
Lecture Notes in Computer Science 3246
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alberto Apostolico Massimo Melucci (Eds.)

String Processing
and Information
Retrieval

11th International Conference, SPIRE 2004
Padova, Italy, October 5-8, 2004
Proceedings

1 3

Volume Editors

Alberto Apostolico
Purdue University, Department of Computer Sciences
250 N. University Street, West Lafayette, IN, 47907-2066, USA
E-mail: axa@cs.purdue.edu

Alberto Apostolico
Massimo Melucci
University of Padova, Department of Information Engineering
Via Gradenigo 6a, 35131 Padova, Italy
E-mail: {axa,melo}@dei.unipd.it

Library of Congress Control Number: 2004112520

CR Subject Classification (1998): H.3, H.2.8, I.2, E.1, E.5, F.2.2

ISSN 0302-9743
ISBN 3-540-23210-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11325949 06/3142 5 4 3 2 1 0

Foreword

The papers contained in this volume were presented at the 11th Conference on
String Processing and Information Retrieval (SPIRE), held Oct. 5–8, 2004 at
the Department of Information Engineering of the University of Padova, Italy.
They were selected from 123 papers submitted in response to the call for papers.
In addition, there were invited lectures by C.J. van Rijsbergen (University of
Glasgow, UK) and Setsuo Arikawa (Kyushu University, Japan). In view of the
large number of good-quality submissions, some were accepted this year also as
short abstracts. These also appear in the proceedings.

Papers solicited for SPIRE 2004 were meant to constitute original contribu-
tions to areas such as string pattern searching, matching and discovery; data
compression; text and data mining; machine learning; tasks, methods, algo-
rithms, media, and evaluation in information retrieval; digital libraries; and ap-
plications to and interactions with domains such as genome analysis, speech and
natural language processing, Web links and communities, and multilingual data.

SPIRE has its origins in the South American Workshop on String Process-
ing which was first held in 1993. Starting in 1998, the focus of the symposium
was broadened to include the area of information retrieval due to the common
emphasis on information processing. The first 10 meetings were held in Belo Hor-
izonte (Brazil, 1993), Valparaiso (Chile, 1995), Recife (Brazil, 1996), Valparaiso
(Chile, 1997), Santa Cruz (Bolivia, 1998), Cancun (Mexico, 1999), A Coruña
(Spain, 2000), Laguna San Rafael (Chile, 2001), Lisbon (Portugal, 2002), and
Manaus (Brazil, 2003).

SPIRE 2004 was held as part of Dialogues 2004, a concerted series of confer-
ences and satellite meetings fostering exchange and integration in the modeling,
design and implementation of advanced tools for the representation, encoding,
storage, search, retrieval and discovery of information and knowledge. In Dia-
logues 2004, the companion conferences for SPIRE were the 15th International
Conference on Algorithmic Learning Theory and the 7th International Confer-
ence on Discovery Science.

The Program Committee consisted of: Rakesh Agrawal, IBM Almaden, USA,
Maristella Agosti, Univ. of Padova, Italy, Amihood Amir, Bar-Ilan Univ.,
Israel and Georgia Tech, USA, Alberto Apostolico, Univ. of Padova, Italy and
Purdue Univ., USA (Chair), Ricardo Baeza-Yates, Univ. of Chile, Chile, Krishna
Bharat, Google Inc., USA, Andrei Broder, IBM T.J. Watson Research Cen-
ter, Hawthorne, USA, Maxime Crochemore, Univ. of Marne la Vallée, France,
Bruce Croft, Univ. of Massachusetts Amherst, USA, Pablo de la Fuente, Univ. of
Valladolid, Spain, Edleno S. de Moura, Univ. Federal of Amazonas, Brazil, Ed-
ward Fox, Virginia Tech., USA, Norbert Fuhr, Univ. of Duisburg, Germany,
Raffaele Giancarlo, Univ. of Palermo, Italy, Roberto Grossi, Univ. of Pisa,
Italy, Costas Iliopoulos, King’s College London, UK, Gad M. Landau, Univ. of
Haifa, Israel, Joao Meidanis, Univ. of Campinas, Brazil, Massimo Melucci, Univ.

VI Foreword

of Padova, Italy (Chair), Alistair Moffat, Univ. of Melbourne, Australia, Mario
A. Nascimento, Univ. of Alberta, Canada, Arlindo L. Oliveira, Instituto
Superior Técnico/INESC-ID, Portugal, Laxmi Parida, IBM T.J. Watson
Research Center, Yorktown, USA, Kunsoo Park, Seoul National Univ., South
Korea, Berthier Ribeiro-Neto, Univ. Federal of Minas Gerais, Brazil, Stephen
Robertson, Microsoft Research, UK, Marie-France Sagot, INRIA Rhônes-Alpes,
France, Fabrizio Sebastiani, ISTI CNR, Italy, Ayumi Shinohara, Kyushu Univ.,
Japan, Alan Smeaton, Dublin City Univ., Ireland, James Storer, Brandeis Univ.,
USA, Wojciech Szpankowski, Purdue Univ., USA, Esko Ukkonen, Univ. of
Helsinki, Finland, Keith van Rijsbergen, Univ. of Glasgow, UK, Jeffrey S. Vitter,
Purdue Univ., USA, Hugh E. Williams, RMIT Univ., Australia, Nivio Ziviani,
Univ. Federal of Minas Gerais, Brazil.

The following external reviewers helped with the selection of papers:
Eduardo Abinader, Federal Univ. of Amazonas, Brazil, Halil Ali, RMIT Univ.,
Australia, Charles Ornelas Almeida, Federal Univ. of Minas Gerais, Brazil,
Shlomo Argamon, Illinois Institute of Technology, Hagay Aronowitz, Bar-Ilan
University, Michela Bacchin, Univ. of Padova, Italy, Claudine Santos Badue,
Federal Univ. of Minas Gerais, Brazil, Bodo Billerbeck, RMIT Univ., Australia,
Fabiano Cupertino Botelho, Federal Univ. of Minas Gerais, Brazil, Pável Calado,
Federal Univ. of Minas Gerais, Brazil, Alexandra Carvalho, Instituto Superior
Técnico/INESC-ID, Portugal, Tom Conway, Inquirion Pty. Ltd., Australia, Ido
Dagan, Bar-Ilan University, Ilmerio Reis da Silva, Federal Univ. of Uberlan-
dia, Brazil, Giorgio Maria Di Nunzio, Univ. of Padova, Italy, Paolo Ferragina,
Universita di Pisa, Nicola Ferro, Univ. of Padova, Italy, Gudrun Fischer, Univ.
of Duisburg-Essen, Germany, Bruno Maciel Fonseca, Federal Univ. of Minas
Gerais, Brazil, Leszek Gasieniec, University of Liverpool, Gosta Grahne, Con-
cordia Univ., Canada, Danny Hermelin, Univ. of Haifa, Israel, Heikki Hyyrö,
PRESTO, JST, Japan, Juha Kärkkäinen, Univ. of Helsinki, Finland, Carmel
Kent, Univ. of Haifa, Israel, Dong Kyue Kim, Pusan National Univ., South
Korea, Sung-Ryul Kim, Konkuk Univ., South Korea, Tomi Klein, Bar-Ilan
University, Anisio Mendes Lacerda, Federal Univ. of Minas Gerais, Brazil,
Alberto Lavelli, ITC-IRST, Italy, Kjell Lemström, Univ. of Helsinki, Finland,
Veli Mäkinen, Univ. of Helsinki, Finland, Henrik Nottelmann, Univ. of Duisburg-
Essen, Nicola Orio, Univ. of Padova, Kimmo Palin, Univ. of Helsinki, Finland,
Heejin Park, Hanyang Univ., South Korea, Alvaro Rodrigues Pereira Junior,
Federal Univ. of Minas Gerais, Brazil, Marco Antônio Pinheiro de Cristo,
Federal Univ. of Minas Gerais, Brazil, Cinzia Pizzi, Univ. of Padova, Italy,
Luca Pretto, Univ. of Padova, Italy, Thierson Couto Rosa, Federal Univ. of
Minas Gerais, Brazil, Lúıs Russo, Instituto Superior Técnico/INESC-ID, Portu-
gal, Falk Scholer, RMIT Univ., Australia, Shinichi Shimozono, Kyushu Institute
of Technology, Japan, Dekel Tsur, CRI Univ. of Haifa, Israel, Bruno Augusto
Vivas e Possas, Federal Univ. of Minas Gerais, Brazil, Oren Weimann, Univ. of
Haifa, Israel, Jianfei Zhu, Concordia Univ., Canada, Michal Ziv-Ukelson, Tech-
nion Haifa, Israel.

Foreword VII

SPIRE 2004 was held in cooperation with the ACM Special Interest Group in
Information Retrieval (ACM SIGIR), and was sponsored by the Department of
Information Engineering of the University of Padova, the Institute of High Per-
formance Computing and Networking (ICAR) of the National Research Coun-
cil (CNR), the Italian Association for Informatics and Automatic Computation
(AICA), and Elsevier.

We thank Valerio Pulese and Angela Visco for their support in the organi-
zation of SPIRE.

Padova, October 2004 Alberto Apostolico
Massimo Melucci

In Cooperation with

Special Interest Group in Information Retrieval (SIGIR)

Sponsoring Institutions

Table of Contents

Efficient One Dimensional Real Scaled Matching . 1
Amihood Amir, Ayelet Butman, Moshe Lewenstein, Ely Porat,
and Dekel Tsur

Linear Time Algorithm for the Longest Common Repeat Problem 10
Inbok Lee, Costas S. Iliopoulos, and Kunsoo Park

Automaton-Based Sublinear Keyword Pattern Matching 18
Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

Techniques for Efficient Query Expansion . 30
Bodo Billerbeck and Justin Zobel

Inferring Query Performance Using Pre-retrieval Predictors 43
Ben He and Iadh Ounis

A Scalable System for Identifying Co-derivative Documents 55
Yaniv Bernstein and Justin Zobel

Searching for a Set of Correlated Patterns . 68
Shmuel T. Klein and Riva Shalom

Linear Nondeterministic Dawg String Matching Algorithm 70
Longtao He and Binxing Fang

Permuted and Scaled String Matching . 72
Ayelet Butman, Revital Eres, and Gad M. Landau

Bit-Parallel Branch and Bound Algorithm
for Transposition Invariant LCS . 74

Kjell Lemström, Gonzalo Navarro, and Yoan Pinzon

A New Feature Normalization Scheme Based on Eigenspace
for Noisy Speech Recognition . 76

Yoonjae Lee and Hanseok Ko

Fast Detection of Common Sequence Structure Patterns in RNAs 79
Rolf Backofen and Sven Siebert

An Efficient Algorithm for the Longest Tandem
Scattered Subsequence Problem . 93

Adrian Kosowski

XII Table of Contents

Automatic Document Categorization Based on k-NN
and Object-Based Thesauri . 101

Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

Indexing Text Documents Based on Topic Identification 113
Manonton Butarbutar and Susan McRoy

Cross-Comparison for Two-Dimensional Text Categorization 125
Giorgio Maria Di Nunzio

DDOC: Overlapping Clustering of Words for Document Classification 127
Guillaume Cleuziou, Lionel Martin, Viviane Clavier,
and Christel Vrain

Evaluation of Web Page Representations
by Content Through Clustering . 129

Arantza Casillas, Vı́ctor Fresno, M. Teresa González de Lena,
and Raquel Mart́ınez

Evaluating Relevance Feedback and Display Strategies
for Searching on Small Displays . 131

Vishwa Vinay, Ingemar J. Cox, Natasa Milic-Frayling, and Ken Wood

Information Extraction by Embedding HMM
to the Set of Induced Linguistic Features . 134

Hyun Chul Lee and Jian Chang Mao

Finding Cross-Lingual Spelling Variants . 136
Krister Lindén

An Efficient Index Data Structure with the Capabilities of Suffix Trees
and Suffix Arrays for Alphabets of Non-negligible Size 138

Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

An Alphabet-Friendly FM-Index . 150
Paolo Ferragina, Giovanni Manzini, Veli Mäkinen,
and Gonzalo Navarro

Concurrency Control and I/O-Optimality in Bulk Insertion 161
Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

Processing Conjunctive and Phrase Queries with the Set-Based Model 171
Bruno Pôssas, Nivio Ziviani, Berthier Ribeiro-Neto,
and Wagner Meira Jr.

Metric Indexing for the Vector Model in Text Retrieval 183
Tomáš Skopal, Pavel Moravec, Jaroslav Pokorný, and Václav Snášel

Negations and Document Length in Logical Retrieval 196
David E. Losada and Alvaro Barreiro

Table of Contents XIII

An Improvement and an Extension on the Hybrid Index
for Approximate String Matching . 208

Heikki Hyyrö

First Huffman, Then Burrows-Wheeler:
A Simple Alphabet-Independent FM-Index . 210

Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro

Metric Indexes for Approximate String Matching in a Dictionary 212
Kimmo Fredriksson

Simple Implementation of String B-Trees . 214
Joong Chae Na and Kunsoo Park

Alphabet Permutation for Differentially Encoding Text 216
Gad M. Landau, Ofer Levi, and Steven Skiena

A Space-Saving Linear-Time Algorithm
for Grammar-Based Compression . 218

Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

Simple, Fast, and Efficient Natural Language Adaptive Compression 230
Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro,
and José R. Paramá

Searching XML Documents Using Relevance Propagation 242
Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

Dealing with Syntactic Variation Through a Locality-Based Approach 255
Jesús Vilares and Miguel A. Alonso

Efficient Extraction of Structured Motifs Using Box-Links 267
Alexandra M. Carvalho, Ana T. Freitas, Arlindo L. Oliveira,
and Marie-France Sagot

Efficient Computation of Balancedness in Binary Sequence Generators 269
Pedro Garćıa-Mochales and Amparo Fúster-Sabater

On Asymptotic Finite-State Error Repair . 271
Manuel Vilares, Juan Otero, and Jorge Graña

New Algorithms for Finding Monad Patterns in DNA Sequences 273
Ravi Vijaya Satya and Amar Mukherjee

Motif Extraction from Weighted Sequences . 286
Costas S. Iliopoulos, Katerina Perdikuri, Evangelos Theodoridis,
Athanasios Tsakalidis, and Kostas Tsichlas

Longest Motifs with a Functionally Equivalent Central Block 298
Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

XIV Table of Contents

On the Transformation Distance Problem . 310
Behshad Behzadi and Jean-Marc Steyaert

On Classification of Strings . 321
Eljas Soisalon-Soininen and Tatu Ylönen

Author Index . 331

Efficient One Dimensional Real Scaled Matching

Amihood Amir1,�, Ayelet Butman2, Moshe Lewenstein3,
Ely Porat3, and Dekel Tsur4

1 Bar-Ilan University and Georgia Tech.
amir@cs.biu.ac.il

2 Holon Academic Institute of Technology
butmosh@zahav.net.il
3 Bar-Ilan University

{moshe,porately}@cs.biu.ac.il
4 University of Haifa

dekelts@cs.haifa.ac.il

Abstract. Real Scaled Matching refers to the problem of finding all lo-
cations in the text where the pattern, proportionally enlarged according
to an arbitrary real-sized scale, appears. Real scaled matching is an im-
portant problem that was originally inspired by Computer Vision.
In this paper, we present a new, more precise and realistic, definition
for one dimensional real scaled matching, and an efficient algorithm for
solving this problem. For a text of length n and a pattern of length m,
the algorithm runs in time O(n log m +

√
nm3/2√log m).

1 Introduction

The original classical string matching problem [10, 13] was motivated by text
searching. Wide advances in technology, e.g. computer vision, multimedia li-
braries, and web searches in heterogeneous data, have given rise to much study
in the field of pattern matching.

Landau and Vishkin [15] examined issues arising from the digitization pro-
cess. Once the image is digitized, one wants to search it for various data. A whole
body of literature examines the problem of seeking an object in an image.

In reality one seldom expects to find an exact match of the object being
sought, henceforth referred to as the pattern. Rather, it is interesting to find all
text locations that “approximately” match the pattern. The types of differences
that make up these “approximations” are:

1. Local Errors – introduced by differences in the digitization process, noise,
and occlusion (the pattern partly obscured by another object).

2. Scale – size difference between the image in the pattern and the text.
3. Rotation – angle differences between the pattern and text images.
� Partially supported by ISF grant 282/01. Part of this work was done when the

author was at Georgia Tech, College of Computing and supported by NSF grant
CCR–01–04494.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 1–9, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Amihood Amir et al.

Some early attempts to handle local errors were made in [14]. These results
were improved in [8]. The algorithms in [8] heavily depend on the fact that the
pattern is a rectangle. In reality this is hardly ever the case. In [6], Amir and
Farach show how to deal with local errors in non-rectangular patterns.

The rotation problem is to find all rotated occurrences of a pattern in an
image. Fredriksson and Ukkonen [12], made the first step by giving a reasonable
definition of rotation in discrete images and introduce a filter for seeking a ro-
tated pattern. Amir et al. [2] presented an O(n2m3) time algorithm. This was
improved to O(n2m2) in [7].

For scaling it was shown [9, 5] that all occurrences of a given rectangular
pattern in a text can be found in all discrete scales in linear time. By discrete
scales we mean natural numbers, i.e. the pattern scaled to sizes 1, 2, 3,

The first result handling real scales was given in [3]. In this paper, a linear
time algorithm was given for one-dimensional real scaled matching. In [4], the
problem of two-dimensional real scaled matching was defined, and an efficient
algorithm was presented for this problem.

The definition of one-dimensional scaling in [3] has the following drawback:
For a pattern P of length m and a scale r, the pattern P scaled by r can have
a length which is far from mr. In this paper, we give a more natural definition
for scaling, which has the property that the length of P scaled by r is mr
rounded to the nearest integer. This definition is derived from the definition of
two-dimensional scaling which was given in [4]. We give an efficient algorithm for
the scaled matching problem under the new definition of scaling: For a text T of
length n and a pattern P of length m, the algorithm finds in T all occurrences
of P scaled to any real value in time O(n log m +

√
nm3/2

√
log m).

Roadmap: In section 2 we give the necessary preliminaries and definitions of the
problem. In section 3 we present a simple algorithm that straightforwardly finds
the scaled matches of the pattern in the text. In section 4 we present our main
result, namely, the efficient algorithm for real scaled matching.

2 Scaled Matching Definition

Let T and P be two strings over some finite alphabet Σ. Let n and m be the
lengths of T and P , respectively.

Definition 1. A pixel is an interval (i − 1, i] on the real line R, where i is an
integer. The center of a pixel (i − 1, i] is its geometric center point, namely the
point i − 0.5.

Definition 2. Let r ∈ R, r > 1. The r-ary pixel array for P consists of m
intervals of length r, which are called r-intervals. The i-th r-interval is ((i −
1)r, ir]. Each interval is identified with the value from Σ: The i-th interval is
identified with the i-th letter of P . For each pixel center that is inside some r-
interval, we assign the letter that corresponds to that interval. The string obtained
by concatenating all the letters assign to the pixel centers from left to right is
denoted by P r, and called P scaled to r.

Efficient One Dimensional Real Scaled Matching 3

The scaled matching problem is to find all the locations in the text T in which
there is an occurrence of P scaled to some r ≥ 1.

Example 1. Let P = aabccc then P
3
2 = aaabbcccc, and let T = aabdaaaabb

cccccb. There is an occurrence of P scaled to 3
2 at text location 6.

Let x ∈ R. ‖x‖ denotes the rounding of x, i.e.

‖x‖ =

{
�x� if the fraction part of x is less than .5
�x� otherwise.

We need the following technical claim.

Claim. Let k, k′, and l be some positive integers.

1. {r| ‖rk‖ = l} = [l−0.5
k , l+0.5

k).
2. {r| ‖r(k + k′)‖ − ‖rk′‖ = l} ⊆ (l−1

k , l+1
k).

Proof. The first part follows immediately from the definition of rounding. To
prove the second part, note that x − 0.5 < ‖x‖ ≤ x + 0.5, so

‖r(k + k′)‖ − ‖rk′‖ < r(k + k′) + 0.5 − (rk′ − 0.5) = rk + 1

and
‖r(k + k′)‖ − ‖rk′‖ > r(k + k′) − 0.5 − (rk′ + 0.5) = rk − 1.

Hence, the r’s that satisfy ‖r(k +k′)‖−‖rk′‖ = l are those that satisfy rk−1 <
l < rk + 1, which implies l−1

k < r < l+1
k . ��

3 A Local Verification Algorithm

One possible straightforward approach to solving the scaled matching problem
is to verify for each location of the text whether the scaled occurrence definition
holds at that location. However, even this verification needs some clarification. To
simplify, we define below the symbol form and the run-lengths of the symbols
separately. This will give a handle on the verification process. An additional
benefit is that this representation also compresses the text and pattern and
hence will lead to faster algorithms.

Definition 3. Let S = σ1σ2 · · ·σn be a string over some alphabet Σ. The run-
length representation of string S is the string S′ = σ′r1

1 σ′r2
2 · · ·σ′rk

k such that:
(1) σ′

i
= σ′
i+1 for 1 ≤ i < k; and (2) S can be described as concatenation of

the symbol σ′
1 repeated r1 times, the symbol σ′

2 repeated r2 times, . . . , and the
symbol σ′

k repeated rk times. We denote by SΣ = σ′
1σ

′
2 · · ·σ′

k, the symbol part
of S′, and by c(S) = r1r2 · · · rk, the run-length part of S′ (c(S) is a string over
the alphabet of natural numbers).

The locator function between S and S′ is locS(i) = j, where j is the index
for which

∑j−1
l=1 rl < i ≤ ∑j

l=1 rl.
The center of S, denoted CS, is the substring of S that contains all the letters

of S except the first r1 letters and the last rk letters.

4 Amihood Amir et al.

Example 2. Let S = aaaaaabbcccaabbbddddd then S′ = a6b2c3a2b3d5, SΣ =
abcabd and c(S) = 623235. The locator function is locS(1) = 1, locS(2) =
1, . . . , locS(6) = 1, locS(7) = 2, . . . , locS(21) = 6. The center of S is bbcccaabbb.

3.1 Reformulating the Definition

Scaled matching requires finding all scaled occurrences of P in T . To achieve this
goal we will use P ′ and T ′. There are two requirements for a scaled occurrence
of P at a given location of T . The first is that PΣ matches a substring of T Σ

beginning at location locT (i) of T . This can be verified in linear time with any
classical pattern matching algorithm, e.g. [13]. The second requirement is that
there is a scale r for which P scales properly to match at the appropriate location
in T . For this we will use c(P) and c(T). Since the first requirement is easy to
verify, from here on we will focus on the second requirement.

Denote m′ = |c(P)| and n′ = |c(T)|. We also denote c(P) = p1, . . . , pm′ and
c(T) = t1, . . . , tn′ . We assume that m′ ≥ 3 and n′ ≥ 3 otherwise the problem is
easily solvable in linear time. When a scaled match occurs at location i of T the
location in the compressed text that corresponds to it is j = locT (i). However,
only part of the full length of tj may need to match the scaled pattern. More
precisely, a length t̂i =

∑j
l=1 tl + 1 − i piece of tj needs to match the scaled

pattern. The full set of desired scaling requirements follows.

Scaling requirements at text location i, where locT (i) = j

‖p1 · r‖ = t̂i

‖(p1 + p2) · r‖ = t̂i + tj+1

...

‖(p1 + · · · + pk) · r‖ = t̂i + tj+1 + · · · + tj+k−1

...

‖(p1 + · · · + pm′−1) · r‖ = t̂i + tj+1 + · · · + tj+m′−2

‖m · r‖ ≤ t̂i + tj+1 + · · · + tj+m′−1

The following claim follows from the discussion above and its correctness
follows directly from the definition.

Claim. Let P be a pattern and T a text. There is a scaled occurrence of P
at location i of T iff PΣ matches at location locT (i) of T Σ and the scaling
requirements for location i are satisfied.

3.2 The Algorithm

The importance of verifying the scaling requirements efficiently follows from
Claim 3.1. The claim below shows that this can be done efficiently.

Efficient One Dimensional Real Scaled Matching 5

Claim. Let i be a location of T . The scaling requirements for i can be verified
in O(m′) time.

Proof. The scaling requirements are verified by finding the set of all scales r that
satisfy requirements. By Claim 2, for each of the first m′−1 scaling requirements,
the set of all r’s that satisfy the requirement is an interval of length 1. Moreover,
the last scaling requirement demands that r ∈ [1, (t̂i + tj+1 + · · · tj+m′−1 +
0.5)/m). The intersection of these intervals is set of all r’s for which P r appears
in location i. This intersection can be found in O(m′) time. ��

The following straightforward algorithm can now be devised: The algorithm
checks the scaling requirement for every location i of T .

Running Time: There are n−m+1 locations in T . For each location the existence
of a scaled match can be checked in O(m′) time by Claim 3.2. So the overall
time of the algorithm is O(nm′).

4 A Dictionary Based Solution

A different approach for solving the scaled matching problem is to create a dictio-
nary containing the run length part of P scaled at all possible scales. Substrings
of the compressed text can then be checked for existence in the dictionary. The
problem with this solution is that there may be many scales and hence many dif-
ferent strings in the dictionary. In fact, the dictionary to be created could be as
large as, or larger than, the running time of the naive algorithm. To circumvent
this problem we will keep in the dictionary only scaled instances of the pattern
with a scale at most α, where the value of α will be determined later. Checking
for occurrences of the pattern with a scale larger than α will be performed using
the algorithm from the previous section.

To bound the number of strings in the dictionary, we use the following lemma,
which is a special case of Lemma 1 in [4].

Lemma 1. Let pattern P be scaled to size l ≥ m. Then there are k ≤ m′

intervals, [a1, a2), [a2, a3), . . . , [ak, ak+1), where a1 < a2 < · · · < ak+1 for which
the following hold:

1. P r1 = P r2 if r1 and r2 are in the same interval.
2. P r1
= P r2 if r1 and r2 are in different intervals.
3. P r has length l if and only if r ∈ [a1, ak+1).

Proof. By Claim 2, if the length of P r is l, then r belongs to the interval I =
[l−0.5

m , l+0.5
m). Consider the r-ary pixel array for P when the value of r goes from

r = l−0.5
m to r = l+0.5

m . Consider some value of r in which a new scaled pattern
is reached, namely P r
= P r−ε for every ε > 0. By definition, this happens when
the right endpoint of some r-interval coincides with some pixel center. The right
endpoint of the rightmost r-interval moves a distance of exactly 1 when r goes
over I, and each other endpoint moves a distance smaller than 1. In particular,
each endpoint coincides with a pixel center at most one time. ��

6 Amihood Amir et al.

4.1 Building the Dictionary

Let P be a set containing c(CP r) for every scaled pattern P r with r ≤ α. By
Lemma 1, the number strings in P is O(αmm′). For each P ′ ∈ P , let RP ′ be the
set of all values of r such that c(CP r) = P ′. Each set RP ′ is a union of intervals,
and let |RP ′ | denote the number the intervals in RP ′ .

Example 3. Let P = abcd and α = 2. Then,

c(P r) =




1111 for r ∈ [1, 1.125)
1112 for r ∈ [1.125, 7/6)
1121 for r ∈ [7/6, 1.25)
1211 for r ∈ [1.25, 1.375)
1212 for r ∈ [1.375, 1.5)
2121 for r ∈ [1.5, 1.625)
2122 for r ∈ [1.625, 1.75)
2212 for r ∈ [1.75, 11/6)
2221 for r ∈ [11/6, 1.875)
2222 for r ∈ [1.875, 2]

Thus, P = {11, 12, 21, 22}, R11 = [1, 7/6), R12 = [7/6, 1.25) ∪ [1.5, 1.75), R21 =
[1.25, 1.5) ∪ [1.75, 11/6), and R22 = [11/6, 2].

Lemma 2. For every P ′ ∈ P, |RP ′ | = O(m).

Proof. Let l be the sum of the characters of P ′, and let a be the number of
characters in CP , namely a = p2 + · · · + pm′−1. If r ∈ RP ′ , then ‖r(p1 + a)‖ −
‖rp1‖ = l. By Claim 2 we obtain that r ∈ (l−1

a , l+1
a). For r ∈ (l−1

a , l+1
a), the

length of P r is in the interval [‖ l−1
a m‖, ‖ l+1

a m‖]. From Lemma 1, it follows
that |RP ′ | = O(m′ · m/a). We have assume that m′ ≥ 3, so a ≥ m′ − 2 ≥ 1

3m′.
Hence, |RP ′ | = O(m). ��

We now describe how to build the dictionary. Instead of storing in the dic-
tionary the actual strings of P , we will assign a unique name for every string in
P using the fingerprinting algorithm of Amir et al. [1], and we will store only
these names.

The first step is generating all the scaled patterns P r for r ≤ α in an increas-
ing order of r. This is done by finding all the different values of r in which the
right endpoint of some r-interval coincides with a pixel center. These values can
be easily found for each r-interval, and then sorted using bin sorting. Denote the
sorted list by L.

Afterward, build an array A[1..m′ − 2] that contains the run length part of
CP . For simplicity, assume that m′−2 is a power of 2 (otherwise, we can append
zeros to the end of A until the size of A is a power of 2). Now, compute a name
for A by giving a name for every sub-array of A of the form A[j2i +1..(j +1)2i].
The name given to a sub-array A[j..j] is equal to its content. The name given

Efficient One Dimensional Real Scaled Matching 7

to a sub-array A′ = A[j2i + 1..(j + 1)2i] depends on the names given to the two
sub-arrays A[2j2i−1 + 1..(2j + 1)2i−1] and A[(2j + 1)2i−1 + 1..(2j + 2)2i−1]. If
the names of these sub-arrays are a and b, respectively, then check whether the
pair of names (a, b) was encountered before. If it was, then the name of A′ is the
name that was assigned to the pair (a, b). Otherwise, assign a new name to the
pair (a, b) and also assign this name to A′.

After naming A, traverse L, and for each value r in L, update A so it will
contain the run length part of CP r . After each time a value in A is changed,
update the names of the log(m′−2)+1 sub-arrays of A that contain the position
of A in which the change occurred.

During the computation of the names we also compute the sets RP ′ for all
P ′ ∈ P .

Running Time: We store the pairs of names in an L × L table, where L =
O(αmm′) is an upper bound on the number of distinct names. Thus, the initial
naming of A takes O(m′) time, and each update takes O(log m′) time. Therefore,
the time for computing all the names is O(αmm′ log m′). Using the approach
of [11], the space can be reduced to O(L).

4.2 Scanning the Text

The first step is naming every substring of c(T) of length 2i for i = 0, . . . , log(m′−
2). The name of a substring of length 1 is equal to its content. The name of a
substring T ′ of length 2i (i > 0) is computed from the names of the two substrings
of length 2i−1 whose concatenation forms T ′. The naming is done using the same
L × L array that was used for the naming of A, so the names in this stage are
consistent with the names in the dictionary building stage. In other words, a
substring of T that is equal to a string P ′ from P , will get the same name as P ′.

Now, for every location i of T , compute the range of scales r that satisfy the
first and last two scaling requirements. If this range is empty, proceed to the
next i. Otherwise, suppose that this interval is [r1, r2). If r2 > α, check all the
other scaling requirements. If r2 ≤ α, check whether the name of the substring
of c(T) of length m′ − 2 that begins at locT (i) + 1 is equal to the name of a
string P ′ ∈ P . If there is such a string P ′, compute [r1, r2) ∩ RP ′ , and report a
match if the intersection is not empty.

Running Time: Computing the names takes O(n′ log m′) time. By storing each
set RP ′ using a balanced binary search tree, we can compute the intersec-
tion [r1, r2) ∩ RP ′ in time O(log |RP ′ |) = O(log m) (the equality follows from
Lemma 2). Therefore, the time complexity of this stage is O(n log m + lm′),
where l is the number of locations in which all the scaling requirements are
checked. Let Sj be the set of all such locations i with locT (i) = j, and let S be
the set of all indices j for which Sj is not empty. Clearly, l =

∑
j∈S |Sj |. The

following lemmas give an upper bound on l.

Lemma 3. For every j, |Sj | = O(1 + p1/m′).

8 Amihood Amir et al.

Proof. Fix a value for j. Let a = p2+· · ·+pm−1 and l = tj+1+· · ·+tj+m′−2. Sup-
pose that i ∈ Sj . As the first and second last scaling requirements are satisfied,
we have that ‖r(p1 + a)‖ − ‖rp1‖ = (t̂i + l)− t̂i = l. By Claim 2, r ∈ (l−1

a , l+1
a),

so rp1 ∈ (l−1
a p1,

l+1
a p1). Since i = t1 + · · ·+ tj + 1− t̂i = t1 + · · ·+ tj + 1−‖rp1‖

and this is true for every i ∈ Sj , it follows that

|Sj | ≤
∣∣∣∣
{
‖x‖ x ∈

(
l − 1

a
p1,

l + 1
a

p1

)}∣∣∣∣ ≤ 2 +
2p1

a
≤ 2 +

6p1

m′ ,

where the last inequality follows from the fact that m′ ≥ 3. ��
Lemma 4. |S| = O(n

αp1
).

Proof. Suppose that j ∈ S, and let i be some element in Sj . Let [r1, r2) be
the scales interval computed for location i using the first and last two scaling
requirements. By the definition of the algorithm, r2 > α. The interval of r’s
that satisfy the first scaling requirement is [t̂i−0.5

p1
, t̂i+0.5

p1
), so we obtain that

t̂i+0.5
p1

≥ r2 > α. Thus, pj ≥ t̂i > αp1 − 0.5. Since this is true for every j ∈ S, it
follows that |S| ≤ n

αp1−0.5 . ��

By Lemmas 3 and 4, l = O(n
αp1

(1 + p1
m′)) = O(n

α). Therefore, the total time
complexity of the algorithm is O(αmm′ log m′+n log m+nm′/α). This expression
is minimized by choosing α =

√
n/(m logm′). We obtain the following theorem:

Theorem 1. The scaled matching problem can be solved in O(n log m +√
nmm′√log m′) time.

References

1. A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting
via Parikh mapping. J. of Discrete Algorithms, 1(5–6):409–421, 2003.

2. A. Amir, A. Butman, A. Crochemore, G. M. Landau, and M. Schaps. Two-
dimensional pattern matching with rotations. In Proc. 14th Annual Symposium
on Combinatorial Pattern Matching (CPM ’03), pages 17–31, 2003.

3. A. Amir, A. Butman, and M. Lewenstein. Real scaled matching. Information Pro-
cessing Letters, 70(4):185–190, 1999.

4. A. Amir, A. Butman, M. Lewenstein, and E. Porat. Real two dimensional scaled
matching. In Proc. 8th Workshop on Algorithms and Data Structures (WADS ’03),
pages 353–364, 2003.

5. A. Amir and G. Calinescu. Alphabet independent and dictionary scaled matching.
In Proc. 7th Annual Symposium on Combinatorial Pattern Matching (CPM 96),
LNCS 1075, pages 320–334. Springer-Verlag, 1996.

6. A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation, 118(1):1–11, April 1995.

7. A. Amir, O. Kapah, and D. Tsur. Faster two dimensional pattern matching with
rotations. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM ’04), pages 409–419, 2004.

Efficient One Dimensional Real Scaled Matching 9

8. A. Amir and G. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81:97–115, 1991.

9. A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2–32, 1992.

10. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM,
20:762–772, 1977.

11. G. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. Submitted,
2004.

12. K. Fredriksson and E. Ukkonen. A rotation invariant filter for two-dimensional
string matching. In Proc. 9th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 98), LNCS 1448, pages 118–125. Springer, 1998.

13. D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM J. Comp., 6:323–350, 1977.

14. K. Krithivansan and R. Sitalakshmi. Efficient two dimensional pattern matching
in the presence of errors. Information Sciences, 13:169–184, 1987.

15. G. M. Landau and U. Vishkin. Pattern matching in a digitized image. Algorithmica,
12(3/4):375–408, 1994.

Linear Time Algorithm
for the Longest Common Repeat Problem�

Inbok Lee1, Costas S. Iliopoulos2, and Kunsoo Park1

1 School of Computer Science and Engineering
Seoul National University

Seoul, Korea
{iblee,kpark}@theory.snu.ac.kr
2 Department of Computer Science

King’s College London
London, UK

csi@dcs.kcl.ac.uk

Abstract. Given a set of strings U = {T1, T2, . . . , T�}, the longest com-
mon repeat problem is to find the longest common substring that appears
at least twice in each string of U . We also consider reversed and reverse-
complemented repeats as well as normal repeats. We present a linear
time algorithm for the longest common repeat problem.

1 Introduction

Repetitive or periodic strings have a great importance in a variety of applications
including computational molecular biology, data mining, data compression, and
computer-assisted music analysis. For example, it is assumed that repetitive
substrings in a biological sequence have important meanings and functions [1].
Finding common substrings in a set of strings is also important. For example,
motifs or short strings common to protein sequences are assumed to represent a
specific property of the sequences [3].

In this paper we want to find common repetitive substrings in a set of strings.
We especially focus on finding the longest common repeat in a set since the
number of the common repeats in a set can be quite large. We also consider
reversed and reverse-complemented strings in finding repeats. Formally we define
our problem as follows.

Let T be a string over an alphabet Σ. We assume Σ = {A, C, G, T } or
Σ = {A, C, G, U} since a major application of the problem is computational
molecular biology. T [i] denotes the i-th character of T . T [i..j] is the substring
T [i]T [i + 1] · · ·T [j] of T . T R denotes the reverse string of T where |T R| = |T |
and T R[i] = T [|T |−i+1] for 1 ≤ i ≤ |T |. T RC denotes the reverse-complemented
string of T where |T RC | = |T | and, T RC [i] and T [|T |−i+1] form a Watson-Crick
pair (A ≡ (T or U) and C ≡ G) for 1 ≤ i ≤ |T |.

A repeat of T is a substring of T which appears at least twice in T . There
are three kinds of repeats.
� Work supported by IMT 2000 Project AB02.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 10–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Linear Time Algorithm for the Longest Common Repeat Problem 11

– Normal repeat:A string p is called a normal repeat of T if p = T [i..i+|p|−1]
and p = T [i′..i′ + |p| − 1] for i �= i′.

– Reversed repeat: A string p is called a reversed repeat of T if p = T [i..i +
|p| − 1] and pR = T [i′..i′ + |p| − 1].

– Reverse-complemented repeat:A string p is called a reverse-complemented
repeat if p = T [i..i + |p| − 1] and pRC = T [i′..i′ + |p| − 1].

There are two reasons why we consider reversed and reverse-complemented
repeats: (i) We don’t know the directions of the strings in advance. (ii) In
some situations, reversed and reverse-complemented repeats play an impor-
tant role. For example, RNA secondary structures are determined by reverse-
complemented repeats.

The longest common repeat problem can be defined as follows.

Problem 1. Given a set of strings U = {T1, T2, . . . , T�}, the (k, �) longest
common repeat problem is to find the longest repeat (normal, reversed or re-
verse-complemented) which are common to k strings in U for 1 ≤ k ≤ �.

For finding the longest normal repeat in a text T , Karp, Miller, and Rosenberg
first proposed O(|T | log |T |) time algorithm [8]. However, it is an easy application
of the suffix tree [10, 13, 4] to find it in O(|T |) time.

For approximate normal repeats, Landau and Schmidt gave an O(k|T | log k
log |T |) time algorithm for finding approximate squares where the allowed edit
distance is at most k [9]. Schmidt also gave an O(|T |2 log |T |) time algorithm for
finding approximate tandem or non-tandem repeats [12].

The longest common repeat problem resembles the longest common substring
problem. The difference is that the common substring should appear at least
twice in each sequence in the longest common repeat problem. For the longest
common substring problem with a set of strings {T1, T2, . . . , T�}, Hui showed an
O(

∑�
i=1 |Ti|) time algorithm [7]. As far as we know, our algorithm is the first

one that solves the longest common repeat problem.

2 Preliminaries

A generalized suffix tree stores all the suffixes of a set of strings just like a
suffix tree stores all the suffixes of a string. It is easy to extend the suffix tree
construction algorithm [13] to building a generalized suffix tree [5, page 116].
Figure 1 is an example of the generalized suffix tree for T1 = AACTG and
T2 = ACTGCTG. Each leaf node has an ID representing the original string
where the suffix came. Identical suffixes of two or more strings are considered
as different ones. In this example, T1 and T2 share three identical suffixes CTG,
TG, and G. Each of these suffixes has two leaves with different IDs.

From now on, let ST (T) denote the suffix tree of T and GST (T1..T�) denote
the generalized suffix tree of T1, T2, . . . , T�. Let L(v) denote the string obtained
by concatenating the edge labels on the path from the root to a node v in a
suffix tree or a generalized suffix tree.

We define corresponding nodes between ST (Ti) and GST (T1..T�) (1 ≤ i ≤ �).

12 Inbok Lee, Costas S. Iliopoulos, and Kunsoo Park

TGCTGA G

ACTG$

1

CTGCGT$

2

CTG$
$

1 1
CTG$

2

$

2

$

1
CTG$

2

$

2

$

1
CTG$

2

$

2

Fig. 1. The generalized suffix tree for T1 = AACTG and T2 = ACTGCTG.

Definition 1. The corresponding node of an internal node v in ST (Ti) (1 ≤
i ≤ �) is a node v′ in GST (T1..T�) such that L(v) = L(v′).

It is trivial to show that each internal node v in ST (Ti) has a corresponding
node v′ in GST (T1..T�) since GST (T1..T�) stores all the suffixes of the strings.

We define repeats with some properties. A maximal repeat is a repeat that
cannot be extended to the left or right. For example, in T = AAGTGTGAAG,
AG is a repeat, but not a maximal one. We can get a maximal repeat AAG
by adding the immediate left character A. It is obvious that a repeat is either
maximal or a substring of another maximal one. A supermaximal repeat is a
maximal repeat that never occurs as a substring of any other maximal repeat. For
example, in T = CAACGAAGAAG, AA is a maximal repeat since it appears
three times in T and CAA and AAC appear only once in T . But it is not a
supermaximal repeat because another maximal repeat GAAG contains AA. In
this example, GAAG is a supermaximal repeat of T . Figure 2 shows a general
relation between a maximal repeat and a supermaximal repeat.

A

T

A

B B B

Fig. 2. A is a supermaximal repeat and B is a maximal repeat, but not a supermaximal
one.

Lemma 1. A repeat is either supermaximal or a substring of another supermax-
imal one.

Proof. We have only to show that a repeat which is maximal but not supermax-
imal is a substring of another supermaximal one. It follows from the definition
of supermaximal repeats.

For an internal node v in ST (T), L(v) is a supermaximal repeat of T if
and only if all of v’s children are leaves and each leaf has a distinct character

Linear Time Algorithm for the Longest Common Repeat Problem 13

immediately to the left of the suffix corresponding to it [5, pages 143–148]. Hence
the number of supermaximal repeats of T is O(|T |), and they can be found in
O(|T |) time.

3 Algorithm

Our algorithm for the longest common repeat problem is based on the following
property.

Fact 1 Given a set of strings U = {T1, T2, . . . , T�}, the longest common repeat
of U is the longest string which is a substring of a supermaximal repeat of each
string in U .

The outline of our algorithm for the longest common repeat problem is as
follows.

– Step 1: Create a new string T ′
i for each 1 ≤ i ≤ � to consider reversed and

reverse-complemented repeats.
– Step 2: Build ST (T ′

i) for each 1 ≤ i ≤ �. Also, build GST (T ′
1..T

′
�).

– Step 3: Find supermaximal repeats of T ′
i for each i in GST (T ′

1..T
′
�).

– Step 4: Modify GST (T ′
1..T

′
�) and build the generalized suffix tree of the

supermaximal repeats.
– Step 5: Find the longest common repeat among the supermaximal repeats

using the generalized suffix tree made in Step 4.

The hard part of the algorithm is Step 4, which changes GST (T ′
1..T

′
�) into

the generalized suffix tree of the supermaximal repeats in linear time.

Step 1: We first modify each string in U to consider the reversed and reverse-
complemented repeats. For each i = 1, 2, . . . , �, we create a new string T ′

i =
Ti%T R

i #T RC
i , where % and # are special characters which are not in Σ. Nor-

mal repeats of T ′
i include normal, reversed, and reverse-complemented repeats

of Ti.

Step 2: We build the suffix trees and the generalized suffix tree. For each
i = 1, 2, . . . , �, we build ST (T ′

i) with a modification. When we create an in-
ternal node v, we store an additional information (j, j′) at v. It means that v
is the lowest common ancestor (LCA) of two leaves representing T ′

i [j..|T ′
i |] and

T ′
i [j

′..|T ′
i |], respectively. If there are more than two leaves in the subtree rooted

at v, arbitrary two leaves can be chosen. See Figure 3. (We can store (3,1) in-
stead of (3,2) at the second internal node.) This modification does not change
the time and space complexities. We also build GST (T ′

1..T
′
�). This procedure

runs in O(
∑�

i=1 |T ′
i |) time and space.

Step 3: We find supermaximal repeats of each string in U . For each i =
1, 2, . . . , �, we find supermaximal repeats of T ′

i using ST (T ′
i) [5, pages 143–148].

14 Inbok Lee, Costas S. Iliopoulos, and Kunsoo Park

1 1

(2,1)

12 2 3

(2,1)

(3,2)

Fig. 3. Modification of the suffix tree construction.

Now we have a set of nodes Mi = {v|v is an internal node of ST (T ′
i) and L(v)

is a supermaximal repeat of T ′
i}. We compute the set of corresponding nodes

Vi = {v′|v′ is an internal node of GST (T ′
1..T

′
�) and it is the corresponding node

of v ∈ Mi}. To do so, we use the information obtained during the construction
of ST (T ′

i). Figure 4 illustrates the idea. We read the information (j, j′) at v
computed in Step 2. Then we compute the LCA v′ of two leaves in GST (T ′

1..T
′
�)

representing T ′
i [j..|T ′

i |] and T ′
i [j

′..|T ′
i |], respectively. It is easy to show that v′ is

the corresponding node of v. After O(
∑�

i=1 |T ′
i |)-time preprocessing, finding a

corresponding node takes constant time [6, 11, 2]. The total time complexity is
O(

∑�
i=1 |T ′

i |).

ST(T’)1 i

v

v’

L(v’)

GST(T’ ..T’)l

LCA

L(v)
(j, j’)

T’ [j..|T’|] T’ [j’..|T’|]i i

i iT’ [j..|T’|] T’ [j’..|T’|]

Fig. 4. Finding the corresponding node of v.

Step 4: Now we explain the hard part of the algorithm, modifying GST (T ′
1..T

′
�)

into the generalized suffix tree of the supermaximal repeats in linear time. At this
point we have sets Vi’s, where L(v) for each v ∈ Vi (1 ≤ i ≤ �) is a supermaximal
repeat of T ′

i .
The outline of Step 4 is as follows.

1. For each supermaximal repeat S, insert the suffixes of S$ into GST (T ′
1..T

′
�).

2. Identify the nodes of the current tree which should be included in the gen-
eralized suffix tree of the supermaximal repeats.

3. Remove the unnecessary nodes and edges of the tree.

Linear Time Algorithm for the Longest Common Repeat Problem 15

We first insert the suffixes of the supermaximal repeats into GST (T ′
1..T

′
�).

For each i = 1, 2, . . . , �, we traverse GST (T ′
1..T

′
�) from each element of Vi to

the root node following the suffix links. Whenever we meet a node previously
unvisited during the traversal, we create a new leaf node with ID i. These new
leaves are stored in a set Ni = {v|v is a leaf node of the tree and L(v) is a suffix
of a supermaximal repeat of T ′

i followed by $}. We also link the current node and
the new leaf with an edge labeled by $. The trick is that we stop the traversal
when we meet a previously visited node and move to the next element of Vi.
Figure 5 illustrates the idea. Suppose T ′

1 has two supermaximal repeats, GGTC
and CTC. First we handle GGTC. The visiting order is 1 → 2 → 3 → 4 → 5.
After visiting node 5, which is the root node, we are done with GGTC and we
handle CTC. After visiting node 6, we visit node 3 again, following the suffix
link. Then we are done with CTC. This procedure runs in O(|T ′

i |) time and
|Ni| = O(|T ′

i |).

GTC

G

TC
TC

TC

C

GTC

G

TC
TC

TC

C

1

1 2 3

4

6

5

$ $ $ $ $

1111

Fig. 5. Inserting the suffixes of GGTC and CTC into GST (T ′
1..T

′
�) .

Now we identify the nodes of the tree which should be included in the the
generalized suffix tree of the supermaximal repeats. To do so, for each i =
1, 2, . . . , �, we traverse the tree from each element of Ni to the root node upward
and mark the nodes on the path. We stop the traversal if we meet a marked
node and go on to process the next element of Ni. The generalized suffix tree of
the supermaximal repeats consists of the marked node and edges linking them
in the tree.

Finally, we remove the unnecessary nodes and edges which are not in the
generalized suffix tree of the supermaximal repeats. We traverse the tree from
original leaves (not the new leaves created in Step 4) to the root node upward
and delete the nodes and edges on the path if they are not marked. We move
to the next original leaf of the tree if we meet a marked node. After deleting
all the unnecessary nodes and edges, we get the generalized suffix tree of the
supermaximal repeats. This procedure runs in O(

∑�
i=1 |T ′

i |) time.

Step 5: The remaining problem is to find the longest common substring among
k supermaximal repeats with distinct IDs with the generalized suffix tree of the

16 Inbok Lee, Costas S. Iliopoulos, and Kunsoo Park

supermaximal repeats. Unlike the longest common substring problem, two or
more supermaximal repeats can have the same ID here.

Still we can use Hui’s algorithm for the longest common substring problem
in this case, because it solves a rather general problem [7]. The problem is that
each leaf of the tree has a color (an ID in our problem) and that we want to
find the deepest node (in the length of L(v)) whose subtree has leaves with at
least k colors. We do not mention the details of Hui’s algorithm here. Rather we
show an example in Figure 6. Suppose T ′

1 has two supermaximal repeats GGTC
and CTC, T ′

2 has two supermaximal repeats CTC and TCA, and T ′
3 has two

supermaximal repeats TCG and ATC. For each internal node of the generalized
suffix tree of the supermaximal repeats, we compute the number of different IDs
in its subtrees. The internal nodes with rectangles (nodes γ and δ) have leaves
with three different IDs in their subtrees. The internal nodes with circles (nodes
α, β, and ε) have leaves with two different IDs in their subtrees. For the (3, 3)
longest common repeat problem, we compare the lengths of L(γ) = TC and
L(δ) = C. The answer is TC. For the (2, 3) longest common repeat problem,
the answer is L(ε) = CTC. It runs in O(

∑�
i=1 |T ′

i |) time, reporting the answer
of (k, �) longest common repeat problem for all 1 ≤ k ≤ �.

TC$

A

3

G

2

GTC$ TC$

$

TC

A$

G$

$

$

$

1 1

3

2 3

1
2

3

C

A$ TC

$
$2

1 2

G$
3 $

1$

2$

3

An internal node which has

An internal node which has
leaves with two distinct IDs

α

β
γ δ

ε

leaves with three distinct IDs

Fig. 6. An example of the longest common repeat problem.

Theorem 1. The (k, �) longest common repeat problem can be solved in
O(

∑�
i=1 |Ti|) time and space for all 1 ≤ k ≤ �.

Proof. We showed that all the steps run in O(
∑�

i=1 |T ′
i |) time and space. And

|T ′
i | = O(|Ti|).

4 Conclusion

We have defined the longest common repeat problem and presented a linear time
algorithm for the problem, allowing reversed and reverse-complemented repeats.

Linear Time Algorithm for the Longest Common Repeat Problem 17

A remaining work is to devise a space-efficient algorithm for the longest common
repeat problem. Another possibility is the longest common approximate repeat
problem.

References

1. A. Apostolico, F. Gong, and S. Lonardi. Verbumculus and the discovery of unusual
words. Journal of Computer Science and Technology, 19(1):22–41, 2003.

2. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings
of the Fourth Latin American Symposium, pages 88–94, 2000.

3. L. Falquet, M. Pagini, P. Bucher, N. Hulo, C. J. Sigrist, K. Hofmann, and
A. Bairoch. The PROSITE database, its status in 2002. Nucleic Acids Research,
30:235–238, 2002.

4. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

5. D. Gusfield. Algorithms on strings, trees and sequences: computer science and com-
putational biology. Cambridge University Press, Cambridge, 1997.

6. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestor.
SIAM Journal on Computing, 13(2):338–355, 1984.

7. L. C. K. Hui. Color set size problem with applications to string matching. In
Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching,
pages 230–243. Springer-Verlag, Berlin, 1992.

8. R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated
patterns in strings, trees and arrays. In Proceedings of the Fourth Annual ACM
Symposium on Theory of Computing, pages 125–136, 1972.

9. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats. In
Proceedings of the Fourth Combinatorial Pattern Matching, pages 120–133, 1993.

10. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, April 1976.

11. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. SIAM Journal on Computing, 17:1253–1262, 1988.

12. J. P. Schmidt. All highest scoring paths in weighted grid graphs and its applica-
tion to finding all approximate repeats in strings. SIAM Journal on Computing,
27(4):972–992, 1998.

13. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

Automaton-Based Sublinear
Keyword Pattern Matching

Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

Software Construction Group / FASTAR Research Group
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513 NL-5600 MB Eindhoven, The Netherlands

loek@loekcleophas.com, bruce@bruce-watson.com, g.zwaan@tue.nl

http://www.fastar.org

Abstract. We show how automaton-based sublinear1 keyword pattern
matching (skpm) algorithms appearing in the literature can be seen as
different instantiations of a general automaton-based skpm algorithm
skeleton. Such algorithms use finite automata (FA) for efficient compu-
tation of string membership in a certain language. The algorithms were
formally derived as part of a new skpm algorithm taxonomy, based on
an earlier suffix-based skpm algorithm taxonomy [1]. Such a taxonomy
is based on deriving the algorithms from a common starting point by
successively adding algorithm and problem details and has a number of
advantages. It provides correctness arguments, clarifies the working of
the algorithms and their interrelationships, helps in implementing the
algorithms, and may lead to new algorithms being discovered by find-
ing gaps in the taxonomy. We show how to arrive at the general al-
gorithm skeleton and derive some instantiations, leading to well-known
factor- and factor oracle-based algorithms. In doing so, we show the shift
functions used for them can be (strengthenings of) shift functions used
for suffix-based algorithms. This also results in a number of previously
undescribed factor-based skpm algorithm variants, whose performance
remains to be investigated.

1 Introduction

The (exact) keyword pattern matching (kpm) problem can be described as “the
problem of finding all occurrences of keywords from a given set as substrings
in a given string” [1]. Watson and Zwaan (in [1], [2, Chapter 4]) derived well-
known solutions to the problem from a common starting point, factoring out their
commonalities and presenting them in a common setting to better comprehend
and compare them. Other overviews of kpm are given in [3, 4] and many others.

Although the original taxonomy contained many skpm algorithms, a new
category of skpm algorithms – based on factors instead of suffixes of keywords
1 By sublinear, we mean that the number of symbol comparisons may be sublinear in

input string length.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 18–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automaton-Based Sublinear Keyword Pattern Matching 19

– has emerged in the last decade. This category includes algorithms such as
(Set) Backward DAWG Matching [5] and (Set) Backward Oracle Matching [6,
7], which were added to the existing taxonomy by Cleophas [8].

P

+

S

+

GS

NLAU OLAU

NFS

OPT

BMCW NLA

CW

CW
BM

BM

OKW

LMIN

SSD

EGC

BMH

GS

S F FO (SO)

EGC

RSA RFA RFO (RSO)

LSKP

Fig. 1. A new automaton-based skpm
algorithm taxonomy.

In this paper, we show how suffix,
factor and factor oracle automaton-based
skpm algorithms can be seen as instan-
tiations of a general algorithm skeleton.
We show how this skeleton is derived by
successively adding algorithm details to
a näıve, high-level algorithm. Since the
suffix-based algorithms have been exten-
sively described in the past [1, 2, 8], we
focus our attention on the factor- and fac-
tor oracle-based algorithms.

Figure 1 shows the new skpm taxon-
omy. Nodes represent algorithms, while
edges are labeled with the detail they rep-
resent. Most of the details are introduced
in the course of the text; for those that
are not, please refer to [9].

1.1 Related Work

The complete original taxonomy is pre-
sented in [2, Chapter 4] and [1]. The
additions and changes are described in
Cleophas’s MSc thesis [8, Chapter 3]. The
new skpm taxonomy part is completely described in [9].

The SPARE Time (String PAttern REcognition) toolkit implements most
algorithms in the taxonomy. It is discussed in detail in [8, Chapter 5] and will
be available from http://www.fastar.org.

1.2 Taxonomy Construction

In our case, a taxonomy is a classification according to essential details of al-
gorithms or data structures from a certain field, taking the form of a (directed
acylic) taxonomy graph. The construction of a taxonomy has a number of goals:

– Providing algorithm correctness arguments, often absent in literature
– Clarifying the algorithms’ working and interrelationships
– Helping in correctly and easily implementing the algorithms [10, 2]
– Leading to new algorithms, by finding and filling gaps in the taxonomy

The process of taxonomy construction is preceded by surveying the existing
literature of algorithms in the problem field. Based on such a survey, one may
try to bring order to the field by placing the algorithms found in a taxonomy.

20 Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

The various algorithms in a taxonomy are derived from a common starting
point by adding details indicating the variations between different algorithms.
The common starting point is a näıve algorithm whose correctness is easily
shown. Associated with this algorithm are requirements in the form of a pre-
and postcondition, invariant and a specification of (theoretical) running time
and/or memory usage, specifying the problem under consideration. The details
distinguishing the algorithms each belong to one of the following categories:

– Problem details involve minor pre- and postcondition changes, restricting in-
or output

– Algorithm details are used to specify variance in algorithmic structure
– Representation details are used to indicate variance in data structures, in-

ternally to an algorithm or also influencing in- and output representation.
– Performance details i.e. running time and memory consumption variance.

As the representation and performance details mainly influence implementa-
tion but do not influence the other goals stated above, problem and algorithm
details are most important. These details form the taxonomy graph edges.

Taxonomy construction is often done bottom-up, starting with single-node
taxonomies for each algorithm in the problem domain literature. As one sees
commonalities among them, one may find generalizations which allow combin-
ing multiple taxonomies into one larger one with the new generalization as the
root. Once a complete taxonomy has been constructed, it is presented top-down.
Associated with the addition of a detail, correctness arguments showing how the
more detailed algorithm is derived from its predecessor are given. To indicate a
particular algorithm and form a taxonomy graph, we use the sequence of details
in order of introduction. Sometimes an algorithm can be derived in multiple
ways. This causes the taxonomy to take the form of a directed acyclic graph
instead of a directed tree.

This type of taxonomy development was also used for garbage collection [11],
FA construction and minimization [2, 12], graph representations [13] and others.

1.3 Notation and Definitions Used

Since a large part of this paper consists of derivations of existing algorithms,
we will often use notations corresponding to their use in existing literature on
those algorithms. We use A and B for arbitrary sets, P(A) for the powerset
of a set A, V for the (non-empty and finite) alphabet and V ∗ for words over
the alphabet, P = {p0, p1, . . . p|P |−1} ⊆ V ∗ for a finite, non-empty pattern set
with lminP =

(
MIN p : p ∈ P : |p|), as well as R for predicates, M for finite

automata and Q for state sets. States are represented by q and q0. Symbols
a, b, . . . , e represent alphabet symbols from V , while p, s, . . . z represent words
over alphabet V . Symbols i, j, . . . , n represent integer values. We use ⊥ (‘bot-
tom’) to denote an undefined value. Sometimes functions, relations or predicates
are used that have names longer than just a single character.

A (deterministic) FA is a 5-tuple M = 〈Q, V, δ, q0, F 〉 where Q is a finite set
of states, δ ∈ Q × V → Q is the transition relation, q0 ∈ Q is a start state and

Automaton-Based Sublinear Keyword Pattern Matching 21

F ⊆ Q is a set of final states. We extend δ to δ∗ ∈ Q × V ∗ → Q defined by
δ∗(q, ε) = q and δ∗(q, wa) = δ(δ∗(q, w), a).

We use pR for the reversal of a string p, and use string reversal on a set
of strings as well. A string u is a factor (resp. prefix, suffix) of a string v if
v = sut (resp. v = ut, v = su). We use functions fact, pref and suff for the
set of factors, prefixes and suffixes of a (set of) string(s) respectively. We write
u ≤p v to denote that u is a prefix of v. The infix operators �, �, �, � (pronounced
‘left take’, ‘left drop’, ‘right take’ and ‘right drop’ respectively) for 0 ≤ k are
defined as: w�k is the k min |w| leftmost symbols of w, w�k is the (|w|−k)max 0
rightmost symbols of w, w�k is the k min |w| rightmost symbols of w and w�k
is the (|w| − k)max 0 leftmost symbols of w. For example, (hers)�3 = her,
(hers)�1 = ers, (hers)�5 = hers and (hers)�10 = ε.

Our notation for quantifications is introduced in Appendix A. We use pred-
icate calculus in derivations [14] and present algorithms in an extended version
of (part of) the guarded command language [15]. In that language, x, y := X, Y
is used for multiple-variable assignment, while if b → S [] ¬b → T fi represents
executing S if b evaluates to true, and T if ¬b evaluates to true. The extensions
of the basic language are as b → S sa as a shortcut for if b → S [] ¬b → skip
fi, and for x : R → S rof for executing statement list S once for each value of
x initially satisfying R (assuming there is a finite number of such values for x),
in arbitrarily chosen order [16].

2 An Automaton-Based Algorithm Skeleton
for Sublinear Keyword Pattern Matching

In this section, we work towards an automaton-based algorithm skeleton for
skpm, by adding details to a näıve solution.

The kpm problem, given input string S ∈ V ∗, and pattern set P , is to
establish (see Appendix A for our notation for quantifications)

R : O =
(⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)})

i.e. to let O be the set of triples forming a splitting of S in three such that the
middle part is a keyword in P . A trivial (but unrealistic) solution is

Algorithm 1()

O :=
(⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)
{ R }

The sequence of details describing this algorithm is the empty sequence. We
may proceed by considering a substring of S as “suffix of a prefix of S” or as
“prefix of a suffix of S”. We choose the first possibility as this is the way that the
algorithms we consider treat substrings of input string S (the second leads to
algorithms processing S from right to left instead). Applying “examine prefixes
of a given string in any order” (algorithm detail (p)) to S, we obtain:

22 Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

Algorithm 2(p)

O := ∅;
for (u, r) : ur = S →

O := O ∪
(⋃

l, v : lv = u ∧ v ∈ P : {(l, v, r)}
)

rof{ R }

This algorithm is used in [8, 2] to derive (non-sublinear) prefix-based algorithms
such as Aho-Corasick, Knuth-Morris-Pratt and Shift-And/-Or.

The update of O in the repetition of Algorithm 2 can be computed with
another repetition, considering suffixes of u. Applying “examine suffixes of a
given string in any order” (algorithm detail (s)) to string u we obtain:

Algorithm 3(p, s)

O := ∅;
for (u, r) : ur = S →

for (l, v) : lv = u →
as v ∈ P → O := O ∪ {(l, v, r)} sa

rof
rof{ R }

Algorithm (p, s) consists of two nested non-deterministic repetitions. Each can
be determinized by considering prefixes (or suffixes as the case is) in increasing
(called detail (+)) or decreasing (detail (−)) order of length. Since the algorithms
we consider achieve sublinear behaviour by examining string S from left to right,
and patterns in P from right to left, we focus our attention on:

Algorithm 4(p+, s+)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε �∈ P → O := ∅ f i;

{ invariant: ur = S ∧ O =
(⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)
}

do r �= ε →
u, r := u(r�1), r�1; l, v := u, ε;
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv }
do l �= ε →

l, v := l�1, (l�1)v;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

To arrive at a more efficient algorithm, we strengthen the inner loop guard
l 	= ε. In [1, 2], this was done by adding cand (l�1)v ∈ suff(P) 2. A more general
2 We use cand (cor) for conditional con- resp. disjunction, i.e. the second operand is

evaluated if and only if necessary to determine the value of the con- or disjunction.

Automaton-Based Sublinear Keyword Pattern Matching 23

strengthening is possible however. Suppose we have a function f ∈ P(V ∗) →
P(V ∗) satisfying P ⊆ f(P) ∧ suff(f(P)) ⊆ f(P) (i.e. f is such that P is included
in f(P) and f(P) is suffix-closed) then we have (for all w, x ∈ V ∗) w 	∈ f(P) ⇒
w 	∈ P and w 	∈ f(P) ⇒ xw 	∈ P (application of right conjunct followed by
left one). We may therefore strengthen the guard to l 	= ε cand (l�1)v ∈ f(P)
(algorithm detail (gs), for guard strengthening). This leads to:

Algorithm 5(p+, s+, gs)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε �∈ P → O := ∅ f i;

{ invariant: ur = S ∧ O =
(⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)
}

do r �= ε →
u, r := u(r�1), r�1; l, v := u, ε;
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ f(P) }
do l �= ε cand (l�1)v ∈ f(P) →

l, v := l�1, (l�1)v;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od{ l = ε cor (l�1)v �∈ f(P) }
od{ R }

Observe that v ∈ f(P) is now an invariant of the inner repetition, initially es-
tablished by v := ε (since P 	= ∅ and thus ε ∈ f(P)).

Several choices for f(P) are possible, of which we mention:

– suff(P), leading to the original taxonomy [1, 2]. In [9], those algorithms are
derived using an automaton-based algorithm skeleton.

– fact(P), discussed in Section 3.
– factoracle(PR)R, a superset of fact(PR)R (= fact(P)), see Section 4.
– A function returning a superset of suff. This could be implemented using a

suffix oracle [6, 7]. We will not explore this option here.

Direct evaluation of (l�1)v ∈ f(P) is expensive and this is where automata come
in: to efficiently compute this guard conjunct, the transition function δR,f,P of a
finite automaton recognizing f(P)R is used, with the property:

Property 1 (Transition function of automaton recognizing f(P)R). The transi-
tion function δR,f,P of a deterministic FA M = 〈Q, V, δR,f,P , q0, F 〉 recognizing
f(P)R has the property that δ∗R,f,P (q0, w

R) 	= ⊥ ≡ wR ∈ f(P)R. �

Property 1 requires pref(f(P)R) ⊆ f(P)R, i.e. suff(f(P)) ⊆ f(P). Also note that
wR ∈ f(P)R ≡ w ∈ f(P). Since we will always refer to the same set P , we will
use δR,f for δR,f,P . Transition function δR,f can be computed beforehand.

By making q = δ∗R,f(q0, ((l�1)v)R) an invariant of the algorithm’s inner rep-
etition, guard conjunct (l�1)v ∈ f(P) can be changed to q 	= ⊥. We call this
algorithm detail (egc), for efficient guard computation. This algorithm detail
leads to the following algorithm skeleton:

24 Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

Algorithm 6(p+, s+, gs, egc)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε �∈ P → O := ∅ f i;

{ invariant: ur = S ∧ O =
(⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)
}

do r �= ε →
u, r := u(r�1), r�1; l, v := u, ε; q := δR,f(q0, l�1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ f(P) ∧ q = δ∗R,f(q0, ((l�1)v)R) }
do l �= ε cand q �= ⊥ →

l, v := l�1, (l�1)v;
q := δR,f(q, l�1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od{ l = ε cor (l�1)v �∈ f(P) }
od{ R }

The particular automaton choices for this detail will be discussed together with
the corresponding choices for detail (gs) in Sections 3 and 4. Note that guard
v ∈ P can be efficiently computed, i.e. computed in Θ(1), by providing a map
from automaton states to booleans.

In practice, the algorithms often use automata recognizing f(P ′)R where P ′ =
{v : v ∈ pref(P) ∧ |v| = lminP} instead of f(P)R. Informally, an automaton is
built on the prefixes of length lminP , to obtain smaller automata (see [9] for more
information). To save memory usage, the automata are sometimes constructed
on-the-fly as well.

Starting from the above algorithm, we derive an automaton-based skpm al-
gorithm skeleton. The basic idea is to make shifts of more than one symbol.
Given k satisfying 1 ≤ k ≤ (

MINn : 1 ≤ n ∧ suff(u(r�n)) ∩ P 	= ∅ : n
)
, we can

replace u, r := u(r�1), r�1 by u, r := u(r�k), r�k. The upperbound on k is the
distance to the next match, the maximal safe shift distance (mssd). Any smaller
k is safe as well, and we thus define a safe shift distance as a shift distance
k satisfying 1 ≤ k ≤ (

MINn : 1 ≤ n ∧ suff(u(r�n)) ∩ P 	= ∅ : n
)
. The use of

assignment u, r := u(r�k), r�k for a safe shift distance k forms algorithm detail
(ssd).

Since shift functions may depend on l, v and r, we will write k(l, v, r). We
aim to approximate the mssd from below, since computing the distance itself
essentially amounts to solving our original problem. To do this, we weaken the
predicate suff(u(r�n))∩P 	= ∅. This results in safe shift distances that are easier
to compute. In the derivation of such weakening steps, the u = lv ∧ v ∈ f(P) part
of the invariant of the inner repetition in Algorithm 6 is used. By adding l, v :=
ε, ε to the initial assignments, we turn this into an outer repetition invariant.
This also turns l = ε cor (l�1)v 	∈ f(P) – the negation of the inner repetition
guard – into an outer repetition invariant. Hence, we arrive at the following
algorithm skeleton:

Automaton-Based Sublinear Keyword Pattern Matching 25

Algorithm 7(p+, s+, gs, egc, ssd)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε �∈ P → O := ∅ f i;
l, v := ε, ε;

{ invariant: ur = S ∧ O =
(⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ f(P) ∧
(
l = ε cor (l�1)v �∈ f(P)

)
}

do r �= ε →
u, r := u(r�k(l,v,r)), r�k(l,v,r); l, v := u, ε; q := δR,f(q0, l�1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗R,f(q0, ((l�1)v)R) }
do l �= ε cand q �= ⊥ →

l, v := l�1, (l�1)v;
q := δR,f(q, l�1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

Using this algorithm skeleton, various sublinear algorithms may be obtained by
choosing appropriate f(P) and function k. For lack of space, we do not consider
the choice of suff(P) for f(P) in this paper (see [9] instead).

In [17], an alternative algorithm skeleton for (suffix-based) skpm is presented,
in which the update to O in the inner loop has been moved out of that loop.
This requires the use of a precomputed output function, but has the potential
to substantially reduce the algorithms’ running time. This alternative skeleton
is not considered in this paper.

3 Factor-Based Sublinear Pattern Matching

We now derive a family of algorithms by using the set of factors of P , fact(P).
We use detail choice (gs=f), i.e. we choose fact(P) for f(P). The inner repetition
guard then becomes l 	= ε cand (l�1)v ∈ fact(P).

As direct evaluation of (l�1)v ∈ fact(P) is expensive, the transition function
of an automaton recognizing the set fact(P)R is used (detail choice (egc=rfa)).
Using function δR,fact of Section 2 and making q = δ∗R,fact(q0, ((l�1)v)R) an
invariant of the inner repetition, the guard becomes l 	= ε cand q 	= ⊥.

Note that various automata exist whose transition functions can be used for
δR,fact, including the trie built on fact(P)R and the suffix automaton or the
dawg (for directed acyclic word graph) on fact(P)R [3].

The use of detail choices (gs=f) and (egc=rfa) in Algorithm 7 has two
effects. Firstly, more character comparisons will in general be performed: in cases
where (l�1)v 	∈ suff(P) yet (l�1)v ∈ fact(P), factor-based algorithms will extend
v to the left more than strictly necessary. On the other hand, when the guard
of the inner loop becomes false, (l�1)v 	∈ fact(P) holds, which gives potentially
more information to use in the shift function than (l�1)v 	∈ suff(P).

26 Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

Since (l�1)v 	∈ fact(P) ⇒ (l�1)v 	∈ suff(P), we may use any safe shift func-
tion derived for suffix-based sublinear algorithms, discussed in [1, 2, 8]). This
results in a large number of new algorithms, since most such shift functions
have not been used with a factor-based algorithm before. In using such a shift
function, we replace the suff(P) part of their domain by fact(P), meaning that
precomputation changes.

3.1 The No-Factor Shift

We can get potentially larger shifts than by simply using suffix-based shift func-
tions, since (l�1)v 	∈ fact(P) is stronger than (l�1)v 	∈ suff(P). In [9] we show
that we may use any shift function satisfying

(
MINn : 1 ≤ n ∧ Weakening(suff(u(r�n)) ∩ P 	= ∅) : n

)

max(1max(lminP − |v|)) (1)

The left operand of the outer max corresponds to any suffix-based safe shift
function, while the right operand corresponds to the shift in case (l�1)v is not a
factor of a keyword. We introduce shift function kssd,nfs(l, v, r) where kssd,nfs ∈
V ∗ × fact(P) × V ∗ → N is defined by kssd,nfs(l, v, r) = kssd(l, v, r) max (1
max (lminP −|v|)) for any suffix-based safe shift function kssd (algorithm detail
(nfs)). We call it the no-factor shift, since it uses (l�1)v 	∈ fact(P). In particular,
we may use safe shift distance 1 with the no-factor shift to get shift distance 1
max (1 max (lminP − |v|)) = 1 max (lminP − |v|).

This equals the shift distance used in the basic ideas for backward DAWG
matching [18, page 27] and – combined with algorithm detail (lmin) mentioned
in Section 2 – set backward DAWG matching [18, page 68]. The actual algorithms
described in the literature use an improvement based on a property of DAWGs.
We discuss this in Subsection 3.2.

The shift function 1 max (lminP − |v|) just requires precomputation of
lminP , yet gives quite large shift distances. This is the reason why factor-based
skpm algorithms have gotten a lot of attention since their first descriptions in
literature. The algorithms in literature do not combine it with any of the more
involved precomputed shift functions as those described in [9, 1, 2]. If precompu-
tation time is not an important issue however, combining such a shift function
and the no-factor shift may be advantageous, potentially yielding larger shifts.
As far as we know, such a combination has not been described or used before.
Since about ten shift functions are given in [9], the combination of a single one
with the no-factor shift already gives us about ten new factor-based skpm algo-
rithms. It remains to be investigated whether these algorithms indeed improve
over the running time of the algorithms from literature.

3.2 Cheap Computation of a Particular Shift Function

We now consider a different weakening of suff(u(r�n))∩ P 	= ∅ in the safe shift
function predicate. In [9] we show that this leads to shift 1max(lminP −lastv,P)
where lastv,P =

(
MAXm : 0 ≤ m ≤ |v| ∧ v�m ∈ pref(P) : m

)
.

Automaton-Based Sublinear Keyword Pattern Matching 27

It seems to be rather difficult to compute lastv,P . When using a DAWG to
implement transition function δR,fact of algorithm detail (egc=rfa) however,
we may use a property of this automaton to compute lastv,P ‘on the fly’: the
final states of the DAWG correspond to suffixes of some pR ∈ PR, i.e. to prefixes
of some p ∈ P . Thus, lastv,P equals the length of v at the moment the most
recent final state was visited.

We introduce shift function klskp ∈ fact(P) → N defined by klskp = 1 max
(lminP − lastv,P). This function does not depend on l and can therefore be seen
as a variant of the shift function represented by algorithm detail (nla) in [9,
1]. Calculating the shift distance using klskp (and variable lastv,P) is algorithm
detail (lskp) (longest suffix which is keyword prefix). Due to lack of space, the
complete algorithm is not presented here; please refer to [9, 8] for this.

The algorithm is a variant of Set Backward DAWG Matching [5], [18, page
68], which adds algorithm detail (lmin). Adding algorithm detail (okw) results
in (single-keyword) Backward DAWG Matching.

Algorithm detail (nfs) is included in neither detail sequence, since the no-
factor shift can never be larger than the klskp shift.

4 Factor Oracle-Based Sublinear Pattern Matching

We now derive a family of algorithms by using factoracle(PR)R for f(P).
We may do so since factoracle(PR)R ⊇ fact(PR)R and factoracle is suffix-
closed [19, 6, 7]. We strengthen the inner repetition guard, which now becomes
l 	= ε cand (l�1)v ∈ factoracle(PR)R.

Since direct evaluation of (l�1)v ∈ factoracle(PR)R is impossible3, the tran-
sition function of the factor oracle [19, 6, 7] recognizing the set factoracle(PR) is
used. Using function δfactoracle(P R)

4 and making q=δ∗factoracle(P R)(q0, ((l�1)v)R)
an invariant of the inner repetition, the guard becomes l 	= ε cand q 	= ⊥.

The use of detail choices (gs=fo) and (egc=rfo) in Algorithm 7 has two
important effects. Firstly, the factor oracle recognizing factoracle(PR) is easier
to construct and may have less states and transitions than an automaton recog-
nizing fact(PR) [19, 6, 7]. On the other hand, even more character comparisons
may be performed than when using an automaton recognizing fact(PR) (let
alone when using an automaton recognizing suff(PR)): When (l�1)v 	∈ fact(P)
yet (l�1)v ∈ factoracle(PR)R, the algorithm will go on extending v to the left
more than strictly necessary.

However, (l�1)v 	∈ factoracle(PR)R ⇒ (l�1)v 	∈ fact(PR)R and hence
(l�1)v 	∈ fact(P) and therefore any shift function may be used satisfying Equa-
tion 1. In particular, both the safe shift functions for the suffix-based algorithms
as well as the no-factor shift introduced in Section 3 may be used.
3 The language of a factor oracle so far has not been described separately from the

automaton construction.
4 Since factoracle(P)R �= factoracle(P R) could hold, we cannot use δR,factoracle to

describe the transition function. We introduce δfactoracle(P R), the transition func-

tion of the automaton recognizing factoracle(P R).

28 Loek Cleophas, Bruce W. Watson, and Gerard Zwaan

The Set Backward Oracle Matching algorithm [7], [18, pages 69-72] equals
our algorithm (p+, s+, gs=fo, egc=rfo, lmin, ssd, nfs, one), while adding
detail (okw) gives the single keyword Backward Oracle Matching algorithm [6],
[18, pages 34-36], [19].

5 Final Remarks

We showed how suffix, factor and factor oracle automaton-based sublinear key-
word pattern matching algorithms appearing in the literature can be seen as
instantiations of a general automaton-based skpm algorithm skeleton. The algo-
rithms were formally derived as part of a new taxonomy, presenting correctness
arguments and clarity on their working and interrelationships.

We discussed the algorithm skeleton and some instantiations leading to well-
known algorithms such as (Set) Backward DAWG Matching and (Set) Backward
Oracle Matching. In addition, we showed the shift functions used for suffix-based
algorithms to be in principle reusable for factor- and factor oracle-based algo-
rithms. This results in a number of previously undescribed factor automaton-
based skpm algorithm variants. Their practical performance remains to be in-
vestigated and compared to the more basic factor-based skpm algorithms known
from the literature and described in this paper as well.

The algorithms described here could also be described using a generalization
of the alternative Commentz-Walter algorithm skeleton presented in [17], in
which the output variable update is moved out of a loop to increase performance.
In addition to changes to the algorithms in the taxonomy to accomodate this
idea, benchmarking would also need to be performed to study the effects.

We have not considered precomputation of the various shift functions used
in the algorithms discussed in this paper. Precomputation of these functions for
suffix-based algorithms was described in [1], but extending this precomputation
to factor- and factor oracle-based algorithms remains to be done.

References

1. Watson, B.W., Zwaan, G.: A taxonomy of sublinear multiple keyword pattern
matching algorithms. Science of Computer Programming 27 (1996) 85–118

2. Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. PhD
thesis, Faculty of Computing Science, Technische Universiteit Eindhoven (1995)

3. Crochemore, M., Rytter, W.: Jewels of Stringology - Text Algorithms. World Sci-
entific Publishing (2003)

4. Apostolico, A., Galil, Z.: Pattern Matching Algorithms. Oxford University Press
(1997)

5. Crochemore, M., Czumaj, A., G asieniec, L., Jarominek, S., Lecroq, T., Plandowski,
W., Rytter, W.: Speeding up two string matching algorithms. Algorithmica 12
(1994) 247–267

6. Allauzen, C., Crochemore, M., Raffinot, M.: Efficient Experimental String Match-
ing by Weak Factor Recognition. In: Proceedings of the 12th conference on Com-
binatorial Pattern Matching. Volume 2089 of LNCS. (2001) 51–72

Automaton-Based Sublinear Keyword Pattern Matching 29

7. Allauzen, C., Raffinot, M.: Oracle des facteurs d’un ensemble de mots. Technical
Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée (1999)

8. Cleophas, L.G.: Towards SPARE Time: A New Taxonomy and Toolkit of Keyword
Pattern Matching Algorithms. Master’s thesis, Department of Mathematics and
Computer Science, Technische Universiteit Eindhoven (2003)

9. Cleophas, L., Watson, B.W., Zwaan, G.: A new taxonomy of sublinear keyword
pattern matching algorithms. Technical Report 04/07, Department of Mathematics
and Computer Science, Technische Universiteit Eindhoven (2004)

10. Watson, B.W., Cleophas, L.: SPARE Parts: A C++ toolkit for String PAttern
REcognition. Software – Practice & Experience 34 (2004) 697–710

11. Jonkers, H.: Abstraction, specification and implementation techniques, with an
application to garbage collection. Technical Report 166, Mathematisch Centrum,
Amsterdam (1983)

12. Watson, B.W.: Constructing minimal acyclic deterministic finite automata. PhD
thesis, Department of Computer Science, University of Pretoria (2004)

13. Barla-Szabo, G.: A taxonomy of graph representations. Master’s thesis, Depart-
ment of Computer Science, University of Pretoria (2002)

14. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York, NY (1990)

15. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ
(1976)

16. van den Eijnde, J.: Program derivation in acyclic graphs and related problems.
Technical Report 92/04, Faculty of Computing Science, Technische Universiteit
Eindhoven (1992)

17. Watson, B.W.: A new family of Commentz-Walter-style multiple-keyword pattern
matching algorithms. In: Proceedings of the Prague Stringology Club Workshop
2000, Department of Computer Science and Engineering, Czech Technical Univer-
sity, Prague (2000) 71–76

18. Navarro, G., Raffinot, M.: Flexible pattern matching in strings: practical on-line
search algorithms for texts and biological sequences. Cambridge University Press
(2002)

19. Cleophas, L., Zwaan, G., Watson, B.W.: Constructing Factor Oracles. In: Proceed-
ings of the Prague Stringology Conference 2003, Department of Computer Science
and Engineering, Czech Technical University, Prague (2003)

A Quantifications

A basic understanding of the meaning of quantifications is assumed. We use
the notation (⊕a : R(a) : E(a)) where ⊕ is the associative and commutative
quantification operator (with unit e⊕), a is the quantified variable introduced,
R is the range predicate on a, and E is the quantified expression. By definition,
we have (⊕a : false : E(a)) = e⊕.

The following table lists some of the most commonly quantified operators,
their quantified symbols, and their units:

Operator ∨ ∧ ∪ min max +

Symbol ∃ ∀ ⋃
MIN MAX Σ

Unit false true ∅ +∞ −∞ 0

Techniques for Efficient Query Expansion

Bodo Billerbeck and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

{bodob,jz}@cs.rmit.edu.au

Abstract. Query expansion is a well-known method for improving av-
erage effectiveness in information retrieval. However, the most effective
query expansion methods rely on costly retrieval and processing of feed-
back documents. We explore alternative methods for reducing query-
evaluation costs, and propose a new method based on keeping a brief
summary of each document in memory. This method allows query expan-
sion to proceed three times faster than previously, while approximating
the effectiveness of standard expansion.

1 Introduction

Standard ranking techniques in information retrieval return documents that con-
tain the same terms as the query. While the insistence on exact vocabulary
matching is often effective, identification of some relevant documents involves
finding alternative query terms. Previous work has shown that through query
expansion (QE) effectiveness is often significantly improved (Rocchio, 1971,
Robertson and Walker, 1999, Carpineto et al., 2001).

Local analysis has been found to be one of the most effective methods for
expanding queries (Xu and Croft, 2000). For those methods the original query is
used to determine top-ranked documents from which expansion terms are sub-
sequently extracted. A major drawback of such methods is the need to retrieve
those documents during query evaluation, greatly increasing costs. In other work
(Billerbeck et al., 2003), we explored the use of surrogates built from past queries
as a cheap source of expansion terms, but such surrogates require large query
logs to be usable.

In this paper, we identify the factors that contribute to the cost of query ex-
pansion, and explore in principle the alternatives for reducing these costs. Many
of these approaches compromise effectiveness so severely that they are not of
practical benefit. However, one approach is consistently effective: use of brief
summaries – a pool of the most important terms – of each document. These
surrogates are much smaller than the source documents, and can be rapidly pro-
cessed during expansion. In experiments with several test sets, we show that our
approach reduces the time needed to expand and evaluate a query by a factor of
three, while approximately maintaining effectiveness compared to standard QE.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 30–42, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Techniques for Efficient Query Expansion 31

2 Background

Relevance feedback is used to refine a query using knowledge of whether docu-
ments retrieved by this query are relevant. Weighted terms from judged docu-
ments are added to the original query, where they act as positive and negative
examples of the terms that should occur in relevant and non-relevant documents.
The modified query is then reissued, in the hope of ranking the remaining rele-
vant documents more highly (Rocchio, 1971, Ruthven and Lalmas, 2003). Inter-
active QE can significantly increase effectiveness (Magennis and van Rijsbergen,
1997), although on average – for non expert users – automatic expansion is more
likely to lead to better performance (Ruthven, 2003).

In automatic QE, also called pseudo relevance feedback, the query is aug-
mented with expansion terms from highly-ranked documents (Robertson and
Walker, 1999). An alternative (Qiu and Frei, 1993, Gauch and Wang, 1997) is to
examine the document collection ahead of time and construct similarity thesauri
to be accessed at query time. The use of thesauri in general has been shown to
be less successful than automatic QE (Mandala et al., 1999), though the two
approaches can be successfully combined (Xu and Croft, 2000).

An effective method for QE, used throughout this paper, is based on the
Okapi BM25 measure (Robertson and Walker, 1999, Robertson et al., 1992).
Slightly modified, this measure is as follows:

bm25(q, d) =
∑

t∈q

log
(

N − ft + 0.5
ft + 0.5

)
× (k1 + 1)fd,t

K + fd,t

where terms t appear in query q; the collection contains N documents d; ft docu-
ments contain a particular term and a particular document contains a particular
term fd,t times; K is k1((1−b)+b×Ld/AL); constants k1 and b respectively are
set to 1.2 and 0.75; and Ld and AL are measurements in a suitable unit for the
document length and average document length respectively. The modifications
to the original formulation (see Sparck-Jones et al. (2000) for a detailed expla-
nation) is the omission of a component that deals with repeated query terms. In
the queries we use, term repetitions are rare.

In this paper we use the expansion method proposed by Robertson and
Walker (1999) where E terms with the lowest term selection value are chosen
from the top R ranked documents:

TSVt =
(

ft

N

)rt
(

R

rt

)

where a term t is contained in rt of the top ranked R documents. The expansion
terms get added to the original query, but instead of using their Okapi value,
their weight (Robertson and Walker, 1999) is chosen by the formula1:
1 The factor of 1

3
was recommended by unpublished correspondence with the authors.

It de-emphasises expansion terms and prevents query drift, that is, “alteration of
the focus of a search topic caused by improper expansion” (Mitra et al., 1998). We
confirmed in unpublished experiments that the value of the factor is suitable.

32 Bodo Billerbeck and Justin Zobel

1
3
× log

(
(rt + 0.5)/(R − rt + 0.5)

(ft − rt + 0.5)/(N − ft − R + rt + 0.5)

)

We have shown previously that best choices of R and E depend on the collection
used and should in principle be carefully optimised (Billerbeck and Zobel, 2004);
to reduce the complexity of the experiments, in this paper we use the standard
values of R = 10 and E = 25.

Although there has been a great deal of research on efficient evaluation of
ranked queries (Witten et al., 1999, pages 207–210), there is no prior work on
efficient QE for text retrieval, the focus of this paper.

3 Query Expansion Practicalities

In most expansion methods making use of local analysis, there are five key stages.
First, the original query is used to rank an initial set of documents. This set is
then retrieved from disk and all terms are extracted from those documents.
Terms are evaluated and ranked in order of their potential contribution to the
query. The top ranked terms are appended to the query, and finally the refor-
mulated query is reissued and a final set of documents is ranked.

Each phase of the ranking process has scope for efficiency gains, but some
of the gains involve heuristics that can compromise effectiveness. In this section
we explore these options; this exploration provides a focus for the experiments
reported later in this paper. Some of the concepts introduced here – in particular,
associations and surrogates – are described in more detail in the next section.

Initial Ranking. During the first stage, documents are ranked according to the
original query. For each query term the inverted list is retrieved, if it hasn’t
been cached, and processed. For each document referenced in the list, a score is
calculated and added to a list of scores that is kept for (say) 20,000 documents
(Moffat and Zobel, 1996). Once all query terms have been processed, the top R
documents are used for the next stage.

The cost of accessing an inverted list depends on the disk access time. For a
long list, the costs are directly proportional to list size. If the list is organised
by document identifier, the whole list must be fetched for each query term.

A way of reducing the cost of retrieving and processing the inverted lists is
to cut down the volume of list information that has to be retrieved. This has
been achieved by, for example, Anh and Moffat (2002), where documents are
not stored in the order they are encountered during indexing, but in order of
the impact a term has in a particular document. For instance, a term has more
impact in a document in which it occurs twice, than another of the same length
in which it occurs once. Using this ordering means that either the processing
of lists can be stopped once a threshold is reached, or that the lists are capped
to begin with, leading to lower storage requirements, reduced seek times, and
allowing more lists to be cached in memory. We have not used impacts in our
experiments, but the gains that they provide are likely to be in addition to the
gains that we achieve with our methods.

Techniques for Efficient Query Expansion 33

Another way to reduce list length, discussed in more detail later, is to index
only a fraction of the document collection for the initial ranking. Initial ranking
is traditionally on the document collection, but there is no particular reason why
other collections should not be used. Another option, also explored later, of this
kind is to use document surrogates. A drawback of these approaches is that the
full index still needs to be available for the final ranking and thus is loaded at
the same time as auxiliary indexes. This means that some of the advantage of
using shorter lists is negated by having less space available to cache them.

Fetching Documents. Having identified the highly ranked documents, these need
to be fetched. In the vast majority of cases these documents are not cached from
a previous expansion or retrieval process (assuming a typical memory size), and
therefore have to be fetched from disk, at a delay of a few milliseconds each.

Traditionally, full-text documents are fetched. This is the most expensive
stage of expansion and therefore the area where the greatest gains are available.
We have shown previously that surrogates – which are a fraction of the size of the
documents – can be more effective than full-text documents (Billerbeck et al.,
2003). Using surrogates such as query associations is more efficient, provided
that those surrogates can be pre-computed, as discussed later.

Another approach is limiting the number of documents available for extrac-
tion of terms, which should result in higher efficiency, due to reduced cache misses
when retrieving the remaining documents and otherwise smaller seek times as
it can be expected that the limited number of documents are clustered on disk.
Documents could be chosen by, for example, discarding those that are the least
often accessed over a large number of queries (Garcia et al., 2004).

A more radical measure is to use in-memory document surrogates that pro-
vide a sufficiently large pool of expansion terms, as described in the following
section. If such a collection can be made sufficiently small, the total cost of ex-
pansion can be greatly reduced. Typically full text document collections don’t fit
into main memory, but well-constructed surrogates may be only a small fraction
of the size of the original collection. Our surrogates are designed to be as small
as possible while maintaining effectiveness.

Extracting Candidate Terms. Next, candidate terms (that is, potential expan-
sion terms) are extracted from the fetched documents. These documents need to
be parsed, and terms need to be stopped. (We do not use stemming, since in un-
published experiments we have found that stemming does not make a significant
difference to effectiveness.)

This phase largely depends on the previous phase; if full text documents
have been fetched, these need to be parsed and terms need to be stopped. In the
case of query associations, the surrogates are pre-parsed and pre-stopped and
extraction is therefore much more efficient.

The in-memory surrogates we propose can be based on pointers rather than
the full terms in memory. The pointers reference terms in the dictionary used
for finding and identifying statistics and inverted lists. They have a constant size

34 Bodo Billerbeck and Justin Zobel

(4 bytes) and are typically smaller than a vocabulary term. This approach also
eliminates the lookups needed in the next stage.

Selecting Expansion Terms. The information (such as the inverse document
frequency) necessary for calculation of a term’s TSV is held in the vocabulary,
which may be held on disk or (as in our implementation) in memory; even when
held on disk, the frequency of access to the vocabulary means that typically
much of it is cached. As a result, this phase is the fastest and can only be sped
up by providing fewer candidate terms for selection.

Query associations typically consist of 20–50 terms, as opposed to the average
of 200 or more for web documents. Use of surrogates could make this stage several
times more efficient than the standard approach. Surrogates are a strict subset
of full text documents, and usually are a tiny fraction thereof, ensuring that
selection is efficient.

Final Ranking. Finally the document collection is ranked against the reformu-
lated query. Similar considerations as in the first phase are applicable here. We
have shown previously (Billerbeck et al., 2003) that final ranking against surro-
gates is, unsurprisingly, ineffective. The only option for efficiency gains at this
stage is to use an approach such as impact-ordering, as discussed earlier.

4 Methods of Increasing Efficiency for QE

In the previous section we identified costs and plausible approaches for reducing
them. In this section, we consider the most promising methods in more detail,
setting a framework for experiments. In particular, we propose the novel strategy
of using bag-of-word summaries as a source of expansion terms.

Query Associations. Query associations (Scholer and Williams, 2002) capture
the topic of a document by associating past user queries with the documents that
have been highly ranked by that query. We have previously shown (Billerbeck
et al., 2003) that associations are effective when useful query logs are available.
A disadvantage of using associations is that an extra index needs to be loaded
and referenced during query evaluation. However, this penalty is small, as asso-
ciations are likely to be a small fraction of collection size. The advantages are
that associations are usually pre-stemmed and stopped, stored in a parsed form,
and cheap to retrieve.

Rather than indexing the associations, it would be possible in principle to
rank using the standard index, then fetch and expand from the associations, but
in our earlier work (Billerbeck et al., 2003) we found that it was necessary to
rank against the associations themselves.

Reducing Collection Size for Sourcing Expansion Terms. The intuition under-
lying expansion is that, in a large collection, there should be multiple documents
on the same topic as the query, and that these should have other pertinent terms.

Techniques for Efficient Query Expansion 35

However, there is no logical reason why the whole collection should have to be
accessed to identify such documents. Plausibly, documents sampled at random
from the collection should represent the overall collection in respect of the ter-
minology used. In our experiments, we sampled the collection by choosing every
nth document, for n of 2 and 4. Other options would be to use centroid clusters
or other forms of representative chosen on the basis of semantics. Documents
could also be stored in a pre-parsed format (such as a forward index), which we
have not tested.

In-Memory Document Summaries. The major bottleneck of local analysis is
the reliance on the highly ranked documents for useful expansion terms. These
documents typically need to be retrieved from disk. We propose that summaries
of all documents be kept in memory, or in a small auxiliary database that is
likely to remain cached. A wide range of document summarisation techniques
have been investigated (Goldstein et al., 1999), and in particular Lam-Adesina
and Jones (2001) have used summarisation for QE. In this work, representative
sentences are selected, giving an abbreviated human-readable document.

However, summaries to be used for QE are not for human consumption. We
propose instead that the summaries consist of the terms with the highest tf.idf
values, that is, the terms that the expansion process should rank highest as
candidates if given the whole document. To choose terms, we use the function:

tf.idf = log
(

N

ft

)
× log (1 + fd,t)

where N is the number of documents in the collection, ft of which contain term t,
and fd,t is the number of occurrences of t in document d.

Given these values, we can then build summaries in two ways. One is to
have a fixed number S of highly-ranked terms per document. The other is to
choose a global threshold C, in which case each summary consists of all the
document terms whose tf.idf value exceeds C. Instead of representing summaries
as sequences of terms, it is straightforward to instead use lists of pointers to the
vocabulary representation of the term, reducing storage costs and providing rapid
access to any statistics needed for the TSV . During querying, all terms in the
surrogates that have been ranked against the original query are then used for
selection. This not only avoids long disk I/Os, but also the original documents
– typically stored only in their raw form – do not need to be parsed. S or C can
be chosen depending on collection size or available memory.

Although it is likely that query-biased summaries (Tombros and Sanderson,
1998) – as provided in most contemporary web search engines – would be more
effective (Lam-Adesina and Jones, 2001), such a method cannot be applied in
the context of efficient QE, as query-biased summaries cannot be precomputed.

Other Approaches. Since the original query terms effectively get processed twice
during the ranking process, it seems logical to only process the original query
terms during the initial ranking, and then, later, process the expansion terms
without clearing the accumulator table that was used for the initial ranking.

36 Bodo Billerbeck and Justin Zobel

However, as explored previously (Moffat and Zobel, 1996), limiting the num-
ber of accumulators aids efficiency and effectiveness. To support this strategy,
query terms must be sorted by their inverse document frequency before the query
is processed. Because most expansion terms have a high inverse document fre-
quency – that is, they appear in few documents and are relatively rare – it is
important that they be processed before most of the original query terms, which
typically have lower values. (The effect is similar – albeit weaker – to that of im-
pact ordered indexes as discussed previously.) This means that the original query
must be processed again with the expansion terms for final ranking. Intuition
suggests that this argument is incorrect, and the original query terms should be
allowed to choose the documents; however, in preliminary experiments we found
that it was essential to process the original terms a second time. Processing only
expansion terms in the second phase reduced costs, but led to poor effectiveness.

Other strategies could also lead to reduced costs. Only some documents, per-
haps chosen by frequency of access (Garcia et al., 2004) or sampling, might be
included in the set of surrogates. A second tier of surrogates could be stored on
disk, for retrieval in cases where the highly-ranked documents are not amongst
those selected by sampling. Any strategy could be further improved by com-
pressing the in-memory surrogates, for example with d-gapping (Witten et al.,
1999, page 115) and a variable-byte compression scheme (Scholer et al., 2002).

Note that our summaries have no contextual or structural information, and
therefore cannot be used – without major modifications – in conjunction with
methods using such information, such as the local context analysis method of
Xu and Croft (2000) or the summarisation method of Goldstein et al. (1999).

5 Experiments

Evaluating these approaches to QE requires that we test whether the heuristics
degrade effectiveness, and whether they lead to reduced query evaluation time.
To ensure that the time measurements were realistic, we used Lucy2 as the
underlying search engine.

The test data is drawn from the TREC conferences (Harman, 1995). We used
two collections. The first was of newswire data, from TREC 7 and 8. The second
was the WT10g collection, consisting of 10 gigabytes of web data crawled in
1997 (Bailey et al., 2003) for TREC 9 and 10. Each of these collections has two
sets of 50 topics and accompanying relevance judgements. As queries, we used
the title field from each TREC topic. We use the Wilcoxon signed rank test to
evaluate the significance of the effectiveness results (Zobel, 1998).

For timings, we used 10,000 stopped queries taken from two query logs col-
lected for the Excite search engine (Spink et al., 2002); these are web queries
and thus are suitable for the WT10g runs. Since we were not able to obtain
appropriate query logs for the newswire data, we used the same 10,000 queries
2 Lucy/Zettair is an open source search engine being developed at RMIT by the Search

Engine Group. The primary aim in developing Lucy is to test techniques for efficient
information retrieval. Lucy is available from http://www.seg.rmit.edu.au/.

Techniques for Efficient Query Expansion 37

Table 1. Performance of expansion techniques of TREC queries on the TREC newswire
and WT10g collections, for TREC 8 and TREC 10 queries. Effectiveness results shown
are average precision (AvP), precision at 10 (P@10), and R-Precision (R-P). Also shown
is the average query time over 10,000 queries and the amount of overhead memory re-
quired for each method; “index” marks the need to refer to an auxiliary index during
expansion. A † marks results that are significantly different to the baseline of no ex-
pansion at the 0.10 level, and ‡ at the level of 0.05. S is the number of summary terms
used, and C specifies the cutoff threshold for the selection value.

TREC Expansion Time AvP P@10 R-P Mem
Method (ms) (MB)

8 None 23 0.221 0.442 0.260 n/a
8 Standard 211 0.247‡ 0.466 0.288‡ n/a
8 Assoc. 179 0.219 0.400 0.263 index
8 Half1 201 0.241‡ 0.436 0.283‡ index
8 Half2 185 0.235† 0.430 0.275‡ index
8 Quarter1 167 0.221 0.382‡ 0.255 index
8 Quarter2 183 0.237 0.430 0.278 index
8 Quarter3 175 0.220 0.434 0.268 index
8 Quarter4 174 0.218 0.390‡ 0.273 index
8 S = 1 46 0.231‡ 0.446 0.267‡ 6
8 S = 10 54 0.238‡ 0.438 0.271‡ 24
8 S = 25 59 0.244‡ 0.456 0.277‡ 54
8 S = 40 61 0.245‡ 0.452 0.275‡ 83
8 S = 50 64 0.243‡ 0.454 0.281‡ 102
8 S = 100 72 0.240‡ 0.450 0.282‡ 183
8 C = 1.0 58 0.243‡ 0.448 0.280‡ 56

10 None 62 0.163 0.290 0.190 n/a
10 Standard 615 0.180 0.288 0.202 n/a
10 Assoc. 835 0.180 0.272† 0.209 index
10 S = 1 139 0.138 0.218 0.150 19
10 S = 10 177 0.153† 0.227 0.169 76
10 S = 25 202 0.156 0.224 0.170 166
10 S = 28 204 0.185 0.308 0.217† 183
10 S = 50 221 0.156 0.224 0.170 296
10 S = 100 245 0.156 0.224 0.170 296
10 C = 1.0 217 0.185‡ 0.312† 0.213† 190

for this collection. The machine used for our timings is a dual Intel Pentium III
866 MHz with 768 MB of main memory running Fedora Core 1.

Results

We used the TREC 8 and TREC 10 query sets to explore the methods. Results
for this exploration are shown in Table 1. We applied the best methods found in
Table 1 to the TREC 7 and TREC 9 query sets, as shown in Table 2. The tables
detail the collection, the method of expansion, average precision, precision at
10, and r-precision values, as well as auxiliary memory required. A second index

38 Bodo Billerbeck and Justin Zobel

Table 2. As in Table 1, but showing results only for the methods that worked best on
TREC 8 and TREC 10.

TREC Expansion Time AvP P@10 R-P Mem
Method (ms) (MB)

7 None 23 0.191 0.456 0.248 n/a
7 Standard 211 0.232‡ 0.452 0.286‡ n/a
7 S = 40 61 0.220‡ 0.426† 0.279‡ 83
7 C = 1.0 58 0.215‡ 0.426† 0.272‡ 56

9 None 62 0.193 0.267 0.223 n/a
9 Standard 615 0.177 0.260 0.200 n/a
9 S = 28 204 0.161 0.269 0.176 183
9 C = 1.0 217 0.162 0.256 0.169‡ 190

is needed for the runs where associations or fractional collections are used for
initial ranking and candidate term extraction.

For TREC 8 and to a lesser extent TREC 10, standard QE improves over
the baseline, but in both cases query evaluation takes around nine times as long.
Several of the methods proposed do not succeed in our aims. Associations take as
long as standard QE, and effectiveness is reduced. For TREC 8 the surrogates
are arguably inappropriate, as the web queries may not be pertinent to the
newswire data; however, this issue highlights the fact that without a query log
associations cannot be used.

Using halves (n = 2) or quarters (n = 4) of the collection also reduces
effectiveness, and has little impact on expansion time; this is due to the need to
load and access a second index. Larger n led to smaller improvements in QE; in
experiments with n = 8, not reported here, QE gave no improvements. Reducing
R to roughly a quarter of its original size in order to cater for a smaller number of
relevant documents – as intuition might suggest – only further degrades results.
This is consistent with previous work which shows that retrievel effectiveness
especially in the top ranked documents is greater for larger collections than sub-
collections (Hawking and Robertson, 2003) which means that there is a higher
likelihood of sourcing expansion terms from relevant documents when using local
analysis QE. It was also found that QE works best when expansion terms are
sourced from collections that are a superset of documents of the one targeted
(Kwok and Chan, 1998).

However, our simple tf.idf summaries work well. Even one-word (S = 1) sum-
maries yield significantly improved average precision on TREC 8, for a memory
overhead of a few megabytes. The best cases were S = 40 on TREC 8 and S = 28
on TREC 10, where processing costs were only a third those of standard QE.
These gains are similar to those achieved by (Lam-Adesina and Jones, 2001)
with summaries of 6–9 sentences each, but our summaries are considerably more
compact, showing the advantage of a form of summary intended only for QE.
While the memory overheads are non-trivial – over 180 megabytes for TREC 10
– they are well within the capacity of a small desktop machine.

Results on TREC 7 for the summaries are equally satisfactory, with good
effectiveness and low overheads. Results on TREC 9 are, however, disappoint-

Techniques for Efficient Query Expansion 39

0 10 20 30 40 50 60 70 80 90 100
Maximum number of terms per summary

0.16

0.18

0.20

0.22

0.24

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg. precision

0

50

100

150

200 T
otal size of sum

m
aries (M

B
)overall size

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cutoff value

0.16

0.18

0.20

0.22

0.24

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

20

40

60

80 Sum
m

ary term
s per docum

ent

avg summary size

Fig. 1. Varying average precision and associated memory cost with the number and
cutoff value of summary terms respectively. Using the TREC 8 collection and queries.

0 10 20 30 40 50 60 70 80 90 100
Maximum number of terms per summary

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

50

100

150

200

250

300

350

400

450

500 T
otal size of sum

m
aries (M

B
)

overall size

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cutoff value

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

10

20

30

40

50

60

70 Sum
m

ary term
s per docum

ent

avg summary size

Fig. 2. As in previous figure, but using the TREC 10 collection and queries.

ing. We had already discovered that expansion on TREC 9 does not improve
effectiveness (Billerbeck and Zobel, 2004); our results here are, in that light,
unsurprising. The principal observation is that QE based on summaries is still
of similar effectiveness to that based on full documents.

We show only one value for the cutoff threshold, C = 1.0. This leads to
the same effectiveness for similar memory overhead. Summaries and choice of
S and C are further examined in Figures 1 and 2 for newswire and web data
respectively. These show that a wide range of S values (left figure) and C values
(right figure) lead to improved effectiveness, in some cases exceeding that of
standard QE.

6 Conclusions

We have identified the main costs of query expansion and, for each stage of the
query evaluation process, considered options for reducing costs. Guided by pre-
liminary experiments, we explored two options in detail: expansion via reduced-

40 Bodo Billerbeck and Justin Zobel

size collections and expansion via document surrogates. Two forms of surrogates
were considered: query associations, consisting of queries for which each docu-
ment was highly ranked, and tf.idf summaries.

The most successful method was the tf.idf summaries. These are much
smaller than the original collections, yet are able to provide effectiveness close
to that of standard QE. The size reduction and simple representation means
that they can be rapidly processed. Of the two methods for building summaries,
slightly better performance was obtained with those consisting of terms whose
selection value exceeded a global threshold. The key to the success of this method
is that it eliminates several costs: there is no need to fetch documents after the
initial phase of list processing, and selection and extraction of candidate terms
is trivial.

Many of the methods we explored were unsuccessful. Associations can yield
good effectiveness if a log is available, but are expensive to process. Reduced-size
collections yielded no benefits; it is possible that choosing documents on a more
principled basis would lead to different effectiveness outcomes, but the costs
are unlikely to be reduced. Streamlining list processing by carrying accumulator
information from one stage to the next led to a collapse in effectiveness. Our
tf.idf summaries, in contrast, maintain the effectiveness of QE while reducing
time by a factor of three.

Acknowledgements

This research is supported by the Australian Research Council and by the State
Government of Victoria. Thanks to Nick Lester and William Webber from the
SEG group for their help with Lucy. Thanks also to Falk Scholer for letting us
use his pre-built associated queries.

References

V. N. Anh and A. Moffat. Impact transformation: effective and efficient web retrieval.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 3–10. ACM Press, New York, 2002.

P. Bailey, N. Craswell, and D. Hawking. Engineering a multi-purpose test collection for
web retrieval experiments. Information Processing & Management, 39(6):853–871,
2003.

B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. Query expansion using associ-
ated queries. In Proc. Int. Conf. on Information and Knowledge Management, pages
2–9. ACM Press, New York, 2003.

B. Billerbeck and J. Zobel. Questioning query expansion: An examination of behaviour
and parameters. In K.-D. Schewe and H. E. Williams, editors, Proc. Australasian
Database Conf., volume 27, pages 69–76. CRPIT, 2004.

C. Carpineto, R. de Mori, G. Romano, and B. Bigi. An information-theoretic approach
to automatic query expansion. ACM Transactions on Information Systems, 19(1):
1–27, 2001.

Techniques for Efficient Query Expansion 41

S. Garcia, H. E. Williams, and A. Cannane. Access-ordered indexes. In V. Estivill-
Castro, editor, Proceedings of the 27th Australasian Computer Science Conference,
volume 26, pages 7–14, Dunedin, New Zealand, January 2004.

S. Gauch and J. Wang. A corpus analysis approach for automatic query expansion. In
Proc. Int. Conf. on Information and Knowledge Management, pages 278–284. ACM
Press, New York, 1997.

J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summarizing text docu-
ments: sentence selection and evaluation metrics. In Proc. ACM-SIGIR Int. Conf.
on Research and Development in Information Retrieval, pages 121–128. ACM Press,
New York, 1999.

D. Harman. Overview of the second Text REtrieval Conference (TREC-2). Information
Processing & Management, 31(3):271–289, 1995.

D. Hawking and S. E. Robertson. On collection size and retrieval effectiveness. Kluwer
International Journal of Information Retrieval, 6(1):99–150, 2003.

K. L. Kwok and M. Chan. Improving two-stage ad-hoc retrieval for short queries.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 250–256. ACM Press, 1998.

A. M. Lam-Adesina and G. J. F. Jones. Applying summarization techniques for term
selection in relevance feedback. In Proc. ACM-SIGIR Int. Conf. on Research and
Development in Information Retrieval, pages 1–9, New Orleans, Louisiana, United
States, 2001. ACM Press, New York.

M. Magennis and C. J. van Rijsbergen. The potential and actual effectiveness of interac-
tive query expansion. In Proc. ACM-SIGIR Int. Conf. on Research and Development
in Information Retrieval, pages 324–332. ACM Press, New York, 1997.

R. Mandala, T. Tokunaga, and H. Tanaka. Combining multiple evidence from dif-
ferent types of thesaurus for query expansion. In Proc. ACM-SIGIR Int. Conf. on
Research and Development in Information Retrieval, pages 191–197, Berkeley, Cali-
fornia, United States, 1999. ACM Press, New York.

M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In W. B.
Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proc.
ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval,
pages 206–214, Melbourne, Australia, August 1998. ACM Press, New York.

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems, 14(4):349–379, October 1996.

Y. Qiu and H.-P. Frei. Concept based query expansion. In Proc. ACM-SIGIR Int. Conf.
on Research and Development in Information Retrieval, pages 160–169. ACM Press,
New York, 1993.

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Proc. Text Retrieval
Conf. (TREC), pages 151–161, Gaithersburg, Maryland, 1999. NIST Special Publi-
cation 500-264.

S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at
TREC. In Proc. Text Retrieval Conf. (TREC), pages 21–30, 1992.

J. J. Rocchio. Relevance feedback in information retrieval. In E. Ide and G. Salton,
editors, The Smart Retrieval System — Experiments in Automatic Document Pro-
cessing, pages 313–323. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

I. Ruthven. Re-examining the potential effectiveness of interactive query expansion.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 213–220. ACM Press, New York, 2003.

I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information
access systems. Knowledge Engineering Review, 18(2):95–145, 2003.

42 Bodo Billerbeck and Justin Zobel

F. Scholer and H. E. Williams. Query association for effective retrieval. In C. Nicholas,
D. Grossman, K. Kalpakis, S. Qureshi, H. van Dissel, and L. Seligman, editors, Proc.
Int. Conf. on Information and Knowledge Management, pages 324–331, McLean,
Virginia, 2002.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for
fast query evaluation. In Proc. ACM-SIGIR Int. Conf. on Research and Development
in Information Retrieval, pages 222–229. ACM Press, New York, 2002.

K. Sparck-Jones, S. Walker, and S. E. Robertson. A probabilistic model of informa-
tion retrieval: development and comparative experiments. Parts 1&2. Information
Processing & Management, 36(6):779–840, 2000.

A. Spink, D. Wolfram, Major B. J. Jansen, and T. Saracevic. From e-sex to e-commerce:
Web search changes. IEEE Computer, 35(3):107–109, March 2002.

A. Tombros and M. Sanderson. Advantages of query biased summaries in information
retrieval. In Proc. ACM-SIGIR Int. Conf. on Research and Development in Infor-
mation Retrieval, pages 2–10. ACM Press, New York, 1998.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufman, San Francisco, California, United States,
2nd edition, 1999.

J. Xu and W. B. Croft. Improving the effectiveness of information retrieval with local
context analysis. ACM Transactions on Information Systems, 18(1):79–112, 2000.

J. Zobel. How reliable are the results of large-scale information retrieval experiments?
In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors,
Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 307–314, Melbourne, Australia, August 1998. ACM Press, New York.

Inferring Query Performance
Using Pre-retrieval Predictors

Ben He and Iadh Ounis

Department of Computing Science
University of Glasgow

{ben,ounis}@dcs.gla.ac.uk

Abstract. The prediction of query performance is an interesting and
important issue in Information Retrieval (IR). Current predictors in-
volve the use of relevance scores, which are time-consuming to compute.
Therefore, current predictors are not very suitable for practical applica-
tions. In this paper, we study a set of predictors of query performance,
which can be generated prior to the retrieval process. The linear and
non-parametric correlations of the predictors with query performance
are thoroughly assessed on the TREC disk4 and disk5 (minus CR) col-
lections. According to the results, some of the proposed predictors have
significant correlation with query performance, showing that these pre-
dictors can be useful to infer query performance in practical applications.

1 Introduction

Robustness is an important measure reflecting the retrieval performance of an IR
system. It particularly refers to how an IR system deals with poorly-performing
queries. As stressed by Cronen-Townsend et. al. [4], poorly-performing queries
considerably hurt the effectiveness of an IR system. Indeed, this issue has become
important in IR research. For example, in 2003, TREC proposed a new track,
namely the Robust Track, which aims to investigate the retrieval performance
of poorly-performing queries. Moreover, the use of reliable query performance
predictors is a step towards determining for each query the most optimal cor-
responding retrieval strategy. For example, in [2], the use of query performance
predictors allowed to devise a selective decision methodology avoiding the failure
of query expansion.

In order to predict the performance of a query, the first step is to differentiate
the highly-performing queries from the poorly-performing queries. This problem
has recently been the focus of an increasing research attention.

In [4], Cronen-Townsend et. al. suggested that query performance is corre-
lated with the clarity of a query. Following this idea, they used a clarity score
as the predictor of query performance. In their work, the clarity score is de-
fined as the Kullback-Leibler divergence of the query model from the collection
model. In [2], Amati et. al. proposed the notion of query-difficulty to predict
query performance. Their basic idea is that the query expansion weight, which
is the divergence of the query terms’ distribution in the top-retrieved documents

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 43–54, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

44 Ben He and Iadh Ounis

from their distribution in the whole collection, provides evidence of the query
performance.

Both methods mentioned above select a feature of a query as the predic-
tor, and estimate the correlation of the predictor with the query performance.
However, it is difficult to incorporate these methods into practical applications
because they are post-retrieval approaches, involving the time-consuming com-
putation of relevance scores.

In this paper, we study a set of predictors that can be computed before the
retrieval process takes place. The retrieval process refers to the process where
the IR system looks through the inverted files for the query terms and assigns
a relevance score to each retrieved document. The experimental results show
that some of the proposed predictors have significant correlation with query
performance. Therefore, these predictors can be applied in practical applications.

The remainder of this paper is organised as follows. Section 2 proposes a
set of predictors of query performance. Sections 3 and 4 study the linear and
non-parametric correlations of the predictors with average precision. Section 5
presents a smoothing method for improving the most effective proposed predictor
and the obtained results. Finally, Section 6 concludes this work and suggests
further research directions.

2 Predictors of Query Performance

In this section, we propose a list of predictors of query performance. Similar
to previous works mentioned in Section 1, we consider the intrinsic statistical
features of queries as the predictors and use them in inferring the query per-
formance. Moreover, these features should be computed prior to the retrieval
process. The proposed list of predictors is inspired by previous works related
to probabilistic IR models, including the language modelling approach [11] and
Amati & van Rijsbergen’s Divergence From Randomness (DFR) models [3]:

– Query length. According to Zhai & Lafferty’s work [15], in the language
modelling approach, the query length has a strong effect on the smoothing
methods. In our previous work, we also found that the query length heavily
affects the length normalisation methods of the probabilistic models [7].
For example, the optimal setting for the so-called normalisation 2 in Amati &
van Rijsbergen’s probabilistic framework is query-dependent [3]. The empir-
ically obtained setting of its parameter c is c = 7 for short queries and c = 1
for long queries, suggesting that the optimal setting depends on the query
length. Therefore, the query length could be an important characteristic of
the queries. In this paper, we define the query length as:

Definition 1 (ql): The query length is the number of non-stop words in the
query.

– The distribution of informative amount in query terms. In general,
each term can be associated with an inverse document frequency (idf(t))

Inferring Query Performance Using Pre-retrieval Predictors 45

describing the informative amount that a term t carries. As stressed by
Pirkola and Jarvelin, the difference between the resolution power of the query
terms, which is given as the idf(t) values, could affect the effectiveness of
the retrieval performance [9]. Therefore, the distribution of the idf(t) factors
in the composing query terms might be an intrinsic feature that affects the
retrieval performance. In this paper, we investigate the following two possible
definitions for the distribution of informative amount in query terms:

Definition 2 (γ1): Given a query Q, the distribution of informative amount
in its composing terms, called γ1, is represented as:

γ1 = σidf (1)

where σidf is the standard deviation of the idf of the terms in Q.

For idf , we use the INQUERY’s idf formula [1]:

idf(t) =
log2(N + 0.5)/Nt

log2(N + 1)
(2)

where Nt is the number of documents in which the query term t appears and
N is the number of documents in the whole collection.
Another possible definition representing the distribution of informative
amount in the query terms is:

Definition 3 (γ2): Given a query Q, the distribution of informative amount
in its composing terms, called γ2, is represented as:

γ2 =
idfmax

idfmin
(3)

where idfmax and idfmin are the maximum and minimum idf among the
terms in Q respectively.

The idf of Definition 3 is also given by the INQUERY’s idf formula.
– Query clarity. Query clarity refers to the speciality/ambiguity of a query.

According to the work by Cronen-Townsend et. al. [4], the clarity (or on the
contrary, the ambiguity) of a query is an intrinsic feature of a query, which
has an important impact on the system performance. Cronen-Townsend et.
al. proposed the clarity score of a query to measure the coherence of the
language usage in documents, whose models are likely to generate the query
[4]. In their definition, the clarity of a query is the sum of the Kullback-
Leibler divergence of the query model from the collection model. However,
this definition involves the computation of relevance scores for the query
model, which is time-consuming. In this paper, we simplify the clarity score
by proposing the following definition:

Definition 4 (SCS): The simplified query clarity score is given by:

SCS =
∑

Q

Pml(w|Q) · log2
Pml(w|Q)
Pcoll(w)

(4)

46 Ben He and Iadh Ounis

In the above definition, Pml(w|Q) is given by qtf
ql . It is the maximum like-

lihood of the query model of the term w in query Q. qtf is the number of
occurrences of a query term in the query and ql is the query length. Pcoll(w)
is the collection model, which is given by tfcoll

tokencoll
, where tfcoll is the number

of occurrences of a query term in the whole collection and tokencoll is the
number of tokens in the whole collection.
Although the above definition seems simple and naive, it would be very
easy to compute. In Sections 3 and 4, we will show that this simplified
definition has significant linear and non-parametric correlations with query
performance. Moreover, in Section 5, the proposed simplified clarity score is
improved by smoothing the query model.

– Query scope. Similar to the clarity score, an alternative indication of the
generality/speciality of a query is the size of the document set containing at
least one of the query terms. As stressed in [10], the size of this document
set is an important property of the query. Following [10], in this work, we
define the query scope as follows:

Definition 5 (ω): The query scope is:

ω = − log(nQ/N) (5)

where nQ is the number of documents containing at least one of the query
terms, and N is the number of documents in the whole collection.

In the following sections, we will study the correlations of the predictors with
query performance. In order to fully investigate the predictors, we check both
linear and non-parametric dependance of the predictors with query performance.
The latter is a commonly used measure for the query performance predictors,
since the distribution of the involved variables are usually unknown. On the
contrary, the linear dependance assumes a linear distribution of the involved
variables. Although this strong assumption is not always true, the linear fitting
of the variables can be straightforwardly applied in practical applications.

3 The Linear Dependence Between the Predictors
and Average Precision

In this section, we measure the linear correlation r of each predictor with the
actual query performance, and the p-value associated to this correlation [5]. We
use average precision (AP) as the focus measure representing the query perfor-
mance in all our experiments. Again, note that the linear correlation assumes a
linear distribution of the involved variables, which is not always true.

The correlation r varies within [-1, 1]. It indicates the linear dependence be-
tween the two pairs of variables. A value of r = 0 indicates that the two variables
are independent. r > 0 and r < 0 indicates that the correlation between the two
variables is positive and negative, respectively. The p-value is the probability
of randomly getting a correlation as large as the observed value, when the true

Inferring Query Performance Using Pre-retrieval Predictors 47

correlation is zero. If p-value is small, usually less than 0.05, then the corre-
lation is significant. A significant correlation of a predictor with AP indicates
that this predictor could be useful to infer the query performance in practical
applications.

3.1 Test Data and Settings

The document collection used to test the efficiency of the proposed predictors is
the TREC disk4&5 test collections (minus the Congressional Record on disk4).
The test queries are the TREC topics 351-450, which are used in the TREC7&8
ad-hoc tasks. For all the documents and queries, the stop-words are removed
using a standard list and the Porter’s stemming algorithm is applied.

Each query consists of three fields, i.e. Title, Description and Narrative. In
our experiments, we define three types of queries with respect to the different
combinations of these three fields:

– Short query: Only the titles are used.
– Normal query: Only the descriptions are used.
– Long query: All the three fields are used.

The statistics of the length of the three types of queries are provided in
Table 1. We run experiments for the three types of queries to check the impact
of the query type on the effectiveness of the predictors, including the query
length.

In the experiments of this section, given the AP value of each query, we
compute r and the corresponding p-value of the linear dependance between the
two variables, i.e. AP and each of the predictors. The AP values of the test
queries are given by the PL2 and BM25 term weighting models, respectively. We
use two statistically different models in order to check if the effectiveness of the
predictors is independent of the used term-weighting models.

PL2 is one of the Divergence From Randomness (DFR) term weighting mod-
els developed within Amati & van Rijsbergen’s probabilistic framework for IR
[3]. Using the PL2 model, the relevance score of a document d for query term t
is given by:

w(t, d) = tf · log2

tf

λ
+ (λ +

1
12 · tf − tf) · log2 e + 0.5 · log2(2 · tf) · 1

tf + 1
(6)

where λ is the mean and variance of a Poisson distribution.
The within document term frequency tf is then normalised using the nor-

malisation 2 :

tfn = tf · log2(1 + c · avg l

l
), (c > 0) (7)

where l is the document length and avg l is the average document length in
the whole collection.

48 Ben He and Iadh Ounis

Table 1. The statistics of the length of the three types of queries. avg ql is the average
query length. V ar(ql) is the variance of the length of the queries

Short Query Normal Query Long Query

avg ql 2.42 7.55 21.13
V ar(ql) 0.42 10.19 55.77

Table 2. The settings of the free parameters for different types of queries

Parameter Short Query Normal Query Long Query

c of PL2 5.90 1.61 1.73
b of BM25 0.09 0.25 0.64

Replacing the raw term frequency tf by the normalised term frequency tfn in
Equation (6), we obtain the final weight. c is a free parameter. It is automatically
estimated by measuring the normalisation effect [7]. The first row of Table 2
provides the applied c value for the three types of queries.

As one of the most well-established IR systems, Okapi uses BM25 to measure
the term weight, where the idf factor w(1) is normalised as follows [12]:

w(t, d) = w(1) (k1 + 1)tf
K + tf

(k3 + 1)qtf
k3 + qtf

(8)

where w is the final weight. K is given by k1((1− b)+ b l
avg l), where l and avg l

are the document length and the average document length in the collection,
respectively. For the parameters k1 and k3, we use the standard setting of [14],
i.e. k1 = 1.2 and k3 = 1000. qtf is the number of occurrences of a given term in
the query and tf is the within document frequency of the given term. b is the
free parameter of BM25’s term frequency normalisation component. Similar to
the parameter c of the normalisation 2, it is estimated by the method provided
in [7]. However, due to the “out of range” problem mentioned in [7], we applied
a new formula for the normalisation effect (see Appendix). The second row of
Table 2 provides the applied b values in all reported experiments.

3.2 Discussion of Results

In Table 3, we summarise the results of the linear correlations of the predictors
with AP. From the results, we could derive the following observations:

– Query length (see Definition 1) does not have a significant linear correlation
with AP. This might be due to the fact that the length of queries of the same
type are very similar (see V ar(ql) in Table 1). To check the assumption, we
computed the correlation of AP with the length of a mixture of three types
of queries. Thus, we had 100 × 3 = 300 observations of both AP and query
length. Measuring the correlation, we obtained r = 0.0585 and a p-value of
0.3124, which again indicates a very low correlation. Therefore, query length
seems to be very weakly correlated with AP.

Inferring Query Performance Using Pre-retrieval Predictors 49

Table 3. The correlations r of the predictors with AP, and the related p-values. The
results are given separately with respect to the three types of queries. Significant cor-
relations are shown in bold. The test queries are the topics used in TREC7&8

PL2, Short Query BM25, Short Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

r -0.1839 0.2398 0.0569 0.3772 0.4484 -0.1773 0.1860 0.0332 0.3746 0.4208
p-value 0.0670 0.0163 0.5738 0.0001 3.037e-6 0.0776 0.0639 0.7430 0.0001 1.351e-5

PL2, Normal Query BM25, Normal Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

r 0.0830 0.3017 0.1259 0.1895 0.2602 0.0876 0.2946 0.1436 0.1629 0.2293
p-value 0.4116 0.0023 0.2120 0.0590 0.0089 0.3862 0.0029 0.1542 0.1054 0.0217

PL2, Long Query BM25, Long Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

r 0.0543 0.3227 0.3029 0.0910 0.2401 0.0790 0.2822 0.2753 0.0843 0.2066
p-value 0.5915 0.0011 0.0022 0.3679 0.0161 0.4349 0.0044 0.0056 0.4044 0.0392

– γ1 (see Definition 2) has significant linear correlation with AP in all cases
except for the short queries when BM25 is used. It is also interesting to see
that the correlations for normal and long queries are stronger than that for
short queries.

– The linear correlation of γ2 (see Definition 3) with AP is only significant for
long queries. Also, the correlation is positive, which indicates that a larger
gap of informative amount between the query terms would result into a
higher AP. Moreover, the results show that on the used test collection, γ1 is
more effective than γ2 in inferring query performance.

– For ω, the query scope (see Definition 4), its linear correlation with AP is
only significant for short queries. Perhaps this is because when queries are
getting longer, the query scope tends to be stable. Figure 1 supports this
assumption. We can see that the ω of normal and long queries are clearly
more stable than those of short queries.

– The simplified clarity score (SCS, see Definition 5) has significant linear
correlation with AP in all circumstances. For the short queries, the use of
PL2 results in the highest linear correlation among all the predictors (the
linear fitting is given in Figure 2). However, when the query length increases,
the correlation gets weaker.

– Moreover, it seems that the predictors are generally less effective when BM25
is used as the term-weighting model. For the same predictor, the AP given
by BM25 is usually less correlated with it than the AP given by PL2.

In summary, query type has a strong impact on the effectiveness of the pre-
dictors. Indeed, the correlation of a predictor with AP varies for diverse query
types. For short queries, SCS and ω have strong linear correlations with AP. For
normal queries, γ1 has moderately significant linear correlation with AP. For
long queries, γ1 and γ2 have significant linear correlations with AP.

In general, among the five proposed predictors, SCS is the most effective one
for short queries, and γ1 is the most effective one for normal and long queries.

50 Ben He and Iadh Ounis

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Rank

ω

Short
Normal
Long

Fig. 1. The ranked ω values in ascending
order for the three types of queries

10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SCS

A
v
e

ra
g

e
 P

re
c
is

io
n

Plots
Linear Fitting

Fig. 2. The linear correlation of SCS with
AP using PL2 for short queries

For all the three types of queries, γ1 is more effective than γ2 in inferring query
performance. Moreover, since ω was proposed for Web IR [10] and SCS is more
effective than ω, SCS could also be a good option for Web IR. Note that, although
some previous works found that query length affects the retrieval performance
[7, 15], it seems that query length is not significantly correlated with AP, at least
on the used collection.

Finally, we found that, in most cases, the predictors are slightly less cor-
related with the AP obtained using BM25 than that obtained using PL2. The
difference of correlations is usually marginal, except for short queries, where γ1
is significantly correlated with the AP obtained using PL2, but not BM25. Over-
all, the use of different term-weighting models does not considerably affect the
correlations of the proposed predictors with AP.

4 Non-parametric Correlation of the Predictors
with Average Precision

In this section, instead of the linear correlation, we check the non-parametric
correlations of the predictors with AP. An appropriate measure for the non-
parametric test is the Spearman’s rank correlation [6]. In this paper, we denote
the Spearman’s correlation between variables X and Y as rs(X, Y).

The test data and experimental setting for checking the Spearman’s correla-
tion are the same as the previous section. As shown in Table 4, the results are
very similar to the linear correlations provided in Table 3. SCS is again the most
effective predictor, which has significant Spearman’s correlations with AP for
the three types of queries. Also, γ1 seems to be the most effective predictor for
normal and long queries. Moreover, the predictors are generally slightly less cor-
related with the AP obtained using BM25 than that obtained using PL2. Again,

Inferring Query Performance Using Pre-retrieval Predictors 51

Table 4. The Spearman’s correlation rs of the predictors with AP for three types
queries using PL2 and BM25 respectively. Significant correlations are shown in bold.
The test queries are the topics used in TREC7&8

PL2, Short Query BM25, Short Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

rs -0.0476 0.2141 0.0279 0.3627 0.4236 -0.0354 0.1449 -0.0217 0.3393 0.3752
p-value 0.6359 0.0331 0.7794 0.0003 2.504e-5 0.7243 0.1497 0.8280 0.0007 0.0002

PL2, Normal Query BM25, Normal Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

rs -0.0646 0.3627 0.1240 0.1790 0.2721 -0.0640 0.3439 0.1129 0.1647 0.2583
p-value 0.5203 0.0003 0.2183 0.0748 0.0068 0.5242 0.0006 0.2615 0.1013 0.0102

PL2, Long Query BM25, Long Query

ql γ1 γ2 ω SCS ql γ1 γ2 ω SCS

rs 0.0132 0.3272 0.2236 0.1324 0.2668 -2.1e-05 0.2972 0.1875 0.1544 0.2556
p-value 0.8958 0.0011 0.0266 0.1861 0.0079 0.9998 0.0030 0.0628 0.1238 0.0110

the difference of correlations is usually marginal, except the correlation of γ1
with short queries, where rs(γ1, AP) for PL2 is significant, while rs(γ1, AP) for
BM25 is not. Finally, γ1 is still more effective than γ2 as a query performance
predictor.

We also compare rs(SCS, AP) with the rs(CS, AP) for the TREC7&8 and
TREC4 ad-hoc tasks reported in [4]. CS stands for Cronen-Townsend et. al.’s
clarity score. To do the comparison, besides rs(SCS, AP) for TREC7&8 pro-
vided in Table 4, we also run experiments checking the rs(SCS, AP) values for
the queries used in TREC4. The test queries for TREC4 are the TREC top-
ics 201-250, which are normal queries as they only consist of the descriptions.
There was no experiment for long queries reported in [4]. The parameter c of
the normalisation 2 (see Equation (7)) is also automatically set to 1.64 in our
experiments for TREC4.

Regarding the generation of AP, Cronen-Townsend et. al. apply Song &
Croft’s multinomial language model for CS [13], and we apply PL2 for SCS.
Since rs(SCS, AP) is stable for statistically diverse term-weighting models, i.e.
PL2 and BM25 (see Table 4), we believe that the use of the two different term-
weighting models won’t considerably affect the comparison.

Table 5 compares rs(SCS, AP) with the rs(CS, AP) reported in [4]. We can
see that for normal queries, rs(CS, AP) is clearly higher than rs(SCS, AP).
However, for short queries, although rs(CS, AP) is larger than rs(SCS, AP),
the latter is still a significant high correlation.

In summary, SCS is effective in inferring the performance of short queries.
Since the actual queries on the World Wide Web are usually very short, SCS
can be useful for Web IR, or for other environments where queries are usu-
ally short. Moreover, SCS is very practical as the cost of its computation is
indeed insignificant. However, comparing with CS, SCS seems to be moderately
weak in inferring the performance of longer queries, including normal queries,
although the obtained rs(SCS, AP) values are still significant according to the
corresponding p-values.

52 Ben He and Iadh Ounis

Table 5. The Spearman’s correlations of clarity score (CS) and SCS with AP. For SCS
and CS, AP is obtained using PL2 and Song & Croft’s multinomial language model,
respectively. For TREC7&8, the queries are of short type. For TREC4, the queries are
of normal type as they only consist of descriptions. The data in the first row are taken
from [4]

TREC7&8 Short Query TREC4 Normal Query

rs p-value rs p-value

CS 0.536 4.8e-8 0.490 3.0e-4
SCS 0.424 2.5e-5 0.252 0.0779

The moderately weak correlations of SCS with AP for longer queries might
be due to the fact that the maximum likelihood of the query model (Pml(w|Q)) is
not reliable when the query length increases. As mentioned before, the effective-
ness of those predictors, which are positively correlated with the query length,
decreases as the query gets longer. Therefore, we might be able to increase the
correlation by smoothing the query model, which is directly related to the query
length. We will discuss this issue in the next section.

5 Smoothing the Query Model of SCS

In this section, we present a method for smoothing the query model of SCS. For
the estimation of the query model P (w|Q), instead of introducing the document
model by a total probability formula [4], we model the qtf density of query
length ql directly, so that the computation of SCS does not involve the use of
relevance scores. Note that qtf is the frequency of the term in the query Q.

Let us start with assuming an increasing qtf density of query length ql, then
we would have the following density function:

ρ = C · qlβ (9)

where ρ is the density and C is a constant of the density function. The expo-
nential β should be larger than 0. An appropriate value is β = 0.5.

Let the average query length be the interval of the integral of ρ, we then have
the following smoothing function:

qtfn =
∫ ql+avg ql

ql

ρd(ql) = ν · ((ql + avg ql)1.5 − ql1.5) (10)

where qtfn is the smoothed qtf . Replacing qtf with qtfn in Definition 4, we
will obtain the smoothed query model. avg ql is the average query length. ν is
a free parameter. It is empirically set in our experiments (see the third column
of Table 6).

Table 6 summarises the obtained rs(SCS, AP) values using the smoothing
function. For short queries, no significant effect is noticed. However, for normal
and long queries, the rs values are considerably larger than the values obtained

Inferring Query Performance Using Pre-retrieval Predictors 53

Table 6. The Spearman’s correlation of SCS with AP for different types of queries
using the smoothing function. AP is obtained using PL2

Task Query Type ν rs p-value

TREC7&8 Short e-5 0.4268 2.471e-5
TREC7&8 Normal 2.5e-4 0.3017 0.0027
TREC7&8 Long 2.5e-4 0.3002 0.0028
TREC4 Normal 5e-5 0.2847 0.0463

without the use of the smoothing function (see Table 4). It is also encouraging
to see that for TREC4, compared to the rs value in Table 5, the obtained rs
value using the smoothing function is significant. Therefore, the effectiveness of
SCS has improved for normal and long queries by smoothing the query model.

6 Conclusions and Future Work

We have studied a set of pre-retrieval predictors for query performance. The
predictors can be generated before the retrieval process takes place, which is
more practical than current approaches to query performance prediction. We
have measured the linear and non-parametric correlations of the predictors with
AP. According to the results, the query type has an important impact on the
effectiveness of the predictors. Among the five proposed predictors, a simplified
definition of clarity score (SCS) has the strongest correlation with AP for short
queries. γ1 is the most correlated with AP for normal and long queries. Also, we
have shown that SCS can be improved by smoothing the query model. Taking
the complexity of generating a predictor into consideration, SCS and γ1 can be
useful for practical applications. Moreover, according to the results, the use of
two statistically diverse term-weighting models does not have an impact on the
overall effectiveness of the proposed predictors.

In the future, we will investigate improving the predictors using various
methods. For example, we plan to develop a better smoothing function for
the query model of SCS. We will also incorporate the proposed predictors into
our query clustering mechanism, which has been applied to select the optimal
term-weighting model, given a particular query [8]. The use of better predic-
tors would hopefully allow the query clustering mechanism to be improved. As a
consequence, the query-dependence problem of the term frequency normalisation
parameter tuning, stressed in [7], could be overcome.

Acknowledgments

This work is funded by the Leverhulme Trust, grant number F/00179/S. The
project funds the development of the Smooth project, which investigates the
term frequency normalisation (URL: http://ir.dcs.gla.ac.uk/smooth). The ex-
perimental part of this paper has been conducted using the Terrier framework
(EPSRC, grant GR/R90543/01, URL: http://ir.dcs.gla.ac.uk/terrier). We would
also like to thank Gianni Amati for his helpful comments on the paper.

54 Ben He and Iadh Ounis

References

1. J. Allan, L. Ballesteros, J. Callan, W. Croft. Recent experiments with INQUERY.
In Proceedings of TREC-4, pp. 49-63, Gaithersburg, MD, 1995.

2. G. Amati, C. Carpineto, G. Romano. Query difficulty, robustness, and selective ap-
plication of query expansion. In Proceedings of ECIR’04, pp. 127-137, Sunderland
UK, 2004.

3. G. Amati and C. J. van Rijsbergen. Probabilistic models of information retrieval
based on measuring the divergence from randomness. In TOIS, 20(4), pp. 357-389,
2002.

4. S. Cronen-Townsend, Y. Zhou, W. B. Croft. Predicting query performance. In
Proceedings of SIGIR’02, pp. 299-306, Tampere, Finland, 2002.

5. M. DeGroot. Probability and Statistics. Addison Wesley, 2nd edition, 1989.
6. J. D. Gibbons and S. Chakraborti. Nonparametric statistical inference. New York,

M. Dekker, 1992.
7. B. He and I. Ounis. A study of parameter tuning for term frequency normalization.

In Proceedings of CIKM’03, pp. 10-16, New Orleans, LA, 2003.
8. B. He and I. Ounis. A query-based pre-retrieval model selection approach to infor-

mation retrieval. In Proceedings of RIAO’04, pp. 706-719, Avignon, France, 2004.
9. A. Pirkola and K. Jarvelin. Employing the resolution power of search keys. JASIST,

52(7):575-583, 2001.
10. V. Plachouras, I. Ounis, G. Amati, C. J. van Rijsbergen. University of Glasgow at

the Web Track: Dynamic application of hyperlink analysis using the query scope.
In Proceedings of TREC2003, pp. 248-254, Gaithersburg, MD, 2003.

11. J. M. Ponte and W. B. Croft. A language modeling approach to information re-
trieval. In Proceedings of SIGIR’98, pp. 275-281, Melbourne, Australia, 1998.

12. S. Robertson, S. Walker, M. M. Beaulieu, M. Gatford, A. Payne. Okapi at TREC-4.
In Proceedings of TREC-4, pp. 73-96, Gaithersburg, MD, 1995.

13. F. Song and W.Croft. A general language model for information retrieval. In Pro-
ceedings of SIGIR’99, pp. 279-280, Berkeley, CA, 1999.

14. K. Sparck-Jones, S. Walker, S. Robertson. A probabilistic model of information re-
trieval: Development and comparative experiments. IPM, 36(2000):779-840, 2000.

15. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of SIGIR’01, pp. 334-342, New
Orleans, LA, 2001.

Appendix

The new formula for the normalisation effect NED is the following:

NED = V ar
(NEdi

NEd,max

)
, di ∈ D (11)

where D is the set of documents containing at least one of the query terms. di

is a document in D. NEd,max is the maximum NEdi in D. V ar denotes the
variance. NEdi is given by:

1
(1 − b) + b · l

avg l

(12)

where l is the length of the document di. b is a free parameter of BM25. avg l
is the average document length in the whole collection.

A Scalable System
for Identifying Co-derivative Documents

Yaniv Bernstein and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia
{ybernste,jz}@cs.rmit.edu.au

Abstract. Documents are co-derivative if they share content: for two
documents to be co-derived, some portion of one must be derived from
the other or some portion of both must be derived from a third document.
The current technique for concurrently detecting all co-derivatives in a
collection is document fingerprinting, which matches documents based
on the hash values of selected document subsequences, or chunks. Fin-
gerprinting is currently hampered by an inability to accurately isolate
information that is useful in identifying co-derivatives. In this paper we
present spex, a novel hash-based algorithm for extracting duplicated
chunks from a document collection. We discuss how information about
shared chunks can be used for efficiently and reliably identifying co-
derivative clusters, and describe deco, a prototype system that makes
use of spex. Our experiments with several document collections demon-
strate the effectiveness of the approach.

1 Introduction

Many document collections contain sets of documents that are co-derived. Exam-
ples of co-derived documents include plagiarised documents, document revisions,
and digests or abstracts. Knowledge of co-derivative document relationships in a
collection can be used for returning more informative results from search engines,
detecting plagiarism, and managing document versioning in an enterprise.

Depending on the application, we may wish to identify all pairs of co-derived
documents in a given collection (the n × n or discovery problem) or only those
documents that are co-derived with a specified query document (the 1 × n or
search problem). We focus in this research on the more difficult discovery prob-
lem. While it is possible to näıvely solve the discovery problem by repeated
application of an algorithm designed for solving the search problem, this quickly
becomes far too time-consuming for practical use.

All current feasible techniques for solving the discovery problem are based on
document fingerprinting, in which a compact representation of a selected sub-
set of contiguous text chunks occurring in each document – its fingerprint – is
stored. Pairs of documents are identified as possibly co-derived if enough of the
chunks in their respective fingerprints match. Fingerprinting schemes differenti-
ate themselves largely on the way in which chunks to be stored are selected.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 55–67, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

56 Yaniv Bernstein and Justin Zobel

In this paper we introduce spex, a novel and efficient algorithm for identi-
fying those chunks that occur more than once within a collection. We present
the deco package, which uses the shared phrase indexes generated by spex as
the basis for accurate and efficient identification of co-derivative documents in a
collection. We believe that deco effectively addresses some of the deficiencies of
existing approaches to this problem. Using several collections, we experimentally
demonstrate that deco is able to reliably and accurately identify co-derivative
documents within a collection while using fewer resources than previous tech-
niques of similar capability. We also have data to suggest that deco should scale
well to very large collections.

2 Co-derivatives and the Discovery Problem

We consider two documents to be co-derived if some portion of one document
is derived from the other, or some portion that is present in both documents
is derived from a third document. Broder (1997) defines two measures of co-
derivation – resemblance and containment – in terms of the number of shingles
(we shall use the term chunks) a pair of documents have in common. A chunk
is defined by Broder as ‘a contiguous subsequence’; that is, each chunk repre-
sents a contiguous set of words or characters within the document. An example
chunk of length six taken from this document would be ‘each chunk represents
a contiguous set’. The intuition is that, if a pair of documents share a number
of such chunks, then they are unlikely to have been created independently. Such
an intuition is what drives fingerprinting-based approaches, described later.

We can conceptualise the co-derivation relationships within a collection as
a graph, with each node representing a single document and the presence or
absence of an edge between two nodes representing the presence or absence of
a co-derivation relationship between the documents represented by those nodes.
We call this the relationship graph of the collection. The task of the discovery
problem is to discover the structure of this graph. Note that, as the number of
edges in a graph is quadratic in the number of nodes, the task of discovering the
structure of the relationship graph is a formidable one: for example, a collection
of 100,000 documents contains nearly 5 billion unique document pairings.

3 Strategies for Co-derivative Discovery

There are several approaches to solving the search problem, in particular fin-
gerprinting systems and ranking-based systems. Ranking-based systems such as
relative frequency matching (Shivakumar & Garćıa-Molina 1995) and the iden-
tity measure (Hoad & Zobel 2003) make use of document statistics such as the
relative frequency of words between documents to give a score for how likely a
pair of documents is to be co-derived. In comparisons between such methods and
fingerprinting, the ranking-based methods tended to perform better, though it is
worth noting that the comparisons were carried out by the proponents of these
systems. However, the only computationally feasible algorithms for the discovery
problem to date have used the process of document fingerprinting.

A Scalable System for Identifying Co-derivative Documents 57

3.1 Fingerprinting

The key observation underlying document fingerprinting (Manber 1994, Brin et
al. 1995, Heintze 1996, Broder et al. 1997, Hoad & Zobel 2003) mirrors that be-
hind the definitions of Broder (1997): if documents are broken down into small
contiguous chunks, then co-derivative documents are likely to have a large num-
ber of these chunks in common, whereas independently derived documents with
overwhelming probability will not. Fingerprinting algorithms store a selection of
chunks from each document in a compact form and flag documents as potentially
co-derived if they have some common chunks in their fingerprints.

While fingerprinting algorithms vary in many details, their basic process
is as follows: documents in a collection are parsed into units (typically either
characters or individual words); representative chunks of contiguous units are
selected through the use of a heuristic; the selected chunks are then hashed for
efficient retrieval and/or compact storage; the hash-keys, and possibly also the
chunks themselves, are then stored, often in an inverted index structure (Witten
et al. 1999). The index of hash-keys contains all the fingerprints for a document
collection and can be used for the detection of co-derivatives.

The principal way in which document fingerprinting algorithms differentiate
themselves is in the choice of selection heuristic, that is, the method of determin-
ing which chunks should be selected for storage in each document’s fingerprint.
The range of such heuristics is diverse, as reviewed by Hoad & Zobel (2003).
The simplest strategies are full selection, in which every chunk is selected, and
random selection, where a given proportion or number of chunks is selected at
random from each document to act as a fingerprint. Other strategies pick every
nth chunk, or only pick chunks that are rare across the collection (Heintze 1996).
Taking a different approach is the anchor strategy (Manber 1994), in which
chunks are only selected if they begin with certain pre-specified combinations
of letters. Simpler but arguably as effective is the modulo heuristic, in which
a chunk is only selected if its hash-key modulo a parameter k is equal to zero.
The winnowing algorithm of Schleimer et al. (2003) passes a window over the
collection and selects the chunk with the lowest hash-key in each window. Both
the anchor and modulo heuristics ensure a level of synchronisation between fin-
gerprints in different documents, in that if a particular chunk is selected in one
document, it will be selected in all documents.

In their comparative experiments, Hoad & Zobel (2003) found that few of the
fingerprinting strategies tested could reliably identify co-derivative documents
in a collection. Of those that could, Manber’s anchor heuristic was the most
effective, but its performance was inferior to their ranking-based identity measure
system. Similarly, Shivakumar & Garćıa-Molina (1995) found that the COPS
fingerprinting system (Brin et al. 1995) was far more likely than their SCAM
ranking-based system to fail to identify co-derivative documents.

Several techniques use fingerprinting for the discovery problem:
Manber (1994) counts the number of identical postings lists in the chunk

index, arguing this can be used to identify clusters of co-derived documents in
the collection. However, as Manber points out, there are many cases in which
the results produced by his method can be extremely difficult to interpret.

58 Yaniv Bernstein and Justin Zobel

Broder et al. (1997) describe an approach in which each postings list is broken
down to a set of document-pair tokens, one for each possible pairing in the
list. The number of tokens for each pair of documents is counted and used as
the basis for a set of discovery results. While this approach can yield far more
informative results, taking the Cartesian product of each postings list means
that the number of tokens generated is quadratic in the length of the postings
list; this can easily cause resource blowouts and introduces serious scalability
problems for the algorithm.

Shivakumar & Garćıa-Molina (1999) addressed the scalability problems of the
previous algorithm by introducing a hash-based probabilistic counting technique.
For each document pair, instead of storing a token, a counter in a hashtable is
incremented. A second pass generates a list of candidate pairs by discarding
any pair that hashes to a counter that recorded insufficient hits. Assuming the
hashtable is of sufficient size, this pruning significantly reduces the number of
tokens that must be generated for the exact counting phase.

A fundamental weakness of fingerprinting strategies is that they cannot iden-
tify and discard chunks that do not contribute towards the identification of any
co-derivative pairs. Unique chunks form the vast majority in most collections,
yet do not contribute toward solving the discovery problem. We analysed the
LATimes newswire collection (see section 6) and found that out of a total of
67,808,917 chunks of length eight, only 2,816,822 were in fact instances of du-
plicate chunks: less than 4.5% of the overall collection. The number of distinct
duplicated chunks is 907,981, or less than 1.5% of the collection total.

The inability to discard unused data makes full fingerprinting too expensive
for most practical purposes. Thus, it becomes necessary to use chunk-selection
heuristics to keep storage requirements at a reasonable level. However, this in-
troduces lossiness to the algorithm: current selection heuristics are unable to
discriminate between chunks that suggest co-derivation between documents in
the collection and those that do not. There is a significant possibility that two
documents sharing a large portion of text are passed over entirely.

For example, Manber (1994), uses character-level granularity and the modulo
selection heuristic with k = 256 Thus, any chunk has an unbiased one-in-256
chance of being stored. Consider a pair of documents that share an identical 1
KB (1024 byte) portion of text. On average, four of the chunks shared by these
documents will be selected. Using the Poisson distribution with λ = 4, we can
estimate the likelihood that C chunks are selected as P (C = 0) = e−4 · 40/0! =
1.8% and P (C = 1) = e−4 · 41/1! = 7.3%. This means that a pair of documents
containing a full kilobyte of identical text have nearly a 2% chance of not having
a single hash-key in common in their fingerprints, and a greater than 7% chance
of only one hash key in common. The same results obtain for an identical 100-
word sequence with a word-level chunking technique and k = 25, as used by
Broder et al. (1997). Such lossiness is unacceptable in many applications.

Schleimer et al. (2003) make the observation that the modulo heuristic pro-
vides no guarantee of storing a shared chunk no matter how long the match.
Whatever the match length, there is a nonzero probability that it will be over-

A Scalable System for Identifying Co-derivative Documents 59

looked. Their winnowing selection heuristic is able to guarantee that any contigu-
ous run of shared text greater than a user-specifiable size w will register at least
one identical hash-key in the fingerprints of the documents in question. However,
a document that contains fragmented duplication below the level of w can still
escape detection by this scheme: it is still fundamentally a lossy algorithm.

3.2 Algorithms for Lossless Fingerprinting

We make the observation that as only chunks that occur in more than one
document contribute towards identifying co-derivation, a selection strategy that
selected all such chunks would provide functional equivalence to full fingerprint-
ing, but at a fraction of the storage cost for most collections. The challenge is
to find a way of efficiently and scalably discriminating between duplicate and
unique chunks.

Hierarchical dictionary-based compression techniques like sequitur (Nevill-
Manning & Witten 1997) and re-pair (Larsson & Moffat 2000) are primarily
designed to eliminate redundancy by replacing strings that occur more than
once in the data with a reference to an entry in a ruleset. Thus, passages of
text that occur multiple times in the collection are identified as part of the
compression process. This has been used as the basis for phrase-based collection
browsing tools such as phind (Nevill-Manning et al. 1997) and re-store (Moffat
& Wan 2001). However, the use of these techniques in most situations is ruled
out by their high memory requirements: the phind technique needs about twice
the memory of the total size of the collection being browsed (Nevill-Manning et
al. 1997). To keep memory use at reasonable levels, the input data is generally
segmented and compressed block-by-block; however, this negates the ability of
the algorithm to identify globally duplicated passages. Thus, such algorithms
are not useful for collections of significant size.

Suffix trees are another potential technique for duplicate-chunk identification,
and are used in this way in computational biology (Gusfield 1997). However, the
suffix tree is an in-memory data structure that consumes a quantity of memory
equal to several times the size of the entire collection. Thus, this technique is
also only suitable for small collections.

4 The spex Algorithm

Our novel hash-based spex algorithm for duplicate-chunk extraction has much
more modest and flexible memory requirements than the above and is thus the
first selection algorithm that is able to provide lossless chunk selection within
large collections. The fundamental observation behind the operation of spex is
that if any subchunk of a given chunk can be shown to be unique, then the
chunk in its entirety must be unique. For example, if the chunk ‘quick brown’
occurs only once in the collection, there is no possibility that the chunk ‘quick
brown fox’ is repeated. Spex uses an iterated hashing approach to discard unique
chunks and leave only those that are very likely to be duplicates.

The basic mechanics of the algorithm are shown in Algorithm 1. At the core
of spex is a pair of hashcounters – hashtable accumulator arrays – designed to

60 Yaniv Bernstein and Justin Zobel

Algorithm 1 The spex algorithm.
1: // C: Collection of chunks
2: // l: Target chunk length
3: // cn: chunk of length n
4: // cn{p . . . q}: The chunk composed of words p through q of chunk cn

5: // #(c): The hash value of chunk c
6: // hn: Hashcounter for chunks of length n
7:
8: for all c1 ∈ C do
9: h1[#(c1)]← h1[#(c1)] + 1

10: end for
11: for n ∈ [2, l] do
12: for all cn ∈ C do
13: if hn−1[#(cn{1 . . . n− 1})] > 1 and hn−1[#(cn{2 . . . n})] > 1 then
14: hn[#(cn)]← hn[#(cn)] + 1
15: end if
16: end for
17: end for

count string occurrences. Each time a string is inserted into a hashcounter, it is
hashed and a counter at that location is incremented. Collisions are not resolved.
For the purposes of the spex algorithm, we care about only three counter values:
0, 1 and ‘2 or more’. As such, each field in the hashcounter need be only two
bits wide. If the same string is inserted into a hashcounter more than once, the
hashcounter will indicate this. The hashcounter can also return false positives,
indicating a string occurs multiple times when it in fact does not. A small number
of such false positives can be tolerated by spex; the number can be kept small
because the two-bit wide fields allow for extremely large hashcounters to reside
in a relatively modest amount of memory

When a document collection is presented to spex, the first step is to sequen-
tially scan the collection and insert each word encountered into a hashcounter.
This hashcounter thus indicates (with the possibility of false positives) whether
a word occurs multiple times in the collection. Following this, we pass a sliding
window of size two words over the collection. Each two-word chunk is broken
down into two single word subchunks and compared against the hashcounter.
If the hashcounter indicates that both subchunks occur multiple times then the
chunk is inserted into the second hashcounter. Otherwise, the chunk is rejected.
After this process is complete, the second hashcounter indicates whether a par-
ticular chunk of size two is a possible duplicate chunk. For chunks of size three,
we pass a sliding window of length three over the collection and decompose the
candidate chunks into two subchunks of length two. We similarly accept a chunk
only if it is indicated by the hashcounter that both subchunks occur multiple
times within the collection. Figure 1 illustrates this process.

The algorithm can be extended to any desired chunk size l by iteration,
at each phase incrementing the chunk size by one. We only ever require two
hashcounters because the hashcounter for chunks of size n − 2 is no longer re-

A Scalable System for Identifying Co-derivative Documents 61

the quick brown

.

.

.

.

.

.

.

.

0

1

2

3

0

0

2

.

.

.

.

.

.

.

.

0

1

2

3

0

0

1

c-1 c

#

both >1 ?

#

2

the quick brown

+1

#

YES

Fig. 1. The process for inserting a new chunk into the hashcounter in spex. The chunk
“the quick brown” is divided into two sub-chunks “the quick” and “quick brown” They
are each hashed into the old hash table. If the count for both sub-chunks is greater than
one, the full chunk is hashed and the counter at that location in the new hashcounter
is incremented.

quired when searching for chunks of size n and may be reused. We are not overly
concerned about false positives, because subsequent iterations tend to have a
dampening rather than an amplifying effect on their presence. Spex is thus able
to provide an accurate representation of duplicate chunks of length u in a time
proportional to O(uv), where v is the length of the document collection.

5 The deco Package

Our deco system for co-derivative detection presents a number of innovations.
The most significant of these is the use of spex for creating shared-chunk in-
dexes. Another addition is the inclusion of more sophisticated scoring functions
for determining whether documents are co-derived. Deco operates in two phases:
index building and relationship graph generation. In the index building phase,
spex is used as described earlier. At the final iteration of the algorithm, the
chunks that are identified as occurring more than once are stored in an inverted
index structure (Witten et al. 1999). This index contains an entry for each du-
plicate chunk and a list of each document where it occurs. We call this index the
shared-chunk index.

In the relationship graph generation phase, deco uses the shared-chunk index
and an approximate counting technique similar to that proposed by Shivakumar
& Garćıa-Molina (1999) in order to identify co-derived document pairs. Several
parameters must be specified to guide this process: the most important of these
are the scoring function and the inclusion threshold. Given documents u and v,
the scoring function may at present be one of the following:

S1(u, v) =
∑

c∈u∧c∈v 1 S2(u, v) =
∑

c∈u∧c∈v 1/ min ū, v̄

S3(u, v) =
∑

c∈u∧c∈v 1/ mean ū, v̄ S4(u, v) =
∑

c∈u∧c∈v
1/fc

mean ū,v̄

where ū is the length (in words) of a document u, and fc is the number of col-
lection documents a given chunk c appears in. Function S1 above simply counts

62 Yaniv Bernstein and Justin Zobel

the number of chunks common to the two documents; this elementary scoring
method is how fingerprinting algorithms have worked up to now. Functions S2

and S3 attempt to normalise the score relative to the size of the documents,
so that larger documents don’t dominate smaller ones in the results. They are
very similar to the resemblance measure of Broder (1997) but are modified for
more efficient computation. Function S4 gives greater weight to phrases that
are rare across the collection. These scoring functions are all simple heuristics;
further refinement of these functions and the possible use of statistical models
is desirable and a topic of future research.

The inclusion threshold is the minimum value of S(u, v) for which an edge
between u and v will be included in the relationship graph. We wish to set the
threshold to be such that pairs of co-derived documents score above the threshold
while pairs that are not co-derived score below the threshold.

6 Experimental Methodology

We use three document collections in our experiments. The webdata+xml and lin-
uxdocs collections were accumulated by Hoad & Zobel (2003). The webdata+xml
collection consists of 3,307 web documents totalling approximately 35 megabytes,
into which have been seeded nine documents (the XML documents), each of
which is a substantial edit by a different author of a single original report dis-
cussing XML technology. Each of these nine documents shares a co-derivation
relationship with each of the other eight documents, though in some cases they
only have a relatively small quantity of text in common. The linuxdocs collection
consists of 78,577 documents (720 MB) drawn from the documentation included
with a number of distributions of RedHat Linux. While the webdata+xml collec-
tion serves as an artificial but easily-analysed testbed for co-derivative identifi-
cation algorithms, the linuxdocs collection, rich in duplicate and near-duplicate
documents, is a larger and more challenging real-world collection.

The LATimes collection is a 476 megabyte collection of newswire articles
from the Los Angeles Times, one of the newswire collections created for the
TREC conference (Harman 1995). This collection is used as an example of a
typical document collection and is used to investigate the index growth we may
expect from such a typical collection.

We define a collection’s reference graph as the relationship graph that would
be generated by a human judge for the collection1. The coverage of a given
computer-generated relationship graph is the proportion of edges in the refer-
ence graph that are also contained in that graph, and the density of a relationship
graph is the proportion of edges in that graph that also appear in the reference
graph. While these two concepts are in many ways analogous to the traditional
recall and precision metrics used in query-based information retrieval (Baeza-
Yates & Ribeiro-Neto 1999), we choose the new terminology to emphasise that
the task is quite different to querying: we are not trying to meet an explicit
1 Although the concept of an ‘ideal’ underlying relationship graph is a useful artifice,

the usual caveats of subjectivity and relativity must be borne in mind.

A Scalable System for Identifying Co-derivative Documents 63

information need, but are rather attempting to accurately identify existing in-
formation relationships within the collection.

To estimate the density of a relationship graph, we take a random selection of
edges from the graph and judge whether the documents they connect are in fact
co-derived. To estimate the coverage of a relationship graph, we select a number
of representative documents and manually determine a list of documents with
which they are co-derived. The coverage estimate is then the proportion of the
manually determined pairings that are identified in the relationship graph. A
third metric, average precision, is simply the average proportion of co-derivative
edges to total edges for the documents selected to estimate coverage. While it is
an inferior measure to average density, it plays a role in experimentation because
it is far less time-consuming to calculate.

7 Testing and Discussion

Index Growth Rate. In order to investigate the growth trend of the shared-chunk
index as the source collection grows, we extracted subcollections of various sizes
from the LATimes collection and the linuxdocs collection, and observed the
number of duplicate chunks extracted as the size of the collection grew.

This growth trend is important for the scalability of spex and by extension
the deco package: if the growth trend were quadratic, for example, this would set
a practical upper bound on the size of the collection which could be submitted
to the algorithm, whereas if the trend were linear or n log(n) then far larger
collections would become practical. We found that, for this collection at least, the
growth rate follows a reasonably precise linear trend. For the LATimes collection,
40 MB of data yielded 54,243 duplicate chunks; 80 MB yielded 126,542; 160
MB 268,128; and 320 MB 570,580 duplicate chunks. While further testing is
warranted, a linear growth trend suggests that the algorithm has potential to
scale extremely well.

Webdata+XML Experiments. Because the webdata+xml collection contains the
nine seed documents for which we have exact knowledge of co-derivation re-
lationships, it makes a convenient collection for proving the effectiveness of the
deco package and determining good parameter settings. Using deco to create a
shared-chunk index with a chunk size of eight took under one minute on an Intel
Pentium 4 PC with 512 MB of RAM. For this collection, we tested deco using
the four scoring functions described in section 5. For each scoring function, we
tested a range of five inclusion thresholds, named – in order of increasing value
– T1 to T5; the values vary between the scoring functions and were chosen based
on preliminary experiments. Each of the 20 generated relationship graphs were
then tested for the presence of the 36 edges connecting the XML documents to
each other.

As can be seen in Table 1, the estimated coverage values strongly favour
the lower inclusion thresholds. Indeed, for all scoring functions using the in-
clusion threshold T1, 100% of the pairings between the XML documents were

64 Yaniv Bernstein and Justin Zobel

Table 1. Coverage estimates, as percentages, for the webdata+xml collection calculated
on the percentage of XML document pairings identified. The average precision was
100% in all cases.

T1 T2 T3 T4 T5

S1 100.0 97.2 36.1 8.3 0.0
S2 100.0 100.0 83.3 58.3 25.0
S3 100.0 91.7 72.2 52.8 16.7
S4 100.0 97.2 91.7 58.3 22.2

Table 2. Coverage and average precision estimates, as a pair X/Y of percentages,
for deco applied to the linuxdocs collection, using a full shared-chunk index and for
indexes that store chunks only if their hash-key equals zero modulo 16 and 256.

T1 T2 T3 T4 T5

Full chunk indexing
S1 100/ 70 89/ 71 56/ 93 36/ 95 34/100
S2 100/ 57 100/ 75 100/ 92 89/ 94 57/100
S3 98/ 75 96/ 84 94/100 84/100 47/100
S4 99/ 83 96/ 91 94/100 78/100 30/100

Fingerprinting modulo 16
S1 90/ 72 88/ 76 56/ 94 36/ 96 34/100
S2 90/ 75 90/ 75 80/ 94 78/100 57/100
S3 88/ 82 86/ 91 74/100 74/100 47/100
S4 88/ 85 86/ 93 86/ 93 69/100 60/100

Fingerprinting modulo 256
S1 54/ 95 54/ 95 54/ 95 54/ 95 34/ 97
S2 54/ 97 54/ 97 54/ 97 54/ 97 44/ 97
S3 54/ 97 54/100 54/100 51/100 42/100
S4 54/ 97 54/100 54/100 44/100 31/100

included in the relationship graph. In all cases the average precision was also
100%. These values – 100% coverage and 100% density – suggest a perfect re-
sult, but are certainly overestimates. The nature of the test collection – nine
co-derived documents seeded into an entirely unrelated background collection
– made it extremely unlikely that spurious edges would be identified. This not
only introduced an artificially high density estimate but also strongly biased the
experiments in favour of the lower inclusion thresholds, because they allowed all
the correct edges to be included with very little risk that incorrect edges would
likewise be admitted.

Experiments on the Linux Documentation Collection. For the linuxdocs collec-
tion, we used deco to create a shared-chunk index with a chunk size of eight,
taking approximately 30 minutes on an Intel Pentium 4 PC with 512 MB of
RAM. For generation of relationship graphs we used the same range of scoring
functions and inclusion thresholds as in the previous section. We wished also
to investigate the level of deterioration witnessed in a fingerprinting strategy

A Scalable System for Identifying Co-derivative Documents 65

as the selectivity of the fingerprint increased; to this end, we experimented with
relationship graphs generated from indexes generated using the modulo heuristic
with k = 16 and k = 256. The inclusion threshold for these experiments were
adjusted downward commensurately.

To estimate the coverage of the relationship graphs, we selected ten docu-
ments from the collection representing a variety of different sizes and types, and
manually collated a list of co-derivatives for each of these documents. This was
done by searching for other documentation within the collection that referred to
the same program or concept; thus, the lists may not be entirely comprehensive.
Estimated coverage and average precision results for this set of experiments are
given in Table 2. Several trends are observable in the results. The first of these
is that in general, scoring functions S2, S3, and S4 were more effective than the
simple chunk-counting S1 scoring function Another trend is that performance
is noticeably superior with the full shared-chunk index than with the selective
shared-chunk indexes. Note in particular that, for the modulo 256 index, no con-
figuration was able to find more than 54% of the relevant edges. This is almost
certainly because the other 46% of document pairs do not have any chunks in
common that evaluate to 0 modulo 256 when hashed. This illustrates the dangers
of using lossy selection schemes when a high degree of reliability is desired.

We had insufficient human resources to complete an estimate of density for
all of the relationship graphs generated. Instead, we selected a range of config-
urations that seemed to work well and estimated the density for these configu-
rations. This was done by picking 30 random edges from the relationship graph
and manually assessing whether the two documents in question were co-derived.
The results were pleasingly high: S2/T3/1, S3/T2/256, and S4/T3/16 all scored
a density of 93.3% (28 out of 30) while S4/T3/1 and S2/T1/16 both returned an
estimated density of 100%. Other combinations were not tested.

8 Conclusions

There are many reasons why one may wish to discover co-derivation relationships
amongst the documents in a collection. Previous feasible solutions to this task
have been based on fingerprinting algorithms that used heuristic chunk selection
techniques. We have argued that, with these techniques, one can have either
reliability or acceptable resource usage, but not both at once.

We have introduced the spex algorithm for efficiently identifying shared
chunks in a collection. Unique chunks represent a large proportion of all chunks
in the collection – over 98% in one of the collections tested – but play no part in
discovery of co-derivatives. Identifying and discarding these chunks means that
document fingerprints only contain data that is relevant to the co-derivative dis-
covery process. In the case of the LATimes collection, this allows us to create
an index that is functionally equivalent to full fingerprinting but is one fiftieth
of the size of a full chunk index. Such savings allow us to implement a system
that is effective and reliable yet requires only modest resources.

Tests of our deco system, which used the spex algorithm, on two test col-
lections demonstrated that the package is capable of reliably discovering co-

66 Yaniv Bernstein and Justin Zobel

derivation relationships within a collection, and that introducing heuristic chunk-
selection strategies degraded reliability.

There is significant scope for further work and experimentation with deco.
One area of particular importance is the scalability of the algorithm. We have
demonstrated that the system performs capably when presented with a highly
redundant 700 MB collection and are confident that it can handle much larger
collections, but this needs to be experimentally demonstrated. Another impor-
tant further development is the design of an adjunct to the spex algorithm that
would make it possible to add new documents to a collection without rebuilding
the entire shared-chunk index. The difficulty of extending the index is the one
major defect of spex compared to many other fingerprinting selection heuris-
tics. However, the sensitivity, reliability and efficiency of spex make it already
a valuable tool for analysis of document collections.

Acknowledgements

This research was supported by the Australian Research Council.

References

Baeza-Yates, R. & Ribeiro-Neto, B. (1999), Modern Information Retrieval, Addison-
Wesley Longman.

Brin, S., Davis, J. & Garćıa-Molina, H. (1995), Copy detection mechanisms for digital
documents, in ‘Proceedings of the ACM SIGMOD Annual Conference’, pp. 398–
409.

Broder, A. Z. (1997), On the Resemblance and Containment of Documents, in ‘Com-
pression and Complexity of Sequences (SEQUENCES’97)’, pp. 21–29.

Broder, A. Z., Glassman, S. C., Manasse, M. S. & Zweig, G. (1997), ‘Syntactic clustering
of the Web’, Computer Networks and ISDN Systems 29(8-13), 1157–1166.

Gusfield, D. (1997), Algorithms on strings, trees, and sequences: computer science and
computational biology, Cambridge University Press.

Harman, D. (1995), ‘Overview of the second text retrieval conference (TREC-2)’, In-
formation Processing and Management 31(3), 271–289.

Heintze, N. (1996), Scalable Document Fingerprinting, in ‘1996 USENIX Workshop on
Electronic Commerce’.

Hoad, T. C. & Zobel, J. (2003), ‘Methods for Identifying Versioned and Plagiarised
Documents’, Journal of the American Society for Information Science and Tech-
nology 54(3), 203–215.

Larsson, N. J. & Moffat, A. (2000), ‘Offline Dictionary-Based Compression’,
88(11), 1722–1732.

Manber, U. (1994), Finding Similar Files in a Large File System, in ‘Proceedings of the
USENIX Winter 1994 Technical Conference’, San Fransisco, CA, USA, pp. 1–10.

Moffat, A. & Wan, R. (2001), Re-Store: A System for Compressing, Browsing, and
Searching Large Documents, in ‘Proceedings of the International Symposium on
String Processing and Information Retrieval’, IEEE Computer Society, pp. 162–
174.

A Scalable System for Identifying Co-derivative Documents 67

Nevill-Manning, C. G. & Witten, I. H. (1997), ‘Compression and Explanation Using
Hierarchical Grammars’, The Computer Journal 40(2/3), 103–116.

Nevill-Manning, C. G., Witten, I. H. & Paynter, G. W. (1997), Browsing in digital li-
braries: a phrase-based approach, in ‘Proceedings of the second ACM international
conference on Digital libraries’, ACM Press, pp. 230–236.

Schleimer, S., Wilkerson, D. S. & Aiken, A. (2003), Winnowing: local algorithms for
document fingerprinting, in ‘Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data’, ACM Press, pp. 76–85.

Shivakumar, N. & Garćıa-Molina, H. (1995), SCAM: A Copy Detection Mechanism
for Digital Documents, in ‘Proceedings of the Second Annual Conference on the
Theory and Practice of Digital Libraries’.

Shivakumar, N. & Garćıa-Molina, H. (1999), Finding Near-Replicas of Documents
on the Web, in ‘WEBDB: International Workshop on the World Wide Web and
Databases, WebDB’, Springer-Verlag.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Managing Gigabytes: Compressing and
Indexing Documents and Images, Morgan Kauffman.

Searching for a Set of Correlated Patterns

Extended Abstract

Shmuel T. Klein and Riva Shalom

Department of Computer Science, Bar Ilan University, Ramat-Gan 52900, Israel
{tomi,gonenr1}@cs.biu.ac.il

We concentrate in this paper on multiple pattern matching, in which a set of pat-
terns S = {P1, . . . , Pk}, rather than a single one, is to be located in a given text
T . This problem has been treated in several works, including Aho and Corasick,
Commentz-Walter, Uratani and Takeda and Crochemore et al. None of these
algorithms assumes any relationships between the individual patterns. Never-
theless, there are many situations where the given strings are not necessarily
independent.

Consider, for example, a large full text information retrieval system, to which
queries consisting of terms to be located are submitted. If a user wishes to
retrieve information about computers, he might not want to restrict his query to
this term alone, but include also grammatical variants and other related terms,
such as under-computerized, recomputation, precompute, computability,
etc. Using wild-cards, one could formulate this as *comput*, so that all the
patterns to be searched for share some common substring. A similar situation
arises in certain biological applications, where several genetic sequences have to
be located in DNA strings, and these sequences may have considerable overlaps.

The basic idea is the following: if we can find a substantial overlap s, shared
by all the patterns in the set, it is for s that we start searching in the text, using
any single pattern matching algorithm, for example BM. If no occurrence of s
is found, none of the patterns appears and we are done. If s does occur t > 0
times, it is only at its t locations that we have to check for the appearance of the
set of prefixes of s in the set of patterns and of the corresponding set of suffixes.
This can be done locally at the t positions where s has been found, e.g., with
the AC algorithm, but with no need to use its fail function.

More formally, let the set S consist of patterns Pi, where Pi = li s ri, and li
and ri are the (possibly empty) prefixes and suffixes of Pi which are left after
removing the substring s. For our example, {li} = {under-, re, pre, Λ}, where
Λ denotes the empty string, and {ri} = {erized, ation, e, ability}. Denote
also the length of Pi by mi and the total length

∑k
i=1 mi by M . The algorithm

starts by identifying s, the longest common substring shared by P1, . . . , Pk. The
search algorithm is then given by:

Overlap Matching(s, S)
search for s in text T using KMP or BM
for each i such that s is found starting at position i

check at position i + |s| − 1 for an occurrence of an element of {rj}
using an AC automaton

for each matching rj found
check if lj matches T at position i − |lj |
if yes, declare match at i − |lj |

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 68–69, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Searching for a Set of Correlated Patterns 69

The dominant part of the time complexity will generally be for the search of
s, which can be done in time O(|T |). Applying the AC automaton is not really a
search, since it is done at well-known positions. Its time complexity is therefore
bounded O(t · max{mi}), where t is the number of occurrences of the overlap
s. Only in case the occurrences of s are so frequent that the potential positions
of the patterns cover a large part of the string T may O(t · max{mi}) be larger
than O(|T |), but this will rarely occur for a natural language input string.

Consider now as example the dictionary S = {P1 = dxyz, P2 = wdxyza, P3 =
bcdxyzw, P4 = bcdzw}, showing a major deficiency of the suggested algorithm.
The longest substring shared by all the patterns is just a single character, d or
z. One can of course circumvent the case, which is even worse from our point
of view, when the longest common substring is empty, by invoking then the
standard AC routine. But if there is a non-empty string s, but it is too short, it
might occur so often that the benefit of our procedure could be lost.

In the above example, the string dxyz is shared by only three of the four
elements of the dictionary S, but its length is much longer than the string shared
by all the elements. This suggests that it might be worthwhile not to insist on
having the overlap cover the entire dictionary, but maybe to settle for one shared
not by all, but at least by a high percentage of the patterns, which may allow
us to choose a longer overlap. An alternative approach could be to look for
two or more substrings s1, s2, . . ., each longer than s and each being shared
by the patterns of some proper subset of S, but which together cover the entire
dictionary. For our example we could, e.g., use the pair of substrings {dxyz, bcd}.
In Information Retrieval applications, such an approach could be profitable in
case the query consists of the grammatical variants of two or more terms, or in
case of irregularities, as in the set {go, goes, undergoing, went}.

To get a general feeling of how the algorithms behave in some real-life appli-
cations, we ran a set of tests on several text and DNA files. As a measure for
the efficiency, we defined a rate as the number of symbol comparisons divided
by the length of the text. The Aho Corasick algorithm served as benchmark,
yielding always a rate of 1. The graphs in Figure 1 give the rate, for each of the
algorithms we considered, as a function of the overlap size.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10

Single overlap - partial coverage
Single overlap - full coverage

Pair of overlaps
Aho-Corasick

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

Single overlap - partial coverage
Single overlap - full coverage

Overlap pair
Aho-Corasick

Fig. 1. Comparative performance for text and DNA files

As can be seen, the rate is strictly decreasing with the overlap size, and rates
as low as 0.4 on the average can be reached already for relatively short overlaps
of size 4–5.

Linear Nondeterministic Dawg String
Matching Algorithm (Abstract)

Longtao He and Binxing Fang

Research Center of Computer Network and Information Security Technology
Harbin Institute of Technology, Harbin 150001, P.R. China

The exact string matching problem is to find all the occurrences of a given
pattern x = x1x2 · · ·xm in a large text y = y1y2 · · · yn, where both x and y are
sequences of symbols drawn from a finite character set Σ of size σ.

Various good solutions have been presented during years. Among them,
BNDM [1] is a very efficient and flexible algorithm. It simulates the BDM algo-
rithm using bit-parallelism. BNDM first builds a mask table B for each symbol
c. The mask in B[c] has the i-th bit set if and only if xi = c. The search state is
kept in a computer word L = Lm · · ·L1, where the bit Li at iteration l is set if
and only if xi · · ·xi+l−1 = yj−l+1 · · · yj, where j is the end position of the current
window. Each time we position the window in the text we initialize L = 1m and
scan the window backward. For each new text character we update L with the
formula:

L ← (L & B[yj−l]) >> 1 (1)

Each time we find a prefix of the pattern (L1 = 1) we remember the position in
the window. If we run out of 1’s in L, there cannot be a match and we suspend the
scanning and then shift the window to the right. If we can perform m iterations
then we report a match.

BNDM uses only one computer word to keep the search state. The over-
flow bits in the shift right of the search state are lost. This is why BNDM has
a quadratic worst case time complexity. We present a new purely bit-parallel
variant of BNDM, which we call the Linear Nondeterministic Dawg Matching
algorithm (LNDM). LNDM makes use of two computer words L and R. L is
the traditional state. The additional computer word R keeps the overflow bits
in the shift right of the search state L during the backward scan. The formulas
to update the search state are changed to:

L ← L & B[yj−l] (2)
(LR) ← (LR) >> 1 (3)

where (LR) means concatenation of L and R. Instead of checking if L1 = 1,
LNDM just right-shifts (LR). The scan goes until L is equal to 0m. Then, if
R �= 0m, we resume a forward scan after the end of current window with a
nondeterministic automaton initialized by the saved bits R << (m− l).

In the additional forward scan stage, LNDM runs as a reverse Backward
Nondeterministic Dawg, to be precise, a Forward Nondeterministic Dawg. For
each new text symbol we update R with the formula:

R ← (R << 1) & B[yj+r] (4)

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 70–71, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Linear Nondeterministic Dawg String Matching Algorithm 71

LNDM (x = x1x2 · · ·xm, y = y1y2 · · · yn)
1. Preprocessing
2. For c ∈ Σ do B[c] ← 0m

3. For i ∈ 1 · · ·m do
4. B[xi] ← B[xi] | 0m−i10i−1

5. Search

6. For k ∈ 1 · · ·
⌊

n
m

⌋
do

7. l ← 0, r ← 0
8. L ← 1m, R ← 0m

9. While L �= 0m do
10. L ← L & B[ykm−l]
11. l ← l + 1
12. (LR) ← (LR) >> 1
13. End of while
14. R ← R >> (m − l)
15. While R �= 0m do
16. r ← r + 1
17. If R&10m−1 �= 0m then
18. output km + r − m
19. End of if
20. R ← (R << 1) & B[ykm+r]
21. End of while
22. End of for

Fig. 1. The Pseudo-code of LNDM.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30

LNDM
BNDM

SBNDM
BDM

Turbo-BNDM
TRF
BM
QS

Fig. 2. Running time for alphabet size 256.

Since LNDM scans in the reverse direction against BNDM in this stage, the
formula differs from that of BNDM in the shift direction. Each time we meet
the situation Rm = 1 we report a match. If we run out of 1’s in R, there cannot
be a match and the algorithm shifts to next window.

The algorithm is summarized in Fig.1. With this approach, LNDM can safely
shift by m fixedly after each attempt. This important improvement enables
LNDM to have optimal time complexities respectively in the worst, best and
average cases: O(n), O(n/m) and (O(n(logσ m)/m)) for the pattern not longer
than computer word.

We compared the following algorithms with LNDM: BM, QS, BDM, Turbo-
BDM, BNDM, Turbo-BNDM, and SBNDM. Fig.2 shows the experimental results
over alphabet size 256. The results over large alphabets is similar. The x axis
is the length of the patterns, and the y axis shows the average running time
in second per pattern per MB text of each algorithm. The results show that
LNDM is very fast in practice for large alphabet. Among the worst case linear
time algorithms, LNDM is the most efficient one.

References

1. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithmics (JEA)
5 (2000)

Permuted and Scaled String Matching

Extended Abstract

Ayelet Butman1, Revital Eres2, and Gad M. Landau2,�

1 Holon Academic Institute of Technology, Israel
butmosh@zahav.net.il

2 Dept. of Computer Science, University of Haifa, Mount Carmel, Haifa 31905 Israel
{revitale,landau}@cs.haifa.ac.il

The goal of scaled permuted string matching is to find all occurrences of a pattern
in a text, in all possible scales and permutations. Given a text of length n and
a pattern of length m we present an O(n) algorithm.

Definition 1 Scaled permuted string matching
Input: A pattern P = p1 · · · pm and a text T = t1 · · · tn both over alphabet Σ.
Output: All positions in T where an occurrence of a permuted copy of the
pattern P , scaled to k, starts (k = 1, . . . , � n

m�). The pattern is first permuted
and then scaled.

Example: The string bbbbaabbaaccaacc is a scaled (to 2) permutation of
baabbacc.

1 Permuted String Matching
over Run-Length Encoded Text

The permuted string matching problem over uncompressed text is simply solved.
A sliding window of size |P | can be moved over T to count, for each location
of T the order of statistics of the characters. Obviously, this can be done in
O(n) time. Let T ′ be the run-length compressed version of T where T ′ =
σr1

1 · · ·σr|T ′|
|T ′| . Similarly, P ′ is the permuted run-length compressed pattern. The

pattern can be permuted, and therefore, in each location of the text we check if
the order of statistics of the characters is equal to that of the pattern. As a result,
a better compression can be achieved. Symbols with the same character are
compressed. For example, let P = aabbbaccaab, its run-length compressed version
is a2b3a1c2a2b1 and its permuted run-length compressed version is P ′ = a5b4c2.
The technique we use is similar to the sliding window technique: a window is
shifted on T ′ from left to right in order to locate all the matches. The window
is a substring of T ′ that represents a candidate for a match. Unlike the simple
algorithm, this time the window size is not fixed.

We will define a valid window as a substring of T ′ that fulfills the follow-
ing two properties: sufficient – The number of times each character appears in
the window is at least the number of times it appears in the pattern. minimal
� Partially supported by NSF grant CCR-0104307, by the Israel Science Foundation

grant 282/01, and by IBM Faculty Award.
A full version of the paper appears in http://cs.haifa.ac.il/LANDAU/public.html

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 72–73, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Permuted and Scaled String Matching 73

– Removing the rightmost or the leftmost symbol of the window violates the
sufficient property.

The algorithm scans the text, locates all valid windows and finds the ones in
which a permuted copy of the pattern occurs. During the scan of the text, given a
valid window, it is trivial to check if it contains a match. Hence, we will describe
only how to locate all valid windows. The valid windows are found by scanning
the text from left to right, using two pointers, left and right. To discover each
valid window, the right pointer moves first to find a sufficient window and then
the left pointer moves to find the valid window within the sufficient window.
The right pointer moves as long as deleting the leftmost symbol of the window
violates the sufficient property of the window. When this symbol can finally
be removed, the right pointer stops and the left pointer starts moving. The left
pointer moves as long as deleting the leftmost symbol of the window does not
violate the sufficient property of the window. At this point, a new valid window
has been found.
Example: Let P ′ = a2b3c2d2 and T ′ = c3a2c2a3d2b3c1 then c3a2c2a3d2b3 is the
first sufficient window, and c2a3d2b3 is the first valid window (but not a match).
Time Complexity: We assume that |Σ| is O(|P ′|), hence, the time complexity
of the algorithm is O(|P ′| + |T ′|).
2 A Linear Time Algorithm

for the Scaled Permuted String Matching Problem

The algorithm is composed of two stages: 1. Preprocessing the text T ′. Comput-
ing compact copies of the text for each possible scale 1 ≤ s ≤ n

m . 2. Applying the
permuted string matching over the run-length encoded text algorithm (section
1) on the copies of the text.

We observe that if a permutation of P scaled to s occurs in σi
ji · · ·σk

jk then
ji+1, . . . , jk−1 are multiple of s, and ji, jk ≥ s. Hence, we compute for each
scale s a compact text T ′

s in the following two steps: (In order to simplify the
computation of Stage 2, a symbol tj

rj of T ′ is replaced in T ′
s by tj

� rj
s �.)

Step 1. Locating the regions – T ′ is scanned from left to right. Consider a
symbol ti

ri . A new symbol ti
ri
s is added to T ′

s if ri is a multiple of s. It may
continue a region or start a new one, in the second case we add a separator ($)
between the regions.
Step 2. Expansion of the regions – The last refinement is done by scanning
each T ′

s text from left to right and expanding all the regions we generated in
step 1.
Example: Let T ′ = a6b2c4a3d5b9d2c8b4a7, the new text after applying step 2
is: T ′

1 =$ a6b2c4a3d5b9d2c8b4a7$, T ′
2 = $a3b1c2a1$b4d1c4b2a3$, T ′

3 = $a2$c1a1d1

$d1b3$, T ′
4 = $c1$c2b1a1$, T ′

5 = $d1b1$ T ′
6 = $a1$, T ′

7 = $a1$, T ′
8 = $c1$,

T ′
9 = $b1$

Stage 2 runs the permuted string matching over a run-length encoded text
algorithm (section 1) on all the new compact texts.
Time Complexity: The running time of both Stage 1 and Stage 2 is bounded
by the total length (O(n)) of the new texts, therefore, the total time complexity
is O(n).

Bit-Parallel Branch and Bound Algorithm
for Transposition Invariant LCS

Kjell Lemström1, Gonzalo Navarro2, and Yoan Pinzon3,4

1 Department of Computer Science, University of Helsinki, Finland
2 Department of Computer Science, University of Chile

3 Department of Computer Science, King’s College, London, UK
4 Department of computer Science

Autonomous University of Bucaramanga, Colombia

Main Results. We consider the problem of longest common subsequence (LCS)
of two given strings in the case where the first may be shifted by some constant
(i.e. transposed) to match the second. For this longest common transposition
invariant subsequence (LCTS) problem, that has applications for instance in
music comparison, we develop a branch and bound algorithm with best case
time O((m2 + log log σ) log σ) and worst case time O((m2 + log σ)σ), where m
and σ are the length of the strings and the number of possible transpositions,
respectively. This compares favorably against the O(σm2) naive algorithm in
most cases and, for large m, against the O(m2 log log m) time algorithm of [2].

Technical Details. Let A = a1, . . . , an and B = b1, . . . , bm be two strings, over a
finite numeric alphabet Σ = {0 . . . σ}. A subsequence of string A is obtained by
deleting zero, one or several characters of A. The length of the longest common
subsequence of A and B, denoted LCS(A, B), is the length of the longest string
that is a subsequence both of A and B.

The conventional dynamic programming approach computes LCS(A, B) in
time O(mn), using a well-known recurrence that can be easily adapted to com-
pute LCS(A+ c, B), where A+ c = (a1 + c), . . . , (an + c), for some transposition
c, where −σ ≤ c ≤ σ:

LCSc
i,0 = 0; LCSc

0,j = 0;
LCSc

i,j = if ai + c = bj then 1 + LCSc
i−1,j−1 else max(LCSc

i−1,j , LCSc
i,j−1).

Our goal is to compute the length of the longest common transposition in-
variant subsequence,

LCTS(A, B) = max
c∈−σ...σ

LCSc(A, B).

Let X denote a subset of transpositions and LCSX(A, B) be such that
ai+1 and bj+1 match whenever bj+1 − ai+1 ∈ X . Now, it is easy to see that
LCSX(A, B) ≥ maxc∈X LCSc(A, B), so LCSX(A, B) may not contain the ac-
tual maximum LCSc(A, B) for c ∈ X but gives an upper bound. Our aim is to
find the maximum LCSc(A, B) value by successive approximations.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 74–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Bit-Parallel Branch and Bound Algorithm for Transposition Invariant LCS 75

We form a binary tree whose nodes have the form [I, J] and represent the
range of transpositions X = {I . . . J}. The root is [−σ, σ]. The leaves have the
form [c, c]. Every internal node [I, J] has two children [I, �(I +J)/2�] and [�(I +
J)/2� + 1, J].

The hierarchy is used to upper bound the LCSc(A, B) values. For every node
[I, J] of the tree, if we compute LCS{I...J}(A, B), the result is an upper bound
to LCSc(A, B) for any I ≤ c ≤ J . Moreover, LCSX(A, B) is easily computed in
O(mn) time if X = {I . . . J} is a continuous range of values:

LCSX
i,0 = 0; LCSX

0,j = 0;

LCSX
i,j = if bj − ai ∈ X then 1 + LCSX

i−1,j−1 else max(LCSc
i−1,j , LCSc

i,j−1).

We already know that the LCS value of the root is min(m, n), since every
pair of characters match. The idea is now to compute its two children, and
continue with the most promising one (higher LCSX upper bound). For this
most promising one, we compute its two children, and so on. At any moment,
we have a set of subtrees to consider, each one with its own upper bound on the
leaves it contains. At every step of the algorithm, we take the most promising
subtree, compute its two children, and add them to the set of subtrees under
consideration. If the most promising subtree turns out to be a leaf node [c, c],
then the upper bound value is indeed the exact LCSc value. At this point we
can stop the process, because all the upper bounds of the remaining subtrees are
smaller or equal than the actual LCSc value we have obtained. So we are sure
of having obtained the highest value.

For the analysis, we have a best case of log2(2σ + 1) = O(log σ) iterations
and a worst case of 2(2σ + 1) − 1 = 4σ + 1 = O(σ) until we obtain the first
leaf element. Our priority queue, which performs operations in logarithmic time,
contains O(log σ) elements in the best case and O(σ) in the worst case. Hence
every iteration of the algorithm takes O(m2+log log σ) at best and O(m2+log σ)
at worst. This gives an overall best case complexity of O((m2 + log log σ) log σ)
and O((m2 + log σ)σ) for the worst case. The worst case is not worse than the
naive algorithm for m = Ω(

√
log σ), which is the case in practice.

By using bit-parallel techniques that perform several LCSX computations
at the same time [1], the algorithm can be extended to use a t-ary tree.

This technique can be applied also to any distance d satisfying minc∈X dc(A,
B) ≤ dX(A, B), where dX(A, B) is computed by considering that ai+1 and bj+1

match whenever bj+1−ai+1 ∈ X . This includes δ-LCS, general weighted edit dis-
tance, polyphony, etc., so it enjoys of more generality than most of the previous
approaches. It cannot, however, be easily converted into a search algorithm.

References

1. K. Lemström and G. Navarro. Flexible and efficient bit-parallel techniques for trans-
position invariant approximate matching in music retrieval. In Proc. SPIRE’03,
LNCS 2857, pp. 224–237, 2003.

2. V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant
string matching. In Proc. STACS’03, LNCS 2607, pp. 191–202, 2003.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 76–78, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A New Feature Normalization Scheme
Based on Eigenspace for Noisy Speech Recognition

Yoonjae Lee and Hanseok Ko

Dept. of Electronics and Computer Engineering, Korea University, Seoul, Korea
yjlee@ispl.korea.ac.kr, hsko@korea.ac.kr

Abstract. We propose a new feature normalization scheme based on eigen-
space, for achieving robust speech recognition. In particular, we employ the
Mean and Variance Normalization (MVN) in eigenspace using unique and in–
dependent eigenspaces to cepstra, delta and delta-delta cepstra respectively.
We also normalize training data in eigenspace and get the model from the nor-
malized training data. In addition, a feature space rotation procedure is intro-
duced to reduce the mismatch of training and test data distribution in noisy
condition. As a result, we obtain a substantial recognition improvement over the
basic eigenspace normalization.

1 Proposed Scheme

We separated the feature vector into three classes as cepstra, delta and delta-delta
cepstra because each class has its own definition and characteristics. Then we imple-
mented a separated-eigenspace normalization (SEN) scheme.

When cepstral features are distorted by noisy conditions, their distribution can be
moved as well as rotated by some amount from their original distribution.[2] When
we rotate only the dominant eigenvector that has the largest variance or eigenvalue,
the first eigenvectors of training and test features become the same and the mismatch
between the training and test data distribution can be reduced. Only the first eigen-
vector rotation procedure is presented here simply as follows. First, we need to
obtain the eigenvalue and eigenvector of full training corpus. v~ denotes the first
dominant eigenvector of the training distribution and v denotes the first dominant
eigenvector of one test utterance. Then the rotation angle α , between the two eigen-

vectors, is computed from their dot product,) ~ arccos(v v ⋅ = α and

 
  





−
=

) cos() sin(

) sin() cos(

α α

α α
R


where R denotes a rotation matrix. Since the two eigen-

vectors are not orthogonal, the Gram-Schmidt is applied to v~ in order to obtain the

orthonormal basis vector v̂ lying in the same plane of rotation,
||~)~(||

~)~(
ˆ

vvvv

vvvv
v

⋅⋅−
⋅⋅−= .

Then we project the test features onto the plane spanned by v~ and v̂ . The projection

A New Feature Normalization Scheme 77

matrix consists of v~ and v̂ , thus)ˆ,~(vvJ = . Finally, a correction matrix TJJI −

with the identity matrix I has to be applied in order to restore the dimensions lost in
the projection procedure. Then the full rotation matrix Q is derived as:

TT JJIJRJQ −+= . Finally, the rotated feature is obtained by: c
t

c
t QXX =

�
.

2 Experiments and Results

Recognition Task: The feature normalization method has been tested with the
Aurora2.0 database that contains English connected digits recorded in clean environ-
ments. Three sets of sentences under several conditions (e.g. SetA: subway, car noise,
SetB: restaurant, street and train station noise, SetC: subway and street noise) were
prepared by contaminating them with SNRs ranging from -5dB to 20dB and clean
condition. A total of 1001 sentences are included in each noise condition.
Experiments Procedure and Results: We followed the Aurora2.0 evaluation proce-
dure for performance verification along with identical conditions suggested in the
Aurora2.0 procedure. Note that we use a c0 coefficient instead of log-energy to in-
duce improved performance, because eigenspace is defined consistently when some
of elements have large variance. First we examine the baseline performance (clean
condition training). We then apply MVN [3] and the eigenspace MVN to only the
test data and to both training and test data together. Next, we experimented on sepa-
rated-eigenspace normalization (SEN). The feature space rotation with SEN was
examined also. The experiment notations of Tables are as follows: 1) MVN : mean
and variance normalization in cepstral domain, 2) EIG : mean and variance in eigen-
space.[1] (eigenspace normalization), 3) SEN : separated-eigenspace normalization,
4) SEN_Ro_20 : separated-eigenspace normalization +feature space rotation. The
first eigenvector of the test is obtained from training noisy set’s 20dB data of each.

From Table 1, we can see that SEN with feature rotation and training data nor-
malization is more effective than basic eigenspace normalization.

We initially expected the best performance when each dominant eigenvector ob-
tained from each SNR was applied to the corresponding SNR test set. However, it
turns out that such method does not guarantee the improvement. At low SNR, the
performance becomes slightly degraded. We achieved the best performance when
applying an eigenvector of 20dB set to all SNR data of same test set.

Table 1. Average word accuracy for the proposed scheme of all data set in Aurora2.0(%)
(_T denotes the normalization of training data)

 Baseline MVN EIG EIG_T SEN SEN_T SEN_Ro_20_T

SetA 59.58 77.90 79.81 80.43 80.27 80.51 81.08
SetB 57.18 79.49 81.21 82.87 81.77 82.49 -
SetC 66.81 77.90 78.96 79.23 79.32 79.10 -

At lower SNR, the data distribution in cepstral domain becomes more compressed.

Consequently, their discriminative shapes (e.g. large variance) is diminished as the
SNR becomes lower. That’s the reason why 20dB statistics yielded the best perform-

78 Yoonjae Lee and Hanseok Ko

ance. From a 20dB noisy training database, we estimated the characteristics of corre-
sponding noise and compensated for the feature reliably. Through the proposed
methods, we obtained average word accuracy up to 81.08% on the setA of Aurora2.0.

Acknowledgement

Research supported by No. 10011362 MCIE of Korea.

References

1. K. Yao, E. Visser, O. Kwon, and T. Lee, :A Speech Processing Front-End with Eigenspace
Normalization for Robust Speech Recognition in Noisy Automobile Environments, Eu-
rospeech2003 (2003) 9-12

2. S. Molau, D. Keysers and H. Ney, : Matching training and test data distributions for robust
speech recognition, Speech Communication, Vol.41, No4 (2003) 579-601

3. P.Jain and H.Hermansky, : Improved Mean and Variance Normalization for Robust Speech
Recognition, Proc.of ICASSP (2001)

Fast Detection of Common Sequence
Structure Patterns in RNAs

Rolf Backofen and Sven Siebert

Friedrich-Schiller Universität
Ernst-Abbe Platz 2, 07743 Jena, Germany
{backofen,siebert}@inf.uni-jena.de

Abstract. We developed a dynamic programming approach of com-
puting common sequence/structure patterns between two RNAs given
by their sequence and secondary structures. Common patterns between
two RNAs are meant to share the same local sequential and structural
properties. Nucleotides which are part of an RNA are linked together
due to their phosphodiester or hydrogen bonds. These bonds describe
the way how nucleotides are involved in patterns and thus delivers a
bond-preserving matching definition. Based on this definition, we are
able to compute all patterns between two RNAs in time O(nm) and
space O(nm), where n and m are the lengths of the RNAs, respectively.
Our method is useful for describing and detecting local motifs and for
detecting local regions of large RNAs although they do not share global
similarities. An implementation is available in C++ and can be obtained
by contacting one of the authors.

1 Introduction

RNAs are polymers consisting of the four

internal loop

stack

bulge loop

multi−branched loop

hairpin loop

A

A

A
A
C

C
U
C
G
A

C

C
G
A

U

G

C

G
C

G G G

C C

G

G

C

A

C
C

A

G C

AA
U U

G

C

C

G

A U
A

U
A

AA

G

C

G
U

G

G

C

C

G

A

Fig. 1. Structure elements of an RNA
secondary structure.

nucleotides A,C,G and U which are linked
together by their phosphodiester bonds.
This chain of nucleotides is called the pri-
mary structure. Bases which are part of the
nucleotides form hydrogen bonds within
the same molecule leading to structure for-
mation. One major challenge is to find
(nearly) common patterns in RNAs since
they suggest functional similarities of these
molecules. For this purpose, one has to in-
vestigate not only sequential features, but also structural features. The structure
in combination with the sequence of a molecule dictates its function. Finding
common RNA motifs is currently a hot topic in bioinformatics since RNA has
been identified as one of the most important research topics in life sciences. RNA
was selected as the scientific breakthrough of the year 2002 by the reader of the
science journal.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 79–92, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

80 Rolf Backofen and Sven Siebert

Most approaches on finding RNA sequence/structure motifs are based on (lo-
cally) aligning two RNAs of lengths n. They use dynamic programming meth-
ods with a high complexity between O(n4) and O(n6) ([1], [9]). Hence, these
approaches are suited for RNAs with just moderate sizes. For that reason, we
want to use a general approach that is inspired by the DIALIGN [10] method for
multiple sequence alignments. The basic idea is to find exact patterns in large
RNAs first, and then to locally align only subsequences containing many exact
patterns by using a more complex approach like [1].

So far, the problem of finding local, exact common sequence/structure pat-
terns was unsolved. This is the problem which is considered in this paper. We can
list all patterns between two RNAs in time O(nm) and space O(nm), where n
and m are the lengths of the RNAs, respectively. The key idea is a dynamic pro-
gramming method that describes secondary structures not only as base pairing
interactions but at a higher level of structure elements known as hairpin loops,
right bulges, left bulges, internal loops or multi-branched loops (see Figure 1).
The computation of RNA patterns is performed on loop regions from inside to
outside. Base-pairs which enclose loops occur in a nested fashion, i.e nested base-
pairs fulfill for any two base-pairs (i1, i2) and (j1, j2) either i1 < i2 < j1 < j2
or i1 < j1 < j2 < i2. Hence, we are able to obtain an elegant solution to the
pattern search problem.

A naive attempt is to consider all combinations

U

G C

U

A
G

C
A

A

A
U

G

C

G U

G C

A
A A

A

A

A

A

G

G C

U A

Fig. 2. Alternative mat-
ching.

of positions i in the first RNA and positions j in the
second RNA and to extend these starting patterns by
looking at neighbouring nucleotides sharing the same
sequential and structural properties. If these proper-
ties are fulfilled then the nucleotides are taken into the
pattern. At a first glance, this idea may work, but the

crucial point are the loops. Consider e.g. the case shown in Figure 2. Suppose
the algorithm starts at position 1 in the first RNA and position 1 in the second
RNA and is working towards the multiple loop in the first RNA. The lower stem
has been successfully matched. But now there is no clear decision to match the
upper part of the stem-loop of the second RNA either to the left side or to the
right side of the multiple loop. This decision depends on how a common pattern
is defined, of course, and how to reach a maximally extended pattern. Therefore,
the only solution is to make some pre-computations of sequential and structural
components of RNAs. Finally, we end up in a dynamic programming approach
which compares inner parts of RNAs first, stores the results in different matrices
and build up the solutions successively. Note, that it is also a mistake to compute
common sequential parts first and then to recompose these parts by their struc-
tural properties. This problem is obviously a computational intractable problem
because of considering all combinations of subsets of sequence parts.
Related Work: Wang et al.[13] published an algorithm for finding a largest ap-
proximately common substructure between two trees. This is an inexact pattern
matching algorithm suitable for RNA secondary structures. A survey of comput-
ing similarity between RNAs with and without secondary structures until 1995 is

Fast Detection of Common Sequence Structure Patterns in RNAs 81

given by Bafna et al.[2]. Gramm et al. [5] formulated the arc-preserving problem:
given two nested RNAs S1 and S2 with lengths n and m (n ≥ m), respectively,
does S2 occurs in S1 such that S2 can be obtained by deleting bases from S1

with the property that the arcs are preserved ? This problem can not be seen
as biological motivated because the structure of S2 would be found splitted in
S1. It has been shown by Jiang et al. [8] that finding the longest common arc-
preserving subsequence for arc-annotated sequences (LAPCS), where at least
one of them has crossing arc structure is MAXSNP-hard. Exact pattern match-
ing on RNAs has been done by Gendron et al. [4]. They propose a backtracking
algorithm, similar to an algorithm from Ullman [11] solving the subgraph iso-
morphism problem from graph theory. It aims at finding recurrent patterns in
one RNA.

The paper is organized as follows: In section 2, we introduce the reader into
definitions and notations of RNAs. In section 3, we define matchings between
two RNAs such that they can be described by matching and matched paths.
In Section 4, a bond preserving matching is proposed which is used for the
dynamic programming matrices (section 5). The matrices are computed by re-
cursion equations in section 6. The pseudo code is given in section 7.

2 Definitions and Notations

An RNA is a tuple (S, P), where S is a string of length n over the alphabet
Σ = {A, C, G, U} . We denote S(i) as the base at position i. P is a set of
base-pairs (i, i′), 1 ≤ i < i′ ≤ n, such that S(i) and S(i′) are complementary
bases. Here, we refer to Watson-Crick base-pairs A—U and C—G, as well as
the non-standard base-pair G—U . In the following, we write i

P
i′ instead

of (i, i′) ∈ P meaning that the two bases S(i) and S(i’) are linked together by
a bond. For the rest of the paper, we restrict our set of base-pairs to secondary
structures holding the following property: for any two base-pairs (i, i′) and (j, j′)
either i < i′ < j < j′ (independent) or i < j < j′ < i′ (nested). The nestedness
condition allows us to partially order the bases of an RNA.

Definition 1 (Stacking Order). Let (S, P) be an RNA. The stacking order
of a base S(i) (abbr. as stordP (i)) is the number of bonds k

P
l with k < i < l,

plus one.

Hence, we are able to partition a secondary structure into structure elements
with the same stacking order. We call them loops. See e.g. Figure 1 for various
loop names. For our algorithmic approach, we have to look at neighbouring bases
belonging to the same loop. This is achieved by a function right (left) of an RNA
(S, P):

rightP (i) =

{
j if (i, j) ∈ P

i + 1 otherwise

and analogously for leftP (i). The function rightk
P (i) (resp. leftk

P (i)) is a short
term of applying the right function (resp. left) to i k-times. We define rbdP (i)

82 Rolf Backofen and Sven Siebert

(resp. lbdP (i)) to be true if there is a bond i
P

i′ (resp. i′
P

i), false
otherwise. Thus, we can describe loops mathematically as follows.

Definition 2 (Loop). Let (S, P) be an RNA. The loop which is enclosed by a
bond i

P
i′ is the set of positions

loop(i
P

i′) = {r | i < r < i′ ∧ ∃k : r = rightkP (i)}.

3 Matchings

Suppose we are given two RNAs (S1, P1) and (S2, P2). The sets V1 = {i | 1 ≤
i ≤ |S1|} and V2 = {j | 1 ≤ j ≤ |S2|} contains the positions of both RNAs.

Definition 3 (Matching). A matching M between two RNAs (S1, P1) and
(S2, P2) is a set of pairs M = {(i, j) | i ∈ V1 ∧ j ∈ V2} which describes a partial
bijection from V1 to V2 and satisfies the following conditions:

1. structure condition: for each (i, j) ∈ M , it follows rbdP1(i) ⇔ rbdP2(j)∧
lbdP1(i) ⇔ lbdP2(j)

2. base condition: for each (i, j) ∈ M it follows S1(i) = S2(j)

The matching definition is applied to single bases. Since bases are sometimes part
of base-pairs, we may see them as units given as an additional bond condition:

3. bond condition: for each {(i, j), (i′, j′)} ⊆ M with i
P1

i′ and j
P2

j′

it follows S1(i) = S2(j) ∧ S1(i′) = S2(j′)

The range of the first RNA is given as the set ran1(M) = {i | ∃j : (i, j) ∈ M}.
It describes the pattern found in the first RNA which is matched to the same
pattern in the second RNA. Given an element i ∈ ran1(M), we denote M(i) as
the uniquely determined element j with (i, j) ∈ M . Similarly, given an element
j ∈ ran2(M), we denote M−1(j) as the uniquely determined element i with
(i, j) ∈ M .

The first two points of the definition can be easily written as a matching
predicate between two bases at positions i and j:

match(i, j) = [S(i) = S(j)] ∧ [lbdP1(i) ↔ lbdP2(j)] ∧ [rbdP1(i) ↔ rbdP2(j)]

The bond condition provides a structure conserving requirement based on
base-pairs. It can be extended by a bond checking such that the predicate of
match(i

P1
i′, j

P2
j′) is given as

[i
P1

i′] ∧ [j
P2

j′] ∧ [S1(i) = S2(j)] ∧ [S1(i′) = S2(j′)]

The matching conditions are applied to single bases or base-pairs so far.
Now, we want to merge bases and base-pairs such that special relations among
them are fulfilled. They provide a definition for matchings. We make use of a

Fast Detection of Common Sequence Structure Patterns in RNAs 83

transition type function on two positions i and i′ which is +1, −1 or 0 depending
on whether i = i′ + 1, i = i′ − 1 or i

P
i′. A path in an RNA is a sequence of

positions i1 . . . ik, such that the bases S(il) and S(il+1) for l = 1, . . . , k − 1 are
connected due to the bond conditions or due to the backbone of this RNA.

Definition 4 (Matching/Matched Path). Let (S1, P1) and (S2, P2) be two
RNAs and M a matching between them. An M -matching path is a list of pairs
(i1, j1) . . . (ik, jk) ∈ M such that

1. i1 . . . ik is a path in (S1, P1)
2. j1 . . . jk is a path in (S2, P2)
3. for each 1 ≤ l < k the transition types of (il, il+1) and (jl, jl+1) are equal.

A matching is connected if there is a M -matching path between any two pairs
in M . A path in only one of the RNAs consisting of only matched bases is called
M -matched path.

Fig. 3. Unpreserved bonds (backbone and secondary). a.) the backbone bonds i − 1, i

is not preserved. b.) the bond i
P1

i′ is not preserved. The matching is indicated
by blue and green nodes. In both cases, the the corresponding bases in the second
structure are connected with nodes (in red) that are not part of the matching.

Note the difference between matching paths and matched paths. A matched
path is a path occurring in one structure, but there must not be necessarily
a corresponding path in the other structure. Furthermore, the restriction of
matching paths to some structure clearly produces a matched path. But the
contrary is not true. There are matched paths, where the image of the path
(under the matching) is not a path in the other structure. To clarify this, consider
the simplest matched paths, which are edges (backbone connections or bonds)
between matched bases. By definition, they are matched paths, but there might
not be a matching path associated with. This happens for bases which mark the
“ends” of the matching. The two cases for backbone edges and bond edges are
shown in Figure 3.

From the definitions of matchings, it is not clear whether they respect the
backbone order, i.e. i < i′ implies M(i) < M(i′). One can show that this holds
for connected matchings. Since we will restrict ourself to matchings that preserve
bonds later, and the proofs are simpler for these kind of matchings, we omit the
proof for the general case here. We treat only the simple case for preserving the
stacking order for general connected matchings.

84 Rolf Backofen and Sven Siebert

Proposition 1. Let (i1, j1) . . . (ik, jk) ∈ M be a matching path. Then the path
preserves the relative stacking order, i.e. for all 1 ≤ r ≤ k we have stordP1(i1)−
stordP2(j1) = stordP1(ir) − stordP2(jr).

4 Bond Preserving Matching

As Figure 3b indicates, a matched bond i
P1

i′ which does not correspond
to a matching path only occurs if we have a stem in the first structure that
is matched to a multiple loop in the second structure (or vice versa). This is
biologically unwanted, since it is very unlikely that this pattern could have been
generated by evolution. For that reason, we are interested in matchings that
preserve bonds.

Definition 5 (Bond-Preserving Matching). A connected matching M is
said to be bond-preserving if every matched bond in P1 or P2 is also a matching
path, i.e. if {(i, j), (i′, j′)} ⊆ M and i

P1
i′, then j

P2
j′, and vice versa.

In the following, we will consider bond-preserving matchings. We say that
a connected, bond-preserving matching M is maximally extended, if there is
no M ′ such that M � M ′. We are interested in finding all (non-overlapping)
maximally extended matchings. For this purpose, we need to show some prop-
erties. We start with a proposition that allows us to decompose the problem of
finding a maximally extended matching into subproblems of finding maximally
extended loop matchings. The next proposition shows that the backbone order
is respected. And the third proposition shows that if we do not exceed a loop,
then maximally extended matchings (in this loop) are uniquely determined by
one element.

Proposition 2. Let i, i′ ∈ loop(r
P1

s), and let M be a bond-preserving
matching with {(i, j), (i′, j′)} ⊆ M . Then any shortest matching path between
(i, j) and (i′, j′) uses only elements of loop(r

P1
s) ∪ {r, s}.

Proof (Sketch). By contradiction. If there would be a path not satisfying this,
then this path has to use a bond twice, either the same element or both el-
ements of the bond. In the first case, we have an immediate contradiction to
the minimality. In the second case, the bond is a matched bond. Since M is
bond-preserving, one gets a shorter matching path by using this bond.

Proposition 3 (Backbone Order). Let M be a connected matching, and
(i, j), (i′, j′) ∈ M . Then i < i′ if and only if j < j′.

The proof is given in the appendix.

Proposition 4. Let i
P1

i′ and j
P2

j′ be two bonds, and let r ∈ loop(i
P1

i′) and s = loop(j
P2

j′). Let M, M ′ with i, i′
∈ ran1(M) ∪ ran1(M ′) and
(r, s) ∈ M ∩ M ′. Then ran1(M) ∪ loop(i

P1
i′) = ran1(M ′) ∪ loop(i

P1
i′)

and ran2(M) ∪ loop(j
P2

j′) = ran2(M ′) ∪ loop(j
P2

j′).

Fast Detection of Common Sequence Structure Patterns in RNAs 85

Proof (Sketch). Follows from Proposition 2 and the fact that if one does not
use the closing bond of a loop, then there is only one unique connecting path
between two elements of the loop. Hence, there cannot be any conflicting paths
that are matched to different elements, and the two matchings must agree on
the loop elements.

5 Dynamic Programming Matrices

We want to find all non-overlapping, maximally extended, bond-preserving
matchings. For overlapping matchings, we choose the one with maximal size.
If there are overlapping matchings of the same size, then only one is selected.

We use a dynamic programming approach by filling a matrix M(r, s), with
the following interpretation. We define an order ≺ on elements as follows:

i ≺ j ≡
{

i < j if stordP1(i) = stordP1(j)
stordP1(i) < stordP1(j) otherwise

For pairs (r, s) and (k, l) we define (r, s) ≺ (k, l) if and only if r ≺ k. Then

M(r, s) =max




M is a maximally extended matching
|M | with (r, s) ∈ M and there is no

(r′, s′) ∈ M with (r′, s′) ≺ (r, s)




contains the size of an maximal matching. For simplicity, we assume the maxi-
mum value over an empty set to be 0. Note that the size is stored only for the
left-most, bottom-most pair (r, s) in M . For calculating M(r, s), we will addi-
tionally need auxiliary matrices M r_end, M bb and M rb, which are defined as
follows.

Definition 6 (Auxiliary Matrices). Let R1 = (S1, P1) and R2 = (S2, P2) be

two RNAs. Let r (resp. s) be an element of loop(i
P1

i′) (resp. loop(j
P2

j′)).
Then M loop

≺ (r, s) is the size of the maximal matching within the loops that contain
(r, s), and is extended to the right or above (r, s), i.e.

M loop
≺ (r, s) =max




M ⊆ [i..i′] × [j..j′] is a connected
|M | matching with (r, s) ∈ M and

∀(r′, s′) ∈ M\{(i, i′), (j, j′)} : (r, s) � (r′, s′)




In addition, we define for every i, j such that i
P1

i′ and j
P2

j′ the matrix
element M bb(i

P1
i′, j

P2
j′) to be the maximal matching that matches the

bonds i
P1

i′ and j
P2

j′, i.e.

M bb(i
P1

i′, j
P2

j′) =max




M ⊆ [i..i′] × [j..j′] is a
|M | connected matching with

(i, j) ∈ M and (i′, j′) ∈ M




86 Rolf Backofen and Sven Siebert

In addition, we define M rb(i
P1

i′, j
P2

j′) to be the maximal matching
containing the right partners i′ and j′ of the bonds only, i.e.

M rb(i
P1

i′, j
P2

j′) =max




M ∈ [i + 1..i′] × [j + 1..j′]
|M | is a connected matching

with (i′, j′) ∈ M




The first procedure calculates M loop
≺ (r, s) for a matching of two loops asso-

ciated with the bonds i
P1

i′ and j
P2

j′, given that M loop
≺ , M bb and M rb

is already calculated for all bonds that are contained in the two loops. For cal-
culating M bb(i

P1
i′, j

P2
j′), we use additional auxiliary variables. The

variable RDist stores the loop distance to the right-end of the loop. Thus, for
given RDist, we consider elements r and s which have distance RDist to i′ and
j′, respectively. Looking from the right end (i′, j′) of the loop this implies that

r = leftRDist
R1

(i′) and s = leftRDist
R2

(j′).

First, we need to know whether there is a matching connecting (r, s) with the
right ends of the loop (i′, j′):

Reachr_end(RDist) =




true if ∃ connected matching
M ⊆ [i..i′] × [j..j′] with
(r, s) ∈ M and (i′, j′) ∈ M

false otherwise

(1)

Since we don’t need the matrix entries any further, we only store the current
value in the variable Reach. In addition, we store the size of the matching that
used in the definition of Reachr_end(RDist). If Reachr_end(RDist) is false, then
we use the size of the last entry Reachr_end(RDist′) with RDist′ < RDist
and Reachr_end(RDist′) = true. Technically, this is achieved by an array
M r_end(RDist) with

M r_end(RDist) =max




M ⊆ [i..i′] × [j..j′] is a connected
|M | matching with (i′, j′) ∈ M and

∀(r′, s′) ∈ M\{(i, i′), (j, j′)} :
(r, s) � (r′, s′)


 (2)

6 Recursion Equations

The auxiliary matrices and arrays can be easily calculated via the following
recursion equations. For M loop

≺ (r, s) we have

M loop
≺ (r, s) = (3)


M bb(r, s) + M loop
≺ (r′ + 1, s′ + 1) if match(r

P1
r′, s

P2
s′)

M rb(r, s) + M loop
≺ (r + 1, s + 1) else if rbdP1(r) ∧ rbdP2(s) ∧ match(r, s)

1 + M loop
≺ (r + 1, s + 1) else if match(r, s)

0 otherwise

Fast Detection of Common Sequence Structure Patterns in RNAs 87

Note that if r and s are the left ends of the bonds r
P1

r′ ∧ s
P2

s′, but
the bonds are not matchable, then this case is covered by the third case. Here,
r + 1 and s + 1 are not in the same loop as r, s. Therefore, we consider the case
where the maximal matching extends to the next loop via the left ends of two
bonds. This case is depicted in Figure 4. r and s do match, whereas the bonding
partners r′ and s′ do not match. The currently considered loop is encircled. Since
r + 1 and s + 1 in the contiguous loop do match, we know that we can calculate
M loop

≺ (r, s) recursively by calculating M loop
≺ (r + 1, s + 1).

Fig. 4. Extension to next loop.

The next step is to define the auxiliary arrays Reachr_end(RDist) and
M r_end(RDist) for a given loop. RDist is the distance to the right end of the
closing bond. Consider the case where we want to match two loops associated
with the bonds i

P1
i′ and j

P2
j′. Let len be the minimum of the two loop

lengths, and 0 ≤ RDist < len. Then

Reachr_end(0) =

{
true if match(i′, j′)
false otherwise

and

M r_end(0) =

{
1 if match(i′, j′)
0 otherwise

For 1 ≤ RDist ≤ lenmin, let r = leftRDist
R1

(i′) and s = leftRDist
R2

(j′) be the two
positions with distance RDist to the right end of the considered loops. Then we
obtain

Reachr_end(RDist) = Reachr_end(RDist − 1) ∧ match(r, s)

M r_end(RDist) =

{
M loop

≺ (r, s) if Reachr_end(RDist)
M r_end(RDist − 1) otherwise.

The matrix M rb(i
P1

i′, j
P2

j′) can be easily defined by

M rb(i
P1

i′, j
P2

j′) = max
0≤Rdist<lenmin

{
M r_end(RDist)

}

For the M bb matrix, there are two different cases as shown in Figure 5. In the
first case a.), the extensions from the initial matching (i, i′) to the right, and the

88 Rolf Backofen and Sven Siebert

Fig. 5. The two possible cases for Mrb(i
P1

i′, j
P2

j′).

extension from (j, j′) to the left do not overlap, whereas they do overlap in the
second case b). For the second case, we do not know exactly how to match the
overlapping part. Hence, we have to consider all possible cuts in the smaller loop,
marking the corresponding ends of the extensions from the left ends and from the
right ends of the loop. The extensions from the right ends are already calculated
in the M r_end matrix. Only for the definition of the recursion equation, we define
M l_end(LDist) and Reachl_end(LDist) analogously to equations (2) and (1),
respectively. For the implementation, we need to store only the current values
M l_end and Reachl_end.

Now let leni,i′ (resp lenj,j′) be |loop(i
P1

i′)| (resp. |loop(i
P1

i′)|), and
let lenmin = min{leni,i′, lenj,j′}. Then we have

M bb(i
P1

i′, j
P2

j′)

= max
0 ≤ LDist < LenMin

with rightLDist
P1

(i) is not
a left end of a bond

{
M l_end(LDist) + M r_end(RDist)

}
(4)

where RDist =

{
leni,i′ − LDist if lenmin = leni,i′

leni,i′ + (leni,i′ − lenj,j′) − LDist else
.

The condition rightLDist
P1

(i) is not a left end of a bond guarantees that we do not
cut in the middle of a bond, which is excluded since we are considering bond-
preserving matchings only. The term (leni,i′ − lenj,j′) in the second part of the
definition of RDist is to compensate for the longer length of the first loop1.

Finally, we consider the M(r, s) entries. Let r and s again be two bases of
the loops defined i

P1
i′ and j

P2
j′ with distance RDist to the right loop

ends i′ and j′, respectively. The values of M(r, s) and Mloop(r, s) are equal for
all entries M(r, s)
= 0. M(r, s) is zero if there is some (r′, s′) ≺ (r, s) that is
matchable. This leads to the following equation:

1 In the case that i
P1

i′ is the smaller loop, then overlapping of the left and right
match extensions is already excluded by definition, and we do not need to compensate
for it.

Fast Detection of Common Sequence Structure Patterns in RNAs 89

1: procedure Start-Loop-Walking(i, i′, j, j′)
� Right loop ends of both RNAs

2: reach = Init-Loop-Matrices(i′, j′, i′, j′)
3: (loop_size, loop_dist) := Loop-Walking(i′, j′, i, j, i′, j′, reach, true)

� Only right loop end of first RNA
4: k := i′

5: while k > i + 1 do
6: k := leftR1(k)
7: Init-Loop-Matrices(k, j′, i′, j′)
8: Loop-Walking(k, j′, i, j, i′, j′, false, false)
9: end while

� Only right loop end of second RNA
10: l := j′

11: while l > j + 1 do
12: l := leftR2(l)
13: Init-Loop-Matrices(i′, l, i′, j′)
14: Loop-Walking(i′, l, i, j, i′, j′, false, false)
15: end while
16: return (loop_size, loop_dist)
17: end procedure

Fig. 6. Starting points of loop walking

M(r, s) =




0 if ¬match(r, s) ∨ match(leftR1(r), leftR2(s))
∨Reachr_end(RDist)

M loop
≺ (r, s) otherwise

7 Pseudo-code

The main procedure consists of two for-loops, each calling a base-pair from the
first and second RNA, and performs the pattern search from inner to outer loops.
It calls the procedure Start-Loop-Walking which initiates the calculation
of all matrices except M bb(i

P1
i′, j

P2
j′) for two bonds i

P1
i′ and

j
P2

j′, assuming that all matrix entries for loops above are already calculated.
In addition, it calculates the loop length of the smaller loop and the distance
of the two loop lengths (which is done in sub-procedure Calc-Remain-Loop-
Len).

The real calculation of these matrices is done in the sub-procedure Loop-
Walking, which traverses the loop from right to left (via the application
of left·(·) function). The function Loop-Walking has two modes concerning
whether we started the loop-traversal with both right ends i, i′ or not. In the first
mode (initiated in line of Start-Loop-Walking), we calculate also the array
M r_end, and move the M(r, s) down to (i′, j′) for all (r, s) where Reachr_end

is true. This part is done by the subprocedure Loop-Reach. In the second
mode, when Loop-Walking is called with only one right end (lines 8 and 14 of

90 Rolf Backofen and Sven Siebert

Start-Loop-Walking), then we know the right ends cannot be in any match-
ing considered there. Hence, we may not calculate the M r_end array.

The subprocedure Mloop-Recursion is just an implementation of recursion
Equation (3) for M loop

≺ . The sub-procedure Init-Loop-Matrices just initializes
the matrices for the starting points. In most case, the initial values are 0 (since we
cannot have a match if we do not start with the right-ends due to the structure
condition). The only exception is if we start with both right ends, and these
rights ends do match. In this case, we initialize the corresponding matrix entries
with 1. The sub-procedure Init-Loop-Matrices is listed in the appendix.

1: procedure Loop-Walking(r, s, i, j, i′, j′, reach, right_ends)
2: RDist = 0
3: while r > i ∧ s > j do
4: r′ := r; s′ := s
5: r := leftR1(r

′); s := leftR2(s
′); RDist = RDist + 1

6: if base-match(r, s) ∨ bond-match(rr, r, sr, s) then
7: Mloop-Recursion(rr, r, sr, s′)
8: M(r, s) := M loop

≺ (r, s); M(r′, s′) := 0
9: if right_ends then

10: Loop-Reach(r, s, i, j, i′, j′, reach,RDist)
11: end if
12: else
13: M loop

≺ (r, s) := 0; M(r, s) := 0; reach := false
14: if right_ends then
15: Mr_end(RDist) := Mr_end(RDist − 1)
16: end if
17: end if
18: end while
19: if right_ends then
20: return Calc-Remain-Loop-Len(r, s, i, j, RDist)
21: end if
22: end procedure

Fig. 7. The procedure loop walking is going from one base to the next

The next step is to calculate M bb(i
P1

i′, j
P2

j′), which is done
by the procedure Loop-Matching. Loop-Matching is called after Start-
Loop-Walking is finished. In principle, this is just an implementation of the
recursion equation (4). Since we do not want want to maintain another ar-
ray M l_end(LDist), we store only value for the current LDist in the variable
M l_end. The procedure maintains three neighbouring cells (rl, sl), (r, s) and
(rr , sr). (rl, sl) correspond to LDist − 1, and (r, s) to LDist. The cut will be
between (r, s) and (rr , sr). The sub-procedure Mlend-Recursion is in prin-
ciple only an implementation of the recursion equation for M l_end under the
condition that that Reachl_end is true. As it can be seen from the definition
of M r_end in Equation (2), the recursion equation under this condition is in
principle analogous to the recursion equation for M loop

≺ given in Equation (3).

Fast Detection of Common Sequence Structure Patterns in RNAs 91

1: procedure Loop-Matching(i, i′, j, j′, i_i′_lens, lens_dist)
2: LDist := 0
3: if bond-match(i, i′, j, j′) then
4: M l_end := 0; Reachl_end := true
5: rr := i; r := i; rl := i
6: sr := j; s := j; sl := j
7: while rr < i′ ∧ sr < j′ ∧ Reachl_end := true do
8: rl := r; r := rr; rr := rightR1

(rr);

9: sl := s; s := sr; sr := rightR2
(sr);

10: if base-match(r, s) ∨ bond-match(rr, r, sr, s) then
11: M l_end = Mlend-Recursion(rl, r, rr, sl, s, sr, M l_end)
12: else
13: Reachl_end := false
14: end if
15: if Reachl_end ∧ ¬bond-match(rl, r, sl, s) then
16: Fill-Mbb(i, i′, j, j′, M l_end, LDist, i_i′_len, lens_dist)
17: end if
18: LDist := LDist + 1
19: end while
20: else
21: Mbb(i, j) := 0
22: end if
23: end procedure

Fig. 8. Calculation of Mbb

The maximally extended matchings are finally calculated from the M(r, s)
matrix by an usual traceback. The space complexity of the algorithm is O(nm).
The time complexity is O(nm) for the following reason. Every pair (r, s) with
1 ≤ r ≤ |S1| and 1 ≤ s ≤ |S2| is considered at most twice in Start-Loop-
Walking and Loop-Walking, with an O(1) complexity for calculating the
corresponding matrix entries. Similarly, every pair (r, s) is considered at most
twice in Loop-Walking. Since there are O(nm) many pairs (r, s), we get a total
complexity of O(nm).

8 Conclusion

We have presented a fast dynamic programming approach in time O(nm)
and space O(nm) for detecting common sequence/structure patterns between
two RNAs given by their primary and secondary structures. These patterns
are derived from exact matchings and can be used for local alignments ([1]).
The most promising advantage is clearly to investigate large RNAs of several
thousand bases in reasonable time. Here, one can think of detecting local se-
quence/structure regions of several RNAs sharing the same biological function.

92 Rolf Backofen and Sven Siebert

References

1. Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA. Jour-
nal of Bioinformatics and Computational Biology (JBCB), 2004. accepted for pub-
lication.

2. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between rna
strings. In Proc. 6th Symp. Combinatorical Pattern Matching, pages –16, 1995.

3. David Eppstein. Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms & Applications, 3(3):1–27, 1999.

4. P. Gendron, D. Gautheret, and F. Major. Structural ribonucleic acid motifs iden-
tification and classification. In High Performance Computing Systems and Appli-
cations. Kluwer Academic Press, 1998.

5. Gramm, Guo, and Niedermeier. Pattern matching for arc-annotated sequences.
FSTTCS: Foundations of Software Technology and Theoretical Computer Science,
22, 2002.

6. I. L. Hofacker, B. Priwitzer, and P. F. Stadler. Prediction of locally stable RNA sec-
ondary structures for genome-wide surveys. Bioinformatics, 20(2):186–190, 2004.

7. Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local
similarity in rna secondary structures. In Proceedings of Computational Systems
Bioinformatics (CSB 2003), 2003.

8. Tao Jiang, Guo-Hui Lin, Bin Ma, and Kaizhong Zhang. The longest common sub-
sequence problem for arc-annotated sequences. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching (CPM2000), 2000.

9. Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. Journal of Computational Biology, 9(2):371–88, 2002.

10. B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local sim-
ilarities by multiple sequence alignment. Bioinformatics, 14(3):290–4, 1998.

11. J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31–42, January 1976.

12. Juris Viksna and David Gilbert. Pattern matching and pattern discovery algo-
rithms for protein topologies. In O. Gascuel and B. M. E. Moret, editors, Proceed-
ings of the First International Workshop on Algorithms in Bioinformatics (WABI
2001), number 2149, pages 98–111, 2001.

13. Jason Tsong-Li Wang, Bruce A. Shapiro, Dennis Shasha, Kaizhong Zhang, and
Kathleen M. Currey. An algorithm for finding the largest approximately common
substructures of two trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):889–895, 1998.

An Efficient Algorithm for the Longest Tandem
Scattered Subsequence Problem

Adrian Kosowski

Department of Algorithms and System Modeling
Gdańsk University of Technology, Poland

kosowski@sphere.eti.pg.gda.pl

Abstract. The paper deals with the problem of finding a tandem scat-
tered subsequence of maximum length (LTS) for a given character se-
quence. A sequence is referred to as tandem if it can be split into two
identical sequences. An efficient algorithm for the LTS problem is pre-
sented and is shown to have O(n2) computational complexity and linear
memory complexity with respect to the length n of the analysed se-
quence. A conjecture is put forward and discussed, stating that the com-
plexity of the given algorithm may not be easily improved. Finally, the
potential application of the solution to the LTS problem in approximate
tandem substring matching in DNA sequences is discussed.

1 Introduction

A perfect single repeat tandem sequence (referred to throughout this article sim-
ply as a tandem sequence) is one which can be expressed as the concatenation
of two identical sequences. Tandem sequences are well studied in literature. The
problem of finding the longest tandem substring (the longest subsequence com-
posed of consecutive elements) of a given sequence was solved by Main and
Lorentz [7], who showed an O(n log n) algorithm, later improved to O(n) com-
plexity by Kolpakov and Kucherov [3]. A lot of attention has also been given to
finding longest approximate tandem substrings of sequences, where the approxi-
mation criterium of the match is given either in terms of the Hamming distance
or the so called edit distance between the substring and the sequence.

This paper deals with a related problem, concerning determining the longest
tandem subsequence (which need not be a substring) of a given sequence (the
so called LTS problem). A formal definition of LTS is in Subsection 2.1 and
an efficient algorithm which solves LTS in O(n2) using O(n) space is outlined
in subsections 2.1 and 2.2. This result is a major improvement on the hitherto
extensively used naive algorithm, which reduces the solution LTS to n itera-
tions of an algorithm solving the longest common subsequence problem (LCS),
yielding O(n3) computational complexity.

Finally, in Section 3 we consider the application of LTS as a relatively fast
(but not always accurate) criterium for finding approximate tandem substrings
of sequences and judging how well they match the original sequence.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 93–100, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

94 Adrian Kosowski

2 An Efficient Algorithmic Approach
to the LTS Problem

2.1 Notation and Problem Definition

Throughout the paper, the set of nonnegative integers is denoted by N. Sets of
consecutive elements of N are referred to as discrete intervals and denoted by
the symbol 〈i, j〉, which is equivalent to {i, i + 1, . . . , j}.

Definition 1. A character sequence s of length n over nonempty alphabet Ω
is a function s : 〈1, n〉 −→ Ω. The length |s| of sequence s is the number of
elements of the sequence, |s| = n. The symbol si, where 1 ≤ i ≤ n, is used to
denote s(i), the i-th element of sequence s.

Sequence s is expressed in compact form as s = [s1s2 . . . sn].

Definition 2. Sequence s of length |s| = n is called a tandem sequence if n is
an even number and ∀1≤i≤n/2 si = si+n/2.

Definition 3. Sequence t, |t| = k, is called a subsequence of sequence s, |s| = n,
if it is possible to indicate an increasing function h : 〈1, k〉 → 〈1, n〉, such that
∀1≤i≤k ti = sh(i). This relation between sequences t and s is written in the form
t ⊆ s.

Definition 4. The Longest Tandem Subsequence problem (LTS for short) for
a given sequence s is the problem of finding a tandem sequence t such that t ⊆ s
and the length of sequence t is the maximum possible.

The suggested approach to the LTS problem reduces LTS for sequence s to
the problem of determining the longest common subsequence of two sequences
not longer than s.

Definition 5. The longest common subsequence LCS(p, q) of sequences p and
q is a sequence t, such that t ⊆ p and t ⊆ q, of the maximum possible length.

The LTS problem for sequence s = [s1s2 . . . sn] can be solved by means of an
algorithm consisting of the following two stages.

Algorithm 1. Longest Tandem Subsequence

1. Determine an index l, 1 ≤ l < n for which |LCS([s1 . . . sl], [sl+1 . . . sn])|
takes the maximum possible value.

2. Compute sequence t = LCS([s1 . . . sl], [sl+1 . . . sn]) and return as output.

The computational time and memory complexity of Algorithm 1 is dependent
on the implementation of Stages 1 and 2. Both these steps will be analysed
individually and shown to be solvable in O(n2) time using Θ(n) memory.

Stage 2 of Algorithm 1 can be implemented using Hirschberg’s approach
[1], who presented an algorithm which, given two character sequences p and q
(|p| = m, |q| = k), computes the sequence LCS(p, q) in Θ(mk) time and requires

An Efficient Algorithm 95

Θ(m+k) memory. The strings whose longest common subsequence is determined
in Stage 2 of Algorithm 1 have a total length of n, which closes the analysis of
the complexity of this stage of the algorithm.

An efficient approach to Stage 1 of the algorithm is the subject of consid-
eration in the following subsection. Since the problem of finding the index l
for sequence s is of some significance and may even in certain applications be
considered separately from the LTS problem (i.e. related to DNA sequencing,
Section 3), it is useful to call it by its own name, referring to it as the LTSsplit
problem.

2.2 A Θ(n2) Time Algorithm for the LTSsplit Problem

Definition 6. LTSsplit is the problem in which, given a sequence s (|s| = n),
we have to determine an index l, 1 ≤ l ≤ n, such that the length of the string
LCS([s1 . . . sl], [sl+1 . . . sn]) is the maximum possible.

The suggested algorithmic solution to the LTSsplit problem is based on dynamic
programming. In order to describe the lengths of the analyzed subsequences, it
is convenient to define the family of functions fk, for 1 ≤ k ≤ n. For a given k,
function fk : Z × Z −→ N is given as follows:

fk(i, j) :=






|LCS([s1 . . . si], [sj . . . sk])|, for 1 ≤ i < j ≤ k
0, in all other cases when i, j ≥ 0
−1, when i, j < 0

(1)

Index l may be expressed in terms of the function fk by the following set of
conditions: {

fn(l, l + 1) = maxr: 1≤r<n (fn(r, r + 1))
1 ≤ l < n

(2)

The values of function fk(i, j), for 1 ≤ i < j ≤ k ≤ n, can be expressed using a
simple recursive formula:

fk(i, j) =
{

max {fk(i − 1, j), fk−1(i, j)} when si �= sk

fk−1(i − 1, j) + 1 when si = sk
(3)

In order to express values of function fk using values of function fk−1 it is helpful
to introduce the index γk(i), defined as the largest value of r such that r ≤ i
and sr = sk, or 0 if no such value exists. From formula (3) we have

fk(i, j) = max {fk−1(γk(i) − 1, j) + 1, fk−1(i, j)} (4)

Let us now consider the family of functions dk : N
+ ×N → {0, 1}, defined for

1 ≤ k ≤ n as follows: dk(i, j) = fk(i, j)− fk(i−1, j). For the range of arguments
1 ≤ i < j ≤ k the value of function fk may be expressed as

fk(i, j) =
i∑

r=1

dk(r, j) (5)

A convenient characterization of function d is given by the following property.

96 Adrian Kosowski

Property 1. Let 1 ≤ i < j ≤ k. The following statements hold

1. Suppose that dk−1(i, j) = 1.
Then dk(i, j) = 0 iff ∀γk(i−1)≤r<i dk−1(r, j) = 0.

2. Suppose that dk−1(i, j) = 0.
Then dk(i, j) = 1 iff si = sk and ∃γk(i−1)≤r<i dk−1(r, j) = 1.

Proof. Both claims of the property are proven below.

(Claim 1.) Let us assume that dk−1(i, j) = 1 and let d =
∑i−1

r=γk(i−1) dk−1(r, j)
and w = fk−1(γk(i−1)−1, j). By using formulae (5) and (4) we obtain fk−1(i−
1, j) = w + d and fk(i− 1, j) = max{w + 1, w + d} = w + max{1, d} respectively.
Moreover, since fk−1(γk(i)−1, j)+1 ≤ fk−1(i−1, j)+1 = fk−1(i, j) = w+d+1,
by formula (4) fk(i, j) = w + d + 1. Therefore fk(i, j) = fk(i − 1, j) iff d = 0.

(Claim 2.) First, assume that dk−1(i, j) = 0 and si = sk. Let w and d be defined
as in the proof of claim 1. Acting identically as last time, we get fk−1(i−1, j) =
w+d and fk(i−1, j) = w+max{1, d}. By formula (3) fk(i, j) = fk−1(i−1, j)+1 =
w + d + 1. Therefore fk(i, j) = fk(i − 1, j) + 1 iff d > 0.
Let us now assume that dk−1(i, j) = 0 and si �= sk. Suppose that fk(i, j) =
fk(i− 1, j) + 1. From formula (3) we have fk(i, j) = fk−1(i, j) = fk−1(i− 1, j) ≤
fk(i − 1, j), a contradiction.

At this point it is essential to notice that function dk has another interest-
ing property, which is useful in the construction of an efficient algorithm for
LTSsplit.

Property 2. Given i and k, 1 ≤ i < k ≤ n, the value of dk(i, j) is equal to 1 iff
j ∈ 〈i + 1, ak(i)〉, for some function ak : N → N.

For an illustration of the function ak, see Fig. 1.

Proof. For given i, the observation that the set S = {j : i < j ≤ k ∧ dk(i, j) = 1}
is a discrete interval whose left end equals i + 1 is a consequence of the property

Fig. 1. Values of functions fk, dk and ak for sequence s beginning with BABBCA and
k = 6

An Efficient Algorithm 97

of monotonicity. More formally speaking, the proof proceeds by induction with
respect to k.

If k = 1 then S is empty.
Let k > 1 and suppose that the inductive assumption holds for k − 1. It

suffices to show that if dk(i, j) = 1, then for an arbitrarily chosen t, i < t < j,
we have dk(i, t) = 1. We will consider two separate cases.

First, let dk(i, j) = 1 and dk−1(i, j) = 1. By claim 1 of Property 1, for some
r, γk(i − 1) ≤ r < i, we obtain dk−1(r, j) = 1. By the inductive assumption we
conclude that dk−1(r, t) = 1 and dk−1(i, t) = 1. The equality dk(i, t) = 1 is a
conclusion from claim 1 of Property 1.

Now, suppose dk(i, j) = 1 and dk−1(i, j) = 0. By claim 2 of Property 1 we
have si = sk and for some r, γk(i − 1) ≤ r < i, we have dk−1(r, j) = 1. As in
the previous case, dk−1(r, t) = 1. The equality dk(i, t) = 1 is a conclusion from
either claim 1 or claim 2 of Property 1, depending on whether dk−1(i, t) = 1 or
dk−1(i, t) = 0, respectively.

By definition of function dk, dk(i, j) = 0 when j ≤ i, which completes the
proof.

As a direct conclusion from Property 2, the values of function ak uniquely
determine all values of function dk. It is possible to consider a unique represen-
tation of matrix Dk = {dk(i, j)} of dimension n × n (1 ≤ i, j ≤ n) in the form
of the column of numbers Ak = {ak(i)} of dimension n (1 ≤ i ≤ n).

Theorem 1. There exists an algorithm solving the LTSsplit problem for a given
sequence s of length n in O(n2) time and using Θ(n) memory.

Proof. The algorithm for solving the LTSsplit problem consists of the following
steps:

1. For all k, 1 ≤ k ≤ n, compute the column Ak by modifying column Ak−1,
making use of Property 2.

2. Determine an LTSsplit index l from the values of column An using the
following equation (directly inferred from the definitions of An, dn, fn):

fn(i, i + 1) = |{p : 1 ≤ p ≤ i ∧ an(p) ≥ i + 1} (6)

using condition (2) to guarantee the suitable choice of l.

The linear memory complexity of Steps 1 and 2 of the algorithm is evident. It is
also obvious that Step 2 of the algorithm can be performed in O(n2) time (in fact,
Step 2 can even be implemented with O(n) running time, yet this is irrelevant to
the proof). It now suffices to present a O(n2) approach to the problem of finding
the column An in Step 1 of the algorithm.

To clarify this step, we will consider a geometrical presentation of column Ak

as a set Pk = {p1, . . . , pk} of k closed horizontal segments of the plane, where
the segment pi has vertical coordinate i, left horizontal coordinate 0 and right
horizontal coordinate ak(i). For some k, consider a pair of values i, j, where
1 ≤ i < j ≤ k. By definition of column Ak and set Pk, the value of dk(i, j) is 1

98 Adrian Kosowski

iff the point (i, j) belongs to some segment of Pk. We define the visible section of
segment pi at height r, 0 < r < i, as a segment q ⊆ pi whose projection πx to the
horizontal axis fulfills the condition: πx(q) = πx(pi) \

⋃i−1
t=r πx(pt). For the sake

of completeness of the definition, the visible section of any segment at height 0
is assumed to be empty. The following corollary is a direct conclusion resulting
from the analysis of Property 2.

Corollary 1. Given set Pk−1, the set Pk may be constructed from Pk−1 by per-
forming the following transformations:

1. for all i, 1 ≤ i ≤ k, such that si = sk, remove segment pi from the set and
insert a segment with vertical coordinate i and horizontal coordinates 0 and
k.

2. for all i, truncate the right part of segment pi by removing the visible section
of pi at height γk(i − 1) of Pk−1 from pi.

An example of the transformation of set Pk−1 into set Pk is presented in
Fig. 2. Since the operations described in Corollary 1 only modify the right end-
points of segments from Pk, the described procedure may be considered in terms
of introducing appropriate modifications to the column Ak. The transformation
from Ak−1 to Ak can be performed in O(k) time in two sweeps, once to detect
the indices i for which si = sk and update the values as in Step 1 of the transfor-
mation, the other – to perform Step 2 of the transformation. Thus the column
An can be obtained in O(n2) operations and the proof is complete.

In order to formalise the adopted approach, a complete implementation of
both steps of the algorithm for LTSsplit is given below. To simplify the code,
the two sweeps corresponding to Steps 1 and 2 of the transformation from Ak−1

to Ak are performed in slightly modified order, which does not influence the
correctness of the algorithm.

Fig. 2. An illustration of the transformation of set Pk−1 into set Pk for a sequence
beginning with ABCBBCABABAC (k = 12)
a) the set Pk−1 b) the set after Step 1 of conversion (newly added segments are
marked with a bold dashed line; segment fragments to be truncated are denoted by a
dash-dot line) c) the set Pk

An Efficient Algorithm 99

algorithm LTSsplit (s : array 1..n of character) : integer;
var a, c, k, l, t : integer;
A := [0, . . . , 0] : array 1..n of integer;
begin
{(�) Compute column Ak for k = 1, 2, . . . , n}
for k in (1, 2, . . . , n) do

for a in (k − 1, k − 2, . . . , 1) do
if s[a] = s[k] then begin

t := A[a];
c := a + 1;
{Perform Step 2 of Corollary 1 using a downward sweep technique}
while (t < k) and (c < k) do begin
{Trim the segment corresponding to pc to length t,

removing the section of it which is visible at height a}
(A[c], t) := (min{A[c], t}, max{A[c], t});
c := c + 1;

end;
A[a] := k;

end;
{(��) Calculate index l using the column An}
c := 0;
l := 1;
for k in (1, 2, . . . , n − 1) do begin

t := 0;
for a in (1, 2, . . . , k) do

if A[a] > k then t := t + 1;
if t > c then begin

c := t;
l := k;

end;
end;
return l;

end.

2.3 Remarks on the Efficiency of the Algorithm for LTS

The approach to the LTS problem described in Algorithm 1 decomposes it into
the LTSsplit and LCS subproblems, both of which can be solved using O(n2)
algorithms with a low coefficient of proportionality (similar for both algorithms
on most system architectures).

The existence of faster algorithms for the problem appears unlikely, since
no algorithm with o(n2) complexity is known for LCS in the case of general
sequences. This may formally be stated as the following conjecture.

Conjecture 1. It is believed that the computational complexity of an algorithm
solving the LTS problem is never lesser than the complexity of an optimal
algorithm solving LCS for general sequences.

100 Adrian Kosowski

3 Final Remarks

One of the major issues of DNA string matching deals is the problem of finding
the longest approximate tandem substring of a given DNA sequence. Formally
speaking, a longest approximate single tandem string repeat in sequence s is
defined as a substring p ⊆ s (a subsequence composed of consecutive elements
of s) of maximum possible length, which can be split into two similar substrings
p1, p2 [4, 5]. The criterium of similarity may have varying degrees of complexity.
Typically described criteria include the Hamming distance, the Levenshtein edit
distance (elaborated on in [6]), as well as more complex criteria (expressing the
distance in terms of weights of operations required to convert one sequence to
the other, [2, 8]).

In some applications, the criterium used to describe the similarity of p1 and p2

is the length of LCS(p1, p2). Given the sequence p, the LTSsplit algorithm can
be applied to find the best point for splitting p so as to maximise LCS(p1, p2).
In consequence the output of the algorithm solving LTS directly leads to the
answer to the two most relevant problems, namely whether p can be split into
two similar fragments and, if so, what those fragments are.

Acknowledgement

The author would like to express his gratitude to Micha�l Ma�lafiejski, Ph.D.,
from the Gdańsk University of Technology, for phrasing the LTS problem in its
simplest form and for his kind and helpful contribution to the improvement of
this paper.

References

1. Hirschberg D.S., A linear space algorithm for computing maximal common subse-
quences, Information Processing Letters (1975) 18.

2. Kannan S.K., Myers E.W., An Algorithm for Locating Nonoverlapping Regions of
Maximum Alignment Score. SIAM Journal of Computing, pp. 648–662 (1996) 25.

3. Kolpakov R.M., Kucherov G., Finding Maximal Repetitions in a Word in Linear
Time. Symposium on Foundations of Computer Science FOCS’99, New-York, pp.
596–604 (1999).

4. Kolpakov R.M., Kucherov G., Finding approximate repetitions under Hamming
distance. Theoretical Computer Science, pp. 135–156 (2003) 303.

5. Landau G.M., Schmidt J.P., An algorithm for approximate tandem repeats, Pro-
ceedings of the 4th Annual Symposium on Combinatorial Pattern Matching pp.
120–133, Springer-Verlag (1993) 684.

6. Levenshtein V.I., Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Phys. Dokl, pp. 707–710 (1966) 10.

7. Main M.G., Lorentz R.J., An O(n log n) algorithm for finding all repetitions in a
string. Journal of Algorithms, pp. 422–432 (1984) 5.

8. Schmidt J.P., All highest scoring paths in weighted grid graphs and their application
to finding all approximate repeats in strings. SIAM Journal of Computing, pp. 972–
992 (1998) 27.

Automatic Document Categorization
Based on k-NN and Object-Based Thesauri�

Sun Lee Bang1, Hyung Jeong Yang2, and Jae Dong Yang1

1 Department of Computer Science, Chonbuk National University
Jeonju, 561-756, South Korea

{slbang,jdyang}@chonbuk.ac.kr
2 Department of Computer Science, Carnegie Mellon University

Pisttsburgh, 15213, USA
hjyang@cs.cmu.deu

Abstract. The k-NN classifier(k-NN) is one of the most popular docu-
ment categorization methods because of its simplicity and relatively good
performance. However, it significantly degrades precision when ambiguity
arises - there exist more than one candidate category for a document to
be assigned. To remedy the drawback, we propose a new method, which
incorporates the relationships of object-based thesauri into the document
categorization using k-NN. Employing the thesaurus entails structuring
categories into taxonomies, since their structure needs to be conformed
to that of the thesaurus for capturing relationships between themselves.
By referencing relationships in the thesaurus which correspond to the
structured categories, k-NN can be drastically improved, removing the
ambiguity. In this paper, we first perform the document categorization
by using k-NN and then employ the relationships to reduce the ambigu-
ity. Experimental results show that the proposed approach improves the
precision of k-NN up to 13.86% without compromising its recall.

1 Introduction

Recently with the advent of digital libraries containing a huge amount of doc-
uments, the importance of document categorization is ever increasing as a so-
lution for effective retrieval. Document categorization is the task of assigning a
document to an appropriate category in a predefined set of categories. Tradi-
tionally, the document categorization has been performed manually. However,
as the number of documents explosively increases, the task becomes no longer
amenable to the manual categorization, requiring a vast amount of time and
cost. This has led to numerous researches for automatic document classification
including bayesian classifiers, decision trees, k-nearest neighbor (k-NN) classi-
fiers, rule learning algorithms, neural networks, fuzzy logic based algorithms
and support vector machines [1][4][5][7][8][9][10][11]. For the classification, they
usually create feature vectors from terms frequently occurring in documents and
� This work was supported by Korea Science and Engineering Foundation(KOSEF)

Grant No. R05-2003-000-11986-0.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 101–112, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

then repeatedly refine the vectors through document learning [12]. However,
since they only train the classifiers with the vectors, they usually incur ambigu-
ity when determining categories, which significantly degrades their precision [6].
For example, suppose there is a document which reviews overall features of dis-
play equipment. Apparently, most terms occurring in this document would be
related to the categories LCD, CRT and PDP. Simply considering document
vectors alone without considering relationship between categories, they fail to
capture the fact that LCD, CRT and PDP are commonly the examples of the
display equipment, suffering from the ambiguity between the categories.

To tackle the problem, we propose a new method to improve the precision
of k-NN by incorporating the relationships of object-based thesauri into docu-
ment categorization using k-NN. The reason we choose k-NN is that it shows
relatively good performance in general in spite of its simplicity [2][12][13]. Em-
ploying the thesaurus entails structuring categories into taxonomies, since their
structure needs to be conformed to that of the thesaurus for capturing relation-
ships between themselves. By referencing relationships in the thesaurus which
correspond to the structured categories, k-NN can be improved, removing the
ambiguity. In this paper, we first perform the document classification by using
k-NN and then, if a document is to be classified into more than one category, we
employ the relationships of the thesaurus to reduce the ambiguity. Experimen-
tal results show that this method enhances the precision of k-NN up to 13.86%
without compromising its recall.

This paper proceeds as follows. In Section 2, we review research related to
our classification method. Section 3 describes a way of hierarchical classification
employing the object-based thesaurus. Section 4 shows experimental results, and
conclusion and future researches follow in Section 5.

2 Preliminaries

2.1 Document Classification Based on k-NN

As in most research work, we use the vector space model for representing a doc-
ument. Let D be a set of documents and T be a set of distinct terms that appear
in the set of documents D. d is represented by a vector of term weights [12].

To get the weight of a term ti ∈ T , we use tfidf weighting scheme that is
generally used. Also, term weights are normalized by cosine normalization [12].
Let wki be a normalized weight with respect to dk ∈ D and ti. Based on this
weighting scheme, the following vector for dk can be constructed:

term(dk) = {t1/wk1, t2/wk2, · · · , t|T |/wk|T |}

where |T | is the cardinality of T .
To classify a document d, k-NN selects its similar neighbors among the train-

ing documents and uses the categories assigned by the neighbors to judge the
category of d [2][5][13]. To explain how k-NN determines the category of d, we
provide a definition.

Automatic Document Categorization 103

Definition 1. Let Near(d) be the set of k nearest neighbor documents with re-
spect to d and dNear ∈ Near(d). Assignment of dNear to ci ∈ C ={c1, c2, · · · , cm}
is denoted by

ci(dNear) =
{

1, if dNear belongs to ci

0, otherwise

Since each dNear is a document similar to d, we can estimate the weight wci

with which d may belong to ci by calculating wci =
∑k

j=1 ci(dNear
j). The weight

may be viewed as the degree of proper category to which d belongs.

Example 1. Let k=11 and ci ∈ {c1, c2, · · · , c8}. From k-NN, suppose we obtain
ci(dNear

j), j = 1, 2, · · · , 11 and wci as shown in Fig. 1.

Fig. 1. Document classification by k-NN

Since wc4 is the largest value, k-NN simply selects c4 as the target category for
d. But, what if d’s actual category turns out to be c1 after appropriately exploit-
ing relationships between c1 and c5? In the following section we briefly explore
the object-based thesauri that offer such relationships used in our method.

2.2 Object-Based Thesauri [3]

The semantic interpretation of the object-based thesaurus may be identified from
the two perspectives: object perspective and relationship perspective.

In the object perspective, in contrast to conventional thesauri treating nodes
as terms, our thesaurus views the nodes as objects taking the terms as their
names. An object may be an object class or an instance of some object classes.
It is taken as an instance, if it can be an example of object classes - for example,
in Fig. 2, “TFT-LCD” is an instance, since it is an example of “LCD.” It may
take other more specialized objects as its sub-classes or instances, depending on
whether they can be its examples or not. Since the direct or indirect sub-classes
of an object class c can, in turn, have their own instances, c may form a class
hierarchy together with the sub-classes and their instances.

104 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

In the relationship perspective, the object-based thesaurus refines traditional
relationships, BT(Broader Term)/NT(Narrower Term) and RT(Related Term)
into generalization/specialization, composite, and association according to their
semantics. Fig. 2 is an example thesaurus to be used in this paper. To distinguish
object classes for instances, we call the classes as concepts. Additionally, when
the objects form a class hierarchy rooted at c, we call it concept hierarchy and
call c top level concept respectively. Refer to [3] for the detailed description of
this thesaurus including various strategies to effectively construct it.

Fig. 2. Example of the object-based thesaurus

3 Document Classification with k-NN and Thesauri

In this section we demonstrate that generalization, composite, association and
instance relationships in the object-based thesauri may serve to enhance the
precision of k-NN.

3.1 Structuring the Set of Categories

A subset C of concepts or instances in a thesaurus Th is defined as follows.

Definition 2. Let C = {ci1i2···il
|il ∈ I+, l = 1, 2, · · · , n} where n is the max-

imum concept level of Th. Then for a category ci1i2···il
, ci1 is the i1th top-

level concept and ci1i2···il
is the ilth sub concept of ci1i2···il−1 in the level l − 1,

2 ≤ l ≤ n.

If we need to emphasize that ci1 is a top-level concept, we denote it by
ctop
i1

. Since Th also has instances for each ci1i2···il
, we denote the instance set

by I(ci1i2···il
). Fig.3 depicts an example of C = {c1, c2, c11, · · · , c212}, which is

structured like Th.
Since we use concepts in C as categories, from now on we call concepts and

categories interchangeably. But we don’t adopt any instance in I(c) for c ∈ C
as a category, since not only the instances are too specific to be categories but

Automatic Document Categorization 105

Fig. 3. Category structure conforming to Th

also their number tends to be large in general. We hence use {I(c) | c ∈ C} as a
local dictionary of c characterising c.

For d ∈ D, a category c ∈ C has the implication property from generalization
that if ci1i2i3(d)=1, then ci1i2(d)=1. This means that if d is included in the
category ci1i2i3 , then d should also be included in its super category ci1i2 . We
formally define this property in the following definition.

Definition 3. For ci1i2···il
∈ C, if ci1i2···il

(d) = 1, then ci1i2···il−1(d) = 1, 2 ≤
l ≤ n.

The following proposition generalizes this property.

Proposition 1. For ci1i2···il
∈ C, if ci1i2···il

(d) = 1, then ci1i2···is(d) = 1, where
s = 1, 2, · · · , l − 1, 2 ≤ l ≤ n.

Proof. If ci1i2(d)=1, then ci1(d)=1 for s = 1 by Definition 3. Suppose the fol-
lowing holds as the inductive hypothesis:

If ci1i2···il−1(d)=1, then ci1i2···is′ (d)=1, s′ = 1, 2, · · · , l − 2, 3 ≤ l ≤ n. (1)

Since if ci1i2···il
(d)=1, then ci1i2···il−1(d)=1 by Definition 3, we can conclude

this proposition holds by using (1).
According to Proposition 1, once a document is assigned to a lower level

category, our algorithm would automatically assign it to its direct or indirect
super categories along the corresponding hierarchy. However, this automatic as-
signment could incur a problem that weights of the higher level categories are
always larger. This problem is formally specified in Proposition 2.

Proposition 2. Let wci1i2···il
be a weight of ci1i2···il

∈ C, 1 ≤ l ≤ n. Then the
following holds; if wci1i2···il

> 0, then wci1i2···is
≥ wci1i2···il

, s = 1, 2, · · · , l − 1.

Proof. Let’s apply Proposition 1 to wi1i2...il
=

∑k
j=1 ci1i2···il

(dNear
j). Then since

if ci1i2···il
(dNear

j) = 1, then ci1i2···is(dNear
j) = 1, we can conclude wi1i2···is ≥

wi1i2···il
for s = 1, 2, · · · , l − 1, 2 ≤ l ≤ n.

Generally, since assigning documents to the lower level categories is more
useful classification, in the subsequent section we develop a notion called reduced
candidate category set not to neglect the categories when assigning.

106 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

3.2 Reducing Ambiguity with Thesaurus

We begin this section by defining a set of candidate categories for d ∈ D.

Definition 4. A set of candidate categories with a predefined threshold value
α is denoted by

Cα(d) = {ci1i2···il
|ci1i2···il

∈ C, wci1i2···il
≥ α, 1 ≤ l ≤ n}.

Additionally, we denote the cardinality of Cα(d) by |Cα(d)|. Cα(d) is denoted
by simply C(d) when α is unimportant.

For notational convenience, we call Sup(c) as the super category set of c ∈ C.

Definition 5. The super category set of ci1i2···il
∈ C is defined by

Sup(ci1i2···il
) = {ci1i2···is |ci1i2···is ∈ C, 1 ≤ s ≤ l− 1},

Sup(ctop
i1

) = {ctop
i1
} when l = 1.

We now define a reduced candidate category set CR(d) as the minimal set of
candidate categories for d.

Definition 6. A reduced candidate category set is defined by

CR(d) = C(d) − ∪n
l=1Sup(ci1i2···il

) where ci1i2···il
∈ C(d).

CR(d) is the minimal set curtailing every candidate category in C(d) de-
ducible from each category of the most lowest level. The minimal property of
CR(d) can remove some ambiguity to which C(d) may lead otherwise - for ex-
ample, the ambiguity incurred from C(d) = {c11, c111} may be removed by
curtailing the higher category c11 from C(d): CR(d) = {c111}. Hence, we refer
to ambiguity only when |CR(d)| ≥ 2 from now on.

We first deal with definite category assignment and then develop a way of
resolving the ambiguity appearing in each case by exploiting relationships avail-
able in the object-based thesaurus. Definition 7 shows a way for any c ∈ CR(d)
to systematically use the related category set {c′|c′ /∈ CR(d)}. Each c′ /∈ CR(d)
may act a crucial role in resolving the ambiguity, though it is not selected as a
candidate category of d.

Definition 7. Let C
′
(d) = Cα′(d)−Cα(d) for another threshold value α′ satis-

fying α > α′ > 0 and call it second candidate category set for d. Then a reduced
second candidate category set is defined by

CR

′
(d) = C

′
(d)− ∪n

l=1Sup(ci1i2···il
) where ci1i2···il

∈ C
′
(d).

To develop our algorithm, consider a document d, which deals with a topic
about Digital TV, LCD and PDP. The following structured category set depicted
in Fig. 4 involves them as categories.

Example 2. Suppose we get wc111 = 4, wc112 = 4, wc211 = 1, with k = 9, α = 4
and α

′
= 1. Then C4(d) = {c1, c11, c111, c112}, CR(d) = {c111, c112} and CR

′
(d) =

{c211}.

Automatic Document Categorization 107

Fig. 4. Example of the structured category set

Our algorithm tries to select one between LCD(c111) and PDP (c112), de-
pending on which one has composite or association relationships with Digital
TV. Though Digital TV does not belong to CR(d), it may act as a crucial clue
to determine a correct category, due to the fact that DigitalTV (d) ∈ CR

′
(d).

We now provide the following definition for elaborating this selection process.

Definition 8. r(ci) = comp(ci)∪assoc(ci) where comp(ci) and assoc(ci) return
the set of categories related to ci with composite and association relationship
respectively. They are specified in the thesaurus Th.

Definition 9. Let wcicj /comp and wcicj /assoc denote weights estimating the
weight of composite and association relationship between cj ∈ r(ci) and ci re-
spectively.

The following definition is used to adjust weight of each ci ∈ CR(d) by r(ci).

Definition 10. Let ci ∈ CR(d) and cj ∈ CR

′
(d) for d ∈ D . Then weight of ci

considering r(ci) is calculated by

wr
ci

= wci + Σcj∈comp(ci)wcicj /comp× wcj + Σcj∈assoc(ci)wcicj /assoc× wcj .

Example 3. In Example 2, wr
LCD and wr

PDP for LCD, PDP ∈ CR(d) exploiting
DigitalTV ∈ comp(LCD) may be calculated as follows.

wr
LCD = 4 + wLCD,DigitalTV /comp× wDigitalTV = 4 + 0.8× 1 = 4.8.
wr

PDP = 4 + wPDP,DigitalTV /comp× wDigitalTV = 4 + 0× 1 = 4.

Based on wr
LCD > wr

PDP , we may decide d belongs to LCD rather than PDP.
Unfortunately, if this process fails to select a unique category, we need to use
a local dictionary of CR(d). In the following definition we introduce a data set
called local dictionary set gathered to further differentiate the categories.

Definition 11. A local dictionary set for c ∈ CR(d) is defined by ld(c) =
{c} ∪ assoc(c) ∪ comp(c) ∪ sym(c)∪ I(c) ∪ sym(I(c)) where sym(c) is the set of
c’s synonyms.

108 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

Since this local dictionary set characterizes each associated category c ∈
CR(d), it may be viewed as another feature vector of c.

Definition 12. Let term(d) = {t1/w1, t2/w2, · · · , t|T |/w|T ||ti ∈ T } be the term
vector for d. Then we define ld(c) � term(d) = {ti/wi|ti ∈ ld(c) ∩ T }.

Once ld(c)� term(d) is obtained, we can resolve ambiguity among categories
in CR(d) by computing the weight wld

c .

Definition 13. For ld(c) � term(d) = {ti/wi|ti ∈ ld(c) ∩ T }, wld
c is calculated

by

wld
c = wr

c + Σwi for ∀ti/wi ∈ ld(c) � term(d).

Example 4. In Fig. 4, suppose we get wc111 = 4, wc112 = 1, wc113 = 4, with k = 9.
Then CR(d) = {LCD, CRT} with α=4. Since wr

c111
= wr

c113
= 4, our algorithm

would fail to get the unique category. So, local dictionaries are exploited for
distinguishing LCD from CRT. Hence,

ld(LCD) = {LCD} ∪ assoc(LCD) ∪ comp(LCD) ∪ sym(LCD) ∪ I(LCD)
∪sym(I(LCD))

= {“LCD,”“Digital TV,”“TFT-LCD,”“Flatron LCD,”
“liquid crystal display,”“thin film transistor”}.

Similarly, we can get
ld(CRT) = {“CRT,”“Digital Receiver Amp,”“FTM,”“Dynaflat,”

“cathode ray tube,”“Flat tension,”“DF”}.
If we let

term(d) = {“crt”/0.36,“digital tv”/0.23, “display”/0.33,“flat tension”/0.19, · · · ,
“flatron lcd”/0.21, “lcd” /0.64, “monitor”/0.35, “pdp”/0.19, · · · ,
“tft-lcd”/0.53, · · ·},

then
ld(LCD) � term(d) = {“digital tv”/0.23, “flatron lcd”/0.21,“lcd”/0.64,

“tft-lcd”/0.53}.
ld(CRT) � term(d) = {“crt”/0.36,“flat tension”/0.19}.

We now get wld
LCD = 4 + 1.61 = 5.61 and wld

CRT = 4 + 0.55 = 4.55.
To ensure that the difference between wld

LCD and wld
CRT is not negligibly small,

we may need the third threshold value β denoting meaningful weight difference.
For example, LCD could be our choice only if β = 0.5.

If the process still fails to select a unique category, the final alternative is
to assign d to the super category of the categories which generalizes them. We
provide the following proposition without proof to show a way of identifying the
direct super category, which does not exist in CR(d).

Proposition 3. Let |CR(d)| ≥ 2 and s be its cadinality. Then for ∀ci1i2···il−1is ∈
CR(d), a category which directly generalizes each of them is ci1i2···il−1 . It is
denoted by

Supdirect({ci1i2···il−1is |ci1i2···il−1is ∈ CR(d)}) = ci1i2···il−1 .

Automatic Document Categorization 109

In Example 4, if wld
LCD = wld

CRT , then the alternative category would be monitor
(c11), which generalizes LCD(c111) and CRT (c113); Supdirect({c111, c113}) = c11.

We are now in a position to propose the final version of our algorithm.

Algorithm 1 Resolve (CR(d), CR

′
(d), d, Th)

Begin

1. Let c, c′ ∈ CR(d), |CR(d)| ≥ 2 and a predefined threshold value β > 0.
Compute wr

c and wr
c′ respectively for all c′′ ∈ (r(c) ∪ r(c′)) ∧ c′′ ∈ CR

′
(d) by

referring to Th.
2. If wr

c > wr
c′ for every c′ ∈ CR(d) ∧ c 	= c′, then Return(c)

else CR(d)←− {c, c′|wr
c = wr

c′}.
3. For each c ∈ CR(d), calculate wld

c = wr
c +

∑
wi for ∀ti/wi ∈ ld(c)� term(d).

4. If wld
c − wld

c′ ≥ β for every c′ ∈ CR(d), then Return(c).
5. If |CR(d)| ≥ 2 and c ←− Supdirect(CR(d)) 	= ∅, then Return (c)

else assign d to each c ∈ CR(d) simultaneously.

End

4 Experimental Results

In this experiment, we collected 427 documents from electronic-product review
directories in Yahoo Korean Web site1. We held out 30% of the documents for
the testing and used the remaining 70% for training, respectively. We used the
six top level categories such as household appliance, computer, computer periph-
eral device, computer component, audio equipment and video equipment and in
turn 24 sub categories were made of them. The object-based thesaurus we used
contains about 340 terms that were extracted from the data set. Categorization
results with k-NN differ according to parameters such as the number of neigh-
bors and the threshold values of candidate category sets. Different numbers of
neighbors and threshold values are examined in this experiment. We first per-
form modified k-NN on the hierarchically structured categories; if a document is
assigned to a unique category, it is automatically assigned to its super categories
by proposition 1. Next, the relationships of the thesaurus are employed with
the modified k-NN according to Algorithm 1. Table 1 shows the experimental
results of k-NN, modified k-NN and modified k-NN with the thesaurus(or briefly
k-NN + Thesaurus). The threshold value of the candidate category sets α and
the number of neighbors k are 7 and 17, respectively.

Even in classifying with k-NN, since categories on higher levels tend to have
high weight, in most cases, documents are assigned to them if each document
should have only one target category. Therefore, the precision of k-NN becomes
abnormally high by 90.7%, while its recall is 47.9% which is considerably low.
The modified k-NN which is allowed to take more than one category can boost up

1 http://kr.yahoo.com/Computers and Internet/Product Reviews

110 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

Table 1. Result of classification with k=17 and α = 7

Method Precision Recall F-measure

classification with
hierarchical structure

k-NN 90.73% 47.94% 62.73%
modified k-NN 84.03% 88.14% 86.04%

k-NN+Thesaurus 89.58% 93.04% 91.27%

classification with the
lowest level categories

k-NN 72.85% 80.29% 76.39%
modified k-NN 71.26% 90.51% 79.74%

k-NN+Thesaurus 86.71% 90.51% 88.57%

Table 2. Result of classification with k-NN on the lowest level categories

k-NN Precision Recall F-Measure

k=14 76.82% 84.67% 80.56%
k=15 75.51% 81.02% 78.17%
k=16 74.15% 79.56% 76.76%
k=17 72.85% 80.29% 76.39%
k=18 75.17% 81.75% 78.32%

Table 3. Result of classification with “k-NN + Thesaurus” on the lowest level cate-
gories

k-NN + Thesaurus Precision Recall F-Measure

k=14, α=6 87.77% 89.05% 88.41%
k=15, α=6 86.52% 89.05% 87.77%
k=16, α=7 84.89% 86.13% 85.51%
k=17, α=7 86.71% 90.51% 88.57%
k=18, α=7 87.05% 88.32% 87.68%

the recall up to 88.14%. The precision of “k-NN+Thesaurus” is improved about
5.5% when compared with the modified k-NN - its enhancement in precision
is not prominent in the hierarchical structure. The reason is that the modified
k-NN can assign a document automatically to the super categories of a category
c as well as c, i.e., even though the categorization on lower levels is not correct,
on higher levels it remains correct. However, if we experiment the categorization
on the lowest level categories, “k-NN + Thesaurus” can improve the precision
of k-NN about 13.86%. It shows that with the modified k-NN, documents are
fortunately assigned to proper categories on higher levels, but the same is not
usually true on lower levels.

For the comparison, Table 2 shows the result of k-NN with different number
of neighbors considering the lowest level categories alone.

Table 3 shows the result of “k-NN+Thesaurus” considering the lowest level
categories with different number of neighbors and different threshold values.

As shown in Table 2 and Table 3, our method drastically improves the pre-
cision due to the removal of the ambiguity, which remained unsolved in k-NN.
Fig. 5 clearly shows the enhancement of the recall and precision listed in Table 3.

Automatic Document Categorization 111

Fig. 5. Enhancement of recall and precision

Remark the drastic enhancement of the precision in comparison with that
of the recall. It is due to the effect of resolving ambiguity. To be specific, the
enhancement is apparent especially when k=17, i.e., when maximal ambiguity
arises. The reason is that since the average number of training documents for
each category ranges from 10 to 15, most of them are likely to participate in k
neighbors of a document d, whenever it needs to be assigned to some categories.

F-measure of our method wholly relies on the number of thesaurus terms
used in an experiment. Therefore, if refining the object-based thesaurus with
more terms, we may expect more improved performance. Readers may refer to
[3], which deals with semi-automatic construction technique available to easily
create such sophisticated thesauri.

5 Conclusions and Future Research

In this paper, we proposed an automatic text classification method to enhance
the classification performance of k-NN with the object-based thesaurus. By re-
ducing ambiguity frequently appearing in k-NN, our method drastically im-
proved the precision of k-NN, preserving its recall. Since the ambiguity problem
is inherent in other automatic document classifiers, we expect that out method
can also be adopted to enhance their performance if appropriately coupled with
them.

As future research, applying our method to semantic web application would
be more meaningful. For example, labeled hyperlinks encoded in the semantic
web documents could provide more fruitful clue to removing the ambiguity.

References

1. Antonie, M. L. and Zaiane, O. R.: Text document categorization by term associ-
ation. In Proceeding of the second IEEE Intenational Conference on Data Min-
ing(ICDM). (2002) 19–26

2. Bao, Y. and Ishii, N.: Combining multiple k-nearest neighbor classifier for text
classification by reducts. Discovery Science. (2002) 340–347

112 Sun Lee Bang, Hyung Jeong Yang, and Jae Dong Yang

3. Choi, J. H., Yang, J. D. and Lee, D. G.: An object-based approach to managing
domain specific thesauri: semiautomatic thesauri construction and query-based
browsing. Intenational Journal of Software Engineering & Knowledge Engineering,
Vol. 10, No. 4. (2002) 1–27

4. Diao, L., Hu, K., Lu, Y. and Shi, C.: Boosting simple decision trees with bayesian
learning for text categorization. In Proceeding of the fourth World Congress on
Intelligent Control and Automation. Vol. 1. (2002) 321–325

5. Han, E. H., Karypis, G. and Kumar, V.: Text categorization using weight adjusted
k-nearest neighbor classification. In Proceeding of the fifth Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining(PAKDD). (2001) 53-65

6. Hiroshi, U., Takao, M. and Shioya, I.: Improving text categorization by resolv-
ing semantic ambiguity. In Proceeding of the IEEE Pacific Rim Conference on
Communications, Computers and Signal processing (PACRIM). (2003) 796–799

7. Hu, J. and Huang, H.: An algorithm for text categorization with SVM. In Process-
ing the tenth IEEE Region Conference on Computers, Communications, Control
and Power Engineering, Vol. 1. (2002) 47–50

8. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In Proceeding of the tenth European Conference on Ma-
chine Learning(ECML). (1998) 137–142

9. Lam, W. and Han, Y.: Automatic textual document categorization based on gen-
eralized instance sets and a metamodel. In Proceeding of the IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 25, No. 5. (2003) 628-633

10. Sasaki, M. and Kita, K.: Rule-based text categorization using hierarchical cate-
gories. In Proceeding of the IEEE International Conference on System, Man and
Cybernetics, Vol. 3. (1998) 2827–2830

11. Schapire, R. E. and Singer, Y.: Text categorization with the concept of fuzzy set
of informative keywords. In Proceeding of the IEEE International Fuzzy Systems
Conference(FUZZ-IEEE), Vol. 2. (1999) 609–614

12. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys, Vol. 34, No. 1. (2000) 1–47

13. Soucy, P. and Mineau, G. W.: A simple KNN algorithm for text categorization.
In Proceeding of the first IEEE International Conference on Data Mining(ICDM).
Vol. 28. (2001) 647–648

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 113–124, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Indexing Text Documents Based on Topic Identification

Manonton Butarbutar and Susan McRoy

Department of Electrical Engineering and Computer Science
University of Wisconsin – Milwaukee, USA

{anton,mcroy}@cs.uwm.edu

Abstract. This work provides algorithms and heuristics to index text docu-
ments by determining important topics in the documents. To index text docu-
ments, the work provides algorithms to generate topic candidates, determine
their importance, detect similar and synonym topics, and to eliminate incoher-
ent topics. The indexing algorithm uses topic frequency to determine the impor-
tance and the existence of the topics. Repeated phrases are topic candidates. For
example, since the phrase ‘index text documents’ occurs three times in this ab-
stract, the phrase is one of the topics of this abstract. It is shown that this
method is more effective than either a simple word count model or approaches
based on term weighting.

1 Introduction

One of the key problems in indexing texts by topics is to determine which set of
words constitutes a topic. This work provides algorithms to identify topics by deter-
mining which sets of words appear together within a certain proximity and how often
those words appear together in the texts.

To count the frequencies of topics in texts accurately, a system must be able to de-
tect topic repetition, similarity, synonymy, parallelism, and implicit references.
However, these factors are not all equally important. We have found that topic repeti-
tion and topic similarity are the most useful and are sufficient to produce good indi-
ces.

The work described in this paper provides algorithms to detect similar topics in
texts. For example, if a text contains the phrase ‘a native American history book’ and
‘this book is about the history of native Americans’, our system, iIndex, detects both
phrases as similar, counts the frequency of topic ‘native American history book’ as
two, and makes the phrase a candidate topic. The iIndex system also detects topics
that are synonyms and sums their frequencies to represent the synonyms together as
one meaning. This is important because the same topic can be expressed in several
different ways. For example, the phrases ‘topic identification’, ‘topic determination’,
‘topic discovery’, ‘finding topic’, ‘locating topic’, and ‘topic spotting’ can all serve as
synonyms.

Among similar phrases, the iIndex system extracts shorter and best phrases from
texts as topic candidates. For example, the phrase ‘blood pressure’ is selected over
‘pressure of the blood’. In addition, unlike previous approaches, such as [WEK01],
iIndex extracts any important phrases from texts, not just simple noun phrases. For
example, expressions such as ‘high blood pressure has no symptoms’ and ‘blood

114 Manonton Butarbutar and Susan McRoy

pressure should be monitored more frequently’ are extracted from texts; these expres-
sions would be missed by a noun phrase indexer.

The major contributions of this work are techniques and algorithms to determine
and to order the most important topics in text documents and to index text documents
efficiently based on important topics in the texts without employing linguistic pars-
ing. It efficiently solves the problem of finding important topics in texts, a problem
that requires exponential computation time, by carefully selecting subsets of the prob-
lem that are practical to compute, yet useful as they cover 97% of the problem do-
main. The approach also provides a method that defines topic synonyms with infer-
ence complexity O(log n) or better.

2 Background

Over the past 30 years, a number of approaches to information retrieval have been
developed, including word-based ranking, link-based ranking, phrase-based indexing,
concept-based indexing, rule-based indexing, and logical inference-based indexing
[Ha92, Sa89].

The closest work to iIndex is that of Johnson [JCD+99] and Aronson [ABC+00];
iIndex, however, applies a much richer set of techniques and heuristics than these two
approaches. For example, iIndex allows one to configure the maximum number of
words in a phrase, whereas in prior work the phrase size has been fixed (3 in Johnson
and 6 in Aronson). The iIndex system also uses limited stemming as opposed to stan-
dard stemming. (We describe both methods and explain the weaknesses of standard
stemming, in Section 3.3.) iIndex also considers complete documents as its input,
while Aronson uses only the titles and abstracts. Finally, iIndex uses a set of config-
urable matching techniques, while Johnson uses just one.

Fagan [Fa87] is one of the first to examine the effectiveness of using phrases for
document retrieval. He reports improvements in precision from –1.8% to 20.1%. As
in other prior work, his phrase construction is limited to 2-word phrases and uses
standard stemming. Similarly, Kelledy and Smeaton [KS97] report that the use of
phrases improves the precision of information retrieval. They use up to 3-word
phases and employ standard stemming. They also require that phrases appear in at
least 25 different documents, whereas iIndex uses any phrases that are repeated in any
document. Consequently, their approach would miss newly coined phrases that are
repeated in only one document, such as ‘limited stemming’ in this document. Also,
unlike iIndex, they do not consider phrase variants such as ‘department of defense’
and ‘defense department’ as equivalent. Mitra et al. [MBSC97] describes a repetition
of the experiments by Fagan with a larger set of about 250,000 documents, limiting
the approach to 2-word phrases that appear in at least 25 documents, employing
standard stemming, and ignoring word order. They conclude that the use of phrases
does not have a significant effect on the precision of the high rank retrieval results,
but is useful for the low rank results.

The work by Wacholder [WEK01] indexes only noun phrases, whereas iIndex
considers all types of phrases. Moreover, Wacholder ranks the topics by the fre-
quency of the head noun alone, whereas iIndex ranks the topics by the frequency of
the whole phrase.

Woods [Wo97] provides another approach to topic identification, but, unlike iIn-
dex, does not use frequency in determining topic rankings.

Indexing Text Documents Based on Topic Identification 115

3 Indexing by Topic

A topic is a set of words, normally a phase, that has meaning. Topics are determined
by detecting sets of words that appear together within certain proximity and counting
how often those words appear together. The more frequent a set of words in the
document, the better the chance that set of words represents an important concept or
topic in the document. Generally, the more (significant) words in a topic the more
specific the topic. Similar topics are grouped (and later stored) by a process that we
call topic canonization. This process involves converting the words in a phrase to
their base forms and then ordering the words alphabetically. The resulting phrase is
called the canonical phrase. We discuss our methods for determining topic length,
topic proximity, and topic frequency below.

A sentence or a phrase is a string of characters between topic separators. Topic
separators are special characters such as period, semicolon, question mark, and ex-
clamation mark that separate one topic from another. A word is a string of characters
consisting of only a-z, A-Z, and 0-9. The approach ignores tokens that are numbers,
hyphens, possessive apostrophes and blank characters.

The topic length is the number of significant words that constitute a topic (sen-
tence or phrase.) Significant words are those that have not been predefined as stop
words. A stop word is high-frequency word that has no significant meaning in a
phrase [Sa89]. iIndex uses 184 stop words. They are manually selected as follows:
all single characters from a to z, all pronouns, terms frequently used as variable
names such as t1, t2, s1, s2, and words that were selected manually, after evaluating
the results of indexing several documents using iIndex.

The maximum and minimum values for topic length are configurable parameters
of iIndex (discussed in Section 4). iIndex also provides default settings. The default
maximum length is 10 and the minimum length is 2. These values were selected be-
cause it has been reported that the average length of large queries to a major search
engine (Alta Vista) is 2.3 words [SHMM98].

Topic proximity is the maximum distance of words apart that constitute a topic. For
example, the phrase ‘a topic must be completely within a sentence’ is about ‘sentence
topic’ and the two words are 6 positions apart. Thus, for this example, the topic prox-
imity is 6.

The topic frequency, or reference count, is the number of times that a topic, similar
topic, or synonymous topic is repeated in the document. In our approach, the impor-
tance of a topic is measured by its frequency. A topic is relevant to a unit of a docu-
ment if the topic is referenced more than once in the unit. A unit of a document can
be the whole document, a section, or a paragraph.

3.1 Indexing Algorithm

The goal of this algorithm is, given a set of documents D, to find a set of w-word
topics that are repeated r times in the documents. The words that constitute a topic
should not be separated by more than p positions.

For example, given document D = “abcdbc”, where each letter represents a word,
the list of phrases of any 2 words at most 1 position apart is {ab, bc, cd, db, bc}. Each
phrase has frequency 1, except phrase ‘bc’ which has frequency 2. The phrases with

116 Manonton Butarbutar and Susan McRoy

the highest frequency are the most important topics. In this case, the only topic is
‘bc’, as a topic must have a frequency of at least 2.

Let u be a unit of a document d in D. By default, u is the whole document. Let X
be the index of D, which is the set of topics that are repeated at least r times in u.
Each index entry x in X represents a relation between topic t, unit u, and the fre-
quency of t in u and is denoted as x(t, u, f). The index is represented by X(T, U, F)
where T is the set of all topics in D, U is the set of all units in D, and F is a set of
integers. By definition, {x(t, u, f1)} union {x(t, u, f2)} = {x(t, u, f1+f2)} i.e. we sum
the frequencies of t in u. The frequency of topic t in unit u is denoted by x(f) for a
given index entry x(t, u, f).

Algorithm 1 Indexing Algorithm

1. For each u in d, do the following.
a. Let Xu be the index of u. Initialize Xu to empty.
b. Let s be a sentence in u.
c. Remove stop words and numbers from s. Ignore s if it is one word or less.
d. For each sentence s in u do the following.

i. Generate topic candidates T from s (Section 3.2).
ii. For each topic t in T, do the following.

1. Perform limited stemming on t (Algorithm 2).
2. Perform topic canonization on t.

iii. Eliminate topics in T that are overlapping in position.
iv. Merge and sum the frequencies of topics T that are the same, simi-

lar or synonyms, to produce index entry x(t, u, f) and add it into Xu.
Notice that x(t, u, f1+f2) replaces both x(t, u, f1) and x(t, u, f2) in
Xu.

e. Remove index entries x from Xu that do not satisfy any of the following
conditions:

i. Topic t consists of significant words less than w.
ii. Topic t contains duplicate words.

iii. Topic t is a subset of other topics and t is not a stand-alone topic.
f. For each topic t in Xu, remove extraneous words from t (Algorithm 5). Re-

move t if it is reduced to one word or less.
2. For each document d in D do the following.

g. Let Xd be the index of d. Set Xd is the union of Xu from each u in d. In doing
so, replace u with d in index entry x(t, u, f).

h. Remove x from Xd if x(f) < r.
3. The index X is the union of Xd and Xu from each u in d and from each d in D.

3.2 Topic Generation

Given a sentence of length s, this algorithm generates all possible phrases (topics) of
length 2 to w words with words up to p positions apart. The algorithm systematically
generates all possible phrases as described in the following example.

Indexing Text Documents Based on Topic Identification 117

3.2.1 An Example
Let’s generate all 3-word phrases of at most 3 positions apart from a text document
“abcde…z”. In this case, each letter represents a word. For a 3-word phrase, there are
only 2 possible slots inside the phrase as shown in pattern XzXzX, where X represents
one word and z represents a slot. For each slot z, we may skip 0, 1, or 2 words, i.e. at
most 3 positions apart. The list of patterns is shown in Table 1. The dash signs in the
patterns represent words that are skipped.

Table 1. List of patterns for generating topic candidates

Slots Patterns Phrases #Phrases
1 0 0 XXX abc, bcd, cde, … 24 = 26-3+1-(0+0)
2 0 1 XX-X abd, bce, cdf, … 23 = 26-3+1-(0+1)
3 0 2 XX--X abe, bcf, cdg, … 22 = 26-3+1-(0+2)
4 1 0 X-XX acd, bde, cef, … 23 = 26-3+1-(1+0)
5 1 1 X-X-X ace, bdf, ceg, … 22 = 26-3+1-(1+1)
6 1 2 X-X--X … 21 = 26-3+1-(1+2)
7 2 0 X--XX … 22 = 26-3+1-(2+0)
8 2 1 X--X-X … 21 = 26-3+1-(2+1)
9 2 2 X--X--X … 20 = 26-3+1-(2+2)

The number of patterns is 3^2 = 9. The number of phrases, 24 + 23 +… + 20 =
198, is less than 9 * 24 = 216, because there are 9 patterns each of which cannot gen-
erate more than 24 phrases (each phrase contains at least 3 words).

3.2.2 Computational Complexity

The number of patterns consist of w words at most p positions apart is 1−wp . An

upper bound of the number of phrases of w words at most p positions apart generated

from one sentence of length s is 1)1(−+− wpws . Thus, the number of phrases

),,(pwsf is less than 1)1(−+− wpws . The number of phrases consisting of 2 to

w words is ∑ =
= w

i
pisfpwsg

2
),,(),,(.

3.2.3 Computational Performance

Worst Case
Table 2 shows the performance of iIndex on the worst-case scenario of generating all
possible phrases from one sentence of unique words w1, w2, …, w124. The value of
s = 124 is the longest sentence found among all text documents evaluated in this
work. The value of w = 10 is the default value set for iIndex.

The numbers in the table were computed by iIndex. The computer specified in
Section 4 ran out of memory when the iIndex tried to compute g(124, 10, 3). There-
fore, the computation time for g(124, 10, 3) is an estimate as indicated by the asterisk.

Average Case
Although the worst case scenarios are almost impossible to compute, the average
cases can be computed efficiently, as shown in Table 3. The table shows the perform-
ance of generating all possible phrases from one sentence consisting of 15 unique
words. The value of s = 15 and w = 3 are based on the average sentence length and
average topic length of all text documents evaluated in this work.

118 Manonton Butarbutar and Susan McRoy

Table 2. The performance of a worst-case scenario

g(s, w, p) Patterns Phrases Minutes
g(124, 10, 1) 9 1071 0
g(124, 10, 2) 1,022 114,437 14
g(124, 10, 3) 29,523 3,158,934 *386
g(124, 10, 4) 349,524 35,767,926 *4,371
g(124, 10, 5) 2,441,405 238,647,305 *29,161

Table 3. The performance of an average-case scenario

g(s, w, p) Patterns Phrases Milliseconds
g(15, 3, 1) 2 27 30
g(15, 3, 2) 6 75 40
g(15, 3, 3) 12 138 40

… … … …
g(15, 3, 12) 111 555 90

Best Case
The best-case scenario is when almost all problem instances are covered in a reason-
able amount of time. In this work, 97% of sentences had 43 words or less and 97%
of the topics generated from all the documents had length 6. Based on those values,
the performance of the algorithm is computed as shown in Table 4. The empirical
results show that we can compute g(43, 6, 3) in 7 seconds. That means it is practical
to compute the index of text documents that contain sentences up to 43 words long,
topics up to 6 words long, and topic proximities up to 3 positions apart.

Table 4. The performance of the best-case scenario

g(s, w, p) Patterns Phrases Seconds
g(43, 6, 1) 5 200 0
g(43, 6, 2) 62 2,279 0
g(43, 6, 3) 363 12,327 7
g(43, 6, 4) 1,364 42,722 53
g(43, 6, 5) 3,905 112,250 156

With this approach, we efficiently solve the problem of finding important topics in

texts, a problem that requires exponential computation time, by carefully selecting
subsets of the problem that are practical to compute, yet cover 97% of the problem.

3.3 Similar Topic Detection

Topic t1 is similar to topic t2 if they have the same significant base words. Significant
words are those that are not stop words. Base words are those that have been con-
verted to their root forms by a process called limited stemming, described below.
Examples of similar topics are ‘repeated term’, ‘repeated terms’, ‘term repetition’,
and ‘repetition of terms’.

Limited stemming is the process of converting word forms to their base forms
(stems, roots) according to a set of conversion rules, F, as part of the simple grammar

Indexing Text Documents Based on Topic Identification 119

G described in Section 3.4. Only those words in F are converted to their base forms,
in addition to the automatic conversion of regular forms as described in the following
algorithm.

Set F includes a list of irregular forms and their corresponding base forms as de-
fined in the WordNet [Mi96] list of exceptions (adj.exc, adv.exc, noun.exc, verb.exc).
Examples of irregular forms are ‘goes’, ‘went’, and ‘gone’ with base form ‘go’. The
stemming is represented by one rule: go � goes | went | gone.

Word forms that have the same sense in all phrases, but are not included in the
WordNet list of exceptions are manually added to F. Examples of such word forms
are ‘repetition’ with base form ‘repeat’ and the word ‘significance’ with base ‘signifi-
cant’.

Algorithm 2 Limited Stemming Algorithm

This algorithm returns the base form of a given word w or null.
1. If word w is defined in F then return its base form.
2. Else

a. If either suffix ‘s’, ‘ed’, or ‘ing’ exists at the end of word w then truncate the
suffix from w to produce w’.

b. If length of w’ is at least 2 then return w’.
c. Return null.

The limited stemming algorithm above has been developed to avoid some of the

errors that arise when a standard stemming algorithm (such as described in [Sa89])
predicts that two words have the same meaning when they do not [Ha92, Fa87]. For
example, the word ‘importance’ should not be stemmed to ‘import’ because the two
words are semantically unrelated.

As mentioned above, stop words and word order are ignored when determining
topics. When these ideas are combined with limited stemming, the following phrases
are detected as similar: ‘repeated terms’, ‘repeated term’, ‘term repetition’, ‘repetition
of terms’. This heuristic will not always work. For example, it will never be able to
distinguish between ‘absence of evidence’ and ‘evidence of absence’. However, we
have found very few cases of this sort.

Algorithm 3 Similar Topic Detection

The following algorithm determines if topic t1 is similar to topic t2.
1. Remove stop words from t1 and t2.
2. Perform limited stemming on t1 and t2.
3. Order words in t1 alphabetically.
4. Order words in t2 alphabetically.
5. Return true if t1 is identical to t2.

3.4 Synonymous Topic Detection

Phrases that have the same meaning are called phrase synonyms or topic synonyms. In
addition to topic canonization, phrase synonyms can be defined explicitly by adding
production rules, S, to the simple grammar G defined below. For example, the follow-

120 Manonton Butarbutar and Susan McRoy

ing production rule specifies that phrases ‘topic identification’, ‘determine topics’,
‘discover topics’, and ‘topic spotting’ are synonyms: topic identification � determine
topics | discover topics | topic spotting .

The rules in S are manually constructed to improve the quality of the index. How-
ever, the iIndex produces good indices without defining any rules in S.

Phrase synonyms share one meaning called the synonym meaning, which is repre-
sented by the string at the head of the production rule. In the above example, the
synonym meaning is string ‘topic identification’. Each phrase (node) in the produc-
tion rule represents a set of similar phrases.

Topic t1 is synonymous to topic t2 if and only if the synonym meaning of t1 is lit-
erally the same as the synonym meaning of t2.

A simple grammar, G, is used to represent both stems for words and synonyms for
topics. It is called a simple grammar because it can be implemented with a simple
look up table with logarithmic complexity O(log n) where n is the number of entries
in the table (the same as the number of terms in the production rules.) The grammar
could be implemented with constant complexity O(1) using hashing.

There are 4519 rules defined in the current implementation of iIndex. The rules de-
fine 11452 mappings of one string to another.

Algorithm 4 Synonymous Topic Detection

1. Remove stop words from t1 and t2.
2. Convert topic t1 and t2 to their canonical phrases.
3. Let g1 be the set of synonym rules with t1. Let g2 be the set of synonym rules

with t2. (Both g1 and g2 are subsets of the simple grammar G.)
4. If intersection of g1 and g2 is not empty, then t1 and t2 are synonyms, otherwise

they are not.

3.5 Topic Elimination

The iIndex generates some incoherent phrases, such as ‘algorithm for determining’
and ‘automatic indexing involves’, during the indexing process. Those phrases need
to be removed from the index.

Topics that contain duplicate words are also removed because we have found that
they are mostly incoherent. An example phrase with duplicate words is ‘string the
string’. The iIndex generates the phrase from [Ka96] because the phrase is repeated
twice (ignoring stop words) as follows.

“… denotes the empty string, the string containing no elements …”
“… machine has accepted the string or that the string belongs …”

3.5.1 Remove Extra Words from Topics
This section describes heuristics to remove some incoherent phrases or to transform
them into coherent phrases.

Define B as the set of words and phrases to be eliminated from the beginning of
topics and E as the set from the end of the topics. S is the set of stop words. Sets B
and E are constructed manually. Examples are B = {according to, based on, follow-
ing, mentioned in} and E = {using, the following, involves, for combining, for deter-
mining, to make}.

Indexing Text Documents Based on Topic Identification 121

Algorithm 5 Removal of Extraneous Words from Topics

1. Remove consecutive words or phrases from the beginning of topic t if they are in
B or S.

2. Remove consecutive words or phrases from the end of t if they are in E or S.
3. If t is reduced to one word or less then do not use t, otherwise use t.

4 Implementation

The iIndex system has been written in C++. Experiments were performed on a laptop
with the following hardware and software: Pentium 4, 2 GHz, Microsoft Windows
2000 Professional, 768 MB memory, and 37 GB hard drive.

The inputs to iIndex are plain text documents in ASCII format. The limited stem-
ming is defined in a file forms.txt, topic synonyms in rules.txt, stop words in stop-
Words.txt, and topic separators in topicSeparator.txt. Parameters with default values
such as s = 50, w = 10, p = 1, r = 2 are configurable in param.txt, where s is the
maximum length of sentences, w is the maximum length of topics, p is the proximity
of topics, and r is the minimum phrase frequency needed to be considered a topic.

5 Results and Evaluation

The iIndex correctly and efficiently finds the most important topics in various types
and lengths of text documents, from individual sentences and paragraphs to short
papers, extended papers, training manuals, and PhD dissertations. Titles and abstracts
were not marked in any special way and thus are not known to iIndex. The topics
extracted from texts are ordered by their importance (topic frequencies).

The iIndex finds 477 topics in [Wi98], a training manual, as shown in Table 5. (N
= sequence number, TF = topic frequency, WF = word frequency average). It cor-
rectly extracts the topic ‘blood pressure measurement’ as the third most important
topic, the topic mentioned in the title of the text. It is indeed true that the text is about
blood pressure, high blood pressure, and blood pressure measurement as suggested by
the first 3 most important topics.

Table 5. List of important topics in blood pressure measurement manual

N TF WF Topics
1 250 306 blood pressure
2 56 227 high blood pressure
3 46 217 blood pressure measurement
4 19 38 american heart association
5 19 157 blood vessels

The iIndex finds 42 topics in [Ka96], a short paper. It correctly extracts the topic

‘finite state technology’ as the second most important topic, which is exactly the title
of the paper. It is indeed true that the paper is about finite state, finite state technol-
ogy, and regular language as suggested by the first 3 most important topics.

122 Manonton Butarbutar and Susan McRoy

The iIndex finds 2172 topics in [Wo97], an extended paper. It correctly extracts
the topic ‘conceptual indexing’ as the most important topic, which is exactly the title
of the paper. It is indeed true that the text is about conceptual indexing, conceptual
taxonomy, and retrieval system as suggested by the first 3 most important topics.

The iIndex finds 2413 topics in [Li97], a PhD thesis. It correctly extracts the
phrase ‘topic identification’ as the second most important topic, the topic mentioned
in the title. It is indeed true that the text is about topic signatures, topic identification,
precision and recall as suggested by the first 3 most important topics.

5.1 Speed of Indexing

Overall, the iIndex is very effective and very efficient in finding the most important
topics in text documents. It takes 34 seconds to index a 100-page (46145-word) text
[Wo97]. It takes only 3 seconds to find 482 important topics among 23166 possible
phrases in the [Wi98] training manual and less than 1 second to find 43 important
topics among 5017 possible phrases in [Ka96].

5.2 Comparisons to the Word Count Model

The word count model ranks the topics based on the word frequency average listed in
column WF of Table 6. The word count model ranks the topic ‘blood pressure cuff’
extremely high (2nd), a topic that is mentioned just 2 times in [Wi98]. It ranks this
topic higher than the topic ‘blood pressure measurement’, a topic that is mentioned 46
times. It is unlikely that topic ‘blood pressure cuff’ is more important than topic
‘blood pressure measurement’ in the document. On the other hand, the iIndex cor-
rectly infers that topic ‘blood pressure measurement’ is much more important (3rd)
than topic ‘blood pressure cuff’ (262nd) in the document as shown in Table 5. The
iIndex thus determines the importance of topics in this document more accurately
than the word count model does.

Table 6. List of important topics in blood pressure measurement manual by word count average
order

N TF WF Topics
1 250 306 blood pressure
2 2 242 blood pressure cuff
3 8 229 blood pressure to clients
4 56 227 high blood pressure
5 17 221 elevated blood pressure

5.3 Comparisons to the TFIDF / Term Weighting Model

The best term weighting model is tfidf according to Salton and Buckley [SB88] who
evaluated 287 different combinations of term-weighting models. However, tfidf fails
to find the most important topic ‘voting power’ from a Wall Street Journal text, ac-
cording to [Li97, page 73] while the iIndex correctly finds it as shown in Table 7.

Indexing Text Documents Based on Topic Identification 123

The iIndex finds more specific and meaningful topics such as voting power, million
shares, and eastern labor costs, while tfidf finds less specific topics such as Lorenzo,
holder, voting, proposal, etc. The iIndex is thus better at identifying important and
specific topics than tfidf.

Table 7. List of important topics in Wall Street Journal text identified by tfidf and iIndex

tfidf iIndex
Rank Term Weight Phrase Frequency

1 Lorenzo 19.90 voting power 2
2 holder 9.66 million shares 2
3 voting 9.05 eastern labor costs 2
4 proposal 8.03
5 50.7% 7.61

…
16 power 5.01
…

6 Conclusions

This paper presents iIndex, an effective and efficient approach to indexing text
documents based on topic identification. A topic is any meaningful set of words that
is repeated at least twice in the texts. The determination of topics is based on the
repetition of the words that appear together within texts. To measure topic frequen-
cies in texts more accurately, iIndex detects topics that are similar or synonymous. It
is also highly configurable.

iIndex allows users to configure the length of phrases, the maximum gap between
words in a phrase, the maximum sentence length, the sets of words to be considered
as synonyms, the stems of irregular words, the set of stop words, the set of topic sepa-
rators, and the minimum phrase frequency for topics. iIndex also provides useful
defaults for these values; for example by choosing a sentence maximum of 50 words,
a phrase length of 10, and a word proximity of 1, it can produce a good index of a
100-page (about 46145-word) text in 34 seconds.

References

[ABC+00] A. R. Aronson, O. Bodenreider, H. F. Chang, S. M. Humphrey, J. G. Mork, S. J.
Nelson, et al. The NLM indexing initiative. Proc AMIA Symp 2000(20 Suppl):17-21.

[Fa87] J. L. Fagan. Automatic Phrase Indexing for Document Retrieval: An Examination of
Syntactic and Non-Syntactic Methods. Proceedings of the Tenth ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 91-108, June 1987.

[Ha92] D. Harman. Ranking Algorithms. In William B. Frakes and Richardo Baeza-Yates,
editors, Information Retrieval Data Structures & Algorithms, pages 363-392, Prentice Hall,
New Jersey, 1992.

[JCD+99] D. B. Johnson, W. W. Chu, J. D. Dionisio, R. K. Taira, H. Kangarlo. Creating and
Indexing Teaching Files from Text Patient Reports. Proc AMIA Symp 1999:814-8.

124 Manonton Butarbutar and Susan McRoy

[Ka96] R. M. Kaplan. Finite State Technology. In Ronald A. Cole, Editor in Chief, Survey of
the State of the Art in Human Language Technology, Chapter 11.6, Center for Spoken Lan-
guage Understanding, Oregon Graduate Institute, USA, 1996.

[KS97] F. Kelledy, A. F. Smeaton. Automatic Phrase Recognition and Extraction from Text.
Proceedings of the 19th Annual BCS-IRSG Colloqium on IR Research, Aberden, Scottland,
April 1997.

[Li97] C. Y. Lin. Robust Automated Topic Identification. PhD Thesis, University of Southern
California, 1997.

[MBSC97] M. Mitra, C. Buckley, A. Singhal, C. Cardie. An Analysis of Statistical and Syntac-
tic Phrases. Proceedings of RIAO97, Computer-Assisted Information Searching on the
Internet, pages 200-214, Montreal, Canada, June 1997.

[Mi96] G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39-41, 1996.

[SB88] G. Salton, C. Buckley. Term-weighting approaches in automatic text retrieval. Infor-
mation Processing and Management, pages 513-523, 1988.

[Sa89] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
[SHMM98] C. Silverstein, M. Henzinger, H. Marais, M. Moricz. Analysis of a very large

AltaVista query log. Tech. rep. 1998-014, Digital Systems Research Center, 1998.
[WEK01] N. Wacholder, D. K. Evans, J. L Klavans. Automatic Identification and Organization

of Index Terms for Interactive Browsing. Joint Conference on Digital Libraries 2001:126-
34.

[Wi98] Blood Pressure Affiliate Faculty of the American Heart Association of Wisconsin.
Blood Pressure Measurement Education Program Manual. American Heart Association of
Wisconsin, Milwaukee,1998

[Wo97] A. W. Woods. Conceptual Indexing: A Better Way to Organize Knowledge. Technical
Report SMLI TR 97-61, Sun Microsystems Laboratories, Mountain View, CA, 1997.

Cross-Comparison
for Two-Dimensional Text Categorization

Extended Abstract

Giorgio Maria Di Nunzio

Department of Information Engineering, University of Padua
dinunzio@dei.unipd.it

http://www.dei.unipd.it/~dinunzio/

The organization of large text collections is the main goal of automated text
categorization. In particular, the final aim is to classify documents into a certain
number of pre-defined categories in an efficient way and with as much accuracy
as possible. On-line and run-time services, such as personalization services and
information filtering services, have increased the importance of effective and
efficient document categorization techniques. In the last years, a wide range of
supervised learning algorithms have been applied to this problem [1]. Recently,
a new approach that exploits a two-dimensional summarization of the data for
text classification was presented [2]. This method does not go through a selection
of words phase; instead, it uses the whole dictionary to present data in intuitive
way on two-dimensional graphs. Although successful in terms of classification
effectiveness and efficiency (as recently showed in [3]), this method presents
some unsolved key issues: the design of the training algorithm seems to be ad
hoc for the Reuters-21578 1 collection; the evaluation has only been done only on
the 10 most frequent classes of the Reuters-21578 dataset; the evaluation lacks
measure of significance in most parts; the method adopted lacks a mathematical
justification. We focus on the first three aspects, leaving the fourth as the future
work.

The definitions and the experimental setup of [3] were adopted in this work.
The baseline was the support vector machines (SVM) learning method using the
SVMLight implementation2. The Focused Angular Region (FAR) algorithm [3]
was compared with SVM. For the experimental evaluation, we added two more
datasets to the above mentioned Reuters-21578 (see the details in [3]): first,
the 20Newsgroups3 which contains about 20,000 articles evenly divided among
20 UseNet discussion group. We randomly divided the collection in two subset:
the 70% was used to train the classifier and the remainder to test the perfor-
mance. Second, the new RCV1 4 Reuters corpus. We focused here on the 21
non-empty sub-categories of the main category named GCAT. We trained on
the first month (Aug 20 1996, Sept 19 1996) with 23,114 documents, and tested
on the last month (Jul 20 1997, Aug 19 1997) with 19,676 documents. Standard

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/
2 http://svmlight.joachims.org/
3 http://www.ai.mit.edu/˜jrennie/20Newsgroups/
4 http://about.reuters.com/researchandstandards/corpus/

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 125–126, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

126 Giorgio Maria Di Nunzio

Table 1. Upper half: F1 macro- and micro-averaged comparison between SVM and
FAR algorithm together with training times. Lower half: sign test (ST) and signed rank
test (SRT) results. “>” means 0.01 < P-value ≤ 0.05. “∼” means P-value > 0.05. The
last row reports the P-value

Reuters-21578 20Newsgroups RCV1

SVM - FAR SVM - FAR SVM - FAR

F1-macro .866 - .801 .685 - .623 .754 - .701
F1-micro .923 - .868 .687 - .606 .577 - .552
Training time (seconds) 16.09 - 4.29 813.01 - 14.88 439.76 - 24.57

ST - SRT ST - SRT ST - SRT
m0 = .02 ∼ - ∼ > - > ∼ - ∼
m0 = .03 ∼ - ∼ ∼ - ∼ ∼ - ∼
m0 = .04 (P-value) (.377) - (.492) (.252) - (.277) (.668) - (.892)

IR evaluation measures have been computed. Recall ρi and Precision πi were
calculated for each category ci, together with micro- and macro-averaged esti-
mates of the collections. The F1 measure was calculated for each category as well
as the overall F1 macro- and micro-averaged measures (see definitions in [1]). A
controlled study using two statistical significance tests was made to compare the
two classification methods: the sign test (ST) and the signed rank test (SRT)
(see [4]). The paired F1 measures for individual categories and the magnitude of
the differences between paired observations as well as their signs were used. For
the ST, the null hypotheses was H0 : m ≤ m0, where m is the simple average of
the differences between paired F1, while for SRT the null hypothesis was H0 :
the distribution of the differences is symmetric with respect to m0.

The final results are reported in Tab. 1. FAR algorithm demonstrates to be
effective and efficient on different collections. The training time is one order
of magnitude less than SVM (there are also some cross-validation aspects in
favor of FAR given in [3]), and the difference in performance with respect to
the baseline appears to be constant. Significance tests clearly show that FAR
algorithm performs no worse than four point percentage on average with respect
to SVM. It is worth noting that the P-value of the last row of Tab. 1 indicates
a strong evidence for not rejecting H0 when m0 = .04.

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing
Surveys 34 (2002) 1–47

2. Di Nunzio, G.M.: A bidimensional view of documents for text categorisation. In:
Proceedings of the 26th European Conference on Information Retrieval (ECIR–04),
Sunderland, UK (2004) 112–126

3. Di Nunzio, G.M., Micarelli, A.: Pushing “underfitting” to the limit: Learning in
bidimensional text categorization. In: Proceedings of the 16th European Conference
on Artificial Intelligence (ECAI–04), Valencia, Spain (2004) Forthcoming.

4. Ross, S.: Introduction to Probability and Statistics for Engineers and Scientists.
Academic Press (2000)

DDOC: Overlapping Clustering of Words
for Document Classification

Guillaume Cleuziou, Lionel Martin, Viviane Clavier, and Christel Vrain

LIFO, Laboratoire d’Informatique Fondamentale d’Orléans
Rue Léonard de Vinci B.P. 6759, 45067 Orléans cedex2, France

{cleuziou,martin,clavier,cv}@lifo.univ-orleans.fr

Abstract. In this paper we study the interest of integration of an over-
lapping clustering approach rather than traditional hard-clustering ones,
in the context of dimensionality reduction of the description space for
document classification.
The Distributional Divisive Overlapping Clustering (DDOC) method is
briefly presented and compared to Agglomerative Distributional Cluster-
ing (ADC) [2] and Information-Theoretical Divisive Clustering (ITDC)
[3] on the two corpus Reuters-21578 and 20Newsgroup.

1 Introduction

Document classification is usually based on word distributions into a collec-
tion of documents. However, the size of the vocabulary leads to a very large
description space which can be reduced from different ways: word selection,
re-parameterisation or word clustering. The last method aims at indexing the
documents with clusters of words which present similar distributions under the
class labels p(c|w). The two main algorithms are: the Agglomerative Distribu-
tional Clustering (ADC) [2] and the Information-Theoretical Divisive Clustering
(ITDC) [3].

Rather than build disjoint clusters, we propose here to produce overlapping
clusters of words. We claim that “soft-clusters” match better with the natural
non-exclusive membership of words to semantic concepts.

2 The DDOC Method

The Distributional Divisive Overlapping Clustering (DDOC) method is inspired
from the clustering algorithm PoBOC [1]. This algorithm has three main ad-
vantages: first it produces overlapping clusters, then the number of clusters is
not given as a parameter and finaly, it only requires a similarity matrix over the
dataset. Nevertheless PoBOC is not suitable for very large databases (VLDB)
then a traditional sampling is applied. An overview of the DDOC method is
proposed in figure 1.

First experiments aim at observing the power of overlapping word clusters
indexing combined with a bayesian classifier. Figure 2 presents the results ob-
tained on the Reuters corpus. Experiments on the Newsgroup dataset lead to
almost identical results.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 127–128, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

128 Guillaume Cleuziou et al.

Input: The vocabulary V , a similarity matrix S, two parameters M and t,
Output: A set of overlapping word clusters W = {W1, . . . , Wk},

1. Select the M words with higher mutual information with the class
variable,
2. Apply PoBOC over this set of M words, resulting in k overlapping clusters,
3. Assign the other words to these k clusters with a multi-assignment
heuristic (cf. PoBOC),
4. Iterate a reallocation stage from each word to one or several clusters until
no change is observed or t iterations are achieved.

Fig. 1. The DDOC algorithm.

 70

 72

 74

 76

 78

 80

 82

 84

 0 5 10 15 20 25 30 35 40

%
 A

cc
ur

ac
y

% Overlapping

k=5
k=6
k=7
k=9

k=12
k=14
k=18
k=36
k=58
k=76

 50

 55

 60

 65

 70

 75

 80

 85

 90

 10 100

%
 A

cc
ur

ac
y

Number of clusters

DDOC (f=0.2)
ADC
ITDC

Fig. 2. (left) Classification Accuracy w.r.t importance of overlaps with DDOC. (right)
Classification Accuracy: comparison between ADC, ITDC and DDOC.

3 Conclusion

Empirical evaluations of the DDOC method tend to conclude that the overlaps
between word clusters can help at indexing better the documents, inducing a
slightly better classifier than ADC or ITDC algorithms. Further works will con-
cern a more formal study in the context of information theory and the use of
Support Vector Machine (SVM) classifiers in our framework.

References

1. Cleuziou, G., Martin, L., Clavier, L. and Vrain, C., PoBOC: an Overlapping Clus-
tering Algorithm, Application to Rule-Based Classification and Textual Data. In
Proceedings of the 16th European Conference on Artificial Intelligence ECAI, Va-
lencia, Spain, Aug. 22-27, 2004, (to appear).

2. Baker, L.D. and McCallum, A.K., Distributional clustering of words for text classi-
fication. In Proceedings of the 21st ACM International Conference on Research and
Development in Information Retrieval, Melbourne, AU, 1998, p. 96-103.

3. Dhillon, I.S., Mallela, S. and Kumar, R., A divisive information theoretic feature
clustering algorithm for text classification. Journal of Machine Learning Ressources,
2003, vol. 3, p. 1265-1287.

Evaluation of Web Page Representations
by Content Through Clustering�

Arantza Casillas1, Vı́ctor Fresno2,
M. Teresa González de Lena2, and Raquel Mart́ınez2

1 Dpt. Electricidad y Electrónica. UPV-EHU
arantza@we.lc.ehu.es

2 Dpt. Informática, Estad́ıstica y Telemática, URJC
{v.fresno,m.t.gonzalez,r.martinez}@escet.urjc.es

Abstract. In order to obtain accurate information from Internet web
pages, a suitable representation of this type of document is required.
In this paper, we present the results of evaluating 7 types of web page
representations by means of a clustering process.

1 Web Document Representation

This work is focused on web page representation by text content. We evaluate 5
representations based solely on the plain text of the web page, and 2 more which
in addition to plain text use HTML tags for emphasis and the “title” tag. We
represent web documents using the vector space model. First, we create 5 rep-
resentations of web documents which use only the text plain of the HTML doc-
uments. These functions are: Binary (B), Term Frequency (TF), Binary Inverse
Document Frequency (B-IDF), TF-IDF, and weighted IDF (WIDF). In addition
we use 2 more which combine several criteria: word frequency in the text, the
words appearance in the title, positions throughout the text, and whether or
not the word appears in emphasized tags. These representations are the Analitic
Combination of Criteria (ACC) and the Fuzzy Combination of Criteria (FCC).
The first one [Fresno & Ribeiro 04] uses a linear combination of criteria, whereas
the second one [Ribeiro et al. 03] combines them by using a fuzzy system.

2 Experiments and Conclusions

We use 3 subsets of the BankSearch Dataset [Sinka & Corne] as the web page
collections to evaluate the representations: (1) ABC&GH is made up of 5 cat-
egories belonging to 2 more general themes; (2) G&H groups 2 categories that
belong to a more general theme; and (3) A&D comprises 2 separated categories.
Thus, the difficulty of clustering the collections is not the same. We use 2 fea-
ture reduction methods: (1) considering only the terms that occur more than a
minimum times (“Mn”, 5 times); (2) removing all features that appear in more
than x documents (“Mx”, 1000 times). For ACC and FCC we use the proper

� Work supported by the Madrid Research Agency, project 07T/0030/2003 1.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 129–130, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

130 Arantza Casillas et al.

Table 1. Clustering results with the different collections and representations

ABC&GH G&H A&D
Represent. N. F-me. Entr. T. N. F-me. Entr. T. N. F-me. Entr. T.

Feat. s. Feat. s. Feat. s.
ACC (10) 5,188 0.805 0.175 26 3,802 0.891 0.149 7 2,337 0.988 0.026 4
ACC (7) 4,013 0.803 0.176 18 2,951 0.869 0.168 5 1,800 0.988 0.026 3
ACC (5) 3,202 0.763 0.184 16 2,336 0.888 0.152 4 1,409 0.989 0.025 3
ACC (4) 2,768 0.818 0.170 13 1,999 0.898 0.143 4 1,228 0.989 0.025 2

FCC (10) 5,620 0.959 0.071 34 3,933 0.879 0.153 8 2,580 0.974 0.048 4
FCC (7) 4,114 0.952 0.080 19 2,813 0.851 0.167 5 1,886 0.972 0.051 3
FCC (5) 3,076 0.951 0.082 15 2,047 0.831 0.176 4 1,422 0.978 0.044 2
FCC (4) 2,544 0.955 0.077 11 1,654 0.823 0.194 3 1,188 0.972 0.051 2

B(Mn-Mx) 12,652 0.960 0.073 85 11,175 0.667 0.272 24 4,684 0.985 0.089 9
B(Mn) 13,250 0.963 0.066 61 11,499 0.774 0.228 31 4,855 0.975 0.045 8

B-IDF(Mn-Mx) 12,652 0.976 0.047 80 11,175 0.740 0.247 22 4,684 0.982 0.039 9
B-IDF(Mn) 13,250 0.979 0.043 65 11,499 0.814 0.202 30 4,855 0.974 0.048 9
TF(Mn-Mx) 12,652 0.938 0.096 89 11,175 0.775 0.230 23 4,684 0.975 0.046 8

TF(Mn) 13,250 0.937 0.095 62 11,499 0.856 0.178 30 4,855 0.953 0.073 8
TF-IDF(Mn-Mx) 12,652 0.466 0.255 91 11,175 0.858 0.176 21 4,684 0.982 0.034 9

TF-IDF(Mn) 13,250 0.966 0.062 62 11,499 0.880 0.159 28 4,855 0.975 0.037 11
WIDF(Mn-Mx) 12,652 0.907 0.127 88 11,175 0.771 0.230 22 4,684 0.905 0.136 9

WIDF(Mn) 13,250 0.924 0.111 69 11,499 0.776 0.228 29 4,855 0.916 0.114 9

weighting function of each one as the reduction function, by selecting the n most
relevant features on each web page (i. e. ACC(4) means that only the 4 most
relevant features of each page are selected). Notice that only B, TF, ACC and
FCC are independent of the collection information. A good representation is one
which leads to a good clustering solution. Since we work with a known, small
number of classes (2 in these collections) we use a partition clustering algorithm
of the CLUTO library [Karypis]. We carry out an external evaluation by means
of F-measure and entropy measures.

The results can be seen in Table 1. It shows the number of features, the
values of the external evaluation and the time taken in the clustering process.
The experiments show that no single representation is the best in all cases. ACC
is involved in the best results of 2 collections and the results of FCC are similar
or, in some cases, better than with the others. These results suggest that using
light information from the HTML mark-up combined with textual information
leads to good results in clustering web pages. The ACC representation optimizes
the web page’s representation using less terms, and does not need collection
information.

References

[Fresno & Ribeiro 04] Fresno, V., Ribeiro, A.: “An Analytical Approach to Concept
Extraction in HTML Environments”. JIIS. Kluwer A. Pub., (2004) 215-235.

[Karypis] Karypis G. “CLUTO: A Clustering Toolkit”. Technical Report: 02-017. Uni-
versity of Minnesota, Department of Computer Science, Minneapolis, MN 55455.

[Ribeiro et al. 03] Ribeiro, A., Fresno, V., Garćıa-Alegre, M., and Guinea, D.: “A
Fuzzy System for the Web page Representation”. Intelligent Exploration of the Web,
Springer-Verlag, (2003) 19-38.

[Sinka & Corne] Sinka, M. P., Corne, D. W. BankSearch Dataset.
http://www.pedal.rdg.ac.uk/banksearchdataset/

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 131–133, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Evaluating Relevance Feedback and Display Strategies
for Searching on Small Displays

Vishwa Vinay1, Ingemar J. Cox1, Natasa Milic-Frayling2, and Ken Wood2

1 Department of Computer Science, University College London, UK
v.vinay@cs.ucl.ac.uk, ingemar@ieee.org

2 Microsoft Research Ltd, 7 J J Thomson Avenue, Cambridge, UK
{natasamf,krw}@microsoft.com

Extended Abstract
Searching information resources using mobile devices is affected by displays on
which only a small fraction of the set of ranked documents can be displayed. In this
study we explore the effectiveness of relevance feedback methods in assisting the
user to access a predefined target document through searching on a small display
device. We propose an innovative approach to study this problem. For small display
size and, thus, limited decision choices for relevance feedback, we generate and study
the complete space of user interactions and system responses. This is done by build-
ing a tree - the documents displayed at any level depend on the choice of relevant
document made at the earlier level. Construction of the tree of all possible user
interactions permits an evaluation of relevance feedback algorithms with reduced
reliance on user studies. From the point of view of real applications, the first few
iterations are most important – we therefore limit ourselves to a maximum depth of
six in the tree.

Fig. 1. Decision tree for iterative relevance feedback, showing nodes in which the target docu-
ment is reached, the rank of a document within each display, and the calculation of RF-rank for
the target. This branch is expanded only till depth 5 because the target has been found

We use the Rocchio relevance feedback scheme in conjunction with the tf-idf
scheme where documents and queries are represented as vectors of term weights
normalized for length, and similarity is measured by the cosine distance between
these vectors. We only consider relevant documents, with the Rocchio feedback
weights all being 1. The search task is to find a randomly chosen target in the data-
base using an initial query of four randomly chosen words from the target. The

132 Vishwa Vinay et al.

evaluation metric is the total number of documents seen before the target is found.
The baseline is the rank of the document after the initial query (RScroll), i.e. before any

relevance feedback is applied. The minimum feedback rank (min RRF) for a given

target document corresponds to the best case scenario where the user always provides
the system with the optimal choice of document for relevance feedback, thus provid-
ing an upper bound on the effectiveness of relevance feedback. The number of target
document occurrences in a tree provides a measure of the likelihood of a non-ideal
user locating the target document. At each search iteration, we display K=4 docu-
ments to the user. The most obvious strategy is to display the K documents with the
highest rank which is likely to result in a set of documents all very similar to one
another. An alternative approach is to display a selection of documents such that a
user’s response maximizes the immediate information gain to the system and helps to
minimize the number of search iterations. This is approximated by sampling K docu-
ments from the underlying distribution of similarity. In the experiments we use the
Reuters-21578 collection of textual documents. Using the 19,043 documents that
have non-empty “Title” and “Body” fields, we remove the stop words and create a
vector representation of documents with tf-idf weights. Table 1 contains the statistics
of successful searches, ie; trees which contain the target. The RF rank of an ideal user
is the minimum path length from the root of the tree to a node with the target,
whereas the mean length of all paths leading to the target represents the average per-
formance of successful users. For the Top-K scheme, 52 of the 100 trees contained
the target, whereas the corresponding number was 97 for the sampled scheme. How-
ever, 4.49% of paths in successful searches led to the target for Sampled displays as
opposed to 46.67% for the Top-K.

Table 1. Performance of Rocchio RF Algorithm based on the Initial Query

Number of Targets
Found

Avg. No. of Docu-
ments seen without

RF

Avg. No. of Documents
seen by the ‘ideal user’

using RF

No. of Docs. seen with RF
averaged over all
successful users

Scroll Rank
Range

Number
of

Targets Top-K Sampled Top-K Sampled Top-K Sampled Top-K Sampled

1 – 20 45 45(100%) 45(100%) 4.37778 4.37778 4.31111 5.33333 16.5418 19.1322

21 – 40 14 6(42.8%) 14(100%) 25.5 29.7857 20.6667 13.0714 21.6236 21.919

41 – 60 5 0(0%) 5(100%) - 54.2 - 16.6 - 21.9912

61 – 80 4 0(0%) 4(100%) - 66.5 - 16.5 - 21.8056

81 – 100 6 0(0%) 6(100%) - 92.8333 - 15.3333 - 21.4944

>100 26 1(3.84%) 23(89%) 367 341.304 20 18.5652 20.7828 22.1351

The results indicate that if the user’s query is sufficiently accurate, then the initial

rank of the target document is likely to be high and scrolling or relevance feedback
with a greedy display performs almost equally well. However, if the user’s initial
query is poor, then scrolling is futile and relevance feedback with a display strategy
that maximizes information gain is preferable. Amongst the two display strategies,
the success of the greedy update relies on a good initial query, whereas the sampled

Evaluating Relevance Feedback and Display Strategies for Searching on Small Displays 133

update provides performance almost independent of the initial query but is very sensi-
tive to feedback. Future work includes the examination of other display strategies,
including hybrid strategies that attempt to optimally combine the exploratory proper-
ties of maximizing information gain with the exploitative properties of greedy dis-
plays, and also to verify our results with a user trial.

References

1. Cox, I. J., Miller, M.L., Minka, T.P., Papathomas, T.V., and Yianilos, P.N. The Bayesian
Image Retrieval System, PicHunter: Theory, Implementation and Psychophysical Experi-
ments. IEEE Transactions on Image Processing, 9(1):20-37, 2000.

2. Harman, D. Relevance feedback revisited. Proceedings of 15th annual international ACM
SIGIR conference on research and development in information retrieval, Copenhagen, 1.10,
1992.

3. Rocchio, J. Relevance feedback information retrieval. In Gerard Salton (ed.): The Smart
Retrieval System – Experiments in Automatic Document Processing, pp. 313–323. Prentice-
Hall, Englewood Cliffs, N.J., 1971.

4. Robertson, S.E., Sparck Jones, K. Relevance weighting of search terms. Journal of the
American Society for Information Science 27, 1976, pp. 129-146.

5. Sparck Jones, K., Walker, S., and Robertson, S.E. A probabilistic model of information
retrieval: development and comparative experiments. Information Processing and
Management 36 (2000) 779-808, 809-840.

Information Extraction by Embedding HMM
to the Set of Induced Linguistic Features

Hyun Chul Lee1 and Jian Chang Mao2

1 Department of Computer Science
University of Toronto

Toronto, Ontario, M5S 3G4, Canada
leehyun@cs.toronto.edu

2 Verity, Inc.
892 Ross Drive, Sunnyvalle, California 94089, USA

jmao@verity.com

Abstract. We propose and evaluate an approach for automatic informa-
tion extraction(IE) by representing the extracted grammatical patterns
as states of a Hidden Markov Model(HMM). Our experiments suggest
that with the incorporation of simple extraction rules, the reliability and
the performance of HMM based IE system are greatly enhanced.

1 Introduction

Recently, several research efforts have been devoted to the automatization of IE
from text. While most of works fall into the category of extraction pattern learn-
ing methods [1], HMMs have shown to be a powerful alternative. Nevertheless,
none of the previous HMM-based IE methods does fully explore the wide array
of linguistic information as the extraction pattern learning methods aim to do.
We propose a novel HMM-based IE method in which a document is represented
as a sequence of extracted grammatical patterns instead of a simple sequence of
tokens. We call our model as eHMM for the reference purpose.

2 Our Approach

First, we induce the linguistic features from the candidate instances by con-
structing rules out of them. We employ a covering algorithm which is motivated
by Crystal [2]. Based on a similarity measure which is similar in spirit to the
euclidean L1 norm and a simple induction rule, our algorithm greedily finds and
generalizes rules while eliminating those instances that are already covered from
the search space. The set of linguistic features are produced as the union of these
induced rules. Next, our HMM is trained using this set of linguistic features. The
topology of our model is based on that proposed by [3] which distinguishes back-
ground, prefix, target and suffix states. Since a single and unambiguous path is
possible under this particular topology, the transition probabilities are easily

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 134–135, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Information Extraction by Embedding HMM 135

computed by the standard maximum likelihood with ratios of counts. The emis-
sion probabilities, on the other hand, are estimated by weighting each element
of the set of linguistic features according to its similarity to the token being
estimated. Extraction is performed by 2 steps: (1) each word of the document
is mapped to the set of linguistic features, and then (2) the most likely state
sequence is discovered using the standard Viterbi algorithm. More details are
found at http://www.cs.toronto.edu/∼leehyun/extraction.pdf.

3 Experimental Results

Our approach was tested on the
CMU seminar announcement corpus
which has been investigated by vari-
ous researchers. This corpus consists
of 485 documents whose task consists
of uniquely identifying speaker name,
starting time, ending time and location
of each seminar.

Table 1.

System stime etime location speaker

F-me. F-me. F-me. F-me.

eHMM 95.9 95.4 88.6 70.3
(LP)2 99.0 95.4 75.0 77.5
HMM 99.1 59.5 83.9 71.1
Rapier 95.9 96.7 73.4 52.9

SNoW-IE 99.6 96.3 75.2 73.8

Similar to other experiments [3, 4] concerning this dataset, we report the
results on Table 1 which are based on 50/50 split of the corpus being averaged
over five runs. Our system performs comparably to the best system in each
category, while clearly outperforming all other systems in finding location whose
extraction is particularly boosted by our approach. Moreover, the eHMM does
not show the same drawback as that of the traditional HMM method [3] in which
sparsely trained states tend to emit those tokens that have never seen during
training.

4 Conclusion

We have proposed an approach to learning models for IE by combining the
previous HMM-based IE method with the extraction pattern learning method.
A natural extension of our work is to find a more complete way of merging HMM
and extraction pattern learning into one single model.

References

1. Muslea, I.: Extraction patterns for information extraction tasks: a survey. In: AAAI-
99 Workshop on Machine Learning for IE, Menlo Park, California, AAAI (1999) 1–6

2. Soderland, S., Fisher, D., Aseltine, J., Lehnert, W.: Crystal: inducing a conceptual
dictionary. In: the 14th IJCAI, Montreal, Canada, MK (1995) 1314–1319

3. Freitag, D., McCallum, A.: Information extraction using hmms and shrinkage. In:
AAAI-99 Workshop on ML for IE, Menlo Park, California, AAAI (1999) 31–36

4. Ciravegna, F.: Adaptive information extraction from text by rule induction and
generalization. In: the 17th IJCAI, Washington, D.C., Morgan Kaufmann (2001)

Finding Cross-Lingual Spelling Variants

Krister Lindén

Helsinki University, Department of General Linguistics
P.O.Box 9 (Siltavuorenpenger 20 A)

FIN-00014 University of Helsinki, Finland
Krister.Linden@helsinki.fi

Finding term translations as cross-lingual spelling variants on the fly is an important
problem for cross-lingual information retrieval (CLIR). CLIR is typically approached
by automatically translating a query into the target language. For an overview of cross-
lingual information retrieval, see [1]. When automatically translating the query, special-
ized terminology is often missing from the translation dictionary. The analysis of query
properties in [2] has shown that proper names and technical terms often are prime keys
in queries, and if not properly translated or transliterated, query performance may dete-
riorate significantly. As proper names often need no translation, a trivial solution is to
include the untranslated keys as such into the target language query. However, technical
terms in European languages often have common Greek or Latin roots, which allows for
a more advanced solution using approximate string matching to find the word or words
most similar to the source keys in the index of the target language text database [3].

In European languages the loan words are often borrowed with minor but language
specific modifications of the spelling. A comparison of methods applied to cross-lingual
spelling variants in CLIR for a number of European languages is provided in [4]. They
compare exact match, simple edit distance, longest common subsequence, digrams, tri-
grams and tetragrams as well as skipgrams, i.e. digrams with gaps. Skipgrams perform
best in their comparison with a relative improvement of 7.5 % on the average on the
simple edit distance baseline. They also show that among the baselines, the simple edit
distance baseline is in general the hardest baseline to beat. They use no explicit n-gram
transformation information. In [5], explicit n-gram transformations are based on di-
grams and trigrams. Trigrams are better than digrams, but no comparison is made to
the edit distance baseline. In both of the previous studies on European languages most
of the distance measures for finding the closest matching transformations is based on a
bag of n-grams ignoring the order of the n-grams.

Between languages with different writing systems foreign words are often borrowed
based on phonetic rather than orthographic transliterations. In [6], a generative model is
introduced which transliterates words from Japanese to English using weighted finite-
state transducers. The transducer model only uses context-free transliterations which
do not account for the fact that a sound may be spelled differently in different contexts.
This is likely to produce heavily overgenerating systems.

Assume that we have a word in a foreign language. We call this the source word S.
We want to know the possible meanings of the word in a language known to us without
having a translation dictionary. We take the word and compare it to all the words in a
word list L of the target language in order to determine which target word T is most
similar to the unknown word. In the beginning we only compare how many letters or
sounds are similar. As we learn the regularities involved, we observe that the likelihood

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 136–137, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Finding Cross-Lingual Spelling Variants 137

for insertion, deletion and replacement for each letter or sound is different in different
contexts. To find the most likely target word for any given source word, we need to
maximize the probability P (T |S), i.e. arg maxT∈L P (T |S) .

The first contribution of this work is to show that a distance measure which ex-
plicitly accounts for the order of the letter or sound n-grams, significantly outperforms
models based on unordered bags of n-grams. The second contribution is to efficiently
implement an instance of the the general edit distance with weighted finite-state trans-
ducers using context sensitive transliterations. The costs for the edit distance are learned
from a training sample of term pairs. The third contribution of this work is to demon-
strate that the model needs little or no adaptation for covering new language pairs and
that the model is robust, i.e. adding a new language does not adversely affect the per-
formance of the model for the already trained languages.

Against an index of a large English newspaper database we achieve 80-91 % preci-
sion at the point of 100 % recall for a set of medical terms in Danish, Dutch, French,
German, Italian, Portuguese and Spanish. On the average this is a relative improvement
of 26 % on the simple edit distance baseline. Using the medical terms as training data
we achieve 64-78 % precision at the point of 100 % recall for a set of terms from varied
domains in French, German, Italian, Spanish, Swedish and Finnish. On the average this
is a relative improvement of 23 % on the simple edit distance baseline. For Swedish
there is no training data and for Finnish, i.e. a language from a different language fam-
ily, we need only a small amount of training data for adapting the model. In addition,
the model is reasonably fast.

Acknowledgements

The research was done in cooperation with the Information Science Department of the
Tampere University. I am grateful to Heikki Keskustalo, Kalervo Järvelin, Ari Pirkola
as well as Mathias Creutz of the Helsinki University of Technology and Lauri Carlson
of the Helsinki University for helpful discussions.

References

An Efficient Index Data Structure with the
Capabilities of Suffix Trees and Suffix Arrays

for Alphabets of Non-negligible Size�

Dong Kyue Kim1, Jeong Eun Jeon1, and Heejin Park2

1 School of Electrical and Computer Engineering, Pusan National University
Busan 609-735, South Korea

2 College of Information and Communications, Hanyang University
Seoul 133-791, South Korea
hjpark@hanyang.ac.kr

Abstract. The suffix tree and the suffix array are fundamental full-
text index data structures and many algorithms have been developed on
them to solve problems occurring in string processing and information
retrieval. Some problems are solved more efficiently using the suffix tree
and others are solved more efficiently using the suffix array. We consider
the index data structure with the capabilities of both the suffix tree
and the suffix array without requiring much space. For the alphabets
whose size is negligible, Abouelhoda et al. developed the enhance suffix
array for this purpose. It consists of the suffix array and the child table.
The child table stores the parent-child relationship between the nodes in
the suffix tree so that every algorithm developed on the suffix tree can
be run with a small and systematic modification. Since the child table
consumes moderate space and is constructed very fast, the enhanced
suffix array is almost as time/space-efficient as the suffix array. However,
when the size of the alphabet is not negligible, the enhance suffix array
loses the capabilities of the suffix tree. The pattern search in the enhanced
suffix array takes O(m|Σ|) time where m is the length of the pattern
and Σ is the alphabet, while the pattern search in the suffix tree takes
O(m log |Σ|) time.
In this paper, we improve the enhanced suffix array to have the capa-
bilities of the suffix tree and the suffix array even when the size of the
alphabet is not negligible. We do this by presenting a new child table,
which improves the enhanced suffix array to support the pattern search
in O(m log |Σ|) time. Our index data structure is almost as time/space-
efficient as the enhanced suffix array. It consumes the same space as the
enhanced suffix array and its construction time is slightly slower (< 4%)
than that of the enhanced suffix array. In a different point of view, it
can be considered the first practical one facilitating the capabilities of
suffix trees when the size of the alphabet is not negligible because the
suffix tree supporting O(m log |Σ|)-time pattern search is not easy to
implement and thus it is rarely used in practice.

� This research was supported by the Program for the Training of Graduate Students
in Regional Innovation which was conducted by the Ministry of Commerce, Industry
and Energy of the Korean Government.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 138–149, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Efficient Index Data Structure 139

1 Introduction

The full-text index data structure for a text incorporates the indices for all
the suffixes of the text. It is used in numerous applications [7], which are exact
string matching, computing matching statistics, finding maximal repeats, finding
longest common substrings, and so on. Two fundamental full-text index data
structures are the suffix tree and the suffix array.

The suffix tree of text T due to McCreight [15] is a compacted trie of all
suffixes of T . It was designed as a simplified version of Weiner’s position tree [17].
If the size of the alphabet is negligible, the suffix tree for text T of length
n, consumes O(n) space and can be constructed in O(n) time [4, 5, 15, 16]. In
addition, a pattern P of length m can be found in O(m) time in the suffix tree.
If the size of the alphabet is not negligible, the size of the suffix tree and the
search time in the suffix tree is affected by the data structure for node branching.
There are three different types of such data structures which are the array, the
linked list, and the balanced search tree. If the data structure is an array, the
size of the suffix tree is O(n|Σ|) where Σ is the set of alphabets and searching
the pattern P takes O(m) time. If it is a linked list, the size and of the suffix tree
is O(n) and searching the pattern P takes O(m|Σ|) time. If the data structure
is a balanced search tree, the size of the suffix tree is O(n) and searching the
pattern P takes O(m log |Σ|) time. Thus, when the size of the alphabet is not
negligible, only the balanced search tree is an appropriate data structure for node
branching. However, using the balanced search tree as the data structure for node
branching makes the suffix tree hard to implement and it also contributes a quite
large hidden constant to the space complexity of the suffix tree. Thus, the suffix
tree supporting O(m log |Σ|)-time pattern search is rarely used in practice.

The suffix array due to Manber and Myers [14] and independently due to
Gonnet et al. [6] is basically a sorted list of all the suffixes of the string. The
suffix array is developed as a space-efficient alternative to the suffix tree. It
consumes only O(n) space even though the size of the alphabet is not negligible.
Since it is developed as a space-efficient full-text index data structure, it was not
so time-efficient as the suffix tree when it was introduced. It took O(n log n) time
for constructing the suffix array1 and O(m + log n) time for pattern search even
with the lcp (longest common prefix) information. However, researchers have
tried to make the suffix array as time-efficient as the suffix tree. Recently, almost
at the same time, three different algorithms have been developed to directly
construct the suffix array in O(n) time by Kim et al [12], Ko and Aluru [13], and
Kärkkäinen and Sanders [10]. In addition, practically fast algorithms for suffix
array construction have been developed by Larsson and Sadakane [8], and Kim,
Jo, and Park [11].

Although the suffix array is becoming more time-efficient, the suffix tree
still has merits because some problems can be solved in a simple and efficient

1 The suffix array could be constructed in O(n) time if we first constructed the suffix
tree and then the suffix array from the suffix tree. However, constructing the suffix
array in this way is not space-efficient.

140 Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

manner using the suffix tree. Thus, there has been an effort to develop a full-text
index data structure that has the capabilities of the suffix tree and the suffix
array without requiring much space. When the size of the alphabet is negligible,
Abouelhoda et al. [1, 2] developed the enhanced suffix array for this purpose. It
consists of the suffix array and the child table. The child table stores the parent-
child relationship between the nodes in the suffix tree whose data structure for
node branching is the linked list. On the enhanced suffix array, every algorithm
developed on the suffix tree can be run with a small and systematic modification.
Since the child table is an array of n elements and it is constructed very fast,
the enhanced suffix array is still space-efficient. However, when the size of the
alphabet is not negligible, the enhance suffix array loses the power of the suffix
tree. The pattern search in the enhanced suffix array takes O(m|Σ|) time, while
the pattern search in the suffix tree takes O(m log |Σ|) time. This is because the
child table stores the information about the suffix tree whose data structure for
node branching is the linked list.

In this paper, we present an efficient index data structure having the capa-
bilities of the suffix tree and the suffix array even when the size of the alphabet
is not negligible. We do this by presenting a new child table storing the parent-
child relationship between the nodes in the suffix tree whose data structure for
node branching is the complete binary tree. With this new child table, one can
search the pattern P in O(m log |Σ|) time. Our index data structure is almost
as time/space-efficient as the enhanced suffix array. It consumes the same space
as the enhanced suffix array and its construction time is slightly slower (< 3%)
than that of the enhanced suffix array. In addition, since the construction time
of the enhanced suffix array is also slightly slower than that of the suffix array,
our index data structure can be constructed almost as fast as the suffix arrays.
In a different point of view, it can be considered the first practical one facilitat-
ing the capabilities of suffix trees when the size of the alphabet is not negligible
because the suffix tree supporting O(m log |Σ|)-time pattern search is not easy
to implement and thus it is rarely used in practice.

We describe the main difficulties to make our index data structure almost as
time/space-efficient as the enhanced suffix array, and the techniques to overcome
the difficulties.

• Our child table is an incorporation of four conceptual arrays up, down,
lchild, and rchild, while the previous child table is that of three conceptual
arrays up, down, and nextlIndex: We developed a new incorporation tech-
nique that can store the four conceptual arrays into an array of n elements
which is the same space as the previous child table consumes.

• The structural information of the complete binary tree is not easily obtained
directly from the lcp table: We developed an lcp extension technique that
extends the lcp to reflect the structure of the complete binary tree. This lcp
extension technique requires the right-to-left scan of the bit representations
of n integers to find the rightmost 1 in the bit representations. It seems to
take O(n log n) time at first glance, however, it can be shown that it takes
O(n) time by resorting to amortized analysis.

An Efficient Index Data Structure 141

c
a

c
c
a

c

t
t t

c

#

a

c a#
a

c

c

c

t
t

a
tc
t

t

c
g c

t
a
t

g
c

a

6 2 4 3 5 9 8 7
6

2 3 5

g

7
5 4 7 8 9

11 15 17
1917

a

1311
14 10 12 16 20 18
14 10 12 11 13 16 15 20 18 19 17

c
a
g

c
t
t
c

a
t
t
c

c
a
g

g

c

c
c

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 9 6 2 7 3 11 8 5 16 4 15 2010 141317181912

g
c

c

a
g

a

c
c

c

a
g

a
c

c
t
t
c

a

a
t
t
c
c

15

corresponding
suffixes

cldtab

a given string ca c t t a c g a g a c c t t c ac #c

lcp

pos

5 2 5 1 0 1 2 4 1 4 1 0 3 0 1 13 2 00

up

down
nextIndex

20

4 15

8
18

14

5

16

1 12 9 6

19

17 2 13

10 7

3

11

[1..5]

[8..9]

[7..9]

[1..20]

c

c g

[1..2] [3..4]

[1..4] [10..11]

[12..13]

[14..15] [16..19]

[18..19]

a
c gac

a c t

cac gtta

a c

gac tt

ctt gac

#c

t

#

ca g

ca

ca

[6..13]

Fig. 1. The enhanced suffix array and the suffix tree of accttacgacgaccttcca#. The
suffix tree uses the linked list for node branching.

• During the pattern search, we have to distinguish the elements of child table
from up or down and the elements from lchild or rchild. However, the child
table does not indicate this. To solve this problem, we use the lcp array. If
lcp[i] = lcp[cldtab[i]], cldtab[i] is from lchild or rchild. Otherwise,
cldtab[i] is from up or down.

We introduce some notations and definitions in Section 2. In Section 3, we
introduce the enhanced suffix array. In Section 4, we describe our index data
structure and an algorithm to generate it. In Section 5, we measure the perfor-
mance of our index data structure by experiments and compare it with that of
the enhanced suffix array. We conclude in Section 6.

2 Preliminaries

Consider a string S of length n over an alphabet Σ. Let S[i] for 1 ≤ i ≤ n denote
the ith symbol of string S. We assume that S[n] is a special symbol # which

142 Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

is lexicographically larger than any other symbol in Σ. The suffix array of S
consists of the pos and lcp arrays. The array pos[1..n] is basically a sorted list
of all the suffixes of S. However, suffixes themselves are too heavy to be stored
and thus only the starting positions of the suffixes are stored in the pos array.
Figure 1 shows an example of the pos array of accttacgacgaccttcca#. We will
consider, in this paper, the starting position of a suffix as the suffix itself.

The array lcp[1..n] is an array that stores the lengths of the longest common
prefix of two adjacent suffixes in the pos array. We store in lcp[i], 2 ≤ i ≤ n,
the length of the longest common prefix of pos[i − 1] and pos[i]. We store 0
in lcp[1]. For example, in Fig. 1, lcp[3] = 2 because the length of the longest
common prefix of pos[2] and pos[3] is 2.

The lcp-interval of the suffix array of S, corresponding to the node in the
suffix tree of S, is defined as follows [1, 2].

Definition 1. Interval [i..j], 0 ≤ i ≤ j ≤ n, is an lcp-interval of lcp-value l
(l-interval), if

1. lcp[i] < l,
2. lcp[k] ≥ l for all i + 1 ≤ k ≤ j,
3. lcp[k] = l for some i + 1 ≤ k ≤ j if i �= j and l = n − i + 1 if i = j, and
4. lcp[j + 1] < l.

For example, in Fig. 1, interval [1..4] is a 2-interval because lcp[1] < 2, lcp[k] ≥ 2
for all 2 ≤ k ≤ 4, lcp[3] = 2, and lcp[5] < 2. The prefix of an lcp-interval [i..j]
is the longest common prefix of the suffixes in pos[i..j]. Fig. 1 shows the one-to-
one correspondence between the lcp-intervals in the suffix array and the nodes
in the suffix tree. The parent-child relationship between the lcp-intervals are the
same as that between the corresponding nodes in suffix trees. That is, an lcp-
interval [i..j] is a child interval of another lcp-interval [k..l] if the corresponding
node of [i..j] is a child of the corresponding node of [k..l]. An lcp-interval [i..j]
is the parent interval of an lcp-interval [k..l] if [k..l] is a child interval of [i..j].
For example, in Fig. 1, [1..4] is a child interval of [1..5] and [1..5] is the parent
interval of [1..4].

3 The Enhanced Suffix Array

The enhanced suffix array due to Abouelhoda et al. [1, 2] consists of the suffix
array and the child table. The child table cldtab is an incorporation of three
conceptual arrays up, down, and nextlIndex. They store the information about
the structure of the suffix tree whose data structure for node branching is the
linked list. This suffix tree is slightly differ from the traditional suffix tree in
that the linked list does not include the first child interval. A tree edge connects
an lcp-interval to its second child interval and a link in the list connects an ith,
i ≥ 2, child interval to its next sibling, i.e., the (i + 1)st child interval. The
information about the tree edges is stored by the arrays up and down and the
information about the links in the linked list is stored by the array nextlIndex.

An Efficient Index Data Structure 143

The meanings of formal definitions2 of arrays up, down, and nextlIndex are as
follows.

– The element up[i] stores the first index of the second child interval of the
longest lcp-interval ending at index i − 1.

– The element down[i] stores the first index of the second child interval of the
longest lcp-interval starting at index i.

– The element nextlIndex[i] stores the first index of the next sibling interval
of the longest lcp-interval starting at index i if and only if the interval is
neither the first child nor the last child of its parent.

In Fig. 1, up[14] stores 7 which is the first index of [7..9] that is the second child
interval of [6..13] which is the longest lcp-interval ending at index 13. Element
down[7] stores 8 which is the first index of [8..9] that is the second child interval of
[7..9] which is the longest lcp-interval starting at index 7. Element nextlIndex[7]
stores 10 which is the first index of [10..11] that is the next sibling interval of
[7..9] which is the longest lcp-interval starting at index 7.

We first show how to find the first child interval of an lcp-interval and then
other child intervals. To find the first child interval of a given lcp-interval [i..j], we
compute the first index α of the second child interval of [i..j]. (If α is computed,
one can find the first child interval [i..α − 1] easily.) The value α is stored in
up[j + 1] or down[i]. It is stored in up[j + 1] if [i..j] is not the last child interval
of its parent and in down[i], otherwise. If [i..j] is not the last child interval of its
parent, [i..j] is the longest interval ending at index j and thus up[j + 1] stores
α. Otherwise, [i..j] is shorter than its parent interval [k..j], k < i, and thus [i.j]
is not the longest interval ending at j. In this case, however, [i..j] is the longest
interval starting at i and thus down[i] stores α.

We show how to find the kth, k ≥ 2, child interval of [i..j]. We first define
nextlIndexr[α] as nextlIndex[nextlIndexr−1[α]] recursively. Then, the first
index of the kth child interval is represented by nextlIndexk−2[α] where α is
the first index of the second child interval. The last index of the kth child interval
is nextlIndexk−1[α] − 1 if it is not the last child and it is j, otherwise.

Abouelhoda et al. [1, 2] showed that only n elements among the 3n elements
of arrays up, down, and nextlIndex, are necessary and we get the following
lemma.

Lemma 1. Only n elements among the 3n elements of arrays up, down, and
nextlIndex are necessary and they can be stored in the child table of n ele-
ments [1, 2].

The procedures UP-DOWN and NEXT in Fig. 2 compute the arrays up and
down, and nextlIndex respectively. Each procedure runs in O(n) time. The
analysis of running time of these procedures, in addition to the proof of their
correctness, are given in [1].
2 up[i] = min{q ∈ [0..i − 1]|lcp[q] > lcp[i] and ∀k ∈ [q + 1..i − 1] : lcp[k] ≥ lcp[q]}.
down[i] = max{q ∈ [i +1..n]|lcp[q] > lcp[i] and ∀k ∈ [i + 1..q − 1] : lcp[k] > lcp[q]}.
nextlIndex[i] = min{q ∈ [i + 1..n]|lcp[q] = lcp[i] and ∀k ∈ [i + 1..q − 1] : lcp[k] >
lcp[i]}.

144 Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

Procedure UP-DOWN
1: lastIndex := −1;
2: push(0);
3: for i := 1 to n do
4: while lcp[i] < lcp[top] do
5: lastIndex := pop;
6: if lcp[i] ≤ lcp[top] and lcp[top] �= lcp[lastIndex] then
7: down[top] := lastIndex
8: if lastIndex �= −1 then
9: up[i] := lastIndex;
10: lastIndex := −1;
11: push(i)
end

Procedure NEXT
1: push(0);
2: for i := 1 to n do
3: while lcp[i] < lcp[top] do
4: pop;
5: if lcp[i] = lcp[top] then
6: lastIndex := pop;
7: nextlIndex := i
8: push(i)
end

Fig. 2. Procedures UP-DOWN and NEXT.

4 The New Child Table

Our index data structure consists of the suffix array and a new child table. The
new child table cldtab, stores the information about the suffix tree whose data
structure for node branching is the complete binary tree. Figure 3 shows a suffix
tree for accttacgacgaccttcca# whose data structure for node branching is the
complete binary tree. In this suffix tree, the child intervals except the first child
interval of an lcp-interval [i..j] form a complete binary tree. Let the root child of
[i..j] denote the root lcp-interval of the complete binary tree. In Fig. 3, each solid
line is the edge connecting an lcp-interval to its root child interval and dashed
lines are the edges connecting the sibling intervals such that they form complete
binary trees. Our child table is an incorporation of four conceptual arrays up,
down, lchild, and rchild. The arrays up and down stores the information about
the solid edges and the arrays lchild and rchild stores the information about
the dashed edges.

We describe the definitions of the arrays up, down, lchild, and rchild. The
element up[i] stores the first index of the root child of the longest interval ending
at index i − 1 and the element down[i] stores the first index of the root child of
the longest interval starting at i. The element lchild[i] (resp. rchild[i]) stores
the first index of the left (resp. right) child of the longest interval starting at i
in the complete binary tree, which is a sibling in the suffix tree.

We show that only n elements of the 4n elements of those arrays up, down,
lchild, and rchild are necessary and they can be stored in the child table of

An Efficient Index Data Structure 145

3 2 00 1

11

101 3010 41

12
c

0

42

0 1 1 0 0 0 0 1 0 2 0 0 1 0

10

1
8 4 1 5 8 4 5 2 0 5 4 8 12 20 20 14 16 12 12

1525

c #c acttccagagcattc

0

a
12 19 18 17 13 1410 20154165811372691

20191817161514

2

13

0

987654321

0

a given string

lcp

pos

hgt

14 12 20

5
2
4

3 5
8 9

8
11

11
13 15

15
19
17

18
18

10
1 7

10

6

5 2 4 3 1 14 8 9 7 12 13 15 20 17 19 18 1610 611
root

down
up

cldtab

depth

lchild
rchild

[1..20]

[16..19]

[6..13]

[14..15][1..5]

c

a g

[5]

[1..4]

[3..4]

[1..2]

[10..11]

[12..13]

[15]

[14]

[20]
#

t

[2]

[1]

[11]

[10]

[13]

[12]

[8..9]

[7]

[18..19]

[17]

[16]

[19]

[18]

[7..9]

[6]

[4]

[3]

[9]

[8]

Fig. 3. Our index data structure and the suffix tree of accttacgacgaccttcca#. The suffix
tree uses the complete binary tree for node branching.

n elements. We have only to show that the number of solid and dashed edges
are n. We first count the number of outgoing edges from all the children of an
lcp-interval in the following lemma.

Lemma 2. The number of outgoing edges from the children of a non-singleton
lcp-interval x are 2qx − q′x − 2 where qx is the number of children of x and q′x is
the number of singleton children of x.

Proof. The number of outgoing edges from the children of x are equal to C +R,
where C is the number of dashed edges in the complete binary tree for the
children of x and R is the number of solid edges to the root children of the
children of x. Since C is qx − 2 (because there are qx − 1 children of x in the
complete binary tree and a complete binary tree with qx − 1 nodes has qx − 2
edges) and R is qx−q′x (because singleton children have no root children), C +R
becomes 2qx − q′x − 2.

From Lemma 2, we can derive the following theorem.

146 Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

Theorem 1. Only n elements among 4n elements of arrays up, down, lchild,
and rchild are necessary and they can be stored in the child table of n elements.

Proof. The main part of this proof is to show that the total number of outgoing
edges from every non-singleton interval is n. The details are omitted.

We show how to compute the child table. The main idea is that arrays lchild
and rchild are not different from the arrays up and down if we do not differen-
tiate the edges of the suffix trees and those of the complete binary trees. Not to
differentiate those edges, we use the lcp extension technique. We use a temporary
array depth to store the extended part of the lcp. For easy explanation, we use
a conceptual array hgt where hgt[i] is a concatenation of lcp[i] and depth[i].
The computation of the arrays consists of the following three steps.

1. Compute the number of children for every lcp-interval: We can do this in
O(n) time by running the procedure NEXT in Fig. 2.

2. For each child interval except the first child interval of lcp-interval [i..j], com-
pute the depth of it in the complete binary tree: Let [ck..ck+1 − 1], k ≥ 2, de-
note the kth child interval. We compute the depth of the interval [ck..ck+1−1]
and store it in depth[ck]. We only describe how to compute the depth when
all leaves are at the same level. (Computation of the depth is slightly differ-
ent when all leaves are not at the same level.) We compute the depth D of
the complete binary tree, and the level Lk of the kth child in the complete
binary tree. Once D and Lk is computed, the depth the kth child is easily
computed because it is D − Lk. Since computing D is straightforward, we
only describe how to compute Lk. The Lk corresponds to the number of
tailing 0’s in the bit representation of k. For example, every odd numbered
child has no tailing 0’s and thus the level of it is 0. We consider the running
time of computing the depths of all q children in the complete binary tree. To
determine the depths of all q nodes, we have to scan the bit representation
from the right until we reach the rightmost 1 for all integers 1, 2, ..., q. One
can show this takes O(q) time overall by resorting to the amortized analysis
which is very similar to the one used to count the bit-flip operations of a
binary counter [3]. Overall, this step takes O(n) time.

3. Compute the arrays up′ and down′ with the hgt and store them in the child
table: We do this in O(n) time by running the procedure UP-DOWN in Fig. 2,
and storing up′[i] in cldtab[i− 1] and down′[i] in cldtab[i]. The elements of
arrays up′ and down′ correspond to the elements of arrays up, down, lchild,
and rchild computed from the lcp. If the longest interval starting at index
i is an internal node, up′[i] = lchild[i] and down′[i] = rchild[i]. If it is a
leaf, down′[i] = down[i] or up′[j + 1] = up[j + 1].

Theorem 2. The new child table cldtab can be constructed in O(n) time.

We consider the pattern search in our index data structure. The pattern
search starts at the root child [i..j] of [1..n]. If a prefix of the pattern matches

An Efficient Index Data Structure 147

Pattern search in ESA Pattern search in ours

length |Σ| = 2 |Σ| = 20 |Σ| = 64 |Σ| = 128 |Σ| = 2 |Σ| = 20 |Σ| = 64 |Σ| = 128

1M 5.05 8.95 16.89 28.80 6.60 6.31 6.59 6.41

10M 6.15 14.11 24.52 38.61 8.10 8.98 8.77 7.98

30M 6.48 17.13 26.47 46.78 8.77 10.63 9.50 10.59

50M 6.77 18.02 35.81 54.34 8.74 11.56 13.19 12.22

Fig. 4. The experimental results for the pattern search in the enhanced suffix array
and ours. We measured the running time for performing the pattern search for 106

number of patterns of lengths between 300 and 400.

the prefix of [i..j], we move to the the root child of [i..j] using up[j + 1] or
down[i]. Otherwise (if a mismatch occurs), we move to one of the sibling using
lchild[i] or rchild[i]. In this way, we proceeds the pattern search until we
find the pattern or we are certain that the pattern does not exist. However,
the child table does not indicate whether an element of the child table is from
up or down, or from lchild or rchild. To solve this problem, we use the lcp
array. If lcp[i] = lcp[cldtab[i]], cldtab[i] is from lchild or rchild. Otherwise,
cldtab[i] is from up or down. Thus, with exploiting both arrays cldtab and lcp,
we can search a pattern in O(m log |Σ|) time.

Theorem 3. The new child table cldtab and lcp array support the O(m log |Σ|)
-time pattern search in the worst case.

5 Experimental Results

We measure the search time in our index data structure and that in the enhanced
suffix array. In addition, we also measure the construction time of the suffix array,
the enhanced suffix array, and our index data structure. We generated different
kinds of random strings which are differ in lengths (1M, 10M, 30M, and 50M)
and in the sizes of alphabets (2, 4, 20, 64, and 128) from which they are drawn.
We measured the running time in second on the 2.8Ghz Pentium IV with 2GB
main memory.

Figure 4 compares the pattern search time in the enhanced suffix array with
that in our index data structure. It shows that the pattern search in our index
data structure is faster when the size of alphabet is larger than 20 regardless
of the length of the random string. Moreover, the ratio of the pattern search
time of the enhanced suffix array to that of ours becomes larger as the size of
alphabet becomes large. These experimental results are consistent with the time
complexity analysis of the pattern search.

Figure 5 compares the construction time of the suffix array, the enhanced
suffix array, and our index data structure. The construction time of our index
data structure is at most 4% slower than that of the enhanced suffix array. In
addition, the construction time for the child table is almost negligible compared
with the construction time for the pos and lcp arrays. Thus, we can conclude

148 Dong Kyue Kim, Jeong Eun Jeon, and Heejin Park

length pos pos pos lcp cldtab new ESA ours %
(LS) (KS) (KJP) cldtab

|Σ| = 2

1 M 4.15 2.05 1.72 0.33 0.03 0.11 2.08 2.16 104

10 M 60.20 25.50 18.48 3.43 0.34 0.93 22.25 22.84 103

30 M 206.19 79.14 59.82 11.84 1.02 2.79 72.68 74.45 102

50 M 364.30 137.91 103.72 20.83 1.62 4.74 126.16 129.29 102

|Σ| = 4

1 M 3.81 2.55 1.67 0.33 0.04 0.11 2.04 2.11 103

10 M 53.79 30.39 19.63 3.44 0.36 0.98 23.43 24.05 103

30 M 180.42 97.74 62.66 11.58 1.03 2.84 75.27 77.08 102

50 M 347.10 162.59 108.42 21.39 1.65 4.77 131.46 134.58 102

|Σ| = 64

1 M 0.75 1.81 2.15 0.38 0.05 0.11 2.58 2.64 102

10 M 50.98 40.10 26.41 3.65 0.53 1.18 30.59 31.24 102

30 M 185.32 122.75 81.71 11.75 1.30 3.25 94.76 96.71 102

50 M 335.77 211.79 141.28 21.53 1.96 5.45 164.77 168.26 102

|Σ| = 128

1 M 0.63 1.96 2.24 0.37 0.04 0.11 2.65 2.72 103

10 M 20.35 43.16 29.35 3.84 0.55 1.23 33.74 34.42 102

30 M 169.58 129.87 86.23 11.93 1.42 3.49 99.58 101.65 102

50 M 319.53 226.43 152.25 21.76 2.22 5.59 176.23 179.60 102

Fig. 5. We computed the percentage of the construction time of our index data struc-
ture over that of the enhanced suffix array. The construction time for the enhanced
suffix array (ESA) is the construction time for the arrays pos, lcp, and cldtab. The
construction time for our data structure is the construction time for the arrays pos, lcp,
and new cldtab. To construct the pos array, we considered Larsson and Sadakane’s [8]
(LS) algorithm, Kärkkäinen and Sanders’ [10] (KS) algorithm, and Kim, Jo, and
Park’s [11] (KJP) algorithm. Among the algorithms, KJP algorithm is the fastest in
most cases, we used KJP algorithm to construct the pos array. To construct the lcp

array, we used Kasai et al. [9]’s algorithm.

that our data structure can be constructed almost as fast as the suffix array and
the enhanced suffix array.

6 Conclusion

We presented an index data structure with the capabilities of the suffix tree and
the suffix array even when the size of the alphabet is not negligible by improving
the enhanced suffix array. Our index data structure support the pattern search
in O(m log |Σ|) time and it is almost as time/space-efficient as the enhanced
suffix array. In a different point of view, it can be considered the first practical
one facilitating the capabilities of suffix trees when the size of the alphabet is not
negligible because the suffix tree supporting O(m log |Σ|)-time pattern search is
not easy to implement and thus it is rarely used in practice.

An Efficient Index Data Structure 149

References

1. M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch, Replacing suffix trees with enhanced
suffix arrays, J. of Discrete Algorithms (2004), 53–86.

2. M. Abouelhoda, E. Ohlebusch, and S. Kurtz, Optimal exact string matching based
on suffix arrays, Symp. on String Processing and Information Retrieval (2002), 31–
43.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(Second Edition), MIT Press (2001)

4. M. Farach, Optimal suffix tree construction with large alphabets, IEEE Symp.
Found. Computer Science (1997), 137–143.

5. M. Farach-Colton, P. Ferragina and S. Muthukrishnan, On the sorting-complexity
of suffix tree construction, J. Assoc. Comput. Mach. 47 (2000), 987-1011.

6. G. Gonnet, R. Baeza-Yates, and T. Snider, New indices for text: Pat trees and
pat arrays. In W. B. Frakes and R. A. Baeza-Yates, editors, Information Retrieval:
Data Structures & Algorithms, Prentice Hall (1992), 66–82.

7. D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Univ. Press
1997.

8. N. J. Larsson and K. Sadakane, Faster Suffix Sorting, Technical Report, number
LU-CS-TR:99-214, Department of Computer Science, Lund University, Sweden,
(1999).

9. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, Linear-time longest-
common-prefix computation in suffix arrays and its applications, Symp. Combina-
torial Pattern Matching (2001), 181–192.

10. J. Kärkkäinen and P. Sanders, Simpler linear work suffix array construction, Int.
Colloq. Automata Languages and Programming (2003), 943–955.

11. D. K. Kim, J. Jo, and H. Park, A fast algorithm for constructing suffix arrays for
fixed-size alphabets, Workshop on Efficient and Experimental Algorithms (2004),
301–314.

12. D. K. Kim, J. S. Sim, H. Park and K. Park, Linear-time construction of suffix
arrays, Symp. Combinatorial Pattern Matching (2003), 186–199.

13. P. Ko and S. Aluru, Space-efficient linear time construction of suffix arrays, Symp.
Combinatorial Pattern Matching (2003), 200–210.

14. U. Manber and G. Myers, Suffix arrays: A new method for on-line string searches,
SIAM J. Comput. 22 (1993), 935–938.

15. E.M. McCreight, A space-economical suffix tree construction algorithm, J. Assoc.
Comput. Mach. 23 (1976), 262–272.

16. E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), 249–260.
17. P. Weiner, Linear pattern matching algorithms, Proc. 14th IEEE Symp. Switching

and Automata Theory (1973), 1–11.

An Alphabet-Friendly FM-Index�

Paolo Ferragina1, Giovanni Manzini2, Veli Mäkinen3, and Gonzalo Navarro4

1 Dipartimento di Informatica, University of Pisa, Italy
2 Dipartimento di Informatica, University of Piemonte Orientale, Italy

3 Department of Computer Science, University of Helsinki, Finland
4 Department of Computer Science, University of Chile, Chile

Abstract. We show that, by combining an existing compression boost-
ing technique with the wavelet tree data structure, we are able to design
a variant of the FM-index which scales well with the size of the input
alphabet Σ. The size of the new index built on a string T [1, n] is bounded
by nHk(T)+O

(
(n log log n)/ log|Σ| n

)
bits, where Hk(T) is the k-th order

empirical entropy of T .
The above bound holds simultaneously for all k ≤ α log|Σ| n and 0 <
α < 1. Moreover, the index design does not depend on the parameter k,
which plays a role only in analysis of the space occupancy.
Using our index, the counting of the occurrences of an arbitrary pat-
tern P [1, p] as a substring of T takes O(p log |Σ|) time. Locating each
pattern occurrence takes O(log |Σ| (log2 n/ log log n)) time. Reporting a
text substring of length � takes O((� + log2 n/ log log n) log |Σ|) time.

1 Introduction

A full-text index is a data structure built over a text string T [1, n] that supports
the efficient search for an arbitrary pattern as a substring of the indexed text.
A self-index is a full-text index that encapsulates the indexed text T , without
hence requiring its explicit storage.

The FM-index [3] has been the first self-index in the literature to achieve
a space occupancy close to the k-th order entropy of T—hereafter denoted by
Hk(T) (see Section 2.1). Precisely, the FM-index occupies at most 5nHk(T) +
o(n) bits of storage, and allows the search for the occ occurrences of a pattern
P [1, p] within T in O(p+occ log1+ε n) time, where ε > 0 is an arbitrary constant
fixed in advance. It can display any text substring of length � in O(� + log1+ε n)
time. The design of the FM-index is based upon the relationship between the
Burrows-Wheeler compression algorithm [1] and the suffix array data struc-
ture [16, 9]. It is therefore a sort of compressed suffix array that takes advantage
of the compressibility of the indexed text in order to achieve space occupancy
close to the Information Theoretic minimum. Indeed, the design of the FM-index
does not depend on the parameter k and its space bound holds simultaneously
� Partially supported by the Italian MIUR projects ALINWEB and ECD and Grid.it and
‘‘Piattaforma distribuita ad alte prestazioni’’, and by the Chilean Fondecyt
Grant 1-020831.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 150–160, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Alphabet-Friendly FM-Index 151

over all k ≥ 0. These remarkable theoretical properties have been validated by
experimental results [4, 5] and applications [14, 21].

The above bounds on the FM-index space occupancy and query time have
been obtained assuming that the size of the input alphabet is a constant. Hidden
in the big-O notation there is an exponential dependency on the alphabet size
in the space bound, and a linear dependency on the alphabet size in the time
bounds. More specifically, the search time is O(p + occ |Σ| log1+ε n) and the
time to display a text substring is O((� + log1+ε n) |Σ|). Although in practical
implementations of the FM-index [4, 5] these dependencies are removed with
only a small penalty in the query time, it is worthwhile to investigate whether
it is possible to build a more “alphabet-friendly” FM-index.

In this paper we use the compression boosting technique [2, 7] and the wavelet
tree data structure [11] to design a version of the FM-index which scales well
with the size of the alphabet. Compression boosting partitions the Burrows-
Wheeler transformed text into contiguous areas in order to maximize the overall
compression achievable with zero-order compressors used over each area. The
wavelet tree offers a zero-order compression and also permits answering some
simple queries over the compressed area.

The resulting data structure indexes a string T [1, n] drawn from an al-
phabet Σ using nHk(T) + O

(
(n log log n)/ log|Σ| n

)
bits of storage. The above

bound holds simultaneously for all k ≤ α log|Σ| n and 0 < α < 1. The struc-
ture of our index is extremely simple and does not depend on the parame-
ter k, which plays a role only in the analysis of the space occupancy. With
our index, the counting of the occurrences of an arbitrary pattern P [1, p] as a
substring of T takes O(p log |Σ|) time. Locating each pattern occurrence takes
O(log |Σ| (log2 n/ log log n)) time. Displaying a text substring of length � takes
O((� + log2 n/ log log n) log |Σ|) time. Compared to the original FM-index, we
note that the new version scales better with the alphabet size in all aspects.
Albeit the time to count pattern occurrences has increased, that of locating
occurrences and displaying text substrings has decreased.

Recently, various compressed full-text indexes have been proposed in the
literature achieving several time/space trade-offs [13, 20, 18, 11, 12, 10]. Among
them, the one with the smallest space occupancy is the data structure described
in [11] (Theorems 4.2 and 5.2) that achieves O(p log |Σ| + polylog(n)) time to
count the pattern occurrences, O(log |Σ| (� + log2 n/ log log n)) time to locate
and display a substring of length �, and uses nHk(T)+O

(
(n log log n)/ log|Σ| n

)

bits of storage. The space bound holds for a fixed k which must be chosen in
advance, i.e., when the index is built. The parameter k must satisfy the constraint
k ≤ α log|Σ| n with 0 < α < 1, which is the same limitation that we have for our
space bound. An alternative way to reduce the alphabet dependence of the FM-
index has been proposed in [10], where the resulting space bound is the higher
O((H0 + 1)n) although based on a simpler solution to implement.

To summarize, our data structure is extremely simple, has the smallest
known space occupancy, and counts the occurrences faster than the data struc-

152 Paolo Ferragina et al.

ture in [11], which is the only other compressed index known to date with a
nHk(T) + o(n) space occupancy.

2 Background and Notation

Hereafter we assume that T [1, n] is the text we wish to index, compress and
query. T is drawn from an alphabet Σ of size |Σ|. By T [i] we denote the i-th
character of T , T [i, n] denotes the ith text suffix, and T [1, i] denotes the ith text
prefix. We write |w| to denote the length of string w.

2.1 The k-th Order Empirical Entropy

Following a well established practice in Information Theory, we lower bound the
space needed to store a string T by using the notion of empirical entropy. The
empirical entropy is similar to the entropy defined in the probabilistic setting
with the difference that it is defined in terms of the character frequencies ob-
served in T rather than in terms of character probabilities. The key property
of empirical entropy is that it is defined pointwise for any string T and can
be used to measure the performance of compression algorithms as a function
of the string structure, thus without any assumption on the input source. In a
sense, compression bounds produced in terms of empirical entropy are worst-case
measures.

Formally, the zero-th order empirical entropy of T is defined as H0(T) =
−

∑
i(ni/n) log(ni/n), where ni is the number of occurrences of the i-th alphabet

character in T , n =
∑

i ni = |T |, and all logarithms are taken to the base 2 (with
0 log 0 = 0). To introduce the concept of k-th order empirical entropy we need
to define what is a context. A length-k context w in T is one of its substrings
of length k. Given w, we denote by

→
wT the string formed by concatenating all

the symbols following the occurrences of w in T , taken from left to right. For
example, if T = mississippi then

→
sT = sisi and

→
siT = sp. The k-th order

empirical entropy of T is defined as:

Hk(T) =
1
n

∑

w∈Σk

|→wT | H0(
→
wT). (1)

The k-th order empirical entropy Hk(T) is a lower bound to the output size of
any compressor which encodes each character of T using a uniquely decipherable
code that depends only on the character itself and on the k characters preceding
it. For any k ≥ 0 we have Hk(T) ≤ log |Σ|. Note that for strings with many
regularities we may have Hk(T) = o(1). This is unlike the entropy defined in the
probabilistic setting which is always a constant. As an example, for T = (ab)n/2

we have H0(T) = 1 and Hk(T) = O((log n)/n) for any k ≥ 1.

2.2 The Burrows-Wheeler Transform

In [1] Burrows and Wheeler introduced a new compression algorithm based on
a reversible transformation now called the Burrows-Wheeler Transform (BWT

An Alphabet-Friendly FM-Index 153

mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

=⇒

F T bwt

mississipp i

i #mississip p

i ppi#missis s

i ssippi#mis s

i ssissippi# m

m ississippi #

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

Fig. 1. Example of Burrows-Wheeler transform for the string T = mississippi. The
matrix on the right has the rows sorted in lexicographic order. The output of the BWT
is the last column; in this example the string ipssm#pissii.

from now on). The BWT consists of three basic steps (see Figure 1): (1) append
at the end of T a special character # smaller than any other text character;
(2) form a conceptual matrix MT whose rows are the cyclic shifts of the string
T# sorted in lexicographic order; (3) construct the transformed text T bwt by
taking the last column of matrix MT . Notice that every column of MT , hence
also the transformed text T bwt, is a permutation of T#. In particular the first
column of MT , call it F , is obtained by lexicographically sorting the characters
of T# (or, equally, the characters of T bwt).

We remark that the BWT by itself is not a compression algorithm since T bwt

is just a permutation of T#. However, if T has some regularities the BWT will
“group together” several occurrences of the same character. As a result, the
transformed string T bwt contains long runs of identical characters and turns out
to be highly compressible (see e.g. [1, 17] for details).

Because of the special character #, when we sort the rows of MT we are
essentially sorting the suffixes of T . Therefore there is a strong relation between
the matrix MT and the suffix array built on T . The matrix MT has also other
remarkable properties; to illustrate them we introduce the following notation:

– Let C[·] denote the array of length |Σ| such that C[c] contains the total
number of text characters which are alphabetically smaller than c.

– Let Occ(c, q) denote the number of occurrences of character c in the prefix
T bwt[1, q].

– Let LF (i) = C[T bwt[i]] + Occ(T bwt[i], i).

LF (·) stands for Last-to-First column mapping since the character T bwt[i],
in the last column of MT , is located in the first column F at position LF (i).
For example in Figure 1 we have LF (10) = C[s] + Occ(s, 10) = 12; and in fact
T bwt[10] and F [LF (10)] = F [12] both correspond to the first s in the string
mississippi.

154 Paolo Ferragina et al.

The LF (·) mapping allows us to scan the text T backward. Namely, if T [k] =
T bwt[i] then T [k−1] = T bwt[LF (i)]. For example in Fig. 1 we have that T [3] = s
is the 10th character of T bwt and we correctly have T [2] = T bwt[LF (10)] =
T bwt[12] = i (see [3] for details).

2.3 The FM-Index

The FM-index is a self-index that allows to efficiently search for the occurrences
of an arbitrary pattern P [1, p] as a substring of the text T [1, n]. Pattern P is
provided on-line whereas the text T is given to be preprocessed in advance. The
number of pattern occurrences in T is hereafter indicated with occ. The term
self-index highlights the fact that T is not stored explicitly but it can be derived
from the FM-index.

The FM-index consists of a compressed representation of T bwt together with
some auxiliary information which makes it possible to compute in O(1) time
the value Occ(c, q) for any character c and for any q, 0 ≤ q ≤ n. The two
key procedures to operate on the FM-index are: the counting of the number of
pattern occurrences (shortly get rows), and the location of their positions in the
text T (shortly get position). Note that the counting process returns the value
occ, whereas the location process returns occ distinct integers in the range [1, n].

Algorithm get rows(P [1, p])

1. i← p, c← P [p], First← C[c] + 1, Last← C[c + 1];
2. while ((First ≤ Last) and (i ≥ 2)) do
3. c← P [i− 1];
4. First← C[c] + Occ(c, First− 1) + 1;
5. Last← C[c] + Occ(c, Last);
6. i← i− 1;
7. if (Last < First) then return “no rows prefixed by P [1, p]” else return

(First, Last).

Fig. 2. Algorithm get rows for finding the set of rows prefixed by P [1, p], and thus for
counting the pattern’s occurrences occ = Last−First+1. Recall that C[c] is the number
of text characters which are alphabetically smaller than c, and that Occ(c, q) denotes
the number of occurrences of character c in T bwt[1, q].

Figure 2 sketches the pseudocode of the counting operation that works in p
phases, numbered from p to 1. The i-th phase preserves the following invariant:
The parameter First points to the first row of the BWT matrix MT prefixed by
P [i, p], and the parameter Last points to the last row of MT prefixed by P [i, p].
After the final phase, P prefixes the rows between First and Last and thus,
according to the properties of matrix MT (see Section 2.2), we have occ =
Last− First + 1. It is easy to see that the running time of get rows is dominated
by the cost of the 2p computations of the values Occ().

An Alphabet-Friendly FM-Index 155

Algorithm get position(i)

1. i′ ← i, t← 0;
2. while row i′ is not marked do
3. i′ ← LF [i′];
4. t← t + 1;
5. return Pos(i′) + t;

Fig. 3. Algorithm get position for the computation of Pos(i).

Given the range (First, Last), we now consider the problem of retrieving the
positions in T of these pattern occurrences. We notice that every row in MT is
prefixed by some suffix of T . For example, in Fig. 1 the fourth row of MT is pre-
fixed by the text suffix T [5, 11] = issippi. Then, for i = First, First+1, . . . , Last
we use procedure get position(i) to find the position in T of the suffix that pre-
fixes the i-th row MT [i]. Such a position is denoted hereafter by Pos(i), and
the pseudocode of get position is given in Figure 3. The intuition underlying
its functioning is simple. We scan backward the text T using the LF (·) map-
ping (see Section 2.2) until a marked position is met. If we mark one text po-
sition every Θ(log2 n/ log log n), the while loop is executed O(log2 n/ log log n)
times. Since the computation of LF (i) can be done via at most |Σ| computa-
tions of Occ(), we have that get position takes O(|Σ| (log2 n/ log log n)) time.
Finally, we observe that marking one position every Θ(log2 n/ log log n) takes
Θ(n log log n/ logn) bits overall. Combining the observations on get position with
the ones for get rows, we get [3]:

Theorem 1. For any string T [1, n] drawn from a constant-sized alphabet Σ,
the FM-index counts the occurrences of any pattern P [1, p] within T taking O(p)
time. The location of each pattern occurrence takes O(|Σ| log2 n/ log log n) time.
The size of the FM-index is bounded by 5nHk(T) + o(n) bits, for any k ≥ 0.

In order to retrieve the content of T [l, r], we must first find the row in MT

that corresponds to r, and then issue � = r − l + 1 backward steps in T , using
the LF (·) mapping. Starting at the lowest marked text position that follows
r, we perform O(log2 n/ log log n) steps until reaching r. Then we perform �
additional LF-steps to collect the text characters. The resulting complexity is
O((� + log2 n/ log log n) |Σ|).

We point out the existence [6] of a variant of the FM-index that achieves
O(p + occ) query time and uses O(nHk(T) logε n) + o(n) bits of storage. This
data structure exploits the interplay between the Burrows-Wheeler compression
algorithm and the LZ78 algorithm [22]. Notice that this is first full-text index
achieving o(n log n) bits of storage, possibly o(n) on highly compressible texts,
and output sensitivity in the query execution.

As we mentioned in the Introduction, the main drawback of the FM-index
is that, hidden in the o(n) term of the space bound, there are constants which

156 Paolo Ferragina et al.

depend exponentially on the alphabet size |Σ|. In Section 3 we describe a simple
alternative representation of T bwt which takes nHk(T)+O(log |Σ|n log log n

log n) bits
and allows the computation of Occ(c, q) and T bwt[i] in O(log |Σ|) time.

2.4 Compression Boosting

The concept of compression boosting has been recently introduced in [2, 7, 8]
opening the door to a new approach to data compression. The key idea is that one
can take an algorithm whose performance can be bounded in terms of the 0-th
order entropy and obtain, via the booster, a new compressor whose performance
can be bounded in terms of the k-th order entropy, simultaneously for all k.
Putting it another way, one can take a compression algorithm that uses no
context information at all and, via the boosting process, obtain an algorithm
that automatically uses the “best possible” contexts.

To simplify the exposition, we now state a boosting theorem in a form which
is slightly different from the version described in [2, 7]. However, the proof of
Theorem 2 can be obtained by a straightforward modification of the proof of
Theorem 4.1 in [7].

Theorem 2. Let A be an algorithm which compresses any string s in less than
|s|H0(s) + f(|s|) bits, where f(·) is a non decreasing concave function. Given
T [1, n] there is a O(n) time procedure that computes a partition s1, s2, . . . , sz of
T bwt such that, for any k ≥ 0, we have

z∑

i=1

|A(si)| ≤
z∑

i=1

(|si|H0(si) + f(|si|)) ≤ nHk(T) + |Σ|kf(n/|Σ|k).

Proof. (Sketch). According to Theorem 4.1 in [7], the booster computes the
partition that minimizes the function

∑z
i=1 |s|H0(si) + f(|si|). To determine

the right side of the above inequality, we consider the partition ŝ1, ŝ2, . . . , ŝm

induced by the contexts of length k in T . For such partition we have m ≤ |Σ|k
and

∑m
i=1 |ŝi|H0(ŝi) = nHk(T). The hypothesis on f implies that

∑m
i=1 f(|ŝi|) ≤

|Σ|kf(n/|Σ|k) and the theorem follows.

To understand the relevance of this result suppose that we want to compress
T [1, n] and that we wish to exploit the zero-th order compressor A. Using the
booster we can first compute the partition s1, s2, . . . , sz of T bwt, and then com-
press each si using A. By the above theorem, the overall space occupancy would
be bounded by

∑
i |A(si)| ≤ nHk(T) + |Σ|kf(n/|Σ|k). Note that the process is

reversible, because the decompression of each si retrieves T bwt, and from T bwt

we can retrieve T using the inverse BWT. Summing up, the booster allows us to
compress T up to its k-th order entropy using only the zero-th order compressor
A. Note that the parameter k is neither known to A nor to the booster, it comes
into play only in the space complexity analysis. Additionally, the space bound
in Theorem 2 holds simultaneously for all k ≥ 0. The only information that is
required by the booster is the function f(n) such that |s|H0(s) + f(|s|) is an
upper bound on the size of the output produced by A on input s.

An Alphabet-Friendly FM-Index 157

2.5 The Wavelet Tree

Given a binary sequence S[1, m] and b ∈ {0, 1}, consider the following operations:
Rankb(S, i) computes the number of b’s in S[1, i], and Selectb(S, i) computes the
position of the i-th b in S[1, i]. In [19] it has been proven the following:

Theorem 3. Let S[1, m] be a binary sequence containing t occurrences of the
digit 1. There exists a data structure (called FID) that supports Rankb(S, i) and
Selectb(S, i) in constant time, and uses

⌈
log

(
m
t

)⌉
+ O((m log log m)/ log m) =

mH0(S) + O((m log log m)/ log m) bits of space.

If, instead of a binary sequence, we have a sequence W [1, w] over an arbitrary
alphabet Σ, a compressed and indexable representation of W is provided by the
wavelet tree [11] which is a clever generalization of the FID data structure.

Theorem 4. Let W [1, w] denote a string over an arbitrary alphabet Σ. The
wavelet tree built on W uses wH0(W) + O(log |Σ| (w log log w)/ log w) bits of
storage and supports in O(log |Σ|) time the following operations:
– given q, 1 ≤ q ≤ w, the retrieval of the character W [q];
– given c ∈ Σ and q, 1 ≤ q ≤ w, the computation of the number of occurrences

OccW (c, q) of c in W [1, q].

To make the paper more self-contained we recall the basic ideas underlying
the wavelet tree. Consider a balanced binary tree T whose leaves contain the
characters of the alphabet Σ. T has depth O(log |Σ|). Each node u of T is
associated with a string Wu that represents the subsequence of W containing
only the characters that descend from u. The root is thus associated with the
entire W . To save space and be alphabet-friendly, the wavelet tree does not
store Wu but a binary image of it, denoted by Bu, that is computed as follows:
Bu[i] = 0 if the character Wu[i] descends from the left child of u, otherwise
Bu[i] = 1. Assume now that every binary sequence Bu is implemented with the
data structure of Theorem 3; then it is an exercise to derive the given space
bounds and to implement OccW (c, q) and retrieve W [q] in O(log |Σ|) time.

3 Alphabet-Friendly FM-Index

We now have all the tools we need in order to build a version of the FM-index
that scales well with the alphabet size. The crucial observation is the following.
To build the FM-index we need to solve two problems: a) to compress T bwt up
to Hk(T), and b) to compute Occ(c, q) in time independent of n. We use the
boosting technique to transform problem a) into the problem of compressing the
strings s1, s2, . . . , sz up to their zero-th order entropy, and we use the wavelet
tree to create a compressed (up to H0) and indexable representation of each si

thus solving simultaneously problems a) and b). The details of the construction
are given in Figure 4.

To compute T bwt[q], we first determine the substring sy containing the q-th
character of T bwt by computing y = Rank1(B, q). Then we exploit the wavelet

158 Paolo Ferragina et al.

1. Use Theorem 2 to determine the optimal partition s1, s2, . . . , sz of T bwt with re-
spect to f(t) = (Kt log |Σ| log log t)/ log t + (1 + |Σ|) log n, where K is such that
(Kt log |Σ| log log t)/ log t is larger than the O((t log |Σ| log log t)/ log t) term in
Theorem 4.

2. Build a binary string B that keeps track of the starting positions in T bwt of the
si’s. The entries of B are all zeroes except for the bits at positions

∑i

j=1
|sj | for

i = 1, . . . , z which are set to 1. Construct the data structure of Theorem 3 over
the binary string B.

3. For each string si, i = 1, . . . , z build:

(a) the array Ci[1, |Σ|] such that Ci[c] stores the occurrences of character c within
s1s2 · · · si−1;

(b) the wavelet tree Ti.

Fig. 4. Construction of an alphabet-friendly FM-index.

tree Ty to determine T bwt[q]. By Theorem 3 the former step takes O(1) time,
and by Theorem 4 the latter step takes O(log |Σ|) time.

To compute Occ(c, q), we initially determine the substring sy where the row q
occurs, y = Rank1(B, q). Then we exploit the wavelet tree Ty and the array Cy[c]
to compute Occ(c, q) = Occsy(c, q′) + Cy[c], where q′ = q −

∑y−1
j=1 |sj |. Again, by

Theorems 3 and 4 this computation takes overall O(log |Σ|) time.
Combining these bounds with the results stated in Section 2.3, we obtain that

the alphabet-friendly FM-index takes O(p log |Σ|) time to count the occurrences
of a pattern P [1, p] and O(log |Σ|(log2 n/ log log n)) time to retrieve the position
of each occurrence.

Concerning the space occupancy we observe that by Theorem 3, the storage
of B takes

⌈
log

(
n
z

)⌉
+O((n log log n)/ log n) bits. Each array Ci takes O(|Σ| log n)

bits, and each wavelet tree Ti occupies |si|H0(si) + O
(
|si| log |Σ| log log |si|

log |si|
)

bits

(Theorem 4). Since log
(
n
z

)
≤ z log n, the total occupancy is bounded by

z∑

i=1

(
|si|H0(si)+K|si|

log |Σ| log log |si|
log |si|

+(1+|Σ|) log n
)
+O((n log log n)/ log n) .

Function f(t) defined at Step 1 of Figure 4 was built to match exactly the
overhead space bound we get for each partition, so the partitioning was optimally
built for that overhead. Hence we can apply Theorem 2 to get that the above
summation is bounded by

nHk(T) + O

(
n

log |Σ| log log n

log(n/|Σ|k)

)
+ O

(
|Σ|k+1 log n

)
. (2)

We are interested in bounding the space occupancy in terms of Hk only for
k ≤ α log|Σ| n for some α < 1. In this case we have |Σ|k ≤ nα and (2) becomes

nHk(T) + O(log |Σ|(nlog log n)/log n) . (3)

An Alphabet-Friendly FM-Index 159

We achieve the following result1:

Theorem 5. The data structure described in Figure 4 indexes a string T [1, n]
over an arbitrary alphabet |Σ|, using a storage bounded by

nHk(T) + O(log |Σ|(nlog log n)/log n)

bits for any k ≤ α log|Σ| n and 0 < α < 1. We can count the number of oc-
currences of a pattern P [1, p] in T in O(p log |Σ|) time, locate each occurrence
in O(log |Σ|(log2 n/ log log n)) time, and display a text substring of length � in
O((� + log2 n/ log log n) log |Σ|) time.

It is natural to ask whether a more sophisticated data structure can achieve
a nHk(T) + o(n) space bound without any restriction on the alphabet size or
context length. The answer to this question is negative. To see this, consider the
extreme case in which |Σ| = n, that is, the input string consists of a permutation
of n distinct characters. In this case we have Hk(T) = 0 for k ≥ 1. Since
the representation of such string requires Θ(n log n) bits, a self index of size
nHk(T) + o(n) bits cannot exist.

Finally, we note that the wavelet tree alone, over the full BWT transformed
text T bwt, would be enough to obtain the time bounds we achieved. However,
the resulting structure size would depend on H0(T) rather than Hk(T). The
partitioning of the text into areas is crucial to obtain the latter space bounds.
A previous technique combining wavelet trees with text partitioning [15] takes
each run of equal letters in T bwt as an area. It requires 2n(Hk log |Σ|+ 1 + o(1))
bits of space and counts pattern occurrences in the optimal O(p) time. It would
be interesting to retain the optimal space complexity obtained in this work and
the optimal search time O(p).

References

1. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

2. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Technical Report 240, Dipartimento di Matematica
e Applicazioni, University of Palermo, Italy, 2004.

3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
IEEE Symposium on Foundations of Computer Science (FOCS ’00), pages 390–
398, 2000.

4. P. Ferragina and G. Manzini. An experimental study of a compressed index. In-
formation Sciences: special issue on “Dictionary Based Compression”, 135:13–28,
2001.

5. P. Ferragina and G. Manzini. An experimental study of an opportunistic index.
In ACM-SIAM Symposium on Discrete Algorithms (SODA ’01), pages 269–278,
2001.

1 If we mark one text position every log1+ε n, the location of each occurrence would
take O(log |Σ| log1+ε n) time and additional O(n/ logε n) bits of storage.

160 Paolo Ferragina et al.

6. P. Ferragina and G. Manzini. On compressing and indexing data. Technical Report
TR-02-01, Dipartimento di Informatica, University of Pisa, Italy, 2002.

7. P. Ferragina and G. Manzini. Compression boosting in optimal linear time using the
Burrows-Wheeler transform. In ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04), 2004.

8. R. Giancarlo and M. Sciortino. Optimal partitions of strings: A new class of
Burrows-Wheeler compression algorithms. In Combinatorial Pattern Matching
Conference (CPM ’03), pages 129–143, 2003.

9. G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT trees
and PAT arrays. In B. Frakes and R. A. Baeza-Yates and, editors, Information
Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82. Prentice-Hall,
1992.

10. Sz. Grabowski, V. Mäkinen, and G. Navarro. First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. In Symposium on String Processing
and Information Retrieval (SPIRE 2004), 2004. Appears in this same volume.

11. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), pages 841–850,
2003.

12. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Exper-
iments on compressing suffix arrays and applications. In ACM-SIAM Symp. on
Discrete Algorithms (SODA ’04), 2004.

13. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In ACM Symposium on Theory of Computing
(STOC ’00), pages 397–406, 2000.

14. J. Healy, E.E. Thomas, J.T. Schwartz, and M. Wigler. Annotating large genomes
with exact word matches. Genome Research, 13:2306–2315, 2003.

15. V. Mäkinen and G. Navarro. New search algorithms and time/space tradeoffs for
succinct suffix arrays. Technical Report C-2004-20, University of Helsinki, Finland,
2004.

16. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

17. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

18. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-
rithms, 2(1):87–114, 2004.

19. R. Raman, V. Raman, and S.Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In ACM-SIAM Symposium on
Discrete Algorithms (SODA ’02), pages 233–242, 2002.

20. K. Sadakane. Succinct representations of LCP information and improvements in
the compressed suffix arrays. In ACM-SIAM Symposium on Discrete Algorithms
(SODA ’02), pages 225–232, 2002.

21. K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving various
problems. Genome Informatics, 12:175–183, 2001.

22. J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Transaction on Information Theory, 24:530–536, 1978.

Concurrency Control and I/O-Optimality
in Bulk Insertion

Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

Department of Computer Science and Engineering
Helsinki University of Technology, P.O.Box 5400, FIN-02015 HUT, Finland

{kerttu,ess}@cs.hut.fi

Abstract. In a bulk update of a search tree a set of individual updates
(insertions or deletions) is brought into the tree as a single transaction.
In this paper, we present a bulk-insertion algorithm for the class of (a, b)-
trees (including B+-trees). The keys of the bulk to be inserted are divided
into subsets, each of which contains keys with the same insertion place.
From each of these sets, together with the keys already in the insertion
place, an (a, b)-tree is constructed and substituted for the insertion place.
The algorithm performs the rebalancing task in a novel manner minimiz-
ing the number of disk seeks required. The algorithm is designed to work
in a concurrent environment where concurrent single-key actions can be
present.

1 Introduction

Bulk insertion is an important index operation, for example in document data-
bases and data warehousing. Document databases usually apply indices contain-
ing words and their occurrence information. When a new document is inserted
into the database, a bulk insertion containing words in this document will be
performed. Experiments of a commercial system designed for a newspaper house
in Finland [15] have shown that a bulk insertion can be up to two orders of
magnitude faster than the same insertions individually performed.

Additions to large data warehouses may number in the hundreds of thousands
or even in the millions per day, and thus indices that require a disk operation
per insertion are not acceptable. As a solution, a new B-tree like structure for
indexing huge warehouses with frequent insertions is presented in [8]. This struc-
ture is similar to the buffer tree structure of [1, 2]; the essential feature is that
one advancing step in the tree structure always means a search phase step for a
set of several insertions.

In this paper, we consider the case in which the bulk, i.e., the set of keys to
be inserted, fits into the main memory. This assumption is reasonable in most
applications. Only some extreme cases of frequent insertions into warehouses
do not fulfil this requirement. We present a new bulk-insertion algorithm, in
which the possibility of concurrent single-key operations are taken into account.
The bulk insertion is performed by local operations that involve only a constant
number of nodes at a time. This makes it possible to design efficient concurrency

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 161–170, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

162 Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

control algorithms, because only a constant number of nodes need be latched at
a time. Allowing concurrent searches is vital in document databases [15] and in
www-search-engine applications.

The search trees to be considered are a class of multi-way trees, called (a, b)-
trees [6, 12]. The class of (a, b)-trees is a generalization of B+-trees: in an (a, b)-
tree, b ≥ 2a − 1, a and b denote the minimum and the maximum number of
elements in a node. The trees considered are external, i.e., keys are stored in the
leaves and internal nodes contain routing information.

For our model of I/O-complexity we assume that each node of the tree is
stored in one disk page. We assume that the current path from the root to a leaf
(or the path not yet reached a leaf but advancing towards a leaf) is always found
in the main memory, but otherwise accessing a node requires one I/O-operation.
Moreover, in our model we count writing (or reading) of several consecutive disk
pages as one I/O-operation. This is justified whenever the number of consecutive
pages is “reasonable” because the seek time has become a larger and larger factor
in data transfer to/from disk [17]. In our paper this property of the model comes
into use when a portion of the bulk goes into the same leaf, and this (usually a
relatively small) part of the bulk will be written on disk.

2 General Bulk Insertion

In a level-linked (a, b)-tree [6, 12], a ≥ 2, b ≥ 2a− 1, all paths from the root to a
leaf have the same length. The leaves contain at least a and at most b keys, and,
similarly, the internal nodes have at least a and at most b children. The root of
the tree is an exception and has at least 2 and at most b children. In leaves each
key is coupled with a data record (or with a pointer to data). An internal node
v with n children is of the form

(p0)(r1, p1)(r2, p2) . . . (rn, pn)(rn+1, pn+1),

where for i = 1, . . . , n, pi is the pointer to the ith child of v. This ith child is
the root of the subtree that contains the keys in the interval (ri, ri+1]. Values ri,
1 ≤ i ≤ n + 1, in an internal node are called routers. We say that node v covers
the interval (r1, rn+1].

Router r1 is smaller than any key in the subtree rooted at v, called the
lowvalue of node v, denoted lowvalue(v), and router rn+1 is the largest possible
key value in this subtree, called the highvalue and denoted highvalue(v). Pointer
p0 points to the node that precedes, and pn+1 points to the node that follows node
v at the same level. If node v is the parent of a leaf l and pointer pi, i = 1, . . . , n,
in v points to l, then the lowvalue of leaf l is ri and the highvalue is ri+1.

The basic idea of our I/O-optimal bulk-insertion algorithm is that the keys
of the bulk sorted in the main memory will efficiently be divided into subsets,
each of which contains keys that have the same insertion place (which is a node
in the leaf level). From each of these sets, called simple bulks, together with
the keys already in the insertion place, an (a, b)-tree, called an insertion tree,
is constructed and substituted for the insertion place. After this process, called
bulk insertion without rebalancing, has been completed, the structure contains

Concurrency Control and I/O-Optimality in Bulk Insertion 163

all keys of the bulk and can already be used as a search tree with logarithmic
search time. In order to retain the (a, b)-tree properties the structure needs, of
course, rebalancing.

Moreover, we aim at a solution where concurrency is allowed and concurrency
control is efficient in the sense that each process will latch only a constant number
of nodes at a time and that a latch on a node is held only for a constant time.
The concurrency control needed before rebalancing is simple latch coupling in the
same way as for single-key updates (insertions or deletions). The efficient latch
coupling in the search phase of an update (bulk or single) applies might-write
latches, which exclude other updates but allow readers to apply their shared
latches. Shared or read latches applied by readers exclude only the exclusive
latches required on nodes to be written.

Given an (a, b)-tree T and a bulk with m keys, denoted k1, . . . , km, in as-
cending order, the bulk insertion into T without rebalancing works as follows.

Algorithm BI (Bulk Insertion)
Step 1. Set i = 1, and set p = the root of T .
Step 2. Starting at node p search for the insertion place li of key ki. Push

each node in the path from node p to li onto stack S. In the search process apply
latch coupling in the might-write mode. When leaf li is found, the latch on it
will be upgraded into an exclusive latch. The latch on the parent of li will be
released.

Step 3. Let ki+j be the largest key in the input bulk that is less than or equal
to the highvalue of li. From the keys ki, . . . , ki+j together with the keys already
in li, an (a, b)-tree Bi is constructed and substituted for li in T . This will be
done by storing the contents of the root of Bi into node li, so that no changes
is needed in the parent of li. Release the latch on the node that is now the root
of Bi.

Step 4. Set i = i + j + 1. If i > m, then continue to Step 5. Otherwise pop
nodes from stack S until the popped node p covers the key ki. If such a node is
not found in the stack (this may occur if the root has been split after the bulk
insertion started), set p as the new root. The nodes which are popped from the
stack are latched in the shared mode, but latch-coupling is not used. Return to
Step 2.

Step 5. Now all insertion positions have been replaced by the corresponding
insertion trees. Rebalance the constructed tree by performing Algorithm SBR
(given below) for each Bi in turn.

If concurrent single-key updates are allowed, it may happen that in Step 4
the algorithm must return even to the root although in the original tree only a
few steps upward would have been enough in order to find the node from which
to continue.

The algorithm composed of the first 4 steps of the above algorithm is called
Algorithm BIWR (Bulk Insertion Without Rebalancing). In the following dis-
cussion of the complexity of Algorithm BIWR we assume that the concurrency
is limited to concurrent searches.

164 Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

If searching must be done in the standard way, that is, only pointers from
parents to children are followed, it is clear that Algorithm BIWR is optimal as
to nodes visited in T and thus in the number of nodes accessed. This is because
each node in the paths from the root to the insertion positions must be accessed
at least once, and this is exactly what the above algorithm does. If parent links
together with level links are applied, a better performance can be obtained in
some special cases, but from results in [3] it is straightforward to derive that no
asymptotic improvement can be obtained.

The insertion tree Bi is constructed in the main memory, but I/O-operations
are needed in writing it on disk as a part of the whole tree. For doing this only
one disk seek is needed and in our model thus only one operation. We have:

Theorem 1. Let T be an (a, b)-tree, and assume that a bulk of m keys is inserted
into T by Algorithm BIWR (Bulk Insertion Without Rebalancing, the first four
steps of Algorithm BI). Then the resulting tree (which has logarithmic depth but
does not fulfil the (a, b)-balance conditions) contains exactly the keys that were
originally in T or were members of the bulk. The I/O-complexity of Algorithm
BIWR is

Θ(k + L) = Θ(L),

where k denotes the number of insertion trees Bi constructed in Step 3 of the
algorithm and L denotes the number of different nodes that appear in the paths
from the root of the original tree T to the insertion places li.

3 Rebalancing

Our next task is to perform rebalancing. Our solution for rebalancing is designed
such that concurrent searches and single-key updates are possible.

We assume first that we are given a situation in which the whole bulk to
be inserted has the same insertion place l1, and Algorithm BIWR has produced
a new tree T , in which l1 has been replaced by an insertion tree B1 (Step 3
in Algorithm BIWR). Before we can start the rebalancing task we must have
obtained a shared lock on the key interval [k, k′], where k and k′, respectively,
are the smallest and the largest key in B1. This lock is requested in Step 3
in Algorithm BIWR before the replacement of l1 by B1 can take place. This
guarantees that no updates that would affect B1 could occur during rebalancing,
provided that performing updates requires obtaining an exclusive lock on the key
to be inserted or deleted, see e.g. [9]. (The locks are not the same as the latches;
latches are for physical entities of a database, and locks for logical entities.
Latches are short duration semaphores, and locks are usually held until the
commit of the transaction involved.)

Now if B1 contains one leaf only, we are done, and the lock on [k, k′] can
be released. Otherwise, we perform the simple bulk rebalancing in the following
way.
Algorithm SBR (Simple Bulk Rebalancing)

Step 1. Latch exclusively the parent of the root of B1 and denote the latched
node by p. Set h = 1.

Concurrency Control and I/O-Optimality in Bulk Insertion 165

Step 2. Split node p such that the left part contains all pointers to children
that store keys smaller than the smallest key in B1, and the right part all pointers
to children that store keys larger than the largest key in B1. Denote the nodes
thus obtained by pl and pr. Observe that both pl and pr exist; in the extreme
case node pl contains only the lowvalue and the level link to the left and pr only
the highvalue and the level link to the right. In all cases p is set to pl; that is,
pl is the node that remains latched, and p = pl does not point to the root of B1

(or its ancestor) any more. Moreover, notice that neither pl nor pr can contain
more than b elements, even though, when returning from Step 3, p could contain
b + 1 elements. See Fig. 1 for illustration.

Fig. 1. Splitting the parent of the root of the insertion tree, a = 2 and b = 4. (a)
Original tree. The root of the insertion tree is shaded. (b) Split tree with updated level
links at height 1.

Exclusively latch pr, and the leftmost and rightmost nodes, denoted ql and
qr, respectively, at the height h in B1. Then compress (by applying fusing or
sharing) node pl together with node ql, node pr together with qr, and also adjust
the level links appropriately. (The nodes in T and nodes in B1 at height h are all
linked together by level links and no violations against the (a, b)-tree property
occur in these nodes.) Release all latches held.

Step 3. Set h = h + 1. At height h in T latch exclusively the node, denoted
p, that has lowvalue smaller than the smallest key in B1 and highvalue larger
than the largest key in B1. If in Step 2 node pr, one level below, was not fused

166 Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

with qr but remained (perhaps shortened because of sharing), add this node as
a new child to p. For the moment, allow p grow one too large, if necessary. If h
is smaller than the height of B1, then return to Step 2.

Step 4. Now the insertion tree B1 has been properly level-linked with the
rest of the tree, with the exception of the root and the leaf level. As in Step 2,
split node p appropriately into pl and pr such that the root of B1 can be put
between them. The nodes at the leaf level which thus far has been level-linked
to the root of B1 must now be level-linked with the leftmost and, respectively,
the rightmost leaf node in B1. For the operation, all changed nodes must be
exclusively latched. At the end, all latches held are released.

Step 5. The whole insertion tree B1 has now been correctly level-linked, but
it might be that the root of B1 and its right brother have no parent, that is,
they can be reached only by level links and not by child links from their parents.
(See Fig. 2.) Thus rebalancing is still needed above the root of B1, and the
need of splits may propagate up to the root of the whole tree. In a concurrent
environment this remaining rebalancing can be done exactly as for single inserts
in Blink-trees [16]. Figure 3 shows the final rebalanced tree.

Fig. 2. Tree of Fig. 1 after the insertion tree has been correctly level-linked.

Fig. 3. Tree of Fig. 2 when bulk rebalancing has been finished.

It is important to note that, for rebalancing, we cannot simply cut the tree
T starting from the insertion place up to the height of B1, and then lift B1 to its
right position. Such an algorithm would need too much simultaneous latching
in order to set the level links correctly. The level links are essential because
they guarantee the correctness of concurrent searching at all times. The simpler
solution to “merge” B1 with T by cutting T at l1, joining the left part with B1,
and joining the result with the right part [13] is not applicable in a concurrent
environment, either.

First, for the correctness and complexity (Theorem 2–6), we consider Al-
gorithm SBR in an environment, where only concurrent searches are allowed.

Concurrency Control and I/O-Optimality in Bulk Insertion 167

Notice that then node p as specified in Step 2 is directly obtained from the stack
of nodes constructed in the search phase of Algorithm BI.

The following theorem is immediate. Notice that in Step 3 of Algorithm SBR
compressing of nodes as described is always possible because the insertion tree
B1 is in balance. Compressing two nodes means, in the same way as in standard
B-tree rebalancing, that two nodes are either made as one node (fusing) or their
contents are redistributed (sharing) such that both nodes meet the (a, b)-tree
conditions.

Theorem 2. Let T be a tree yielded by Algorithm BIWR such that from the
inserted bulk of size m only one insertion tree was constructed. Algorithm SBR
(Simple Bulk Rebalancing) rebalances T , that is, yields an (a, b)-tree that contains
exactly the keys originally in T . The worst case I/O-complexity of Algorithm
SBR (when only concurrent searches are present) is Θ(log m) (Steps 1–3), plus
Θ(log n) (Step 4), where n denotes the size of T .

Notice that the worst case complexity Θ(log n) of Step 5 comes from the fact
that nodes above the root of B1 may be full; this worst case may occur also for
single insertions. Thus, and because it may be necessary to split h nodes, where
h denotes the height of B1, the above algorithm is asymptotically optimal.

Step 5 in Algorithm SBR can be considered as an elimination of an b + 1-
or b + 2-node (node that contains b + 1 or b + 2 elements) from the tree. This is
because the parent of the root of B1 can have got one or two new children. But, as
shown in [5], elimination of a b+1-node takes amortized constant time, provided
that b ≥ 2a. (By amortized time we mean the time of an operation averaged
over a worst-case sequence of operations starting with an empty structure. See
[12, 18].) The same holds, of course, for the elimination of a b + 2-node. Thus
Theorem 2 implies:

Theorem 3. Let T be a tree yielded by Algorithm BIWR such that from the
inserted bulk of size m only one insertion tree was constructed. Algorithm SBR
(Simple Bulk Rebalancing) rebalances T , that is, yields an (a, b)-tree that contains
exactly the keys originally in T . The amortized I/O-complexity of Algorithm SBR
(when only concurrent searches are present) is Θ(log m).

The result of Theorem 3 requires that each Bi in Algorithm BI is constructed
so that at most two nodes at each level of Bi contain exactly a or b keys or have
exactly a or b children. This is possible since a ≥ 2 and b ≥ 2a, see [7].

Assume that a bulk insertion of m keys without rebalancing has been applied
to an (a, b)-tree yielding a tree denoted by T . Assume that the bulk was divided
into k insertion trees, denoted B1, B2, . . . , Bk. Rebalancing T , that is, the final
step of Algorithm BI, can now be performed by applying Algorithm SBR for
B1, B2, . . ., and Bk, in turn. The cost of rebalancing includes (i) the total cost of
Steps 1–3 of Algorithm SBR for B1, . . . , Bk and (ii) the total cost of rebalancing
(Step 4) above node pi that has become the parent of Bi, i = 1, . . . , k. Part (i)
has I/O-complexity O(Σk

i=1 log mi), where mi denotes the size of Bi, and part
(ii) has the obvious lower bound Ω(L), where L denotes the number of different

168 Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

nodes appearing in the paths from the root to the insertion places in the original
tree. It is easy to see that O(L + Σk

i=1 log mi) bounds from above part (ii). Of
those nodes that are full before the rebalancing starts only L can be split because
of rebalancing. Rebalancing of one Bi cannot produce more than O(log mi) new
full nodes that may need be split by rebalancing a subsequent Bj . Thus the total
number by splits and also the number of I/Os needed for the whole rebalancing
task is O(L + Σk

i=1 log mi).
We have:

Theorem 4. Assume that a bulk insertion without rebalancing has been applied
to an (a, b)-tree, and assume that the bulk was divided into k insertion trees with
sizes m1, m2, . . . , mk. Then the worst case I/O-complexity of rebalancing (the
final step of Algorithm BI), provided that only concurrent searches are present,
is

Θ(Σk
i=1 log mi + L),

where L is number of different nodes in the paths from the root to the insertion
places (roots of the insertion trees) before the rebalancing starts.

For the amortized complexity we have:

Theorem 5. Assume that a bulk insertion without rebalancing has been applied
to an (a, b)-tree, b ≥ 2a, and assume that the bulk was divided into k insertion
trees with sizes m1, m2, . . . , mk. Then the amortized I/O-complexity of rebalanc-
ing, provided that only concurrent searches are present, is

Θ(Σk
i=1 log mi).

Theorems 1 and 4 imply:

Theorem 6. The worst case I/O-complexity of a bulk insertion into an (a, b)-
tree is

Θ(Σk
i=1 log mi + L),

where mi is the size of the ith simple bulk and L is the number of different nodes
in the paths from the root to the insertion places.

Our concurrent algorithm is meant to be used together with key searches that
do not change the structure and with single-key operations. The pure searches
are the most important operations that must be allowed together with bulk
insertion. This is certainly important for www search engines, and it was vital
for the commercial text database system reported in [15]. For the correctness,
the issues to be taken care of are that no search paths (for pure searches or the
search phases of insertions or deletions) cannot get lost, and that the possible
splits or compress operations performed by concurrent single-key actions do not
cause any incorrectness.

Because a shared lock on the key interval of the insertion tree must have been
obtained before rebalancing, no changes in the interval trees caused by concur-
rent processes can occur during the bulk insertion. Thus the only possibility for

Concurrency Control and I/O-Optimality in Bulk Insertion 169

incorrectness (due to bulk insertion) is that a search path gets lost when a node
above the insertion tree is split and the search would go through this node and
end in a leaf of the insertion tree Bi, or in a leaf right to Bi, cf. Fig. 1 (b). But
when this kind of a split occurs, the exclusive latches as defined in Step 3 of the
algorithm prevents the search path losses. After Step 3 has been completed, all
leaves of Bi, and all leaves to the right of Bi that have lost their parent path to
the root (in Fig. 1 (b) one leaf to the right of the insertion tree) are again reach-
able because of the level links set. The possible splits or compress operations of
concurrent single-key actions imply the possibility that the nodes of the search
path to the insertion place pushed on stack are not always parents of the split
nodes. Thus the parent must be searched, see Step 3, by a left-to-right traverse
starting from the node that is popped from the stack. (Cf. [16].)

The pure searches and the search phases of single-key actions and the search
phase of the bulk insertion apply latch coupling in the appropriate mode, and
all changes in nodes are made under an exclusive latch, which prevents all other
possible path losses.

We have:

Theorem 7. The concurrent algorithm BI and standard concurrent searches
and concurrent single-key actions all applied to the same level-linked (a, b)-tree
run correctly with each other.

4 Conclusion

We have presented an I/O-optimal bulk insertion algorithm for (a, b)-trees, a
general class of search trees that include B-trees. Some ideas of the new algo-
rithm stem from earlier papers on bulk updates [11, 15]. The new aspect in the
present paper is that we couple efficient concurrency control with an I/O-optimal
algorithm, and the I/O-complexity is carefully analyzed in both worst case and
amortized sense.

The same amortized time bound has been proved for relaxed (a, b)-trees in
[10], but with linear worst case time. In addition, although [10] gives operations
to locally decrease imbalance in certain nodes, it does not give any deterministic
algorithm to rebalance the whole tree after group insertion. Algorithms based on
relaxed balancing also have the problem that they introduce new almost empty
nodes at intermediate stages.

The idea of performing bulk insertion by inserting small trees [14] is indepen-
dently presented for R-trees in [4]. In [4] concurrency control is not discussed,
whereas our main contribution is to introduce efficient concurrency control into
I/O-optimal bulk insertion.

Our method of bulk rebalancing can also be applied for buffer trees [1, 2].
Buffer trees are a good choice for efficient bulk insertion in the case in which the
bulk is large and does not fit into the main memory.

References

1. L.Arge. The buffer tree: a technique for designing batched external data structures.
Algorithmica 37 (2003), 1–24.

170 Kerttu Pollari-Malmi and Eljas Soisalon-Soininen

2. L.Arge, K.H.Hinrichs, J.Vahrenhold, and J.S.Vitter. Efficient bulk operations on
dynamic R-trees. Algorithmica 33 (2002), 104–128.

3. M.R.Brown and R.E.Tarjan. Design and analysis of a data structure for represent-
ing sorted lists. SIAM Journal of Computing 9 (1980), 594–614.

4. L.Chen, R.Choubey, and E.A.Rundensteiner. Merging R-trees: Efficient strategies
for local bulk insertion. GeoInformatica 6 (2002), 7–34.

5. K.Hoffmann, K.Mehlhorn, P.Rosenstiehl, and R.E.Tarjan: Sorting Jordan se-
quences in linear time using level-linked search trees. Information and Control
68 (1986), 170–184.

6. S.Huddleston and K.Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica 17 (1982), 157–184.

7. L.Jacobsen, K.S.Larsen, and M.N.Nielsen. On the existence and construction of
non-extreme (a,b)-trees. Information Processing Letters 84 (2002), 69–73.

8. C.Jermaine, A.Datta, and E.Omiecinski. A novel index supporting high volume
data warehouse insertion. In: Proceedings of the 25th International Conference on
Very Large Databases. Morgan Kaufmann Publishers, 1999, pp. 235–246.

9. M.Kornacker, C.Mohan, and J.M.Hellerstein. Concurrency and recovery in gener-
alized search trees. In: Proceedings of the 1997 SIGMOD Conference, SIGMOD
Record 26. ACM Press 1997, pp. 62–72.

10. K.S.Larsen. Relaxed multi-way trees with group updates. Journal of Computer
and System Sciences 66 (2003), 657–670.

11. L.Malmi and E.Soisalon-Soininen. Group updates for relaxed height-balanced trees.
In: Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems. ACM Press, 1999, pp. 358–367.

12. K.Mehlhorn. Data Structures and Algorithms, Vol. 1: Sorting and Searching,
Springer-Verlag, 1984.

13. A.Moffat, O.Petersson, and N.C.Wormald. A tree-based mergesort. Acta Informat-
ica 35 (1998), 775–793.

14. K.Pollari-Malmi. Batch updates and concurrency control in B-trees. Ph.D.Thesis,
Helsinki University of Technology, Department of Computer Science and Engineer-
ing, Report A38/02, 2002.

15. K.Pollari-Malmi, E.Soisalon-Soininen, and T.Ylönen. Concurrency control in B-
trees with batch updates. IEEE Transactions on Knowledge and Data Engineering
8 (1996), 975–984.

16. Y.Sagiv. Concurrent operations on B*-trees with overtaking. Journal of Computer
and System Sciences 33 (1986), 275–296.

17. Y.Tao and D.Papadias. Adaptive index structures. In: Proceedings of the 28th Con-
ference on Very Large Data Bases. Morgan Kaufmann Publishers, 2002, pp. 418–
429.

18. R.E.Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and
Discrete Methods 6 (1985), 306–318.

Processing Conjunctive and Phrase Queries
with the Set-Based Model�

Bruno Pôssas, Nivio Ziviani, Berthier Ribeiro-Neto, and Wagner Meira Jr.

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais
30161-970 Belo Horizonte-MG, Brazil

{bavep,nivio,berthier,meira}@dcc.ufmg.br

Abstract. The objective of this paper is to present an extension to the set-based
model (SBM), which is an effective technique for computing term weights based
on co-occurrence patterns, for processing conjunctive and phrase queries. The in-
tuition that semantically related term occurrences often occur closer to each other
is taken into consideration. The novelty is that all known approaches that ac-
count for co-occurrence patterns was initially designed for processing disjunctive
(OR) queries, and our extension provides a simple, effective and efficient way to
process conjunctive (AND) and phrase queries. This technique is time efficient
and yet yields nice improvements in retrieval effectiveness. Experimental results
show that our extension improves the average precision of the answer set for all
collection evaluated, keeping computational cost small. For the TReC-8 collec-
tion, our extension led to a gain, relative to the standard vector space model,
of 23.32% and 18.98% in average precision curves for conjunctive and phrase
queries, respectively.

1 Introduction

Users of the World Wide Web are not only confronted by an immense overabundance
of information, but also by a plethora of tools for searching for the web pages that
suit their information needs. Web search engines differ widely in interface, features,
coverage of the web, ranking methods, delivery of advertising, and more. Different
search engines and portals have different (default) semantics of handling a multi-word
query. Although, all major search engines, such as Altavista, Google, Yahoo, Teoma,
uses the AND semantics, i.e. conjunctive queries, (it is mandatory for all the query
words to appear in a document for it to be considered).

In this paper we propose a extension to the set-based model [1, 2] to process con-
junctive and phrase queries. The set-based model uses a term-weighting scheme based
on association rules theory [3]. Association rules are interesting because they provide
all the elements of the tf × idf scheme in an algorithmically efficient and parame-
terized approach. Also, they naturally provide for quantification of representative term
co-occurrence patterns, something that is not present in the tf × idf scheme.

� This work was supported in part by the GERINDO project-grant MCT/CNPq/CT-INFO
552.087/02-5 and by CNPq grant 520.916/94-8 (Nivio Ziviani).

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 171–182, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

172 Bruno Pôssas et al.

We evaluated and validated our extension of the set-based model (SBM) for pro-
cessing conjunctive and phrase queries through experimentation using two reference
collections. Our evaluation is based on a comparison to the standard vector space model
(VSM) adapted to handle the these type of queries. Our experimental results show that
the SBM yields higher retrieval performance, which is superior for all query types
and collections considered. For the TReC-8 collection [4], containing 2 gigabytes of
size and approximately 530,000 documents, the SBM yields, respectively, an aver-
age precision that are 23.32% and 18.98% higher than the VSM for conjunctive and
phrase queries. The set-based model is also competitive in terms of computing perfor-
mance. For the WBR99 collection, containing 16 gigabytes of size and approximately
6,000,000 web pages, using a log with 100,000 queries, the increase in the average
response time is, respectively, 6.21% and 14.67% for conjunctive and phrase queries.

The paper is organized as follows. The next section describes the representation
of co-occurrence patterns based on a variant of association rules. A review of the set-
based model is presented in the Section 3. Section 4 presents our extension of the set-
based model for processing conjunctive and phrase queries. In section 5 we describe the
reference collections and the experimental results comparing the VSM and the SBM
for processing disjunctive and phrase queries. Related works are discussed in Section 6.
Finally, we present some conclusions and future work in Section 7.

2 Preliminaries

In this section we introduce the concept of termsets as a basis for computing term
weights. In the set-based model a document is described by a set of termsets, where
termset is simply an ordered set of terms extracted from the document itself.

Let T = {k1, k2, ..., kt} be the vocabulary of a collection of documents D, that
is, the set of t unique terms that may appear in a document from D. There is a total
ordering among the vocabulary terms, which is based on the lexicographical order of
terms, so that ki < ki+1, for 1 ≤ i ≤ t − 1.

Definition 1. An n-termset s is an ordered set of n unique terms, such that s ⊆ T .
Notice that the order among terms in s follows the aforementioned total ordering.

Let S = {s1, s2, ..., s2t} be the vocabulary-set of a collection of documents D, that
is, the set of 2t unique termsets that may appear in a document from D. Each document
j from D is characterized by a vector in the space of the termsets. With each termset si,
1 ≤ i ≤ 2t, we associate an inverted list lsi composed of identifiers of the documents
containing that termset. We also define the frequency dsi of a termset si as the number
of occurrences of si in D, that is, the number of documents where si ⊆ dj and dj ∈ D,
1 ≤ j ≤ N . The frequency dsi of a termset si is the length of its associated inverted
list (| lsi |).
Definition 2. A termset si is a frequent termset if its frequency dsi is greater than
or equal to a given threshold, which is known as support in the scope of association
rules [3], and referred as minimal frequency in this work. As presented in the original
Apriori algorithm [5], an n-termset is frequent if and only if all of its n − 1-termsets
are also frequent.

Processing Conjunctive and Phrase Queries with the Set-Based Model 173

The proximity information is used as a pruning strategy to find only the termsets
occurrences bounded by an specified proximity threshold (referred as minimal proxim-
ity), conforming with the assumption that semantically related term occurrences often
occur closer to each other.

Definition 3. A closed termset csi is a frequent termset that is the largest termset
among the termsets that are subsets of csi and occur in the same set of documents.
That is, given a set D ⊆ D of documents and the set SD ⊆ S of termsets that occur in
all documents from D and only in these, a closed termset csi satisfies the property that
�sj ∈ SD|csj ⊂ sj .

For sake of processing disjunctive queries (OR), closed termsets are interesting be-
cause they represent a reduction on the computational complexity and on the amount of
data that has to be analyzed, without loosing information, since all frequent termsets in
a closure are represented by the respective closed termset [1, 2].

Definition 4. A maximal termset msi is a frequent termset that is not a subset of any
other frequent termset. That is, given the set SD ⊆ S of frequent termsets that occur
in all documents from D, a maximal termset msi satisfies the property that �sj ∈
SD|msi ⊂ sj .

Let FT be the set of all frequent termsets, and CFT be the set of all closed termsets
and MFT be the set of all maximal termsets. It is straightforward to see that the follow-
ing relationship holds: MFT ⊆ CFT ⊆ CT . The set MFT is orders of magnitude
smaller than the set CFT , which itself is orders of magnitude smaller than the set FT .
It is proven that the set of maximal termsets associated with a document collection are
the minimum amount of information necessary to derive all frequent termsets associated
with that collection [6].

Generating maximal termsets is a problem very similar to mining association rules
and the algorithms employed for the latter is our starting point [3]. Our approach is
based on an efficient algorithm for association rule mining, called GENMAX [7], which
has been adapted to handle terms and documents instead of items and transactions,
respectively. GENMAX uses backtracking search to enumerate all MFT .

3 Review of the Set-Based Model (SBM)

In the set-based model, a document is described by a set of termsets, extracted from the
document itself. With each termset we associate a pair of weights representing (a) its
importance in each document and (b) its importance in the whole document collection.
In a similar way, a query is described by a set of termsets with a weight representing
the importance of each termset in the query. The algebraic representation of the set
of termsets for both documents and queries correspond to vectors in a 2t-dimensional
Euclidean space, where t is equal to the number of unique index terms in the document
collection.

3.1 Termset Weights

Term weights can be calculated in many different ways [8, 9]. The best known term
weighting schemes use weights that are function of (i) tfi,j , the number of times that an

174 Bruno Pôssas et al.

index term i occurs in a document j and (ii) dfi, the number of documents that an index
term i occurs in the whole document collection. Such term-weighting strategy is called
tf × idf schemes. The expression for idfi represents the importance of term i in the
collection, it assigns a high weight to terms which are encountered in a small number of
documents in the collection, supposing that rare terms have high discriminating value.

In the set-based model, the association rules scheme naturally provides for quantifi-
cation of representative patterns of term co-occurrences, something that is not present
in the tf × idf approach. To determine the weights associated with the termsets, we
also use the number of occurrences of a termset in a document, in a query, and in the
whole collection. Formally, the weight of a termset i in a document j is defined as:

wi,j = (1 + log sfi,j) × idsi = (1 + log sfi,j) × log (1 +
N

dsi
) (1)

where N is the number of documents in the collection, sfi,j is the number of occur-
rences of the termset i in document dj , and idsi is the inverted frequency of occurrence
of the termset si in the collection. sfi,j generalizes tfi,j in the sense that it counts the
number of times that the termset si appears in document dj . The component idsi also
carries the same semantics of idfi, but accounting for the cardinality of the termsets
as follows. High-order termsets usually have low frequency, resulting in large inverted
frequencies. Thus, this strategy assigns large weights to termsets that appear in small
number of documents, that is, rare termsets result in greater weights.

3.2 Similarity Calculation

Since documents and queries are represented as vectors, we assign a similarity measure
to every document containing any of the query termsets, defined as the normalized
scalar product between the set of document vectors dj , 1 ≤ j ≤ N , and the query
vector q. This approach its equivalent to the cosine of the angle between these two
vectors. The similarity between a document dj and a query q is defined as:

sim(q, dj) =
dj • q

|dj| × |q| =

∑
s∈Sq

ws,j × ws,q

|dj | × |q| , (2)

where ws,j is the weight associated with the termset s in document dj , ws,q is the
weight associated with the termset s in query q, Sq is the set of all termsets such that all
s ⊆ q. We observe that the normalization (i.e., the factors in the denominator) was not
expanded, as usual. The normalization is done using only the 1-termsets that compose
the query and document vectors. This is important to reduce computational costs be-
cause computing the norm of a document using termsets might be prohibitively costly.

3.3 Searching Algorithm

The steps performed by the set-based model to the calculation of the similarity met-
rics are equivalent to the standard vector space model. Figure 1 presents the searching
algorithm. First we create the data structures (line 4) that are used for calculating the
document similarities A among all termsets Sq of a document dj . Then, for each query

Processing Conjunctive and Phrase Queries with the Set-Based Model 175

term, we retrieve its inverted list, and determine the first frequent termsets, i.e., the fre-
quent termsets of size equal to 1, applying the minimal frequency threshold mf (lines
5 to 10). The next step is the enumeration of all termsets based on the 1-termsets, fil-
tered by the minimal frequency and proximity threshold (line 11). After enumerating
all termsets, we evaluated its inverted lists, calculating the partial similarity of a termset
si ∈ Sq to a document dj (lines 12 to 17). After evaluating termsets, we normalize the
document similarities A by dividing each document similarity Aj ∈ A by the norm of
the document dj (line 18). The final step is to select the k largest similarities and return
the corresponding documents (line 19).

SBM(Q, mf , mp, k)
Q : a set of query terms
mf : minimum frequency threshold
mp : minimum proximity threshold
k : number of documents to be returned

1. Let A be a set of accumulators
2. Let Cq be a set of 1-termsets
3. Let Sq be a set of termsets
4. A = ∅, S = ∅
5. for each query term t ∈ Q do begin
6. if dft ≥ mf then begin
7. Obtain the 1-termset st from term t
8. Cq = Cq ∪ {st}
9. end
10. end
11. Sq = Termsets Gen(Cq, mf, mp)
12. for each termset si ∈ Sq do begin
13. for each [dj , sfi,j] in lsi do begin
14. if Aj /∈ A then A = A ∪ {Aj}
15. Aj = Aj + wsi,j × wsi,q , from Eq. (1).
16. end
17. end
18. for each accumulator Aj ∈ A do Aj = Aj ÷ |dj |
19. determine the k largest Aj ∈ A and return the corresponding documents
20. end

Fig. 1. The set-based model searching algorithm

3.4 Computational Complexity

The complexity of the standard vector space model and the set-based model is linear
with respect to the number of documents in the collection. Formally, the upper bound
on the number of operations performed for satisfying a query in the vector space model
is O(|q| × N), where |q| is the number of terms in the query and N is the number
of documents in the collection. The worst case scenario for the vector space model is

176 Bruno Pôssas et al.

a query comprising the whole vocabulary t (|q| = t), which results in a merge of all
inverted lists in the collection. The computational complexity for set-based model is
O(cN), where c is the number of termsets, a value that is O(2|q|), where |q| is the
number of terms in the query. These are worst case measures and the average measures
for the constants involved are much smaller [1, 2].

4 Modeling Conjunctive and Phrase Queries in SBM

In this section we show how to model conjunctive and phrase queries using the frame-
work provided by the original set-based model (see Section 3). Our approach does not
modify its algebraic representation, and the changes to the original model are minimal.

4.1 Conjunctive Queries

The main modification of set-based model for the conjunctive and phrase query pro-
cessing is related to the enumeration of termsets. In the original version of the set-based
model, the enumeration algorithm determines all closed termsets for a given user query,
and the minimal frequency and proximity thresholds. Each mined closed termset repre-
sents a valid co-occurrence pattern in the space of documents defined by the terms of
the query. For disjunctive queries, each one of these patterns contributes for the simi-
larity between a document and a query. The conjunctive query processing requires that
only the co-occurrence pattern defined for the query can be found, i.e., the occurrence
of all query terms in a given document must be valid. If so, this document can be added
to the response set.

A maximal termset corresponds to a frequent termset that is not a subset of any other
frequent termset (see definition 4). Based on this definition, we can extend the original
set-based model enumerating the set of maximal termsets for a given user query instead
of the set of closed termsets. To verify if the enumerated set is valid, we check the
following conditions. First, the mined set of maximal termsets must be composed by an
unique element. Second, this element must have all query terms. If all these conditions
are true, we can evaluate the inverted list of maximal termset found, calculating its
partial similarity to each document dj (lines 12 to 17 of the algorithm of Figure 1).
The final steps are the normalization of document similarities and the selection of the k
largest similarities, returning the corresponding documents.

The proximity information is used as a pruning strategy to find only the maximal
termset occurrences bounded by the minimal proximity threshold, conforming with the
assumption that semantically related term occurrences often occur closer to each other.
This pruning strategy is incorporated in the maximal termsets enumeration algorithm.

4.2 Phrase Queries

Search engines are used to find data in response to ad hoc queries. However, a significant
fraction of the queries include phrases, where the user has indicated that some of the
query terms must be adjacent, typically by enclosing them in quotation marks. Phrases

Processing Conjunctive and Phrase Queries with the Set-Based Model 177

have the advantage of being unambiguous concept markers and are therefore viewed as
a valuable addition to ranked queries.

A standard way to evaluate phrase queries is to use an inverted index, in which
for each index term there is a list of postings, and each posting includes a document
identifier, an in-document frequency, and a list of ordinal word positions at which term
occurs in the document. Given such a word-level inverted index and a phrase query,
it is straightforward to combine the postings lists for the query to identify matching
documents and to rank them using the standard vector space model.

The original set-based model can be easily adapted to handle phrase queries. To
achieve this, we enumerate the set of maximal termsets instead of the set of closed
termsets, using the same restrictions applied for conjunctive queries. To verify if the
query terms are adjacent, we just check if its ordinal word positions are adjacents. The
proximity threshold is then set to one and is used to evaluated this referential constraint.

We may expect that this extension to the set-based model is suitable for selecting
just maximal termsets representing strong correlations, increasing the retrieval effec-
tiveness of both type of the queries. Our experimental results(see Section 5.3) confirm
such observations.

5 Experimental Evaluation

In this section we describe experimental results for the evaluation of the set-based model
(SBM) for conjunctive and phrase queries in terms of both effectiveness and computa-
tional efficiency. Our evaluation is based on a comparison to the standard vector space
model (VSM). We first present the experimental setup and the reference collections
employed, and then discuss the retrieval performance and the computational efficiency.

5.1 Experimental Setup

In this evaluation we use two reference collections that comprise not only the docu-
ments, but also a set of example queries and the relevant responses for each query, as
selected by experts. We quantify the retrieval effectiveness of the various approaches
through standard measures of average recall and precision. The computational effi-
ciency is evaluated through the query response time, that is, the processing time to
select and rank the documents for each query.

The experiments were performed on a Linux-based PC with a AMD-athlon 2600+
2.0 GHz processor and 512 MBytes RAM. Next we present the reference collections
used, followed by the results obtained.

5.2 The Reference Collections

In our evaluation we use two reference collections WBR99 and TReC-8 [4]. Table 1
presents the main features of these collections.

The WBR99 reference collection is composed of a database of Web pages, a set of
example Web queries, and a set of relevant documents associated with each example
query. The database is composed of 5,939,061 pages of the Brazilian Web, under the

178 Bruno Pôssas et al.

Table 1. Characteristics of the reference collections

Characteristics
Collection

TReC-8 WBR99
Number of Documents 528,155 5,939,061
Number of Distinct Terms 737,833 2,669,965
Number of Topics 450 100,000
Number of Used Topics 50 (401-450) 50
Average Terms per Query 4.38 1.94
Average Relevants per Query 94.56 35.40
Size (GB) 2 16

domain “.br”. We decided to use this collection because it represents a highly connected
subset of the Web, that is large enough to provide good prediction of the results if the
whole Web was used, and, at the same time, is small enough to be handled by our
available computational resources.

A total of 50 example queries were selected from a log of 100 000 queries submitted
to the TodoBR search engine1. The queries selected were the 50 most frequent ones with
more than two terms. Some frequent queries related to sex were not considered. The
mean number of keywords per query is 3.78. The sets of relevant documents for each
query were build using pooling method used for the Web-based TREC collection [10].
We compose a query pool formed by the top 15 documents generated by each evaluated
model for both query types. Each query pool contained an average of 19.91 documents
for conjunctive queries and 18.77 for phrase queries. All documents present in each
query pool were submitted to a manual evaluation by a group of 9 users, all of them
familiar with Web searching. The average number of relevant documents per query is
12.38 and 6.96 for conjunctive and phrase queries, respectively.

The TReC-8 collection [4] has been growing steadily over the years. At TREC-
8, which is used in our experiments, the collection size was roughly 2 gigabytes. The
documents presents in the TReC-8 collection are tagged with SGML to allow easy
parsing, and come from the following sources: The Financial Times, Federal Register,
Congressional Record, Foreign Broadcast Information Service and LA Times.

The TReC collection includes a set of example information requests (queries) which
can be used for testing a new ranking algorithm. Each request is a description of an
information need in natural language. The TReC-8 has a total of 450 queries, usually
referred as a topic. Our experiments are performed with the 401-450 range of topics.
This range of topics has 4.38 index terms per query.

5.3 Retrieval Performance

We start our evaluation by verifying the precision-recall curves for each model when
applied to the reference collection. Each curve quantifies the precision as a function
of the percentage of documents retrieved (recall). The results presented for SBM for
both query types were obtained by setting the minimal frequency threshold to a one

1 http://www.todobr.com.br

Processing Conjunctive and Phrase Queries with the Set-Based Model 179

document. The minimal proximity threshold was not used for the conjunctive queries
evaluation, and set to one for the phrase queries.

As we can see in Table 2, SBM yields better precision than VSM, regardless of the
recall level. Further, the gains increase with the size of queries, because large queries
allow computing a more representative termset, and are consistently greater for the both
query types. Furthermore, accounting for correlations among terms never degrades the
quality of the response sets. We confirm such observations by verifying the overall
average precision achieved for each model. The gains provided by SBM over the VSM
in terms of overall precision was 7.82% and 23.32% for conjunctive queries and 9.73%
and 18.98% for phrase queries for WBR99 and TReC-8 collections, respectively.

Table 2. Recall-precision curves for VSM and SBM

(a) Conjunctive queries results

Precision(%)
Recall (%) WBR99 TReC-8

VSM SBM VSM SBM
0 44.14 48.81 63.17 74.41

10 43.03 48.81 44.06 53.63
20 42.23 46.13 33.87 38.56
30 38.40 41.93 26.36 31.81
40 37.41 39.66 20.11 25.69
50 37.41 39.32 15.35 21.24
60 36.71 37.74 10.22 16.66
70 33.97 36.53 7.63 10.88
80 29.62 32.55 6.48 7.24
90 27.27 28.25 3.90 5.13

100 25.00 26.29 3.67 4.32
Average 35.92 38.73 21.35 26.33

Improvement - 7.82 - 23.32

(b) Phrase queries results

Precision(%)
Recall (%) WBR99 TReC-8

VSM SBM VSM SBM
0 48.71 51.38 42.41 45.15

10 41.48 43.58 20.21 28.61
20 27.83 31.91 16.07 21.71
30 21.13 23.35 12.47 15.70
40 17.59 18.67 11.19 13.92
50 10.54 11.71 9.25 10.47
60 4.18 5.22 7.64 8.85
70 2.94 3.49 6.62 6.97
80 2.09 2.96 3.92 4.00
90 1.03 1.57 3.30 3.44
100 0.23 1.23 3.24 3.37

Average 16.16 17.73 12.39 14.75
Improvement - 9.73 - 18.98

In summary, set-based model (SBM) is the first information retrieval model that
exploits term correlations and term proximity effectively and provides significant gains
in terms of precision, regardless of the query type. In the next section we discuss the
computational costs associated with SBM.

5.4 Computational Efficiency

In this section we compare our model to the standard vector space model regarding
the query response time, in order to evaluate its feasibility in terms of computational
costs. This is important because one major limitation of existing models that account
for term correlations is their computational cost. Several of these models cannot be
applied to large or even mid-size collections since their costs increase exponentially
with the vocabulary size.

180 Bruno Pôssas et al.

We compared the response time for the models and collections considered, which
are summarized in Table 3. We also calculated the increase of the response time of
SBM when compared to VSM for both query types. All 100,000 queries submitted to
the TodoBR search engine, excluding the unique term queries, was evaluated for the
WBR99 collection. We observe that SBM results in a response time increase of 6.21%
and 24.13% for conjunctive queries and 14.67% and 23.68% for phrase queries when
compared to VSM for WBR99 and TReC-8, respectively.

Table 3. Average response time for VSM and SBM

Avg. Response Time (s)
Query Type WBR99 TReC-8

VSM SBM VSM SBM
conjunctive 0.632 0.671 0.029 0.036
phrase 1.491 1.709 0.038 0.047

We identify one main reason for the relatively small increase in execution time for
SBM. Determining maximal termsets and calculating their similarity do not increase
significantly the cost associated with queries. This fact happens due to the small num-
ber of query related termsets in the reference collections, especially for WBR99. As
a consequence, the inverted lists associated tend to be small and are usually manip-
ulated in main memory in our implementation of SBM. Second, we employ pruning
techniques that discard irrelevant termsets early in the computation, as described in [1].

6 Related Work

The vector space model was proposed by Salton [11, 12], and different weighting
schemes were presented [8, 9]. In the vector space model, index terms are assumed
to be mutually independent. The independence assumption leads to a linear weighting
function which, although not necessarily realistic, is ease to compute.

Different approaches to account for co-occurrence among index terms during the
information retrieval process have been proposed [13, 14, 15]. The work in [16] presents
an interesting approach to compute index term correlations based on automatic indexing
schemes, defining a new information retrieval model called generalized vector space
model. Wong et al. [17] extended the generalized vector space model to handle queries
specified as boolean expressions.

The set-based model was the first information retrieval model that exploits term
correlations and term proximity effectively and provides significant gains in terms of
precision, regardless of the size of the collection and of the size of the vocabulary [1,
2]. Experimental results showed significant and consistent improvements in average
precision curves in comparison to the vector space model and to the generalized vector
space model, keeping computational cost small.

Our work differs from that presented in the following way. First, all known ap-
proaches that account for co-occurrence patterns was initially designed for processing

Processing Conjunctive and Phrase Queries with the Set-Based Model 181

disjunctive (OR) queries. Our extension to the set-based model provides a simple, ef-
fective and efficient way to process conjunctive (AND) and phrase queries. Experimen-
tal results show significant and consistent improvements in average precision curves
in comparison to the standard vector space model adapted to process these types of
queries, keeping processing times close to the times to process the vector space model.

The work in [18] introduces a theoretical framework for the association rules mining
based on a boolean model of information retrieval known as Boolean Retrieval Model.
Our work differs from that presented in the following way. In our work we use associ-
ation rules to define a new information retrieval model that provides not only the main
term weights and assumptions of the tf × idf scheme, but also provides for quantifi-
cation of term co-occurrence and can be successfully used in processing of disjunctive,
conjunctive and phrase queries.

Ahonen-Myka [19] employs a versatile technique, based on maximal frequent se-
quences, for finding complex text phrases from full text for further processing and
knowledge discovery. Our work also use the concept of maximal termsets/sequences
to account for term co-occurrence patterns in documents, but the termsets are, success-
fully, used as a basis for an information retrieval model.

7 Conclusions and Future Work

We presented an extension for the set-based model to consider correlations among in-
dex terms in conjunctive and phrase queries. We show that it is possible to signifi-
cantly improve retrieval effectiveness, while keeping extra computational costs small.
The computation of correlations among index terms using maximal termsets enumer-
ated by an algorithm to generate association rules leads to a direct extension of the
set-based model. Our approach does not modify its algebraic representation, and the
changes to the original model are minimal.

We evaluated and validated our proposed extension for the set-based model for con-
junctive and phrase queries in terms of both effectiveness and computational efficiency
using two test collections. We show through curves of recall versus precision that our
extension presents results that are superior for all query types considered and the addi-
tional computational costs are acceptable. In addition to assessing document relevance,
we also showed that the proximity information has application in identifying phrases
with a greater degree of precision.

Web search engines are rapidly emerging into the most important application of
the World Wide Web, and query segmentation is one of the most promising techniques
to improve search precision. This technique reduce the query into a form that is more
likely to express the topic(s) that are asked for, and in a suitable manner for a word-
based or phrase-based inverse lookup, and thus improve precision of the search. We
will use the set-based model for automatic query segmentation.

References

1. Pôssas, B., Ziviani, N., Meira, W., Ribeiro-Neto, B.: Set-based model: A new approach for
information retrieval. In: The 25th ACM-SIGIR Conference on Research and Development
in Information Retrieval, Tampere, Finland (2002) 230–237

182 Bruno Pôssas et al.

2. Pôssas, B., Ziviani, N., Meira, W.: Enhancing the set-based model using proximity informa-
tion. In: The 9th International Symposium on String Processing and Information Retrieval,
Lisbon, Portugal (2002)

3. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. In: Proceedings of the ACM SIGMOD International Conference Manage-
ment of Data, Washington, D.C. (1993) 207-216

4. Voorhees, E., Harman, D.: Overview of the eighth text retrieval conference (trec 8). In: The
Eighth Text Retrieval Conference, National Institute of Standards and Technology (1999)
1–23

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: The 20th Interna-
tional Conference on Very Large Data Bases, Santiago, Chile (1994) 487-499

6. Zaki, M.J.: Generating non-redundant association rules. In: 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Boston, MA, USA (2000) 34-43

7. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Proceedings of the
2001 IEEE International Conference on Data Mining. (2001) 163-170

8. Yu, C.T., Salton, G.: Precision weighting – an effective automatic indexing method. In:
Journal of the ACM. Volume 23(1). (1976) 76–88

9. Salton, G., Buckley, C.: Term-weighting approaches in automatic retrieval. In: Information
Processing and Management. Volume 24(5). (1988) 513–523

10. Hawking, D., Craswell, N.: Overview of TREC-2001 web track. In: The Tenth Text RE-
trieval Conference (TREC-2001), Gaithersburg, Maryland, USA (2001) 61–67

11. Salton, G., Lesk, M.E.: Computer evaluation of indexing and text processing. In: Journal of
the ACM. Volume 15(1). (1968) 8–36

12. Salton, G.: The SMART retrieval system – Experiments in automatic document processing.
Prentice Hall Inc., Englewood Cliffs, NJ (1971)

13. Raghavan, V.V., Yu, C.T.: Experiments on the determination of the relationships between
terms. In: ACM Transactions on Databases Systems. Volume 4. (1979) 240–260

14. Harper, D.J., Rijsbergen, C.J.V.: An evaluation of feedback in document retrieval using co-
occurrence data. In: Journal of Documentation. Volume 34. (1978) 189–216

15. Salton, G., Buckley, C., Yu, C.T.: An evaluation of term dependencies models in information
retrieval. In: The 5th ACM-SIGIR Conference on Research and Development in Information
Retrieval. (1982) 151-173

16. Wong, S.K.M., Ziarko, W., Raghavan, V.V., Wong, P.C.N.: On modeling of information re-
trieval concepts in vector spaces. In: The ACM Transactions on Databases Systems. Volume
12(2). (1987) 299–321

17. Wong, S.K.M., Ziarko, W., Raghavan, V.V., Wong, P.C.N.: On extending the vector space
model for boolean query processing. In: Proceedings of the 9th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy,
September 8-10, 1986, ACM (1986) 175–185

18. Bollmann-Sdorra, P., Hafez, A., Raghavan, V.V.: A theoretical framework for association
mining based on the boolean retrieval model. In: Data Warehousing and Knowledge Discov-
ery: Third International Conference, Munich, Germany (2001) 21–30

19. Ahonen-Myka, H., Heinonen, O., Klemettinen, M., Verkamo, A.: Finding co-occurring text
phrases by combining sequence and frequent set discovery. In Feldman, R., ed.: Proceedings
of 16th International Joint Conference on Artificial Intelligence IJCAI-99 Workshop on Text
Mining: Foundations, Techniques and Applications, Stockholm, Sweden (1999) 1–9

Metric Indexing for the Vector Model
in Text Retrieval

Tomáš Skopal1, Pavel Moravec2, Jaroslav Pokorný1, and Václav Snášel2

1 Charles University in Prague, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic, EU

tomas@skopal.net, jaroslav.pokorny@mff.cuni.cz
2 VŠB – Technical University of Ostrava, Department of Computer Science,

17. listopadu 15, 708 33 Ostrava, Czech Republic, EU
{pavel.moravec,vaclav.snasel}@vsb.cz

Abstract. In the area of Text Retrieval, processing a query in the vector
model has been verified to be qualitatively more effective than searching
in the boolean model. However, in case of the classic vector model the
current methods of processing many-term queries are inefficient, in case
of LSI model there does not exist an efficient method for processing
even the few-term queries. In this paper we propose a method of vector
query processing based on metric indexing, which is efficient especially
for the LSI model. In addition, we propose a concept of approximate
semi-metric search, which can further improve the efficiency of retrieval
process. Results of experiments made on moderate text collection are
included.

1 Introduction

The Text Retrieval (TR) models [4, 3] provide a formal framework for retrieval
methods aimed to search huge collections of text documents. The classic vector
model as well as its algebraic extension LSI have been proved to be more effec-
tive (according to precision/recall measures) than the other existing models1.
However, current methods of vector query processing are not much efficient for
many-term queries, while in the LSI model they are inefficient at all. In this pa-
per we propose a method of vector query processing based on metric indexing,
which is highly efficient especially for searching in the LSI model.

1.1 Classic Vector Model

In the classic vector model, each document Dj in a collection C (0 ≤ j ≤ m,
m = |C|) is characterized by a single vector dj , where each coordinate of dj is
associated with a term ti from the set of all unique terms in C (0 ≤ i ≤ n, where
n is the number of terms). The value of a vector coordinate is a real number
wij ≥ 0 representing the weight of the i-th term in the j-th document. Hence,

1 For a comparison over various TR models we refer to [20, 11].

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 183–195, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

184 Tomáš Skopal et al.

a collection of documents can be represented by an n × m term-by-document
matrix A. There are many ways how to compute the term weights wij stored
in A. A popular weight construction is computed as tf ∗ idf (see e.g. [4]).

Queries. The most important problem about the vector model is the querying
mechanism that searches matrix A with respect to a query, and returns only the
relevant document vectors (appropriate documents respectively). The query is
represented by a vector q the same way as a document is represented. The goal is
to return the most similar (relevant) documents to the query. For this purpose,
a similarity function must be defined, assessing a similarity value to each pair
of query and document vectors (q, dj). In the context of TR, the cosine measure
SIMcos(q, dj) =

∑ n
k=1 qk·wkj√∑ n

k=1 qk
2·∑ n

k=1 wkj
2

is widely used. During a query processing,

the columns of A (the document vectors) are compared against the query vector
using the cosine measure, while the sufficiently similar documents are returned
as a result. According to the query extent, we distinguish range queries and
k-nearest neighbors (k-NN) queries. A range query returns documents similar to
the query more than a given similarity threshold. A k-NN query returns the k
most similar documents.

Generally, there are two ways how to specify a query. First, a few-term query
is specified by the user using a few terms, while an appropriate vector for such
a query is very sparse. Second, a many-term query is specified using a text
document, thus the appropriate query vector is usually more dense. In this paper
we focus just on the many-term queries, since they better satisfy the similarity
search paradigm which the vector model should follow.

1.2 LSI Vector Model (Simplified)

Simply said, the LSI (latent semantic indexing) model [11, 4] is an algebraical
extension of the classic vector model. First, the term-by-document matrix A is
decomposed by singular value decomposition (SVD) as A = UΣV T . The matrix
U contains concept vectors, where each concept vector is a linear combination
of the original terms. The concepts are meta-terms (groups of terms) appearing
in the original documents. While the term-by-document matrix A stores doc-
ument vectors, the concept-by-document matrix ΣV T stores pseudo-document
vectors. Each coordinate of a pseudo-document vector represents a weight of an
appropriate concept in a document.

Latent Semantics. The concept vectors are ordered with respect to their sig-
nificance (appropriate singular values in Σ). Consequently, only a small number
of concepts is really significant – these concepts represent (statistically) the main
themes present in the collection – let us denote this number as k. The remaining
concepts are unimportant (noisy concepts) and can be omitted, thus the dimen-
sionality is reduced from n to k. Finally, we obtain an approximation (rank-k
SVD) A ≈ UkΣkV T

k , where for sufficiently high k the approximation error will

Metric Indexing for the Vector Model in Text Retrieval 185

be negligible. Moreover, for a low k the effectiveness can be subjectively even
higher (according to the precision/recall values) than for a higher k [3]. When
searching in a real-world collection, the optimal k is usually ranged from several
tens to several hundreds. Unlike the term-by-document matrix A, the concept-
by-document matrix ΣkV T

k as well as the concept base matrix U are dense.

Queries. Searching for documents in the LSI model is performed the same way
as in the classic vector model, the difference is that matrix ΣkV T

k is searched
instead of A. Moreover, the query vector q must be projected into the concept
base, i.e. UT

k q is the pseudo-query vector used by LSI. Since the concept vectors
of U are dense, a pseudo-query vector is dense as well.

1.3 Vector Query Processing

In this paper we focus on efficiency of vector query processing. More specifically,
we can say that a query is processed efficiently in case that only a small propor-
tion of the matrix storage volume is needed to load and process. In this section
we outline several existing approaches to the vector query processing.

Document Vector Scanning. The simplest method how to process a query
is the sequential scanning of all the document vectors (i.e. the columns of A,
ΣkV T

k respectively). Each document vector is compared against the query vector
using the similarity function, while sufficiently similar documents are returned
to the user. It is obvious that for any query the whole matrix must be processed.
However, sequential processing of the whole matrix is sometimes more efficient
(from the disk management point of view) than a random access to a smaller
part of the matrix used by some other methods.

Term Vector Filtering. For sparse query vectors (few-term queries respec-
tively), there exists a more efficient scanning method. Instead of the document
vectors, the term vectors (i.e. the rows of the matrix) are processed. The cosine
measure is computed simultaneously for all the document vectors, “orthogo-
nally” involved in the term vectors. Due to the simultaneous cosine measure
evaluation a set of m accumulators (storing the evolving similarities between
each document and the query) must be maintained in memory. The advantage
of term filtering is that only those term vectors must be scanned, for which the
appropriate term weights in the query vector are nonzero. The term vector fil-
tering can be easily provided using an inverted file – as a part of the boolean
model implementation [15].

The simple method of term filtering has been improved by an approximate
approach [19] reducing the time as well as space costs. Generally, the improve-
ment is based on early termination of query processing, exploiting a restructured
inverted file where the term entries are sorted according to the decreasing occur-
rences of a term in document. Thus, the most relevant documents in each term

186 Tomáš Skopal et al.

entry are processed first. As soon as the first document is found in which the
number of term occurrences is less than a given addition threshold, the process-
ing of term entry can stop, because all the remaining documents have the same
or less importance as the first rejected document. Since some of the documents
are never reached during a query processing, the number of used accumulators
can be smaller than m, which saves also the space costs. Another improvement
of the inverted file exploiting quantized weights was proposed recently [2], even
more reducing the search costs.

Despite the above mentioned improvements, the term vector filtering is gen-
erally not so much efficient for many-term queries, because the number of filtered
term vectors is decreased. Moreover, the term vector filtering is completely use-
less for the LSI model, since each pseudo-query vector is dense, and none of the
term vectors can be skipped.

Signature Methods. Signature files are a popular filtering method in the
boolean model [13], however, there were only few attempts made to use them in
the vector model. In that case, the usage of signature files is not so straightfor-
ward due to the term weights. Weight-partitioned signature files (WPSF) [14]
try to solve the problem by recording the term weights in so-called TF-groups.
A sequential file organization was chosen for the WPSF which caused excessive
search of the signature file. An improvement was proposed recently [16] using the
S-trees [12] to speedup the signature file search. Another signature-like approach
is the VA-file [6]. In general, usage of the signature methods is still complicated
for the vector model, and the results achieved so far are rather poor.

2 Metric Indexing

Since in the vector model the documents are represented as points within an
n-dimensional vector space, in our approach we create an index for the term-
by-document matrix (for the concept-by-document matrix in case of LSI) based
on metric access methods (MAMs) [8]. A property common to all MAMs is that
they exploit only a metric function for the indexing. The metric function stands
for a similarity function, thus metric access methods provide a natural way for
similarity search. Among many of MAMs, we have chosen the M-tree.

2.1 M-Tree

The M-tree [9, 18, 21] is a dynamic data structure designed to index objects of
metric datasets. Let us have a metric space M = (U, d) where U is an object
universe (usually a vector space), and d is a function measuring distance between
two objects in U. The function d must be a metric, i.e. it must satisfy the axioms
of reflexivity, positivity, symmetry and triangular inequality. Let S ⊆ U be a
dataset to be indexed. In case of the vector model in TR, an object Oi ∈ S is
represented by a (pseudo-)document vector of a document Di. The particular
metric d, replacing the cosine measure, will be introduced in Section 2.2.

Metric Indexing for the Vector Model in Text Retrieval 187

Like the other indexing trees based on B+-tree, the M-tree structure is a
balanced hierarchy of nodes. In M-tree the objects are distributed in a hierarchy
of metric regions (each node represents a single metric region) which can be,
in turn, interpreted as a hierarchy of object clusters. The nodes have a fixed
capacity and a minimum utilization threshold. The leaf nodes contain ground
entries grnd(Oi) of the indexed objects themselves, while in the inner nodes the
routing entries rout(Oj) are stored, representing the metric regions and routing
to their covering subtrees. Each routing entry determines a metric region in space
M where the object Oj is a center of that region and rOj is a radius bounding the
region. For the hierarchy of metric regions (routing entries rout(Oj) respectively)
in the M-tree, the following requirement must be satisfied:

All the objects of ground entries stored in the leaves of the covering subtree
of rout(Oj) must be spatially located inside the region defined by rout(Oj).

The most important consequence of the above requirement is that many
regions on the same M-tree level may overlap. An example in Figure 1 shows
several objects partitioned among metric regions and the appropriate M-tree.
We can see that the regions defined by rout1(O1), rout1(O2), rout1(O4) overlap.
Moreover, object O5 is located inside the regions of rout1(O1) and rout1(O4) but
it is stored just in the subtree of rout1(O4). Similarly, the object O3 is located
even in three regions but it is stored just in the subtree of rout1(O2).

Fig. 1. Hierarchy of metric regions (a) and the appropriate M-tree (b)

Similarity Queries in the M-Tree. The structure of M-tree natively supports
similarity queries. The similarity function is represented by the metric function
d where the close objects are interpreted as similar.

A range query RangeQuery(Q,rQ) is specified as a query region given by a
query object Q and a query radius rQ. The purpose of a range query is to retrieve
all such objects Oi satisfying d(Q, Oi) ≤ rQ. A k-nearest neighbours query (k-
NN query) kNNQuery(Q,k) is specified by a query object Q and a number k. A
k-NN query retrieves the first k nearest objects to Q.

188 Tomáš Skopal et al.

During the range query processing (k-NN query processing respectively), the
M-tree hierarchy is being traversed down. Only if a routing entry rout(Oj) (its
metric region respectively) overlaps the query region, the covering subtree of
rout(Oj) is relevant to the query and thus further processed.

2.2 Application of M-Tree in the Vector Model

In the vector model the objects Oi are represented by (pseudo-)document vec-
tors di, i.e. by columns of term-by-document or concept-by-document matrix,
respectively. We cannot use the cosine measure SIMcos(di, dj) as a metric func-
tion directly, since it does not satisfy the metric axioms. As an appropriate
metric, we define the deviation metric ddev(di, dj) as a vector deviation

ddev(di, dj) = arccos(SIMcos(di, dj))

The similarity queries supported by M-tree (utilizing ddev) are exactly those
required for the vector model (utilizing SIMcos). Specifically, the range query
will return all the documents that are similar to a query more than some given
threshold (transformed to the query radius) while the k-NN query will return
the first k most similar (closest respectively) documents to the query.

In the M-tree hierarchy similar documents are clustered among metric re-
gions. Since the triangular inequality for ddev is satisfied, many irrelevant doc-
ument clusters can be safely pruned during a query processing, thus the search
efficiency is improved.

3 Semi-metric Search

In this section we propose the concept of semi-metric search – an approximate
extension of metric search applied to M-tree. The semi-metric search provides
even more efficient retrieval, considerably resistant to the curse of dimensionality.

3.1 Curse of Dimensionality

The metric indexing itself (as is experimentally verified in Section 4) is benefi-
cial for searching in the LSI model. However, searching in a collection of high-
dimensional document vectors of the classic vector model is negatively affected
by a phenomenon called curse of dimensionality [7, 8]. In the M-tree hierar-
chy (even the most optimal hierarchy) the curse of dimensionality causes that
clusters of high-dimensional vectors are not distinct, which is reflected by huge
overlaps among metric regions.

Intrinsic Dimensionality. In the context of metric indexing, the curse of
dimensionality can be generalized for general metric spaces. The major condition
determining the success of metric access methods is the intrinsic dimensionality
of the indexed dataset. The intrinsic dimensionality of a metric dataset (one of
the interpretations [8]) is defined as

Metric Indexing for the Vector Model in Text Retrieval 189

ρ =
µ2

2σ2

where µ and σ2 are the mean and the variance of the dataset’s distance distri-
bution histogram. In other words, if all pairs of the indexed objects are almost
equally distant, then the intrinsic dimensionality is maximal (i.e. the mean is
high and/or the variance is low), which means the dataset is poorly intrinsically
structured. So far, for datasets of high intrinsic dimensionality there still does
not exist an efficient MAM for exact metric search. In case of M-tree, a high
intrinsic dimensionality causes that almost all the metric regions overlap each
other, and searching in such an M-tree deteriorates to sequential search.

In case of vector datasets, the intrinsic dimensionality negatively depends on
the correlations among coordinates of the dataset vectors. The intrinsic dimen-
sionality can reach up to the value of the classic (embedding) dimensionality. For
example, for uniformly distributed (i.e. not correlated) n-dimensional vectors the
intrinsic dimensionality tends to be maximal, i.e. ρ ≈ n.

In the following section we propose a concept of semi-metric modifications
that decrease the intrinsic dimensionality and, as a consequence, provide a way
to efficient approximate similarity search.

3.2 Modification of the Metric

An increase of the variance of distance distribution histogram is a straightforward
way how to decrease the intrinsic dimensionality. This can be achieved by a
suitable modification of the original metric, preserving the similarity ordering
among objects in the query result.
Definition 1. Let us call the increasing modification df

dev of a metric ddev a
function

df
dev(Oi, Oj) = f(ddev(Oi, Oj))

where f : 〈0, π〉 → R+
0 is an increasing function and f(0) = 0. For simplicity, let

f(π) = 1.
Definition 2. Let s : U × U → R+

0 be a similarity function (or a distance
function) and SimOrders : U → P(S × S) be a function defined as

〈Oi, Oj〉 ∈ SimOrders(Q) ⇔ s(Oi, Q) < s(Oj , Q)

∀Oi, Oj ∈ S, ∀Q ∈ U. In other words, the function SimOrders orders the objects
of dataset S according to the distances to the query object Q.
Proposition. For the metric ddev and every increasing modification df

dev the
following equality holds:

SimOrderddev
(Q) = SimOrderdf

dev
(Q), ∀Q ∈ U

Proof:
“⊂”: The function f is increasing. If for each Oi, Oj , Ok, Ol ∈ U, ddev(Oi, Oj) >
ddev(Ok, Ol) holds, then f(ddev(Oi, Oj)) > f(ddev(Ok, Ol)) must also hold.
“⊃”: The second part of proof is similar. �

190 Tomáš Skopal et al.

As a consequence of the proposition, if we process a query sequentially over
the entire dataset S, then it does not matter if we use either ddev or df

dev, since
both of the ways will return the same query result.

If the function f is additionally subadditive, i.e. f(a) + f(b) ≥ f(a + b), then
f is metric-preserving [10], i.e. f(d(Oi, Oj)) is still metric. More specifically,
concave functions are metric-preserving (see Figure 2a), while convex (even par-
tially convex) functions are not – let us call them metric-violating functions (see
Figure 2b). A metric modified by a metric-violating function f is a semi-metric,
i.e. a function satisfying all the metric axioms except the triangular inequality.

Fig. 2. (a) Metric-preserving functions (b) Metric-violating functions

Clustering Properties. Let us analyze the clustering properties of modifica-
tions df

dev (see also Figure 2). For concave f , two objects close to each other
according to ddev are more distant according to df

dev. Conversely, for convex
f , the close objects according to ddev are even closer according to df

dev. As a
consequence, the concave modifications df

dev have a negative influence on clus-
tering, since the object clusters become indistinct. On the other side, the convex
modifications df

dev even more tighten the object clusters, making the cluster
structure of the dataset more evident. Simply, the convex modifications increase
the distance histogram variance, thereby decreasing the intrinsic dimensionality.

3.3 Semi-metric Indexing and Search

The increasing modifications df
dev can be utilized in the M-tree instead of the

deviation metric ddev. In case of a semi-metric modification df
dev, the query

processing is more efficient because of smaller overlaps among metric regions in
the M-tree. Usage of metric modifications is not beneficial, since their clustering
properties are worsen, and the overlaps among metric regions are larger.

Metric Indexing for the Vector Model in Text Retrieval 191

Semi-metric Search. A semi-metric modification df
dev can be used for all op-

erations on the M-tree, i.e. for M-tree building as well as for M-tree searching.
With respect to M-tree construction principles (we refer to [21]) and the propo-
sition in Section 3.2, the M-tree hierarchies built either by d or df

dev are the
same. For that reason, an M-tree built using a metric d can be queried using any
modification df

dev. Such semi-metric queries must be extended by the function f ,
which stands for an additional parameter. For a range query the query radius rQ

must be modified to f(rQ). During a semi-metric query processing, the function
f is applied to each value computed using d as well as it is applied to the metric
region radii stored in the routing entries.

Error of the Semi-metric Search. Since the semi-metric df
dev does not satisfy

the triangular inequality property, a semi-metric query will return more or less
approximate results. Obviously, the error is dependent on the convexity of a
modifying function f . As an output error, we define a normed overlap error

ENO = 1 − |resultMtree ∩ resultscan|
max(|resultMtree|, |resultscan|)

where resultMtree is a query result returned by the M-tree (using a semi-metric
query), and resultscan is a result of the same query returned by sequential search
over the entire dataset. The error ENO can be interpreted as a relative precision
of the M-tree query result with respect to the result of full sequential scan.

Semi-metric Search in Text Retrieval. In the context of TR, the searching
is naturally approximate, since precision/recall values do never reach up to 100%.
From this point of view, the approximate character of semi-metric search is not
a serious limitation – acceptable results can be achieved by choosing such a
modifying function f , for which the error ENO will not exceed some small value,
e.g. 0.1. On the other side, semi-metric search significantly improves the search
efficiency, as it is experimentally verified in the following section.

4 Experimental Results

For the experiments we have chosen the Los Angeles Times collection (a part
of TREC 5) consisting of 131,780 newspaper articles. The entire collection con-
tained 240,703 unique terms. As “rich” many-term queries, we have used articles
consisting of at least 1000 unique terms. The experiments were focused on disk
access costs (DAC) spent during k-NN queries processing. Each k-NN query was
repeated for 100 different query documents and the results were averaged. The
access to disk was aligned to 512B blocks, considering both access to the M-tree
index as well as to the respective matrix. The overall query DAC are presented
in megabytes. The entries of M-tree nodes have contained just the document
vector identifiers (i.e. pointers to the matrix columns), thus the M-tree storage

192 Tomáš Skopal et al.

volume was minimized. In Table 1 the M-tree configuration used for experiments
is presented (for a more detailed description see [21]).

The labels of form Devxxx in the figures below stand for modifying functions
f used by semi-metric search. Several functions of form DevSQp(α) =

(
α
π

)p were
chosen. The queries labeled as Dev represent the original metric queries presented
in Section 2.2.

Table 1. The M-tree configuration

Page size: 512 B; Capacity (leaves: 42, nodes: 21)
Construction: MinMax + SingleWay + SlimDown

Tree height: 4; Avg. util. (leaves: 56%, nodes: 52%)

4.1 Classic Vector Model

First, we performed tests for the classic vector model. The storage of the term-
by-document matrix (in CCS format [4]) took 220 MB. The storage of M-tree
index was about 4MB (i.e. 1.8% of the matrix storage volume (MSV)).

In Figure 3a the comparison of document vector scanning, term vector filter-
ing as well as metric and semi-metric search is presented. It is obvious that using
document vector scanning the whole matrix (i.e. 220 MB DAC) was loaded and
processed. Since the query vectors contained many zero weights, the term vector
filtering worked more efficiently (76 MB DAC, i.e. 34% of MSV).

Fig. 3. Classic vector model: (a) Disk access costs (b) ENO error

The metric search Dev did not performed well – the curse of dimensionality
(n = 240,703) forced almost 100% of the matrix to be processed. The extra
30 MB DAC overhead (beyond the 220 MB of MSV) was caused by the non-
sequential access to the matrix columns. On the other side, the semi-metric
search performed better. The DevSQ10 queries for k = 5 consumed only 30 MB

Metric Indexing for the Vector Model in Text Retrieval 193

DAC (i.e. 13.6% of MSV). Figure 3b shows the normed overlap error ENO of
the semi-metric search. For DevSQ4 queries the error was negligible. The error
for DevSQ6 remained below 0.1 for k > 35. The DevSQ10 queries were affected
by a relatively high error from 0.25 to 0.2 (with increasing k).

4.2 LSI Model

The second set of tests was made for the LSI model. The target (reduced) dimen-
sionality was chosen to be 200. The storage of the concept-by-document matrix
took 105 MB, while the size of M-tree index was about 3 MB (i.e. 2.9 % of MSV).

Because the size of term-by-document matrix was very large, the direct cal-
culation of SVD was impossible. Therefore, we have used a two-step method
[17], which in first step calculates a random projection [1, 5] of document vectors
into a smaller dimensionality of pseudo-concepts. This is done by multiplication
of a zero-mean unit-variance random matrix and the term-by-document matrix.
Second, a rank-2k SVD is calculated on the resulting pseudoconcept-by-document
matrix, giving us a very good approximation of the classic rank-k SVD.

Fig. 4. LSI model: (a) Disk access costs (b) ENO error

The Figure 4a shows that metric search Dev itself was more than twice as
efficient as the document vector scanning. Even better results were achieved by
the semi-metric search. The DevSQ3 queries for k = 5 consumed only 5.8 MB
DAC (i.e. 5.5% of MSV). Figure 4b shows the error ENO. For DevSQ1.5 queries
the error was negligible, for DevSQ2 it remained below 0.06. The DevSQ3 queries
were affected by a relatively high error.

5 Conclusion

In this paper we have proposed a metric indexing method for an efficient search
of documents in the vector model. The experiments have shown that metric in-
dexing itself is suitable for an efficient search in the LSI model. Furthermore,

194 Tomáš Skopal et al.

the approximate semi-metric search allows us to provide quite efficient similarity
search in the classic vector model, and a remarkably efficient search in the LSI
model. The output error of semi-metric search can be effectively tuned by choos-
ing such modifying functions, that preserve an expected accuracy sufficiently.

In the future we would like to compare the semi-metric search with some
other methods, in particular with the VA-file (in case of LSI model). We also
plan to develop an analytical error model for the semi-metric search in M-tree,
allowing to predict and control the output error ENO.

This research has been partially supported by GAČR grant No. 201/00/1031.

References

1. D. Achlioptas. Database-friendly random projections. In Symposium on Principles
of Database Systems, 2001.

2. V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proceedings of the 24th annual international ACM SIGIR, pages
35–42. ACM Press, 2001.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wes-
ley, New York, 1999.

4. M. Berry and M. Browne. Understanding Search Engines, Mathematical Modeling
and Text Retrieval. Siam, 1999.

5. E. Bingham and H. Mannila. Random projection in dimensionality reduction: ap-
plications to image and text data. In Knowledge Discovery and Data Mining, pages
245–250, 2001.

6. S. Blott and R. Weber. An Approximation-Based Data Structure for Similarity
Search. Technical report, ESPRIT, 1999.

7. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

8. E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In
Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01),
LNCS 2153. Springer-Verlag, 2001.

9. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern. Conf.
on VLDB, pages 426–435. Morgan Kaufmann, 1997.

10. P. Corazza. Introduction to metric-preserving functions. Amer. Math Monthly,
104(4):309–23, 1999.

11. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

12. U. Deppisch. S-tree: A Dynamic Balanced Signature Index for Office Retrieval. In
Proceedings of ACM SIGIR, 1986.

13. C. Faloutsos. Signature-based text retrieval methods, a survey. IEEE Computer
society Technical Committee on Data Engineering, 13(1):25–32, 1990.

14. D. L. Lee and L. Ren. Document Ranking on Weight-Partitioned Signature Files.
In ACM TOIS 14, pages 109–137, 1996.

15. A. Moffat and J. Zobel. Fast ranking in limited space. In Proceedings of ICDE 94,
pages 428–437. IEEE Computer Society, 1994.

Metric Indexing for the Vector Model in Text Retrieval 195

16. P. Moravec, J. Pokorný, and V. Snášel. Vector Query with Signature Filtering. In
Proc. of the 6th Bussiness Information Systems Conference, USA, 2003.

17. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), Seattle, pages 159–168, 1998.

18. M. Patella. Similarity Search in Multimedia Databases. Dipartmento di Elettronica
Informatica e Sistemistica, Bologna, 1999.

19. M. Persin. Document filtering for fast ranking. In Proceedings of the 17th annual
international ACM SIGIR, pages 339–348. Springer-Verlag New York, Inc., 1994.

20. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw
Hill Publications, 1st edition, 1983.

21. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building Prin-
ciples. In ADBIS 2003, LNCS 2798, Springer, Dresden, Germany, 2003.

Negations and Document Length in Logical Retrieval

David E. Losada1 and Alvaro Barreiro2

1 Intelligent Systems Group, Department of Electronics and Computer Science
University of Santiago de Compostela, Spain

dlosada@dec.usc.es
2 AIlab, Department of Computer Science,

University of A Coruña, Spain
barreiro@udc.es

Abstract. Terms which are not explicitly mentioned in the text of a document re-
ceive often a minor role in current retrieval systems. In this work we connect the
management of such terms with the ability of the retrieval model to handle partial
representations. A simple logical indexing process capable of expressing negated
terms and omitting some other terms in the representation of a document was
designed. Partial representations of documents can be built taking into account
document length and global term distribution. A propositional model of informa-
tion retrieval is used to exemplify the advantages from such expressive modeling.
A number of experiments applying these partial representations are reported. The
benefits of the expressive framework became apparent in the evaluation.

1 Introduction

For many retrieval systems the set of terms that determines the rank of a certain docu-
ment given a query is solely composed of the terms in common between document and
query. Nevertheless, it is well known that documents are often vague, imprecise and lots
of relevant terms are not mentioned. Since topicality is a key component of retrieval en-
gines, models of Information Retrieval (IR) should avoid to take strong decisions about
the relationship between terms and document’s semantics.

Current practice in IR tends to limit unfairly the impact of terms which are not
explicitly mentioned by a given document. Although the vector-space model maintains
a dimension for every term of the vocabulary, popular weighting schemes assign a null
weight for those terms not explicitly mentioned. Similarly, probabilistic approaches,
whose basic foundations allow to consider all the terms of the alphabet to do retrieval,
tend to reduce the computation to the set of terms explicitly mentioned by a given
document [14]. A notable exception is located in the context of the Language Modeling
(LM) approaches [9, 2]: a term t which is not present in a document d is not considered
as impossible in connection with the document’s semantics but t receives a probability
value greater than zero. This value grows with the global distribution of the term in the
document collection, i.e. if t is frequently used by documents in the collection then it
is possibly related to the document d. This is a valuable approach because it opens a
new way to handle terms not explicitly mentioned in a given document but, on the other
hand, the opposite problem arises: no one term can be considered totally unrelated to

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 196–207, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Negations and Document Length in Logical Retrieval 197

a given document. This is because all the probability values coming from every query
term are multiplied together and, hence, if zero probabilities are allowed then we would
assign a null probability to any document that regards one or more of the query terms
as unrelated.

In this work we propose an alternative way for handling both situations. A term t
which is not explicitly mentioned by a document d may be considered as: a) totally
unrelated to d and, hence, if a query uses t then the document d is penalized (this pe-
nalization should not be as extreme as assigning a retrieval status value of 0 for d) or b)
possibly related to d and, hence, a non-zero contribution is computed for modeling the
possible connection between t and d.

A formalism allowing partiality can distinguish between: a) lack of information
about the actual connection between a given topic and a particular document, b) cer-
tainty that a given topic is completely out of the scope of a given document and c)
certainty that a given topic is totally connected to the contents of a given document. In
particular, logic-based models [15, 1] supply expressive representations in which these
situations can be adequately separated. In this work we use a logical model of IR based
on Propositional Logic and Belief Revision (PLBR) [6, 8] to exemplify the advantages
of the logical modeling. We design a novel logical indexing method which builds ex-
pressive document representations. The logical indexing is driven by global term distri-
bution and document length. In this way, intuitions applied in the context of document
length normalization [13, 11] and LM smoothing techniques [9] can be incorporated
into the logical formalism. This indexing approach was empirically evaluated revealing
the advantages of the approach taken.

The rest of this paper is organized as follows. In section 2 the foundations of the
logical model are presented. This section is intentionally brief because further details
can be found in the literature. Section 3 addresses the construction of partial represen-
tations for documents in connection with global term distribution and document length.
Experiments are reported in section 4 and section 5 offers an analysis a posteriori of the
behaviour of the indexing method. Some conclusions and possible avenues of further
research are presented in section 6.

2 The Model

Given a document and a query represented as propositional formulas d and q, respec-
tively, it is well known that the notion of logical consequence (i.e. d |= q) is rather strict
for retrieval because it yields a binary relevance decision [15]. The PLBR model defines
a measure of closeness between d and q which can straightforwardly be used to build a
formal rank of documents induced by the query [6, 8].

Dalal’s Belief Revision measure of distance between logical interpretations [3]
stands on the basis of the PLBR approach. A query q can be seen as the set of logical
interpretations satisfying q, i.e. the set of models of q. The distance from each model of
the document to the query is computed as the minimum distance from the model of the
document to the query models. The final distance from the document to the query is the
average distance from document models to the query.

Given a model of the document and a model of the query, the original PLBR dis-
tance basically counts the number of disagreements, i.e. the number of propositional

198 David E. Losada and Alvaro Barreiro

letters with different interpretation1. This approach was later extend to define a new
measure of distance between logical interpretations that takes into account inverse doc-
ument frequency (idf) information [4]. Within this measure, every letter mapped into
the same truth value by both interpretations produces an increment to the final dis-
tance that depends on its idf value. Note that this extension maintains the propositional
formalism for representing documents and queries but introduces idf information for
distance computation. As it will be explained later, in this paper we will use idf infor-
mation for producing negated terms in the logical document representations. Observe
that both uses of idf information are different because the former is done at matching
time whereas the latter is done at indexing time.

The PLBR distance can be computed in polynomial time provided that d and q are
in disjunctive normal form (DNF) [7]. A prototype logical system was implemented to
evaluate the PLBR model against large collections. The experiments conducted revealed
important benefits when handling expressions involving both logical conjunctions and
disjunctions [5].

Nevertheless, the logical indexing applied so far was rather simplistic. No major
attention was paid to the design of evolved techniques to produce more expressive doc-
ument logical representations. In particular, the use of logical negations was left aside,
which is precisely the aim of this work.

3 Partial Representations for Documents

The PLBR model has provision for establishing a distinction between a term for which
we do not know whether or not it is significant with respect to a given document’s
semantics and a term for which we have positive evidence that it is not related at all
with document’s contents. The latter case naturally leads to a negated expression of the
term within document’s representation whereas the most sensible decision regarding
the former case is to omit the term in the document’s representation.

We first present some heuristics that can be applied to identify appropriate terms
to be negated and then we give a further step to connect the new logical indexing with
document’s length.

3.1 Negative Term Selection

Let us consider a logical representation of a document in which only the terms that ap-
pear in the text of the document are present as positive literals2 (let us call this conserva-
tive setting as negate-nothing approach). Of course, many of the terms not mentioned
by the document (unseen terms) will undoubtedly be disconnected with document’s
contents and, hence, to omit those terms within the document’s representation does not
seem to be the best choice. On the contrary, a negated representation of those terms
appears as a good alternative. To negate every unseen term is also unfair (negate-all
approach) because there will be many topics that, although not explicitly mentioned,
are strongly connected with document’s semantics.

1 Note that every indexing term is modelled as a propositional letter in the alphabet.
2 A literal is a propositional letter or its negation.

Negations and Document Length in Logical Retrieval 199

We propose a logical indexing strategy that negates some unseen terms selected on
the basis of their distribution in the whole collection. Note that this global information
is also used in the context of LM smoothing strategies for quantifying the relatedness
between unseen terms and document’s contents. More specifically, a null probability is
not assigned for a term which was not seen in the text of a document. The fact that we
have not seen it does not make it impossible. It is often assumed that a non-occurring
term is possible, but no more likely than what would be expected by chance in the
collection.

If a given term is infrequent in the document base then it is very unlikely that doc-
uments that do not mention it are actually related to this topic (and, thus, very unlikely
that any user that wants to retrieve those documents finds the term useful when express-
ing her/his information need). On the other hand, frequent terms are more generic and
have more chance to present connections with the topics of documents even in the case
when they are not explicitly mentioned. This suggests that unseen infrequent terms are
good candidates to formulate negations in the logical indexing process.

The obvious intention when negating a term in a document’s representation is to
move the document away from queries mentioning the term. Consider a query term
which is missing in the text of a given document. If the query term is globally infrequent
and, thus, it had been negated within the document’s representation then the document
will be penalized. On the contrary, if the term is globally frequent and it was omitted
in the document’s representation, then the penalization is much lower. This is intuitive
because frequent terms have much more chance of being connected with the contents
of documents that do not explicitly mentioned them.

3.2 Document Length

We now pay attention to the issue of the number of terms that should be negated in
the representation of every document. In this respect, a first question arises: is it fair to
negate the same number of terms for all documents? In the following we try to give a
motivated answer.

Let Td be the subset of terms of the alphabet (T) that are present in the text of
a document d. Consider that we decide to introduce k negated terms in the logical
representation of d. That is, every term in Td will form a positive literal and k terms in
T \Td (the k terms in T \Td most infrequent in the collection) produce k negated literals.
If we introduce the same number of negations for all documents in the collection we
would be implicitly assuming that all documents had the same chance of mentioning
explicitly all their relevant topics. This assumption is not appropriate.

A long document may simply cover more material than a short one. We can even
think on a long document as a sequence of unrelated short documents concatenated
together. This view is called the scope hypothesis and contrasts with the verbosity hy-
pothesis, in which a long document is supposed to cover a similar scope than a short
document but simply uses more words [11]. It is accepted that the verbosity hypothesis
prevails over the scope hypothesis. Indeed, the control of verbosity stands behind the
success of high performance document length normalization techniques [13, 11].

This also connects with recent advances on smoothing strategies for Language Mod-
eling. For instance, a bayesian predictive smoothing approach takes into account the
difference of data uncertainty in short and long documents [16]. As documents are

200 David E. Losada and Alvaro Barreiro

larger, the uncertainty in the estimations becomes narrower. A similar idea will drive
our logical indexing process because long documents are supposed to indicate more
exhaustively their contents and, hence, more assumptions on the non-related terms will
be taken.

A fixed number of negations for every document is also not advisable from a practi-
cal perspective. Think that the sets T \Td are very large (because Td << T) and, hence,
there will surely be many commom terms in the sets T \ Td across all documents. As a
consequence, there will likely be little difference between the negated terms introduced
by two different documents and, therefore, the effect on retrieval performance will be
unnoticeable.

In this work we propose and evaluate a simple strategy in which the number of
negations grows linearly with the size of the document. In our logical indexing process,
the size of a document will be measured as the number of different terms mentioned by
the document.

Another important issue affects the maximum and minimum number of negations
that the logical indexing will apply. Let us assume that, for a given document d, we
decide to include 1000 negated literals in its logical representation. Since the number
of negations is relatively low (w.r.t. current term spaces), the involved terms will be
very infrequent, most of them mentioned by a single document in the whole collection
and, therefore, it is also very unlikely that any query finds them useful to express an
information need. As a consequence, a low number of negations will definitely not
produce any effect on retrieval performance because the negated terms are rare and will
be hardly used by any query. This advances that significant changes on the retrieval
behaviour of the logical model will be found when the number of negations is high.
Inspired by this, we designed our logical indexing technique starting from a total closed-
world assumption (i.e. we negate every unseen term) and we reduce the number of
negations as document’s size decreases. That is, instead of starting from a representation
with 0 negated terms which is repeteadly populated by negations involving infrequent
terms, we start from a logical formula with T \ Td negated terms and we repeteadly
omit globally frequent terms3.

We define now the number of terms that will be omitted in the logical representation
of a given document as a function of the size of the document:

OTd =
max dl − dld

max dl − min dl
· MAX OT (1)

where dld is the size of the document d, max dl (min dl) is the size of the largest
(shortest) document and MAX OT is a constant that determines the maximum number
of terms for which the logical indexing will not make any strong decision and, hence,
no literal, either positive or negative, will be expressed4.

3 In the future we also plan to articulate an indexing process which skips globally infrequent
terms and, hence, these procedures will be revisited.

4 Of course, MAX OT should be lower or equal than the smallest value of |T \ Td| computed
across all documents. Otherwise, the indexing process could suggest a value of OTd, such that
OTd > |T \Td|. This indexing could only be implemented by considering some explicit terms
in Td as non-informative words that should be omitted the representation of the document.
Obviously, this is not the intention pursued here.

Negations and Document Length in Logical Retrieval 201

To sum up, every document will be represented as a logical formula in which:

– Terms appearing explicitly in the text of the document, t ∈ Td, will be positive
literals in the representation of the document.

– Terms not mentioned explicitly, t ∈ T \ Td are ranked in decreasing order of ap-
pearances within the whole collection and:
• Top OTd terms will be omitted in the representation of d.
• The remaining terms will be negative literals in the logical formula represent-

ing d.

T = {a, b, c, d, e, f, g, h, i, j, l, m, n, o, p, q, r, s, t, u}

Document Td (explicit terms)
d1 a, r
d2 a, c, d, e, u, t
· · · · · ·

max dl = 10
min dl = 2
MAX OT = 10

OTd1 = 10−2
10−2

· 10 = 10

OTd2 = 10−6
10−2

· 10 = 5

Document omitted terms negated terms
d1 u, t, s, q, p, o, n, m, l, j i, h, g, f, e, d, c, b
d2 s, r, q, p, o n, m, l, j, i, h, g, f, b
· · · · · · · · ·

Document Logical representation
d1 a ∧ r ∧ ¬i ∧ ¬h ∧ ¬g ∧ ¬f ∧ ¬e ∧ ¬d ∧ ¬c ∧ ¬b
d2 a ∧ c ∧ d ∧ e ∧ u ∧ t ∧ ¬n ∧ ¬m ∧ ¬l ∧ ¬j ∧ ¬i ∧ ¬h ∧ ¬g ∧ ¬f ∧ ¬b
· · · · · ·

Fig. 1. Logical indexing process

Figure 1 illustrates an example of this logical indexing process. The vocabulary of
20 terms is supposed to be ordered in increasing order of appearance within the whole
collection. The largest document is supposed to have 10 terms whereas the shortest one
(d1) mentions just two terms. The constant MAX OT is assumed to be equal to 10.
Observe that, a closed-world assumption indexing would assign 18 and 14 negations to
d1 and d2, respectively, whereas the length-dependent indexing assigns 8 negations to
the short document d1 and 9 negations to the long document. Note that the final logical
representation of a long document is more complete because there will be few omitted
terms and, on the contrary, representations of short documents are more partial.

The tuning constant MAX OT is an instrument to make explicit control on par-
tiality. If MAX OT = 0 then the system does not allow partiality in the logical repre-

202 David E. Losada and Alvaro Barreiro

Table 1. Training phase - Tuning partiality

Topics #151-#200
cwa indexing MAX OT MAX OT MAX OT MAX OT MAX OT MAX OT MAX OT

α 1000 2000 3000 4000 5000 10000 50000
0.4 0.0719 0.1320 0.1544 0.1475 0.1420 0.1422 0.1136 0.0736

1533 2013 2090 1849 1912 1845 1639 1539
0.5 0.1055 0.1470 0.1687 0.1562 0.1537 0.1613 0.1526 0.1075

1760 2010 2048 1786 1837 1950 1810 1764
0.6 0.1520 0.1561 0.1513 0.1289 0.1041 0.1290 0.1426 0.1452

1751 1864 1738 1447 1298 1578 1522 1748

sentations and, therefore, all the vocabulary terms have to be mentioned either positive
or negative. As MAX OT grows logical representations become more partial. Obvi-
ously, very low values of MAX OT will not permit to establish significant differences
between the indexing of short and long documents.

4 Experiments

This logical indexing was evaluated against the WSJ subset of the TREC collection
in discs 1&2. This collection constains 173252 articles published in the Wall Street
Journal between 1987 and 1992.

We took 50 TREC topics for training the MAX OT parameter (TREC topics #151
- #200) and a separate set of topics is later used for validating previous findings (TREC
topics #101 - #150). For each query, top 1000 documents were used for evaluation.

Documents and topics were preprocessed with a stoplist of 571 common words
and remaining terms were stemmed using Porter’s algorithm [10]. Logical queries are
constructed by simply connecting their stems through logical conjunctions. Queries
are long because the subparts Title, Description and Narrative were all considered.
Stemmed document terms are directly incorporated as positive literals and some negated
terms are included in the conjunctive representation of a document depending on doc-
ument’s length and term’s global frequency. In order to check whether or not this new
logical indexing improves the top performance obtained by the PLBR model so far, we
first ran a number of experiments following a closed-world assumption (i.e. all terms
which are not mentioned by the document are incorporated as negated literals). Recall
that the PLBR model handles idf information when measuring distances between logi-
cal interpretations. This effect is controlled by a parameter α. We tried out values for α
from 0.9 to 0.1 in steps of 0.1. Since the major benefits were found when 0.4 ≤ α ≤ 0.6,
we only present performance results for α = 0.4, 0.5, 0.6. On the second column of ta-
ble 1 (cwa indexing) we show performance ratios (non-interpolated average precision
& total number of relevant retrieved documents) for the cwa indexing approach on the
training set. The best results were found for a value of α equal to 0.6 (in bold).

Columns 3rd to 9th of table 1 depict performance results for the more evolved logi-
cal indexing with varied number of omitted terms. Not surprinsingly, for high values of
omitted terms (≥ 50000) performance tends to the performance obtained with the basic

Negations and Document Length in Logical Retrieval 203

Table 2. Test phase - Effect of partiality

Topics #101-#150
cwa indexing trained dl indexing not trained

Recall α = 0.6 MAX OT = 2000, α = 0.5

0.00 0.4576 0.5379
0.10 0.2842 0.3317
0.20 0.2154 0.2639
0.30 0.1788 0.2075
0.40 0.1445 0.1600
0.50 0.1195 0.1240
0.60 0.0923 0.0993
0.70 0.0717 0.0684
0.80 0.0397 0.0373
0.90 0.0188 0.0131
1.00 0.0098 0.0035

Avg.prec. 0.1319 0.1482
(non-interpolated)

% change +12.4%
Total relevant 1828 2301

retrieved
% change +25.9%

indexing (first column). This is because the ratio negated terms/omitted terms is
so low that almost every query term is either matched by a document or it was omitted.
There are very few negations and, hence, the distinction between those classes of terms
is unnoticeable. On the other hand, for relatively low values of MAX OT (between
1000 and 5000) performance tends to improve with respect to cwa indexing. The best
training run is obtained when MAX OT = 2000, α = 0.5 (0.1687 vs 0.152, 11% im-
provement in non-interpolated average precision and 2048 vs 1751, 17% more relevant
documents retrieved).

In order to confront previous findings, we ran additional experiments with the test
set of topics. We fixed a value of 2000 omitted terms and α = 0.5 for the new indexing
approach. Although this is the test phase, we trained again the parameter α for the basic
indexing policy (cwa) and we show here the best results (α = 0.6). This is to assure
that the new document length indexing without training can improve the best results at-
tainable with the basic cwa indexing. The results are depicted in table 2. Major benefits
are found when partial representations are handled. It seems clear that the considera-
tion of document length to omit up to 2000 terms improves significantly the retrieval
performance of the logical model.

This experimentation suggests to omit a relatively low number of omitted terms
with respect to the total vocabulary size. This means that the shortest document will
be able to have 2000 omitted terms within its logical representation. These 2000 terms
will be those more globally used that are not present in that small document. It is well
known [12] that the large majority of the words occurring in a corpus have very low
document frequency. This means that most terms are used just once in the whole col-

204 David E. Losada and Alvaro Barreiro

lection and, hence, it is also unlikely that any query makes use of them. That is, only a
small fragment of the vocabulary (the most frequent ones) makes a significant impact
on retrieval performance. Indeed, in the WSJ collection that we indexed, 76839 terms
out of 163656 (which is the vocabulary size after preprocessing) are only mentioned in
a single document. This explains why the major differents in performance are found for
small values of MAX OT .

5 Analysis

In this section we provide an additional analysis of the logical indexing keeping track
of its behaviour against document length. We will follow the methodology designed by
Singhal, Buckley and Mitra [13] to analyze the likelihood of relevance/retrieval for doc-
uments of all lengths and plot these likelihoods against the document length to compare
the relevance pattern and the retrieval pattern.

First, the document collection is ordered by document’s length and documents are
divided into equal-sizes chunks, which are called bins. For our case, the 173252 WSJ
documents were divided into 173 bins containing one thousand documents each and
an additional bin contained the 252 largest documents. For the test topics (#101-#150)
we then took the 4556 (query, relevant document) pairs and counted how many pairs
had their document from the ith bin. These values allow to plot a relevance pattern
against document length. Specifically, the conditional probability P (D ∈ ith bin|D is
relevant) can be computed as the ratio of the number of pairs that have the document
from the ith bin and the total number of pairs.

A given retrieval strategy will present a good behaviour against document’s length
provided that its probability of retrieval for the documents of a given length is very close
to the probability of finding a relevant document of that length. Therefore, once we have
a relevance pattern, we can compute the retrieval pattern and compare them graphically.
We will compute the retrieval pattern for both the cwa PLBR run and the PLBR run with
document length-dependent indexing. Comparing them with the relevance pattern we
will be able to validate the adequacy of our document’s length-dependent indexing and,
possibly, identify further avenues of research.

The retrieval pattern’s computation is also very simple. For each query the top one
thousand documents retrieved are selected (for our case, 50.000 (query, retrieved docu-
ments) pairs) and, for each bin, we can directly obtain P (D ∈ ith bin|D is retrieved).

Figure 2 shows the probability of relevance and the probability of retrieval of the
cwa PLBR run plotted against the bin number (2(a)). The probability of relevance and
the probability of retrieval applying the document length-dependent logical indexing
are plotted in fig. 2(b). Recall that bin #1 contains the smallest documents and bin #174
containst the largest documents. Following that figure, there is no clear evidence about
the distinction between both approaches. In figure 3 we plot cwa indexing and dl in-
dexing against document length. Although the curves are very similar, some trends can
be identified. For bins #1 to #100 the dl indexing approach retrieves documents with
higher probability than the cwa approach. On the other hand, very long documents (last
20 bins) are retrieved with higher probability if the cwa strategy is applied. This demon-
strates that the dl indexing procedure does its job because it tends to favour short doc-

Negations and Document Length in Logical Retrieval 205

 0
 0 50 100 150

bin

Retrieval using PLBR cwa vs relevance

P(rel)
P(ret - cwa)

 0
 0 50 100 150

bin

Retrieval using PLBR dl indexing vs relevance

P(rel)
P(ret - dl indexing)

(a) relevance vs PLBR cwa (b) relevance vs PLBR dl indexing

Fig. 2. Probability of relevance vs probability of retrieval

uments w.r.t. long ones. Nevertheless, this analysis also suggests new ways to improve
the document length logical indexing. The most obvious is that very long documents do
still present a probability of being retrieved which is much greater than the probability
of relevance (see fig. 2(b), last 20 bins). This suggests that the formula that computes
the number of omitted terms (equation 1, section 3.2) should be adapted accordingly.
As a consequence, subsequent research effort will be directed to the fine tuning of the
document length-dependent indexing.

6 Conclusions and Future Work

In this work we have proposed a novel logical indexing technique which yields a nat-
ural way to handle terms not explicitly mentioned by documents. The new indexing
approach is assisted by popular IR notions such as document length normalization and
global term distribution. The combination of those classical notions and the expressive-
ness of the logical apparatus leads to a precise modeling of the document’s contents.
The evaluation conducted confirms empirically the advantages of the approach taken.

Future work will be focused in a number of lines. First, as argued in the previous
section, document length contribution should be optimized. Second, more evolved tech-
niques to negate terms will also be investigated. In this respect, the application of term
similarity information is especially encouraging for avoiding negated terms whose se-
mantics is close to some of the terms which appear explicitly in the text of a document.

Our present document length strategy captures verbosity by means of document
length. Although it is sensible to think that there is a correlation between document

206 David E. Losada and Alvaro Barreiro

 0
 0 50 100 150

bin

Retrieval using PLBR cwa indexing vs retrieval using PLBR dl indexing

P(ret - cwa)
P(ret - dl indexing)

Fig. 3. cwa indexing vs dl indexing

length and verbosity, it is also very interesting to study new methods to identify ver-
bose/scope documents and tune the model accordingly.

Acknowledgements

This work was supported by projects TIC2002-00947 (from “Ministerio de Ciencia y
Tecnologı́a”) and PGIDT03PXIC10501PN (from “Xunta de Galicia”). The first author
is supported in part by “Ministerio de Ciencia y Tecnologı́a” and in part by FEDER
funds through the “Ramón y Cajal” program.

References

1. F. Crestani, M. Lalmas, and C. J. van Rijsbergen (editors). Information Retrieval, Uncertainty
and Logics: advanced models for the representation and retrieval of information. Kluwer
Academic, Norwell, MA., 1998.

2. W. B. Croft and J. Lafferty. Language Modeling for Information Retrieval. Kluwer Aca-
demic, 2003.

3. M. Dalal. Investigations into a theory of knowledge base revision:preliminary report. In Pro-
ceedings of the 7th National Conference on Artificial Intelligence (AAAI’88), pages 475–479,
Saint Paul, USA, 1988.

4. D. Losada and A. Barreiro. Embedding term similarity and inverse document frequency into
a logical model of information retrieval. Journal of the American Society for Information
Science and Technology, JASIST, 54(4):285–301, February 2003.

5. D. Losada and A. Barreiro. Propositional logic representations for documents and queries: a
large-scale evaluation. In F. Sebastiani, editor, Proc. 25th European Conference on Informa-
tion Retrieval Research, ECIR’2003, pages 219–234, Pisa, Italy, April 2003. Springer Verlag,
LNCS 2663.

Negations and Document Length in Logical Retrieval 207

6. D. E. Losada and A. Barreiro. Using a belief revision operator for document ranking in
extended boolean models. In Proc. SIGIR-99, the 22nd ACM Conference on Research and
Development in Information Retrieval, pages 66–73, Berkeley, USA, August 1999.

7. D. E. Losada and A. Barreiro. Efficient algorithms for ranking documents represented as dnf
formulas. In Proc. SIGIR-2000 Workshop on Mathematical and Formal Methods in Informa-
tion Retrieval, pages 16–24, Athens, Greece, July 2000.

8. D. E. Losada and A. Barreiro. A logical model for information retrieval based on proposi-
tional logic and belief revision. The Computer Journal, 44(5):410–424, 2001.

9. J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proc.
21st ACM Conference on Research and Development in Information Retrieval, SIGIR’98,
pages 275–281, Melbourne, Australia, 1998.

10. M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
11. S. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model

for probabilistic weighted retrieval. In Proc. SIGIR-94, the 17th ACM Conference on Re-
search and Development in Information Retrieval, pages 232–241, Dublin, Ireland, July
1994.

12. G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communi-
cations of the ACM, 18:613–620, 1975.

13. A Singhal, C. Buckley, and M Mitra. Pivoted document length normalization. In Proc.
SIGIR-96, the 19th ACM Conference on Research and Development in Information Retrieval,
pages 21–29, Zurich, Switzerland, July 1996.

14. C. J. van Rijsbergen. A theoretical basis for the use of co-occurrence data in information
retrieval. Journal of Documentation, 33(2):106–119, 1977.

15. C.J. van Rijsbergen. A non-classical logic for information retrieval. The Computer Journal,
29:481–485, 1986.

16. H. Zaragoza, D. Hiemstra, and M. Tipping. Bayesian extension to the language model for ad
hoc information retrieval. In Proc. 26th ACM Conference on Research and Development in
Information Retrieval, SIGIR’03, pages 4–9, Toronto, Canada, 2003.

An Improvement and an Extension on the
Hybrid Index for Approximate String Matching

Heikki Hyyrö1,2,�

1 PRESTO, Japan Science and Technology Agency
2 Department of Computer Sciences, University of Tampere, Finland

Heikki.Hyyro@cs.uta.fi

Abstract. In [2] Navarro and Baeza-Yates found their so-called hy-
brid index to be the best alternative for indexed approximate search
in English text. The original hybrid index is based on Levenshtein edit
distance. We propose two modifications to the hybrid index. The first
is a way to accelerate the search. The second modification is to make
the index permit also the error of transposing two adjacent characters
(“Damerau distance”). A full discussion is presented in Section 11 of [1].

Let ed(A, B) denote the edit distance between strings A and B, |A| denote the
length of A, Ai denote the ith character of A, and Ai..j denote the substring of A
that begins from its ith and ends at it jth character. Given a length-m pattern
string P , a length-n text string T , and an error limit k, the task of approximate
string matching is to find such text positions j where ed(P, Th..j) ≤ k and h ≤ j.
Levenshtein edit distance edL(A, B) is the minimum number of single-character
insertions, deletions and substitutions needed in transforming A into B or vice
versa. Damerau edit distance edD(A, B) is otherwise similar but permits also
the operation of transposing two permanently adjacent characters.

Using an index structure during the search can accelerate approximate string
matching. One such index is the hybrid index of Navarro & Baeza-Yates [2] for
Levenshtein edit distance, which they found to be the best choice for searching
English text. It uses intermediate partitioning, where the pattern is partitioned
into j pieces P 1, .., P j , and then each piece P i is searched for with di = �k/j�
errors. If j > 1 and a hit Tj−h..j is found so that edL(P i, Tj−h..j) ≤ di, the text
area Tj−m−k..j+m+k will be included in a check for a complete match of P with
k errors. The hits for each piece P i are found by a depth-first search (DFS) over
a suffix tree1 built for the text. This involves filling a dynamic programming
table D, where D[r, l] = ed(P i

1..r, Tj+1..j+l), during the DFS. When the DFS
arrives at a node that corresponds to the text substring Tj+1..j+l, the distances
edL(P i

1..r, Tj+1..j+l) are computed for r = 1 . . .mi, where mi = |P i|.
Our main proposal for accelerating the DFS is as follows. When the DFS

reaches a depth-l node that corresponds to the text substring Tj+1..j+l and

� Supported by Tampere Graduate School in Information Science and Engineering.
1 A trie of all suffixes of the text in which each suffix has its own leaf node and the

position of each suffix is recorded into the corresponding leaf.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 208–209, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Improvement and an Extension on the Hybrid Index 209

a)
t h e r e

0 1 2 3 4 5 6 7 8
t 1 0 1 2 3 4
h 2 1 0 1 2 3
e 3 2 1 0 1 2
s 4 3 2 1 1 2 2
i 5 4 3 2 2 2 2 2
s 6 5 4 3 3 3 2 2 2

b)
mi = m di = k OURS/NBY (WSJ) OURS/NBY (yeast)

5 1 0,23 0,66
5 2 0,33 0,74
10 1 0,19 0,20
10 2 0,33 0,31
10 3 0,41 0,39
15 1 0,19 0,19
15 2 0,34 0,27
15 3 0,43 0,36
15 4 0,50 0,49

Fig. 1. Figure a): Matrix D for computing edL(P i
1..r, Tj+1..), where P i

1..mi = “thesis”,
Tj+1.. = “there..”, and di = 2. Now D[r, 5] ≥ di = 2 for r = 1 . . . mi, and the only
way to reach a cell value D[mi, x] ≤ 2, where x > 5, is to have only matches at the
remaining parts of the top-left-to-bottom-right diagonals with the value D[h, 5] = 2.
The cells in these diagonal extensions have the value di = 2 underlined, and the pattern
suffixes corresponding to the cell values D[3, 5], D[4, 5] and D[5, 5] (shown in bold) are
P i

4..6 = “sis”, P i
5..6 = “is” and P i

6 = “s”, respectively. Figure b): The ratio between
the running time of our improved DFS (OURS) and the runtime of the original DFS
of Navarro and Baeza-Yates (NBY). We tested with two ≈ 10 MB texts: Wall Street
Journal articles (WSJ) and the DNA of baker’s yeast (yeast). The computer was a 600
Mhz Pentium 3 with 256 MB RAM, Linux OS and GCC 3.2.1 compiler.

where D[r, l] ≥ di for r = 1..mi, the only strings that have Tj+1..j+l as a prefix
and match P i with di errors are of form Tj+1..j+l ◦ P i

h+1..mi , where ◦ denotes
concatenation and h fulfills the condition D[h, l] = di. In this situation we check
directly for the presence of any of these concatenated substrings, and then let
the DFS backtrack. Fig. 1a illustrates, and Fig. 1b shows experimental results
from a comparison against the original DFS of [2] when P i = P and di = k.

In addition we propose the following lemma for partitioning P under Dam-
erau distance. It uses classes of characters, which refers to permitting a pattern
position to match with any character enumerated inside square brackets. For
example P = “thes[ei]s” matches with the strings “theses” and “thesis”.

Lemma 1. Let P i, i = 1..j, be j non-overlapping substrings of the pattern P
that are ordered so that P i+1 occurs on the right side of P i in P . Also let B
be some string for which edD(P, B) ≤ k, let each P i be associated with the
corresponding number of errors di, and let strings P̄ i, i = 1..j, be defined as
follows:

P̄ i = P i, if i = j or P i and P i+1 do not occur consecutively in P .
P̄ i = P i

1..mi−1 ◦ [P i
miP

i+1
1], otherwise.

If
∑j

i=1 di ≥ k− j +1, then one of the strings P̄ i matches inside B with at most
di errors.

References

1. H. Hyyrö. Practical Methods for Approximate String Matching. PhD thesis, Depart-
ment of Computer Sciences, University of Tampere, Finland, December 2003.

2. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms (JDA), 1(1):205–239, 2000.

First Huffman, Then Burrows-Wheeler:
A Simple Alphabet-Independent FM-Index

Szymon Grabowski1, Veli Mäkinen2, and Gonzalo Navarro3

1 Computer Engineering Dept., Tech. Univ. of �Lódź, Poland
2 Dept. of Computer Science, Univ. of Helsinki, Finland

3 Dept. of Computer Science, Univ. of Chile, Chile

Main Results. The basic string matching problem is to determine the occurrences
of a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn, over an alphabet
of size σ. Indexes are structures built on the text to speed up searches, but they
used to take up much space. In recent years, succinct text indexes have appeared.
A prominent example is the FM-index [2], which takes little space (close to that
of the compressed text) and replaces the text, as it can search the text (in optimal
O(m) time) and reproduce any text substring without accessing it. The main
problem of the FM-index is that its space usage depends exponentially on σ,
that is, 5Hkn + σσo(n) for any k, Hk being the k-th order entropy of T .

In this paper we present a simple variant of the FM-index, which removes its
alphabet dependence. We achieve this by, essentially (but not exactly), Huffman-
compressing the text and FM-indexing the binary sequence. Our index needs
2n(H0 + 1)(1 + o(1)) bits, independent of σ, and it searches in O(m(H0 + 1))
average time, which can be made O(m log σ) in the worst case. Moreover, our
index is considerably simpler to implement than most other succinct indexes.

Technical Details. The Burrows-Wheeler transform (BWT) [1] T bwt of T is a
permutation of T such that T bwt[i] is the character preceding the i-th lexico-
graphically smallest suffix of T . The FM-index finds the number of occurrences
of P in T by running the following algorithm [2]:

Algorithm FM Search(P ,T bwt)
i = m; sp = 1; ep = n;
while ((sp ≤ ep) and (i ≥ 1) do

c = P [i − 1];

sp = C[c] + Occ(T bwt, c, sp − 1)+1;

ep = C[c] + Occ(T bwt, c, ep);
i = i − 1;

if (ep < sp) then return “not found” else return “found (ep − sp + 1) occs”.

The index is actually formed by array C[·], such that C[c] is the num-
ber of characters smaller than c in T , and function Occ(T bwt, ·, ·), such that
Occ(T bwt, c, i) is the number of occurrences of c in T bwt[1 . . . i]. The exponential
alphabet dependence of the FM-index is incurred in the implementation of Occ
in constant time.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 210–211, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

First Huffman, Then Burrows-Wheeler 211

Our idea is first to Huffman-compress T so as to obtain T ′, a binary string
of length n′ < n(H0 + 1). Then, if we encode P to P ′ with the same codebook
used for T , it turns out that any occurrence of P in T is also an occurrence of
P ′ in T ′ (but not vice versa, as P ′ may match in the middle of a code in T ′).

We apply the BWT to T ′ to obtain array B = (T ′)bwt, of n′ bits. Another
array Bh signals which bits of B correspond to beginning of codewords in T ′. If
we apply algorithm FM Search(P ′,B), the result is the number of occurrences
of P ′ in T ′. Moreover, the algorithm yields the range [sp, ep] of occurrences in
B. The real occurrences of P in T correspond to the bits set in Bh[sp . . . ep].

Function rank(Bh, i), which tells how many bits are set in Bh[1 . . . i], can
be implemented in constant time by storing o(n′) bits in addition to Bh [4]. So
our number of occurrences is rank(Bh, ep) − rank(Bh, sp − 1).

The advantage over the original FM-index is that this time the text T ′ is
binary and thus Occ(B, 1, i) = rank(B, i) and Occ(B, 0, i) = i − rank(B, i).
Hence we can implement Occ in constant time using o(n′) additional bits, inde-
pendently of the alphabet size.

Overall we need 2n(H0 +1)(1+o(1)) bits, and can search for P in O(m(H0 +
1)) time if P distributes as T . By adding 1+ε bits, for any ε > 0, we can find the
text position of each occurrence in worst case time O((1/ε)(H0 + 1) log n), and
display any text substring of length L in O((1/ε)(H0 + 1)(L + log n)) average
time. By adding other 2n bits, we can ensure that all O(H0 + 1) values become
O(log σ) in the worst case times. For further details and experimental results
refer to [3].

References

1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. DEC SRC Research Report 124, 1994.

2. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. FOCS’00, pp. 390–398, 2000.

3. Sz. Grabowski, V. Mäkinen and G. Navarro. First Huffman, then Burrows-Wheeler:
A Simple Alphabet-Independent FM-Index. Technical Report TR/DCC-2004-4,
Dept. of Computer Science, University of Chile.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/huffbwt.ps.gz

4. I. Munro. Tables. In Proc. FSTTCS’96, pp. 37–42, 1996.

Metric Indexes for Approximate String
Matching in a Dictionary

Kimmo Fredriksson

Depart. of CS, University of Joensuu, PO Box 111, FIN–80101 Joensuu, Finland
kfredrik@cs.joensuu.fi

We consider the problem of finding all approximate occurrences of a given string
q, with at most k differences, in a finite database or dictionary of strings. The
strings can be e.g. natural language words, such as the vocabulary of some
document or set of documents. This has many important application in both
off-line (indexed) and on-line string matching. More precisely, we have a universe
U of strings, and a non-negative distance function d : U × U → N. The distance
function is metric, if it satisfies (i) d(x, y) = 0 ⇔ x = y; (ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, z)+d(z, y). The last item is called the “triangular inequality”,
and is the most important property in our case. Many useful distance functions
are known to be metric, in particular edit (Levenshtein) distance is metric, which
we will use for d.

Our dictionary S is a finite subset of that universe, i.e. S ⊆ U. S is pre-
processed in order to efficiently answer range queries. Given a query string q,
we retrieve all strings in S that are close enough to q, i.e. we retrieve the set
{u ∈ S | d(q, u) ≤ k} for some k.

To solve the problem, we build a metric index over the dictionary, and use
the triangular inequality to efficiently prune the search. This is not a new idea,
huge number of different indexes have been proposed over the years, see [2] for a
recent survey. An example of such an index is the Burkhard-Keller tree [1]. They
build a hierarchy as follows. Some arbitrary string (called pivot) p ∈ S is chosen
for the root of the tree. The child number e is recursively built using the set
Se = {u ∈ S \ {p} | d(p, u) = e}. This is repeated until there are only one, or in
general b (for a bucket), strings left, which are stored into the leaves of the tree.
The tree has O(n) nodes, where n = |S|, and the construction requires O(n log n)
distance computations on average. The search with the query string q and range
k first evaluates the distance d(q, p), where p is the string in the root of the tree.
If d(q, p) ≤ k, then p is put into the output list. The search then recursively
enters into each child e such that d(q, p) − k ≤ e ≤ d(q, p) + k. Whenever the
search reaches a leaf, the stored bucket of strings are directly compared against q.
The search requires O(nα) distance computations on average, where 0 < α < 1.

Another example is Approximating Eliminating Search Algorithm (AESA)
[4], which is an extreme case of pivot based algorithms. This time there is not
any hierarchy, but the data structure is simply a precomputed matrix of all the
n(n−1)/2 distances between the n strings in S. The space complexity is therefore
O(n2) and the matrix is computed with O(n2) edit distance computations. This
makes the structure highly impractical for large n. The benefit comes from search
time, empirical results have shown that it needs only a constant number of

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 212–213, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Metric Indexes for Approximate String Matching in a Dictionary 213

distance evaluations on average. However, each distance evaluation takes O(n)
“extra cpu time”.

The problem with AESA is its high preprocessing and space complexities. For
small dictionaries this is not a problem, so we propose using AESA to implement
additional search algorithm for the buckets of b strings stored into the leaves of
the tree based indexes such as BKT. This means that the space complexity
becomes O(nb), and the construction time O(n(b + log(n/b))). In effect this
makes the index memory adaptive. We can adjust b to make a good use of the
available memory to reduce the number of distance computations. We call the
resulting algorithm ABKT. Another way to trade space for time is to collapse
children d(q, p)−k ≤ e ≤ d(q, p)+k into a single branch, and at the search time
enter only into child (d(q, p), k). This can be done only for levels up to � of the
tree to keep the memory requirements low. We call this algorithm E(BP)BKT.

The recent bit-parallel on-line string matching algorithm in [3] can be easily
modified to compute several edit distances in parallel for short strings, i.e. we
can compute the edit distance between q and r other strings, each of length m,
in time O(|q|), where r = �w/m� and w is the number of bits in computer word
(typically 32 or 64, or even 128 with the SIMD extensions of recent processors).
Simplest application of this technique in BKT is to store a bucket of r strings
into each node, instead of only one (the pivot), and use one of them as the pivot
string for building the hierarchy and guiding the search. In the preprocessing
phase the effect is that the tree has only O(n/r) nodes (assuming b = 1). At the
search time, we evaluate the distance between the query string and the pivot
as before, but at the same time, without any additional cost, we evaluate r − 1
other distances. For these r − 1 other distances we just check if they are close
enough to the query (this can be done in parallel in O(1) time), but do not use
them for any other purpose. We call this algorithm BPBKT.

We have implemented the algorithms in C/C++ and run experiments in
2GHz Pentium 4. We used a dictionary of 98580 English words for the experi-
ments. We selected 10,000 query words from the dictionary. For ABKT we used
b = 1000, for BPBKT r = 8 (and w = 128) and for EBPBKT � = 1. The
average number of distance evaluations / total query time in seconds for k = 1
were 2387 / 20.58 (BKT), 495 / 14.74 (ABKT), 729 / 8.93 (BPBKT) and 583 /
7.09 (EBPBKT). The ratio between the performance of the algorithms remained
approximately the same for k = 1..4.

References

1. W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.
Commun. ACM, 16(4):230–236, 1973.

2. E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

3. H. Hyyrö, K. Fredriksson, and G. Navarro. Increased bit-parallelism for approximate
string matching. In WEA’04, LNCS 3059, pages 285–298, 2004.

4. E. Vidal. An algorithm for finding nearest neighbors in (approximately) constant
average time. Pattern Recognition Letters, 4:145–157, 1986.

Simple Implementation of String B-Trees�

Joong Chae Na and Kunsoo Park

School of Computer Science and Engineering
Seoul National University

{jcna,kpark}@theory.snu.ac.kr

1 Introduction

The String B-tree [2] due to Ferragina and Grossi is a well-known external-
memory index data structure which handles arbitrarily long strings and performs
search efficiently. It is essentially a combination of B+-trees and Patricia tries.
From a high-level point of view, the String B-tree of a string T of length N is
a B+-tree, where the keys are pointers to the suffixes of string T , and they are
sorted in lexicographically increasing order of the suffixes. A Patricia trie is used
for each node of the String B-tree. By plugging in Patricia tries at nodes, the
branch/search/update operations can be carried out efficiently. Due to Patricia
tries, however, the String B-tree is rather heavy and complex.

In this paper we propose a new implementation of the String B-tree, which
is simpler and easier to implement than the original String B-tree, and that
supports as efficient search as the original String B-tree. Instead of a Patricia
trie, each node contains an array, lcpi, of integers and an array, lnci, of characters.
Once the number of keys in a node is given, arrays lcpi and lnci occupy a fixed
space, while the space required for a Patricia trie can vary within a constant
factor. Because arrays are simple and occupy a fixed space, they are easy to
handle and suitable for external-memory data structure.

We present an efficient branching algorithm at a node that uses only the two
arrays lcpi and lnci. Ferguson [1] gave a branching algorithm for binary strings.
We extend this algorithm so as to do the branch operation efficiently for strings
over a general alphabet. The search algorithm based on our branching algorithm
requires O(logB N + M+occ

B) disk accesses as in the original String B-tree, where
M is the length of a pattern, occ is the number of occurrences, and B is the disk
page size. The branching algorithm can be also used as a basic algorithm of the
insertion, deletion, and construction algorithms of the original String B-tree.

2 Branching Algorithm

Let T be a string of length N over an alphabet Σ, which is stored in external
memory. We denote the ith character of string T by T [i]. We define the ith suffix
as the substring T [i]T [i + 1] · · ·T [N] and call the index i a suffix pointer. Given
two strings α and β, α ≺ β if α is lexicographically smaller than β, and α � β

� Work supported by IMT 2000 Project AB02.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 214–215, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Simple Implementation of String B-Trees 215

if α is lexicographically smaller than or equal to β. We denote by lcp(α, β) the
length of the longest common prefix (lcp) of α and β.

We explain additional data stored in nodes. Let s0, s1, . . . , sn be suffixes
represented by suffix pointers stored in a node v, where s0 ≺ s1 ≺ · · · ≺ sn. For
efficient branching, we store additional data lcpi and lnci in node v, which are
defined as follows for 1 ≤ i ≤ n:

– lcpi = lcp(si−1, si), and
– lnci = si[lcpi + 1].

Given a pattern P of length M , the branching algorithm finds an index j such
that sj−1 ≺ P � sj at node v. Let L be the value of max (lcp(P, s0), lcp(P, sn)).
At node v, the algorithm requires that:

C1. s0 ≺ P ≺ sn, and
C2. L is given as a input parameter and L < M .

When the branching algorithm is used as a basic operation of the search in the
String B-tree, the above conditions are satisfied. We omit the details. For sim-
plicity, we define P [i] as an empty character for i > M , which is lexicographically
smaller than any other character in Σ.

The algorithm consists of the following three stages.

Stage A: Find the suffix sx using lcpi and lnci such that sx is one of suffixes
that share the longest lcp with P among suffixes stored in node v.
Starting with i = 1, we scan arrays lcpi and lnci from left to right and
maintain x as the desired index inductively. We initialize x to 0. At step i,
we compare P [l+1] with lnci (i.e., si[l+1]), where l = lcpi. If lnci � P [l+1],
then we set x to i and increase i by one. Otherwise, we increase i until
lcpi < l. We repeat this process until i reaches n. Then, sx is the desired
suffix.

Stage B: Find the value of lcp(P, sx).
We load disk pages where sx is stored and compare P with sx character-
by-character from the (L + 1)st character. As a result, we get the value of
lcp(P, sx). Let L′ be the value of lcp(P, sx). In this stage, we access O(L′−L

B)
disk pages.

Stage C: Find the index j such that sj−1 ≺ P � sj .
If P � sx, then we decrease i until lcpi ≤ L′, starting with i = x. If P � sx,
then, we increase i until lcpi ≤ L′, starting with i = x + 1. Then, the value
of i is the desired index j.

References

1. D. E. Ferguson. Bit-Tree: A data structure for fast file processing. Communications
of the ACM, 35(6):114–120, 1992.

2. P. Ferragina and R. Grossi. The String B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

Alphabet Permutation
for Differentially Encoding Text

(Extended Abstract)

Gad M. Landau1, Ofer Levi1, and Steven Skiena2

1 Dept. of Computer Science, University of Haifa, Mount Carmel, Haifa 31905 Israel,
{landau,oferl}@cs.haifa.ac.il

2 Dept. of Computer Science, SUNY Stony Brook, NY 11794-4400
skiena@cs.sunysb.edu

One degree of freedom not usually exploited in developing high-performance
text-processing algorithms is the encoding of the underlying atomic character
set. Here we consider a text compression method where the specific charac-
ter set collating-sequence employed in encoding the text has a big impact on
performance. We demonstrate that permuting the standard character collating-
sequences yields a small win on Asian-language texts over gzip. We also show im-
proved compression with our method for English texts, although not by enough
to beat standard methods. However, we also design a class of artificial languages
on which our method clearly beats gzip, often by an order of magnitude.

1 Differential Encoding

Differential coding is a common preprocessing step for compressing numerical
data associated with sampled signals and other time series streams. The temporal
coherence of such signals implies that the value at time ti likely differs little from
that at ti+1. Thus representing the signal as an initial value followed a stream of
difference (i.e. ti+1−ti for 0 ≤ i < n) should consist primarily of small differences.
Such streams should be more compressible using standard techniques like run-
length encoding, Huffman coding, and gzip than the original data stream.

The most relevant previous work is [1], where alphabet permutation was
employed to improve the performance of compression algorithms based on the
Burrows-Wheeler transform.

2 Experiments on English Texts

The key to successful differential encoding lies in identifying the best collating
sequence. We seek the circular n-permutation π which minimizes

min
π∈Π

n∑

i=1

n∑

j=1

d(i, j)p(σi, σj)

where p(i, j) is the probability that symbol j immediately follows symbol i, i.e.
p(i, j) = P (j|i), and d(i, j) is the shortest “distance” from i to j around the
circular permutation. Thus d(i, j) = min(|j − i|, n − |j − i|).

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 216–217, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Alphabet Permutation for Differentially Encoding Text 217

To estimate the conditional character-probabilities for the optimized collating
sequence for English text, we used letter-pair (bigram) frequencies derived from
a large corpus of text including the famous Brown corpus. The Discropt system
was run for 10 hours optimizing the permutation over these frequencies, resulting
in the following collating sequence:

. V G W C D I N H E T ’ ’ S A R O L F M P U Y B J Q Z X K

We compared differential compression using both the standard and opti-
mized collating sequence, with both standard Huffman codes and gzip employed
for encoding. The permuted collating sequence typically reduces the size of the
Huffman-encoded differential sequences by 3-4%, and gzip-encoded differential
sequences by about 1% – however, both encoding algorithms work substantially
better on the original text instead of the differential text.

3 Experiments on Asian-Language Texts

We reasoned that differential encoding might perform better on Asian-language
texts, because the larger size of the alphabet makes such texts more closely re-
semble quantized signals. We experimented on Chinese, Japanese, and Korean
UNICODE texts with both 8-bit and 16-bit recoded alphabets. The 8-bit alpha-
bet permutation produced worse results than the original alphabet encoding for
both gzip and Huffman codes, but permuting the full 16-bit alphabet encoding
did permit the differential gzip encoding to beat the conventional gzip encodings
by 1-2% on almost all files.

4 Experiments on Martian-Language Texts

To demonstrate that gzip can be significantly beaten via differential encoding,
we define a class of artificial languages which we will call Martian. Martian
words evolve in families. Each family is defined by a length-(l − 1) sequence of
differences from 0 to α − 1, where α = |Σ| for alphabet Σ. There are α distinct
length-l words in each family, formed by prepending each σ ∈ Σ to the difference
sequence. For example, for Σ = {a, . . . , z} the family (+2, +3,−6) defines the
words acfz, bdga, cehb, and so forth.

We achieve our greatest improvement in differentially encoding relatively
short Martian texts drawn from large families of long words. We demonstrated
that differential encoded gzip results in 5.8 times better compression than plain-
text gzip on files from 2500 to 50,000 words for 20 families of 20-character words.
Even more extreme performance is obtainable by further lengthening the words.

References

1. B. Chapin and S. Tate. Higher compression from the burrows-wheeler transform by
modified sorting. In IEEE Data Compression Conference, 1998.

A Space-Saving Linear-Time Algorithm
for Grammar-Based Compression

Hiroshi Sakamoto1, Takuya Kida2, and Shinichi Shimozono1

1 Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan
{hiroshi,sin}@ai.kyutech.ac.jp

2 Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan
kida@ist.hokudai.ac.jp

Abstract. A space-efficient linear-time approximation algorithm for the
grammar-based compression problem, which requests for a given string
to find a smallest context-free grammar deriving the string, is presented.
The algorithm consumes only O(g∗ log g∗) space and achieves the worst-
case approximation ratio O(log g∗ log n), with the size n of an input and
the optimum grammar size g∗. Experimental results for typical bench-
marks demonstrate that our algorithm is practical and efficient.

1 Introduction

The grammar-based compression problem is to find a smallest context-free gram-
mar that generates only the given string. Such a CFG requires that every nonter-
minal is derived from only one production rule, say, deterministic. The problem
deeply relates to factoring problems for strings, and the complexity of similar
minimization problems have been rigorously studied. For example, Storer [20]
introduced a factorization for a given string and showed the problem is NP-hard.
De Agostino and Storer [2] defined several online variants and proved that those
are also NP-hard.

As non-approximability results, Lehman and Shelat [12] showed that the
problem is APX-hard, i.e. it is hard to approximate this problem within a con-
stant factor (see [1] for definitions). They also mentioned its interesting connec-
tion to the semi-numerical problem [9], which is an algebraic problem of min-
imizing the number of different multiplications to compute the given integers
and has no known polynomial-time approximation algorithm achieving a ratio
o(log n/ log log n). Since the problem is a special case of the grammar-based com-
pression, an approximation better than this ratio seems to be computationally
hard.

On the other hand, various practical algorithms for the grammar-based com-
pression have been devised so far. LZ78 [24] including LZW [21], and BISEC-
TION [8] are considered as algorithms that computes straight-line programs,
CFGs formed from Chomsky normal form formulas. Also algorithms for re-
stricted CFGs have been presented in [6, 10, 14, 15, 22]. Lehman and Shelat [12]
proved the upper bounds of the approximation ratio of these practical algo-

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 218–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 219

rithms, as well as the lower bounds with the worst-case instances. For ex-
ample, BISECTION algorithm achieves an approximation ratio no more than
O((n/ log n)1/2). All those ratios, including the lower-bounds, are larger than
O(log n).

Recently polynomial-time approximation algorithms for the grammar-based
compression problem have been widely studied and the worst-case approximation
ratio has been improved. The first log n-approximation algorithm was developed
by Charikar et al. [3]. Their algorithm guarantees the ratio O(log(n/g∗)), where
g∗ is the size of a minimum deterministic CFG for an input. Independently, Ryt-
ter presented in [16] another O(log(n/g∗))-approximation algorithm that em-
ploys a suffix tree and the LZ-factorization technique for strings. Sakamoto also
proposed in [17] a simple linear-time algorithm based on Re-pair [10] and achiev-
ing ratio O(log n); Now this ratio has been improved to O(log(n/g∗)).

The ratio O(log(n/g∗)) achieved by these new algorithms is theoretically
sufficiently small. However, all these algorithms require O(n) space, and it pre-
vents us to apply the algorithms to huge texts, which is crucial to obtain a good
compression ratio in practice. For example, the algorithm Re-pair [10] spends
5n + n1/2 space on unit-cost RAM with the input size n.

This state motivates us to develop a linear-time, sub-linear space O(log n)-
approximation algorithm for grammar-based compression. We present a simple
algorithm that repeats substituting one new nonterminal symbol to all the same
and non-overlapping two contiguous symbols occurring in the string. This is car-
ried out by utilizing idea of the lowest common ancestor of balanced binary trees,
and no real special data structure, such as suffix tree or occurrence frequency
table, is requested. In consequence, the space complexity of our algorithm is
nearly equal to the total number of created nonterminal symbols, each of which
corresponds to a production rule in Chomsky normal form.

The size of the final dictionary of the rules is proved by LZ-factorization and
its compactness [16]. Our algorithm runs in linear-time with O(g∗ log g∗) space,
and guarantees the worst-case approximation ratio O(log g∗ log n) on unit-cost
RAM model. The memory space is devoted to the dictionary that maps a con-
tiguous pair of symbols to a nonterminal. Practically, in randomized model,
space complexity can be reduced to O(g∗ log g∗) by using a hash table for the
dictionary. In the framework of dictionary-based compression, the lower-bound
of memory space is usually estimated by the size of a possible smallest dictio-
nary, and thus our algorithm is nearly optimal in space complexity. Compared
to other practical dictionary-based compression algorithms, such as LZ78, which
achieves the ratio Ω(n2/3/ logn), the lower-bound of memory space of our al-
gorithm is considered to be sufficiently small. We confirm practical efficiency of
our algorithm by computational experiments on several benchmark texts.

The remaining part of this paper is organized as follows. In Section 2, we
prepare the definitions related to the grammar-based compression. In Section 3,
we introduce the notion of lowest common ancestors in a complete binary tree
defined by alphabet symbols. Using this notion, our algorithm decides a fixed
priority of all pairs appearing in a current string and replaces them according

220 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

to the priority. The algorithm is presented in Section 4 and we analyze the
approximation ratio and estimate the space efficiency. In Section 5, we show
the experimental results by applying our algorithm to typical benchmarks. In
Section 6, we summarize this study.

2 Notions and Definitions

We assume a finite alphabet for the symbols forming input strings throughout
this paper. Let Σ be a finite alphabet. The set of all strings over Σ is denoted
by Σ∗, and Σi denotes the set of all strings of length i. The length of a string
w ∈ Σ∗ is denoted by |w|, and also for a set S, the notion |S| refers to the size
(cardinality) of S. The ith symbol of w is denoted by w[i]. For an interval [i, j]
with 1 ≤ i ≤ j ≤ |w|, the substring of w from w[i] to w[j] is denoted by w[i, j].

A repetition is a string xk for some x ∈ Σ and some positive integer k.
A repetition w[i, j] in w of a symbol x ∈ Σ is maximal if w[i − 1] �= x and
w[j + 1] �= x. It is simply referred by x+ if there is no ambiguity in its interval
in w. Intervals [i, j] and [i′, j′] with i < i′ are overlapping if i′ ≤ j < j′, and
are independent if j < i′. A pair u ∈ Σ∗ is a string of length two, and an
interval [i, i + 1] is a segment of u in w if w[i, i + 1] = u. Two segments [i− 1, i]
and [i + 1, i + 2] are said to be the left segment and the right segment of [i, j],
respectively.

A context-free grammar (CFG) is a quadruple G = (Σ, N, P, s) of disjoint
finite alphabets Σ and N , a finite set P ⊆ N × (N ∪Σ)∗ of production rules, and
the start symbol s ∈ N . Symbols in N are called nonterminals . A production
rule a → b1 · · · · · bk in P derives β ∈ (Σ ∪ N)∗ from α ∈ (Σ ∪ N)∗ by replacing
an occurrence of a ∈ N in α with b1 · · · · · bk. In this paper, we assume that any
CFG is deterministic, that is, for each nontermial a ∈ N , exactly one production
rule from a is in P . Thus, the language L(G) defined by G is a singleton set. We
say a CFG G derives w ∈ Σ∗ if L(G) = {w}. The size of G is the total length
of strings in the right hand sides of all production rules, and is denoted by |G|.

The aim of grammar-based compression is formalized as a combinatorial
optimization problem, as follows:

Problem 1 Grammar-Based Compression
Instance: A string w ∈ Σ∗.
Solution: A deterministic CFG G that derives w.
Measure: The size of G.

From now on, we assume that every deterministic CFG is in Chomsky normal
form, i.e. the size of strings in the right-hand side of production rules is two, and
we use |N | for the size of a CFG. Note that for any CFG G there is an equivalent
CFG G′ in Chomsky normal form whose size is no more than 2 · |G|.

It is known that there is an important relation between a deterministic CFG
and the factorization. The LZ-factorization LZ(w) of w is the decomposition of
w into f1 · · · · ·fk, where f1 = w[1], and for each 1 < � ≤ k, f� is the longest prefix
of the suffix w[|f1 · · · f�−1| + 1, |w|] that appears in f1 · · · f�−1. Each f� is called

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 221

a factor . The size |LZ(w)| of LZ(w) is the number of its factors. The following
result is used in the analysis of the approximation ratio of our algorithm.

Theorem 1 ([16]). For any string w and its deterministic CFG G, the inequal-
ity |LZ(w)| ≤ |G| holds.

3 Compression by the Alphabetical Order

In this section we describe the central idea of our grammar-based compression
utilizing information only available from individual symbols. The aim is to min-
imize the number of different nonterminals generated by our algorithm.

A replacement [i, i+1] → a for w is an operation that replaces a pair w[i, i+1]
with a nonterminal a ∈ N . A set R of replacements is, by assuming some order
on R, regarded as an operation that performs a series of replacements to w. In
the following we introduce a definition of a set of replacements whose effect on
a string is independent of the order.

Definition 1. A set R of replacements for w is appropriate if it satisfies the
following: (1) At most one of two overlapping segments [i, i+ 1] and [i + 1, i+2]
is replaced by replacements in R, (2) At least one of three overlapping segments
[i, i + 1], [i + 1, i + 2] and [i + 2, i + 3] is replaced by replacements in R, and (3)
For any pair of replacements [i, i + 1] → a and [j, j + 1] → b in R, a = b if and
only if w[i, i + 1] = w[j, j + 1].

Clearly, for any string w, an appropriate replacement R for w generates the
string w′ uniquely. In such a case, we say that R generates w′ from w, and write
w′ = R(w). Now we consider the following problem:

Problem 2 Minimum Appropriate Replacement
Instance: A string w.
Solution: An appropriate replacement R for w.
Measure: The number of kinds of nonterminals newly introduced by R.

Here we explain the strategies for making pairs in our algorithm. Let d be a
positive integer, and let k be �log2 d�. An alphabet tree Td for Σ = {a1, . . . , ad} is
the rooted, ordered complete binary tree whose leaves are labeled with 1, . . . , 2k

from left to right. The height of an internal node refers to the number of edges
of a path from the node to a descendant leaf. Let lca(i, j)d denote the height of
the lowest common ancestor of the leaves i and j. For the simplicity, we omit
the index d and use lca(i, j) if there is no ambiguity.

Definition 2. Let Σ be a finite alphabet with a fixed order. A string α ∈ Σ∗

is increasing if the symbols in α are in increasing order, and is decreasing if the
symbols are decreasing with the order of Σ. A string is monotonic if it is either
increasing or decreasing.

By using the above notion, we factorize a string w ∈ Σ∗ into the sequence
w1, . . . , wn of monotonic strings uniquely, as follows: w1 is the longest and

222 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

monotonic prefix of w, and if w1, . . . , wi are decided, then wi+1 is the longest
and monotonic prefix of the string w′ = w[|w1 · · ·wi| + 1, |w|]. The sequence
w1, . . . , wn is called the Σ-factoring of w.

Definition 3. Let w1, . . . , wn be the Σ-factoring of w. A pair a · b is a boundary
pair between wj and wj+1 if a is the rightmost symbol of wj and b is the leftmost
symbol of wj+1.

The first idea for Minimum Appropriate Replacement is to replace all
the boundary pairs. Let w be a string over an alphabet Σ′ and α a substring in
w appearing at least twice. If α is longer than 2|Σ′|, then it contains at least two
boundary pairs. Let bL and bR be the leftmost and the rightmost boundary pairs
in α, respectively, and let [i, i + 1] and [j, j + 1] be the corresponding segments
of bL and bR. Then we can write α = X ·α[i, i+1] ·Y ·α[j, j +1] ·Z with strings
X, Y and Z. Let R be an appropriate replacement that replaces all the boundary
pairs (and other remained pairs, for example by left-to-right scheme) in Y . In
any occurrence of α, the substring α[i, i + 1] · Y · α[j, j + 1] is uniquely replaced
by R. Thus, for any two occurrences of α, the differences of their replacement by
R occur only in X and Z. Notice that |X | and |Y | are bounded by the current
alphabet size k = |Σ′|. Next, we reduce the length of such X and Y to O(log k)
by another technique.

Definition 4. Let w be a string in Σ∗, and let w[i − 1, i + 2] = aj1aj2aj3aj4 be
a monotonic substring of w with aj1 , aj2 , aj3 , aj4 ∈ Σ. If lca(j1, j2) < lca(j2, j3)
and lca(j2, j3) > lca(j3, j4), then the pair w[i, i + 1] is called a locally maximum
pair.

Our second idea is to replace all locally maximum pairs. Since any locally
maximum pair shares no symbol with neither other locally maximum pairs nor
boundary pairs, all boundary pairs and locally maximum pairs in w can be
included in an appropriate replacement R. Assume a substring having no locally
maximum pair. The length of such a string is O(log k), where k is the height of
the tree Td, because there are at most log k different values of lca(i, j). Thus,
any two occurrences of α are replaced by R with the same string except their
prefices and suffices of length at most O(log k). If a string consists of only short
Σ-factors, then there may be no locally maximum pairs in the string. Therefore,
not only locally maximum pairs but also the boundary pairs are necessary. In
the next section we describe the algorithm utilizing the ideas given above.

4 Algorithm and Analysis

In this section we introduce an approximation algorithm for the grammar-based
compression problem and analyze its approximation ratio to the optimum as
well as its space efficiency.

4.1 Algorithm LCA

The algorithm LCA(w) is presented in Fig. 1. We describe the outline of LCA(w)
below.

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 223

1. Algorithm LCA(w)
2. m = 0;
3. Initialize the mth dictionary Dm = ∅;
4. Replace all maximal repetitions w[i, i + j] by A(a,j) and add ‘A(a,j)→B(a,j)C(a,j)’
5. to Dm, where B(a,j), C(a,j) and their productions are recursively defined below;
6. For each i = 1, . . . , |w| − 2 do:
7. If the pair w[i, i + 1] is boundary or locally maximum, then
8. replace w[i, i + 1] by a consistent Ak;
9. Dm ← {‘Ak → w[i, i + 1]’};
10. else
11. replace w[i] and w[i + 1, i + 2] by consistent nonterminals Ak and Ak+1;
12. Dm ← {‘Ak → w[i]’, ‘Ak+1 → w[i + 1, i + 2]’};
13. Increment m;
14. Goto 3. until all pairs in w are mutually different;
15. Output D ∪ {S → w} for D = D0 ∪ · · · ∪Dm;

B(a,j)C(a,j) =






A2
(a,j/2), if j ≥ 4 is even

A(a,j−1) · a, if j ≥ 3 is odd
a2, otherwise

Fig. 1. The approximation algorithm for grammar-based compression. A segment
w[i, i + 1] must be replaced by a nonterminal consistent with a current dictionary Dm,
i.e. w[i, i + 1] is replaced by A if a production A → BC (BC = w[i, i + 1]) is already
registered to Dm and a new nonterminal is created to replace w[i, i + 1] otherwise.

Phase 1 (Line 4 – 5): The algorithm finds out all maximum repetitions and
replace them with nonterminal symbols. As a result, a maximal repetition a+

will be divided into two strings. This process continues until the length of any
repetition becomes two or less.

Phase 2 (Line 6 – 12): Since all repetitions have been already removed, every
Σ-factor has length at least two, and boundary and locally maximum pairs do
not overlap each other. Obviously, the algorithm will find such an appropriate set
R of replacements. Then according to R, the algorithm replaces w, and add all
productions in R to the current dictionary Dm. Note that any symbol in w will
be replaced by an operation in either line 8 or 11: this trick plays an important
role to reduce space complexity.

Phase 3 (Line 14 – 15): The algorithm repeats the above steps until all pairs
in the current string become being mutually different, and then outputs the final
dictionary.

Since the algorithm replaces either w[i, i + 1] or w[i + 1, i + 2], or both,
the outer loop in LCA(w) repeats at most O(log |w|) times. Moreover, for each
iteration of the outer loop, the length of a string becomes at least 2/3 times the

224 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

previous one. We can verify whether a segment is locally maximum by its lca in
O(1) time1. Thus, LCA(w) runs in linear time with |w|.
Theorem 2. The running time of LCA(w) is bounded by O(|w|).

4.2 Performance Analysis

Lemma 1. Let w be a string in Σ∗, and let [l, r] and [l′, r′] be intervals of w of
the same substring α = w[l, r] = w[l′, r′]. Let R be the appropriate replacement
for w specified by the dictionary D produced by LCA(w). Then, for each index
�log |Σ|� + 1 ≤ i ≤ |α| − �log |Σ|�, a replacement “[l + i − 1, l + i] → a” with
some a ∈ N is in R if and only if “[l′ + i − 1, l′ + i] → a” is in R.

Proof. All locally maximum and boundary pairs are independent of each other.
Thus, R contains all locally maximum and boundary pairs in w. Every segment
between those pairs is replaced by a nonterminal as to maintain consistency with
the up-to-date dictionary, by the left-to-right scheme. A prefix and a suffix of α
having no locally maximum pair are no longer than �log |Σ|�. Thus, any pair of
the ith segments in w[l, r] and w[l′, r′], except the first �log |Σ|� segments and
the last �log |Σ|� ones, is going to be replaced by the same nonterminal, or is
not going to be replaced. �

Theorem 3. The worst-case approximation ratio of the size of a grammar pro-
duced by the algorithm LCA to the size of a minimum grammar is O(log g∗ log n),
where g∗ is the size of a minimum grammar.

Proof. We first estimate the number of different nonterminals produced by an
appropriate replacement R for an input string w ∈ Σ∗. Let g∗ be the size of
a minimum grammar for w, and let w1 · · ·wm be the LZ-factorization of w.
We denote by #(w)R the number of different nonterminals produced by R.
From the definition of LZ-factorization, any factor wi occurs in w1 · · ·wi−1,
or |wi| = 1. With lemma 1, any factor wi and its left-most occurrence are
compressed into almost the same strings αβγ and α′βγ′, such that |αγ| and |α′γ′|
are O(log |Σ|). Thus, we can estimate #(w)R = #(w1 · · ·wm−1)R +O(log |Σ|) =
O(m log |Σ|) = O(g∗ log |Σ|). Therefore, we can apply the above estimation for
the occurrences of β whenever |β| ≥ 2. Since Σ is initially a constant alphabet,
#(w)R converges to O(g∗ log g∗). Hence, O(g∗ log g∗) is the maximum number of
different nonterminals produced by a set of appropriate replacement by LCA(w).
The main loop of LCA(w) is executed at most O(log n) times. Therefore, the
total number of different nonterminals produced by LCA(w) is O(g∗ log g∗ log n).
This derives the approximation ratio.

The memory space required by LCA(w) can be bounded by the size of data
structure to answer the membership query: input is a pair AiAj ; output is an
integer k if Ak → AiAj is already created and no otherwise. By Theorem 3,

1 We can get the lca of any two leaves i and j of complete binary trees by an xor
operation between binary numbers in O(1) time under our RAM model [5].

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 225

the size of a current dictionary Dm is bounded by O(g∗ log g∗) for each m ≥ 0.
Moreover, each symbol Ai in a current string is replaced by a rule of the form
Aj → Ai or Aj → Y Z, where Ai ∈ {Y, Z}. Thus, O((g∗ log g∗)2)-space algorithm
is obtained by a naive implementation. Finally we show that the memory space
can be improved to O(g∗ log g∗).

4.3 Improving the Space Efficiency

An idea for improving space complexity of the algorithm is to recycle nonter-
minals created in the preceding iteration. Let D(α) be the string obtained by
applying a dictionary D to a string α. Let D1 and D2 be dictionaries such that
any symbol in w is replaced by D1 and any symbol in D1(w) is replaced by
D2. Then, the decoding of the string D2(D1(w)) is uniquely determined, even if
D2 reuses nonterminals in D1 like “A → AB.” Thus, we consider that the final
dictionary D is composed of D1, . . . , Dm, where Di is the dictionary constructed
in the ith iteration. Since any symbol w[i] is replaced with a nonterminal in line
8 or 11 in the algorithm, the decoding is unique and Dm(· · ·D1(w′) · · ·) = w for
the final string w′. Such a dictionary is computed by the following function and
data structures.

Let Di be the set of productions, Ni the set of alphabet symbols created in
the ith iteration, and ki the cardinality |Ni|. We define the function fi(x, y) =
(x − 1)ki + y for 1 ≤ x, y ≤ ki. This is a one-to-one mapping from {1, . . . , ki} ×
{1, . . . , ki} to {1, . . . , k2

i }, and is used to decide an index of a new nonterminal
associated to a pair AxAy, where Ax denotes the xth created nonterminal in Ni.

The next dictionary Di+1 is constructed from Di, Ni, and fi as follows. In
the algorithm LCA, there are two cases of replacements: one is for replacements
of pairs, and the other is for replacements of individual symbols in line 11. We
first explain the case of replacements of pairs. Let a pair AxAy in a current string
be decided to be replaced. The algorithm LCA computes the integer z = f(x, y),
and looks up a hash table H for z. If H(z) is absent and Ni = {A1, . . . , Ak},
then set Ni = Ni ∪ {Ak+1}, Di = Di ∪ {Ak+1 → AxAy}, H(z) = k + 1, and
replace the pair AxAy with Ak+1. If H(z) = k + 1 is present, then only replace
the pair AxAy by Ak+1. We next explain the case of replacements of individual
symbols. Since all maximal repetitions like A+ are removed in line 4-5, there is
no pair like AA in a current string. Thus, for a replacement of a single symbol
Ax, we can use the nonterminal Ak+1 such that z = fi(x, x) and H(z) = k + 1.
The dictionary Di constructed in the ith iteration can be divided to Di1 and
Di2 such that Di1 is the dictionary for repetitions and Di2 = Di \Di2 . Thus, we
can create all productions without collisions, and decode a current string wi+1

to the previous string wi by the manner Di(wi+1) ≡ Di1(Di2(wi+1)) = wi.

Theorem 4. The space required by LCA(w) is O(g∗ log g∗).

Proof. Let n be the size |w| and m the number of iterations of outer loops
executed in LCA(w). By theorem 3, the number |Ni| of new nonterminals created
in the ith iteration is O(g∗ log g∗) for each i ≤ m. To decide the index of a

226 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

Table 1. Result for the canterbury corpus.

File Category
Size Repeat Size of Size of Compressed gzip

(byte) times w D size(bytes) (bytes)

alice29.txt English text 152089 6 5053 45243 176956 54435
asyoulik.txt Shakespeare 125179 7 2523 42562 156220 48951
cp.html HTML source 24603 7 470 9010 28980 7999
fields.c C source 11150 9 71 4418 12616 3143
grammar.lsp LISP source 3721 6 122 1730 4408 1246
kennedy.xls Excel Spreadsheet 1029744 5 41600 139118 980832 206779
lcet10.txt Technical writing 426754 7 8167 113760 477268 144885
plrabn12.txt Poetry 481861 7 9779 138353 593988 195208
ptt5 CCITT test set 513216 6 2759 40784 154836 56443
sum SPARC Executable 38240 11 77 14349 46260 12924
xargs.1 GNU manual page 4227 5 262 2122 5804 1756

new nonterminal from a pair AxAy, LCA computes z = fi(x, y), H(z), and
k = |Ni| for the current Ni. Since |z| ≤ O(log n) and the number of different z
is O(g∗ log g∗), the space for H is O(g∗ log g∗) and k = O(g∗ log g∗). Thus, the
construction of Di requires only O(g∗ log g∗) space. We can release whole the
memory space for Di in the next loop. Hence, the total size of the space for
constructing D is also O(g∗ log g∗).

5 Experiments

To estimate the performance of LCA(w), we implemented the algorithm and
tested it. We used a PC with Intel Xeon 3.06GHz dual-CPU and 3.5GB memory
running Cygwin on Windows XP, and used Gcc version 3.3.1 for the implemen-
tation. We used the canterbury corpus and the artificial corpus, which are from
the Canterbury Corpus (http://corpus.canterbury.ac.nz/).

Tables 1 and 2. show the results for each corpus. In the tables, ‘Repeat
times’ means how many times the algorithm processed the lines from 3 to 11 in
Fig. 1. Note that it corresponds to the height of the syntax tree of the grammar
generated by the algorithm. ‘Size of w’ and ‘Size of D’ indicate respectively the
length of the sequence w and the total number of rules in the dictionary D,
which are obtained at the last. ‘Compressed size’ indicates the whole output
file size, where w and D are encoded in a simple way: each element in them
is represented by an integer with the smallest length of bits so that it can be
distinguished from the others.

As we see from Table 1, LCA(w) gives rather worse compression ratios than
gzip. One of the reasons is because of our poor way of encoding. Another main
reason is that D becomes very large when a target text is long and has few
repetitions. If we thin out useless rules in D like Sequitur algorithm[15] and
apply more efficient encodings, it can be improved. On the other hand, from
Table 2, we see that there are cases that LCA(w) is better than gzip, because
that the texts have many repetitions.

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 227

Table 2. Result for the artificial corpus.

File Category
Size Repeat Size of Size of Compressed gzip

(byte) times w D size(bytes) (bytes)

a.txt The letter ’a’ 1 1 1 1 16 27
aaa.txt The letter ’a’, re-

peated 100,000 times
100000 1 1 22 64 141

alphabet.txt Enough repetitions of
the alphabet to fill
100,000 characters

100000 6 3 77 136 315

random.txt 100,000 charac-
ters, randomly
selected from
[a− z|A−Z|0− 9|!|]
(alphabet size 64)

100000 3 17696 42500 191672 75689

Table 3. Maximum memory consumption for the dictionary.

text size (bytes) Sequitur (bytes) LCA(w) (bytes)

10 132 2056
100 1344 2056

1000 14352 6740
10000 98796 46800

100000 726828 428480
1000000 6903468 2880300

Table 4. Compression time.

text size (bytes) Sequitur (s) LCA(w) (s)

10 0.030 0.093
100 0.030 0.077

1000 0.046 0.061
10000 0.061 0.077

100000 0.390 0.186
1000000 4.311 0.874

Our algorithm runs in O(n) time and the size of dictionary is bounded by
O(g∗ log g∗) in average. To estimate time and space efficiency, we compared
LCA(w) with Sequitur (Tables 3 and 4). We used random texts with |Σ| = 26
as target texts. Since the memory consumptions of both algorithms increase and
decrease during running, we measured the maximum memory consumptions. The
results show that LCA(w) is superior to Sequitur when the text is sufficiently
long.

6 Conclusion

We presented a linear-time algorithm for the grammar-based compression. This
algorithm guarantees the approximation ratio O(log g∗ log n) and the memory

228 Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono

space O(g∗ log g∗). This space bound is considered to be sufficiently small since
Ω(g∗) space is a lower bound for non-adaptive dictionary-based compression. In
particular, the upper bound of memory space is best in the previously known
linear-time polylog-approximation algorithms. We also show the scalability of our
algorithm for large text data.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, 1999.

2. S. De Agostino and J. A. Storer. On-Line versus Off-Line Computation in Dynamic
Text Compression. Inform. Process. Lett., 59:169–174, 1996.

3. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sa-
hai, and A. Shelat. Approximating the Smallest Grammar: Kolmogorov Complex-
ity in Natural Models. In Proc. 29th Ann. Sympo. on Theory of Computing, 792-
801, 2002.

4. M. Farach. Optimal Suffix Tree Construction with Large Alphabets. In Proc. 38th
Ann. Sympo. on Foundations of Computer Science, 137-143, 1997.

5. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, 1997.

6. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage System:
a Unifying Framework for Compressed Pattern Matching. Theoret. Comput. Sci.
(to appear).

7. J. C. Kieffer and E.-H. Yang. Grammar-Based Codes: a New Class of Universal
Lossless Source Codes. IEEE Trans. on Inform. Theory, 46(3):737–754, 2000.

8. J. C. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman. Universal Lossless Com-
pression via Multilevel Pattern Matching. IEEE Trans. Inform. Theory, IT-46(4),
1227–1245, 2000.

9. D. Knuth. Seminumerical Algorithms. Addison-Wesley, 441-462, 1981.

10. N. J. Larsson and A. Moffat. Offline Dictionary-Based Compression. Proceedings
of the IEEE , 88(11):1722-1732, 2000.

11. E. Lehman. Approximation Algorithms for Grammar-Based Compression. PhD
thesis, MIT, 2002.

12. E. Lehman and A. Shelat. Approximation Algorithms for Grammar-Based Com-
pression. In Proc. 20th Ann. ACM-SIAM Sympo. on Discrete Algorithms, 205-212,
2002.

13. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and Its Applications. Addison-Wesley, 1983.

14. C. Nevill-Manning and I. Witten. Compression and Explanation Using Hierarchical
Grammars. Computer Journal, 40(2/3):103–116, 1997.

15. C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artificial Intelligence Research, 7:67–82, 1997.

16. W. Rytter. Application of Lempel-Ziv Factorization to the Approximation of
Grammar-Based Compression. In Proc. 13th Ann. Sympo. Combinatorial Pattern
Matching, 20-31, 2002.

17. H. Sakamoto. A Fully Linear-Time Approximation Algorithm for Grammar-Based
Compression. Journal of Discrete Algorithms, to appear.

A Space-Saving Linear-Time Algorithm for Grammar-Based Compression 229

18. D. Salomon. Data compression: the complete reference. Springer, second edition,
1998.

19. J. Storer and T. Szymanski. Data compression via textual substitution. J. Assoc.
Comput. Mach., 29(4):928–951, 1982.

20. J. A. Storer and T. G. Szymanski. The Macro Model for Data Compression. In
Proc. 10th Ann. Sympo. on Theory of Computing, pages 30-39, San Diego, Cali-
fornia, 1978. ACM Press.

21. T. A. Welch. A Technique for High Performance Data Compression. IEEE Com-
put., 17:8-19, 1984.

22. E.-H. Yang and J. C. Kieffer. Efficient Universal Lossless Data Compression Al-
gorithms Based on a Greedy Sequential Grammar Transform–Part One: without
Context Models. IEEE Trans. on Inform. Theory, 46(3):755-777, 2000.

23. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
IEEE Trans. on Inform. Theory, IT-23(3):337-349, 1977.

24. J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate
Coding. IEEE Trans. on Inform. Theory, 24(5):530-536, 1978.

Simple, Fast, and Efficient
Natural Language Adaptive Compression�

Nieves R. Brisaboa1, Antonio Fariña1, Gonzalo Navarro2, and José R. Paramá1

1 Database Lab., Univ. da Coruña, Facultade de Informática
Campus de Elviña s/n, 15071 A Coruña, Spain

{brisaboa,fari,parama}@udc.es
2 Center for Web Research, Dept. of Computer Science, Univ. de Chile

Blanco Encalada 2120, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. One of the most successful natural language compression
methods is word-based Huffman. However, such a two-pass semi-static
compressor is not well suited to many interesting real-time transmis-
sion scenarios. A one-pass adaptive variant of Huffman exists, but it
is character-oriented and rather complex. In this paper we implement
word-based adaptive Huffman compression, showing that it obtains very
competitive compression ratios. Then, we show how End-Tagged Dense
Code, an alternative to word-based Huffman, can be turned into a faster
and much simpler adaptive compression method which obtains almost
the same compression ratios.

1 Introduction

Transmission of compressed data is usually composed of four processes: com-
pression, transmission, reception, and decompression. The first two are carried
out by a sender process and the last two by a receiver. This abstracts from com-
munication over a network, but also from writing a compressed file to disk so
as to load and decompress it later. In some scenarios, especially the latter, com-
pression and transmission usually complete before reception and decompression
start.

There are several interesting real-time transmission scenarios, however, where
those processes should take place concurrently. That is, the sender should be able
to start the transmission of compressed data without preprocessing the whole
text, and simultaneously the receiver should start reception and decompress the
text as it arrives. Real-time transmission is usually of interest when communi-
cating over a network. This kind of compression can be applied, for example,
to interactive services such as remote login or talk/chat protocols, where small

� This word is partially supported by CYTED VII.19 RIBIDI Project. It is also funded
in part (for the Spanish group) by MCyT (PGE and FEDER) grant(TIC2003-06593)
and (for the third author) by Millennium Nucleus Center for Web Research, Grant
(P01-029-F), Mideplan, Chile.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 230–241, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Simple, Fast, and Efficient Natural Language Adaptive Compression 231

messages are exchanged during the whole communication time. It might also
be relevant to transmission of Web pages, so that the exchange of (relatively
small) pages between a server and a client along the time enables adaptive com-
pression by installing a browser plug-in to handle decompression. This might be
also interesting for wireless communication with hand-held devices with little
bandwidth and processing power.

Real-time transmission is handled with so-called dynamic or adaptive com-
pression techniques. These perform a single pass over the text (so they are also
called one-pass) and begin compression and transmission as they read the data.
Currently, the most widely used adaptive compression techniques belong to the
Ziv-Lempel family [1]. When applied to natural language text, however, the
compression ratios achieved by Ziv-Lempel are not that good (around 40%).

Statistical two-pass techniques, on the other hand, use a semi-static model. A
first pass over the text to compress gathers global statistical information, which
is used to compress the text in a second pass. The computed model is transmitted
prior to the compressed data, so that the receiver can use it for decompression.
Classic Huffman code [11] is a well-known two-pass method. Its compression ratio
is rather poor for natural language texts (around 60%). In recent years, however,
new Huffman-based compression techniques for natural language have appeared,
based on the idea of taking the words, not the characters, as the source symbols
to be compressed [13]. Since in natural language texts the frequency distribution
of words is much more biased than that of characters, the gain in compression is
enormous, achieving compression ratios around 25%-30%. Additionally, since in
Information Retrieval (IR) words are the atoms searched for, these compression
schemes are well suited to IR tasks. Word-based Huffman variants focused on
fast retrieval are presented in [7], where a byte- rather than bit-oriented coding
alphabet speeds up decompression and search.

Two-pass codes, unfortunately, are not suitable for real-time transmission.
Hence, developing an adaptive compression technique with good compression ra-
tios for natural language texts is a relevant problem. In [8, 9] a dynamic Huffman
compression method was presented. This method was later improved in [12, 14].
In this case, the model is not previously computed nor transmitted, but rather
computed and updated on the fly both by sender and receiver.

However, those methods are character- rather than word-oriented, and thus
their compression ratios on natural language are poor. Extending those algo-
rithms to build a dynamic word-based Huffman method and evaluating its com-
pression efficiency and processing cost is the first contribution of this paper. We
show that the compression ratios achieved are in most cases just 0.06% over
those of the semi-static version. The algorithm is also rather efficient: It com-
presses 4 megabytes per second in our machine. On the other hand, it is rather
complex to implement.

Recently, a new word-based byte-oriented method called End-Tagged Dense
Code (ETDC) was presented in [3]. ETDC is not based on Huffman at all. It
is simpler and faster to build than Huffman codes, and its compression ratio
is only 2%-4% over the corresponding word-based byte-oriented Huffman code.

232 Nieves R. Brisaboa et al.

For IR purposes, ETDC is especially interesting because it permits direct text
searching, much as the Tagged Huffman variants developed in [7]. However,
ETDC compresses better than those fast-searchable Huffman variants.

The second contribution of this paper is to show another advantage of ETDC
compared to Huffman codes. We show that an adaptive version of ETDC is much
simpler to program and 22%-26% faster than word-oriented dynamic Huffman
codes. Moreover, its compression ratios are only 0.06% over those of semi-static
ETDC, and 2%-4% over semi-static Huffman code. From a theoretical viewpoint,
dynamic Huffman complexity is proportional to the number of target symbols
output, while dynamic ETDC complexity is proportional to the number of source
symbol processed. The latter is never larger than the former, and the difference
increases as more compression is obtained.

As a sanity check, we also present empirical results comparing our dynamic
word-based codes against two well-known compression techniques such as gzip
(fast compression and decompression, but poor compression) and bzip2 (good
compression ratio, but slower). These results show that our two techniques pro-
vide a well balanced trade-off between compression ratio and speed.

2 Word-Based Semi-static Codes

Since in this paper we focus on word-based natural language text compression,
we speak indistinctly of source symbols and words, and sometimes call vocabulary
the set of source symbols.

2.1 Word-Based Huffman Codes

The idea of Huffman coding [11] is to compress the text by assigning shorter
codes to more frequent symbols. Huffman algorithm obtains an optimal (shortest
total length) prefix code for a given text. A code is a prefix code if no codeword is
a prefix of any other codeword. A prefix code can be decoded without reference
to future codewords, since the end of a codeword is immediately recognizable.

The word-based Huffman byte oriented codes proposed in [7] obtain com-
pression ratios on natural language close to 30% by coding with bytes instead
of bits (in comparison to the bit oriented approach that achieves ratios close
to 25%). In exchange, decompression and searching are much faster with byte-
oriented Huffman code because no bit manipulations are necessary. This word-
based byte-oriented Huffman code will be called Plain Huffman code in this
paper.

Another code proposed in [7] is Tagged Huffman code. This is like Plain
Huffman, except that the first bit of each byte is reserved to flag whether the
byte is the first of its codeword. Hence, only 7 bits of each byte are used for the
Huffman code. Note that the use of a Huffman code over the remaining 7 bits is
mandatory, as the flag is not useful by itself to make the code a prefix code. The
tag bit permits direct searching on the compressed text by simply compressing
the pattern and then running any classical string matching algorithm. On Plain

Simple, Fast, and Efficient Natural Language Adaptive Compression 233

Huffman this does not work, as the pattern could occur in the text not aligned
to any codeword [7].

While searching Plain Huffman compressed text requires inspecting all its
bytes from the beginning, Boyer-Moore type searching (that is, skipping bytes)
[2] is possible over Tagged Huffman code. On the other hand, Tagged Huffman
code pays a price in terms of compression performance of approximately 11%,
as it stores full bytes but uses only 7 bits for coding.

2.2 End-Tagged Dense Codes

End-Tagged Dense code (ETDC) [3] is obtained by a seemingly dull change to
Tagged Huffman code. Instead of using a flag bit to signal the beginning of a
codeword, the end of a codeword is signaled. That is, the highest bit of any
codeword byte is 0 except for the last byte, where it is 1. By this change there
is no need at all to use Huffman coding in order to maintain a prefix code.

In general, ETDC can be defined over symbols of b bits, although in this
paper we focus on the byte-oriented version where b = 8. ETDC is formally
defined as follows.

Definition 1 Given source symbols {s1, . . . , sn}, End-Tagged Dense Code assigns
number i−1 to the i-th most frequent symbol. This number is represented in base
2b−1, as a sequence of digits, from most to least significant. Each such digit is
represented using b bits. The exception is the least significant digit d0, where we
represent 2b−1 + d0 instead of just d0.

That is, the first word is encoded as 1
¯
0000000, the second as 1

¯
0000001, until

the 128th as 1
¯
1111111. The 129th word is coded as 0

¯
0000000:1

¯
0000000, 130th as

0
¯
0000000:1

¯
0000001 and so on until the (1282 + 128)th word 0

¯
1111111:1

¯
1111111,

just as if we had a 14-bit number.
As it can be seen, the computation of codes is extremely simple: It is only nec-

essary to sort the source symbols by decreasing frequency and then sequentially
assign the codewords. The coding phase is faster than using Huffman because
obtaining the codes is simpler. Empirical results comparing ETDC against Plain
and Tagged Huffman can be found in [3].

Note that the code depends on the rank of the words, not on their actual
frequency. As a result, it is not even necessary to transmit the code of each word,
but just the sorted vocabulary, as the model to the receiver. Hence, End-Tagged
Dense Codes are simpler, faster, and compress better than Tagged Huffman
codes. Since the last bytes of codewords are distinguished, they also permit
direct search of the compressed text for the compressed pattern, using any search
algorithm.

On-the-Fly Coding and Decoding. We finally observe that, for compression and
decompression, we do not really have to start by sequentially assigning the codes
to the sorted words. An on-the-fly encoding is also possible.

Given a word ranked i in the sorted vocabulary, the encoder can run a simple
encode function to compute the codeword Ci = encode(i). It is a matter of

234 Nieves R. Brisaboa et al.

Sender ()
(1) V ocabulary ← {Cnew-Symbol};
(2) Initialize CodeBook;
(3) for i ∈ 1 . . . n do
(4) read si from the text;
(5) ifsi �∈ V ocabulary then
(6) send Cnew-Symbol;
(7) send si in plain form;
(8) V ocabulary ← V ocabulary ∪ {si};
(9) f(si) ← 1;
(10) else
(11) send CodeBook(si);
(12) f(si) ← f(si) + 1;
(13) Update CodeBook;

Receiver ()
(1) V ocabulary ← {Cnew-Symbol};
(2) Initialize CodeBook;
(3) for i ∈ 1 . . . n do
(4) receive Ci;
(5) ifCi = Cnew-Symbol then
(6) receive si in plain form;
(7) V ocabulary ← V ocabulary ∪ {si};
(8) f(si) ← 1;
(9) else

(10) si ← CodeBook−1(Ci);
(11) f(si) ← f(si) + 1;
(12) output si;
(13) Update CodeBook;

Fig. 1. Sender and receiver processes in statistical dynamic text compression.

expressing i − 1 in base 2b−1 (which requires just bit shifts and masking) and
outputting the sequence of digits. Function encode takes just O(l) time, where
l = O(log(i)/b) is the length in digits of codeword Ci.

At decompression time, given codeword Ci of l digits and the sorted vo-
cabulary, it is also possible to compute, in O(l) time, function i = decode(Ci),
essentially by interpreting Ci as a base 2b−1 number and finally adding 1. Then,
we retrieve the i-th word in the sorted vocabulary.

3 Statistical Dynamic Codes

Statistical dynamic compression techniques are one-pass. Statistics are collected
as the text is read, and consequently, the model is updated as compression
progresses. They do not transmit the model, as the receiver can figure out the
model by itself from the received codes.

In particular, zero-order compressors model the text using only the informa-
tion on source symbol frequencies, that is, f(si) is the number of times source
symbol si appears in the text (read up to now). In the discussion that follows
we focus on zero-order compressors.

In order to maintain the model up to date, dynamic techniques need a data
structure to keep the vocabulary of all symbols si and their frequencies f(si)
up to now. This data structure is used by the encoding/decoding scheme, and
is continuously updated during compression/decompression. After each change
in the vocabulary or frequencies, the codewords assigned to all source symbols
may have to be recomputed due to the frequency changes. This recomputation
must be done both by the sender and the receiver.

Figure 1 depicts the sender and receiver processes, highlighting the symmetry
of the scheme. CodeBook stands for the model, used to assign codes to source
symbols or vice versa.

3.1 Dynamic Huffman Codes

In [8, 9] an adaptive character-oriented Huffman coding algorithm was presented.
It was later improved in [12], being named FGK algorithm. FGK is the basis of
the UNIX compact command.

Simple, Fast, and Efficient Natural Language Adaptive Compression 235

FGK maintains a Huffman tree for the source text already read. The tree
is adapted each time a symbol is read to keep it optimal. It is maintained both
by the sender, to determine the code corresponding to a given source symbol,
and by the receiver, to do the opposite. Thus, the Huffman tree acts as the
CodeBook of Figure 1. Consequently, it is initialized with a unique special node
called zeroNode (corresponding to new-Symbol), and it is updated every time a
new source symbol is inserted in the vocabulary or a frequency increases. The
codeword for a source symbol corresponds to the path from the tree root to the
leaf corresponding to that symbol. Any leaf insertion or frequency change may
require reorganizing the tree to restore its optimality.

The main challenge of Dynamic Huffman is how to reorganize the Huffman
tree efficiently upon leaf insertions and frequency increments. This is a complex
and potentially time-consuming process that must be carried out both by the
sender and the receiver.

The main achievement of FGK is to ensure that the tree can be updated by
doing only a constant amount of work per node in the path from the affected leaf
to the tree root. Calling l(si) the path length from the leaf of source symbol si to
the root, and f(si) its frequency, then the overall complexity of algorithm FGK
is

∑
f(si)l(si), which is exactly the length of the compressed text, measured in

number of target symbols.

3.2 Word-Based Dynamic Huffman Codes

We implemented a word-based version of algorithm FGK. This is by itself a
contribution because no existing adaptive technique obtains similar compression
ratio on natural language. As the number of text words is much larger than the
number of characters, several challenges arised to manage such a large vocabu-
lary. The original FGK algorithm pays little attention to these issues because of
its underlying assumption that the source alphabet is not very large.

However, the most important difference between our word-based version and
the original FGK is that we chose the code to be byte rather than bit-oriented.
Although this necessarily implies some loss in compression ratio, it gives a deci-
sive advantage in efficiency. Recall that the algorithm complexity corresponds to
the number of target symbols in the compressed text. A bit-oriented approach
requires time proportional to the number of bits in the compressed text, while
ours requires time proportional to the number of bytes. Hence byte-coding is
almost 8 times faster.

Being byte-oriented implies that each internal node can have up to 256 chil-
dren in the resulting Huffman tree, instead of 2 as in a binary tree. This required
extending FGK algorithm in several aspects.

4 Dynamic End-Tagged Dense Code

In this section we show how ETDC can be made adaptive. Considering again
the general scheme of Figure 1, the main issue is how to maintain the CodeBook

236 Nieves R. Brisaboa et al.

up to date upon insertions of new source symbols and frequency increments.
In the case of ETDC, the CodeBook is essentially the array of source symbols
sorted by frequencies. If we are able to maintain such array upon insertions and
frequency changes, then we are able to code any source symbol or decode any
target symbol by using the on-the-fly encode and decode procedures explained
at the end of Section 2.2.

the

--

--

--

--

1

2

3

4

the

--

--

--

1

2

3

4

no

Word parsed

In vocabulary?

C1 theData sent

Vocabulary

state

rose

the

rose

--

--

1

2

3

4

no

C2 rose

rose

rose

the

--

--

1

2

3

4

yes

C2

is

rose

the

--

is

1

2

3

4

no

C3 is

beautiful

rose

the

is

1

2

3

4

no

C4beautiful

beautiful

rose

the

is

1

2

3

4

yes

C4

1 1

1

2

1

2

1

1

2

1

1

2

2

1

Bytes = 28

Plain text

Compressed text

beautiful
1

beautiful

1

e r o s e r o es i s b e a u t it h f u l b e a u t i f u l

h e # o s #t r e b e a u t i f uC1 C2 C4C2 C4 l #

Bytes = 36

i s #C3

Input order 0 1 2 3 4 5 6

Fig. 2. Transmission of message "the rose rose is beautiful beautiful".

Figure 2 shows how the compressor operates. At first (step 0), no words have
been read so new-Symbol is the only word in the vocabulary (it is implicitly
placed at position 1). In step 1, a new symbol "the" is read. Since it is not in
the vocabulary, C1 (the codeword of new-Symbol) is sent, followed by "the" in
plain form (bytes ‘t’, ‘h’, ‘e’ and some terminator ‘#’). Next, "the" is added
to the vocabulary (array) with frequency 1, at position 1. Implicitly, new-Symbol
has been displaced to array position 2. Step 2 shows the transmission of "rose",
which is not yet in the vocabulary. In step 3, "rose" is read again. As it was
in the vocabulary at array position 2, only codeword C2 is sent. Now, "rose"
becomes more frequent than "the", so it moves upward in the array. Note that
a hypothetical new occurrence of "rose" would be transmitted as C1, while
it was sent as C2 in step 1. In steps 4 and 5, two more new words, "is" and
"beautiful", are transmitted and added to the vocabulary. Finally, in step 6,
"beautiful" is read again, and it becomes more frequent than "is" and "the".
Therefore, it moves upward in the vocabulary by means of an exchange with
"the".

The main challenge is how to efficiently maintain the sorted array. In the
sequel we show how we obtain a complexity equal to the number of source
symbols transmitted. This is always lower than FGK complexity, because at
least one target symbol must be transmitted for each source symbol, and usually
several more if some compression is going to be achieved. Essentially, we must
be able to identify groups of words with the same frequency in the array, and be
able of fast promoting of a word to the next group when its frequency increases.

The data structures used by the sender and their functionality are shown
in Figure 3. The hash table of words keeps in word the source word characters,

Simple, Fast, and Efficient Natural Language Adaptive Compression 237

in posInVoc the position of the word in the vocabulary array, and in freq its
frequency. In the vocabulary array (posInHT) the words are not explicitly rep-
resented, but a pointer to word is stored. Finally, arrays top and last tell, for
each possible frequency, the vocabulary array positions of the first and last word
with that frequency. It always holds top[f −1] = last[f]+1 (so actually only one
array is maintained). If no words of frequency f exist, then last[f] = top[f]− 1.

ABABBCCCD

posInVoc

7 153

1 5432

posInHT

top

last

word

freq

newSymbol = 5

BACD

1324

3231

87654321

-134

-234

4321

ABABBCCC

posInVoc

word

freq

newSymbol = 47 53

1 5432

posInHT

top

last

BAC

132

323

87654321

-13-

-23-

4321

ABABBCC

posInVoc

newSymbol = 47 35

1 5432

posInHT

-12-

-13-

4321

top

last

BAC

123

322

87654321

word

freqh
a
s
h

ta
b
le

g
ro

u
p
s

w
o
rd

s

-

-

0

-

-

0

-

-

0

Fig. 3. Transmission of words: ABABBCC, ABABBCCC and ABABBCCCD.

When the sender reads word si, it uses the hash function to obtain its po-
sition p in the hash table, so that word[p] = si. After reading f = freq[p],
it increments freq[p]. The index of si in the vocabulary array is also obtained
as i = posInV oc[p] (so it will send code Ci). Now, word si must be promoted
to its next group. For this sake, it finds the head of its group j = top[f] and
the corresponding word position h = posInHT [j], so as to swap words i and
j in the vocabulary array. The swapping requires exchanging posInHT [j] with
posInHT [i], setting posInV oc[p] = j and setting posInV oc[h] = i. Once the
swapping is done, we promote j to the next group by setting last[f +1] = j and
top[f] = j + 1.

If si turns out to be a new word, we set word[p] = si, freq[p] = 1, and
posInV oc[p] = n, where n is the number of source symbols known prior to
reading si (and considering new-Symbol). Then exactly the above procedure is
followed with f = 0 and i = n. Also, n is incremented.

The receiver works very similarly, except that it starts from i and then it
obtains p = posInHT [i]. Figure 4 shows the pseudocode.

Implementing dynamic ETDC is simpler than building dynamic word-based
Huffman. In fact, our implementation of the Huffman tree update takes about
120 C source code lines, while the update procedure takes only about 20 lines in
dynamic ETDC.

5 Empirical Results

We tested the different compressors over several texts. As representative of short
texts, we used the whole Calgary corpus. We also used some large text collections
from trec-2 (AP Newswire 1988 and Ziff Data 1989-1990) and from trec-4
(Congressional Record 1993, Financial Times 1991 to 1994). Finally, two larger
collections, ALL FT and ALL, were used. ALL FT aggregates all texts from

238 Nieves R. Brisaboa et al.

Sender (si)
(1) p ← hash(si);
(2) if word[p] = nil then // new word
(3) word[p] ← si;
(4) freq[p] ← 0;
(5) posInV oc[p] ← n;
(6) posInHT [n] ← p;
(7) n ← n + 1;
(8) f ← freq[p];
(9) freq[p] ← freq[p] + 1;
(10) i ← posInV oc[p];
(11) j ← top[f];
(12) h ← posInHT [j];
(13) posInHT [i] ↔ posInHT [j];
(14) posInV oc[p] ← j;
(15) posInV oc[h] ← i;
(16) last[f + 1] ← j;
(17) top[f] ← j + 1;

Receiver (i)
(1) p ← posInHT [i];
(2) ifword[p] = nil then // new word
(3) word[p] ← si;
(4) freq[p] ← 0;
(5) posInV oc[p] ← n;
(6) posInHT [n] ← p;
(7) n ← n + 1;
(8) f ← freq[p];
(9) freq[p] ← freq[p] + 1;
(10) i ← posInV oc[p];
(11) j ← top[f];
(12) h ← posInHT [j];
(13) posInHT [i] ↔ posInHT [j];
(14) posInV oc[p] ← j;
(15) posInV oc[h] ← i;
(16) last[f + 1] ← j;
(17) top[f] ← j + 1;

Fig. 4. Sender and receiver processes to update CodeBook in ETDC.

Table 1. Compression ratios of dynamic versus semi-static techniques.

Plain Huffman End-Tagged Dense Code
CORPUS TEXT SIZE 2-pass dynamic Increase 2-pass dynamic Increase diffET DC

bytes ratio % ratio % diffP H ratio % ratio % diffET DC − diffPH

CALGARY 2,131,045 46.238 46.546 0.308 47.397 47.730 0.332 0.024
FT91 14,749,355 34.628 34.739 0.111 35.521 35.638 0.116 0.005

CR 51,085,545 31.057 31.102 0.046 31.941 31.985 0.045 -0.001
FT92 175,449,235 32.000 32.024 0.024 32.815 32.838 0.023 -0.001
ZIFF 185,220,215 32.876 32.895 0.019 33.770 33.787 0.017 -0.002
FT93 197,586,294 31.983 32.005 0.022 32.866 32.887 0.021 -0.001
FT94 203,783,923 31.937 31.959 0.022 32.825 32.845 0.020 -0.002

AP 250,714,271 32.272 32.294 0.021 33.087 33.106 0.018 -0.003
ALL FT 591,568,807 31.696 31.710 0.014 32.527 32.537 0.011 -0.003

ALL 1,080,719,883 32.830 32.849 0.019 33.656 33.664 0.008 -0.011

Financial Times collection. ALL collection is composed by Calgary corpus and
all texts from trec-2 and trec-4.

A dual Intel r©Pentium r©-III 800 Mhz system, with 768 MB SDRAM-100Mhz
was used in our tests. It ran Debian GNU/Linux (kernel version 2.2.19). The
compiler used was gcc version 3.3.3 20040429 and -O9 compiler optimizations
were used. Time results measure cpu user-time. The spaceless word model [6]
was used to model the separators.

Table 1 compares the compression ratios of two-pass versus one-pass tech-
niques. Columns labeled diff measure the increase, in percentual points, in the
compression ratio of the dynamic codes compared against their semi-static ver-
sion. The last column shows those differences between Plain Huffman and ETDC.

To understand the increase of size of dynamic versus semi-static codes, two
issues have to be considered: (i) each new word si parsed during dynamic com-
pression is represented in the compressed text (or sent to the receiver) as a pair
〈Cnew-Symbol, si〉, while in two-pass compression only the word si needs to be
stored/transmitted in the vocabulary; (ii) on the other hand, some low-frequency
words can be encoded with shorter codewords by dynamic techniques, since by
the time they appear the vocabulary may still be small.

Compression ratios are around 30-35% for the larger texts. For the smaller
ones, compression is poor because the size of the vocabulary is proportionally

Simple, Fast, and Efficient Natural Language Adaptive Compression 239

Table 2. Comparison between dynamic ETDC and dynamic PH.

CORPUS TEXT SIZE n Dyn PH Dyn ETDC Increase Decrease
bytes time (sec) ratio% time (sec) ratio % size % time %

CALGARY 2,131,045 30,995 0.520 46.546 0.384 47.730 2.543 22.892
FT91 14,749,355 75,681 3.428 34.739 2.488 35.638 2.588 22.685
CR 51,085,545 117,713 11.450 31.102 8.418 31.985 2.839 22.629
FT92 175,449,235 284,892 41.330 32.024 31.440 32.838 2.542 26.404
ZIFF 185,220,215 237,622 44.628 32.895 33.394 33.787 2.710 22.559
FT93 197,586,294 291,427 47.118 32.005 36.306 32.887 2.755 20.840
FT94 203,783,923 295,018 48.260 31.959 36.718 32.845 2.774 22.006
AP 250,714,271 269,141 60.702 32.294 47.048 33.106 2.514 22.796
ALL FT 591,568,807 577,352 143.050 31.710 111.068 32.537 2.609 23.796
ALL 1,080,719,883 886,190 268.983 32.849 213.068 33.664 2.481 25.927

Table 3. Comparison of compression ratio against gzip and bzip2.

CORPUS TEXT SIZE compression ratio %
bytes Dyn PH Dyn ETDC gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 2,131,045 46.546 47.730 43.530 36.840 32.827 28.924
FT91 14,749,355 34.739 35.638 42.566 36.330 32.305 27.060
CR 51,085,545 31.102 31.985 39.506 33.176 29.507 24.142
FT92 175,449,235 32.024 32.838 42.585 36.377 32.369 27.088
ZIFF 185,220,215 32.895 33.787 39.656 32.975 29.642 25.106
FT93 197,586,294 32.005 32.887 40.230 34.122 30.624 25.322
FT94 203,783,923 31.959 32.845 40.236 34.122 30.535 25.267
AP 250,714,271 32.294 33.106 43.651 37.225 33.260 27.219
ALL FT 591,568,807 31.710 32.537 40.988 34.845 31.152 25.865
ALL 1,080,719,883 32.849 33.664 41.312 35.001 31.304 25.981

too large with respect to the compressed text size (as expected from Heaps’ law
[10]). This means that proportionally too many words are transmitted in plain
form.

The increase of size of the compressed texts in ETDC compared to PH is
always under 1 percentage point, in the larger texts. On the other hand, the dy-
namic versions lose very little in compression (maximum 0.02 percentage points,
0.06%) compared to their semi-static versions. This shows that the price paid
by dynamism in terms of compression ratio is negligible. Note also that in most
cases, and in the larger texts, dynamic ETDC loses even less compression than
dynamic Plain Huffman.

Table 2 compares the time performance of our dynamic compressors. The
latter two columns measure the increase in compression ratio (in percentage) of
ETDC versus Plain Huffman, and the reduction in processing time, in percent-
age.

As it can be seen, dynamic ETDC loses less than 1 percentage point (3%)
of compression ratio compared to dynamic Plain Huffman, in the larger texts.
In exchange, it is 22%-26% faster and considerably simpler to implement. Dy-
namic Plain Huffman compresses 4 megabytes per second, while dynamic ETDC
reaches 5.

Tables 3 and 4 compare both dynamic Plain Huffman and dynamic ETDC
against gzip (Ziv-Lempel family) and bzip2 (Burrows-Wheeler [5] type tech-
nique). Experiments were run setting gzip and bzip2 parameters to “best” (-b)
and “fast” (-f) compression.

As expected “bzip2 -b” achieves the best compression ratio. It is about 6 and
7 percentage points better than dynamic PH and dynamic ETDC respectively.
However, it is much slower than the other techniques tested in both compression
and decompression processes. Using the “fast” bzip2 option seems to be undesir-

240 Nieves R. Brisaboa et al.

able, since compression ratio gets worse (it becomes closer to dynamic PH) and
compression and decompression speeds remain poor.

On the other hand, “gzip -f” is shown to achieve good compression speed, at
the expense of compression ratio (about 40%). It is shown that dynamic ETDC is
also a fast technique. It is able to beat “gzip -f” in compression speed (except in
the ALL corpus). Regarding to compression ratio, dynamic ETDC achieves also
best results than “gzip -b” (except in CALGARY and ZIFF corpora). However,
gzip is clearly the fastest method in decompression.

Hence, dynamic ETDC is either much faster or compresses much better than
gzip, and it is by far faster than bzip2.

Table 4. Comparison of compression and decompression time against gzip and bzip2.

CORPUS compression time (sec) decompression time (sec)

Dyn PH Dyn ETDC gzip -f bzip2 -f bzip2 -b Dyn PH Dyn ETDC gzip -f bzip2 -f bzip2 -b

CALGARY 0,498 0,384 0,360 2,180 2,660 0,330 0,240 0,090 0,775 0,830
FT91 3,218 2,488 2,720 14,380 18,200 2,350 1,545 0,900 4,655 5,890

CR 10,880 8,418 8,875 48,210 65,170 7,745 5,265 3,010 15,910 19,890
FT92 42,720 31,440 34,465 166,310 221,460 30,690 19,415 8,735 57,815 71,050
ZIFF 43,122 33,394 33,550 174,670 233,250 30,440 11,690 9,070 58,790 72,340
FT93 45,864 36,306 36,805 181,720 237,750 32,780 21,935 10,040 62,565 77,860
FT94 47,078 36,718 37,500 185,107 255,220 33,550 22,213 10,845 62,795 80,370

AP 60,940 47,048 50,330 231,785 310,620 43,660 27,233 15,990 81,875 103,010
ALL FT 145,750 91,068 117,255 558,530 718,250 104,395 66,238 36,295 189,905 235,370

ALL 288,778 213,905 188,310 996,530 1342,430 218,745 126,938 62,485 328,240 432,390

6 Conclusions

In this paper we have considered the problem of providing adaptive compression
for natural language text, with the combined aim of competitive compression
ratios and good time performance.

We built an adaptive version of word-based Huffman codes. For this sake, we
adapted an existing algorithm so as to handle very large sets of source symbols
and byte-oriented output. The latter decision sacrifices some compression ratio
in exchange for an 8-fold improvement in time performance. The resulting al-
gorithm obtains compression ratio very similar to its static version (0.06% off)
and compresses about 4 megabytes per second on a standard PC.

We also implemented a dynamic version of the End-Tagged Dense Code
(ETDC). The resulting adaptive version is much simpler than the Huffman-
based one, and 22%-26% faster, compressing typically 5 megabytes per second.
The compressed text is only 0.06% larger than with semi-static ETDC and 3%
larger than with Huffman.

As a result, we have obtained adaptive natural language text compressors
that obtain 30%-35% compression ratio, and compress more than 4 megabytes
per second. Empirical results show their good performance when they are com-
pared against other compressors such as gzip and bzip2.

Future work involves building an adaptive version of (s, c)-Code [4], an ex-
tension to ETDC where the number of byte values that signal the end of a
codeword can be adapted to optimize compression, instead of being fixed at 128
as in ETDC. An interesting problem in this case is how to efficiently maintain
the optimal (s, c), which now vary as compression progresses.

Simple, Fast, and Efficient Natural Language Adaptive Compression 241

References

1. T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.
2. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of

the ACM, 20(10):762–772, October 1977.
3. N. Brisaboa, E. Iglesias, G. Navarro, and J. Paramá. An efficient compression code

for text databases. In 25th European Conference on IR Research (ECIR 2003),
LNCS 2633, pages 468–481, 2003.

4. N.R. Brisaboa, A. Fariña, G. Navarro, and M.F. Esteller. (s,c)-dense coding: An
optimized compression code for natural language text databases. In Proc. 10th

International Symposium on String Processing and Information Retrieval (SPIRE
2003), LNCS 2857, pages 122–136, 2003.

5. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, 1994.

6. E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on com-
pressed text allowing errors. In Proc. 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR-98), pages
298–306, 1998.

7. E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems (TOIS),
18(2):113–139, 2000.

8. N Faller. An adaptive system for data compression. In In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers, pages 593–597, 1973.

9. R.G Gallager. Variations on a theme by Huffman. IEEE Trans. on Inf. Theory,
24(6):668–674, 1978.

10. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, New York, 1978.

11. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. Inst. Radio Eng., 40(9):1098–1101, 1952.

12. D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 2(6):163–180, 1985.
13. A. Moffat. Word-based text compression. Software - Practice and Experience,

19(2):185–198, 1989.
14. J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM

(JACM), 34(4):825–845, 1987.
15. J.S. Vitter. Algorithm 673: dynamic Huffman coding. ACM Transactions on Math-

ematical Software (TOMS), 15(2):158–167, 1989.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 242–254, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Searching XML Documents Using Relevance Propagation

Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

IRIT- SIG, 118 route de Narbonne
31 062 Toulouse Cedex 4, France

{sauvagna,bougha,chrisment}@irit.fr

Abstract. The issue of information retrieval in XML documents was first inves-
tigated by the database community. Recently, the Information Retrieval (IR)
community started to investigate the XML search issue. For this purpose, tradi-
tional information retrieval models were adapted to process XML documents
and rank results by relevance. In this paper, we describe an IR approach to deal
with queries composed of content and structure conditions. The XFIRM model
we propose is designed to be as flexible as possible to process such queries. It is
based on a complete query language, derived from Xpath and on a relevance
values propagation method. The value of this proposed method is evaluated
thanks to the INEX evaluation initiative. Results show a relative high precision
of our system.

1 Introduction

Users looking for precise information do not want to be submerged by noisy subjects,
as it can be in long documents. One of the main advantages of the XML format is its
capacity to combine structured and un-structured (i.e. text) data. As a consequence,
XML documents allow information to be processed at another granularity level than
the whole document. The main challenge in XML retrieval is to retrieve the most
exhaustive1 and specific2 information unit [12]. Approaches dealing with this chal-
lenge can be divided into two main sub-groups [5]. On the one hand, the data-
oriented approaches use XML documents to exchange structured data. The database
community was the first to propose solutions for the XML retrieval issue, using the
data-oriented approaches. In the Xquery language proposed by the W3C [25], SQL
functionalities on tables (collection of tuples) are extended to support similar opera-
tions on forests (collection of trees), as XML documents can be seen as trees. Unfor-
tunately, most of the proposed approaches typically expect binary answers to very
specific queries. However, an extension of XQuery with full-text search features is
expected [26]. On the other hand, the document-oriented approaches consider that
tags are used to describe the logical structure of documents. The IR community has
adapted traditional IR approaches to address the user information needs in XML
collection.

1 An element is exhaustive to a query if it contains all the required information.
2 An element is specific to a query if all its content concerns the query.

Searching XML Documents Using Relevance Propagation 243

The goal of this paper is to show that the approach we proposed, which belongs to
the document-centric view, can also give good results for specific queries (regarding
structure) containing content conditions. The following section gives a brief view of
related work. Then, in section 3, we present the XFIRM (XML Flexible Information
Retrieval Model) model and the associated query language. Section 4 presents the
INEX initiative for XML retrieval evaluation and evaluates our approach via experi-
ments carried out on the INEX collection.

2 Related Work: Information Retrieval Approaches
 for XML Retrieval

One of the first IR approaches proposed for dealing with XML documents was the
“fetch and browse” approach [3, 4], saying that a system should always retrieve the
most specific part of a document answering a query. This definition assumes that the
system first searches whole documents answering the query in an exhaustive way (the
fetch phase) and then extracts the most specific information units (the browse phase).
Most of the Information Retrieval Systems (IRS) dealing with XML documents allow
information units to be directly searched, without first processing the whole docu-
ments. Let us describe some of them.

The extended boolean model uses a new non-commutative operator called “con-
tains”, that allows queries to be specified completely in terms of content and structure
[11].

Regarding the vector space model, the similarity measure is extended in order to
evaluate relations between structure and content . In this case, each index term should
be encapsulated by one or more elements. The model can be generalized with the
aggregation of relevance scores in the documents hierarchy [7]. In [22], the query
model is based on tree matching: it allows the expression of queries without perfectly
knowing the data structure.

The probabilistic model is applied to XML documents in [12, 24, 5]. The XIRQL
query language [5] extends the Xpath operators with operators for relevance-oriented
search and vague searches on non-textual content. Documents are then sorted by
decreasing probability that their content is the one specified by the user.

Language models are also adapted for XML retrieval [1, 15]. Finally, bayesian
networks are used in [17].

In [9], Fuhr and al. proposed an augmentation method for dealing with XML
documents. In this approach, standard term weighting formulas are used to index so
called “index nodes” of the document. Index nodes are not necessarily leaf nodes,
because this structure is considered to be too fine-grained. However, index nodes are
disjoint. In order to allow nesting of nodes, in case of high-level index nodes com-
prising other index nodes, only the text that is not contained within the other index
nodes is indexed. For computing the indexing weights of inner nodes, the weights
from the most specific index-nodes are propagated towards the inner nodes. During
propagation, however, the weights are down-weighted by multiplying them with a so-
called augmentation factor. In case a term at an inner node receives propagated

244 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

weights from several leaves, the overall term weight is computed by assuming a
probabilistic disjunction of the leaf term weights. This way, more specific elements
are preferred during retrieval.

The approach we describe in this paper is also based on an augmentation method.
However, in our approach, all leaf nodes are indexed, because we think that even the
smallest leaf node can also contain relevant information. Moreover, the way rele-
vance values are propagated in the document tree is function of the distance that sepa-
rates nodes in the tree. The following section describes our model.

3 The XFIRM Model

3.1 Data Representation

A structured document sdi is a tree, composed of simple nodes nj, leaf nodes lnj and

attributes aj. Formally, this can be written as follows : sdi = (treei) = ({nj}, {lnj}, {aj}).

This representation is a simplification of Xpath and Xquery data model [27], where a
node can be a document, an element, text, a namespace, an instruction or a comment.
In order to easy browse the document tree and to quickly find ancestors-descendants
relationships, the XFIRM model uses the following representation of nodes and at-
tributes, based on the Xpath Accelerator approach [10]:

Node: nj =(pre, post, parent, attribute)

Leaf node: lnj = (pre, post, parent, {t1,t2,…tn})

Attribute: aj=(pre, val)

A node is defined thanks to its pre-order and post-order value (pre and post), the
pre-order value of its parent node (parent), and depending on its type (simple node of
leaf node), by a field indicating the presence or absence of attributes (attribute) or by
the terms it contains ({t1,t2,…,tn}). An attribute is defined by the pre-order value of the

node containing it (pre) and by its value (val). Pre-order and post-order values are
assigned to nodes thanks respectively to a prefixed and post-fixed traversal of the
document tree, as illustrated in the following figure.

<article>
 <fm>
 <title> Search engines : how to find a nee-
dle in a haystack</title>
 <author > J. Dupont </author>
 <year> 1998 </year> </fm>
 <bdy>
 <sec >
 <st> Introduction </st>

 <p> Internet growth…</p>
 </sec>
 <sec >
 <st> Search engines </st>
 <p> Yahoo! is …</p>
 <p> Google is a full-text search engine </p>
 </sec>
 </bdy>
</article>

Fig. 1. Example of XML document

Searching XML Documents Using Relevance Propagation 245

Fig. 2. Tree representation of the XML document in Figure 1. Each node is assigned a pre-
order and post-order value

If we transpose nodes in a two-dimensions space based on the pre and post order
coordinates, we can exploit the following properties, given a node n:

– all ancestors of n are to the upper left of n’s position in the plane
– all its descendants are to the lower right,
– all preceding nodes in document order are to the lower left, and
– the upper right partition of the plane comprises all following nodes (regarding

document order)

In contrast to other path index structures for XML, Xpath Accelerator efficiently
supports path expressions that do not start at the document root. As explained in [19],
all data are stored in a relational database. The Path Index (PI) allows the reconstruc-
tion of the document structure (thanks to the Xpath Accelerator model). The Term
Index (TI) is a traditional inverted file. The Element Index (IE) describes the content
of each leaf node, the Attribute Index (AI) gives the values of attributes, and the Dic-
tionary (DICT) allows the grouping of tags having the same signification.

3.2 The XFIRM Query Language

XFIRM is based on a complete query language, allowing the expression of queries
with simple keywords terms and/or with structural conditions [20]. In its more com-
plex form, the language allows the expression of hierarchical conditions on document
structure and the element to be returned to the user can be specified (thanks to the te:
(target element) operator). For example, the following XFIRM queries:
(i) // te: p [weather forecasting systems]
(ii) // article[security] // te: sec [“facial recognition”]
(iii) // te: article [Petri net] //sec [formal definition] AND sec[algorithm efficiency]
(iv) // te: article [] // sec [search engines]
respectively mean that (i) the user wants a paragraph about weather forecasting sys-
tems, (ii) a section about facial recognition in an article about security , (iii) an article
about Petri net containing a section giving a formal definition and another section
talking about algorithm efficiency, and (iv) an article containing a section about
search engines.

246 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

When expressing the eventual content conditions, the user can use simple key-
words terms (or phrases), eventually preceded by + or - (which means that the term
should or should not be in the results). Terms can also be connected with Boolean
operators. Regarding the structure, the query syntax allows the user to formulate
vague path expressions. For example, he/she can ask for “article [] // sec []” (he/she
so knows that article nodes have sections nodes as descendants), without necessarily
asking for a precise path, i.e. article/bdy/sec. Moreover, a tag dictionary is used in
query processing. It is useful in case of heterogeneous collections (i.e. XML docu-
ments don’t necessary follow the same DTD) or in case of documents containing tags
considered as equivalent, like for example, title and sub-title.

3.3 Query Processing

The approach we propose for dealing with queries containing content and structure
conditions is based on relevance weights propagation. The query evaluation is carried
out as follows:

1. queries are decomposed in elementary sub-queries
2. relevance values are assigned to leaf nodes
3. relevance values are propagated through ther document tree
4. original queries are evaluated thanks to elementary sub-queries

Query Decomposition
Each XFIRM query can be decomposed in sub-queries SQi as follows:

Q =// SQ1 // SQ2 //…//te : SQj //…//SQn (1)

Where te: indicates which element is the target element. Each sub-query SQi can

then be re-decomposed in elementary sub-queries ESQi,j, eventually linked with boo-

lean operators and of the form:
ESQi,j = tg [q] (2)

Where tg is a tag name and q = {t1, …tn} is a set of keywords, i.e. a content condition.

Evaluating Leaf Nodes Relevance Values
The first step in query processing is to evaluate the relevance value of leaf nodes ln
according to the content conditions (if they exist). Let q={t1,…,tn} be a content condi-

tion. Relevance values are evaluated thanks to a similarity function called RSVm(q,nf),

where m is an IR model. XFIRM authorizes the implementation of many IR models.
As the purpose of this article is to evaluate the interest of relevance values propaga-
tion, we choose to take the vector space model as reference. So:

∑
=

=
n

i
i

q
i wwqRSV

1

ln*ln),(, with
i

q
i

q
i ieftfw *= And iii ieftfw *lnln = (3)

Where: tfi is the term frequency in the query q or in the leaf node ln, iefi is the in-

verse element frequency of term i, i.e. log (N/n+1)+1, n is the number of leaf nodes
containing i and N is the total number of leaf nodes.

Searching XML Documents Using Relevance Propagation 247

Elementary Sub-queries ESQi,j Processing

The result set Ri,j of ESQi,j is a set of pairs (node, relevance) defined as follows:

Ri,j = { (n, rn) / n ∈{construct(tg)} and rn = Fk (RSVm(q, nfk), dist(n,nfk)) } (4)

Where: rn is the relevance weight of node n ; the construct(tg) function allows the

creation of the set of all nodes having tg as tag name ; the Fk (RSVm(q, nfk),

dist(n,nfk)) function allows the propagation and aggregation of relevance values of

leaf nodes nfk , descendants of node n, in order to form the relevance value of node n.

This propagation is function of distance dist(n,nfk) which separates node n from leaf

node nfk in the document tree (i.e. the number of arcs that are necessary to join n and

nfk).

Subqueries SQi Processing

Once each ESQi,j has been processed, subqueries SQi are evaluated thanks to the

commutative operators ⊕AND et ⊕OR defined below:

Definition 1 : Let N = { (n, rn) } and M = (m, rm) } be two sets of pairs (node, rele-

vance)

N ⊕AND M = { (l, rl) / l is the nearest common ancestor of m and n or l=m (re-

spectively n) if m (resp .n) is ancestor of n (resp. m) , ∀ m, n being in the same docu-
ment and rl= aggregAND(rn , rm, , dist(l,n), dist(l,m))} (5)

N ⊕OR M = { (l, rl) / l=n∈ N or l=m∈ M and rl = rn or rm } (6)

Where aggregAND(rn , rm , dist(l,n),dist(l,m))= rl defines the way relevance values

rn and rm of nodes n and m are aggregated in order to form a new relevance rl.

Let Ri be the result set of SQi. Then:

If SQi = ESQi,j , then Ri = Ri,j (7)

If SQi = ESQi,j AND ESQi,k ,, then Ri = Ri,j ⊕AND Ri,k (8)

If SQi = ESQi,j OR ESQi,k ,, then Ri = Ri,j ⊕OR Ri,k (9)

Whole Queries Processing
The result set of sub-queries SQi are then used to process whole queries. In each

query, a target element is specified, as defined above.
Q =// SQ1 // SQ2 //…//te : SQj //…//SQn

Thus, the aim in whole query processing will be to propagate the relevance values
of sub-queries SQi to nodes belonging to the result set of the sub-query SQj which

defines the target element. This is obtained thanks to the non-commutative operators
∇ and defined below:

248 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

Definition 2 : Let Ri = {(n, rn)} and Ri+1 = {{m, rm)} be two sets of pairs (node, rele-

vance)
Ri ∇Ri+1 = {(n, rn) / n∈ Ri is ancestor of m∈ Ri+1 and

rn=prop_agg(rn , rm, dist(m,n))} (10)

Ri �Ri+1 = {(n, rn) / n ∈ is descendant of m ∈ Ri+1 and

 rn = prop_agg(rn , rm, dist(m,n))} (11)

Where prop_agg(rn , rm, dist(m,n))-> rn allows the aggregation of relevance

weights rm of node m and rn of node n according to the distance that separates the 2

nodes, in order to obtain the new relevance weight rn of node n .

The result set R of a query Q is then defined as follows:

R = Rj ∇ (Rj+1 ∇ (Rj+2∇ …)) (12)

R = Rj (Rj-1 (Rj-2 …))

In fact, this is equivalent to propagate relevance values of results set Rj+1, …,Rn

and R1,…,Rn respectively upwards and downwards in the document tree.

4 Experiments and Results

4.1 The SCAS Task in the INEX Initiative

Evaluating the effectiveness of XML retrieval systems requires a test collection
(XML documents, task/queries, and relevance judgments) where the relevance as-
sessments are provided according to a relevance criterion that takes into account the
imposed structural aspects [6]. The Initiative for the Evaluation of XML Retrieval
tends to reach this aim. INEX collection, 21 IEEE Computer Society journals from
1995-2002 consists of 12 135 documents with extensive XML-markup.

Participants to INEX SCAS task (Strict Content and Structure Task) have to per-
form CAS (Content and Structure) queries, which contain explicit references to the
XML structure, and restrict the context of interest and/or the context of certain search
concepts. One can found an example of INEX 2003 CAS query below.

<inex_topic topic_id=”64” query_type=”CAS”>
<title> //article[about(./,’hollerith’)] // sec[about(./, ‘DEHOMAG’)] </title>
<description> In articles discussing Herman Hollerith find sections that mention
DEHOMAG </description>
<narrative> Relevant sections deal with DEHOMAG in documents that discuss work or life
of Herman Hollerith </narrative>
<keywords> Hollerith, DEHOMAG, Deutsche Hollerith Maschinen Gesellschaft
</keywords>
</inex_topic>

Fig. 5. Example of CAS query

Searching XML Documents Using Relevance Propagation 249

The INEX metric for evaluation is based on the traditional recall and precision
measures. To obtain recall/precision figures, the two dimensions of relevance (ex-
haustivity and specificity) need to be quantised onto a single relevance value. Quanti-
sation functions for two user standpoints were used: (i) a “strict” quantisation to
evaluate whether a given retrieval approach is capable of retrieving highly exhaustive
and highly specific document components, (ii) a “generalised” quantisation has been
used in order to credit document components according to their degree of relevance.

Some Approaches
In INEX 2003, most of the approaches used IR models to answer the INEX tasks,
which shows the increased interest of the IR community to XML retrieval.

Some approaches used a fetch and browse strategy [21, 16], which didn’t give as
good results as expected. The Queensland University of Technology used a filtering
method to find the most specific information units [8]. The vector space model was
adapted in [14], using 6 different index for terms (article, section, paragraph, ab-
stract,…). Finally language models were used in [2, 13] and [23]. Last cited obtained
the best of all performances, using one language model per element.

In the following, we present the results of the experiments we conducted in the
INEX collection in order to evaluate several possible implementations of our model.

4.2 Various Propagation Functions

5 propagation functions have been evaluated.
- Fk (RSVm(q, nfk), dist(n,nfk)) (4) is set to:

),(*)),(),,((
..1

),(
k

nk

nfndist
kkk nfnRSVnfndistnfqRSVF k∑

=

= α (13)

- aggregAND(rn , rm, , dist(l,n), dist(l,m)) (5) is either set to :

),(),(

)),(),,(,,(
lmdist

r

nldist

r
mldistnldistrraggreg mn

mnAND += (14)

m

mldist
n

nldist
mnAND rrmldistnldistrraggreg **)),(),,(,,(),(),(αα += (15)

- And finally, prop_agg(dist(m,n), rn , rm) (10) is either set to:

),(

),),,((_
nmdist

rr
rrnmdistaggprop mn

mn

+= (16)

nm

nmdist
mn rrrrnmdistaggprop += *),),,((_),(α (17)

Where α ∈]0..1] is a parameter used to adjust the importance of the distance be-
tween nodes in the different functions and dist(x,y) is the distance which separates
node x from node y in the document tree.

4.3 Implementation Issues

The transformation of INEX CAS queries to XFIRM queries was fairly easy. Table1
gives some correspondences:

250 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

Table 1. Transformation of INEX topics into XFIRM queries

INEX topic XFIRM query
//article [about(.,’clustering + distributed’)
and about(.//sec,’java’)]

// te: article [clustering + distributed]
// sec [java]

//article[about(./sec,’”e- commerce”’)
// abs[about(., ‘trust authentication’)]

//article [] AND sec[“e- commerce”]
// te: abs [trust authentication]

//article[(.//yr=’2000’ OR .//yr=’1999’) AND
about(., “intelligent transportation system”’)
// sec [about(.,’automation +vehicle)]

//article [“intelligent transportation system”]
// te: sec [automation + vehicle]

During ESQi,j processing, the most relevant leaf nodes are found, and for each of

these leaf nodes, XFIRM looks for ancestors. In order to have a correct response time
of the system, the propagation is stopped when 1500 “correct” ancestors are found
(i.e. ancestors having a correct tag name).

When a INEX topic contains a condition on the article publication date (as its the
case in the last query of Table 1), this condition is not translated in the XFIRM lan-
guage, because propagation with a very common term (like a year) is too long. To
solve this issue, queries are processed by XFIRM without this condition, and results
are then filtered on the article publication date.

Finally, the Dictionary index is used to find equivalent tags. For example, accord-
ing to INEX guidelines, sec (section) nodes are equivalent to ss1, ss2 and ss3.

4.4 Runs

We evaluated 5 runs, combining the different functions:

Run name Prop. functions � Topic Fields
xfirm.TK.alpha=0.7 (13) (15) (17) 0.7. Title+Keywords
xfirm.TK.alpha=0.9 (13) (15) (17) 0.9. Title+Keywords
xfirm.TK.alpha=1 (13) (15) (17) α = 1 Title+Keywords
xfirm.TK.mix (13) (14) (16) α = 0.9 for (13). Title+Keywords
xfirm.T.mix: (13) (14) (16) α = 0.9 for (13) Title

In addition, these runs were compared to the best run we performed last year in the
Inex SCAS task with our fetch and browse method: Mercure2.pos_cas_ti [21].

4.5 Analysis of the Results

Table 2 shows the average precision (for strict and generalized quantization) obtained
by each run over 30 queries. The associated recall-precision curves for strict quantiza-
tion are plotted in Figure 6.

The first point to be noticed is the relatively high precision for all runs. Table 3
shows our runs if they were integrated in the official INEX results for strict quantiza-
tion. Best results were obtained by the University of Amsterdam, using language

Searching XML Documents Using Relevance Propagation 251

models [23]. Most of our runs would have been ranked between the second and third
position, before the Queensland University of Technology [16], who processed que-
ries with a fetch and browse approach.

The propagation method we used increases in a very significant way the results we
obtained with our “fetch and browse” method (run Mercure2.pos_cas_ti). This is not
really surprising, because the XFIRM model is able to process all the content condi-
tions, whereas the run performed with Mercure system only verify that conditions on
the target element are respected. Moreover, the processing time for each query is of
course lower (because thanks to the index structure, the XFIRM model has not to
browse each exhaustive document to find the specific elements). The use of distance
between nodes seems to be a useful parameter for the propagation functions. It can be
noticed that the Xfirm.TK.mix run where distance is considered, obtains best average
precision than the Xfirm.TK.alpha=1 run, where the distance had no importance.
However, the three runs evaluated with different values of α (Xfirm.TK.aplha= 0.7,
Xfirm.TK.aplha=0.9 , Xfirm.TK.alpha=1) show that the distance should be consid-

Table 2. Average precision for our 6 runs

 Average precision
(strict quantization)

Average precision
(generalized quantization)

Xfirm.TK.alpha=0.7 0,2346 0,2253
Xfirm.TK.alpha=0.9 0,2766 0,2279
Xfirm.TK.alpha=1 0,2783 0,2257
Xfirm.TK.mix 0,2898 0,2300
Xfirm.T.mix 0,2675 0,2276
Mercure2.pos_cas_ti 0,1620 0,1637

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5
0,

57
0,

64
0,

71
0,

78
0,

85
0,

92
0,

99

Recall

P
re

ci
si

o
n

Mercure2,pos_cas_ti

xfirm.TK.alpha=1

xfirm.TK.alpha=0,9

xfirm.TK.alpha=0,7

xfirm.TK.mix

xfirm.T.mix

Fig. 6. Average/precision curves for strict quantization

252 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

ered carefully. Indeed, when relevance values are too down-weighted by the distance,
the performances decrease.

Finally, the use of title and keywords fields of INEX topics increases the average
precision of the xfirm.TK.mix run comparing to the .xfirm.T.mix run, even if it de-
creases the precision for some particular queries.

So, the relevance propagation method seems to give good results, using all leaf
nodes as start point to the propagation. Our methods have to be explored on other
topics/collections to confirm these performances. Moreover, the IR model (i.e. the
vector space model) used for relevance value calculation needs more investigations,
the formula used for these experiments being not normalized. Further experiments
will be necessary, for example with the bm25 formula [18].

Table 3. Ranking of official INEX submissions and of our runs for strict quantization. Please
note that most of them are too in the “top ten” for generalized quantization

rank Avg
precision

Organisation Run ID

1 0.3182 U. of Amsterdam UamsI03-SCAS-MixedScore
2 0.2987 U. of Amsterdam UamsI03-SCAS-ElementScore
 0.2898 Xfirm.TK.mix
 0.2783 Xfirm.TK.alpha=1
 0.2766 Xfirm.TK.alpha=0.9
 0.2675 Xfirm.T.mix
3 0.2601 Queensland Univ. of Technology CASQuery_1
4 0.2476 University of Twente and CWI LMM-ComponentRetrieval-SCAS
5 0.2458 IBM, Haifa Research lab SCAS-TK-With-Clustering
6 0.2448 Universität Duisburg-Essen Scas03-way1-alias
7 0.2437 RMIT University RMIT_SCAS_1
8 0.2419 RMIT University RMIT_SCAS_2
9 0.2405 IBM, Haifa Research lab SCAS-TK-With-No- Clustering
10 0.2352 RMIT University RMIT_SCAS_3
 0.2346 Xfirm.TK.alpha=0.7
… … … …
24 0.1641 IRIT Mercure2.pos_cas_ti

5 Conclusion

We have presented here an approach for XML content and structure-oriented search
that addresses the search issue from an IR viewpoint. We have described the XFIRM
model and a relevance values propagation method that allows the ranking of informa-
tion units according to their degree of relevance. This propagation method is based on
relevance values calculation for each leaf node (thanks to the vector space model) and
then on propagation functions using the distance between nodes to aggregate the
relevance values. The XFIRM model decomposes each query in elementary sub-
queries to process them and then recomposes the original query to respect the even-
tual hierarchical conditions.

Searching XML Documents Using Relevance Propagation 253

This method achieves good results on the INEX topics. Further experiments
should be achieved to evaluate the impact of the IR model used for leaf nodes rele-
vance values calculation and to confirm results on other topics/collections.

References

1. Abolhassani, M., Fuhr, N. : Applying the Divergence From Randomness Approach for
Content-Only Search in XML Documents. In: ECIR 04. 2004.

2. Abolhassani M., Fuhr, N., Malik, S. : HyREX at INEX 03. . In Proceedings of INEX 2003
Workshop, 2003.

3. Afrati, Foto N., Koutras, Constantinos D.: A Hypertext Model Supporting Query Mecha-
nisms. Proceedings of the European Conference on Hypertext, 1990.

4. Chiaramella, Y. , Mulhem, P. , Fourel, F. A model for multimedia search information re-
trieval. Technical report, Basic Research Action FERMI 8134, University of Glasgow,
1996.

5. Fuhr, N., Grossjohann, K. “XIRQL: A query Language for Information Retrieval in XML
Documents”. In Proc. of the 24th annual ACM SIGIR conference, 2001.

6. Fuhr, N., Malik, S., Lalmas, M : Overview of the Initiative for the Evaluation of XML Re-
trieval (INEX) 2003. In Proceedings of INEX 2003 Workshop, 2003.

7. M. Fuller, E. Mackie, R. Sacks-Davis, R. Wilkinson : Structural answers for a large struc-
tured document collection. In Proc. ACM SIGIR, 1993.

8. Geva, S., Murray L-S. : Xpath inverted file for information retrieval. . In Proceedings of
INEX 2003 Workshop, 2003.

9. Gövert Norbert, Abolhassani, M., Fuhr, N., Grossjohann, K. : Content-oriented XML re-
trieval with HyREX. In Proceedings of the first INEX Workshop, 2002.

10. Grust, T, “Accelerating XPath Location Steps”. In M. J. Franklin, B. Moon, and A.
Ailamaki, editors, Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, USA, 2002.

11. Hayashi, Y. , Tomita , J., Kikoi, G , “Searching text-rich XML documents with relevance
ranking”. In Proc ACM SIGIR 2000 Workshop on XML and IR . Athens 2000.

12. Lalmas, M., “Dempster-Shafer theory of evidence applied to structured documents:
modeling uncertainty”. In Proc. ACM-SIGIR, 1997.

13. List, J., Mihazjlovic , V., de Vries A.P., Ramirez, G., Hiemstra, D. : The TIJAH XML-IR
system at INEX 03. . In Proceedings of INEX 2003 Workshop, 2003.

14. Mass, Y., Mandelbrod, M. : Retrieving the most relevant XML component. . In Proceed-
ings of INEX 2003 Workshop, 2003.

15. Ogilvie, P., Callan, J. : Using Language Models for Flat Text Queries in XML Retrieval.
In Proceedings of INEX 2003 Workshop, 2003.

16. Pehcevski, J., Thom, J., Vercoustre, A-M. : RMIT experiments : XML retrieval using
Lucy/eXist. . In Proceedings of INEX 2003 Workshop, 2003.

17. Piwowarski, B., Faure, G-E., Gallinari, P. : Bayesian networks and INEX. In Proceedings
in the First Annual Workshop for the Evaluation of XML Retrieval (INEX), 2002.

18. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.M. : Okapi at TREC 3. In Proceedings
TREC 3, 1994.

19. Sauvagnat, K. , “XFIRM, un modèle flexible de Recherche d’Information pour le stockage
et l’interrogation de documents XML”, CORIA’04, Toulouse, France, 2004.

254 Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

20. Sauvagnat, K., Boughanem, M. : Le langage de requête XFIRM pour les documents XML:
De la recherche par simples mots-clés à l’utilisation de la structure des documents. Infor-
sid 2004, Biarritz, France .

21. Sauvagnat, K., Hubert, G., Boughanem, M., Mothe, J. : IRIT at INEX 03. In Proceedings
of INEX 2003 Workshop, 2003.

22. Schlieder, T., Meuss, H. , “Querying and ranking XML documents”. Journal of the Ameri-
can Society for Information Science and Technology, 53(6) : 489-503, 2002.

23. Sigurbjörnsson, B., Kaamps, J., de Rijke, M. : An element-based approach to XML re-
trieval. . In Proceedings of INEX 2003 Workshop, 2003.

24. J.E. Wolff, H. Flörke, A.B. Cremers : Searching and browsing collections of structural in-
formation. In Proc of IEEE advances in digital libraries, Washington, 2000.

25. W3C. XQuery 1.0 : an XML query language. W3C Working Draft, 2003.
26. W3C. Xquery and Xpath Full-Text Use Cases. W3C Working draft, 2003 .
27. W3C. M Fernandez et al. : XQuery 1.0 and XPath 2.0 Data Model. Working Draft, 2003.

Dealing with Syntactic Variation
Through a Locality-Based Approach

Jesús Vilares and Miguel A. Alonso

Departamento de Computación, Universidade da Coruña
Campus de Elviña s/n, 15071 A Coruña, Spain

{jvilares,alonso}@udc.es
http://www.grupocole.org/

Abstract. To date, attempts for applying syntactic information in the
document-based retrieval model dominant have led to little practical
improvement, mainly due to the problems associated with the integration
of this kind of information into the model. In this article we propose the
use of a locality-based retrieval model for reranking, which deals with
syntactic linguistic variation through similarity measures based on the
distance between words. We study two approaches whose effectiveness
has been evaluated on the CLEF corpus of Spanish documents.

1 Introduction

Syntactic processing has been applied repeatedly in the field of Information
Retrieval (IR) for dealing with the syntactic variation present in natural language
texts [14, 8, 11], although its use in languages other than English has not as yet
been studied in depth. In order to apply these kind of techniques, it is necessary
to perform some kind of parsing process, which itself requires the definition of
a suitable grammar. For languages lacking advanced linguistics resources, such
as wide-coverage grammars or treebanks, the application of these techniques is
a real challenge. In the case of Spanish, for example, only a few IR experiments
involving syntax have been performed [1, 18, 20, 19]. Even when reliable syntactic
information can be extracted from texts, the issue that arises is how to integrate
it into an IR system. The prevalent approaches consist of a weighted combination
of multi-word terms – in the form of head-modifier pairs – and single-word terms
– in the form of word stems. Unfortunately, the use of multi-word terms has not
proven to be effective enough, regardless of whether they have been obtained by
means of syntactic or statistical methods, mainly due to the difficulty of solving
the overweighting of complex terms with respect to simple terms [13].

In this context, pseudo-syntactic approaches based on the distance between
terms arise as a practical alternative that avoids the problems listed above as a
result of not needing any grammar or parser, and because the information about
the occurrence of individual words can be integrated in a consistent way with
the information about proximity to other terms, which in turn is often related
with the existence of syntactic relations between such terms.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 255–266, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

256 Jesús Vilares and Miguel A. Alonso

In this work we propose the use of a locality-based retrieval model, based on
a similarity measure computed as a function of the distance between terms, as a
complement to classic IR techniques based on indexing single-word terms, with
the aim of increasing the precision of the documents retrieved by the system in
the case of Spanish.

The rest of the article is organized as follows. Section 2 introduces the locality-
based retrieval model and our first approach for integrating it into our system;
the experimental results of this first proposal are shown in Section 3. A second
approach, based on data fusion, is described in Section 4, and its results are
discussed in Section 5. Finally, our conclusions and future work are presented in
Section 6.

2 Locality-Based IR

2.1 The Retrieval Model

In the document-based retrieval model prevalent nowadays, an IR system
retrieves a list of documents ranked according to their degree of relevance
with respect to the information need of the user. In contrast, a locality-based
IR system goes one step further, and looks for the concrete locations in the
documents which are relevant to such a need. Passage retrieval [10] could be
considered as an intermediate point between these two models, since its aim is to
retrieve portions of documents (called passages) relevant to the user. However,
passage retrieval is closer to document-based than to locality-based retrieval:
once the original documents have been split into passages they are ranked using
traditional similarity measures. In this case, the main difficulty comes from
specifying what a passage is, including considerations about size and overlapping
factors, and how they can be identified.

In contrast, the locality-based model considers the collection to be indexed
not as a set of documents, but as a sequence of words where each occurrence
of a query term has an influence on the surrounding terms. Such influences
are additive, thus, the contributions of different occurrences of query terms are
summed, yielding a similarity measure. As a result, those areas of the texts with
a higher density of query terms, or with important query terms, show peaks in
the resulting graph, highlighting those positions of the text which are potentially
relevant with respect to the query. A graphical representation of this process is
shown in Fig. 1. It is worth noting that relevant portions are identified without
the need to perform any kind of splitting in the documents, as is done in passage
retrieval.

Next, we describe the original proposal of de Kretser and Moffat for the
locality-based model [5, 6].

2.2 Computing the Similarity Measure

In the locality-based model the similarity measure only needs to be computed
for those positions of the text in which query terms occur, a characteristic which

Dealing with Syntactic Variation Through a Locality-Based Approach 257

0 20 40 60 80 100 120
0

5

10

15

20

25

Position

S
im

ila
rit

y

(a) Individual contributions

car
red

0 20 40 60 80 100 120
0

5

10

15

20

25

Position

S
im

ila
rit

y

(b) Resultant similarity curve

car, red

Fig. 1. Computing the similarity measure in a locality-based model: (a) positions where
query terms occur and their regions of influence; (b) the resultant similarity curve

makes its application possible in practical environments due to its computational
cost being relatively low.

The contribution to the similarity graph of a given query term is determined
by a similarity contribution function ct defined according to the following
parameters [5]:

– The shape of the function, which is the same for all terms.
– The maximum height ht of the function, which occurs in the position of the

query term.
– The spread st of the function, that is, the scope of its influence.
– The distance, in words, with respect to other surrounding words, d = |x− l|,

where l is the position of the query term and x is the position of the word
in the text where we want to compute the similarity score.

Several function shapes are described in [5], but we only show here those
with which we obtained better results in Spanish. They are the triangle (tri)
and the circle (cir) function, defined by equations 1 and 2, respectively, and
whose graphical representation is shown in Fig. 2:

ct(x, l) = ht(1 − d/st) . (1)

ct(x, l) = ht

√
1 − (d/st)2 . (2)

with ct(x, l) = 0 when |x − l| > st.
The height ht of a query term t is defined as an inverse function of its

frequency in the collection:

258 Jesús Vilares and Miguel A. Alonso

s+ tst− s+ tst−0

t

0

thh

1) triangle 2) circle

h
e
i
g
h
t

h
e
i
g
h
t

spread spread

Fig. 2. Shapes of the similarity contribution function ct

ht = fq,t loge(N/ft) . (3)

where N is the total number of terms in the collection, ft is the number of times
term t appears in the collection, and fq,t is the within-query frequency of the
term.

On the other hand, the spread st of the influence of a term t is also defined as
an inverse function of its frequency in the collection, but normalized according
to the average term frequency:

st =
n

N

N

ft
=

n

ft
. (4)

where n is the number of unique terms in the collection, that is, the size of the
vocabulary.

Once these parameters have been fixed, the similarity score assigned to a
location x of the document in which a term of the query Q can be found is
calculated as:

CQ(x) =
∑

t∈Q

∑

l∈It
|l−x|≤st

term(x) �=term(l)

ct(x, l) . (5)

where It is the set of word locations at which a term t of the query Q occurs,
and where term(w) represents the term associated to the location w. In other
words, the degree of similarity or relevance associated with a given location is
the sum of all the influences exerted by the rest of query terms within whose
spread the term is located, excepting other occurrences of the same term that
exist at the location examined [6].

Finally, the relevance score assigned to a document D is given in function of
the similarities corresponding to occurrences of query terms that this document
contains. This point is discussed in detail below.

2.3 Adaptations of the Model

The locality-based model not only identifies the relevant documents but also
the relevant locations they contain, allowing us to work at a more detailed level
than classical IR techniques. Thus, we have opted for using this model in our
experiments. Nevertheless, before doing so, the model had to be adapted to our

Dealing with Syntactic Variation Through a Locality-Based Approach 259

needs, which makes our approach different from the original proposal of the
model [5, 6].

The approach we have chosen for integrating distance-based similarity in our
IR system consists of postprocessing the documents obtained by a document-
based retrieval system. This initial set of documents is obtained through a base
IR system – we name it lem – which employs content-word lemmas (nouns,
adjectives and verbs) as index terms. This list of documents returned by lem is
then processed using the locality-based model, taking the final ranking obtained
using distance-based similarity as the final output to be returned to the user.

It should be pointed out that the parameters of height, ht, and spread, st,
employed for the reranking are calculated according to the global parameters of
the collection, not according to the parameters which are local to the subset of
documents returned, in order to avoid the correlation-derived problems it would
introduce1.

Another aspect in which our approach differs from the original model is the
employment of lemmatization, instead of stemming, for conflating queries and
documents. We have made this choice due to the encouraging results previously
obtained with such an approach, with respect to stemming, in the case of
Spanish [20].

The third point of difference corresponds to the algorithm for calculating the
relevance of a document, obtained from the similarity scores of its query term
occurrences. Instead of the original iterative algorithm [5], our approach defines
the similarity score sim(D, Q) of a document D with respect to a query Q as
the sum of all the similarity scores of the query term occurrences it contains:

sim(D, Q) =
∑

x∈D
term(x)∈Q

CQ(x) . (6)

3 Experimental Results Using Distances

Our approach has been tested using the Spanish monolingual corpus of the 2001
and 2002 CLEF editions [15], composed of 215,738 news reports provided by
EFE, a Spanish news agency. The 100 queries employed, from 41 to 140, consist
of three fields: a brief title statement, a one-sentence description, and a more
complex narrative specifying the relevance assessment criteria.

As mentioned in Sect. 2.3, the initial set of documents to be reranked is
obtained through the indexing of content word lemmas (lem). For this purpose,
the documents were indexed with the vector-based engine smart [3], using the
atn·ntc weighting scheme. In order to improve the performance of the whole
system, we have tried to obtain the best possible starting set of documents by
applying pseudo-relevance feedback (blind-query expansion) adopting Rocchio’s
approach [16]:
1 For example, the parameter ft, corresponding to the number of occurrences of a

term t, is the number of occurrences of t in the entire collection, not the number of
occurrences of t in the set of documents to be reranked.

260 Jesús Vilares and Miguel A. Alonso

Table 1. Reranking based on distances

short queries long queries
stm lem tri cir stm lem tri cir

Documents 99k 99k 99k 99k 99k 99k 99k 99k
Relevant (5548 expected) 5086 5207 5207 5207 5208 5234 5234 5234
Non-interpolated precision .5210 .5235 .4473 .4464 .5638 .5648 .4802 .4703
Document precision .5502 .5814 .5154 .5188 .5925 .6038 .5366 .5376
R-precision .4952 .4978 .4438 .4453 .5316 .5335 .4574 .4490

Precision at .00 recall .8426 .8260 .8402 .8394 .9028 .8788 .8771 .8639
Precision at .10 recall .7294 .7431 .7551 .7533 .7910 .7989 .8167 .8022
Precision at .20 recall .6746 .6936 .6550 .6624 .7326 .7420 .7070 .6909
Precision at .30 recall .6135 .6380 .5764 .5806 .6763 .6887 .6066 .5996
Precision at .40 recall .5812 .5900 .5045 .5052 .6401 .6499 .5417 .5314
Precision at .50 recall .5470 .5520 .4496 .4515 .5975 .6058 .4894 .4819
Precision at .60 recall .5078 .5099 .3882 .3850 .5452 .5502 .4184 .4045
Precision at .70 recall .4518 .4498 .3360 .3340 .4816 .4816 .3654 .3547
Precision at .80 recall .3882 .3796 .2750 .2692 .4056 .4022 .3042 .2929
Precision at .90 recall .3044 .2923 .1933 .1917 .3356 .3150 .2023 .1944
Precision at 1.0 recall .1897 .1756 .1031 .1014 .2054 .1918 .1062 .1000

Precision at 5 docs .6182 .6182 .6141 .6121 .6808 .6747 .6667 .6606
Precision at 10 docs .5717 .5758 .5596 .5596 .6182 .6202 .5929 .5869
Precision at 15 docs .5279 .5380 .5111 .5192 .5670 .5798 .5441 .5394
Precision at 20 docs .4965 .5071 .4803 .4818 .5338 .5556 .5081 .5056
Precision at 30 docs .4434 .4582 .4259 .4229 .4822 .5030 .4545 .4566
Precision at 100 docs .2935 .3016 .2691 .2696 .3119 .3171 .2811 .2812
Precision at 200 docs .1937 .2002 .1863 .1875 .2053 .2060 .1926 .1932
Precision at 500 docs .0945 .0981 .0964 .0964 .0981 .0985 .0979 .0982
Precision at 1000 docs .0514 .0526 .0526 .0526 .0526 .0529 .0529 .0529

Q1 = αQ0 + β

n1∑

k=1

Rk

n1
− γ

n2∑

k=1

Sk

n2
. (7)

where Q1 is the new query vector, Q0 is the vector of the initial query, Rk is
the vector of relevant document k, Sk is the vector of non-relevant document
k, n1 is the number of relevant documents, n2 is the number of non-relevant
documents, and α, β and γ are, respectively, the parameters that control the
relative contributions of the original query, relevant documents, and non-relevant
documents. Our system expands the initial query automatically with the best 10
terms of the 5 top ranked documents, and using α = 1.40, β = 0.10 and γ = 0.

It should be pointed out that the distance-based reranking process is
performed according to the terms of the original query, without taking into
account the terms added during the feedback. This is because there is no
guarentee that these terms were syntactically related with the original query
terms, since they only co-occur in the documents with such terms.

Two series of experiments have been carried out. Firstly, employing queries
obtained from the title and description fields – short queries – and, secondly,
employing queries obtained from the three fields, that is title, description and
narrative – long queries. It should be noticed that in the case of long queries,
the terms extracted from the title field are given double relevance with respect
to description and narrative, since the former summarizes the basic semantics of
the query.

Dealing with Syntactic Variation Through a Locality-Based Approach 261

The results obtained are shown in Table 1. The first column of each group
shows the results obtained through a standard approach based on stemming
(stm), also using pseudo-relevance feedback; the second column contains the
results of the indexing of lemmas (lem) before the reranking, our baseline; the
two other columns show the results obtained after reranking lem by means of
distances employing a triangle (tri) and circle (cir) function.

The performance of the system is measured using the parameters contained
in each row: number of documents retrieved, number of relevant documents
retrieved (5548 expected), average precision (non-interpolated) for all relevant
documents (averaged over queries), average document precision for all relevant
documents (averaged over relevant documents), R-precision, precision at 11
standard levels of recall, and precision at N documents retrieved. For each
parameter we have marked in boldface those values where there is an
improvement with respect to the baseline lem.

As these results show, reranking through distances has caused a general
drop in performance, except for low recall levels, where results are similar or
sometimes even better. We can therefore conclude that this first approach is of
little practical interest.

4 Data Fusion Through Intersection

4.1 Analysis of Results

Since the set of documents retrieved by the system is the same, the drop in
performance in this first approach can only be caused by a worse ranking of
the results because of the application of the distance-based model, and for this
reason we decided to analyze the changes in the distribution of relevant and
non-relevant documents in the K top retrieved documents. The results obtained
in the case of using short queries and the triangle function (tri) are shown in
Table 2. Changes in the type of query, short or long, or in the shape of the
function, triangle or circle, has little effect on these results and the conclusions
that can be inferred from them.

Each row contains the results obtained when comparing the K top documents
retrieved by lem (set of results L), with those K top documents retrieved
after their reranking using distances (set of results D). The columns show
the results obtained for each of the parameters considered: average number of
new relevant documents obtained through distances (D \ L), average number
of relevant documents lost using distances (L \ D), average number of relevant
documents preserved (L∩D), overlap coefficient for relevant documents (Rover),
precision of lem at K top documents (Pr(L)), precision at K top documents
after reranking through distances (Pr(D)), precision for the documents common
to both approaches in their K top documents (Pr(L∩D)). The right-hand side of
the table shows their equivalents for the case of non-relevant documents: average
number of non-relevant documents added, lost and preserved, together with their
degree of overlap.

262 Jesús Vilares and Miguel A. Alonso

Table 2. Document distribution (short queries - triangle function)

relevant docs. non-relevant docs.
K D \ L L \ D L ∩ D Rover Pr(L) Pr(D) Pr(L ∩ D) D \ L L \ D L ∩ D Nover

5 1.60 1.62 1.44 0.47 0.61 0.61 0.77 1.54 1.52 0.42 0.22
10 2.73 2.89 2.81 0.50 0.57 0.55 0.68 3.14 2.98 1.32 0.30
15 3.37 3.77 4.22 0.54 0.53 0.51 0.65 5.13 4.73 2.28 0.32
20 3.92 4.44 5.59 0.57 0.50 0.48 0.63 7.24 6.72 3.25 0.32
30 4.66 5.62 7.99 0.61 0.45 0.42 0.59 11.84 10.88 5.51 0.33
50 5.95 9.16 20.69 0.73 0.60 0.53 0.42 45.04 41.83 28.32 0.39
100 5.10 7.84 31.78 0.83 0.40 0.37 0.30 88.13 85.39 74.99 0.46
200 1.99 2.82 45.72 0.95 0.24 0.24 0.14 164.28 163.45 288.01 0.64

Several important facts can be observed in these figures. Firstly, that the
number of relevant documents retrieved by both approaches in their K top
documents is very similar – a little smaller for distances – , as can be inferred
from the number of incoming and outgoing relevant documents, and from the
precisions at the top K documents of both approaches. This confirms that the
problem has its origin in a bad reranking of the results.

The second point we need to point out refers to the overlap coefficients of
both relevant (Rover) and non-relevant (Nover) documents. These coefficients,
defined by Lee in [12], show the degree of overlap among relevant and non-
relevant documents in two retrieval results. For two runs run1 and run2, they
are defined as follows:

Rover =
2 |Rel(run1) ∩ Rel(run2)|
|Rel(run1)| + |Rel(run2)| . (8)

Nover =
2 |Nonrel(run1) ∩ Nonrel(run2)|
|Nonrel(run1)| + |Nonrel(run2)| . (9)

where Rel(X) and Nonrel(X) represent, respectively, the set of relevant and
non-relevant documents retrieved by the run X .

It can be seen in Table 2 that the overlap factor among relevant documents
is much higher than among non-relevant documents. Therefore, it obeys the
unequal overlap property [12], since both approaches return a similar set on
relevant documents, but a different set on non-relevant documents. This is a
good indicator of the effectiveness of fusion of both runs.

Finally, and also related with the previous point, the figures show that
the precision for the documents common to both approaches in their K top
documents (Pr(L ∩ D)) is higher than the corresponding precisions for lemmas
(Pr(L)) and distances (Pr(D)); that is, the probability of a document being
relevant is higher when it is retrieved by both approaches. In other words, the
more runs a document is retrieved by, the higher the rank that should be assigned
to the document [17].

According to these observations, we decided to take a new approach for
reranking, this time through data fusion, by combining the results obtained
initially with the indexing of lemmas with the results obtained when they are
reranked through distances. Next, we describe this approach.

Dealing with Syntactic Variation Through a Locality-Based Approach 263

4.2 Description of the Algorithm

Data fusion is a technique of combination of evidences that consists of combining
the results retrieved by different representations of queries or documents, or by
different retrieval techniques [7, 12, 4].

In our data fusion approach, we have opted for using a boolean criterion
instead of combining scores based on similarities [7, 12] or ranks [12].

Once the value K is set, the documents are retrieved in the following order:

1. First, the documents contained in the intersection of the top K documents
retrieved by both approaches: LK ∩DK . Our aim is to increase the precision
of the top documents retrieved.

2. Next, the documents retrieved in the top K documents by only one of
the approaches: (LK ∪ DK) \ (LK ∩ DK). Our aim is to add to the top
of the ranking those relevant documents retrieved only by the distance-
based approach at its top, but without harming the ranking of the relevant
documents retrieved by the indexing of lemmas.

3. Finally, the rest of documents retrieved using lem: L \ (LK ∪ DK).

where L is the set of documents retrieved by lem, LK is the set of the top K
documents retrieved by lem, and DK is the set of the top K documents retrieved
by applying distances.

With respect to the internal ranking of the results, we will take the ranking
obtained with lem as reference, because of its better behavior. In this way, when
a subset S of results is retrieved, they will be retrieved in the same relative order
they had when they were retrieved by lem2.

5 Experimental Results with Data Fusion

After a previous phase of tuning of K, in which different values of K were tested3,
a value K = 30 was chosen as the best compromise, since although lower values
of K showed peaks of precision in the top documents retrieved, their global
behavior was worse.

Table 3 shows the results obtained with this new approach. Column tri shows
the results obtained by means of the fusion through intersection of the set of
documents initially retrieved with lem with the documents retrieved by applying
reranking through distances using a triangle function. The results corresponding
to the circle function are showed in cir.

The improvements attained with this new approach – in boldface – are
general, particularly in the case of the precision at N documents retrieved.
Moreover, there are no penalizations for non-interpolated precision and R-
precision.
2 That is, if the original sequence in lem was d2-d3-d1 and a subset {d1,d3} is going

to be returned, the documents should be obtained in the same relative order as in
the original results: d3-d1.

3 K ∈ {5, 10, 15, 20, 30, 50, 75, 100, 200, 500}.

264 Jesús Vilares and Miguel A. Alonso

Table 3. Reranking through data fusion; K=30

short queries long queries
stm lem tri cir stm lem tri cir

Documents 99k 99k 99k 99k 99k 99k 99k 99k
Relevant (5548 expected) 5086 5207 5207 5207 5208 5234 5234 5234
Non-interpolated precision .5210 .5235 .5204 .5206 .5638 .5648 .5654 .5647
Document precision .5502 .5814 .5829 .5836 .5925 .6038 .6083 .6094
R-precision .4952 .4978 .4911 .4911 .5316 .5335 .5311 .5306

Precision at .00 recall .8426 .8260 .8424 .8428 .9028 .8788 .8871 .8901
Precision at .10 recall .7294 .7431 .7520 .7522 .7910 .7989 .8052 .8075
Precision at .20 recall .6746 .6936 .7043 .7059 .7326 .7420 .7501 .7496
Precision at .30 recall .6135 .6380 .6434 .6447 .6763 .6887 .6975 .6983
Precision at .40 recall .5812 .5900 .5967 .5965 .6401 .6499 .6577 .6595
Precision at .50 recall .5470 .5520 .5447 .5454 .5975 .6058 .6092 .6141
Precision at .60 recall .5078 .5099 .4997 .4999 .5452 .5502 .5443 .5362
Precision at .70 recall .4518 .4498 .4325 .4282 .4816 .4816 .4729 .4644
Precision at .80 recall .3882 .3796 .3665 .3653 .4056 .4022 .3929 .3885
Precision at .90 recall .3044 .2923 .2846 .2857 .3356 .3150 .3045 .3036
Precision at 1.0 recall .1897 .1756 .1687 .1684 .2054 .1918 .1862 .1857

Precision at 5 docs .6182 .6182 .6303 .6343 .6808 .6747 .6929 .6949
Precision at 10 docs .5717 .5758 .5929 .5970 .6182 .6202 .6525 .6495
Precision at 15 docs .5279 .5380 .5522 .5542 .5670 .5798 .5993 .5980
Precision at 20 docs .4965 .5071 .5217 .5207 .5338 .5556 .5672 .5646
Precision at 30 docs .4434 .4582 .4582 .4582 .4822 .5030 .5030 .5030
Precision at 100 docs .2935 .3016 .3040 .3044 .3119 .3171 .3182 .3193
Precision at 200 docs .1937 .2002 .2006 .2008 .2053 .2060 .2064 .2064
Precision at 500 docs .0945 .0981 .0982 .0982 .0981 .0985 .0987 .0987
Precision at 1000 docs .0514 .0526 .0526 .0526 .0526 .0529 .0529 .0529

6 Conclusions and Future Work

In this article we have proposed the use of a distance-based retrieval model, also
called locality-based, which allows us to face the problem of syntactic linguistic
variation in text conflation employing a pseudo-syntactic approach.

Two approaches were proposed for this purpose, both based on reranking the
results obtained by indexing content word lemmas. The first approach, where
the ranking obtained by means of the application of the locality-based model
is the final ranking to be retrieved, did not get, in general, good results. After
analyzing the behavior of the system, a new approach was taken, this time based
on data fusion, which employs the intersection of the sets of documents retrieved
by both approaches as reference for the reranking. This second approach was
fruitful, since it obtained consistent improvements in the ranking at all levels,
without harming other aspects.

With respect to future work, several aspects should be studied. Firstly, we
intend to extend our experiments to other retrieval models apart from the vector
model, in order to test its generality. Secondly, we aim to improve the system
by managing not only syntactic variants but also morphosyntactic variants [9].

Two new applications of this locality-based approach are also being
considered. Firstly, in Query Answering, where it will in all probability prove
most useful, since this distance-based model allows us to identify the relevant
locations of a document, which probably contain the answer, with respect to the

Dealing with Syntactic Variation Through a Locality-Based Approach 265

query. Once the relevant locations are identified, the answer would be extracted
through further in-depth linguistic processing. Secondly, its possible application
in query expansion through local clustering based on distances [2] is also being
studied.

Acknowledgements

The research reported in this article has been partially supported by
Ministerio de Ciencia y Tecnoloǵıa (HF2002-81), FPU grants of Secretaŕıa
de Estado de Educación y Universidades (AP2001-2545), Xunta de Galicia
(PGIDIT02PXIB30501PR, PGIDIT02SIN01E and PGIDIT03SIN30501PR) and
Universidade da Coruña.

References

1. M. A. Alonso, J. Vilares, and V. M. Darriba. On the usefulness of extracting
syntactic dependencies for text indexing. In M. O’Neill, F. F. E. Sutcliffe, C. Ryan,
and M. Eaton, editors, Artificial Intelligence and Cognitive Science, volume 2464
of Lecture Notes in Artificial Intelligence, pages 3–11. Springer-Verlag, Berlin-
Heidelberg-New York, 2002.

2. R. Attar and A.S. Fraenkel. Local feedback in full-text retrieval systems. Journal
of the ACM, 24(3):397–417, July 1977.

3. C. Buckley. Implementation of the SMART information retrieval system. Technical
report, Department of Computer Science, Cornell University, 1985. Sources
available in ftp://ftp.cs.cornell.edu/pub/smart.

4. W. B. Croft. Combining approaches to information retrieval. In W. B. Croft,
editor, Advances in Information Retrieval. Recent Research from the Center for
Intelligent Information Retrieval, volume 7 of The Kluwer International Series
on Information Retrieval, chapter 1, pages 1–36. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2000.

5. O. de Kretser and A. Moffat. Effective document presentation with a locality-
based similarity heuristic. In Proc. of the 22nd annual international ACM SIGIR
conference on Research and Development in Information Retrieval, pages 113–120,
Berkeley, California, USA, 1999. ACM Press, New York.

6. O. de Kretser and A. Moffat. Locality-based information retrieval. In J. F.
Roddick, editor, Proc. of 10th Australasian Database Conference (ADC ’99), 18-
21 January, Auckland, New Zealand, volume 21 of Australian Computer Science
Communications, pages 177–188, Singapore, 1999. Springer-Verlag.

7. E. Fox and J. Shaw. Combination of multiple searches. In D. K. Harman, editor,
NIST Special Publication 500-215: The Second Text REtrieval Conference (TREC-
2), pages 243–252, Gaithersburg, MD, USA, 1994. Department of Commerce,
National Institute of Standards and Technology.

8. D. A. Hull, G. Grefenstette, B. M. Schulze, E. Gaussier, H. Schütze, and J. O.
Pedersen. Xerox TREC-5 site report: Routing, filtering, NLP, and Spanish tracks.
In E. M. Voorhees and D. K. Harman, editors, NIST Special Publication 500-
238: The Fifth Text REtrieval Conference (TREC-5), pages 167–180, Gaithersburg,
MD, USA, 1997. Department of Commerce, National Institute of Standards and
Technology.

266 Jesús Vilares and Miguel A. Alonso

9. C. Jacquemin and E. Tzoukermann. NLP for term variant extraction: synergy
between morphology, lexicon and syntax. In Natural Language Information
Retrieval, volume 7 of Text, Speech and Language Technology, pages 25–74. Kluwer
Academic Publishers, Dordrecht/Boston/London, 1999.

10. M. Kaszkiel and J. Zobel. Effective ranking with arbitrary passages. Journal of the
American Society of Information Science, 52(4):344–364, 2001.

11. C. H. Koster. Head/modifier frames for information retrieval. In A. Gelbukh,
editor, Computational Linguistics and Intelligent Text Processing, volume 2945
of Lecture Notes in Computer Science, pages 420–432. Springer-Verlag, Berlin-
Heidelberg-New York, 2004.

12. J. Lee. Analyses of multiple evidence combination. In Proc. of SIGIR ’97, July
27-31, Philadelphia, PA, USA, pages 267–276. ACM Press, 1997.

13. M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An analysis of statistical and
syntactic phrases. In L. Devroye and C. Chrisment, editors, Proc. of Computer-
Aided Information Searching on the Internet (RIAO’97), pages 200–214, Montreal,
Canada, 1997.

14. J. Perez-Carballo and T. Strzalkowski. Natural language information retrieval:
progress report. Information Processing and Management, 36(1):155–178, 2000.

15. C. Peters, editor. Results of the CLEF 2002 Cross-Language System Evaluation
Campaign, Working Notes for the CLEF 2002 Workshop, Rome, Italy, Sept. 2002.
CLEF official site: http://www.clef-campaign.org.

16. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The
SMART Retrieval System - Experiments in Automatic Document Processing, pages
313–323. Prentice-Hall, Englewood Cliffs, NJ, 1971.

17. T. Saracevic and P. Kantor. A study of information seeking and retrieving. III.
Searchers, searches, overlap. Journal of the American Society for Information
Science, 39(3):197–216, 1988.

18. J. Vilares and M. A. Alonso. A grammatical approach to the extraction
of index terms. In G. Angelova, K. Bontcheva, R. Mitkov, N. Nicolov, and
N. Nikolov, editors, International Conference on Recent Advances in Natural
Language Processing, Proceedings, pages 500–504, Borovets, Bulgaria, Sept. 2003.

19. J. Vilares, M.A. Alonso, and F.J. Ribadas. COLE experiments at CLEF 2003
Spanish monolingual track. To be published in Lecture Notes in Computer Science.
Springer-Verlag, Berlin-Heidelberg-New York, 2004.

20. J. Vilares, M.A. Alonso, F.J. Ribadas, and M. Vilares. COLE experiments at
CLEF 2002 Spanish monolingual track. In C. Peters, M. Braschler, J. Gonzalo,
and M. Kluck, editors, Advances in Cross-Language Information Retrieval, volume
2785 of Lecture Notes in Computer Science, pages 265–278. Springer-Verlag, Berlin-
Heidelberg-New York, 2003.

Efficient Extraction of Structured Motifs
Using Box-Links

Alexandra M. Carvalho1, Ana T. Freitas1,
Arlindo L. Oliveira1, and Marie-France Sagot2

1 IST/INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
{asmc,atf,aml}@algos.inesc-id.pt

2 Inria Rhône-Alpes, Université Claude Bernard, Lyon I
43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Marie-France.Sagot@inria.fr

Abstract. In this paper we propose a new data structure for the efficient extrac-
tion of structured motifs from DNA sequences. A structured motif is defined as
a collection of highly conserved motifs with pre-specified sizes and spacings be-
tween them. The new data structure, called box-link, stores the information on
how to jump over the spacings which separate each motif in a structured motif. A
factor tree, a variation of a suffix tree, endowed with box-links provide the means
for the efficient extraction of structured motifs.

Structured motifs try to capture highly conserved complex regions in a set of DNA
sequences which, in the case of sequences from co-regulated genes, model functional
combinations of transcription factor binding sites [1–3]. Formally, a motif is a non-
empty string over an alphabet Σ (e.g., Σ ={A,C,T,G} for DNA sequences). A struc-
tured motif [1] is a pair (m, d) where m is a p-tuple of motifs (mi)1≤i≤p, denoting p
boxes, and d is a (p − 1)-tuple of pairs (dmini , dmaxi)1≤i<p, denoting p − 1 intervals
of distance. In the following, we consider that all p boxes of a structured motif have a
fixed length k and a fixed distance between boxes d. The general case was studied but is
out of the scope of this abstract. Algorithms and complexity results are easily adaptable
to the more general case.

A factor tree, also called a k-factor tree [4], is a data structure that indexes the
factors of a string whose length does not exceed k. In the following we define box-
links, whose purpose is to store the information needed to jump from box to box in a
structured motif, over a factor tree. Formally, let L be the set of leaves at depth k of a
k-factor tree T for a string s of length n and Li

k denote all possible i-tuples over L. A
box-link of size i, with 1 ≤ i < p, is a (i+1)-tuple in Li+1 such that there is a substring
s′ of s where: (i) the length of s′ is ik+(i−1)d; (ii) the k-length substring of s′ ending
at position jk + (j − 1)d, with 1 ≤ j ≤ i, is the path in T spelled from the root to the
j-th leaf of the box-link tuple. Box-links can be used to extract structured motifs when
built over a generalized factor tree (a factor tree for a set of N sequences). However,
in this case, box-links have to be endowed with a Colors Boolean array [1] in order to
distinguish in which of the N input sequences the corresponding boxes are linked.

In the following, we present an algorithm to build box-links. The algorithm makes
use of two variables. First, the variable listleaf has the list of all leaves inserted in the

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 267–268, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

268 Alexandra M. Carvalho et al.

factor tree, which can be easily obtained during the factor tree construction. In fact, for
the sake of exposition, listleaf can be seen as a family of variables (listleafi

)1≤i≤N ,
where each listleafi

has average length n, the average length of an input sequence.
Observe that the substring labeling the path from the root to the j-th leaf of listleafi

corresponds to the j-th at most k-length substring of the i-th input string. Second, the
variable bj stores the j-size box-links being built. We now describe AddBoxLink func-
tion. AddBoxLink(b,v,i) adds a box-link between an existing (j − 1)-size box-link b
and a leaf v for the i-th input sequence. However, it only creates a new box-link if
there is not already a box-link between box-link b and node v. In either way, creating or
not a new box-link, the AddBoxLink function sets the Boolean array entry i to 1. The
pseudo-code of the algorithm to build box-links is presented in Algorithm 1.

Algorithm 1 BoxLink(Boxes p, BoxSize k, BoxDistance d, ListLeaf listleaf)

1. for i from 1 to N
2. while size of listleafi

≥ pk + (p − 1)d
3. b0 = AddBoxLink(nil, listleafi

[0], i)
4. for j from 1 to p − 1
5. bj = AddBoxLink(bj−1, listleafi

[jk + jd], i)
6. remove the first leaf of listleafi

Next, we establish the complexity for Algorithm 1. Let nl be the number of nodes
at depth l of the generalized suffix tree for the same input sequences as the factor tree
where the box-links are being constructed, and bp(k, d) = min{np

k, npk+(p−1)d}.

Proposition 1. Algorithm 1 takes O(N2np) time and O(Nbp(k, d)) space.

Proof. Step 1, 2 and 4 require O(N), O(n) and O(p) time, respectively. Step 5 re-
quires O(N) time, which corresponds to the creation or update of Colors array. Hence,
Algorithm 1 takes O(N2np) time. The space complexity is given by the number of
box-links, which can be upper bounded by bp(k, d), times its size, which is N . ��

The use of box-links achieves a time and space exponential gain, in the worst case
analysis, over approaches in [1]. Time improvement is obtained because the information
required to jump from box to box in a structured motif is memorized and accessed very
rapidly with box-links. Moreover, it is only required to build a k-factor tree, instead of
a full suffix tree, or a pk +(p− 1)d-factor tree, which leads to important space savings.

References

1. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix tree with
an application to promoter and regulatory site consensus identification. J. Comp. Bio. 7 (2000)
345–362

2. Sharan, R., Ovcharenko, I., Ben-Hur, A., Karp, R.M.: Creme: a framework for identifying
cis-regulatory modules in human-mouse conserved segments. Bioinformatics 19 (2003) i283–
i291

3. Segal, E., Barash, Y., Simon, I., Friedman, N., Koller, D.: A discriminative model for identi-
fying spatial cis-regulatory modules. In: Proc. RECOMB’04. (2004) 141–149

4. Allali, J., Sagot, M.F.: The at most k-deep factor tree. Submitted for publication (2003)

Efficient Computation of Balancedness
in Binary Sequence Generators�

Pedro Garćıa-Mochales1 and Amparo Fúster-Sabater2

1 Instituto de Ciencia de Materiales de Madrid, C.S.I.C.
Cantoblanco. 28049 Madrid, Spain

pedrog@icmm.csic.es
2 Instituto de F́ısica Aplicada, C.S.I.C.

Serrano 144, 28006 Madrid, Spain
amparo@iec.csic.es

Abstract. An algorithm to compute the exact degree of balancedness in
the output sequence of a LFSR-based generator (either nonlinear filters
or combination generators) has been developed.

Keywords: Balancedness, bit-string algorithm, computational logics

1 Introduction

Generators of binary sequences based on Linear Feedback Shift Registers (LF-
SRs) [1] are electronic devices widely used to generate pseudorandom sequences
in many different applications. The pseudorandom sequence is generated as the
image of a nonlinear Boolean function F in the LFSR’s stages. Balancedness in
the generated sequence is a necessary condition that every LFSR-based genera-
tor must satisfy. Roughly speaking, a periodic binary sequence is balanced when
the number of 1′s and the number of 0′s in a period are as equal as possible. Due
to the long period of the sequences produced by LFSR-based generators, it is
not possible to generate the whole sequence and then to count the number of 1′s
and 0′s. Therefore, in practical design of binary generators, statistical tests are
applied to segments of the output sequence just to obtain probabilistic evidence
that a generator produces a balanced sequence. In the present work, balanced-
ness of pseudorandom sequences has been treated in a deterministic way. In fact,
an algorithm to compute the exact number of 1′s and 0′s in the output sequence
of a LFSR-based generator has been developed. To our knowledge, this is the
first algorithm to perform this task. The algorithm input is the particular form
of the generating function F while the algorithm output is the number of 1′s
in the generated sequence (as the period is known so is the number of 0′s). In
this way, the degree of balancedness of the output sequence can be perfectly
checked. The algorithm that is based on a L-bit string representation has been
mainly applied to nonlinear filters (high-order functions F with a large number
of terms); its generalization to combination generators (low-order functions F
with a short number of terms) is just the simplification of the process.
� Work supported by Ministerio de Ciencia y Tecnoloǵıa (Spain) under grant TIC

2001-0586.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 269–270, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

270 Pedro Garćıa-Mochales and Amparo Fúster-Sabater

2 Efficient Computation of Balancedness

Let F be a Boolean function in Algebraic Normal Form whose input variables
ai (i = 0, ..., L− 1) are the binary contents of the L stages of a LFSR. The func-
tion Φ(F) is defined as a Boolean function that substitutes each term ai aj ... am

of F for its corresponding minterm Aij...m. Each term of F is the logic product
of LFSR stages ai aj ... am = aij...m = aα as well as each term of Φ(F) is no-
tated Aij...m = Aα. Thus, the nonlinear functions F and Φ can be written as
F =

∑

⊕
aαk

and Φ =
∑

⊕
Aαk

, respectively, where the symbol ⊕ represents the

exclusive-OR sum. In addition, the minterm Aαk
has in total 2L−d(αk) terms,

d (αk) being the number of indexes in αk. In order to implement this algorithm,
every minterm Aα is represented by a L-bit string numbered 0, 1, ..., L− 1 from
right to left. If the n-th index is in the set α (n ∈ α), then the n-th bit of such
a string takes the value 1; otherwise, the value will be 0. Thus, d (α) equals the
number of 1′s in the L-bit string that represents Aα. We call maximum common
development of two minterms Aα and Aβ , notated MD (Aα, Aβ), to the minterm
Aχ such that χ = α∪ β. Under the L-bit string representation of the minterms,
MD can be realized by means of a bit-wise OR operation between the binary
strings of both functions. MD represents all the terms that Aα and Aβ have in
common.

Let F =
∑

⊕
aαk

(k = 1, ..., N) be a nonlinear Boolean function of N terms

applied to a L-stage LFSR. In order to compute the number of 1′s (notated UF)
in the generated sequence, the following algorithm is introduced:

– Step 1: Define the function Φ from the N terms aαk
of F . Initialize the

function H with a null value, H0 = �.
– Step 2: For k = 1 ... N : Hk = Hk−1 + Aαk

− 2 · MD (Aαk
, Hk−1).

– Step 3: From the final form of HN =
∑

j

sjAβj , compute the number of 1′s

in the generated sequence by means of the expression UF =
∑

j

sj · 2L−d(βj).

The calculations were performed on a simple PC computer (CPU Intel Xeon
2.8 GHz, 1 Gb of RAM) working with a Linux operative system. More than 40
different nonlinear functions F , each of them including 50 terms generated at
random, were applied to a LFSR of L = 32. Numerical results prove that high
performance computers are not needed in order to run the algorithm. In fact,
the worse execution time obtained from one of the tested functions was less than
11 hours. Based on these implementations, the algorithm is believed to be a
useful tool to calculate the exact degree of balancedness in sequences produced
by LFSR-based generators.

References

1. A.J. Menezes et al. Handbook of Applied Cryptography, CRC Press, NY, 1997

On Asymptotic Finite-State Error Repair�

Manuel Vilares1, Juan Otero1, and Jorge Graña2

1 Department of Computer Science, University of Vigo
Campus As Lagoas s/n, 32004 Ourense, Spain

{vilares,jop}@uvigo.es
2 Department of Computer Science, University of A Coruña

Campus de Elviña s/n, 15071 A Coruña, Spain
grana@udc.es

Abstract. A major issue when defining the efficiency of a spelling
corrector is how far we need to examine the input string to validate the
repairs. We claim that regional techniques provide a performance and
quality comparable to that attained by global criteria, with a significant
saving in time and space.

1 Introduction

Although a lot of effort has gone into the problem of spelling correction over
the years, it remains a research challenge. In particular, we are talking about
a critical task in natural language processing applications for which efficiency,
safety and maintenance are properties that cannot be neglected.

Most correctors assist users by offering a set of candidate repairs. So, any
technique that reduces the number of candidates for correction will show an
improvement in efficiency that should not have side effects on safety. Towards this
aim, we focus on limiting the size of the repair region [2], in contrast to previous
global proposals [1]. Our goal now is to evaluate our proposal, examining the
error context to later validate repairs by tentatively recognizing ahead, avoiding
cascaded errors and corroborating previous theoretical results.

2 Asymptotic Behavior

We introduce some preliminary tests illustrating that our proposal provides
a quality similar to that of global approaches with a significant reduction in
cost, only equivalent to that provided by global approaches in the worst case.
To do it, we choose to work with Spanish, a language with a highly complex
conjugation paradigm, gender and number inflection. The lexicon has 514.781
words, recognized by a finite automaton (fa) containing 58.170 states connected
by 153.599 transitions, from which we have selected a representative sample
� Research partially supported by the Spanish Government under projects TIC2000-

0370-C02-01 and HP2002-0081, and the Autonomous Government of Galicia under
projects PGIDIT03SIN30501PR and PGIDIT02SIN01E.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 271–272, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

272 Manuel Vilares, Juan Otero, and Jorge Graña

that follows the length distribution of the words in the lexicon. For each length-
category, a random number of errors have been generated in random positions.

We compare our proposal with the Savary’s global approach [1], to the best of
our knowledge, the most efficient method of error-tolerant look-up in finite-state
dictionaries. We consider the set of calculations associated to a transition in the
fa, that we call item, as the unit to measure the computational effort. Finally,
the precision will reflect when the correction attended by the user is provided.

Fig. 1. Number of items generated in error mode.

Some preliminary results are compiled in Fig. 1. The graphic illustrates
our contribution from two viewpoints. First, our proposal shows a linear-like
behavior, in contrast to the Savary’s approach that seems to be of exponential
type, resulting in an essential property: the independence of the time of response
on the initial conditions for the repair process. Second, the number of items is
significantly reduced when we apply our regional criterion. These tests provided
a precision of 77% (resp. 81%) for the regional (resp. global) approach. The
integration of linguistic information should reduce this gap, less than 4%, or
even eliminate it. In effect, our regional approach only takes now into account
morphological information, which has an impact in the precision, while a global
technique always provides all the repair alternatives without exclusion.

References

1. A. Savary. Typographical nearest-neighbor search in a finite-state lexicon and its
application to spelling correction. Lecture Notes in Computer Science, 2494:251–260,
2001.

2. M. Vilares, J. Otero, and J. Graña. Regional finite-state error repair. In Proc. of
the Ninth Int. Conf. on Implementation and Application of Automata (CIAA’04),
Kingston, Canada, 2004.

New Algorithms for Finding Monad Patterns
in DNA Sequences�

Ravi Vijaya Satya and Amar Mukherjee

School of Computer Science, University of Central Florida
Orlando, FL USA 32816-2362
{rvijaya,amar}@cs.ucf.edu

Abstract. In this paper, we present two new algorithms for discovering
monad patterns in DNA sequences. Monad patterns are of the form (l,d)-
k, where l is the length of the pattern, d is the maximum number of
mismatches allowed, and k is the minimum number of times the pattern
is repeated in the given sample. The time-complexity of some of the best
known algorithms to date is O(nt2ldσd), where t is the number of input
sequences, n is the length of each input sequence, and σ = |∑ | is the size
of the alphabet. The first algorithm that we present in this paper takes

O(n2t2l
d
2) time and O(ntl

d
2 σ

d
2) space, and the second algorithm takes

O(n3t3l
d
2 σ

d
2) time using O(l

d
2 σ

d
2) space. In practice, our algorithms have

much better performance provided the d/l ratio is small. The second
algorithm performs very well even for large values l and d as long as the
d/l ratio is small.

1 Introduction

Discovering regulatory patterns in DNA sequences is a well known problem in
computational biology. Due to mutations and other errors, the actual occurrences
of these regulatory patterns allow for a certain degree of error. There fore, the
actual regulatory pattern (or the consensus pattern) may never appear in a gene
upstream region, but d-mismatch occurrences of this pattern might appear. The
general approach to this problem is to take a set of t DNA sequences each of
length n, at least k of which are guaranteed to contain the desired binding site,
and look for patterns of a certain length l that occur in at least k out of the t
sequences with at most d mismatches at each occurrence. The values of l, d and
k can be determined either from prior knowledge about the binding site, or by
trial and error, trying different values of l and d. These single contiguous blocks
of patterns are called monad patterns.

In general, many regulatory signals are made up of a group of monad pat-
terns occurring within a certain distance form each other [EskKGP03, EskP02,
GuhS01, vanRC00]. In such a case, the patterns are called dyad, triad, multi-ad,
or in general as composite patterns. Finding the composite patterns by finding
the component monad patterns individually is significantly more difficult, since
� This research was partially supported by NSF grant number: ITR-0312724.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 273–285, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

274 Ravi Vijaya Satya and Amar Mukherjee

Li Lj

P

D(Li,Lj) <=2d
D
(L

i,P
) <

=d

D
(L

j ,P) <=d

Fig. 1. A pattern P that is consistent with an l-gram pair (Li, Lj)

the composite monad patterns might be too subtle to detect. Eskin and Pevzner
[EskP02] present a simple transformation to convert a multi-ad problem into a
slightly larger monad problem. In this paper, we present an algorithm to solve
the monad-pattern finding problem. The same transformation as in [EskP02]
can be applied to transform a multi-ad problem into a monad problem that is
handled by our algorithm.

Pevzner and Sze [PevS00] have put forward a challenge problem: to find the
signal in a sample of t = 20 sequences, each 600 nucleotides long, each contain-
ing an unknown pattern of length l = 15 with at most d = 4 mismatches. They
presented the WINNOWER and SP-STAR algorithms that could solve this prob-
lem, which was not solvable by many of the earlier techniques. Many other ap-
proaches that can solve this problem have been proposed [Sag98, EskP02, Lia03,
BuhT2001]. Time-complexity of the best known algorithms[Sag98, EskP02] is
O(nt2ldσd).

Many of the above algorithms search the d-mismatch neighborhood of each
l -gram in the sample. The size of the d -mismatch neighborhood of an l -gram
in O(ldσd). The main motivation for our algorithms is that in most practical
scenarios, it might be possible to limit the search to a small portion of the d -
mismatch neighborhood. We refer to the set of patterns that mismatch in at
most d positions with two l -grams as the consistent patterns of the two l -grams.
We denote the distance(the number of mismatches) between two l-grams Li and
Lj by D(Li, Lj). The distance relationships between two l-grams Li and Lj and
a pattern P that is consistent with both of them are shown in Figure 1. The
following observations form the basis for our algorithm:

Observation 1: For each l -gram, it is sufficient to search the consistent pat-
terns of the l-gram with respect to all other l -grams.

Observation 2: The number of other l -grams in the sample that are within h
mismatches from the current l -gram reduces rapidly with decreasing h. This is
illustrated in Figure 2-(a) for a random sample of 20 sequences of 600 nucleotides
each. The size of the average 2d-mismatch neighborhood is 571.395, where as the
average size of the d -mismatch neighborhood is just 1.23.

Observation 3: The number of consistent patterns between two l -grams which
mismatch in h positions decreases rapidly with increasing h. When h is greater

New Algorithms for Finding Monad Patterns in DNA Sequences 275

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

h

n
e

ig
h

b
o

rh
o

o
d

n = 600

t = 20

l = 15

d = 4

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

h

n
o

.
o

f
c

o
n

s
is

te
n

t

p
a

tt
e

rn
s

 (
th

o
u

s
a

n
d

s
)

n = 600

t = 20

l = 15

d = 4

(a) (b)

Fig. 2. Variation of: (a)h-mismatch neighborhood (b) consistent patterns with h

than 2d, this number is zero, as two l -grams that mismatch in more than 2d
positions can not have any patterns that mismatch with both of them in at most
d positions.Therefore, as is illustrated in Figure 2-(b), the number of consistent
patterns between two l -grams which mismatch in more than d positions is quite
small.

2 Previous Approaches to Pattern Discovery

The pattern discovery problem can be formally stated as follows: Given a set of
DNA sequences (also referred to as the sample) S = {S1, S2, ...St}, and a set
of parameters l, d and k, the problem is to find all length-l patterns that occur
with up to d mismatches in at least k different sequences in the sample.

One of the earliest techniques to solve this problem, as presented in [PevS00]
is known as the pattern driven approach. The pattern driven approach searches
all of the pattern space - it enumerates each possible pattern and checks if it
meets the search criteria. If the pattern length is l, there are 4l possible patterns,
assuming a DNA alphabet. Pattern driven approaches take each one of these
patterns and compare them with all the l -grams in the sample. This approach
takes exponential time in terms of l, and the problem quickly becomes practically
unsolvable even for moderate values of l.

A faster approach, termed by [EskP02] as the Sample Driven Approach
(SDA), searches a reduced search space of only the l -grams that occur in the
sample and their d -mismatch neighbors. The SDA algorithm trades in space for
time: it maintains a table of size 4l, each entry in the table corresponding to
a pattern. For each l -gram in the input sample, the algorithm enumerates all
the patterns that make up its d -mismatch neighbor hood. For each pattern in
the neighborhood, the corresponding entry in the table is incremented. After all
the l -grams have been processed, the patterns in the table that have a score
greater than k are reported. The problem with the SDA approach is that the
memory requirements are huge, and increase exponentially with l. Therefore the
SDA approach, like the PDA approach, becomes quickly unmanageable, even for
moderate values of l.

The WINNOWER algorithm [PevS00] and the cWINNOWER algorithm
[Lia03] are based on graph theory. In these algorithms, a graph is constructed

276 Ravi Vijaya Satya and Amar Mukherjee

in which each vertex is an l -gram in the input sequence. Two l -grams are con-
nected by an edge if they mismatch in at most 2d positions. Now, the problem is
mapped to the problem of finding k -cliques in the graph. The problem of finding
k -cliques in graph, when k > 3 is known to be np-complete. Therefore, WIN-
NOWER and cWINNOWER try to apply some heuristics to arrive at a solution.
In the first step, all the nodes that have a degree less than k -1 are removed. After
that, different techniques are applied to try to remove the spurious edges in the
graph that can not be part of a solution. The complexity of WINNOWER and
cWINNOWER for the most sensitive versions of the algorithms are given by
O(t3n2.66) and O(t4n4), respectively. However, it is important to note that even
though it is claimed that the most sensitive versions of these algorithms solve
almost all practical problems, they are not guaranteed to solve a given problem.

Some of the other approaches include suffix tree -based approaches [Sag98,
PavMP01]. The SPELLER algorithm presented in [Sag98] first builds a suffix
tree for the input sequence. It then examines all possible patterns traversing
through the suffix tree. If the paths to k different leaves of length l mismatch
with the pattern in at most d positions, then the pattern is reported. Starting
with zero characters at the root, the pattern is extended one character at a time.
At any time if there are less than k different paths in the suffix tree that mismatch
in at most d positions with the current pattern, the search is stopped and the
(alphabetical) next pattern of the same length, or the next pattern of a shorter
length is searched. The complexity of the algorithm is given as O(nt2ld4d).

In the sequence driven approach, each l-gram is searched separately. The
Mitra-Count algorithm [EskP02] is based on the idea that if all the l -grams are
searched concurrently, then only the information about those l -grams that meet
the current search criteria need to be stored. This will reduce the memory re-
quirements drastically. The MITRA algorithm searches the pattern search space
in a depth first manner, abandoning the search whenever the search criterion
is no longer met. For this it uses the mismatch tree data structure. The path
from the root to a node at depth m in the mismatch tree represents a prefix of
the pattern of length m. The list of l -grams from the sample whose m-length
prefixes mismatch in at most d positions with the path label of the current node
are stored at the node. The tree is built in a depth-first fashion. Whenever the
size of the list of l -grams at a node falls below k, the node is discarded, and the
sub tree of the node is never searched. Whenever the search reaches a depth l,
the pattern corresponding to the path label is reported. The algorithm is mem-
ory efficient, since only the nodes that lie in the current path need to be stored
at any time. An improved algorithm, Mitra-Graph, also presented in [EskP02]
applies WINNOWER -like pair wise similarity information in order to maintain
a graph at each node of the mismatch tree. If two l -grams L1 & L2 mismatch in
d1 & d2 positions respectively with the node label, and if their suffixes beyond
the current depth mismatch in q positions, then the two l -grams are connected
by an edge if d1 + d2 + q ≥ 2d. The nodes can be discarded if there is no pos-
sibility for a k -clique in the graph. Even though there is an extra overhead of
maintaining the graph and extending the graph at each node, much smaller pat-

New Algorithms for Finding Monad Patterns in DNA Sequences 277

tern sub-space needs to be searched in Mitra-Graph. The theoretical complexity
of Mitra is claimed to be the same as that of the SPELLER algorithm.

3 The PRUNER Algorithm

3.1 Our Contributions

Our approach is based on the WINNOWER algorithm [PevS00, Lia03]. As in
WINNOWER, we build a graph based on pair-wise similarity information, and
prune the graph eliminating vertices that can not be part of a solution. How-
ever, after this point, we employ a different approach. The algorithms try to
successively remove edges from the graph, after checking all the patterns that
mismatch in at most d positions from both the l -grams that are connected by
the edge. We categorize the edges into two groups. Group1 consists of edges
that connect l -grams that differ in more than d positions, and Group2 consists
of edges that connect l -grams that differ in less than or equal to d positions. In
the following sections, we will show that there will be relatively fewer patterns
that mismatch in at most d positions from both the l -grams that are connected
by a Group1-edge. Precisely, we will show that there will be at most O(l

d
2 σ

d
2)

such patterns for every Group-1 edge. Each Group-2 edge, on the other hand,
can have O(ldσd) such patterns. We present a technique which enumerates all
the patterns corresponding to each Group1-edge, checks each one of them to see
if they satisfy the search criteria, and removes the Group1-edge. We show that
at least k monad patterns can be reported without enumerating the patterns
corresponding to the Group-2 edges, there by avoiding the O(ldσd) complexity.
Unlike WINNOWER and cWINNOWER[Lia03], our algorithm is guaranteed to
find a solution in O(n2t2l

d
2 σ

d
2) time using O(ntl

d
2 σ

d
2) space.

3.2 Problem Statement

In the discussion that follows, for convenience in illustration, we treat the input
sample as a single sequence of size n. The time and space complexities are not
affected by this simplification. In section3.5, we explain the enhancements to
handle t different sequences, instead of a single sequence. Therefore, the problem
can be stated as follows: given a string S of length n over the alphabet

∑
=

{A,C,G, T }, the problem is to find a pattern P of length l that occurs at least
k times in S with at most d mismatches in each occurrence.

3.3 Terms and Definitions

We denote a length-l substring(an l -gram) of S starting at position i in S by
Li. A score h = D(Li, Lj) indicates the number of positions in which the two
l -grams Li, Lj mismatch. We denote the set of patterns that mismatch with
both Li and Lj in at most d positions by ρ(Li, Lj). We refer to the set ρ(Li, Lj)
also as the set of patterns that are consistent with Li and Lj. We now describe,

278 Ravi Vijaya Satya and Amar Mukherjee

l-h h

Li

Lj

l-h h

Li h1

h2

Lj

P

dc

h1+h2-h(a) (b)

M H

Fig. 3. (a) The matching(M) and mismatching(H) regions of Li, Lj . (b) Different
regions of the pattern P . The regions in black are the regions in which Li, Lj mismatch
with P

briefly, how to compute the size of the set ρ(Li, Lj). Let P be any pattern such
that P ∈ ρ(Li, Lj). Now, it is important to note that ρ(Li, Lj) = {Φ} if h > 2d.
We have to enumerate all the different possibilities for P. Also, let us divide
each l -gram into two regions: M -region, consisting of positions in which Li and
Lj match with each other, and the H -region, consisting positions in which Li

and Lj mismatch with each other, as shown in Figure 3-(a). Both the regions
are shown to be contiguous for simplicity in illustration. In reality, these regions
need not be contiguous. Now, let us assume patterns Li and Lj mismatch with
P in dc positions within the M -region. Additionally, let Li mismatch with P in
h1 positions, and let Lj mismatch with P in h2 positions, as shown in Figure
3-(b). Again, none of these regions needs to be contiguous.

Now, dc mismatch positions can be chosen from l − h positions in
(l − h

dc

)

ways. At each one of these positions, we have σ− 1 = 3 symbols to choose from.
Similarly, h1 positions in which Li can mismatch with P can be selected from h

positions in
(
h

h1

)

ways. The remaining h−h1 positions in Li have to match with

P, and hence they mismatch with P in Lj (since we know that Li mismatches
with Lj in these positions). The remaining (h1 + h2 − h) positions in which Lj

mismatches with P can be selected from h1 positions in
(

h1

h1 + h2 − h

)

ways.

We have σ − 2 = 2 options at each one of these (h1 + h2 − h) positions, since
P mismatches with both Li and Lj. Therefore, the total number of patterns in
(Li, Lj) is given by:

|ρ(Li,Lj)| =

� 2d−h
2 �∑

dc=0

[
(l− h

dc

)
3dc

d−dc∑

h1=h−d+dc

d−dc∑

h2=h−h1

(h

h1

)(h1

h1 + h2 − h

)
2h1+h2−h

]

, if h ≤ 2d

= 0 otherwise (1)

New Algorithms for Finding Monad Patterns in DNA Sequences 279

In the above expression, |ρ(Li, Lj)| increases when h decreases. When d <
h ≤ 2d, the maximum value of |ρ(Li, Lj)| occurs when h = d+1. When h = d+1,
the maximum value that dc can take is given by dc = d−1

2 which is equal to d
2

when d is odd, and d
2 − 1 when d is even. Now,

(
l − h

dc

)

3dc is in O(ldc3dc).

Therefore, on the whole, |ρ(Li, Lj)| is in O(l
d
2 4

d
2).

3.4 The PRUNER-I and PRUNER-II Algorithms

In both the algorithms, we construct a graph G(L,E) where each vertex is an l -
gram in the input sample, and there is an edge (Li, Lj, D(Li, Lj)) connecting two
l -grams Li and Lj if D(Li, Lj) is less than or equal to 2d. We then successively
remove vertices representing l -grams from the graph G(L,E) that have a degree
less than k − 1, and remove the edges that are incident on these vertices. Until
this point, our algorithms are no different from WINNOWER. However, they
differ from WINNOWER in the following steps.

Both the PRUNER-I and the PRUNER-II algorithms process each vertex
successively. The PRUNER-I algorithm enumerates the consistent patterns for
every group1-edge (i.e., edges between l -grams which mismatch in more than
d positions). It then computes how many times each pattern repeats. It does
this by adding all the consistent patterns for each edge to a list, sorting and
scanning the list. Each time a pattern appears, it means that the pattern is
within d mismatches from another l -gram. Hence, if a pattern repeats k − 1
times, it means that the pattern is within d mismatches from k − 1 other l -
grams. However, since we have not yet processed the Group2-edges(i.e., edges
connecting l -grams that mismatch in d or fewer positions), we can not yet discard
the patterns that repeat less than k−1 times. We do not want to evaluate all the
consistent patterns for the Group2-edges, as there are too many (O(ld4d)) such
patterns. Therefore, we will have to take each pattern in the list, and compare
it with each l -gram that is connected to the current vertex through a Group2-
edge. Only then will we know how many times each one of those patterns has
repeated. An efficient way of doing all this is presented below.

At each node Li, we enumerate the consistent patterns ρ(Li, Lj) for all the
Group1-edges, i.e., edges (Li, Lj, D(Li, Lj)), such that d < D(Li, Lj) ≤ 2d. We
add these patterns to a list η(i), and remove the edge (Li, Lj , D(Li, Lj)). Lemma
1 states that we can safely remove the edge (Li, Lj, D(Li, Lj)) after enumerating
and adding ρ(Li, Lj) to η(i).

Lemma 1. After a vertex Li in (Li, Lj, D(Li, Lj)) is processed, there can be no
new patterns in ρ(Li, Lj) that were not reported while processing Li, but will be
reported while processing the vertex Lj.

Proof. Let us assume that there is a pattern P ∈ ρ(Li, Lj) that was not reported
while processing node Li, but will be reported while processing node Lj. This
means that there are a set of l -grams ψ(P) other than Li, such that for each Lq ∈
ψ(P), there is an edge (Lq, Lj, D(Lq, Lj)) connecting Lq and Lj , andD(Lq, P) ≤

280 Ravi Vijaya Satya and Amar Mukherjee

d. Additionally, since P will be reported while processing Lj , |ψ(P)| ≥ k−2. Now,
since for each Lq ∈ ψ(P), D(Lq, P) ≤ d and D(Li, P) ≤ d (as P ∈ ρ(Li, Lj) by
definition), it implies that D(Li, Lq) ≤ 2d. Therefore, for each Lq ∈ ψ(P) there
is an edge (Li, Lq, D(Li, Lq)) connecting Li and Lq. Since |ψ(P)| ≥ k − 2, and
P ∈ ρ(Li, Lj), there are at least k − 1 edges incident in Li which contain P as
one of their consistent patterns. Therefore, pattern P must have been reported
while processing node Li. Hence there can be no pattern P ∈ ρ(Li, Lj) that is
not reported while processing Li that can be reported while processing Lj . ��

Now, we need to find out how many times each pattern is repeated in η(i).
An easy way of doing this will be to sort η(i), and scan η(i). As each pattern in
η(i) is a length-l string of a fixed alphabet, η(i) can be sorted in linear time using
radix sort. Let a pattern P repeat m times in η(i). Let R be the degree of node
Li after processing and removing all Group1-edges. As explained in section1, R
is expected to be very small. We do the following:

• If m+R < k−1, we discard P . The number of times P repeats can increase
by at most R, by comparing P with each one of the Group2-edges. If m <
k− 1−R, there is no way that P can repeat k− 1 times. So we can discard
P .

• If m ≥ k− 1, report P , since it is clear that P has already occurred at least
k − 1 times.

• If k − 1 ≤ m + R < k − 1 − R, we compare P with all l-grams that are
still connected to Li. For each such l-gram that mismatches P in at most d
locations, we increment the repeat count of P . If the repeat count reaches
k − 1, we report P . Other wise, we discard P .

Before we leave Li and proceed to process the next vertex, we can do one more
thing - we can remove the vertex Li from the graph if R < k − 1, without ever
enumerating the consistent patterns for these edges. Lemma 2 proves this.

Lemma 2. If the residual degree R of vertex Li is less than k−1 after processing
and removing all Group1-edges of Li, there can be no new patterns that will be
reported by processing the Group2-edges.

Proof. Let us assume that there is a pattern P that was not reported while
processing the Group1-edges, but will be reported while processing the Group2-
edges. Since we will be reporting P, and since R < k− 1, there should have been
at least one Group1-edge (Li, Lq, D(Li, Lq) such that P ∈ ρ(Li, Lq). Therefore,
P was checked and reported while processing vertex Lq. Hence there can be no
new patterns that will be reported by processing the Group2-edges. ��

We are now left with a graph in which the score of each edge is at most d,
and degree of each remaining vertex is at least k− 1. Therefore, if the graph has
any vertices left, there will be at least k vertices left in each connected component
of the graph. In practice, we do not expect any vertices to remain at this stage,
as our assumption is that there are not too many patterns that meet the search
criteria. All the l-grams that do remain until this stage are themselves valid

New Algorithms for Finding Monad Patterns in DNA Sequences 281

ProcessLGram()
Inputs: G(L,E), i, l, d, k
Output: Reports patterns in the d-mismatch neighborhood of Li that satisfy the search criteria
1. PatternList ← {φ}
2.for every j such that (Li, Lj, D(Li, Lj)) ∈ E do
3. if D(Li, Lj) > d /* checking if (Li, Lj , D(Li, Lj)) is a Group-1 edge*/
4. PatternList ← PatternList ∪ ρ(Li, Lj)

/* the set ρ(Li, Lj) of consistent patterns is enumerated by a subroutine at this point*/
5. E ← E − (Li, Lj, D(Li, Lj)) /* The Group-1 edge is immediately removed */
6. end if
7. end for
8. RadixSort(PatternList)
9. Cnt ← 0 /* Cnt is the number of times the current pattern has repeated */

10. for j ← 1 to |PatternList| − 1
11. if PatternListj = PatternListj−1
12. Cnt← Cnt + 1
13. else if Cnt ≥ k − 1− Degree(Li) /*Degree(Li) is the residual degree (the degree of

Group-2 edges of Li) , since all the Group-1 edges have been removed in step 6.*/
14. for every r such that (Li, Lr, D(Li, Lr)) ∈ E do /* for each Group-2 edge */
15. ifD(PatternListj , Lr) ≤ d

/*check if the pattern PatternListj is in the d-mismatch neighborhood of Lr*/
16. Cnt← Cnt + 1
17. end if
18. end for
19. if Cnt > k − 1
20. Report(PatternListj) /*PatternListj is an (l, d)− k pattern */
21. end if
22. Cnt← 0
23. end if
24. end for

Fig. 4. The routine that checks the d-mismatch neighborhood of each l-gram

solutions, since they mismatch in at most d positions with at least k − 1 other
l-grams. Hence, we report all the remaining l-grams. Beyond this, there might
be other patterns in the graph that meet the search criteria, but in a general
case, we assume that there are fewer than k distinct monad patterns in the
given sample. In the almost impractical scenario that there are more than k
distinct monad patterns, the algorithms we present report at least k of them.
The PRUNER-I algorithm is presented in detail in figures 4 and 5.

The PRUNER-II algorithm is very similar to the PRUNER-I algorithm in
concept. However, the PRUNER-II algorithm attempts to eliminate the poten-
tially huge memory requirements of the PRUNER-I algorithm. While processing
each node Li, the PRUNER-I algorithm maintains a list η(i) that contains all
the patterns that are consistent with each one of the Group1-edges. When the
number of such edges is huge, the amount of memory required for η(i) may be
too big. Especially, this might be the case when d is large and the d/l ratio is
large, in which case the graph G(L,E) will be highly connected.

At each vertex Li, the PRUNER-II algorithm processes edges one by one.
For each edge (Li, Lj, D(Li, Lj)), it enumerates the set of consistent patterns
ρ(Li, Lj). For each consistent pattern P ∈ ρ(Li, Lj), if we compare P with all
the l-grams that are directly connected with vertex Li, we can determine if P
mismatches in at most d positions with at least k−1 of them. However, a deeper
analysis reveals that it not necessary to compare P with all the l-grams that
share an edge with Li. For any l-gram Lq, if D(Lq, P) ≤ d, then D(Lq, Lj) will

282 Ravi Vijaya Satya and Amar Mukherjee

be less than or equal to 2d. This means that the l-grams Lq and Lj will also
be connected. Therefore, we only need to compare P with all vertices Lq such
that the edge (Lq, Lj, D(Lq, Lj)) ∈ E. If at least k − 2 of them mismatch with
P in fewer than d positions, it reports P . Otherwise, P is discarded. As in the
PRUNER-I algorithm, it removes the edge (Li, Lj, D(Li, Lj)) after checking all
the patterns in ρ(Li, Lj).

SearchForPatterns()
Inputs: S, l, d, k, n
1. Buildgraph(S,l,d,k,n) /*The routine that builds the graph G(L,E)*/
2. PruneGraph(G(L,E),l,d,k,n) /* The pruning routine which removes

all the vertices with degree < k − 1*/
3. for i← 0 to n− l + 1 do
4. ProcessLGram(G(L,E),i,l,d,k,n)
5. ifDegree(Li) < k − 1
6. RemoveLGram(G(L, E), i) /* remove the vertex Li

(and the edges incident on Li) from the graph */
7. end for
8. PruneGraph(G(L,E), l, d, k, n) /* remove l-grams with degree < k − 1 */
9. for i← 0 to n− l + 1 do /*check if any l-grams are still remaining*/

10. if Degree(Li) > k − 1
11. Report(Li) /* report all remaining l-grams*/
12. end if
13. end for

Fig. 5. The PRUNER-I algorithm

3.5 Extending the Algorithm to Handle Multiple Sequences

When the input sample is made of t sequences of length n each, and the problem
is to find an (l, d) motif that occurs in at least k of them, the graph G(L,E)
will be a t-partite graph. At each vertex in the graph, we need to maintain and
update another variable, which we call t-degree. The variable t-degree stores the
number of distinct sequences in t that the current vertex is connected to. In the
algorithms that we discussed above, whenever we are referring to the degree of
a vertex, we will be using t-degree instead of the actual degree of the vertex.
Whenever we are checking for a pattern P , it is no longer sufficient to check if the
pattern is within d mismatches from k− 1 other l-grams. We need to make sure
that the l-grams are derived from k − 1 distinct sequences in the sample. The
implementation typically involves maintaining a bit-vector of length t for the
pattern that is being considered. Whenever the pattern is within d-mismatches
from an l-gram, the bit corresponding to the sequence from which the l-gram is
derived is set to 1. P satisfies the search criteria if at least k− 1 (or whatever is
necessary at that point in the algorithm) bits are set to 1.

3.6 Complexity Analysis

Building the graph involves calculating the mismatch count for each l-gram
pair (Li, Lj) such that Li and Lj are derived from different input sequences.
There are (n − l + 1) l-grams for each input sequence, and n(t − 1) other l-
grams for each l-gram in the input sequence. Therefore, building the graph takes

New Algorithms for Finding Monad Patterns in DNA Sequences 283

Table 1. Performance of the algorithms

Test case d/l PRUNER-I PRUNER-II Test case d/l PRUNER-I PRUNER-II
(l, d) ratio Time Memory Time Memory (l, d) ratio Time Memory Time Memory

(MB) (MB) (MB) (MB)
13,3 0.23 0.17 43 0.14 43 13,4 0.31 12.26 166 29.58 278
14,4 0.28 5.35 198 7.09 178 15,4 0.27 2.28 122 1.34 91
16,4 0.25 0.56 51 0.56 43 16,5 0.31 69.00 540 284.59 247
17,5 0.29 29.54 315 36.58 161 18,5 0.28 13.19 174 13.19 92
19,5 0.263 6.02 101 0.54 48 20,5 0.25 2.16 65 0.13 21
21,5 0.238 0.13 10 0.13 11 22,5 0.227 0.17 56 0.13 7
22,6 0.273 649 3.16 83 23,6 0.261 18.57 525 0.13 64
24,6 0.25 1.12 720 0.16 11 25,6 0.24 1.17 592 0.18 60
26,6 0.231 1.08 613 0.16 62 27,7 0.259 out of memory 2.27 614
28,7 0.25 out of memory 0.36 640 29,7 0.241 0.38 749 1.41 640

O(n2t2). Pruning the graph involves removing all the edges incident on each
vertex whose degree is less than k−1. In the worst case, we might have to delete
all the nodes, so the maximum number of edges that need to be removed is
((k− 1)nt− 1), which is O(ntk). This time is common for both PRUNER-I and
PRUNER-II. In the PRUNER-I algorithm, each l-gram can have up to n(t− 1)
2d-mismatch neighbors. Therefore, at each l-gram, we might have to enumerate
the consistent patterns with n(t − 1) other l-grams. The maximum number of
these consistent patterns as discussed in section 3.3, is O(l

d
2 4

d
2). Hence the worst-

case time complexity at each node is given by O(ntl
d
2 4

d
2). We need to store all

these patterns in a list, so we need O(ntl
d
2 4

d
2) space. In the worst case, we will

have to process (t − k + 1)n l-grams, since no new patterns can be discovered
after removing all the vertices corresponding to (t − k + 1) sequences in the
sample. Therefore, the overall complexity is given by O(n2t(t − k + 1)l

d
2 4

d
2). If

k is small w.r.t. t, this will be O(n2t2l
d
2 4

d
2). When k = t, the complexity of the

PRUNER-I algorithm is O(n2tl
d
2 4

d
2). In case of the PRUNER-II algorithm, each

edge is processed separately. All the patterns consistent with each edge (Li, Lj)
have to be compared with all the l-grams that are connected to both Li and Lj .
In the worst case, there can be n(t − 2) vertices that are connected to both Li

and Lj. The total number of the edges could be n2t(t − 1) in the worst case.
The edge can have O(l

d
2 4

d
2) patterns that are consistent with it, so the total

time taken will be O(n3t3l
d
2 4

d
2). Each pattern could be compared separately;

therefore the space needed is approximately the same as that necessary for the
graph.

4 Results

The algorithms were tested on generated samples containing 20 sequences of 600
nucleotides each. The sequences are implanted with randomly mutated patterns
at randomly chosen positions. Each occurrence of the pattern is allowed to have
up to d mismatches. The tests were carried out on a Pentium-4 3.2 GHz PC
with 2GB of memory, running Redhat Linux 9.0. The time/memory results are
presented in Table 1. The PRUNER-I algorithm ran out of memory for the (27,7)

284 Ravi Vijaya Satya and Amar Mukherjee

and the (28,7) cases. The implanted pattern was detected in all the remaining
test cases.

5 Conclusion

We have presented two new algorithms for finding the monad patterns. Both
the algorithms perform extremely well on the challenge problem of (15,4) on 20
input sequences of 600 nucleotides. As d increases in comparison to l, i.e., when
the d/l ratio increases, the PRUNER-I algorithm takes a longer time and a larger
memory. The PRUNER-I algorithm runs out of memory for large values of l and
d. The PRUNER-II algorithm, on the other hand, can handle large values of l
and d, but reacts very sharply to the d/l ratio. As long as the d/l ratio is around
0.25, the PRUNER-II algorithm performs very well, independent of the actual
values of l and d. Unlike Winnower and cWinnower, the algorithms we presented
here are not sensitive to k. Our algorithms will be able to detect patterns even
for very small values of k. The only concern when dealing with very small values
of k is that there could be random signals in the input sample that meet the
search criteria. An interesting observation from the test cases is that the graph
itself starts consuming more and more space as the d/l ratio gets bigger. This
is because there are more and more edges in the graph, as there are a larger
number of l-gram pairs that mismatch in less than 2d positions. In the future,
we plan to investigate compact representations for the graph. Another approach
may involve using a two-pass algorithm. WINNOWER or cWINNOWER can
be used initially in order to remove some spurious edges. Our algorithms can be
applied in the second pass. As the graph has much fewer edges now, PRUNER-I
or PRUNER-II may have very good performance. For the first pass, we can use a
low sensitivity version of WINNOWER or cWINNOWER in order to maximize
the speed.

References

[BuhT2001] Buhler J. and Tompa B.: Finding motifs using random projections Proc.
of the Fifth Annual International Conference on Computational Molecular Biology
(RECOMB01) (2001) 69–76

[EskKGP03] Eskin E., Keich U., Gelfand M.S., Pevzner P.A.: Genome-wide analysis
of bacterial promoter regions. Proc. of the Pacific Symposium on Biocomputing
PSB − 2003 (2003) Kau‘i, Hawaii, January 3-7, 2003

[EskP02] Eskin E. and Pevzner P.A.: Finding composite regulatory patterns in DNA
sequences. Proc. of the Tenth International Conference on Intelligent Systems for
Molecular Biology (ISMB-2002) (2002) Edmonton, Canada, August 3-7

[GuhS01] Guha Thakurtha D. and Stormo G.D.: Identifying target sites for coopera-
tively binding factors. Bioinformatics 15 (2001) 563–577

[HerS99] Hertz G.Z. and Stormo G.D.: Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformatics 10, (1999)
1205–1214

New Algorithms for Finding Monad Patterns in DNA Sequences 285

[Lia03] Liang S.: cWINNOWER Algorithm for finding fuzzy DNA motifs. Proc. of the
2003 IEEE Computational Systems Bioinformatics conference (CSB 2003) (2003)
260–265

[MarS00] Marsan L. and Sagot M.: Algorithms for extracting structured motifs using
suffix tree with applications to promoter and regulatory site consensus identifica-
tion. Journal of Computational Biology 7, (2000) 345–360

[PavMP01] Pavesi G., Mauri G. and Pesole G.: An algorithm for finding signals of
unknown length in DNA sequences. Proc. of the Ninth International Conference
on Intelligent Systems for Molecular Biology (2001)

[PevS00] Pevzner P.A. and Sze S.: Combinatorial approaches to finding subtle motifs
in DNA sequences. Proc. of the Eighth International Conference on Intelligent
Systems for Molecular Biology (2000) 269–278

[PriRP03] Price A., Ramabhadran S. and Pevzner A.: Finding subtle motifs by branch-
ing from sample strings. Bioinformatics 19, (2003) 149–155

[Sag98] Sagot M.: Spelling approximate or repeated motifs using a suffix tree. Lecture
notes in computer science 1380, (1998) 111-127

[vanRC00] van Helden J., Rios A.F., and Collado-Vides J.: Discovering regulatory ele-
ments in non-coding sequences by analysis of spaced dyads. Nucleic Acids Research
28, (2000) 1808–1818

Motif Extraction from Weighted Sequences

Costas S. Iliopoulos1, Katerina Perdikuri2,3, Evangelos Theodoridis2,3,�,
Athanasios Tsakalidis2,3, and Kostas Tsichlas1

1 Department of Computer Science, King’s College London
London WC2R 2LS, England
{csi,kostas}@dcs.kcl.ac.uk

2 Computer Engineering & Informatics Dept. of University of Patras
26500 Patras, Greece

{perdikur,theodori}@ceid.upatras.gr
3 Research Academic Computer Technology Institute (RACTI)

61 Riga Feraiou St., 26221 Patras, Greece
tsak@cti.gr

Abstract. We present in this paper three algorithms. The first extracts
repeated motifs from a weighted sequence. The motifs correspond to
words which occur at least q times and with hamming distance e in
a weighted sequence with probability ≥ 1/k each time, where k is a
small constant. The second algorithm extracts common motifs from a
set of N ≥ 2 weighted sequences with hamming distance e. In the second
case, the motifs must occur twice with probability ≥ 1/k, in 1 ≤ q ≤ N
distinct sequences of the set. The third algorithm extracts maximal pairs
from a weighted sequence. A pair in a sequence is the occurrence of the
same substring twice. In addition, the algorithms presented in this paper
improve slightly on previous work on these problems.

1 Introduction

DNA and protein sequences can be seen as long texts over specific alphabets en-
coding the genetic information of living beings. Searching specific sub-sequences
over these texts is a fundamental operation for problems such as assembling the
DNA chain from pieces obtained by experiments, looking for given DNA chains
or determining how different two genetic sequences are. However, exact searching
is of little use since the patterns rarely match the text exactly. The experimental
measurements have various errors and even correct chains may have small differ-
ences, some of which are significant due to mutations and evolutionary changes.

Finding approximate repetitions or signals arise in several applications in
molecular biology. Moreover, establishing how different two sequences are is im-
portant to reconstruct the tree of the evolution (phylogenetic trees). All these
problems require a concept of similarity, or in other words a distance metric
between two sequences. Additionally, many problems in Computational Biol-
ogy involve searching for unknown repeated patterns, often called motifs and
� Partially supported by the National Ministry of Education under the program

Pythagoras(EPEAEK).

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 286–297, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Motif Extraction from Weighted Sequences 287

identifying regularities in nucleic or protein sequences. Both imply inferring pat-
terns, of unknown content at first, from one or more sequences. Regularities in
a sequence may come under many guises. They may correspond to approximate
repetitions randomly dispersed along the sequence, or to repetitions that oc-
cur in a periodic or approximately periodic fashion. The length and number of
repeated elements one wishes to be able to identify may be highly variable.

In the study of gene expression and regulation, it is important to be able
to infer repeated motifs or structured patterns and answer various biological
questions, such as what elements in sequence and structure are involved in the
regulation and expression of genes through their recognition. The analysis of the
distribution of repeated patterns permits biologists to determine whether there
exists an underlying structure and correlation at a local or global genomic level.
These correspond to an ordered collection of p boxes (always of initially unknown
content) and p − 1 intervals of distances (one between each pair of successive
boxes in the collection). Structured patterns allow to identify conserved elements
recognized by different parts of a same protein or macromolecular complex, or
by various complexes that then interact with one another.

In this work, we examine various instances of the Motif Identification Problem
in weighted sequences. In particular, we are given a set of weighted sequences
S = {S1, S2, . . . , Sk}, Si ∈ Σ∗ and we are asked to extract interesting motifs
such that each motif occurs in at least q sequences.

Generally speaking, a weighted sequence could be defined as a sequence
of (symbol, weight) pairs , S = 〈(s1, w1), (s2, w2), · · · (sn, wn)〉, where wi is the
weight of symbol si in position i (occurrence probability of si at position i).

Biological weighted sequences can model important biological processes, such
as the DNA-Protein Binding Process or Assembled DNA Chains. Thus, motif
extraction from biological weighted sequences is a very important procedure in
the translation of gene expression and regulation. In more detail, the extracted
motifs from weighted sequences correspond in general to binding sites. These
are sites in a biological molecule that will come into contact with a site in an-
other molecule permitting the initiation of some biological process (for instance,
transcription or translation). In addition, these weighted sequences may cor-
respond to complete chromosome sequences that have been obtained using a
whole-genome shotgun strategy [10]. By keeping all the information the whole-
genome shotgun produces, we would like to dig out information that has being
previously undetected after being faded during the consensus step. Finally, pro-
tein families can also be represented by weighted sequences ([4], in 14.3.1).

A weighted biological sequence is often represented as a d× n matrix, which
is termed weighted matrix, where d is the size of the respective alphabet (in the
case of DNA weighted sequences d = 4) and n is the length of the sequence. Each
cell of the weighted matrix pij stores the probability of appearance of symbol i in
the jth position of the input sequence. An instance of a weighted (sub)sequence
p is a (sub)sequence of p where a symbol has been chosen for each position.
The probability of occurrence of this instance is the product of the probabilities
of the symbols of all positions of the instance. For example, for the instance

288 Costas S. Iliopoulos et al.




pA1 pA2 pA3 · · · pAn

pC1 pC2 pC3 · · · pCn

pG1 pG2 pG3 · · · pGn

pT1 pT2 pT3 · · · pTn




Fig. 1. The Weight Matrix representation for a weighted DNA sequence

A1, A2. . . . , An of the weighted sequence shown in Figure 1, the probability of
occurrence is

∏n
i=1 pAi .

A great number of algorithms has been proposed in the relative literature
for inferring motifs in biological sequences (e.g. regulatory sequences, protein
coding genes). The majority of algorithms relies on either statistical or machine
learning approaches for solving the inference problem. In [11] authors defined a
notion of maximality and redundancy for motifs, based on the idea that some
motifs could be enough to build all the others. These motifs are termed tiling
motifs. The goal is to define a basis of motifs, in other words a set of irredundant
motifs that can generate all maximal motifs by simple mechanical rules.

Other approaches build all possible motifs by increasing length. These solu-
tions have a high time and space complexity and cannot be applied in the case
of weighted sequences, due to their combinatorial complexity. Finally, in [12, 8]
authors use the suffix tree to spell all valid models (exact or approximate).

In addition, finding maximal pairs in ordinary sequences was firstly described
by Gusfield in [4]. This algorithm uses a suffix tree to report all maximal pairs
in a string of length n in time O(n + α) and space O(n), where α is the number
of reported pairs. In [1] authors presented methods for finding all maximal pairs
under various constraints on the gap between the two substrings of the pair. In
a string of length n, they find all maximal pairs with gap in an upper and lower
bounded interval in time O(n log n+α). If the upper bound is removed the time
is reduced to O(n + z).

The structure of the paper is as follows. In Section 2 we give some basic
definitions on weighted sequences to be used in the rest of the paper. In Section 3
we address the problem of extracting simple models, while in Section 4 we address
the problem of Motif Extraction in weighted sequences. Finally, in Section 5 we
conclude and discuss open problems in the area.

2 Preliminaries

In this section we provide formal definitions of the problems we tackle, we
give some basic definitions and finally we describe briefly the best known al-
gorithms on these problems in the case of solid sequences (sequences that are
not weighted). The first problem we wish to solve is the repeated motifs problem.

Problem 1 Given a weighted sequence s and three integers 0 ≤ k < c, e ≥ 0
and q ≥ 2, for some small constant c, find all models m with probability of
occurrence ≥ 1

k such that m is present at least q times in s and the Hamming
distance between all occurrences is ≤ e. All these occurrences must not overlap.

Motif Extraction from Weighted Sequences 289

The non-overlapping restriction is added because when two models a and b
of s overlap, then it may be the case that a cancels b. More specifically, assume
that a and b overlap at position i. Then, it may be the case that a uses symbol
σ1 ∈ Σ with probability πi(σ1) while b uses symbol σ2 ∈ Σ with probability
πi(σ2), which is not correct. To overcome this difficulty we do not allow the
occurrences of models to overlap. The second problem we wish to solve is the
common motifs problem.

Problem 2 Given a set of N weighted sequences S = si (1 ≤ i ≤ N) and three
integers 0 ≤ k < c, e ≥ 0 and 2 ≤ q ≤ N , for some small constant c, find all
models m with probability of occurrence ≥ 1

k such that m is present in at least q
distinct sequences of the set and the Hamming distance between them is ≤ e.

When a model satisfies the restrictions posed by each of the above problems,
it is called valid. For the above two problems the spelling of models is done using
the Weighted Suffix Tree (WST). The WST of a weighted sequence s, WST (s),
is the compressed trie of all valid weighted subwords, starting within each suffix
si of s$, $ �∈ Σ. A weighted subword is valid if its occurrence probability is
≥ 1/k. The WST is built in linear time and space when k is a small constant.
The WST was firstly presented in [5] as an elegant data structure for reporting
the repetitions within a weighted biological sequence. In [6] authors presented
an efficient algorithm for constructing the WST.

Finally, the third problem we wish to solve is the following.

Problem 3 Given a set of N weighted sequences S = s1, s2, · · · sn, an integer
0 ≤ k < c and a quorum q ≤ N , for some small constant c, find all maximal
pairs m such that m is valid, that is, it appears with probability greater than 1

k
in at least q sequences of the set S.

A pair in a string is the occurrence of the same substring twice. A pair is
maximal if the occurrences of the substring cannot be extended to the left or
to the right without making them different. The gap of a pair is the number of
characters between the two occurrences of the substring. A pair is valid if each
substring appears with probability ≥ 1

k .

2.1 Basic Definitions

Let Σ be an alphabet of cardinality σ = Σ. A sequence s of length n is repre-
sented by s[1..n] = s[1]s[2] · · · s[n], where s[i] ∈ Σ for 1 ≤ i ≤ n, and n = |s| is
the length of s. An empty sequence is denoted by ε; we write Σ∗ = Σ+ ∪{ε}. A
weighted sequence is defined as follows.

Definition 1. A weighted sequence s = s1s2 · · · sn is a set of couples (s, πi(s)),
where πi(s) is the occurrence probability of character s at position i. For every
position 1 ≤ i ≤ n, Σπi(s) = 1.

Valid motifs in weighted sequences correspond to words that occur at least
q times in the weighted sequence with probability of appearance ≥ 1

k . If we
consider approximate motifs, then the distance of a valid motif should be ≤ e.

290 Costas S. Iliopoulos et al.

Definition 2. A set Sl of positions inside a weighted sequence s, represents a
set of weighted factors of length l, that are similar, if and only if, there exists,
(at least) a motif m ∈ Σl, such that for all elements i in Sl, distl(m, si) ≤ e.

In other words, the set Sl contains all motifs of length l with at most e mis-
matches. The size of Sl is represented by V (e, l). We report the valid motifs using
the WST. V (e, l) is an upper bound for the number of motifs that correspond
to the maximum size of the output.

Definition 3. The WST of a weighted sequence S, denoted as WST (S), is the
compressed trie of all possible subwords made up from the weighted subwords
starting within each suffix si of S$, $ �∈ Σ, and having an occurrence probability
≥ 1

k , where k is a small constant. Let L(v) denote the path-label of node v in
WST (S), which is the catenation of edge labels in the path from root to v. Leaf
v of WST (S) is labeled with index i if ∃j > 0 such that L(v) = Si,j [i..n] and
π(Si,j [i · · ·n]) ≥ 1/k, where j > 0 denotes the j-th weighted subword starting at
position i. The leaf-list LL(v), is the list of the leaf-labels in the subtree of v.

2.2 Previous Work

In the following, we sketch the algorithms proposed by Sagot [12] and Iliopoulos
et al. [7], on which our solutions are based. The common characteristic of both
papers is that the proposed algorithms make heavy use of suffix trees. In a
nutshell, the suffix tree is an indexing structure for all suffixes of a string s and
it is well known that it can be constructed in linear time and linear space [9]. The
generalized suffix tree is a suffix tree for more than one strings. Since suffix trees
is a well known indexing structure for strings, we will assume that the reader is
familiar with its basic properties and characteristics. In the discussion to follow,
for reasons of clarity we discuss the algorithm on the uncompressed suffix tree
(a sequence of nodes with just one child is not collapsing into a single edge).

The repeated and common motifs problems are handled in [12]. For the first
problem the input is a string s with length n over an alphabet Σ and two
integers q ≥ 2 (the quorum) and e ≥ 0 (the maximum number of mismatches). In
addition, the algorithm is given the length l of the wanted model. Consequently,
if we want to find all possible models we have to apply the algorithm for each
possible length (the same is applied also to the second problem). Finally, for
both problems, the output of the algorithms is only the models and not the
exact position of their appearance.

Assuming that e = 0, the algorithm for the common motifs problem locates
each node vi that corresponds to a model mi of length l and then checks if this
model is valid, that is if it satisfies the quorum constraint. This is easy to do, by
checking whether the number of leaves of each node vi is larger than q. If we allow
for errors, then a model mi corresponds to many nodes vi1 , vi2 , . . . , vij on the
suffix tree. Apparently, this model is valid if the sum of leaves of all these nodes
is larger than q. By a simple linear-time preprocessing it is very easy to compute
the number of leaves for each node of the suffix tree. Note that occurrences of

Motif Extraction from Weighted Sequences 291

models may overlap. The space used by the algorithm is linear while the time
complexity for a specific length l is O(nV (e, l)).

For the common motifs problem, the input is a set of strings S = s1, s2, . . . ,
sN and two integers q ≥ 2 and e ≥ 0. First, a generalized suffix tree is constructed
for S in time O(nN). Then, the mechanism to check the quorum constrained is
implemented. For each node v in the suffix tree, a bit vector bv of N positions
is constructed such that bv[i] = 0 when in the subtree of v there is no leaf with
label i, that is there is no occurrence of a suffix of string si in the subtree of v
(otherwise bv[i] = 1). Then, the procedure is exactly the same as in the repeated
motifs algorithm with the exception that we use the bit vectors to check whether
the quorum constraint is satisfied. The space requirements of this algorithm is
O(nN2

w), where w is the word length of the machine. The time complexity is
O(nN2V (e, l)), for a specified length l.

Finally, we come to the solution described in Iliopoulos et al. [7]. In this
work all maximal pairs which occur in each string of a set of strings without
any restrictions on the gaps are reported in O(n + α), where α is the size of the
output, and linear space. In addition, it reports all maximal pairs which occur
in each string of a set of strings with the same gap that is upper bounded by a
constant. This is achieved in O(n log2 n+αN log n) time, where N is the number
of strings and n is the total length of the strings, using linear space.

We supply in this paper methods that encounter the above problems on
weighted sequences. For simple motifs we propose an algorithm that works in
O(nNqV (e, l)) time and O(nNq) space and for maximal pairs an O(Nn log (Nn)
+ α) algorithm using linear space.

3 Extracting Simple Models

In this section we supply an algorithm for reporting all maximal pairs in a set
of weighted sequences. More specifically, given a set of N weighted sequences
S = s1, s2, · · · sN , a small integer k ≥ 0 and a quorum q ≤ N , we report all
maximal pairs, whose components appear with probability greater than 1/k
in at least q sequences of the set S. We have considered two variations of this
problem depending on the restrictions on the gaps. In the first version we assume
that there is no restriction on the gaps of the pairs, thus one pair may appear in
different sequencs with different gaps. In the second version of the problem one
pair has to come along with approximately the same gap, which is upper bounded
by a constant value b. For solving these problems we suggest two methods that
are extensions of the algorithms that are provided in [7] for these problems on
plain sequences. Our solutions encounter these problems on weighted sequences
in a more simple and efficient way.

Initially, a generalized weighted suffix tree gWST (S) is constructed. A gen-
eralized weighted suffix tree is similar to the generalized suffix tree and is built
upon all the weighted sequences of S. For the construction of gWST (S) the
algorithm of [6] is used for each of the weighted sequences in S and all the pro-
duced factors are superimposed in the same compacted trie. The total time for

292 Costas S. Iliopoulos et al.

this operation is linear to the sum of length of each of the weighted sequences
(O(

∑n
i=1 |si|)). The construction method is invoked for each of the weighted

sequences starting from the root of the same compacted trie. The suffix links
are preserved so it is like building a generalized suffix tree from a set of regular
sequences using the same auxiliary suffix tree. Thus, the space of the gWST (S)
is linear to the total length of the weighted sequences. The gWST (S) is a com-
pacted trie with out-degree of internal nodes at least 2 and at most most σ = |Σ|.
The first step, as mentioned and in [4], [1] and [7] is to binarize gWST (S). Each
node u with out-degree |u| ≥ 2 is replaced by a binary tree with |u| leaves and
|u| − 1 internal nodes. Each edge is labeled with the empty string ε so that all
new nodes have the same path-label as node u, which they replace. Assuming
that the alphabet size σ is constant, the whole procedure needs linear time and
the final data structure has linear space.

The indexes of the factors at the leaves of the gWST (S) are organized in
special leaf-lists according to the weighted sequence si that belong and the char-
acter to their left (left-character). The left-character of an index i is the character
that exists at position i − 1. In weighted sequences for an index i, there may be
more than one choices for left-character. For that cases we introduce a new class
called ′lc′∗ that keeps all the indexes with more than one left-character. This new
class guarantees the left maximality, as for any left-character of one index x in
that class there is at least one index y with a different one. Thus, a leaf-list is
a set of N vectors, one for each of the weighted sequences, where each vector
contains σ + 1 lists, one for each of the σ + 1 choices for left-character (Fig. 2).

lc

lc

lc

Fig. 2. The leaf-lists where the indexes are organized

When the construction of the gWST (S) is completed, a bottom-up process
is initiated. Let Ll and Lr be the leaf-lists of the left and right descendant of a
node v. The candidate maximal pairs, defined by the path label of node u, for
each of the sequences si can be found by combining ∀j the indexes of list Ll.si.lcj

(the list for symbol cj in weighted sequence si) with the lists Lr.si.lcl, ∀l �= j. If
we do not allow overlaps on the components of a pair we don’t have to combine
all the indexes of lists Ll.si.lcj and Lr.si.lcl but we want ∀x ∈ Ll.si.lcj to
find all y ∈ Lr.si.lcl for which it holds that x − (y + |path label(u)|) ≥ 0 or
y − (x + |path label(u)|) ≥ 0. In order to achieve that efficiently the lists are
organized as AVL trees, and merging virtually the one list with the other. More
specifically, we find the position where the items of the one list increased and

Motif Extraction from Weighted Sequences 293

decreased by |path length(u)| will be placed if we really merge the two lists, and
then by going rightwards and leftwards respectively. If we choose the smaller list
and virtually merge it with the other, the following three lemmas guarantee that
in total O(Nn log (Nn) + α) time is needed.

Lemma 1. The sum over all nodes u of an arbitrary tree of size n of terms that
that are O(n1), where n1 ≤ n2 are the weights (number of leaves)of the subtrees
rooted at the two children of u, is O(n log n)

Proof. See [7].

Lemma 2. Two AVL trees of size n1 and n2, where n1 ≤ n2, can be merged in
time O(log

(
n1+n2

n1

)
)

Proof. See [2].

Lemma 3. Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes u ∈ T of terms

(
n1+n2

n1

)
, where n1 ≤ n2 are the weights of the

subtrees rooted at the two children of u, is O(n log n).

Proof. See [1].

Before we retrieve the output for this step, we have to check if at least q
of the weighted sequences si report at least one pair. This can be accomplished
during the virtual merging of the lists. We apply the virtual merge to all possible
combination of lists but we spend two more operation for each of the items of the
smaller list to check if there is at least one candidate pair for the corresponding
sequence. If at least q sequences have at least one maximal pair we retrieve
the rest of the answer. This additional step adds n1 (the smaller half) more
operations so according to Lemma 1 the overall cost is O(n log n). After the
reporting step, the leaflists Ll and Lr are merged, merging each list Ll.si.lcj

with the Lr.si.lcj ∀i, j. This step according to Lemma 3 costs O(Nn log (Nn))
in total. The result is summarized in the following theorem.

Theorem 1. Given a set of N weighted sequences S = s1, s2, · · · sn, a small
integer k ≥ 0 and a quorum q ≤ N , we can find in time O(Nn log (Nn) + α) all
maximal pairs m such that each component of m appears with probability ≥ 1

k
and with no overlaps in at least q sequences of the set S, where α is the size of
the size of the answer.

When the overlap constraint is removed the query becomes more time con-
suming. The output has to be filtered and checked if the the overlap of the com-
ponents of a pair is the same substring. This is the crucial step because at each
position of overlap there must be the same choices of symbols from the two com-
ponents. This can be accomplished by pre-processing of the gWST (S) to answer
nearest ancestor queries in constant time [13]. When a candidate pair of indexes
x, y has an overlap (y ≤ x + |path label(u)|) then the nca(x, y) query upon the
gWST (S) dictates the longest common extension of these two sub-factors from

294 Costas S. Iliopoulos et al.

positions x, y. If the answer of this query is greater than the positions of the
overlap it means that the portion of the overlap is the same sub-string in the
two factor. In this case the time complexity becomes O((Nn)2).

In the second version of the problem one pair has to come along with ap-
proximately the same gap, that is upper bounded by a constant value b, in at
least q weighted sequences. We can extend the previous method in order to solve
this variation of the problem. At each internal node u during the reporting step
we apply a virtual merge and for each index from the smaller list we retrieve as
described above at most 2b indexes for candidate pairs. The indexes that overlap
with the former index are validated with nca queries and some are rejected. To
check if a maximal pair with approximately the same gap occurs in at least q
weighted sequences we apply the following bucketing scheme. We have b buckets,
each for one of the permitted values of the gap. Each candidate pair is placed
to one bucket according to the gap. At the end of the reporting step we scan all
the buckets and we report the ones that have size at least q. The buckets can
be implemented as linear lists and this checking can be done in constant time
by storing the size of the lists. Then, the reporting step is invoked which is the
same as in the case of unrestricted gaps. The running time of this method is
determined by the actual and virtual merging step that as before is O(n log n)
as well as a constant number of operations in every internal node. The following
theorem summarizes the result:

Theorem 2. Given a set of N weighted sequences S = s1, s2, · · · sn, a small
integer k ≥ 0 and a quorum q ≤ N , we can find in time O(Nn log (Nn) + α) all
maximal pairs m such that each component of m appears with probability ≥ 1

k
and the gap is bounded by the constant b, in at least q sequences of the set S,
where α is the size of the output.

4 Extracting Simple Motifs

In this section we present algorithms for the repeated and common motifs prob-
lems on weighted sequences. Our algorithms are based on the algorithms of Sagot
[12] with the exception that for the repeated motifs problem we add the restric-
tion that the models must be non-overlapping while for the common motifs
problem we slightly improve the time and space complexity.

4.1 The Repeated Motifs Problem

We are given a weighted sequence s and four integers 0 < k ≤ c, e ≥ 0, l ≥ 2
and q ≥ 2, for some constant c, and we want to find all models m of length l
with probability of occurrence ≥ 1

k such that m is present at least q times in s
and the Hamming distance between all occurrences of m is ≤ e. The occurrences
must not overlap.

First the weighted suffix tree of s is constructed given that the minimum
probability of occurrence is 1

k . This construction is accomplished in linear time

Motif Extraction from Weighted Sequences 295

and space. Then, we spell all models of length l on the tree. We do this in the
same way as Sagot [12], so we are not going to elaborate on this procedure. The
idea is that each time we extend a model m′ of length < l by one character
either with a match or with a mismatch if the total number of errors in m′ is
≤ e. This procedure continues until we reach length l or the number of errors
becomes larger than e.

The main problem to tackle is the non-overlapping constraint. We accomplish
this by filtering the output of the algorithm on the WST. Since we only consider
Hamming distance and no insertions or deletions are allowed, for the specific
problem only nodes with path labels of length l will be considered.

Assume that the nodes with path label of length l constitute a set L =
v1, v2, . . . , v|L|. For each v ∈ L, the leaves of its subtree are put in a sorted list
vl. These lists are implemented as van Emde Boad trees [14]. Since the numbers
sorted are in the range [1, n], we can sort them in linear time. As a result, the
time complexity for this step will be

∑|L|
i=1 O(|vl

i|). Since all lists are disjoint, this
sum is bounded by O(n).

Assume that L′ = vi1 , vi2 , . . . , vij ∈ L are the nodes of path label with length
l that constitute a candidate model m. First we check whether the sum of their
leaves is larger than q. If it is not, then the model is not valid since the quorum
constraint is not satisfied. If there are at least q leaves, then we have to check
whether the non-overlapping constraint is also satisfied.

The naive solution would be to merge all lists vl
i1

, vl
i2

, . . . , vl
ij

and perform q

queries. In this case, the time complexity for q queries would be O(q log log n)
(the log log n factor is by the van Emde Boas trees) but the merge step requires
O(n) time, which is very inefficient. We do this as follows:

We check among all nodes in L′ to find the one with the minimum position
of occurrence. This can be easily implemented in O(|L′|) time, since the lists
for each node are sorted and we check only the first element. Assume that this
element is position x1 on the string s. Then, among all lists we check to find
the successor of value x2 = x1 + |m| + 1 and we keep doing this until the
quorum constraint is satisfied (the final query will be of the form ≥ xq−1 +
|m|+ 1). This solution has O(q|L| log log |n|) time complexity which leads to an
O(nV 2(e, l)q log log n) time solution for the repeated motifs problem, for length
l using linear space.

This problem, can be seen as a static data structure problem, which we call
the multiset dictionary problem.

Definition 4. Given a superset S = {S1, S2, . . . , Sx}, of sets Si ⊆ {1, 2, . . . , n},
we want to answer q successor queries on the subset S′ = {Si1 , Si2 , . . . , Siy} ∈ S,
where n =

∑x
i=1 |Si|.

This problem can be seen as a generalization of the iterative search problem
[3]. In this problem, we are given a set of N catalogs and we are asked to answer
N queries, one on each catalog. The straightforward solution is to search in each
catalog, which means that the time complexity will be O(N log n), if each catalog
has size n. If we apply the fractional cascading technique [3], then the time

296 Costas S. Iliopoulos et al.

complexity will become O(N + log n). Unfortunately, we cannot do the same in
the multiset dictionary problem, since we do not know in advance which catalogs
we are going to use, while at the same time the queries are not confined to a
single catalog but to their union. This problem is an interesting data structure
problem and it would be nice to see solutions with better complexity than the
rather trivial O(qx log log n).

4.2 A Note on the Common Motifs Problem
We are given a set of N weighted sequences S = si (1 ≤ i ≤ N) and four integers
0 < k ≤ c, e ≥ 0, l ≥ 2 and q ≥ 2, for some constant c, and we want to find
all models m of length l with probability of occurrence larger than 1

k such that
m is present at least in q strings in S and the Hamming distance between all
occurrences of m is ≤ e.

First, the generalized weighted suffix tree of S is constructed given that the
minimum probability of occurrence is 1

k . This construction is accomplished in
linear time and space for a small constant k. Then, we spell all models of length
l on the tree. We do this in the same way as Sagot [12], so we are not going
to elaborate on this procedure. The idea is that each time we extend a model
m′ of length < l by one character either with a match or with a mismatch if
the total number of errors in m′ is ≤ e. This procedure continues until we reach
length l or the number of errors becomes larger than e or the quorum constraint
is violated. We sketched in 2.2 a solution with O(nN2V (e, l)) time complexity
using O(nN2

w) space. We sketch an algorithm that reduces a factor N to q.
This additional N factor in the space and time complexity comes from the

check of the quorum constraint. Sagot uses a bit vector of length N to do that.
However, note that if a node has q different strings then all its ancestors will
certainly contain q strings. In addition, we do not care for the exact number
of strings in the subtree as far as this number is larger than q. In this way we
attach an array of integers of length q to each internal node. If this array gets
full, then the quorum constraint is satisfied for all its ancestors and we do not
need to keep track of other strings.

We fill these arrays by traversing the suffix tree in a post-order manner.
Assume the |Σ| at most children of a node v. Assume that their arrays are
sorted. If one of the children of v has a full array then v will also have a full
array. In the other case, we merge all these arrays without keeping repetitions.
This can be easily accomplished in O(|Σ|q) time. Since the number of internal
nodes will be O(nN) then the pre-processing time is O(nNq) while the space
complexity of the suffix tree will be O(nNq) (less than O(nN2) of [12]). Finally,
the time complexity of the algorithm will be O(nNqV (e, l)), which is better than
[12] since q is at most equal to N .

5 Discussion and Further Work

The algorithms we have presented in this paper solve various instances of the
motif identification problem in weighted sequences, which is very important in
the area of protein sequence analysis.

Motif Extraction from Weighted Sequences 297

Our future research is to tackle the structured motifs identification problem
in weighted sequences. In this paper we described an algorithm to compute the
maximal pairs in weighted sequences. We would like to extend this algorithm for
the extraction of general structured motifs composed of p > 2 parts.

References

1. G. Brodal, R. Lyngso, Ch. Pedersen, J. Stoye. Finding Maximal Pairs with
Bounded Gap. Journal of Discrete Algorithms, 1:134-149, 2000.

2. M.R. Brown, R.E. Tarjan. A Fast Merging Algorithm. J. ACM, 26(2):211-226,
1979.

3. B. Chazelle and L.J. Guibas. Fractional Cascading: I. A data structuring technique.
Algorithmica, 1:133-162, 1986.

4. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, 1997.

5. C. Iliopoulos, Ch. Makris, I. Panagis, K. Perdikuri, E. Theodoridis, A. Tsakalidis.
Computing the Repetitions in a Weighted Sequence using Weighted Suffix Trees.
In Proc. of the European Conference On Computational Biology (ECCB), 2003.

6. C. Iliopoulos, Ch. Makris, I. Panagis, K. Perdikuri, E. Theodoridis, A. Tsaka-
lidis. Efficient Algorithms for Handling Molecular Weighted Sequences. Accepted
for presentation in IFIP TCS, 2004.

7. C. Iliopoulos, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas. Identifying occur-
rences of maximal pairs in multiple strings. In Proc. of the 13th Ann. Symp. on
Combinatorial Pattern Matching (CPM), pp.133-143, 2002.

8. L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a
suffix tree with application to promoter and regulatory site consensus identification.
Journal of Computational Biology, 7:345-360, 2000.

9. E.M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. Journal
of the ACM, 23:262-272, 1976.

10. E.W. Myers and Celera Genomics Corporation. The whole-genome assembly of
drosophila. Science, 287:2196–2204, 2000.

11. N. Pisanti, M. Crochemore, R. Grossi and M.-F. Sagot. A basis of tiling motifs for
generating repeated patterns and its complexity for higher quorum. In Proc. of the
28th MFCS, LNCS vol.2747, pp.622-632, 2003.

12. M.F. Sagot. Spelling approximate repeated or common motifs using a suffix tree.In
Proc. of the 3rd LATIN Symp., LNCS vol.1380, pp.111-127, 1998.

13. B. Schieber and U. Vishkin. On Finding lowest common ancestors:simplifications
and parallelization. SIAM Journal on Computing, 17:1253-62, 1988.

14. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6(3):80-82, 1977.

Longest Motifs
with a Functionally Equivalent Central Block

Maxime Crochemore1,2,�, Raffaele Giancarlo3,��, and Marie-France Sagot4,2,���

1 Institut Gaspard-Monge, University of Marne-la-Vallée
77454 Marne-la-Vallée CEDEX 2, France

maxime.crochemore@univ-mlv.fr
2 Department of Computer Science, King’s College London

London WC2R 2LS, UK
3 Dipartimento di Matematica ed Applicazioni, Universitá di Palermo

Via Archirafi 34, 90123 Palermo, Italy
raffaele@math.unipa.it

4 Inria Rhône-Alpes, Laboratoire de Biométrie et Biologie Évolutive
Université Claude Bernard, 69622 Villeurbanne cedex, France

Marie-France.Sagot@inria.fr

Abstract. This paper presents a generalization of the notion of longest
repeats with a block of k don’t care symbols introduced by [8] (for k
fixed) to longest motifs composed of three parts: a first and last that
parameterize match (that is, match via some symbol renaming, initially
unknown), and a functionally equivalent central block. Such three-part
motifs are called longest block motifs. Different types of functional equiv-
alence, and thus of matching criteria for the central block are considered,
which include as a subcase the one treated in [8] and extend to the case
of regular expressions with no Kleene closure or complement operation.
We show that a single general algorithmic tool that is a non-trivial ex-
tension of the ideas introduced in [8] can handle all the various kinds of
longest block motifs defined in this paper. The algorithm complexity is,
in all cases, in O(n log n).

1 Introduction

Crochemore et al. [8] have recently introduced and studied the notion of longest
repeats with a block of k don’t care symbols, where k is fixed. These are words

� Partially supported by CNRS, France, the French Ministry of Research through
ACI NIM, and by Wellcome Foundation and NATO Grants.

�� Partially supported by Italian MIUR grants PRIN “Metodi Combinatori ed Algo-
ritmici per la Scoperta di Patterns in Biosequenze” and FIRB “Bioinformatica per
la Genomica e La Proteomica”. Additional support provided by CNRS, France,
by means of a Visiting Fellowship to Institut Gaspard-Monge and by the French
Ministritry of Research through ACI NIM.

��� Partially supported by French Ministry of Research Programs BioInformatique
Inter EPST and ACI NIM and by Wellcome Foundation, Royal Society and Nato
Grants.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 298–309, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Longest Motifs with a Functionally Equivalent Central Block 299

of the form V �k W that appear repeated in a string X , where �k is a region of
length k with an arbitrary content. Their work has some relation with previous
work on repeats with bounded gaps [5, 12]. In general, the term motif [9] is
used in biology to describe similar functional components that several biological
sequences may have in common. It can also be used to describe any collection of
similar words of a longer sequence. In nature, many motifs are composite, i.e.,
they are composed of conserved parts separated by random regions of variable
lengths. By now, the literature on motif discovery is very rich [4], although a
completely satisfactory algorithmic solution has not been reached yet.

Even richer (see [15–17]) is the literature on the characterization and detec-
tion of regularities in strings, where the object of study ranges from identification
of periodic parts to identification of parts that simply appear more than once.
Baker [2, 3] has contributed to the notion of parameterized strings and has given
several algorithms that find maximal repeated words in a string that p-match,
i.e., that are identical up to a renaming (initially unknown) of the symbols. Pa-
rameterized strings are a successful tool for the identification of duplicated parts
of code in large software systems. These are pieces of code that are identical,
except for a consistent renaming of variables. Motivated by practical as well as
theoretical considerations, Amir et al. [1] have investigated the notion of func-
tion matching that incorporates parameterized strings as a special case. Such
investigations of words that are “similar” according to a well defined correspon-
dence hint at the existence of meaningful regularities in strings, such as motifs,
that may not be captured by standard notions of equality.

In this paper, we make a first step in studying a new notion of motifs, where
equality of strings is replaced by more general “equivalence” rules. We consider
the simplest of such motifs, i.e., motifs of the form V �kW , with k fixed, which we
refer to as block motifs. One important point in this study is that the notation �k,
which usually indicates a don’t care block of length k, assumes in the case of the
present paper a new meaning. Indeed, �k is now a place holder stating that, for
two strings described by the motif, the portion of each string going from position
|V | + 1 to |V | + k − 1, referred to as the central block, must match according
to a specified set of rules. To illustrate this notion, consider ab �2 ab and the
rule stating that any two strings described by the motif must have their central
block identical, up to a renaming of symbols. For instance, abxyab and ababab
are both described by ab �2 ab and the given rule, since there is a one-to-one
correspondence between {x, y} and {a, b}. Notions associated with the example
and the intuition just given are formalized in Section 3, where the central block
�k is specified by a set of matching criteria, all related to parameterized strings
and function matching. Moreover, our approach can be extended to the case
where such central block is a fixed regular expression, containing no Kleene
closure or complement operation. Our main contribution for this part is a formal
treatment of this extended type of motifs, resulting in conditions under which
their definition is sound.

At the algorithmic level, our main contribution is to provide a general algo-
rithm that extracts all longest block motifs, occurring in a string of length n,

300 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

in O(n log n) time. Indeed, for each of the matching criteria for the central part
presented in Section 3 the general algorithm specializes to find that type of motif
by simply defining a new lexicographic order relation on strings. We also show
that the techniques in [8], in conjunction with some additional ideas presented
here, can be naturally extended to yield a general algorithmic tool to discover
even subtler repeated patterns in a string.

Due to space limitations, proofs will either be omitted or simply outlined.
Moreover, we shall discuss only some of the block motifs that can be identified
by our algorithm.

2 Preliminaries

2.1 Parameterized Strings

We start by recalling some basic definitions from the work by Brenda Baker
on parameterized strings [2, 3]. Let Σ and Π be two alphabets, referred to as
constant and parameter, respectively. A p-string X is a string over the union of
these two alphabets. A p-string is therefore just like any string, except that some
symbols are parameters. In what follows, for illustrative purposes, let Σ = {a, b}
and Π = {u, v, x, y}. Baker gave a definition of matching for p-strings, which
reduces to the following:

Definition 1. Two p-strings X and Y of equal length p-match if and only if
there exists a bijective morphism G : Σ ∪ Π → Σ ∪ Π such that G(α) = α for
α ∈ Σ and Yi = G(Xi), ∀i ∈ [1..|X |].

For instance, X = abuvabuvu and Y = abxyabxyx p-match, with G such
that G(u) = x and G(v) = y.

For ease of reference, let Σ1 = Σ ∪ Π . From now on, we refer to p-strings
simply as strings over the alphabet Σ1 and, except otherwise stated, we assume
that the notion of match coincides with that of p-match. We refer to the usual
notion of match for strings as exact match. In that case, Σ1 is treated as a
set of constants. Moreover, we refer to bijective morphims over Σ1 as renaming
functions. We also use the term prefix, suffix and word in the usual way, i.e.,
the i-th suffix of X is xixi+1 · · ·xn, where n is the length of the string. In what
follows, let X denote its reverse, i.e., xn · · ·x1.

We need to recall the definition of parameterized suffix tree, denoted by p-
suffix tree, also due to Baker [2, 3]. Its definition is based, among other things,
on a transformation of suffixes and prefixes of a string such that, when they
match, they can share a path in a lexicographic tree. Indeed, consider the string
Y = uuuvvv, made only of the parameters u and v. Notice that uuu and vvv p-
match, and therefore they should share a path when the suffixes of the string are
“stored” in a (compacted or not) lexicographic tree. That would not be possible
if the lexicographic tree were over the alphabet Σ1. We now briefly discuss the
ideas behind this transformation. Consider a new alphabet Σ2 = Σ

⋃
N , where

N is the set of nonnegative integers.

Longest Motifs with a Functionally Equivalent Central Block 301

Let prev be a transformation function on strings operating as follows on a
string X . For each parameter, its first occurrence in X is replaced by 0, and
each successive occurrence is represented by its distance, along the string, to the
previous occurrence. Constants are left unchanged. We denote by prev(X) the
prev representation of X over the alphabet Σ2.

The prev function basically substitutes parameters with integers, leaving the
constants unchanged, i.e., it transforms strings over Σ1 into strings over Σ2. For
example, prev(abxyxzaaya) = ab0020aa5a.

The notion of match on strings corresponds to equality in their prev repre-
sentation [2, 3]:

Lemma 2. Two strings X and Y p-match if and only if prev(X) =prev(Y).
Moreover, these two strings are a match if and only if X and Y are.

Notice that the prev representation of two strings tells us nothing about
which words, in each string, are a p-match. For instance, consider abxyxzaaya
and zzzztzwaata. Words xyxzaaya and ztzwaata match, but that cannot be
directly inferred from the prev representation of the two full strings.

Let X be a string that ends with a unique endmarker symbol. A parameter-
ized suffix tree for X (p-suffix tree for short) is a compacted lexicographic tree
storing the prev representation of all suffixes of X .

The above definition is sound in the sense that all factors of X are represented
in the p-suffix tree (that follows from the fact that each such word is prefix of
some suffix). Even more importantly, matching factors share a path in the tree.
Indeed, consider two factors that match. Assume that they are of length m.
Certainly they are prefixes of two suffixes of X . When represented via the prev
function, these two suffixes must have equal prefixes of length at least m (by Fact
2). Therefore, the two words must share a path in the p-suffix tree. Consider again
Y = uuuvvv. Notice that prev(uuuvvv) = 012012 and that prev(vvv) = 012, so
uuu and vvv can share a path in the p-suffix tree.

For later use, we also need to define a lexicographic order relation on the prev
representation of strings. It reduces to the usual definition when the string has
no parameters. Consider the alphabet Σ2 and let ≤2 denote the standard lexi-
cographic order relation for strings over a fixed alphabet: the subscript indicates
to which alphabet the relation refers to.

Definition 3. Let X and Y be two strings. We say that X is lexicographically
smaller than Y if and only if prev(X) ≤2 prev(Y). We indicate such a relation
via ≤2.

2.2 Matching via Functions

In what follows, we need another type of relation that, for now, we define as a
Table. A Table T has domain Σ1 and ranges over the power set of Σ1.

Definition 4. Given two tables T and T ′ and two strings X and Y of length n,
we say that X table matches Y via the two tables T and T ′, or, for short, that
X and Y t-match, if and only if yi ∈ T (xi) and xi ∈ T ′(yi), for all 1 ≤ i ≤ n.

302 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

For instance, let T (a) = {a, u}, T (b) = {x, v, y}, T ′(a) = T ′(u) = {a} and
T ′(x) = T ′(v) = T ′(y) = {b}. Then X = aaabbb and Y = auaxvy t-match.

A first difference between table and parameterized matches is that in the
first case, all symbols in Σ1 are treated as parameters and the correspondence
is fixed once and for all.

A more substantial difference between table and parameterized matches is
that tables may not be functions (as in the example above). For arbitrary ta-
bles, t-matching is also in general not an equivalence relation. Indeed, although
symmetry is implied by the definition, neither reflexivity nor transitivity are.
Notice also that t-matching incorporates the notion of match with don’t care.
In this latter case, both tables assign to each symbol the don’t care symbol. We
call this table the don’t care table.

3 Functions and Block Motifs

We now investigate the notion of block motif, which was termed repeat with a
block of don’t cares in [8], in conjunction with that of parameterized and table
match.

Let T be a family of tables and k an integer, with 0 ≤ k ≤ n, where n is the
length of a string X . Consider also a family of renaming functions.

Definition 5. Let Y be a factor of X. Y is a general k-repeat if and only if
the following conditions hold: (a) Y can be written as V QW , V and W both
non-empty and |Q| = k; (b) there exists another word Z of X, two renaming
functions F and G and two tables in T , such that Z = F (V)Q′G(W) and Q and
Q′ t-match, via the two tables.

Definition 6. Let R(k, i, j) be the following binary relation on strings of length
m, with 1 < i ≤ j + 1, j < m and k = j − i + 1: Z R(k, i, j) Y if and only if
(z1z2 · · · zi−1), (zj+1 · · · zm) and (y1y2 · · · yi−1), (yj+1 · · · ym) match, respectively,
while (zi · · · zj) and (yi · · · yj) t-match via two not necessarily distinct tables in T .

We now give a formal definition of motif. Intuitively, it is a representative
string that describes multiple occurrences of “equivalent” strings.

Definition 7. Given a string X, consider a factor Y of X, of length m, and
assume that it is a general k-repeat. Let i and j be as in Definition 6 and con-
sider all factors Z of X such that Y R(k, i, j) Z. Assume that R(k, i, j) is an
equivalence relation. Then, for each class with at least two elements, a block mo-
tif is any arbitrarily chosen word in that class, say Y . As for standard strings,
the block motif can be written as y1y2 · · · yi−1 �k yj+1 · · · ym, once it is under-
stood that �k is a place holder specifying a central part of the motif and that the
matching criterion for that part is given by the family of tables.

For instance, restrict the family of tables to be the don’t care table only. Let
Z = abvvva and Y = abxxya; then we have Z R(2, 3, 4) Y with the identity
function for the prefix ab and G(v) = y and G(a) = a for the suffix of length

Longest Motifs with a Functionally Equivalent Central Block 303

2. Moreover, consider X = Y Z. Then, ab �2 va is a block motif. Also ab �2 ya
is a block motif, but it is equivalent to the other one, given the choices made
about the family of tables and the fact that we are using a notion of match via
renaming.

We now investigate the types of table families that allow us to properly define
block motifs. As it should be clear from the example discussed earlier, the notion
of block motifs, as defined in [8], is a special case of the ones defined here. It is
also clear that the family of all tables yields the same notion of block motif as the
one with the don’t care table only. However, it can be shown that exclusion of
the don’t care table is not enough to obtain a proper definition of block motifs.
Fortunately, there are easily checkable sufficient conditions ensuring that the
family of tables guarantees R to be an equivalence relation, as we outline next.

Definition 8. Consider two tables T and T ′. Let their composition, denoted by
◦, be defined by T ◦ T ′(a) =

⋃
c∈T ′(a) T (c), for each symbol a in the alphabet.

Tha family T is closed under composition if and only if, for any two tables in
the family, their composition is a table in the family.

Definition 9. A table T contains a table T ′ if and only if T ′(a) ⊆ T (a), for
each symbol a in the alphabet.

Lemma 10. Assume that T is closed under composition and that there exists a
table in T containing the identity table. Then R is an equivalence relation.

We now consider some interesting special classes of table functions, in par-
ticular four of them, for which we can define block motifs. Let T� consist only of
the don’t care table. Let Tr and Tm consist of renaming functions and many-to-
one functions, respectively. In order to define the fourth family, we need some
remarks.

The use of tables for the middle part of a block motif allows us to specify
simple substitution rules a bit more relaxed than renaming functions. We discuss
one of them. Let us partition the alphabet into classes and let P denote the
corresponding partition. We then define a partition table TP that assigns to each
symbol the class it belongs to. For instance, fix two characters in the alphabet,
say a and b. Consider the table, denoted for short Ta,b, that assigns {a, b} to
both a and b and the symbol itself to the remaining characters. In a sense, TP
formalizes the notion of groups of characters being interchangeable, or equivalent.
Such situations arise in practice (see for instance [6, 11, 13, 14, 19, 21, 22]), in
particular in the study of protein folding.

Let the fourth family of tables consist of only TP , for some given partition P
of the alphabet Σ1.

Lemma 11. Pick any one of T�, Tr, Tm or TP and consider the relation R in
Definition 6 for the chosen family. R is an equivalence relation. In particular,
when the chosen family is Tm, R is the same relation as that for Tr. Therefore,
for all those tables one can properly define block motifs.

304 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

Let the family of tables be one-to-one functions. Consider X = Y Z, where
Y = abxxya and Z = abvvva. Then, ab �2 va and ab �2 ya are block motifs
representing the same class, the one consisting of Y and Z. We can pick any
one of the two, since they are equivalent. Notice that the rule for the central
part states that the corresponding region for two strings described by the motifs
must be each a renaming of the other.

Let the family of tables be Ta,b, defined earlier. Let Z = cdccdacdc and
Y = cdccdbcdc. Let X = ZY . Then cdc �3 cdc is a block motif, representing
both Y and Z. Again, the rule for the central part states that the corresponding
region for two strings described by the motif must be identical, except that a
and b can be treated as the same character.

4 Longest Block Motifs with a Fixed Partition Table

We now give an algorithm that finds all longest block motifs in a string, when we
use a partition table, known and fixed once and for all. The algorithm is a non-
trivial generalization of the one introduced in [8]. In fact, we show that the main
techniques used there, and that we nickname as the two-tree trick, represent a
powerful tool to extract longest block motifs in various settings, when used in
conjunction with the algorithmic ideas presented in this section.

Indeed, a verbatim application of the two-tree trick would work on the p-
suffix trees for the string and its reverse. Unfortunately, that turns out to be
not enough in our setting. We need to construct a tree somewhat different from
a p-suffix tree, which we refer to as a p-suffix tree on a mixed alphabet. Using
this latter tree, the techniques in [8] can be extended. Moreover, due to the
generality of the algorithm constructing this novel version of the p-suffix tree,
all the techniques we discuss in this section extend to the other three types of
block motifs defined in section 3, as it is briefly outlined in section 5.

For each class in P , select a representative. The representatives give a reduced
alphabet Σ3. For any string Y , let Ŷ be its corresponding string on the new
alphabet, obtained by replacing each symbol in Y with its representative. In
what follows, for our examples, we choose Ta,b, with a as representative. Consider
a string X and assume that it has block motif V �k W , with respect to table
TP . We recall that V �k W is a shorthand notation for the fact that strings in
the class (a) t-match in the positions corresponding to the central part and, (b)
they (parameterize) match in the positions corresponding to V and W . We are
interested in finding all longest block motifs.

Consider a lexicographic tree T , storing a set of strings. Let Y be a string.
The locus u of Y in T , if it exists, is the node such that Y matches the string
corresponding to the path from the root of T to u. Notice that when T is a
p-suffix tree, then prev(Y) must be the string on the path from the root to u.
For standard strings, the definition of locus reduces to the usual one. With those
differences in mind, one can also define in the usual way the notion of contracted
and extended locus of a string. Moreover, given a node u, let d(u) be the length
of the string of which u is locus.

Longest Motifs with a Functionally Equivalent Central Block 305

4.1 A p-Suffix Tree on a Mixed Alphabet

Definition 12. The modified prev representation of a string Y , mprev(Y), is
defined as follows. If |Y | ≤ k, then it is Ŷ . Else, it is Ŵprev(Z), where Y = WZ
and |W | = k.

For instance, let Y = abauuxx, and k = 3. Then, its modified prev represen-
tation is mprev(Y) = aaa0101.

Definition 13. Let X be a string with a unique endmarker. Let T ′
X be a lex-

icographic tree storing each suffix of X in lexicographic order, via its mprev
representation. That is, T ′

X is like a p-suffix tree, but the initial part of each
suffix is represented on the reduced alphabet.

For instance, let X = abbabbb and k = 2, the first suffix of X is stored as
aababbb.

Notice that T ′
X has O(n) nodes, since it has n leaves and each node has

outdegree at least two. We anticipate that we only need to build and use the
topology of T ′

X , since we do not use it for pattern matching and indexing, as it
is costumary for those data structures.

We now show how to build T ′
X in O(n log n) time. Let BuildTree be a pro-

cedure that takes as input the n suffixes of X and returns as output T ′
X . The

only primitive that the procedure needs to use is the check, in constant time, for
the lexicographic order of two suffixes, according to a new order relation that
we define. The check should also return the longest prefix the two suffixes have
in common, and which suffix is smaller than the other.

Definition 14. Let Y and Z be two strings. Let ≤3 be a lexicographic order
relation over Σ3. We define a new order relation Y ≤m Z as follows. When
|Y | ≤ k, it must be Ŷ ≤3 Û , where U is a prefix of Z and |U | = |Y |. Assume
that |Y | > k, and let Z = US and Y = RP , with |R| = |U | = k. Then, it must
be R̂ <3 Û or R̂ = Û but prev (P) ≤2 prev(S). Abusing notation, we can write
that mprev(Y) ≤m mprev (Z), when Y ≤m Z.

Let T be a tree and consider two nodes u and v. Let LCA(u, v) denote the
lowest common ancestor of u and v. Given the suffix tree TX̂ [18] and the p-
suffix tree TX , assume that they have been processed to answer LCA queries in
constant time [10, 20]. Then, it is easy to check, in constant time, the ≤m order
of two suffixes of X , via two LCA queries in those trees. Moreover, that also
gives us the length of the matching prefix. The details are omitted. We refer to
such an operation as compare(i, j), where i and j are the suffix positions. It
returns which one is smaller and the length of their common prefix.

Now, BuildTree works as follows. It simply builds the tree, without any
labelling of the edges, as it is usual in lexicographic trees.

306 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

ALGORITHM BuildTree

1. Using compare and the ≤m relation, sort the suffixes of X with, say, Heapsort
[7].

2. Process the sorted list i1, · · · , in of suffixes in increasing order as follows:

2.1 When the first suffix is processed, create a root and a leaf, push them in
a stack in the order they are created. Label the leaf with i1.

2.2 Assume that we have processed the list up to ig and that we are now
processing ig+1. Assume that on the stack we have the path from the
root to leaf labeled ig in the tree built so far, from bottom to top. Let it
be u1, u2, · · · , us.

2.2.1 Using compare and the ≤m relation, find the longest prefix that ig
and ig+1 have in common. Let Z denote that prefix and d be its
length.

2.2.2 Pop elements from the stack until one finds two such that d(ui) ≤
d < d(ui+1). Pop ui+1 from the stack. If d(ui) = d, then ui is the
locus of Z in the tree built so far. Else, ui and ui+1 are its contracted
and extended locus, respectively. If ui is the locus of Z, add a new
leaf labeled ig+1 as offspring of ui and push it on the stack. Else,
create a new internal node u, as locus of Z, add it as offspring of ui

and make ui+1 an offspring of u. Moreover, add a new leaf labeled
ig+1 as offspring of u and push the new created nodes on the stack,
in the order in which they were created. We now have on the stack
the path from the root to the leaf labeled ig+1.

Lemma 15. Tree T ′
X can be correctly built in O(n log n) time.

4.2 The Algorithm

Consider the trees T ′
X and TX , where the latter one is a p-suffix tree. For each

leaf labeled i in TX , change its label to be n + 2 − i, so that whenever the left
part of a block motif starts at i in X, we have the position in X where the right
part starts, including the central part. We refer to those positions as twins. Visit
T ′

X in preorder. Consider the two leaves �1 ∈ T ′
X and �2 ∈ TX , corresponding to

a pair of twins. Assign to �2 the same preorder number as that of �1. Let V �k W
be a block motif and let i be one of its occurrences in X , i.e., where it starts. In
order to simplify our notation, we refer to such an occurrence via the preorder
number of the leaf assigned to i+ |V |+1 in T ′

X . From now on, we shall simply be
working with those preorder numbers. Indeed, given the tree we are in, we can
recover the positions in X or X corresponding to the label at a leaf in constant
time, by suitably keeping a set of tables. The details are as in [8]. Moreover, we
can also recover the position where a block motif occurs, given the block motif
and the preorder number assigned to the position. Given a tree T , let L(v) be
the list of labels assigned to the leaves in the subtree rooted at v. For the trees
we are working with, those would be preorder numbers.

Longest Motifs with a Functionally Equivalent Central Block 307

Definition 16. We say that V �k W is maximal if and only if extending any
word in the class, both to the left and to the right, results in the loss of at least
one element in the class. That is, by extending the strings in the class, we can
possibly get a new block motif, but its class does not contain that of V �k W .

For instance, let X = aabbaxxbxababyyayabbbuu. Block motif ab�2xx is max-
imal. Indeed, it represents the class of words {abbaxx, ababyy, abbbuu}. However,
extending any of those words either to the right and to the left results in a smaller
class.

Lemma 17. Consider a string X, its reverse X, the trees TX and T ′
X . Assume

that V �k W is maximal. Pick any representative in the class, say V QW . Then
V and mprev(QW) have a locus u in TX and v in T ′

X, respectively. Moreover,
all the occurrences of V �k W are in L(u)

⋂
L(v). Conversely, pick two nodes u′

and v′, in TX and T ′
X, respectively. Assume that there are at least two labels i

and j in L(u′)
⋂

L(v′) such that LCA(i, j) = u′ and LCA(i, j) = v′, in TX and
T ′

X , respectively. Assume also that d(v′) > k. Then, they are occurrences of a
maximal block motif.

We also need the following:

Lemma 18. Consider an internal node v in TX and two of its offsprings, say,
v1 and v2. Let j1, j2, · · · , jm be the sorted list of labels assigned to the leaves in
the subtree rooted at v1 and let i be a label assigned to any leaf in v2. Let g be the
first index such that jg ≤ i. Similarly, let c be the first index such that i ≤ jc. The
maximal block motif of maximum length that i forms with j1, j2, · · · , jm is either
with jg, if it exists, or with jc, if it exists, provided that either d(LCA(i, jg)) > k
or d(LCA(i, jc)) > k and the LCA is computed on T ′

X .

We now present the algorithm.

ALGORITHM LM

1. Build TX and T ′
X . Visit T ′

X in preorder and establish a correspondence be-
tween the preorder numbers of the leaves in T ′

X and the leaves in TX . Trans-
form TX into a binary suffix tree B (see [8]);

2. Visit B bottom up and, at each node, merge the sorted lists of the labels
(preorder numbers in T ′

X) associated to the leaves in the subtrees rooted at
the children. Let these lists be A1 and A2 and assume that |A1| ≤ |A2|.
Merge A1 into A2. Any time an element i of the first list is inserted in the
proper place in the other, e.g., jg and jc in Lemma 18 are identified, we
only need to check for two possibly new longest maximal block motifs that
i can generate. While processing the nodes in the tree, we keep track of the
longest maximal block motifs found.

Theorem 19. ALGORITHM LM correctly identifies all longest block motifs in a
string X, when the matching rule for the central part is given by a partition
table. It can be implemented to run in O(n log n) time.

308 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

Proof. The proof of correctness comes from Lemma 18. The details of the anal-
ysis are as in [8] with the addition that we need to build both TX and T ′

X , which
can be done in O(n log n) time ([3, 18] and Lemma 15). 	

5 Extensions

In this Section we show how to specialize the algorithm in Section 4 when the
central part is specified by T�. All we need to do is to define a lexicographic
order relation, analogous to the one in Definition 14. In turn, that will enable
us to define a variant of the tree T ′

X , which can still be built in O(n log n)
time with Algorithm BuildTree and used in Algorithm LM to identify block
motifs with the don’t care symbol. We limit ourselves to define the new tree. An
analogous reasoning will yield algorithms dealing with a central part defined by
either renaming functions or by regular expressions with no Kleene Closure or
Complement operation. The details are omitted. For the new objects we define,
we keep the same notation as for their analogous in Section 4.

Let ∗ be a symbol not belonging to the alphabet and not matching any other
symbol of the alphabet. Consider Definition 12 and change it as follows:

Definition 20. The modified prev representation of a string Y , mprev(Y), is
defined as follows. If |Y | = m ≤ k, then it is ∗m. Else, it is ∗kprev(Z), where
Y = WZ and |W | = k.

For instance, let Y = abauuxx, and k = 3. Then, its modified prev represen-
tation is mprev(Y) = ∗ ∗ ∗0101.

We now define another lexicographic tree, still denoted by T ′
X . Consider

Definition 13 and change it as follows:

Definition 21. Let X be a string with a unique endmarker. Let T ′
X be a lexi-

cographic tree storing each suffix of X, via their mprev representation according
to Definition 20. That is, T ′

X is like a p-suffix tree, but the initial part of each
suffix is represented with ∗’s.

For instance, let X = abbabbb and k = 2, the first suffix of X is stored as
∗ ∗ babbb.

Finally, consider Definition 14 and change it as follows:

Definition 22. Let Y and Z be two strings. We define a new order relation
Y ≤m Z as follows. When |Y | ≤ k, it must be |Y | ≤ |Z|. Assume that |Y | > k,
and let Z = US and Y = RP , with |R| = |U | = k. Then, it must be prev (P) ≤2

prev (S). With a little abuse of notation, we can write mprev(Y) ≤m mprev(Z).

Observe that Algorithm BuildTree will work correctly with this new defi-
nition of lexicographic order, except that now, in order to compare suffixes, we
need only the p-suffix tree TX̂ . Finally, the results in Section 4.2 hold verbatim:

Theorem 23. ALGORITHM LM correctly identifies all longest block motifs in a
string X, when the matching rule for the central part is given by the don’t care
table. It can be implemented to run in O(n log n) time.

Longest Motifs with a Functionally Equivalent Central Block 309

References

1. A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and Ely Porat. Function matching:
Algorithms, applications, and a lower bound. In Proc. of ICALP 03, Lecture Notes
in Computer Science, pages 929–942, 2003.

2. B. S. Baker. Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci., 52(1):28–42, February 1996.

3. B. S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. Computing, 26(5):1343–1362, October 1997.

4. A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the auto-
matic discovery of patterns in biosequences. J. of Computational Biology, 5:277–
304, 1997.

5. G.S. Brodal, R.B. Lyngsø, C.N.S. Pederson, and J. Stoye. Finding maximal pairs
with bounded gaps. J. of Discrete Algorithms, 1(1):1–27, 2000.

6. H.S. Chan and K.A. Dill. Compact polymers. Macromolecules, 22:4559–4573, 1989.
7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms

– Second Edition. MIT Press, Cambridge, MA, 1998.
8. Maxime Crochemore, Costas S. Iliopoulos, Manal Mohamed, and Marie-France

Sagot. Longest repeated motif with a block of don’t cares. In M. Farach-Colton,
editor, Latin American Theoretical INformatics (LATIN), number 2976 in LNCS,
pages 271–278. Springer-Verlag, 2004.

9. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

10. D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing, 13:338–355, 1984.

11. S. Karlin and G. Ghandour. Multiple-alphabet amino acid sequence comparisons
of the immunoglobulin kappa-chain constant domain. Proc. Natl. Acad. Sci. USA,
82(24):8597–8601, December 1985.

12. R. Kolpakov and G. Kucherov. Finding repeats with fixed gaps. In Proc. of SPIRE
02,, pages 162–168, 2002.

13. T. Li, K. Fan, J. Wang, and W. Wang. Reduction of protein sequence complexity
by residue grouping. Protein Eng., (5):323–330, 2003.

14. X. Liu, D. Liu, J. Qi, and W.M. Zheng. Simplified amino acid alphabets based on
deviation of conditional probability from random background. Phys. Rev E, 66:1–9,
2002.

15. M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
16. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,

2002.
17. M. Lothaire. Applied Combinatorics on Words. in preparation, 2004.

http://igm.univ-mlv.fr/∼berstel/Lothaire/index.html.
18. E.M. McCreight. A space economical suffix tree construction algorithm. J. of ACM,

23:262–272, 1976.
19. L.R. Murphy, A. Wallqvist, and R.M. Levy. Simplified amino acid alphabets for

protein fold recognition and implications for folding. Protein. Eng., 13:149–152,
2000.

20. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. Siam J. on Computing, 17:1253–1262, 1988.

21. M. Spitzer, G. Fuellen, P. Cullen, and S. Lorkowsk. Viscose: Visualisation and
comparison of consensus sequences. Bioinformatics, to appear, 2004.

22. J. Wang and W. Wang. A computational approach to simplifying the protein fold-
ing alphabet. Nat. Struct. Biol., 11:1033–1038, 1999.

On the Transformation Distance Problem

Behshad Behzadi and Jean-Marc Steyaert

LIX, Ecole Polytechnique, Palaiseau cedex 91128, France
{Behzadi,Steyaert}@lix.polytechnique.fr

Abstract. Evolution acts in several ways on biological sequences: either
by mutating an element, or by inserting, deleting or copying a segment
of the sequence. Varré et al. [12] defined a transformation distance for
the sequences, in which the evolutionary operations are copy, reverse
copy and insertion of a segment. They also proposed an algorithm to
calculate the transformation distance. This algorithm is O(n4) in time
and O(n4) in space, where n is the size of the sequences. In this paper,
we propose an improved algorithm which costs O(n2) in time and O(n)
in space. Furthermore, we extend the operation set by adding deletions.
We present an algorithm which is O(n3) in time and O(n) in space for
this more general model.

1 Introduction

Building models and tools to quantify evolution is an important domain of biol-
ogy. Evolutionary trees or diagrams are based on statistical methods which ex-
ploit comparison methods between genomic sequences. Many comparison models
have been proposed according to the type of physico-chemical phenomena that
underly the evolutionary process [5]. Different evolutionary operation sets are
studied. Mutation, deletion and insertion were the first operations dealt with
[7]. Duplication and contraction were then added to the operation set [2, 1]. All
these operations were acting on single letters, representing bases, aminoacids or
more complex sequences: they are called point transformations. Segment opera-
tions are also very important to study. In a number of papers [13, 12, 11], Varré et
al. have studied an evolutionary distance based on the amount of segment moves
that Nature needed (or is supposed to have needed) to transfer a sequence from
one species to the equivalent sequence in another one. Their model is concerned
with segments copy with or without reversal and on segment insertion: it is
thus a very simple and robust model which can easily be explained from bio-
logical mechanisms (similar or simpler models had been previously discussed by
Schöniger and Waterman [8] and Morgenstern et al. [6]). They developed this
study on DNA sequences, but the basic concepts and algorithms apply as well
to other biological sequences like proteins or satellites.

The algorithm they propose to compute the minimal transformation sequence
is based on an encoding into a graph formalism, from which one can get the so-
lution by computing shortest paths. This gives an O(n4) answer both in space

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 310–320, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Transformation Distance Problem 311

and time. In fact it is possible to give a direct solution based on dynamic pro-
gramming which costs only O(n2) in time and and O(n) in space1. This solution
is obviously more efficient for long sequences and makes the problem tractable
even for very long sequences.

In the second section we describe the model and the problem description.
In the third section our algorithm for calculating the transformation distance

is presented. Our algorithm is a based on dynamic programming algorithm.
In section 4, we introduce the deletions in our model and we give an algorithm

to solve the extended transformation distance problem in presence of deletions:
this algorithm runs in time O(n3) and space O(n).

In section 5, by using the biological sequences we justify the concept of ex-
tended transformation distance problem.

Finally, section 6 is dedicated to conclusion and remarks.

2 Model and Problem Description

The symbols are elements from an alphabet Σ. The set of all finite-length strings
formed using symbols from alphabet Σ is denoted by Σ∗. In this paper, we use
the letters x, y, z,... for the symbols in Σ and S, T , P , R, ... for strings over Σ∗.
The empty string is denoted by ε. The length of a string S is denoted by |S|.
The concatenation of a string P and R, denoted PR, has length |P | + |R| and
consists of the symbols from P followed by the symbols from R.

We will denote by S[i] the symbol in position i of the string S (the first symbol
of a string S is S[1]). The substring of S starting at position i and ending at
position j is denoted by S[i..j] = S[i]S[i+1] . . . S[j]. The reverse of a string S is
denoted by S−1. Thus, if n is the length of S, S−1[i..j] = S[(n−j+1)..(n−i+1)]−1

and S[i..j]−1 = S−1[(n − j + 1)..(n − i + 1)]. R is a substring of S if and only
if R−1 is a substring of S−1. We say that a string P is a prefix of a string S,
denoted P � S, if S = PR for some string R ∈ Σ∗. Similarly, we say that a
string P is a suffix of a string S, denoted by P � S, if S = RP for some R ∈ Σ∗.
Note that P is a prefix of S if and only if P−1 is a suffix of S−1. For brevity of
notation, we denote the k-symbol prefix P [1..k] of a string pattern P [1..m] by Pk.
Thus, P0 = ε and Pm = P = P [1..m]. We recall the definition of a subsequence:
Given a string S[1..n], another string R[1..k] is a subsequence of S, denoted by
R ≺ S, if there exists a strictly increasing sequence < i1, i2, . . . , ik > of indices
of S such that for all j = 1, 2, . . . , k, we have S[ij] = R[j]. For example, if
S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequence of S, while
R is not a subsequence of S. When a string S is a subsequence of a string T ,
T is called a supersequence of S, denoted by T � S. In the last example, S is a
supersequence of P .

Varré et al. [12, 11] propose a new measure which evaluates segment-based
dissimilarity between two strings: the source string S and the target string T .
This measure is related to the process of constructing the target string T with

1 In this paper, n is the maximum size of the sequences.

312 Behshad Behzadi and Jean-Marc Steyaert

segment operations2. The construction starts with the empty string ε and pro-
ceeds from left to right by adding segments (concatenation), one segment per
operation. The left-to-right generation is not a restriction if the costs of opera-
tions are independent of the time (which is the case in this problem). A list of
operations is called a script. Three types of segment operations are considered:
the copy adds segments that are contained in the source string S, the reverse
copy adds the segments that are contained in S in reverse order, and the inser-
tion adds segments that are not necessarily contained in S. The measure depends
on a parameter that is the Minimum Factor Length (MFL); it is the minimum
length of the segments that can be copied or reverse copied.

Depending on the number of common segments between S and T , there exist
several scripts for constructing the target T . Among these scripts, some are more
likely; in order to identify them, we introduce a cost function for each operation.
InsertCost(T [i..j]) is the cost of insertion of substring T [i..j]. CopyCost(T [i..j])
is the cost of copying the segment T [i..j] from S if it is contained in S. Finally
RevCopyCost(T [i..j]) is the cost of copying substring T [i..j] from S if the reverse
of this substring is contained in the source S (which means this string is contained
in S−1). The cost of a script is the sum of the costs of its operations. The minimal
scripts are all scripts of minimum cost and the transformation distance3 (TD)
is the cost of a minimal script. The problem which we solve in this paper is the
computation of the transformation distance. It is clear that it is also possible to
get a minimal script.

3 Algorithm

In this section we describe the algorithm to determine the transformation dis-
tance between two strings. As the scripts construct the target string T from left
to right by adding segments, dynamic programming is an ideal tool for com-
puting the transformation distance. Each added segment is a result of a copy,
reverse copy or an insertion. Algorithm 1, determines the transformation dis-
tance between S and T by a dynamic programming algorithm (figure 1). Let
C[k] be the minimum production cost of T [1..k] using the segments of S. We
make use of generic functions CopyCost, RevCopyCost and InsertCost as defined
at the end of section 2. In order to fix ideas, one can consider that these costs
are proportional to the length of the searched segment (and ∞ if this segment
does not occur in S). In fact any sub-additive function would be convenient.

Deciding whether a given substring of T exists in S or not, and finding its
position in the case of presence, needs to apply a string matching algorithm.
The design of string matching part of algorithm 1 is based on KMP (Knutt-
Moris-Pratt) string matching algorithm with some changes. We need to recall
the definition of prefix function π (adapted from the original KMP one), which
is computed in ComputePrefixFunction (called in line 7). Given a pattern
P [1..m], the prefix function for pattern P is the function π : {1, 2, . . . , m} →
2 In this paper we use segment as an equivalent word for substring.
3 Although this measure is not a mathematical distance but we will use the term

transformation distance which was introduced by Varré et al. [12, 11].

On the Transformation Distance Problem 313

{0, 1, . . . , m − 1} such that π[q] = max{k : k < q and Pk � Pq}. That is, πq is
the length of the longest prefix of P that is a proper suffix of Pq. We have the
following lemma for the prefix functions.

Lemma 1. The prefix function of Pk is a restriction of prefix function of P to
the set {1, 2, . . . , k}.
Proof: The proof is immediate by the definition of the prefix function because
π[i] for a given i can be obtained only from Pi−1 = P [1..(i − 1)] and P [i]. �

Although simple, this lemma is a corner-stone of the algorithm. It shows
that, one can search for the presence of the prefixes of a pattern string in the
source string, in the same time of searching for the complete pattern, without
increasing the complexity of the search. The lines 8-13 of the algorithm determine
the existence of the prefixes of pattern P in S−1. While S is scanned from right-
to-left (loop line 9), q is the length of longest prefix of P which is a suffix of
S−1[1..n − i + 1] in line 14. Note that when we are searching for existences of
prefixes of P in S−1, in fact we are searching for the existence of suffixes of
T [1..k] in S.

The complexity of these lines 8-14 is O(n) in time and space. Computation
of π needs O(n) in time and space (line 7). For the proof of the complexity and
correctness of lines 6-13, see chapter 34.4 of [3].

Algorithm 1 TransformationDistance(S, T)
1. C[0]← 0
2. for k← 1 to |T | do
3. C[k]←∞
4. for i← 1 to k do
5. C[k]← min{C[k], C[i− 1] + InsertCost(T [i..k])}
6. P ← T [1..k]−1

7. ComputePrefixFunction(P, π)
8. q ← 0
9. for i← |S| downto 1 do
10. while q > 0 and P [q + 1]�= S[i] do
11. q ← π[q]
12. if q < |P | and P [q + 1] = S[i] then
13. q ← q + 1
14. C[k]← min{C[k], C[k − q] + CopyCost(T [(k − q + 1)..k])}
15. repeat lines 8..14 replacing S and CopyCost by S−1 and RevCopyCost respectively

16. return C[n]

Fig. 1. Transformation Distance: a dynamic programming solution

Proposition 1 Algorithm 1 correctly determines the transformation distance of
S and T .

Proof: We prove by induction on k that after the algorithm execution, C[k]
contains the minimum production cost of target T [1..k] with the source string
S. C[0] is initialized to 0, because the cost of production of ε from S is zero.

314 Behshad Behzadi and Jean-Marc Steyaert

Now, we suppose that C[i] is determined correctly for all i < k for some
positive value of k. Let us consider the calculation of C[k]. The last operation
in a minimal script which generates T [1..k], creates a suffix of T [1..k]. Let this
suffix be T [i..k] (See figure 2). As the script is minimal, the script without its
last operation is a minimal script for T [1..(i − 1)]. The minimum cost of the
script for T [1..(i − 1)] is C[i − 1] by induction hypothesis. If T [i..k] exists in S,
then q will be equal to k− i+1 in some moment during the algorithm execution
in line 14 (|T [i..k]| = k − i + 1). If T [i..k] exists in S and the last operation
of the minimal script is a copy operation, the minimal cost of the script is
C[i− 1]+CopyCost(T [i..k]) (note that q = k− i+1 amounts to i− 1 = k− q in
line 14). Similarly, if the last operation in the minimal script of T [1..k] is a reverse
copy operation, the minimal cost of the script is C[i−1]+RevCopyCost(T [i..k])
(line 15). Finally, if the last operation in the minimal script of T [1..k] is an
insertion, the minimal cost of the script is C[i − 1] + InsertCost(T [i..k]) (lines
4-5). Thus, C[n] is the minimum cost of production of T = T [1..n] and the
algorithm determines correctly the transformation distance of S and T . �

T
ki

C[i− 1] + InsertCost(T [i..k])

Insertion

C[k] = mini{C[i -1] + min{InsertCost(T [i..k]), CopyCost(T [i..k]), RevCopyCost(T [i..k])}}

T

S

ki
C[i− 1] + RevCopyCost(T [i..k])

Reverse Copy

T

S

ki
C[i− 1] + CopyCost(T [i..k])

Copy

Fig. 2. The three different possibilities for generation of a suffix of T [1..k]

Note that when the length of the substring T [i..k] is smaller than MFL,
CopyCost(T [i..k]) and RevCopyCost(T [i..k]) are equal to ∞.

The complexity of lines 6-13 is O(n) in time and space. So the whole algorithm
for calculation of transformation distance costs O(n2) in time and O(n) in space.

On the Transformation Distance Problem 315

4 An Additional Operation: Deletions

In this section, we extend the set of evolutionary operations by adding the dele-
tion operation. During a deletion operation, one or more symbols of the string
which is under evolution are eliminated. This is an important operation from the
biological point of view; in the real evolution of biological sequences, in several
cases after or during the copy operations some bases (symbols) are eliminated.
We define a function DelCost for the cost of deletions; DelCost(x) is the cost
of deletion of a symbol x. For simplicity, we suppose that the deletion cost of a
segment (substring) is equal to the sum of deletion costs of its symbols. Thus
we have DelCost(P [1..k]) =

∑k
i=1 Delcost(P [i]).

As before, our objective is to find the minimum cost for a script generating
a target string T , with the help of segments of a source string S. As the costs
are independent of time and deletion cost of a segment is the sum of deletion
costs of its symbols, we can consider that the deletions are applied only in the
latest added segment (rightmost one), at any moment during the evolution. It
should be clear that in an optimal transformation, deletions are not applied into
an inserted substring (a substring which is the result of an insertion operation).
Depending on the assigned costs, deletions can be used after the copy or re-
verse copy operations. We consider a copy operation together with all deletions
which are applied to that copied segment as a unit operation. So we have a new
operation called NewCopy which is a copy operation followed by zero or more
deletions on the copied segment. In figure 3 a schema of a NewCopy operation is
illustrated. Similarly, NewRevCopy is a reverse copy operation followed by zero
or more deletions.

T

S

l1 l2 l3 l4 l5 l6

ki
Copy(S[l1..l6])

+

Delete(S[l2..l3])

+

Delete(S[l4..l5])

NewCopy(T [i..k])

� �

Deleted segments

Fig. 3. The illustration of NewCopy operation: A copy operation + zero or more dele-
tions

Solving the extended transformation distance with the deletions, amounts
to solving the transformation distance with the following 3 operations: Inser-
tion, NewCopy and NewRevCopy. A substring T [i..j] of the target string can
be produced by a unique NewCopy operation if and only if T [i..j] is a sub-
sequence string of source S. Conversely, T [i..j] can be produced by a unique

316 Behshad Behzadi and Jean-Marc Steyaert

NewRevCopy operation if and only if T [i..j]−1 is a subsequence string of the
source S. During the algorithm, we will need to the minimum generation cost
by a NewCopy or NewRevCopy operation, for any substring of the target string
T . This could be done as a preprocessing part, but for decreasing the space
complexity we integrate this part in the core of the algorithm without increas-
ing the total time complexity. For this aim, first we design a function called
ComputeNewCopyCost(P, S) which fills a table Cost, with the following defi-
nition: Cost[i] is the minimum cost of generating P [1..i] by a NewCopy operation
using a source string S, if P [1..i] is a subsequence of S and ∞ otherwise (see
figure 4).

We denote by optimal supersequence of P [1..i], any substring of S which is
(a) a supersequence of P [1..i] and (b) has the minimum deletion cost among
all these supersequences. If S[l..k] is a supersequence for P [1..i], the cost of
generating P [1..i] from S[l..k] by a NewCopy operation is CopyCost(S[l..k]) +
DelCost(S[l..k]) − DelCost(P [1..i]). The difference between the last two terms
of this expression is the deletion cost of useless (extra) symbols. A necessary
condition for optimality is S[l] = P [1] and S[k] = P [i]. Before giving a proof of
correctness of Algorithm 2, we state the following lemma.

Lemma 2. If S[l..k] is the optimal supersequence for P [1..i] over S[1..N], then
it is the rightmost supersequence for P [1..i] on S[1..k].

Proof: S[l..k] is the optimal supersequence for T [i..j] over S[1..k] then it has
smaller deletion cost than all S[l′..k] for l′ < l and no S[l′′..k] can be a superse-
quence for l′′ < l. �

Algorithm 2 ComputeNewCopyCost(P , S)
1. FillArray(Cost,∞)
2. FillArray(LastOcc,∞)
3. Cost[0]← 0
4. for k← 1 to |S|
5. for each i← |P | downto 2
6. if S[k] = P [i] and LastOcc[i− 1] <∞ then
7. LastOcc[i]← LastOcc[i− 1]
8. DifDel ← DelCost(S[LastOcc[i]..k]) −DelCost(P [1..i])
9. Cost[i]← min{Cost[i], CopyCost(S[LastOcc[i]..k]) + DifDel}
10. if S[k] = P [1] then
11. LastOcc[1]← k
12. Cost[1]← CopyCost(P [1])

Fig. 4. ComputeNewCopyCost

Proposition 2 ComputeNewCopyCost(P,S) (given in figure 4) determines cor-
rectly in Cost[i], the minimum generation cost of P [1..i] by a NewCopy operation
from a source S, for all i ≤ |P |.

On the Transformation Distance Problem 317

Rather than giving a formal proof for proposition 2, we will explain how the
pseudocode of figure 4 works. The tables Cost and LastOcc are initialized by
∞ (lines 1-2). The algorithm scans the source from left to right to find the
optimal supersequence for each prefix of P . The algorithm uses the auxiliary
table LastOcc for this aim.

After the k-th letter of S is processed (loop of line 4), the following is true:
LastOcc[i] is the largest l ≤ k such that S[l..k] is a supersequence of P [1..i] or ∞
if no such l exists. The loop on P (line 5) is processed with decreasing indices for
memory optimization. Whenever the letter S[k] occurs in i-th position in P and
LastOcc[i − 1] < ∞ which means P [1..i − 1] has a supersequence in S[1..k − 1]
(line 6), then there is an opportunity of obtaining a better supersequence for
P [1..i]. LastOcc[i] takes the value of LastOcc[i − 1] (computed for k − 1) since
S[LastOcc[i − 1]..k] is now the rightmost supersequence for P [1..i] (line 7). Its
cost is compared to the best previous one; if better, the new cost is stored
in Cost[i] (lines 8-9). One should observe that the rightmost supersequences
are updated only when a new common letter is scanned. This is necessary and
sufficient as stated in the lemma 2. Note that the process of i = 1 is done
separately (lines 10-12).

Generating the target string T from left to right, the rightmost added seg-
ment is a result of an insertion, NewCopy or NewRevCopy operation. The fol-
lowing algorithm determines the extended transformation distance of target T
from source S by a dynamic programming algorithm. C[k] is by definition the ex-

Algorithm 3 ExtendedTransformationDistance(S, T)
1. C[0]← 0
2. for k← 1 to |T | do
3. C[k]←∞
4. for i← 1 to k do
5. C[k]← min{C[k], C[i− 1] + InsertCost(T [i..k]}
6. P ← T [1..k]−1

7. ComputeNewCopyCost(P,S−1)
8. for i← 1 to k do
9. C[k]← min{C[k], C[i− 1] + Cost[k − i + 1]}
10. ComputeNewRevCopyCost(P,S)
11. for i← 1 to k do
12. C[k]← min{C[k], C[i− 1] + Cost[k − i + 1]}
13. return C[n]

Fig. 5. Extended Transformation Distance: a dynamic programming solution

tended transformation distance of target string T [1..k] from source string S. The
different possibilities for generation of the rightmost added segment of T [1..k]
are considered at lines 4-12. ComputeNewRevCopyCost is very similar to
ComputeNewCopyCost. For a NewCopy operation, as P is the reverse of T [1..k],
we need to search in S−1 (and not in S) for optimal supersequences (line 7). The

318 Behshad Behzadi and Jean-Marc Steyaert

proof of correctness of Algorithm 3, can be done by induction very similar to
the proof of proposition 1.

The complexity of ComputeNewCopyCost is O(n2) in time and O(n) in
space. So, the total complexity of determination of the extended transforma-
tion distance is O(n3) in time and O(n) in space.

5 Biological Justification

In this section, we show by using biological sequences that the extended trans-
formation distance can be more realistic distance than transformation distance
on the real biological sequences. For this aim, the data we use consists of partial
DNA sequences which participate in coding of RNA 16s. These sequences are
known to be good phylogenetic markers, because they evolve very slowly in gen-
eral. Here we consider only three sequences of the data which correspond to three
species: Trichoniscus pusillus, Haplaphtalmus mengei and Aselles aquaticus. The
two first are from the same family (Trichoniscoidea) while the third is from the
Aselidea family. The first family is a terrestrial family and the last family is an
aquatic family. Although one expects that the sequences of T.pusillus should be
more similar to H.mengei than to A.aquaticus, the transformation distance is
unable to capture this relative similarity. In the other terms, the transformation
distance from A.aquaticus into T.pusillus is smaller than the transformation dis-
tance from H.mengei into T.pusillus for the different choices of parameters for
MFL and cost functions (This is confirmed in [10]). The extended transforma-
tion distance solves this problem. The following table shows the corresponding
transformation and extended transformation distances. The MFL is 9 in this
example. This shows us that deletions make the model more robust on the real
data.

Table 1. Transformation and extended transformation distance from A.aquati and
H.mengei into T.pusillus

Transformation Distance Extended Transformation Distance

H.mengei 1322 516

A.aquaticus 1189 522

Remarks and Conclusion

In this paper, we presented a new improved algorithm for calculation of the trans-
formation distance problem. This question is central in the study of genome evo-
lution. We largely improve the running time complexity (from O(n4) to O(n2))
thus allowing to treat much longer sequences (typically 10000 symbols instead of
100) in the same time, while using only linear space. We also gave an algorithm
for the transformation distance problem in presence of the deletion operations
which gives to the model its full generality. In this version, costs have been given

On the Transformation Distance Problem 319

a special additive form for clarity. In fact a number of variations are possible
within our framework: the main property needed on costs seems to be their
subadditivity in which case our algorithms are correct.

If the DelCost function is a constant function over different symbols, which
means that the deletions of any two symbols have the same cost, the optimal
super-sequence problem becomes the shortest supersequence problem. This prob-
lem called Episode Matching is studied in several papers [9, 4]. For our particular
purpose, the complexity we obtained by Algorithm 2 is better than the one that
could achieved by algorithms using the best known episode matching algorithms.

In this paper, we state that Algorithm 2 complexity is O(n2); this stands for
the worst case complexity; in fact only a small proportion of pairs (S[k], T [j])
imply running the inner loop. Under certain additional statistical hypotheses
the average complexity could be less than O(n2): in particular if the alphabet
size is of the order of the string lengths, the average cost falls down to O(n) for
Algorithm 2 and thus O(n2) for Algorithm 3.

Different implementations of our algorithms can be considered. In Algorithm
2, if for each symbol in string P we store the last occurrence of this symbol in the
string (for example by adding a pre-processing part), the loop of lines 5-6 can
pass only on these symbols, which yields a better experimental complexity. In
Algorithm 1, one can use (generalized) suffix trees for the purpose of substrings
searching, but the theoretical complexity is not improved.

In some variants of the transformation distance problem the offsets (indices)
of copied segments in one or both of the source and target strings participate in
the computation of the operation cost. Our algorithm can be adapted easily to
solve these variants as well, because the substring (and subsequence) existence
testings are realized in the core of algorithm (and not in the preprocessing). So
one can search the indices minimizing the cost function. In some cases for general
cost functions an additional O(n) time is necessary but the space complexity
remains linear. We will not enter in the details here.

Different directions can be considered for the future works on this problem.
Different evolutionary operation sets, Different cost functions and considering
some limits on the number of times that a source segment can be copied are
some of the interesting ones.

References

1. Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized Compar-
ison of Minisatellites. Lecture Notes in Computer Science, Proceeding of CPM
2003.

2. Bérard, S. and Rivals, E.: Comparison of Minisatellites. Proceedings of the 6th
Annual International Conference on Research in Computational Molecular Biology.
ACM Press, 2002.

3. Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introduction to Algorithms. MIT
Press, 1990.

4. Das, G., Fleischer, R., Gasieniec L., Gunopolus, D., Kärkkäinen, J.: Episode
Matching. Lecture notes in Computer Science, Proceeding of CPM 1997.

320 Behshad Behzadi and Jean-Marc Steyaert

5. Doolittle, R.F.: Similar amino acid sequences: chance or common ancestry?,
Science,214,149-159, 1981.

6. Morgenstern, B., Dress, A. and Warner, T.: Multiple DNA and protein sequence
alignment based one segment-to-segment comparison. Proc. Natl. Acad. Sci.USA,
93, pp 12098-12103.

7. Sankoff, D. and Kruskal, J.B: Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

8. Schöniger, M. and Waterman, M.S: A local algorithm for DNA sequence alignment
with inversions. Bull. Math. Biol. 54, pp 521-536, 1992.

9. Trońıček Z.: Searching Subsequences. PhD thesis, 2001.
10. Varré, J.S.: Concepts et algorithmes pour la comparaison de séquences génétiques:

une approche informationnelle. PhD thesis, 2000.
11. Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distances: a family of dis-

similarity measures based on movements of segments. Bioinformatics, vol. 15, no.
3, pp 194-202, 1999.

12. Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distance : A Dissim-
ilarity Measure Based On Movements Of Segments,German Conference on Bioin-
formatics, Koel - Germany, 1998.

13. Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distance. Genome
Informatics Workshop, Tokyo, Japan, 1997.

On Classification of Strings

Eljas Soisalon-Soininen1 and Tatu Ylönen2

1 Department of Computer Science and Engineering
Helsinki University of Technology, P.O.Box 5400, FIN-02015 HUT, Finland

ess@cs.hut.fi
2 SSH Communications Security

ylo@ssh.com

Abstract. In document filtering and content-based routing the aim is to
transmit to the user only those documents that match the user’s interests
or profile. As filtering systems are deployed on the Internet, the number
of users can become large. In this paper we focus on the question of how
a large set of user profiles can be quickly searched in order to find those
that are relevant to the document. In the abstract setting we assume
that each profile is given as a regular expression, and, given a set of
regular languages (the set of profiles), we want to determine for a given
input string (the document) all those languages the input string belongs
to. We analyze this problem, called the classification problem for a set
of regular languages, and we show that in various important cases the
problem can be solved by a small single deterministic finite automaton
extended by conditional transitions.

1 Introduction

In document filtering and content-based routing (e.g. [3–5, 7, 9–11, 13, 15]) the
aim is to transmit to the user only those documents that match the user’s in-
terests or profile. For XML documents the profiles are defined by the XPath
language based on a restricted form of regular expressions. (XPath also contains
irregular parts that require other analysis methods than those for regular lan-
guages.) XML routers in a network forward XML packets continuously from data
producers to consumers. Each packet obtained by a router will be forwarded to a
subset of its neighboring nodes in the network, and the forwarding decisions will
be made according to the subscriptions of the clients given by XPath expressions.
The number of the clients’ subscriptions, and thus the set of XPath expressions
to be evaluated can be large; therefore it is important that the evaluation is
efficient and scalable.

Apart from XML routing, regular expressions are important in other routing
environments (see [5]). For example, in the BGP4 Internet routing protocol [19]
routers transmit to neighboring routers advertisements of how they could trans-
mit packets to various IP addresses. The router that receives advertisements is
allowed to define regular expressions with priorities on routing system sequences.
The priority of an advertisement is obtained by matching it with the given set
of regular expressions.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 321–330, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

322 Eljas Soisalon-Soininen and Tatu Ylönen

Finite automata are a natural and efficient way to represent and process
XPath expressions (see e.g. [3, 10]). Deterministic finite automata (DFAs) are of
course more efficient that the nondeterministic ones (NFAs), because in DFAs
there is only one possible next state. In [10] it is reported that for a large number
of XPath expressions (up to 1,000,000 in the tests of [10]), processing using DFAs
was many orders of magnitude faster than using NFAs.

The difficulty in using DFAs is their size, which can be exponential in the size
of the NFA or the regular expression. In other words, NFAs and regular expres-
sions are exponentially more succinct representations of regular languages than
DFAs. Formally, there exists an infinite sequence of regular languages L1, L2, . . .,
such that each Ln is described by a regular expression (or nondeterministic au-
tomaton) of size O(n), but any DFA that accepts Ln must have size exponential
in n [14, 18]. It should be noted that NFAs seem to be the most succinct rep-
resentation, because NFAs are also exponentially more succinct than regular
expressions [8], but any regular expression can easily be transformed into an
NFA in linear time (e.g. [12]).

In the context of applying regular expressions to routing problems, the ques-
tion is not only to check whether or not an input string belongs to a single lan-
guage, but to report for a (possibly large) set of languages all those languages
the given string belongs to. This problem, called the classification problem for
a set of languages, is reminiscent to the lexical analysis of programming lan-
guages, where a single DFA is constructed that extract the lexical items from
the program text (see e.g. [2, 17]). Solving the classification problem of n regular
languages by constructing a single DFA can result in the number of states that
is exponential in n, even though the total number of states in the DFAs that
correspond to the n languages is O(n) [10].

The problem of the exponential size of a single DFA constructed for a set
of XPath expressions is addressed in [10] by using a “lazy” DFA; that is, the
complete “eager” DFA is not constructed before processing a string, but the
usual subset construction in determinizing a NFA is applied when needed. In
[10] an NFA from each XPath expression is constructed, and at run time, the
processing of the NFAs is simulated by constructing those parts of the DFA that
are reachable by the given input string. In [10] it is also demonstrated that this
lazy evaluation can be efficient in the sense that the number of generated states
remains small. The lazy DFA approach is further optimized in [6]. However, in
[16] it is demonstrated that even a lazy DFA can become large when processing
complex XML documents.

Even though the lazy evaluation is often efficient, it is certainly of interest
to try to avoid the construction of DFA states altogether during the analysis of
the input string. In this paper we consider the question of how the classification
problem for a set of regular languages can be solved by an eager DFA. We show
that in many interesting cases related to XPath expressions, a solution based on
a complete DFA can be made efficient, although the direct construction of the
DFA leads to an exponential number of states. In our solution the underlying
DFA is generalized by allowing conditional transitions.

On Classification of Strings 323

2 Problem Statement

Given a set of n regular languages, we consider the classification problem, when
for i = 1, . . . , n language i is defined by a regular expression Ei of the form

Ei = Yi0Σ
∗Yi1Σ

∗Yi2 · · ·Σ∗Yimi
Σ∗Yimi+1 ,

where Σ denotes the whole alphabet and each Yij is a set of strings formed by
concatenation from individual letters in Σ. For j = 1, . . . , m, we require that Yij

does not contain the empty string ε. For Yi0 and Yimi+1 we require that each of
them is either {ε} or does not contain ε.

For solving the classification problem, given an input string w in Σ∗, we have
to determine all languages L(E1), . . . , L(En) which x belongs to. Our goal is to
automatically generate in time O(|E1| + · · · + |En|) an algorithm that has time
complexity O(|w|), where |Ei| denotes the size of expression Ei and |w| denotes
the length of w. In order to achieve this we need to place some restrictions on
the sets Yij , as will be defined in further sections.

We will first consider our classification problem in the case in which for
i = 1, . . . , n language i is defined by a regular expression Ei of the form

Ei = xi0Σ
∗ai1Σ

∗ai2 · · ·Σ∗aimi
Σ∗ximi+1 ,

where all aij are pairwise different symbols in Σ and each of xi0 and ximi+1

is either the empty string ε or a single symbol in Σ. Neither xi0 nor ximi+1 is
allowed to be equal to any ajk

.
The above simple form of language description may cause an exponential

size in a DFA that solves the classification problem. As an example, consider the
following three XPath expressions ([10]):

$X1 IN $R//book//figure

$X2 IN $R//chapter//figure

$X3 IN $R//table//figure

If an XML stream is processed against this set of XPath expressions using a
single DFA (as defined e.g. in [10]), then this DFA recognizes the three regular
languages defined by the following regular expressions (book, chapter, table,
and figure are denoted by a1, a2, a3, and b, respectively):

Σ∗a1Σ
∗b, Σ∗a2Σ

∗b, and Σ∗a3Σ
∗b,

where Σ denotes an alphabet containing, among other symbols, a1, a2, a3, and
b. The states and part of the transitions of this DFA, denoted D3, is given in
Figure 1. In D3 self-loops occur in all states except the final ones on all other
symbols than shown. The loops and backward transitions from the final states
are not shown. The DFA D3 is obtained by the usual subset construction from
the nondeterministic automata corresponding to the regular expressions, and it
cannot be further minimized, because the final states all accept different subsets
of the three languages. There is a separate final state for all distinct subsets

324 Eljas Soisalon-Soininen and Tatu Ylönen

a1

a2

a3

b
a2

a1 a3

a1

a3

a2

b

b

b

b b

a3

a2

a1

b

Fig. 1. Part of the transitions of the DFA that recognizes the languages
L(Σ∗a1Σ

∗b), L(Σ∗a2Σ
∗b), and L(Σ∗a3Σ

∗b). Transitions without an attached symbol
are due for all other symbols than those that have a marked transition. The transitions
from the final states are not shown.

of {a1, a2, a3}. That is, in a final state the DFA must remember which of the
symbols a1, a2, and a3 it has seen. In general, the minimal DFA Dn that classifies
the n languages L(Σ∗a1Σ

∗b), L(Σ∗a2Σ
∗b), . . . , L(Σ∗anΣ∗b), has Θ(2n) states.

Based on this observation, it is clear that the classification of languages
L(E1), . . . , L(En), where Ei is a regular expression given as above, using a usual
DFA is unfeasible, if n is large. Notice that the classification by final states
means that no two final states that accept strings belonging to different subsets
of L(E1), . . . , L(En) cannot be combined as equivalent states. The exponential
lower bound also holds, of course, if for all Ei the symbol after the last Σ∗ is
missing and mi > 1.

It should be noted that the languages L(Σ∗a1Σ
∗b), . . . , L(Σ∗anΣ∗b) can be

classified by a small deterministic automaton, if we relax the requirement that
classification is performed by final states only. We may fuse all states with input
symbol ai as a single state and all final states as a single state, and classify a
string to belong to language L(Σ∗aiΣ

∗b), if it has arrived at a final state and
passed the unique state with input symbol ai. In Figure 3, this DFA is shown
for n = 3.

3 DFAs with Conditional Transitions

In the previous section we were able to find a small deterministic automaton that
classifies strings to languages L(Σ∗aiΣ

∗b). This was done simply by allowing the

On Classification of Strings 325

b

b
a

a

a

a

a
a

a a

a

a

a b

a

a
b

b

a

1

1

1

1

1

2

2

2

2

a2

3
3

3

3

3

Fig. 2. DFA that can be used to classify the languages L(Σ∗a1Σ
∗b), L(Σ∗a2Σ

∗b),
and L(Σ∗a3Σ

∗b). String w is in L(Σ∗aiΣ
∗b) if it has passed a shaded final state with

incoming edges labelled by ai and the computation ends at the non-shaded final state.
Edges with no attached label denote transitions on all other symbols than the explicitly
given.

DFA to check whether or not a certain state has been visited after processing
the input string. Such a test can be done efficiently by using, for example, a bit
vector indexed by state number.

In the more general case when the expressions are of the form of our problem
statement it is not enough to introduce such a classifying strategy.

Our solution is to introduce conditional transitions into DFAs such that the
required conditions can be tested efficiently. A DFA with conditional transitions,
denoted cDFA, has a set of states and a set transitions as usual DFAs, but a
transition can be conditional such that it is allowed to be performed only when
a certain condition is met. This condition is usually some simple property of the
underlying cDFA.

Let E1, . . . , En be regular expressions such that each Ei is of the form

Ei = xi0Σ
∗ai1Σ

∗ai2 · · ·Σ∗aimi
Σ∗ximi+1 , (1)

where Σ is the set of all those symbols that appear in some Ei, all symbols aij

are pairwise different, and xi0 and ximi+1 both are either ε or a single symbol
different from any aij .

We consider the classification problem for L(E1), . . . , L(En). In other words,
given an input string w in Σ∗, we have to determine all languages L(E1), . . . ,
L(En) which w belongs to. We construct a DFA with conditional transitions,
denoted Mc, as follows. For simplicity, we assume here that each Ei is of the
form Σ∗ai1Σ

∗ai2 · · ·Σ∗aimi
Σ∗.

326 Eljas Soisalon-Soininen and Tatu Ylönen

(i) There is a unique initial state, denoted q0, in Mc.
(ii) The set Q of states of Mc is

{q0, q11 , . . . , q1m1
, q21 , . . . , q2m2

, . . . , qn1 , . . . , qnmn
}.

(iii) Case 1. Let q be any state in Q that is not the initial state q0. There
is a transition qaij → qij for all combinations of i and j, but these transitions
are conditional in the following way. For j > 1, transition qaij → qij is to be
performed, if in processing the current input string state qij−1 has already been
visited but state qij has not been visited yet. For j = 1, transition qaij → qij is
to be performed, if in processing the current input string state qij has not been
visited yet. Case 2. If at state q no transition as defined in Case 1 applies for
the next input symbol a, then transition qa → q is applied.

(iv) For the initial state q0 there are transitions q0ai1 → qi1 for all i = 1, . . . n,
and transitions q0a → q0 for all other input symbols a in Σ.

(v) Mc contains classification states, which are used in the following way.
Assume that input string w has been fed to Mc and the process has ended after
consuming the whole string. If q is a classifying state and it has been visited
during the process of w, then Mc classifies w into the language containing all
strings in Σ∗ that pass q when feeding them to Mc. The states

qimi
,

for i = 1, . . . , n, are chosen as classifying states in Mc.
Observe that by (iii) and (iv) Mc is deterministic, that is, there is always

exactly one next state, because aij �= alk always when i �= l or j �= k. Notice
that the size of Mc would be |Q|2, if the conditional transitions were explicitly
stored. But it is not necessary to store the transitions, because they can be
directly concluded from the current state and input symbol.

Example. Consider the regular expressions E1 = Σ∗a11Σ
∗a12Σ

∗ and E2 =
Σ∗a21Σ

∗a22Σ
∗, and the classification problem for the languages L(E1) and

L(E2). The corresponding cDFA has the set of states {q0, q11 , q12 , q21 , q22}. The
transitions from the initial state q0 are q0a11 → q11 , q0a21 → q21 , q0a12 → q0,
and q0a22 → q0. The conditional transitions are q11a11 → q11 , q11a21 → q21 ,
q11a21 → q11 , q11a12 → q12 , q11a12 → q11 , q11a22 → q22 , q11a22 → q11 , q21a11 →
q11 , q21a11 → q21 , q21a12 → q12 , q21a12 → q21 , q21a21 → q21 , q21a22 → q22 ,
q21a22 → q21 , q12a11 → q11 , q12a11 → q12 , q12a12 → q12 , q12a21 → q21 , q12a21 →
q12 , q12a22 → q22 , q12a22 → q12 , q22a11 → q11 , q22a11 → q22 , q22a12 → q12 ,
q22a12 → q22 , q22a21 → q21 , q22a21 → q22 , q22a22 → q22 .

Recall that the conditional transitions need not be stored, because the pos-
sible transitions are always implied by the state and input symbol. The unique
applicable transition is implied by the passed states, as explained in rule (iii) of
the construction of Mc.

An example computation: q0a11a11a22a22a12a21 ⇒ q11a11a22a22a12a21

⇒ q11a22a22a12a21 ⇒ q11a22a12a21 ⇒ q11a12a21 ⇒ q12a21 ⇒ q21 .
In this computation the state q12 is visited, and thus a11a11a22a22a12a21 is

classified to belong to the language L(Σ∗a11Σ
∗a12Σ

∗).

On Classification of Strings 327

Let w be a string in language L(Ei) = Σ∗ai1 · · ·Σ∗aimi
Σ∗. Then w is of the

form w1ai1w2ai2 ...wmiaimi+1wmi+1, where wi is in Σ∗. It is seen by a simple
induction that this string is classified by Mc to the language containing those
strings that pass the classification state qimi

. On the other hand, any string
classified by qimi

must be of the form w1ai1w2ai2 ...wmiaimi+1wmi+1, where wi is
in Σ∗. Thus, the languages classified by qimi

are exactly the languages L(Ei) =
Σ∗ai1 · · ·Σ∗aimi

Σ∗, for i = 1, . . . , n.
If expression Ei has a leading symbol ai0 , then the above construction must

be changed such that there is a state qi0 with input symbol ai0 between the
initial state and state qi1 . If Ei has a last symbol aimi+1 , then a final state qimi+1

must be introduced to Mc. Classification must also be changed to: string w is
classified to language L(Ei) if and only if string w passes classifying state qimi

and ends at the final state qimi+1 .
We have:

Theorem 1. Let Mc be a cDFA constructed from regular expressions E1, . . . ,
En of the form (1). Then Mc is constructed in time O(|E1|+ . . .+ |En|), and Mc

classifies all strings in Σ∗ into languages with respect to L(E1), . . . , L(En). The
time complexity of classifying string w into all languages it belongs to is O(|w|).

4 Classification of Strings for an Ordered Set of Patterns

In the previous section we considered the classification problem for a rather
restricted class of regular languages. In this section we extend the result to the
case in which the expressions can have a much more general form.

Let E1, . . . , En be regular expressions defined on alphabet Σ such that each
Ei is of the form:

Yi0Σ
∗Yi1Σ

∗Yi2 · · ·Σ∗Yimi
Σ∗Yimi+1 , (2)

where each Yij is a non-empty set of strings in Σ∗. For j = 1, . . . , m, we require
that Yij does not contain the empty string ε. For Yi0 and Yimi+1 we require that
they are either {ε} or do not contain ε.

In solving this classification problem efficiently, we apply the construction of
the previous section, and the construction of Aho and Corasick [1] for recognizing
regular languages defined by regular expressions of the form

Σ∗Y Σ∗,

where Y is a set of strings not containing the empty string. The method of [1]
constructs a DFA in linear time from the expression. Given a set of n regu-
lar expressions E1, . . . , En such that each Ei is of the form (2), we apply the
construction of [1] to the expression

Σ∗(Y ′
10

#10 ∪ Y11#11 ∪ . . . ∪ Y1m1
#1m1

∪ Y ′
1m1+1

#1m1+1 ∪ . . . (3)

∪Y ′
n0

#n0 ∪ Yn1#n1 ∪ . . . ∪ Ynmn
#nmn

∪ Y ′
nmn+1

#nmn+1)Σ
∗,

where all #ij are new symbols and Y ′
i0 (resp. Y ′

imi+1
) is the empty set, if Yi0 = {ε}

(resp. Yimi+1 = {ε}), and otherwise Yi0 (resp. Yimi+1).

328 Eljas Soisalon-Soininen and Tatu Ylönen

That is, we construct a deterministic automaton, denoted Ma, that recognizes
the language defined by this expression. This automaton is used as follows: An
input string in Σ∗ not containing any symbol #ij is fed to the automaton, and
whenever a state is reached from which there are transitions by symbols #ij , all
these symbols will be output (in any order). The output sequence obtained for
an input string w in Σ∗ is then used as an input string for a cDFA constructed
from the expressions E′

1, . . . , E
′
n, where E′

i is

E′
i = yi0Σ

∗#i1Σ
∗#i2 · · ·Σ∗#imΣ∗yim+1.

Here yi0 (resp. yim+1) is ε, if Y ′
i0 (resp. Y ′

im+1) is the empty set, and otherwise
#i0 .

This cDFA performs the final classification. The construction works correctly,
if and only if no non-empty suffix of a string in Yij is a non-empty prefix of Yij+1 ,
for j = 0, . . .mi + 1.

We have:

Theorem 2. Let E1, . . . , En be regular expressions of the form (2) such that
for all Ei no non-empty suffix of a string in Yij is a non-empty prefix of a
string in Yij+1 . Moreover, assume that for no string w in L(E1)∪ . . .∪L(En) the
deterministic automaton Ma constructed from the expression (3) does not output
more than c|w| symbols, where c is a constant. Then it is possible to construct
in time O(|E1|+ · · ·+ |En|) a deterministic program that solves the classification
problem in linear time. That is, for all w in Σ∗ this program classifies w in time
O(|w|) with respect to the languages L(E1), . . . , L(En).

5 Conclusions

Content-based classification is based on the information in the document itself
and not on the information in the headers of the packets to be routed. Users’
interests and subscriptions are typically given by regular expressions based on
structure defining elements in the documents. The number of such expressions
can become very large, and the classification problem cannot be solved by sim-
ply constructing by standard methods a single deterministic automaton, which
decides for input strings all matching expressions. One possibility is to resort to
using nondeterministic machines, but then for all input at least O(nk) time is
needed, where n is number expressions and k denotes the length of the input
string.

In this paper, we defined a new class of regular expressions with the prop-
erty that for sets of expressions in this class a deterministic program can be
constructed in linear time, such that the program classifies input strings in lin-
ear time with respect to the expressions.

In further work we plan to define more new classes of regular expressions for
which the classification problem can be solved efficiently. Specifically, it seems
that some of the restrictions we now placed on the expressions can be consider-
ably relaxed.

On Classification of Strings 329

References

1. A.V.Aho and M.J.Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM 18:6 (1975), 333–340.

2. A.V.Aho, R.Sethi, and J.D.Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass., 1986.

3. M.Altinel and M.J.Franklin. Efficient filtering of XML documents for selective
dissemination of information. In: Proceedings of the VLDB, Cairo, Egypt, 2000,
pp. 53–64.

4. C.-Y.Chan, P.Felber, M.Garofalakis, and R.Rastogi. Efficient filtering of XML doc-
uments with XPath expressions. In: Proc. of the 18th International Conference on
Data Engineering, San Jose, California, February 2002. IEEE Computer Society,
2002, pp. 235–244.

5. C.-Y.Chan, M.Garofalakis, and R.Rastogi. RE-tree: An efficient index structure
for regular expressions. In: Proceedings of the 28th VLDB Conference, Hong Kong,
China, 2002.

6. D.Chen and R.K.Wong. Optimizing the lazy DFA approach for XML stream pro-
cessing. In: The Fifteenth Australasian Database Conference (ADC2004), Dunedin,
New Zealand. Australian Computer Society, Inc., 2004.

7. Y.Diao, M.Altinel, P.Fischer, M.J.Franklin, and R.To. Path sharing and predicate
evaluation for high-performance XML filtering. ACM Trans. Database Systems
28:4 (2003), 467–516.

8. A.Ehrenfeucht and P.Zeiger. Complexity measures for regular languages. J. Com-
put. Syst. Sci. 12 (1976), 134–146.

9. M.Fisk and G.Varghese. An analysis of fast string matching applied to content-
based forwarding and intrusion detection. Technical Report CS2001-0670 (updated
version), University of California, San Diego, 2002.

10. T.J.Green, G.Miklau, M.Onizuka, and D.Suciu. Processing XML streams with
deterministic automata. In: Proceedings of the 9th International Conference on
Database Theory, Siena, Italy, January 2003. Lecture Notes in Computer Science
2572, Springer-Verlag, 2002, pp. 173–189.

11. P.Gupta and N.McKeown. Packet classification on multiple fields. In: Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocol for Computer Communication. ACM Press, 1999, pp. 147–160.

12. J.E.Hopcroft and J.D.Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass., 1979.

13. T.V.Lakshman and D.Stiliadis. High-speed policy-based packet forwarding using
efficient multi-dimensional range-matching. In: Proceedings of ACM SIGCOMM
Conference on Applications, Technolgies, Architectures, and Protoccols for Com-
puter Communication. ACM Press, 1998, pp. 203–214.

14. A.R.Meyer and M.J.Fischer. Economy of description by automata, grammars and
formal systems. In: Proceedings of 12th Annual IEEE Symposium on Switching
and Automata Theory, October 1972, IEEE Computer Society, New York, 1971,
pp. 188–190.

15. B.Nguyen, S.Abiteboul, G.Cobena, and M.Preda. Monitoring XML data on the
web. In: Proceedings of the ACM SIGMOD Conference on Management of Data,
Santa Barbara, California, 2001. ACM Press, New York, 2001, pp. 437–448.

16. M.Onizuka. Light-weight XPath processing of XML stream with deterministic au-
tomata. In: Proceedings of the 2003 CIKM International Conference on Informa-
tion and Knowledge Management, New Orleans, Louisiana, USA, November 3–8,
2003. ACM Press, New York, 2003.

330 Eljas Soisalon-Soininen and Tatu Ylönen

17. S.Sippu and E.Soisalon-Soininen. Parsing Theory. Vol I: Languages and Parsing.
Springer-Verlag, Berlin, 1988.

18. R.E.Stearns and H.B.Hunt. On the equivalence and containment problems for un-
ambiguous regular expressions, grammars, and automata. In: Proceedings of the
22nd Annual Symposium on Foundations of Computer Science, October 1981.
IEEE Computer Society, New York, 1981, pp. 74–81.

19. J.W.Stewart. BGP4, Inter-Domain Routing in the Internet. Addison-Wesley, Read-
ing, Mass., 1998.

Author Index

Alonso, Miguel A. 255
Amir, Amihood 1

Backofen, Rolf 79
Bang, Sun Lee 101
Barreiro, Alvaro 196
Behzadi, Behshad 310
Bernstein, Yaniv 55
Billerbeck, Bodo 30
Boughanem, Mohand 242
Brisaboa, Nieves R. 230
Butarbutar, Manonton 113
Butman, Ayelet 1, 72

Carvalho, Alexandra M. 267
Casillas, Arantza 129
Chrisment, Claude 242
Clavier, Viviane 127
Cleophas, Loek 18
Cleuziou, Guillaume 127
Cox, Ingemar J. 131
Crochemore, Maxime 298

Di Nunzio, Giorgio Maria 125

Eres, Revital 72

Fang, Binxing 70
Fariña, Antonio 230
Ferragina, Paolo 150
Fredriksson, Kimmo 212
Freitas, Ana T. 267
Fresno, Vı́ctor 129
Fúster-Sabater, Amparo 269

Garćıa-Mochales, Pedro 269
Giancarlo, Raffaele 298
González de Lena, M. Teresa 129
Grabowski, Szymon 210
Graña, Jorge 271

He, Ben 43
He, Longtao 70
Hyyrö, Heikki 208

Iliopoulos, Costas S. 10, 286

Jeon, Jeong Eun 138

Kida, Takuya 218
Kim, Dong Kyue 138
Klein, Shmuel T. 68
Ko, Hanseok 76
Kosowski, Adrian 93

Landau, Gad M. 72, 216
Lee, Hyun Chul 134
Lee, Inbok 10
Lee, Yoonjae 76
Lemström, Kjell 74
Levi, Ofer 216
Lewenstein, Moshe 1
Lindén, Krister 136
Losada, David E. 196

Mäkinen, Veli 150, 210
Manzini, Giovanni 150
Mao, Jian Chang 134
Martin, Lionel 127
Mart́ınez, Raquel 129
McRoy, Susan 113
Meira, Wagner, Jr. 171
Milic-Frayling, Natasa 131
Moravec, Pavel 183
Mukherjee, Amar 273

Na, Joong Chae 214
Navarro, Gonzalo 74, 150, 210, 230

Oliveira, Arlindo L. 267
Otero, Juan 271
Ounis, Iadh 43

Paramá, José R. 230
Park, Heejin 138
Park, Kunsoo 10, 214
Perdikuri, Katerina 286
Pinzon, Yoan 74
Pokorný, Jaroslav 183
Pollari-Malmi, Kerttu 161
Porat, Ely 1
Pôssas, Bruno 171

332 Author Index

Ribeiro-Neto, Berthier 171

Sagot, Marie-France 267, 298
Sakamoto, Hiroshi 218
Satya, Ravi Vijaya 273
Sauvagnat, Karen 242
Shalom, Riva 68
Shimozono, Shinichi 218
Siebert, Sven 79
Skiena, Steven 216
Skopal, Tomáš 183
Snášel, Václav 183
Soisalon-Soininen, Eljas 161, 321
Steyaert, Jean-Marc 310

Theodoridis, Evangelos 286
Tsakalidis, Athanasios 286
Tsichlas, Kostas 286

Tsur, Dekel 1

Vilares, Jesús 255
Vilares, Manuel 271
Vinay, Vishwa 131
Vrain, Christel 127

Watson, Bruce W. 18
Wood, Ken 131

Yang, Hyung Jeong 101
Yang, Jae Dong 101
Ylönen, Tatu 321

Ziviani, Nivio 171
Zobel, Justin 30, 55
Zwaan, Gerard 18

	Front matter
	Title
	Foreword
	Table of Contents

	Chapter 1
	1 Introduction
	2 Scaled Matching Definition
	3 A Local Verification Algorithm
	3.1 Reformulating the Definition
	3.2 The Algorithm

	4 A Dictionary Based Solution
	4.1 Building the Dictionary
	4.2 Scanning the Text

	References

	Chapter 2
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Conclusion
	References

	Chapter 3
	1 Introduction
	1.1 Related Work
	1.2 Taxonomy Construction
	1.3 Notation and De.nitions Used

	2 An Automaton-Based Algorithm Skeleton for Sublinear Keyword Pattern Matching
	3 Factor-Based Sublinear Pattern Matching
	3.1 The No-Factor Shift
	3.2 Cheap Computation of a Particular Shift Function

	4 Factor Oracle-Based Sublinear Pattern Matching
	5 Final Remarks
	References
	A Quantifications

	Chapter 4
	1 Introduction
	2 Background
	3 Query Expansion Practicalities
	4 Methods of Increasing Efficiency for QE
	5 Experiments
	6 Conclusions
	References

	Chapter 5
	1 Introduction
	2 Predictors of Query Performance
	3 The Linear Dependence Between the Predictors and Average Precision
	3.1 Test Data and Settings
	3.2 Discussion of Results

	4 Non-parametric Correlation of the Predictors with Average Precision
	5 Smoothing the Query Model of SCS
	6 Conclusions and Future Work
	References
	Appendix

	Chapter 6
	1 Introduction
	2 Co-derivatives and the Discovery Problem
	3 Strategies for Co-derivative Discovery
	3.1 Fingerprinting
	3.2 Algorithms for Lossless Fingerprinting

	4 The {\sc spex} Algorithm
	5 The [\sc deco} Package
	6 Experimental Methodology
	7 Testing and Discussion
	8 Conclusions
	References

	Chapter 7
	Chapter 8
	References

	Chapter 9
	1 Permuted String Matching over Run-Length Encoded Text
	2 A Linear Time Algorithm for the Scaled Permuted String Matching Problem

	Chapter 10
	References

	Chapter 11
	1 Proposed Scheme
	2 Experiments and Results
	References

	Chapter 12
	1 Introduction
	2 Definitions and Notations
	3 Matchings
	4 Bond Preserving Matching
	5 Dynamic Programming Matrices
	6 Recursion Equations
	7 Pseudo-code
	8 Conclusion
	References

	Chapter 13
	1 Introduction
	2 An Efficient Algorithmic Approach to the {\it LTS} Problem
	2.1 Notation and Problem Definition
	2.2 A $\Theta(n^2)$ Time Algorithm for the {\it LTSsplit} Problem
	2.3 Remarks on the Efficiency of the Algorithm for {\it LTS}

	3 Final Remarks
	References

	Chapter 14
	1 Introduction
	2 Preliminaries
	2.1 Document Classification Based on k-NN
	2.2 Object-Based Thesauri [3]

	3 Document Classification with k-NN and Thesauri
	3.1 Structuring the Set of Categories
	3.2 Reducing Ambiguity with Thesaurus

	4 Experimental Results
	5 Conclusions and Future Research
	References

	Chapter 15
	1 Introduction
	2 Background
	3 Indexing by Topic
	3.1 Indexing Algorithm
	3.2 Topic Generation
	3.3 Similar Topic Detection
	3.4 Synonymous Topic Detection
	3.5 Topic Elimination

	4 Implementation
	5 Results and Evaluation
	5.1 Speed of Indexing
	5.2 Comparisons to the Word Count Model
	5.3 Comparisons to the TFIDF / Term Weighting Model

	6 Conclusions
	References

	Chapter 16
	References

	Chapter 17
	1 Introduction
	2 The DDOC Method
	3 Conclusion
	References

	Chapter 18
	1 Web Document Representation
	2 Experiments and Conclusions
	References

	Chapter 19
	References

	Chapter 20
	1 Introduction
	2 Our Approach
	3 Experimental Results
	4 Conclusion
	References

	Chapter 21
	References

	Chapter 22
	1 Introduction
	2 Preliminaries
	3 The Enhanced Suffix Array
	4 The New Child Table
	5 Experimental Results
	6 Conclusion
	References

	Chapter 23
	1 Introduction
	2 Background and Notation
	2.1 The k-th Order Empirical Entropy
	2.2 The Burrows-Wheeler Transform
	2.3 The FM-Index
	2.4 Compression Boosting
	2.5 The Wavelet Tree

	3 Alphabet-Friendly FM-Index
	References

	Chapter 24
	1 Introduction
	2 General Bulk Insertion
	3 Rebalancing
	4 Conclusion
	References

	Chapter 25
	1 Introduction
	2 Preliminaries
	3 Review of the Set-Based Model (SBM)
	3.1 Termset Weights
	3.2 Similarity Calculation
	3.3 Searching Algorithm
	3.4 Computational Complexity

	4 Modeling Conjunctive and Phrase Queries in SBM
	4.1 Conjunctive Queries
	4.2 Phrase Queries

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 The Reference Collections
	5.3 Retrieval Performance
	5.4 Computational Efficiency

	6 Related Work
	7 Conclusions and Future Work
	References

	Chapter 26
	1 Introduction
	1.1 Classic Vector Model
	1.2 LSI Vector Model (Simplified)
	1.3 Vector Query Processing

	2 Metric Indexing
	2.1 M-Tree
	2.2 Application of M-Tree in the Vector Model

	3 Semi-metric Search
	3.1 Curse of Dimensionality
	3.2 Modification of the Metric
	3.3 Semi-metric Indexing and Search

	4 Experimental Results
	4.1 Classic Vector Model
	4.2 LSI Model

	5 Conclusion
	References

	Chapter 27
	1 Introduction
	2 The Model
	3 Partial Representations for Documents
	3.1 Negative Term Selection
	3.2 Document Length

	4 Experiments
	5 Analysis
	6 Conclusions and Future Work
	References

	Chapter 28
	References

	Chapter 29
	References

	Chapter 30
	References

	Chapter 31
	1 Introduction
	2 Branching Algorithm
	References

	Chapter 32
	1 Differential Encoding
	2 Experiments on English Texts
	3 Experiments on Asian-Language Texts
	4 Experiments on Martian-Language Texts
	References

	Chapter 33
	1 Introduction
	2 Notions and Definitions
	3 Compression by the Alphabetical Order
	4 Algorithm and Analysis
	4.1 Algorithm LCA
	4.2 Performance Analysis
	4.3 Improving the Space E.ciency

	5 Experiments
	6 Conclusion
	References

	Chapter 34
	1 Introduction
	2 Word-Based Semi-static Codes
	2.1 Word-Based Huffman Codes
	2.2 End-Tagged Dense Codes

	3 Statistical Dynamic Codes
	3.1 Dynamic Huffman Codes
	3.2 Word-Based Dynamic Huffman Codes

	4 Dynamic End-Tagged Dense Code
	5 Empirical Results
	6 Conclusions
	References

	Chapter 35
	1 Introduction
	2 Related Work: Information Retrieval Approaches for XML Retrieval
	3 The XFIRM Model
	3.1 Data Representation
	3.2 The XFIRM Query Language
	3.3 Query Processing

	4 Experiments and Results
	4.1 The SCAS Task in the INEX Initiative
	4.2 Various Propagation Functions
	4.3 Implementation Issues
	4.4 Runs
	4.5 Analysis of the Results

	5 Conclusion
	References

	Chapter 36
	1 Introduction
	2 Locality-Based IR
	2.1 The Retrieval Model
	2.2 Computing the Similarity Measure
	2.3 Adaptations of the Model

	3 Experimental Results Using Distances
	4 Data Fusion Through Intersection
	4.1 Analysis of Results
	4.2 Description of the Algorithm

	5 Experimental Results with Data Fusion
	6 Conclusions and Future Work
	References

	Chapter 37
	References

	Chapter 38
	1 Introduction
	2 Efficient Computation of Balancedness
	References

	Chapter 39
	1 Introduction
	2 Asymptotic Behavior
	References

	Chapter 40
	1 Introduction
	2 Previous Approaches to Pattern Discovery
	3 The PRUNER Algorithm
	3.1 Our Contributions
	3.2 Problem Statement
	3.3 Terms and Definitions
	3.4 The PRUNER-I and PRUNER-II Algorithms
	3.5 Extending the Algorithm to Handle Multiple Sequences
	3.6 Complexity Analysis

	4 Results
	5 Conclusion
	References

	Chapter 41
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Previous Work

	3 Extracting Simple Models
	4 Extracting Simple Motifs
	4.1 The Repeated Motifs Problem
	4.2 A Note on the Common Motifs Problem

	5 Discussion and Further Work
	References

	Chapter 42
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Strings
	2.2 Matching via Functions

	3 Functions and Block Motifs
	4 Longest Block Motifs with a Fixed Partition Table
	4.1 A p-Suffix Tree on a Mixed Alphabet
	4.2 The Algorithm

	5 Extensions
	References

	Chapter 43
	1 Introduction
	2 Model and Problem Description
	3 Algorithm
	4 An Additional Operation: Deletions
	5 Biological Justification
	Remarks and Conclusion
	References

	Chapter 44
	1 Introduction
	2 Problem Statement
	3 DFAs with Conditional Transitions
	4 Classification of Strings for an Ordered Set of Patterns
	5 Conclusions
	References

	Back matter

