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ABSTRACT 

This monograph summarizes the findings from five related studies 

carried out by the authors in Sandy Bay, Tasmania, Australia, in 

1979-80. The overall purpose of the studies was to examine whether 

children in grades 1-3 who differed in cognitive capacity learned to add 

and subtract in different ways. 

The first study was a cross-sectional survey designed to determine 

the memory capacity of a population of children. The second study was 

designed to portray performance differences on a variety of 

mathematically related developmental tasks for the same population of 

children. Data from these two studies were used to form groups of 

children who differed in cognitive capacity. Six groups were formed via 

cluster analysis, with memory capacity being the primary distinguishing 

characteristic. 

The third, fourth, and fifth studies each used a sample of students 

from the six cluster groups across grades. The third study examined 

both the performance and the strategies these children used to solve a 

structured set of addition and subtraction word problems. The fourth 

study involved repeated assessment of the children's performance on 

items measuring objectives related to addition and subtraction. In the 

last study these children and their teachers were observed during 

classroom instruction in mathematics to see how addition and subtraction 

were taught and whether or not instruction was related to the children's 

cognitive capacity. 

The results show that children's differences in capacity were 

reflected in their performance on both verbal and standard problems and 

in the strategies they used to solve problems. However, instruction did 

vii 



not vary for these children within classrooms. The picture that emerges 

is one of children struggling to learn a variety of important concepts 

and skills. Some children were limited by their capacity to process 

information. Most were able to solve a variety of problems by using 

invented strategies, those that had not been taught. They dismissed or 

failed to see the value of the taught procedures in solving these 

problems. Finally, the capacity of children to process information, the 

procedures students invented to solve a variety of problems, and the way 

in which instruction was carried out in schools did not seem related to 

each other. 
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Chapter 1 

INTRODUCTION 

For several centuries being able to find "one's sums and 
differences" has been considered one mark of a schooled 
person. Although today we may have expanded our expec- 
tations about what constitutes literacy, we still expect 
all children to efficiently carry out operations on 
whole numbers. Yet, in spite of these expectations 
about the skills of addition and substraction, there 
has been little consensus about how such skills 
develop. (Romberg, 1982, p. 1) 

The basic question under investigation was, Do children who differ 

in cognitive-processing capacity learn to add and subtract differently? 

In raising this question, it was assumed that the evolution of 

children's performance on mathematical tasks (such as addition and 

subtraction) must be related both to their developing cognitive 

abilities and to related instruction they receive. To examine this 

question five related studies were conducted in Sandy Bay, Tasmania, 

Australia, in 1979-80. This monograph summarizes the findings from 

those studies. 

The rationale for these studies is detailed in a conceptual paper 

(Romberg, Carpenter, & Moser, 1978). In that paper the authors describe 

how, for nearly a decade (1968-1976), the Studies in Mathematics project 

at the Wisconsin Center for Education Research had concentrated its 

efforts on the relationship between instructional processes, methods, 

and materials and the acquisition of mathematical skills associated with 

mathematical learning. The work in that project led to the development 

of a complete elementary mathematics program, Developing Mathematical 

Processes (DMP) (Romberg, Harvey, Moser, & Montgomery, 1974, 1975, 

1 



2 Introduction 

1976). Although DMP was based on empirical evidence and theories of 

learning, development, and instruction (see Romberg, 1977), a number of 

questions were raised as the program was being developed. 

In particular, it became clear that a complete picture of 

mathematics instruction was lacking. What was needed was a 

characterization of the mathematical content to be learned, a 

description of children's cognitive capacity with mathematical material, 

and an identification of the features of classroom instruction such as 

how children perform on learning tasks, teacher presentations of 

mathematical material, pupil engagement, and teacher-pupil interactions 

during lessons. Thus, past work indicated that the interactions between 

content, cognitive capacity, and instruction needed to be carefully 

examined. The following sections describe the three areas involved in 

this investigation: content (addition and subtraction), cognitive 

capacity, and classroom instruction. 

Addition and Subtraction 

We chose as the vehicle for this investigation children's early 

work in addition and subtraction. There were several reasons for this 

choice. First, this area represents the first attempt that schools make 

to teach what might be recognized as formal mathematics. By this we 

mean learning to symbolically represent a problem situation (often via 

word problems), operate on the symbols, and interpret the result. 

Second, considerable work had been done at the Wisconsin Center for 

Education Research on logically analyzing the semantic-syntactic 

relationship for these mathematical skills as they apply at the early 

elementary school level (e.g., Carpenter & Moser, 1983; Moser, 1979). 
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Third, in the 1970s the staff at the Wisconsin Center for Education 

Research had developed instructional materials to teach addition and 

subtraction. However, children in classrooms using those materials were 

only moderately successful in learning to solve problems using those 

operations. Fourth, various researchers had identified several 

strategies young children use to solve elementary addition and 

subtraction problems (see Carpenter, Moser, & Romberg, 1982). Finally, 

a clinical observation schedule for assessing performance on some 

addition and subtraction tasks had been developed (Carpenter & Moser, 

1979). 

Word problems. To solve a typical addition and subtraction word 

problem, one first must understand its implied semantic meaning. 

Quantifying the element of the problem comes next (e.g., choosing a unit 

and counting how many). Then, the implied semantics of the problem must 

be expressed in the syntax of addition and subtraction. Next the child 

must be able to carry out the procedural (algorithmic) steps of adding 

and subtracting. Finally, the results of these operations must be 

expressed. Most children bring to such problems well developed counting 

procedures, some knowledge of numbers, and some understanding of 

physical operations on sets of objects such as "joining" and 

"separating." Thus, from this context researchers have a unique 

opportunity to examine variations in how children process information 

prior to, during, and after formal instruction when they attempt to 

solve word problems. 

Semantics. Not all word problems involving addition and 

subtraction have the same semantic structure. In fact, most current 

work uses four broad classes of addition and subtraction problems: 
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Change, Combine, Compare, and Equalize (Carpenter & Moser, 1983). There 

are two basic types of change problems, both of which involve action. 

In change-join problems, there is an initial quantity and a direct or 

implied action that causes an increase in that quantity. For 

change-separate problems, a subset is removed from a given set. In both 

classes of problems, the change occurs over time. Within both the join 

and separate classes, there are three distinct types of problems 

depending upon which quantity is unknown (see Table 1). Both combine 

and compare problems involve static relationships for which there is no 

action. Combine problems involve the relationship existing among a 

particular set and its two disjoint subsets. Two problem types exist: 

the two subsets are given and one is asked to find the size of their 

union, or one of the subsets and the union are given and the solver is 

asked to find the size of the other subset. Compare problems involve 

the comparison of two distinct, disjoint sets. Because one set is 

compared to the other, it is possible to label one set the referent set 

and the other the compared set. The third entity in these problems is 

the difference, or the amount by which the larger set exceeds the other. 

In this class of problems, any one of the three entities could be the 

unknown--the difference, the referent set, or the compared set. The 

larger set can be either the referent set or the compared set. Thus, 

there exist six different types of compare problems. 

The final class of problems, equalize problems, are a hybrid of 

compare and change problems. There is the same sort of action as found 

in the change problems, but it is based on the comparison of two 

disjoint sets. As in the compare problems, two disjoint sets are 

compared; then the question is posed, What could be done to one of the 



Table 1 
Semantic Classification of Word Problems 

(Carpenter & Moser, 1983) 
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Separate 

Change 
1. Connie had 5 marbles. Jim gave 2. 

her 8 more marbles. How many 
marbles does Connie have 
altogther? 

3. Connie has 5 marbles. How many 
more marbles does she need to 
have 13 marbles altogether? 

5. Connie had some marbles. Jim 
gave her 5 more marbles. Now 
she has 13 marbles. How many 
marbles did Connie have to 
start with? 

Connie had 13 marbles. She 
gave 5 marbles to Jim. How 
many marbles does she have 
left? 

4. Connie had 13 marbles. She 
gave some to Jim. Now she 
has 8 marbles left. How 
many marbles did Connie give 
to Jim? 

6. Connie had some marbles. 
gave 5 to Jim. Now she has 
8 marbles left. How many 
marbles did Connie have to 
start with? 

Combine 

7. Connie has 5 red marbles and 8 8. Connie has 13 marbles. Five 
blue marbles. How many are red and the rest are 
marbles does- she have? blue. How many blue marbles 

does Connie have? 

Compare 

9. Connie has 13 marbles. Jim 10. Connie has 13 marbles. Jim 
has 5 marbles. How many more has 5 marbles. How many 
marbles does Connie have than fewer marbles does Jim have 
Jim? than Connie? 

11. Jim has 5 marbles. Connie has 12. Jim has five marbles. He 
8 more than Jim. How many has 8 fewer marbles than 
marbles does Connie have? Connie. How many marbles 

does Connie have? 

13. Connie has 13 marbles. She 14. Connie has 13 marbles. Jim 
has 5 more marbles than Jim. has 5 fewer marbles than 
How many marbles does Jim Connie. How many marbles 
have? does Jim have? 

Equalize 

15. Connie has 13 marbles. Jim 
has 5 marbles. How many 
marbles does Jim have to 
win to have as many 
marbles as Connie? 

17. Jim has 5 marbles. If he 
wins 8 marbles, he will 
have the same number of 
marbles as Connie. How 
many marbles does Connie 
have? 

19. Connie has 13 marbles. 
If Jim wins 5 marbles, he 
will have the same number 
of marbles as Connie. 
How many marbles does Jim 
have? 

16. Connie has 13 marbles. Jim 
has 5 marbles. How many 
marbles does Connie have to 
lose to have as many marbles 
as Jim? 

18. Jim has five marbles. If 
Connie loses 8 marbles, she 
will have the same number of 
marbles as Jim. How many 
marbles does Connie have? 

20. Connie has 13 marbles. If 
she loses 5 marbles she will 
have the same number of 
marbles as Jim. How many 
marbles does Jim have? 
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sets to make it equal to the other? If the action to be performed is on 

the smaller of the two sets, then it becomes an equalize-join problem. 

On the other hand, if the action to be performed is on the larger set, 

then an equalize-separate problem results. As with compare problems, 

the unknown can be varied to produce three distinct equalize problems of 

each type. 

To build the connection between semantic forms and relevant 

symbolism, one form is usually used as a model to introduce the 

symbolism. Because there are many semantic forms for which the same 

symbolic sentence is appropriate, the pedagogical problem is how to 

relate the symbolism to all the semantic problems. Traditionally, the 

symbolism has been taught independently of word problems. The symbolic 

procedures were taught, and some word problems were assigned so that 

students could apply their symbolic procedures. No serious 

consideration was given to the semantic structure of the problems. In 

fact, it is now clear that in many texts only a few of the semantic 

forms are ever included (see DeCorte, Verschaffel, Janssens, & Joillet, 

1984). It is no surprise, then, that students have found little 

connection between different types of problems and the symbolic 

procedures they are taught (e.g., Vergnaud, 1982). 

Development of instructional materials. During the early 1970s, 

the staff of the Wisconsin Center for Education Research produced the 

DMP curriculum for grades K-6 (Romberg et al., 1974, 1975, 1976). In 

creating this program the problem of connecting word problems and 

symbolic procedures had been recognized. For addition and subtraction, 

it was decided to use one semantic context to introduce and to give 

meaning to the symbolism and then to relate the symbolism to other 
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semantic situations. In the initial version of DMP, equalizing was 

used. This context proved to be difficult for both teachers and 

students when they examined other semantic forms. A revised set of 

materials was later developed in which part-part-whole was used as the 

basic context for initial instruction (Kouba & Moser, 1979, 1980). 

Strategies for solving word problems. In order to solve the 

variety of addition and subtraction word problems children use numerous 

strategies (see Carpenter et al., 1982; Carpenter & Moser, 1983). For 

addition and subtraction three basic strategy levels have been 

identified: strategies based on direct modeling with fingers or 

physical objects, strategies based on the use of counting sequences, and 

strategies based on recalled number facts. In addition, in the most 

basic strategy (counting all with models), children use physical objects 

or fingers to represent each of the addends, and then the union of the 

two sets is counted. 

There are three distinct strategies involving counting sequences 

for addition problems. In the most elementary strategy, the counting 

sequence begins with one and continues until the answer is reached. 

This strategy is similar to the counting all with models strategy except 

that children do not use physical objects or fingers to represent the 

addends. However, this strategy and the two following counting 

strategies require some method of keeping track of the number of 

counting steps that represent the second addend in order to know when to 

stop counting. Most children use their fingers to keep track of the 

number of counts, but a substantial number give no evidence of any 

physical action accompanying their counting. When fingers are used, 

they appear to play a very different role than in the direct modeling 
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strategy. In this case, the fingers do not represent the second addend 

per se, but are used to keep track of the number of steps incremented in 

the counting sequence. When using fingers, children often do not appear 

to have to count their fingers, but can immediately tell when they have 

put up a certain number of fingers. 

The other two counting strategies are more efficient and imply a 

less mechanical application of counting. In applying these strategies, 

a child recognizes that it is not necessary to reconstruct the entire 

counting sequence. In the counting on from first strategy, a child 

begins counting forward with the first addend in the problem. The 

counting on from larger strategy is identical except that the child 

begins counting forward with the larger of the two addends. 

Although learning of basic number facts appears to occur over a 

protracted span of time, most children ultimately solve simple addition 

and subtraction problems by recall of number combinations rather than by 

using counting or modeling strategies. 

For subtraction a number of distinct classes of subtraction 

strategies have been observed at the direct modeling and counting 

levels. One of the basic strategies involves a subtractive action. In 

this case, the larger quantity in the subtraction is initially 

represented and the smaller quantity is subsequently removed from it. 

When concrete objects are used, the strategy is called separating from. 

The child constructs the larger given set and then takes away or 

separates, one at a time, a number of objects equal to the number given 

in the problem. Counting the set of remaining objects yields the 

answer. There is also a parallel strategy based on counting called 

counting down from. A child initiates a backward counting sequence 
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beginning with the given larger number. The backward counting sequence 

contains as many counting number words as the given smaller number. The 

last number uttered in the counting sequence is the answer. 

The separating to strategy is similar to the separating from 

strategy except that elements are removed from the larger set until the 

number of objects remaining is equal to the smaller number given in the 

problem. Counting the number of objects removed provides the answer. 

Similarly, the backward counting sequence in the counting down to 

strategy continues until the smaller number is reached and the number of 

words in the counting sequence is the solution of the problem. 

The third pair of strategies involves an additive action. In an 

additive solution, the child starts with the smaller quantity and 

constructs the larger. With concrete objects (adding on), the child 

sets out a number of objects equal to the smaller given number (an 

addend). The child then adds objects to that set one at a time until 

the new collection is equal to the larger given number. Counting the 

number of objects added on gives the answer. In the parallel counting 

strategy (counting up from given), a child initiates a forward counting 

strategy beginning with the smaller given number. The sequence ends 

with the larger given number. Again, by keeping track of the number of 

counting words uttered in the sequence, the child determines the answer. 

The fourth basic strategy is called matching. Matching is only 

feasible when concrete objects are available. The child puts out two 

sets of cubes, each set standing for one of the given numbers. The sets 

are then matched one-to-one. Counting the unmatched cubes gives the 

answer. A fifth strategy (choice) involves a combination of counting 

down from and counting up from given, depending on which is the most 
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efficient. In this case, a child decides which strategy requires the 

fewest number of counts and solves the problem accordingly. 

As with addition, modeling and counting strategies eventually give 

way to the use of recalled number facts or derived facts. Children's 

explanations of their solutions suggest that the number combinations 

they are calling upon are often addition combinations. Of significant 

interest to researchers and teachers must be the link, if any, between 

the logical analysis of the semantic forms of problems and the 

strategies children actually use to solve such problems. 

Summary. Several points about addition and subtraction were noted 

at the outset of this project. First, word problems that can be solved 

by addition and subtraction differ in semantic form. Second, children 

have developed "primitive" or "child" strategies to solve addition and 

subtraction word problems prior to school learning experiences or at 

least prior to formal instruction on consolidated "efficient" methods of 

solution. Third, differences in the semantic form of word problems 

elicit different strategies from children. Finally, a logical analysis 

of the operations and related word problems seems to imply that these 

initial strategies should become more and more inefficient as the number 

of semantic forms is increased, or the numbers become larger, or the 

number of steps necessary for solution increases. 

It therefore seems to be a reasonable goal of mathematics 

instruction to teach more formal, generalizable algorithmic procedures 

for solving the variety of addition and subtraction word problems. 

However, little is known about several aspects of this process and a 

number of questions arise. How will learning of the mathematical 

procedures be affected by the number, type, and success of the 
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preexisting problem-solving strategies an individual child possesses? 

How do children who are successful problem solvers combine their 

existing strategies with formal mathematical modes of presentation? How 

should teachers adapt instruction to take account of a child's 

demonstrated level of functioning in this area? Raising these questions 

leads to a consideration of the relationship of general cognitive 

functioning to performance by children on addition and subtraction word 

problems. 

Cognitive Capacity 

Concern for cognitive abilities is well entrenched in research in 

mathematics education. The approach adopted in this project was based 

on claims from two sources: differential abilities and cognitive 

development. 

Differential abilities. Based on the extensive work of a number of 

educational psychologists in the Thurstone tradition of distinct mental 

abilities, we decided to attempt to measure the ability of students to 

solve addition and subtraction problems. The procedure in this approach 

is to use test scores and psychometric analyses to identify differential 

abilities, traits, aptitudes, styles, and so forth. For example, such 

characteristics as intelligence, rate of learning, field 

independence/dependence, and spatial ability have been identified, and 

samples of students have been ordered from high to low on those traits. 

These traits are assumed to be fixed, stable characteristics, largely 

biological in origin, which describe intellectual differences between 

individuals in the same way as height, weight, stature, and so forth 

describe physical characteristics. Although we did not utilize tests 
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developed from this perspective, we used the psychometric strategy of 

administering to each student a number of tests, scoring the tests, 

relating the scores, and classifying students based on their scores. 

Our initial task was to find and administer measures of cognitive 

functioning that appeared logically related to the learning of 

mathematical material. However, we decided to use a battery of tests 

that seemed to be related to the children's level of cognitive 

development. Only instruments that could be shown prima facie to 

contain tasks related to early mathematical learning such as number 

conservation and counting were selected. 

Cognitive Development. We chose the measures to be used in the 

study from work in cognitive development. This perspective is based on 

the notion that individuals adaptively interact with the environment and 

gradually evolve intellectual processes through discontinuous stages. 

Rather than being fixed, differences between individuals are viewed as a 

function of growth. Children in the primary grades, for example, 

usually are at a concrete operations stage, think in terms of themselves 

(are egocentric), and think of concrete referents near at hand. Hence, 

they should not be expected to reason about hypothetical, external 

situations. 

The choice of tests from this perspective grew out of work on 

children's understanding of mathematics. This research gained impetus 

following the failure of the "new math" programs to live up to early 

expectations. Psychologists interested in mathematics learning began to 

investigate developmental and learning phenomena by using elementary 

mathematical material (e.g., Collis, 1975). These investigators used 

the clinical interview as a technique for studying the mathematical 
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concepts that children had formed. Much of the work was stimulated by 

the notions of Jean Piaget (Inhelder & Piaget, 1958). Later interest 

was related to the work on memory capacity by Pascual-Leone (1976) and 

Case (1972). This view of cognitive functioning enabled psychologists 

to turn from the mere description of stages of development of 

mathematical thinking to an explanation of the phenomena that kept 

appearing in their work with individual children. 

This evolution can be traced through the work of Collis (1971, 

1974a, 1974b, 1975, 1976, 1978, 1980a, 1980b, 1982; Collis & Biggs, 

1979; Biggs & Collis, 1982). The earlier papers use mathematical items 

to describe and, to some extent, to modify Piaget's stage theory 

(Inhelder & Piaget, 1958). The later papers, after about 1976, provide 

tentative explanations of the developmental phenomena found earlier in 

terms of Case's information-processing theory (Case, 1975). The most 

recent papers (e.g., Biggs & Collis, 1982) describe an intellectual 

skills model which, although it allows for the stage phenomenon, places 

the emphasis on the increasing complexity of responses within a given 

stage. 

At the time this project began, a number of theorists were in 

various stages of refining and generalizing theoretical systems that 

included both structural and process components and that were of 

significance in relation to a broad range of developmental tasks. Since 

then most theorists have published their theoretical positions (e.g., 

Case, 1985; Fischer, 1980; Halford, 1980; Klahr, 1984; Pascual-Leone, 

1984; Seigler, 1981; Sternberg, 1984). The investigators in this 

project selected the Case model for two reasons. First, it seemed at 

that time to be the most applicable to the content area and the 
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methodology that we envisaged using. Second, it had tests available 

that could be utilized in the project. 

M-Space. Central to Case's theory and crucial to this project is 

the concept of the short-term memory capacity (M-space). This basic 

variable we believed was central to a child's ability to process the 

mathematical material presented. Thus, the first set of tests we used 

was to measure M-space. The M-space construct has a long history in 

psychological theory, going back as far as Baldwin's conception of 

attention span (Baldwin, 1895). Basically it refers to the number of 

mental elements that an individual can attend to at any one time. In 

this project we have adopted Case's proposal (Case, 1985) that the 

overall processing space available is constant and is shared between two 

mental activities, the execution of an ongoing mental operation and the 

retention and retrieval of the product of such an operation. If the 

available processing space is exceeded, the individual exhibits symptoms 

of cognitive overload and is unable to solve the given problem. An 

early study by Collis (1973) elicited this phenomenon in relation to 

mathematical exercises. A simple example quoted by Collis in a later 

publication (Collis, 1980b) may help to explain cognitive overload. 

A child at the early concrete operational stage (circa 6 or 7 
years) is asked to find the value of the statement 3+2+4; a 
typical interview goes as follows: 

Tester: What number does 3+2+4 equal? 
Child: 3+2=5 (pause) what was the other number? 
Tester: I said, "What number does 3+2+4 equal?" 
Child: Ah yes. Now, 3 plus (pause) what is the 

sum again? (p. 87) 

What appears to be happening may be explained by using a diagram. 

Let us suppose that, in the diagram below, the rectangle represents the 

space available for processing data. At the early concrete operations 
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stage it can be demonstrated that the space is sufficient to take in two 

elements and one operation and to perform the necessary calculation 

meaningfully (Collis, 1975). The processing space is, however, fully 

occupied. If one now attempts to introduce another operation and 

element, the space available is exceeded and overflow results; part of 

the data necessary for a successful outcome is forced out of 

consideration. As the subject realizes the situation and retrieves one 

piece of data, another piece is forced out of the space and so on. 

Hence, in these circumstances the child never has all the information 

needed to solve the problem in the working space at the same time in 

order to obtain a satisfactory solution. 

Development level. Although the M-space construct appeared basic 

to our investigation, it was also obvious that this could not be the 

only measure we should make because it was clear from the correlational 

data in the research literature that other influences must also be at 

work. Moreover, it has been very clear to mathematics educators for a 

decade now that deductions drawn from pure psychological theory rarely 

apply directly to mathematics learning (see Bauersfeld, 1979). In 

addition to M-space, we felt that a child's developmental level in 

specific areas of relevance to the content area under consideration 

could also be an influence. Thus we incorporated Piagetian tests 

appropriate to mathematical learning and used both the M-space and 
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developmental data to define a construct, cognitive capacity for 

mathematical material, which would be more useful in a study that was 

primarily concerned with mathematics instruction rather than cognitive 

theory. 

In summary, to identify cognitive capacity, we gave two batteries 

of tests. The first battery of tests was designed to measure the short- 

term memory capacity (M-space) of the child for processing mathematical 

material. The second battery included tests constructed to measure the 

child's level of cognitive development on dimensions from the Piagetian 

model, such as conservation and transitivity, and presumably related to 

mathematical ability. We then used psychometric procedures, factor 

analysis, and cluster analyses to interpret the data from both batteries 

and to group children. From this approach, we assumed that well-defined 

groups of children with specific cognitive characteristics could be 

identified. 

Classroom Instruction 

Throughout this project the children in the study were being taught 

to add and subtract in school. To identify some aspects of classroom 

instruction, we observed in five classrooms to gather data on a sample 

of students at grades 1, 2, and 3. It is at these grades that addition 

and subtraction skills are taught. The sample of students we observed 

was selected to reflect differences in cognitive capacity. 

Data on the performance of the students were collected using an 

achievement monitoring battery developed by Buchanan and Romberg (1983). 

This battery provides information on a variety of aspects of adding and 

subtracting, and in several administrations profiles of growth can be 
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obtained. The profiles then can be used as indicators of the 

effectiveness of instruction. 

Third, we decided to observe teacher actions, pupil actions, and 

teacher-pupil interactions for children at each grade level who differed 

in cognitive capacity. The proposition that "teachers make a 

difference" had been central to much of the previous work done on 

mathematics education at the Wisconsin Center for Education Research. 

For example, the steps in the Individually Guided Education (IGE) 

instructional programming model (Klausmeier, 1977) are all descriptions 

of actions teachers are to take. In addition, as DMP was being 

developed, behaviors that teachers were to use in teaching the program 

were specified. Despite these efforts, little evidence is available to 

substantiate the importance of teacher actions. 

Berliner (1975) pointed to the probable reasons for this lack of 

data and identified a long list of problems facing researchers who 

attempt to examine the relationships between teacher behaviors and pupil 

performance. He saw methodology as a major impediment to progress in 

this area, particularly the inadequate framework for the 

conceptualization of teacher tasks and the assumed direct relationship 

between teacher tasks and pupil performance. It is possible that the 

logical analyses of the problem subsequent to Berliner's rather 

pessimistic overview are as far from classroom realities as the analyses 

carried out on mathematics curriculum programs in the 1950s and 1960s or 

the logical application of general psychologists' theories of 

development and learning to mathematics programs of a decade ago. 

Perhaps what was needed was a fresh look at the problem. 
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In this study we decided to concentrate attention on teachers' 

actions as they related to children of known cognitive characteristics 

and, moreover, on the same children's reactions related to the teachers' 

initiating actions. The approach should make some progress toward 

conceptualizing teachers' instructional tasks and testing the notion 

that teachers have some discernible effect on pupils' performance. The 

approach used in this investigation was a "time-on-task" approach based 

on that used in the Beginning Teacher Evaluation Study (BTES), which in 

turn was influenced by Carroll (1963, 1973), Bloom (1974), and 

Harnischfeger and Wiley (1975). 

Another major criticism made by Berliner was the lack, at that 

time, of instruments that gave researchers a clear understanding of the 

meaning of data gathered by objective tests or surveys. Moreover, even 

when observational techniques were employed, it was not usual to code 

pupil actions. We decided to take advantage of recent advances in this 

area by using the observational instrument developed for the study of 

instructional time with DMP (Romberg, Small, Carnahan, & Cookson, 1979). 

This instrument takes into account the behavior of both teachers and 

children. 

The instrument is used with a limited sample of pupils who are 

identified as target students. Then a trained observer fills out a time 

based observational form for each day of instruction. At the end of 

each minute the observer codes pupil activities, teacher activities, 

content categories, and classroom characteristics. Data from target 

students are then aggregated to estimate mean class time on the 

variables. This methodology provides reliable and generalizable 

information about how time is spent in classrooms. 
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Conclusion 

The five studies reported in this monograph represent an attempt to 

draw together data gathered from four different perspectives. Each 

perspective is viable in its own right. However, our intent was to see 

whether in combination the perspectives could better portray how 

students develop addition and subtraction skills. The first approach, 

from the classical individual differences perspective, was to use 

psychometric techniques in two studies to identify students with 

different cognitive capacities. The second approach, from the 

cognitive-processing perspective, was to gather interview data about the 

strategies children use to solve verbal addition and subtraction 

problems. The third approach, from the quasi-experimental perspective, 

was to assess changes in student achievement using test monitoring 

procedures. The final approach, the direct instruction teaching 

perspective, was to use a time-on-task observation procedure to 

determine how features of classroom instruction relate to student 

engagement. 

The studies were designed not only to gather and analyze data on 

the four perspectives described above, but also to examine the 

interactions between the four factors. Obviously, a number of 

interactions would be of considerable interest, but in view of our 

interests and to examine some new hypotheses we decided to concentrate 

on the interaction between children's cognitive processing capability 

and the other variables. 

We first identified a sample of children aged 4-8 years with 

specific cognitive characteristics. Sample selection required measuring 

M-space (study 1) and measuring cognitive development (study 2) of a 
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population of 4- to 8-year-olds. Next, we studied the mathematics 

performance, strategies used, and instruction provided the sample over a 

3-month period. In clinical interviews the children's performance and 

strategies were determined with verbal addition and subtraction problems 

(study 3). Achievement was measured with standard written addition and 

subtraction tasks (study 4). The nature of the instruction provided and 

children's actions and engagement were determined in classroom 

observations (study 5). 

We assumed that from these five studies we would be able to relate 

performance at a given time (in terms of performance level achieved and 

strategy adopted) to a child's cognitive capability and to specific 

instructional activities the child's teacher had used. In this way, we 

could consider various questions about change in performance and 

strategy and their possible causes. 

The various research techniques used, the data gathered, and their 

analysis are described in the next four chapters. Chapter 2 is 

concerned with the means we used to characterize the cognitive 

processing capabilities examined in studies 1 and 2. Chapters 3 and 4 

relate the cognitive level of each group to their performance on 

addition and subtraction problems. In chapter 3 the individual clinical 

interview data coded for both performance and strategies used by 

children are presented (study 3). In chapter 4 achievement on 

paper-and-pencil tests of addition and subtraction is presented. In 

chapter 5 we attempt to relate cognitive level to teacher-pupil 

interactions. Chapter 6 provides a summary of the findings and some 

conclusions that draw together the understandings obtained through the 

studies and suggests some direction for further research. 



Chapter 2 

IDENTIFICATION OF GROUPS OF CHILDREN WHO DIFFER IN 

COGNITIVE-PROCESSING CAPABILITIES 

In this chapter the classification of children into groups 

according to their cognitive-processing capabilities with mathematical 

materials is presented. Cognitive-processing capability is a derived 

categorization label based on a combination of measures of working 

memory capacity (M-space) and measures of the level of cognitive 

development as determined by the Piagetian model. The M-space measures 

were the basis of the classification of children into categories, and 

the developmental tests gave an indication of developmental criteria 

that are applicable within each category. 

Study 1--M-space 

Information-processing theories are based on the idea that mental 

functions can be characterized in terms of the way information is 

stored, accessed, and operated on. Mental structures are discussed in 

terms of an intake register through which information from the 

environment enters the system, a working or short-term memory (M-space) 

in which the actual information processing occurs and a long-term memory 

in which knowledge is stored. 

The working memory's growing capacity to process information 

appears as a fundamental characteristic of cognitive development in a 

number of theories (Bruner, 1966; Case, 1978a; Flavell, 1971). Young 

children are quite limited in their ability to deal with all the 

21 
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information demands of complex tasks. Their limited capacity seems to 

be a critical developmental factor that constrains learning in 

instructional situations (Case, 1975, 1978a, 1978b). 

Pascual-Leone (1970, 1976) proposed a theory that operationalizes 

the development of information-processing capacity or M-space. 

According to this theory, learning is a change in behavior resulting 

from factors extrinsic to the psychological system. Learning produces a 

change in the repertoire of schemes (internally represented behavioral 

units or patterns) available to the learner. Since M-space is limited, 

the number of information chunks that can be coordinated to produce a 

new scheme is limited. Therefore, the complexity of schemes learned is 

also limited; the processes of learning are constrained by the 

developing psychological system. Pascual-Leone's theory is concerned 

with the functional aspects of development and the mental processing of 

information. Learning through instruction depends on the child's 

capacity to process all of the essential incoming information. 

To generate hypotheses about children's performance on specific 

tasks, both the information-processing capacity (M-space) of the child 

and the information-processing demands of the task must be known. This 

study addresses the problem of assessing information-processing 

capacity. 

The rationale for administering different tests to measure this 

construct is based on the results of two recent studies, one by Hiebert 

(1979), in which a measure of M-space (backward digit span) did not 

predict learning of mathematical skills and another by Case and Kurland 

(1978) in which three different measures of M-space (counting span, Mr. 

Cucui, and digit placement) were given. Although in Case and Kurland's 
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study positive correlations (.50 to .60) were found between the three 

tests, the consistency between the measures was not high. Recent work 

by Case and associates (Case, Kurland, Daneman, & Emmanuel, 1979) 

suggests that it may be very difficult to construct one general measure 

of M-space that will predict performance on a wide range of tasks. 

Their data indicate that task variables may be more important than 

previously supposed in determining M-space demands. Thus, we decided to 

use the three tests from Case and Kurland's study along with the 

backward digit span test from Hiebert's study to see whether together 

they would yield a reliable estimate of a child's M-space. The tests 

chosen also seemed appropriate in terms of the task variables involved 

in learning to add and subtract. 

Method 

Sample 

All of the 139 children in grades K-2 at the Sandy Bay Infant 

School in Hobart, Tasmania, were tested for this study. The school is 

located on the Derwent River in Sandy Bay, a suburb of Hobart near the 

University of Tasmania. The community is middle to upper-middle class. 

Table 2 gives details about the age, grade and gender of the sample and 

the number of children involved. 

Tests 

Counting span. This test was developed by Case and Kurland (1978). 

Conceptually, it is straightforward. The operation required is 

counting. The items that must be stored are the products of a series of 

counting operations. Children are presented with a sequence of arrays 
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Table 2 

Characteristics of Sample 

Class and Grade 

1 2 3 4 5 6 
Characteristic 

K-AM K-PM Prep Gr. 1 Gr. 1/2 Gr. 2 Total 

Boys 16 11 8 8 15 15 73 
Gender 

Girls 9 9 13 14 9 12 66 

Total 25 20 21 22 24 27 139 

Youngest 4.9** 5.0 5.4 6.2 6.5 7.3 

Age Oldest 5.1 5.7 6.1 7.3 7.10 8.2 

Average 4.11 5.4 5.10 6.7 7.3 7.8 

*Gr. 1/2 was a mixed class with both Grade 1 and Grade 2 students. 

**4.9 means 4 years 9 months as of October 1, 1979. 
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of geometric shapes to count and are asked to recall the number of 

objects in the arrays preceding the current trial as soon as they have 

finished counting the shapes on the current stimulus card. The number 

of arrays in the set is incremented from trial to trial and children's 

M-space is assumed to be equal to the maximum number of arrays that they 

can count while maintaining perfect recall. 

The test includes 33 items. However, at most, only five items were 

scored at any one of five M-space levels. To reduce the total number of 

trials a modified "ceiling basal" method was used (Bachelder & Denny, 

1977). Children were presented with sets from different M-space levels 

until it was determined at what level they passed and at what level they 

failed. They were then presented with a larger number of trials until 

the level of complete success and the level of complete failure had been 

determined. 

Mr. Cucui. This measure was designed in Pascual-Leone's laboratory 

by DeAvila, for use with children with an imperfect command of English 

(DeAvila & Havassy, 1974). It can be administered quickly and is 

suitable for use with four-year-olds as well as older children. 

On each trial, children are presented with the outline of Mr. 

Cucui. After viewing it for five seconds, they are told to remember 

what parts of his body are colored. They are then presented with a 

blank outline drawing of Mr. Cucui and told to point to the parts that 

are colored. There are 25 items, five different items at each of five 

levels; a level is defined as the number of body parts that are colored. 

This test is the only one that does not require students to count 

or use numbers. Instead, recall of spatial location is required to 
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respond correctly. The ceiling-basal method was followed for the 

Counting Span Test. 

Digit placement. This is a measure of M-space developed and 

standardized by Case. It is known to yield the same norms as other 

tests of M-space (cf. Case, 1972) and to correlate highly with the 

general factor defined by more lengthy M-tests (Case & Globerson, 1974). 

The basic procedure is to present subjects with a set of numbers. The 

first n - 1 of these are in ascending order of magnitude and the nth is 

out of order (e.g., 2, 5, 9, 12, 7). After the numbers have disappeared 

from view, the children are asked to indicate where the final number 

belongs in the original series. M-space corresponds to the maximum set 

size for which the task can be executed successfully. There are 15 

items on this test, five for each of three levels; levels 1 and 5 as 

measured in the two tests above are not tested. All items were given to 

each subject. 

Backward digit span. The form used in this study was developed by 

Hiebert (1979). On each trial, the experimenter reads a series of 

digits. The subject is to repeat them in reverse order. M-space 

corresponds to the maximum series size correctly repeated. In this 

test, there are 40 items (10 at each of four levels; level 1 as measured 

in the first two tests is not tested and all items are given to each 

student). 

Test Administration 

A research assistant and two experienced teachers were hired to 

administer the tests. All were trained before the testing proceeded. 

One interviewer administered the counting span test; a second the Mr. 
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Cucui test; and the third the digit placement and the backward digit 

span tests. Children were randomly selected by their teacher to come to 

the interview room and randomly assigned to an interviewer. Most 

children took two tests on one day and the other two a day or two later. 

All testing was completed within 10 days. 

Scoring the Tests 

Although each item could obviously be scored correct or incorrect 

and the total correct counted to estimate each child's M-space level, 

there were at least two sound reasons why this procedure was not 

followed. First, because sets of items in each test were designed to 

measure different levels of M-space, item scores would need to be 

weighted to reflect those levels--especially as two of the tests did not 

aim to measure all five levels. Second, since the "ceiling basal" 

procedure was used with two of the tests, some items were not actually 

administered to each child; items not administered but at a level lower 

than where the child responded correctly were scored correct and all 

items at a level higher than where the child responded correctly were 

scored incorrect. Four scoring rules were devised for each test. The 

full details regarding those are available in Romberg and Collis (1980a) 

and will not be reported here. 

Results and Discussion 

Table 3 shows the frequency of scores (M-space level) for children 

in each class and for the total population for each test. In addition, 

class means and standard deviations are presented. The distributions of 

scores for the four memory tests provide two interesting results. 
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Table 3 

Frequency of Scores on the M-Space Tests 

Class Score 

0 1 2 3 4 5 M SD 

Counting Span Test 

(1) K-AM 22 3 1.12 .33 
(2) K-PM 1 9 9 1 1.50 .69 
(3) Prep 11 9 1 1.52 .60 
(4) Gr. 1 4 15 3 1.96 .57 
(5) Gr. 1/2 1 15 8 2.29 .55 
(6) Gr. 2 2 12 12 1 2.44 .70 

Totals 1 49 63 25 1 0 1.83 .75 

Mr. Cucui Test 

(1) K-AM 12 12 1 1.56 .58 
(2) K-PM 5 11 2 1.75 .64 
(3) Prep 4 12 5 2.05 .67 
(4) Gr. 1 1 9 8 4 2.68 .84 
(5) Gr. 1/2 6 9 7 2 3.21 .93 
(6) Gr. 2 1 6 7 11 2 3.26 1.02 

Totals 0 25 56 32 22 4 2.45 1.05 

Digit Placement Test 

(1) K-AM 24 1 1.08 .40 
(2) K-PM 20 1.00 .00 
(3) Prep 19 2 1.10 .30 
(4) Gr. 1 18 3 1 1.23 .53 
(5) Gr. 1/2 12 6 6 2.00 1.25 
(6) Gr. 2 5 1 2 19 3.30 1.20 

Totals 0 98 12 4 25 0 1.68 1.17 

Backward Digit Span Test 

(1) K-AM 13 12 1.48 .51 
(2) K-PM 2 18 1.90 .31 
(3) Prep 1 20 1.95 .22 
(4) Gr. 1 18 4 2.18 .40 
(5) Gr. 1/2 16 8 2.33 .48 
(6) Gr. 2 8 15 4 2.85 .66 

Totals 0 16 92 27 4 0 2.14 .64 
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First, although older children generally have higher scores, the overlap 

of scores among children at different grade levels is quite striking. 

Scores are clearly age-related but do not appear to be specifically 

determined by age. Second, the variation of M-space level for 

individual children across tests (variation in within-class frequencies 

across tests) could imply that the context of the text may give students 

a cue that helps them answer questions. In addition, if partial level 

scores are allowed for children answering items on a test at a higher 

level, it is a reasonable deduction, on the evidence from the protocols, 

that the move from one level of M-space to another is gradual. 

Relationship of Scores on the Tests 

Each of the tests, it was hoped, would reflect the amount of 

M-space available to the children for processing early math-related 

material. However, the tasks were different, the student population 

covered a wide age/grade range, and the children demonstrated 

considerable variation in performance. Thus, it was important to 

investigate with some care whether or not the different tests yielded 

similar classifications of children. Three statistical procedures were 

performed on the data: (1) a correlation matrix was set up to show the 

correlations between the scores from the four tests for the total 

population; (2) the data for all pairs of tests were cross tabulated to 

see how many classifications were the same; and (3) a factor analysis 

was performed on the correlation matrix to determine the dimensionality 

of the scores. 

Correlations of test scores. Although all the correlations (see 

Table 4) are positive and statistically significant, they are not 
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Table 4 

Correlations of Scores for the Four Memory Tests 

Test CS MC DP BDS 

Counting Span (CS) 1.00 

Mr. Cucui (MC) .49 1.00 

Digit Placement (DP) .61 .50 1.00 

Backward Digit Span (BDS) .52 .40 .64 1.00 



Cognitive-Processing Capabilities 31 

particularly high. The highest is only .64. It seems clear that 

different tests do not necessarily classify children into the same 

M-space levels. 

Cross-tabulation of scores for the four tests. To examine the 

similiarity between classification schemes based on the four tests, we 

cross tabulated the data for each test with each other test. The 

proportion of students who were classified in the same categories and in 

different categories in each comparison is shown in Table 4. The 

percentage of individuals who were differently classified in the 

comparisons ranges from 68% to 46%. 

This cross tabulation demonstrates that the tests classify children 

in different ways. If these various classifications are along a single 

dimension, there is not a serious problem; this would mean that each 

test identifies different cutoff points on this one dimension. However, 

if these tests are found to measure more than one dimension, then each 

test is measuring something different. 

Factor analysis. The results of the cross-tabulation made 

examining the dimensionality question more critical. A factor analysis 

was performed on the correlation matrix presented in Table 5 for the 

four tests across the total population. The model used was a 

multifactor solution model. All extractions were principle factor 

extractions with iterative estimates of commonalities, and the varimax 

rotation procedure was used. The data from this factor analysis appear 

in Table 6. A single factor was extracted. However, it should be noted 

that the Mr. Cucui test did not load heavily on this factor, and a 

considerable amount of the variance is still unaccounted for. The Mr. 

Cucui test is the only one of the four that does not ask children to 
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Table 5 

Number and Percentage of Classifications That are the Same, Higher for 
the First Test, and Lower for the First Test for all Test Comparisons 

Test Comparisons (A/B) 

Classi- CS/DP CS/MC CS/BDS DP/MC DP/BDS MC/BDS 
fication N(%) N(%) N(%) N(%) N(%) N(%) 

Same 
S(Am) 58(42) 47(34) 75(54) 49(35) 44(32) 57(41) 
(A=B) 

Higher 36(26) 16(12) 13(9) 19(14) 31(22) 55(40) 
(A>B) 

Lower 
45(32) 76(55) 51(37) 71(51) 64(46) 27(19) 

(A<B) 

Note: CS = Counting Span 
DP = Digit Placement 
MC = Mr. Cucui 
BDS= Backward Digit Span 
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Table 6 

Factor Analysis for the Four Memory Tests 

Factor 

Eigenvalue 2.59 

% variance 64.8 

Raw (rotated) factor matrix 

Counting Span .44(.56) 

Digit Placement .54(.72) 

Mr. Cucui .30(.37) 

Backward Digit Span .44(.51) 
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count, and it is also less English dependent. This suggests that the 

factor is a quantitative M-space factor involving memory of number or 

counting sequences. The Mr. Cucui test, on the other hand, requires 

memory of spatial orientation. 

In summary, the four tests measure one primary factor, quantitative 

M-space. Thus, to classify children into M-space levels, it would seem 

best to administer a combination of tests as was done in this study and 

then to classify children with regard to that underlying structure. No 

single test, it appears, can reliably classify children into an M-space 

level. The next section indicates that a classification made on the 

basis of the results of three tests should be fairly reliable for most 

children. 

Cluster Analysis 

Since the factor analysis showed that one dimension accounted for 

nearly two-thirds of the variance, it seemed desirable for the next 

stage of the project to classify the children in the population along 

this single dimension. A cluster analysis procedure, which uses 

Euclidian distances between points, was used for the classification. 

This analysis indicated that there were six groups. Table 7 gives 

the estimated group vectors for the six groups identified. In the 

analysis, the last four groups (3, 4, 5, and 6) were closer together 

1The usual Euclidian distance between points in four dimensions was 

used, i.e., 

d A- (x1 - y)2 + (x2 - y2)2 + (x3 - y3)2 + (x4 - y)2 
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Table 7 

Estimated Vectors for the Six Groups Derived from a Cluster Analysis 
Where the Distance Between Score Vectors is Less than 1.50 

Test 
Group Amalgamated Number of Overall M-space 

distance children CS DPT BDS MC classification 

1 1.05 59 1.32 1.07 1.73 1.61 1 

2 1.44 38 1.90 1.66 2.13 2.76 2 

3 1.43 16 2.25 2.10 2.25 3.69 2S+ 

4 1.03 11 2.91 4.00 2.91 2.46 3S- 

5 1.06 4 2.17 3.83 2.67 4.50 3S+ 

6 1.23 6 2.50 4.00 3.75 3.75 4S- 
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than Groups 1 and 2. This suggests that Groups 1 and 2 are distinct and 

that Groups 3, 4, 5, and 6, although different from each other, are less 

distinct. 

Group 1 is largest, with 59 members. For the tests separately, the 

levels for this group are CS, Level 1; DPT, Level 1; BDS, Level 1; and 

MC, Level 1. This group is clearly at M-space Level 1, the lowest 

M-space level in the domain being measured. Only for BDS could some 

children be placed at Level 2. 

Group 2 has 38 members. The levels for this group are CS, Level 2; 

DPT, Level 1; BDS, Level 2; and MC, Level 2. These children exhibit a 

basic M-space Level 2. They are below that level on the DPT and nearly 

reach Level 3 on the Mr. Cucui test. These differences seemed, from the 

protocols, to be due to contextual factors: the children found the 

instructions for DPT more complex than instructions for other tests, and 

either spatial perception or ability to check information contributed to 

scores on the Mr. Cucui test. 

Group 3, with 16 members, scored slightly above Level 2 on three 

tests and nearly reached Level 4 on the Mr. Cucui test. Either their 

spatial perception is quite high or they are able to chunk information 

on that test, but they still exhibit a basic M-space level of 2. We 

have labeled this group Level 2S+ to highlight the fact that these 

children are above that level on the spatial test. 

Group 4 has 11 members. On two tests, CS and DBS, the children are 

at Level 3; on DPT they are at Level 4, but on the Mr. Cucui test, they 

are only at Level 2. Their basic M-space level is probably 3. Their 

spatial perception involved in Mr. Cucui appears not to be as highly 
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developed as their quantitative abilities. Therefore, we have 

classified them 3S-. 

Group 5 has only four members who have a similar pattern of levels 

to children in Group 4 except that Group 5 scores very well on the Mr. 

Cucui test. Their basic pattern seems to place them at M-space Level 3, 

and therefore we have classified them 3S+. 

Group 6 has six members. They are basically at M-space Level 4 on 

three tests but score below Level 3 on CS. It is not clear what the 

discrepancy on this test implies, and the protocols did not assist in 

this case. It could, of course, be simply a sampling or testing 

variation especially since the numbers in the category are so small. 

This variation needs closer examination than we were able to perform in 

this study. However, this group is lower than Group 5 on the Mr. Cucui 

test, but overall their quantitative skills are at Level 4. Therefore, 

we have labeled them 4S-. 

Overall, these results suggest an underlying cognitive mechanism. 

The contextual setting has a significant effect on the child's ability 

to respond on any given occasion. This suggests possible significant 

differences in children's use of problem-solving strategies or their 

reception to instruction even though they have the same basic 

cognitive-processing potential. One could hypothesize that spatial 

development (qualitative) and number development (quantitative) 

strategies appear to be interwoven and develop close together in time, 

but some children achieve number skill prior to spatial skill and others 

vice versa. 
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Study 2--Cognitive Development 

The reason for wanting a battery of tests that measure cognitive 

development is based on the theory of Jean Piaget (1974). According to 

Piaget, the development of cognition is inseparable from the growth of 

biological and psychological faculties. Development is a broad-based 

process, generalizing to a wide variety of situations. 

Piaget's position is summarized in the following statement: 

I think that development explains learning, and this option 
is contrary to the widely held opinion that development is a 
sum of discrete learning experiences. (1974, p. 176) 

The phrase "development explains learning" implies that the outcome of a 

learning experience is in part accounted for by developmental 

capabilities. That is, learning potential is defined (or explained) to 

a large extent by developmental level. 

For this project a battery of 10 tests was devised, all measuring 

the early development of the child's ability to work with elementary 

quantitative and logical concepts concerned with premathematical skills. 

We tested the entire population in order to relate developmental 

characteristics to characteristics already derived from the M-space 

tests. 

Cognitive Development Tests 

As stated earlier, the choice of specific tests was based on our 

intent to examine the relationship of cognitive capability to children's 

performance on addition and subtraction tasks. Of the 10 tests, seven 

were selected from a large battery of tests constructed by Fullerton 

(1968); two from tests devised by Romberg, Carpenter, and Moser (1978); 
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and one was constructed by the authors for this study. Details of each 

test can be found in Romberg and Collis (1980b). 

Extension (E). This group test was developed by Fullerton (1968). 

Children are to decide which of three choice boxes has the same number 

of dots as a sample box. The term extension refers to the fact that the 

number sets extend beyond the usual level of subitemization to a higher 

portion of the number scale. The test contains 12 items. The number of 

correct responses is scored. A correct answer is interpreted to mean 

that the child is able to set up a one-to-one correspondence between 

sets. 

Ordinal Correspondence (OC). In this group test, also developed by 

Fullerton (1968), the format for the items is similar to that in the 

Extension Test. This test also contains 12 items. The number of 

correct responses is scored. A correct answer is interpreted as meaning 

that the child is able to establish an ordinal correspondence between 

sets. 

Conservation of Number (Wohwill, CN-W). This group test, also 

developed by Fullerton (1968), is based on an earlier test developed by 

Wohlwill (1960). Six items are given. The number of correct responses 

is scored. A correct response is interpreted to mean that the child is 

able to preserve one-to-one correspondence between sets after one set 

has been rearranged (i.e., is able to overcome perceptual distractions). 

Addition-Subtraction (Wohlwill, AS-W). The items for this group 

test, also developed by Fullerton (1968) and based on Wohlwill's earlier 

work (1960), are interspersed with those of the previous test (CN-W) 

because of the similarity between the two tests. This test differs only 

in that a single object is either added to or subtracted from the 
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collection of objects in front of the children. In this case a correct 

response is interpreted to mean that the child recognizes that an 

increase or decrease in one of two sets in one-to-one correspondence 

means these sets are no longer in such correspondence. Six items are 

given and the number correct scored. 

Transitivity (T). The authors developed this six-item group test 

because the Coordination of Relations Equivalence Test (CRE, described 

next) requires a child to attend to both transitivity and a linear 

rearrangement of sets. The present test was designed to assess only 

transitivity. A correct response is interpreted as the child being able 

to preserve both equivalence and order relationships. A total correct 

score is recorded for each child. 

Coordination of Relations of Equivalence Test (CRE). This six-item 

group test was developed by Fullerton (1968). The items are similar to 

those in the T test except that the fixed set is also transformed 

(lengthened, shortened, or heaped together). A correct response here is 

interpreted as the child being able to preserve equivalence 

relationships even after rearrangement. The scoring procedure is 

identical to that for T. 

Class Inclusion (CI). This individually administered test of two 

items was developed by Romberg, Carpenter, and Moser (1978). A correct 

response is interpreted as a child being able to subdivide logically a 

set into distinct subsets. 

Additive Composition of Number (ACN). This individually 

administered test, developed by Fullerton (1968), includes three items 

that ask children to respond to three quite different composition tasks. 

A correct response implies the child can establish an equivalence 
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relationship by the common practice of sharing and preserve such a 

correspondence when distracting information is presented. 

Counting On (CO). This individually administered test was 

developed by Romberg, Carpenter, and Moser (1978). The test includes 

three items for each of the three levels of counting on: small number 

onto a number less than 10, small number onto a number between 10 and 

20, and a large number onto a number between 10 and 20. The typical 

question asked was, Could you start counting at 13 to find the number 

that is four more than 13? Children are marked as passing a level if 

they answer two of three items correctly. A total score is then 

recorded of the number of levels passed (0, 1, 2, or 3). 

Counting Back (CB). This test is like formal CO; however, in this 

case the typical question asked was, Could you count back starting at 15 

to find the number that is four less than 15? The scoring procedure 

used is the same as in CO. 

Test Administration 

Because the order in which these tests were administered was 

important, and because they would be administered to children of varying 

ages, two decisions were made to gather the data more efficiently. 

First, the tests were separated into four sets to be administered at 

separate times. Second, not all of the tests were given to all 

children. The organization of the tests and the rules for selecting who 

was to take which test are given in Table 8. The interview tests and 

set 2 were given to all children. A child passing the two tests in set 

2 (CN-W and AS-W) was assumed to have passed set 1 and was given set 3. 
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Table 8 

Tests Included in Each Set, Sequence of Administration, 
and Rules for Selecting Subjects 

Order Set (tests) Rule 

1 Interview All children 
(ACN, CI, CO, CB) 

2 Set 2 All children 
(CN-W, AS-W) 

3 Set 1 Children failing either 
(E, OC) test in set 2 

4 Set 3 Children passing both 
(T, CRE) tests in set 2 
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However, if a child failed either of the tests in set 2, set 1 was 

administered, and the child was assumed to have failed set 3. 

On the interview tests one assistant administered the CO and CB 

Tests, and the other administered the CI and the ACN Tests. Again 

children were randomly selected by their teachers to come to the 

interview room (the teachers' lounge). Each interviewer was in a corner 

of the room. Children were randomly assigned to an interviewer. 

Children took two tests on one day and the other two a day to two after. 

Shortly after the interviews were completed, the group batteries were 

given. Set 2 was given first to groups of six to eight children at a 

time from each class. The research assistant presented the stimulus 

information for each test following a script and using a large magnet 

board. The other assistants observed the children to make sure they 

were working on the correct page, responding in the right place, and not 

copying from others. Set 1 was given next, followed by set 3. All 

testing was completed within four weeks. 

Results 

Intercorrelations Among Cognitive Development Tests 

Full summary tables for the raw score data for each of the tests 

are given by Romberg and Collis (1980b). To examine the relation 

between the tests and the structure of the battery itself, a two-step 

procedure was followed. 

Fullerton (1968) used scalogram analysis to organize the battery of 

tests he developed. He found tests that grouped together, and he 

established an order for the tests based on test difficulty. 

Unfortunately, that method fails to establish the underlying 
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dimensionality of the data matrix or the possible structure of the 

assumed hierarchy. A more satisfactory method is to determine first the 

dimensionality of the intercorrelations of the tests. If the matrix is 

unidimensional, then a hierarchy can be established. 

The intercorrelations across the whole population for the 10 

cognitive processing tests appear in Table 9. The correlations are all 

positive but fairly low, ranging from .24 to .79; 17 of the 28 

correlations fall between .40 and .58. We decided to exclude the E and 

OC tests from the correlation matrix for further analysis on the grounds 

that they were baseline tests on which most children scored at the 

ceiling. 

Factor Analysis of Cognitive Development Tests 

To determine the dimensionality of the intercorrelations, a factor 

analysis was performed on the matrix shown in Table 8 with tests E and 

OC excluded. A multifactor solution model was used. All extractions 

were principal factor extractions with iteration estimates of 

commonalities; the varimax rotation procedure was employed. The results 

of this analysis are shown in Table 10. 

A two factor solution was derived, although the eigenvalue for the 

first factor is considerably larger than that for the second factor. An 

examination of this rotated factor matrix shows that the counting tests 

(CB, CO) load heaviest on the rotated first factor, followed by the 

tests in Battery 4, T and CRE. This factor may reflect a mature level 

of counting skill. The other four tests also load on this factor, but 

not to the same degree. At best we can say that it is probably a 

quantitative factor influenced by the ability to count. The second 
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Table 9 

Intercorrelations of the Ten Cognitive Development Tests 

E OC ACN CN-W AS-W CI CO CB T CRE 

E 1.00 

OC .45 1.00 

ACN .22 .25 1.00 

CN-W .30 .32 .35 1.00 

AS-W .35 .37 .48 .51 1.00 

CI .13 .13 .32 .24 .28 1.00 

CO .22 .28 .55 .43 .42 .44 1.00 

CB .15 .21 .49 .40 .39 .45 .79 1.00 

T .13 .16 .43 .42 .36 .47 .52 .61 1.00 

CRE .17 .21 .51 .55 .48 .39 .58 .62 .68 1.00 

Maximum 12 12 3 6 6 2 3 3 6 6 

Mean 10.88 10.63 1.97 4.86 5.03 .51 1.35 1.06 3.93 1.75 

Std. 
deviation 

1.90 2.28 .94 1.56 1.34 .81 1.29 1.21 4.68 1.49 
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Table 10 

Factor Analysis for Eight Cognitive Development Tests 

Factors 

1 2 

Eigenvalue 4.34 .92 

% variance 54.30 11.50 

Raw (rotated) factor matrix 

ACN .64(.46) .07(.45) 

CN-W .61(.25) .35(.65) 

AS-W .60(.24) .37(.66) 

CI .52(.49) -.13(.23) 

CO .80(.76) -.22(.33) 

CB .83(.85) -.33(.26) 

T .73(.60) -.06(.41) 

CRE .81(.56) .11(.59) 
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factor seems more qualitative, involving the ability to make comparisons 

and see transformations without having to count. In particular, the 

Wohlwill tests (AS-W and CN-W) load heaviest on this rotated factor 

load. One test, Class Inclusion, does not load heavily on either 

factor. Since Class Inclusion involves logical reasoning and is the 

only nonquantitative test, this finding gives credence to our 

interpretations of the first two factors. 

The factor analysis of the data seemed to show that there were two 

interpretable dimensions underlying performance on the tests. However, 

since the first factor accounted for such a large proportion of the 

variance (54.30%), we examined the possible hierarchical ordering of the 

tests using Guttman's (1954) simplex procedures. It is clear as one 

examines the correlation matrix as a whole that the tests are not in 

simplex order. Even when we take a subset of the matrix, the five tests 

(ACN, CN-W, CI, T, CRE) that might be considered to test aspects of 

logical functioning at this level do not satisfy the criteria. It seems 

from all the evidence, then, that there is no basis for a hierarchical 

ordering of these tests. In summary, the cognitive development tests do 

not seem to measure a single dimension. Rather, about two-thirds of the 

variance on the tests can be explained in terms of two dimensions, a 

quantitative factor influenced by the ability to count, which accounts 

for over half of the variance, and a qualitative factor that involves an 

ability to make comparisons and see transformations without counting. 

Relationships Between Cognitive Development and M-Space Tests 

In this section of the analysis, we attempted to combine the 

information from the M-space tests and the cognitive development tests 
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with a view to grouping the children/pupils into categories that have 

distinct describable cognitive characteristics. 

To begin with, a correlation matrix (Table 11) was drawn up for the 

four M-space tests and the eight cognitive development tests (tests E 

and OC being omitted for reasons given earlier). The correlations range 

from .29 to .79, with 20 of the 32 falling between .40 and .59. The 

higher correlations with the M-space tests occur with both the counting 

tests (CO, CB). This is not surprising. The counting tests undoubtedly 

rquire a larger memory capacity than some of the other tests. However, 

there is no apparent variation in correlations of the different memory 

tests with the cognitive processing tests. This suggests that the 

positive correlation is along a single dimension. 

Factor Analysis of Cognitive Development and M-Space Tests 

To check this suggested unidimensional relationship, a factor 

analysis was carried out in which the four M-space tests were added to 

the eight cognitive development tests. The data for that factor 

analysis appear in Table 12. Again, as was the case with the factor 

analysis of the cognitive development tests (see Table 9), two factors 

appeared. The two factors have the same structure as the two factors 

that appeared in the earlier analysis. The memory tests load heavily on 

the first factor but not the second. 

At this point, we decided that we had enough information to look 

for a pattern in the achievement on all cognitive tests for each of the 

six groups formed by the cluster analysis of the M-space tests. The 

proportion correct in each cognitive test for each M-space category is 

set out in Table 13; a graphical representation of the same information 
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Table 11 

Correlations of the Eight Cognitive Development Tests 
and the Four M-Space Tests 

Cognitive Processing Tests 

M-Space 
Tests ACN CN-W AS-W CI CO CB T CRE 

Counting Span .54 .32 .39 .43 .63 .61 .47 .53 

Digit Placement .54 .44 .41 .45 .77 .79 .69 .63 

Mr. Cucui .46 .32 .37 .48 .53 .55 .46 .47 

Backward Digit .48 .48 .50 .38 .61 .58 .55 .54 
Span 
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Table 12 

Factor Analysis for Eight Cognitive Development Tests 
and the Four M-Space Tests 

Factors 

1 2 

Eigenvalue 6.52 1.02 

% variance 54.40 8.50 

Raw (rotated) factor analysis 

ACN .65(.56) .08(.36) 

CN-W .58(.40) .41(.50) 

AS-W .59(.37) .41(.60) 

CI .55(.56) -.12(.12) 

CO .83(.78) -.18(.28) 

CB .84(.85) -.25(.15) 

T .73(.73) -.01(.16) 

CRE .78(.70) .16(.31) 

CS .71(.68) -.13(.25) 

DP .86(.74) -.19(.10) 

MC .63(.68) -.09(.25) 

BDS .73(.62) .13(.43) 
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is shown in Figure 1. It can be seen that there are clear differences 

between Groups 1 and 2 and the other four groups. Within the latter 

groups, Groups 3 and 4 differ little from each other but do differ from 

Groups 5 and 6, which are also very similar. 

Group 1 children with M-space level 1 were below the other groups 

in all four areas and were in general incapable of handling quantitative 

tasks. They could make qualitative comparisons and transformations only 

at a moderate level. 

Group 2 children with M-space level 2 were also without specific 

quantitative skills, although they performed considerably better than 

Group 1 on all the tests. They could handle qualitative correspondence 

at an acceptable level although they scored somewhat lower than the 

other groups on the conservation of number test. 

Group 3 children with M-space level 2S+ were high on qualitative 

correspondence, had developed the specific counting skills of counting 

on and counting back, but were inadequate in their use of those skills 

on the transitive reasoning test. Their logical reasoning was also 

deficient, although they performed considerably better than Groups 1 or 

2 on that test. 

Group 4 children with M-space level 3S- were high on qualitative 

correspondence and all the quantitative tests, but inadequate on the 

logical reasoning test. In fact, they differed significantly from Group 

3 only on the additive composition test and the transitivity test. 

Groups 5 and 6 with M-space levels 3S+ and 4S- presented similar 

profiles on these tests. They reached the ceiling on the qualitative 

correspondence tests, scoring a little higher than Groups 2, 3, and 4. 
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Table 13 

Percent Correct for the Six M-Space Groups 
on the Ten Cognitive Development Tests 

Test 

Factor 1 (Quantitative) 

Factor 2 Logi- 
Group Baseline (Qualitative) cal 

(M-space 
level) E OC AS-W CN-W ACN CO CB CRE T CI 

1(1) 90 84 46 48 45 9 3 6 2 6 

2(2) 100 100 91 71 80 52 35 43 14 20 

3(2S+) 100 100 87 93 71 82 78 73 53 50 

4(3S-) 100 100 100 90 87 93 87 80 90 50 

5(3S+) 100 100 100 100 100 91 75 100 100 88 

6(4S-) 100 100 100 100 93 100 87 100 80 90 
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Figure 1. Pattern of scores (percent correct) for the six M-space groups 
on ten cognitive process tests grouped by factors. 
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Like Group 4 children, they had high scores on all the quantitative 

tests. Children in these groups were high on the class inclusion test. 

From these cluster groups, a sample of students was drawn for 

Studies 3, 4, and 5 in this series in the following school year. 

Summary and Conclusion 

Based on data from four memory tests and eight cognitive 

development tests, we were able to identify groups of children who had 

well-defined but different cognitive-processing capabilities. This 

identification was accomplished in the following steps. First, using 

cluster analysis on the memory test scores, we identified six groups of 

students with similar patterns of responses. Second, from the results 

of a factor analysis, we found that the cognitive development tests 

loaded on two factors: a quantitative factor that involves mature 

counting strategies and a qualitative correspondence factor. Third, by 

examining how the six groups defined by the M-space analysis performed 

on the cognitive tests, we demonstrated that the cognitive-processing 

scores of five of the six groups differed systematically. 

This last step was the basis for the remainder of the project. We 

formed five distinct groups of students (cluster groups 5 and 6 were 

combined) with known cognitive capabilities related to the learning of 

mathematical materials. In the following chapters, we describe how this 

information was used to study several aspects of the children's 

interaction with mathematics instruction in early elementary school. 

In conclusion, the data gathered and analyzed in this chapter 

suggest that the following propositions deserve close attention by both 

researchers and practitioners: 
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1. A global qualitative/quantitative distinction is apparent in 

children's mathematical thinking in the early school year; 

2. M-space level seems to be related to the development of other 

cognitive skills; 

3. The suggested developmental sequence in the preschool to early 

elementary years in mathematically related reasoning appears to 

be: comparison -- qualitative correspondence -- quantitative -- 

logical operations; 

4. An M-space level of 1 is enough for handling simple comparison 

tasks; 

5. An M-space level of 2 is enough for understanding qualitative 

correspondence and is a prerequisite for the development of number 

skills; 

6. An M-space level of 3 seems necessary for success on sophisti- 

cated counting tasks. 

In all, these data suggest that simple correspondence (both 

equivalence and order) appears to be the first ability to develop. This 

is followed by a qualitative correspondence capacity that involves 

understanding how correspondence between two sets is preserved or 

changed under varying circumstances. Next, the quantitative skills of 

counting on and counting back develop, followed by their use in 

transitivity tasks. Finally, the capacity for logical reasoning 

develops. 



Chapter 3 

COGNITIVE-PROCESSING CAPACITY AND CHILDREN'S PERFORMANCE 

ON VERBAL ADDITION AND SUBTRACTION PROBLEMS 

In this chapter, the third study in this set is reported. Its 

purpose was to study the relationships among children's cognitive 

capacity, and their performance and use of strategies on verbal addition 

and subtraction problems. The importance of knowing how children learn 

the concepts and procedures of addition and subtraction should be 

self-evident. It is frequently assumed that children must first master 

computational skills and then begin to solve verbal addition and 

subtraction problems. However, it has been clearly demonstrated that 

children develop a variety of strategies for solving such mathematical 

problems, independent of instruction (cf. Carpenter & Moser, 1983; 

Ginsburg, 1977; Resnick, 1978). In fact, many of the strategies they 

use are more sophisticated and demonstrate more insight than the 

procedures that are taught. 

A sample of the children tested in the previous studies (Chapter 2) 

and selected to reflect different cognitive capabilities was interviewed 

on three occasions over a 3-month period in 1980 (27-29 February, 9-1 

April, and 26-28 May). In each interview, a set of verbal addition and 

subtraction problems was given to each child. The interviewer coded 

each student's performance and strategies. 

56 



Performance on Verbal Problems 57 

Method 

Sample 

The children from the earlier studies had advanced a grade in 

school since previous testing. Furthermore, the grade 2 students who 

were in Sandy Bay Infant School in October now were in third grade and 

in different primary schools. Most, however, were enrolled at Waimea 

Heights Primary School. 

Our intent was to have a sample of two to four students from each 

cognitive level in each grade. We began with rosters of students from 

each grade and their cognitive level. Then an initial selection of 

students was made. However, after school began, some third graders 

originally in one class were switched to another. This created some 

imbalance across classes but should not have affected the results. The 

44 students in this study are shown by cognitive group, class, and grade 

in Table 14. 

Procedure 

Types of problems. An interview consisted of six problem types 

(tasks) given under four of six conditions. The six types included two 

problems solvable by addition of the two given numbers and four problems 

solvable by subtraction of the two given numbers. The types differed in 

terms of semantic structure. The semantic characterization for these 

six problem types is detailed in Moser (1979) and in Carpenter and Moser 

(1979, 1983). 

Table 15 presents representative problems in the order in which the 

problems were administered to the children. The actual wording for each 

problem type differed but the semantic structure remained constant. 
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Children in Each 

Table 14 

Cluster Group in Each Class 

Sandy Bay Infant 
School Waimea Heights Primary School 

Class Class 

1 2 3 4 5 
Cognitive 

Group Grade 1 Grade 2 Grade 3 Grade 3 Grade 3 Total 

1 3 2 0 0 0 5 

2 3 6 0 4 0 13 

3 1 2 2 3 3 11 

4 0 0 2 3 3 8 

5,6 0 0 3 1 3 7 

Totals 7 10 7 11 9 44 
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Table 15 

Problem Types 

Sample Problem 

1. Change/Join (Addition) 

2. Change/Separate 
(Subtraction) 

3. Combine/Part Unknown 
(Subtraction) 

4. Combine/Whole Unknown 
(Addition) 

5. Compare (Subtraction) 

6. Change/Join, Change set 
Unknown (Subtraction) 

Pam had 3 shells. Her brother gave her 
6 more shells. How many shells did Pam 
have altogether? 

Jenny had 7 erasers. She gave 5 erasers 
to Ben. How many erasers did Jenny have 
left? 

There are 5 fish in a bowl. 3 are 
striped and the rest are spotted. How 
many spotted fish are in the bowl? 

Matt has 2 baseball cards. He also has 
4 football cards. How many cards does 
Matt have altogether? 

Angie has 4 lady bugs. Her brother Todd 
has 7 lady bugs. How many more lady 
bugs does Todd have than Angie? 

Gene has 5 marshmallows. How many more 
marshmallows does he have to put with 
them so he has 8 marshmallows altogther? 

Task 



60 Performance on Verbal Problems 

Within each problem, two of three numbers from a number triple (x, y, z) 

defined by x + y = z, x < y < z, were given. In the two addition 

problems, x and y were presented, with the smaller number x always given 

first. In the four subtraction problems, z and the larger addend y were 

presented. The order of presentation of y and z varied among problem 

types. 

The six semantic problem types used were presented under six 

conditions, although not all children responded to all conditions. Four 

conditions resulted from crossing smaller zs and larger zs with presence 

and absence of manipulative materials. In the smaller number problems 

(called SN problems), the addition guideline of 5 < z < 9 was imposed. 

In the larger number problems (called LN problems), the restriction on 

the sum was 11 < z < 15. Problem sets SNp and LNp were given with 

manipulatives present; the same sets given with manipulative absent were 

called SNa and LNa. 

For the interviews with third-grade children, the domain of 

two-digit numbers was included. In the two-digit domain, two subdomains 

were identified. In the NR probems, no regrouping (borrowing or 

carrying) was required to determine a difference or sum when a 

computational algorithm was used. In the second subdomain R problems, 

regrouping was required. For the two-digit problems, the sum z was 

restricted to numbers in the 20s and 30s. All the third-grade children 

took the LN, NR, and R problems. Complete details of the procedures 

used are reported in Romberg, Collis, and Buchanan (1981). 

Interview method. Three trained interviewers administered the 

interviews (see Cookson & Moser, 1980, for details of 

interviewer-training procedures and reliability). One interviewer 
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worked at Sandy Bay Infant School and the other two at Waimea Heights 

Primary School. Each interviewer was able to conduct from 8 to 12 

interviews a day, depending on the schools' schedules and on the task 

level. (The LN tasks took longer than the SN tasks.) At the schools, 

the interviewers were assigned interview areas, which were quiet rooms 

separate from distracting activities. The verbal tasks were read and 

reread to the child as often as necessary so that remembering the given 

numbers or relationships caused no difficulty. An individual interview 

required two sessions, one for the SN tasks and the other for LN tasks 

(or one for the LN and the other for NR and R). The sessions lasted 

15-25 minutes each, with each child receiving the same sequence of 

problems. No child was interviewed twice in one day. 

Coding student responses. All of the possible codings of student 

responses are presented in detail in Cookson and Moser (1980). Three or 

four elements were coded for each child: model used, correctness, 

strategy, and, if incorrect, error. A record of each subject's 

responses to the tasks was compiled from the coding sheets. These 

profiles are the basis for all other statistical information appearing 

in this chapter and are reported in Romberg, Collis, and Buchanan 

(1981). 

Data Aggregation and Analysis 

The interview data are summarized in terms of percent correct and 

general strategy. The data for percent of items answered correctly by 

children are summarized by examining the differences for children with 

differing cognitive processing capabilities. It was anticipated that 

children in Group 5-6 would answer more items correctly than those in 
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Group 4, who in turn would answer more items correctly than the Group 3 

children, and so forth. 

Pupil strategy was categorized according to type of model used (if 

any), strategy or process used, and errors (if any). Five general 

categories for the SN and LN problems are the following: 

1. Direct modeling--use of the manipulatives provided, or fingers, 

to stand for the problem entities. Actions performed on the 

objects generally correspond to the action or relationship 

described in the problem. 

2. Use of counting sequences--use of the string of counting words, 

either forward or backward, where the entry point in the sequence 

is a number other than 1. Counting may proceed in either direc- 

tion a given number of counts, or until a desired number (usually 

one of the numbers given in the problem) is reached. This 

requires a second counting or some sort of a tracking mechanism, 

often aided by the use of fingers. 

3. Routine mental operations--use of memorized number facts by 

direct recall. 

4. Nonroutine mental operations--derivation of a nonmemorized fact 

through manipulation of some other recalled fact. As an example, 

the fact for 6 + 8 can be derived by determining it to be two 

more than the easily remembered doubles fact of 6 + 6. 

5. Inappropriate Behaviors--guessing, using one of the given numbers 

in the problem, adding instead of subtracting, or giving no answer 

at all. 
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For the NR and R data, the five categories used with the SN and LN 

tasks were used if students did not write a sentence. If students did 

write a sentence, three other categories were used. 

6. Correct sentence/algorithmic. This category of behavior includes 

the standard algorithms taught in school as well as any "invented" 

(Carpenter & Moser, 1982) ones that involve considerations of 

place value. Algorithmic behavior must be exhibited by use of 

paper and pencil. 

7. Correct sentence/nonalgorithmic. After writing a sentence, the 

work is done mentally as was frequently seen in problems in which 

no regrouping (NR tasks) was required (Moser, 1980). 

8. Inappropriate sentence. This behavior involves writing and 

working with the wrong sentence (e.g., addition instead of 

subtraction). 

Details of what specific model, strategy, and error data were used to 

form these categories are presented in Romberg, Collis, and Buchanan 

(1981). 

The plan for analyses of the aggregated data was based on the two 

primary dimensions in this study--differences in the level of problem 

administered and differences in children's cognitive capacity. The 

problem dimension involves a completely crossed repeated assessment 

(three interviews) of six problem sets (SNp, SNa, LNp, LNa, NR, and R), 

with six tasks in each set (combine/join, combine/separate, and so on). 

The student dimension includes children nested in cognitive levels 

within classes and in turn, within grades. 

The data matrix is incomplete since not all cognitive levels are 

represented in each grade level, grade 1 and grade 2 children did not 
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take the NR and R problems, and the grade 3 children did not take the SN 

problems. The small number of subjects, the unequal cell sizes, and the 

extensive incompleteness of the matrix limited us to describing the 

frequencies and testing a few of the differences with chi-square 

statistics. 

For purposes of this report, frequency and percent correct and 

frequency of use of strategy are presented for children with different 

cognitive processing capabilities. The data are presented for three 

problem sets (SN, LN, and NR and R combined) and for each semantic task 

within each set. Other analyses performed for each interview and by 

grade level are not reported here. Those analyses can be found in 

Romberg, Collis, and Buchanan (1981). 

Results 

Performance by Cognitive Groups 

All SN and LN tasks. To examine whether or not differences in 

cognitive capacity are reflected in different percentages of correct 

responses, separate tables are presented for each problem set. In Table 

16, the data for the SN problems that were given only to grade 1 and 

grade 2 children clearly show that there is a significant increase in 

percent correct (56% to 75% to 88%) for children in cognitive Groups 1, 

2, and 3, respectively (x2= 47.19, p< .01). 

Because of the large number of trials and lack of a systematic 
plan to test differences, an alpha level of .01 was arbitrarily chosen 
to test significance. In addition, tests that yielded probability 
values between an alpha of .05 and .01 (.05> j> .01) were considered 
marginally significant. All X2 values were calculated via 2 x 2 
contingency tables where frequency of correct answers or strategy was 
dichotomized. 
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Table 16 

Frequency and Percent Correct by Cognitive Group for 
All SN Tasks 

Correct Responses 

Cognitive Group N Total Responses Frequency Percent 

1 5 180 100 56 

2 9 312a 235 75 

3 3 108 95 88 

4 - - - 

5,6 - - 

Total 17 600 430 72 

aWhen all children were present for all three interviews, number of trials 
equals N times 12 problems (6 SNp and 6 SNa) times three occasions, 
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For the LN problems given to all children, the percent correct for 

children in different cognitive groups is shown in Table 17. The 

differences are striking. The Group 1 children only got 22% correct, 

while children in Group 5-6 got 96% correct. There is a significant 

increase from Group 1 to Group 2 (22% to 65%, X2 = 94.38, p<.01), from 

Group 2 to Group 3 (65% to 81%, X2= 26.74, jp<.01), and again from Group 

4 to Group 5-6 (83% to 96%, <.01). The lack of difference in percent 

correct between Cognitive Group 3 and Group 4 children is not 

surprising, since these groups differed very little on the cognitive 

tests. 

All NR and R tasks. For the D and E problems given only to grade 3 

children, the pattern of correct responses were very similar. Thus, for 

summary purposes, the data on these problems are combined in Table 18. 

For these students, the difference between percentage correct for 

children in Cognitive Groups 2 and 3 (49% and 67%) is significant (x2= 

11.76, p <.01), as are the differences between Cognitive Groups 4 and 

5-6 children (62% and 83%, X2 = 30.05, E <.01). Again, the differences 

in performance between Cognitive Groups 3 and 4 on both sets of problems 

are not significant. 

Overall, our predictions about percentage of the items answered 

correctly were found to be accurate, except that children in Cognitive 

Groups 3 and 4 differed very little in terms of their general 

performance. 

Performance by Task 

Within each problem set, one item representing each of six tasks 

(change/join; change/separate; combine/part unknown; combine/whole 
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Table 17 

Frequency and Percent Correct by Cognitive Group for 
All LN Tasks 

Correct Response 

Cognitive Group N Total Responsesa Frequency Percent 

1 5 180 40 22 

2 13 456 206 65 

3 11 396 320 81 

4 8 264 220 83 

5,6 7 252 241 96 

Total 44 1548 1117 72 

aWhen all children were present for all three interviews, number of trials 
equals N times 12 problems (6 LNp and 6 LNa) times three occasions. 

Table 18 

Frequency and Percent Correct by Cognitive Group for 
All NR, R Tasks 

Correct Response 

Cognitive Group N Total Responsesa Frequency Percent 

1 - - - - 

2 4 144 71 49 

3 8 264 176 67 

4 8 252 155 62 

5,6 7 252 210 83 

Total 27 912 612 67 

aWhen all children were present for all three interviews, number of trials 
equals N times 12 problems (6 NR and 6 R) times three occasions. 
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unknown; compare and change/join; change/set unknown) was given. 

Because the different semantics of each problem type elicit different 

cognitive demands, we anticipated that performance would vary with the 

tasks. Following Greeno's (1980) categorization of the six tasks given 

(see Table 15) we expected Tasks 1 and 2 (change/join and 

change/separate) to be the easiest, for they demand only a change/cause 

schema; Task 4 (combine/whole unknown) to be next in difficulty, for it 

involves a harder combination schema; Tasks 6 and 3 (the missing addends 

problem) to follow in difficulty because of the location of the missing 

information; and Task 5 (comparison/subtraction) to be hardest because 

it involves a comparison schema which requires more units of memory. 

Each SN task. The percent correct data for each cognitive group 

for each task in the SN set of problems are presented in Table 19. The 

pattern of differences between cognitive groups is consistent with Group 

3 children performing better than Group 2 who, in turn, perform better 

than the Group 1 children. As expected for the SN level Tasks 1 and 2 

were easy for all children. Tasks 4 and 6, however, were just as easy. 

Task 3 was more difficult, and Task 5 was hard for all children. 

Each LN task. The percent correct data for each cognitive group on 

each task for the LN set of problems are presented in Table 20. If two 

thirds of the items were correct, then this was used as a rough 

criterion for success for those data. Again, a consistent pattern of 

the children in the higher cognitive group getting as many or more items 

correct is apparent. The one exception to this pattern was on Task 3 

(combine/part unknown), the Group 4 children did not do as well as the 

Group 3 children on those tasks. Group 1 children were generally unable 

to work any of the LN problems successfully. The majority of Group 2 



Table 19 

Frequency and Percent Correct by Cognitive Group for Each SN Task 

Correct Response 

Cognitive Group N Total Responses Frequency Percent 

Task 1 Change/Join (+) 

1 15 30 23 77 
2 26 52 44 85 
3 9 18 18 100 
4 

5,6 - - - 

Total 50 100 85 85 

Task 2 Change/Separate (-) 

1 15 30 21 70 
2 26 52 42 81 
3 9 18 16 89 

5,6 -- 

Total 50 100 79 79 

Task 3 Combine/Part Unknown (-) 

1 15 30 12 40 
2 26 52 40 77 
3 9 18 16 89 
4 

5,6 --- - 

Total 50 100 68 68 

Correct Response 

Cognitive Group N Total Responses Frequency Percent 

Task 4 Combine/Whole Unknown (+) 

1 15 30 21 70 
2 26 52 43 83 
3 9 18 16 89 
4 

5,6 - - - - 

Total 50 100 80 80 

Task 5 Compare (-) 

1 15 30 7 23 
2 26 52 22 42 
3 9 18 12 67 

5,6 - 5,6 . . . . 
Total 50 100 41 41 

Task 6 Change/Join, Change set unknown (-) 

1 15 30 16 53 
2 26 52 44 85 
3 9 18 17 94 
4 

5,6 - - - - 

Total 50 100 77 77 
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Table 20 

Frequency and Percent Correct by Cognitive Group for Each LN Task 

Correct Response 

Cognitive Group N Total Responses Frequency Percent 

Task 1 Joining (+) 

1 15 30 9 30 
2 38 76 55 72 
3 33 66 57 86 
4 22 44 40 91 

5,6 21 42 40 95 
Total 129 258 201 78 

Task 2 Separating (-) 

1 15 30 7 23 
2 38 76 52 68 
3 33 66 51 77 
4 22 44 34 77 

5,6 21 42 40 95 
Total 129 258 184 71 

Task 3 PPW, missing addend (-) 

1 15 30 6 20 
2 38 76 54 71 
3 33 66 56 85 
4 22 44 33 75 

5,6 21 42 41 98 
Total 129 258 190 74 

Cognitive Group N Total Responses 

"d 

O 0 
Correct Response ? 

Frequency Percent 0 

0 
0 

C 
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Task 4 PPW (+) 

1 15 30 11 37 
2 38 76 52 68 
3 33 66 53 80 
4 22 44 38 86 

5,6 21 42 40 95 
Total 129 258 194 75 

Task 5 Comparison (-) 

1 15 30 1 3 
2 38 76 30 39 
3 33 66 49 74 
4 22 44 38 86 

5,6 21 42 39 93 
Total 129 258 157 58 

Task 6 Joining, missing addend (-) 

1 15 30 6 20 
2 38 76 53 70 
3 33 66 54 82 
4 22 44 37 84 

5,6 21 42 41 98 
Total 129 258 191 74 
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children worked all problems except Task 5. The children in the higher 

groups were able to work all problems. However, except for the 

difficult comparison problems (Task 5), the tasks were of equal 

difficulty. 

Each NR and R task. The same data for the NR and R sets of 

problems are shown in Table 21. Again, the same pattern is evident 

except for the Cognitive Group 4 children whose performance was 

marginally lower than Group 3 children on Tasks 1 and 2 and was about 

the same as Group 2 children on Task 5. Overall, Group 2 children were 

only successful on Task 1. Group 3 and 4 children were successful on 

Tasks 1, 4, and 6. And, Group 5-6 children were successful on all 

tasks. However, unexpectedly, Task 2 was as hard as Tasks 3 and 5 for 

all of the children. These data suggest that when problems have large 

enough numbers, children should use algorithms, because the implied 

computational procedures become more important than the semantics. 

Thus, addition problems are easier than subtraction problems. Although 

Task 6 is a subtraction problem, it was often solved using additive 

notions, making it easier than Task 2. 

In summary, although there were important variations in performance 

due to problem set (size of number) to specific task, and to grade, it 

is clear that children who had been identified as having different 

cognitive-processing capabilities performed differently on these 

addition and subtraction tasks regardless of the other important 

factors. 



Table 21 

Frequency and Percent Correct by Cognitive Group for Each NR, R Task 

Correct Response 

Cognitive Group N Total Responses Frequency Percent 

Task 1 Change/Join (+) 

1 
2 12 24 16 67 
3 22 44 39 89 
4 21 42 33 78 

5,6 21 42 37 88 
Total 76 152 125 82 

Task 2 Change/Separate (-) 

2 12 24 10 42 
3 22 44 27 61 
4 21 42 21 50 

5,6 21 42 31 74 
Total 76 152 89 58 

Task 3 Combine/Part Unknown (-) 

1 
2 12 24 9 38 
3 22 44 22 50 
4 21 42 22 52 

5,6 21 42 35 83 
Total 76 152 88 58 

(t 

0 

Correct Response g 

0 Cognitive Group N Total Responses Frequency Percent X 

o 0 

tr 

o 0 
(VI 

Task 4 Combine/Whole Unknown (+) 

1 

2 12 24 14 58 
3 22 44 31 70 
4 21 42 31 74 

5,6 21 42 39 93 
Total 76 152 115 76 

Task 5 Compare (-) 

1 

2 12 24 12 50 
3 22 44 28 64 
4 21 42 20 48 

5,6 21 42 30 71 
Total 76 152 90 59 

Task 6 Change/Join, Change set unknown (-) 

1 

2 12 24 10 42 
3 22 44 29 66 
4 21 42 28 67 

5,6 21 42 38 90 
Total 76 152 105 68 
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Strategies Children Used 

As outlined in the first part of this chapter, the data on 

strategies children used are summarized in terms of five categories for 

the SN and LN problem sets (direct modeling, counting sequences, routine 

mental operations, nonroutine mental operations, and inappropriate 

strategy) and eight categories for the NR and R problem sets (the same 

five no-sentence categories as for SN and LN tasks plus correct 

sentence-algorithmic, correct sentence-nonalgorithmic, and incorrect 

sentence). 

We expected that children with low cognitive capacity would either 

use inappropriate strategies or directly model problems. Children with 

higher capacities would use counting sequences and routine mental 

operations. Algorithms would be used in increasing frequency by 

children at higher levels of competency. 

All SN tasks. To show whether children with different cognitive 

capacities used different strategies, separate tables are presented for 

each problem set. For the SN problems given only to grades 1 and 2 

children (Table 22), as expected, there was a significant increase in 

use of routine mental operations (8% to 27% to 35%) by children with 

higher cognitive capacity (x2= 36.97, p<.01) and a corresponding 

significant decrease in use of an inappropriate strategy (39% to 18% to 

7%; x2= 34.80, ? <.01). However, the frequency of use of the other 

categories unexpectedly remained constant over cognitive levels. 

All LN tasks. For the LN problems given to all children, the 

strategy data for children in different cognitive groups are shown in 

Table 23. The picture here is more dramatic. As anticipated, children 

in Cognitive Group 1 either directly modeled the problems (28% of the 



Table 22 

Frequency of Use of Strategies by Cognitive Group and Category for All SN Tasks 

Routine Mental Nonroutine Mental 
Direct Modeling Counting Sequences Operation Operation Inappropriate 

Cognitive 

Group Responses Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent 

1 180 69 38 20 11 15 8 5 3 71 39 

2 312 120 38 43 14 85 27 8 2 56 18 

3 108 39 36 17 16 39 36 5 5 8 7 

Total 600 228 38 80 13 139 23 18 3 135 22 

Table 23 

Frequency of Use of Strategies by Cognitive Group and Category for All LN Tasks 

Routine Mental Nonroutine Mental 
Direct Modeling Counting Sequences Operation Operation Inappropriate 

Cognitive 
Group Responses Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent 

1 180 50 28 1 0+ 2 1 0 0 127 70 

2 456 166 36 82 18 59 13 27 6 122 27 

3 396 71 18 130 33 104 26 38 10 53 13 

4 264 30 11 79 30 92 35 38 14 25 9 

5,6 252 32 13 101 40 105 42 14 6 0 0 

Total 1548 349 22 393 25 362 23 117 8 327 21 
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trials) or used an inappropriate strategy (70% of the trials). Use of 

an inappropriate strategy goes down consistently with increase in 

cognitive capacity (70% for Group 1 children to 0% for Group 5-6 

children). Direct modeling is the strategy most often used by Cognitive 

Group 2 children; counting sequences by Group 3 children; and routine 

mental operations by Groups 4 and 5-6 children who also used counting 

sequences frequently. 

All NR tasks. Data for the NR problems, which were given only to 

the third-grade children, are summarized in Table 24. As expected, 

between Cognitive Groups 2 and 5-6 there is a significant increase in 

use of counting strategies from 12% to 33% (X2= 10.40, R<.01) and a 

corresponding decrease in use of inappropriate strategies from 29% to 2% 

(X2= 30.86, p <.01). Unexpectedly, children at all cognitive levels 

used other strategies at about the same frequency. 

All R tasks. The data for the R problems, also given only to third 

graders, are summarized in Table 25. As for the NR problems, from Group 

2 to Group 5-6, the use of counting strategies increased significantly 

from 4% to 32% (X2= 20.50, p <.01) and the use of inappropriate 

strategies decreased from 44% to 5% (X2= 46.52, j <.01). For both NR 

tasks and R tasks, there was no appreciable increase in the use of 

algorithms by children in higher cognitive groups (NR, 21% to 25%; R, 

26% to 25%). 

Strategies by Task Type 

Within each problem set, one item representing each of six tasks 

(change/join; change/separate; combine/part unknown; combine/whole 

unknown; compare, and change join/change/set unknown) was given. From 



Table 24 

Frequency of Use of Strategiem by Cognitive Group and Category for Al INR Tasks 

Routine Nonrout ne 
Direct Counting ental ental Incorrect 

Coglnitive Modeling Sequences Operstion Operation Inappropriate Algorithm Non-Algorithm Sentetce 
Group Responses equnc Fre unc requency % Frequency % Frequency % Frequency % Frequency % Frequency % 

2 72 14 1r 9 12 8 11 3 4 21 29 15 21 1 1 1 1 

3 132 29 22 27 20 24 18 5 4 21 16 25 19 0 0 1 I 
4 127 25 20 28 22 23 18 9 7 15 12 24 19 1 1 2 2 

5,6 126 20 16 42 33 27 21 1 1 3 2 31 25 2 2 0 0 

Table 25 

Frequency of Use of Strategies by Cognitive Group and Category for All R Tasks 

Routine Nonroutine 
Direct Counting MentalMental Incorrect 

Modeling Sequences Operation Operation Inappropriate Algorithm Non-Nlgorlthm Sentence Cognitive 

Group Responses Frequency % Frequency % Frequency % Frequency % Frequency % Frequency % Frequency % Frequency % 

2 72 5 7 3 4 7 10 2 3 32 44 19 26 2 3 21 

3 132 28 21 30 23 17 13 O 0 30 23 24 18 1 1 2 1 

4 127 29 23 17 13 17 13 1 1 32 25 27 21 0 0 2 2 

5,6 126 28 22 40 32 16 13 1 1 6 5 31 25 1 1 3 2 
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past research (e.g., Carpenter & Moser, 1982), we anticipated that 

different strategies would be used on tasks with differing semantic 

structures (particularly on the missing addend problems, Tasks 3 and 6, 

and on the compare problem, Task 5). 

Each SN task. The strategy data for each cognitive group for each 

task for the SN set of problems are presented in Table 26. A consistent 

inverse relationship between use of inappropriate strategies and 

cognitive level is apparent. Although the percentages of various 

strategies used with each of the tasks differ, the patterns seem to be 

consistent across cognitive groups. For example, few students used 

direct modeling for the compare and change/join missing addend tasks 

(Tasks 5 and 6), regardless of cognitive group. In particular, students 

used counting sequences most frequently with Task 6. 

Each LN task. The strategy data for each cognitive group on each 

task for the LN set of problems are presented in Table 27. Again, the 

use of direct modeling decreases as cognitive capacity increases as does 

the use of inappropriate strategies, while the use of counting sequences 

and routine mental operations generally increases with capacity. 

Cognitive Group 1 children directly modeled or used inappropriate 

strategies for all types of tasks. The use of other strategies varies 

by task. Again, direct modeling is not used often with Tasks 5 and 6. 

Each NR and R task. The data for the NR and R sets of problems are 

shown in Table 28. Again, the same pattern is evident. Students used 

direct modeling strategies only for subtraction tasks. Routine mental 

operations or algorithms were used on Tasks 1 and 4 (the addition tasks) 

and algorithms on Task 2 (the simplest subtraction task). Students 

often used direct modeling on all subtraction tasks but rarely for 



Table 26 

Frequency of Use of Strategies by 

Direct Modeling Counting Sequences 

Cognitive Group N Frequency Percent Frequency Percent 

Task 1 

1 15 16 53 3 10 

2 26 23 44 5 10 

3 9 6 33 3 17 

Total 50 45 45 11 11 

Task 2 

1 15 17 57 1 3 

2 26 27 52 3 6 

3 9 10 56 1 6 

Total 50 54 54 5 5 

Task 3 

1 15 12 40 1 3 

2 26 26 50 1 2 

3 9 9 50 2 11 

Total 50 47 47 4 4 

Task 4 

1 15 17 57 3 10 

2 26 25 48 8 15 

3 9 10 56 2 11 

Total 50 52 52 13 13 

Task 5 

1 15 2 7 1 3 

2 26 10 19 7 13 

3 9 3 17 1 6 

Total 50 15 15 9 9 

Task 6 

1 15 5 17 11 37 

2 26 9 17 19 36 

3 9 1 6 8 44 

Total 50 15 15 38 38 



Cognitive Group and Category for Each SN Task 

Routine Mental Nonroutine Mental 
Operation Operation Inappropriate 

Frequency Percent Frequency Percent Frequency Percent Trials 

Change/Join (+) 

3 10 4 13 4 13 30 

17 33 3 6 4 8 52 

7 39 2 11 0 0 18 

27 27 9 9 8 8 100 

Change/Separate (-) 

2 7 0 0 10 33 30 

16 31 2 4 4 8 52 

6 33 0 0 1 6 18 

24 24 2 2 15 15 100 

Combine/Part Unknown (-) 

2 7 0 0 15 50 30 

14 27 1 2 10 19 52 

5 28 2 11 0 0 18 

21 21 3 3 25 25 100 

Combine/Whole Unknown (+) 

3 10 1 3 6 20 30 

14 27 0 0 5 10 52 

6 33 0 0 0 0 18 

23 23 1 1 11 11 100 

Compare (-) 

2 7 0 0 25 83 30 

4 8 1 2 30 58 52 

8 44 0 0 6 33 18 

14 14 1 1 61 61 100 

Change/Join, Change Set Unknown (-) 

3 10 0 0 11 37 30 

20 38 1 2 3 6 52 

7 39 1 6 1 6 18 

30 30 2 2 15 15 100 



Table 27 

Frequency of Use of Strategies by 

Direct Modeling Counting Sequences 

Cognitive Group N Frequency Percent Frequency Percent 

Task 1 

1 15 11 37 0 0 
2 38 32 42 13 17 
3 33 12 18 23 35 
4 22 1 2 15 34 

5,6 21 1 2 14 33 
Total 129 57 22 65 25 

Task 2 

1 15 12 40 0 0 
2 38 33 43 5 6 
3 33 15 23 17 26 
4 22 5 11 17 39 

5,6 21 8 19 20 48 
Total 129 73 28 59 23 

Task 3 

1 15 11 37 0 0 
2 38 32 42 14 18 
3 33 19 27 17 26 
4 22 4 9 14 32 

5,6 21 7 17 13 31 
Total 129 73 28 58 22 

Task 4 

1 15 11 37 0 0 
2 38 34 45 18 24 
3 33 9 14 28 42 
4 22 7 16 11 25 

5,6 21 5 12 16 38 
Total 129 66 26 73 28 

Task 5 

1 15 1 3 0 0 
2 38 14 18 12 16 
3 33 9 14 24 36 
4 22 9 20 12 27 

5,6 21 7 17 20 48 
Total 129 40 16 68 26 

Task 6 

1 15 4 13 1 3 
2 38 21 28 20 26 
3 33 7 11 21 32 
4 22 4 9 10 23 

5,6 21 4 10 18 43 
Total 129 40 16 70 27 



Cognitive Group and Category for Each LN Task 

Routine Mental Nonrputine Mental 
Operation Operation Inappropriate 

Frequency Percent Frequency Percent Frequency Percent Trials 

Change/Join (+) 

0 0 0 0 19 63 30 
15 20 6 8 10 13 76 
19 29 7 11 5 8 66 
18 41 7 16 3 7 44 
21 50 6 14 0 0 42 
73 28 26 10 37 14 258 

Change/Separate (-) 

0 0 0 0 18 60 30 
12 16 5 6 21 28 76 
12 18 12 18 10 15 66 
12 27 5 11 5 11 44 
10 24 4 9 0 0 42 
46 18 26 10 54 21 258 

Combine/Part Unknown (-) 

1 3 0 0 18 60 30 
8 10 5 6 17 22 76 

17 26 8 12 5 8 66 
11 25 8 18 7 16 44 
20 48 2 5 0 0 42 
57 22 23 9 47 18 258 

Combine/Whole Unknown (+) 

0 0 0 0 19 63 30 
10 13 0 0 14 18 76 
17 26 4 6 8 12 66 
17 39 7 16 2 4 44 
20 48 1 2 0 0 42 
64 25 12 5 43 17 258 

Compare (-) 

0 0 0 0 29 97 30 
4 5 6 8 40 53 76 

16 24 2 3 15 23 66 
14 32 5 11 4 9 44 
15 36 0 0 0 0 42 
49 19 13 5 88 34 258 

Change/Join, Change Set Unknown (-) 

1 3 0 0 24 80 30 
10 13 5 6 20 26 76 
23 35 5 8 10 15 66 
20 45 6 14 4 9 44 
19 45 1 2 0 0 42 
73 28 17 6 58 22 258 



Table 28 

Frequency of Use of Strategies by 

No Sentence 

Routine Mental 
Direct Modeling Counting Sequences Operation 

Cognitive Group N Frequency Percent Frequency Percent Frequency Percent 

Task 1 

2 12 1 4 2 8 2 8 
3 22 7 16 6 14 15 34 
4 21 2 5 2 5 16 38 

5,6 21 4 10 3 7 16 38 
Total 76 14 9 13 9 49 32 

Task 2 

2 12 4 17 0 0 2 8 
3 22 15 34 7 16 2 4 
4 21 13 31 6 14 6 14 

5,6 21 13 31 5 12 2 5 
Total 76 45 30 18 12 12 8 

Task 3 

2 12 4 17 2 8 3 12 
3 22 13 29 10 23 4 9 
4 21 13 31 7 17 3 7 

5,6 21 14 33 17 40 5 12 
Total 76 44 29 36 24 15 10 

Task 4 

2 12 1 4 1 4 4 17 
3 22 7 16 2 4 12 27 
4 21 5 12 4 9 8 19 

5,6 21 4 9 6 14 11 26 
Total 76 17 11 13 9 35 23 

Task 5 

2 12 4 17 4 17 2 8 
3 22 8 18 16 36 3 7 
4 21 9 21 13 31 3 7 

5,6 21 6 14 25 60 3 7 
Total 76 27 18 58 38 11 7 

Task 6 

2 12 5 21 3 12 2 8 
3 22 7 16 16 36 5 11 
4 21 12 29 13 31 4 9 

5,6 21 7 17 26 62 6 14 
Total 76 31 20 58 38 17 11 



Cognitive Group and Category for Each NR, R Task 

Correct Sentence Incorrect Sentence 

Nonroutine Mental 
Operation Inappropriate Algorithm Non-Algorithm All Strategies 

Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent Trials 

Change/Join (+) 

0 0 6 25 12 50 1 4 0 0 24 
1 2 2 4 12 27 1 2 0 0 44 
1 2 5 12 16 38 0 0 0 0 42 
0 0 0 0 19 45 0 0 0 0 42 
2 1 13 9 59 39 2 1 0 0 152 

Change/Separate (-) 

0 0 8 33 8 33 1 4 1 4 24 
1 4 6 13 13 29 0 0 0 0 44 
0 0 4 10 11 26 1 2 1 2 42 
0 0 2 5 16 38 2 5 2 5 42 
1 0 20 13 48 31 4 3 4 3 152 

Combine/Part Unknown (-) 

1 4 10 41 4 17 0 0 0 0 24 
0 0 11 25 5 11 0 0 1 2 44 
1 2 13 31 4 9 0 0 1 2 42 
0 0 2 5 3 7 1 2 0 0 42 
2 1 36 23 16 10 1 1 2 1 152 

Combine/Whole Unknown (+) 

0 0 10 42 8 33 0 0 0 0 24 
0 0 10 23 13 29 0 0 0 0 44 
0 0 6 14 19 45 0 0 0 0 42 
0 0 0 0 21 50 0 0 0 0 42 
0 0 26 17 61 40 0 0 0 0 152 

Compare (-) 

0 0 12 50 2 8 0 0 0 0 24 
1 2 11 25 3 7 0 0 2 4 44 
5 12 10 24 0 0 0 0 2 5 62 
1 2 4 9 2 5 0 0 1 2 42 
7 5 37 24 7 5 0 0 5 3 152 

Change/Join, Change Set Unknown (-) 

4 17 7 29 0 0 1 4 2 8 24 
2 4 11 25 3 7 0 0 0 0 44 
3 7 9 21 1 2 0 0 0 0 42 
1 2 1 2 1 2 0 0 0 0 42 

10 7 28 18 5 3 1 1 2 1 152 
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addition, and often used counting sequences with the missing addend 

problems (Tasks 3 and 6) and the compare problem (Task 5). A 

considerable increase in use of counting sequences is apparent from 

Cognitive Group 2 to Cognitive Group 5-6 on these tasks. There remains 

a significant relationship between use of inappropriate strategies and 

cognitive group. 

Summary and Conclusion 

In summary, there are important variations in strategies associated 

with problem set (size of number) and specific tasks. There also appear 

to be important interactions between the strategies used by children who 

have been identified as having different 

cognitive-processing capabilities and problem set and task. Children 

with different capacities use different strategies on these addition and 

subtraction tasks, regardless of the other important factors. It should 

be understood that other factors, such as grade, have been confounded 

with cognitive-processing capacity. 



Chapter 4 

COGNITIVE-PROCESSING CAPACITY AND CHILDREN'S PERFORMANCE 

ON STANDARD ADDITION AND SUBTRACTION PROBLEMS 

In this chapter, the fourth study in this series is reported. Its 

purpose was to relate the children's cognitive capacity and grade level 

to their performance on a standard set of items related to addition and 

subtraction. The procedure used in this study was achievement 

monitoring (Romberg & Braswell, 1973), which involves repeatedly 

measuring groups of students in a quasi-experimental design (Campbell & 

Stanley, 1963). The measures were objective-referenced sets of items on 

various aspects of addition and subtraction. The quasi-experimental 

design involved combining longitudinal and cross-sectional designs. 

Figure 2 shows the design for describing both the longitudinal and 

cross-sectional data. The within-grade longitudinal growth is 

represented by the relative heights of the unshaded planes for the 

groups of students in each grade. The shaded plane across grades 

perpendicular to the time-of-testing axis represents cross-sectional 

growth. 

The data gathered in this study are summarized first in terms of 

percent correct on the scales for each grade to portray longitudinal 

growth. Second, cross-sectional growth profiles are presented on the 

common scales across grades. Third, summarizations of performance are 

made for students belonging to the same cognitive groups by grade and 

across grades. Finally, we relate these data for third-grade children 

to the strategies they used to solve the verbal problems (NR and R 

problems) discussed in Chapter 3. 

85 
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LEVEL OF PERFORMANCE 

TIME 

Figure 2. Longitudinal mean growth (unshaded planes) and cross-sectional 

Figure 2. Longitudinal mean 
growth (shaded plane) for students in grades , 2, and 3. growth (shaded plane) for students in grades 1, 2, and 3. 
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Method 

Sample 

A sample of 44 children in grades 1-3 from the population examined 

in the previous studies in this series (see Chapters 2 and 3) were 

administered a set of items on three occasions over a 3- to 4-month 

period in 1980 (29 February, 11 April, and 28 May or 6 July). The 

number of children at each grade level is shown in Table 29. In each 

administration, a set of test items was given to each student. Each 

child's performance on all items was scored. This report presents the 

data from those test administrations. 

Description of the Tests 

A battery of paper-and-pencil objective-referenced tests had 

previously been developed to assess student achievement on addition and 

subtraction skills at grades 1, 2, and 3 (Buchanan & Romberg, 1983). 

The battery contained three test forms for each grade. The items were 

written to assess the instructional objectives of 10 experimental topics 

designed to teach addition and subtraction as well as to measure 

performance on certain prerequisite objectives and noninstructional 

objectives (Romberg, Carpenter, & Moser, 1978). A summary of all 

objectives included in the battery is provided in Table 30. Not all 

objectives were assessed at all grade levels, however. Because of the 

small sample of students to be tested, one of the three forms was 

administered at each grade (Form K at grade 1, Form S at grade 2, Form V 

at grade 3). 

Form K was a 30-minute test containing three subtests: a 15-item 

multiple-choice subtest and two separate 9-item subtests assessing 
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Table 29 

Children at each Cognitive Group in each Grade 

Sandy Bay Waimea Heights 
Infant School Primary School 

Cognitive Group Grade 1 Grade 2 Grade 3 Total 

1 3 2 0 5 

2 3 6 4 13 

3 1 2 8 11 

4 0 0 8 8 

5,6 0 0 7 7 

Total 7 10 27 44 
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Table 30 

Objectives Assessed in Addition and Subtraction 

Achievement Monitoring Battery 

Prerequisite Instructional Objectives 

Numerousness 
0-10 
11-20 
0-99, writes 
0-99, represents 

Ordering, Place Value 
sets, one-to-one correspondence 
numbers 0-20 
numbers 0-99, orders 
numbers 0-99, notation 

Instructional Objectives for the S and 
A Topic Series 

Open Sentences 
add 0-20 
subt 0-20 

Sentence-Writing 0-20 
add-simple joining 
subt-simple separating 
subt-part part whole-addend 
add- part part whole 
subt-comparison 
subt-join-addend 

Sentence-Writing 0-99 
add-simple joining 
subt-simple separating 
subt-part part whole-addend 
add-part part whole 
subt-comparison 
subt-join-addend 

Non-instructional Objectives 

Problem-Solving 0-20 
add-simple joining 
subt-simple separating 
subt-part part whole-addend 
add-part part whole 
subt-comparison 
subt-join-addend 

Problem-Solving 0-99 
add-simple joining 
subt-simple separating 
subt-part part whole-addend 
add-part part whole 
subt-comparison 
subt-join-addend 

Counting 9-31 
on 
back 

Basic Facts--Speeded Test 
add 0-20 
subt 0-20 

Algorithms--Timed Test 
add 0-99 
add 0-99 

Algorithms 
add 0-99 
subt 0-99 
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recall of addition and subtraction facts under time limits. Form S was 

a 35-minute test containing four subtests; three of the subtests were 

similar to the Form K subtests with some items dropped and some added to 

form a 19-item multiple-choice subtest and two 12-item recall tests. 

The fourth subtest was a 4-item free-response sentence-writing measure. 

Form V for third grade was a 40-minute test containing six subtests. In 

this case, the two recall subtests and the sentence-writing subtest were 

identical for the Form S subtests. Five items were dropped from the 

Form S multiple-choice subtest, leaving 14 items. The two new subtests 

were 24-item timed measures of performance on addition and subtraction 

algorithms. 

Multiple-choice subtests. Individual objectives in the areas of 

numerousness, ordering, place value, open sentences, and algorithms were 

represented by one multiple-choice item in each test form on which they 

were assessed. For the two objectives for counting, counting on and 

counting back for numbers to 18, there was one item per form; however, 

an additional counting item for numbers to 31 was included in each test 

because information on these numbers was of potential interest relative 

to interview problem situations using larger numbers (see Chapter 3). 

Four individual objectives for sentence-writing were represented by 

a multiple-choice item in each form. For grade 1, these items contained 

numbers 5-9 or 11-15; for grades 2 and 3 the number domains were 11-15 

and 0-99. Since there was no way in a multiple-choice format to have 

students actually write a sentence, the items required listening to a 

verbal problem read aloud and then choosing the sentence that correctly 

represented the verbal situation. The problem situation itself was not 

printed on the test page. This prevented reading difficulties and also 
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was in keeping with the procedures for the interviews, in which the 

problems were presented orally. 

For Form K, two objectives for the problem-solving area were 

assessed while for Forms S and V, four objectives were included. The 

number domains were the same as for the sentence-writing objectives, and 

again, the problem situations were not printed in the student booklets. 

All of the questions in the multiple-choice section of the tests 

were read to the children and then the key phrases were repeated; in the 

case of the verbal problems for the sentence-writing and problem-solving 

objectives, the entire story situation was read twice. The children 

then marked an X on one of the four response choices: the solution, two 

distractors, and the "puzzled face," an option that indicated "I have 

not learned this yet." The response choices, symbols, and pictures were 

not read or explained to the children (with the exception of the puzzled 

face). 

The puzzled face option was provided to avoid unnecessary 

frustration and to reduce random guessing. Although we expected 

students to use this choice throughout the achievement testing because 

there would always be objectives not yet introduced and/or mastered, 

this option was particularly useful at the baseline period. Marking the 

puzzled face allowed children to give a positive response indicating 

that they had not yet learned to find the answer to a question. 

Speeded subtests. There were 9 addition and 9 subtraction facts on 

Form K and 12 on each of Forms S and V. The first six problems in each 

case covered the facts from 4 to 9; the last three (or six) involved 10 

to 18. The test administered introduced the addition and subtraction 

recall subtests; then specific directions on a tape recording preceded 
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the items presented, with intervals of 4 seconds working time for Form K 

and 2 seconds for Forms S and V. The children wrote their answers in 

designated spaces, leaving spaces for unknown facts empty. There was a 

short break between the two subtests. 

Sentence-writing free-response subtests. Four of the 12 individual 

sentence-writing objectives (verbal problem types) for the numbers 0-20 

and 0-99 were assessed in Forms S and V. A free-response format was 

employed in which a verbal problem was read twice to the students, who 

were directed to write a sentence for the situation and not to solve the 

sentence. There were two 0-20 and two 0-99 items per test. 

Addition and subtraction algorithms timed subtests. These 

subtests, in Form V only, each contained 24 items. The items were 

either two-digit or three-digit; 18 items required regrouping, 6 did 

not. The items were arranged in order of difficulty. For example, 

three-digit problems not requiring regrouping preceded three-digit 

problems that required regrouping, and three-digit regrouping problems 

in which only the ones were regrouped preceded problems in which both 

ones and tens were regrouped. The students were instructed to try each 

problem in order (the problems were alphabetized) and to go on to the 

next problem if unable to do a particular example. Six minutes were 

allowed for each subtest. 

Test Administration 

The three assistants who gathered data in Study 3 (Chapter 3) also 

carried out that task in this study. Guidelines for administering the 

achievement tests were provided to each assistant. The guidelines 
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indicated which tests were to be given, dates for administration, and so 

forth. 

The first administration was supervised by Professor Romberg and 

went smoothly. The second and third administrations were carried out 

after Professor Romberg had returned to the United States. These test 

admininstrations at grade 1 went smoothly as scheduled. At grade 2, one 

item on Form S did not copy well, so students could not read that 

question. At grade 3 there were two administrative mixups. First, Form 

S rather than Form V was given in April to all three classes and in May 

to two of the classes. This was not a serious problem, since many items 

are the same, except that the timed algorithms tests were not given. 

Second, in the third class, Form V was given in July rather than May. 

The May administration was scheduled near the end of the term, but the 

assistant failed to administer the tests at that time. After a short 

break, children returned to school to start the next term. The 

assistant asked whether she should still gather the data and was advised 

to administer Form V in July. The results of this administration would 

not reflect much additional instruction, since there had been a break 

between terms. All data were then shipped to Madison and scored by 

Center staff. Each subject's responses were recorded and are the basis 

for all summary information appearing in this paper. 

Results and Discussion 

Longitudinal Growth Within Grades 

Grade 1. The percent correct for students at grade 1 on the 

individual objectives and composite objectives for each of the three 

administrations is shown in Table 31. Overall, the data show that, at 



Administration Time for Grade 1, Form K 

Results for Objectives Results for Composite Objectives 
Description of Objectives 

Number Feb. April May Number Feb. April May 
of Items N=7 N=7 N=7 of Items N=7 N=7 N=7 

Prerequisite instructional objectives 

Numerousness 
0-10 

11-20 

Ordering 
Sets, one-to-one correspondence 
Numbers 0-20 

Instructional objectives for S topics 

Open sentences 
Add 0-20 
Subt 0-20 

Sentence-writing 0-20 
Subt-simple separating (11-15) 
Subt-comparison (5-9) 
Add-simple joining (11-15) 
Subt-part part whole-addend (11-15) 

Noninstructional objectives 

Problem solving 0-20 
Add-part part whole (5-9) 
Subt-comparison (11-15) 

Counting on 9-31 
Counting back 9-31 

Recall of basic facts--speeded test 
Add 0-20 
Subt 0-20 

1 
1 

1 
1 

1 
1 

1 
1 
1 
1 

1 
1 

2 
1 

100 
71 

86 
100 

100 100 
43 86 

71 86 
100 86 

43 57 86 
14 14 14 

14 0 0 
29 14 0 
29 14 57 
14 14 29 

100 
29 

2 

2 

2 

4 

100 100 
14 71 

29 43 57 
0 14 14 3 

9 
9 

ID 

0 
Ft t-h 

S 
0 

CD 

o 0 

En 
r; 86 71 93 5 
0 

CD 

93 86 86 I 

co 

29 36 50 

21 11 21 

64 57 86 

19 33 43 

33 49 76 
29 44 56 
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the start of the school year (February), this sample of students had 

acquired the prerequisite objectives and could solve the verbal addition 

problems (but probably not by addition), and some (43%) could find the 

answer to an open addition problem. They could not solve subtraction 

problems, write sentences, count in or count back, nor could they recall 

basic facts. 

By the end of the autumn term (May), these students' addition 

skills had improved dramatically. The percent correct increased for 

solving an open sentence, 43% to 86%; writing a correct addition 

sentence, 29% to 57%; counting on, 29% to 57%; and addition facts, 33% 

to 76%. However, the same cannot be said for subtraction. Only for 

solving a verbal comparison problem (29% to 71%) and for subtraction 

facts (29% to 56%) was there marked improvement. Obviously, instruction 

in grade 1 had some effect. 

Grade 2. The picture is somewhat different for grade 2 students 

(see Table 32). At the beginning of the school year, this sample of 

nine students generally had a low percent correct. In fact, on only 

three items did more than half of the students get the correct answer. 

Part of the difficulty was that Form S used large numbers (0-99) in 

several of the questions. By May, improvement on several composite 

objectives was apparent. The students were comfortable with 

numerousness of larger sets (56% to 75%), had improved on basic facts 

(29% to 51% and 23% to 53%, but not yet to any level of mastery), could 

solve simple open sentences (17% to 88%), and had improved in counting 

(30% to 63%) and writing sentences for verbal problems (28% to 59%). 

Again, instruction had an effect, but increases in performance were not 



Table 32 

Percent Correct for Objectives and Composite Objectives by 

Administration Time for Grade 2, Form S 

Results for Objectives Results for Composite Objectives 

Description of Objectives Number Feb. April May Number Feb. April May 
of Items N=9 N=9 N=8 of Items N=9 N=9 N=8 

Prerequisite instructional objectives 

Numerousness 
Writes 0-99 
Represents 0-99 

Ordering, place value 
Ordering 0-99 
Place value 0-99 

Instructional objectives for S and 
A topics 

Open sentences 
Add 0-20 
Subt 0-20 

Sentence-writing 0-20, 0-99 
(multiple choice) 

Subt-simple separating (11-15) 
Subt-comparison (0-99) 
Add-simple joining (0-99) 
Subt-part part whole-addend (11-15) 

Sentence-writing 0-20, 0-99 
(free response) 

Subt-simple separating (0-99) 
Subt-part part whole-addend (0-99) 
Add-part part whole (11-15) 
Subt-join-addend (11-15) 

Algorithms 
Addition algorithm 
Subtraction algorithm 

1 
1 

a 

56 67 75 

1 11 0 25 
1 0 0 13 

1 22 78 100 
1 11 0 75 

1 33 33 25 
1 0 0 0 
1 11 11 25 
1 22 11 13 

1 56 44 75 
1 0 0 0 
1 56 89 100 
1 0 78 63 

1 11 33 13 
1 11 0 38 

1 56 67 75 

2 6 0 19 

2 17 39 88 

4 17 14 16 

4 28 53 59 

2 11 17 25 
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Table 32 (continued) 

Results for Objectives Results for Composite Objectives 

Description of Objectives Number Feb. April May Number Feb. April May 
of Items N=9 N=9 N=8 of Items N=9 N=9 N=8 

Noninstructional objectives 

Problem-solving 0-20, 0-99 
Add-part part whole (0-99) 1 0 22 25 
Subt-comparison (11-15) 1 22 56 50 
Subt-part part whole-addend (11-15) 1 44 67 13 
Subt-join-addend (0-99) 1 22 11 13 

Counting on 9-31 2 33 28 81 3 30 33 63 
Counting back 9-31 1 22 44 25 

Recall of basic facts--speeded test 
Add 0-20 12 29 35 51 
Subt 0-20 12 23 30 53 

Students were unable to complete item because tests duplicated poorly. 
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apparent for ordering large numbers, problem solving, selecting written 

sentences for verbal problems, and algorithms. 

Grade 3. The picture was more encouraging for grade 3 students 

(see Table 33). In February, their performance was not high (above 80%) 

except on two items, but by the end of May (or early July) performance 

on all composite objectives except one approached 80%. The exception 

was the item on place value for numbers 0-99. Sentence 

writing-selecting skills had improved, but scores were not yet high on 

some subtraction situations (comparison and part-part-whole addend). 

Grade 3 students' performance on the timed algorithms test is shown 

in Table 34. When all 22 children were tested in February, they 

performed well on the six addition-without-regrouping problems and 

acceptably on the three items testing two-digit subtraction without 

regrouping. On all others, they did poorly. Part of the difficulty was 

that because of the timed conditions most students did not attempt the 

last items in the test. Those children who did reach the items did 

fairly well on the addition regrouping items but had considerable 

difficulty with the subtraction items requiring regrouping. 

Unfortunately, no children were given this test again in April or 

May, and only 12 in July. By then, those students' performance was 

considerably better. They still had some difficulty with the 

three-addend addition problems and the subtraction regrouping problems, 

but the improvement in every case is striking. 

In summary, for this small sample of children assessed at each 

grade level, growth within each grade on some aspects associated with 

addition and subtraction is clear. Growth, however, is not uniform 

across objectives. In addition, overall level of performance on many 



Table 33 

Percent Correct for Objectives and Composite Objectives by 

Administration Time for Grade 3, Forms S, V 

Results for Composite Objectives 

Description of Objectives Number Feb. April May/Julya Number Feb. April May/July 
of Items N=22 N=22 N=11/12 of Items N=22 N=22 N=11/12 

Prerequisite instructional objectives 

Numerousness 
Writes 0-99 
Represents 0-99 

Ordering, place value 
Ordering 0-99 
Place value 0-99 

Instructional objectives for S and 
A topics 

Sentence-writing 0-20, 0-99 
(multiple choice) 

Subt-simple separating (11-15) 
Subt-comparison (0-99) 
Add-simple joining (0-99) 
Subt-part part whole-addend (11-15) 

Sentence-writing 0-20, 0-99 
(free response) 

Subt-simple separating (0-99) 
Subt-part part whole-addend (0-99) 
Add-part part whole (11-15) 
Sabt-join-addend (11-15) 

1 
1 

1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

45 32 64/92 
91 91 100/91 

36 91 64/75 
23 50 0/42 

60 91 73/100 
18 14 18/58 
77 91 64/100 
10 50 9/75 

36 77 82/92 
5 23 18/67 

68 95 100/92 
45 60 55/75 

2 

2 

4 

4 

68 61 82/92 

30 70 32/58 

41 61 41/83 

39 64 64/81 

continued 



Table 33 (continued) 

Results for Objectives Results for Composite Objectives 

Description of Objectives Number Feb. April May/Julya Number Feb. April May/July 
of Items N=22 N=22 N=11/12 of Items N=22 N=22 N=11/12 

Noninstructional objectives 

Problem-solving 0-20, 0-99 
Add-part part whole (0-99) 1 55 68 64/92 
Subt-comparison (11-15) 1 91 77 100/100 4 

Subt-part part whole-addend (11-15) 1 77 95 91/83 
Subt-join-addend (0-99) 1 45 73 64/75 

Recall of basic facts--speeded test 
Add 0-20 12 44 66 66/94 
Subt 0-20 12 40 69 52/84 

Algorithms--timed test b b 
Addition algorithm 24 41 --/81b 
Subtraction algorithm 24 15 /65 

aForm S was used in April and May; Form V was used in February and July. 

bForm S did not assess this objective. 
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Table 34 

Percent Correct for Addition and Subtraction Algorithms 

Timed Tests by Problem Type for Grade 3, Form V 

Percent Correct 

Item Type Number Feb. July 
of Items N=22 N=12 

Addition 

2-digit (without regrouping) 3 86 100 

3-digit (without regrouping) 3 93 94 

2-digit (with regrouping)a 6 49 89 

3-digit (with regrouping) 9 16 78 

3-digit addends 3 0 44 

Subtraction 

2-digit (without regrouping) 3 68 94 

3-digit (without regrouping) 3 33 89 

2-digit (with regrouping)a 6 8 75 

3-digit (with regrouping) 12 0 47 

aThree items are 2-digit + 1-digit. 
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objectives is not high. By mid-third grade, students had yet to master 

many aspects of either addition or subtraction. 

Cross-sectional Growth Across Grades 

To portray cross-sectional growth (see Figure 2), five objectives 

were assessed in all three grades: sentence writing: subtraction- 

simple separating (11-15); sentence-writing: subtraction-part-part- 

whole missing addend (11-15); problem solving subtraction-comparison 

(11-15); recall of basic facts-addition; and recall of basic facts- 

subtraction. Two composite scales were also administered to grades 1 

and 2, and the composite scale ordering, place value was administered at 

grades 2 and 3. 

The cross-sectional data for these scales are presented in Table 

35. On each objective, considerable growth is evident. But, as with 

the longitudinal data, the growth is not uniform or smooth. 

Performance of Children in Cognitive Groups Within Grades 

Because of the small sample of students we summarize data for 

children in different cognitive groups by aggregating each group's 

scores into a total score across all three administrations of the tests. 

Small sample size also dictates that conclusions drawn from these data 

must be regarded as tentative and should be the subject of further 

study. 

Grade 1. The relative performance on the test items for children 

in grade 1 in different cognitive groups is shown in Table 36. There 

were three children in both Cognitive Groups 1 and 2, but only one child 

in Cognitive Group 3. The differences in performance for the eight 



Table 35 

Percent Correct for Common Objectives and Composite 

Objectives for Cross-sectional Growth Across Grades 1, 2, and 3 

Percent Correct 

Description of Objective Feb. April May/Julya 
Grade 1 Grade 2 Grade 3 

N=7 N=9 N=23 

Sentence writing 
Subt-simple separating (11-15) 14 33 87 

Subt-part part whole-addend (11-15) 14 11 39 

Problem solving 
Subt-comparison 29 56 100 

Recall of basic facts--speeded test 
Add 0-20 33 35 78 
Subt 0-20 29 30 69 

Feb. May 
Grade 1 Grade 2 

N=7 N=8 

Open sentences 29 88 

Counting on and back 19 63 

Feb. May/Julya 
Grade 2 Grade 3 

N=9 N=23 

Ordering, place value 6 46 

aData gathered on these dates have been combined. 
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Table 36 

Frequency and Percent Correct for Composite Objectives by 

Description of Objectives Cognitive Group 1 (N=3) 
Number 

of Items Frequency Percent Trials 

Prerequisite instructional objectives 

Numerousness 0-20 2 14 78 18 

Ordering 0-20 2 16 89 18 

Instructional objectives for the 
S topics 

Open sentences 2 7 39 18 

Sentence-writing 0-20 4 4 11 36 

Noninstructional objectives 

Problem solving 0-20 2 12 67 18 

Counting 3 2 7 27 

Addition facts recall--speeded test 9 24 30 81 

Subtraction facts recall--speeded 9 24 30 81 
test 

Table 37 

Frequency and Percent Correct for Composite Objectives by 

Description of Objectives Cognitive Group 1 (N-2) 
Number 

of Items Frequency Percent Trials 

Prerequisite instructional objectives 
Numerousness 0-99 1a 4 67 6 

Ordering, place value 0-99 2 3 25 12 

Instructional objectives for the S 
and A topics 

Open sentences 2 4 33 12 

Sentence-writing 0-20, 0-99 4 1 4 24 
(multiple choice) 

Sentence-writing 0-20, 0-99 4 9 38 24 
(free response) 

Algorithms 2 1 8 12 

Noninstructional objectives 

Problem solving 0-20, 0-99 4 11 46 24 

Counting 3 6 33 18 

Addition facts recall--speeded test 12 17 24 72 

Subtraction facts recall--speeded 12 16 22 72 
test 

aTwo items were administered for the numerousness objective; students had 
so data for this item were discarded. 



Cognitive Group for All Administration Times for Grade 1, Form K 

Cognitive Group 2 (N-3) Cognitive Group 3 (N=1) Total 

Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials 

17 94 18 

15 83 18 

7 39 18 

9 25 36 

13 72 18 

16 59 27 

65 80 81 

49 60 81 

4 67 6 

6 100 6 

2 33 6 

2 17 12 

4 67 6 

2 22 9 

11 41 27 

8 30 27 

35 83 42 

37 88 42 

16 38 42 

15 18 84 

29 69 42 

20 32 63 

100 53 189 

81 43 189 

Cognitive Group for All Administration Times for Grade 2, Form S 

Cognitive Group 2 (N-5) Cognitive Group 3 (N-2) Total 

Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials 

8 58 14 

0 0 28 

13 46 28 

11 20 56 

25 45 56 

4 14 28 

11 20 56 

14 33 42 

58 35 168 

50 30 168 

5 84 6 

1 8 12 

7 58 12 

4 17 24 

14 58 24 

4 33 12 

8 33 24 

12 67 18 

43 60 72 

43 60 72 

17 67 26 

4 8 52 

24 46 52 

16 15 104 

48 46 104 

9 17 52 

30 29 104 

32 41 78 

118 38 312 

109 35 312 

difficulty reading one of the items due to poor quality of the test duplication 
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composite objectives favor the Group 2 children over those in Group 1 on 

six composites, with some of the differences being quite large. In 

addition, the Group 2 students increased in performance from February to 

May over all the objectives, but the Group 1 students improved only in 

recall of facts. The single Group 3 child fails to fit any pattern. 

Grade 2. The relative performance of grade 2 children in different 

cognitive groups is shown in Table 37. There were two children each in 

Cognitive Groups 1 and 3 and five in Group 2. In general, Group 3 

children performed better than Group 2 children, who in turn performed 

better than Group 1 children. Some of the differences are striking; for 

example, open sentences (58%-46%-33%) and addition facts (60%-35%-24%). 

However, there is one anomaly. For the four problem-solving items, the 

Group 1 children did better than either of the other groups (46% to 20% 

to 33%). However, since these children were low on facts, algorithms, 

and counting skills, the results suggest that they found answers to the 

verbal problems using other strategies. The children with better 

arithmetic skills (but not close to mastery) may have attempted to use 

those skills to solve the problems, but made errors. This explanation 

is further substantiated by the decrease in performance of Group 1 

children on those items as the year progressed and as their arithmetic 

skills improved. 

Grade 3. Results for the grade 3 students in different cognitive 

groups are striking but somewhat ambiguous (see Table 38). The Group 

5-6 children performed better on all objectives than any other group, 

and Group 2 children were lower than other groups on all the objectives. 

However, Groups 3 and 4 did not differ consistently. Obviously, the 

differing characteristics of these two groups are not related to 



Table 38 

Frequency and Percent Correct for Composite Objectives by Cognitive Group 

for All Administration Times for Grade 3 

Description of Objectives Cognitive Group 2 (N-4) Cognitive Group 3 (N-8) Cognitive Group 4 (N-8) Cognitive Group 5,6 (N"7) Total 
Number 

of Items Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials 

rrerequlslie instructlonal objectives 

Numerousness 0-99 

Ordering, place value 0-99 

Instructional objectives for the S 
and A topics 

Sentence-writing 0-20, 0-99 4 
(multiple choice) 

Sentence-writing 0-20, 0-99 4 
tfree response) 

Noninstructional objectives 
Problem solving 0-20, 0-99 4 

Addition algorithms--timed testa 24 

Subtraction algorithms--timed testa 12 

Addition facts recall--speeded test 12 

Subtraction facts recall--speeded 12 
test 

2 15 63 24 29 73 40 24 

2 8 33 24 20 50 40 14 

21 44 48 42 53 80 

25 52 48 49 61 80 

67 36 29 85 34 

39 36 23 68 34 

39 54 72 44 65 68 

37 51 72 44 65 68 

34 71 48 58 73 80 55 76 72 58 85 68 

30 31 96 134 51 264 111 51 216 172 72 240 

12 13 96 78 30 264 55 25 216 122 51 240 

65 45 144 152 63 240 133 62 216 162 79 204 

61 42 144 135 56 240 126 58 216 154 75 204 

97 72 134 

65 49 134 

146 54 268 

155 58 268 

205 76 268 

447 55 816 

267 33 816 

512 64 804 

476 59 804 

aThis objective was assessed in February for 22 students representing all cognitive groups and in May for 12 students in all groups except 2. It was not 
assessed in April. 
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differences in performance. Most of the differences between the Group 

5-6 and the Group 2 children are large (selecting sentences 65% to 44%, 

ordering 68% to 33%, subtraction algorithms 51% to 13%, and so forth). 

Performance of Children in Cognitive Groups Across Grades 

Performance data from Tables 35, 36, and 37 for children in 

cognitive capacity Groups 1, 2, and 3 are compared in this section. 

(Children in Groups 4 and 5-6 are only in grade 3.) 

Group 1. The performance of children in this group at grades 1 and 

2 is shown in Table 39. In general, the performance of these children 

at both grades is consistent with their capacity. Only for ordering 

small numbers is their performance adequate. More striking, there is 

little difference in performance between grades. There is a marked 

difference (7% to 33%) only on the counting items, although performance 

is very low. 

Group 2. Children in this capacity group are at all three grade 

levels. The comparative data for these children are presented in Table 

40. Performance gains by grade are apparent, but in most cases very 

modest. For example, performance on solving open sentences goes from 

39% to 46% from grade 1 to grade 2 and performance on writing sentences 

(free response) from 45% to 52% from grade 2 to grade 3. Only for 

problem solving (0-99) was there a large gain (20% to 71%). Also, there 

is a large decrease in performance from grade 1 to grade 2 on recall of 

both addition and subtraction facts. The decrease is undoubtedly due to 

the increased number of facts and decreased time for response over 

forms. This clearly suggests that the high performance at grade 1 was 

not due to having committed the facts to memory. Also, it should be 



Table 39 

Frequency and Percent Correct for Composite Objectives 

for Cognitive Group 1 for All Administration Times Across Grades 

Grade 1 (N=3) Grade 2 (N=2) 
Description of Objectives 

Frequency Percent Trials Frequency Percent Trials 

Prerequisite instructional objectives 

Numerousness 0-20 14 78 18 
Numerousness 0-99 - -- - 4 67 6 

Ordering 0-20 16 89 18 

Ordering, place value 0-99 - -- -- 3 25 12 

Instructional objectives for the S 
and A topics 

Open sentences 7 39 18 4 33 12 

Sentence-writing 0-20 4 11 36 

Sentence-writing 0-20, 0-99 - -- -- 1 4 24 

(multiple choice) 
Sentence-writing 0-20, 0-99 -- 9 39 24 

(free response) 
Algorithms - - - 1 8 12 

Noninstructional objectives 

Problem solving 0-20 12 67 18 - 

Problem solving 0-20, 0-99 - - - 11 46 24 

Counting 2 7 27 6 33 18 

Addition facts recall--speeded test 24 30 81 17 24 72 

Subtraction facts recall--speeded test 24 30 81 16 22 72 
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Table 40 

Frequency and Percent Correct for Composite Objectives 

for Cognitive Group 2 for All Administration Times Across Grades 

Grade 1 (N=3) Grade 2 (N=6) Grade 3 (N=4) 
n i rti? anr of bi ectivefi 

Frec 

Prerequisite instructional objectives 

Numerousness 0-20 
Numerousness 0-99 
Ordering 0-20 
Ordering, place value 0-99 

Instructional objectives for the S 
and A topics 

Open sentences 
Sentence-writing 0-20 
Sentence-writing 0-20, 0-99 

(multiple choice) 
Sentence-writing 0-20, 0-99 

(free response) 
Algorithms 

Noninstructional objectives 

Problem solving 0-20 
Problem solving 0-20, 0-99 

Counting 
Addition facts recall--speeded test 
Subtraction facts recall--speeded test 
Addition algorithms 
Subtraction algorithms 

luency Percent Trials Frequency Percent Trials Frequency Percent Trials u 

17 94 18 - -- - -- - - 

-- -- -- 8 58 14 15 63 24 

15 83 18 -- -- -- --- 

- -- -- 0 0 28 8 33 24 

cn 

7 39 
9 25 

18 13 46 28 
36 - -- _- __ __ 
-- 11 20 56 21 44 48 

25 45 56 25 52 48 

4 14 28 -- 

13 

16 
65 
49 

72 18 
-- -- 11 20 56 34 71 48 

59 27 14 33 42 
80 81 58 35 168 65 45 144 

60 81 50 30 168 61 42 144 
-- -- -- -- -- 30 31 96 
-- -- -- -- -- 12 13 96 

0 

0 9 
9 
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noted that, at grade 3, these children had not learned to use the 

addition and subtraction algorithms with any facility. Again, the 

overall performance of these students reflects capacity more than grade 

level. 

Group 3. The data for children in this cognitive capacity group at 

grades 2 and 3 are compared in Table 41. There are some important 

differences in performance at this grade. For example, performance 

increases from 8% to 50% on ordering, place value; from 17% to 53% on 

sentence-writing (multiple choice); and from 33% to 73% on problem 

solving. However, for all other scales, performance is similar across 

grades. Overall performance is fair and students show some facility 

with the addition algorithm, but not with the subtraction algorithm. 

Relationship of Performance on Algorithms to Strategies Used to Solve 

Problems 

One general goal of instruction on addition and subtraction is to 

have students solve verbal problems (such as those presented in Chapter 

3) by using an addition or subtraction algorithm. We now examine the 

relationship of the performance of the third-grade children on the timed 

algorithm problems to the strategies they used to solve verbal problems 

that could be done using those algorithms. The strategy data were 

collected in the interview study discussed in Chapter 3. We were 

particularly interested in examining whether or not students who had 

learned to use the addition and subtraction algorithms chose to use them 

when solving such verbal problems. 

For addition problems requiring no regrouping, at Time 1, students 

attempted 62 items and got 57 correct (92%); in July, students answered 



Table 41 
H 

Frequency and Percent Correct for Composite Objectives 

for Cognitive Group 3 for All Administration Times Across Grades 2 

o C) 

tn 

0 

rt 
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P1 

0 
0a 
CD 

h< 
CS 

Grade 2 (N=2) Grade 3 (N=8) 
Description of Objectives 

Frequency Percent Trials Frequency Percent Trials 

Prerequisite instructional objectives 

Numerousness 5 84 6 29 73 40 
Ordering, place value 0-99 7 8 12 20 50 40 

Instructional objectives for the A 
and S topics 

Open sentences 7 58 12 - 

Sentence-writing 0-20, 0-99 4 17 24 42 53 80 
(multiple choice) 

Sentence-writing 0-20, 0-99 14 58 24 49 61 80 
(free response) 

Algorithms 4 33 12 

Noninstructional objectives 

Problem solving 0-20 8 33 24 58 73 80 
Counting 12 67 18 
Addition facts recall--speeded test 43 60 72 152 63 240 
Subtraction facts recall--speeded test 43 60 72 135 56 240 
Addition algorithms -- -- - 134 51 264 
Subtraction algorithms - -- -- 78 30 264 

NOTE: The one group 3 child at grade 1 was not included in this comparison. 
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all 36 items they attempted correctly. With one exception (student 

517), these students knew how to add two-digit numbers without 

regrouping. However, on the interviews at Time 1, students used 

algorithms only 59% of the time (54% correctly). At Times 2 and 3, the 

percent of use increased but only to 79% and 72%, respectively. 

The data for addition with regrouping at Time 1 were similar; 

students attempted 95 items and got 66 correct (69%). By Time 2, they 

attempted 74 items and got 66 correct (89%). Thus, although students 

had some difficulty with regrouping at the start of the year, by July, 

all the students could add with regrouping (with the exception of one 

student who made six errors in six problems). 

The interview data show that, in spite of this high level of 

performance, many students did not use the algorithms to solve verbal 

addition problems. At Time 1, about half (54%) of the children tried 

using an algorithm (46% correctly). At Time 2, this had changed to 60% 

using an algorithm (48% correctly), and by Time 3, 78% used an algorithm 

with no errors. 

For subtraction without regrouping, results of a comparison between 

performance on three achievement items and strategies used on the four 

verbal subtraction problems were similar. At Time 1, students attempted 

55 items and got 45 correct (82%). By Time 2, 34 of 36 attempts were 

correct (94%). In fact, only one student made any errors in July. One 

can conclude that these students were able to subtract without 

regrouping. However, on the four verbal subtraction problems only 14% 

of the strategies used were algorithmic (only 9% correct) at the start 

of the year. At Time 2, this had increased to 25% and finally to 34% by 
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Time 3. Furthermore, over half of the total attempts (59%) were on Task 

2 (simple separate), the most obvious subtraction problem. 

The same pattern, but more pronounced, occurred for subtraction 

with regrouping. At Time 1, students attempted 38 items and got only 12 

correct (32%). Many children managed to complete only the first six 

no-regrouping items in this timed test, so there was no real measure of 

their capability. It is hard to imagine why they were so slow. One 

must assume that they would have been unable to do the regrouping 

problems had they attempted them. By the second administration (July), 

students attempted 66 items and got 55 correct (82%). At this time, 

only two students made more than one error on the six problems. Thus, 

although there was evidence that students had considerable difficulty in 

subtracting with regrouping in February, by the end of the autumn term 

most were capable of using a subtraction algorithm. 

Again, however, in spite of knowing the algorithmic procedures for 

subtraction, most children did not attempt to use them to solve verbal 

problems. On the first interview, students used algorithms on only 13% 

of the items (5% correct). On the second interview, this had increased 

to 23% (11% correct), and by the third interview, it was 35% (26% 

correct). As with subtraction no-regrouping, most of the attempts were 

on the simple separating tasks (44%). 

On this last set of verbal problems, the cognitive Group 2 students 

made the most total attempts to use algorithms (35% of the time), even 

though they got no items correct on the achievement test and made the 

most errors (only 10% correct) on verbal problems. In contrast, the 

Group 5-6 students attempted to use algorithms only 22% of the time. 
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The relationship between proficiency in performing addition and 

subtraction algorithms and using the algorithms to solve verbal problems 

is interesting. Most of the third-grade students used other strategies 

(counting, fingers, and so forth) until they became confident in using 

algorithms. However, Group 2 children who had not acquired other 

strategies to solve these problems tended to use the taught algorithms 

even though they were not proficient in their use. This suggests that 

most third graders recognized that these problems could be solved using 

algorithms but chose to use other familiar strategies. The problem 

structures (verbal semantics) clearly influenced how the students worked 

the problems. In fact, the semantics seemed to be more important than 

the realization that the problems could be done algorithmically. 

Summary and Conclusions 

The overall picture these data presents is of children struggling 

to learn the complex arithmetic skills associated with addition and 

subtraction and to use those skills to solve verbal problems. The 

children had difficulty with place value even though they correctly 

solved three-digit problems. Work on algorithms improved even though 

basic facts were weak. With little arithmetic competence, students 

correctly solved some simple verbal problems. 

Children who were identified as being in a particular cognitive 

group, with one important exception, performed differently than children 

in other groups within each grade. The exception was the lack of 

consistent differences between Groups 3 and 4 at grade 3. Again, it 

should be noted that Group 3 at grade 3 also did not differ on the 

interview tasks (see Chapter 3) and only differed on transitivity on the 
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cognitive tasks (see Chapter 2). Overall, however, it is apparent that 

children who differed in cognitive-processing capacity (Group 1, Group 

2, Groups 3 and 4, and Group 5-6) performed differently regardless of 

specific objectives, instruction over time, or grade. 

Although it cannot be denied that teaching or experience accounts 

for some differences in the children's performance on standard addition 

and subtraction tasks, it is striking that the actual level of 

performance appears to be consistent with capacity. Differences in 

performance between groups and within groups across grades are 

differences one would expect, based on the nature of the groups (e.g., 

quantitative skills, memory capacity). 



Chapter 5 

COGNITIVE-PROCESSING CAPACITY 

AND CLASSROOM INSTRUCTION 

The fifth and last study in this series is reported in this 

chapter. Its purpose was to examine the question, Do children who 

differ in cognitive capacity receive different instruction? 

Method 

Sample 

A sample of 35 children from the population used in studies 3 and 4 

in this series (see chapter 2) was observed during instruction over a 

three-month period in 1980 (February 27 through May 28). The number of 

children observed in each cognitive group, class, and grade is shown in 

Table 42. 

Our attempt was to determine the way in which aspects of content 

influence certain teacher behaviors during instruction and in turn how 

these actions affect pupil outcomes. In particular, the extent to which 

children are engaged in learning mathematics was examined. To do this 

we developed a model of classroom instruction in which "content 

segmentation and sequencing" and "content structuring" were hypothesized 

to influence teacher planning, which in turn influences classroom 

organization, the allocation of instructional time, verbal interactions 

within classroom, and, eventually, pupil engaged time (see Romberg, 

Small, & Carnahan, 1979, for a complete explication of the model). To 

test this model, data were gathered on various components of the model 

in actual classroom settings for several periods of time (see Romberg, 

117 
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Table 42 

Children in Each Cognitive Group, Class and 

Grade Used in the Observation Study 

Sandy Bay Infant 
School Waimea Heights Primary School 

Class Class 

1 2 3 4 5 
Cognitive 

Group Grade 1 Grade 2 Grade 3 Grade 3 Grade 3 

1 2 2 

2 3 4 3 

3 1 2 2 2 2 

4 2 2 2 

5-6 3 1 2 

Totals 6 8 7 8 6 
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Small, Carnahan, & Cookson, 1979, for a description of coding procedures 

used as well as detailed explanations of coding categories). With such 

data the relationship of the model to classroom instruction can be 

examined. 

Summary of the Coding Procedure and Aggregation of Data 

Data were collected on content covered and on certain teacher and 

pupil behaviors involved in the teaching and learning of mathematics 

using two procedures (complete details appear in Romberg, Collis, 

Buchanan, & Romberg, 1982). 

Content. First, to estimate time spent on various mathematics 

objectives, the teachers were asked to log the number of minutes of 

instruction in nine content areas spent for each target child. Seven of 

the nine areas dealt with aspects of learning to add and subtract. The 

"other arithmetic" area included time spent on both multiplication and 

division activities, and "other mathematics" encompassed all other 

activities such as measurement, fractions, or geometry. 

Classroom observation. Three trained observers gathered the data. 

These were the same persons who gathered data in Studies 3 and 4. One 

observer worked at Sandy Bay Infant School and observed both the grade 1 

and grade 2 classes. The other two worked at Waimea Heights Primary 

School, where one observed two classes. Each observer was able to 

observe instruction in a class approximately 24 days during the 

observation period. At the schools, the observers sat in a class and 

over time became fixtures who did not distract either teacher or 

children. 
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Data on pupil and teacher behavior were gathered using an 

observation coding form. The exact nature of the data collected and the 

method used to gather it are described fully in the manual produced by 

the project staff to train observers (Romberg, Small, Carnahan, & 

Cookson, 1979). 

In brief, student and teacher verbal behaviors were observed in 

each class on a sample of days. A time-sampling procedure was used in 

which each of six to eight target students was observed in a particular 

sequence at different moments throughout the observation period. The 

sequence in which the students were observed was fixed prior to the 

beginning of the observation period and was invariant while observations 

were taking place. The teacher's behavior was coded for instances of 

relevant verbal behavior each time a target student was observed. The 

observation of all six to eight students (along with the teacher six to 

eight times) represented a coding cycle. It was estimated that one 

minute was needed: (a) to observe the target student's behavior, (b) to 

observe the teacher, (c) to observe organizational aspects of the 

classroom, and (d) to code the appropriate categories on the observation 

form. The behavior to be coded consisted only of those activities the 

teacher and pupil were involved in precisely at the beginning of the 

one-minute time interval. Through this process, observer bias in 

sampling moments is minimized. The coding categories were used to 

record a description of what was occurring at that one instant for both 

the target student and the teacher. In this way, a series of codings 

was obtained that gave a running account of what took place in the 

classroom for a particular observation period. 
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The observation for a class session began when the mathematics 

instruction began and ended when the mathematics instruction for that 

class session ended. The beginning and ending of the observation period 

did not always coincide with the beginning and ending of mathematics 

instruction as scheduled. As a result, two measures of time involved in 

mathematics class were obtained. Available time represented the 

scheduled time period in which mathematics instruction was to take 

place. Actual time, on the other hand, represented the amount of time 

mathematics instruction occurred. In most cases, the amount of time 

observing coincided closely with the measure of available time. 

Data aggregation and analysis. The basic observational data were 

aggregated in the form of frequency counts for each behavior category 

coded. For purposes of interpretation, the proportional occurrence of 

each behavior (based on total observed instances) is used. Data were 

aggregated separately for each class for the total period. The data 

give an overall picture of the teaching of mathematics in each class and 

yield estimates of how instructional factors affect engagement rates. 

The observational data were summarized in terms of three 

categories: pupil actions, teacher behaviors, and teacher 

behavior-pupil engagement interactions. Pupil actions were summarized 

in terms of engaged time; if engaged, whether it was on content or 

directions; grouping; interactions; and if interacting, with whom. 

Teacher behaviors were summarized in terms of interactions, speaking to 

group, speaking on content or directions, questions, feedback and type 

of explanations. Interactions of teacher behaviors and pupil engagement 

were summarized in terms of whether or not pupils were engaged when the 
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teacher was speaking, speaking to groups, listening, no teacher 

interactions, questioning, and providing information. 

The plan for the analysis of the observational data was based on 

the fact there were three primary dimensions in the study: grade, 

class, and cognitive group of the pupils. The raw data are observed 

minutes. Thus, the number of minutes and percent of time are aggregated 

in this analysis in five ways. First, we have aggregated data for all 

pupils with respect to grade. Second, since three different classrooms 

were observed in grade 3, we have examined the data by class. Third, we 

examined the data for all students with respect to cognitive group. 

Fourth, we have examined the data by cognitive level within grade. 

Finally, we present the data in terms of cognitive level within class. 

Results and Discussion 

Content Covered 

Table 43 presents the percentage of total time teachers spent on 

various content areas. These data reflect the curricular emphasis 

common in these grades. Almost half of the time is spent on addition 

and subtraction. The emphasis obviously varies across grades. In 

grade 1, the highest percentage is on addition facts, numerousness and 

counting. In grade 2, basic facts for both addition and subtraction are 

still emphasized as are counting skills. In grade 3, most of the 

emphasis is on computational algorithms. The only disappointing 

percentages are the little time spent on writing sentences and finding 

solutions to verbal problems. However, this differential emphasis is 

program-related, not child-related. For example, the reduction in 

percent of time spent on counting at grade 3 was not matched by the 



Table 43 

Percentage of Time Spent on Mathematical Content Area 

by Grade--Teacher Log Data 

Grade 1 Grade 2 Grade 3 

Content Area (24 days, 50-60 min/day) (25 days, 50-55 min/day) (111 days, 30 min/day) 
(3 classes combined) 

Numerousness 14.3 6.4 4.5 

Ordering 5.2 5.6 2.1 

Basic facts 15.5 13.3 4.0 

(Add) (14.7) (6.8) (3.1) 

(Subtract) (.8) (6.5) (.9) 

Problem solving 2.6 1.4 4.2 

Sentence writing .8 .8 3.1 

Algorithms 0 3.1 24.0 

(Add) (0) (3.1) (13.4) 

(Subtract) (0) (0) (10.6) 

Counting 9.3 12.4 1.4 

TOTAL TOTAL 
47.7 50.2 44.3 

Addition and subtraction 

Other arithmetic 13.2 16.8 15.6 

Other math 39.1 33.0 41.1 
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children's failure to use this technique to solve problems. In fact, it 

can be argued that the structure of the program at grade 3 (emphasis on 

algorithms) presumes that children have mastered most of the 

prerequisites (like counting and basic facts) and have acquired a high 

level of reasoning about numbers (are in Cognitive Group 5-6). This is, 

of course, at odds with the data on these students presented in the last 

two chapters. 

Also, this description is fair in terms of the content included in 

the mathematics curricula in these schools, but it fails to capture 

important structural features of those programs. The program in Sandy 

Bay Infant School was filled with manipulative materials, many 

opportunities to explore independently or in small groups, learning 

stations, etc., and no basal text was used. However, in the third 

grades at Waimea Heights, a single text was followed and most activities 

involved paper-and-pencil seatwork. 

Pupil Actions 

Grade. The data on pupil actions by grade are presented in 

Table 44. Significant engagement rate and grouping differences are 

apparent across grades. Both are likely due in part to the differences 

in the structure of the curriculum in the schools. The high amount of 

time spent on small-group and individual activities in grades 1 and 2 

(85% and 68%, respectively) is consistent with the manipulative-based, 

learning station approach at the Sandy Bay School. Similarly, 70% of 

the time spent in large-group instruction at grade 3 is consistent with 

the text-based instruction used at the Waimea Heights School. However, 

it is interesting to note that the largest difference in engagement is 
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Table 44 

Observed Minutes and Percent of Time 

of Pupil Actions by Grade 

Grade 1 Grade 2 Grade 3 
Pupil Action 

Minutes % Minutes % Minutes % 

Engagement 

Engaged time 

Off-task time 

Types of engagement 

Content 

Directions 

Grouping 

Individual 

Small group 

Large group 

Interactions 

Target speaking 

Target listening 

None 

Interaction other party 

Teacher 

Pupil 

Other adult 

559 55 

449 45 

488 89 

62 11 

302 30 

553 55 

156 15 

62 6 

91 9 

858 85 

99 65 

48 31 

6 4 

771 71 

317 29 

656 86 

107 14 

165 15 

583 53 

343 31 

51 5 

163 15 

880 80 

161 76 

36 17 

16 8 

1369 77 

403 23 

1149 88 

164 12 

11 1 

524 29 

1259 70 

105 6 

279 15 

1427 79 

296 78 

77 20 

6 2 
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between grade 1 and grade 2 students, who are following the same 

curriculum (in the same school). In fact, it was observed that in grade 

1, many children spent considerable time waiting for instructions about 

what to do next when they had completed an activity. By grade 2, this 

behavior was observed less frequently. Many students now proceeded to 

the next task with little hesitation. Part of this change is probably 

due to increased student maturity or familiarity with behavior 

expectations of the system and part is probably due to the particular 

teacher a student had. 

Class. Grade 3 data were further subdivided into pupil actions by 

class as shown in Table 45. For comparative purposes, the data for 

grade 1 (class 1) and grade 2 (class 2) are shown again. Classes 3, 4, 

and 5 are all in grade 3. Class 4 is clearly different from the other 

two classes. Pupils in that class were off-task more of the time. 

Furthermore, if they were engaged, they were more likely to be engaged 

in receiving directions, and if interacting they were more likely to be 

interacting with other pupils. Differences in grouping are not likely a 

function of curriculum, since all third-grade classes are similar on 

that dimension. The large differences in engagement and interactions 

are probably a function of the teacher. 

Cognitive group. The number of minutes and percent of time coded 

for the five pupil action categories for all students in the cognitive 

groups are presented in Table 46. Overall, the percent of engaged time 

steadily increases across cognitive groups. Also, differences in 

grouping are striking, with percent of time in large-group instruction 

varying from 21% for Group 1 to 68% for Group 6 children. All other 

differences in percentage of time coded for the pupil action categories 



Table 45 

Observed Minutes and Percent of Time of Pupil Actions by Class 

Grade 3 

Grade 1-Class 1 Grade 2-Class 2 Class 3 Class 4 Class 5 
Pupil Action 

Minutes % Minutes % Minutes % Minutes % Minutes % 

Engagement 

Engaged time 

Off-task time 

Types of encouragement 

Content 

Directions 

Grouping 

Individual 

Small group 

Large group 

Interactions 

Target speaking 

Target listening 

None 

Interaction:other party 

Teacher 

Pupil 

Other adult 

559 55 771 71 

449 45 317 29 

488 89 656 86 

62 11 107 14 

402 

8 

364 

21 

98 650 64 

2 358 36 

95 496 

5 135 

79 

21 

317 90 

37 10 

289 

8 

97 

3 

302 30 165 15 6 1 0 0 5 1 
553 55 583 53 101 24 247 25 176 47 
156 15 343 31 317 75 750 75 192 51 

62 6 51 5 24 

91 9 163 15 112 

858 85 880 80 289 

99 65 

48 31 

6 4 

161 76 

36 17 

16 8 

122 

10 

1 

6 52 5 

26 127 13 

68 835 82 

92 

8 

1 

119 67 

57 32 

2 1 

29 8 

40 11 

303 81 

55 81 

10 15 

3 4 



Table 46 

Observed Minutes and Percent of Time of Pupil Actions by Cognitive Group 

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3 Cognitive Group 4 Cognitive Group 5 
Pupil Actions -..- 

Minutes % Minutes % Minutes % Minutes % Minutes % 

Engagement 

Engaged time 

Off-task time 

Types of engagement 

Content 

Directions 

Grouping 

Individual 

Small group 

Large group 

Interactions 

Target speaking 

Target listening 
None 

Interaction: other party 

Teacher 

Pupil 

Other adult 

420 

237 

361 

57 

167 

356 

135 

64 850 

36 460 

86 690 

14 140 

25 201 

54 593 

21 510 

37 6 61 

76 12 164 

545 83 1090 

80 71 

24 21 

9 8 

167 

46 

12 

65 

35 

83 

17 

721 70 331 76 

310 30 106 24 

634 90 

68 10 

15 104 10 

45 444 43 

39 496 48 

5 63 6 

12 162 15 
83 825 79 

74 162 73 

20 55 25 

5 6 3 

282 88 

37 12 

377 87 

56 13 

326 91 

31 9 

0 0 6 

129 29 138 

317 71 300 

19 4 

62 14 

367 82 

67 83 

14 17 

0 0 

1 

31 

68 

38 9 

69 16 
338 76 

80 78 

22 21 

1 1 
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are not striking or of practical interest. However, these differences 

in engagement and grouping are clearly confounded by the grade, class, 

and teacher effects described earlier. This is due to the fact that at 

grade 1, five of six children observed were in cognitive Groups 1 and 2; 

at grade 2, six of eight children were in Groups 1 and 2; and at grade 

3, 12 of 21 children were in Groups 4, 5, and 6. 

Cognitive level within class. To answer the question of whether or 

not children with different cognitive capacities received different 

instruction, the data for children within each class are presented. The 

data for children of different cognitive levels within Class 1 (grade 1) 

are presented in Table 47. Only the difference in time pupils interact 

with other pupils is of interest and then only between Group 1 and Group 

3 children (24% to 45%). 

The data for Class 2 (grade 2) children in different cognitive 

groups are presented in Table 48. As with grade 1, the only observable 

difference is in pupil interactions with other pupils (17% for Group 1 

children and 32% for Group 3 children). 

Tables 49, 50, and 51 contain the within-class data for children in 

different cognitive groups for the three third-grade classes. Class 3 

and Class 5 show high engagement on content with virtually no 

differences between students. Class 4, on the other hand, exhibits much 

lower engagement with more time on directions for all students. Again, 

only pupil interactions with other pupils vary by cognitive level (31% 

for Group 2 children to 46% for Group 5-6 children). 

Summary. Overall, these data suggest that differences in grouping 

of students are due to grade (structure of the curriculum) or teacher. 

Grade 1 and grade 2 children often worked in small groups and 
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Table 47 

Observed Minutes and Percent of Time of Pupil Actions 

by Cognitive Group Within Class 1, Grade 1 

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3 
Pupil Action 

Minutes % Minutes % Minutes % 

Engagement 

Engaged time 260 60 189 51 110 54 

Off-task time 174 40 181 49 94 46 

Types of engagement 

Content 230 89 159 87 99 90 

Directions 28 11 23 13 11 10 

Grouping 

Individual 129 30 119 32 54 26 

Small group 235 54 197 53 121 59 

Large group 70 16 56 15 30 15 

Interactions 

Target speaking 26 6 24 6 13 6 

Target listening 41 9 30 8 20 10 

None 368 85 318 85 172 84 

Interaction other party 

Teacher 46 70 36 67 17 52 

Pupil 16 24 17 31 15 45 

Other adult 4 6 1 2 1 3 
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Table 48 

Observed Minutes and Percent of Time of Pupil Actions 

by Cognitive Group Within Class 2, Grade 2 

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3 
Pupil Action 

Minutes % Minutes % Minutes % 

Engagement 

Engaged time 160 72 399 72 212 69 

Off-task time 63 28 158 28 96 31 

Types of engagement 

Content 131 82 336 85 189 90 

Directions 29 18 57 15 21 10 

Grouping 

Individual 38 17 82 15 45 14 

Small group 121 54 294 53 168 54 

Large group 65 29 179 32 99 32 

Interactions 

Target speaking 12 5 20 4 19 6 

Target listening 35 16 84 15 44 14 

None 177 79 454 81 249 80 

Interaction: other party 

Teacher 34 72 87 84 40 65 

Pupil 8 17 8 8 20 32 

Other adult 5 11 9 9 2 3 
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Table 49 

Observed Minutes and Percent of Time of Pupil Actions 

by Cognitive Group Within Class 3, Grade 3 

Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6 
Pupil Action 

Minutes % Plinutes % Minutes % 

Engagement 

Engaged time 144 98 80 96 178 99 

Off-task time 3 2 3 4 2 1 

Types of engagement 

Content 127 93 76 96 161 95 

Directions 10 7 3 4 8 5 

Grouping 

Individual 5 3 0 0 1 0 

Small group 33 22 20 23 48 26 

Large group 114 75 67 77 136 74 

Interactions 

Target speaking 8 5 2 2 14 8 

Target listening 47 31 16 18 49 29 

None 98 67 69 79 122 66 

Interaction:other party 

Teacher 52 95 16 94 54 89 

Pupil 3 5 1 6 6 10 

Other adult 0 0 0 0 1 1 



Table 50 

Observed Minutes and Percent of Time of Pupil Actions 

by Cognitive Group Within Class 4, Grade 3 

Cognitive Group 2 Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6 
Pupil Action 

Minutes % Minutes % Minutes % Minutes % 

Engagement 

Engaged time 

Off-task time 

Types of engagement 

Content 

Directions 

Grouping 

Individual 

Small group 

Large group 

Interactions 

Target speaking 

Target listening 

None 

Interaction: other party 

Teacher 

Pupil 

Other adult 

262 68 151 69 

121 32 101 40 

195 76 

60 24 

0 0 

102 27 

275 73 

17 4 

50 13 

318 83 

44 66 

21 31 

2 3 

119 83 

24 17 

0 0 

62 25 

187 75 

14 6 

36 14 

204 80 

33 67 

16 33 

0 0 

89 67 

44 33 

70 80 

18 20 

0 0 

32 24 

101 76 

13 10 

11 8 

110 82 

148 62 

92 38 

112 77 

33 23 

0 0 

51 21 

187 79 

8 3 

30 12 

203 84 

29 76 

9 24 

0 0 

0 

m 
m 

0 
0 

H 

0 rt 

0_ 0 
rt 
FJ- 
0 

13 54 

11 46 

0 0 
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Table 51 

Observed Minutes and Percent of Time of Pupil Action 

by Cognitive Group Within Class 5, Grade 3 

Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6 
Pupil Action 

Minutes % Minutes % Minutes % 

Engagement 

Engaged time 104 87 103 90 110 92 

Off-task time 16 13 11 10 10 8 

Types of engagement 

Content 100 98 94 99 95 95 

Directions 2 2 1 1 5 5 

Grouping 

Individual 0 0 0 0 5 4 

Small group 60 48 58 48 58 46 

Large group 66 52 63 52 63 50 

Interactions 

Target speaking 9 7 9 7 11 9 

Target listening 15 12 16 13 9 7 

None 102 81 95 79 106 84 

Interaction: other party 

Teacher 20 83 22 85 13 72 

Pupil 1 4 4 15 5 28 

Other adult 3 13 0 0 0 0 
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individually for mathematics instruction while large group work was 

common in grade 3. Differences in engaged time are likely due to 

teachers or to students' familiarity with the instructional pattern. 

Only pupil interactions with other pupils are plausibly due to 

childrens' cognitive level (with children in higher groups more likely 

to interact with others), but this behavior only occurs where such 

interactions are allowed and even then is infrequent. 

Teacher Behaviors 

The data for number of minutes and percent of time teachers at 

various grade levels engaged in the behaviors coded are discussed first. 

Then, the teacher behaviors are presented by class, by cognitive group, 

and by cognitive group/class interactions. 

Grade. The data on teacher behaviors by grade are presented in 

Table 52. The differential time teachers spent explaining or giving 

directions vs. content varies with grade level and is consistent with 

program expectations discussed earlier. Time spent on directions is 

inversely related to grade level. 

Class. The data on teacher behaviors by class within grade 3 are 

shown in Table 53. The differences in speaking about content appear to 

be teacher or class specific. The differences between the first-grade 

teacher and two of the third-grade teachers on content are large. For 

example, the teacher of class 1 (grade 1) spent 51% of the observed time 

speaking on content while the teacher in class 3 (grade 3) spent 82% on 

content. Another grade 3 teacher (class 4) spent 57% of the time on 

content. However, the percent of time teachers explain directions 

appears to be a grade effect or curriculum effect, since all three grade 
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Table 52 

Observed Minutes and Percent of Time 

of Teacher Behaviors by Grade 

Grade 1 Grade 2 Grade 3 
Teacher Behavior 

Minutes % Minutes % Minutes % 

Interaction 

Listening 187 17 206 18 216 11 

Speaking 640 58 677 59 1238 64 

None 276 25 254 22 485 25 

Speaking/large group 91 14 209 31 313 25 

Speaking/small group 82 13 65 10 227 18 

Speaking/individual 467 73 402 59 697 56 

Speaking/content 367 57 404 60 823 66 

Speaking/directions 268 42 256 38 347 28 

Low-level questions 135 12 157 14 338 17 

Direction-related questions 33 3 29 3 199 10 

No feedback 1006 91 1035 91 1819 94 

Feedback/individual 79 90 89 94 109 92 

Low-information feedback 97 100 101 98 115 93 

High-information feedback 0 0 2 2 9 7 

Explaining content 130 12 117 10 323 17 

Explaining directions 235 21 228 20 165 9 



Table 53 

Observed Minutes and Percent of Time of Teacher Behaviors by Class 

Grade 3 

Teacher B r Grade 1-Class 1 Grade 2-Class 2 Class 3 Class 4 Class 5 Teacher Behavior 

Minutes % Minutes % Minutes % Minutes % Minutes % 

17 206 18 55 12 129 

58 677 59 290 63 681 

25 254 22 116 25 294 

12 32 8 

62 267 71 

27 75 20 

Speaking/large group 

Speaking/small group 

Speaking/individual 

91 14 209 

82 13 65 

467 73 402 

31 128 

10 41 

59 121 

44 134 

14 107 

42 439 

Speaking/content 

Speaking/directions 

367 57 404 60 

268 42 256 38 

239 82 391 57 

45 15 240 35 

Low-level questions 135 

Direction-related questions 33 

No feedback 

Feedback/ individual 

Low-information feedback 

High-information feedback 

Explaining content 

Explaining directions 

12 

3 

1006 91 

79 90 

97 100 

0 0 

157 14 

29 3 

1035 

89 

101 

2 

91 

94 

98 

2 

130 12 117 10 

235 21 228 20 

94 20 172 16 72 19 

22 5 125 11 52 14 
cn 

434 94 1025 93 360 95 0 

24 92 71 93 14 83 

23 82 77 99 15 83 ? 

5 18 1 1 3 17 
rt 

96 21 139 13 88 23 ? 
26 6 126 11 13 3 

Interaction 

Listening 

Speaking 

None 

187 

640 

276 

20 

16 

64 

51 19 

79 29 

137 51 

193 71 

62 23 
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3 teachers spend less time (6%, 11%, and 3%) than either the grade 1 

(21%) or grade 2 (20%) teachers. 

Cognitive group. The number of minutes and percent of time coded 

for six teacher behavior categories are presented in Table 54. Overall, 

three differences are striking across cognitive groups. First, the 

percent of time speaking to individual children decreases from 67% for 

Group 1 children to 53% for Group 5-6 children. Second, the percent of 

time teachers spent speaking about directions shifts from 39% for 

Group 1 children to 27% for Group 5-6 children. Similarly, the percent 

of time explaining directions decreases from 22% for Group 1 children to 

6% for Group 5-6 children. However, all of these differences are 

undoubtedly confounded by grade level. 

Cognitive group within class. Data on the percent of time teacher 

behaviors were observed in each class in relation to students in 

different cognitive groups are not presented here. For four of the 

classes (1, 2, 3, and 4), there were no striking differences in terms of 

time spent interacting with different children. Only one important 

difference was found. In class 5, the time that the teacher spoke on 

content decreased across Groups 1-5/6 from 82% to 66%. 

In summary, although teachers varied considerably in their 

behavior, differences seem due more to grade, or individual teaching 

style, or grouping patterns within classes than to differential 

treatment of students with various cognitive capacities. Teachers may 

treat some students different from others, but these data suggest that 

cognitive capacity is not the basis for such differentiation. 



Observed Minutes 

Table 54 

and Percent of Time of Teacher Behaviors by Cognitive Group 

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6 
Teacher Behavior 

Minutes % Minutes % Minutes % Minutes % Minutes % 

127 19 231 

394 60 837 

141 21 380 

16 139 

58 722 

26 235 

13 50 10 

66 310 60 

21 154 30 

Speaking/large group 

Speaking/small group 

Speaking/individual 

Speaking/content 

Speaking/directions 

Low-level questions 

Direction-related questions 

83 21 190 23 189 

47 12 116 14 100 

264 67 529 63 433 

26 

14 

60 

233 59 479 57 475 66 

155 39 327 39 228 31 

84 13 

12 2 

178 

78 

12 196 18 

5 68 6 

No feedback 

Feedback/individual 

Low-information feedback 

High-information feedback 

Explaining content 

Explaining directions 

592 

60 

69 

1 

83 1334 

91 98 

99 114 

1 0 

92 

93 

100 

0 

1018 

70 

75 

5 

93 

95 

94 

6 

72 11 166 11 182 17 

143 22 254 18 164 15 

Interaction 

Listening 

Speaking 

None 

62 14 

292 64 

97 21 

90 23 

56 18 

184 59 

204 66 

81 26 

82 16 

51 10 

81 28 

55 19 

156 53 

203 69 

80 27 

90 20 

52 11 

481 

27 

31 

3 

93 

87 

91 

9 

427 

22 

24 

2 

94 

88 

92 

8 

75 15 

38 7 

75 17 

29 6 
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Teacher Behavior/Pupil Engagement Interactions 

The number of minutes and percent of coded time that teachers 

performed various actions and children were engaged are reported in this 

section. As with the previous sections, the data were first aggregated 

for children differing by grade, then class, cognitive group, and 

finally, cognitive group within class. 

Grade. The data on pupil engagement for various teacher actions by 

grade are presented in Table 55. Pupil engagement when teachers are 

speaking increases from 59% in grade 1 to 78% in grade 3. Engagement 

when teachers are not speaking increases from 50% to 76%. Similarly, 

pupil engagement when there are no interactions increases from 42% to 

78% across grades, as do all engagement rates related to teacher 

questioning and providing information. 

Class. The information on pupil engagement when teachers performed 

certain actions is presented for all five classes in Table 56. As would 

be expected from previous analyses, Class 4 in grade 3 is different from 

Classes 3 and 5 in grade 3. Engagement rates in Class 4 are lower in 

all categories than rates in the other two classes. In fact, the grade 

level effect noted previously is in part a teacher effect, and certainly 

would be higher for grade 3 if Class 4 were omitted. 

Cognitive group. The overall data on time pupils in differing 

cognitive groups were engaged when teachers were doing different things 

is reported in Table 57. Many of the differences are striking. First, 

as cognitive level increases, children increase in engagement when 

teachers are speaking from 65% of the time to 86%. Second, the pattern 

across groups is similar regardless of whom the teacher is speaking to, 

and even when the teacher is not speaking (62% engagement to 89%). 
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Table 55 

Observed Minutes and Percent of Time of Teacher 

Behaviors and Pupil Engagement by Grade 

Grade 1 Grade 2 Grade 3 
Interaction 

Minutes % Minutes % Minutes % 

Teacher speaking/ 

Pupil engaged 356 59 463 70 919 78 

Pupil off-task 245 41 197 30 259 22 

Pupil engaged when teacher 
speaking to: 

Individual 253 57 265 68 502 74 

Small group 51 67 45 69 160 80 

Large group 52 63 153 75 256 86 

Not speaking 203 50 308 72 449 76 

Pupil engaged when teacher: 

Listening 104 61 151 76 152 72 

Pupil engaged when: 

No interactions 99 42 157 69 295 78 

Pupil engaged when teacher 
asks: 

Low-level questions 75 60 108 71 263 81 

High-level questions 8 67 19 83 42 95 

Questions about directions 15 52 20 69 133 70 

Pupil engaged when teacher 
provides: 

Low-information feedback 44 48 67 68 90 80 

Positive feedback 32 54 56 72 52 87 

Information about content 83 68 89 77 255 82 

Explains directions 131 58 149 67 114 72 



Table 56 

Observed Minutes and Percent of Time of Teacher Behaviors and Pupil Engagement by Class 

Grade 3 

Grade 1-Class 1 Grade 2-Class 2 Class 3 Class 4 Class 5 
Interaction 

Minutes % Minutes % Minutes % Minutes % Minutes % 

Teacher speaking/ 
Pupil engaged 
Pupil off-task 

Pupil engaged when teacher 
speaking to: 

Individual 
Small group 
Large group 
Not speaking 

Pupil engaged when teacher: 
Listening 

Pupil engaged when: 
No interactions 

Pupil engaged when teacher 
asks: 

Low-level questions 
High-l evel questions 
Questions about directions 

Pupil engaged when teacher 
provides: 

Low-information feedback 
Positive feedback 
Information about content 
Explains directions 

356 59 463 70 263 99 437 66 
245 41 197 30 2 1 226 34 

253 57 265 68 109 99 275 63 
51 67 45 68 31 100 69 59 
52 63 153 75 123 99 92 74 

203 50 308 72 138 96 213 62 

104 61 51 76 

99 42 157 69 

75 60 
8 67 

15 52 

44 
32 
83 

131 

108 71 
19 83 
20 69 

48 67 
54 56 
68 89 
58 149 

68 
72 
77 
67 

51 98 73 57 

88 95 141 65 

86 99 
23 100 
21 100 

22 100 
20 100 
86 100 
24 96 

116 76 
1 100 

70 60 

56 73 
23 82 
95 69 
80 66 

219 88 
31 12 

118 87 
60 90 
41 85 
98 94 

28 90 

66 96 

61 92 
18 90 
42 82 

12 92 
9 75 

74 86 
10 91 



Table 57 

Observed Minutes and Percent of Time of Pupil Engagement 

for Various Interactions, by Cognitive Group 

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6 
Interaction 

Minutes % Minutes % Minutes % Minutes % Minutes % 

Teacher speaking/ 
Pupil engaged 
Pupil off-task 

Pupil engaged when teacher 
speaking to: 

Individual 
Small group 
Large group 
Not speaking 

Pupil engaged when teacher: 
Listening 

Pupil e,ngaged when: 
No interactions 

Pupil engaged when teacher 
asks: 

Low-level questions 
High-level questions 
Questions about directions 

Pupil engaged when teacher 
provides: 

Low-information feedback 
Positive feedback 
Information about content 
Explains directions 

254 64 518 66 509 73 
137 35 267 34 188 27 

174 67 306 
26 55 78 
54 65 133 

166 62 332 

61 289 
71 75 
77 145 
63 211 

94 75 145 68 

216 76 
69 24 

69 128 73 
82 33 72 
78 55 87 
63 115 76 

81 60 

72 51 188 60 130 66 

51 62 
7 88 
8 67 

43 62 
32 65 
53 74 
87 61 

114 68 
15 75 
41 59 

68 
46 

106 
159 

62 
66 
68 
67 

141 75 
17 85 
46 70 

50 70 
37 77 

147 82 
101 63 

35 74 

79 76 

60 77 
15 100 
34 68 

20 71 
10 83 
57 83 
25 69 

241 86 
40 14 

123 79 
44 92 
74 95 

136 89 

52 87 

82 91 

80 92 
15 94 
39 78 

20 83 
15 83 
64 90 
22 79 
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Third, in the same manner, pupil engagement increases from 51% for Group 

1 children to 91% for Group 5-6 children, when there were no teacher 

interactions. Finally, the same pattern of increase in engagement is 

apparent when teachers question students or provide information. 

However, as in the previous analyses, these are the same differences 

found across grade levels. 

Cognitive level within class. The engagement data for children of 

different cognitive levels within each class was also calculated. 

Although there is some variation in engagement in each class for 

children of differing cognitive levels, no pattern of differences in any 

class was apparent. Thus, tables summarizing these data are not 

presented. 

In summary, the data relating pupil engagement to type of teacher 

behavior suggest that differences are due to grade level and teacher 

style and not to differences in cognitive capacity among the students 

within each class. 

Summary and Conclusions 

Data from the sample of students in the five classes observed in 

this study indicate that children who differed in cognitive capacity did 

not receive different instruction. There were some overall differences 

in how the five teachers dealt with Group 1 and Group 5-6 children, but 

these differences are slight and are confounded with both grade and 

teacher effects. Nevertheless, the study provides some interesting 

insights about mathematics instruction. First, teachers tended to 

organize and teach mathematics based on school traditions. Differences 

in content emphasis and patterns of grouping students were based on 
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school curricula. In particular, the differences in pupil actions and 

teacher actions from grades 1 and 2 to grade 3 reflected a shift in 

emphasis and organization of activities. Sandy Bay Infant School 

(grades 1 and 2) has an open, activity oriented program. Waimea 

Heights, on the other hand, is a school in which instruction is more 

formal and direct. Hence, the overwhelming grade level effect on pupil 

actions, teacher actions, and pupil engagement was to be expected. 

Second, the mathematics program within schools was not related 

either to how students work problems or their capacity to reason. 

Third, there were important differences between one teacher and two 

others who used the same curriculum. Classes 3 and 5 in grade 3 clearly 

reflected good teaching that was following a direct instruction 

approach. Children were on task in large or small groups. Class 4, on 

the other hand, while following the same program, was not a successful 

class. 

Fourth, the only interesting pupil behavior we found that was 

related to cognitive capacity was the tendency for children in higher 

groups to interact with other pupils more often when there was an 

opportunity to interact. This effect, however, may also be a function 

of grade, school, and teacher variables. 



Chapter 6 

SUMMARY, CONCLUSIONS, AND IMPLICATIONS 

The question investigated in these set of five studies was, Do 

children who differ in cognitive capacity learn to add and subtract 

differently? In asking this question, we assumed that children's 

performance on addition and subtraction problems was related both to 

their cognitive capacity and to classroom instruction. This series of 

studies was reported from four different intellectual perspectives so 

that each study would shed light on a different aspect of the question. 

Then, by putting the information from each together, we hoped to answer 

the basic question. 

In retrospect, we believe that the picture that has evolved from 

these studies is both interesting and provocative, but not at all clear. 

This chapter summarizes what we learned and specifies the strengths and 

weaknesses of each of the studies. Finally, implications are suggested 

to other researchers, to curriculum developers, and to teachers. We 

have organized this discussion under five headings: cognitive capacity, 

solving verbal addition and subtraction problems, using the concepts and 

skills of addition and subtraction, the influence of instruction on 

addition and subtraction performance, and final reflections. 

Cognitive Capacity 

The original question assumed that young children differ in their 

cognitive capacity to deal with mathematical information and that 

available psychometric techniques would yield groups of students with 

similar test scores. First, a set of tests measuring short-term memory 

146 
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capacity (M-space) was administered. Second, a set of developmental 

psychological tests was given to the same children. Data from the 

M-space tests were used to empirically derive six groups of students. 

The developmental tests were then used to assist in describing 

differences between the groups. 

Cognitive Group 1 children have limited memory capacity (M-space 

level 1), are incapable of handling most quantitative tests, can 

serially count but have no sophisticated counting strategies, and can 

only deal with qualitative comparisons and transformations at a moderate 

level. 

Cognitive Group 2 children have larger memory capacities (M-space 

level 2), have no difficulty with qualitative comparisons (they can 

preserve correspondence after rearrangement of sets and overcome 

perceptual distractions), and can determine whether sets are larger or 

smaller if an object has been put with or taken from particular sets. 

However, the quantitative skills of these children are limited. They 

can count sets, but have no sophisticated counting strategies and are 

unable to solve transitivity and rearrangement problems. 

These first two groups are distinct from each other and distinct 

from the remaining four groups. The final four groups, both 

psychometrically and logically, are more similar to each other than they 

are different from each other in that all members have a memory capacity 

of level 3 or 4 and have sophisticated counting strategies. 

Cognitive Group 3 children differ from Cognitive Group 4 children 

only on measures of transitivity and transitivity under rearrangement. 

Groups 3 and 4 children differ from Cognitive Group 5 and Cognitive 

Group 6 children only on the class inclusion test. Groups 5 and 6 
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children differ only on one measure of memory capacity; in all analyses 

we combined Groups 5 and 6. 

The data gathered and analyzed with respect to cognitive capacity 

suggested the following six propositions. First, a global qualitative 

versus quantitative distinction is apparent in children's mathematical 

thinking in the early school years. Second, M-space level seems to be 

related to the developmental sequences in the preschool to early 

elementary years in mathematically-related tests. Third, reasoning 

appears to develop in the following sequence: comparison--qualitative-- 

correspondence--quantitative--logical operations. Fourth, an M-space 

level of 1 enables a child to solve simple comparison tasks. Fifth, an 

M-space level of 2 is enough for qualitative correspondence and is a 

prerequisite for the development of most number skills. And sixth, an 

M-space level of 3 seems to be necessary for success in sophisticated 

counting tasks and probably is necessary for the development of addition 

and subtraction. 

Problems and recommendations. The data indicate that children 

differ significantly in their ability to perform simple mathematical 

tasks. However, the approach that we took is purely empirical. It is 

not based on any theory of how children process mathematical 

information. The next step in research would be to use a theoretic 

model of cognitive processing such as that proposed by Campione and 

Brown (1978), which distinguishes between the "architectural" features 

of cognition (memory capacity, automaticity, speed of processing, etc.) 

and "executive" aspects of cognitive processing (metacognition, schema 

in long-term memory, etc.). Using such a model would enhance our 
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understanding of cognitive capacity more than the psychometric approach 

followed in this study. 

We found three sets of tests of cognitive processing to be 

especially important. First, memory capacity was most useful in 

identifying groups with different cognitive capacities. Unfortunately, 

the instruments used to assess this underlying trait leave much to be 

desired. In particular, on the Mr. Cucui Test, children can organize 

information by "chunking" it (e.g., left side of the body, head, and so 

on). As a result, higher M-space levels are indicated when children use 

a smaller part of memory to store information. This phenomenon is well 

known in the literature, but it is difficult to separate chunking from 

actual M-space. We believe that the four tests (Counting Span, Mr. 

Cucui, Digit Placement, and Backward Digit Span) indicate M-space levels 

1, 2, and 3 relatively accurately. However, memory capacity levels 

above level 3 in many cases may be due to chunking. Nevertheless, we 

are convinced that memory capacity is an important feature of cognitive 

processing capacity and strongly suggest that other researchers measure 

memory capacity of their subjects. 

The second set of tests that distinguished groups were the counting 

forward and counting back tests. Sophisticated counting skills are 

important in solving verbal addition and subtraction problems, as 

demonstrated in Chapter 3. We recommend that such tests be used in 

other research. Also, other tests that measure different counting 

skills (simple counting, counting on, counting back, counting all, etc.) 

should also be developed and used. 

Finally, the class inclusion test distinguished groups of students. 

The relationship of class inclusion skills to how children work certain 
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problems (particularly the part-part-whole problems) is not at all 

clear. We recommend the development and study of other tests that 

assess the way in which individuals logically reason about phenomena. 

Solving Verbal Addition and Subtraction Problems 

One indication that students have learned to add and subtract is 

that they can solve simple verbal problems. For such problems, children 

can write an addition or subtraction sentence about the problem and use 

learned addition or subtraction concepts or skills to find the 

appropriate answer. In Chapter 3, we examined both the performance of 

students (the number of questions they were able to answer correctly) 

and the strategies they used to solve a variety of addition and 

subtraction problems. The data were gathered in interviews of each 

child on several occasions in which six problems were given to each 

student at two or three of four levels of difficulty, determined by the 

size of numbers in the problem. 

The results described in Chapter 3 indicate that there was 

considerable variability in the children's ability to solve a variety of 

verbal problems and in the strategies they used to solve those problems. 

The overall performance of students with different cognitive processing 

capacities on the tasks was relatively high. Students answered 72% of 

the SN level problems correctly; of the LN level problems, students 

answered 72% correctly; and of the NR and R level problems, 67% were 

answered correctly. However, there was considerable variability in both 

performance and strategies; this variation was influenced by several 

factors: the semantics of the problem, the size of the numbers in the 

problem, the implied operation in the problem, the grade level of the 
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child, and the cognitive capacity of the child. Table 58 summarizes the 

level of performance across all items for the six different semantic 

types of tasks. In general, the results support the conclusion of 

Greeno and Riley (1981), that change problems are easier than combine 

problems, which in turn are easier than compare problems. 

The most striking findings on both performance and strategies were 

for children in different cognitive groups. The performance and 

strategies that children in each cognitive group used are summarized on 

the following pages. The percent correct is noted only if children 

answered at least two-thirds of the tasks within a semantic category 

correctly. Similarly, to highlight the strategies that students in each 

particular group used, percentages are indicated only if students used a 

strategy on at least 20% on the same semantic set of problems. 

The summary information on the performance and use of strategies 

for the children in cognitive Group 1 is presented in Table 59. This 

group of children performed satisfactorily only on three of the 12 

tasks--the three SN tasks that can easily be solved by direct modeling. 

The strategies that these students used, with one exception, were either 

inappropriate or direct modeling. The exception was on task 6 at the SN 

level, when students used "counting on" 37% of the time. 

Overall, this behavior clearly reflects the cognitive capacity of 

these children. They had low memory capacity, lacked systematic 

counting skills, and were only able to directly model the problems. 

Also, the compare task, which requires more memory capacity, was 

impossible for the children; they used inappropriate strategies on the 

SN and LN level compare tasks 83% and 93% of the time, respectively. 
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Frequency and Percent Correct for Each Task on Different Items for All Students U 

Level SN Level LN Level NR,R All Levels 
Task 

Frequency % Frequency % Frequency % Frequency % 

1 Change/join (+) 85 85 201 78 125 82 411 81 

2 Change/separate (-) 79 79 184 71 89 58 352 69 

3 Combine/part unknown (-) 68 68 190 74 88 58 346 68 

4 Combine/whole unknown (+) 80 80 194 75 115 76 389 76 

5 Compare (-) 41 41 157 58 90 59 288 56 

6 Change/join, change set unknown (-) 77 77 191 74 105 68 373 73 



Table 59 

Performance and Common Use of Strategies for Cognitive Group 1 

Routine 
Task Percent Direct Counting Mental 

Correct Modeling Sequences Operation Inappropriate 

$N Level 

1 Change/join (+) 77 53 

2 Change/separate (-) 70 57 33 

3 Combine/part unknown (-) 40 50 

4 Combine/whole unknown (+) 70 57 20 

5 Compare (-) 83 

6 Change/join, change set unknown (-) 37 37 

LN Level 

1 Change/join (+) 37 63 

2 Change/separate (-) 40 60 

3 Combine/part unknown (-) 37 60 

4 Combine/whole unknown (+) 37 63 

5 Compare (-) 93 

6 Change/join, change set unknown (-) 80 
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The summary information on the performance and use of strategies 

for students in cognitive Group 2 is shown in Table 60. This group of 

children could find answers satisfactorily on both the SN and LN sets of 

problems, with the exception of compare tasks. Although their 

performance was slightly lower on the LN than the SN set, the pattern of 

the performance was similar. However, on the NR and R sets (large 

numbers), group 2 students could only solve task 1 at a satisfactory 

level of performance. 

The strategy information Group 2 students used was consistent with 

their cognitive capacity. Direct modeling was the most frequently used 

strategy for both the SN and LN level problems, although the use of 

routine mental operations was becoming commonplace with the small number 

of problems in the SN set. The students could not work most of the 

compare problems. Inappropriate strategies were coded in over half of 

the trials over all problems. Group 2 students only used systematic 

counting strategies on task 6 at both SN and LN levels and task 4 on the 

LN problems. Finally, for the problems with larger numbers (NR and R), 

they most frequently used inappropriate strategies on all tasks except 

task 1. Only on this task did these children use an algorithm, and they 

often made errors in the use of an algorithm. 

The summary information for the children in cognitive Group 3 

appears in Table 61. Their overall level of performance is quite 

satisfactory on all tasks at the SN and LN levels, although they had 

some difficulty with task 5. For the NR and R set, only on tasks 1, 4, 

and 6 was performance satisfactory. Direct modeling is a reasonable 

strategy, particularly on the small-number SN problems. Counting 

strategies, however, and routine mental operations were also being used 



Table 60 

Performance and Common Use of Strategies for Cognitive Group 2 

Routine 
Task Percent Direct Counting Mental 

Correct Modeling Sequences Operation Inappropriate Algorithm 

SN Level 

1 Change/join (+) 85 44 33 
2 Change/separate (-) 81 52 31 
3 Combine/part unknown (-) 77 50 27 
4 Combine/whole unknown (+) 83 48 27 
5 Compare (-) 58 
6 Change/join, change set unknown (-) 85 36 38 

LN Level 

1 Change/j oin (+) 72 42 
2 Change/separate (-) 68 43 
3 Combine/part unknown (-) 71 42 
4 Combine/whole unknown (+) 68 45 24 
5 Compare (-) 53 
6 Change/join, change set unknown (-) 70 28 26 26 

NR,R Level 

1 Change/join (+) 67 25 50 
2 Change/separate (-) 33 33 

3 Combine/part unknown (-) 41 
4 Combine/whole unknown (+) 42 33 

5 Compare (-) 50 
6 Change/join, change set unknown (-) 21 29 
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Performance and Common Use of Strategies for Cognitive Group 3 ? 

0 
0 
0 
0 

r 

m 

O 
m 

Routine 
Task Percent Direct Counting Mental 

Correct Modeling Sequences Operation Inappropriate Algorithm 

SN Level 

1 Change/join (+) 100 33 39 
2 Change/separate (-) 89 56 33 
3 Combine/part unknown (-) 89 50 28 
4 Combine/whole unknown (+) 89 56 33 
5 Compare (-) 67 44 33 
6 Change/join, change set unknown (-) 94 44 39 

LN Level 

1 Change/join (+) 72 35 29 
2 Change/separate (-) 68 23 26 
3 Combine/part unknown (-) 71 27 26 26 
4 Combine/whole unknown (+) 80 42 26 
5 Compare (-) 74 36 24 23 
6 Change/join, change set unknown (-) 82 32 35 

NR,R Level 

1 Change/join (+) 89 34 27 
2 Change/separate (-) 34 29 
3 Combine/part unknown (-) 29 23 25 
4 Combine/whole unknown (+) 70 27 23 29 
5 Compare (-) 36 25 
6 Change/join, change set unknown (-) 66 36 25 
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with small number problems. Sophisticated counting strategies were used 

on all LN level tasks and on three of the NR and R level tasks. Also, a 

fairly high frequency of inappropriate strategies was apparent on the NR 

and R tasks. The Group 3 students used algorithms for the NR and R 

problems less frequently than did the Group 2 children. 

The summary information for Cognitive Group 4 children appears in 

Table 62. Not surprisingly, the performance and choice of strategies of 

these children differ very little from those of the Group 3 students. 

Group 4 students used counting strategies and routine mental operations 

on the LN problems and direct modeling and counting strategies on the NR 

and R problems. There was some increase in the use of algorithms by 

Group 4 students on the two addition problems. 

The summary information of children in Cognitive Group 5-6 is shown 

in Table 63. These children solved all problems satisfactorily. They 

used counting strategies and routine mental operations to find most 

solutions. However, on the NR and R simple subtraction problems, 

tasks 2 and 3, they frequently employed direct modeling. They used 

routine mental operations and algorithms only with the three easiest 

tasks. 

More important, these data show that a child's decision to use a 

particular strategy depends on several factors, including the semantics 

of the problem, the size of the numbers, and the implied operation. 

Furthermore, the availability or use of a strategy appears to depend on 

memory capacity. 

Five general observations from the data relate to our understanding 

of how children learn to solve such problems. First, the frequent and 

persistent use of inappropriate strategies implies either an 



Table 62 

Performance and Common Use of Strategies for Cognitive Group 4 

Routine 
Task Percent Direct Counting Mental 

Correct Modeling Sequences Operation Inappropriate Algorithm 

LN Level 

1 Change/join (+) 91 34 41 
2 Change/separate (-) 77 39 27 
3 Combine/part unknown (-) 75 32 25 
4 Combine/whole unknown (+) 86 25 39 
5 Compare (-) 86 20 27 32 
6 Change/join, change set unknown (-) 84 23 45 

NR,R Level 

1 Change/join (+) 78 38 38 
2 Change/separate (-) 31 26 
3 Combine/part unknown (-) 31 31 
4 Combine/whole unknown (+) 74 45 
5 Compare (-) 21 31 24 
6 Change/join, change set unknown (-) 67 29 31 21 
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Table 63 

Performance and Common Use of Strategies for Cognitive Group 5,6 

Routine 
Task Percent Direct Counting Mental 

Correct Modeling Sequences Operation Inappropriate Algorithm 

LN Level 

1 Change/j oin (+) 95 33 50 
2 Change/separate (-) 95 48 24 
3 Combine/part unknown (-) 98 31 48 
4 Combine/whole unknown (+) 95 38 48 
5 Compare (-) 93 48 36 
6 Change/join, change set unknown (-) 98 43 45 

NR,R Level 

1 Change/join (+) 88 32 39 
2 Change/separate (-) 74 31 38 
3 Combine/part unknown (-) 83 33 40 
4 Combine/whole unknown (+) 93 26 50 
5 Compare (-) 71 60 
6 Change/join, change set unknown (-) 90 62 
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unwillingness of some students to engage in the task, or an inadequate 

memory capacity to use a particular strategy. We agree with DeCorte and 

Verschaffel (1981) that some students fail to understand that they are 

to find an answer to a particular problem. However, we believe that 

most students try to solve problems but lose track of information. For 

example, Group 1 and Group 2 children do not have systematic counting 

strategies available to them to solve many of the problems. Thus, when 

they try, they may get mixed up and be unable to complete the task. We 

recommend a more careful investigation of the use of inappropriate 

strategies across tasks in order to obtain a better understanding of the 

difficulties some children have. 

Second, direct modeling (the use of chips or fingers to represent 

sets) is the first and easiest strategy that students use. It is 

particularly appropriate for SN tasks 1, 2, and 4, where the change or 

combination can be physically represented. Also, direct modeling 

preserves all the important data; prior data need not be remembered. 

The strategy is appropriate for tasks 3 and 6, but additional memory 

storage is required to remember the whole and the original part. 

Finally, direct modeling could be used with comparison problems, but it 

requires even more memory storage. Even with large-number problems 

where physical modeling becomes more cumbersome, modeling is still an 

appropriate strategy. Many students appear to follow a "when in doubt 

one can always model" strategy for solving many problems. Even 

third-graders in Group 5-6 physically modeled many of the large-number 

problems to find answers. This suggests the importance of being 

familiar with efficient procedures; although children in Group 5-6 

exhibited sophisticated counting strategies, knew basic facts, and could 
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perform addition and subtraction algorithms efficiently, they still 

directly modeled some problems. 

Third, the data also indicate that many children replaced direct 

modeling with either systematic counting strategies or routine mental 

operations. Counting strategies may be learned before routine mental 

operations; the choice of strategy depends on the size of the numbers 

involved in the problem. At all levels, for all cognitive groups, 

children solved the SN problems by using routine mental operations 

rather than counting strategies. Only for task 6 at the SN level was 

counting the dominant strategy. The LN, NR, and R problems were more 

likely to be solved by using sophisticated counting strategies. 

Furthermore, only on task 1 (combine/join) did children use routine 

mental operations with large-number problems. 

Fourth, the use of addition and subtraction algorithms for many 

children was perceived as a cumbersome procedure for finding answers. 

Only the Group 2 children, who were limited in their knowledge of 

counting strategies or routine mental operations, used algorithms 

frequently, and they made many errors. Students at higher cognitive 

levels may see that algorithms are appropriate but know of and are 

comfortable in using other strategies. The children's teachers expected 

students to write the mathematical expression and use the algorithms to 

solve problems on the NR and R tasks. Most instruction had been on 

addition and subtraction algorithms, and the children's performance was 

reasonably good. 

Fifth, it is apparent that the way in which students solved the 

problems was not directly related to classroom instruction. In grade 2, 

most instruction was on addition and subtraction facts (use of routine 
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mental operations), but most students used direct modeling and counting 

skills to solve the problems. In grade 3, most of the instructional 

time was spent on algorithms, but students did not use them to solve the 

verbal problems. 

Problems and recommendations. First, the sample of items--six 

tasks at each of the four levels--does not include all types of addition 

and subtraction problems. Nesher, Greeno, and Riley (1982) list 14 

types. Use of a more comprehensive set of problems would give us a 

better picture of the overall development of strategies across tasks. 

Second, the small number of students and the method of selection for 

this study are limiting. Studies with a larger number of subjects are 

in order. Third, although some longitudinal data were gathered, there 

was relatively little change in performance over the three-month period. 

Although cross-sectional data indicate changes, studies of longer 

duration should be carried out. Fourth, there is an obvious confounding 

between age (grade level) and cognitive capacity. 

Finally, these data need to be re-examined in light of the theory 

of the development of semantic categories for addition and subtraction 

proposed by Nesher, Greeno, and Riley (1982). Our data suggest that the 

decision sequence children use to select a strategy is more complex than 

this theory suggests. 

Using the Concepts and Skills of Addition and Subtraction 

Since most mathematics textbooks do not emphasize the solution of 

verbal problems, we also examined students' performance on the concepts 

and skills of addition and subtraction. This study is reported in 

chapter 4. A set of achievement monitoring tests that measured a 
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variety of mathematics objectives was administered at each grade level. 

Instruction at each grade level had an effect on some objectives over 

the autumn term. In grade 1, at the start of the school year, students 

were unable to solve most problems; by the end of the term, their 

addition skills had improved dramatically, although the same could not 

be said for subtraction. In grade 2, although instruction had an 

effect, increases in performance were not as apparent for many 

objectives. Grade 3 students clearly improved on many of the 

objectives. In particular, performance on the addition and subtraction 

algorithms improved dramatically. Thus, growth within each grade on 

some aspects of addition and subtraction was very clear. However, 

improvement was not uniform across different concepts and skills, and 

the overall level of performance on many objectives was not high. 

Instruction did not seem to be related very systematically to the level 

of performance. Thus, in spite of the fact that overall performance on 

place value, knowledge of addition and subtraction facts, and writing 

number sentences was not high, time was not allocated for instruction on 

those topics. For example, in third grade, most students were still 

having trouble with writing open sentences and knowledge of basic 

addition and subtraction facts. Yet almost no time was allocated for 

instruction in these areas. 

Performance differed by cognitive group within grade, although not 

all groups were represented at all grades. Group 1 children in grade 1 

struggled with many of the objectives, while the Group 2 students 

improved in performance over all of the objectives. The children in the 

higher cognitive groups performed better than children in lower 

cognitive groups. Overall, children who differ in cognitive processing 
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capacity performed differently regardless of specific objectives, 

instructional emphasis, or grade. 

Thus, although teaching and pupil experience accounted for some of 

the differences between children, performance appears to be consistent 

with cognitive processing capacity. 

Influence of Instruction on Addition and Subtraction 

The final study in the series reported in this monograph attempted 

to determine whether or not children with different cognitive capacities 

received different instruction. 

Observational data were collected on allocated time, pupil 

engagement, and teacher actions in relationship to pupil behavior. The 

findings of this study are not dramatic. However, what is portrayed is 

perhaps too typical of how instruction is carried out in many schools. 

First, about 50% of the total mathematics time in each grade is spent on 

addition and subtraction. In grade 1, primary emphasis is on addition 

facts, numerousness, and counting. In grade 2, basic facts for both 

addition and subtraction are taught. And in grade 3, computational 

algorithms are stressed. What pupils did in these classrooms seemed to 

be related to grade level and curriculum structure. In grades 1 and 2, 

children were working in small groups and individually for mathematics 

instruction while large group work was common in grade 3. Differences 

in pupil engaged time are likely due to teachers or student familiarity 

with the instructional pattern. Only the number of pupil interactions 

with other pupils is possibly due to the cognitive groups to which 

children belong. Teacher behaviors reflect grade level and individual 
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teaching style. Certainly, cognitive capacity is not the basis of 

differentiation between students in these classrooms. 

The data in the last two studies clearly indicate that children 

improve due to instruction on basic facts and algorithmic performance. 

What teachers do in classrooms varies, but within classrooms, they teach 

basically the same way to all children. What children learn appears to 

be consistent with their level of cognitive processing and with the 

content covered in each grade. The emphasis within classrooms seems to 

be on certain routine procedures (basic facts and algorithms) but not on 

others such as sentence writing, counting, or direct modeling of 

problems. The emphasis is on finding answers regardless of the 

procedure. Nothing is done to relate the semantics of various verbal 

problems to instruction in arithmetic. 

Finally, there is no evidence that instruction attempts to build on 

or change the strategies that students use to solve verbal problems. In 

fact, instruction seems to proceed without consideration of the level of 

performance of individual children. 

Final Reflections 

In concluding this monograph, seven thoughts come to mind. 

1. The information-processing approach to the study of how 

children solve a variety of addition and subtraction problems appears to 

provide a basis for a better understanding of the process of acquiring 

related concepts and skills and using them to solve problems. Our 

clustering of children into cognitive groups should be viewed as a rough 

initial approximation of a more refined description of capacity. 
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2. For students struggling with basic ideas (students in our 

Groups 1 and 2), a more careful analysis of inappropriate strategies 

needs to be done. 

3. The most interesting data are those on the strategies that 

children use, not on performance. Longitudinal data on change of 

strategies by specific children should be gathered. 

4. To be more effective, curricula must be organized and sequenced 

differently. Although the ideal organization and sequence for teaching 

addition and subtraction skills is not yet clear, more instruction on 

writing sentences and counting strategies is called for. One possible 

alternative would be to teach specific routines such as addition and 

subtraction facts or algorithmic procedures without trying to relate 

them to problems until students have mastered them. Students could 

build the bridge from verbal problems to use of algorithms later. 

5. Students need more opportunities to work with verbal problems 

and to represent such problems with mathematical expressions. This 

procedure of modeling a problem situation with a mathematical sentence 

is a very important skill throughout all mathematics. 

6. Although we believe that routine procedures are important, they 

only become important in the eyes of children when they see them as 

efficient and feel confident in using them to solve problems. 

7. Children differ in their capacity to solve a variety of 

mathematical problems. Instruction should begin where children are. 

Teachers should take into account the strategies and procedures children 

use to solve problems and build upon those capacities. 

In conclusion, our intent was to incorporate data from different 

perspectives to study how children learn to add and subtract. The 
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picture that emerges is of children struggling to learn a variety of 

important concepts and skills. Some children are limited by their 

capacity to handle information. Most are able to solve a variety of 

problems by using invented strategies that have not been taught. They 

dismiss or fail to see the value of the taught procedures for solving 

problems. The capacity of children for processing information, the 

procedures students invent to solve a variety of problems, and the way 

in which instruction in schools is carried out are not consonant. The 

challenge in the future is to change this fact. Our goal is to make 

instruction compatible with children's capacities and the strategies 

they use. 



References 

Bachelder, B. L., & Denny, M. R. (1977). A theory of intelligence: 

I. Span and the complexity of stimulus control. Intelligence, 

1, 237-256. 

Baldwin, M. M. (1895). The development of the child and of the 

race. New York: Macmillan. 

Bauersfeld, H. (1979). Research related to the mathematical 

learning process. New trends in mathematics, Vol IV, 

(pp. 199-213). UNESCO. 

Berliner, D. (1975, March). Impediments to the study of teacher 

effectiveness. Paper presented at the meeting of the National 

Association for Research in Science Teaching, Los Angeles. 

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of 

learning: The SOLO taxonomy. New York: Academic Press. 

Bloom, B. S. (1974). Time and learning. American Psychologist, 29, 

682-688. 

Bruner, J. S. (1966). Toward a theory of instruction. New York: 

Norton. 

Buchanan, A. E., & Romberg, T. A. (1983). Instrumentation for the 

achievement monitoring component of coordinated study no. 1. 

Madison: Wisconsin Center for Education Research. 

Campbell, D. T., & Stanley, J. C. (1963). Experimental and 

quasi-experimental designs for research on teaching. In N. L. 

Gage (Ed.), Handbook of research on teaching (pp. 171-246). 

Chicago: Rand McNally. 

168 



169 References 

Campione, J. C., & Brown, A. L. (1978). Toward a theory of 

intelligence: Contributions from research with retarded 

children. Intelligence, 2, 279-304. 

Carpenter, T. P., & Moser, J. M. (1979). An investigation of the 

learning of addition and subtraction (Theoretical Paper No. 79). 

Madison: Wisconsin Research and Development Center for 

Individualized Schooling. (ERIC Document Reproduction Service 

No. ED 188 892) 

Carpenter, T. P., & Moser, J. M. (1982). The development of 

addition and subtraction problem-solving skills. In T. P. 

Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and 

subtraction: A cognitive perspective (pp. 9-24). Hillsdale, 

NJ: Erlbaum. 

Carpenter, T. P., & Moser, J. M. (1983). The acquisition of 

addition and subtraction concepts. In R. Lesh & M. Landau 

(Eds.), The acquisition of mathematical concepts and processes 

(pp. 7-44). New York: Academic Press. 

Carpenter, T. P., Moser, J. M., & Romberg, T. A. (Eds.). (1982). 

Addition and subtraction: A cognitive perspective. Hillsdale, 

NJ: Erlbaum. 

Carroll, J. (1963). A model for school learning. Teachers College 

Record, 64, 723-733. 

Carroll, J. (1973). Fitting a model of school learning to aptitude 

and achievement data over grade levels (Research Bulletin No. 

51). Princeton, NJ: Educational Testing Service. 

Case, R. (1972). Learning and development: A neo-Piagetian 

interpretation. Human Development, 15, 339-358. 



References 170 

Case, R. (1975). Gearing demands of instruction to the 

developmental capacities of the learner. Review of Educational 

Research, 45, 59-97. 

Case, R. (1978a). A developmentally based theory and technology for 

the design of effective instruction. Review of Educational 

Research, 48, 439-463. 

Case, R. (1978b). Implications of developmental psychology for the 

design of effective instruction. In A. M. Lesgold, J. W. 

Pellegrino, S. D. Fokkema, & R. Glasser (Eds.), Cognitive 

psychology and instruction (pp. 441-463). New York: Plenum. 

Case, R. (1985). Intellectual development, birth to adulthood. New 

York: Academic Press. 

Case, R., & Globerson, T. (1974). Field independence and central 

computing space. Child Development, 45, 772-778. 

Case, R., & Kurland, D. (1978). Development of the counting span 

test. Unpublished manuscript, Ontario Institute for Studies in 

Education. 

Case, R., Kurland, M., Daneman, M., & Emmanuel, P. (1979). 

Operational efficiency and the growth of M-space. Paper 

presented at the biennial meeting of the Society for Research in 

Child Development, San Francisco. 

Collis, K. F. (1971). A study of concrete and formal reasoning in 

school mathematics. Australian Journal of Psychology, 23, 

289-296. 

Collis, K. F. (1973). A study of children's ability to work with 

elementary mathematical systems. Australian Journal of 

Psychology, 23, 121-130. 



171 References 

Collis, K. F. (1974a). Cognitive development and mathematics 

learning. London: Chelsa College, University of London. 

Collis, K. F. (1974b). The development of a preference for logical 

consistency in school mathematics. Child Development, 45, 

978-983. 

Collis, K. F. (1975). A study of concrete and formal operations in 

school mathematics: A Piagetian viewpoint. Melbourne: 

Australian Council for Educational Research. 

Collis, K. F. (1976). Mathematical thinking in children. In 

V. P. Varma & P. Williams (Eds.), Piaget, psychology, and 

education (pp. 144-154). London: Hodder and Stoughton. 

Collis, K. F. (1978). Operational thinking in elementary 

mathematics. In J. Keats, K. F. Collis, & G. S. Halford (Eds.), 

Cognitive development (pp. 221-248). Chichester, England: 

Wiley. 

Collis, K. F. (1980a). School mathematics and stages of 

development. In R. Modgil & S. Modgil (Eds.), Toward a theory 

of psychological development (pp. 635-671). Slough, England: 

National Foundation for Educational Research. 

Collis, K. F. (1980b). Levels of cognitive functioning and selected 

curriculum areas. In J. R. Kirby and J. B. Biggs (Eds.), 

Cognition, development, and instruction (pp. 65-89). New York: 

Academic press. 

Collis, K. F. (1982). The structure of learned outcomes: A 

refocusing for mathematics learning. In T. P. Carpenter, 

J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: 

A cognitive perspective (pp. 171-182). Hillsdale, NJ: Erlbaum. 



References 172 

Collis, K. F., & Biggs, J. B. (1979). Classroom examples of 

cognitive development phenomena: The SOLO taxonomy (Technical 

Report prepared for ERDC). Hobart: University of Tasmania. 

Cookson, C., & Moser, J. M. (1980). Coordinated study individual 

interview procedures (Working Paper No. 290). Madison: 

Wisconsin Research and Development Center for Individualized 

Schooling. 

DeAvila, E., & Havassy, B. (1974). Intelligence of Mexican American 

children. Austin, TX: Dissemination Center for Bilingual and 

Bicultural Education. 

DeCorte, E., & Verschaffel, L. (1981). Children's solution 

processes in elementary arithmetic problems: Analysis and 

improvement. Journal of Educational Psychology, 73, 765-779. 

DeCorte, E., Verschaffel, L., Janssens, V., & Joillet, L. (1984). 

Teaching word problems in the first grade: A confrontation of 

educational practice with results of recent research. Leuven, 

Belgium: University of Leuven. 

Fischer, K. W. (1980). A theory of cognitive development: The 

control and construction of hierarchies of skills. 

Psychological Review, 87, 477-531. 

Flavell, J. H. (1971). What is memory development the development 

of? Human Development, 14, 272-278. 

Fullerton, T. (1968). An approach to number readiness by scalogram 

analysis. Unpublished honours thesis, University of Newcastle. 

Ginsburg, H. (1977). Children's arithmetic: The learning process. 

New York: Van Nostrand. 



173 References 

Greeno, J. G. (1980). Trends in the theory of knowledge for problem 

solving. In D. T. Tuma & F. Reif (Eds.), Problem solving and 

education: Issues in teaching and research (pp. 9-23). 

Hillsdale, NJ: Erlbaum. 

Greeno, J. G., & Riley, M. S. (1981). Processes and deveopment of 

understanding. Pittsburgh: Learning Research and Development 

Center. 

Guttman, L. (1954). A new approach to factor analysis: The radex. 

In P. Lazarsfeld (Ed.), Mathematical thinking in the social 

sciences (pp. 258-348). Glencoe, IL.: Free Press. 

Halford, G. S. (1980). Toward a redefinition of cognitive 

developmental stages. In J. R. Kirby & J. B. Biggs (Eds.), 

Cognition, development and instruction (pp. 39-64). New York: 

Academic Press. 

Harnischfeger, A., & Wiley, D. E. (1975). Teaching-learning 

processes in elementary schools: A synoptic view (Studies of 

Educative Process Report No. 9). Chicago: University of 

Chicago. 

Hiebert, J. (1979). The effect of cognitive development on 

first-grade children's ability to learn linear measurement 

concepts (Technical Report No. 506). Madison: Wisconsin 

Research and Development Center for Individualized Schooling. 

(ERIC Document Reproduction Service No. ED 178 361) 

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking 

from childhood to adolescence. London: Routledge and Kegan 

Paul. 



References 174 

Klahr, D. (1984). Transition processes in quantitative development. 

In R. Sternberg (Ed.), Mechanisms of cognitive development 

(pp. 101-140). San Francisco: Freeman. 

Klausmeier, H. J. (1977). Origin and overview of IGE. In H. J. 

Klausmeier, R. Rossmiller, & M. Saily (Eds.), Individually 

guided elementary education: Concepts and practices (pp. 1-24). 

New York: Academic Press. 

Kouba, V. L., & Moser, J. M. (1979). Development and validation of 

curriculum units related to initial sentence writing (Technical 

Report No. 522). Madison: Wisconsin Research and Development 

Center for Individualized Schooling. (ERIC Document 

Reproduction Service No. ED 183 382) 

Kouba, V. L., & Moser, J. M. (1980). Development and validation of 

curriculum units related to learning of addition and subtraction 

algorithms (Working Paper No. 287). Madison: Wisconsin 

Research and Development Center for Individualized Schooling. 

Moser, J. M. (1979). Young children's representation of addition 

and subtraction problems (Theoretical Paper No. 74). Madison: 

Wisconsin Research and Development Center for Individualized 

Schooling. (ERIC Document Reproduction Service No. ED 178 329) 

Moser, J. M. (1980). What is the evidence that children invent 

problem-solving strategies. In R. Karplus (Ed.), Proceedings of 

the fourth International Conference for the Psychology of 

Mathematics Education (pp. 312-321). Berkeley, CA: University 

of California. 



175 References 

Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development 

of semantic categories for addition and subtraction. 

Educational Studies in Mathematics, 13, 373-394. 

Pascual-Leone, J. (1970). A mathematical model for the transition 

rule in Piaget's developmental stages. Acta Psychologica, 32, 

301-345. 

Pascual-Leone, J. (1976). A view of cognition from a formalist's 

perspective. In K. F. Riegel & J. Meacham (Eds.), The 

developing individual in a changing world (Vol. 1, pp. 89-100). 

The Hague: Mouton. 

Pascual-Leone, J. (1984). Attentional, dialectic, and mental 

effort. In M. L. Commons, F. A. Richards, & C. Armon (Eds.), 

Beyond formal reasoning (pp. 32-110). New York: Plenum. 

Piaget, J. (1974). Foreword. In B. Inhelder, H. Sinclair, & M. 

Bovet (Eds.), Learning and the development of cognition (pp. 

ix-xiv). London: Routledge & Kegan Paul. 

Resnick, L. B. (1978, September). The role of invention in the 

development of mathematical competence. Paper presented at the 

workshop on Children's Mathematical Learning. Learning Research 

and Development Center, University of Pittsburgh, Pittsburgh, 

PA. 

Romberg, T. A. (1977). Developing mathematical processes: The 

elementary mathematics program for Individually Guided 

Education. In H. J. Klausmeier, R. Rossmiller, & M. Saily 

(Eds.), Individualally guided elementary education: Concepts 

and practices (pp. 77-109). New York: Academic Press. 



References 176 

Romberg, T. A. (1982). An emerging paradigm for research on 

addition and subtraction skills. In T. P. Carpenter, 

J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: 

A cognitive perspective (pp. 1-7). Hillsdale, NJ: Erlbaum. 

Romberg, T. A., & Braswell, J. (1973). Achievement monitoring via 

item sampling: A practical data-gathering procedure for 

formative evaluation. Journal for Research in Mathematics 

Education, 4, 262-270. 

Romberg, T. A., & Carpenter, T. P., & Moser, J. M. (1978). Studies 

in mathematics (Technical Proposal, 1978-1979). Madison: 

Wisconsin Research and Development Center for Individualized 

Schooling. 

Romberg, T. A., & Collis, K. F. (1980a). The assessment of 

children's M-space (Technical Report No. 540). Madison: 

Wisconsin Research and Development Center for Individualized 

Schooling. (ERIC Document Reproduction Service No. ED 195 331) 

Romberg, T. A., & Collis, K. F. (1980b). The assessment of 

children's cognitive processing capabilities (Technical Report 

No. 539). Madison: Wisconsin Research and Development Center 

for Individualized Schooling. (ERIC Document Reproduction 

Service No. ED 195 330) 

Romberg, T. A., Collis, K. F., & Buchanan, A. E. (1981). 

Performance on addition and subtraction problems: Results from 

individual interviews--Sandy Bay Study (Technical Report No. 

580). Madison: Wisconsin Research and Development Center for 

Individualized Schooling. (ERIC Document Reproduction Service 

No. ED 215 892) 



177 References 

Romberg, T. A., Collis, K. F., Buchanan, A. E., & Romberg, M. N. 

(1982). Classroom learning: Results from observations--Sandy 

Bay Study (Working Paper No. 326). Madison: Wisconsin Center 

for Education Research. 

Romberg, T. A., Harvey, J., Moser, J. M., & Montgomery, M. (1974, 

1975, 1976). Developing mathematical processes. Chicago: Rand 

McNally. 

Romberg, T. A., Small, M., & Carnahan, R. (1979). Research on 

teaching from a curricular perspective (Theoretical Paper No. 

81). Madison: Wisconsin Research and Development Center for 

Individualized Schooling. (ERIC Document Reproduction Service 

No. ED 193 232) 

Romberg, T. A., Small, M., Carnahan, R., & Cookson, C. (1979). 

Observer's manual, coordinated study #1, 1978-1980. Madison: 

Wisconsin Research and Development Center for Individualized 

Schooling. 

Siegler, R. S. (1981). Developmental sequences within and between 

concepts. Monographs of the Society for Research in Child 

Development, 81. 

Sternberg, R. J. (1984). Mechanisms of cognitive development. San 

Francisco: Freeman. 

Vergnaud, G. (1982). A classification of cognitive tasks and 

operations of thought involved in addition and subtraction 

problems. In T. P. Carpenter, J. M. Moser, & T. A. Romberg 

(Eds.), Addition and subtraction: A cognitive perspective 

(pp. 39-66). Hillsdale, NJ: Erlbaum. 



References 178 

Wohlwill, J. (1960). A study of the development of the number 

concept by scalogram analysis. Journal of Genetic Psychology, 

97, 345-377. 




