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ABSTRACT

This monograph summarizes the findings from five related studies
carried out by the authors in Sandy Bay, Tasmania, Australia, in
1979~80. The overall purpose of the studies was to examine whether
children in grades 1-3 who differed in cognitive capacity learned to add
and subtract in different ways.

The first study was a cross-sectional survey designed to determine
the memory capacity of a population of children. The second study was
designed to portray performance differences on a variety of
mathematically related developmental tasks for the same population of
children, Data from these two studies were used to form groups of
children who differed in cognitive capacity. Six groups were formed via
cluster analysis, with memory capacity being the primary distinguishing
characteristic.

The third, fourth, and fifth studies each used a sample of students
from the six cluster groups across grades. The third study examined
both the performance and the strategies these children used to solve a
structured set of addition and subtraction word problems. The fourth
study involved repeated assessment of the children's performance on
items measuring objectives related to addition and subtraction. 1In the
last study these children and their teachers were observed during
classroom instruction in mathematics to see how addition and subtraction
were taught and whether or not instruction was related to the children's
cognitive capacity.

The results show that children's differences in capacity were
reflected in thelr performance on both verbal and standard problems and

in the strategies they used to solve problems. However, instruction did

vii



not vary for these children within classrooms. The picture that emerges
is one of children struggling to learn a variety of important concepts
and skills. Some children were limited by their capacity to process
information, Most were able to solve a variety of problems by using
invented strategies, those that had not been taught. They dismissed or
failed to see the value of the taught procedures in solving these
problems. Finally, the capacity of children to process information, the
procedures students invented to solve a variety of problems, and the way
in which instruction was carried out in schools did not seem related to

each other,



Chapter 1

INTRODUCTION

For several centuries being able to find "one's sums and
differences" has been considered one mark of a schooled
person. Although today we may have expanded our expec-
tations about what constitutes literacy, we still expect
all children to efficiently carry out operations on
whole numbers. Yet, in spite of these expectations
about the skills of addition and substraction, there

has been little consensus about how such skills

develop. (Romberg, 1982, p. 1)

The basic question under investigation was, Do children who differ
in cognitive-processing capacity learn to add and subtract differently?
In raising this question, it was assumed that the evolution of
children's performance on mathematical tasks (such as addition and
subtraction) must be related both to their developing cognitive
abilities and to related instruction they receive. To examine this
question five related studies were conducted in Sandy Bay, Tasmania,
Australia, in 1979~80. This monograph summarizes the findings from
those studies.

The rationale for these studies is detailed in a conceptual paper
(Romberg, Carpenter, & Moser, 1978). In that paper the authors describe
how, for nearly a decade (1968-1976), the Studies in Mathematics project
at the Wisconsin Center for Education Research had concentrated its
efforts on the relationship between instructional processes, methods,
and materials and the acquisition of mathematical skills asgsociated with

mathematical learning. The work in that project led to the development

of a complete elementary mathematics program, Developing Mathematical

Processes (DMP) (Romberg, Harvey, Moser, & Montgomery, 1974, 1975,

1



2 Introduction

1976). Although DMP was based on empirical evidence and theories of
learning, development, and instruction (see Romberg, 1977), a number of
questions were raised as the program was being developed.

In particular, it became clear that a complete picture of
mathematics instruction was lacking. What was needed was a
characterization of the mathematical content to be learned, a
description of children's cognitive capacity with mathematical material,
and an identification of the features of classroom instruction such as
how children perform on learning tasks, teacher presentations of
mathematical material, pupil engagement, and teacher-pupil interactions
during lessons. Thus, past work indicated that the interactions between
content, cognitive capacity, and instruction needed to be carefully
examined. The following sections describe the three areas involved in
this investigation: content (addition and subtraction), cognitive

capacity, and classroom instruction.

Addition and Subtraction

We chose as the vehicle for this investigation children's early
work in addition and subtraction. There were several reasons for this
choice., First, this area represents the first attempt that schools make
to teach what might be recognized as formal mathematics. By this we
mean learning to symbolically represent a problem situation (often via
word problems), operate on the symbols, and interpret the result.
Second, considerable work had been done at the Wisconsin Center for
Education Research on logically analyzing the semantic-syntactic
relationship for these mathematical skills as they apply at the early

elementary school level (e.g., Carpenter & Moser, 1983; Moser, 1979).
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Third, in the 1970s the staff at the Wisconsin Center for Education
Research had developed instructional materials to teach addition and
subtraction. However, children in classrooms using those materials were
only moderately successful in learning to solve problems using those
operations. Fourth, various researchers had identified several
strategies young children use to solve elementary addition and
subtraction problems (see Carpenter, Moser, & Romberg, 1982). Finally,
a clinical observation schedule for assessing performance on some
addition and subtraction tasks had been developed (Carpenter & Moser,
1979).

Word problems. To solve a typical addition and subtraction word
problem, one first must understand its implied semantic meaning.
Quantifying the element of the problem comes next (e.g., choosing a unit
and counting how many). Then, the implied semantics of the problem must
be expressed in the syntax of addition and subtraction. Next the child
must be able to carry out the procedural (algorithmic) steps of adding
and subtracting. Finally, the results of these operations must be
expressed. Most children bring to such problems well developed counting
procedures, some knowledge of numbers, and some understanding of

physical operations on sets of objects such as

'joining" and
“"separating." Thus, from this context researchers have a unique
opportunity to examine variations in how children process information
prior to, during, and after formal instruction when they attempt to
solve word problems.

Semantics. Not all word problems involving addition and

subtraction have the same semantic structure. In fact, most current

work uses four broad classes of addition and subtraction problems:
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Change, Combine, Compare, and Equalize (Carpenter & Moser, 1983). There
are two basic types of change problems, both of which involve action.

In change-join problems, there is an initial quantity and a direct or
implied action that causes an increase in that quantity. For
change-separate problems, a subset is removed from a given set. 1In both
classes of problems, the change occurs over time. Within both the join
and separate classes, there are three distinct types of problems
depending upon which quantity is unknown (see Table 1). Both combine
and compare problems involve static relationships for which there is no
action. Combine problems involve the relationship existing among a
particular set and its two disjoint subsets. Two problem types exist:
the two subsets are given and one is asked to find the size of their
union, or one of the subsets and the union are given and the solver is
asked to find the size of the other subset. Compare problems involve
the comparison of two distinct, disjoint sets. Because one set is
compared to the other, it is possible to label one set the referent set
and the other the compared set. The third entity in these problems is
the difference, or the amount by which the larger set exceeds the other.
In this class of problems, any one of the three entities could be the
unknown--the difference, the referent set, or the compared set. The
larger set can be ejither the referent set or the compared set. Thus,
there exist six different types of compare problems.

The final class of problems, equalize problems, are a hybrid of
compare and change problems. There is the same sort of action as found
in the change problems, but it is based on the comparison of two
disjoint sets. As in the compare problems, two disjoint sets are

compared; then the question is posed, What could be done to one of the



Table 1

Introduction

Semantic Classification of Word Problems
(Carpenter & Moser, 1983)

Join Separate
Change B

1. Connie had 5 marbles. Jim gave 2. Connie had 13 marbles. She
her 8 more marbles. How many gave 5 marbles to Jim. How
marbles does Connie have many marbles does she have
altogther? left?

3. Connie has 5 marbles. How many 4. Connie had 13 marbles. She
more marbles does she need to gave some to Jim. Now she
have 13 marbles altogether? has 8 marbles left. How

many marbles did Connie give
to Jim?

5. Connie had some marbles. Jim 6. Connie had some marbles.
gave her 5 more marbles. Now gave 5 to Jim. Now she has
she has 13 marbles. How many 8 marbles left. How many
marbles did Connie have to marbles did Connie have to
start with? start with?

Combine

7. Connie has 5 red marbles and 8 8. Connie has 13 marbles. Five
blue marbles. How many are red and the rest are
marbles does she have? blue. How many blue marbles

does Connie have?
Compare

9. Connie has 13 marbles. Jim 10. Connie has 13 marbles. Jim
has 5 marbles. How many more has 5 marbles. How many
marbles does Connie have than fewer marbles does Jim have
Jim? than Connie?

11. Jim has 5 marbles. Connie has 12. Jim has five marbles. He
8 more than Jim. How many has 8 fewer marbles than
marbles does Connie have? Connie. How many marbles

does Connie have?

13. Connie has 13 marbles. She 1l4. Connie has 13 marbles. Jim
has 5 more marbles than Jim. has 5 fewer marbles than
How many marbles does Jim Connie. How many marbles
have? does Jim have?

Equalize

15. Connie has 13 marbles. Jim 16. Connie has 13 marbles. Jim
has 5 marbles. How many has 5 marbles. How many
marbles does Jim have to marbles does Connie have to
win to have as many lose to have as many marbles
marbles as Connie? as Jim?

17. Jim has 5 marbles., If he 18. Jim has five marbles. If
wins 8 marbles, he will Connie loses 8 marbles, she
have the same number of will have the same number of
marbles as Connie. How marbles as Jim. How many
many marbles does Connie marbles does Connie have?
have?

19. Connie has 13 marbles. 20. Connie has 13 marbles. If

If Jim wins 5 marbles, he
will have the same number
of marbles as Connie.

How many marbles does Jim
have?

she loses 5 marbles she will
have the same number of
marbles as Jim. How many
marbles does Jim have?

5
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sets to make it equal to the other? 1If the action to be performed is on
the smaller of the two sets, then it becomes an equalize-join problem.
On the other hand, if the action to be performed is on the larger set,
then an equalize~separate problem results. As with compare problems,
the unknown can be varied to produce three distinct equalize problems of
each type.

To build the connection between semantic forms and relevant
symbolism, one form is usually used as a model to introduce the
symbolism. Because there are many semantic forms for which the same
symbolic sentence is appropriate, the pedagogical problem is how to
relate the symbolism to all the semantic problems. Traditionally, the
symbolism has been taught independently of word problems. The symbolic
procedures were taught, and some word problems were assigned so that
students could apply their symbolic procedures. No serious
consideration was given to the semantic structure of the problems. In
fact, it is now clear that in many texts only a few of the semantic
forms are ever included (see DeCorte, Verschaffel, Janssens, & Joillet,
1984). It is no surprise, then, that students have found little
connection between different types of problems and the symbolic
procedures they are taught (e.g., Vergnaud, 1982).

Development of instructional materials., During the early 1970s,

the staff of the Wisconsin Center for Education Research produced the
DMP curriculum for grades K-6 (Romberg et al., 1974, 1975, 1976). In
creating this program the problem of connecting word problems and
symbolic procedures had been recognized. For addition and subtraction,
it was decided to use one semantic context to introduce and to give

meaning to the symbolism and then to relate the symbolism to other
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semantic situations. In the initial version of DMP, equalizing was
used. This context proved to be difficult for both teachers and
students when they examined other semantic forms. A revised set of
materials was later developed in which part-part-whole was used as the
basic context for initial instruction (Kouba & Moser, 1979, 1980).

Strategies for solving word problems. In order to solve the

variety of addition and subtraction word problems children use numerous
strategies (see Carpenter et al., 1982; Carpenter & Moser, 1983). For
addition and subtraction three basic strategy levels have been
identified: strategies based on direct modeling with fingers or
physical objects, strategies based on the use of counting sequences, and
strategies based on recalled number facts. In addition, in the most
basic strategy (counting all with models), children use physical objects
or fingers to represent each of the addends, and then the union of the
two sets is counted.

There are three distinct strategies involving counting sequences
for addition problems. In the most elementary strategy, the counting
sequence begins with one and continues until the answer is reached.

This strategy is similar to the counting all with models strategy except
that children do not use physical objects or fingers to represent the
addends. However, this strategy and the two following counting
strategies require some method of keeping track of the number of
counting steps that represent the second addend in order to know when to
stop counting. Most children use their fingers to keep track of the
number of counts, but a substantial number give no evidence of any
physical action accompanying their counting. When fingers are used,

they appear to play a very different role than in the direct modeling
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strategy. In this case, the fingers do not represent the second addend
per se, but are used to keep track of the number of steps incremented in
the counting sequence. When using fingers, children often do not appear
to have to count their fingers, but can immediately tell when they have
put up a certain number of fingers.

The other two counting strategies are more efficient and imply a
less mechanical application of counting. In applying these strategies,
a child recognizes that it is not necessary to reconstruct the entire
counting sequence. In the counting on from first strategy, a child
begins counting forward with the first addend in the problem. The
counting on from larger strategy is identical except that the child
begins counting forward with the larger of the two addends.

Although learning of basic number facts appears to occur over a
protracted span of time, most children ultimately solve simple addition
and subtraction problems by recall of number combinations rather than by
using counting or modeling strategies.

For subtraction a number of distinct classes of subtraction
strategies have been observed at the direct modeling and counting
levels. One of the basic strategies involves a subtractive action. 1In
this case, the larger quantity in the subtraction is initially
represented and the smaller quantity is subsequently removed from it.
When concrete objects are used, the strategy is called separating from.
The child constructs the larger given set and then takes away or
separates, one at a time, a number of objects equal to the number given
in the problem. Counting the set of remaining objects yields the
answer. There is also a parallel strategy based on counting called

counting down from. A child initiates a backward counting sequence
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beginning with the given larger number. The backward counting sequence
contains as many counting number words as the given smaller number. The
last number uttered in the counting sequence is the answer.

The separating to strategy is similar to the separating from
strategy except that elements are removed from the larger set until the
number of objects remaining is equal to the smaller number given in the
problem. Counting the number of objects removed provides the answer.
Similarly, the backward counting sequence in the counting down to
strategy continues until the smaller number is reached and the number of
words in the counting sequence is the solution of the problem.

The third pair of strategies involves an additive action. In an
additive solution, the child starts with the smaller quantity and
constructs the larger. With concrete objects (adding on), the child
sets out a number of objects equal to the smaller given number (an
addend). The child then adds objects to that set one at a time until
the new collection is equal to the larger given number. Counting the
number of objects added on gives the answer. In the parallel counting
strategy (counting up from given), a child initiates a forward counting
strategy beginning with the smaller given number. The sequence ends
with the larger given number. Again, by keeping track of the number of
counting words uttered in the sequence, the child determines the answer.

The fourth basic strategy is called matching. Matching is only
feasible when concrete objects are available. The child puts out two
sets of cubes, each set standing for one of the given numbers. The sets
are then matched one-to-one. Counting the unmatched cubes gives the
answer. A fifth strategy (choice) involves a combination of counting

down from and counting up from given, depending on which is the most
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efficient. In this case, a child decides which strategy requires the
fewest number of counts and solves the problem accordingly.

As with addition, modeling and counting strategies eventually give
way to the use of recalled number facts or derived facts. Children's
explanations of their solutions suggest that the number combinations
they are calling upon are often addition combinations. Of significant
interest to researchers and teachers must be the link, if any, between
the logical analysis of the semantic forms of problems and the
strategies children actually use to solve such problems.

Summary. Several points about addition and subtraction were noted
at the outset of this project. First, word problems that can be solved
by addition and subtraction differ in semantic form. Second, children
have developed "primitive" or "child" strategies to solve addition and
subtraction word problems prior to school learning experiences or at
least prior to formal instruction on consolidated "efficient" methods of
solution. Third, differences in the semantic form of word problems
elicit different strategies from children. Finally, a logical analysis
of the operations and related word problems seems to imply that these
initial strategies should become more and more inefficient as the number
of semantic forms is increased, or the numbers become larger, or the
number of steps necessary for solution increases.

It therefore seems to be a reasonable goal of mathematics
instruction to teach more formal, generalizable algorithmic procedures
for solving the variety of addition and subtraction word problems.
However, little is known about several aspects of this process and a
number of questions arise. How will learning of the mathematical

procedures be affected by the number, type, and success of the
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preexisting problem~solving strategies an individual child possesses?
How do children who are successful problem solvers combine their
existing strategies with formal mathematical modes of presentation? How
should teachers adapt instruction to take account of a child's
demonstrated level of functioning in this area? Raising these questions
leads to a consideration of the relationship of general cognitive
functioning to performance by children on addition and subtraction word

problems.

Cognitive Capacity

Concern for cognitive abilities is well entrenched in research in
mathematics education. The approach adopted in this project was based
on claims from two sources: differential abilities and cognitive
development.

Differential abilities. Based on the extensive work of a number of

educational psychologists in the Thurstone tradition of distinct mental
abilities, we decided to attempt to measure the ability of students to
solve addition and subtraction problems. The procedure in this approach
is to use test scores and psychometric analyses to identify differential
abilities, traits, aptitudes, styles, and so forth. For example, such
characteristics as intelligence, rate of learning, field
independence/dependence, and spatial ability have been identified, and
samples of students have been ordered from high to low on those traits.
These traits are assumed to be fixed, stable characteristics, largely
biological in origin, which describe intellectual differences between
individuals in the same way as height, weight, stature, and so forth

describe physical characteristics. Although we did not utilize tests
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developed from this perspective, we used the psychometric strategy of
administering to each student a number of tests, scoring the tests,
relating the scores, and classifying students based on their scores.

Our initial task was to find and administer measures of cognitive
functioning that appeared logically related to the learning of
mathematical material. However, we decided to use a battery of tests
that seemed to be related to the children's level of cognitive
development. Only instruments that could be shown prima facie to
contain tasks related to early mathematical learning such as number
conservation and counting were selected.

Cognitive Development. We chose the measures to be used in the

study from work in cognitive development. This perspective is based on
the notion that individuals adaptively interact with the environment and
gradually evolve intellectual processes through discontinuous stages.
Rather than being fixed, differences between individuals are viewed as a
function of growth, Children in the primary grades, for example,
usually are at a concrete operations stage, think in terms of themselves
(are egocentric), and think of concrete referents near at hand. Hence,
they should not be expected to reason about hypothetical, external
situations.

The choice of tests from this perspective grew out of work on
children's understanding of mathematics. This research gained impetus
following the failure of the '"new math" programs to live up to early
expectations. Psychologists interested in mathematics learning began to
investigate developmental and learning phenomena by using elementary
mathematical material (e.g., Collis, 1975). These investigators used

the clinical interview as a technique for studying the mathematical
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concepts that children had formed. Much of the work was stimulated by
the notions of Jean Piaget (Inhelder & Piaget, 1958). Later interest
was related to the work on memory capacity by Pascual-Leone (1976) and
Case (1972). This view of cognitive functioning enabled psychologists
to turn from the mere description of stages of development of
mathematical thinking to an explanation of the phenomena that kept
appearing in their work with individual children.

This evolution can be traced through the work of Collis (1971,
1974a, 1974b, 1975, 1976, 1978, 1980a, 1980b, 1982; Collis & Biggs,
1979; Biggs & Collis, 1982). The earlier papers use mathematical items
to describe and, to some extent, to modify Piaget's stage theory
(Inhelder & Piaget, 1958). The later papers, after about 1976, provide
tentative explanations of the developmental phenomena found earlier in
terms of Case's information-processing theory (Case, 1975). The most
recent papers (e.g., Biggs & Collis, 1982) describe an intellectual
skills model which, although it allows for the stage phenomenon, places
the emphasis on the increasing complexity of responses within a given
stage.

At the time this project began, a number of theorists were in
various stages of refining and generalizing theoretical systems that
included both structural and process components and that were of
significance in relation to a broad range of developmental tasks. Since
then most theorists have published their theoretical positions (e.g.,
Case, 1985; Fischer, 1980; Halford, 1980; Klahr, 1984; Pascual-Leone,
1984; Seigler, 1981; Sternberg, 1984). The investigators in this
project selected the Case model for two reasons. First, it seemed at

that time to be the most applicable to the content area and the
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methodology that we envisaged using. Second, it had tests available
that could be utilized in the project.

M-Space., Central to Case's theory and crucial to this project is
the concept of the short-term memory capacity (M-space). This basic
variable we believed was central to a child's ability to process the
mathematical material presented. Thus, the first set of tests we used
was to measure M-space. The M-space construct has a long history in
psychological theory, going back as far as Baldwin's conception of
attention span (Baldwin, 1895). Basically it refers to the number of
mental elements that an individual can attend to at any one time. In
this project we have adopted Case's proposal (Case, 1985) that the
overall processing space available is constant and is shared between two
mental activities, the execution of an ongoing mental operation and the
retention and retrieval of the product of such an operation. If the
available processing space is exceeded, the individual exhibits symptoms
of cognitive overload and is unable to solve the given problem. An
early study by Collis (1973) elicited this phenomenon in relation to
mathematical exercises. A simple example quoted by Collis in a later
publication (Collis, 1980b) may help to explain cognitive overload.

A child at the early concrete operational stage (circa 6 or 7

years) is asked to find the value of the statement 3+2+4; a

typical interview goes as follows:

Tester: What number does 3+2+4 equal?
Child: 3+2=5 (pause) what was the other number?
Tester: 1 said, "What number does 3+2+4 equal?"
Child:  Ah yes. Now, 3 plus (pause) what is the
sum again? (p. 87)
What appears to be happening may be explained by using a diagram.

Let us suppose that, in the diagram below, the rectangle represents the

space available for processing data. At the early concrete operations
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stage it can be demonstrated that the space is sufficient to take in two
elements and one operation and to perform the necessary calculation
meaningfully (Collis, 1975). The processing space is, however, fully

occupied. If one now attempts to introduce another operation and

element, the space available is exceeded and overflow results; part of
the data necessary for a successful outcome is forced out of
consideration. As the subject realizes the situation and retrieves one
piece of data, another piece is forced out of the space and so on.
Hence, in these circumstances the child never has all the information
needed to solve the problem in the working space at the same time in
order to obtain a satisfactory solution.

Development level. Although the M-space construct appeared basic

to our investigation, it was also obvious that this could not be the
only measure we should make because it was clear from the correlational
data in the research literature that other influences must also be at
work. Moreover, it has been very clear to mathematics educators for a
decade now that deductions drawn from pure psychological theory rarely
apply directly to mathematics learning (see Bauersfeld, 1979). In
addition to M-space, we felt that a child's developmental level in
specific areas of relevance to the content area under consideration
could also be an influence. Thus we incorporated Piagetian tests

appropriate to mathematical learning and used both the M-space and
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developmental data to define a construct, cognitive capacity for

mathematical material, which would be more useful in a study that was

primarily concerned with mathematics instruction rather than cognitive
theory.

In summary, to identify cognitive capacity, we gave two batteries
of tests. The first battery of tests was designed to measure the short-
term memory capacity (M-space) of the child for processing mathematical
material. The second battery included tests constructed to measure the
child's level of cognitive development on dimensions from the Piagetian
model, such as conservation and transitivity, and presumably related to
mathematical ability. We then used psychometric procedures, factor
analysis, and cluster analyses to interpret the data from both batteries
and to group children. From this approach, we assumed that well-defined
groups of children with specific cognitive characteristics could be

identified.

Classroom Instruction

Throughout this project the children in the study were being taught
to add and subtract in school. To identify some aspects of classroom
instruction, we observed in five classrooms to gather data on a sample
of students at grades 1, 2, and 3. It is at these grades that addition
and subtraction skills are taught. The sample of students we observed
was selected to reflect differences in cognitive capacity.

Data on the performance of the students were collected using an
achievement monitoring battery developed by Buchanan and Romberg (1983).
This battery provides information on a variety of aspects of adding and

subtracting, and in several administrations profiles of growth can be
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obtained. The profiles then can be used as indicators of the
effectiveness of instruction.

Third, we decided to observe teacher actions, pupil actions, and
teacher-pupil interactions for children at each grade level who differed
in cognitive capacity. The proposition that "teachers make a
difference" had been central to much of the previous work done on
mathematics education at the Wisconsin Center for Education Research.
For example, the steps in the Individually Guided Education (IGE)
instructional programming model (Klausmeier, 1977) are all descriptions
of actions teachers are to take. In addition, as DMP was being
developed, behaviors that teachers were to use in teaching the program
were specified., Despite these efforts, little evidence is available to
substantiate the importance of teacher actions.

Berliner (1975) pointed to the probable reasons for this lack of
data and identified a long list of problems facing researchers who
attempt to examine the relationships between teacher behaviors and pupil
performance. He saw methodology as a major impediment to progress in
this area, particularly the inadequate framework for the
conceptualization of teacher tasks and the assumed direct relationship
between teacher tasks and pupil performance. It is possible that the
logical analyses of the problem subsequent to Berliner's rather
pessimistic overview are as far from classroom realities as the analyses
carried out on mathematics curriculum programs in the 1950s and 1960s or
the logical application of general psychologists' theories of
development and learning to mathematics programs of a decade ago.

Perhaps what was needed was a fresh look at the problem.
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In this study we decided to concentrate attention on teachers'
actions as they related to children of known cognitive characteristics
and, moreover, on the same children's reactions related to the teachers'
initiating actions. The approach should make some progress toward
conceptualizing teachers' instructional tasks and testing the notion
that teachers have some discernible effect on pupils' performance. The
approach used in this investigation was a "time-on-task" approach based
on that used in the Beginning Teacher Evaluation Study (BTES), which in
turn was influenced by Carroll (1963, 1973), Bloom (1974), and
Harnischfeger and Wiley (1975).

Another major criticism made by Berliner was the lack, at that
time, of instruments that gave researchers a clear understanding of the
meaning of data gathered by objective tests or surveys. Moreover, even
when observational techniques were employed, it was not usual to code
pupil actions. We decided to take advantage of recent advances in this
area by using the observational instrument developed for the study of
instructional time with DMP (Romberg, Small, Carnahan, & Cookson, 1979).
This instrument takes into account the behavior of both teachers and
children.

The instrument is used with a limited sample of pupils who are
identified as target students. Then a trained observer fills out a time
based observational form for each day of instruction. At the end of
each minute the observer codes pupil activities, teacher activities,
content categories, and classroom characteristics. Data from target
students are then aggregated to estimate mean class time on the
variables. This methodology provides reliable and generalizable

information about how time is spent in classrooms.
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Conclusion

The five studies reported in this monograph represent an attempt to
draw together data gathered from four different perspectives. Each
perspective is viable in its own right. However, our intent was to see
whether in combination the perspectives could better portray how
students develop addition and subtraction skills. The first approach,
from the classical individual differences perspective, was to use
psychometric techniques in two studies to identify students with
different cognitive capacities. The second approach, from the
cognitive-processing perspective, was to gather interview data about the
strategies children use to solve verbal addition and subtraction
problems, The third approach, from the quasi-experimental perspective,
was to assess changes in student achievement using test monitoring
procedures. The final approach, the direct instruction teaching
perspective, was to use a time-on-task observation procedure to
determine how features of classroom instruction relate to student
engagement.

The studies were designed not only to gather and analyze data on
the four perspectives described above, but also to examine the
interactions between the four factors. Obviously, a number of
interactions would be of considerable interest, but in view of our
interests and to examine some new hypotheses we decided to concentrate
on the interaction between children's cognitive processing capability
and the other variables.

We first identified a sample of children aged 4-8 years with
specific cognitive characteristics. Sample selection required measuring

M-space (study 1) and measuring cognitive development (study 2) of a
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population of 4~ to 8-year-olds. Next, we studied the mathematics
performance, strategies used, and instruction provided the sample over a
3-month period. In clinical interviews the children's performance and
strategies were determined with verbal addition and subtraction problems
(study 3). Achievement was measured with standard written addition and
subtraction tasks (study 4). The nature of the instruction provided and
children's actions and engagement were determined in classroom
observations (study 5).

We assumed that from these five studies we would be able to relate
performance at a given time (in terms of performance level achieved and
strategy adopted) to a child's cognitive capability and to specific
instructional activities the child's teacher had used. 1In this way, we
could consider various questions about change in performance and
strategy and their possible causes.

The various research techniques used, the data gathered, and their
analysis are described in the next four chapters. Chapter 2 is
concerned with the means we used to characterize the cognitive
processing capabilities examined in studies 1 and 2. Chapters 3 and 4
relate the cognitive level of each group to their performance on
addition and subtraction problems. In chapter 3 the individual clinical
interview data coded for both performance and strategies used by
children are presented (study 3). In chapter 4 achievement on
paper-and-pencil tests of addition and subtraction is presented. In
chapter 5 we attempt to relate cognitive level to teacher~pupil
interactions. Chapter 6 provides a summary of the findings and some
conclusions that draw together the understandings obtained through the

studies and suggests some direction for further research.



Chapter 2
IDENTIFICATION OF GROUPS OF CHILDREN WHO DIFFER IN

COGNITIVE-PROCESSING CAPABILITIES

In this chapter the classification of children into groups
according to their cognitive-processing capabilities with mathematical
materials is presented. Cognitive~processing capability is a derived
categorization label based on a combination of measures of working
memory capacity (M-space) and measures of the level of cognitive
development as determined by the Piagetian model. The M-space measures
were the basis of the classification of children into categories, and
the developmental tests gave an indication of developmental criteria

that are applicable within each category.

Study l--M-space

Information-processing theories are based on the idea that mental
functions can be characterized in terms of the way information is
stored, accessed, and operated on. Mental structures are discussed in
terms of an intake register through which information from the
environment enters the system, a working or short-term memory (M-space)
in which the actual information processing occurs and a long~term memory
in which knowledge is stored.

The working memory's growing capacity to process information
appears as a fundamental characteristic of cognitive development in a
number of theories (Bruner, 1966; Case, 1978a; Flavell, 1971). Young
children are quite limited in their ability to deal with all the

21
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information demands of complex tasks. Their limited capacity seems to
be a critical developmental factor that constrains learning in
instructional situations (Case, 1975, 1978a, 1978b).

Pascual-Leone (1970, 1976) proposed a theory that operationalizes
the development of information-processing capacity or M-space.
According to this theory, learning is a change in behavior resulting
from factors extrinsic to the psychological system., Learning produces a
change in the repertoire of schemes (internally represented behavioral
units or patterns) available to the learner. Since M-space is limited,
the number of information chunks that can be coordinated to produce a
new scheme is limited. Therefore, the complexity of schemes learned is
also limited; the processes of learning are constrained by the
developing psychological system. Pascual-Leone's theory is concerned
with the functional aspects of development and the mental processing of
information. Learning through instruction depends on the child's
capacity to process all of the essential incoming information.

To generate hypotheses about children's performance on specific
tasks, both the information-processing capacity (M-space) of the child
and the information-processing demands of the task must be known. This
study addresses the problem of assessing information-processing
capacity.

The rationale for administering different tests to measure this
construct is based on the results of two recent studies, one by Hiebert
(1979), in which a measure of M-space (backward digit span) did not
predict learning of mathematical skills and another by Case and Kurland
(1978) in which three different measures of M-space (counting span, Mr.

Cucui, and digit placement) were given. Although in Case and Kurland's
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study positive correlations (.50 to .60) were found between the three
tests, the consistency between the measures was not high. Recent work
by Case and associates (Case, Kurland, Daneman, & Emmanuel, 1979)
suggests that it may be very difficult to construct one general measure
of M-space that will predict performance on a wide range of tasks.
Their data indicate that task variables may be more important than
previously supposed in determining M-space demands. Thus, we decided to
use the three tests from Case and Kurland's study along with the
backward digit span test from Hiebert's study to see whether together
they would yield a reliable estimate of a child's M-space. The tests
chosen also seemed appropriate in terms of the task variables involved

in learning to add and subtract.

Method
Sample
All of the 139 children in grades K-2 at the Sandy Bay Infant
School in Hobart, Tasmania, were tested for this study. The school is
located on the Derwent River in Sandy Bay, a suburb of Hobart near the
University of Tasmania. The community is middle to upper-middle class.
Table 2 gives details about the age, grade and gender of the sample and

the number of children involved.

Tests
Counting span. This test was developed by Case and Kurland (1978).

Conceptually, it is straightforward. The operation required is

counting., The items that must be stored are the products of a series of

counting operations. Children are presented with a sequence of arrays
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Table 2

Characteristics of Sample

Class and Grade

Characteristic 1 2 3 4 3 N 6
K-AM K-PM Prep Gr. 1 Gr. 1/2° Gr. 2 Total
Boys 16 11 8 8 15 15 73
Gender
Girls 9 9 13 14 9 12 66
Total 25 20 21 22 24 27 139
Youngest  4.9%* 5.0 5.4 6.2 6.5 7.3
Age Oldest 5.1 5.7 6.1 7.3 7.10 8.2
Average 4.11 5.4 5.10 6.7 7.3 7.8

*Gr, 1/2 was a mixed class with both Grade 1 and Grade 2 students.

*%4,9 means 4 years 9 months as of October 1, 1979.
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of geometric shapes to count and are asked to recall the rumber of
objects in the arrays preceding the current trial as soon as they have
finished counting the shapes on the current stimulus card. The number
of arrays in the set is incremented from trial to trial and children's
M-space is assumed to be equal to the maximum number of arrays that they
can count while maintaining perfect recall,

The test includes 33 items. However, at most, only five items were
scored at any one of five M-space levels. To reduce the total number of

trials a modified "

ceiling basal" method was used (Bachelder & Denny,
1377). Children were presented with sets from different M-space levels
until it was determined at what level they passed and at what level they
failed. They were then presented with a larger number of trials until
the level of complete success and the level of complete failure had been
determined.

Mr. Cucui. This measure was designed in Pascual-Leone's laboratory
by DeAvila, for use with children with an imperfect command of English
(DeAvila & Havassy, 1974). It can be administered quickly and is
suitable for use with four-year-olds as well as older children.

On each trial, children are presented with the outline of Mr.
Cucui. After viewing it for five seconds, they are told to remember
what parts of his body are colored. They are then presented with a
blank outline drawing of Mr. Cucui and told to point to the parts that
are colored. There are 25 items, five different items at each of five
levels; a level is defined as the number of body parts that are colored.

This test is the only one that does not require students to count

or use numbers. Instead, recall of spatial location is required to
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respond correctly. The ceiling-basal method was followed for the
Counting Span Test.

Digit placement. This is a measure of M-space developed and
standardized by Case. It is known to yield the same norms as other
tests of M-space (cf. Case, 1972) and to correlate highly with the
general factor defined by more lengthy M-tests (Case & Globerson, 1974).
The basic procedure is to present subjects with a set of numbers. The
first n - 1 of these are in ascending order of magnitude and the nth is
out of order (e.g., 2, 5, 9, 12, 7). After the numbers have disappeared
from view, the children are asked to indicate where the final number
belongs in the original series. M-space corresponds to the maximum set
size for which the task can be executed successfully. There are 15
items on this test, five for each of three levels; levels 1 and 5 as
measured in the two tests above are not tested. All items were given to
each subject.

Backward digit span. The form used in this study was developed by

Hiebert (1979). On each trial, the experimenter reads a series of
digits. The subject is to repeat them in reverse order. M-space
corresponds to the maximum series size correctly repeated. In this
test, there are 40 items (10 at each of four levels; level 1 as measured
in the first two tests is not tested and all items are given to each

student).

Test Administration

A research assistant and two experienced teachers were hired to
administer the tests. All were trained before the testing proceeded.

One interviewer administered the counting span test; a second the Mr,
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Cucui test; and the third the digit placement and the backward digit
span tests. Children were randomly selected by their teacher to come to
the interview room and randomly assigned to an interviewer. Most
children took two tests on one day and the other two a day or two later.

All testing was completed within 10 days.

Scoring the Tests

Although each item could obviously be scored correct or incorrect
and the total correct counted to estimate each child's M-space level,
there were at least two sound reasons why this procedure was not
followed, First, because sets of items in each test were designed to
measure different levels of M-space, item scores would need to be
weighted to reflect those levels—-especially as two of the tests did not
aim to measure all five levels. Second, since the "ceiling basal”
procedure was used with two of the tests, some items were not actually
administered to each child; items not administered but at a level lower
than where the child responded correctly were scored correct and all
items at a level higher than where the child responded correctly were
scored incorrect. Four scoring rules were devised for each test. The
full details regarding those are available in Romberg and Collis (1980a)

and will not be reported here.

Results and Discussion

Table 3 shows the frequency of scores (M-~space level) for children
in each class and for the total population for each test. In addition,
class means and standard deviations are presented. The distributions of

scores for the four memory tests provide two interesting results.
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Table 3

Frequency of Scores on the M~Space Tests

Class Score

0 1 2 3 4 5 hul Sp

Counting Span Test
(1) K-aM 22 3 1.12 .33
(2) K-PM 1 9 9 1 1.50 .69
(3) Prep 11 9 1 1.52 .60
(4) Gr. 1 4 15 3 1.96 .57
(5) o6r. 1/2 1 15 8 2.29 .55
(6) Gr. 2 2 12 12 1 2.44 .70
Totals 1 49 63 25 1 0 1.83 .75
Mr. Cucui Test
(1) K-aAM 12 12 1 1.56 .58
(2) K~PM 5 11 2 1.75 .64
(3) Prep 4 12 5 2.05 .67
(4) Gr. 1 1 9 8 4 2.68 .84
(5) Gr. 1/2 6 9 7 2 3,21 .93
(6) Gr. 2 1 6 7 11 2 3.26 1.02
Totals 0 25 56 32 22 4 2.45 1.05
Digit Placement Test
(1) K-aM 24 1 1.08 .40
(2) K-PM 20 1.00 .00
(3) Prep 19 2 1.10 30
(4) Gr. 1 18 3 1 1.23 53
(5) Gr. 1/2 12 6 6 2.00 1.25
(6) Gr. 2 5 1 2 19 3.30 1.20
Totals 0 98 12 4 25 0 1.68 1.17
Backward Digit Span Test

(1) K-aM 13 12 1.48 .51
(2) K-PM 2 18 1.90 .31
(3) Prep 1 20 1.95 .22
(4) Gr. 1 18 4 2.18 40
(5) Gr. 1/2 16 8 2.33 .48
(6) Gr. 2 8 15 4 2.85 .66

Totals 0 16 92 27 4 0 2.14 .64
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First, although older children generally have higher scores, the overlap
of scores among children at different grade levels is quite striking.
Scores are clearly age-related but do not appear to be specifically
determined by age. Second, the variation of M-space level for
individual children across tests (variation in within-class frequencies
across tests) could imply that the context of the text may give students
a cue that helps them answer questions. In addition, if partial level
scores are allowed for children answering items on a test at a higher
level, it is a reasonable deduction, on the evidence from the protocols,

that the move from one level of M-space to another is gradual.

Relationship of Scores on the Tests

Each of the tests, it was hoped, would reflect the amount of
M-space available to the children for processing early math-related
material. However, the tasks were different, the student population
covered a wide age/grade range, and the children demonstrated
considerable variation in performance. Thus, it was important to
investigate with some care whether or not the different tests yielded
similar classifications of children, Three statistical procedures were
performed on the data: (1) a correlation matrix was set up to show the
correlations between the scores from the four tests for the total
population; (2) the data for all pairs of tests were cross tabulated to
see how many classifications were the same; and (3) a factor analysis
was performed on the correlation matrix to determine the dimensionality
of the scores.

Correlations of test scores. Although all the correlations (see

Table 4) are positive and statistically significant, they are not
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Correlations of Scores for the Four Memory Tests

Table &

Test cs MC DP BDS
Counting Span (CS) 1.00
Mr. Cucui (MC) .49 1.00
Digit Placement (DP) .61 .50 1.00
Backward Digit Span (BDS) .52 .40 .64 1.00
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particularly high. The highest is only .64. It seems clear that
different tests do not necessarily classify children into the same
M-space levels.

Cross~tabulation of scores for the four tests. To examine the

similiarity between classification schemes based on the four tests, we
cross tabulated the data for each test with each other test. The
proportion of students who were classified in the same categories and in
different categories in each comparison is shown in Table 4. The
percentage of individuals who were differently classified in the
comparisons ranges from 68% to 467.

This cross tabulation demonstrates that the tests classify children
in different ways. If these various classifications are along a single
dimension, there is not a serious problem; this would mean that each
test identifies different cutoff points on this one dimension. However,
if these tests are found to measure more than one dimension, then each
test is measuring something different.

Factor analysis. The results of the cross-tabulation made
examining the dimensionality question more critical. A factor analysis
was performed on the correlation matrix presented in Table 5 for the
four tests across the total population. The model used was a
multifactor solution model. All extractions were principle factor
extractions with iterative estimates of commonalities, and the varimax
rotation procedure was used. The data from this factor analysis appear
in Table 6. A single factor was extracted. However, it should be noted
that the Mr. Cucui test did not load heavily on this factor, and a
considerable amount of the variance is still unaccounted for. The Mr.

Cucui test is the only one of the four that does not ask children to
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Table 5

Number and Percentage of Classifications That are the Same, Higher for
the First Test, and Lower for the First Test for all Test Comparisons

Test Comparisons (A/B)

Classi- CS/DP CS/MC CS/BDS DP/MC DP/BDS MC/BDS
fication N(%) N(%) N(%) N(%) N(%) N(%)

?i‘:g) 58(42) 47(34) 75(54) 49(35) 44(32) 57(41)
*(‘ifg‘;r 36(26) 16(12) 13(9) 19(14) 31(22)  55(40)
I(‘Z‘:g 45(32) 76(55) 51(37) 71(51) 64 (46) 27(19)
Note: CS = Counting Span

DP = Digit Placement
MC = Mr. Cucuil
BDS= Backward Digit Span
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Table 6

Factor Analysis for the Four Memory Tests

Factor
1

Eigenvalue 2.59
% variance 64.8
Raw (rotated) factor matrix

Counting Span L44(.56)

Digit Placement .54(.72)

Mr. Cucui .30(.37)

Backward Digit Span L44(,51)
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count, and it is also less English dependent. This suggests that the
factor is a quantitative M-space factor involving memory of number or
counting sequences. The Mr. Cucui test, on the other hand, requires
memory of spatial orientation.

In summary, the four tests measure one primary factor, quantitative
M-space. Thus, to classify children into M-space levels, it would seem
best to administer a combination of tests as was done in this study and
then to classify children with regard to that underlying structure. No
single test, it appears, can reliably classify children into an M-space
level. The next section indicates that a classification made on the
basis of the results of three tests should be fairly reliable for most

children.

Cluster Analysis

Since the factor analysis showed that one dimension accounted for
nearly two-thirds of the variance, it seemed desirable for the next
stage of the project to classify the children in the population along
this single dimension. A cluster analysis procedure, which uses
Euclidian distances between points,l was used for the classification.

This analysis indicated that there were six groups. Table 7 gives
the estimated group vectors for the six groups identified. In the

analysis, the last four groups (3, 4, 5, and 6) were closer together

1The usual Euclidian distance between points in four dimensions was

used, i.e.,

2 2
¢ =\/(Xl R U e S R Ak
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Table 7

Estimated Vectors for the Six Groups Derived from a Cluster Analysis
Where the Distance Between Score Vectors is Less than 1.50

Group Amalgamated Number of Test Overall M-space
distance children CS DPT BDS MC classification
1 1.05 59 1.32  1.07 1.73 1.61 1
2 1.44 38 1.90 1.66 2.13 2,76 2
3 1.43 16 2,25 2.10 2.25 3.69 25+
4 1.03 11 2.91 4.00 2.91 2.46 35~
5 1.06 4 2.17 3.83 2.67 4.50 35+

6 1.23 6 2.50 4.00 3.75 3.75 48~
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than Groups 1 and 2. This suggests that Groups 1 and 2 are distinct and
that Groups 3, 4, 5, and 6, although different from each other, are less
distinct.

Group 1 is largest, with 59 members. For the tests separately, the
levels for this group are CS, Level 1; DPT, Level 1; BDS, Level 1; and
MC, Level 1. This group is clearly at M-space Level 1, the lowest
M-space level in the domain being measured. Only for BDS could some
children be placed at Level 2.

Group 2 has 38 members. The levels for this group are CS, Level 2;
DPT, Level 1; BDS, Level 2; and MC, Level 2. These children exhibit a
basic M-space Level 2. They are below that level on the DPT and nearly
reach Level 3 on the Mr. Cucui test. These differences seemed, from the
protocols, to be due to contextual factors: the children found the
instructions for DPT more complex than instructions for other tests, and
either spatial perception or ability to check information contributed to
scores on the Mr. Cucui test.

Group 3, with 16 members, scored slightly above Level 2 on three
tests and nearly reached Level 4 on the Mr. Cucui test. Either their
spatial perception is quite high or they are able to chunk information
on that test, but they still exhibit a basic M-space level of 2. We
have labeled this group Level 2S5+ to highlight the fact that these
children are above that level on the spatial test.

Group 4 has 1l members. On two tests, CS and DBS, the children are
at Level 3; on DPT they are at Level 4, but on the Mr. Cucui test, they
are only at Level 2. Their basic M-space level is probably 3. Their

spatial perception involved in Mr. Cucui appears not to be as highly
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developed as their quantitative abilities. Therefore, we have
classified them 3S-.

Group 5 has only four members who have a similar pattern of levels
to children in Group 4 except that Group 5 scores very well on the Mr.
Cucui test. Their basic pattern seems to place them at M-space Level 3,
and therefore we have classified them 3S+.

Group 6 has six members. They are basically at M-space Level 4 on
three tests but score below Level 3 on CS. It is not clear what the
discrepancy on this test implies, and the protocols did not assist in
this case. It could, of course, be simply a sampling or testing
variation especially since the numbers in the category are so small,
This variation needs closer examination than we were able to perform in
this study. However, this group is lower than Group 5 on the Mr., Cucui
test, but overall their quantitative skills are at Level 4, Therefore,
we have labeled them 4S-.

Overall, these results suggest an underlying cognitive mechanism.
The contextual setting has a significant effect on the child's ability
to respond on any given occasion. This suggests possible significant
differences in children's use of problem-solving strategies or their
reception to instruction even though they have the same basic
cognitive-processing potential. One could hypothesize that spatial
development (qualitative) and number development (quantitative)
strategies appear to be interwoven and develop close together in time,
but some children achieve number skill prior to spatial skill and others

vice versa.
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Study 2--Cognitive Development

The reason for wanting a battery of tests that measure cognitive
development is based on the theory of Jean Piaget (1974). According to
Piaget, the development of cognition is inseparable from the growth of
biological and psychological faculties. Development is a broad-based
process, generalizing to a wide variety of situationms.

Piaget's position is summarized in the following statement:

I think that development explains learning, and this option

is contrary to the widely held opinion that development is a

sum of discrete learning experiences. (1974, p. 176)

The phrase "development explains learning" implies that the outcome of a
learning experience is in part accounted for by developmental
capabilities. That is, learning potential is defined (or explained) to
a large extent by developmental level.

For this project a battery of 10 tests was devised, all measuring
the early development of the child's ability to work with elementary
quantitative and logical concepts concerned with premathematical skills.
We tested the entire population in order to relate developmental
characteristics to characteristics already derived from the M-space

tests.

Cognitive Development Tests

As stated earlier, the choice of specific tests was based on our
intent to examine the relationship of cognitive capability to children's
performance on addition and subtraction tasks. Of the 10 tests, seven
were selected from a large battery of tests constructed by Fullerton

(1968); two from tests devised by Romberg, Carpenter, and Moser (1978);
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and one was constructed by the authors for this study. Details of each
test can be found in Romberg and Collis (1980b).

Extension (E). This group test was developed by Fullerton (1968).
Children are to decide which of three choice boxes has the same number
of dots as a sample box. The term extension refers to the fact that the
number sets extend beyond the usual level of subitemization to a higher
portion of the number scale. The test contains 12 items. The number of
correct responses is scored. A correct answer is interpreted to mean
that the child is able to set up a one-to-one correspondence between
sets.

Ordinal Correspondence (0C). In this group test, also developed by

Fullerton (1968), the format for the items is similar to that in the
Extension Test., This test also contains 12 items. The number of
correct responses is scored. A correct answer is interpreted as meaning
that the child is able to establish an ordinal correspondence between
sets.

Conservation of Number (Wohwill, CN-W). This group test, also

developed by Fullerton (1968), is based on an earlier test developed by
Wohlwill (1960)., Six items are given. The number of correct responses
is scored. A correct response is interpreted to mean that the child is
able to preserve one-to-one correspondence between sets after one set

has been rearranged (i.e., 1s able to overcome perceptual distractions).

Addition-Subtraction (Wohlwill, AS-W). The items for this group

test, also developed by Fullerton (1968) and based on Wohlwill's earlier
work (1960), are interspersed with those of the previous test (CN-W)
because of the similarity between the two tests. This test differs only

in that a single object is either added to or subtracted from the
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collection of objects in front of the children. 1In this case a correct
response is interpreted to mean that the child recognizes that an
increase or decrease in one of two sets in one-to-one correspondence
means these sets are no longer in such correspondence. Six items are
given and the number correct scored.

Transitivity (T). The authors developed this six-item group test
because the Coordination of Relations Equivalence Test (CRE, described
next) requires a child to attend to both transitivity and a linear
rearrangement of sets. The present test was designed to assess only
transitivity. A correct response is interpreted as the child being able
to preserve both equivalence and order relationships. A total correct
score is recorded for each child.

Coordination of Relations of Equivalence Test (CRE). This six~item

group test was developed by Fullerton (1968). The items are similar to
those in the T test except that the fixed set is also transformed
(lengthened, shortened, or heaped together). A correct response here is
interpreted as the child being able to preserve equivalence
relationships even after rearrangement. The scoring procedure is
identical to that for T.

Class Inclusion (CI). This individually administered test of two
items was developed by Romberg, Carpenter, and Moser (1978). A correct
response is interpreted as a child being able to subdivide logically a
set into distinct subsets.

Additive Composition of Number (ACN). This individually

administered test, developed by Fullerton (1968), includes three items
that ask children to respond to three quite different composition tasks.

A correct response implies the child can establish an equivalence
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relationship by the common practice of sharing and preserve such a
correspondence when distracting information is presented.

Counting On (CO). This individually administered test was
developed by Romberg, Carpenter, and Moser (1978). The test includes
three items for each of the three levels of counting on: small number
onto a number less than 10, small number onto a number between 10 and
20, and a large number onto a number between 10 and 20. The typical
question asked was, Could you start counting at 13 to find the number
that is four more than 13? Children are marked as passing a level if
they answer two of three items correctly. A total score is then
recorded of the number of levels passed (0, 1, 2, or 3).

Counting Back (CB). This test is like formal CO; however, in this
case the typical question asked was, Could you count back starting at 15
to find the number that is four less than 15? The scoring procedure

used is the same as in CO.

Test Administration

Because the order in which these tests were administered was
important, and because they would be administered to children of varying
ages, two decisions were made to gather the data more efficiently.
First, the tests were separated into four sets to be administered at
separate times. Second, not all of the tests were given to all
children. The organization of the tests and the rules for selecting who
was to take which test are given in Table 8. The interview tests and
set 2 were given to all children. A child passing the two tests in set

2 (CN-W and AS-W) was assumed to have passed set 1 and was given set 3.
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Table 8

Tests Included in Each Set, Sequence of Administration,
and Rules for Selecting Subjects

Order Set (tests) Rule

1 Interview All children
(ACN, CI, CO, CB)

2 Set 2 All children
(CN~-W, AS-W)

3 Set 1 Children failing either
(E, oC) test in set 2

4 Set 3 Children passing both

(T, CRE) tests in set 2
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However, if a child failed either of the tests in set 2, set 1 was
administered, and the child was assumed to have failed set 3.

On the interview tests one assistant administered the CO and CB
Tests, and the other administered the CI and the ACN Tests. Again
children were randomly selected by their teachers to come to the
interview room (the teachers’ lounge). Each interviewer was in a corner
of the room. Children were randomly assigned to an interviewer.
Children took two tests on one day and the other two a day to two after,
Shortly after the interviews were completed, the group batteries were
given. Set 2 was given first to groups of six to eight children at a
time from each class. The research assistant presented the stimulus
information for each test following a script and using a large magnet
board. The other assistants observed the children to make sure they
were working on the correct page, responding in the right place, and not
copying from others. Set 1 was given next, followed by set 3. All

testing was completed within four weeks.

Results

Intercorrelations Among Cognitive Development Tests

Full summary tables for the raw score data for each of the tests
are given by Romberg and Collis (1980b). To examine the relation
between the tests and the structure of the battery itself, a two-step
procedure was followed.

Fullerton (1968) used scalogram analysis to organize the battery of
tests he developed. He found tests that grouped together, and he
established an order for the tests based on test difficulty.

Unfortunately, that method fails to establish the underlying
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dimensionality of the data matrix or the possible structure of the
assumed hierarchy. A more satisfactory method is to determine first the
dimensionality of the intercorrelations of the tests. If the matrix is
unidimensional, then a hierarchy can be established.

The intercorrelations across the whole population for the 10
cognitive processing tests appear in Table 9. The correlations are all
positive but fairly low, ranging from .24 to .79; 17 of the 28
correlations fall between .40 and .58. We decided to exclude the E and
OC tests from the correlation matrix for further analysis on the grounds
that they were baseline tests on which most children scored at the

ceiling.

Factor Analysis of Cognitive Development Tests

To determine the dimensionality of the intercorrelations, a factor
analysis was performed on the matrix shown in Table 8 with tests E and
0C excluded. A multifactor solution model was used. All extractions
were principal factor extractions with iteration estimates of
commonalities; the varimax rotation procedure was employed. The results
of this analysis are shown in Table 10.

A two factor solution was derived, although the eigenvalue for the
first factor is considerably larger than that for the second factor. An
examination of this rotated factor matrix shows that the counting tests
(CB, CO) load heaviest on the rotated first factor, followed by the
tests in Battery 4, T and CRE. This factor may reflect a mature level
of counting skill. The other four tests also load on this factor, but
not to the same degree. At best we can say that it is probably a

quantitative factor influenced by the ability to count. The second
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Table 9

Intercorrelations of the Ten Cognitive Development Tests

E ocC ACN CN-W AS-W cI Cco CB T CRE
E 1.00
oc .45 1.00
ACN .22 .25 1.00
CN-W .30 .32 .35 1.00
AS-W .35 .37 .48 .51 1.00
CI .13 .13 .32 .24 .28 1.00
co .22 .28 .55 W43 .42 .44 1.00
CB .15 .21 .49 .40 .39 .45 .79 1.00
T .13 .16 .43 W42 .36 47 .52 .61 1.00
CRE .17 .21 .51 .55 .48 .39 .58 .62 .68 1.00
Maximum 12 12 3 6 6 2 3 3 6 6
Mean 10.88 10.63 1.97 4.86 5.03 .51 1.35 1.06 3.93 1.75
Std.

deviation

1.90 2.28 .94 1.56  1.34 .81  1.29 1.21 4.68 1.49

45
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Table 10

Factor Analysis for Eight Cognitive Development Tests

Factors
1 2
Eigenvalue 4,34 .92
% variance 54.30 11.50
Raw (rotated) factor matrix
ACN .64(.46) .07(.45)
CN-W .61(.25) +35(.65)
AS-W .60(.24) .37(.66)
CI .52(.49) -.13(.23)
co .80(.76) -.22(.33)
CB .83(.85) -.33(.26)
T .73(.60) -.06(.41)
CRE .81(.56) .11(.59)
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factor seems more qualitative, involving the ability to make comparisons
and see transformations without having to count. In particular, the
Wohlwill tests (AS-W and CN-W) load heaviest on this rotated factor
load. One test, Class Inclusion, does not load heavily on either
factor. Since Class Inclusion involves logical reasoning and is the
only nonquantitative test, this finding gives credence to our
interpretations of the first two factors.

The factor analysis of the data seemed to show that there were two
interpretable dimensions underlying performance on the tests. However,
since the first factor accounted for such a large proportion of the
variance (54.30%), we examined the possible hierarchical ordering of the
tests using Guttman's (1954) simplex procedures. It is clear as one
examines the correlation matrix as a whole that the tests are not in
simplex order. Even when we take a subset of the matrix, the five tests
(ACN, CN-W, CI, T, CRE) that might be considered to test aspects of
logical functioning at this level do not satisfy the criteria. It seems
from all the evidence, then, that there is no basis for a hierarchical
ordering of these tests. In summary, the cognitive development tests do
not seem to measure a single dimension. Rather, about two-thirds of the
variance on the tests can be explained in terms of two dimensions, a
quantitative factor influenced by the ability to count, which accounts
for over half of the variance, and a qualitative factor that involves an

ability to make comparisons and see transformations without counting.

Relationships Between Cognitive Development and M-Space Tests

In this section of the analysis, we attempted to combine the

information from the M-space tests and the cognitive development tests
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with a view to grouping the children/pupils into categories that have
distinct describable cognitive characteristics.

To begin with, a correlation matrix (Table 11) was drawn up for the
four M-space tests and the eight cognitive development tests (tests E
and OC being omitted for reasons given earlier). The correlations range
from .29 to .79, with 20 of the 32 falling between .40 and .59. The
higher correlations with the M-space tests occur with both the counting
tests (CO, CB). This is not surprising. The counting tests undoubtedly
rquire a larger memory capacity than some of the other tests. However,
there is no apparent variation in correlations of the different memory
tests with the cognitive processing tests. This suggests that the

positive correlation is along a single dimension.

Factor Analysis of Cognitive Development and M-Space Tests

To check this suggested unidimensional relationship, a factor
analysis was carried out in which the four M-space tests were added to
the eight cognitive development tests. The data for that factor
analysis appear in Table 12. Again, as was the case with the factor
analysis of the cognitive development tests (see Table 9), two factors
appeared. The two factors have the same structure as the two factors
that appeared in the earlier analysis. The memory tests load heavily on
the first factor but not the second.

At this point, we decided that we had enough information to look
for a pattern in the achievement on all cognitive tests for each of the
six groups formed by the cluster analysis of the M-space tests. The
proportion correct in each cognitive test for each M-space category is

set out in Table 13; a graphical representation of the same information
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Correlations of the Eight Cognitive Development Tests

and the Four M-Space Tests

Cognitive Processing Tests
M-Space
Tests ACN CN-W AS-W CI co CB T CRE
Counting Span +54 .32 .39 W43 .63 .61 W47 .53
Digit Placement .54 b W41 45 .77 .79 .69 .63
Mr. Cucui A .32 .37 .48 .53 .55 46 47
Backward Digit .48 .48 .50 .38 .61 .58 .55 +54

Span
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Table 12

Factor Analysis for Eight Cognitive Development Tests
and the Four M-Space Tests

Factors
1 2

Eigenvalue 6.52 1.02

% variance 54.40 8.50

Raw (rotated) factor analysis
ACN .65(.56) .08(.36)
CN-W .58(.40) .41(.50)
AS-W .59(.37) L41(.60)
CI .55(.56) -.12(.12)
co .83(.78) -.18(.28)
CB .84(.85) -.25(.15)
T .73(.73) -.01(.16)
CRE .78(.70) .16(.31)
cs .71(.68) -.13(.25)
DP .86(.74) -.19(.10)
MC .63(.68) -.09(.25)
BDS .73(.62) .13(.43)
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is shown in Figure 1. It can be seen that there are clear differences
between Groups 1 and 2 and the other four groups. Within the latter
groups, Groups 3 and 4 differ little from each other but do differ from
Groups 5 and 6, which are also very similar.

Group 1 children with M-space level 1 were below the other groups
in all four areas and were in general incapable of handling quantitative
tasks, They could make qualitative comparisons and transformations only
at a moderate level.

Group 2 children with M-space level 2 were also without specific
quantitative skills, although they performed considerably better than
Group 1 on all the tests. They could handle qualitative correspondence
at an acceptable level although they scored somewhat lower than the
other groups on the conservation of number test.

Group 3 children with M-space level 2S+ were high on qualitative
correspondence, had developed the specific counting skills of counting
on and counting back, but were inadequate in their use of those skills
on the transitive reasoning test. Their logical reasoning was also
deficient, although they performed considerably better than Groups 1 or
2 on that test,

Group 4 children with M-space level 3S- were high on qualitative
correspondence and all the quantitative tests, but inadequate on the
logical reasoning test. In fact, they differed significantly from Group
3 only on the additive composition test and the transitivity test.

Groups 5 and 6 with M-space levels 3S+ and 4S- presented similar
profiles on these tests. They reached the ceiling on the qualitative

correspondence tests, scoring a little higher than Groups 2, 3, and 4.
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Table 13

Percent Correct for the Six M-3pace Groups
on the Ten Cognitive Development Tests

Test

Factor 1 (Quantitative)

Factor 2 Logi-~

Group Baseline (Qualitative) cal
(M-space

level) E (¢]¢} AS-W CN-W ACN co CB CRE T CI
1(1) 90 84 46 48 45 9 3 6 2 6
2(2) 100 100 91 71 80 52 35 43 14 20
3(2s8+) 100 100 87 93 71 82 78 73 53 50
4(38-) 100 100 100 90 87 93 87 80 90 50
5(35+) 100 100 100 100 100 91 75 100 100 88
6(4S-) 100 100 100 100 93 100 87 100 80 90
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Like Group 4 children, they had high scores on all the quantitative
tests. Children in these groups were high on the class inclusion test.
From these cluster groups, a sample of students was drawn for

Studies 3, 4, and 5 in this series in the following school year.

Summary and Conclusion

Based on data from four memory tests and eight cognitive
development tests, we were able to identify groups of children who had
well-defined but different cognitive-processing capabilities. This
identification was accomplished in the following steps. First, using
cluster analysis on the memory test scores, we identified six groups of
students with similar patterns of responses. Second, from the results
of a factor analysis, we found that the cognitive development tests
loaded on two factors: a quantitative factor that involves mature
counting strategies and a qualitative correspondence factor. Third, by
examining how the six groups defined by the M-space analysis performed
on the cognitive tests, we demonstrated that the cognitive-processing
scores of five of the six groups differed systematically.

This last step was the basis for the remainder of the project. We
formed five distinct groups of students (cluster groups 5 and 6 were
combined) with known cognitive capabilities related to the learning of
mathematical materials. In the following chapters, we describe how this
information was used to study several aspects of the children's
interaction with mathematics instruction in early elementary school.

In conclusion, the data gathered and analyzed in this chapter
suggest that the following propositions deserve close attention by both

researchers and practitioners:



equivalence and order) appears to be the first ability to develop.
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A global qualitative/quantitative distinction is apparent in
children's mathematical thinking in the early school year;
M-space level seems to be related to the development of other
cognitive skills;

The suggested developmental sequence in the preschool to early
elementary years in mathematically related reasoning appears to
be: comparison -- qualitative correspondence -- quantitative --
logical operations;

An M-space level of 1 is enough for handling simple comparison
tasks;

An M-space level of 2 is enough for understanding qualitative

correspondence and is a prerequisite for the development of number

skills;
An M-space level of 3 seems necessary for success on sophisti-
cated counting tasks.

In all, these data suggest that simple correspondence (both

is followed by a qualitative correspondence capacity that involves

understanding how correspondence between two sets is preserved or

changed under varying circumstances. Next, the quantitative skills of

counting on and counting back develop, followed by their use in

transitivity tasks. Finally, the capacity for logical reasoning

develops.
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Chapter 3
COGNITIVE-PROCESSING CAPACITY AND CHILDREN'S PERFORMANCE

ON VERBAL ADDITION AND SUBTRACTION PROBLEMS

In this chapter, the third study in this set is reported. Its
purpose was to study the relationships among children's cognitive
capacity, and their performance and use of strategies on verbal addition
and subtraction problems. The importance of knowing how children learn
the concepts and procedures of addition and subtraction should be
self-evident. It is frequently assumed that children must first master
computational skills and then begin to solve verbal addition and
subtraction problems. However, it has been clearly demonstrated that
children develop a variety of strategies for solving such mathematical
problems, independent of instruction (cf. Carpenter & Moser, 1983;
Ginsburg, 1977; Resnick, 1978). In fact, many of the strategies they
use are more sophisticated and demonstrate more insight than the
procedures that are taught.

A sample of the children tested in the previous studies (Chapter 2)
and selected to reflect different cognitive capabilities was interviewed
on three occasions over a 3-month period in 1980 (27-29 February, 9-1
April, and 26-28 May). In each interview, a set of verbal addition and
subtraction problems was given to each child. The interviewer coded

each student's performance and strategies.
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Method
Sample

The children from the earlier studies had advanced a grade in
school since previous testing. Furthermore, the grade 2 students who
were in Sandy Bay Infant School in October now were in third grade and
in different primary schools. Most, however, were enrolled at Waimea
Heights Primary School.

Our intent was to have a sample of two to four students from each
cognitive level in each grade. We began with rosters of students from
each grade and their cognitive level. Then an initial selection of
students was made. However, after school began, some third graders

originally in one class were switched to another. This created some

57

imbalance across classes but should not have affected the results. The

44 students in this study are shown by cognitive group, class, and grade

in Table 14,

Procedure

Types of problems. An interview consisted of six problem types

(tasks) given under four of six conditions. The six types included two

problems solvable by addition of the two given numbers and four problems

solvable by subtraction of the two given numbers. The types differed in

terms of semantic structure. The semantic characterization for these

six problem types is detailed in Moser (1979) and in Carpenter and Moser

(1979, 1983).

Table 15 presents representative problems in the order in which the

problems were administered to the children. The actual wording for each

problem type differed but the semantic structure remained constant.
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Children in Each Cluster Group in Each Class

Table 14

Sandy Bay Infant

School Waimea Heights Primary School
Class Class
1 2 3 4 5
Cognitive
Group Grade 1 Grade 2 Grade 3 Grade 3 Grade 3 Total
1 3 2 0 0 0 5
2 3 6 0 4 0 13
3 1 2 2 3 3 11
4 0 0 2 3 3 8
5,6 0 0 3 1 3 7
Totals 7 10 7 11 9 44
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Table 15

Problem Types

Task Sample Problem

Change/Join (Addition) Pam had 3 shells. Her brother gave her
6 more shells, How many shells did Pam
have altogether?

Change/Separate Jenny had 7 erasers. She gave 5 erasers
(Subtraction) to Ben, How many erasers did Jenny have
left?

Combine/Part Unknown There are 5 fish in a bowl. 3 are
(Subtraction) striped and the rest are spotted. How

many spotted fish are in the bowl?

Combine/Whole Unknown Matt has 2 baseball cards. He also has
(Addition) 4 football cards. How many cards does
Matt have altogether?

Compare (Subtraction) Angie has 4 lady bugs. Her brother Todd
has 7 lady bugs. How many more lady
bugs does Todd have than Angie?

Change/Join, Change set Gene has 5 marshmallows. How many more
Unknown (Subtraction) marshmallows does he have to put with
them so he has 8 marshmallows altogther?
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Within each problem, two of three numbers from a number triple (x, y, z)
defined by x + y = z, X ¢ ¥ < 2z, were given., In the two addition
problems, x and y were presented, with the smaller number x always given
first. 1In the four subtraction problems, z and the larger addend y were
presented. The order of presentation of y and z varied among problem
types.

The six semantic problem types used were presented under six
conditions, although not all children responded to all conditions. Four
conditions resulted from crossing smaller zs and larger zs with presence
and absence of manipulative materials. In the smaller number problems
(called SN problems), the addition guideline of 5 < z < 9 was imposed.
In the larger number problems (called LN problems), the restriction on
the sum was 11 < z < 15. Problem sets SNp and LNp were given with
manipulatives present; the same sets given with manipulative absent were
called SNa and LNa.

For the interviews with third-grade children, the domain of
two-digit numbers was included. In the two-digit domain, two subdomains
were identified. In the NR probems, no regrouping (borrowing or
carrying) was required to determine a difference or sum when a
computational algorithm was used. In the second subdomain R problems,
regrouping was required. For the two-digit problems, the sum z was
restricted to numbers in the 20s and 30s. All the third-grade children
took the LN, NR, and R problems. Complete details of the procedures
used are reported in Romberg, Collis, and Buchanan (1981).

Interview method. Three trained interviewers administered the

interviews (see Cookson & Moser, 1980, for details of

interviewer—training procedures and reliability). One interviewer
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worked at Sandy Bay Infant School and the other two at Waimea Helghts
Primary School. Each interviewer was able to conduct from 8 to 12
interviews a day, depending on the schools' schedules and on the task
level. (The LN tasks took longer than the SN tasks.) At the schools,
the interviewers were assigned interview areas, which were quiet rooms
separate from distracting activities. The verbal tasks were read and
reread to the child as often as necessary so that remembering the given
numbers or relationships caused no difficulty. An individual interview
required two sessions, one for the SN tasks and the other for LN tasks
(or one for the LN and the other for NR and R). The sessions lasted
15-25 minutes each, with each child recelving the same sequence of
problems. No child was interviewed twice in one day.

Coding student responses. All of the possible codings of student

responses are presented in detail in Cookson and Moser (1980). Three or
four elements were coded for each child: model used, correctness,
strategy, and, if incorrect, error. A record of each subject's
responses to the tasks was compiled from the coding sheets. These
profiles are the basis for all other statistical information appearing
in this chapter and are reported in Romberg, Collis, and Buchanan

(1981).

Data Aggregation and Analysis

The interview data are summarized in terms of percent correct and
general strategy. The data for percent of items answered correctly by
children are summarized by examining the differences for children with
differing cognitive processing capabilities. It was anticipated that

children in Group 5-6 would answer more items correctly than those in
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Group 4, who in turn would answer more items correctly than the Group 3

children, and so forth.

Pupil strategy was categorized according to type of model used (if
any), strategy or process used, and errors (if any). Five general
categories for the SN and LN problems are the following:

1. Direct modeling--use of the manipulatives provided, or fingers,
to stand for the problem entities. Actions performed on the
objects generally correspond to the action or relationship
described in the problem.

2. Use of counting sequences--use of the string of counting words,
either forward or backward, where the entry point in the sequence
is a number other than 1. Counting may proceed in either direc-
tion a given number of counts, or until a desired number (usually
one of the numbers given in the ptoslem) is reached. This
requires a second counting or some sort of a tracking mechanism,
often aided by the use of fingers.

3. Routine mental operations--use of memorized number facts by
direct recall.

4. Nonroutine mental operations~-derivation of a nonmemorized fact
through manipulation of some other recalled fact. As an example,
the fact for 6 + 8 can be derived by determining it to be two
more than the easily remembered doubles fact of 6 + 6.

5. 1Inappropriate Behaviors--guessing, using one of the given numbers
in the problem, adding instead of subtracting, or giving no answer

at all.
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For the NR and R data, the five categories used with the SN and LN
tasks were used if students did not write a sentence. If students did
write a sentence, three other categories were used.

6. Correct sentence/algorithmic. This category of behavior includes
the standard algorithms taught in school as well as any "invented"
(Carpenter & Moser, 1982) ones that involve considerations of
place value. Algorithmic behavior must be exhibited by use of
paper and pencil.

7. Correct sentence/nonalgorithmic. After writing a sentence, the
work is done mentally as was frequently seen in problems in which
no regrouping (NR tasks) was required (Moser, 1980).

8. Inappropriate sentence. This behavior involves writing and
working with the wrong sentence (e.g., addition instead of
subtraction).

Details of what specific model, strategy, and error data were used to

form these categories are presented in Romberg, Collis, and Buchanan

(1981).

The plan for analyses of the aggregated data was based on the two
primary dimensions in this study--differences in the level of problem
administered and differences in children's cognitive capacity. The
problem dimension involves a completely crossed repeated assessment
(three interviews) of six problem sets (SNp, SNa, LNp, LNa, NR, and R),
with six tasks in each set (combine/join, combine/separate, and so on).
The student dimension includes children nested in cognitive levels
within classes and in turn, within grades.

The data matrix is incomplete since not all cognitive levels are

represented In each grade level, grade 1 and grade 2 children did not
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take the NR and R problems, and the grade 3 children did not take the SN
problems. The small number of subjects, the unequal cell sizes, and the
extensive incompleteness of the matrix limited us to describing the
frequencies and testing a few of the differences with chi-square
statistics.l

For purposes of this report, frequency and percent correct and
frequency of use of strategy are presented for children with different
cognitive processing capabilities. The data are presented for three
problem sets (SN, LN, and NR and R combined) and for each semantic task
within each set. Other analyses performed for each interview and by
grade level are not reported here. Those analyses can be found in

Romberg, Collis, and Buchanan (1981).

Results

Performance by Cognitive Groups

All SN and LN tasks. To examine whether or not differences in

cognitive capacity are reflected in different percentages of correct
responses, separate tables are presented for each problem set. In Table
16, the data for the SN problems that were given only to grade 1 and
grade 2 children clearly show that there is a significant increase in
percent correct (56% to 75% to 88%) for children in cognitive Groups 1,

2, and 3, respectively (x%= 47.19, p< .01).

1Because of the large number of trials and lack of a systematic

plan to test differences, an alpha level of .0l was arbitrarily chosen
to test significance. In addition, tests that ylelded probability
values between an alpha of .Oi)and .01 (.05» p> .01) were considered
marginally significant. All X“values were calculated via 2 x 2
contingency tables where frequency of correct answers or strategy was
dichotomized.
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Table 16

Frequency and Percent Correct by Cognitive Group for

All SN Tasks

Correct Responses

Cognitive Group N Total Responsesa Frequency Percent
1 5 180 100 56
2 9 3128 235 75
3 3 108 95 88
4 - - - -
5,6 - - _ _
Total 17 600 430 72

%When all children were present for all three
equals N times 12 problems (6 SNp and 6 SNa)

interviews, number of trials
times three occasions.

65
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For the LN problems given to all children, the percent correct for
children in different cognitive groups is shown in Table 17. The
differences are striking. The Group 1 children only got 22% correct,
while children in Group 5-6 got 96% correct. There is a significant
increase from Group 1 to Group 2 (22% to 6SZ,X2 = 94.38, p<.01), from
Group 2 to Group 3 (65% to 81%, X2= 26.74, p <.01), and again from Group
4 to Group 5~6 (83% to 96%, p <.01). The lack of difference in percent
correct between Cognitive Group 3 and Group 4 children is not
surprising, since these groups differed very little on the cognitive
tests.

All NR and R tasks. For the D and E problems given only to grade 3

children, the pattern of correct responses were very similar. Thus, for
summary purposes, the data on these problems are combined in Table 18.
For these students, the difference between percentage correct for
children in Cognitive Groups 2 and 3 (49% and 67%) is significant (x%=
11.76, p <.01), as are the differences between Cognitive Groups 4 and
5-6 children (62% and 83%, X2= 30.05, p <.01). Again, the differences
in performance between Cognitive Groups 3 and 4 on both sets of problems
are not significant.

Overall, our predictions about percentage of the items answered
correctly were found to be accurate, except that children in Cognitive
Groups 3 and 4 differed very little in terms of their general

performance.

Performance by Task

Within each problem set, one item representing each of six tasks

(change/join; change/separate; combine/part unknown; combine/whole
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Table 17

Frequency and Percent Correct by Cognitive Group for

All LN Tasks

Correct Response

Cognitive Group N Total Responsesa Frequency Percent
1 5 180 40 22
2 13 456 206 65
3 11 396 320 81
4 8 264 220 83
5,6 7 252 241 96
Total 44 1548 1117 72

67

8hen all children were present for all three interviews, number of trials
equals N times 12 problems (6 LNp and 6 LNa) times three occasions,

Table 18

Frequency and Percent Correct by Cognitive Group for

All NR, R Tasks

Correct Response

a

Cognitive Group N Total Responses Frequency Percent
1 - - - -
2 4 144 71 49
3 8 264 176 67
4 8 252 155 62
5,6 7 252 210 83
Total 27 912 612 67

%When all children were present for all three interviews, number of trials

equals N times 12 problems (6 NR and 6 R) times three occasions.
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unknown; compare and change/join; change/set unknown) was given.
Because the different semantics of each problem type elicit different
cognitive demands, we anticipated that performance would vary with the
tasks. Following Greeno's (1980) categorization of the six tasks given
(see Table 15) we expected Tasks 1 and 2 (change/join and
change/separate) to be the easiest, for they demand only a change/cause
schema; Task 4 (combine/whole unknown) to be next in difficulty, for it
involves a harder combination schema; Tasks 6 and 3 (the missing addends
problem) to follow in difficulty because of the location of the missing
information; and Task 5 (comparison/subtraction) to be hardest because
it involves a comparison schema which requires more units of memory.

Each SN task. The percent correct data for each cognitive group
for each task in the SN set of problems are presented in Table 19. The
pattern of differences between cognitive groups is consistent with Group
3 children performing better than Group 2 who, in turn, perform better
than the Group 1 children. As expected for the SN level Tasks 1 and 2
were easy for all children. Tasks 4 and 6, however, were just as easy.
Task 3 was more difficult, and Task 5 was hard for all children.

Each LN task. The percent correct data for each cognitive group on
each task for the LN set of problems are presented in Table 20. If two
thirds of the items were correct, then this was used as a rough
criterion for success for those data. Again, a consistent pattern of
the children in the higher cognitive group getting as many or more items
correct 1s apparent. The one exception to this pattern was on Task 3
(combine/part unknown), the Group 4 children did not do as well as the
Group 3 children on those tasks. Group 1 children were generally unable

to work any of the LN problems successfully. The majority of Group 2
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children worked all problems except Task 5. The children in the higher
groups were able to work all problems. However, except for the
difficult comparison problems (Task 5), the tasks were of equal
difficulty.

Each NR and R task, The same data for the NR and R sets of

problems are shown in Table 21. Again, the same pattern is evident
except for the Cognitive Group 4 children whose performance was
marginally lower than Group 3 children on Tasks 1 and 2 and was about
the same as Group 2 children on Task 5. Overall, Group 2 children were
only successful on Task 1. Group 3 and 4 children were successful on
Tasks 1, 4, and 6. And, Group 5~6 children were successful on all
tasks. However, unexpectedly, Task 2 was as hard as Tasks 3 and 5 for
all of the children. These data suggest that when problems have large
enough numbers, children should use algorithms, because the implied
computational procedures become more important than the semantics.
Thus, addition problems are easier than subtraction problems. Although
Task 6 is a subtraction problem, it was often solved using additive
notions, making it easier than Task 2.

In summary, although there were important variations in performance
due to problem set (size of number) to specific task, and to grade, it
is clear that children who had been identified as having different
cognitive-processing capabilities performed differently on these
addition and subtraction tasks regardless of the other important

factors.
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Strategies Children Used

As outlined in the first part of this chapter, the data on
strategies children used are summarized in terms of five categories for
the SN and LN problem sets (direct modeling, counting sequences, routine
mental operations, nonroutine mental operations, and inappropriate
strategy) and eight categories for the NR and R problem sets (the same
five no-sentence categories as for SN and LN tasks plus correct
sentence-algorithmic, correct sentence-nonalgorithmic, and incorrect
sentence).

We expected that children with low cognitive capacity would either
use inappropriate strategies or directly model problems. Children with
higher capacities would use counting sequences and routine mental
operations. Algorithms would be used in increasing frequency by
children at higher levels of competency.

All SN tasks. To show whether children with different cognitive
capacities used different strategies, separate tables are presented for
each problem set. For the SN problems given only to grades 1 and 2
children (Table 22), as expected, there was a significant increase in
use of routine mental operations (8% to 27% to 35%) by children with
higher cognitive capacity (x%= 36.97, P <.01) and a corresponding
significant decrease in use of an inappropriate strategy (39% to 187 to
7% x2= 34.80, p ¢.01). However, the frequency of use of the other
categories unexpectedly remained constant over cognitive levels.

All LN tasks. For the LN problems given to all children, the
strategy data for children in different cognitive groups are shown in
Table 23. The picture here is more dramatic. As anticipated, children

in Cognitive Group 1 either directly modeled the problems (28% of the
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trials) or used an inappropriate strategy (70% of the trials). Use of
an inappropriate strategy goes down consistently with increase in
cognitive capacity (70% for Group 1 children to 0% for Group 5-6
children). Direct modeling is the strategy most often used by Cognitive
Group 2 children; counting sequences by Group 3 children; and routine
mental operations by Groups 4 and 5-6 children who also used counting
sequences frequently.

All NR tasks. Data for the NR problems, which were given only to
the third-grade children, are summarized in Table 24. As expected,
between Cognitive Groups 2 and 5-6 there is a significant increase in
use of counting strategies from 12% to 33% (x?= 10.40, p<.01) and a
corresponding decrease in use of inappropriate strategies from 29% to 2%
(x%= 30.86, p <.01). Unexpectedly, children at all cognitive levels
used other strategies at about the same frequency.

All R tasks. The data for the R problems, also given only to third
graders, are summarized in Table 25. As for the NR problems, from Group
2 to Group 5-6, the use of counting strategies increased significantly
from 4% to 32% (X?= 20.50, p <.01) and the use of inappropriate
strategies decreased from 44% to 5% (X*= 46.52, p <.01). For both NR
tasks and R tasks, there was no appreciable increase in the use of
algorithms by children in higher cognitive groups (NR, 217 to 25%; R,

267 to 25%).

Strategies by Task Type

Within each problem set, one item representing each of six tasks
(change/join; change/separate; combine/part unknown; combine/whole

unknown; compare, and change join/change/set unknown) was given. From
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past research (e.g., Carpenter & Moser, 1982), we anticipated that
different strategies would be used on tasks with differing semantic
structures (particularly on the missing addend problems, Tasks 3 and 6,
and on the compare problem, Task 5).

Each SN task. The strategy data for each cognitive group for each
task for the SN set of problems are presented in Table 26. A consistent
inverse relationship between use of inappropriate strategies and
cognitive level is apparent. Although the percentages of various
strategies used with each of the tasks differ, the patterns seem to be
consistent across cognitive groups. For example, few students used
direct modeling for the compare and change/join missing addend tasks
(Tasks 5 and 6), regardless of cognitive group. In particular, students
used counting sequences most frequently with Task 6.

Each LN task. The strategy data for each cognitive group on each
task for the LN set of problems are presented in Table 27. Again, the
use of direct modeling decreases as cognitive capacity increases as does
the use of inappropriate strategies, while the use of counting sequences
and routine mental operations generally increases with capacity.
Cognitive Group 1 children directly modeled or used inappropriate
strategies for all types of tasks. The use of other strategies varies
by task. Again, direct modeling is not used often with Tasks 5 and 6.

Each NR and R task. The data for the NR and R sets of problems are

shown in Table 28, Again, the same pattern is evident. Students used
direct modeling strategies only for subtraction tasks. Routine mental
operations or algorithms were used on Tasks 1 and 4 (the addition tasks)
and algorithms on Task 2 (the simplest subtraction task). Students

often used direct modeling on all subtraction tasks but rarely for



Table 26

Frequency of Use of Strategies by

Direct Modeling

Counting Sequences

Cognitive Group N Frequency Percent Frequency Percent

Task 1

1 15 16 53 3 10

2 26 23 44 5 10

3 9 6 33 3 17

Total 50 45 45 11 11
Task 2

1 15 17 57 1 3

2 26 27 52 3 6

3 9 10 56 1 6

Total 50 54 54 5 5
Task 3

1 15 12 40 1 3

2 26 26 50 1 2

3 9 9 50 2 11

Total 50 47 47 4 4
Task 4

1 15 17 57 3 10

2 26 25 48 8 15

3 9 10 56 2 11

Total 50 52 52 13 13
Task 5

1 15 2 7 1 3

2 26 10 19 7 13

3 9 3 17 1 6

Total 50 15 15 9 9
Task 6

1 15 5 17 11 37

2 26 9 17 19 36

3 9 1 6 8 44

Total 50 15 15 38 38




Cognitive Group and Category for Each SN Task

Routine Mental

Nonroutine Mental

Operation Inappropriate
Frequency Percent Percent Frequency Percent Trials
Change/Join (+)
3 10 13 4 13 30
17 33 6 4 8 52
7 39 11 0 0 18
27 27 9 8 8 100
Change/Separate (-)
2 7 0 10 33 30
16 31 4 4 8 52
6 33 0 1 6 18
24 24 2 15 15 100
Combine/Part Unknown (-~)
2 7 0 15 50 30
14 27 2 10 19 52
5 28 11 0 0 18
21 21 3 25 25 100
Combine/Whole Unknown (+)
3 10 3 6 20 30
14 27 0 5 10 52
6 33 0 0 0 18
23 23 1 11 11 100
Compare (-)
2 7 0 25 83 30
4 8 2 30 58 52
8 44 0 6 33 18
14 14 1 61 61 100
Change/Join, Change Set Unknown (-)
3 10 0 11 37 30
20 38 2 3 6 52
7 39 6 1 6 18
30 30 2 15 15 100




Table 27

Frequency of Use of Strategies by

Direct Modeling

Counting Sequences

Cognitive Group N Frequency Percent Frequency Percent

Task 1

1 15 11 37 0 0

2 38 32 42 13 17

3 33 12 18 23 35

4 22 1 2 15 34

5.6 21 1 2 14 33

Total 129 57 22 65 25
Task 2

1 15 12 40 0 0

2 38 33 43 5 6

3 33 15 23 17 26

4 22 5 11 17 39

5,6 21 8 19 20 48

Total 129 73 28 59 23
Task 3

1 15 11 37 0 0

2 38 32 42 14 18

3 33 19 27 17 26

4 22 4 9 14 32

5,6 21 7 17 13 31

Total 129 73 28 58 22
Task 4

1 15 11 37 0 0

2 38 34 45 18 24

3 33 9 14 28 42

4 22 7 16 11 25

5,6 21 5 12 16 38

Total 129 66 26 73 28
Task 5

1 15 1 3 0 0

2 38 14 18 12 16

3 33 9 14 24 36

4 22 9 20 12 27

5,6 21 7 17 20 48

Total 129 40 16 68 26
Task 6

1 15 4 13 1 3

2 38 21 28 20 26

3 33 7 11 21 32

4 22 4 9 10 23

5,6 21 4 10 18 43

Total 129 40 16 70 27




Cognitive Group and Category for Each LN Task

Routine Mental

Nonrputine Mental

Operation Operation Inappropriate
Frequency Percent Frequency Percent Frequency Percent Trials
Change/Join (+)
0 0 [¢] [¢] 19 63 30
15 20 6 8 10 13 76
19 29 7 11 5 8 66
18 41 7 16 3 7 44
21 50 6 14 o] o] 42
73 28 26 10 37 14 258
Change/Separate (-)
o] 0 o] 0 18 60 30
12 16 5 (] 21 28 76
12 18 12 18 10 15 66
12 27 5 11 S 11 44
10 24 4 9 o] [¢] 42
46 18 26 10 54 21 258
Combine/Part Unknown (-)
1 3 0 o] 18 60 30
8 10 5 6 17 22 76
17 26 8 12 5 8 66
11 25 8 18 7 16 44
20 48 2 5 o] [¢] 42
57 22 23 9 47 18 258
Combine/Whole Unknown (+)
o] o] o] o] 19 63 30
10 13 0 0 14 18 76
17 26 4 (] 8 12 66
17 39 7 16 2 4 44
20 48 1 2 o] 0 42
64 25 12 5 43 17 258
Compare (-)
[¢] o] o] o] 29 97 30
4 5 6 8 40 53 76
16 24 2 3 15 23 66
14 32 5 11 4 9 44
15 36 o] [¢] o] o] 42
49 19 13 5 88 34 258
Change/Join, Change Set Unknown (-)
1 3 o] o] 24 80 30
10 13 5 [ 20 26 76
23 35 5 8 10 15 66
20 45 (] 14 4 9 44
19 45 1 2 0 0 42
73 28 17 6 58 22 258




Table 28

Frequency of Use of Strategies by

No Sentence

Routine Mental

Direct Modeling Counting Sequences Operation
Cognitive Group N Frequency Percent Frequency Percent Frequency Percent

Task 1

2 12 1 4 2 8 2 8

3 22 7 16 6 14 15 34

4 21 2 5 2 5 16 38

5,6 21 4 10 3 7 16 38

Total 76 14 9 13 9 49 32
Task 2

2 12 4 17 [} [} 2 8

3 22 15 34 7 16 2 4

4 21 13 31 6 14 6 14

5,6 21 13 31 S 12 2 S

Total 76 45 30 18 12 12 8
Task 3

2 12 4 17 2 8 3 12

3 22 13 29 10 23 4 9

4 21 13 31 7 17 3 7

5,6 21 14 33 17 40 5 12

Total 76 44 29 36 24 15 10
Task 4

2 12 1 4 1 4 4 17

3 22 7 16 2 4 12 27

4 21 5 12 4 9 8 19

5,6 21 4 9 6 14 11 26

Total 76 17 11 13 9 35 23
Task 5

2 12 4 17 4 17 2 8

3 22 8 18 16 36 3 7

4 21 9 21 13 31 3 7

5,6 21 [ 14 25 60 3 7

Total 76 27 18 58 38 11 7
Task 6

2 12 S 21 3 12 2 8

3 22 7 16 16 36 5 1

4 21 12 29 13 31 4 9

5,6 21 ? 17 26 62 6 14

Total 76 31 20 58 38 17 11




Cognitive Group and Category for Each NR, R Task

Correct Sentence Incorrect Sentence
Nonroutine Mental
Operation Inappropriate Algorithm Non-Algorithm All Strategles
Frequency Percent Frequency Percent Frequency Percent Frequency Percent Frequency Percent Trials
Change/Join {+)
0 0 6 25 i2 50 1 4 0 0 24
i 2 2 4 12 27 L 2 0 0 44
1 2 5 12 i6 38 0 0 0 0 42
0 0 0 0 19 45 0 0 0 0 42
2 1 13 9 59 39 b3 i 0 0 152
Change/Separate (-}
0 o ] 33 8 33 1 & 1 4 24
1 4 6 13 13 29 0 o 0 0 44
[} 0 4 10 H 26 I 2 i 2 42
0 0 2 5 16 38 2 5 2 5 &2
1 4] 20 13 48 31 4 3 4 k| 152
Combine/Part Unknown (-)
1 4 10 41 4 17 0 0 0 0 24
1] 0 11 25 5 il 0 [ 1 2 44
1 2 13 31 4 9 [ 0 1 2 42
1] 0 2 5 3 7 1 2 [ [ 42
2 1 36 23 16 10 H 1 2 1 152
Combine/Whole Unknown (+)
[ 0 10 42 a 33 a 0 0 0 24
0 0 10 23 i3 29 0 0 0 0 44
0 0 6 14 19 45 0 0 0 0 42
0 0 0 0 21 50 0 0 0 0 42
0 0 26 17 61 40 0 0 0 a 152
Compare (-)
0 0 12 50 2 8 0 0 0 0 24
1 2 11 25 3 7 0 0 2 4 44
S 12 10 24 0 [} a 0 2 5 42
1 2 4 9 2 5 0 0 1 2 42
7 5 37 24 ? 5 0 0 5 3 152
Change/Join, Change Set Unknown (-)
4 17 29 0 0 1 4 2 8 24
2 4 98 25 3 7 0 0 0 0 &4
3 7 21 1 2 0 0 0 a 42
1 2 1 2 i 2 0 0 0 Q 42
10 7 28 18 5 3 1 1 2 1 152
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addition, and often used counting sequences with the missing addend
problems (Tasks 3 and 6) and the compare problem (Task 5). A
considerable increase in use of counting sequences is apparent from
Cognitive Group 2 to Cognitive Group 5-6 on these tasks. There remains
a significant relationship between use of inappropriate strategies and

cognitive group.

Summary and Conclusion

In summary, there are important variations in strategies associated
with problem set (size of number) and specific tasks. There also appear
to be important interactions between the strategies used by children who
have been identified as having different
cognitive-processing capabilities and problem set and task. Children
with different capacities use different strategies on these addition and
subtraction tasks, regardless of the other important factors. It should
be understood that other factors, such as grade, have been confounded

with cognitive-processing capacity.



Chapter 4
COGNITIVE~PROCESSING CAPACITY AND CHILDREN'S PERFORMANCE

ON STANDARD ADDITION AND SUBTRACTION PROBLEMS

In this chapter, the fourth study in this series is reported. Its
purpose was to relate the children's cognitive capacity and grade level
to thelr performance on a standard set of items related to addition and
subtraction. The procedure used in this study was achievement
monitoring (Romberg & Braswell, 1973), which involves repeatedly
measuring groups of students in a quasi-experimental design (Campbell &
Stanley, 1963). The measures were objective-referenced sets of items on
various aspects of addition and subtraction. The quasi-experimental
design involved combining longitudinal and cross-sectional designs.
Figure 2 shows the design for describing both the longitudinal and
cross-sectional data. The within-grade longitudinal growth is
represented by the relative heights of the unshaded planes for the
groups of students in each grade. The shaded plane across grades
perpendicular to the time-of-testing axls represents cross-sectional
growth.

The data gathered in this study are summarized first in terms of
percent correct on the scales for each grade to portray longitudinal
growth. Second, cross-sectional growth profiles are presented on the
common scales across grades. Third, summarizations of performance are
made for students belonging to the same cognitive groups by grade and
across grades. Finally, we relate these data for third-grade children
to the strategies they used to solve the verbal problems (NR and R
problems) discussed in Chapter 3.

85
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LEVEL OF PERFORMANCE

Figure 2. Longitudinal mean growth (unshaded planes) and cross-sectional
growth (shaded plane) for students in grades 1, 2, and 3.
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Method

Sample

A sample of 44 children in grades 1-3 from the population examined
in the previous studies in this series (see Chapters 2 and 3) were
administered a set of items on three occasions over a 3- to 4-month
period in 1980 (29 February, 11 April, and 28 May or 6 July). The
number of children at each grade level is shown in Table 29. In each
administration, a set of test items was given to each student. Each
child's performance on all items was scored. This report presents the

data from those test administrations.

Description of the Tests

A battery of paper—-and-pencil objective-referenced tests had

previously been developed to assess student achievement on addition and
subtraction skills at grades 1, 2, and 3 (Buchanan & Romberg, 1983).
The battery contained three test forms for each grade. The items were
written to assess the instructional objectives of 10 experimental topics
designed to teach addition and subtraction as well as to measure
performance on certain prerequisite objectives and noninstructional
objectives (Romberg, Carpenter, & Moser, 1978). A summary of all
objectives included in the battery is provided in Table 30. Not all
objectives were assessed at all grade levels, however. Because of the
small sample of students to be tested, one of the three forms was
administered at each grade (Form K at grade 1, Form S at grade 2, Form V
at grade 3).

Form K was a 30-minute test containing three subtests: a 15-item

multiple-choice subtest and two separate 9-item subtests assessing
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Table 29

Children at each Cognitive Group in each Grade

Sandy Bay Waimea Heights
Infant School Primary School
Cognitive Group Grade 1 Grade 2 Grade 3 Total
1 3 2 0 5
2 3 6 4 13
3 1 2 8 11
4 0 0 8 8
5,6 0 0 7 7

Total 7 10 27 44




Table 30
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Objectives Assessed in Addition and Subtraction

Achievement Monitoring Battery

Prerequisite Instructional Objectives

Numerousness
0-10
11-20
0-99, writes
0-99, represents

Ordering, Place Value
sets, one-to-one correspondence
numbers 0-20
numbers 0-99, orders
numbers 0-99, notation

Instructional Objectives for the S and

Non-instructional Objectives

A Topic Series

Open Sentences
add 0-20
subt 0-20

Sentence-Writing 0-20
add-simple joining
subt-simple separating
subt-part part whole-addend
add- part part whole
subt-comparison
subt-join-addend

Sentence-Writing 0-99
add-simple joining
subt-simple separating
subt-part part whole-addend
add-part part whole
subt-comparison
subt-join-addend

Algorithms
add 0-99
subt 0-99

Problem-Solving 0-20
add-simple joining
subt-simple separating
subt-part part whole-addend
add-part part whole
subt-comparison
subt-join-addend

Problem-Solving 0-99
add-simple joining
subt-simple separating
subt-part part whole-addend
add-part part whole
subt~comparison
subt-join-addend

Counting 9-31
on
back

Basic Facts--Speeded Test
add 0-20
subt 0-20

Algorithms--Timed Test
add 0-99
add 0-99
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recall of addition and subtraction facts under time limits. Form S was
a 35-minute test containing four subtests; three of the subtests were
similar to the Form K subtests with some items dropped and some added to
form a 19-item multiple-choice subtest and two 12-item recall tests.

The fourth subtest was a 4-item free-response sentence-writing measure.
Form V for third grade was a 40-minute test containing six subtests. 1In
this case, the two recall subtests and the sentence-writing subtest were
identical for the Form S subtests. Five items were dropped from the
Form S multiple-choice subtest, leaving 14 items. The two new subtests
were 24-item timed measures of performance on addition and subtraction
algorithms.

Multiple-choice subtests. Individual objectives in the areas of

numerousness, ordering, place value, open sentences, and algorithms were
represented by one multiple-choice item in each test form on which they
were assessed. For the two objectives for counting, counting on and
counting back for numbers to 18, there was one item per form; however,
an additional counting item for numbers to 31 was included in each test
because information on these numbers was of potential interest relative
to interview problem situations using larger numbers (see Chapter 3).
Four individual objectives for sentence-writing were represented by
a multiple-choice item in each form. For grade 1, these items contained
numbers 5-9 or 11-15; for grades 2 and 3 the number domains were 11-15
and 0-99. Since there was no way in a multiple-choice format to have
students actually write a sentence, the items required listening to a
verbal problem read aloud and then choosing the sentence that correctly
represented the verbal situation. The problem situation itself was not

printed on the test page. This prevented reading difficulties and also
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was in keeping with the procedures for the interviews, in which the
problems were presented orally.

For Form K, two objectives for the problem-solving area were
assessed while for Forms S and V, four objectives were included. The
number domains were the same as for the sentence-writing objectives, and
again, the problem situations were not printed in the student booklets.

All of the questions in the multiple-choice section of the tests
were read to the children and then the key phrases were repeated; in the
case of the verbal problems for the sentence-writing and problem-solving
objectives, the entire story situation was read twice. The children
then marked an X on one of the four response choices: the solution, two

distractors, and the "puzzled face,"

an option that indicated "I have
not learned this yet.”" The response choices, symbols, and pictures were
not read or explained to the children (with the exception of the puzzled
face).

The puzzled face option was provided to avoid unnecessary
frustration and to reduce random guessing. Although we expected
students to use this choice throughout the achievement testing because
there would always be objectives not yet introduced and/or mastered,
this option was particularly useful at the baseline period. Marking the
puzzled face allowed children to give a positive response indicating

that they had not yet learned to find the answer to a question.

Speeded subtests. There were 9 addition and 9 subtraction facts on

Form K and 12 on each of Forms S and V. The first six problems in each
case covered the facts from 4 to 9; the last three (or six) involved 10
to 18. The test administered introduced the addition and subtraction

recall subtests; then specific directions on a tape recording preceded
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the items presented, with intervals of 4 seconds working time for Form K
and 2 seconds for Forms S and V. The children wrote their answers in
designated spaces, leaving spaces for unknown facts empty. There was a
short break between the two subtests.

Sentence-writing free-response subtests. Four of the 12 individual

sentence-writing objectives (verbal problem types) for the numbers 0-20
and 0-99 were assessed in Forms S and V. A free-response format was
employed in which a verbal problem was read twice to the students, who
were directed to write a sentence for the situation and not to solve the
sentence. There were two 0-20 and two 0-99 items per test.

Addition and subtraction algorithms timed subtests. These

subtests, in Form V only, each contained 24 items., The items were
either two-digit or three-digit; 18 items required regrouping, 6 did
not, The items were arranged in order of difficulty. For example,
three-digit problems not requiring regrouping preceded three-digit
problems that required regrouping, and three-digit regrouping problems
in which only the ones were regrouped preceded problems in which both
ones and tens were regrouped. The students were instructed to try each
problem in order (the problems were alphabetized) and to go on to the
next problem if unable to do a particular example. SixX minutes were

allowed for each subtest.

Test Administration

The three assistants who gathered data in Study 3 (Chapter 3) also
carried out that task in this study. Guidelines for administering the

achievement tests were provided to each assistant, The guidelines
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indicated which tests were to be given, dates for administration, and so
forth.

The first administration was supervised by Professor Romberg and
went smoothly, The second and third administrations were carried out
after Professor Romberg had returned to the United States. These test
admininstrations at grade 1 went smoothly as scheduled. At grade 2, one
item on Form S did not copy well, so students could not read that
question. At grade 3 there were two administrative mixups. First, Form
S rather than Form V was given in April to all three classes and in May
to two of the classes. This was not a serious problem, since many items
are the same, except that the timed algorithms tests were not given.
Second, in the third class, Form V was given in July rather than May.
The May administration was scheduled near the end of the term, but the
assistant failed to administer the tests at that time. After a short
break, children returned to school to start the next term. The
assistant asked whether she should still gather the data and was advised
to administer Form V in July. The results of this administration would
not reflect much additional instruction, since there had been a break
between terms. All data were then shipped to Madison and scored by
Center staff. Each subject's responses were recorded and are the basis

for all summary information appearing in this paper.

Results and Discussion

Longitudinal Growth Within Grades

Grade 1. The percent correct for students at grade 1 on the
individual objectives and composite objectives for each of the three

administrations is shown in Table 31. Overall, the data show that, at
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the start of the school year (February), this sample of students had
acquired the prerequisite objectives and could solve the verbal addition
problems (but probably not by addition), and some (43%) could find the
answer to an open addition problem. They could not solve subtraction
problems, write sentences, count in or count back, nor could they recall
basic facts.

By the end of the autumn term (May), these students' addition
skills had improved dramatically. The percent correct increased for
solving an open sentence, 43% to 86%; writing a correct addition
sentence, 29% to 57%; counting on, 29% to 57%; and addition facts, 33%
to 76%. However, the same cannot be said for subtraction. Only for
solving a verbal comparison problem (29% to 71%) and for subtraction
facts (29% to 567%) was there marked improvement. Obviously, instruction
in grade 1 had some effect.

Grade 2, The picture is somewhat different for grade 2 students
(see Table 32). At the beginning of the school year, this sample of
nine students generally had a low percent correct. In fact, on only
three items did more than half of the students get the correct answer.
Part of the difficulty was that Form S used large numbers (0-99) in
several of the questions. By May, improvement on several composite
objectives was apparent. The students were comfortable with
numerousness of larger sets (56% to 75%), had improved on basic facts
(29% to 51% and 23% to 53%, but not yet to any level of mastery), could
solve simple open sentences (17% to 88%), and had improved in counting
(30% to 63%) and writing sentences for verbal problems (28% to 59%).

Again, instruction had an effect, but increases in performance were not
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apparent for ordering large numbers, problem solving, selecting written
sentences for verbal problems, and algorithms.

Grade 3. The picture was more encouraging for grade 3 students
(see Table 33). In February, their performance was not high (above 80%)
except on two items, but by the end of May (or early July) performance
on all composite objectives except one approached 80%. The exception
was the item on place value for numbers 0-99. Sentence
writing-selecting skills had improved, but scores were not yet high on
some subtraction situations (comparison and part-part-whole addend).

Grade 3 students' performance on the timed algorithms test is shown
in Table 34. When all 22 children were tested in February, they
performed well on the six addition-without-regrouping problems and
acceptably on the three items testing two-digit subtraction without
regrouping. On all others, they did poorly. Part of the difficulty was
that because of the timed conditions most students did not attempt the
last items in the test. Those children who did reach the items did
fairly well on the addition regrouping items but had considerable
difficulty with the subtraction items requiring regrouping.

Unfortunately, no children were given this test again in April or
May, and only 12 in July. By then, those students' performance was
considerably better. They still had some difficulty with the
three-addend addition problems and the subtraction regrouping problems,
but the improvement in every case is striking.

In summary, for this small sample of children assessed at each
grade level, growth within each grade on some aspects associated with
addition and subtraction is clear. Growth, however, is not uniform

across objectives. In addition, overall level of performance on many
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Table 34
Percent Correct for Addition and Subtraction Algorithms

Timed Tests by Problem Type for Grade 3, Form V

Percent Correct

Item Type Number Feb. July
of Items N=22 N=12
Addition
2-digit (without regrouping) 3 86 100
3-digit (without regrouping) 3 93 94
2-digit (with regrouping)a 6 49 89
3-digit (with regrouping) 9 16 78
3~digit addends 3 0 44
Subtraction
2-digit (without regrouping) 3 68 94
3-digit (without regrouping) 3 33 89
2-digit (with regrouping)a 6 8 75
3—digit (with regrouping) 12 0 47

%Three items are 2-digit + 1-digit.
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objectives is not high, By mid-third grade, students had yet to master

many aspects of either addition or subtraction.

Cross-sectional Growth Across Grades

To portray cross-sectional growth (see Figure 2), five objectives
were assessed in all three grades: sentence writing: subtraction-
simple separating (11-15); sentence-writing: subtraction-part~part-
whole missing addend (11-15); problem solving subtraction-comparison
(11-15); recall of basic facts-addition; and recall of basic facts-
subtraction. Two composite scales were also administered to grades 1
and 2, and the composite scale ordering, place value was administered at
grades 2 and 3.

The cross-sectional data for these scales are presented in Table
35. On each objective, considerable growth is evident. But, as with

the longitudinal data, the growth is not uniform or smooth.

Performance of Children in Cognitive Groups Within Grades

Because of the small sample of students we summarize data for
children in different cognitive groups by aggregating each group's
scores into a total score across all three administrations of the tests.
Small sample size also dictates that conclusions drawn from these data
must be regarded as tentative and should be the subject of further
study.

Grade 1. The relative performance on the test items for children
in grade 1 in different cognitive groups is shown in Table 36. There
were three children in both Cognitive Groups 1 and 2, but only one child

in Cognitive Group-3. The differences in performance for the eight



103

Performance on Standard Problems

‘pouUTqmOD UIDQ SABY SIJBP S3Y] uUo paidyleld eleq,

9% 9 anyTea adey1d ‘3uriapig
€2=N 6=N
£ 2pel1d { 9pe1d
LATnr/Len " Qg
£9 61 yoeq pPue uo Surjuno)
88 6¢ saouajuas uadg
8=N L=N
7 apeiy T ®pe1d
Aep T
69 o€ 6C 0Z-0 39ng
8/ 113 123 0¢-0 PPV
1523 papaads--sioey OISeq 3jO TIEI3Y
001 9s 62 uostaedwoo-3qng
3uratos WRTQO01d
6€ 11 9T (ST-TT) puappe-a7ouym 3ied jaed-3gng
/8 €€ %1 (ST-17) Burieaedss o7dmrs-1qng
SuT3ITIAa 3d0Ul3jULg
£Z=N 6=N /=K
¢ °ope1n 7 @pel1y 1 @peid
m%a:h\%mz T1ady *qa4 aat309lqp jo uoradraosag

3231100 Ju3d19dyg

£ pue ‘z ‘T s9peInH SSOIDY Yjmoly TBUOTIDIS~SS01) 103 saaT3109[qQ

a3rsodwo) pue saaTI0a[qQ uommo) 103 3I02110) IUIDIJ

St 2T1qel



Table 36

Frequency and Percent Correct for Composite Objectives by

Description of Objectives Cognitive Group 1 (N=3)
Number

of Items Frequency Percent Trials

Prerequisite instructional objectives

Numerousness 0-20 2 14 78 18
Ordering 0-20 2 16 89 18
Instructional objectives for the
S topics
Open sentences 2 7 39 18
Sentence-writing 0-20 4 4 1 36

Noninstructional objectives

Problem solving 0-20 2 12 67 18
Counting 3 2 7 27
Addition facts recall--speeded test 9 24 30 81
Subtraction facts recall--speeded 9 24 30 81
test
Table 37
Frequency and Percent Correct for Composite Objectives by
Description of Objectives Cognitive Group 1 (N=2)

Number

of Items Frequency Percent Trials

Prerequisite instructional objectives
Numerousness 0-99 1 4 67 6
Ordering, place value 0-99 2 3 25 12

Instructional objectives for the §
and A topics

Open sentences 2 4 33 12
Sentence-writing 0-20, 0-99 4 1 4 24
(multiple choice)

Sentence-writing 0-20, 0-99 4 9 38 24
(free response)

Algorithms 2 1 8 12

Noninstructional objectives

Problem solving 0-20, 0-99 4 11 46 24
Counting 3 (] 33 18
Addition facts recall--speeded test 12 17 24 72
Subtraction facts recall--speeded 12 16 22 72
test

21wo items were administered for the numerousness objective; students had
so data for this item were discarded.



Cognitive Group for All Administration Times for Grade 1, Form K

Cognitive Group 2 (N=3) Cognitive Group 3 (N=1) Total

Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials

17 94 18 4 67 6 35 83 42
15 83 18 6 100 6 37 88 42

7 39 18 2 33 6 16 38 42

9 25 36 2 17 12 15 18 84
13 72 18 4 67 6 29 69 42
16 59 27 2 22 9 20 32 63
65 80 81 11 41 27 100 53 189
49 60 81 8 30 27 81 43 189

Cognitive Group for All Administration Times for Grade 2, Form S

Cognitive Group 2 (N=5) Cognitive Group 3 (N=2) Total

Frequency Percent Trials Frequency Percent Trials Frequency Percent Trials

8 58 14 5 84 6 17 67 26

0 0 28 1 8 12 4 8 52
13 46 28 7 58 12 24 46 52
11 20 56 4 17 24 16 15 104
25 45 56 14 58 24 48 46 104

4 14 28 4 33 12 9 17 52
11 20 56 8 33 24 30 29 104
14 33 42 12 67 18 32 41 78
58 35 168 43 60 72 118 kL) 312
50 30 168 43 60 72 109 35 312

difficulty reading one of the items due to poor quality of the test duplicatiom
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composite objectives favor the Group 2 children over those in Group 1 on
six composites, with some of the differences being quite large. 1In
addition, the Group 2 students increased in performance from February to
May over all the objectives, but the Group 1 students improved only in
recall of facts. The single Group 3 child fails to fit any pattern.

Grade 2. The relative performance of grade 2 children in different
cognitive groups is shown in Table 37. There were two children each in
Cognitive Groups 1 and 3 and five in Group 2. In general, Group 3
children performed better than Group 2 children, who in turn performed
better than Group 1 children. Some of the differences are striking; for
example, open sentences (58%-46%-33%) and addition facts (60%-~35%-~24%).
However, there is one anomaly. ¥For the four problem-solving items, the
Group 1 children did better than either of the other groups (467 to 20%
to 33%). However, since these children were low on facts, algorithms,
and counting skills, the results suggest that they found answers to the
verbal problems using other strategies. The children with better
arithmetic skills (but not close to mastery) may have attempted to use
those skills to solve the problems, but made errors. This explanation
is further substantiated by the decrease in performance of Group 1
children on those items as the year progressed and as their arithmetic
skills improved.

Grade 3. Results for the grade 3 students in different cognitive
groups are striking but somewhat ambiguous (see Table 38). The Group
5~6 children performed better on all objectives than any other group,
and Group 2 children were lower than other groups on all the objectives.
However, Groups 3 and 4 did not differ consistently. Obviously, the

differing characteristics of these two groups are not related to
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differences in performance. Most of the differences between the Group
5~6 and the Group 2 children are large (selecting sentences 65% to 44%,

ordering 687 to 33%, subtraction algorithms 51% to 13%, and so forth).

Performance of Children in Cognitive Groups Across Grades

Performance data from Tables 35, 36, and 37 for children in
cognitive capacity Groups 1, 2, and 3 are compared in this section.
(Children in Groups 4 and 5-6 are only in grade 3.)

Group 1. The performance of children in this group at grades 1 and
2 is shown in Table 39. In general, the performance of these children
at both grades is consistent with their capacity. Only for ordering
small numbers is their performance adequate. More striking, there is
little difference in performance between grades. There is a marked
difference (7% to 33%) only on the counting items, although performance
is very low.

Group 2. Children in this capacity group are at all three grade
levels. The comparative data for these children are presented in Table
40. Performance gains by grade are apparent, but in most cases very
modest. For example, performance on solving open sentences goes from
39% to 46% from grade 1 to grade 2 and performance on writing sentences
(free response) from 45% to 52% from grade 2 to grade 3. Only for
problem solving (0-99) was there a large gain (20% to 71%). Also, there
is a large decreage in performance from grade 1 to grade 2 on recall of
both addition and subtraction facts, The decrease is undoubtedly due to
the increased number of facts and decreased time for response over
forms. This clearly suggests that the high performance at grade 1 was

not due to having committed the facts to memory. Also, it should be
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noted that, at grade 3, these children had not learned to use the
addition and subtraction algorithms with any facility. Again, the
overall performance of these students reflects capacity more than grade
level.

Group 3. The data for children in this cognitive capacity group at
grades 2 and 3 are compared in Table 41. There are some important
differences in performance at this grade. For example, performance
increases from 8% to 50% on ordering, place value; from 17% to 53% on
sentence-writing (multiple choice); and from 33% to 73% on problem
solving. However, for all other scales, performance is similar across
grades. Overall performance is fair and students show some facility

with the addition algorithm, but not with the subtraction algorithm.

Relationship of Performance on Algorithms to Strategies Used to Solve

Problems

One general goal of instruction on addition and subtraction is to
have students solve verbal problems (such as those presented in Chapter
3) by using an addition or subtraction algorithm. We now examine the
relationship of the performance of the third-grade children on the timed
algorithm problems to the strategies they used to solve verbal problems
that could be done using those algorithms. The strategy data were
collected in the interview study discussed in Chapter 3. We were
particularly interested in examining whether or not students who had
learned to use the addition and subtraction algorithms chose to use them
when solving such verbal problems.

For addition problems requiring no regrouping, at Time 1, students

attempted 62 items and got 57 correct (92%); in July, students answered
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all 36 items they attempted correctly. With one exception (student
517), these students knew how to add two-digit numbers without
regrouping. However, on the interviews at Time 1, students used
algorithms only 597 of the time (54% correctly). At Times 2 and 3, the
percent of use increased but only to 79%Z and 72%, respectively.

The data for addition with regrouping at Time 1 were similar;
students attempted 95 items and got 66 correct (69%Z). By Time 2, they
attempted 74 items and got 66 correct (89%). Thus, although students
had some difficulty with regrouping at the start of the year, by July,
all the students could add with regrouping (with the exception of one
student who made six errors in six problems).

The interview data show that, in spite of this high level of
performance, many students did not use the algorithms to solve verbal
addition problems. At Time 1, about half (54%) of the children tried
using an algorithm (46% correctly). At Time 2, this had changed to 60%
using an algorithm (48% correctly), and by Time 3, 78% used an algorithm
with no errors.

For subtraction without regrouping, results of a comparison between
performance on three achievement items and strategies used on the four
verbal subtraction problems were similar. At Time 1, students attempted
55 items and got 45 correct (82%). By Time 2, 34 of 36 attempts were
correct (94%). In fact, only one student made any errors in July. One
can conclude that these students were able to subtract without
regrouping. However, on the four verbal subtraction problems only 14%
of the strategies used were algorithmic (only 9% correct) at the start

of the year. At Time 2, this had increased to 25% and finally to 34% by
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Time 3. Furthermore, over half of the total attempts (59%) were on Task
2 (simple separate), the most obvious subtraction problem.

The same pattern, but more pronounced, occurred for subtraction
with regrouping. At Time 1, students attempted 38 items and got only 12
correct (32%). Many children managed to complete only the first six
no-regrouping items in this timed test, so there was no real measure of
their capability. It is hard to imagine why they were so slow. One
must assume that they would have been unable to do the regrouping
problems had they attempted them. By the second administration (July),
students attempted 66 items and got 55 correct (82%). At this time,
only two students made more than one error on the six problems. Thus,
although there was evidence that students had considerable difficulty in
subtracting with regrouping in February, by the end of the autumn term
most were capable of using a subtraction algorithm.

Again, however, in spite of knowing the algorithmic procedures for
subtraction, most children did not attempt to use them to solve verbal
problems. On the first interview, students used algorithms on only 13%
of the items (5% correct). On the second interview, this had increased
to 23% (11% correct), and by the third interview, it was 35% (26%
correct). As with subtraction no-regrouping, most of the attempts were
on the simple separating tasks (44%).

On this last set of verbal problems, the cognitive Group 2 students
made the most total attempts to use algorithms (35% of the time), even
though they got no items correct on the achievement test and made the
most errors (only 10%Z correct) on verbal problems. In contrast, the

Group 5-6 students attempted to use algorithms only 22% of the time.
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The relationship between proficiency in performing addition and
subtraction algorithms and using the algorithms to solve verbal problems
is interesting. Most of the third-grade students used other strategies
(counting, fingers, and so forth) until they became confident in using
algorithms. However, Group 2 children who had not acquired other
strategies to solve these problems tended to use the taught algorithms
even though they were not proficient in their use. This suggests that
most third graders recognized that these problems could be solved using
algorithms but chose to use other familiar strategies. The problem
structures (verbal semantics) clearly influenced how the students worked
the problems. In fact, the semantics seemed to be more important than

the realization that the problems could be done algorithmically.

Summary and Conclusions

The overall picture these data presents is of children struggling
to learn the complex arithmetic skills associated with addition and
subtraction and to use those skills to solve verbal problems. The
children had difficulty with place value even though they correctly
solved three-digit problems. Work on algorithms improved even though
basic facts were weak., With little arithmetic competence, students
correctly solved some simple verbal problems.

Children who were identified as being in a particular cognitive
group, with one important exception, performed differently than children
in other groups within each grade. The exception was the lack of
consistent differences between Groups 3 and 4 at grade 3. Again, it
should be noted that Group 3 at grade 3 also did not differ on the

interview tasks (see Chapter 3) and only differed on transitivity on the
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cognitive tasks (see Chapter 2). Overall, however, it is apparent that
children who differed in cognitive-processing capacity (Group 1, Group
2, Groups 3 and 4, and Group 5-~6) performed differently regardless of
specific objectives, instruction over time, or grade.

Although it cannot be denied that teaching or experience accounts
for some differences in the children’'s performance on standard addition
and subtraction tasks, it is striking that the actual level of
performance appears to be consistent with capacity. Differences in
performance between groups and within groups across grades are
differences one would expect, based on the nature of the groups (e.g.,

quantitative skills, memory capacity).



Chapter 5
COGNITIVE-PROCESSING CAPACITY

AND CLASSROOM INSTRUCTION

The fifth and last study in this series is reported in this
chapter. Its purpose was to examine the question, Do children who

differ in cognitive capacity receive different instruction?

Method
Sample

A sample of 35 children from the population used in studies 3 and 4
in this series (see chapter 2) was observed during instruction over a
three-month period in 1980 (February 27 through May 28). The number of
children observed in each cognitive group, class, and grade is shown in
Table 42.

Our attempt was to determine the way in which aspects of content
influence certain teacher behaviors during instruction and in turn how
these actions affect pupil outcomes. In particular, the extent to which
children are engaged in learning mathematics was examined. To do this
we developed a model of classroom instruction in which "content
segmentation and sequencing"” and "content structuring" were hypothesized
to influence teacher planning, which in turn influences classroom
organization, the allocation of instructional time, verbal interactions
within classroom, and, eventually, pupil engaged time (see Romberg,
Small, & Carnahan, 1979, for a complete explication of the model). To
test this model, data were gathered on various components of the model

in actual classroom settings for several periods of time (see Romberg,

117
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Table 42
Children in Each Cognitive Group, Class and

Grade Used in the Observation Study

Sandy Bay Infant

School Waimea Heights Primary School
Class Class
1 2 3 4 5
Cognitive
Group Grade 1 Grade 2 Grade 3 Grade 3 Grade 3
1 2 2
2 3 4 3
3 1 2 2 2 2
4 2 2 2
5-6 3 1 2

Totals 6 8 7 8 6
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Small, Carnahan, & Cookson, 1979, for a description of coding procedures
used as well as detailed explanations of coding categories). With such
data the relationship of the model to classroom instruction can be

examined.

Summary of the Coding Procedure and Aggregation of Data

Data were collected on content covered and on certain teacher and
pupil behaviors involved in the teaching and learning of mathematics
using two procedures (complete details appear in Romberg, Collis,
Buchanan, & Romberg, 1982).

Content. First, to estimate time spent on various mathematics
objectives, the teachers were asked to log the number of minutes of
instruction in nine content areas spent for each target child. Seven of
the nine areas dealt with aspects of learning to add and subtract. The
"other arithmetic' area included time spent on both multiplication and

division activities, and "

other mathematics" encompassed all other
activities such as measurement, fractions, or geometry.

Classroom observation. Three trained observers gathered the data.

These were the same persons who gathered data in Studies 3 and 4. One
observer worked at Sandy Bay Infant School and observed both the grade 1
and grade 2 classes. The other two worked at Waimea Heights Primary
School, where one observed two classes. Each observer was able to
observe instruction in a class approximately 24 days during the
observation period. At the schools, the observers sat in a class and
over time became fixtures who did not distract either teacher or

children.
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Data on pupil and teacher behavior were gathered using an
observation coding form. The exact nature of the data collected and the
method used to gather it are described fully in the manual produced by
the project staff to train observers (Romberg, Small, Carnahan, &
Cookson, 1979).

In brief, student and teacher verbal behaviors were observed in
each class on a sample of days. A time-sampling procedure was used in
which each of six to eight target students was observed in a particular
sequence at different moments throughout the observation period. The
sequence in which the students were observed was fixed prior to the
beginning of the observation period and was invariant while observations
were taking place. The teacher's behavior was coded for instances of
relevant verbal behavior each time a target student was observed. The
observation of all six to eight students (along with the teacher six to
eight times) represented a coding cycle. It was estimated that one
minute was needed: (a) to observe the target student's behavior, (b) to
observe the teacher, (c) to observe organizational aspects of the
classroom, and (d) to code the appropriate categories on the observation
form. The behavior to be coded consisted only of those activities the
teacher and pupil were involved in precisely at the beginning of the
one-minute time interval. Through this process, observer bias in
sampling moments is minimized. The coding categories were used to
record a description of what was occurring at that one instant for both
the target student and the teacher. 1In this way, a series of codings
was obtained that gave a running account of what took place in the

classroom for a particular observation period.
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The observation for a class session began when the mathematics
instruction began and ended when the mathematics instruction for that
class session ended. The beginning and ending of the observation period
did not always coincide with the beginning and ending of mathematics
instruction as scheduled. As a result, two measures of time involved in
mathematics class were obtained. Available time represented the
scheduled time period in which mathematics instruction was to take
place. Actual time, on the other hand, represented the amount of time
mathematics instruction occurred. In most cases, the amount of time
observing coincided closely with the measure of available time.

Data aggregation and analysis. The basic observational data were

aggregated in the form of frequency counts for each behavior category
coded. For purposes of interpretation, the proportional occurrence of
each behavior (based on total observed instances) is used. Data were
aggregated separately for each class for the total period. The data
give an overall picture of the teaching of mathematics in each class and
yield estimates of how instructional factors affect engagement rates.
The observational data were summarized in terms of three
categories: pupil actions, teacher behaviors, and teacher
behavior~pupil engagement interactions. Pupil actions were summarized
in terms of engaged time; if engaged, whether it was on content or
directions; grouping; interactions; and if interacting, with whom.
Teacher behaviors were summarized in terms of interactions, speaking to
group, speaking on content or directions, questions, feedback and type
of explanations. Interactions of teacher behaviors and pupil engagement

were summarized in terms of whether or not pupils were engaged when the
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teacher was speaking, speaking to groups, listening, no teacher
interactions, questioning, and providing information.

The plan for the analysis of the observational data was based on
the fact there were three primary dimensions in the study: grade,
class, and cognitive group of the pupils. The raw data are observed
minutes. Thus, the number of minutes and percent of time are aggregated
in this analysis in five ways. TFirst, we have aggregated data for all
pupils with respect to grade. Second, since three different classrooms
were observed in grade 3, we have examined the data by class. Third, we
examined the data for all students with respect to cognitive group.
Fourth, we have examined the data by cognitive level within grade.

Finally, we present the data in terms of cognitive level within class.

Results and Discussion

Content Covered

Table 43 presents the percentage of total time teachers spent on
various content areas. These data reflect the curricular emphasis
common in these grades. Almost half of the time is spent on addition
and subtraction. The emphasis obviously varies across grades. In
grade 1, the highest percentage is on addition facts, numerousness and
counting. In grade 2, basic facts for both addition and subtraction are
still emphasized as are counting skills. 1In grade 3, most of the
emphasis is on computational algorithms. The only disappointing
percentages are the little time spent on writing sentences and finding
solutions to verbal problems. However, this differential emphasis is
program-related, not child-related. For example, the reduction in

percent of time spent on counting at grade 3 was not matched by the
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children's failure to use this technique to solve problems. In fact, it
can be argued that the structure of the program at grade 3 (emphasis on
algorithms) presumes that children have mastered most of the
prerequisites (like counting and basic facts) and have acquired a high
level of reasoning about numbers (are in Cognitive Group 5-6). This is,
of course, at odds with the data on these students presented in the last
two chapters.

Also, this description is fair in terms of the content included in
the mathematics curricula in these schools, but it fails to capture
important structural features of those programs. The program in Sandy
Bay Infant School was filled with manipulative materials, many
opportunities to explore independently or in small groups, learning
stations, etc., and no basal text was used. However, in the third
grades at Waimea Heights, a single text was followed and most activities

involved paper—and-pencil seatwork.

Pupil Actions

Grade. The data on pupil actions by grade are presented in

Table 44, Significant engagement rate and grouping differences are
apparent across grades. Both are likely due in part to the differences
in the structure of the curriculum in the schools. The high amount of
time spent on small-group and individual activities in grades 1 and 2
(85% and 68%, respectively) is consistent with the manipulative-based,
learning station approach at the Sandy Bay School. Similarly, 70% of
the time spent in large-group instruction at grade 3 is consistent with
the text-based instruction used at the Waimea Heights School. However,

it is interesting to note that the largest difference in engagement is
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Table 44
Observed Minutes and Percent of Time

of Pupil Actions by Grade

Grade 1 Grade 2 Grade 3
Pupil Action
Minutes % Minutes % Minutes %

Engagement

Engaged time 559 55 771 71 1369 77

Off-task time 449 45 317 29 403 23
Types of engagement

Content 488 89 656 86 1149 88

Directions 62 11 107 14 164 12
Grouping

Individual 302 30 165 15 11 1

Small group 553 55 583 53 524 29

Large group 156 15 343 31 1259 70
Interactions

Target speaking 62 6 51 5 105 6

Target listening 91 9 163 15 279 15

None 858 85 880 80 1427 79
Interaction other party

Teacher 99 65 161 76 296 78

Pupil 48 31 36 17 77 20

Other adult 6 4 16 8 6 2
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between grade 1 and grade 2 students, who are following the same
curriculum (in the same school). In fact, it was observed that in grade
1, many children spent considerable time waiting for instructions about
what to do next when they had completed an activity. By grade 2, this
behavior was observed less frequently. Many students now proceeded to
the next task with little hesitation. Part of this change is probably
due to increased student maturity or familiarity with behavior
expectations of the system and part is probably due to the particular
teacher a student had.

Class. Grade 3 data were further subdivided into pupil actions by
class as shown in Table 45. For comparative purposes, the data for
grade 1 (class 1) and grade 2 (class 2) are shown again. Classes 3, 4,
and 5 are all in grade 3. Class 4 is clearly different from the other
two classes. Pupils in that class were off-task more of the time.
Furthermore, if they were engaged, they were more likely to be engaged
in receiving directions, and if interacting they were more likely to be
interacting with other pupils. Differences in grouping are not likely a
function of curriculum, since all third-grade classes are similar on
that dimension. The large differences in engagement and interactions
are probably a function of the teacher.

Cognitive group. The number of minutes and percent of time coded
for the five pupil action categories for all students in the cognitive
groups are presented in Table 46. Overall, the percent of engaged time
steadily increases across cognitive groups. Also, differences in
grouping are striking, with percent of time in large-group instruction
varying from 21% for Group 1 to 68% for Group 6 children. All other

differences in percentage of time coded for the pupil action categories
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are not striking or of practical interest. However, these differences
in engagement and grouping are clearly confounded by the grade, class,
and teacher effects described earlier. This is due to the fact that at
grade 1, five of six children observed were in cognitive Groups 1 and 23
at grade 2, six of eight children were in Groups 1 and 2; and at grade
3, 12 of 21 children were in Groups 4, 5, and 6.

Cognitive level within class. To answer the question of whether or

not children with different cognitive capacities received different
instruction, the data for children within each class are presented. The
data for children of different cognitive levels within Class 1 (grade 1)
are presented in Table 47. Only the difference in time pupils interact
with other pupils is of interest and then only between Group 1 and Group
3 children (24% to 45%7).

The data for Class 2 (grade 2) children in different cognitive
groups are presented in Table 48. As with grade 1, the only observable
difference is in pupil interactions with other pupils (17% for Group 1
children and 32% for Group 3 children).

Tables 49, 50, and 51 contain the within-class data for children in
different cognitive groups for the three third-grade classes. Class 3
and Class 5 show high engagement on content with virtually no
differences between students. Class 4, on the other hand, exhibits much
lower engagement with more time on directions for all students. Again,
only pupil interactions with other pupils vary by cognitive level (31%
for Group 2 children to 46% for Group 5-6 children).

Summary. Overall, these data suggest that differences in grouping
of students are due to grade (structure of the curriculum) or teacher.

Grade 1 and grade 2 children often worked in small groups and
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Table 47
Observed Minutes and Percent of Time of Pupil Actions

by Cognitive Group Within Class 1, Grade 1

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3

Pupil Action

Minutes % Minutes % Minutes %

Engagement

Engaged time 260 60 189 51 110 54

Off-task time 174 40 181 49 94 46
Types of engagement

Content 230 89 159 87 99 30

Directions 28 11 23 13 11 10
Grouping

Individual 129 30 119 32 54 26

Small group 235 54 197 53 121 59

Large group 70 16 56 15 30 15
Interactions

Target speaking 26 6 24 6 13 6

Target listening 41 9 30 8 20 10

None 368 85 318 85 172 84
Interaction: other party

Teacher 46 70 36 67 17 52

Pupil 16 24 17 31 15 45

Other adult 4 6 1 2 1 3
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Table 48
Observed Minutes and Percent of Time of Pupil Actions

by Cognitive Group Within Class 2, Grade 2

Cognitive Group 1 Cognitive Group 2 Cognitive Group 3

Pupil Action

Minutes % Minutes % Minutes %

Engagement

Engaged time 160 72 399 72 212 69

Off-task time 63 28 158 28 96 31
Types of engagement

Content 131 82 336 85 189 90

Directions 29 18 57 15 21 10
Grouping

Individual 38 17 82 15 45 14

Small group 121 54 294 53 168 54

Large group 65 29 179 32 99 32
Interactions

Target speaking 12 5 20 4 19 6

Target listening 35 16 84 15 44 14

None 177 79 454 81 249 80
Interaction: other party

Teacher 34 72 87 84 40 65

Pupil 8 17 8 8 20 32

Other adult 5 11 9 9 2 3




132 Classroom Instruction

Table 49
Observed Minutes and Percent of Time of Pupil Actions

by Cognitive Group Within Class 3, Grade 3

Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6

Pupil Action

Minutes % Minutes % Minutes %

Engagement

Engaged time 144 98 80 96 178 99

Off-task time 3 2 3 4 2 1
Types of engagement

Content 127 93 76 96 161 95

Directions 10 7 3 4 8 5
Grouping

Individual 5 3 0 0 1 0

Small group 33 22 20 23 48 26

Large group 114 75 67 77 136 74
Interactions

Target speaking 8 5 2 2 14 8

Target listening 47 31 16 18 49 29

None 98 67 69 79 122 66
Interaction: other party

Teacher 52 95 16 94 54 89

Pupil 3 5 1 6 6 10

Other adult 0 0 0 0 1 1
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Table 51
Observed Minutes and Percent of Time of Pupil Action

by Cognitive Group Within Class 5, Grade 3

Cognitive Group 3 Cognitive Group 4 Cognitive Group 5,6
Pupil Action

Minutes % Minutes % Minutes %

Engagement

Engaged time 104 87 103 90 110 92

Off-task time 16 13 11 10 10 8
Types of engagement

Content 100 98 94 99 95 95

Directions 2 2 1 1 5 5
Grouping

Individual 0 0 0 0 5 4

Small group 60 48 58 48 58 46

Large group 66 52 63 52 63 50
Interactions

Target speaking 9 7 9 7 11 9

Target listening 15 12 16 13 9 7

None 102 81 95 79 106 84
Interaction: other party

Teacher 20 83 22 85 13 72

Pupil 1 4 4 15 5 28

Other adult 3 13 0 0 0 0




Classroom Instruction 135

individually for mathematics instruction while large group work was
common in grade 3. Differences in engaged time are likely due to
teachers or to students' familiarity with the instructional pattern.
Only pupil interactions with other pupils are plausibly due to
childrens' cognitive level (with children in higher groups more likely
to interact with others), but this behavior only occurs where such

interactions are allowed and even then is infrequent.

Teacher Behaviors

The data for number of minutes and percent of time teachers at
various grade levels engaged in the behaviors coded are discussed first.
Then, the teacher behaviors are presented by class, by cognitive group,
and by cognitive group/class interactions.

Grade. The data on teacher behaviors by grade are presented in
Table 52. The differential time teachers spent explaining or giving
directions vs. content varies with grade level and is consistent with
program expectations discussed earlier. Time spent on directions is
inversely related to grade level.

Class. The data on teacher behaviors by class within grade 3 are
shown in Table 53. The differences in speaking about content appear to
be teacher or class specific. The differences between the first-grade
teacher and two of the third-grade teachers on content are large. For
example, the teacher of class 1 (grade 1) spent 51% of the observed time
speaking on content while the teacher in class 3 (grade 3) spent 82% on
content. Another grade 3 teacher (class 4) spent 57% of the time on
content. However, the percent of time teachers explain directions

appears to be a grade effect or curriculum effect, since all three grade
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Table 52
Observed Minutes and Percent of Time

of Teacher Behaviors by Grade

Grade 1 Grade 2 Grade 3
Teacher Behavior

Minutes z Minutes % Minutes %

Interaction
Listening 187 17 206 18 216 11
Speaking 640 58 677 59 1238 64
None 276 25 254 22 485 25
Speaking/large group 91 14 209 31 313 25
Speaking/small group 82 13 65 10 227 18
Speaking/individual 467 73 402 59 697 56
Speaking/content 367 57 404 60 823 66
Speaking/directions 268 42 256 38 347 28
Low-level questions 135 12 157 14 338 17
Direction-related questions 33 3 29 3 199 10
No feedback 1006 91 1035 91 1819 94
Feedback/individual 79 90 89 94 109 92
Low-information feedback 97 100 101 98 115 93
High-information feedback 0 0 2 2 9 7
Explaining content 130 12 117 10 323 17
Explaining directions 235 21 228 20 165 9
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3 teachers spend less time (6%, 11%, and 37%) than either the grade 1
(21%) or grade 2 (20%) teachers.

Cognitive group. The number of minutes and percent of time coded
for six teacher behavior categories are presented in Table 54. Overall,
three differences are striking across cognitive groups. First, the
percent of time speaking to individual children decreases from 67% for
Group 1 children to 537 for Group 5-6 children. Second, the percent of
time teachers spent speaking about directions shifts from 397 for
Group 1 children to 27%Z for Group 5-6 children. Similarly, the percent
of time explaining directions decreases from 22% for Group 1 children to
6% for Group 5-6 children. However, all of these differences are
undoubtedly confounded by grade level.

Cognitive group within class. Data on the percent of time teacher

behaviors were observed in each class in relation to students in
different cognitive groups are not presented here. For four of the
classes (1, 2, 3, and 4), there were no striking differences in terms of
time spent interacting with different children. Only one important
difference was found. In class 5, the time that the teacher spoke on
content decreased across Groups 1-5/6 from 827 to 667.

In summary, although teachers varied considerably in their
behavior, differences seem due more to grade, or individual teaching
style, or grouping patterns within classes than to differential
treatment of students with various cognitive capacities. Teachers may
treat some students different from others, but these data suggest that

cognitive capacity is not the basis for such differentiation.
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Teacher Behavior/Pupil Engagement Interactions

The number of minutes and percent of coded time that teachers
performed various actions and children were engaged are reported in this
section. As with the previous sections, the data were first aggregated
for children differing by grade, then class, cognitive group, and
finally, cognitive group within class.

Grade. The data on pupil engagement for various teacher actions by
grade are presented in Table 55. Pupil engagement when teachers are
speaking increases from 597 in grade 1 to 787 in grade 3. Engagement
when teachers are not speaking increases from 50% to 76%. Similarly,
pupil engagement when there are no interactions increases from 427% to
78% across grades, as do all engagement rates related to teacher
questioning and providing information.

Class. The information on pupil engagement when teachers performed
certain actions is presented for all five classes in Table 56. As would
be expected from previous analyses, Class 4 in grade 3 is different from
Classes 3 and 5 in grade 3. Engagement rates in Class 4 are lower in
all categories than rates in the other two classes. In fact, the grade
level effect noted previously is in part a teacher effect, and certainly
would be higher for grade 3 if Class 4 were omitted.

Cognitive group. The overall data on time pupils in differing
cognitive groups were engaged when teachers were doing different things
is reported in Table 57. Many of the differences are striking. First,
as cognitive level increases, children increase in engagement when
teachers are speaking from 65% of the time to 867%. Second, the pattern
across groups is similar regardless of whom the teacher is speaking to,

and even when the teacher is not speaking (62% engagement to 89%).



Table 55
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Observed Minutes and Percent of Time of Teacher

Behaviors and Pupil Engagement by Grade

141

Grade 1 Grade 2 Grade 3
Interaction
Minutes % Minutes % Minutes %
Teacher speaking/
Pupil engaged 356 59 463 70 919 78
Pupil off-~task 245 41 197 30 259 22
Pupil engaged when teacher
speaking to:
Individual 253 57 265 68 502 74
Small group 51 67 45 69 160 80
Large group 52 63 153 75 256 86
Not speaking 203 50 308 72 449 76
Pupil engaged when teacher:
Listening 104 61 151 76 152 72
Pupil engaged when:
No interactions 99 42 157 69 295 78
Pupil engaged when teacher
asks:
Low-level questions 75 60 108 71 263 81
High-level questions 8 67 19 83 42 95
Questions about directions 15 52 20 69 133 70
Pupil engaged when teacher
provides:
Low-information feedback 44 48 67 68 90 80
Positive feedback 32 54 56 72 52 87
Information about content 83 68 89 77 255 82
Explains directions 131 58 149 67 114 72
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144 Classroom Instruction

Third, in the same manner, pupil engagement increases from 51% for Group
1 children to 91% for Group 5-6 children, when there were no teacher
interactions. Finally, the same pattern of increase in engagement is
apparent when teachers question students or provide information.
However, as in the previous analyses, these are the same differences
found across grade levels.

Cognitive level within class. The engagement data for children of

different cognitive levels within each class was also calculated.
Although there is some variation in engagement in each class for
children of differing cognitive levels, no pattern of differences in any
class was apparent. Thus, tables summarizing these data are not
presented.

In summary, the data relating pupil engagement to type of teacher
behavior suggest that differences are due to grade level and teacher
style and not to differences in cognitive capacity among the students

within each class.

Summary and Conclusions

Data from the sample of students in the five classes observed in
this study indicate that children who differed in cognitive capacity did
not receive different instruction. There were some overall differences
in how the five teachers dealt with Group 1 and Group 5-6 children, but
these differences are slight and are confounded with both grade and
teacher effects. Nevertheless, the study provides some interesting
insights about mathematics instruction. First, teachers tended to
organize and teach mathematics based on school traditions. Differences

in content emphasis and patterns of grouping students were based on
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school curricula. In particular, the differences in pupil actions and
teacher actions from grades 1 and 2 to grade 3 reflected a shift in
emphasis and organization of activities. Sandy Bay Infant School
(grades 1 and 2) has an open, activity oriented program. Waimea
Heights, on the other hand, is a school in which instruction is more
formal and direct. Hence, the overwhelming grade level effect on pupil
actions, teacher actions, and pupil engagement was to be expected.

Second, the mathematics program within schools was not related
either to how students work problems or their capacity to reason.
Third, there were important differences between one teacher and two
others who used the same curriculum. Classes 3 and 5 in grade 3 clearly
reflected good teaching that was following a direct instruction
approach. Children were on task in large or small groups. Class 4, on
the other hand, while following the same program, was not a successful
class.

Fourth, the only interesting pupil behavior we found that was
related to cognitive capacity was the tendency for children in higher
groups to interact with other pupils more often when there was an
opportunity to interact. This effect, however, may also be a function

of grade, school, and teacher variables.



Chapter 6

SUMMARY, CONCLUSIONS, AND IMPLICATIONS

The question investigated in these set of five studies was, Do
children who differ in cognitive capacity learn to add and subtract
differently? In asking this question, we assumed that children's
performance on addition and subtraction problems was related both to
their cognitive capacity and to classroom instruction. This series of
studies was reported from four different intellectual perspectives so
that each study would shed light on a different aspect of the question.
Then, by putting the information from each together, we hoped to answer
the basic question.

In retrospect, we believe that the picture that has evolved from
these studies is both interesting and provocative, but not at all clear.
This chapter summarizes what we learned and specifies the strengths and
weaknesses of each of the studies. Finally, implications are suggested
to other researchers, to curriculum developers, and to teachers. We
have organized this discussion under five headings: cognitive capacity,
solving verbal addition and subtraction problems, using the concepts and
skills of addition and subtraction, the influence of instruction on

addition and subtraction performance, and final reflections.

Cognitive Capacity

The original question assumed that young children differ in their
cognitive capacity to deal with mathematical information and that
available psychometric techniques would yield groups of students with
similar test scores. First, a set of tests measuring short-term memory

146
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capacity (M-space) was administered. Second, a set of developmental
psychological tests was given to the same children. Data from the
M-space tests were used to empirically derive six groups of students.
The developmental tests were then used to assist in describing
differences between the groups.

Cognitive Group 1 children have limited memory capacity (M-space

level 1), are incapable of handling most quantitative tests, can
serially count but have no sophisticated counting strategies, and can
only deal with qualitative comparisons and transformations at a moderate
level.

Cognitive Group 2 children have larger memory capacities (M-space

level 2), have no difficulty with qualitative comparisons (they can
preserve correspondence after rearrangement of sets and overcome
perceptual distractions), and can determine whether sets are larger or
smaller if an object has been put with or taken from particular sets.
However, the quantitative skills of these children are limited. They
can count sets, but have no sophisticated counting strategies and are
unable to solve transitivity and rearrangement problems.

These first two groups are distinct from each other and distinct
from the remaining four groups. The final four groups, both
psychometrically and logically, are more similar to each other than they
are different from each other in that all members have a memory capacity
of level 3 or 4 and have sophisticated counting strategies.

Cognitive Group 3 children differ from Cognitive Group 4 children

only on measures of transitivity and transitivity under rearrangement.

Groups 3 and 4 children differ from Cognitive Group 5 and Cognitive

Group 6 children only on the class inclusion test. Groups 5 and 6
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children differ only on one measure of memory capacity; in all analyses
we combined Groups 5 and 6.

The data gathered and analyzed with respect to cognitive capacity
suggested the following six propositions. First, a global qualitative
versus quantitative distinction is apparent in children's mathematical
thinking in the early school years. Second, M-space level seems to be
related to the developmental sequences in the preschool to early
elementary years in mathematically-related tests. Third, reasoning
appears to develop in the following sequence: comparison--qualitative-—
correspondence-—quantitative--logical operations. Fourth, an M-space
level of 1 enables a child to solve simple comparison tasks. Fifth, an
M-space level of 2 is enough for qualitative correspondence and is a
prerequisite for the development of most number skills. And sixth, an
M-space level of 3 seems to be necessary for success in sophisticated
counting tasks and probably is necessary for the development of addition
and subtraction.

Problems and recommendations. The data indicate that children

differ significantly in their ability to perform simple mathematical
tasks. However, the approach that we took is purely empirical. It is
not based on any theory of how children process mathematical
information. The next step in research would be to use a theoretic
model of cognitive processing such as that proposed by Campione and
Brown (1978), which distinguishes between the "architectural” features
of cognition (memory capacity, automaticity, speed of processing, etc.)
and "executive” aspects of cognitive processing (metacognition, schema

in long-term memory, etc.). Using such a model would enhance our
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understanding of cognitive capacity more than the psychometric approach
followed in this study.

We found three sets of tests of cognitive processing to be
especially important. First, memory capacity was most useful in
identifying groups with different cognitive capacities. Unfortunately,
the instruments used to assess this underlying trait leave much to be
desired. In particular, on the Mr. Cucui Test, children can organize
information by “chunking" it (e.g., left side of the body, head, and so
on). As a result, higher M-space levels are indicated when children use
a smaller part of memory to store information. This phenomenon is well
known in the literature, but it is difficult to separate chunking from
actual M-space. We believe that the four tests (Counting Span, Mr.
Cucui, Digit Placement, and Backward Digit Span) indicate M-space levels
1, 2, and 3 relatively accurately. However, memory capacity levels
above level 3 in many cases may be due to chunking. Nevertheless, we
are convinced that memory capacity is an important feature of cognitive
processing capacity and strongly suggest that other researchers measure
memory capacity of thelr subjects.

The second set of tests that distinguished groups were the counting
forward and counting back tests. Sophisticated counting skills are
important in solving verbal addition and subtraction problems, as
demonstrated in Chapter 3. We recommend that such tests be used in
other research. Also, other tests that measure different counting
skills (simple counting, counting on, counting back, counting all, etc.)
should also be developed and used.

Finally, the class inclusion test distinguished groups of students.

The relationship of class inclusion skills to how children work certain
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problems (particularly the part-part-whole problems) is not at all
clear. We recommend the development and study of other tests that

assess the way in which individuals logically reason about phenomena.

Solving Verbal Addition and Subtraction Problems

One indication that students have learned to add and subtract is
that they can solve simple verbal problems. For such problems, children
can write an addition or subtraction sentence about the problem and use
learned addition or subtraction concepts or skills to find the
appropriate answer., In Chapter 3, we examined both the performance of
students (the number of questions they were able to answer correctly)
and the strategies they used to solve a variety of addition and
subtraction problems. The data were gathered in interviews of each
child on several occasions in which six problems were given to each
student at two or three of four levels of difficulty, determined by the
size of numbers in the problem.

The results described in Chapter 3 indicate that there was
considerable variability in the children's ability to solve a variety of
verbal problems and in the strategies they used to solve those problems.
The overall performance of students with different cognitive processing
capacities on the tasks was relatively high. Students answered 72% of
the SN level problems correctly; of the LN level problems, students
answered 72% correctly; and of the NR and R level problems, 677% were
answered correctly. However, there was considerable variability in both
performance and strategies; this variation was influenced by several
factors: the semantics of the problem, the size of the numbers in the

problem, the implied operation in the problem, the grade level of the
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child, and the cognitive capacity of the child. Table 58 summarizes the
level of performance across all items for the six different semantic
types of tasks. In general, the results support the conclusion of
Greeno and Riley (1981), that change problems are easier than combine
problems, which in turn are easier than compare problems.

The most striking findings on both performance and strategies were
for children in different cognitive groups. The performance and
strategies that children in each cognitive group used are summarized on
the following pages. The percent correct is noted only if children
answered at least two-thirds of the tasks within a semantic category
correctly. Similarly, to highlight the strategies that students in each
particular group used, percentages are indicated only if students used a
strategy on at least 207 on the same semantic set of problems.

The summary information on the performance and use of strategies
for the children in cognitive Group 1 is presented in Table 59. This
group of children performed satisfactorily only on three of the 12
tasks--the three SN tasks that can easily be solved by direct modeling.
The strategies that these students used, with one exception, were either
inappropriate or direct modeling. The exception was on task 6 at the SN

level, when students used "

counting on" 37% of the time.

Overall, this behavior clearly reflects the cognitive capacity of
these children. They had low memory capacity, lacked systematic
counting skills, and were only able to directly model the problems.
Also, the compare task, which requires more memory capacity, was

impossible for the children; they used inappropriate strategies on the

SN and LN level compare tasks 83% and 93% of the time, respectively.
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The summary information on the performance and use of strategies
for students in cognitive Group 2 is shown in Table 60. This group of
children could find answers satisfactorily on both the SN and LN sets of
problems, with the exception of compare tasks. Although their
performance was slightly lower on the LN than the SN set, the pattern of
the performance was similar, However, on the NR and R sets (large
numbers), group 2 students could only solve task 1 at a satisfactory
level of performance.

The strategy information Group 2 students used was consistent with
their cognitive capacity. Direct modeling was the most frequently used
strategy for both the SN and LN level problems, although the use of
routine mental operations was becoming commonplace with the small number
of problems in the SN set, The students could not work most of the
compare problems. Inappropriate strategies were coded in over half of
the trials over all problems. Group 2 students only used systematic
counting strategies on task 6 at both SN and LN levels and task 4 on the
LN problems. Finally, for the problems with larger numbers (NR and R),
they most frequently used inappropriate strategies on all tasks except
task 1. Only on this task did these children use an algorithm, and they
often made errors in the use of an algorithm.

The summary information for the children in cognitive Group 3
appears in Table 61. Their overall level of performance is quite
satisfactory on all tasks at the SN and LN levels, although they had
some difficulty with task 5. For the NR and R set, only on tasks 1, 4,
and 6 was performance satisfactory. Direct modeling is a reasonable
strategy, particularly on the small-number SN problems. Counting

strategies, however, and routine mental operations were also being used
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with small number problems. Sophisticated counting strategies were used
on all LN level tasks and on three of the NR and R level tasks. Also, a
fairly high frequency of inappropriate strategies was apparent on the NR
and R tasks. The Group 3 students used algorithms for the NR and R
problems less frequently than did the Group 2 children.

The summary information for Cognitive Group 4 children appears in
Table 62. Not surprisingly, the performance and choice of strategies of
these children differ very little from those of the Group 3 students.
Group 4 students used counting strategies and routine mental operations
on the LN problems and direct modeling and counting strategies on the NR
and R problems. There was some increase in the use of algorithms by
Group 4 students on the two addition problems.

The summary information of children in Cognitive Group 5-6 is shown
in Table 63. These children solved all problems satisfactorily. They
used counting strategies and routine mental operations to find most
solutions. However, on the NR and R simple subtraction problems,
tasks 2 and 3, they frequently employed direct modeling. They used
routine mental operations and algorithms only with the three easiest
tasks.

More important, these data show that a child's decision to use a
particular strategy depends on several factors, including the semantics
of the problem, the size of the numbers, and the implied operation.
Furthermore, the availability or use of a strategy appears to depend on
memory capacity.

Five general observations from the data relate to our understanding
of how children learn to solve such problems. First, the frequent and

persistent use of inappropriate strategies implies either an
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unwillingness of some students to engage in the task, or an inadequate
memory capacity to use a particular strategy. We agree with DeCorte and
Verschaffel (1981) that some students fail to understand that they are
to find an answer to a particular problem. However, we believe that
most students try to solve problems but lose track of information. For
example, Group 1 and Group 2 children do not have systematic counting
strategies available to them to solve many of the problems. Thus, when
they try, they may get mixed up and be unable to complete the task. We
recommend a more careful investigation of the use of inappropriate
strategies across tasks in order to obtain a better understanding of the
difficulties some children have.

Second, direct modeling (the use of chips or fingers to represent
sets) is the first and easiest strategy that students use. It is
particularly appropriate for SN tasks 1, 2, and 4, where the change or
combination can be physically represented. Also, direct modeling
preserves all the important data; prior data need not be remembered.
The strategy is appropriate for tasks 3 and 6, but additional memory
storage is required to remember the whole and the original part.
Finally, direct modeling could be used with comparison problems, but it
requires even more memory storage. Even with large-number problems
where physical modeling becomes more cumbersome, modeling is still an
appropriate strategy. Many students appear to follow a "when in doubt
one can always model" strategy for solving many problems. Even
third-graders in Group 5-6 physically modeled many of the large-number
problems to find answers. This suggests the importance of being
familiar with efficient procedures; although children in Group 5-6

exhibited sophisticated counting strategies, knew basic facts, and could
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perform addition and subtraction algorithms efficiently, they still
directly modeled some problems.

Third, the data also indicate that many children replaced direct
modeling with either systematic counting strategies or routine mental
operations. Counting strategies may be learned before routine mental
operations; the choice of strategy depends on the size of the numbers
involved in the problem. At all levels, for all cognitive groups,
children solved the SN problems by using routine mental operations
rather than counting strategies. Only for task 6 at the SN level was
counting the dominant strategy. The LN, NR, and R problems were more
likely to be solved by using sophisticated counting strategies.
Furthermore, only on task 1 (combine/join) did children use routine
mental operations with large-number problems.

Fourth, the use of addition and subtraction algorithms for many
children was perceived as a cumbersome procedure for finding answers.
Only the Group 2 children, who were limited in their knowledge of
counting strategies or routine mental operations, used algorithms
frequently, and they made many errors. Students at higher cognitive

levels may see that algorithms are appropriate but know of and are

161

comfortable in using other strategies. The children's teachers expected

students to write the mathematical expression and use the algorithms to

solve problems on the NR and R tasks. Most instruction had been on

addition and subtraction algorithms, and the children's performance was

reasonably good.
Fifth, it is apparent that the way in which students solved the
problems was not directly related to classroom instruction. In grade 2

most instruction was on addition and subtraction facts (use of routine

»
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mental operations), but most students used direct modeling and counting
skills to solve the problems. In grade 3, most of the instructional
time was spent on algorithms, but students did not use them to solve the
verbal problems.

Problems and recommendations. First, the sample of items--six

tasks at each of the four levels--does not include all types of addition
and subtraction problems. Nesher, Greeno, and Riley (1982) list 14
types. Use of a more comprehensive set of problems would give us a
better picture of the overall development of strategies across tasks.
Second, the small number of students and the method of selection for
this study are limiting. Studies with a larger number of subjects are
in order. Third, although some longitudinal data were gathered, there
was relatively little change in performance over the three-month period.
Although cross-sectional data indicate changes, studies of longer
duration should be carried out. Fourth, there is an obvious confounding
between age (grade level) and cognitive capacity.

Finally, these data need to be re-examined in light of the theory
of the development of semantic categories for addition and subtraction
proposed by Nesher, Greeno, and Riley (1982). Our data suggest that the
decision sequence children use to select a strategy is more complex than

this theory suggests.

Using the Concepts and Skills of Addition and Subtraction

Since most mathematics textbooks do not emphasize the solution of
verbal problems, we also examined students' performance on the concepts
and skills of addition and subtraction. This study is reported in

chapter 4. A set of achievement monitoring tests that measured a
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variety of mathematics objectives was administered at each grade level.
Instruction at each grade level had an effect on some objectives over
the autumn term. In grade 1, at the start of the school year, students
were unable to solve most problems; by the end of the term, their
addition skills had improved dramatically, although the same could not
be said for subtraction. In grade 2, although instruction had an
effect, increases in performance were not as apparent for many
objectives. Grade 3 students clearly improved on many of the
objectives., In particular, performance on the addition and subtraction
algorithms improved dramatically. Thus, growth within each grade on
some aspects of addition and subtraction was very clear. However,
improvement was not uniform across different concepts and skills, and
the overall level of performance on many objectives was not high.
Instruction did not seem to be related very systematically to the level
of performance. Thus, in spite of the fact that overall performance on
place value, knowledge of addition and subtraction facts, and writing
number sentences was not high, time was not allocated for instruction on
those topics. For example, in third grade, most students were still
having trouble with writing open sentences and knowledge of basic
addition and subtraction facts. Yet almost no time was allocated for
instruction in these areas.

Performance differed by cognitive group within grade, although not
all groups were represented at all grades. Group 1 children in grade 1
struggled with many of the objectives, while the Group 2 students
improved in performance over all of the objectives. The children in the
higher cognitive groups performed better than children in lower

cognitive groups. Overall, children who differ in cognitive processing
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capacity performed differently regardless of specific objectives,
instructional emphasis, or grade.

Thus, although teaching and pupil experience accounted for some of
the differences between children, performance appears to be consistent

with cognitive processing capacity.

Influence of Instruction on Addition and Subtraction

The final study in the series reported in this monograph attempted
to determine whether or not children with different cognitive capacities
received different instruction.

Observational data were collected on allocated time, pupil
engagement, and teacher actions in relationship to pupil behavior. The
findings of this study are not dramatic. However, what is portrayed is
perhaps too typical of how instruction is carried out in many schools.
First, about 50% of the total mathematics time in each grade is spent on
addition and subtraction. 1In grade 1, primary emphasis is on addition
facts, numerousness, and counting. In grade 2, basic facts for both
addition and subtraction are taught. And in grade 3, computational
algorithms are stressed. What pupils did in these classrooms seemed to
be related to grade level and curriculum structure. In grades 1 and 2,
children were working in small groups and individually for mathematics
instruction while large group work was common in grade 3. Differences
in pupil engaged time are likely due to teachers or student familiarity
with the instructional pattern. Only the number of pupil interactions
with other pupils is possibly due to the cognitive groups to which

children belong. Teacher behaviors reflect grade level and individual
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teaching style. Certainly, cognitive capacity is not the basis of
differentiation between students in these classrooms.

The data in the last two studies clearly indicate that children
improve due to instruction on basic facts and algorithmic performance.
What teachers do in classrooms varies, but within classrooms, they teach
basically the same way to all children. What children learn appears to
be consistent with their level of cognitive processing and with the
content covered in each grade. The emphasis within classrooms seems to
be on certain routine procedures (basic facts and algorithms) but not on
others such as sentence writing, counting, or direct modeling of
problems., The emphasis is on finding answers regardless of the
procedure. Nothing is done to relate the semantics of various verbal
problems to instruction in arithmetic.

Finally, there is no evidence that instruction attempts to build on
or change the strategies that students use to solve verbal problems. In
fact, instruction seems to proceed without consideration of the level of

performance of individual children.

Final Reflections

In concluding this monograph, seven thoughts come to mind.

1. The information-processing approach to the study of how
children solve a variety of addition and subtraction problems appears to
provide a basis for a better understanding of the process of acquiring
related concepts and skills and using them to solve problems. Our
clustering of children into cognitive groups should be viewed as a rough

initial approximation of a more refined description of capacity.
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2, For students struggling with basic ideas (students in our
Groups 1 and 2), a more careful analysis of inappropriate strategies
needs to be done.

3. The most interesting data are those on the strategies that
children use, not on performance. Longitudinal data on change of
strategies by specific children should be gathered.

4, To be more effective, curricula must be organized and sequenced
differently. Although the ideal organization and sequence for teaching
addition and subtraction skills is not yet clear, more instruction on
writing sentences and counting strategies is called for. One possible
alternative would be to teach specific routines such as addition and
subtraction facts or algorithmic procedures without trying to relate
them to problems until students have mastered them. Students could
build the bridge from verbal problems to use of algorithms later.

5. Students need more opportunities to work with verbal problems
and to represent such problems with mathematical expressions. This
procedure of modeling a problem situation with a mathematical sentence
is a very important skill throughout all mathematics,

6. Although we believe that routine procedures are important, they
only become important in the eyes of children when they see them as
efficient and feel confident in using them to solve problems.

7. Children differ in their capacity to solve a variety of
mathematical problems. Instruction should begin where children are.
Teachers should take into account the strategies and procedures children
use to solve problems and build upon those capacities.

In conclusion, our intent was to incorporate data from different

perspectives to study how children learn to add and subtract. The
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picture that emerges is of children struggling to learn a variety of
important concepts and skills. Some children are limited by their
capacity to handle information. Most are able to solve a variety of
problems by using invented strategies that have not been taught. They
dismiss or fail to see the value of the taught procedures for solving
problems. The capacity of children for processing information, the
procedures students invent to solve a variety of problems, and the way
in which instruction in schools is carried out are not consonant. The
challenge in the future is to change this fact. Our goal is to make
instruction compatible with children's capacities and the strategies

they use.
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