionId,$stake,$betCate
goryType,$betPersistenceType,$bspLiability); 

 
We can iterate over this function within the context of a loop to place all required bets, or 
modify the function to accept an array of bets from the program, although the code is 
simpler in the single, looping case. 
 
Then, for clarity, passing the arguments to the function and returning the return values to 
the hash %bets. 
 
my %bets = place_bet(@params); 

 
The next section deals with the return values within the context of the program. 
 
 
 
 

Collecting the Bet Identification 
 
We split the rest of the code walkthrough in Example 10-1 into this section to focus on a 
critical return value from placing a bet, namely the bet identification number or betId in 
terms of the Betfair XML element returned.     
 
The bet identification number is the unique reference for the bet that has made, whether 
that bet is matched or unmatched, or placed at SP.    Any subsequent action on the bet 



BETTING EXECUTION 

217 

from an automated point of view will require the bet identification number – whether to 
amend it (via update bets), cancel it, or to enquire upon its result.     
 
The betId is collected within the hash that is returned by calling our PlaceBet function – 
we just have to extract as below: 
 
my $bet_placed = $bets{betId}; 

 
At this point the betId is available for reuse within the program (e.g. checking on 
unmatched bets and updating the bet with new parameters) and/or for writing out to a file 
or database.    
 
Example 10-1 uses the betId to reconcile profit and loss and for record keeping 
purposes, thus all bet IDs are concatenated to a file (as with the double arrow writing to 
the filehandle STRATEGY_RECORD “>>), so that each bet (or iteration of the betting 
program) for a given strategy adds its details to the file.    Once written to a file, the betId 
is the critical variable to use in order to keep track of the success or otherwise of a 
particular strategy after a market has been settled, and one which we use for the 
purpose of record keeping in the next chapter.     
 
Note that Example 10-1 does not check for unmatched bets.   This keeps the program 
simpler, but also for this strategy (which plays in UK horseracing win markets to £5 at 
the current back price in 5 minutes before the offtime) there is little risk of being 
unmatched as we show in testing during Part 3.    
 
However, best practice for building any automated strategy means such tools for 
ensuring the bet is matched should be at our disposal.    In particular, if using a strategy 
which places bets outside the current market (either on criteria of price or current 
volume), or for a trading strategy (where for example it is essential to know if the first leg 
of the trade has been matched before executing on the second leg), checking for 
unmatched bets is a prerequisite to the strategy.     We therefore cover this in the next 
section. 

 

Placing unmatched bets outside current market prices or 
volumes 
 
In testing strategies to live stakes during Part 3, we can see that following a policy of 
taking the available back price to smallish stakes (e.g. anywhere up to £10 per bet) in a 
tight market (i.e. with a good overround and high liquidity, such as during the last 10 
minutes prior to the off), ensures a very high chance we will be matched at the back 
price - if the back price is the price we want.    
 
However, outside these tight constraints, the likelihood of being matched outside the 
current market is dependent on the strategy’s ambition for one or both of either: 
 

• Higher Stakes than the current market offers 
• Better Prices than the current market offers 

 



AUTOMATIC EXCHANGE BETTING 

218  

Our ability to get matched will be inversely related to that ambition.   
 
In both cases, the longer the time to the market offtime, the more chance there is of 
profiting from market volatility – since closer in time, the next value is statistically likely to 
be nearest the previous value.   Time helps move values far away from their current 
points, but asking for both higher price and volume which is outside the current market 
range, it will become increasingly difficult to get matched the further we travel away from 
current market liquidity.    
 
Where the betting strategy requires a marginally better price or volume at the front of the 
market, or is playing illiquid prices to small, speculative amounts, betting execution will 
not only involve placing bets, but checking on outstanding bets (i.e. that have not been 
matched), and amending (i.e. updating) or cancelling bets.    The exception to this rule is 
the Betfair SP market; where bets cannot be cancelled or amended once placed.     
 
In all cases, we have additional options to switch bets when updating them to either the 
SP market or to add an additional market to the bet’s life, i.e. to let it persist during the 
in-play or in-running markets. 
 
Firstly, however, programs need to be able to check the status of bets and act upon that 
status, for any strategy which: 
 

• Is likely to generate unmatched bets (a potential risk with any strategies, but an 
obvious risk where speculative bets are placed) 

• Explicitly needs to give the option to revise bets downward or upward from the 
asking price at a subsequent stage 

• Includes trading elements, such as a second bet dependent on the first bet 
 
 

Checking on outstanding (unmatched) bets and positions 
 
A number of calls exist in the Betfair API which enable the bettor to check on various 
aspects of outstanding bets and positions.   There are also numerous Betfair API “Lite” 
services outside the context of the Free Access API subscription level.        
 
However, within the context of both the Free Access API and subscription API, Get 
Matched and Unmatched Bets is a useful ally, and it is this service and corresponding 
function that we will focus on in this section.      (N.B.:  The full list of API services is 
detailed at the start of Chapter 4 and a comprehensive reference to the inputs and 
outputs for each can be found in the Betfair Sports API Reference Guide, as discussed 
in Chapter 4.)    
 
The Perl function retrieving details on Matched and Unmatched Bets used in the 
example library - get_mubets - provides two ways of capturing matched and 
unmatched bets – by marketId, or by betId.   (It should be noted that data request 
charges are higher in the Free Access API for multiple calls made for bet IDs which may 
travel across many markets, than for market IDs, for single markets).   There are various 
other parameters available for accessing matched and unmatched bets, including 
parameters to access bets according to whether they are matched, unmatched or both.  



BETTING EXECUTION 

219 

We hard code the options in the example function so that both matched and unmatched 
bets will be returned according to the arguments (i.e. either betId or marketId) supplied 
to the function. 
 
If only the betId is supplied, then only the matched and unmatched information relating 
to the bet we specify will be returned.   In this case, the marketId should be set to a 
value of zero – as shown in Example 10-2.     
 
Specifying the marketId (in which case, the betId should be set to zero) will return all 
bets from the market, matched and unmatched, including any bets which have been 
updated, for the market in question.    What we do with the returned bet and status 
information will depend upon the strategy that created all the bets there in the first place 
– we cover some possibilities after the example code for retrieving them.  
  
The data structure itself that is returned by get_mubets is a hash.   The hash keys refer 
to the variables in the header response (common to all functions), but the elements we 
are particularly interested in are referenced by the key results, as below: 
 

$mu_bets{results}; 
 
This represents a further data structure holding any matched and unmatched bet details 
(by market), or the particulars of one bet (by betId).    The scalar variable we use to save 
this key is an anonymous array of hashes, with each hash being a set of different bet 
details relating to one betId.  In the case of one bet only being returned, our subroutine 
(listed under sub get_mubets in the example library) forces any single bet to be an 
array also, so that all variables pertaining to the bet can be accessed consistently – that 
is, by dereferencing the array and then referring to the hash keys for each value, as in 
Example 10-2. 
 
Example 10-2:   Retrieving Bet Status by BetId or MarketId 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
#       prerequisite modules to run this script 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";                   #productId is for Betfair's Free Access API 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 



AUTOMATIC EXCHANGE BETTING 

220  

my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 
 
#  A betId or marketId is normally supplied to get_mubets within the context of a program 
#  Here we test the function manually with any given betId or marketId 
#  If only marketId is supplied, betId must be set to a value of zero - and vice versa 
#  See also Examples 10-3 and 10-4, which are continuations of this code 
#  For updating and cancelling bets 
 
#my $betId = "0"; 
my $marketId = "20852151";     #test by hard coding a marketId where a bet exists 
 
my %mu_bets = get_mubets($token, $marketId, $betId); 
#print Dumper(%mu_bets); 
 
my $results = $mu_bets{results}; 
 
#print Dumper($results); 
my ($mu_status, $mu_size, $mu_price, $mu_betType, $mu_persistence, $mu_betCat, $mu_bsp, 
$mu_selectionId); 
 
foreach my $ref ( @ { $results } ) { 
 
$betId = $ref->{betId}{content}; 
$mu_status = $ref->{betStatus}{content}; 
$mu_size = $ref->{size}{content}; 
$mu_price = $ref->{price}{content}; 
$mu_betType = $ref->{betType}{content}; 
$mu_persistence = $ref->{betPersistenceType}{content}; 
$mu_betCat = $ref->{betCategoryType}{content}; 
$mu_bsp = $ref->{bspLiability}{content}; 
$mu_selectionId = $ref->{selectionId}{content}; 
 
 
print "$mu_status, $mu_size, $mu_price, $mu_betType, $mu_persistence, $mu_betCat, 
$mu_bsp, $mu_selectionId, $betId\n"; 
 
if ($mu_status eq "U") { 
 
#do something with each unmatched bet . 
 
#e.g. enquire on the price, update it (covered in next section), etc. 
 
}; #end if matched status is unmatched 
 
}       #end foreach reference to a betId or betId within market 
 
 

The code we are concerned most with above comes after making the function call and 
returning the anonymous array of hashes containing all the bet information, which is 
stored to the variable $results.    
 
The body of the example simply retrieves and prints out the values of variables that are 
needed when updating and cancelling bets. 
 
$betId = $ref->{betId}{content}; 
$mu_status = $ref->{betStatus}{content}; 
$mu_size = $ref->{size}{content}; 
$mu_price = $ref->{price}{content}; 



BETTING EXECUTION 

221 

$mu_betType = $ref->{betType}{content}; 
$mu_persistence = $ref->{betPersistenceType}{content}; 
$mu_betCat = $ref->{betCategoryType}{content}; 
$mu_bsp = $ref->{bspLiability}{content}; 
$mu_selectionId = $ref->{selectionId}{content}; 
 
 
print "$mu_status, $mu_size, $mu_price, $mu_betType, $mu_persistence, $mu_betCat, 
$mu_bsp, $mu_selectionId, $mu_betId\n"; 

 
In practice, the first parameter we are interested in is the status of the bet – returning M 
for matched or U for unmatched.   If the primary concern is with unmatched bets, then 
anything with the indicator M is of no relevance.   In Example 10-2, we take no further 
action on matched bets, apart from printing out summary details, although of course we 
could go further, such as calculating position and average price in the case of multiple 
bets on the same race or horse.    
 
Unmatched bets will return a status U to the $mu_status variable.   In the example 
shown, we split out any unmatched bets to make a decision – which could be to leave 
the unmatched bet alone until it is matched, or lapses; to explicitly cancel it, or to amend 
it in order for the bet to be accepted on different terms and conditions.      
 
To do this programmatically, we may set up a loop to constantly enquiry on the status of 
the bet.   Such a loop could depend for its execution conditions on time remaining to the 
event start, with a series of actions to sleep, enquire on the betId or market ID, then 
sleep, enquire on the betId or market and so on,  up to a certain point (let’s say one 
minute before the off), when a decision would be finally be made (in programming 
terms), as to how to proceed.    An adaptation of the type of construct we outlined earlier 
in Chapter 7 for looping over market prices at regular intervals would suffice for this.     
 
Such a loop, enquiring on the status of unmatched bets, can be combined with an 
enquiry on market prices or any other API call, and logic built into the program to 
evaluate those prices.    
 
To find out if the next bet (or only bet, in the case of one returned value) is matched or 
unmatched, we simply test for the matched status  
 
if ($matched_status eq "U") { 
 
#do something with each unmatched bet –  
#e.g. enquire on the price, update it (covered in next section), etc. 
 
}; #end if matched status is unmatched 

 
Sometimes a bet may be partially matched, such as when a price or amount being 
requested is close to the market, or in a timing sense, if the market value we asked for 
was in the process of disappearing just before our bet was put onto the exchange.   In all 
cases, some amount may be matched at the requested price but not all that was asked 
for.     
 
In the case of a partially matched bet, the solution to test for whether or not the bet is 
unmatched (and therefore whether any action should be taken) is no different to a 
completely unmatched bet.   The array holding the hashes of bets was forced to deal 
with single or multiple values, so if there is more than one value (as in the case of a 
partially matched bet) the test will return the part of the bet that is unmatched.   In this 



AUTOMATIC EXCHANGE BETTING 

222  

case, the betId will be the same as our original bet, although referring to a partially 
unmatched portion of it.    The betId will only change if the terms and conditions of the 
unmatched portion are changed by updating it. 
  
In all cases of unmatched bets, we can take the returned parameters and use them to 
explicitly update bets in many varied ways, or to explicitly cancel them. 
 

Updating and Cancelling Bets 
 
Following on from the previous section, let’s suppose we built tests into our automated 
strategy for whether bets are matched or unmatched (which includes partially matched 
bets), and that the following scenario now applies: 
 

• With one minute before the start of the race, a betId returns unmatched status.   
We collect market information on the selection using the betId to retrieve its 
details.   The market information shows that the current price is some ticks below 
the price that we asked for.   Next we repeat the “betting decision making” criteria 
for this bet. 

 
Now, according to the decision making criteria, we have the following possibilities: 

 
• Value still exists in the selection, albeit at a lower price than we originally wanted.   

According to the strategy, the program should therefore update the bet, or the 
partially matched bet, in order to get on at the current market price before the 
original bet lapses at the offtime. 

 
• As above, we test for market prices, and apply the decision making criteria, but 

the current price is below that required by the strategy   We therefore have a 
choice as follows: 

 
o Update the bet so that it can persist at the current price during the in-play 

market, taking a chance that we will be matched, (bearing in mind that we 
could also update any other aspect of the bet, including stake and price 
asked). 

o Update the bet and switch to SP, guaranteeing a match but not the price 
(note that on Betfair we can’t specify a minimum price for switching a bet 
to SP, only when placing an original bet at SP)  

o To let the bet lapse 
o To cancel the bet 

 
At this point we may well question, given the uncertainty on any bet outside current 
market parameters being matched, coupled with all the programming effort involved, 
exactly what benefit is involved in trying to “get on” automatically outside current market 
prices?    
 
In such cases, the strategy can explicitly cancel the bet.    However, there are strategies 
where all nuances in the scenario are appropriate, especially with minimum value 
requirements close to the current market, or with a strategy that may rely on persistence 
during the in-play market. 



BETTING EXECUTION 

223 

 
In such cases, the strategy will need to update bet details on any bet that is found to be 
unmatched, in a further attempt to match it according to specific criteria.   Let’s look at an 
scenario to illustrate this. 
 
A bet has been placed for £10 on Faasel in the Gold Cup Handicap Chase at 
Cheltenham on December 14th 2007, with a back price stipulated of 19.0.      
 
By running the enquiry for unmatched bets on this market (showing the variables 
mentioned in the print statement in Example 10-2), we can return the following type of 
output to illustrate the arguments we are using: 

 
U, 10.0, 19.0, B, NONE, E, 0.0, 416818, 4085811477 

 

The bet is Unmatched, for a stake of £10 at a price of 19.0; it is a Back bet, with no 
persistence conditions attached, placed on the Exchange as opposed to at SP, with no 
SP liability, 0.0 (effectively the stake or lay liability for a bet placed at BSP) with a 
selectionId of 416818 and a betId of 4085811477. 
 
Following Example 10-2 to the point where we execute a loop conditional to finding any 
unmatched bet, let us say for the sake of argument that within that loop we make a call 
to GetMarketPricesCompressed to retrieve current market values for Faasel.   This 
shows us that Faasel is currently trading at 15.5 to back and 16.0 to lay, but there is 
approx 5 times the money to all 3 places shown on the back side than the lay side.    
 
In other words, bettors on the exchange are 5 times more willing to lay Faasel at this 
price than they are to back him, in the currently available to bet market at least.    
 
There is a fair time until the market starts, so, coupled with weight of money, there is an 
increased chance that a price of 19.0 could be matched.    If it is not matched before the 
off, the race type is a competitive handicap chase (high value and large field) of almost 3 
miles in which there should be a strong in-running market due to the market conditions 
(strength of market, interest in market and duration of race), so there is plenty of time for 
Faasel to be matched at a slightly higher price than SP, especially to small stakes.    Our 
program will therefore make the call to leave the bet price as it stands, but to keep it 
when the market turns in play, increasing the chance of being matched.   We thus elect 
to automatically change (“update”) the persistence type on the existing bet.   
 
Using the library function for updating bets, we simply pass in all the existing parameters 
for the unmatched bet, except those that we wish to change (as with the website 
interface, however, it is not possible to amend both size and price on an existing bet). 
 
Below we can imagine that the code is a continuation of Example 10-2, so that we will 
use the current values returned by the unmatched bet, simply changing the parameter 
that needs updating  - here it is the “In Play” parameter, although any other parameter 
could be changed in the same way. 
 
 
 
 
 
 



AUTOMATIC EXCHANGE BETTING 

224  

Example 10-3:   Updating Unmatched Bets 
 
#!/usr/bin/perl -w 
 
#---------------------As Example 10-2 up to and including the if statement below 
 
if ($mu_status eq "U") { 
 
#do something with each unmatched bet . 
 
#here we change all unmatched bets to status "Keep" so that they will persist in play 
#Not a good idea unless the strategy merits it… 
 
my $newPrice = $mu_price; 
my $newSize = $mu_size; 
my $oldPrice = $mu_size; 
my $oldSize = $mu_size; 
my $persistType = "IP"; 
my $oldPersistType = $mu_persistence; 
 
my %updated_hash = update_bet($token,$betId,$newPrice,$newSize,$oldPrice,$oldSize, 
$persistType, $oldPersistType); 
 
#print Dumper (%updated_hash);  #check data structure for all possible values 
 
my $new_BetId = $updated_hash{newBetId}; 
print "$new_BetId\n"; 
 
}; #end if matched status is unmatched 
 
}  #end foreach $ref (start of loop not shown above, but is required in Example 10-2 of 

# which this code is a continuation) 

 
In the example for Faasel, only one parameter in the call has been changed (i.e. 
$persistType  NONE has been changed to IP).   Thus the bet on Faasel will now 
persist into the In Play market if it is not matched by the time that the race starts. 
 
For the scenario where we want an unmatched bet to be matched with relative certainty 
before the in-play market, the same function call for updating bets applies.   Simply 
changing the bet persistence type to SP in the case of SP markets, or leaving it at 
NONE and changing the price or amount only in an attempt to be matched at the current 
market. 
 
In each case, we also save the variables from our original request for retrieving matched 
and unmatched bets, and pass these to the update_bet function, as already shown.  
We can only update size or price in one call, just as with the website interaction.    
 
In the example shown, the size of the unmatched bet comes from our existing strategy, 
so there is only a need to change price, and the condition of the bet, if required, relating 
to bet persistence.   
 
Thus we have 3 strategies for updating bets hinging around the use of the    
betPersistenceType 
 

• NONE:  No bet persistence type, bet can be updated to request a new price (e.g. 
the current market price to be sure of getting on at the market) and amounts 

• IP:       “In play” persistence; unmatched bets (or the unmatched portion of a bet) 
remain in the market when it switches to in-play.   If no other parameters (price or 



BETTING EXECUTION 

225 

amount) are changed, the same betId will be returned, otherwise a new betId will 
be returned reflecting the updated bet. 

• SP: Converted to market on close starting price 
 
A critical point to bear in mind for any use of the update_bet function which changes 
price or size of the bet is that a new betId will be assigned to the “updated” part of the 
bet.    If this bet is itself unmatched, and we wish to change any further aspect of it, we 
will have to maintain and pass in the new betId.   If bets continued to be partially 
matched, one original bet could thus spawn many bet IDs through any strategy to update 
them. 
 
Although this hypothetical case has been discussed in terms of an interactive human 
decision, such logic can easily be embodied within the context of an automated strategy.   
For example, we could stipulate that for certain types of races (such as long distance 
chases) a price is always requested at N% above the current market price if there is 
some time to the off.   Subsequently, according to some appropriate conditions, any 
unmatched bet could be updated as above, to persist during the in-play market.    
 
Let’s say that the bettor does not agree with any of the above, and changing the bet to 
bet persistence does not make sense.   At the same time, leaving a bet outstanding that 
is unlikely to be matched is affecting their overall Betfair exposure.   They want to 
explicitly cancel the bet.    
 
To explicitly cancel an outstanding unmatched bet, the call is similar to update bets, the 
API call is simply CancelBet.    To illustrate using cancel_bet in context, we can take our 
example code up to the same point in Example 10-2 (where we have automatically 
retrieved details of unmatched bets) to explicitly cancel unmatched bets instead of to 
update them. 
 
 
 
Example 10-4:  Cancelling Unmatched Bets 
 
#!/usr/bin/perl -w 
 
#---------------------As Example 10-2 up to and including the if statement below 
 
if ($mu_status eq "U") { 
 
#here we cancel each unmatched bet according to the betId 
 
my %cancelled_hash = cancel_bet($token,$betId); 
 
#print Dumper (%cancelled_hash); 
my $size_cancelled = $cancelled_hash{sizeCancelled}; 
 
print "$size_cancelled\n"; 
 
 
}; #end if matched status is unmatched 
 
}  #end foreach $ref (start of loop not shown above, but is required in Example 10-2 of 

# which this code is a continuation) 

 
 



AUTOMATIC EXCHANGE BETTING 

226  

Hedging, and taking a partial profit on a position 
 
“Greening up” or ending up with a “green book”, as the term has been coined, is typically 
associated with profitable trading activities (laying low and backing high or vice versa) on 
either one or more runners in a race.   This could result from trading an individual runner.   
It could also result from attempting to create a book by backing (dutching) or laying 
every runner in the field to a favourable overround.    
 
As those who have used Betfair with any frequency will know, “greening” out or up is so 
called since the profit figure displayed beneath each runner on the website interface, 
showing profit or loss in the event of that contender winning, shows in green for all 
runners, as opposed to red for some and green for others.   The bettor with a green book 
knows a profit will be achieved whatever the outcome of the event.     
     
Theoretically, this is the ideal position for a trader to be in before any race, since he has 
made a profit before the race begins.  By contrast, the logic in betting on outcomes is 
that we are prepared to wait for the outcome in the expectation that the prices available 
on our selections do not reflect their true chance. 
 
The question is, at what point does a price change mean it makes sense to cash in on 
that bargain price if the price changes before the event (or even during the in-running 
markets)?     
 
We could argue that there are certain instances (i.e. when prices significantly contract or 
lengthen before any race) when any bettor on outcomes should also contemplate 
thinking like a trader, and that this should therefore be accommodated within any betting 
process. 
 
For example, let’s say our oddsline has determined that a contender’s “true price” or 
probability of winning is 8/1 (or 9.0 to exchange decimal odds).   On visiting the market 
and executing the oddsline strategy, we find that the actual price on this contender is 
10/1 or 11.0, a healthy 20% higher than our estimate.   The selection therefore 
constitutes a bet, which we place some time before the off.   However, at the off, the 
price has contracted to 6/1 or 7.0, now more than 20% below the price that we originally 
considered to be true value, and 40% less than the price we managed to obtain.    For 
the trader, locking in a profit at this point is a “no-brainer”.    For the backer or layer who 
was intending to bet outcomes also, hedging the bet or taking some profit at this point 
can also be a logical option, entirely consistent with an oddsline strategy, which is after 
all about identifying value. 
 
In terms of implementation within the automated framework, this means executing our 
first bet, and then saving the bet ID in some persistent format (a file, a database, or in-
memory if the program is kept alive), so that we can act upon a later price for the runner 
and place a subsequent bet, either to back or lay, which locks in some profit.    
 
The exact profit or hedge required will depend on the strategy.     
 

• We may simply decide to let the bet ride until its outcome, and that the 
contraction in market price confirms the value obtained, therefore there will be no  
hedge.    



BETTING EXECUTION 

227 

 
o So for the no hedge case, for a £10 stake at the back price of 11.0, 

winnings remain £100 and should the bet lose £10 is at risk.     
 

• The objective could be to hedge if the price contracts but not to lock in a profit, 
rather to be left with a “bet to nothing”, where the back stake is covered and a 
potential profit remains so that there is a no lose situation.     

 
o The bet to nothing will simply involve laying the selection for the same 

stake at the new price.     
o So for a £10 stake on the example shown, backing at 11.0 and laying at 

the later contracted price of 7.0,  the profit would be £40 (without 
commission), with zero risk if the selection lost. 

 
• The objective could be to lock in profits whenever price movements of this 

magnitude (e.g. 30% plus) occur in favour of the oddsline strategy.    Locking in 
profits on the whole market is equivalent to the same method to be followed in a 
trading strategy where we want to “green up” the book after a price change in the 
trader’s favour, whatever the size.    

o Thus, in terms of our example, we place the original back bet of £10 at 
11.0, and then leave it standing until the strategy revisits the market to 
determine the later price. 

o The market price has contracted to 7.0, 40% less than the price we 
obtained on the selection. 

o The automated rules for “greening up” the book kick in, so we must place 
the appropriate lay bet in order to guarantee an equal profit on the market 
in the event of any of the contenders winning. 

o The calculation of the stake to place at the current price (or desired price, 
if setting a hedge outside the current market) is: 

• Lay stake  = (back price/ lay price) x original stake.   
• = (11/7) * 10 =  £15.71.     

o Working it through on a bet by bet basis: 
o Should the selection  win, we will win £100 from the original bet, 

and lose £94.26 from the lay bet, leaving a profit or £5.74.    
o Or, should the selection lose, we lose £10 from the original bet, 

and win £15.71 from our successful lay bet, leaving a profit or 
£5.71 (the 3p difference being down to rounding).     Thereby 
guaranteeing a profit of £5.70 (without commission) whatever the 
outcome.    

 
In the opposite case, to equalise profits for a “lay to back” strategy where a price 
lengthens, the terms lay and back above can simply be reversed. 
 
As we can see, trading or hedging strategies of this nature generally involve 
straightforward maths that can be easily coded for automation.    We can program rules 
based around the extent of price contraction in order to determine when and when not to 
hedge.    In such instances, a more difficult question for the bettor is less how to hedge, 
but at what price level it is more profitable to hedge our bets than leave to them to run.  



 

  

 
 



 

229 

Chapter 11:   Automated Record Keeping 
 
The final stage of the framework is not mission critical to the process of placing an 
individual bet to implement a betting strategy - but it is deemed best practice for any 
betting strategy, manual or automatic, for a number of reasons.   
 
Only by keeping records can we hope to assess the success or failure of any strategy.   
In the Betting Execution process, we deliberately went out of our way to record the bet 
ID of all bets placed for this reason – to automate the record keeping process.    We also 
captured errors and output from calls made at the time the bets were executed – here 
we were more concerned with mirroring the manual process of analysing bets and 
betting strategies. 
 
However, in a manual betting process, record keeping is often seen as a medicine that 
should be taken but is rather avoided (especially in losing runs), since it involves the 
tedious, uncreative and time consuming task of typing or writing up records after betting 
activity, and a consequent diminishment of fun.    
 
At a minimum, any bettor hoping to implement profitable strategies clearly needs to 
know her profit and loss on each bet, and cumulative profit and loss.    The good news is 
that, at least for individual accounts, electronic bet placement has greatly simplified the 
task of record keeping, be it for manual or automated bets, with each bet being 
recorded, as well as total deposits and withdrawals to exchange accounts.     The 
Betting History, Betting P&L and Account Statement facilities on the Betfair website 
interface also enable easy downloading of betting histories to spreadsheets for further 
analysis on a manual basis.  
    
However, knowing what the profit and loss figure is on its own is only a small piece of 
the story in using betting history to the bettor’s future advantage.    Unless it is clear why 
each bet has been struck, there can be no improvement based upon betting history.    
 
On a more mundane level, if we do not automatically record and store bets according to 
which strategy they relate to, then it is impossible to assess success or otherwise on a 
strategy by strategy basis, and no meaningful information can be derived.    So mixing 
up profit and loss on all bets together for radically different betting strategies may tell us 
our overall Account profit and loss, but nothing that we can use to help us analyse and 
improve.       
 
We can therefore start to look at the value added (and more interesting) part of the 
process of record keeping (i.e. analysis) by automating the capture of bet IDs relating to 
individual strategies when the bets are made.    Subsequently, further details of the bets 
can be retrieved using various API functions, and full information can be recorded 
electronically for future access and analysis, for example in a database.     
 
This data will be a combination of bet details (horse, race, price and so on), why the bet 
has been placed and under what conditions (in other words, details of the strategy to 
which the bet relates and the decision criteria), and the result of the bet (in terms of profit 
and loss).     
 



AUTOMATIC EXCHANGE BETTING 

230  

What we can do with such data, once we have it, is itself the basis of developing many 
aspects of a betting strategy further – from staking, decision making criteria, and the 
basis of the system itself – for example, looking at expected versus actual returns. 

 

Capturing settled bet details 
 
The ability to analyse betting strategies relies on capturing details of each bet executed 
within the strategy.   The process starts with recording details of bets that have been 
made as part of a strategy, during the betting execution phase, and ends with capturing 
and recording details of each settled bet when the event has finished.   
 
We first need to record the bets placed by any strategy at the point of execution, writing 
a record of these to a local file or to a database, along with any other information from 
the strategy – such as the oddsline tissue, and other criteria used to make a betting 
decision - which we might wish to keep for subsequent analysis of a betting strategy.     
 
Secondly, we need to retrieve details relating to settled bets, fundamentally the profit 
and loss, together with any other information available from Betfair – such as the 
requested size, the matched size, the time the bet was placed, and so on - which is 
required for subsequent analysis.    
 
Thirdly, we write those records to a database, so that we can track ongoing profit and 
loss per betting strategy and later use the database to analyse the results of any betting 
strategy at will. 
 
Probably the most convenient Betfair API service for retrieving profit and loss with other 
summary details (supplying our saved betId as an argument) is the GetBet service.   
We use this function for convenience when storing strategy details in Part 3, Automated 
Betting Strategies in Practice, since bets can be retrieved and stored rapidly without time 
delay.    However, this is not be used as the principal example, since this particular 
function is only available through the subscription API, or may be available within the 
context of a software vendor’s supported application.      
 
Although readers may eventually wish to go down the route of using subscription 
services, we will concentrate in this section on another way of skinning the cat by using 
the Free Access API service, GetAccountStatement, in order to retrieve the same 
details.    Retrieving details for an existing set of bet IDs is slightly more painful by going 
down this route than by using GetBet, although we end up with the same results.     In 
any case, the function itself is worth using from a general point of view for record 
keeping purposes, since there are other useful parameters available that are not within 
the GetBet service, such as the individual account holder’s commission rate and 
commission deductions per bet.       GetAccountStatement is in some ways the 
superset service to use for record keeping since all details relating to bets placed within 
an account are available, mirroring all the details usually available by looking up “My 
Account” from the Betfair website interface. 
 
 



AUTOMATED RECORD KEEPING 

231 

Retrieving Betting Records by Betting Strategy 
 
Here we are primarily concerned with sifting through all the records within a Betfair 
account in order to find those bets automatically placed by a certain betting strategy, 
extracting them, then writing them to a database, so that we can assess the 
performance of any given strategy. 
 
For this example, let’s therefore assume that we have a file to which a list of betIds has 
been written, one betId per line each relating to an individual strategy.   In fact, such a 
file was already generated within the context of the framework in Example 10-1 during 
the Betting Execution process, (saved as a file called daily_bets, with the file handle, 
STRATEGY RECORD). 
 

Further, we will assume that the purpose of this file is to supply betIds for our betting 
record program at the end of every racing day, including P&L for a strategy.    This type 
of program would therefore be run as a scheduled task (e.g. a cron job in Linux) as per 
the discussion in Chapter 7. 
 
The arguments for our Perl implementation (get_account_statement) of the 
GetAccountStatement API service are the obligatory session token, the start date 
and the end date for all the bets to be retrieved.    
 
For the example, we make some general assumptions that such a program is set to run 
at the end of the day, and to retrieve all the current day’s bets (no longer timeframe).   
To do this, we therefore specify a start date of the current date, with a time start of 00:00 
hours, and an end time of 23:59 hours for the current day.   This will pick up all daily bets 
placed in the account specified.    
 
The bettor will have their own requirements for what data is recorded and in what format 
-  for the example we use a simple database, the table for which should be created first, 
as shown in the following example: 
 
 
Example 11-1:   Generating a MySQL table to record betting strategy performance 
 
#CREATE results table of bets to record the strategy PD_oddsline_bets in book, can be 
#generic for any strategy, simply need to insert the relevant strategy name 
 
DROP TABLE IF EXISTS bets; 
 
#@ _CREATE_TABLE_ 
CREATE TABLE bets 
( 
        date                  date NOT NULL DEFAULT '0000-00-00', 
        marketId              INT(11) NOT NULL DEFAULT '0', 
        betId                 BIGINT(12) NOT NULL DEFAULT '0', 

 strategy_name         VARCHAR(25),        
 selection             VARCHAR(25), 

        avprice               DECIMAL (6,2), 
        betsize               DECIMAL (7,2), 
        PandL                 DECIMAL (7,2), 
        PRIMARY KEY (marketId, betId) 
) 
#@ _CREATE_TABLE_ 
 
#The script to create the table can be executed at a shell prompt as below: 
#  mysql < create_bets_table.sql 



AUTOMATIC EXCHANGE BETTING 

232  

   

 
The table can be used generically (i.e. to record the performance of any betting 
strategy), simply by altering the strategy name.   In the context of this example, we will 
use the strategy name PD_oddsline_bets to refer to the example strategy started in 
Chapter 6, which has been used to illustrate the framework.     
 
The requested bet size is a value which we would normally want to include in the 
database table since a simple comparison of the requested bet size and matched size 
for each bet can identify missed bets and demonstrate how easy it is for our betting 
strategy to “get on”.   Using GetBets we can retrieve such values at this point in the 
framework. 
 
However, once again proving that there are usually many ways to achieve different 
objectives for automation, this value can also be captured and recorded without using 
GetBets.      Simply, it can be written to a file or database at the time when the original 
betId is recorded (although it creates more dependencies in earlier programs), since the 
requested bet size is of course the same as the stake stipulated in the betting execution 
program. 
 
Once the database table is created, we are ready to schedule a script such as the one 
below to pick up bet details every night after racing and record them for a given strategy, 
as discussed earlier: 
 
 
Example 11-2:   Retrieving betting records for an individual betting strategy 
 
#!/usr/bin/perl -w 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this example is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
 
#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 
my $year = ((localtime)[5] + 1900); 
my $month = ((localtime)[4] + 1); 
my $day = (localtime)[3]; 
my $date_today = sprintf ("$year-%02d-%02d", $month, $day); 
 
open (BETS, '/home/aeb/daily_bets'); 
 
my @strategy_bets = (<BETS>); 
 
 
#       login variables 
my $username = "username"; 



AUTOMATED RECORD KEEPING 

233 

my $password = "password"; 
my $productId = "82";           #Free Access API access code 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login successful"; 
 } 
 
my $dbh = DBI->connect("DBI:mysql:autodb", “username”) or die ("Error:  $DBI::errstr");  
#substitute your database and user credentials 
 
#substitute your betting strategy name 
my $strategy_name = “PD_oddsline_bets”; 
 
my $start = $date_today."T00:00:00"; 
my $end = $date_today."T23:59:00"; 
 
my %statement_hash = get_account_statement($token,$start,$end); 
my $items = $statement_hash{items}; 
my $statement_betId; 
my $betSize; 
my $running_pandl; 
my $pandl; 
my $market_description; 
my $winLose; 
my $avprice; 
my $selection 
 
 
#print Dumper(%statement_hash);  #to list all variables it's possible to extract 
 
foreach my $item ( @{ $items} ) { 
 
$statement_betId = $item->{betId}{content}; 
$betSize = $item->{betSize}{content}; 
$pandl = $item->{amount}{content}; 
$market_description = $item->{fullMarketName}{content}; 
$winLose = $item->{winLose}{content}; 
$avprice = $item->{avgPrice}{content}; 
$selection = $item->{selectionName}{content}; 
$marketId = $item->{eventId}{content}; 
 
#if retrieving all daily records without specifying specific bets, uncomment 
#unless ($market_description =~ /Transfer/) {$running_pandl += $pandl}; 
 
foreach my $strategy_betId (@strategy_bets) { 
 
if ($statement_betId == $strategy_betId) {$running_pandl += $pandl}; 
if ($statement_betId == $strategy_betId && $betSize>0) { 
 
#write bet details to database 
 
my $sql = qq(INSERT INTO bets VALUES 
('$date_today', '$marketId', '$strategy_betId', '$strategy_name', 
'$selection', '$avprice', '$betSize', '$pandl') ); 
my $query = $dbh->prepare($sql); 
$query->execute; 
 
} #end if statement Id is the same as strategy Id 
 



AUTOMATIC EXCHANGE BETTING 

234  

} #end foreach strategy Id 
 
} #end foreach statement Id 
 
#capture and store the net PandL for the strategy if required, in a separate table if 
required   
print "RUNNING_P&L = $running_pandl\n"; 
 

 
Assuming the account in question is used for more than one betting strategy, our task is 
to match all betIds stored in the file relating to our strategy and compare them against all 
the details retrieved from the GetAccountStatement service, processing and storing 
such details whenever there is a match.    
 
First we save the betIds gathered from the strategy during the day, as follows: 
 
open (BETS, '/home/aeb/daily_bets'); 
my @strategy_bets = (<BETS>); 

 
Then login and make the call to GetAccountStatement as follows 
 
my %statement_hash = GetAccountStatement($token,$start,$end); 
my $items = $statement_hash{items}; 

 
The bet details are returned as an anonymous array of hashes, with each hash being an 
“item” representing a betId and corresponding bet details.     
 
We then save the variables shown in the script, and loop through each item returned, 
gathering bet details.    One “gotcha” to watch out for is any items which contain 
duplicate betIds in the array – this occurs for any betIds which have returned a winner.  
 
In such cases, we have one betId which returns the gross PandL for the bet, and 
another which returns the commission deducted from the bet.   In order to monitor the 
success or otherwise of the strategy, the example returns gross PandL, since 
commission rates can vary, but we can consistently compare gross sums and then 
captures separately the actual PandL (i.e. the gross PandL minus the commission) for 
the strategy on the day, so we also have a view of actual PandL.      
 
Another potential “gotcha” to watch out for are other items which do not relate to bets, 
such as transfers – we don’t want to count money taken from the bank account as 
winnings! 
 
unless ($market_description =~ /Transfer/) {$running_pandl += $pandl}; 

 
Our program finishes the loop, extracting all details for each item, then writes out the 
final values for each to the database table shown earlier.   When the whole loop is done, 
we are also able to calculate profit and loss on the day for the entire strategy, which we 
print out at the end of the program. 
 
print "RUNNING_P&L = $running_pandl\n"; 

 
The running P & L calculations can also be omitted from the program, and done at the 
database level, both for gross profit and profit after commissions, provided of course that 
these values are captured and stored. 
 



AUTOMATED RECORD KEEPING 

235 

Using the GetBets call, the program to retrieve bets is reduced in size and complexity.   
Assuming we get to a point in the program where we have a file containing all bet IDs, 
such as daily_bets and read that in as per Example 11-2, up to the point where the 
@strategy_bets array exists, retrieving bet details using GetBets can be done simply 
by looping through the array and applying the function to every bet in the array, as 
shown in Example 11-3: 
 

 
Example 11-3:   Using GetBets to retrieve settled bet details 
 
#!/usr/bin/perl -w 
 
#-----------------Copyright Colin Magee 2008--------------------- 
#----------One example using a subscription service as an alternative to Example 11-2 
#----------….But ending up with the same results… 
 
#----------Code omitted for: 
#----------Load modules, 
#----------Login to API to retrieve session token 
#----------Open file for betIds as per Example 11-2 
#----------save the file as an array, in @strategy_bets 
 
foreach my $bet (@strategy_bets) { 
 
my %bet = get_bet($token, $betId); 
 
my $getbet_error = $bet{errorCode}; 
$token = $bet{sessionToken}; 
 
if ( !($getbet_error =~ /OK/) ) 
 { 
   print "Failed GetBet:\n"; 
   print "$getbet_error"; 
 } 
 else 
 { 
        print "GetBet call successful\n"; 
 } 
 
my $marketId = $bet{marketId}; 
my $selection = $bet{selectionName}; 
my $avprice = $bet{avgPrice}; 
my $reqsize = $bet{requestedSize}; 
my $matchsize = $bet{matchedSize}; 
my $PandL = $bet{profitAndLoss}; 
 
print "$date, $marketId, $betId, $selection, $avprice, $reqsize, $matchsize, $PandL\n"; 
 
#----------write bets to database as before and finish 
 
 

Extending the examples for bet analysis 
 
Generally, the basic information for recording profit and loss, as well as details relating to 
the bet placement strategy, will be constant in any capture of settled bets.   The exact 
implementation, depending on the programs and reports being used by the bettor, as 
well as the level of detail ultimately required for betting strategy analysis, will of course 
vary.   
 
There are many ways we can retrieve bet placement details, to include the betId, at the 
time of execution.   The program can write out captured bet IDs to a database 



AUTOMATIC EXCHANGE BETTING 

236  

immediately, for example.   However, we still need to capture settled bets and write to 
the database again on a subsequent visit.    In Example 11-2, we worked on the basis 
that a bet ID had been explicitly saved to a separate file.  However, we can cut out the 
file of bet IDs and reuse the program or betting report generated for each strategy – 
provided that the bet ID is always included within the context of the report.   This is the 
case with the example strategy, in that the betId is also recorded within the file 
betting_report in Example 10-1, so that file alone can be used for retrieving bet 
details, avoiding the need for duplication and providing the possibility of capturing richer 
information on the betting strategy at the same time (i.e. by storing other details 
contained within the file betting_report to a database record). 
 
One way of doing this after racing has finished is by parsing the text in betting reports so 
that our end of day program captures all lines which include a searchable term such as 
“BetId” or  “Bet placed:”, alongside any other information we know we will want to write 
to the database at the time of bet retrieval.     Once the bet IDs are captured, we can 
proceed as before (i.e. writing out the bet details to a database), but with the addition of 
any other summary details, captured at the same time, from the betting report. 
 
For example, in an overlay betting strategy, as well as capturing the bet IDs, we could 
capture the percentage size of the overlay that was taken at the betting decision making 
stage.   To derive this, we would calculate percentage overlay – which should ideally 
relate to the size of the bettor’s advantage – by using the tissue price and the actual 
price and write it out as part of our betting report so that this data is included in betting 
records and reports (as per Example 9-1, for the file betting_report).   Subsequently 
this data can be written to a database so that profitability can be analysed with respect to 
the size of the overlay achieved. 
 
Combining betting records with other captured data in a database, we can also start to 
build more complex queries in order to analyse our data.     
 
For example, since we capture the marketId when retrieving settled bets, we can join 
queries from the table bets on the marketId field, together with the races database 
table (created in Chapter 5, Betting Process 101: Daily Event Data) to return other 
variables, such as the race description, or race type, in order to analyse the betting 
strategy performance by race type.   E.g. Is the strategy significantly more profitable over 
flat than jumps?  Over hurdles rather than chases?   In handicaps or listed races, and so 
on.  
 
The above simply considers the case of using the information we have already captured 
from the exchange, as it applies to bets placed alone.    However, if we extend the net 
further, and combine betting strategy information with parameters from a racing 
database, we have the potential to go beyond intelligence on the current strategy and 
test alternative strategies, seeing “what would have happened if” the criteria were 
different. 
 
For example, our Postdata oddsline strategy bet all selections which were overlays in 
the top third of the field, that is to say the third of the field ranked from the greatest to the 
least winning chance.   However, this choice was not based on analysis of previous 
results.  If we bet the top third of the field, for overlays only, we could potentially have a 



AUTOMATED RECORD KEEPING 

237 

day’s betting without a winner.    How do we refine the strategy with no information about 
what does actually work, or where the strategy is failing?   
 
As we will see in Part 3, Automated Strategies in Practice, perhaps an oddsline has 
some predictive power but prices inaccurately.    Perhaps pricing is more or less 
accurate for the top ranked selection but more inaccurate for subsequent rankings.   The 
only way to assess and correct pricing is to therefore assess the prices (and thus 
probabilities) given by the oddsline against the actual performance.    
 
Likewise, we can assess the accuracy of the overlays against market prices, and 
pinpoint where the greatest returns are to be found throughout the oddsline, rather than 
with the particular betting strategy currently in use.    Querying results from a racing 
database such as Smartform can be done automatically, so that programs can be written 
to run on an automated basis comparing results to the oddsline.   This is the start of that 
refinement process and improving the oddsline on a continual basis.          
 
Above all, it is imperative to scrutinise the database of betting records once we have it, 
adding in more meaning by using other data elements where it makes sense.    We will 
scratch the tip of the iceberg in Part 3, but enough to show some of the possibilities into 
gaining insight on where betting strategies are working and where they are not – 
meaning the automatic bettor can alter stakes, modify strategies, pull the plug on a 
strategy or introduce new strategies with some confidence, based on quantitative 
analysis of the data at hand.    
 
Whilst the automatic bettor can save time on bet selection and placement through the 
day, and even in generating standard reports on settled bets, there is good argument to 
suggest that time spent studying such data, or on producing further analysis once bets 
are settled –whether that be a daily, weekly or monthly activity, depending on the 
strategy - is an essential part of the automated process.    
 
This final facet of the betting framework therefore leads us nicely into Part 3, where we 
review strategies implemented on a “live” basis, and subsequently use the automated 
record keeping techniques described in this Chapter to assess and improve them.



 

  

 
 
 
 



 

   

PART 3:  AUTOMATED 
STRATEGIES IN PRACTICE



 

  

 
 
 
 
 
 
 



 

241 

Chapter 12: Bringing the automated framework 
together 
 
In the next two chapters, we combine all the stages of the automation framework 
detailed in Part 2.   In this chapter, we demonstrate and test automation of an example 
betting strategy and, in Chapter 13, assess and improve upon the implementation.   The 
betting strategy is based upon the oddsline originally put together in Chapter 6.   
 
The primary objective of the test is to assess how well the mechanism for generating 
oddslines and betting them automatically works in a live environment.    Based upon that 
judgement, we review and refine the mechanism.    However, at this stage we are not 
concerned with testing the merits of any particular oddsline itself, including the one used 
for the example, rather that everything works as we intended it to for betting the oddsline 
automatically.    As such, this mechanism can be adapted to work for any oddsline 
strategy.   In fact, in Chapter 14, we will take a different oddsline and set it to work using 
the same mechanism, adjusted for improvements.    
 
In this chapter therefore, we are running a “live test” on the framework, in the sense that 
a real account and real funds will be used – resulting in real profits or real losses, albeit 
to small stakes, during the test.       
 
Prior to facing up to the real world of risk that any betting entails, however it is portrayed 
– automatic or otherwise, be it on horses, sports, or financial instruments - we will say a 
few words in the next section about testing on the framework in general. 
 

Testing The Framework 
 
Testing is a theme which will recur over the next few chapters, as we look at improving 
the implementation and improving strategies whilst limiting risk.   In this particular 
section, we are concerned with emphasising the fact that all the elements within the 
framework can be tested individually prior to running the whole strategy live, or “in 
production”.     
 
The process we have followed in putting together the framework is to trace a manual 
process, define the stages within it, then work on automating each stage, with a view to 
quantifying the inputs required and the outputs that will be needed for subsequent 
stages.      
 
Each program illustrating stages in the framework has been written so that it can be 
tested interactively, from the command line, for one event.   This means we can execute 
each program, review the output, and reuse it for the next stage in the framework, 
testing subsequent programs manually if need be.     
 
The stages for each automated betting strategy may vary, but by going through a 
process of defining each strategy, splitting the tasks up into their smaller, atomic parts, 
and writing code (and testing) for each stage, the room for error is reduced when it 
comes to putting all the pieces together to work as a whole.   



AUTOMATIC EXCHANGE BETTING 

242  

 
Before running a live test, we can therefore go back to the different chapters of Part 2 
and individually test: 
 

• Producing a daily events schedule 
• Generation and formatting of the oddsline itself 
• Automating scheduled tasks 
• Retrieving market prices for a particular event 
• Automating betting decisions by using prices and the oddsline 
• Executing bets 

 
If any part is not working, the cause can be diagnosed at an atomic level until the bettor 
is satisfied with it.    At no point in the process is there any danger of risking capital until 
testing bet execution.  In fact, there is no need to risk cash even at that point in order to 
test that the implementation works correctly.    For example, the betting execution 
program in Example 10-1 takes for its input a file produced by the betting decision 
making program shown in Example 9-1.   Since we split the stages up, we can run the 
program on its own and test that the selections file is generated as expected, as in 
the example output below: 
 
2.15, Fontwell, Mister Pink, 20849970, 1430682, 14.5, B, 2.00, E, NONE, 0.0 
2.15, Fontwell, Iron Maid, 20849970, 1409367, 9.6, B, 2.00, E, NONE, 0.0 
2.15, Fontwell, Dragon Eye, 20849970, 2324934, 12.0, B, 2.00, E, NONE, 0.0 

 
This gives all the parameters we need for executing bets on these three selections from 
the oddsline, according to the criteria for the betting decision used in Example 9-1.    The 
key to the above parameters are: 
 
Time, Course, Name, Betfair market id, Betfair selection Id, Price Asked, Back (or lay), 
Exchange (or SP), Persistence (or none), and BSP liability. 

 
Leaving this file “as is” and running bet_execution.pl will attempt to execute bets at 
the market price, which is the price captured in the input file.   A simple way to test 
bet_execution.pl, however, without risking cash is to manually edit the 
selections file and change the market price parameters to “1000”.   Then, save the 
selections file and run the betting execution program which will pick it up, providing 
the directory names used are all correct.    
 
Provided there are no errors in running the program itself (i.e. the program compiles 
correctly), successful execution will result in 3 unmatched bets at 1000.   (hopefully it is 
not necessary to add that if risking capital is to be avoided, then the program should not 
be tested on a race where the selections are indeed available at decimal odds of 1000). 
 
At this point we can go into the Betfair website interface and cancel the bets with no 
harm done to our cash balance.   Or, better still, we can check that the bets have been 
placed using Example 10-2 to retrieve unmatched bets from the command line, thus 
testing that this program works in its own right.    Then, we can take the opportunity to 
test the “cancel unmatched bets” program by entering the marketId of the event and 
running Example 10-4. 
 
At some point, provided that we want to go ahead and implement a particular strategy, 
we will want to test the program live, running end to end, prior to making any further 



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

243 

improvements.  We can test live, again without risking any capital, by simulating bets to 
be placed and using a results database to assess what would have happened (we 
discuss this in Chapter 15).    However, we will still require an effective live 
implementation even with a simulated betting approach, so if we have no confidence in 
the implementation itself, this is not a sound method of simulating a production run for a 
new strategy.     
 
The prerequisite therefore, is establishing reliable implementation.    We opt to do this in 
the next section, running our example strategy live to small stakes, having done unit 
tests on the framework beforehand.   So in the next section we jump in with both feet for 
our first real taste of automation – then make further assessments on possible 
improvement afterwards. 
 

Testing The Example Strategy 
 
As far as this test is concerned, the most important thing we are looking for is that the 
mechanics of the strategy work as planned.   At the same time, this is also the first “acid 
test” for automation, since we are out of the realms of theory and are risking capital for 
the first time.     
 
Even though we are testing to show our implementation works exactly as we planned, a 
test such as this can still give immediate insights into improvements that can be made in 
the strategy itself.   It is unrealistic to assume that all eventualities will have been 
covered at the planning stage, so any new phase of testing is generally useful to provide 
food for thought on how to improve.  However, whatever the results in terms of profit or 
loss, we cannot realistically assess from one day if the oddsline itself is useful (at 
highlighting overlays by predicting realistic chances).   Therefore, the question of the 
oddsline itself is a matter to be revisited and improved in a separate process, after we 
have gathered more data – which we discuss in Chapter 14.   So, with those caveats 
aside, let’s run through the test conditions. 
    
Some readers may have noticed that data used for some previous examples has related 
to racing on October 13th 2007.   The date has no particular significance, save for having 
been selected for running a live test, the one we are about to comment upon, using the 
basic oddsline example generated in Chapter 6, in conjunction with the other elements 
of our automated strategy. 
 
The date falls at the end of the Flat season.  The previous weekend has seen the 
running of the richest race in Europe at Longchamp, the Arc De Triomphe, (won in 2007 
by Dylan Thomas after a lengthy stewards enquiry).     
 
There are arguably other possible finales to the English Flat season, including 
Champions Day at Newmarket at the end of October, but whatever the case, the 
jumping season starts to take greater and greater precedence in the fixture list. 
 
So it is with Saturday October 13th – we have some high class racing at Ascot, York’s 
last meeting of the year, and more than 3 jumps fixtures entering the mix.    If we look 
back to Chapter 5, Betting Process 101, where we automatically retrieved all events for 
this day, we can run a query to find all the UK meetings, listed as follows: 



AUTOMATIC EXCHANGE BETTING 

244  

 
• Ascot 
• York 
• Bangor  
• Hexham 
• Chepstow  
• Kempton 

 
For our purposes, the quantity and variety of racing make for a useful day’s testing since 
there are over 40 races at 6 meetings, including different code types, namely Flat turf (at 
Ascot and York); Flat All Weather (at Kempton), and Jumps (at Bangor, Hexham and 
Chepstow).   Not only are there six meetings for the automated strategy to contend with, 
the strategy will consider every race as a possible betting medium, according to the rules 
of the betting decision program. 
 
From an implementation point of view, the example strategy therefore has the widest 
possible applicability to any other strategy we might put together in future.    In other 
words, if successful, we know that our programs can be adapted to dynamically 
schedule any strategy, to consider any number of races every day, according to any 
criteria we choose - without any manual intervention required on a day to day or race to 
race basis. 
 

Rules for the example strategy 
 
For the live test we are going to concentrate on the example used within the Automated 
Framework, namely finding and betting overlays according to an oddsline. 
 
This example oddsline is based on data automatically parsed from the Racing Post 
using the method outlined in Chapter 6.   The method of producing the example oddsline 
is hypothetical in the sense it is based on a third party view of what are the most useful 
factors for predicting outcomes, and upon what is an untested way of scoring these 
factors.   On the other hand, the oddsline method is based on the Postdata table which 
uses different factors to rate horses depending on the race type and conditions, so it is a 
reasonable starting hypothesis to differentiate ratings for all 40 races, regardless of type.       
 
However, the type of output produced in creating this oddsline is the important feature 
for our examples, being generic for any oddsline method.  This output consists of a 
means of identifying each contender, together with a tissue price, based on an estimate 
of the probability of success in the event.    
 
Below is a recap on the rules to be implemented for the strategy which uses the oddsline 
(N.B. these rules were also discussed within the context of example automation 
requirements in Chapter 7, and the setup for the programs that run them is described in 
detail there): 
 
1. Take the oddsline, work out whether there are non-runners.   If there are non-
runners, make a reduction in the oddsline equivalent to the percentage takeout of the 
removed runners and re-adjust prices to a 100% book.   So, we build into our program 
an algorithm for calculating that.    



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

245 

 
2. From the field that goes to post, i.e. our remaining oddsline, take the top third of 
the field by dividing the remaining field size by three (rounding down to the nearest 
integer), and compare each runner’s market price to the oddsline price for that runner.   
This is our list of possible contenders to bet on. 
 
Our logic here is only to look for overlays amongst the runners that are scored highest, 
(i.e. that are highly ranked), as opposed to looking for overlays in the whole oddsline.   
This is a recognition of the limitations of the method used, since to score highly, a horse 
must have proved its worthiness, and we are therefore betting on proven attributes.   To 
score lowly, a horse may be very poor or may simply be an unknown quantity.  
Combined with the fact that the tissue prices – and hence overlays – become more 
suspect towards the bottom of the oddsline, we are adjusting in advance for likely 
weaknesses in the pricing method.   Finally, we take the top third of runners as opposed 
to, say, a static number such as the first 5, so that we don’t end up in the trap just 
described, for example, backing everything that is an overlay in a 5 horse race.   The 
more backtesting and confidence in the oddsline prices at all levels, the more such 
strategies would make sense. 
 
3. If the oddsline price is lower than the market price, (that is to we have spotted an 
overlay and our oddsline makes the percentage chance of winning higher than the 
market does), we save the runner details.    If the oddsline price is higher than the 
market, technically this would indicate that the contender is overbet, and we might think 
about laying it.    Since the Postdata oddsline is not thoroughly tested, we will instead 
leave it.    
 
4. After we have assessed our runners against the market prices available and 
saved those that we wish to bet on, we write out all relevant details to a selections file, 
ready for betting execution.    We ask, not for too much, but for the back price that we 
last took from the market.   That way, given the time lapse in obtaining the price and a 
computer program executing, we are pretty sure to get on.   
 
5. We execute the bet, and if successfully placed, retrieve the bet details and store 
them for later.    
  

Summary of set up: 
 
We have linked all aspects of the process to create and implement an automated system 
that bets untouched by human hand.   It pulls data in the morning from the Racing Post 
and repurposes it, clobbering the previous day’s file.    It identifies the relevant market Id 
for each race from Betfair, the runners, or selection Ids from Betfair, and keeps count of 
which events and runners have already been dealt with.   
 
For each race, 5 minutes before the off, the automated strategy fetches Betfair prices, 
brings the oddsline up to date by taking care of non-runners, and then weighs up the 
chances generated by the oddsline versus those available in the market.   And then it 
bets.   And writes us a report, so we can see exactly what happened.    
 



AUTOMATIC EXCHANGE BETTING 

246  

The programs themselves are being run on one of the oldest computers in the author’s 
hardware set up, on a PC bought in 1998, OS Suse Linux 8.0, running in France, on a 
2GB broadband connection.   In terms of a robust hardware setup for automatically 
betting on the Betfair exchange, only a dial-up modem would make it less optimal.    
 

And They’re Off! 
 
So to the first race.   The programs in each betting phase are faithfully initiated by the 
(Linux) operating system, counting down the minutes until the next scheduled job in the 
background.     
 
Let’s have a look at P&L for the betting account used, by interrogating the website 
interface after the day’s schedule has had a chance to get going, with the first few races 
over, at 2 pm.    
 
Betting P&L 

colin magee 13-Oct-2007 14:04 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-10-12 23:

 
(yyyy-mm-dd hh:mm)

to 2007-10-13 14:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP101.00 Total P&L: GBP101.00   
  
Horse Racing Showing 1 - 3 of 3 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Ascot 13th Oct : 1m4f Grp 3 13-Oct-07 13:45  13-Oct-07 13:58  121.00 

Horse Racing / Chep 13th Oct : 3m Hcap Chs 13-Oct-07 13:25  13-Oct-07 13:37  -10.00 

Horse Racing / Ascot 13th Oct : 5f Grp 3 13-Oct-07 13:10  13-Oct-07 13:15  -10.00  
 
Figure 12-1:    Betfair P&L after first few races in live test 
 
 
Over £100 in profit after 3 races – a good start!  And now we encounter one of the many 
curiosities of automated betting– we are in profit (in this particular instance) but at this 
stage we have no idea why.   Clearly the strategy has backed a winner, but what and 
where? 
 
Staying with the standard Betfair interface for a moment, let’s find out by drilling into the 
details of the profitable position, for the first race shown in Figure 12-1:  
 
 
 
 



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

247 

     
Horse Racing: GBP101.00 Total P&L: GBP101.00   
  
Horse Racing > Ascot 13th Oct : 1m4f Grp 3 Showing 1 - 2 of 2 Selections 
Selection Odds  Stake (GBP)  Bid type  Placed  Profit/loss (GBP) 
Trick Or Treat  27.00 5.00 Back 13-Oct-07 13:40  130.00 

Winter Sunrise  15.50 5.00 Back 13-Oct-07 13:40  -5.00 

Back subtotal: 125.00 
Lay subtotal: 0.00 

Market subtotal: 125.00 
Commission @ 3.2%: 4.00 

*Average odds: On Off  

Net Market Total: 121.00 

 

 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?  
 

unless otherwise stated. 
 

 

 
 
Figure 12-2:    Betfair P&L for 13:45 Ascot 
 
Was the winning bet on Trick Or Treat all matched in one bet?  Let’s see by drilling down 
again interactively. 
 
 
Betting P&L 

colin magee 13-Oct-2007 14:05 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-10-12 23:

 
(yyyy-mm-dd hh:mm)

to 2007-10-13 14:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP101.00 Total P&L: GBP101.00   
  
Horse Racing > : 1m4f Grp 3 > Trick Or Treat  Showing 1 - 1 of 1 Bets 
Selection Odds Stake (GBP) Bid type Placed Matched (GMT) Profit/loss (GBP) 
Trick Or Treat  27 5.00 Back 13-Oct-07 13:40  13-Oct-07 13:40  130.00  

 

 

Profit and Loss is shown net of commission.  

All times are UKT  
 
 ?   
 

unless otherwise stated. 

 

 

 
 
Figure 12-3:    Betfair P&L for Trick or Treat 
 



AUTOMATIC EXCHANGE BETTING 

248  

 
Yes: one £5 bet, matched at the first time of asking. 
 
Of course, we could have produced all this information automatically using the API.   But 
at this stage we are running a test, so checking back and forth between programs that 
are being tested and the live interface is a good thing. 
 
Let’s tie the results above together with the standard output produced from our betting 
programs themselves, by looking at the betting report that was generated by our 
programs for this race: 
    

 
 
Race time = 1.45, Course = Ascot 
------------------------------  Get prices for 1.45 
20631295 
Login Successful! 
Successful call: 
12 runner prices found 
Race time = 1.45, Course = Ascot 
1.45, Ascot, Brisk Breeze, 7.33, 3.95 
1.45, Ascot, Trick Or Treat, 7.33, 27.0 
1.45, Ascot, Queen's Best, 8.25, 4.0 
1.45, Ascot, Winter Sunrise, 11.0, 15.5 
1.45, Ascot, Kayah, 13.2, 13.0 
1.45, Ascot, Satulagi, 13.2, 220.0 
1.45, Ascot, Samira Gold, 13.2, 4.5 
1.45, Ascot, Athenian Way, 16.5, 100.0 
1.45, Ascot, Rising Cross, 16.5, 32.0 
1.45, Ascot, Loulwa, 16.5, 75.0 
1.45, Ascot, Dash To The Front, 16.5, 34.0 
1.45, Ascot, Party, 22.0, 30.0 
ALL RUN 
Trick Or Treat, 20631295, 1244199, 27.0, B, 5.00 
Winter Sunrise, 20631295, 2429313, 15.5, B, 5.00 
 
 
------------------------------  Bet horses 
Sat Oct 13 13:40:04 BST 2007 
Login Successful! 
Following bets placed: 
Ascot, 1.45,  Trick Or Treat, B, 27.0, 3815255965 
Following bets placed: 
Ascot, 1.45,  Winter Sunrise, B, 15.5, 3815256033 
Bet horses finished for 1.45 
 

Figure 12-4:   Automated Program Report for 1:45 Ascot 
 
 

The program report is particular to our strategy and gives us much more detail on the 
decision making process, so that we not only see which bets were placed, but why. 
 
Recall that the program report includes elements produced as text output from each 
program that makes up the automated framework.   These are executed prior to each 
race automatically, by the executable file bet_oddsline_strategy. 
 
This file consists of the following programs: 
 
/home/aeb/get_market_prices.pl; 
/home/aeb/bet_formation.pl; 
/home/aeb/execute_bets.pl; 
 



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

249 

 
Each program contributes to building up the overall report, concatenating its output to 
the existing file.   We can make this output as detailed or as short as we wish.   The 
example report provides a basic overview of the whole process.   At this stage we are 
mainly concerned with capturing output that can show us if there are any problems and 
checking that the strategy is working as it was planned. 
 
Thus get_market_prices.pl has some lines added from our original example in 
Chapter 8 to kick off the process, printing out the time of the race, course, and output 
from the calls made, including the market Id below: 
 
Race time = 1.45, Course = Ascot 
------------------------------  Get prices for 1.45 
20631295 
Login Successful! 
Successful call: 
12 runner prices found 

 
get_market_prices.pl writes all market prices to a temporary file, inter_prices, 
which is subsequently picked up by bet_formation.pl.    This example program, 
covered in Example 9-1, takes in the prebuilt oddsline itself, and the prices from the file, 
then works out overlays according to our betting strategy.   By way of output, we first 
verify that we have picked up the right race time and course details again,  
 
Race time = 1.45, Course = Ascot 
 
 

Then we print out the oddsline, with the time, course, horse name, oddsline tissue price, 
and Betfair back price, as follows: 
 
1.45, Ascot, Brisk Breeze, 7.33, 3.95 
1.45, Ascot, Trick Or Treat, 7.33, 27.0 
1.45, Ascot, Queen's Best, 8.25, 4.0 
1.45, Ascot, Winter Sunrise, 11.0, 15.5 
1.45, Ascot, Kayah, 13.2, 13.0 
1.45, Ascot, Satulagi, 13.2, 220.0 
1.45, Ascot, Samira Gold, 13.2, 4.5 
1.45, Ascot, Athenian Way, 16.5, 100.0 
1.45, Ascot, Rising Cross, 16.5, 32.0 
1.45, Ascot, Loulwa, 16.5, 75.0 
1.45, Ascot, Dash To The Front, 16.5, 34.0 
1.45, Ascot, Party, 22.0, 30.0 
 

If all runner names are found, the program prints out “ALL RUN” or “NON RUNNERS” so 
that we can quickly verify whether that is indeed the case, so in the 1.45 Ascot : 
 
ALL RUN 
 

Now we can start to see why we backed Trick or Treat.    
 
The oddsline strategy was set by us to automatically choose the top third of the field 
ranked by the oddsline and seek overlays, so Brisk Breeze, Trick or Treat, Queen’s Best 
and Winter Sunrise should all have been evaluated.   According to the tissue used in this 
oddsline, Brisk Breeze was overbet at 3.95, Trick or Treat overlaid, Queen’s Best 
overbet at 4.0 and Winter Sunrise overlaid.    Thus, the program writes out 2 sets of 
horse details to the selections file, which will subsequently be bet, as follows: 
 
Trick Or Treat, 20631295, 1244199, 27.0, B, 5.00 
Winter Sunrise, 20631295, 2429313, 15.5, B, 5.00 



AUTOMATIC EXCHANGE BETTING 

250  

 
Finally, our last program in the sequence, execute_bets.pl, as covered in Chapter 
10, Example 10-1 picks up the bet details from the selections file and places the 
bets.   The final part of the output from the program report is produced by this program, 
which lets us know that we are into the betting execution stage, and the system time 
when the program was run, as in: 
 
------------------------------  Bet horses 
Sat Oct 13 13:40:04 BST 2007 
 

Then we report that the program connected ok with the Betfair API 
 
Login Successful! 

 
Lastly, if bets were written out to the selections file, we report that those bets have been 
successfully placed by the program, which we can verify through the presence of the bet 
identification number as the last part field in the line.   
 
Following bets placed: 
Ascot, 1.45,  Trick Or Treat, B, 27.0, 3815255965 
Following bets placed: 
Ascot, 1.45,  Winter Sunrise, B, 15.5, 3815256033 
Bet horses finished for 1.45 
 
 

Having covered the meaning of the program output, we retire from monitoring the 
automatic betting program – even though it is a test, it would be a shame not to profit 
from the point of letting the programs run automatically.   So let’s return to the scene an 
hour later, and test the output from the programs versus the Betfair interface.   
 
So, an hour or so later, we can look at the state of the automatic betting account just 
after the 15:45 at York.    
 
 
Betting P&L 

colin magee 13-Oct-2007 15:53 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-10-12 23:

 
(yyyy-mm-dd hh:mm)

to 2007-10-13 15:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: -GBP3.50 Total P&L: -GBP3.50   
  
Horse Racing Showing 1 - 18 of 18 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / York 13th Oct : 6f Hcap 13-Oct-07 15:45  13-Oct-07 15:51  -20.00 

Horse Racing / Chep 13th Oct : 2m Nov Hrd 13-Oct-07 15:40  13-Oct-07 15:48  -15.00 

Horse Racing / Ascot 13th Oct : 7f Cond Stks 13-Oct-07 15:35  13-Oct-07 15:44  -10.00 

Horse Racing / Bang 13th Oct : 3m Hcap Chs 13-Oct-07 15:25  13-Oct-07 15:36  60.50 



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

251 

Horse Racing / Hex 13th Oct : 3m1f Class Chs 13-Oct-07 15:15  13-Oct-07 15:24  -10.00 

Horse Racing / York 13th Oct : 6f Listed 13-Oct-07 15:10  13-Oct-07 15:16  -15.00 

Horse Racing / Chep 13th Oct : 2m4f Hcap Hrd 13-Oct-07 15:05  13-Oct-07 15:13  -15.00 

Horse Racing / Ascot 13th Oct : 1m Grp 3 13-Oct-07 15:00  13-Oct-07 15:04  -5.00 

Horse Racing / York 13th Oct : 2m2f Hcap 13-Oct-07 14:40  13-Oct-07 14:47  -5.00 

Horse Racing / Chep 13th Oct : 3m Nov Chs 13-Oct-07 14:35  13-Oct-07 14:43  -10.00 

Horse Racing / Bang 13th Oct : 2m1f Hcap Hrd 13-Oct-07 14:25  13-Oct-07 14:34  -10.00 

Horse Racing / Ascot 13th Oct : 1m4f Hcap 13-Oct-07 14:20  13-Oct-07 14:30  -10.00 

Horse Racing / Hex 13th Oct : 2m Beg Chs 13-Oct-07 14:15  13-Oct-07 14:21  -10.00 

Horse Racing / York 13th Oct : 1m1f Hcap 13-Oct-07 14:10  13-Oct-07 14:18  -15.00 

Horse Racing / Chep 13th Oct : 2m Hcap Hrd 13-Oct-07 14:00  13-Oct-07 14:05  -15.00 

Horse Racing / Ascot 13th Oct : 1m4f Grp 3 13-Oct-07 13:45  13-Oct-07 13:58  121.00 

Horse Racing / Chep 13th Oct : 3m Hcap Chs 13-Oct-07 13:25  13-Oct-07 13:37  -10.00 

Horse Racing / Ascot 13th Oct : 5f Grp 3 13-Oct-07 13:10  13-Oct-07 13:15  -10.00  
 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?   
 

unless otherwise stated. 
 

 

 
 
Figure 12-5:    Betfair P&L after 3.45 York 
 
 
Not so good.   Looks like the automatic profits previously made have been wiped out.  In 
fact, theoretical P&L at Betfair prices (i.e. minus commission), would show that the 
account or betting strategy is marginally in front, but the -£3.50 reflects the actual profit 
and loss with commission deducted – commission running around 3.2% in this particular 
account at this time.     
 
Time to leave it be and come back after the day’s Turf racing is done, with only the 
Kempton All Weather remaining. 
 
Well, here is the position after the “proper” day’s racing: 
Betting P&L 

colin magee 13-Oct-2007 17:57 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-10-12 23:

 
(yyyy-mm-dd hh:mm)

to 2007-10-13 17:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP63.32 Total P&L: GBP63.32   
  
Horse Racing Showing 1 - 20 of 31 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Hex 13th Oct : 2m NHF 13-Oct-07 17:30  13-Oct-07 17:50  65.34 



AUTOMATIC EXCHANGE BETTING 

252  

Horse Racing / York 13th Oct : 1m6f Hcap 13-Oct-07 17:20  13-Oct-07 17:43  -25.00 

Horse Racing / Bang 13th Oct : 2m1f Hcap Chs 13-Oct-07 17:10  13-Oct-07 17:19  -5.00 

Horse Racing / Hex 13th Oct : 2m4f Hcap Chs 13-Oct-07 17:00  13-Oct-07 17:10  -10.00 

Horse Racing / York 13th Oct : 1m2f Hcap 13-Oct-07 16:50  13-Oct-07 16:56  33.88 

Horse Racing / Chep 13th Oct : 2m NHF 13-Oct-07 16:45  13-Oct-07 16:53  -15.00 

Horse Racing / Ascot 13th Oct : 5f Hcap 13-Oct-07 16:40  13-Oct-07 16:49  -10.00 

Horse Racing / Bang 13th Oct : 2m1f Nov Hrd 13-Oct-07 16:35  13-Oct-07 16:46  -5.00 

Horse Racing / Hex 13th Oct : 2m4f Mdn Hrd 13-Oct-07 16:25  13-Oct-07 16:34  -20.00 

Horse Racing / York 13th Oct : 1m Mdn Stks 13-Oct-07 16:20  13-Oct-07 16:26  -10.00 

Horse Racing / Chep 13th Oct : 2m Nov Hrd 13-Oct-07 16:15  13-Oct-07 16:23  38.72 

Horse Racing / Ascot 13th Oct : 1m2f Hcap 13-Oct-07 16:10  13-Oct-07 16:14  -5.00 

Horse Racing / Hex 13th Oct : 3m Hcap Hrd 13-Oct-07 15:50  13-Oct-07 15:58  33.88 

Horse Racing / York 13th Oct : 6f Hcap 13-Oct-07 15:45  13-Oct-07 15:51  -20.00 

Horse Racing / Chep 13th Oct : 2m Nov Hrd 13-Oct-07 15:40  13-Oct-07 15:48  -15.00 

Horse Racing / Ascot 13th Oct : 7f Cond Stks 13-Oct-07 15:35  13-Oct-07 15:44  -10.00 

Horse Racing / Bang 13th Oct : 3m Hcap Chs 13-Oct-07 15:25  13-Oct-07 15:36  60.50 

Horse Racing / Hex 13th Oct : 3m1f Class Chs 13-Oct-07 15:15  13-Oct-07 15:24  -10.00 

Horse Racing / York 13th Oct : 6f Listed 13-Oct-07 15:10  13-Oct-07 15:16  -15.00 

Horse Racing / Chep 13th Oct : 2m4f Hcap Hrd 13-Oct-07 15:05  13-Oct-07 15:13  -15.00  
 Pages: 1  2   of 2 Pages  

 
Jump to page: 

  
  

 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?   
 

Unless otherwise stated. 
  
 
Figure 12-6:    Betfair P&L before Evening Racing 
 
Marvellous - we recouped the position.     
£63 up.   Or over 12 points (since we are betting to £5 level stakes), after commission 
has been deducted. 
 
This profit for the day could still be eaten by activities at Kempton, of course.    We could 
simply kill the process at this point, but that would not do our cause of testing a full day’s 
racing for all meetings any good.    In any case, regarding potential downside, we 
shouldn’t lose much if anything from this position, with 6 races to go and 12 points in 
hand.   Let’s come back at the end of the day and find out. 
 

 
 

Results summary 
 
Below the final screenshot for betting P&L, taken less than an hour after the last race is 
over at Kempton.   The first thing to notice is that the live test does indeed seem to have 
gone through the card automatically. 



BRINGING THE AUTOMATED FRAMEWORK TOGETHER 

253 

 
 
 
Betting P&L 

colin magee 13-Oct-2007 22:27 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-10-12 23:

 
(yyyy-mm-dd hh:mm)

to 2007-10-13 22:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP155.37 Total P&L: GBP155.37   
  
Horse Racing Showing 1 - 20 of 38 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Kemp 13th Oct : 1m Hcap 13-Oct-07 21:20  13-Oct-07 21:26  -5.00 

Horse Racing / Kemp 13th Oct : 1m4f Hcap 13-Oct-07 20:50  13-Oct-07 21:00  -5.00 

Horse Racing / Kemp 13th Oct : 6f Mdn Stks 13-Oct-07 20:20  13-Oct-07 20:25  -5.00 

Horse Racing / Kemp 13th Oct : 7f Mdn Stks 13-Oct-07 19:50  13-Oct-07 20:02  55.81 

Horse Racing / Kemp 13th Oct : 1m2f Claim Stks 13-Oct-07 19:20  13-Oct-07 19:28  28.07 

Horse Racing / Kemp 13th Oct : 5f Hcap 13-Oct-07 18:50  13-Oct-07 18:56  -5.00 

Horse Racing / Bang 13th Oct : 2m1f NHF 13-Oct-07 17:40  13-Oct-07 18:01  28.17 

Horse Racing / Hex 13th Oct : 2m NHF 13-Oct-07 17:30  13-Oct-07 17:50  65.34 

Horse Racing / York 13th Oct : 1m6f Hcap 13-Oct-07 17:20  13-Oct-07 17:43  -25.00 

Horse Racing / Bang 13th Oct : 2m1f Hcap Chs 13-Oct-07 17:10  13-Oct-07 17:19  -5.00 

Horse Racing / Hex 13th Oct : 2m4f Hcap Chs 13-Oct-07 17:00  13-Oct-07 17:10  -10.00 

Horse Racing / York 13th Oct : 1m2f Hcap 13-Oct-07 16:50  13-Oct-07 16:56  33.88 

Horse Racing / Chep 13th Oct : 2m NHF 13-Oct-07 16:45  13-Oct-07 16:53  -15.00 

Horse Racing / Ascot 13th Oct : 5f Hcap 13-Oct-07 16:40  13-Oct-07 16:49  -10.00 

Horse Racing / Bang 13th Oct : 2m1f Nov Hrd 13-Oct-07 16:35  13-Oct-07 16:46  -5.00 

Horse Racing / Hex 13th Oct : 2m4f Mdn Hrd 13-Oct-07 16:25  13-Oct-07 16:34  -20.00 

Horse Racing / York 13th Oct : 1m Mdn Stks 13-Oct-07 16:20  13-Oct-07 16:26  -10.00 

Horse Racing / Chep 13th Oct : 2m Nov Hrd 13-Oct-07 16:15  13-Oct-07 16:23  38.72 

Horse Racing / Ascot 13th Oct : 1m2f Hcap 13-Oct-07 16:10  13-Oct-07 16:14  -5.00 

Horse Racing / Hex 13th Oct : 3m Hcap Hrd 13-Oct-07 15:50  13-Oct-07 15:58  33.88  
 Pages: 1  2   of 2 Pages    
 
Figure 12-7:    Final P&L for UK Racing Saturday 13th October 
 
 
Furthermore, the last 6 races at Kempton have indeed pushed us further ahead.    We 
end the day a very satisfactory £155.37 ahead, after commissions have been deducted.   
Or, 35 points profit to level stakes.   
 



AUTOMATIC EXCHANGE BETTING 

254  

These are not the shabbiest results for any strategy, although as we said at the start of 
the test, the main objective is to test the process of automation for this strategy on a live 
basis rather than to assess the oddsline explicitly.   A large number of bets were placed, 
but further testing over a period of time would tell us much more.   We accumulate more 
data on the performance of the oddsline and compare it to another oddsline in Chapter 
14. 
 
First, however, we need to come back to the implementation.  On the face of it, the 
strategy was correctly implemented, and we made a profit.    It achieved the objective of 
complete automation in that no manual intervention was necessary on the day – the 
oddsline was generated automatically, the schedule was generated automatically, and 
all programs executed on time, as planned. 
 
However, only by using the detailed program report and checking against other sources 
can we verify this assumption.   We also need to review whether the implementation, in 
addition to being correct, is easy to maintain and to modify, and make decisions about 
whether it should be changed prior to implementing a strategy on a permanent basis. 
 
We therefore assess and discuss improvements for the strategy on this basis in the next 
Chapter. 



 

255 

Chapter 13:   Assessing and Improving the 
Implementation 
 
In Chapter 12 we ran a live test based upon integrating all the elements of the example 
framework for an example oddsline strategy, for all the races on Saturday 13th October 
2007.    
 
We know that the implementation was a qualified success, since the oddsline was 
generated automatically and the schedule executed automatically for every race on the 
day. 
 
However, we cannot be sure that the strategy was implemented correctly for every race 
without reviewing more detailed output.   Additionally, within a final review of a test prior 
to implementing any strategy live, we will also give consideration to cleaning up the code 
and making it easier to maintain and run. 

 

Assessing Output from the Live Test 
 
In Chapter 12, Figure 12-4 we listed and then described the content of the program 
report for the 1.45 Ascot, explaining how the report was put together and the elements 
within it. 
 
The work required to assess whether or not the strategy has run correctly is to review 
the program report for all races.     
 
The report runs chronologically from the first race in the sequence - the 1.10 at Ascot – 
to the last – the 9.20 at Kempton. 
 
In no particular order, the most important things we are looking to check in terms of the 
test are: 
 

• Automatic scheduling – all races have been captured and the strategy is 
executed at the right time before each race (i.e. 5 minutes before the off) 

• Oddsline pickup – a valid oddsline is available for each race assessed by the 
strategy 

• Race identification – all races have been correctly identified and matched 
between the oddsline and Betfair data sources 

• Runner identification – all runners have been correctly identified and matched 
between the oddsline and Betfair data sources 

• Betfair calls have worked correctly – in the event of the calls failing, we need to 
identify whether that is due to a hardware, software or a Betfair problem. 

• Strategy rules – where the above has been correctly implemented, that the 
strategy is implemented exactly as we had planned 

 
 



AUTOMATIC EXCHANGE BETTING 

256  

Here we will reprint the report only for identified anomalies since the full program report 
from the live test on 13th October 2007 runs to some 10 pages.  However, the full report 
is also available online at www.betwise.co.uk if readers want to review that first – there 
are some clear issues that can be identified by “eyeballing” this.   
 
We can quickly verify that all races picked up a valid oddsline and that all races were 
executed in sequence – scanning down the list of races tells us so.   We can also find 
that the operating system log will tell us which programs were executed automatically 
and at what time, so this can be used to verify that each program ran at the allotted time, 
5 minutes before the race in question.   However, this cannot be seen from the test 
report.    It would be more convenient to see this data for each race, also. 
 
This is our first improvement for the live system.    Further, we currently have no 
differentiation between the system time and the Betfair time.   They are assumed to be 
identical whereas in fact there can be discrepancies.   We will therefore prefer the Betfair 
time and capture it for the race in question, to verify that we are betting on the race 
within an acceptable time range. 
 
Next we consider the question of runner identification and Betfair calls.    
 
A quick and easy method for identifying problems with both is to use the 
“NON_RUNNER” identification within each race.   Our program logic dictates that 
whenever a name in the oddsline is not associated with a name and a back price in the 
hash %inter_prices, we print “NON-RUNNER” to the report and then revalue the tissue 
prices to accommodate the non-runner.    
 
Therefore, what we are looking for in the program report is to verify that all horses 
printed with this label were in fact non-runners.   If we have a label NON-RUNNER when 
the horse was running, this means a back price was not found for that runner – either 
because of problems with identifying the runner name and matching it to a back price or 
because no prices exist. 
 
Looking at the report and tallying this with the results for the day, we can identify a few 
instances of horses that ran but were incorrectly identified as non-runners.   Within 
Figure 13-1, we can see that Tonic Du Charmil in the 1.25 at Chepstow and then I’ll Do It 
Today in the 3.50 at Hexham were both identified as non-runners but in fact ran in the 
race. 
 
 
 
##############################  NEW TRADE  ################################  
Race time = 1.25, Course = Chepstow 
------------------------------  Get prices for 1.25 
20633172 
Login Successful! 
Successful call: 
13 runner prices found 
Race time = 1.25, Course = Chepstow 
1.25, Chepstow, Tribal Venture, 8.50, 7.2 
1.25, Chepstow, Champagne Harry, 8.50, 10.0 
1.25, Chepstow, Tonic Du Charmil, 11.3, NON_RUNNER 
1.25, Chepstow, Sultan Fontenaille, 11.3, 19.0 
1.25, Chepstow, Natal, 13.6, 4.4 
1.25, Chepstow, Tom Sayers, 13.6, 9.8 
1.25, Chepstow, Bowleaze, 13.6, 8.8 
1.25, Chepstow, Two Miles West, 13.6, 11.0 



ASSESSING AND IMPROVING THE IMPLEMENTATION 

257 

1.25, Chepstow, Gan Eagla, 13.6, 14.5 
1.25, Chepstow, Tanterari, 13.6, 24.0 
1.25, Chepstow, Le Duc, 17.0, 24.0 
1.25, Chepstow, Celtic Boy, 22.6, 65.0 
1.25, Chepstow, Unleash, 22.6, 230.0 
NON_RUNNERS 
Champagne Harry, 20633172, 245346, 10.0, B, 5.00 
Sultan Fontenaille, 20633172, 1190611, 19.0, B, 5.00 
 
 
------------------------------  Bet horses 
Sat Oct 13 13:20:04 BST 2007 
Login Successful! 
Following bets placed: 
Chepstow, 1.25,  Champagne Harry, B, 10.0, 3815098564 
Following bets placed: 
Chepstow, 1.25,  Sultan Fontenaille, B, 19.0, 3815098618 
Bet horses finished for 1.25 
 
 
##############################  NEW TRADE  ################################  
Race time = 3.50, Course = Hexham 
------------------------------  Get prices for 3.50 
20633197 
Login Successful! 
Successful call: 
14 runner prices found 
Race time = 3.50, Course = Hexham 
3.50, Hexham, Ballyboe Boy, 8.30, 12.5 
3.50, Hexham, Willie The Fish, 10.3, 10.0 
3.50, Hexham, Court One, 10.3, 26.0 
3.50, Hexham, Talarive, 11.8, 9.6 
3.50, Hexham, Colourful Life, 11.8, 10.5 
3.50, Hexham, Greenfort Brave, 11.8, 50.0 
3.50, Hexham, Sadler's Cove, 11.8, 20.0 
3.50, Hexham, I'll Do It Today, 16.6, NON_RUNNER 
3.50, Hexham, Mulligan's Pride, 16.6, 12.5 
3.50, Hexham, Caesar's Palace, 16.6, 44.0 
3.50, Hexham, Willywont He, 20.7, 5.7 
3.50, Hexham, Essifer, 20.7, 12.0 
3.50, Hexham, Ramblees Holly, 20.7, NON_RUNNER 
3.50, Hexham, Spartan Warrior, 83.0, 12.5 
3.50, Hexham, Longstone Lass, 83.0, 250.0 
NON_RUNNERS 
Ballyboe Boy, 20633197, 377958, 12.5, B, 5.00 
Willie The Fish, 20633197, 675962, 10.0, B, 5.00 
Court One, 20633197, 40674, 26.0, B, 5.00 
 
 
------------------------------  Bet horses 
Sat Oct 13 15:45:05 BST 2007 
Login Successful! 
Following bets placed: 
Hexham, 3.50,  Ballyboe Boy, B, 12.5, 3816747745 
Following bets placed: 
Hexham, 3.50,  Willie The Fish, B, 10.0, 3816747882 
Following bets placed: 
Hexham, 3.50,  Court One, B, 26.0, 3816748025 
Bet horses finished for 3.50 

 
Figure 13-1: Races with instances of incorrectly identified non-runners 
 
 
 

So, what do Tonic Du Charmil in the 1.25 at Chepstow and then I’ll Do It Today in the 
3.50 at Hexham have in common?   Why were these names not recognized?    
 



AUTOMATIC EXCHANGE BETTING 

258  

Firstly, the names of the horses in the report, printed from the oddsline, are the correct 
Weatherby registered names, so any search should in theory have matched the runner 
names.    
 
We searched for the correct names in Betfair, so what did Betfair store as the names for 
these horses? 
 
Tonic du Charmil in the 1.25 at Chepstow 
I’Ll Do It Today in the 3.50 at Hexham 
 
We recognized in the example program for the framework in Chapter 9 that some 
transformation was needed between full horse names and the names used on Betfair, 
since the Betfair convention is to drop any apostrophes.   Thus, in Example 9 -1, we first 
drop apostrophes from the oddsline name, then use this to match up against the Betfair 
hash %inter_prices, where names are the key, in order to retrieve a back price, as 
below:   
 
$horse_bfname =~ s/'//g; 
my $horse_bfname_odds = @ {$inter_prices{$horse_bfname} }[0]; 

 
However, this clearly does not allow any room for error.    The system should work but 
doesn’t.   This doesn’t just happen with Betfair names.   No two different data sources 
can be assumed to be the same.   So, we can well imagine a situation where the names 
in our oddsline contain some error or typo, and do match with a correct version (minus 
apostrophes) in Betfair.    
 
For our example errors, we can see that in the case of Tonic Du Charmil, there was a 
capitalisation problem with Du and in the case of I’ll Do It Today an erroneous capital 
letter introduced in the second letter.    
 
It turns out that capitalisation problems, apostrophes, hyphens and other punctuation 
problems are the worst enemies for matching names from different sources.   Rarely if 
ever are horses missing letters in their names between any two reputable sources and 
apart from introducing fuzzy matching techniques, there is not much more that can be 
done to legislate for such errors.   But clearly we need to make a further improvement to 
eliminate any matching problems due to the punctuation and capitalisation issues 
mentioned.   So we will ensure that when the name is compared, it is compared as lower 
case throughout, and condense it to remove all apostrophes, hyphens, and spaces: 
 
my $short_horse_name = lc($horse);   #reduce name to lower case throughout 
$short_horse_name =~ s/\'|-|\s+//g;  #remove apostrophes, hyphens and spaces 
 

Let’s now take a look at the final piece of anomalous output from the program report 
(continuing from Figure 13-1),  as shown in Figure 13-2: 
 
 
 
##############################  NEW TRADE  ################################  
Race time = 2.55, Course = Bangor 
------------------------------  Get prices for 2.55 
20634386 
Race time = 2.55, Course = Bangor 
2.55, Bangor, Magical Quest, 5.44, NON_RUNNER 
2.55, Bangor, Cyd Charisse, 8.17, NON_RUNNER 
2.55, Bangor, Ethan's Star, 8.17, NON_RUNNER 
2.55, Bangor, So Many Questions, 8.17, NON_RUNNER 



ASSESSING AND IMPROVING THE IMPLEMENTATION 

259 

2.55, Bangor, Time Out, 12.2, NON_RUNNER 
2.55, Bangor, Oxford De Lagarde, 16.3, NON_RUNNER 
2.55, Bangor, Dream Garden, 16.3, NON_RUNNER 
2.55, Bangor, Satan's Sister, 16.3, NON_RUNNER 
2.55, Bangor, Souffleur, 24.5, NON_RUNNER 
2.55, Bangor, Bendarshaan, 24.5, NON_RUNNER 
2.55, Bangor, Clear The Way, 24.5, NON_RUNNER 
2.55, Bangor, Go On George, 24.5, NON_RUNNER 
2.55, Bangor, Gumlayloy, 49.0, NON_RUNNER 
NON_RUNNERS 
 
------------------------------  Bet horses 
Sat Oct 13 14:50:13 BST 2007 
Login Successful! 
"Selections" file is not written or blank 
 
Sat Oct 13 14:50:14 BST 2007 

 
Figure 13-2: Instance of a failed call 
 
 
In the case of the 2.55 at Bangor, every runner in the race is declared a non-runner; or 
rather, no price has been found for any of the runners and the report output simply 
states “Non runner”.   
 
However, we can see from the absence of the “Login successful” message in the first 
part of the report output (the part that deals with retrieving prices) that there has been 
failure to connect with the Betfair API.    An interrogation of the system log confirms this 
also – so we have missed assessing and potentially betting on the whole race.    What 
went wrong? 
 
Well, we deliberately used the clunkiest hardware and infrastructure set up in the pack 
for this test – an old machine and an internet connection to the Betfair Exchange from 
the French countryside - and this is the consequence.    The error is due to a timeout 
error – it can also be due to a failure to connect due to inconsistent connectivity.    I 
know from past experience that this type of error is not unusual on this machine for this 
setup and frequency of calls to the API (the failure rate being approximately one call in 
every 80 – 100).    In the case of timeout errors we can make some changes to improve 
this, although there would remain a root problem with the setup. 
 
In any case, the exception would prove the rule, since we can say that even with a 
clunky hardware the strategy is more than 95% successfully implemented.    
 
Nonetheless, we will later seek to improve upon the implementation by running on a 
much faster set up, with hardware based in the UK, avoiding timeout errors and also 
connectivity problems. 
 
In addition to the issues with connectivity that we have identified, it is also worth noting 
that there is occasionally Betfair API downtime.   However, again the exception proves 
the general rule (of reliability in automation), since the API itself has an exceptionally 
good uptime record – 99.99% plus. 
 
Apart from the issues identified above, there is no problem with the strategy rules.   
These have been implemented correctly, albeit in the case of non-runners that they may 
have considered one horse too many in the rankings, preferring the next horse in the list 



AUTOMATIC EXCHANGE BETTING 

260  

as opposed to the incorrectly identified non-runner, or missed out on a winner in some 
cases. 
 
Therefore, let’s look at what impact these implementation errors have had upon the 
success or otherwise of the strategy.   In the case of the non-runners, we have identified 
a few – Tonic Du Charmil would in fact have been an overlay in the 1.25 Chepstow 
(since it was within the top third of the field), which would have meant one extra loser.   
I’ll Do It Today in the 3.50 at Hexham was outside the top third ranked in the field, so 
even though its price was missed and it was erroneously declared a non-runner, this fact 
makes absolutely no difference to the implementation of this particular strategy.    
 
What about the entirely missed race, the 2.55 at Bangor, what would have happened 
there if things had worked out correctly?    
 
Well, Souffleur, who was off the radar for the oddsline, won the race.   Magical Quest, 
Cyd Charisse and So Many Questions would all have been overlays if the program had 
picked up the Betfair prices, so effectively the fact that the program didn’t work saved a 3 
point loss.   On the other hand, we could equally have missed a 100/1 winner.  If the 
strategy is a good one, our interest is in executing correctly as close to 100% as 
possible. 
 
However, it is worth noting that the fact the errors identified are an almost entirely 
random effect.   For example, even if one race in 100 is missed, provided it is removed 
completely at random, then a strategy which has proven it is profitable over all 100 races 
will still be profitable in the long run.    
 

Improving the Implementation 
 
We spotted the following problems with the live test, as discussed in the previous 
section: 
 

• Timeout with internet connection responsible for one missed race 
• Insufficient consideration to matching horses’ names, responsible for a few 

mismatches and missed or incorrect selections. 
 
We also have resolution for both problems for our final implementation. 
 
The first issue is resolved by running a faster, more reliable connection to avoid dropped 
connections and timeouts (if this were not possible, we could also address the timeout 
issue independently).  
 
The second issue requires a little more work on the programming side.   It is resolved by 
implementing a better matching algorithm for horse names from different data sources 
(in the example case, between the Racing Post and Betfair).    However, this should be 
comprehensive enough to ensure matching for any data sources.    
 
In practice, we must therefore replace the lines of code below which are used to match 
the oddsline horse name within Example 9-1: 
 



ASSESSING AND IMPROVING THE IMPLEMENTATION 

261 

$horse_bfname =~ s/'//g; 
my $horse_bfname_odds = @ {$inter_prices{$horse_bfname} }[0]; 

 
Instead they are to be substituted with the following correct code 
 
my $short_horse_name = lc($horse);   #reduce name to lower case throughout 
$short_horse_name =~ s/\'|-|\s+//g;  #remove apostrophes, hyphens and spaces 
 

However, this is only one half of the solution.    We now have the problem that the 
transformed oddsline name (all in lower case with no punctuation and no spaces), will 
not match the unaltered Betfair name.   We did not have this issue in Example 9-1 due to 
our assumption that we were fixing the oddsline to match the Betfair convention and that 
the latter would always be consistently implemented.     
 
Thus, prior to matching the horse from the oddsline, we also have to transform the 
Betfair names.    We can do this by creating an array of Betfair names from our 
%inter_prices hash (where all the keys are Betfair names), and setting up a foreach 
loop to read in the list of Betfair names and transforming the name to the same 
shortened form as the oddsline name (minus capitals, spaces and punctuation).   Then 
we create a new hash with the transformed Betfair name as the key, and the actual 
Betfair name (that can be used to look up any value in %inter_prices) as the value.    
 
#create array of Betfair horse names that make up all runners in the race 
 
my @bf_names = keys(%inter_prices) 
 
#transform the Betfair horse name to eliminate any potential anomalies 
#this will now be the same as the transformed oddsline name 
#store that in a new hash as the key, with the full Betfair name as the value 
 
foreach my $name (@bf_names) { 
        #print "$name\n"; 
my $short_bf_name = lc($name); 
$short_bf_name =~ s/\'|-|\s+//g; 
 
#create a new hash so the oddsline “short name” can be matched to the actual Betfair name 
 
$bf_short_names{$short_bf_name} = $name; 
 
}; 
 
 

At this point the oddsline short name that we have created should be the same as the 
Betfair short name and can therefore be used to look up the actual Betfair horse name - 
which in turn can be used to retrieve the back price of that runner.    
 
#now use the oddsline short name to look up the actual Betfair name 
$horse_bfname = $bf_short_names{$short_horse_name}; 
 
#we can now continue as per the original Example 9-1 
my $horse_bfname_odds = @ {$inter_prices{$horse_bfname} }[0]; 
 

 
Now we have corrected for the matching problem and Example 9-1 will work correctly 
within the context of this strategy. 
 
So, we have improved the individual programs used in the live test.    
 
However, there are wider issues to be addressed before we press the “Go” button on the 
current implementation – namely combining all programs into one. 



AUTOMATIC EXCHANGE BETTING 

262  

 
Simply taking the case of adapting Example 9-1, it would be easier to first store runner 
prices by runner ID and then create a Perl hash whereby the runner Id can be looked up 
by using the transformed horse name (same as oddsline), as below: 
 
#create a new hash so the oddsline “short name” can be used to look up Betfair Ids 
 
$runnerId = $static_runner_data{$name}; 
$bf_short_names{$short_bf_name} = $runnerId; 

 
For this to work, we would first need to have all the runner prices in memory, accessible 
by runner ID rather than name.   This would mean altering our fixed file hash, 
%inter_prices (which is generated by the previous get_market_prices.pl 
program) in order to do that.   If all runner prices (to all levels) were available within 
memory within the context of the program in Example 9-1, as they were within the 
context of Example 8-2, when the inter_prices file was created, then it would be 
easy to create whatever data structure we wanted.    
 
The problem with the “live test” implementation is that we built the strategy up from the 
building blocks (i.e. individual programs) of the automated framework, adapted for an 
oddsline example, and simply pasted them together within an executable file.   Thus, at 
the time of betting, we have 3 programs that run sequentially, executed by the command 
bet_oddsline_strategy, as follows: 
 
#replace all paths with your own 
/home/aeb/get_market_prices.pl; 
/home/aeb/bet_formation.pl; 
/home/aeb/execute_bets.pl; 
 

Both get_market_prices.pl and execute_bets.pl double up on the process of 
opening the libraries and modules to be used in common with both programs, whilst 
bet_formation.pl also has overhead loading files and interacting with the operating 
system.    In all programs, the suitability of writing out files and then reading them in 
within the context of the next program is questionable.   This occurs most notably for 
writing out all market prices when they are already available for use within a data 
structure in get_market_prices.pl, then reading in a file and recreating that data 
structure in a subsequent program.    Again, we write out the selections for betting to a 
file within bet_formation.pl, and then read in that file within execute_bets.pl.   
We could simply use the data structures that are already there and significantly increase 
efficiency, so that is what we will do. 
 
Amalgamating all the programs also enables us to maintain a single production version 
of the program, in far fewer lines of code.   We can eliminate all the “top and tail” code 
within the programs (subsequent to get_market_prices.pl) since we have already 
loaded all the prerequisite items.    
 
Thus we can start to combine the code from Example 8-2, Example 9-1 and Example 
10-1 together to eliminate redundant elements and create a single, more efficient 
program. 
 
Thus the repeated module loading in execute_bets.pl can disappear since it has 
already been done within the context of Example 8-2: 
 



ASSESSING AND IMPROVING THE IMPLEMENTATION 

263 

#       prerequisite modules 
use lib "/home/aeb/lib"; 
use BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies; 
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use DBI; 
use strict; 
 

Likewise declaration of login variables and the call to the login function can also be 
executed once, eliminating the following lines of code (in programs subsequent to 
get_market_prices.pl): 
 
#       login variables 
my $username = "username"; 
my $password = "password"; 
my $productId = "82";           #Free Access API access code 

 
 
#       login to the Betfair API 
my %login = login($username, $password, $productId); 
my $token = $login{sessionToken}; 
my $login_error = $login{errorCode}; 
 

As can duplicated error catching – we only need to log in once. 
 
if ( !($login_error =~ /OK/) ) 
 { 
   print "Failed login:\n"; 
   print "$login_error"; 
 } 
 else 
 { 
        print "Login Successful!\n"; 
 } 

 
We can also make a reference to our events schedule only once, and read in events 
only once.   We can rewrite the schedule in preparation for the next race, rather than 
burying this feature within one of the programs and worrying unduly about the order of 
execution of the 3 different programs.   Now there is one program, the correct event 
details will be used throughout, and upon exit the schedule will be reset for the next 
iteration of the single program: 
 
#       Read in the next event and write out events schedule ready for the next event 
open (EVENTS, "< /home/aeb/events_schedule"); 
open (TEMP, "> /home/aeb/events_temp"); 
my @events = <EVENTS>; 
my $event_details = shift(@events); 
foreach my $details (@events) { print TEMP "$details";} 
close (EVENTS); 
close (TEMP); 
rename("/home/aeb/events_temp", "/home/aeb/events_schedule"); 
 
$event_details =~ s/^\s+|\s+//g; 
print "$event_details\n"; 
my ($race_time, $race_course, $marketId) = split(/,/, $event_details); 
 

Wherever files are opened for receiving details - such as market prices and betting 
selections -  we can simply read prices and selections straight from data structures in 
memory. 



AUTOMATIC EXCHANGE BETTING 

264  

The program or betting report also becomes much easier to write, since it is no longer 
split over the actions of 3 programs, but visible within one program.    
 
We can now take the opportunity to capture the market timestamp from Betfair and to 
capture any error codes whenever a Betfair call is made.    This will all make for a fuller 
report than we showed in the first live test. 
 
Many examples of the new reporting format are shown in the Chapter 14, Oddsline 
Strategies in Production, under the section Automatic Betting Diary. 
 
We can choose to use even more copious reporting, or less – that will be up to the 
reader in their adaptation of code for production.   All the elements needed to do this are 
discussed within the context of this section, adapted from the original framework 
examples in Part 2.    
 
Now we can save this program with an appropriate name – oddsline_overlays.pl 
for example, and replace the 3 programs previously named in 
bet_oddsline_strategy with this one, to execute 5 minutes before every race, as 
dictated by the rules in the dynamic scheduling program, Example 7-2. 
 

Conclusion 
 
We corrected some errors that were spotted in our assessment of the live test and 
created a single program to bet dynamically, using the oddsline, prior to the race.    
Creating a single final version of the program enables us to: 
 

• Use data structures upon creation, without writing to, and reading from files 
• Eliminate redundant code and speed up processing 
• Produce more robust reporting with fuller information 
• Make the program generic for any oddsline we might throw at it 

 
We are not claiming this is a perfect implementation.  But it is getting better and better as 
a result of the testing process.   At a certain point, where everything works as we expect, 
and the output suits, we have reached a sufficient standard or bar where we can “go 
live”.     
 
We now have a generic program for dynamically betting oddslines.   This means that it 
can be easily adapted to back any oddsline, with any combination of rules, since the 
process of generating the oddsline is separate from the program that dynamically backs 
the oddsline.    
 
All we require is that the format used for the oddsline can be read into the dynamic 
betting program and that we can split out per line:  the race in question, the runner and 
the tissue price.   Since we have separated the process of betting from the assessment 
method used, any assessment method for contenders leading to an oddsline can be 
used.   
 



ASSESSING AND IMPROVING THE IMPLEMENTATION 

265 

The process of creating the events schedule is also separate from the dynamic betting 
program.    The execution program simply reads the events that are presented to it.    
For any other strategy, a different schedule can be used.     



 

  

 
 
 
 
 
 
 



 

267 

Chapter 14:   Oddsline Strategies in Production 
 
We now have a suite of programs to automatically bet any oddsline without manual 
intervention, from setting up scheduling to execution.   So, provided the oddsline itself 
can be automatically generated or automatically acquired, any betting strategy which 
incorporates an oddsline can be fully automated. 
  
In this chapter we will test this further by running more than one oddsline for the same 
race.   At the same time, a longer trial running two oddslines in parallel will enable us to 
show what the business of running automated strategies is really like in practice. 
 
To begin, we need to look further afield for an oddsline than the example we generated 
in Chapter 6, which was based around the Racing Post Postdata table, although we will 
also maintain this one for comparison purposes. 
 
We are looking for an oddsline method which is based on a sound method, tested over a 
period of time and which, given the right approach and knowledge any bettor could 
generate on an automated basis.   In other words, the oddsline used should be based on 
quantitative methods applied to data which is readily available (as opposed to privileged 
information which is qualitative and inaccessible to some, such as stable gossip, and 
cannot be easily automated). 
 
The ratings available from www.equiformratings.co.uk fit the bill in that they are based 
on a consistent mathematical method, which itself uses standard data elements also 
available from the SmartForm Racing Database, at www.betwise.co.uk.    
 
The ratings are automatically generated by a daily program and converted to tissue 
prices, creating an oddsline which is available as a proprietary service.   For the 
production run, we automatically download the prepared oddsline, although we cover the 
background behind the method in the next section. 
 
Thereafter we recap on the conditions and objectives for the production run, and then 
discuss the business end of the production run itself. 
 

Background on Oddslines used 
 
For the production run we are using the improved program discussed in the previous 
chapter, together with our automatic scheduling programs, to bet two different oddslines 
with the same rules on exactly the same races. 
 

Postdata oddsline 
 
The methodology for our first oddsline will come as no surprise, being the oddsline used 
in the live test and put together in the example framework, specifically in Chapter 6, for 
automatically repurposing data from the Racing Post website. 
 



AUTOMATIC EXCHANGE BETTING 

268  

Although the oddsline is based purely on assumptions regarding the significance and 
weighting of the factors in the Racing Post Postdata, as opposed to testing the resulting 
rankings against results, it has shown a small profit during our live test.    
 
However, it should be expected that this oddsline will require the most work in future and 
may produce volatile results if used without backtesting the accuracy of the oddsline 
predictions against the market.   This is the way we will be using the oddsline i.e. sight 
unseen, during our production run.     
 
At the same time, without testing the oddsline, we cannot say what improvement to the 
oddsline is needed.    Ideally we would do this outside the context of a live environment 
of course, building up the data over some time and testing it.   On the other hand, there 
are few strategies that are put into automation that do not carry some risk, even if 
backtested, so it is real and will serve as a useful comparison point with an alternative.    
We can also confirm that the framework now works exactly as we expect it to following 
the improvements covered in the previous chapter.     
 
Subsequent to the production run, we will also analyse the accuracy of the Postdata 
oddsline using the results that we have gathered, in order to gain insight into the process 
of assessing and improving an oddsline itself. 
 

Equiformratings oddsline 
 
The Equiform oddsline is the professional addition to the oddsline stable for the 
production run.   The ratings and tissue prices can be acquired directly from 
www.equiformratings.co.uk. 
 
Although the exact method for generating the Equiform ratings is proprietary, and we 
cannot provide the code, we can provide some background.     Also, since the method 
uses standard data which is also available in the Smartform Racing Database (which is 
itself automatically updated) similar quantitative methods for generating oddslines can 
be created and automatically implemented by other bettors for themselves. 
 
At the core of the methodology behind the Equiformratings oddsline is the belief that 
past performances of a horse can be expressed in terms of weight. The past 
performances are called past merit ratings (PMRs). The PMRs are used to estimate the 
likely performance of each horse in each race for which selections are made. These 
estimates are called expected merit ratings (EMRs).    
 
The weight to be carried is then subtracted from the EMRs and the answer obtained is 
used as the criterion for judging the most likely winner, next most likely winner and so 
on. The difference between EMR and weight is called the rating criterion (the RC).  
 
For the purposes of our oddsline test, the ratings for all races in the UK will be 
considered, although analysis of past results shows that some race types are more 
successful for top ranked selections than others. 
 
The PMRs are of course achieved under a variety of race conditions, different courses, 
goings, different racing codes and sometimes even different racing jurisdictions. 



ODDSLINE STRATEGIES IN PRODUCTION 

269 

Estimating EMRs from PMRs is tricky but necessary. The method used is based on a 
huge number of tests carried out on UK and Irish racing results from 1998 to 2004, some 
66,000 races in all. Factors taken into account are:  
 
1. draw bias 
2. weight for age (WFA) 
3. weight for experience (WFE) 
4. time since last run 
5. recency of earlier runs compared to most recent run 
6. race distance of past races compared to today's race distance 
7. codes of past runs (meaning AW, turf, hurdle, chase) 
8. gender 
9. headgear 
10. jockey  
11. trainer (only used for debutantes)  
 
The WFA tables have been determined without any reference to official tables, using a 
“what works best” approach.  
 
WFE tables were introduced to give, for example, recognition to the fact that a 
physiologically mature horse that switches from the flat to the jumps will improve in 
performance for a few years notwithstanding the fact that the horse may already have 
reached the peak of its physical development.   They are also useful in judging the 
chances, for example, of a horse that switches from turf to AW or the other way round. 
Draw bias is estimated over the 5 calendar years preceding the calendar year of 
selection. Both PMR's as well as EMR's are adjusted for draw bias. 
  
Jockey skills are measured by comparing the actual performance of riders' mounts with 
the expected performance ignoring the jockey.    Trainer skills are measured in a way 
similar to the way jockey skills are measured, after allowing for jockey.   Finally, the RC's 
are used to estimate win probabilities, which are converted to “fair prices” and expressed 
in odds to 1 terms. These prices make up a 100% book.    
 
For the purposes of our test, thanks to the proprietor of Equiformratings, we have 
automatically captured the ratings and tissue prices from a web page each day and 
parsed them to conform to the same format as the oddsline generated by example in 
Chapter 6.  At the same time we convert the starting prices from the tissue to decimal 
odds by adding 1, and end up with a file that looks like and can be used within the 
framework in exactly the same way as the Postdata oddsline file we saw earlier, 
formatted_oddsline. 
 
 

Production run rules 
 
For both oddslines we will use exactly the same betting rules as implemented for the 
Postdata based oddsline during the live test.   
 



AUTOMATIC EXCHANGE BETTING 

270  

This means taking the top third of the field after allowing for any non-runners, and betting 
any contender which is an overlay.  Full criteria for implementing the strategy are 
covered in Chapter 12 under the subsection Rules for the example strategy. 
 
We will follow both strategies for 2 weeks from the 18th November 2007 to 1st December 
2007 inclusive.   The strategies will cover all races in the UK during this time period, so 
that there can be a like for like comparison between oddslines.    There is nothing 
special about the dates chosen, they simply fell in line with preparation of this part of the 
book. 
 
For all bets we take whatever the current back price is 5 minutes before the race and 
immediately bet £5 per overlay.    
 
As a real example of running automated strategies, we will leave the strategy running for 
both oddslines as they stand for the first week, whilst closely observing both strategies, 
as discussed in the introduction to the Automatic Betting Diary below.   As we are risking 
real capital on two untried strategies, we will also review the implementation of the 
strategy after a week.     
 
Whilst this would generally be an unnecessary step for any well tested strategy, and may 
be for the Equiformratings oddsline, for which there is plentiful backtesting, it is prudent 
to monitor and adjust the completely untested Postdata oddsline.   Here we have no idea 
what to expect in the long run.   In Chapter 15, we discuss “turning off” betting execution 
for the Postdata oddsline altogether and simply accumulate data so as to have sufficient 
data to test, assess and improve the Postdata oddsline without risking capital.    
However, turning off betting execution at this point does not create a genuine point of 
comparison with our other oddsline, and is not as useful for describing what can go 
wrong as well as right with a live strategy – however, it can be a further improvement to 
the process of creating new strategies, so we also cover that in the next Chapter.    
 

Automatic Betting Diary 
 
Whilst betting automatically, we want to make sure we know inside out how any 
automated strategy works in practice.   This is necessary to be confident that we can 
leave the strategy alone with no real surprises.   Of course, we will never remove risk, 
but at least we can familiarize ourselves with the operation of the strategy so as to be as 
comfortable with leaving it alone as we would be if we were betting each race live.   
 
It means more than observing that the implementation conforms to the rules we 
specified (especially since we checked that for the live test), but also that the rules 
themselves are as useful in practice as they may have seemed in theory.   Particularly in 
the early days of any strategy, it is important to get a “feel” for the way any strategy 
operates, to analyse any anomalies, and so on.   
 
Two weeks is way too short a time frame for any perspective on long term profitability of 
a strategy, but our objective is rather to demonstrate the mechanisms involved in 
reviewing it, and give a sense of what happens in running any betting strategy on an 
automated basis - warts and all.    
 



ODDSLINE STRATEGIES IN PRODUCTION 

271 

Hopefully this perspective can be useful in showing what type of results, together with 
their associated ups and downs, can be expected for those bettors who automate their 
betting for the first time.   Of course, the exact results will vary by strategy type so each 
bettor should consider the expected behaviour of their own strategy first and foremost. 
 
For the purposes of our production run, both strategies are betting into the same Betfair 
account.   Aside from having sub-accounts set up (which is possible for accounts above 
a certain transaction volume), this is a useful way to reduce the overall commission 
payable to Betfair, otherwise each strategy would be subject to its own commission 
payment.   By the same token, we also want to be able to monitor the profit and loss of 
each strategy separately, so we employ the methods discussed in Chapter 11, 
Automated Record Keeping, and write the results of each strategy out to a separate 
database table at the end of each day. 
 
The diary is an abridged version of notes kept over the two week period.  Since a 
number of observations and explanations are in common with subsequent days’ betting, 
more detail has been left in the first few days’ notes. 
 
 

Week 1 
18th – 24th November 2007 
 
Everything – being the programs discussed in Part 2, with improvements to the betting 
program made in Part 3 -  has been finalised and  scheduled to execute automatically as 
cron jobs.  Each cron job creates a dynamic schedule for each oddsline, each day.      
There is nothing to be done in terms of manual intervention during the first week of the 
diary but observe (or, for future reference if the racing does not appeal or, in case of 
more pressing priorities, to be doing something different).     
 
However, in the course of observation, we do capture a few screen shots from the 
manual interface.   For the first few days below, we also cover the processes used for 
monitoring the strategies and their performance in general – this information is common 
to all days, of course.   Sample output from both oddslines, showing program and betting 
reports for all oddslines produced on the Sunday of the production run, is available at 
www.betwise.co.uk 
 
Sunday 18th November 
 
On the first day, being a Sunday with other things to do, we look at activity after racing 
has finished.   
 
Let’s start with looking at the type of information at our disposal, which will be common 
to all other days for the diary. 
 
Firstly, we review the overall profit and loss situation for both strategies after 
commissions, using the website interface for the account balance as our point of 
departure (shown for familiarity, subsequently we show data gathered automatically).    
 

 



AUTOMATIC EXCHANGE BETTING 

272  

 
 
Betting P&L 

colin magee 18-Nov-2007 22:34 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-11-18 00:

 
(yyyy-mm-dd hh:mm)

to 2007-11-18 22:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP42.72 Total P&L: GBP42.72   
  
Horse Racing Showing 1 - 19 of 19 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Carl 18th Nov : 2m1f NHF 18-Nov-07 15:50  18-Nov-07 15:59  -20.00 

Horse Racing / Font 18th Nov : 2m2f Hcap Chs 18-Nov-07 15:40  18-Nov-07 15:49  12.51 

Horse Racing / Chelt 18th Nov : 2m5f Nov Hrd 18-Nov-07 15:30  18-Nov-07 15:38  -15.00 

Horse Racing / Carl 18th Nov : 2m4f Hcap Chs 18-Nov-07 15:20  18-Nov-07 15:27  28.86 

Horse Racing / Font 18th Nov : 3m4f Hcap Chs 18-Nov-07 15:10  18-Nov-07 15:21  -25.00 

Horse Racing / Chelt 18th Nov : 2m Hcap Hrd 18-Nov-07 14:55  18-Nov-07 15:03  -40.00 

Horse Racing / Carl 18th Nov : 2m1f Nov Hrd 18-Nov-07 14:45  18-Nov-07 14:54  -15.00 

Horse Racing / Font 18th Nov : 2m2f Hcap Hrd 18-Nov-07 14:35  18-Nov-07 14:43  29.82 

Horse Racing / Chelt 18th Nov : 2m Hcap Chs 18-Nov-07 14:20  18-Nov-07 14:28  -5.00 

Horse Racing / Carl 18th Nov : 3m2f Hcap Chs 18-Nov-07 14:10  18-Nov-07 14:19  79.36 

Horse Racing / Font 18th Nov : 2m2f Claim Hrd 18-Nov-07 14:00  18-Nov-07 14:06  -10.00 

Horse Racing / Chelt 18th Nov : 2m5f Hcap Hrd 18-Nov-07 13:45  18-Nov-07 13:54  67.34 

Horse Racing / Carl 18th Nov : 2m1f Hcap Hrd 18-Nov-07 13:35  18-Nov-07 13:42  -20.00 

Horse Racing / Font 18th Nov : 2m6f Hcap Hrd 18-Nov-07 13:25  18-Nov-07 13:33  -20.00 

Horse Racing / Chelt 18th Nov : 2m Nov Chs 18-Nov-07 13:10  18-Nov-07 13:17  -10.00 

Horse Racing / Carl 18th Nov : 2m4f Nov Chs 18-Nov-07 13:00  18-Nov-07 13:07  -20.00 

Horse Racing / Font 18th Nov : 2m2f Beg Chs 18-Nov-07 12:50  18-Nov-07 12:57  3.08 

Horse Racing / Carl 18th Nov : 2m4f Nov Hrd 18-Nov-07 12:30  18-Nov-07 12:38  31.75 

Horse Racing / Font 18th Nov : 2m4f Mdn Hrd 18-Nov-07 12:20  18-Nov-07 12:28  -10.00  
 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?   
 

unless otherwise stated. 
  
 
Figure 14-1:  Overall P&L November 18th 2007 
 
 
The good news is that the first day results in profit, for £42.72 after commissions.    
However, this doesn’t tell us anything about the performance of our individual strategies.   
 



ODDSLINE STRATEGIES IN PRODUCTION 

273 

For that we look to the output from our end of day record keeping process, as discussed 
in Chapter 11, which collects all betting information according to strategy, based on 
captured bet Ids through the day, then writes all daily bet details for each strategy to the 
database.    
 
Subsequently, a program can be scheduled to execute an automated database query to 
retrieve from each strategy record the total number of bets for the day, the total number 
of wins, and the P&L for the day, as shown in Table 14-1.    In this data, we are 
interested in the raw performance of the strategy and therefore report results without 
commissions (since these vary by account and prevailing commission rate), although the 
commission data is also available for extraction, as discussed in Chapter 11. 
 
For each strategy, displayed in the final column, we also calculate cumulative P&L for 
that strategy - for the first day, this is of course the same as actual P&L. 
 
 
Table 14-1:  P&L by Oddsline Strategy, November 18th 2007 
 
Oddsline Date Bets Wins P&L cum.P&L 
Equiform 18/11/2007 34 4 71 71 
Postdata 18/11/2007 33 3 -18.3 -18.3 

 
 
This tells us what we need to know at a high level – the Equiform oddsline was positive 
in terms of profit, and the Postdata oddsline produced a loss.     However, there are as 
many questions as answers.   There were almost the same number of bets and winners 
for each strategy, so we do not know how or why each strategy produced its results. 
 
To answer these questions, we can fall back on our improved program output for all 
detail at the lowest level, produced for every single race in the UK on the day.   This 
shows the output from matching each oddsline to the available live prices 5 minutes 
before each race, as well as the overlays determined by the strategy within the top third 
of the field.    
 
There are separate program reports from each strategy, which in the case of our 
examples were running from within different directories on the same server.   Each 
program report for one of the key handicap races on the first day are reproduced in 
Figure 14-2, for the Postdata oddsline, and in Figure 14-3 for the Equiform oddsline. 
 

 
 
##################################  NEW ODDSLINE  ################################### 
 
Cheltenham, 1.45 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       13:40:04.897 
1.45, Cheltenham, Khasab, 13.70, 4.7 
1.45, Cheltenham, Im Spartacus, 13.70, NON_RUNNER 
1.45, Cheltenham, Leading Contender, 13.70, 12.5 
1.45, Cheltenham, Hot Port, 15.22, 7.2 
1.45, Cheltenham, Rajeh, 15.22, NON_RUNNER 
1.45, Cheltenham, Vale Of Avocia, 17.12, 30.0 
1.45, Cheltenham, Rustarix, 17.12, NON_RUNNER 



AUTOMATIC EXCHANGE BETTING 

274  

1.45, Cheltenham, Portland Bill, 19.57, 25.0 
1.45, Cheltenham, Dancing Lyra, 19.57, NON_RUNNER 
1.45, Cheltenham, Counting House, 19.57, 24.0 
1.45, Cheltenham, Rio De Janeiro, 19.57, 16.0 
1.45, Cheltenham, Pocket Too, 22.83, 120.0 
1.45, Cheltenham, Sobers, 22.83, 11.0 
1.45, Cheltenham, The Sliotar, 27.40, 12.0 
1.45, Cheltenham, Mendo, 34.25, 22.0 
1.45, Cheltenham, Hereditary, 34.25, 160.0 
1.45, Cheltenham, La Dame Brune, 34.25, 29.0 
1.45, Cheltenham, Paradi, 45.67, 18.5 
1.45, Cheltenham, Go Free, 45.67, 140.0 
1.45, Cheltenham, At The Money, 45.67, 18.0 
1.45, Cheltenham, Court Ruler, 68.50, 95.0 
1.45, Cheltenham, Boss Imperial, 68.50, 210.0 
1.45, Cheltenham, Robin De Sherwood, 68.50, 40.0 
1.45, Cheltenham, Top The Charts, 137.00, NON_RUNNER 
NON_RUNNERS 
 
Bet top third overlays: 
Selection:   1.45, Cheltenham, Leading Contender, 20694871, 1277440 
Bet placed: 4011675011, B, £5.00,  12.5 
Selection:   1.45, Cheltenham, Vale Of Avocia, 20694871, 1442574 
Bet placed: 4011675052, B, £5.00,  30.0 
Selection:   1.45, Cheltenham, Portland Bill, 20694871, 1344282 
Bet placed: 4011675113, B, £5.00,  25.0 
Selection:   1.45, Cheltenham, Counting House, 20694871, 1225820 
Bet placed: 4011675137, B, £5.00,  24.0 
 
Oddsline strategy finished at systime: Sun Nov 18 13:40:06 GMT 2007 

 
Figure 14-2:  Postdata oddsline report, Cheltenham 1:45, 18/11/2007 
 

 
 

##################################  NEW ODDSLINE  ################################### 
 
Cheltenham, 1:45 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       13:40:04.519 
1:45, Cheltenham, Leading Contender, 8.06, 12.5 
1:45, Cheltenham, Im Spartacus, 9.62, NON_RUNNER 
1:45, Cheltenham, Khasab, 11.36, 4.7 
1:45, Cheltenham, Portland Bill, 12.05, 25.0 
1:45, Cheltenham, Rustarix, 14.93, NON_RUNNER 
1:45, Cheltenham, Hot Port, 16.95, 7.2 
1:45, Cheltenham, Rio De Janeiro, 17.86, 16.0 
1:45, Cheltenham, Mendo, 20, 22.0 
1:45, Cheltenham, Counting House, 20.41, 24.0 
1:45, Cheltenham, Sobers, 21.74, 11.0 
1:45, Cheltenham, Rajeh, 21.74, NON_RUNNER 
1:45, Cheltenham, The Sliotar, 23.26, 12.0 
1:45, Cheltenham, Top The Charts, 28.57, NON_RUNNER 
1:45, Cheltenham, Dancing Lyra, 29.41, NON_RUNNER 
1:45, Cheltenham, At The Money, 40, 18.0 
1:45, Cheltenham, Paradi, 43.48, 18.5 
1:45, Cheltenham, Vale Of Avocia, 66.67, 30.0 
1:45, Cheltenham, Court Ruler, 111.11, 95.0 
1:45, Cheltenham, Pocket Too, 111.11, 120.0 
1:45, Cheltenham, Boss Imperial, 111.11, 210.0 
1:45, Cheltenham, Go Free, 125, 140.0 
1:45, Cheltenham, La Dame Brune, 125, 29.0 
1:45, Cheltenham, Robin De Sherwood, 166.67, 40.0 
1:45, Cheltenham, Hereditary, 250, 160.0 
NON_RUNNERS 
 
Bet top third overlays: 



ODDSLINE STRATEGIES IN PRODUCTION 

275 

Selection:   1:45, Cheltenham, Leading Contender, 20694871, 1277440 
Bet placed: 4011674893, B, £5.00,  12.5 
Selection:   1:45, Cheltenham, Portland Bill, 20694871, 1344282 
Bet placed: 4011674940, B, £5.00,  25.0 
Selection:   1:45, Cheltenham, Rio de Janeiro, 20694871, 837310 
Bet placed: 4011675012, B, £5.00,  16.0 
Selection:   1:45, Cheltenham, Mendo, 20694871, 1071645 
Bet placed: 4011675048, B, £5.00,  22.0 
 
Oddsline strategy finished at systime: Sun Nov 18 13:40:05 GMT 2007 

 
Figure 14-3:  Equiform oddsline report, Cheltenham 1:45, 18/11/2007 
 
 

Not only was this one of the better races of the day, but this handicap at Cheltenham 
was also pivotal to the difference in performance on the day between both strategies.   
The finishing order for the 1:45 at Cheltenham was as follows: 
 
1. Mendo   16/1 
2. Vale of Avocia 18/1 
3. Sobers  9/1 
4. Leading Contender 8/1 

 
Mendo as the winner generated £105 prior to commissions for the Equiform oddsline, 
without which the strategy would have resulted in a loss.  Although the selection 
processes for both oddslines had selected the 4th horse, Leading Contender as well as 
the unplaced Portland Bill, it was Mendo at a back price of 22.0 which was a unique 
selection only for the Equiform oddsline.    Ironically, the second horse, Vale of Avocia, 
which was beaten only 1 length and in contention according to the race comments, was 
a unique selection for Postdata.   If Vale of Avocia had won at even higher odds than 
Mendo, of 30.0, it would have completely reversed the P&L position between oddslines 
strategies (since by the same token Mendo would have lost), as well as producing a 
greater overall profit in the account on the day.    
 
Such is the fine line between winning and losing in terms of any individual race.   It also 
shows us that the overall P&L position on the day eventually boils down to one race.   
Although it is too early to come to any conclusions, it is clear that if the balance of results 
stays like this, throwing up an average of 1 winner in every 8 or 9 bets, then the success 
of both oddslines depends on identifying a good smattering of long priced winners to 
make up for the majority of losing bets.   In this case the honours went to the Equiform 
oddsline. 
 
 
Monday 19th November 2007 
 
It is moderate fayre today with regard to the quality of horses competing, with meetings 
at Wolverhampton, Kempton and Leicester. 
 
Yesterday we caught up on results at the end of the day, today we will follow progress 
intermittently during the course of racing.    
 
It seems that the first few races produce the automated equivalent of going two steps 
forwards and two steps backwards, so that aggregated profits from both oddslines have 
put us £15 up by the 2.10 at Leicester.   This is enough of a capital reserve to pay for a 



AUTOMATIC EXCHANGE BETTING 

276  

mere 3 bets before returning to a zero position, which, whilst we are considering the top 
third of the field, can easily be surpassed by one strategy alone within one race.     
 
Sure enough, there are 3 bets placed in total by both oddslines in the very next race, the 
2.10 at Leicester.   Below we show only the Equiform oddsline, however the Postdata 
oddsline strategy produced one overlay within the top 3 runners, also Yo Pedro at 
decimal odds of 6.6. 

 
 
##################################  NEW ODDSLINE  ################################### 
 
Leicester, 2:10 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       14:05:01.445 
2:10, Leicester, Airman, 4.41, NON_RUNNER 
2:10, Leicester, L'Oiseau De Feu, 6.13, NON_RUNNER 
2:10, Leicester, Baarrij, 6.76, NON_RUNNER 
2:10, Leicester, Devilfishpoker Com, 6.94, 6.0 
2:10, Leicester, Yo Pedro, 8.77, 6.6 
2:10, Leicester, Salvestro, 12.2, 9.4 
2:10, Leicester, Floodlight Fantasy, 21.28, 25.0 
2:10, Leicester, Mujamead, 25, 2.1 
2:10, Leicester, Riverweld, 50, 22.0 
2:10, Leicester, Miss Bustino, 66.67, 40.0 
2:10, Leicester, Yankey, 251, 120.0 
NON_RUNNERS 
 
Bet top third overlays: 
Selection:   2:10, Leicester, Devilfishpoker Com, 20696369, 1464356 
Bet placed: 4016436296, B, £5.00,  6.0 
Selection:   2:10, Leicester, Yo Pedro, 20696369, 1036997 
Bet placed: 4016436321, B, £5.00,  6.6 
 
Oddsline strategy finished at systime: Mon Nov 19 14:05:03 GMT 2007 

 
Figure 14-4:  Equiform oddsline report, Leicester 2:10, 19/11/2007 
 
 
Sure enough, 3 bets are indeed placed by the combination of both oddslines, for 2 
different runners.   (We note in passing that the top 3 originally rated in the race are all 
non-runners – as if the quality of racing wasn’t already poor, the highest ranked horses 
are also dropping out!)  Losers for both would be sufficient to wipe out our meagre profit 
at this stage in the day.    
 
Following the race live, we have a clear interest in Yo Pedro winning since it is carrying 
two bets.   However, this one is not in contention.   Devilfishpoker.com, on the other 
hand is, and has a good chance to win it when Mujamead, the favourite and race leader, 
blunders around in the latter stages of the race and is picked up off the floor by Tony 
McCoy.  However, Devilfishpoker.com shows reluctance to take advantage of any error 
and the champion jockey proves yet again why he is a champion.   So our profit is wiped 
out.  Back to level pegging on the day. 
 
The day continues in much the same vein with moderate racing and a slight edge 
maintained by the operation of both oddsline strategies, albeit for a large number of bets.    
Nevertheless, the overall P&L position forges slowly ahead so that the profit before the 
last race of the day at Kempton stands at £40.52.    



ODDSLINE STRATEGIES IN PRODUCTION 

277 

 
This time, combining the selections of both oddslines, there are 4 different overlays 
found at the top of the oddslines, with Recalcitrant being a common overlay.   Taking 
account of the overall position of bets in the race, the following outcomes are the ones 
which interest us: Fantasy Ride wins £22, Recalcitrant £81.50, and Blocklow over £100.  
However, our biggest winner would be Sir Sandicliffe at £155.   With a total of 5 bets 
placed by both oddslines, a win for any other runner will lose us £25. 
 
Blocklow is in the lead for most of the race, tracked by Fantasy Ride.   Highest Esteem, 
the favourite and looking easily the best horse, comes from off the pace to lead and stay 
on well, with Fantasy Ride second best.    So, it’s £25 down on the last race.   Still, on 
the bright side that’s still £15 profit on the second day, all automatic.   What conclusions 
can we draw? 
 
Let’s run our profit programs, starting with an interactive capture of the screen for the 
Betfair account which both strategies are using 
 
 
Betting P&L 

Colin magee 19-Nov-2007 19:45 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-11-19 00:

 
(yyyy-mm-dd hh:mm)

to 2007-11-19 19:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP15.52 Total P&L: GBP15.52   
  
Horse Racing Showing 1 - 20 of 20 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Kemp 19th Nov : 1m4f Hcap 19-Nov-07 16:20  19-Nov-07 16:28  -25.00 

Horse Racing / Kemp 19th Nov : 6f Hcap 19-Nov-07 15:50  19-Nov-07 16:00  -15.00 

Horse Racing / Leic 19th Nov : 2m Nov Hrd 19-Nov-07 15:40  19-Nov-07 15:51  3.36 

Horse Racing / Wolv 19th Nov : 6f Mdn Stks 19-Nov-07 15:30  19-Nov-07 15:36  -25.00 

Horse Racing / Kemp 19th Nov : 7f Hcap 19-Nov-07 15:20  19-Nov-07 15:33  36.05 

Horse Racing / Leic 19th Nov : 2m4f Hcap Hrd 19-Nov-07 15:10  19-Nov-07 15:20  22.58 

Horse Racing / Wolv 19th Nov : 5f Hcap 19-Nov-07 15:00  19-Nov-07 15:04  1.92 

Horse Racing / Kemp 19th Nov : 1m Mdn Stks 19-Nov-07 14:50  19-Nov-07 14:58  36.04 

Horse Racing / Leic 19th Nov : 2m Hcap Hrd 19-Nov-07 14:40  19-Nov-07 14:49  -20.00 

Horse Racing / Wolv 19th Nov : 2m Hcap 19-Nov-07 14:30  19-Nov-07 14:37  -15.00 

Horse Racing / Kemp 19th Nov : 1m2f Hcap 19-Nov-07 14:20  19-Nov-07 14:30  15.38 

Horse Racing / Leic 19th Nov : 2m Sell Hrd 19-Nov-07 14:10  19-Nov-07 14:20  -15.00 

Horse Racing / Wolv 19th Nov : 1m Hcap 19-Nov-07 14:00  19-Nov-07 14:03  6.87 

Horse Racing / Kemp 19th Nov : 1m2f Hcap 19-Nov-07 13:50  19-Nov-07 13:57  38.44 

Horse Racing / Leic 19th Nov : 2m Nov Hrd 19-Nov-07 13:40  19-Nov-07 13:49  -10.00 



AUTOMATIC EXCHANGE BETTING 

278  

Horse Racing / Wolv 19th Nov : 7f Sell Stks 19-Nov-07 13:30  19-Nov-07 13:33  -30.00 

Horse Racing / Kemp 19th Nov : 1m2f Claim Stks 19-Nov-07 13:20  19-Nov-07 13:26  -20.00 

Horse Racing / Leic 19th Nov : 2m4f Hcap Hrd 19-Nov-07 13:10  19-Nov-07 13:20  26.91 

Horse Racing / Wolv 19th Nov : 6f Claim Stks 19-Nov-07 13:00  19-Nov-07 13:06  -10.00 

Horse Racing / Kemp 19th Nov : 5f Class Stks 19-Nov-07 12:50  19-Nov-07 12:54  12.97  
 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?   
 

unless otherwise stated. 
  
 
Figure 14-5:  Account P&L for racing on Monday 19th September 2007 
 
 
So, £15.52 ahead after all commissions have been deducted (for measuring the P&L of 
the strategies, we do so without commission, since this will depend on each user’s own 
account).   
 
For following all the ups and downs of the racing during the day, that would be a poor 
wage indeed.   Fortunately, it is not necessary to do so when betting automatically. 
 
Having followed the racing interactively for both strategies, we can see a clear contrast 
with many traditional betting strategies.   If playing interactively, it would be a time 
consuming exercise indeed to consider every race in the day and identify overlays in 
each, allowing for non-runners, then to back them all with the same betting criteria 
without any error in execution. 
 
Not all automated strategies create such a volume of bets (although many create more), 
but the ability to do so reliably, in order to press home any marginal edge over the 
market, as well as the freedom to do other things throughout the day’s racing, is one of 
the key advantages that can be gained from automation. 
 
By the same token, in a strategy which yields a high number of bets with the intention of 
creating a long term advantage, we cannot expect to see much progress by looking at 
any individual bet in the strategy.   So far, we have picked out key races that tell us 
something about the way the strategy is operating. 
 
So, in operating an automated strategy, patience is a virtue.   If the profitability of a 
strategy depends on a certain volume of bets, we cannot look at an individual race in the 
same way as if, for example, we had identified an unexposed horse with great potential 
and waited a few weeks until its next engagement.  One race for an automated strategy 
based on assessing all overlays against an oddsline throughout the day is simply a 
single data point in a large number.    
 
So, although profits are creeping up only marginally, they are still creeping up – overall, 
although it is clear that all oddslines strategies are not created equal – in Table 14-2 we 
can see a summary of how each strategy is faring at the end of the second day: 
   

 
 



ODDSLINE STRATEGIES IN PRODUCTION 

279 

Table 14-2:  P&L by Oddsline Strategy, November 19th 2007 
 

Oddsline Date Bets Wins P&L cum.P&L 
Equiform 19/11/2007 43 8 100.16 171.16 
Postdata 19/11/2007 33 2 -76.5 -94.8 

 
 
One strategy is accumulating profits, the other losses.    
 
If this production run were not for demonstration purposes (and without the cushion of 
the Equiform oddsline) we should be concerned about operating the Postdata oddsline 
alone.  Even though it is only the second day, knowing that this strategy is based on the 
untested oddsline means we cannot have any confidence that it will right itself in the long 
run, and we need to keep a close eye on it. 
 
 
Tuesday 20th November 
 
Another moderate day’s racing today. 
 
One of the early results is worthy of further analysis. 
 
Sovereign King hacks up in the 1:10 at Folkestone by 4 lengths.   With the Alan King 
stable establishing itself as one of the top yards in National Hunt and being in fine fettle 
over the previous 2 weeks it’s a surprise that a relatively unexposed runner in a 
moderate race is allowed to go off at a starting price of 66/1.      Even the supposedly 
more “fancied” of his two runners in the race starts at 25/1 - and duly comes second.   
The traditional layers’ straight forecast pays £1026.08 to a £1 stake (we’ll hope the 
stable staff had a couple of quid on). 
 
From the point of view of our automated strategy, whilst things are tighter with traditional 
bookmakers at the top of the market, contenders at long starting prices such as 
Sovereign King are often factors higher on the exchanges, and this one is no exception, 
as shown in the Postdata oddsline in Figure 14-6 below. 

 
 
##################################  NEW ODDSLINE  ################################### 
 
Folkestone, 1.10 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       13:05:01.288 
1.10, Folkestone, Matcho Pierji, 4.44, 4.2 
1.10, Folkestone, Master Medic, 5.71, 7.8 
1.10, Folkestone, Kid Charlemagne, 6.67, 2.24 
1.10, Folkestone, Uncle Eli, 6.67, 22.0 
1.10, Folkestone, Sovereign King, 13.33, 160.0 
1.10, Folkestone, Regal Quote, 20.00, 13.5 
1.10, Folkestone, Champion De Sou, 20.00, 490.0 
1.10, Folkestone, Darksideofthemoon, 20.00, 22.0 
1.10, Folkestone, Oh Crick, 20.00, 38.0 
1.10, Folkestone, Chancery Lad, 40.00, 140.0 
ALL RUN 
 
Bet top third overlays: 
Selection:   1.10, Folkestone, Master Medic, 20697290, 2610451 



AUTOMATIC EXCHANGE BETTING 

280  

Bet placed: 4020089232, B, £5.00,  7.8 
 
Oddsline strategy finished at systime: Tue Nov 20 13:05:01 GMT 2007 
 
Figure 14-6:  Postdata oddsline report, Folkestone 1:10, 20/11/2007 
 
 
The oddsline method rates all the runners in a tight band, and Sovereign King is an 
overlay by a factor of around 14 times at 160.0, to tissue odds of 13.33.   However, 
Sovereign King is only 5th ranked overall, and, due to our field size and the rules of the 
strategy in place, we consider the top 3 only.  So we miss out on the long priced winner, 
but no doubt we also miss out on a number of losers for the same reasons.  Again, 
without the benefit of testing the Postdata oddsline thoroughly before playing it, we 
cannot know whether to laugh or cry about this. 
 
Otherwise, it’s a quiet day for the oddsline strategies in general, mainly due to small 
fields (comprising many novice and non-handicap events) and strong favourites.   
Between the oddslines, however, there is some difference in both the bets identified and 
the performance.  For the Postdata oddsline, it is generally rarer that a favourite is priced 
under the market price (and therefore indicating an overlay) in small fields due to the 
tighter scoring range from the method used.   Even if the winner is ranked highest, the 
odds produced by the scoring method tend to be too high to produce an overlay.   For 
the Equiform oddsline, that is not the case, and the pricing tends to be more accurate. 
 
As far as the type of overlays identified by the Postdata oddsline are concerned, a case 
in point occurs a few races later on the Folkestone card in the 2.40.   This time the race 
is a more hotly contested handicap than in the jumps meeting at Fakenham, with a 
bigger field, where, as a result, the market prices are more evenly distributed.  The 
prices for the top contenders produced by our Postdata scores are similarly likely to fall 
under some of the market prices on offer, thereby producing more bets for the higher 
ranked runners. 
 
 
##################################  NEW ODDSLINE  ################################### 
 
Folkestone, 2.40 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       14:35:03.543 
2.40, Folkestone, Inaro, 8.75, 17.0 
2.40, Folkestone, Fieldsofclover, 10.00, 11.0 
2.40, Folkestone, Cossack Dancer, 10.00, 38.0 
2.40, Folkestone, John Diamond, 10.00, NON_RUNNER 
2.40, Folkestone, Black De Bessy, 10.00, 8.4 
2.40, Folkestone, Berengario, 10.00, 15.0 
2.40, Folkestone, Herecomestanley, 10.00, 10.0 
2.40, Folkestone, Minuit De Cotte, 11.67, 4.5 
2.40, Folkestone, The Hardy Boy, 14.00, 14.5 
2.40, Folkestone, Coach Lane, 17.50, 14.0 
2.40, Folkestone, Bagan, 17.50, 5.6 
2.40, Folkestone, Barton Flower, 70.00, 38.0 
NON_RUNNERS 
 
Bet top third overlays: 
Selection:   2.40, Folkestone, Inaro, 20697296, 982780 
Bet placed: 4020790371, B, £5.00,  17.0 
Selection:   2.40, Folkestone, Fieldsofclover, 20697296, 170725 
Bet placed: 4020790383, B, £5.00,  11.0 
Selection:   2.40, Folkestone, Cossack Dancer, 20697296, 389646 



ODDSLINE STRATEGIES IN PRODUCTION 

281 

Bet placed: 4020790403, B, £5.00,  38.0 
 
Oddsline strategy finished at systime: Tue Nov 20 14:35:04 GMT 2007 

 
Figure 14-7:  Postdata oddsline report, Folkestone 2:40, 20/11/2007 
 

 
Indeed this is the case, and all three of the top ranked runners are overlays.    
 
Following this race live through the commentary on the radio, we hear all the contenders 
backed by the oddsline filling the first three positions 6 fences from home, Cossack 
Dancer, Inaro, FieldsOfClover, although as the commentator says “They’re all in a 
heap”.   This is perhaps not the ideal stage in a hotly contested national hunt handicap to 
be in the lead since making the running from the front is the tough way to win such 
races, and often best suited to animals that are a class ahead of the competition.   
Cossack Dancer continues to do well, but sounds like it is only a matter of time until it is 
caught by one of the chasing pack.      
 
Soon enough, the second last of the overlays, Inaro drops away.   Coming to the last 
fence, it’s Cossack Dancer from HereComesStanley.  Cossack Dancer, ridden by Mattie 
Bachelor puts in a great jump at the last, landed running.   Returned the winner at an SP 
of 22/1, or 38.0 for us.  An exciting finish and a great result. 
 
However, if we are waiting for the oddsline strategy to hit the right race type – a hotly 
contested handicap at approximately 7/1 + against the field, something is surely wrong – 
it’s great that if the oddsline is indeed suited to such contests, but then we should be 
eliminating the races that do not fit. 
 
The rest of the day does not go so well, despite some opportunity through overlays at 
Wolverhampton, and a steady stream of bets flows out without much return – which is of 
course the downside of the situation described for Cossack Dancer’s race, i.e. more 
volatility. 
 
So, overall on the day, for both systems combined, a loss of -£26.60 is incurred, after a 
commission reduction of approximately 3.9% on all winnings.   It was a bad day for the 
Equiform oddsline, reducing the profit shown by this one so far (despite finding 3 
winners) and a good day for the Postdata oddsline, despite finding only one winner.   But 
overall, we are poorer. 
 
Table 14-3:  P&L by Oddsline Strategy, November 20th 2007 
 
Oddsline Date bets wins P&L Cum.P&L 
Equiform 20/11/2007 37 3 -83.35 87.81 
Postdata 20/11/2007 25 1 65 -29.8 

 
Wednesday 21st November 
 
4 meetings today:  Hexham, Lingfield, Warwick and Kempton (All Weather evening 
racing). 
 
"We have had an unbelievable amount of rain since the weekend and it is going to be 
very testing,"  said the clerk of the course at Hexham. 



AUTOMATIC EXCHANGE BETTING 

282  

 
Should make for some long priced contenders perhaps?  The field sizes are up today, so 
that combined with a change in the weather is likely to make matters more volatile.    
 
Let’s see what happens, and cut straight to the chase, as it were, by curtailing the notes 
to look straight at our end of day position: 
 
 
Table 14-4:  P&L by Oddsline Strategy, November 21st 2007 
 
Oddsline Date bets wins P&L Cum.P&L 
Equiform 21/11/2007 62 8 -13.95 73.86 
Postdata 21/11/2007 52 3 -138.69 -168.49 

 
 
It certainly was a volatile day - with combined automated losses of over £150 on both 
strategies.    The main culprit was the Postdata oddsline accounting for over 90% of 
losses. 
 
So what went wrong?    
 
Firstly, let’s consider a factor that may apply to both strategies (and is worth bringing up 
regarding timing for automation in general): properly accounting for recent changes in 
the going - where going is a variable that is relied upon for determining the oddsline.    
For example, if oddslines are automatically generated the day before racing, there rests 
the possibility that the factors for going are incorrect by the time that racing starts.    
 
That aside, there are further observations that are pertinent.   Profitability is in many 
ways all about price – for the rules applied to both oddsline strategies in particular, we 
are placing inherent emphasis on the accuracy of the oddsline versus the market.   For 
an oddsline where no testing has been done on the accuracy of the derived prices 
versus the results, we are perhaps asking for trouble.    Previously we observed that the 
method used for pricing for the Postdata oddsline ties it to relatively tight range of prices, 
being based more or less on integer scores, in the approximate range of 1 - 12.     The 
Equiform oddsline however uses a wider ability range that is reflected in prices.   Thus, 
even where both oddslines agree on the top rated horses within the race, the tissue 
prices can mean an overlay for one oddsline and “no bet” for the other.   This is 
demonstrated by one of the earlier races of the day at Hexham, in the 12.40 
 

 
Equiform: 
 
Market timestamp:       12:35:03.725 
12:40, Hexham, Chip N Pin, 5.03, 5.0 
12:40, Hexham, Pagan Starprincess, 8.55, 9.2 
12:40, Hexham, La Vecchia Scuola, 8.93, 18.0 
12:40, Hexham, Kentucky Boy, 11.24, 5.9 
12:40, Hexham, Bayonyx, 11.36, 8.6 
12:40, Hexham, Slavonic Lake, 13.7, 14.5 
12:40, Hexham, Act Sirius, 13.89, 11.0 
12:40, Hexham, Rainbow Flame, 14.08, 32.0 
12:40, Hexham, Acapulco Bay, 22.22, 70.0 
12:40, Hexham, Impact Zone, 22.73, 90.0 
12:40, Hexham, Find Me, 34.48, 14.0 
12:40, Hexham, Danish Rebel, 41.67, 42.0 



ODDSLINE STRATEGIES IN PRODUCTION 

283 

12:40, Hexham, Heavens Gates, 43.48, 55.0 
12:40, Hexham, Zoren, 166.67, 24.0 
12:40, Hexham, Waiheke Island, 250, 210.0 
12:40, Hexham, Malguru, 251, 1000.0 
ALL RUN 
 
Postdata: 
 
Market timestamp:       12:35:03.976 
12.40, Hexham, Chip N Pin, 8.64, 5.0 
12.40, Hexham, Pagan Starprincess, 10.56, 9.2 
12.40, Hexham, Slavonic Lake, 11.88, 14.5 
12.40, Hexham, Heaven's Gates, 11.88, 55.0 
12.40, Hexham, Bayonyx, 11.88, 8.6 
12.40, Hexham, La Vecchia Scuola, 13.57, 18.0 
12.40, Hexham, Impact Zone, 13.57, 95.0 
12.40, Hexham, Act Sirius, 13.57, 11.0 
12.40, Hexham, Acapulco Bay, 15.83, 70.0 
12.40, Hexham, Kentucky Boy, 15.83, 5.9 
12.40, Hexham, Find Me, 15.83, 14.0 
12.40, Hexham, Danish Rebel, 19.00, 42.0 
12.40, Hexham, Rainbow Flame, 31.67, 32.0 
12.40, Hexham, Waiheke Island, 47.50, 210.0 
12.40, Hexham, Malguru, 95.00, 1000.0 
12.40, Hexham, Zoren, 95.00, 24.0 
 

Figure 14-8:  Oddslines compared for Folkestone 12:40, 21/11/2007 
 
 
Here the Equiform and Postdata oddslines both agree on the top 2 rated horses in the 
field.   However, the method we have devised to create tissue prices for Postdata, based 
on a range of integer scores, means that the range of prices runs from 8.64 to 95.0, 
whereas the range of scores for the Equiform oddsline run from 5.03 to 251.  That range 
is more reflective of the market range and is enough to establish that Pagan 
Starprincess is an overlay for Equiform at decimal odds of 9.2, but a no bet for Postdata, 
despite the predicted finishing order for both strategies being the same.    Effectively the 
method we are using for Postdata is always saying that horses are more closely grouped 
in terms of ability than is perhaps the case.   In certain race types, this will be more true 
than others, such as handicaps, but even in the case of handicaps it is not a universal 
truth. 
 
Thus, as we have pointed out already, we are learning that the Postdata oddsline is not 
to be implicitly trusted without further testing and refinement, despite some interesting 
results.     
 
Aside from the particularly poor performance of the Postdata oddsline, today has 
happened to coincide with the busiest day of the production run so far.   With larger 
fields, together with more races, there are inevitably more overlays and volatility.   For 
example, the 2.50 at Warwick with 18 runners carried 6 bets from each oddsline, and 
was therefore responsible for a loss of £60 alone.  In fact, both strategies combined 
place almost double the number of bets than the previous day.   Thus if either oddsline is 
performing particularly badly on the day – due to factors such as changes in going - this 
has a magnified effect on profit and loss on this day.   Only time – or rather, sufficient 
testing over a sufficient number of trials - can tell if that is a reasonable assumption. 
 
 
 
 



AUTOMATIC EXCHANGE BETTING 

284  

Thursday 22st November 
 
The day starts off with the 12:40 at Market Rasen - changed to Market_Rasen in the 
world of automated betting, so we can match data where courses originate from different 
sources. 
 
As for the race itself, it’s another novice hurdle, as is often the convention for the 
opening race on a National Hunt card.  This is the type of race we have seen so far this 
week that can throw up big priced winners, although at the other extreme of the 
rankings, it’s usually the FAV or second FAV that have the best record of success. 
 
To prove the case, Balamory Dan wins at 28/1, with a favourite, Calgary Bay, unwilling 
to pass him in the home straight.   Unfortunately, Balamory Dan was not in the frame for 
either oddsline ranking. 
 
For the rest of the day’s racing, many bets are again selected by the strategies in the big 
fields.  This characteristic, which went against us so badly yesterday, now comes good, 
particularly in the 2.50 at Hereford as Harbour Breeze lands the race at decimal odds of 
16.5.  Better still, Harbour Breeze is a qualifier for both oddslines, thereby netting a profit 
of £135.    
 
This puts us back in front for the day at this point by £122, but the profit situation is 
eroded substantially by the end of afternoon racing.   An assortment of mediocre races 
fielding contenders lacking in form fill the latter races of the day.   Profit for the day is a 
meagre net 18.92 going into the Wolverhampton evening meeting, as shown below: 
 
 
 
Betting P&L 

colin magee 22-Nov-2007 16:30 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-11-22 00:

 
(yyyy-mm-dd hh:mm)

to 2007-11-22 16:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   
Horse Racing: GBP18.92 Total P&L: GBP18.92   
  
Horse Racing Showing 1 - 20 of 20 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Winc 22nd Nov : 2m Hcap Chs 22-Nov-07 16:00  22-Nov-07 16:10  -20.00 

Horse Racing / Here 22nd Nov : 2m1f NHF 22-Nov-07 15:50  22-Nov-07 15:58  -20.00 

Horse Racing / MrktR 22nd Nov : 2m1f Hcap Hrd 22-Nov-07 15:40  22-Nov-07 15:48  -10.00 

Horse Racing / Winc 22nd Nov : 2m6f Nov Hrd 22-Nov-07 15:30  22-Nov-07 15:45  -20.00 

Horse Racing / Here 22nd Nov : 3m1f Hcap Chs 22-Nov-07 15:20  22-Nov-07 15:30  -30.00 

Horse Racing / MrktR 22nd Nov : 2m4f Hcap Chs 22-Nov-07 15:10  22-Nov-07 15:18  -20.00 

Horse Racing / Winc 22nd Nov : 3m3f Hcap Chs 22-Nov-07 15:00  22-Nov-07 15:12  16.34 



ODDSLINE STRATEGIES IN PRODUCTION 

285 

Horse Racing / Here 22nd Nov : 2m4f Hcap Hrd 22-Nov-07 14:50  22-Nov-07 14:56  126.51 

Horse Racing / MrktR 22nd Nov : 2m6f Hcap Chs 22-Nov-07 14:40  22-Nov-07 14:52  19.32 

Horse Racing / Winc 22nd Nov : 2m6f Hcap Hrd 22-Nov-07 14:30  22-Nov-07 14:38  -15.00 

Horse Racing / Here 22nd Nov : 2m3f Hcap Chs 22-Nov-07 14:20  22-Nov-07 14:31  52.85 

Horse Racing / MrktR 22nd Nov : 2m6f Beg Chs 22-Nov-07 14:10  22-Nov-07 14:19  13.45 

Horse Racing / Winc 22nd Nov : 2m5f Nov Chs 22-Nov-07 14:00  22-Nov-07 14:06  -15.00 

Horse Racing / Here 22nd Nov : 2m1f Sell Hrd 22-Nov-07 13:50  22-Nov-07 13:56  -20.00 

Horse Racing / MrktR 22nd Nov : 2m6f Hcap Hrd 22-Nov-07 13:40  22-Nov-07 13:48  -30.00 

Horse Racing / Winc 22nd Nov : 2m Hcap Hrd 22-Nov-07 13:30  22-Nov-07 13:37  50.45 

Horse Racing / Here 22nd Nov : 2m Hcap Chs 22-Nov-07 13:20  22-Nov-07 13:27  -20.00 

Horse Racing / MrktR 22nd Nov : 2m3f Claim Hrd 22-Nov-07 13:10  22-Nov-07 13:18  -10.00 

Horse Racing / Here 22nd Nov : 2m1f Mdn Hrd 22-Nov-07 12:50  22-Nov-07 12:57  -10.00 

Horse Racing / MrktR 22nd Nov : 2m3f Nov Hrd 22-Nov-07 12:40  22-Nov-07 12:48  -20.00  
 
Profit and Loss is shown net of commission.  

All times are UKT 
 
 ?   
 

unless otherwise stated. 
  
 
Figure 14-9:  Interim Account P&L for 22/11/2007 
 
 
Nothing that has happened today has improved our overall position for the week, or 
done much to redeem our view on the unreliability of the Postdata oddsline, despite it 
showing a slight profit on the day. 
 
Whether it is the performance of the oddslines, the poorer quality racing, the switch from 
flat to the jumps, the shorter nights, colder, wetter weather, or all of the above, following 
the progress of the strategies is at this point a miserable business.   At least we can 
console ourselves with the fact that automation means none of this action has to be 
followed. 
 
Off to Wolverhampton for the evening.   Could that be the tonic to ease a depression?!   
Perhaps a better tonic would be Royal Ascot, the July meeting at Newmarket, Glorious 
Goodwood, or the York Ebor meeting?   No, Woolybags it is, horses of the lowest rating 
running in circles on a Polytrack surface under floodlights.    
 
For our automated strategy, all races come alike.    After a poor start there is some good 
news in the 8:50 for Equiform ratings.   Carcinetto which is a marginal overlay at 7.0 
versus the tissue price of 6.99 comes home for us.    That somewhat compensates for all 
the losers at Wolverhampton in the earlier races – but not quite. 
 
It’s worth commenting on the decision to bet on Carcinetto being very marginal.    At a 
single bet level, many decisions can seem this way in an automated strategy - a lot of 
our wins have been by marginal distances, or we have narrowly missed out on good 
winners by the same narrow margin, or by applying the oddslines criteria of the top third, 
rounded down.    
 
Again, the key factor is the number of races over which we are trialling, and that in the 
long run such near misses or marginal victories will be “smoothed out”.  This highlights 



AUTOMATIC EXCHANGE BETTING 

286  

the difference with a manual betting strategy where near misses can affect the 
psychology and encourage the bettor to chase losses, or “lucky” wins which can 
encourage overconfidence and produce bets that would otherwise not have been made.   
The automated strategy keeps the ideal “level head”, as it were.   As we can see from 
keeping a diary, it is down to the punter to maintain an even keel if following it! 
 
The aptly named Following Flow is the last bet of the day from the oddsline, a potentially 
big winner at 28.0 on the exchange, would put us nicely in profit, but it is not to be… 
 
We end the day down in cash on both oddsline strategies, ironically with exactly the 
same number of bets placed, at 51 each.    
 
 
Table 14-5:  P&L by Oddsline Strategy, November 22nd 2007 

 
Oddsline date Bets wins P&L cum.P&L 

Equiform 22/11/2007 51 5 -41.5 32.36 
Postdata 22/11/2007 51 4 -18.26 -186.75 

 
 
This reflects our worst position to date.   The Postdata oddsline looks in dire need of 
modification before the losses start to consume more profit potential.   We have already 
pointed out that the oddsline tends to do best in competitive handicaps, so that could be 
something to look into for the adjustment.  At any rate, we cannot be comfortable with 
the current volume of bets, and must think either about reducing the stake or the number 
of races under consideration. 
 
In the meantime, we will give at least a week’s solid run to both strategies.  There is also 
the hope for the remaining 2 days that - with the quality of racing generally picking up on 
a weekend - the form factors used in particular by the Postdata oddsline may be more 
significant.   A quick glance at the fixtures shows us that tomorrow we have the start of 
an important Ascot meeting, as well as proper meetings for “the winter game” at Kelso 
and Exeter – and, of course, Wolverhampton in the evening.  Not world class racing, but 
a sure sign that we are into the National Hunt season proper  
 
 
Friday 23rd November 
 
The day’s racing again contains some bigger fields and inevitably an increased number 
of selections from the oddslines - but we draw a blank.     
 
Wolverhampton in the evening does not improve matters, and the last three races of the 
meeting are abandoned.   Our program report for the evening of course shows that there 
are non-runners in every one of those races – results may not be going our way but the 
implementation is working correctly. 
 
Having observed many of the different ups and downs already with following this 
strategy through the week’s diary, there is little more to note at this point other than the 
overall position at the end of the day: 
 
 



ODDSLINE STRATEGIES IN PRODUCTION 

287 

Table 14-6:  P&L by Oddsline Strategy, November 23rd  2007 
 

Oddsline Date bets wins P&L cum.P&L 
Equiform 23/11/2007 42 5 -43 -10.64 
Postdata 23/11/2007 37 2 -110 -296.75 

 
 
The figures speak for themselves – at the same time, this is a very short time horizon.   
What is worth noting is that we need a resilient bank - even for staking £5 per bet - if 
operating this strategy.     
 
 
Saturday 24th November 
 
A much better quality day’s racing - as is usually the case on a Saturday.    
 
Good jumping cards at Haydock and Ascot, and Huntingdon.   Even the all weather at 
Lingfield boasts a much better Saturday card, with better horses and prize money than in 
the midweek.   Only Wolverhampton this evening is a less appealing spectacle. 
 
In the few tests done prior to our production run, the homebrew “Racing Post Postdata” 
oddsline has done much better on a Saturday than weekdays, and can be a profitable 
method, even if backing overlays in all races.   We saw evidence of this in the live test 
on Saturday October 13th. 
 
Generally, better quality racing means higher prize money and horses that are more 
likely to turn up in reliable form, prepared for the race.    Since the oddslines are based 
on historic performance, we would expect them to do better when the horses are being 
prepared to their best. 
 
This pans out to be true enough through the day.   Mostly the balance from both 
strategies is positive rather than negative, although it is still a case of a few steps 
forward and a few back. 
 
A few poor results towards the end of the “proper” days’ racing, i.e. before the evening 
meeting at Wolverhampton, see the profit margin reduced to £10. 
 
The evening racing at Wolverhampton, ironically, rounds off the week nicely for us by 
producing a winner for the Equiform oddsline in Moment of Clarity in the last race, at a 
starting price of 20/1 and a Betfair price taken by the Equiform oddsline of 30.0.  
 
Table 14-7:  P&L by Oddsline Strategy, November 24th 2007 
 

Oddsline Date bets wins P&L cum.P&L 
Equiform 24/11/2007 57 7 117.75 107.11 
Postdata 24/11/2007 44 5 26.5 -270.25 

 
 
In terms of overall results, we finally have a profit to report on both oddslines.   Postdata 
again does better on a better quality day’s racing, as suspected, with both oddslines 



AUTOMATIC EXCHANGE BETTING 

288  

appreciating the Saturday racing.   Equiform regains the ground it had lost, and goes into 
overall profit to end the week.    
 

Conclusions and Adjustments at end of week 1 
 
We have stated on a number of occasions over the first week that the Postdata oddsline 
is untested, which causes a couple of major problems.   Firstly, the tissue prices are 
based on a hypothesis rather than backtesting against past results, and secondly we 
have no idea in which races the Postdata oddsline may be strong or weak.    
 
All of which goes to show, as we could have predicted, that it is better to test a strategy 
against a results database before implementing it (a process we discuss in the next 
Chapter).      
 
With regard to the Equiform oddsline, which has been thoroughly backtested against 
historic results, we are at least looking at a profit, albeit insignificant compared to the 
number of bets placed over the week - but enough to encourage us to persevere for the 
final week of the production run.   
 
Of course, the fact that the Equiform oddsline is tested does not mean it will always 
produce profits – there are good and bad weeks, months and even seasons.    In spite of 
backtesting, there is always the risk of a significant shift in market (and therefore pricing) 
conditions ahead of the tested oddsline.   This can mean that the same strike rate (i.e. 
winners to runners ratio) is maintained but if the average price decreases over time, a 
profitable strategy becomes unprofitable.   The reliance on the fact that the oddsline is 
tested simply means that the strategy has already been optimised against past results, 
and there is little advantage to be gained by tinkering with it over any given 2 week 
period. 
 
In the meantime, we are faced with trying to optimise what we have already as far as the 
Postdata oddsline is concerned.   Although the overall results are not impressive, there 
are elements of the strategy that made it attractive in the first place.  We have seen 
during the week that the indiscriminate application of the Postdata oddsline to every race 
is a scattergun approach that sometimes works and sometimes doesn’t.   As we 
consider how to adjust the strategy, let’s focus on what has worked instead. 
 
Where there is a lot of appropriate form to go on, the Postdata oddsline has more factors 
that can be included in any score, for each contender in a race.   Wherever it is taking 
into account more factors about a contender’s proven ability to perform on a given day, it 
stands to reason that the oddsline should be more predictive.   Where there are more 
unknown factors, there is more margin for error in assessing any contender’s chance.    
We also have to consider how predictive and how profitable (two different questions 
entirely, relating to strike rate and price obtained) the use of the type of form factors 
considered in the Postdata oddsline will be.   
 
We have already hypothesised that Postdata may be doing less well on the All Weather 
at this time of year due to form factors being less powerful with the poor quality or racing, 
and possible factors related to the start of the All Weather season.    
 



ODDSLINE STRATEGIES IN PRODUCTION 

289 

So, first, let’s see if results vary according to the code of racing, breaking down all bets 
that we have captured automatically during the course of the production run.     
 
We can therefore produce a MySQL query using the database tables we have described 
so far which goes through all our bets by marketId, joining with our races database 
table, where the Betfair race description is kept.   We group all races with the description 
of hurdles, chases and National Hunt Flat into one category, and all others (being all 
weather races at this time of year) into another. 
 
The query then groups the results for each day in terms of number of bets, number of 
winners, and daily profit and loss.   We show the split of all results by racing code, as in 
Table 14-8, and Table 14-9.   In Table 14-10, we look at summary statistics and the 
return on investment for both sets of data: 
 
Table 14-8:  P&L Postdata All Weather Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
19/11/2007 24 1 -60 -60 
20/11/2007 11 0 -55 -115 
21/11/2007 21 2 2.5 -112.5 
22/11/2007 13 0 -65 -177.5 
23/11/2007 4 1 28 -149.5 
24/11/2007 20 1 -52 -201.5 

 
Total P&L = - £201.50 
 
Table 14-9:  P&L Postdata National Hunt Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
 2007-11-18  33 3 -18.3 -18.3 
 2007-11-19  9 1 -16.5 -34.8 
 2007-11-20  14 1 120 85.2 
 2007-11-21  31 1 -141.19 -55.99 
 2007-11-22  38 4 46.74 -9.25 
 2007-11-23  33 1 -138 -147.25 
 2007-11-24  24 4 78.5 -68.75 

 
Total P&L = - £68.75 
 
 
Table 14-10:  Postdata P&L breakdown by race code, week 1 
 
Racing code #Bets Outlay £ Return ROI 
AW 93 465 -201.5 -43.33% 
NH 172 860 -68.75 -7.99% 

 
 
A negative 43% on turnover as opposed to a negative 8% on turnover is evidence that 
our suspicion regarding All Weather racing has some basis.   
 



AUTOMATIC EXCHANGE BETTING 

290  

Despite the fact this test has only been over one week, there are practical concerns 
about the strategy that are also difficult to ignore. 
 
For example, for all weather racing at this stage of the season, we know we are 
considering races in which horses of the poorest form are competing.   In addition, since 
it is the start of the All Weather season, the horses are often unproven on prevailing 
conditions, be it course, distance or going, and they lack relevant recent form.    Given 
that the Postdata oddsline is based on the value we attach to the Postdata ticks and 
crosses as useful measures of form (and specifically form according to conditions of the 
race in question), we can see that there may be problems with the value of all weather 
assessment at this time of year.   Perhaps there are other measures that could be used 
to improve the analysis, or a different weighting that could be given to the measures (or 
variables) already present – but in its current form, it is too risky. 
 
The other common factor we have discussed in the diary, using the same reasoning as 
above, is that handicap races generally include horses with more relevant historic form 
than non-handicaps (in the non-handicap category, we have novices and maidens, for 
example).   This means that the Postdata factors have more appropriate form to assess, 
and can match suitability to race conditions with greater frequency. 
 
We also know that the Postdata oddsline has done well in competitive racing where the 
oddsline tends to conform to the “shape” of the market itself (i.e. there is a tighter range 
of prices) and we are likely to get overlays on our top rated selections, as well as those 
further down the list.   In races with a wider range, the method of scoring the Postdata 
oddsline means we have missed out on top ranked selections being overpriced 
compared to their market chance.    Whilst this is a potential flaw in the way we are 
pricing, for the time being we are looking at how to optimise returns on the tissue we are 
already working with. 
 
So let’s see what happens if we further break out the results of handicaps across all 
racing codes, since handicaps generally (although not always) fit the bill in terms of 
competitive racing where there is lots of known form.    
 
We can therefore produce a MySQL query similar to that used for splitting out racing 
codes, but this time concentrating on the race type, again using the Betfair race 
description from the races database table, using the following syntax in our query: 
 
INNER JOIN races ON marketId = Betfair_id WHERE (description LIKE "%Hcap%") 

 
The query then groups the results for each day in terms of number of bets, number of 
winners, and daily profit and loss.   We show reformatted query results for the week in 
Table 14-11, for all handicap races bet by the Postdata oddsline strategy over the first 
week of the production run. 
 
 
 
 
 
 
 
 



ODDSLINE STRATEGIES IN PRODUCTION 

291 

Table 14-11:  P&L Postdata Handicap Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
18/11/2007 21 2 33.5 33.5 
19/11/2007 19 2 -6.5 27 
20/11/2007 11 1 135 162 
21/11/2007 27 1 -47.5 114.5 
22/11/2007 35 4 61.74 176.24 
23/11/2007 23 1 -67 109.24 
24/11/2007 26 2 -12.5 96.74 

 
Total P&L = £96.50 
 
So there is some vindication of our observations to date, and we can again see the 
potential benefit of early monitoring.     Our otherwise poor results – if considering every 
horse in every type of race - suddenly look more respectable.   We are in profit to the 
tune of £96.50 over the week for fewer bets – almost 50% fewer – thus improving the 
overall return on investment.   Our casual hypothesis about the Postdata oddsline 
performing better in handicaps has empirical proof. 
 
So, what to do with this information?    Given the earlier findings on the profitability of 
National Hunt racing over All Weather, and that generally the evening (i.e. all weather) 
meetings decimated profits from the Postdata oddsline, let’s also split the P&L from 
handicap races into different codes:   All Weather racing and National Hunt.    
 
Table 14-12 shows us the performance for all weather racing only. 
 
 
 
Table 14-12:  P&L Postdata Handicap AW Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
19/11/2007 14 1 -10 -10 
20/11/2007 4 0 -20 -30 
21/11/2007 12 1 27.5 -2.5 
22/11/2007 9 0 -45 -47.5 
23/11/2007 3 1 33 -14.5 
24/11/2007 10 0 -50 -64.5 

 
Total P&L = - £64.50 
 

 
The performance in all weather handicaps was actually negative, and therefore reduced 
our performance in handicaps overall.   If we look at the total number of bets placed by 
the Postdata strategy on all races over the first week, it is 275, producing a loss of £270.   
The performance on all weather racing alone is 52 bets producing a loss of £64.50.   So 
there is nothing in there to indicate that by keeping this stream of bets going we would 
be any better off.    
 



AUTOMATIC EXCHANGE BETTING 

292  

Let’s look next at National Hunt, and break down into the two types of handicap in 
national hunt, handicap hurdles and handicap chases, Table 14-13 shows Handicap 
Hurdles only, Table 14-14 Handicap Chases only. 
 
 
Table 14-13:  P&L Postdata Handicap Hurdle Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
18/11/2007 14 1 -24 -24 
19/11/2007 5 1 3.5 -20.5 
20/11/2007 2 0 -10 -30.5 
21/11/2007 7 0 -35 -65.5 
22/11/2007 12 2 101.64 36.14 
23/11/2007 11 0 -55 -18.86 
24/11/2007 6 0 -30 -48.86 

 
Total P&L = - £48.86 
 
 
Surprisingly, the performance over all handicap hurdles was also negative.   However, it 
is clear that the operation of the strategy identified some good individual winners.   The 
performance on handicap hurdles alone is 57 bets producing a loss of £48.86.    If 57 
bets is a total outlay of £285, this is a negative return on investment of over 15%.       In 
pure P&L terms we might choose to exclude this category for the next week; on the 
other hand, since the data is relatively small, the belief in the basis of the hypothesis 
itself is still an important consideration in the decision on whether to take this category 
forward.    
 
Let’s look next at Chases: 
 
 
Table 14-14:  P&L Postdata Handicap Chase Bets only, week 1 
 

Date #Bets #Wins Return £ Cum(P&L) 
18/11/2007 7 1 57.5 57.5 
20/11/2007 5 1 165 222.5 
21/11/2007 8 0 -40 182.5 
22/11/2007 14 2 5.1 187.6 
23/11/2007 9 0 -45 142.6 
24/11/2007 10 2 67.5 210.1 

 
Total P&L = £210.10 
 
Having excluded other handicap types to find losses, it is no surprise that this is the most 
profitable category, and by some margin.   
 
A total of 53 bets were placed, or an outlay of £215, for a return of £425.10.  That’s a 
97% positive return on investment.   Of course, the data are relatively few, and our 
results are subject to the influence of individual winners such as Cossack Dancer, which 
won at a price of 38.0 on the 20th November.  However, even if we take this result out, 



ODDSLINE STRATEGIES IN PRODUCTION 

293 

the strategy still shows a profit overall.   Furthermore, the strategy shows other good 
indicators, with a daily profit shown on 4 of the 7 days, and a reasonable strike rate for 
long priced winners (at 11%, versus the all weather handicap strike rate of 5.7% and the 
hurdles handicap strike rate of 7%). 
 
 

Conclusions on Analysis of Postdata Oddsline Strategy Results:  
 
We have seen that continuing with the untested Postdata oddsline on all races produces 
a large number of bets and is unprofitable overall.   We surmise that there is little 
downside to modifying the strategy (not the oddsline itself, which may be also be useful 
but is a bigger task) in favour of a strategy which does not bet indiscriminately on every 
race.   
 
We have therefore modelled the effects of changing the strategy by discriminating with 
regard to racing codes and race type - we have seen that all weather racing is to be 
avoided, and further, that handicap races (in particular, handicap chases)  produced 
profitable returns.    
 
Had we run such a model over the first week the oddsline would have been profitable.    
The plan now is to run the new model on as yet unknown events, over the week to 
come.   In pure data terms, we had only one week’s worth of data to work with, so it is 
difficult to form any hard and fast conclusions, indeed it could be argued this is a case of 
“overfitting”.    
 
On the other hand, it is useful to ask if the logic behind the model makes sense – and 
since the model was produced on the basis of reasoning first and foremost, rather than 
the data alone, we can answer in the affirmative.   Also, the reasoning we have used is 
very particular to this time of the season, and we therefore expect it to be a transitory 
effect.   Again, without further testing we cannot say for how long we might expect it to 
last or even if it is repeatable. 
 
It may well be that considering historic form factors at this early stage of the National 
Hunt season, before new form lines have had a chance to establish themselves, is a 
phenomenon that is particularly profitable for a short time.   Perhaps the factors used by 
the oddsline are underestimated by the market at this time of year?   Again, on the basis 
of the first week’s results there is little downside to limiting the number of events 
considered by the Postdata oddsline.    The upside is that if we decide to run the revised 
strategy on the basis of the more profitable model that was hidden away within the 
results, it may again be profitable. 
 
Whatever the case on the data and our reasoning, ultimately making any decision to 
change tack or modify a strategy is a call for the individual bettor to make – and we will 
take the risk to go with it.    
 
 
Adjustments to Postdata Oddsline strategy: 
 
Combining the two main conclusions from our analysis, we will now consider National 
Hunt handicaps only (excluding all weather races and any other National Hunt race 
types) for the Postdata oddsline for the second week of the production run.     



AUTOMATIC EXCHANGE BETTING 

294  

 
Having left the automated strategy untouched for the first week, we make our only 
manual adjustment to the software configuration on the Saturday, after racing has 
finished.    
 
There turns out to be an elegant solution to adjusting the whole strategy as we have 
defined it, with only a one line code change to one program.    
 
There is no need to make an alteration to our betting program, or to the program that 
automatically schedules the betting program to execute 5 minutes before the race based 
upon the events schedule (represented by the file events_schedule in the examples).   
Neither do we need amend the get_betfair_races.pl program which retrieves all 
events – which is just as well, since the Equiform strategy will continue to bet all races.   
The only program we have to amend is the one shown in Example 7-1, which creates 
the events schedule in the first place, since the change in strategy only modifies the 
events under consideration.   Once we have a new events schedule, all the other 
programs can work “as is”. 
 
Recall that this program includes within the Perl code a MySQL query to our races 
table – to retrieve all races in the UK with the current date, ordered by the time of the 
race.   Instead, we simply need to modify the MySQL SELECT statement in order to 
choose those races with the WHERE clause applied to the Betfair race description to 
select “Hcap Hrd” or “Hcap Chs” only.   Everything else works as before, including the 
cron jobs which do not need to be modified either.   The only difference is that the events 
schedule that is written to the directory running the Postdata oddsline will contain fewer 
events for every day’s racing.    
 
Subsequently, when the dynamic scheduling program picks up the new events schedule, 
it will create scheduled tasks for Handicap Hurdles and Handicap Chases only, still 
running 5 minutes before each race. 
 

Week 2: 
25th November – 2nd December 2007 
 
Unfortunately we have a negative overall P&L position to start the week.  Having 
achieved our objective of understanding exactly how the oddslines are operating during 
the first week, we are now mostly concerned that they turn a profit.   As such, we no 
longer have a straight comparison of all races in the Equiform oddsline to the Postdata 
oddsline, although both strategies are still operating in parallel and share some races in 
common.   The well tested Equiform oddsline is in profit for the first week, and we are 
leaving it to run for the second week, untouched.   The untested Postdata strategy has 
now been forced to concentrate on National Hunt handicaps only, where we found it to 
be generally profitable, after racking up a 20% loss on turnover on all bets in the first 
week.   
 
 
Sunday 25th November 
 
A day of jumps fixtures at Towcester, Plumpton, and the feature card at Aintree. 



ODDSLINE STRATEGIES IN PRODUCTION 

295 

 
Original Fly, top rated in the last race at Aintree, wins at decimal odds of 25.0 and caps a 
great day for the Equiform oddsline, as shown in Table 14-15. 
 
 
Table 14-15:  P&L by Oddsline Strategy, November 25th 2007 
 

Oddsline Date bets Wins P&L cum.P&L 
Equiform 25/11/2007 49 9 342.5 449.61 
Postdata 25/11/2007 20 0 -100 -370.25 

 
 
A number of overlays at good prices see our most profitable day yet.   This is diminished  
by the performance of the Postdata oddsline strategy, which, despite the adjustments of 
the previous week, yields no winners but still racks up 20 bets.   Ironically, there are a 
couple of “missed winners” from the race types that are now excluded from the adjusted 
strategy, which would have led to a more profitable situation.   Still, we have made one 
change already and tested it, so we are going to stick with it.   The performance of the 
Equiform oddsline gives us some small cushion of profit, so after the first day on the 
second week, we have retrieved the situation somewhat. 
 
  
Monday 26th November 
 
After more all weather action at Lingfield in the 12.30, the day starts in earnest for both 
oddsline strategies with the 12.40 at Ayr, which is a 2 mile 5 furlong handicap hurdle, 
and therefore a qualifier for our modified Postdata oddsline strategy.   
 
 
 
##################################  NEW ODDSLINE  ################################### 
 
Ayr, 12.40 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       12:35:03.005 
12.40, Ayr, Double Ells, 8.91, 5.7 
12.40, Ayr, Mrs O'Malley, 10.89, 11.5 
12.40, Ayr, Tobesure, 10.89, 18.0 
12.40, Ayr, Named At Dinner, 12.25, 11.0 
12.40, Ayr, Millie The Filly, 12.25, 28.0 
12.40, Ayr, Greenock, 14.00, 18.0 
12.40, Ayr, Topaz Lady, 14.00, 10.5 
12.40, Ayr, Native Coll, 16.33, 23.0 
12.40, Ayr, Windygate, 16.33, 12.0 
12.40, Ayr, Teviot Brig, 16.33, 14.5 
12.40, Ayr, Stravaigin, 16.33, 21.0 
12.40, Ayr, Persian Prince, 16.33, 9.4 
12.40, Ayr, Cupid's Mission, 24.50, 55.0 
12.40, Ayr, Bene Lad, 24.50, 16.5 
12.40, Ayr, Presenting Edward, 98.00, 200.0 
ALL RUN 
 
Bet top third overlays: 
Selection:   12.40, Ayr, Mrs OMalley, 20708178, 2313604 
Bet placed: 4053381611, B, £5.00,  11.5 
Selection:   12.40, Ayr, Tobesure, 20708178, 57480 
Bet placed: 4053381668, B, £5.00,  18.0 



AUTOMATIC EXCHANGE BETTING 

296  

Selection:   12.40, Ayr, Millie The Filly, 20708178, 2206599 
Bet placed: 4053381749, B, £5.00,  28.0 
 
Oddsline strategy finished at systime: Mon Nov 26 12:35:04 GMT 2007 
 

Figure 14-10:  Postdata Oddsline for 12.40 Ayr, 26/11/2007 
 

 
Milly The Filly, wins the race at decimal odds of 28.0, ranked fifth in the Postdata 
oddsline within a field of 15 that go to post.     
 
At last, this race provides some vindication for the strategy to go with National Hunt 
handicaps only with the Postdata system.  
 
On the whole, it turns out to be a great day for both programs, as we swing into profit all 
round.   Lots of good priced winners and the oddslines find most of them.   The handicap 
strategy pays particularly well.   As with the previous day, it so happens that a  strategy 
including all National Hunt races, not just handicaps, would have been just as, if not 
slightly more profitable for the Postdata oddsline, due in part to finding the winner of 
“The Bumper” at decimal odds of 15.0.    
 
In the meantime, outside the world of the hypothetical, for the strategy we have chosen, 
the upside is that there is a much greater return on investment for the few races we have 
played, with 6 races considered as handicaps, and the winner found in 3 of them.   
Overall, it is better to produce the same profit from betting in 6 races, or even slightly 
less, than in 22 races since our risk is significantly reduced, and the return on investment 
increased. 
 
The Equiform oddsline finds the majority of decent priced winners that were missed by 
our revised Postdata line, in all categories of racing.   Over the long run, it is all about 
better pricing for horses’ true chances, based on significant backtesting – so we 
consistently find winning overlays.   Today just happens to be a day for longer priced 
winners, as was yesterday.    We cannot expect every day to be like this, but these are 
the critical days for the long term profitability of the strategy. 
 
So, with both oddslines firing in winners, at double digit prices, we have our best day yet.   
Figure 14-11 shows the account balance at the end of the day 
 
 
 
 
Betting P&L 

colin magee 26-Nov-2007 16:31 

Period:
 

Just For Today
 

  
(relates to event settlement date) 

  
2007-11-26 00:

 
(yyyy-mm-dd hh:mm)

to 2007-11-26 16:
 

(yyyy-mm-dd hh:mm)
 

Get P & L

 
Download to Spreadsheet 

 
 ? 
  

   



ODDSLINE STRATEGIES IN PRODUCTION 

297 

Horse Racing: GBP444.52 Total P&L: GBP444.52   
  
Horse Racing Showing 1 - 20 of 21 markets 
Market Start time Settled date Profit/loss (GBP) 
Horse Racing / Ludl 26th Nov : 2m NHF 26-Nov-07 15:50  26-Nov-07 16:09  52.80 

Horse Racing / Ayr 26th Nov : 2m NHF 26-Nov-07 15:40  26-Nov-07 15:55  -10.00 

Horse Racing / Ling 26th Nov : 1m2f Hcap 26-Nov-07 15:30  26-Nov-07 15:42  -5.00 

Horse Racing / Ludl 26th Nov : 3m Hcap Hrd 26-Nov-07 15:20  26-Nov-07 15:33  168.00 

Horse Racing / Ayr 26th Nov : 2m4f Hcap Chs 26-Nov-07 15:10  26-Nov-07 15:21  41.28 

Horse Racing / Ling 26th Nov : 7f Hcap 26-Nov-07 15:00  26-Nov-07 15:14  -5.00 

Horse Racing / Ludl 26th Nov : 2m4f Beg Chs 26-Nov-07 14:50  26-Nov-07 15:01  40.32 

Horse Racing / Ayr 26th Nov : 2m4f Nov Hrd 26-Nov-07 14:40  26-Nov-07 14:48  62.40 

Horse Racing / Ling 26th Nov : 1m Hcap 26-Nov-07 14:30  26-Nov-07 14:47  -15.00 

Horse Racing / Ludl 26th Nov : 2m4f Hcap Chs 26-Nov-07 14:20  26-Nov-07 14:31  8.64 

Horse Racing / Ling 26th Nov : 1m Mdn Stks 26-Nov-07 14:00  26-Nov-07 14:20  5.28 

Horse Racing / Ayr 26th Nov : 2m Hcap Hrd 26-Nov-07 14:10  26-Nov-07 14:20  -35.00 

Horse Racing / Ludl 26th Nov : 2m Sell Hrd 26-Nov-07 13:50  26-Nov-07 14:00  -15.00 

Horse Racing / Ayr 26th Nov : 3m1f Beg Chs 26-Nov-07 13:40  26-Nov-07 13:51  115.20 

Horse Racing / Ling 26th Nov : 7f Claim Stks 26-Nov-07 13:30  26-Nov-07 13:40  -5.00 

Horse Racing / Ludl 26th Nov : 3m Hcap Chs 26-Nov-07 13:20  26-Nov-07 13:31  -20.00 

Horse Racing / Ayr 26th Nov : 2m4f Nov Hrd 26-Nov-07 13:10  26-Nov-07 13:18  -10.00 

Horse Racing / Ling 26th Nov : 6f Hcap 26-Nov-07 13:00  26-Nov-07 13:07  -15.00 

Horse Racing / Ludl 26th Nov : 2m5f Nov Hrd 26-Nov-07 12:50  26-Nov-07 13:03  -10.00 

Horse Racing / Ayr 26th Nov : 2m5f Hcap Hrd 26-Nov-07 12:40  26-Nov-07 12:49  105.60  
 Pages: 1  2   of 2 Pages  

 
Jump to page: 

  
  

   
 
Figure 14-11:  Betfair Account P&L for 26/11/2007 
 
 
A profit of £444.52 is the actual cash won on the day, with this being the balance with 
commission applicable to this account deducted.   In terms of raw P&L for the system, 
the position is £265.50 in profit for the Equiform oddsline and £204.10 for the Postdata 
oddsline.   It has taken a while, but it is days like this that more than make up for the 
losing ones. 
 
 
Tuesday 27th November 
 
Racing today at Kempton, Sedgefield and Wolverhampton.    
 
We are soon back to the kind of moderate midweek fayre - being a combination of jumps 
meetings including races with very few runners and all weather poor quality fields -  that 
characterised our first week.   This produces similarly frustrating results through the day.    
 
However, the damage that occurred during the first week is mitigated by the altered rules 
for the Postdata strategy, since the Postdata oddsline was the worst offender, so that it 



AUTOMATIC EXCHANGE BETTING 

298  

avoids all races but handicaps.   Unfortunately, the few handicaps that are considered 
also produce several bets but no winners.   Such is to be expected with a strategy over a 
small window of observation – our speculation is that this will come right in the long run, 
as it did yesterday, and cover losing runs to leave us with a profit. 
 
When the automated daily profit and loss data for each system has been retrieved, as 
shown in Table 14-16, we see that the damage has at least been limited on the Postdata 
oddsline, turning in a loss of £56 for the day, whilst Equiform manages a small profit 
(without any commissions applied), thanks to a winner in the last race at 
Wolverhampton.    
 
Table 14-16:  P&L by Oddsline Strategy, November 27th 2007 
 

Oddsline date bets wins P&L cum.P&L 
Equiform 27/11/2007 40 5 8.04 723.15 
Postdata 27/11/2007 15 1 -56.5 -222.74 

 
 
Wednesday 28th November 
 
A ragbag of talents on display at the three National Hunt meetings up and down the 
country as the day starts off with various novice, claiming and selling events at 
Wetherby, Chepstow and Lingfield.    Kempton All Weather comes along later in the 
evening.   We can take some small comfort in the fact that the unmodified Postdata 
oddsline was not betting in any of these races. 
 
Otherwise the results are variable all around.    
 
In the 2.55 at Chepstow we have a classic case of both oddslines agreeing on top 
rankings in a large handicap, but with a short priced favourite, Blue Splash.   Blue 
Splash wins, so in hindsight it is value at any price, but wins well by 3.5 lengths.    
 
However, our strategy when short priced winners oblige rarely helps the profit and loss 
situation.  Despite the short price, there is a more accurate estimation of probability 
based on its strong chances according to the Equiform oddsline and it is a bet (at a 
tissue of 3.23 versus a market price of 3.5).   However, the return does not pay for the 
other 2 bets selected by our dutching strategy in the race, so all we are doing is limiting 
losses in this particular case. 
 
The Postdata oddsline, on the other hand, does not select the winner as an overlay at 
all.   As we observed after the first week, this oddsline generally has a much tighter 
range of prices.   In fact, the method produces 10/1 the field, so the top rated selection is 
ignored completely.   The knock on effect is that the other contenders in the market are 
all longer prices, due to the short priced favourite, and therefore backed.   
 
Silver Ingott, which has been off the course for the best part of 3 years, wins the 
penultimate race of the day and rounds off a pretty poor day after Tuesday’s highs. 
 
Down £185 in total with only the last race of the day proper, a bumper, to come.   Rock 
Alliance is an overlay at 42.0, and is the only bet that can save the day’s profits. 
 



ODDSLINE STRATEGIES IN PRODUCTION 

299 

Kempton produces no better, and it is the Equiform oddsline’s turn to suffer, having 
played in most races during the day, to produce a whopping 63 bets from the 4 
meetings, and a loss before commissions of £224.75 on the day.   The Postdata 
oddsline produces similarly poor results, but having been limited to handicaps only, the 
damage, also, is limited.   An overall loss of £49 before commissions, and 16 runners to 
1 winner.  Pro rata for the Postdata oddsline, in terms of strike rate and P&L, that is 
more or less the same performance as the Equiform oddsline.  At least we can be 
certain our revised strategy has saved some losses today. 
 
 
Thursday 29th November 
 
At last, the ragbag of novice and maiden hurdle events –which is an important part of 
bringing NH horses into the game but gives little form for the bettor to go on – today play 
into the favour of the Equiform oddsline, as a long priced outsider, Moonhawk at 28.0 
(not much bigger than the SP of 25/1) wins the first race at Carlisle, a Maiden Hurdle.    
 
That profit puts the Equiform oddsline strategy in good shape and stays with us through 
the first few races, but a big field handicap chase with both oddslines firing in bets is off 
in the 3.10, producing a total of 7 bets with 2 contenders shared between both oddslines, 
and is a pivotal race for the day’s profitability.    
 
Listening to the closing stages, it is the favourite, ridden by AP McCoy, who jumps the 
last together with one of the contenders common to both oddslines, Lazy But Lively, 
neck and neck they go to the line.  I don’t hold much hope – supporting a horse against 
AP in a finish – and against the favourite.   It’s close, but Lazy But Lively wins it for us.    
 
This has now the makings of a profitable day, turning around our fortunes from 
yesterday, and putting a bit back into the pocket of the revised Postdata oddsline.   But 
some big fields left to go in the few races remaining, and a number of them handicaps, 
could yet dent our profitability, or extend it. 
 
Oscar The Boxer, a common overlay for both oddslines, is eventually denied by less 
than a length in the 3.30 at Carlisle. 
 
Serious damage indeed in a couple of subsequent races sees the Postdata oddsline 
lose £60, £25 and £30.   The overall position is saved somewhat by Equiform which 
retrieves £25 or so in the next, in which the Postdata oddsline, now belying its earlier 
excesses, abstains on the race altogether. 
 
The Postdata oddsline produced £22 profit, having been eroded somewhat from our 
mid-day position, and the Equiform oddsline came back strongly to finish at £162 up.   
We therefore end the day well ahead - almost, but not quite, recovering all yesterday’s 
losses, with 2 days to go until the end of the production run. 
 
 
Friday 30th November 
 
The start of the Hennessy meeting at Newbury.   Good quality racing is much more 
satisfying to bet on, even when it is automated.   Following the racing is far more 
interesting.   Meanwhile, the computer is doing all the work. 



AUTOMATIC EXCHANGE BETTING 

300  

 
The Hairy Lemon is a common overlay and winner in the 1.30 at Newbury, which keeps 
both oddslines’ heads above water for the day 
 
A winner at Lingfield for Equiform in the 2.15 at decimal odds of 17.0 puts us ahead on 
the day, the Postdata oddsline limping along somewhat.  The big handicaps are again 
very volatile for profit and loss, with a lot of overlays going in.   
 
At the end of daylight racing, both oddslines are in profit, Postdata is finished for the day, 
with no more events in the schedule given the evening meeting is all weather, in profit to 
a small amount at £15.     
 
Wolverhampton is left to come, which, if we calculate an average of 2 – 3 bets per race 
could yield around 15 more bets, and therefore has the potential to wipe out the overall 
profit on the day.  Still, there would not be much damage even if all go down, and we 
may even extend the position in good shape for the final day of the trial. 
 
In the evening at Wolverhampton, only Equiform is betting.   There is a good start to the 
evening with winners in the first two races at decimal odds of 9.0 and 10.0 respectively, 
thereby shoring up profits for the day and indeed extends it.   Equiform finishes the day 
at £114. 
 
We are nicely set up for the final day of the production run, Hennessy Day at Newbury. 
    
 
Saturday 1st December 
 
There are 5 meetings in total for the final day of the production run, with quality racing all 
round, including the valuable Hennessy Gold Cup Handicap Chase at Newbury and the 
“Fighting Fifth” Hurdle at Newcastle. 
 
There is the potential for a lot of bets, here, although we are playing the day’s racing with 
a diminished Postdata oddsline strategy.  A quick check in the morning of the events 
schedule for each strategy reveals that there are 11 qualifying handicap races, whereas 
the full schedule of 35 races will be considered by the Equiformratings strategy.   
Effectively 11 races will be considered by two strategies and 24 by one strategy alone.  
 
An early start with the 12:10 at Newcastle.   The first two races are both, in fact, 
handicaps, and we draw a blank, both with Postdata and Equiform.   As we have seen, 
however, running a successful automated betting strategy is all about making profit than 
loss over the long run, and only 20 minutes later in the 1.0 pm at Newbury, we have a 
fine example of how the automated strategies can work in tandem, identifying “value”: 
 
JunctionTwentyFour is the Equiform overlay at market odds of 8.2. 
Sir Bathwick is the Postdata overlay at market odds of 17.0. 
 
The ground is extremely testing at Newbury, both horses slug out the finish, well ahead 
of the rest of the field, it is nip and tuck to the line.  Sir Bathwick wins. 
 
This is good news as the most profitable winner of the race for the account.  Moreover, it 
means that the revised implementation of the Postdata strategy (which looked so risky in 



ODDSLINE STRATEGIES IN PRODUCTION 

301 

its raw form during the first week) looks likely to be vindicated for the second week.   
Although somewhat dependent on the performance of the other races today, even at this 
stage we can conclude it has reduced risk and given us a fighting chance of profiting on 
the most promising race types. 
 
By contrast, it has been a sluggish start to the day for the Equiform strategy, which has 
top or second rated a number of winners but not found sufficient value in the market to 
bet.   At least, since the fields are small, the strategy is not risking too many bets on any 
particular race up to now, and winners from Helen’s Vision at Newbury, and 
KeepTheDreamAlive in the 1.25 at Towcester reduce the losses, about 6 points down 
after a total of 16 bets, but  keep the oddsline respectable with 25 races to go for the day 
– operating the strategy itself is a staying race not a sprint. 
 
In the 2.05 at Newcastle, the Fighting Fifth, Inglis Drever wins a fantastic race to take the 
race for the third year in a row. 
 
In the big race at Newbury, Denman, under a huge weight in testing conditions, proves 
every bit as good as the hype surrounding him and lands the Hennessy in great style. 
 
Denman is third in the Postdata oddsline ranking and missed out as an overlay,  but he 
is top rated and deemed value by Equiform, and a bet goes in at 7.20 that saves overall 
profits on the race for the account as a whole, as a total of 7 bets are placed. 
 
The 3.15 at Newbury is also a handicap, where Kelrev is top rated on the Postdata 
oddsline, deemed an overlay against tissue odds of 11.86, and duly wins.   An SP of 
14/1 is returned, with 22.0 taken on Betfair 5 minutes before the off, propelling the profit 
on the Postdata oddsline further ahead.   The revised Postdata strategy is firmly in profit 
for the week. 
 
On to the last handicap national hunt race of the day, to round off a great day’s racing at 
Newbury in particular, with oddslines from the Equiform strategy and Postdata shown 
below in Figures 14-12 and 14-13 respectively. 
    
Newbury, 3:45 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       15:40:04.063 
3:45, Newbury, Poquelin, 7.58, 4.7 
3:45, Newbury, Peacock, 9.09, 8.4 
3:45, Newbury, Kings Revenge, 10.64, 15.5 
3:45, Newbury, Cape Greko, 12.5, 32.0 
3:45, Newbury, French Saulaie, 13.51, 25.0 
3:45, Newbury, Kickahead, 13.7, NON_RUNNER 
3:45, Newbury, Kanad, 20, NON_RUNNER 
3:45, Newbury, Im So Lucky, 20.41, 32.0 
3:45, Newbury, Tagula Blue, 20.41, 11.5 
3:45, Newbury, Mon Michel, 21.74, 23.0 
3:45, Newbury, French Opera, 25, NON_RUNNER 
3:45, Newbury, Pevensey, 25.64, 9.0 
3:45, Newbury, European Dream, 27.78, 8.6 
3:45, Newbury, Ingratitude, 29.41, NON_RUNNER 
3:45, Newbury, Mount Sandel, 31.25, 50.0 
3:45, Newbury, Manhattan Boy, 32.26, 22.0 
3:45, Newbury, Glinton, 55.56, 75.0 
3:45, Newbury, Signs Of Love, 76.92, 9.6 
NON_RUNNERS 
 



AUTOMATIC EXCHANGE BETTING 

302  

Bet top third overlays: 
Selection:   3:45, Newbury, Peacock, 20717542, 2221057 
Bet placed: 4082717166, B, £5.00,  8.4 
Selection:   3:45, Newbury, Kings Revenge, 20717542, 1117405 
Bet placed: 4082717197, B, £5.00,  15.5 
Selection:   3:45, Newbury, Cape Greko, 20717542, 853024 
Bet placed: 4082717243, B, £5.00,  32.0 
 
Oddsline strategy finished at systime: Sat Dec  1 15:40:04 GMT 2007 

 
Figure 14-12:  Equiformratings Program Report for 3.45 Newbury, 01/12/2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Newbury, 3.45 
API calls: 
Login, GetMarkets, GetMarketPricesCompressed successful 
 
Market timestamp:       15:40:03.283 
3.45, Newbury, Poquelin, 12.67, 4.7 
3.45, Newbury, King's Revenge, 12.67, 15.5 
3.45, Newbury, European Dream, 14.25, 8.6 
3.45, Newbury, Mon Michel, 14.25, 23.0 
3.45, Newbury, Peacock, 14.25, 8.4 
3.45, Newbury, French Opera, 16.29, NON_RUNNER 
3.45, Newbury, Tagula Blue, 16.29, 11.5 
3.45, Newbury, Kanad, 16.29, NON_RUNNER 
3.45, Newbury, Kickahead, 16.29, NON_RUNNER 
3.45, Newbury, French Saulaie, 19.00, 25.0 
3.45, Newbury, Cape Greko, 19.00, 30.0 
3.45, Newbury, Glinton, 19.00, 70.0 
3.45, Newbury, Manhattan Boy, 22.80, 20.0 
3.45, Newbury, Pevensey, 22.80, 9.0 
3.45, Newbury, Ingratitude, 28.50, NON_RUNNER 
3.45, Newbury, Mount Sandel, 28.50, 50.0 
3.45, Newbury, I'm So Lucky, 28.50, 32.0 
3.45, Newbury, Signs Of Love, 28.50, 9.4 
NON_RUNNERS 
 
Bet top third overlays: 
Selection:   3.45, Newbury, Kings Revenge, 20717542, 1117405 
Bet placed: 4082717028, B, £5.00,  15.5 
Selection:   3.45, Newbury, Mon Michel, 20717542, 1233117 
Bet placed: 4082717080, B, £5.00,  23.0 
 
Oddsline strategy finished at systime: Sat Dec  1 15:40:04 GMT 2007 
 

Figure 14-13:  Postdata Oddsline Program Report for 3.45 Newbury, 01/12/2007 
 

 
The common overlay to both oddslines is King’s Revenge, so we are effectively having 
£10 on that at decimal odds of 15.5. 
 
We are rooting for Kings Revenge all the way, but Mont Michel, our alternative, longer 
priced overlay, almost forgotten during the race,  comes through in the final stages to 



ODDSLINE STRATEGIES IN PRODUCTION 

303 

land the spoils at a price of 23.0 for the Postdata strategy.   A good end to Postdata’s 
efforts for the week, with a winning bet to go out on. 
 
Meanwhile, Equiformratings has a bit of betting left to do before the end of the day and a 
meeting at Wolverhampton to get through.  It turns out that this eats somewhat into the 
profit position from the end of day proper, although the same course was kind to us the 
day before, so all in all Equiformratings remains ahead on the surface. 
 
Thus ends the final day, and a cracking final day for the Postdata oddsline.   In fact, this 
reconciles the profit and loss position on this strategy over the whole 2 weeks, retrieving 
even the disasters of the first week, although as we will see in the next section, the 
position is somewhat reduced by commissions. 
 
 
Table 14-17:  P&L by Oddsline Strategy, December 1st 2007 
 

Oddsline date Bets wins P&L cum.P&L 
Equiform 01/12/2007 67 8 1.25 776.16 
Postdata 01/12/2007 23 4 289.99 55.75 

 
 
 
 

Summary 
 
So, it’s clear from the last day’s table that we made a profit.   How do results look over 
the two weeks in total?  Let’s look by strategy, by running the query we have shown on 
most days displaying the number of bets per day, the number of wins, P&L per day, and 
cumulative P&L, for each strategy 
 
 
Table 14-18:  Equiformratings Oddsline Strategy  
 
date Bets wins P&L cum.P&L 
18/11/2007 34 4 71 71 
19/11/2007 43 8 100.16 171.16 
20/11/2007 37 3 -83.35 87.81 
21/11/2007 62 8 -13.95 73.86 
22/11/2007 51 5 -41.5 32.36 
23/11/2007 42 5 -43 -10.64 
24/11/2007 57 7 117.75 107.11 
25/11/2007 49 9 342.5 449.61 
26/11/2007 48 8 265.5 715.11 
27/11/2007 40 5 8.04 723.15 
28/11/2007 63 4 -224.75 498.4 
29/11/2007 39 6 162 660.4 
30/11/2007 38 7 114.51 774.91 
01/12/2007 67 8 1.25 776.16 



AUTOMATIC EXCHANGE BETTING 

304  

 
 
 
Table 14-19:  Postdata Oddsline Strategy  
 
date bets wins P&L Cum.P&L 
18/11/2007 33 3 -18.3 -18.3 
19/11/2007 33 2 -76.5 -94.8 
20/11/2007 25 1 65 -29.8 
21/11/2007 52 3 -138.69 -168.49 
22/11/2007 51 4 -18.26 -186.75 
23/11/2007 37 2 -110 -296.75 
24/11/2007 44 5 26.5 -270.25 
25/11/2007 20 0 -100 -370.25 
26/11/2007 14 3 204.01 -166.24 
27/11/2007 15 1 -56.5 -222.74 
28/11/2007 16 1 -49 -271.74 
29/11/2007 12 1 22.5 -249.24 
30/11/2007 16 2 15 -234.24 
01/12/2007 23 4 289.99 55.75 

 
 
 



ODDSLINE STRATEGIES IN PRODUCTION 

305 

 
Figure 14-14:  P&L over Production Run 
 
 
Figure 14-14 shows the ongoing performance of the two strategies over the duration of 
the production run. 
 
The combined strategies produced £831.91 by the end of the fourteenth day.   In the 
actual account, this total was reduced by commissions on all winners, at an average rate 
of approximately 4%, to create a realised profit over the period of £661.80.   The 
Postdata strategy bet in all race types on days 1 – 7 inclusive, and, after our review at 
the end of the first week, on National Hunt handicaps for the second week.   The first 
week was loss making, whilst the second week was profitable, breaking even for the 
strategy as a whole. 
 
We successfully executed 1061 bets, at 5 minutes prior to each race, successfully taking 
the available to back price to a unit stake of £5, and we did this automatically over 
hundreds of races. 



AUTOMATIC EXCHANGE BETTING 

306  

 
By automatically recording the success or otherwise of all bets, we have put in place 
review and data collection which can prove useful in testing and improving the strategy 
for the future.  By following the bets interactively, we also can develop a sense of how 
the strategy behaves, and to cut down on surprises when we are not around to monitor it 
in the future. 
 
Above all, we have made a profit – automatically.



 

307 

 
Chapter 15:  Next steps for the automatic bettor 
 
In Chapter 14 we ran two strategies in production.   The Equiformratings oddsline has 
been tested against historic results on an ongoing basis, and the odds are adjusted 
based on that testing.   The Postdata oddsline was based upon a hypothesis, and had 
not been tested against historic results.
 
Implementing one strategy over the two weeks was clearly more risky than the other, 
given it had uncertain potential.    We had to adjust the Postdata oddsline mid-flow, 
based on the little data we had, in an effort to improve its performance.  The Postdata 
oddsline was used as an implementation example first and foremost, so the fact we 
managed to salvage a profit is a plus. 
 
There were also other reasons for testing besides making a profit:   We wanted to show: 
 

• that the strategy was executed exactly as we had planned, incorporating the 
improvements from the live test,  

• that the whole implementation from hardware infrastructure to software set up 
could be relied upon to run unattended in the long run 

• that our assumptions about market conditions (i.e. ensuring that we could get on 
by taking the currently available back price to relatively small stakes – i.e. £5) 
were correct, and we could therefore continue with a simple implementation that 
did not require unmatched bets 

• that key elements of the implementation, such as betting to an automatically 
generated events schedule, could be applied as a general mechanism to many 
different strategies. 

 
In Chapter 12, we also referred to the possibility of creating a simulated test for any new 
strategy, provided that we had a reliable implementation in all other respects.  
 

Testing Strategies without risk 
 
When we began Part 3, we were lacking knowledge of how the example Postdata 
strategy operated in practice.   Also, the implementation itself was untested for our first 
run in Chapter 12, where it turned out that some races were ignored, and others failed to 
match horse names correctly from the different input sources. 
 
Having corrected these problems, we have a robust implementation, as we proved in the 
previous Chapter on the production run.  We also have a much closer view on some of 
the strengths and weaknesses of the betting strategy.   However, we do not necessarily 
have a robust betting angle.    
 
Some areas looked promising and some weak, but our biggest problem is that without 
more results data than over a 14 day period it was difficult to be sure how to proceed, or 
how we could measure the long term accuracy of the oddsline. 
 



AUTOMATIC EXCHANGE BETTING 

308  

This is a common problem with any new betting strategy, where we would like some 
confidence in how it will perform over a period of time, or to analyse “live” results, before 
committing capital. 
 
The solution is to maintain the automation of the strategy as we have already set it up, 
but “turn off” the betting functionality in the program.    This can be done simply by 
commenting out the part of the code relating to the Placebets call and adding a line to 
set any bet hash values to null as in: 
 
my %bets; 

 
Consequently, when the program is executed on its automatic schedule, all output will 
be produced as before, except for the fact that no call is made to execute bets and thus 
no Betfair identifier will be present.    We have just had an automated non-bet!   In this 
case, all the output showing market prices and so on will be consistent with the standard 
program report examples we have been showing (see for example Figure 14-13), but the 
final lines showing bets made will read as follows: 
 
Bet top third overlays: 
Selection:   3.45, Newbury, Kings Revenge, 20717542, 1117405 
Bet placed: 0, B, £5.00,  15.5 
Selection:   3.45, Newbury, Mon Michel, 20717542, 1233117 
Bet placed: 0, B, £5.00,  23.0 
 

In this case, we have a program report on our non-betting strategy but no simulated 
results to analyse, unless we write yet another program to extract all the lines beginning 
with Selection and then parse out the values and write them to a database.   There’s 
no point in doing that since we can write the selections to a database at the time we run 
the program.   
 
Far more efficient then to create a database table, let’s call it simulated_bets, and 
simply write out the would-be bet details consisting of all elements that we want to 
record and analyse, not forgetting price and stake.   (Example 5-1 and Example 8-1 
provide code that can be adapted in terms of setting up a database table, with Example 
5-2 and others showing how to insert values to it within the context of a program). 
 
Now we have an automated betting simulation but no results.   So we need to reconcile 
winners and losers from our simulation using a results database, then calculate the profit 
and loss for the account.    
 
To ensure everything is automated, even in the simulated test, we can use the 
SmartForm Racing Database, scheduling an automated query to access the database 
after results have been automatically updated.    Our program will read in the table of 
simulated bets for that day’s racing, one record per line.    For each line, we save the 
race details (time, course and date) for the bet and use this information to present a 
query to the SmartForm Racing Database, retrieving the runners and finishing positions 
for that race.   The runners are then matched to the name of the selection for the 
simulated bet, together with its winning position.  This information is written back to the 
database table for simulated bets in order to update finishing position and profit and loss.   
We can calculate profit and loss as follows, given there is a finishing position available: 
 
if ($finisPos == 1) {$pandl = $stake * ($decimal_odds – 1)} else {$pandl = (- $stake)} 
 



NEXT STEPS FOR THE AUTOMATIC BETTOR 

309 

If the horse is a non-runner (e.g. it is withdrawn after the bet has been placed), we 
record a value of zero.   Whatever the source of results data used, careful attention must 
again be paid (as with the comparisons of oddsline runner names to Betfair runner 
names) to comparing runner names from different sources. 
 
In this way we can continue to build a database of results and simulated P&L for any 
strategy for as long as required, until going live or abandoning or modifying the strategy. 

 

Betfair Account Management 
 
We refer here to setting up a Betfair account with some common sense guidelines for 
optimal use of automated betting.   Account Management functions are also available 
through the API, as listed in Appendix 3, so can be automated as required. 
 

Stop loss limits: 
 
On every Betfair account there is a weekly, monthly, yearly loss limit that can be set 
within the profile of each user (available in the My Account tab.   When experimenting 
with automating betting for the first time, it can be useful as an absolute failsafe.   
 
However, it is better to think of this as a failsafe rather than a management tool, since 
limit changes take up to 7 days to come into effect, and the loss limits are inflexible.     
 
Ideally, any use of stop limits in this way will therefore be replaced by the bettor’s own 
programs to monitor strategies and review profits and losses. 
 

More than one account 
 
If the bettor is running automated strategies and continuing to bet interactively on Betfair, 
it is generally advisable to do so from separate accounts.   Otherwise, there can be room 
for error and confusion if dealing in the same markets.  For example, we can think of 
attempting to interactively trade the favourite in a market where a position has already 
been taken on the same horse by an automated program.   We can do this, of course, 
but it adds unnecessary confusion and difficulty to the process if we want to maintain the 
integrity of the “long” position of the automatic bet. 
 
The downside of using separate accounts is not benefiting from reductions in 
commission rates due to pooled activity.  A solution is a Betfair master account with sub-
accounts, where the sub-accounts are linked for commission purposes, although this 
may not be available to all since conditions for issuance are subject to account activity. 
 
In the absence of a master account, it is feasible to manage one account for several 
automated strategies, with no downside to executing and calculating P&L on each 
strategy automatically - this being the scenario we support for Chapter 11.    But one 
separate account for interactive betting is still preferable. 



AUTOMATIC EXCHANGE BETTING 

310  

 

Don’t Forget to Pay Yourself 
 
In looking at the important factors of testing strategies first, mitigating risk, using stop 
loss limits, and thinking of long term results over short term volatility, let’s not lose sight 
of the wood for the trees.   
 
Although no interactive Betfair facility exists for automatically paying yourself (as it does 
for stop losses), taking regular profits is an equally important aspect of account 
management.    
 
A useful strategy is therefore to set achievable account balance targets for an automated 
strategy and withdraw excess capital once those targets are reached.    
 
This can also be automated using relevant elements of the general framework covered 
in Part 2, along with an additional API call to withdrawToPaymentCard.   A weekly 
check with a scheduled cron job (see Chapter 7) to check account funds (see the 
section on Automating staking plans using a betting bank in Chapter 9 for such an 
example using the GetAccountFunds service)  will give us the account balance.    
 
A simple program (scheduled to run at the same time as checking funds or as part of the 
same program) can then subtract the target balance (which can be “hard coded” or 
based on an algorithm related to the strategy) from the available funds and will tell us if 
we are making the desired profit margin required for withdrawal.   If we are - in other 
words, if there is an excess balance indicated by a positive number - we specify the 
result as the excess amount to be withdrawn from the account, then can use the API call 
to transfer that amount to an existing payment card.    
 
 

Avoiding Cognitive Bias 
 
Cognitive bias is a term coined in behavioural finance relating to becoming emotionally 
attached to, or responding emotionally to, an investment or trade in a way that can be 
detrimental to obtaining the best outcome.   Since betting or trading on horseracing and 
other sports can be almost no different to investing or trading in financial markets, it is a 
bias which is also apparent in many betting decisions.  
 
Nevertheless, it may seem strange to include a section on betting psychology in the 
context of automated betting - especially when we have discussed how an automated 
strategy can help to bring consistency to the betting process and remove the damage 
that can be caused to generally profitable strategies by emotional or manual betting 
decisions (e.g. a bettor staking far more than usual if on a “winning streak”, or failing to 
apply methods consistently and so on). 
 
Whilst automation can avoid these problems, since the bettor is still in ultimate control of 
an automated strategy, he or she can pull programs out or put programs into production 
at whim.   In this sense, an automated strategy is only as good as the bettor in charge of 
it. 



NEXT STEPS FOR THE AUTOMATIC BETTOR 

311 

 
Betting on an automated basis can be completely different to betting interactively, so it is 
as well to be prepared for what to expect and how you will react.    Especially if the 
strategy is followed too intensely, it can cause impatience, doubt in the methods being 
used and premature interference in the strategy just as easily as betting interactively can 
- even when the automated strategy is showing a profit. 
 
There are many reasons or situations in which detrimental interference – meaning 
tampering with stakes, altering decision making rules and so on - can happen.   Here are 
a few:   
 

• Second guessing the automated strategy – the bettor is toying with a new 
strategy and picks a winner in a race, does not back it, and watches the 
automated strategy bet a loser.   

• The strategy goes sideways or downwards in terms of profits over 2 months or 
more, so the bettor pulls the plug or reduces stakes, only to watch profits go up 
afterwards  – ignoring the fact there was a similar 2-3 month downturn when 
backtesting the strategy. 

• The bettor sees a small profit and withdraws it early, significantly reducing the 
bank and unit stakes - thereby limiting future gains. 

• The bettor interferes with or increases stakes to try and recoup losses - 
increasing the risk of “gambler’s ruin”. 

 
These are the same types of betting decisions that can damage the profitability of sound 
manual strategies, and there is no reason, just because a strategy is automated, that the 
bettor cannot interfere with the process in a similar way - although automation of a 
fundamentally sound strategy can avoid all these issues if left to its work. 
 
 
The objective in automatic betting is often to find an edge which has been proven over 
time, test it, implement it, and watch it accumulate. 
 
So, in order to let an automated strategy run its course, it can be helpful to think of the 
interaction with an automated strategy entirely differently to the way one would normally 
bet in a traditional process.   That is, that the bettor is betting on the strategy itself – 
which is a long term play - rather than any individual bet. 
 
By the same token, the bettor should beware of, or at least have an advance plan in 
place, for implementing any strategy which has not been extensively tested.    Otherwise 
there is likely to be less confidence about how it will perform, and the natural reaction will 
be to try and “do” something about any adverse results, or to take profits early. 

 

The Automatic Betting Portfolio 
 
In this book we have investigated one of the more novel ways of going about the betting 
process, which brings a new dimension to the activity itself.   
 



AUTOMATIC EXCHANGE BETTING 

312  

Automatic betting provides one answer to betting, rather than the answer.   There is no 
reason why you cannot mix and match whatever strategies and betting media are at 
your disposal, according to what makes most sense given your strategy or approach, or 
the possibilities offered by the media available. 
 
However, to come back to the statements we made at the beginning of the book, the 
strategies bettors have for predicting outcomes in sports betting often rely on data.   This 
could be any type of form data, third party data or market data.  It could be repurposed 
for use in a betting system or to create a predictive model.  It could be static data or 
updated according to new inputs, where we might suppose that automation has no place 
(such as taking account of changes in the going in horseracing, or paddock reports that 
are accessible by programs online).   The reasons bettors have for making decisions are 
often measurable or rule based – “if this, then that” - lending themselves well to 
programmation.    Many factors and therefore strategies can change based on new 
observations or new opportunities – such as in-running markets on the betting 
exchanges – but does that mean automation is not possible for these new markets? 
 
We have explored or touched on many of these ideas within the context of the book 
without providing full code for all – but, if in any doubt about the potential,  take a look at 
almost any book about betting on horseracing and you will see there is no shortage of 
interesting angles or strategies that we can consider automating, in addition to the 
strategies that each existing bettor will hold high (and of course, if we extend that to the 
domain of trading, then the possibilities increase yet again).    
 
The interesting question for the automatic bettor is how to define the process, to ask 
what data elements would be needed to automate a strategy, what decision process 
would a program need to implement in order to automate the strategy and, perhaps 
before contemplating any of the above, under what conditions, if any, it could be 
profitable.     



 

313 

Bibliography 
 
 
Automatic Exchange Betting touches on many different subject areas including 
horseracing, sports betting, probability, exchange markets, IT and programming.  This 
list concentrates on providing an overview to some of the most useful starting points, 
which themselves provide excellent references to further material.    
 

Online Sources 
 
 
www.betwise.co.uk The author’s site containing example code, data and other 

supporting materials for Automatic Exchange Betting. 
 
www.betfair.com The world’s largest betting exchange.    

In particular, note the links to the Betfair Developers’ 
Program and technical documentation, especially the API 
Sporting Exchange Reference Manual.  
 

www.racingpost.co.uk The online version of the newspaper widely seen as the 
best free interactive online form, ratings, and statistics 
service for UK and Irish horseracing.  

 
www.sportinglife.com Another excellent site for online form, results and news for 

a number of sports. 
 
www.equiformratings.co.uk Private horse racing ratings service used to demonstrate 

oddsline strategy automation in Part 3.  
 
http://learn.perl.org A useful starting point for those new to Perl, with links to 

other resources such as the Perl FAQ, Perl documentation, 
www.cpan.org and books. 

 
www.ubuntu.com Community, download and support for most popular Linux 

distribution, (recommended operating system for running 
example code). 

 
www.mysql.com Community, download and support for the most popular 

open source database (recommended database for 
running example code)  

 
 
 
 
 



 

  



 

315 

Further Reading: 
 

The betting process: 
 
Electronic information and online exchanges may have revolutionised the way in which 
people bet but the fundamentals remain the same.   For an appreciation of the 
underlying process in betting on horseracing outcomes, Betting for a Living can be 
thought of from the perspective of the backer and The Art of Legging from the 
perspective of the layer: 
 
Betting For A Living   
Nick Mordin  
Aesculus Press Limited; Second edition, 2002 
 
The Art of Legging  
Charles Sidney 
Maxline, 1976 
 

Systematic betting on horseracing 
 
These references look at analysing form to uncover profitable angles and approaches to 
developing profitable betting systems on a quantitative basis. 
 
Winning Without Thinking  
Nick Mordin 
Aesculus Press Limited, 2002 
 
Against The Odds  
David-Lee Priest 
Raceform Ltd, Second Edition, 2005 
 
Forecasting Methods for Horseracing  
Peter May 
High Stakes Publishing, 2002 
 

Probability and Games of Chance  
 
Taking Chances is a layman’s guide to probability, including a practical explanation of 
how to implement the Kelly staking strategy.     The Theory of Gambling and Statistical 
Logic presupposes more advanced mathematics for its explanations, including a large 
number of interesting further references. 
 
Taking Chances  
John Haigh 
Oxford University Press, 2003 



 

316  

 
The Theory of Gambling and Statistical Logic  
Richard A. Epstein 
Academic Press, 1995 
 

Programming - Perl 
 
Some references for learning the language and specific aspects of Perl that are used in 
accessing the Betfair API, such as Perl and XML and the LWP library, as well as tips 
and tricks for general usage.  
 
Learning Perl, Fourth Edition 
Randal L. Schwartz, Tom Phoenix, Brian D Foy 
O’Reilly, 2005  
 
Perl and LWP 
Sean M. Burke 
O’Reilly, 2002   
 
Perl and XML  
Erik T. Ray, Jason McIntosh 
O’Reilly, 2002   
 
Perl Cookbook, Second Edition  
By Tom Christiansen, Nathan Torkington 
O’Reilly, 2003   
 
Spidering Hacks 100 Industrial-Strength Tips & Tools  
By Kevin Hemenway, Tara Calishain 
O’Reilly, 2003 
 

Linux and Ubuntu 
 
Beginning Ubuntu Linux is a great start for those with no experience of Linux and 
includes a bootable CD, but for the more adventurous, Running Linux also provides an 
overview of Linux as a complete OS, as well as pros and cons of different distributions. 
 
Beginning Ubuntu Linux, Second Edition (Beginning from Novice to Professional)  
Kier Thomas 
Includes Ubuntu DVD-ROM 
Apress, 2007 
 
Running Linux, Fifth Edition  
Matthias Kalle Dalheimer, Matt Welsh 
O’Reilly, 2005   
 
 



 

317 

MySQL 
 
The canonical third party guide to MySQL below, followed by the example based 
alternative, or complement, by the same author. 
 
MySQL Third Edition 
Paul DuBois 
Sams, 2005  
 
MySQL Cookbook  
Paul DuBois 
O'Reilly, 2007 
 
 



 

  

 



 

319 

Appendix 1:  Software configuration for example code 
 
This Appendix provides notes on setting up your computer system to run the example 
code that is described in the book and available for download online at 
www.betwise.co.uk.   The notes are for general guidance only and not intended as a 
substitute for more comprehensive instructions or reference books on installing and 
configuring operating systems or other software.   For those with no prior experience in 
Perl, MySQL or Linux, the relevant references listed in the Bibliography are an 
indispensable prerequisite and accompanying guide; it is also worth reviewing 
www.betwise.co.uk for alternative solutions.
 
First some context:  Each Chapter in Part 2 provides example Perl scripts which 
illustrate automating different stages of the betting process, with many scripts 
themselves using one or more Perl functions from a library of functions that call API 
services (documented in Appendix 2).   The examples are provided within the context of 
an overall software framework for automation that relies on scheduling facilities and 
other shell commands available within a Linux or other UNIX based operating system, 
coupled with data persistence that is achieved using a MySQL database.    
 
Other programming languages, operating systems and databases than those used by 
the examples can of course be used to achieve the same objectives.  Thus the code 
examples can be seen as “pseudo code” for illustration purposes, or can be used or 
adapted “as is” for experimenting with the API or creating automate betting strategies.    
However, to run the examples without any adaptation, a machine running Linux, Perl, 
certain Perl modules and MySQL installed is required.   In the case of a user who does 
not already have a preference or experience with this type of environment, Ubuntu is 
strongly recommended as the choice of operating system, since it can be pre-installed in 
many new PCs, and provides the greatest ease of use for installation of dependent 
software and modules required (it is also the most popular Linux distribution).  
 
Furthermore, Ubuntu can be installed in dual boot mode alongside other Operating 
Systems (OSs) such as Windows, or as a virtual machine within a Windows OS for 
those who do not wish to switch from Windows and/or do not have more than one 
machine available.   Ubuntu is therefore the default environment described for running 
the example code, as covered more fully in “Notes for installing Ubuntu”, below. 
For Mac OS X users the examples can also be run “as is” within the Terminal 
application, which provides access to the underlying UNIX based OS; further notes on 
setting up Mac OS X for Perl and MySQL are provided in the subsection “Notes for 
Installing to Mac OS X”.   For users of other Linux distributions, the examples can be run 
more or less as with Ubuntu, with further notes in the subsection “Notes for other Linux 
distributions”.    Finally there are notes on configuring the code to run on Windows 
systems in the subsection “Notes for Windows”. 
 

Notes for installing Ubuntu 
 
This section assumes you wish to run the code examples on a dedicated machine where 
the operating system is installed from scratch.   Note that the following subsection deals 
with installation of Perl and MySQL, which applies to existing Ubuntu installations. 



AUTOMATIC EXCHANGE BETTING 

320  

Unless your PC has come with Ubuntu installed, you will need to download the required 
ISO image or order a free CD for installation by following the links for downloads at 
www.ubuntu.com.  Ubuntu CDs are available from many other channels, including 
shipping free with books on the Operating System.    
 
In terms of which version to install, the latest “LTS” release (i.e. ‘long term support’ 
release) is usually a good idea – an overview of the support policy for different releases 
is described at the Ubuntu website. 
 
Installing Ubuntu is a matter of booting the CD or clicking the downloaded ISO image 
and following the prompts.   When installing, the user has the option to overwrite the 
hard drive to make Ubuntu the only OS on the install machine, or partition the hard drive 
to share with an existing operating system, such as with an existing Windows machine.   
We outline options for preserving Windows and installing Ubuntu alongside in the “Notes 
for running code on Windows”. 
 
One of the advantages and design goals with the Ubuntu Linux distribution (and its 
variants Kubuntu etc) is the relative ease of installation.   Nonetheless it’s always useful 
to have references at hand, and fuller details of the installation process, including 
configuring hardware and network options, are covered online at www.ubuntu.com under 
the links to support and then documentation as well as other sections of the website.   
Additionally, there are plenty of other good reference books and guides available some 
of which are included in the Bibliography. 
 

Installing Perl and requisite Perl modules in Ubuntu 
 
Whether you have installed Ubuntu from scratch as the only OS on your machine, are 
already using Ubuntu, or are using a dual-boot or virtual machine with Ubuntu as one of 
the operating systems available, the next step will be to ensure that the requisite 
versions of Perl and dependent modules, as well as MySQL, are also installed. 
One of the nicer aspects of using Ubuntu for setting up an open source software 
environment for the first time is the ease of installing other required open source 
software, since this can all be done from within the Ubuntu GUI, with all dependencies 
taken care of for the user.   
 
The facility to use from the GUI is Ubuntu’s Synaptic Package Manager which is 
accessed from the Home Menu via System -> Administration -> Synaptic Package 
Manager.   From the command line, which is the method we will describe, the apt-get 
facility can be used to install additional software.    
 
N.B. To access the command line from the GUI, select Applications -> Accessories -> 
Terminal.  Or, to access the command line from a virtual terminal, press Ctrl + Alt + 
Function Key – generally F1 through to F6, with F7 returning the user to the GUI - then 
type in your username and password at the prompts. 
 
First, we need Perl, which is usually installed by default in most Linux distributions, 
including Ubuntu.   To check which version of Perl is installed go to the command line 
and type perl –v, then press Enter.   The version of Perl – 5.8 or higher will be fine - will 
be displayed, together with details of the open source licence. 



APPENDIX 1 

321 

 
Now we need to add some specific modules to the Perl installation that will be used by 
the example programs. 
 
All installs should be done as the root (or “admin”) user, which can be temporarily 
achieved by prefixing any install command with sudo.   
 
The generic (i.e. non-OS specific) process of installing modules to Perl is via command 
line access to cpan, (Comprehensive Perl Archive Network), installing each module 
required.   This can be done in Ubuntu also, (although has not tended to work as 
seamlessly “out of the box” as with other Linux distributions).   On the other hand, the 
advantage of Ubuntu is that many associated Perl modules are available within bundled 
packages that can be easily installed via the apt-get install procedure, which is 
what we will show here. 
 
First, whether installing via cpan or the bundled packages, it is as well to make sure the 
right kit is available with the following, hitting enter after the command: 
 
sudo apt-get install build-essential 

 
Then wait until the prompt is returned and install the following four packages in the same 
way: 
 
sudo apt-get install libxml-perl 
sudo apt-get install libxml-xpath-perl 
sudo apt-get install libdbi-perl 
sudo apt-get install libcrypt-ssleay-perl 

 
Provided all builds are successful, this takes care of the install for the example Perl code 
to work on Ubuntu Hardy Heron, version 8.04.    It should also take care of most 
dependencies on other Ubuntu versions and ensure that the example code works fine 
(provided that the scripts themselves are set up correctly, as discussed in the next 
subsection).   However, it’s always possible that some dependent or required modules 
are found that are not handled in the particular set up you have.  In such cases, the error 
messages are usually self-explanatory – stating that certain modules that were expected 
are missing.  In this case, a trip to the CPAN archive, as with: 
 
sudo perl -MCPAN -e shell 

 
can help to locate and find the relevant missing modules in most set-ups.  However, in 
Ubuntu, the trick is to minimize the effort by looking for the appropriate bundled package 
containing the module in question, and then use the Ubuntu install mechanism of sudo 
apt-get install for the relevant package.    In this respect, the Ubuntu website is a 
useful resource where you can find the required Perl modules within various bundled 
packages. 

 
 
 



AUTOMATIC EXCHANGE BETTING 

322  

Installing MySQL in Ubuntu 
 
As with the instructions for Perl above, a convenient way to install MySQL – in the case 
of Hardy Heron, 8.04, this is MySQL5 – is simply to access a command line and use 
apt-get to install the package for MySQL bundled with the distribution: 
 
sudo apt-get install mysql-server 

 
During the course of the installation you should be asked for a password for the root 
user. 
 
Assuming all runs successfully, you will be in a position to set up a database and users 
with permissions for accessing the database.   For the purpose of the examples in the 
book, the database used is called autodb.   We cover creating the autodb database 
together with a default user with appropriate permissions (for the purposes of running 
the examples at least) in the last section, Configuration for Example Scripts, Perl API 
Functions and AutoDB Database. 

 

Notes for Installing to other Linux distributions 
 
Those who have already used Linux will most likely have their own preferred distribution.   
There is nothing complicated about the example code that makes configuration within 
any other Linux distribution more complex than Ubuntu (and has been run on several, 
including SuSE and Red Hat) but will rely on the way in which Perl, Perl modules and 
MySQL are handled within those other distributions - or indeed the way in which the user 
already has them set up if familiar with the environment.    
 
The general advice would therefore be to consult the documentation associated with the 
specific distribution for installing MySQL 5, Perl and Perl modules.  No doubt Perl will 
already be present and can be verified as for the notes on Ubuntu above.   Most Perl 
references will also contain instructions on connecting to CPAN and building Perl 
modules from there, irrespective of the bundled packages within any distribution. 
 
The Perl packages and modules which may be required depending on the base 
installation, are: 
 
libwww-perl 
DBI 
XML::Simple 
XML::Parser 
XML::XPath 
Crypt::SSLeay 

 
Any dependencies not listed, depending on your installation, will be flagged as needed, 
and can be resolved by visiting CPAN. 
 
Again, binary installs for MySQL will most likely be available, but can always be 
downloaded together with installation and configuration documentation at 
www.mysql.com. 



APPENDIX 1 

323 

Notes for Installing to Mac OS X 
 
At the heart of the OS X line of modern Apple Mac machines is a UNIX OS based on the 
FreeBSD distribution, meaning that the software environment can be configured mostly 
as for any other Linux distribution. 
 
The command line can be accessed via the Terminal window (a quick “perl –v” at the 
command line will confirm Perl is again installed as standard), and software 
dependencies with Perl, Perl modules and MySQL can be verified, installed and 
configured exactly as for the notes on installing to other Linux distributions, as above. 
 
There is also the possibility to install Ubuntu as a dual boot system or virtual machine on 
a Mac OS X if required, although this is not really necessary for running the examples. 
 

Notes for installing to Windows 

Ironically the first point to consider about running the examples on Windows is not to use 
Windows at all.   Since the code is set up for a UNIX based environment, it requires 
some adaptation before running natively on Windows, so it can be easier to remain 
within a Linux environment.  Moreover, there are many options now for running any 
Linux distribution (including Ubuntu) on the same machine as an existing Windows 
installation, without affecting the existing OS and filesystem. – from dual-booting the 
machine by partitioning the hard disk, to running a virtual machine, or running Cygwin 
within a Windows system.   Some of these set ups can be complex (further details can 
be found in Ubuntu references in the Bibliography), but setting up a dual boot system is 
an “out of the box” option with Ubuntu, when installing the CD, so is to be recommended 
– with the usual caveats applying to making backups before touching a system you want 
to preserve.   Further notes on creating a dual boot system are available within a number 
of the references already made, including the Ubuntu website. 

Once the dual boot system is created, the rest of the configuration required to set up the 
environment for running examples with Perl and MySQL is as described previously 
under Notes for Installing Ubuntu. 

However, if wishing to run the examples using the Windows OS, further adaptation of the 
code is required, although the good news is that Perl and MySQL run fine on Windows 
systems.    

First, to download the recognised standard Windows distribution of Perl (i.e. Activestate) 
go to www.activestate.com/downloads 

Once installed, there is much useful documentation available within the Windows 
Programs menu where Perl will install by default.  Note in particular the sections about 
running Perl in a Windows environment.  With regard to installing the prerequisite 
modules, use the Perl Package Manager, also available from the Program menu.  At the 
command prompt, search for and then install the prerequisite Perl modules listed under 
Notes for Installing on Other Linux Distributions.    



AUTOMATIC EXCHANGE BETTING 

324  

MySQL 5 can be installed and configured by following the appropriate download links for 
your Windows system at www.mysql.com, then following the install instructions. 

The example scripts themselves require adaptation for execution within Windows (for 
example, with regard to handling path names which are treated differently between 
Windows and UNIX systems).  Automating the scripts to execute an entire betting 
strategy in the way described for Linux will also require some reading (or prior 
knowledge) on executing scripts, permissions and scheduling in a Windows 
environment.  Windows does have command line scheduling facilities (as described in 
Chapter 7) which are also accessible via the GUI, so in principal an automated system 
can be created leveraging scripted languages and tools within the OS (as with the Linux 
examples), but generally this can be trickier than setting up UNIX type systems in the 
same way, so it is a case of caveat emptor. 

 

Configuration for Example Scripts, Betfair API Functions and 
Example Database 
 
This section provides some guidelines for running the example code, assuming the 
required software – which is to say the operating system, Perl and MySQL installation – 
has first been correctly installed and configured as per the notes in the previous 
sections. 

General 
 
Running the examples relies on interaction between the following: 
 

• Perl scripts or programs for automating specific parts of the betting process 
• A library of Perl functions for accessing the Betfair API 
• A database to achieve data persistence between programs 
• Leveraging scheduling facilities within the OS. 

 
Since all this interaction is automated, a couple of general principals in running the 
example set up (i.e. so that it does not fall down between components) are critical: 
 

• Ensuring appropriate permissions from one script or executable to another 
• Ensuring installation of programs, function libraries and commands where other 

programs, function libraries and commands expect to find them 
 
The above is common sense, but can be where most trouble occurs.   Specifically, all 
program names or commands must be executable by the operating system.   A blanket 
approach to grant all users all permissions would be logging in as root and making any 
program executable by typing chmod ugoa+rwx program_name, but see the chmod 
man page for more granular control (especially if you are not the only user on your 
system!).   The operating system must of course know how to run any program or 
command (i.e. with whatever relevant commands or interpreters), and where to find 
dependent interpreters commands, files or scripts, either through an explicit path that is 
specified, or because the global $PATH variable has been set appropriately. 



APPENDIX 1 

325 

Paths 
 
All system paths in the examples are hard coded with a default to the /home directory of 
a user /aeb. The assumption is that all paths should be changed to a directory structure 
reflecting the actual user’s system or path of choice. 
 
Most example programs themselves call functions, or subroutines, to access particular 
API services.   The library, or package of functions, that defines access to API services, 
including the arguments used for each call and the data structures returned, is called 
BetfairAPI6Examples.pm.  The library is listed in Appendix 2. 
 
The default path used within the example programs to the library of Perl functions is  the 
directory /lib  available from the home directory of the user.  So the access path (for 
user aeb is /home/aeb/lib/BetfairAPI6Examples.pm.    
 
Again this should be changed (in accordance with the Perl documentation for ensuring 
program by program access to user defined libraries of functions) to any system path 
preferred by the actual user. 
 
It is assumed that all other examples and data are accessed from the user’s home 
directory /home/aeb.    Paths should be amended as required but should of course 
remain consistent with each other. 
 

Creating the Example autodb Database 
 
The autodb database is a set of simple database tables to store and access data (such 
as Betfair race IDs) required by the example programs. 
 
Set up for each database table in the autodb database is explained whenever a new 
table is required by examples in the main text, but setting up any table first requires that 
the database itself exists.   Creating this database is described below. 
 
First, ensure that MySQL is installed as per the previous notes in this Appendix and type 
the following to log into the mysql monitor at the command prompt ( > below): 
 
>mysql –u root –p 

 
You should now enter your password, provided that one was set up during the 
installation of MySQL 

 
>Enter password: 

 
Whereupon you will successfully be logged in 
 

Welcome to the MySQL monitor.  Commands end with ; or \g. 
 

Next, set up the database as follows:  
 
>CREATE DATABASE autodb; 

  



AUTOMATIC EXCHANGE BETTING 

326  

Then, grant access to the user who will be setting up tables and executing programs 
automatically – probably the same as the main user on a single user system. 
 
>GRANT ALL ON autodb.* TO ‘your_account_name’@’localhost’; 

 
Log off from the MySQL monitor to return to the shell prompt: 
 
>exit; 

 
From now on you can log yourself in by the specified username to interact with the 
database, or specify the same user credentials within the context of a Perl script.   This 
will enable programmatic database operations using the DBI module, which can be 
scheduled automatically, as discussed in the program examples. 

 

Example Crontab Entries for Automation of Oddsline Betting 
 
In Chapter 7, we discussed that scheduling the example programs using the *nix (Unix 
or Linux) crontab facility can facilitate the automation of most if not all betting strategies.   
Indeed, this is the way in which the example programs for the oddsline betting strategy 
begun in Chapter 6 and followed through towards live betting in Part 3 are automated.    
 
Below we describe a typical structure including notes for crontab entries (for the example 
programs described in Part 2 of the book) which can be used as the basis for automating 
the example strategies in Part 3. 
 
#assume a crontab file 
# m h  dom mon dow   command 
 
#replace /home/aeb/  with your system path and name programs to suit. 
#Below program names relate to those used in the book, with example numbers also 
referenced 

 
00 08 * * * /home/aeb/get_betfair_races.pl    #Example 5.2 
 
#Next, generate an oddsline and make it available in a consistently formatted flat file. 
#This step is likely to include extra programs depending on the oddsline method – eg. if 
#applying models to your own database, screen scraping, or converting third party 
#ratings, all of which are automated at this point for the production runs shown on the 2 
#oddsline methods used in Part 3. 
 
05 08 * * * /home/aeb/format_oddsline.pl    #Example 6.1 
 
#Next, generate a flat file of events for the day and make it available to all programs 
 
10 08 * * * /home/aeb/generate_events_schedule.pl   #Example 7.1   
 
#Next, schedule the strategy to run 5 minutes prior to each event based on event times 
 
15 08 * * * /home/aeb/write_schedule.pl      #Example 7.2 
 
#The above executes bet_oddsline_strategy 5 mins before each race, which contains 3 
#programs to run consecutively for each race as follows: 
#/home/aeb/get_market_prices.pl   #Example 8.2 
#/home/aeb/bet_formation.pl    #Example 9.1 
#/home/aeb/execute_bets.pl    #Example 10.1 
 
#N.b. In chapter 13 we discuss combining these 3 programs to create one shorter program 



APPENDIX 1 

327 

#e.g. oddsline_overlays.pl for production runs.   This single program can still be 
#included in bet_oddsline_strategy (instead of the 3 above), so Example 7.2 is the same 
 
#Now the programs will bet automatically until the end of the day’s racing. 
 
#The next entries in crontab record the performance of the strategy for the day 
#Based on the assumption that British racing is over and bets settled by 10 pm every day. 
 
00 10 * * * /home/aeb/get_betting_performance.pl    #Example 11.2 
 
#Next, reset files ready for the next day’s betting, ensuring that no manual interference  
#is needed to run the betting strategy the next day 
 
#First, archive and/or remove the file betting_report from the production directory 
 
04 10 * * * rm /home/aeb/betting_report      
 
#Next, archive and/or remove the file daily_bets from the production directory 
 
05 10 * * * rm /home/aeb/daily_bets 



 

  

 
 
 
 
 
 
 
 



 

329 

Appendix 2:  Example Perl library for Accessing Betfair 
API services 
 
This Appendix lists the example Perl library for accessing and returning values from 
Betfair API services.  The library is introduced in Chapter 4 and subsequently referred to 
by other examples.   This example code is available for download at www.betwise.co.uk, 
and maintained to reflect any changes in the Betfair API as time permits.    Instructions 
on setting up the library for access by other scripts are provided in Appendix 1.
 
package BetfairAPI6Examples; 
use LWP::UserAgent; 
use LWP::Debug; # qw(+trace +debug +conns); 
use HTTP::Request; 
use HTTP::Cookies;  
use Data::Dumper; 
use XML::Simple; 
use XML::XPath; 
use strict; 
 
#---------------------------------------------------------------------------------------# 
# This code is Copyright (c) Colin Magee, 2004-2008.  All rights reserved.        # 
# The code from this library is provided under the terms of the Artistic License 2.0    #      
# Code download including full licence terms at http://www.betwise.co.uk/aeb/code       # 
#---------------------------------------------------------------------------------------# 
 
# This library of example Perl subroutines accesses services from the Betfair API,  
# version 6. 
 
# Full descriptions of the parameters available for return by each service can be 
# found in the official API documentation from the Betfair Developers Program at  
# www.betfair.com. 
 
# All subroutines are for operation on the UK global exchange, as per the examples  
# in Automatic Exchange Betting.  Adapting these subroutines for Australian events  
# is discussed in Chapter 4 of the book. 
 
# History and acknowledgements: 
# 2004:  Betfair API3:  Perl subroutines were originally written by the author with 
# BDP support to access Betfair API3 using the SOAP::Lite module for Perl 
# 2006:  Betfair API4:  API4 changed from RPC to doc/literal, unsupported in 
# SOAP::Lite.  Thanks to code posted at the Betfair Developer Forum, this library of 
# subroutines was rewritten for API4 
# 2007: Betfair API5:  API5 added the Australian exchange.  Example subroutines were  
# adapted to handle different URL endpoints. 
# 2008: Betfair API6: Betfair added new services and existing services were adapted 
# to support Betfair SP and Persistence bets, as reflected in the current examples. 
 
  
require Exporter; 
our @ISA = qw(Exporter); 
our @EXPORT= 
qw(login get_market_prices_compressed get_markets get_events place_bet 

get_detailed_market_depth get_market_traded_volume get_bet get_mubets 
get_market_pandl  

update_bet cancel_bet get_account_statement get_account_funds); 
our $VERSION= 1.0; 
our $cookie_jar = HTTP::Cookies->new(hide_cookie2 => 1); 
 
sub login 
 { 
  my ($username,$password,$productId)=@_; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 



AUTOMATIC EXCHANGE BETTING 

330  

  <m:login xmlns:m="http://www.betfair.com/publicapi/v3/BFGlobalService/"> 
   <m:request> 
    <password>'.$password.'</password> 
    <productId>'.$productId.'</productId> 
    <username>'.$username.'</username> 
    <vendorSoftwareId>0</vendorSoftwareId> 
    <locationId>0</locationId> 
   </m:request> 
  </m:login> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/global/v3/BFGlobalService');  
$request->header(SOAPAction => '" 
https://api.betfair.com/global/v3/BFGlobalService 
"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
 
my $ref; 
 
eval { $ref = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "login failed to retrieve valid 

XML"}; 
 
my %login_hash = (); 
$login_hash{sessionToken} = 
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'header'}{'sessionToken'}{'content'}; 
$login_hash{headererrorCode} =  
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'header'}{'errorCode'}{'content'}; 
$login_hash{errorCode}  = 
$ref->{'soap:Body'}{'n:loginResponse'}{'n:Result'}{'errorCode'}{'content'}; 
 return %login_hash; 
 } 
 
sub get_markets 
 { 
  my ($sessionToken,$marketId)=@_; 
 my %market_hash= (); 
  my %names_hash = (); 
  my $runnerId = (); 
  my $runner_name = (); 
 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getMarket 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <marketId>'.$marketId.'</marketId> 
   </m:request> 
  </m:getMarket> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  



APPENDIX 2 

331 

$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "get_markets call failed"}; 
#print Dumper(\$result); 
 
 
  my $response=\%{$result->{'soap:Body'}{'n:getMarketResponse'}{'n:Result'}}; 
   $market_hash{'errorCode'}  = 

$response->{'errorCode'}{'content'}; 
 $market_hash{'timeStamp'}  = 

$response->{'header'}->{'timestamp'}{'content'}; 
 $market_hash{'sessionToken'}  = 

$response->{'header'}->{'sessionToken'}{'content'}; 
 $market_hash{marketTime} = 

$response->{'market'}{'marketTime'}{'content'}; 
 $market_hash{BSP}  = 

$response->{'market'}{'bspMarket'}{'content'}; 
 $market_hash{canTurnIn-play} = 

$response->{'market'}{'canTurnIn-play'}{'content'}; 
 $market_hash{marketType} = 

$response->{'market'}{'marketType'}{'content'}; 
 $market_hash{marketSuspendTime} = 

$response->{'market'}{'marketSuspendTime'}{'content'}; 
 $market_hash{numberOfWinners} = 

$response->{'market'}{'numberOfWinners'}{'content'}; 
 $market_hash{eventTypeId} = 

$response->{'market'}{'eventTypeId'}{'content'}; 
 $market_hash{countryISO3} = 

$response->{'market'}{'countryISO3'}{'content'}; 
 $market_hash{timezone}  = 

$response->{'market'}{'timezone'}{'content'}; 
 $market_hash{discountAllowed} = 

$response->{'market'}{'discountAllowed'}{'content'}; 
 $market_hash{menuPath}  = 

$response->{'market'}{'menuPath'}{'content'}; 
 $market_hash{name}  = 

$response->{'market'}{'name'}{'content'}; 
 $market_hash{marketDisplayTime} = 

$response->{'market'}{'marketDisplayTime'}{'content'}; 
 $market_hash{marketStatus} = 

$response->{'market'}{'marketStatus'}{'content'}; 
 $market_hash{marketBaseRate} = 

$response->{'market'}{'marketBaseRate'}{'content'}; 
 $market_hash{parentEventId} = 

$response->{'market'}{'parentEventId'}{'content'}; 
 $market_hash{runnersMayBeAdded} = 

$response->{'market'}{'runnersMayBeAdded'}{'content'}; 
 $market_hash{marketDescription} = 

$response->{'market'}{'marketDescription'}{'content'}; 
 $market_hash{lastRefresh} = 

$response->{'market'}{'lastRefresh'}{'content'}; 
 foreach my $s (@{$response->{'market'}->{'runners'}{'n2:Runner'}}) 
  { 
  $market_hash{runners}{$s->{selectionId}{'content'}}{asianLineId} 

 =$s->{asianLineId}{'content'}; 
  $market_hash{runners}{$s->{selectionId}{'content'}}{name} = 

$s->{name}{'content'}; 
  $market_hash{runners}{$s->{selectionId}{'content'}}{handicap} 

 =$s->{handicap}{'content'}; 
#To extract most frequently used hashes, create 2 arrays and take a reference to each 
 
  $runnerId = $s->{selectionId}{'content'}; 
  $runner_name = $s->{name}{'content'}; 
  $names_hash{$runner_name} = $runnerId; 
  } 
 my @hashes = (\%names_hash, \%market_hash); 
 return @hashes; 



AUTOMATIC EXCHANGE BETTING 

332  

 
 #return %names_hash; 
 } 
 
sub get_events 
 { 
  my ($sessionToken,$eventParentId)=@_; 
 my %events_hash; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getEvents 

xmlns:m="http://www.betfair.com/publicapi/v3/BFGlobalService/"> 
   <m:request> 
    <header> 
     <clientStamp>7687789</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <eventParentId>'.$eventParentId.'</eventParentId> 
   </m:request> 
  </m:getEvents> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/global/v3/BFGlobalService');  
$request->header(SOAPAction => '"https://api.betfair.com/global/v3/BFGlobalService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "get_events call failed"}; 
#print Dumper(\$result); 
 my $response=\%{$result->{'soap:Body'}{'n:getEventsResponse'}{'n:Result'}}; 
# print Dumper(\$response); 
 $events_hash{'errorCode'}  = 

$response->{'errorCode'}{'content'}; 
 $events_hash{'timeStamp'}  = 

$response->{'header'}->{'timestamp'}{'content'}; 
 $events_hash{'sessionToken'}  = 

$response->{'header'}->{'sessionToken'}{'content'}; 
 my $type=substr($response->{'marketItems'}{'n2:MarketSummary'},0,4); 
 if ( $type eq "HASH" ) 
  {  
  my $marketId= 

$response->{'marketItems'}{'n2:MarketSummary'}{'marketId'}{'content'}; 
  $events_hash{markets}{$marketId}{timezone} = 

$response->{'marketItems'}{'n2:MarketSummary'}{timezone}{'content'}; 
  $events_hash{markets}{$marketId}{menuLevel} = 

$response->{'marketItems'}{'n2:MarketSummary'}{menuLevel}{'content'}; 
  $events_hash{markets}{$marketId}{marketName} = 

$response->{'marketItems'}{'n2:MarketSummary'}{marketName}{'content'}; 
  $events_hash{markets}{$marketId}{orderIndex} = 

$response->{'marketItems'}{'n2:MarketSummary'}{orderIndex}{'content'}; 
  $events_hash{markets}{$marketId}{marketType} = 

$response->{'marketItems'}{'n2:MarketSummary'}{marketType}{'content'}; 
  $events_hash{markets}{$marketId}{startTime} = 

$response->{'marketItems'}{'n2:MarketSummary'}{startTime}{'content'}; 
  $events_hash{markets}{$marketId}{eventTypeId} = 

$response->{'marketItems'}{'n2:MarketSummary'}{eventTypeId}{'content'}; 
  } 
 if ( $type eq "ARRA" ) 
 { 
 foreach my $s (@{$response->{'marketItems'}{'n2:MarketSummary'}}) 



APPENDIX 2 

333 

  { 
  $events_hash{markets}{$s->{marketId}{'content'}}{timezone} = 

$s->{timezone}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{menuLevel} = 

$s->{menuLevel}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{marketName} = 

$s->{marketName}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{orderIndex} = 

$s->{orderIndex}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{marketType} = 

$s->{marketType}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{startTime} = 

$s->{startTime}{'content'}; 
  $events_hash{markets}{$s->{marketId}{'content'}}{eventTypeId} = 

$s->{eventTypeId}{'content'}; 
  } 
 } 
 if ( $type eq "HASH" ) 
  {  
  my $eventId=$response->{'eventItems'}{'n2:BFEvent'}{'eventId'}{'content'}; 
  $events_hash{events}{$eventId}{orderIndex} = 

$response->{'eventItems'}{'n2:BFEvent'}{orderIndex}{'content'}; 
  $events_hash{events}{$eventId}{eventName} = 

$response->{'eventItems'}{'n2:BFEvent'}{eventName}{'content'}; 
  $events_hash{events}{$eventId}{timezone} = 

$response->{'eventItems'}{'n2:BFEvent'}{timezone}{'content'}; 
  $events_hash{events}{$eventId}{startTime} = 

$response->{'eventItems'}{'n2:BFEvent'}{startTime}{'content'}; 
  $events_hash{events}{$eventId}{menuLevel} = 

$response->{'eventItems'}{'n2:BFEvent'}{menuLevel}{'content'}; 
  $events_hash{events}{$eventId}{eventTypeId} = 

$response->{'eventItems'}{'n2:BFEvent'}{eventTypeId}{'content'}; 
  } 
 if ( $type eq "ARRA" ) 
 { 
 foreach my $s (@{$response->{'eventItems'}{'n2:BFEvent'}}) 
   { 
   $events_hash{events}{$s->{eventId}{'content'}}{orderIndex}  

  =$s->{orderIndex}{'content'}; 
   $events_hash{events}{$s->{eventId}{'content'}}{eventName}  

  =$s->{eventName}{'content'}; 
   $events_hash{events}{$s->{eventId}{'content'}}{timezone}  

  =$s->{timezone}{'content'}; 
   $events_hash{events}{$s->{eventId}{'content'}}{startTime}  

  =$s->{startTime}{'content'}; 
   $events_hash{events}{$s->{eventId}{'content'}}{menuLevel}  

  =$s->{menuLevel}{'content'}; 
   $events_hash{events}{$s->{eventId}{'content'}}{eventTypeId}  

=$s->{eventTypeId}{'content'}; 
   } 
 } 
 return %events_hash; 
 } 
 
sub get_market_prices_compressed 
 { 
  my ($sessionToken,$marketId)=@_; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getMarketPricesCompressed 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <marketId>'.$marketId.'</marketId> 
   </m:request> 



AUTOMATIC EXCHANGE BETTING 

334  

  </m:getMarketPricesCompressed> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "get_market_prices_compressed failed 

to retrieve valid XML"}; 
 
  my %prices_hash; 
#  print Dumper(\$result); 
   my $response=\%{$result-

>{'soap:Body'}{'n:getMarketPricesCompressedResponse'}{'n:Result'}}; 
#  print Dumper($response); 
 $prices_hash{'errorCode'}  = 

$response->{'errorCode'}{'content'}; 
 $prices_hash{'timeStamp'}  =  

$response->{'header'}->{'timestamp'}{'content'}; 
 $prices_hash{'sessionToken'}  = 

$response->{'header'}->{'sessionToken'}{'content'}; 
my $runner_price= $result-> 

{'soap:Body'}{'n:getMarketPricesCompressedResponse'}{'n:Result'}{'marketPrices'}{'
content'}; 

 $runner_price=~ s/\\:/colon/g; 
# print $runner_price,"\n"; 
 $prices_hash{'noRunners'}=0; 
 my @price_split=split(/:/,$runner_price); 
 my $size=@price_split; 
# print $size,"\n"; 
 my @market_attributes=split(/\~/,$price_split[0]); 
 $prices_hash{'marketId'}  =$market_attributes[0]; 
 $prices_hash{'currencyCode'}  =$market_attributes[1]; 
 $prices_hash{'delay'}   =$market_attributes[3]; 
 $prices_hash{'marketStatus'}  =$market_attributes[2]; 
 $prices_hash{'marketInfo'}  =$market_attributes[5]; 
 $prices_hash{'numberOfWinners'} =$market_attributes[4]; 
 $prices_hash{'lastRefresh'}  =$market_attributes[8]; 
 $prices_hash{'IsBSP'}   =$market_attributes[10]; 

#returns a value of Y or N 
  

for ( my $t =1 ; $t < $size ; $t++) 
  
 { 
  my @prices =split(/\|/,$price_split[$t]); 
  my @header =split(/\~/,$prices[0]); 
  my @back   =split(/\~/,$prices[1]); 
  my @lay    =split(/\~/,$prices[2]); 
  $prices_hash{'noRunners'}++;  
  my $runnerId = $header[0];  
  $prices_hash{'prices'}{$runnerId}{'orderIndex'}  =$header[1]; 
  $prices_hash{'prices'}{$runnerId}{'totalAmountMatched'} =$header[2]; 
  $prices_hash{'prices'}{$runnerId}{'lastPriceMatched'} =$header[3]; 
  $prices_hash{'prices'}{$runnerId}{'asianHandicap'}  =$header[4]; 
  $prices_hash{'prices'}{$runnerId}{'reductionFactor'}  =$header[5]; 
  $prices_hash{'prices'}{$runnerId}{'vacantTrap'}  =$header[6]; 
  $prices_hash{'prices'}{$runnerId}{'farBSP'}   =$header[7]; 
  $prices_hash{'prices'}{$runnerId}{'nearBSP'}   =$header[8]; 
  $prices_hash{'prices'}{$runnerId}{'actualBSP'}  =$header[9]; 
  $prices_hash{'prices'}{$runnerId}{'backDepth'}=0; 
  my $back_size=@back; 
  my $lay_size =@lay; 



APPENDIX 2 

335 

  if ( $back_size == 0 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'backDepth'}=0; 
   } 
  if ( $back_size == 4 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'backDepth'}=1; 
   $prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'}=$back[0]; 

         
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'}=$
back[1]; 

   } 
  if ( $back_size == 8 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'backDepth'}=2; 
   $prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'}= $back[0]; 

         
$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'}= 
$back[1]; 

   $prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'price'}= $back[4]; 
   $prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'amountAvailable'}=  

  $back[5]; 
   }  
  if ( $back_size == 12 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'backDepth'}=3; 
   $prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'price'}=$back[0]; 

$prices_hash{'prices'}{$runnerId}{'back'}{'1'}{'amountAvailable'} 
=$back[1]; 

   $prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'price'}=$back[4]; 
$prices_hash{'prices'}{$runnerId}{'back'}{'2'}{'amountAvailable'}= 
$back[5]; 

   $prices_hash{'prices'}{$runnerId}{'back'}{'3'}{'price'}=$back[8]; 
   $prices_hash{'prices'}{$runnerId}{'back'}{'3'}{'amountAvailable'}= 

$back[9]; 
   } 
  if ( $lay_size == 0 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'layDepth'}=0; 
   } 
  if ( $lay_size == 4 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'layDepth'}=1; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}=$lay[0]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}= 

$lay[1]; 
   } 
  if ( $lay_size == 8 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'layDepth'}=2; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}=$lay[0]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}= 

$lay[1]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'price'}=$lay[4]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'amountAvailable'}= 

$lay[5]; 
   }  
  if ( $lay_size == 12 ) 
   { 
   $prices_hash{'prices'}{$runnerId}{'layDepth'}=3; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'price'}=$lay[0]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'1'}{'amountAvailable'}= 

$lay[1]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'price'}=$lay[4]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'2'}{'amountAvailable'}= 

$lay[5]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'3'}{'price'}=$lay[8]; 
   $prices_hash{'prices'}{$runnerId}{'lay'}{'3'}{'amountAvailable'}= 

$lay[9]; 
   } 
  } 



AUTOMATIC EXCHANGE BETTING 

336  

 my $prices = 'prices'; 
 
 return %prices_hash; 
 
 
} 
 
 
sub place_bet 
 { 
 my %bet_hash = (); 
 my 

($sessionToken,$asianLineId,$betType,$marketId,$price_asked,$selectionId,$stake,$b
etCategoryType,$betPersistenceType,$bspLiability)=@_; 

 my $xml='<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:m0="http://www.betfair.com/publicapi/types/"> 

 <SOAP-ENV:Body> 
  <m:placeBets 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <bets> 
     <m0:PlaceBets> 
    <asianLineId>'.$asianLineId.'</asianLineId> 
    <betType>'.$betType.'</betType> 
    <betCategoryType>'.$betCategoryType.'</betCategoryType> 
   

 <betPersistenceType>'.$betPersistenceType.'</betPersistenceType> 
    <marketId>'.$marketId.'</marketId> 
    <price>'.$price_asked.'</price> 
    <selectionId>'.$selectionId.'</selectionId> 
    <size>'.$stake.'</size> 
     <bspLiability>'.$bspLiability.'</bspLiability> 
     </m0:PlaceBets> 

</bets> 
   </m:request> 
  </m:placeBets> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
#print Dumper(\$resp);  
my $content=$resp->content;  
#print Dumper(\$content); 
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "place_bet failed to retrieve valid 

XML"}; 
my $response=\%{$result->{'soap:Body'}{'n:placeBetsResponse'}{'n:Result'}}; 
#print Dumper($response); 
 
 $bet_hash{'errorCode'}  =$response->{'errorCode'}{'content'}; 
 $bet_hash{'timeStamp'}  =$response->{'header'}->{'timestamp'}{'content'}; 
 $bet_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
#my $bet_results; 
#$bet_hash{$bet_results} =$response->{'betResults'}{'n2:PlaceBetsResult'}; 
my $bet_results=$response->{'betResults'}{'n2:PlaceBetsResult'}; 



APPENDIX 2 

337 

 
  $bet_hash{'betId'}  =$bet_results->{'betId'}{'content'}; 
  $bet_hash{'averagePriceMatched'} = 

$bet_results->{'averagePriceMatched'}{'content'}; 
  $bet_hash{'resultCode'} =$bet_results->{'resultCode'}{'content'}; 
  $bet_hash{'sizeMatched'} =$bet_results->{'sizeMatched'}{'content'}; 
  $bet_hash{'success'}  =$bet_results->{'success'}{'content'}; 
 return %bet_hash; 
 } 
 
sub update_bet 
 { 
 my %update_hash = (); 
 my ($sessionToken,$betId,$newPrice,$newSize,$oldPrice,$oldSize, $persistType, 

$oldPersistType)=@_; 
 my $xml='<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:m0="http://www.betfair.com/publicapi/types/"> 

 <SOAP-ENV:Body> 
  <m:updateBets 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <bets> 
     <m0:UpdateBets> 
      <betId>'.$betId.'</betId> 
     

 <newBetPersistenceType>'.$persistType.'</newBetPersistenceType> 
      <newPrice>'.$newPrice.'</newPrice> 
      <newSize>'.$newSize.'</newSize> 
     

 <oldBetPersistenceType>'.$oldPersistType.'</oldBetPersistenceType> 
      <oldPrice>'.$oldPrice.'</oldPrice> 
      <oldSize>'.$oldSize.'</oldSize> 
     </m0:UpdateBets> 
    </bets> 
   </m:request> 
  </m:updateBets> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result = XMLin($content);  
#print Dumper(\$result);  
my $response=\%{$result->{'soap:Body'}{'n:updateBetsResponse'}{'n:Result'}}; 
#print Dumper(\$response);  
 $update_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $update_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $update_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
my $bet_results=$response->{'betResults'}{'n2:UpdateBetsResult'}; 
   $update_hash{'success'}=$bet_results->{'success'}{'content'}; 
   $update_hash{'sizeCancelled'}  = 

$bet_results->{'sizeCancelled'}{'content'}; 
   $update_hash{'newPrice'}  = 

$bet_results->{'newPrice'}{'content'}; 
   $update_hash{'oldBetId'}  = 



AUTOMATIC EXCHANGE BETTING 

338  

$bet_results->{'betId'}{'content'}; 
   $update_hash{'newBetId'}  = 

$bet_results->{'newBetId'}{'content'}; 
   $update_hash{'newSize'}   = 

$bet_results->{'newSize'}{'content'}; 
 return %update_hash; 
 } 
 
sub cancel_bet  #use cancel bets by market to close out an entire position 
 { 
 my %cancel_hash = (); 
 my ($sessionToken,$betId)=@_; 
 my $xml='<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:m0="http://www.betfair.com/publicapi/types/"> 

 <SOAP-ENV:Body> 
  <m:cancelBets 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <bets> 
     <m0:CancelBets> 
      <betId>'.$betId.'</betId> 
     </m0:CancelBets> 
    </bets> 
   </m:request> 
  </m:cancelBets> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result = XMLin($content);  
my $response=\%{$result->{'soap:Body'}{'n:cancelBetsResponse'}{'n:Result'}}; 
#print Dumper(\$response);  
 $cancel_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $cancel_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $cancel_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
 my $bet_results =  $response->{'betResults'}{'n2:CancelBetsResult'}; 
 $cancel_hash{'resultCode'} =$bet_results->{'resultCode'}{'content'}; 
 $cancel_hash{'betId'}  =$bet_results->{'betId'}{'content'}; 
 $cancel_hash{'sizeMatched'} =$bet_results->{'sizeMatched'}{'content'};   
#for any amounts that got away while making the call 
 $cancel_hash{'sizeCancelled'} =$bet_results->{'sizeCancelled'}{'content'}; 
 return %cancel_hash; 
 } 
 
 
sub get_detailed_market_depth  { 
  my ($sessionToken,$marketId,$selectionId)=@_; 
 my %depth_hash; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 



APPENDIX 2 

339 

  <m:getDetailAvailableMktDepth 
xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 

   <m:request> 
    <header> 
     <clientstamp>0</clientstamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <marketId>'.$marketId.'</marketId> 
    <selectionId>'.$selectionId.'</selectionId> 
   </m:request> 
  </m:getDetailAvailableMktDepth> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content); 
 
#print Dumper(\$content); 
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "get_detailed_market_depth failed to 

retrieve valid XML"}; 
 
my $response=\%{$result-

>{'soap:Body'}{'n:getDetailAvailableMktDepthResponse'}{'n:Result'}}; 
#print Dumper($response); 
 $depth_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $depth_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $depth_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
 
 $depth_hash{'oddsArray'} = $response->{'priceItems'}{'n2:AvailabilityInfo'}; 
 
#   return; 
#my $array_odds = $response{'priceItems'}; 
#my $array_odds = $response{'priceItems'}{'n2:AvailabilityInfo'}; 
#my @array_odds = $response{'priceItems'}{'n2:AvailabilityInfo'}; 
#my $array_odds = $response{'priceItems'}{'n2:AvailabilityInfo'}; 
 
return %depth_hash; 
 
 
}; 
 
sub get_market_traded_volume  { 
  my ($sessionToken,$marketId,$selectionId)=@_; 
 my %traded_hash; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getMarketTradedVolume 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientstamp>0</clientstamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <marketId>'.$marketId.'</marketId> 
    <selectionId>'.$selectionId.'</selectionId> 
   </m:request> 
  </m:getMarketTradedVolume> 
 </SOAP-ENV:Body> 



AUTOMATIC EXCHANGE BETTING 

340  

</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
 
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die "get_market_traded_volume failed to 

retrieve valid XML"}; 
 
my $response=\%{$result->{'soap:Body'}{'n:getMarketTradedVolumeResponse'}{'n:Result'}}; 
#print Dumper($response);  
 
 $traded_hash{'errorCode'}  =$response->{'errorCode'}{'content'}; 
 $traded_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $traded_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
 $traded_hash{'volArray'} = $response->{'priceItems'}{'n2:VolumeInfo'}; 
 
 
return %traded_hash; 
 
}; 
 
sub get_bet 
#example of a subscription API service, bet details can also be retrieved using the Free 

Access API 
 { 
 my %getbet_hash = (); 
  my ($sessionToken, $betId)=@_; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getBet 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>2147463847</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <betId>'.$betId.'</betId> 
   </m:request> 
  </m:getBet> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
 
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result;  
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die}; 
#print Dumper(\$result);  
my $response=\%{$result->{'soap:Body'}{'n:getBetResponse'}{'n:Result'}}; 
#  print Dumper(\$response); 



APPENDIX 2 

341 

 
 $getbet_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $getbet_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $getbet_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
  
 $getbet_hash{profitAndLoss}=$response->{'bet'}{'profitAndLoss'}{'content'}; 
 $getbet_hash{marketId}=$response->{'bet'}{'marketId'}{'content'}; 
 $getbet_hash{matchedSize}=$response->{'bet'}{'matchedSize'}{'content'}; 
 $getbet_hash{matchedDate}=$response->{'bet'}{'matchedDate'}{'content'}; 
 $getbet_hash{selectionName}=$response->{'bet'}{'selectionName'}{'content'}; 
 $getbet_hash{selectionId}=$response->{'bet'}{'selectionId'}{'content'}; 
 $getbet_hash{requestedSize}=$response->{'bet'}{'requestedSize'}{'content'}; 
 $getbet_hash{avgPrice}=$response->{'bet'}{'avgPrice'}{'content'}; 
 $getbet_hash{marketName}=$response->{'bet'}{'marketName'}{'content'}; 
 $getbet_hash{fullMarketName}=$response->{'bet'}{'fullMarketName'}{'content'}; 
 return %getbet_hash; 
 }; 
 
sub get_mubets 
 { 
 my %mubets_hash; 
 my ($sessionToken, $marketId, $betId)=@_; #need to specify @betIds as a third 

parameter in time 
unless ($betId == 0) {$betId = "<betId>$betId</betId>"};   #quick fix for single entries 
 my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getMUBets 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>2147463847</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <betStatus>MU</betStatus> 
    <marketId>'.$marketId.'</marketId> 
     
    <betIds>'.$betId.'</betIds> 
     
    <orderBy>PLACED_DATE</orderBy> 
    <sortOrder>DESC</sortOrder> 
    <recordCount>10</recordCount> 
    <startRecord>0</startRecord> 
    <matchedSince>0</matchedSince> 
   </m:request> 
  </m:getMUBets> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
 
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result = XMLin($content);  
#print Dumper(\$result);  
my $response=\%{$result->{'soap:Body'}{'n:getMUBetsResponse'}{'n:Result'}}; 
#print Dumper($response); 
 $mubets_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $mubets_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $mubets_hash{'sessionToken'} =$response->{'header'}->{'sessionToken'}{'content'}; 
 $mubets_hash{'results'} =$response->{'bets'}{'n2:MUBet'}; 
 my $matched_results = $mubets_hash{'results'};  



AUTOMATIC EXCHANGE BETTING 

342  

  
 #force one value to be an array if only one hash returned 
 
 if (ref( $matched_results )  eq "HASH")    {   
#if there is only one value returned, force an anonymous array, so all data can be 
#accessed in the same way by programs 
 my @matched_array; 
 push @matched_array, $matched_results; 
 $mubets_hash{'results'} = \@matched_array; 
 } 
 
 
#print "$matched_status, $matched_size, $matched_price, $betType\n"; 
return %mubets_hash; 
 
 #access individual bet details as follows: 
 #$results = $mubets_hash{'results'}  
 #foreach my $ref ( @ { $results } ) { 
 
 #$mu_status = $ref->{betStatus}{content}; 
 #$mu_size = $ref->{size}{content}; 
 #$mu_price = $ref->{price}{content}; 
 #$mu_betType = $ref->{betType}{content}; 
        #$mu_date' = $ref->{matched_date}{content}; 
 #$mu_selectionId = $ref->{selectionId}{content}; 
 #mu_marketId = $ref->{marketId}{content}; 
 
 #note the following new categories for API6: 
  #$mu_persistence = $ref->{betPersistenceType}{content} 
 #$mu_betCat = $ref->{betCategoryType}{content} 
 #$mu_bsp = $ref->{bspLiability}{content} 
         
} 
 
sub get_market_pandl 
 { 
  my ($sessionToken, $marketID)=@_; 
 my %pandl_hash = (); 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getMarketProfitAndLoss 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:request> 
    <header> 
     <clientStamp>2147463847</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <includeSettledBets>false</includeSettledBets> 
    <includeBspBets>true</includeBspBets> 
    <marketID>'.$marketID.'</marketID> 
    <netOfCommission>false</netOfCommission> 
   </m:request> 
  </m:getMarketProfitAndLoss> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result = XMLin($content);  
#print Dumper(\$result);  



APPENDIX 2 

343 

my $response=\%{$result->{'soap:Body'}{'n:getMarketProfitAndLossResponse'}{'n:Result'}}; 
 
 $pandl_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $pandl_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $pandl_hash{'sessionToken'} =$response->{'header'}->{'sesssionToken'}{'content'}; 
 $pandl_hash{'results'} =$response->{'annotations'}{'n2:ProfitAndLoss'}; 
 $pandl_hash{'commissionApplied'}=$response->{'commissionApplied'}{'content'}; 
 $pandl_hash{'marketStatus'}=$response->{'marketStatus'}{'content'}; 
 #print Dumper ($pandl_hash{'results'}); 
 
 return %pandl_hash; 
 } 
 
 
 
sub get_account_statement 
 { 
 my %statement_hash = (); 
  my ($sessionToken, $startDate, $endDate)=@_; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

 <SOAP-ENV:Body> 
  <m:getAccountStatement 

xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
   <m:req> 
    <header> 
     <clientStamp>0</clientStamp> 
     <sessionToken>'.$sessionToken.'</sessionToken> 
    </header> 
    <startRecord>0</startRecord> 
    <recordCount>1000</recordCount> 
    <startDate>'.$startDate.'</startDate> 
    <endDate>'.$endDate.'</endDate> 
    <itemsIncluded>ALL</itemsIncluded> 
   </m:req> 
  </m:getAccountStatement> 
 </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new();  
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService');  
 
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"');  
$request->content($xml);  
$request->content_type("text/xml; charset=utf-8");  
 
my $resp = $userAgent->request($request);  
my $content=$resp->content;  
#print Dumper(\$content);  
my $result;  
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die}; 
#print Dumper(\$result);  
my $response=\%{$result->{'soap:Body'}{'n:getAccountStatementResponse'}{'n:Result'}}; 
  #print Dumper(\$response); 
#print Dumper($response); 
 $statement_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 $statement_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 $statement_hash{'sessionToken'}= 

$response->{'header'}->{'sessionToken'}{'content'}; 
 $statement_hash{'items'} =$response->{'items'}{'n2:AccountStatementItem'}; 
 
 
 
 #$statement_hash{'errorCode'} =$response->{'errorCode'}{'content'}; 
 #$statement_hash{'timeStamp'} =$response->{'header'}->{'timestamp'}{'content'}; 
 #$statement_hash{'sessionToken'}= 

#$response->{'header'}->{'sessionToken'}{'content'}; 



AUTOMATIC EXCHANGE BETTING 

344  

 #$statement_hash{profitAndLoss}=$response->{'bet'}{'profitAndLoss'}{'content'}; 
 #$statement_hash{marketId}=$response->{'bet'}{'marketId'}{'content'}; 
 #$statement_hash{matchedSize}=$response->{'bet'}{'matchedSize'}{'content'}; 
 #$statement_hash{matchedDate}=$response->{'bet'}{'matchedDate'}{'content'}; 
 #$statement_hash{selectionName}=$response->{'bet'}{'selectionName'}{'content'}; 
 #$statement_hash{selectionId}=$response->{'bet'}{'selectionId'}{'content'}; 
 #$statement_hash{requestedSize}=$response->{'bet'}{'requestedSize'}{'content'}; 
 #$statement_hash{avgPrice}=$response->{'bet'}{'avgPrice'}{'content'}; 
 #$statement_hash{marketName}=$response->{'bet'}{'marketName'}{'content'}; 
 #$statement_hash{fullMarketName}=$response->{'bet'}{'fullMarketName'}{'content'}; 
 return %statement_hash; 
 }; 
 
 
sub get_account_funds 
        { 
        my %funds_hash = (); 
  my ($sessionToken)=@_; 
#  my $sessionToken = $_; 
  my $xml='<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<SOAP-ENV:Body> 
<m:getAccountFunds xmlns:m="http://www.betfair.com/publicapi/v5/BFExchangeService/"> 
    <request> 
<header> 
<clientStamp>0</clientStamp> 
<sessionToken>'.$sessionToken.'</sessionToken> 
</header> 
    </request> 
</m:getAccountFunds> 
</SOAP-ENV:Body> 
</SOAP-ENV:Envelope>'; 
my $userAgent = LWP::UserAgent->new(); 
my $request = HTTP::Request->new(POST => 

'https://api.betfair.com/exchange/v5/BFExchangeService'); 
 
$request->header(SOAPAction => 

'"https://api.betfair.com/exchange/v5/BFExchangeService"'); 
$request->content($xml); 
$request->content_type("text/xml; charset=utf-8"); 
 
my $resp = $userAgent->request($request); 
my $content=$resp->content; 
#print Dumper(\$content); 
my $result; 
eval { $result = XMLin($content) }; 
if ($@) {print Dumper ($content); print "$@\n"; die}; 
#print Dumper(\$result); 
my $response=\%{$result->{'soap:Body'}{'n:getAccountFundsResponse'}{'n:Result'}}; 
  #print Dumper(\$response); 
#print Dumper($response); 
       $funds_hash{'errorCode'}            =$response->{'errorCode'}{'content'}; 
       $funds_hash{'timeStamp'}            =$response->{'header'}-

>{'timestamp'}{'content'}; 
       $funds_hash{'sessionToken'}         =$response->{'header'}-

>{'sessionToken'}{'content'}; 
       $funds_hash{'availBalance'}         =$response->{'availBalance'}{'content'}; 
       $funds_hash{'balance'}              =$response->{'balance'}{'content'}; 
 
 
return %funds_hash; 
} 
   
 



 

345 

Appendix 3:  Betfair API services 
 
Table A3-1 below lists all Betfair API Services, or calls which can be used for automating 
betting strategies, with corresponding access levels for each depending upon the user’s 
subscription level.  The most commonly used services are described in Chapter 5 and 
example Perl functions for accessing these are detailed in Appendix 2.
 
All the example programs described in the book can be run using the services covered 
by the examples provided and the Free Access API, which is called by specifying a 
product code of “82” in the Login API service, along with the Betfair account username 
and password for any active account, as described in Chapter 5.   
 
Other API services can be accessed by using the methods outlined in Chapter 5 and 
using the examples provided as a template.    
 
A listing of services and access levels is also maintained at the Betfair Developers 
Program (BDP) website accessible from www.betfair.com. 
 
 
Table A3-1:  Listing of Betfair API Services 
 

Personal  
Full Access 

Free 
Access  Betfair API Service Name 

Read-
Only Trans. Trans. 

Login   24 p/m 

Logout    
KeepAlive    
Convert Currency     
Get Active Event Types    
Get All Currencies     
Get All Event Types    
Get All Markets    
Get Bet     
Get Bet History   1 p/m 
Get Bet Lite     
Get Bet Matches Lite     
Get Current Bets   60 p/m 
Get Current Bets Lite     
Get Detail Available Market Depth   60 p/m 
Get Events    
Get In-Play Markets     



AUTOMATIC EXCHANGE BETTING 

346  

Table A3-1:  Listing of Betfair API Services (continued) 
 
Get Silks      
Get Market   5 p/m 
Get Market Info   5 p/m 
Get Market Prices   10 p/m 
Get Market Prices Compressed   60 p/m 
Get Complete Market Prices 
Compressed   60 p/m 

Get Matched and Unmatched Bets   60 p/m 
Get Matched and Unmatched Bets 
Lite     

Get Market Profit And Loss   60 p/m 
Get Market Traded Volume   60 p/m 
Cancel Bets    60 p/m 
Cancel Bets By Market      
Place Bets    60 p/m 
Update Bets    60 p/m 

Add Payment Card    
Create Account       
Delete Payment Card    
Deposit From Payment Card    
Forgot Password     
Get Account Funds   1 p/m 
Get Account Statement   1 p/m 
Get Payment Card    
Get Subscription Info    
Get Refer and Earn     
Modify Password     
Modify Profile    
Retrieve LIMB Message     
Self Exclude    
Submit LIMB Message     
Transfer Funds     
Update Payment Card       
View Profile    
Withdraw To Payment Card     
Service Announcements    

p/m = per minute 



 

347 

Appendix 4:  Betfair Course Abbreviations 

 
This appendix lists the abbreviations for UK and Irish racecourses used by Betfair, 
together with the full course name.   The abbreviations are represented below as a Perl 
data hash (but could equally be a data structure within any other programming 
language), where the value on the left is the lookup key,  => is the assignment operator, 
and the value on the right is the return value.    
 
This data hash is used in Chapter 5, Example 5-2, in order to return full course names 
for the abbreviations found via the Betfair API, for populating coursename descriptions 
for an example database table, races.    
 
 
%bf_course_abbrevs = ( 
Aint    =>      "Aintree", 
Ascot   =>      "Ascot", 
Ayr     =>      "Ayr", 
Bang    =>      "Bangor", 
Bath    =>      "Bath", 
Bellew  =>      "Bellewstown", 
Bev     =>      "Beverley", 
Brig    =>      "Brighton", 
Carl    =>      "Carlisle", 
Cart    =>      "Cartmel", 
Catt    =>      "Catterick", 
Chelt   =>      "Cheltenham", 
Chep    =>      "Chepstow", 
Chest   =>      "Chester", 
Donc    =>      "Doncaster", 
Epsm    =>      "Epsom", 
Extr    =>      "Exeter", 
Fake    =>      "Fakenham", 
Folk    =>      "Folkestone", 
Font    =>      "Fontwell", 
GLghs   =>      "Great_Leighs", 
Good    =>      "Goodwood", 
Ham     =>      "Hamilton", 
Hayd    =>      "Haydock", 
Here    =>      "Hereford", 
Hex     =>      "Hexham", 
Hunt    =>      "Huntingdon", 
Kelso   =>      "Kelso", 
Kemp    =>      "Kempton", 
Leic    =>      "Leicester", 
Ling    =>      "Lingfield", 
Ludl    =>      "Ludlow", 
MrktR   =>      "Market_Rasen", 
Muss    =>      "Musselburgh", 
Newb    =>      "Newbury", 
Newc    =>      "Newcastle", 
Newm    =>      "Newmarket", 
Newt    =>      "Newton_Abbot", 
Nott    =>      "Nottingham", 
Perth   =>      "Perth", 
Plump   =>      "Plumpton", 
Ponte   =>      "Pontefract", 
Redc    =>      "Redcar", 
Ripon   =>      "Ripon", 
Salis   =>      "Salisbury", 
Sand    =>      "Sandown", 
Sedge   =>      "Sedgefield", 
Sthl    =>      "Southwell", 
Strat   =>      "Stratford", 
Sligo   =>      "Sligo", 



AUTOMATIC EXCHANGE BETTING 

348  

Taun    =>      "Taunton", 
Thirsk  =>      "Thirsk", 
Towc    =>      "Towcester", 
Uttox   =>      "Uttoxeter", 
Warw    =>      "Warwick", 
Weth    =>      "Wetherby", 
Winc    =>      "Wincanton", 
Wind    =>      "Windsor", 
Wolv    =>      "Wolverhampton", 
Worc    =>      "Worcester", 
Yarm    =>      "Yarmouth", 
York    =>      "York", 
Ballin  =>      "Ballinrobe", 
Belle   =>      "Bellewstown", 
Clon    =>      "Clonmel", 
Cork    =>      "Cork", 
DownR   =>      "Down_Royal", 
DownP   =>      "Downpatrick", 
Dund    =>      "Dundalk", 
Fairy   =>      "Fairyhouse", 
Gal     =>      "Galway", 
GowP    =>      "Gowran_Park", 
Killar  =>      "Killarney", 
Kilb    =>      "Kilbeggan", 
Layt    =>      "Layton", 
Leop    =>      "Leopardstown", 
Lim     =>      "Limerick", 
List    =>      "Listowel", 
Naas    =>      "Naas", 
Navan   =>      "Navan", 
Punch   =>      "Punchestown", 
Rosc    =>      "Roscommon", 
Silgo   =>      "Sligo", 
Curr    =>      "The_Curragh", 
Curragh =>      "The_Curragh", 
Thurl   =>      "Thurles", 
Tipp    =>      "Tipperary", 
Tral    =>      "Tralee", 
Tram    =>      "Tramore", 
Wex     =>      "Wexford" 
); 
 

Figure A4-1:  Perl data hash of Betfair racecourse abbreviations 
 



 

349 

Appendix 5:  Betfair Price Increments 
 
Since the decimal odds requested for any bet, back or lay, require the exact price format 
and range used by Betfair, automated programs must be capable of specifying the 
values in this range.   The below table shows the price increments for Betfair odds, as 
discussed in Chapter 9.
 
Table A5-1:  Price Increments for Betfair Odds Markets 
 

Decimal Odds Range Increment 
1.01 → 2  0.01 

2 → 3  0.02 
3 → 4  0.05 
4 → 6  0.1 

6 → 10  0.2 
10 → 20 0.5 
20 → 30  1 
30 → 50 2 
50 → 100 5 

100 → 1000 10 
 
 
In a Perl data structure, this can be represented as an array comprising of the following 
values (only the first few values are shown below).   Such an array can be used to 
automatically increment or decrement a price, as shown in Example 9-2. 
 
my @betfair_odds = ( 
1.01, 
1.02, 
1.03, 
1.04, 
1.05, 
1.06, 
1.07, 
1.08, 
1.09, 
1.10, 
Etc…as per increment table up to and including 1000 
) 



 

  



 

351 

Index To Figures, Tables and Examples 
Index to Figures 
 
Figure 2-1:   An Automated Betting Process     45 
Figure 4-1:    Communicating with the Betfair Exchange    62 
Figure 4-2:     Betfair Live Price and Volume data, corresponding to data  

returned by the GetMarketPricesCompressed API Service   75 
Figure 4-3:   Betfair Live Market Summary Data corresponding to the 

GetMarketPricesCompressed API Service     76 
Figure 4-4:   Betfair Live Market Non Runner Information corresponding to the 

GetMarkets and GetMarketPricesCompressed Services   76 
Figure 5-1:    Daily Horseracing Events, automatically captured,  

shown by country, course and time      99 
Figure 5-2:    Daily Horseracing Events, queried to return UK Handicaps only  100 
Figure 6-1:    Example Racing Post Postdata Table     105 
Figure 6-2:   Excerpt of data file showing repurposed Postdata variables  108 
Figure 6-3:    Excerpt of formatted oddsline, ready for use as a betting input file  115 
Figure 6-4:    Oddsline formatted as a report      117 
Figure 8-1:    Market data ordered by back price for a single timestamp   151 
Figure 8-2:    Market data for a single runner ordered by timestamp   159 
Figure 8-3:    Market data ordered by back price for a single timestamp   166 
Figure 8-4:    Traded and Available Prices/Volume on Betfair,  

corresponding to GetTradedMarketVolume and 
GetDetailAvailableMktDepth API functions    173  

Figure 12-1:     Betfair P&L after first few races in live test     246 
Figure 12-2:     Betfair P&L for 13:45 Ascot       247 
Figure 12-3:    Betfair P&L for Trick or Treat       247 
Figure 12-4:    Automated Program Report for 1:45 Ascot     248 
Figure 12-5:     Betfair P&L after 3.45 York       251 
Figure 12-6:     Betfair P&L before Evening Racing      252 
Figure 12-7:     Final P&L for UK Racing Saturday 13th October    253 
Figure 13-1:  Races with instances of incorrectly identified non-runners   257 
Figure 13-2:  Instance of a failed call       259 
Figure 14-1:   Overall P&L November 18th 2007      272 
Figure 14-2:   Postdata oddsline report, Cheltenham 1:45, 18/11/2007    274 
Figure 14-3:   Equiform oddsline report, Cheltenham 1:45, 18/11/2007   275 
Figure 14-4:   Equiform oddsline report, Leicester 2:10, 19/11/2007   276 
Figure 14-5:   Account P&L for racing on Monday 19th September 2007   278 
Figure 14-6:   Postdata oddsline report, Folkestone 1:10, 20/11/2007   280 
Figure 14-7:   Postdata oddsline report, Folkestone 2:40, 20/11/2007   281 
Figure 14-8:   Oddslines compared for Folkestone 12:40, 21/11/2007   283 
Figure 14-9:   Interim Account P&L for 22/11/2007      285 
Figure 14-10:   Postdata Oddsline for 12.40 Ayr, 26/11/2007    296 
Figure 14-11:   Betfair Account P&L for 26/11/2007      297 
Figure 14-12:   Equiformratings Program Report for 3.45 Newbury, 01/12/2007  302 
Figure 14-13:   Postdata Oddsline Program Report for 3.45 Newbury, 01/12/2007  302 
Figure 14-14:   P&L over Production Run       305 
Figure A4-1:   Perl data hash of Betfair racecourse abbreviations    348 



 

352  

 

Index to Tables: 
 
Table 4-1: Description of Betfair API Services      64 
Table 4-2:   Example Library Functions with Arguments and Return Data 85 
Table 14-1:   P&L by Oddsline Strategy, November 18th 2007    273 
Table 14-2:   P&L by Oddsline Strategy, November 19th 2007    279 
Table 14-3:   P&L by Oddsline Strategy, November 20th 2007    281 
Table 14-4:   P&L by Oddsline Strategy, November 21st 2007    282 
Table 14-5:   P&L by Oddsline Strategy, November 22nd 2007    286 
Table 14-6:   P&L by Oddsline Strategy, November 23rd  2007    287 
Table 14-7:   P&L by Oddsline Strategy, November 24th 2007    287 
Table 14-8:   P&L Postdata All Weather Bets only, week 1    289 
Table 14-9:   P&L Postdata National Hunt Bets only, week 1    289 
Table 14-10:  Postdata P&L breakdown by race code, week 1    289 
Table 14-11:   P&L Postdata Handicap Bets only, week 1     291 
Table 14-12:   P&L Postdata Handicap AW Bets only, week 1    291 
Table 14-13:   P&L Postdata Handicap Hurdle Bets only, week 1    292 
Table 14-14:   P&L Postdata Handicap Chase Bets only, week 1    292 
Table 14-15:   P&L by Oddsline Strategy, November 25th 2007    295 
Table 14-16:   P&L by Oddsline Strategy, November 27th 2007    298 
Table 14-17:   P&L by Oddsline Strategy, December 1st 2007    303 
Table 14-18:   Equiformratings Oddsline Strategy      303 
Table 14-19:   Postdata Oddsline Strategy        304 
Table A3-1:   Listing of Betfair API Services      346 
Table A5-1:   Price Increments for Betfair Odds Markets     349 
 
 

Index to Examples 
 
Example 5-1:   Script to create the races table within the autodb database 

(create_races_table.sql)       93 
Example 5-2:   Capturing Daily Racing Event Data for Betfair win markets 

in the UK and Ireland (get_betfair_races.pl     94 
Example 6-1:   Creating an oddsline from summary data     109 
Example 7-1: Generating a file of event details ordered by time 

(generate_events_schedule.pl)      126 
Example 7-2:  Creating a dynamic schedule (write_schedule.pl)    131 
Example 7-3: Generic code to include in  programs to capture 

 current event details        133 
Example 7-4: Generic code to capture, use and then remove current  

event details for a scheduled program     136 
Example 8-1: Create price table within the autodb database 

(create_price_table.sql)      147 
Example 8-2: Retrieve and store Level 1 market prices and volumes 

(get_market_prices.pl)       148 
Example 8-3:   Capturing prices for multiple events      153 
Example 8-4:   Fetching prices at regular intervals up to a given event time  155 



 

353 

Example 8-5:   Create Average Prices Table      162 
Example 8-6:   Retrieve 3 levels of market data, calculate average prices  

and volumes then save to database      163 
Example 8-7:   Adding calculation of market overround within context of other 

 examples        169 
Example 8-8:   Producing runner price statistics with market traded volumes  175 
Example 9-1: Selecting bets based on an oddsline (bet_formation.pl)   188 
Example 9-2:  Subroutine to increment back price dynamically    202 
Example 9-3:   Automatically determining stakes using an account balance  208 
Example 10-1: Executing Bets from a list of selections     213 
Example 10-2: Retrieving Bet Status by BetId or MarketId     219 
Example 10-3: Updating Unmatched Bets       224 
Example 10-4: Cancelling Unmatched Bets       225 
Example 11-1: Generating a MySQL table to record betting strategy performance  231 
Example 11-2: Retrieving betting records for an individual betting strategy   232 
Example 11-3: Using GetBets to retrieve settled bet details     235 
 
 
 
 
 
 
 



 

  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

355 

Index 
 
anomalies, with horse names from 

different sources, 183, 193, 203, 256, 
261, 270 

assessing chances, 27, 30, 35-36 
at command, 51, 123 
atq command, 124, 132 
atrm command, 124, 132 
Australian events, 79, 86, 329 
autodb database, 93, 107, 147, 162, 322, 

325, 352 
average price, 28, 145-146, 150, 161-162, 

164-167, 170, 174-175, 178-179, 210, 
221, 288, 352 

average volume, 150, 161-162, 165, 179, 
183 

av_price (example database table), 94, 
347 

 
Babbage, Charles, 15 
back price, 74, 83, 145, 151, 161, 165-

166, 175, 177, 180, 187, 194, 196, 
200-205, 212, 217, 223, 226-227, 245, 
249, 256, 258, 261, 270, 275, 305, 307, 
351, 353 

back to lay, 38, 103, 205 
back up, 48-49 
back volume, 161 
backtesting betting strategies, 36, 40, 187, 

198, 245, 268, 270, 288, 296, 311 
bet identification number, betId, 85, 215-

225, 230-236, 250, 337-338, 340-341 
bet retrieval, 31, 53-54, 56, 87, 92, 94, 

133, 141, 149, 236 
betCategoryType, 85 
Betfair account, 63, 86, 231, 271, 277, 
309, 345 
Betfair API downtime, 259 
Betfair API services  

see also Table 4-1 and Table A3-1 
 
GetAccountFunds, 65, 207, 310 
GetAccountStatement, 65, 207, 230, 

231, 234 
GetAllMarkets, 64-54, 78 
GetBet, 65, 230, 235 
GetCompleteMarketPricesCompressed

65, 146, 162, 171 

GetDetailAvailableMktDepth, 65, 171, 
173-174, 351 

GetEvents, 64, 78, 95-97, 101 
GetMarketPrices, 64, 74 
GetMarketPricesCompressed, 13, 65, 

68, 73-80, 83-84, 92, 145-146, 150, 
153, 156, 161, 164, 167, 169-171, 
174, 178, 180, 203, 223, 273-274, 
276, 279-280, 295, 302, 351 

GetMarketTradedVolume, 65, 77, 171, 
174-175, 178, 180 

GetAccountFunds, 65, 207, 310 
GetAccountStatement, 65, 207, 230, 

231, 234 
GetBet, 65, 230, 235 
GetDetailAvailableMktDepth, 65, 171, 

173-174, 351 
GetEvents, 64, 77, 95-97, 101 
GetMarketPrices, 64, 74 
GetMUBets, 65 
KeepAlive, 64, 141, 345 
Login, 63-64, 69-70, 73, 77, 79, 84, 

259, 345 
Logout, 64, 345 
PlaceBets, 66, 196, 200, 212, 216, 336 
UpdateBets, 66, 212, 337 
WithdrawToPaymentCard, 65-66 

 
Betfair Developers Program, 66, 329, 345 
Betfair documentation, 50, 54, 67-68, 71, 

80, 86, 119, 122, 124-125, 313, 320, 
322-323, 325, 329 

Betfair master account, 309 
Betfair price increments, 349 
Betfair Sports Exchange API 6 Reference 

Guide, 67, 78, 81 
Betfair sub-accounts, 271, 309 
BetfairAPI6Examples.pm, 13, 68-69, 86, 

325 
betPersistenceType, 85, 224 
bets, cancelling, 212, 218, 220 
bets, placing, 57, 137, 209-213, 216, 218, 

229 
bets, updating, 211-212, 217-218, 223-

224 
betting bank, 41, 120, 183, 206-208, 310 



 

356  

betting decision, 23, 37, 44, 46, 116, 183, 
185, 242, 310, 311 

Betting P&L, 229, 246-247, 250, 252-253, 
272, 277, 284, 297 

betting process, 11, 15-16, 17, 21-24, 27, 
30-31, 35-40, 43-45, 51-54, 57, 61, 83, 
89-90, 92-93, 103, 117, 138, 145, 170, 
181, 209, 211, 226, 229, 310-311, 315, 
319, 324 

betting report, in example program, 190, 
195, 197, 212, 236, 248, 264 

betting strategies, 11, 18, 36, 47-51, 53, 
56-57, 63, 68, 74, 77, 80, 84, 89-90, 
92, 94, 97, 100, 103, 109, 119, 120, 
122, 126, 136, 139, 141-142, 146, 151, 
157, 201, 209, 215, 229-230, 237, 278, 
319, 326, 345 

betting systems, 24, 28, 29-30, 33, 36, 41, 
56, 315 

British Horseracing Authority (BHA), 25 
bspLiability, 85 
 
Cancel Bets, 66, 346 
Cancel Bets By Market, 346 
cancel_bet see Perl example subroutines 
capturing data, 57, 78, 92, 93, 150, 152, 

181 
commissions, 167, 234, 254, 271, 273, 

275, 278, 298-299, 303, 305 
CPAN archive, 321 
cron command, 51, 119, 122-125, 128, 

138, 142, 231, 271, 294, 310 
crontab file, 122, 128, 130, 326 
 
data formats, 54, 56 
data mining, 34 
data sources, 30, 47, 54-55, 91-94, 106, 

192-193, 255, 258, 260 
database management system (DBMS), 

50, 53, 91 
database queries, 54, 94, 98, 148, 152, 

236 
dotcom boom, 16 
dutch, dutching, 33, 37, 39, 104, 139, 168, 

187, 198-200, 206, 225, 299 
 
equiformratings, 268-270, 301-303, 307, 

351, 352 
event data, 78, 89-93, 98, 121, 135 
expected merit ratings (EMRs), 268, 269 
 

formatted oddsline output, 114 
formatting oddsline, 242 
Free Access API, 63, 70, 84, 95-96, 141, 

148, 153-155, 157, 163, 176, 208, 214, 
218-219, 230, 233, 263, 340, 345 

FreeBSD distribution, 323 
 
get_account_funds see Perl example 

subroutines 
get_account_statement see Perl example 

subroutines 
get_bet see Perl example subroutines 
get_detailed_market_depth see Perl 

example subroutines 
get_events see Perl example subroutines 
get_market_pandl see Perl example 

subroutines 
get_market_prices_compressed see Perl 

example subroutines 
get_market_traded_volume see Perl 

example subroutines 
get_markets see Perl example 

subroutines 
get_mubets see Perl example subroutines 
GetAccountFunds see Betfair API 

services 
GetAccountStatement see Betfair API 

services 
GetAllMarkets see Betfair API services 
GetBet see Betfair API services 
GetCompleteMarketPricesCompressed 

see Betfair API services 
GetDetailAvailableMktDepth see Betfair 

API services 
GetEvents see Betfair API services 
GetMarketPrices see Betfair API services 
GetMarketPricesCompressed see Betfair 

API services 
GetMarketTradedVolume see Betfair API 

services 
GetMUBets see Betfair API services 
green book, 225-226 
greening up, 225, 227 
 
handicap ratings, 25-26, 33, 107 
hedging, 37, 183, 205, 226-227 
hybrid betting strategies, 38, 40, 103 
 
integer scores, 282-283 
Internet Service Provider (ISP), 48-49, 63 
 



 

357 

jockey, 23, 26, 31, 269, 276 
 
KeepAlive see Betfair API services 
Kelly, Kelly Criterion, 41, 206-207, 209, 

315 
Kubuntu, 320 
 
LAMP environment, 50 
lay price, 37, 74, 82-83, 145, 150, 161-

162, 165-166, 175, 201-202, 205, 212, 
227 

lay to back, 38, 205, 227 
lay volume, 83, 161, 164-165, 166 
laying, 21-22, 33, 37-39, 43, 77, 90, 168, 

186-187, 211, 225, 227, 245 
Linux, 11, 47-52, 98, 101, 119, 121-122, 

124, 131, 140, 231, 246, 313, 316, 
319-324, 326 

live test, 193, 241-244, 246, 253, 255-256, 
260-264, 267-270, 287, 307, 351 

login see Perl example subroutines 
Login see Betfair API services 
Logout see Betfair API services 
Lovelace, Ada, 15 
 
Mac OS X, 51, 319, 323 
market information, 37-38, 57, 63, 78, 80-

83, 102, 120, 128, 137, 145-146, 148-
149, 153, 158, 161, 163, 167, 170-171, 
175-176, 181, 188, 193, 209, 222 

market movements, 40, 161 
market overround, calculating, 151, 167-

169, 174, 187, 203, 209, 352 
market timestamp, 264, 273-274, 276, 

279-280, 283, 295, 302 
marketId, market ID, 13, 78, 81, 85, 91-

92, 94, 96-97, 99-100, 126-127, 133-
137, 146-154, 156, 158, 160-165, 167, 
175-178, 187, 189, 191, 196, 213-216, 
218-221, 231, 233, 235-236, 242, 263, 
289, 291, 330, 332-334, 336, 338-339, 
341-342, 344 

Martingale strategies, 206 
matched bets, 43, 139, 221-222 
multiple bets, 16, 66, 141, 216, 221 
multiple events, 23, 89, 152, 154, 167, 

352 
multiple selections, 41 
MySQL, 10, 47-48, 50-52, 54, 56, 93-94, 

98, 100-101, 127, 151-152, 158, 165, 

180, 231, 289, 291, 294, 317, 319-320, 
322-326, 353 

 
non-runners, 57, 92, 120, 125, 129, 184-

185, 189, 192-195, 244-245, 256-257, 
259-260, 270, 276, 278, 287, 351 

 
oddsline, betting, 145, 326 
oddsline, creating, 184, 213 
oddsline, example, 104, 106, 117, 153, 

184-186, 188, 190, 198, 212, 244, 255 
oddslines, generating, 104, 241, 268 
official ratings, 25, 107 
operating systems, 47-51, 90, 119, 121, 

129-130, 132, 138, 140-141, 246, 256, 
262, 313, 319-320, 324 

outcomes, betting on, 103, 145-146, 156, 
168, 209, 212, 226 

overfitting, 28, 42, 293 
overlays, 44, 114, 128-129, 184-186, 196, 

198, 200, 203, 236-237, 243-245, 249-
250, 260, 264, 270, 273-278, 280-284, 
286-287, 290, 295-296, 299-303, 308, 
327 

overrounds, 16, 37, 138, 145-146, 151, 
167, 168-170, 185, 187-189, 193-195, 
203, 217, 225 

 
Past Merit Ratings (PMRs), 268-269 
performance measurement (see also 

ratings), 23 
Perl example subroutines 

See also Table 4-2 and Appendix 2 
 
cancel_bet, 225, 329, 338 
get_account_funds, 85, 208, 329, 344 
get_account_statement, 84-85, 231, 

233, 329, 343 
get_bet, 84-85, 235, 329, 340 
get_detailed_market_depth, 85, 329, 

338-339 
get_events, 85, 96, 329, 332 
get_market_pandl, 85, 329, 342 
get_market_prices_compressed, 13, 

68, 73, 77-78, 83-86, 149-151, 158-
161, 163, 176, 329, 333-334 

get_market_traded_volume, 85, 177, 
329, 339-340 

get_markets, 85, 96, 101-102, 149, 
163, 176, 329, 330-331 

get_mubets, 85, 218-220, 329, 341 



 

358  

login, 68-69, 71, 73, 77-78, 80, 84-85, 
263 

place_bet, 85, 218-219 
update_bet, 85, 224, 329, 337 

 
place_bet see Perl example subroutines 
PlaceBets see Betfair API services 
Postdata, 34, 104-109, 111-114, 117, 

184-186, 188, 236, 244-245, 267-270, 
273-276, 279-307, 351, 352 

predicting outcomes, 24, 103, 244, 312 
predicting performance, 29, 209, 243 
price (example database table), 162 
price ladder, 145, 170-171, 174, 202, 210 
price prediction, 181, 203 
price, calculating average, 145, 161 
price, changing dynamically, 200-201 
prices, multiple events, 152, 167, 352 
prize money, 23, 91, 100, 287 
profit and loss, 44, 92, 217, 229-230, 234-

235, 251, 271, 284, 289, 291, 298-300, 
303, 308 

program report, 195-196, 248-250, 254-
256, 258, 273, 287, 308 

programming languages, 47, 50-51, 54-
55, 66, 119, 319 

 
race planning, 121 
races (example database table), 93, 98, 

101, 121, 148, 236, 289, 291 
Racing Post Ratings, 26 
Racing Post, The, 26, 29, 34, 104-108, 

111, 114, 128, 184, 244-245, 260, 267-
268, 287, 351 

ratings, 12, 23, 25-27, 30-31, 33-34, 36, 
45-46, 94, 107, 110, 114, 188-189, 
194, 244, 267-269, 286, 313, 326 

record keeping, 44, 57, 207, 217, 229-
230, 237, 273 

retrieving market prices, 159, 242 
runner identification (see also selection 

Id), 53, 77, 84, 121, 255-256 
 
scheduling, 50-52, 90, 98, 101, 107, 117, 

119-123, 125, 127-128, 130-131, 133, 
136, 138-143, 152, 154, 156, 181, 184, 
215, 255, 267, 308, 319, 324, 326 

scheduling, dynamic, 121, 123, 137, 191, 
264, 294 

scoring system, 24, 104, 106-107 
screen scraping, 31, 55, 57, 106-107, 326 

selection ID,selectionId, 77, 84, 85, 92, 
102, 137, 213-216, 220-221, 223, 331, 
336, 338-339, 341-342, 344 

sessionToken, 68-73, 77-78, 80, 85, 95, 
149, 163, 176, 208, 214, 219, 233, 235, 
263, 330-334, 336-344 

settled bets, capturing, 230, 235-237 
simulation, betting strategy, 308 
SmartForm Racing Database, 267, 308 
software, choices, 50-53 
speed ratings, 25-27, 113 
staking, 15, 21, 23, 39, 40-42, 120, 183, 

187, 198, 206-209, 213, 230, 287, 310, 
315 

staking plans, 23, 41, 183, 206-207, 310 
Starting Price, 81, 137, 211 
statistics, 24, 54, 106, 174-176, 179, 289, 

313, 353 
step_odds, 202 
stop loss, 207, 310 
 
testing strategies, 40, 217, 310 
third party advice and ratings, 30-31 
third party data sources, 36, 56, 312 
timeout, 259-260 
timestamp, 77, 80, 148-156, 158-159, 

162-166, 176-177, 180, 331-332, 334, 
336-341, 343-344, 351 

tissue price, 12, 36, 109, 111, 113-114, 
116, 125, 128-129, 134, 183-185, 187, 
189, 191-196, 206, 236, 244-245, 249, 
256, 264, 267-269, 282-283, 286, 288 

topspeed ratings, 26, 29, 109 
trading, 16-17, 22, 37-38, 40, 43, 56, 63, 

77, 80, 92, 103, 120, 139, 140, 145-
146, 151, 156, 161, 170-171, 175, 177, 
179, 181, 183, 204-205, 209-210, 212, 
216-218, 223, 225, 227, 310, 312 

traditional betting, 16, 21-22, 27, 43, 211, 
278 

 
Ubuntu, 10, 48, 51-52, 316, 319-323 
underlay, 114, 129 
unmatched bets, 65-66, 142, 200, 211-

212, 217-218, 221-225, 242, 307 
update_bet see Perl example subroutines 
UpdateBets see Betfair API Services 
 
value price, 33, 36, 45, 187 
 
web services, 66 



 

359 

website interface, Betfair, 61, 83, 94, 147, 
223, 226, 229-230, 242, 246, 271 

website technologies, 55 
weight of money, 146, 161-162, 165, 167, 

170, 174, 181, 223 
Windows, 47, 50-52, 67, 119, 147, 319-

320, 323-324 

winning chances, 21, 23, 34, 36, 38, 41, 
103, 183-184 

WithdrawToPaymentCard see Betfair API 
services 

WSDL, 66 

 
 
 

 


	Acknowledgements
	CONTENTS
	Preface
	Structure of This Book
	Example Programs and other resources
	Conventions Used

	Introduction
	The IT revolution in horseracing betting
	The Quest for Automation

	PART 1: EXPLORING REQUIREMENTS FOR BETTING AUTOMATION
	Chapter 1: Exploring the betting process
	&#8220;Traditional&#8221; betting and automated betting
	Betting on one event
	Using Data to predict performance
	Form and Ratings

	Looking for Winners
	Betting systems
	Third party sources
	Observations prior to an event

	Assessing Winning Chances
	Predictive models

	Defining value and using oddslines
	Using Market Information
	Deciding whether and what to Bet
	Staking

	Placing Bets
	Record Keeping

	Chapter 2 : The Automatic Betting Process
	Chapter 3 : Tools of the Trade - Hardware, Software and Data Sources
	Hardware
	Personal Computer:
	Infrastructure for internet access:
	Back up policy and media:
	Uninterrupted Power Supply (UPS):
	Third party hosting services

	Software
	Operating Systems
	Programming Languages
	Database Management Systems

	Data sources
	Data Formats
	Screen scraping - retrieving data from the web
	Commercial Form Databases
	The Betfair API



	PART 2: IMPLEMENTING A FRAMEWORK FOR BETTING AUTOMATION
	Chapter 4: Using Betfair API services
	How the Betfair API works
	Description of Betfair API services
	A library of Perl functions to call the services
	Building service call functions
	Review of the login example function
	Review of the get_market_prices_compressed example function
	Arguments and outputs for example functions
	Exchange specific services and betting on Australian events


	Chapter 5: Betting process 101 - Daily event data
	Purpose of event data
	Example Code for capturing Daily event data
	Creation of races database table and other program dependencies:
	Code listing and commentary
	Running the program
	Extending the scope


	Chapter 6: Assessing Contenders
	Generating an example oddsline using Racing Post Postdata
	Background to the Postdata Oddsline
	Automating the oddsline
	Code Walkthrough for oddsline format
	Formatted oddsline output


	Chapter 7: Scheduling - The Key to Automation
	Linux Scheduling Facilities
	Crontab
	At
	System Log Files

	Setting the daily time
	Dynamic scheduling for event specific programs
	Creating the Events Schedule
	Generating dynamic tasks using the events_schedule file
	Example Scenario:
	Example Dynamic Scheduling Program
	Picking the right event per scheduled task or program
	An alternative scheduling case for simple system or third party picks

	Common Scheduling “gotchas”
	Extending scheduling concepts
	Scaling for multiple strategies by using multiple directories and user accounts
	Handling events at the program level
	Using sleep
	Timekeeping within a program
	Summary



	Chapter 8: Capturing and Using Market Information
	Example code for capturing current market prices
	Running the program
	Extending the program
	Market prices for multiple events
	Fetching prices at regular intervals for an event
	Using a “market-in-play” test to fetch prices before or after offtime
	Calculating average price and weight of money
	Calculating Market Overround or Percentage Book

	Analysing the entire price ladder per runner

	Chapter 9: Automating Betting Decisions
	Example betting decisions based on an oddsline
	Comparing an Oddsline with the Market; Correcting for Non-Runners
	Basing betting decisions on the oddsline

	Example Oddsline Decision Program
	Program Context
	Code Walkthrough

	Extending Decision Criteria
	Number of selections and minimum price
	Dutching
	Changing the price dynamically
	Using the Market Overround for Optimal Pricing
	Price Prediction and Unmatched Bet Considerations
	The Betfair SP Market and Bet Persistence
	Automating staking plans using a betting bank

	Automating trading decisions

	Chapter 10: Betting Execution
	Betting Execution on Oddsline Example
	Collecting the Bet Identification

	Placing unmatched bets outside current market prices or volumes
	Checking on outstanding (unmatched) bets and positions
	Updating and Cancelling Bets
	Hedging, and taking a partial profit on a position


	Chapter 11: Automated Record Keeping
	Capturing settled bet details
	Retrieving Betting Records by Betting Strategy

	Extending the examples for bet analysis


	PART 3: AUTOMATED STRATEGIES IN PRACTICE
	Chapter 12: Bringing the automated framework together
	Testing The Framework
	Testing The Example Strategy
	Rules for the example strategy
	Summary of set up
	And They’re Off!
	Results summary


	Chapter 13: Assessing and Improving the Implementation
	Assessing Output from the Live Test
	Improving the Implementation
	Conclusion


	Chapter 14: Oddsline Strategies in Production
	Background on Oddslines used
	Postdata oddsline
	Equiformratings oddsline
	Production run rules

	Automatic Betting Diary
	Week 1
	Conclusions and Adjustments at end of week 1

	Week 2
	Summary



	Chapter 15: Next steps for the automatic bettor
	Testing Strategies without risk
	Betfair Account Management
	Stop loss limits
	More than one account
	Don’t Forget to Pay Yourself

	Avoiding Cognitive Bias
	The Automatic Betting Portfolio


	Bibliography
	Further Reading:
	Appendix 1: Software configuration for example code
	Notes for installing Ubuntu
	Installing Perl and requisite Perl modules in Ubuntu
	Installing MySQL in Ubuntu

	Notes for Installing to other Linux distributions
	Notes for Installing to Mac OS X
	Notes for installing to Windows
	Configuration for Example Scripts, Betfair API Functions and Example Database
	General
	Paths
	Creating the Example autodb Database
	Example Crontab Entries for Automation of Oddsline Betting


	Appendix 2: Example Perl library for Accessing Betfair API services
	Appendix 3: Betfair API services
	Appendix 4: Betfair Course Abbreviations
	Appendix 5: Betfair Price Increments
	Index To Figures, Tables and Examples
	Index to Figures
	Index to Tables
	Index to Examples

	Index

