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Chapter 1

INTRODUCTION

1. Introduction
Markov chains have been growing more useful as a method for cap-

turing the stochastic nature of many economic and financial variables.
While hidden Markov processes have been widely employed for some
time in engineering applications such as speech recognition, its effec-
tiveness is now recognized in areas of social science research as well.
The chief aim of this chapter is to summarize the basic properties of
Markov chains and illustrate these properties with the help of useful
examples. We also discuss the algorithmic structures of the processes
used to estimate such models. Wherever possible we draw the reader’s
attention to the features of hidden Markov models (HMM) that distin-
guish them from similar modeling approaches, for example, the regime
switching models familiar to most financial economists. The contents
of later chapters of this book also require some understanding of state
space methodology (SSM) and the related filtering techniques. To help
readers gain a basic understanding of SSM, we include a section on state
space methods and the application of Kalman filters.

2. Markov Chains
To model uncertainty, we usually adopt probability distributions to

quantitatively describe the set of possible outcomes. In doing so, it is
important to base the specification of these distributions on an under-
standing of the processes. A stochastic process is a collection of random
variables indexed to time, t and the state, x. For example, we can
write {x, t ≥ 0}, t ∈ T . When T is finite we refer it to as a countable
stochastic process. The indices can assume discrete or continuous val-
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ues. Various stochastic processes such as random walk, Markov chains,
Wiener processes, stochastic differential equations are applied to differ-
ent applications. In this section we present only a brief introduction of
Markov chains. 1

The Markov chain, a stochastic process originally proposed by the
Russian mathematician Markov in 1907, has been extensively applied
to problems in social science, economics, finance, computer science,
computer-generated music, and many other fields.

Consider a communications system that transmits the digits 0 and 1.
Each digit transmitted must pass through several stages, and at each
stage there is a probability p that the digit will leave unchanged. Where
Xn denote the digit entering the n−th stage, {Xn, n = 0, 1, · · ·} is a two-
state Markov chain with the following transition probability matrix:

P =
[

p 1 − p
1 − p p

]
. (1.1)

If there are three states in this Markov chain, then the transition
probability matrix will have the following form:

P =

 p11 p21 p31

p12 p22 p32

p13 p23 p33

 . (1.2)

In this matrix we note that Pr(Xn = j|Xn−1 = i) = pij ≥ 0, i =
1, 2, 3; j = 1, 2, 3;

∑3
j=1 pij = 1. The properties of the Markov chain are

then defined by the mathematical properties of the probability matrix.
Take the case of a new airline about to commence operation in a

deregulated market that formerly protected the national airline. The
new entrant will offer various inducements to attract passengers from
the national airline, and in fact it has been estimated that (1/6) of
the clients of the national company will remain loyal and refrain from
switching in a given month. The clients of the new company have a (2/3)
probability of remaining loyal. Our aim (given the number of passengers
in the beginning) is to find the expected number of passengers flying
the two airlines after a month, after two months, and after a long time
i.e. in the long run. Tapeiro (1998) provides several other interesting
illustrations.

Define state 0: A customer flies with the national airline, and state 1:
A customer flies with the new airline.

The transition probability matrix is given by

P =
[

1/6 1/3
5/6 2/3

]
≡

[
p00 p10

p01 p11

]
. (1.3)
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Let N0(0) be the number of clients in the national airline at the be-
ginning, and let N1(0) be the number of clients in the new airline at the
beginning. We assume N0(0) = 600 and N1(0) = 0, i.e. the number of
clients at month 0 in the new airline is 0.

After the first month, the distribution of clients among the companies
is given by:

N0(1) = p00N0(0) + p10N1(0), (1.4)

N1(1) = p01N0(0) + p11N1(0). (1.5)

In numbers this becomes N0(1) = 100, and N1(1) = 500. In matrix
notation this can be written as:

[
N0(1)
N1(1)

]
=

[
p00 p10

p01 p11

] [
N0(0)
N1(0)

]
. (1.6)

Thus, when we consider two consecutive months, the matrix notation
becomes, [

N0(t + 1)
N1(t + 1)

]
=

[
p00 p10

p01 p11

] [
N0(t)
N1(t)

]
, (1.7)

or

N(t + 1) = PN(t). (1.8)

For the second month we have N(2) = PN(1), which gives us (in
term of numbers) N0(2) = 183 and N1(2) = 417.

The matrix P T denotes the transition probability from one state to
another in T steps. If the number of steps is large, the transition proba-
bilities are then called ergodic transition probabilities and are given by
the equilibrium probabilities (assuming they exist):

πij = lim
t→∞ pij(t), (1.9)

or

π = lim
t→∞P t. (1.10)

An application of the Chapman-Kolmogorov matrix multiplication
formula yields:
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π = lim
t→∞P t = lim

t→∞PP t−1 = P lim
t→∞P t−1 = Pπ. (1.11)

This provides a system of linear equations that can be used to calcu-
late the ergodic probabilities along with the fact that

∑n
i=1 πi = 1, πi ≥

0.
For our airline problem this implies:

π0p00 + π1p10 = π0, (1.12)

π0p01 + π1p11 = π1, (1.13)

π0 + π1 = 1, (1.14)

π0 ≥ 0, π1 ≥ 0. (1.15)

Equations (1.12) to (1.15) can be solved by any of several well-known
methods, and the solution provides the answer to our question on dis-
tribution of passengers in the long run.

The implications of these equations are very important in practice,
as they reveal the state the probabilities towards which a process will
incline. Thus, if we compare two approaches that lead to two different
Markov chains, we can study the long run effects of these methods.

We next consider a more efficient approach to solving a system of
equations such as that in (1.12) to (1.15). From equation (1.11) we
obtain:

(IM − P )π = 0M (1.16)

where IM is the identity matrix of order M (i.e. the order of the prob-
ability transition matrix P ) and 0M is the M × 1 vector of zeros. The
condition where the steady state probabilities sum to one is captured
by:

i′Mπ = 1 (1.17)

where iM = [1, 1, · · · , 1]′.
Combining equations (1.16) and (1.17) we get:[

IM − P
i′M

]
π =

[
0M

1

]
, (1.18)

or

Aπ =
[

0M

1

]
. (1.19)
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And by multiplying both sides of (1.19) by (A′A)−1A′, we get:

π = (A′A)−1A′
[

0M

1

]
. (1.20)

The steady state probabilities may thus be obtained from the last column
of the product matrix, (A′A)−1A′.

3. Passage Time
Oftentimes we must ascertain the time required to attain a particular

state. In a wealth process, for example, we may want to determine how
long it will take to reach a bankrupt state, i.e. the state without any
wealth. Assume that we are in state i and let fij(n) be the probability of
a first transition from state i to state j in n steps. This is the probability
of having not gone through the j−th state in prior transitions. For a
transition in one step, the transition matrix gives this probability. For a
transition in two steps it equals the probability in two steps conditional
on not having transited in one step. This implies two step transition
probability less the one step transition probability times the probability
that if it reaches such a state, it does not stay there. This can be
represented by:

fij(1) = pij(1) = pij , (1.21)

fij(2) = pij(2) − fij(1)pij , (1.22)

and in general,

fij(n) = pij(n) − [fij(1)pij(n − 1)

+fij(2)pij(n − 2) + · · · + fij(n − 1)pij ] (1.23)

When the states i and j communicate (i.e. it is possible to switch from
state i to state j in a finite number of transitions) we can compute the
expectation of this passage time. This expectation is defined by:

µij =
∞∑

n=0

nfij(n). (1.24)

With further analysis (see Tapeiro, 1998) we find that the mean first
passage time can be obtained by solving the set of equations given by:

µij = 1 +
∑
k �=j

pikµkj . (1.25)

Note here that if k = j , then µkj = µkk = 0.
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Now consider the example of hedge fund market share. The current
market position of hedge fund and its two main competing funds are
12%, 40% and 48%. Clients switch from one fund to another based on
industry data, for example, the underperformance of a fund, and so on.
The switching fund matrix is estimated as:

P =

 0.1 0.3 0.6
0.1 0.5 0.4
0.1 0.3 0.6

 . (1.26)

Our aim is to find the mean first passage time for clients of funds 2
and 3 to fund 1.

This is given by the system of equations from (1.25):

µ21 = 1 + µ21 × 0.5 + µ31 × 0.4, (1.27)

µ31 = 1 + µ21 × 0.4 + µ31 × 0.6. (1.28)

Solving these we get µ21 = µ31 = 10.
Other interesting applications for the first passage time would be to

calculate the time to bankruptcy, the first time cash reaches a given
level, and so on. Continuing with the same example of hedge funds, it
would also be interesting to ascertain the long-term market share of each
of the three funds.

4. Markov Chains and the Term Structure of
Interest Rates

In this section we briefly discuss an approach suggested by Das (1996),
namely, the use of Markov chain techniques to model the term structure
of interest rates and the pricing of interest-rate-sensitive securities. Two
fundamental approaches are used for the modeling of term structures for
interest rates: a) equilibrium approach and b) no-arbitrage approach.
The equilibrium approach is based on a representative agent scenario
that requires assumptions about the production and consumption be-
havior. The process for the interest rate is derived from this setting,
and the security prices dependent on interest rates are obtained as so-
lutions to a fundamental partial differential equation. The no-arbitrage
approach, on the other hand, starts with the assumption of an interest
rate process calibrated against a set of observable prices, and its evolu-
tion is designed to reflect absence of arbitrage possibilities over time.

More recently, the kernel approach has been adopted as an alternative
for dealing with the issues encountered in modeling the term structure
of interest rates. Pricing kernels or state price densities imply that asset
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prices follow martingales. The functional specification of the kernel de-
pends on the preferences of the representative agent, and it also ensures
the existence of no-arbitrage. In a sense, this approach combines the two
methods mentioned earlier. This section discusses the implementation
of the kernel approach by exploiting the properties of Markov chains.

Markov chains are characterized by the transition probability matrix
and the choice of the state space. This probability matrix offers great
flexibility in the modeling of the various stochastic behaviors of the term
structure of interest rates. Das (1996) also shows that it is relatively
simple to estimate this transition matrix. Thus, the approach offers
a theoretically solid basis with empirical ease of implementation. One
point to note here is that the Markov chain operates in the historical
probability measure and not in the risk-neutral probability measure. For
this reason, the risk premia demanded by the investor has to be built
into the model.

Cox, Ingersoll, and Ross (1985) (CIR) can claim credit for the
widespread use of the term structure of the interest rate model both
among practitioners and academic researchers. The driving state vari-
able in this setup is the short rate process, hence we refer to it as a
one-factor model. Our discussion on the chain below will also rely on a
one-factor situation, although this can be extended to more than one fac-
tor. Even if the state variable is not strictly Markov, it can be converted
to a Markov process by expansion of states. Examples of such state
expansion can be found in Bhar and Chiarella (1997) in the framework
of Heath, Jarrow, and Morton (1992).

We assume that the state variable, the short rate r(t) at time t can
take on a finite number of values, [r1, r2, · · · , rN ], and we observe its evo-
lution over the time scale t = 1, 2, · · · , T , with interval ∆t. Within this
interval the short rate can move from state i to state j with probability
pij(t). Due to the assumption of Markov property (i.e. the history does
not matter) we can write the transition probabilities as follows:

Pr[rj(t + 1)|ri(t)] = pi,j(t). (1.29)

If we assume that the transition probabilities remain unchanged over
time, then we get the time-homogeneous version of the transition prob-
ability matrix. The overall transition probability matrix appears thus:

P =

 p11 p21 · · · pN1
...

...
. . .

...
p1N p2N · · · pNN

 , (1.30)

with
∑N

j=1 pij = 1 for all i.
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To account for the time-varying risk premium we stipulate that the
required rate of return over the small interval ∆t shall be (ri∆t + λ(t)).
Here λ(t) captures the additional return demanded by the investor in
the historical probability measure. The one period discount rate for a
given state is:

di = exp(−ri∆t − λ(t))

= exp(−ri∆t)exp(−λ(t))

= exp(−ri∆t)π(t). (1.31)

The variable π(t) here is the time-dependent risk premium, and we can
define

π = [π(1), π(2), · · · , π(T )] (1.32)

as the complete set of premiums applicable for the entire observation
period.

For later assistance in defining the pricing operator, let us now define
a new matrix combining the probabilities and the risk premia as:

Q =

 q11 q21 · · · qN1
...

...
. . .

...
q1N q2N · · · qNN

 , (1.33)

where qij = pijπ(t). The usual constraints need not be satisfied since the
elements of the Q matrix are clearly not probabilities. We can operate
in the historical measure by incorporating the applicable risk premium
in this model, hence the measure need not be changed in order to move
to a risk neutral measure. As the definitions show that the elements of
the Q matrix are clearly positive, we can apply the Markov model to the
observed interest rates.

Let us define the cash flow from a security at any time t as X(t) =
[X1(t), X2(t), · · · , XN (t)]′, and the discount factor for each of the states
as R = exp(−ri∆t), i = 1, 2, · · · , N . With these definitions we can
express the discounted state price matrix as:

M̃(t) = Q(t) ⊗ R, ∀ t, (1.34)

where the operator ⊗ denotes a Kronecker product, and not in sense of
matrix multiplication. The elements of the discount state price matrix
are of the form, mij = qijexp(−ri∆t). In this situation, the no-arbitrage
pricing of securities implies that:

X(t) = M̃(t + 1)X(t + 1), (1.35)
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or, in other words the current price of the security in term of its cash
flow at time T is given by:

X(0) =

(
T∏

t=1

M̃(t)

)
X(T ) ≡ h(T )X(T ). (1.36)

In this equation h(T ) is the pricing kernel that transforms T period cash
flow to today’s price. It also ensures no-arbitrage. In other words, the
kernel-based pricing of securities and the Markov chain representation
of interest rate movement are captured by equation (1.36). We can also
write this in term a discount bond price of maturity τ = T∆t, as:

B(0, τ) = h(T )i, (1.37)

where i is an N -dimensional vector of ones representing the dollar payoff
at time T . Similarly, for coupon bonds of periodic coupon amount c, the
price today is:2

B(0, τ) = h(T )i + c
T∑

t=1

h(t)i. (1.38)

Next we will illustrate this methodology with the help of a simple
example. There are two main inputs to the process, the transitions
probability matrix, P , and the vector of risk premia, π. In practice
the matrix P can be approximated from historical data with frequency
histogram. Das (1996) also indicates another way of populating the
matrix that relies on prior understanding of a stochastic process with
known density function driving the transitions. With a known P matrix,
the risk premia vector can be estimated by calibrating the model with
observable security prices covering the entire time scale.

For the purposes of illustration, let ∆t = 1 year, let the short rate
state space equal [0.05, 0.10, 0.15], and let the P matrix equal:

P =

 0.6 0.3 0.1
0.1 0.8 0.1
0.1 0.2 0.7

 . (1.39)

We also observe the three discount bond prices of maturities 1, 2 and 3
years as, [0.900, 0.805, 0.712], respectively. The discount vector covering
the state space for the next period can be expressed as:

R =

 e−0.05

e−0.10

e−0.15

 =

 0.951229
0.904837
0.860708

 . (1.40)
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Knowing the current one period interest rate as 0.10, we can set up the
equation for determining π(1) as:

0.900 = π(1)(P ⊗ R)

 1
1
1

 . (1.41)

In this case, we are interested in the second equation. Thus:

0.900 = π(1)
[

0 1 0
]  0.570737 0.285368 0.095122

0.090483 0.723869 0.090483
0.086070 0.172141 0.602495

  1
1
1

 .

(1.42)

From the middle equation we get π(1) = 0.994654. Knowing π(1), we
can ascertain π(2) from the second equation as

0.805 = π(2)π(1)(P ⊗ R)2
 1

1
1

 , (1.43)

and thereby obtain:

0.805 = π(2)π(1)
[

0 1 0
]  0.359749 0.385814 0.137522

0.124928 0.565384 0.128621
0.116557 0.252884 0.386764

  1
1
1

 .

(1.44)

This solves π(2) as 0.988267, and we can use the same approach to solve
π(3) as 0.977335.

Once these risk premia are computed, the model is completely speci-
fied and can be applied to determine security prices that depend on the
interest rate movements over the applicable time scale. Coupon bonds as
well as European style options on bonds could be priced from the model
just developed. Additional illustrations are available in Das (1996). In a
more recent application, Lyn, Allen, and Morkel-Kingsbury (2002) adopt
the lattice Markov chain model of Pliska (1997, Chapter 6) to determine
the bond prices subject to default risk. They generalize it by inclusion
of a hidden Markov chain, describing the economic condition that drives
the evolution of the interest rate as well as the corporate credit rating.
We encourage interested readers to examine Pliska’s treatment of the
two probability measures, the historical and risk-neutral, in comparison
to the treatment described above.
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5. State Space Methods and Kalman Filter
The state space model (SSM) was originally intended for aerospace-

related research, but it has found immense application in economics and
finance. This approach is used to analyze typically dynamic time series
models that involve unobserved components. A great many potential
applications in econometrics involve unobserved variables such as per-
manent income, expectations, the ex ante real interest rate, and so on.

The SSM in its basic form retains a VAR (1) (vector autoregressive)
structure for the state equation

yt = Γyt−1 + wt, (1.45)

where the state equation determines the rule for generation of the states
yt,i from the past states yt−1,j , j = 1, 2, · · · , p for i = 1, 2, · · · , p and time
points t = 1, 2, · · · , n. For completeness we assume that wt are p × 1
Gaussian white noise vectors with covariance Q. The state process is
assumed to have started with the initial value given by the vector, y0,
taken from normally distributed variables with mean vector µ0 and the
p × p covariance matrix, Σ0 .

Although the state vector itself is not observed, some transformation
of this vector is observed, albeit in a linearly added noisy environment.
Thus, we can express the measurement equation as:

zt = Atyt + vt. (1.46)

In this sense, the q×1 vector zt is observed through the q×p measure-
ment matrix At together with the q×1 Gaussian white noise vt, with the
covariance matrix, R. We also assume that the two noise sources in the
state and the measurement equations are uncorrelated. In the original
space tracking area, the state equation defines the motion equations for
the space position of a spacecraft with location yt and zt reflects infor-
mation that can be observed from a tracking device such as velocity and
height.

The next step is to make use of the Gaussian assumptions and pro-
duce estimates of the underlying unobserved state vector given the
measurements up to a particular point in time. In other words, we
would like to ascertain E[yt|(zt−1, zt−2, · · · , z1)] and the covariance ma-
trix Pt|t−1 = E[(yt − yt|t−1)(yt − yt|t−1)′]. This is achieved with the use
of a Kalman filter and the basic system of equations described below.

Given the initial conditions y0|0 = µ0, and P0|0 = Σ0 for observations
made at time 1, 2, 3, · · · , T ,

yt|t−1 = Γyt−1|t−1, (1.47)
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Pt|t−1 = ΓPt−1|t−1Γ
′ + Q, (1.48)

yt|t = yt|t−1 + Kt(zt − Atyt|t−1). (1.49)

where the Kalman gain matrix is

Kt = Pt|t−1A
′
t(AtPt|t−1A

′ + R)−1 (1.50)

and the covariance matrix Pt|t after the t-th measurement has been made
is

Pt|t = (I − KtAt)Pt|t−1. (1.51)

Equation (1.47) forecasts the state vector for the next period given
the current state vector. The use of this one-step-ahead forecast of the
state vector lets us define the innovation vector as

vt = zt − Atyt|t−1, (1.52)

and its covariance as

Σt = AtPt|t−1A
′
t + R. (1.53)

Since all the observations are already available in most applications in
finance and economics, we can improve the estimates of the state vector
based on the whole sample. This is referred to as a Kalman smoother,
and it starts with initial conditions at the last measurement points, i.e.
yT |T and PT |T . The following set of equations describes the smoother
algorithm:

yt−1|T = yt−1|t−1 + Jt−1(yt|T − yt|t−1), (1.54)

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T − Pt|t−1)J
′
t−1, (1.55)

Jt−1 = P ′
t−1|t−1Γ

′(Pt|t−1)
−1. (1.56)

On the basis of the above, we clearly need to store the quantities
yt|t and Pt|t generated during the filter pass in order to implement the
smoothing algorithm.

The description of the above filtering and the smoothing algorithms
assumes that these parameters are known. In actuality we need to de-
termine these parameters, and this can be achieved by maximizing the
innovation form of the likelihood function. The one-step-ahead innova-
tion and its covariance matrix are defined by equations (1.52) and (1.53).
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t t + 1 t + 2

⇒ ⇒ ⇒ ⇒ ⇒
ŷt|t System ŷt+1|t Updating ŷt+t|t+1

P̂t|t Dynamics P̂t+1|t Equations P̂t+1|t+1

⇓
ẑt+1|t

Prediction Error

vt+1 = zt+1 − ẑt+1|t

Build Prediction Error Form of Likelihood Function

Using vt+1, P̂t+1|t and Accumulate Through all t =⇒

Figure 1.1. Filtering Algorithm

As these are assumed to be independent and conditionally Gaussian, the
log likelihood function (without the constant term) is expressed as:

log(L) = −1
2

T∑
t=1

log |Σt(Θ)| − 1
2

T∑
t=1

v′t(Θ)Σ−1
t (Θ)vt(Θ). (1.57)

The term Θ (the vector of unknown parameters) in this expression is
specifically used to emphasize the dependence of the log likelihood func-
tion on the parameters of the model. Once the function is maximized
with respect to the model parameters, those parameters can be used to
start the next step of smoothing. Several numerical approaches can be
applied to maximize the log likelihood function, and some of these will
be discussed in later chapters.3

At this point, it would be useful to review the entire process with the
help of a diagram that depicts the adaptive filtering algorithm (Figure
1.1).

6. Hidden Markov Models and Hidden Markov
Experts

This section will begin with a simple example to help readers under-
stand the basic concepts in Hidden Markov Models (HMMs) and how
they relate to the state space models (SSMs). Suppose we observe a se-
ries of counts of a specific medical episode, for example, epileptic seizures,
in one patient on successive days, or the counts of home burglaries in
a particular district. The simplest model we can use to generate these
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counts would be a homogeneous Poisson process. The counts so gener-
ated would be independently and identically distributed Poisson random
variables, hence the variance would be equal to the mean. In practice,
however, such counts usually display a dispersion that deviates from that
suggested above, and they may also display a serial dependence.4

An alternative way to describe the data would be to generate the
counts by two Poisson processes with different means and then choose
one of the means by another random process known as an emission
process. Let us take an example where the first mean is selected with
a particular probability (p) and the second mean is selected with the
probability (1 − p). If the emission process were a Markov chain, then
the observed counts process would display serial dependence in addition
to over-dispersion. Such probabilistic functions of Markov chains have
been in wide use in the engineering literature.5

Thus, the basic idea here is to determine the observed sequence by
the underlying unobservable process, i.e. the state sequence of the HMM
with an emission probability. The word hidden emphasizes that these
states cannot be directly estimated from the observed data. The hidden
process is also Markov in nature, as the next state will depend solely on
the current state and the transition probability between the states. Both
the states and the observed process can be either discrete or continu-
ous. For time series analysis, we use discrete states relating to different
regimes and continuous observations referring to the time series. In
an HMM, an underlying and unobservable sequence of states follows a
Markov chain with finite state space, and the probability distribution of
the observation at any time is dependent only on the current state of
the Markov chain.

We can enrich our understanding of the basic issues in HMM in works
such as Weigend and Shi (1998) and Weigend, Mangeas, and Srivastava
(1995). These authors suggest that the basic linear time series mod-
els rest on two assumptions: a) the time series has weak stationarity,
and b) complete characterization is possible within a finite embedding
space. Many financial and economic time series are non-stationary, and
display time varying means and/or variances. ARCH (Autoregressive
Conditional Heteroscedasticity) processes address some of these issues,
provided that the variance of the time series depends on past variances.
One way to deal with the non-stationarity has been to partition the time
series in such a way that it traverses different regimes or regions. Differ-
ent architectures have also been proposed to decompose a global model
into modular local models. The main point here is how to split the data
space. If the different regions are independent, then simply reshuffling
the data does not lead to a different final model.
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The concept of Hidden Markov Experts (HMEs) explicitly deals with
the time dependency between adjacent regions. A context-dependent
HMM is an important speech recognition application that can also
handle time-dependent regime-switching, as demonstrated by Hamil-
ton (1990).6 In Hamilton’s work, the regions or states can be estimated
from the current observation. In an HME, the states are hidden from
the observation and depend on the entire history of observations. While
Hamilton uses all linear predictors, an HME allows non-linear predictors
such as neural networks as well.

An HMM may be viewed as an alternative to the Kalman filter in
modeling time structure. Some authors liken the Kalman filter to a
factor analysis over time, whereas an HMM is a mixture of densities over
time. A Kalman filter normally represents the linear evolution of states
and linear measurements, whereas an HMM can represent highly non-
linear evolution and measurements, and only one state at any time. The
Kalman filter may also be viewed as an on-line algorithm as it utilizes
recursions. In the case of the HMM, however, the linearity of the model
makes this impossible. To estimate the unknown parameters in the
Kalman filter, we can apply the prediction error form of the likelihood
function maximization, as explained in the previous section. In the
HMM we would have to apply the Viterbi algorithm to estimate the most
likely state sequence and the Baum-Welch forward-backward algorithm
to estimate the parameters following Expectation Maximization (EM).
We will explore these topics in the next section.

Before concluding this section, we will re-state the HMM approach
and cite some related works as well. An HMM is a parameterized
stochastic probability model used to analyze time series. It consists
of two interrelated processes: a) a finite state Markov chain that cannot
be observed, and b) an emission model associated with each state. The
Markov chain is characterized by its transition probability matrix, and
the probability densities given by the emission model can have two com-
ponents: 1) either a parametric or non-parametric specification, and 2)
dependence on either additional input (a conditional HME) or an un-
conditional HME. As Weigend and Shi (1998) describe, a Markov chain
generates a sequence of discrete states as a path, and the emission model
generates the probability density for each time step. A particular ob-
servation is then generated from this probability density at each time
step.

Based upon transition among states, Hamilton (1990) introduced
regime-switching models in economics. Hamilton and Susmel (1994) ex-
tended the approach to capture time-varying conditional variance where
the parameters of the variance process are taken from one of two states
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that evolve as a Markov chain. Similarly, Gray (1996) proposed an ap-
proach where a GARCH model is nested in a regime-switching model.
Smith (2002) further enhanced this area for modeling stochastic volatil-
ity in interest rates by incorporating a regime-dependent variance pa-
rameter. All these attempts are restricted to the first two moments of
the distribution, rather than the complete density function. Weigend
and Shi (1998) demonstrate the application of an HMM to generate a
complete density function using both linear and non-linear HMEs.

7. HMM Estimation Algorithm
In this section we first define the mathematical structure of the HMM

and then go on to describe the estimation algorithms for the different
components.7 In some processes, an observed sequence is probabilisti-
cally related to an underlying Markov process. When this is so, the num-
ber of observable states may differ from the number of hidden states. To
handle such cases, an HMM must comprise two sets of states and three
sets of probabilities. These include the following:

Hidden states: The states of a system that can be described by a
Markov process,

Observable states: The states of the process that are visible, i.e.
measurable,

Pi-Vector: Contains the probability that the model is in one of the
hidden states at the initial time,

State transition matrix: Contains the probability that a hidden state
will evolve to another state, given the previous state,

Emission probability matrix: Contains the probability that a partic-
ular measurable state can be observed, provided that the model is in
one of the hidden states.

Thus, a hidden Markov model is a standard Markov process aug-
mented by a set of measurable states and several probabilistic relations
between those states and the hidden states. In developing the algorithms
for the model, we write the joint probability over hidden (yt) and ob-
served (xt) states, and then use the Markov property to simplify it. This
property allows us to assume that all information about the history of
the states is summarized by the value of the state at the previous time
step. The system does not have a long memory, and the observations
(xt) do not depend on the previous states or the observations given the
states at that time (yt). The total probability is,
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p(yT , xT ) = p(y1)
T∏

t=2

p(yt|yt−1)
T∏

t=2

p(xt|yt). (1.58)

The superscript is used to denote yT = (y1, y2, · · · , yT ). As a general
term, this expression is similar to the would be expression used in a
Kalman filter. A particular HMM can be characterized by the following
three matrices,

Ai,j = p(yt = i|yt−1 = j), (1.59)

Bt,i = p(xt|yt = i), (1.60)

πt,i = p(yt = i). (1.61)

In the literature, an HMM is thus referred to as a set, λ = {A, B, π}, i.e.
three components that uniquely define a particular HMM for a problem.
In what follows we also need the following definitions:

γt,i = p(yt = i|xT ), (1.62)

Ωt,ij = p(yt = i, yt−1 = j|xT ), (1.63)

αt,i = p(yt = i|xt), (1.64)

κt = p(xt|xt−1), (1.65)

βt,i =
p(xt+1, · · · , xT |yt = i)

p(xt+1, · · · , xT |xt)
. (1.66)

While the definitions above may still appear somewhat out of context;
their usefulness becomes clearer as we go on to develop the recursive
algorithm. The expressions help to reduce the computational complex-
ity of the procedure and facilitate the computer implementation. The
label of the state appearing in the above expressions explicitly shows
its own dependence on the state, and the use of the subscript t shows
the dependence of the label on observation xt. Additionally, and quite
importantly, we also find from equation (1.59) that the elements of the
transition matrix Ai,j are independent of the observations and time in-
variant.

The two main problems we need to address are to estimate or identify
a) the unknown parameters in model λ = {A, B, π}, and b) the sequence
of states most likely to generate those observations for a given model and
set of observations.
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8. HMM Parameter Estimation
In order to estimate the model parameters, we start by writing the

complete likelihood function of the complete dataset over N iterations.
This is given by,

Q =
N∑

n=1

∫
dyT p(yT |xT,n) log

[
p(y1)

T∏
t=2

p(yt|yt−1)
T∏

t=1

p(xn
t |yt)

]

=
∑
n

∫
dy1p(y1|xT,n) log p(y1)

+
∑
n

T∑
t=2

∫
dytdyt−1p(yt, yt−1|xn

t ) log p(yt|yt−1)

+
∑
n

T∑
t=1

∫
dytp(yt|xn

t ) log p(xn
t |yt)

=
∑
n

∑
t

γn
1,i log π1,i +

∑
n

T∑
t=2

∑
i,j

Ωn
t,ij log Ai,j +

∑
n

T∑
t=1

∑
i

γn
t,i log Bt,i.

(1.67)

The above likelihood function cannot be directly maximized since the
hidden states are known. The solution to this problem is due to Baum
et al (1970) and is referred to as the Baum-Welch algorithm. It would
be seen that it turns out to be equivalent to the EM (Expectation Max-
imization) algorithm of Dempster, Laird, and Rubin (1977). In the
above objective function we also need to include the constraints due to
the probability terms in the parameter set. In other words, the following
two constraints are needed:

∑
i

π1,i = 1, (1.68)

∑
i

Ai,j = 1, ∀j. (1.69)

The augmented objective function using Lagrange multiplier becomes,

L = Q − λπ(
∑

i

π1,i − 1) −
∑
j

λj(
∑

i

Ai,j − 1). (1.70)
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In the maximization step, we need to take the derivatives of the above
augmented objective function and equate to zero. Thus,

∂L

∂π1,i
=

∑
n

γn
1,i

π1,i
− λπ = 0 ⇒ πnew

1,i =
λπ

N

N∑
n=1

γn
1,i, (1.71)

where the Lagrange coefficient is determined from the constraint rela-
tion. Thus,

πnew
1,i =

1
N

N∑
n=1

γn
1,i. (1.72)

This equation implies the expected number of times the system is found
in state i at the beginning time. Similarly, for the matrix A, we find,

∂L

∂Ai,j
=

∑
n

T∑
t=2

Ωn
t,ij

Ai,j
− λj = 0, (1.73)

Anew
i,j =

λj

N(T − 1)

N∑
n=1

T∑
t=2

Ωn
t,ij

=
∑N

n=1

∑T
t=2 Ωn

t,ij∑N
n=1

∑T
t=2 γn

t−1,j

, (1.74)

where
∑

i Ωt,ij = γt−1,j . This represents the ratio of the expected number
of transitions from state j to state i divided by the expected number of
moves from state j.

We now focus on the emission probabilities and assume that it could
be parameterized as,

p(xt|yt = i; θ) = Bt,i(θ), (1.75)

and the parameter θ is updated as,

θnew = arg max
θ

N∑
n=1

T∑
t=1

∑
i

γn
t,i log Bt,i(θ). (1.76)

Although, different structures could be associated with the output gen-
eration for various states, here we concentrate on discrete output only.
The parameters are, therefore, the probability masses, i.e. for k states
of the output, xt,

Bk,i = p(xt = k|yt = i). (1.77)
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We also assume these are time independent and the constraint that must
be satisfied is, ∑

k

Bk,i = 1, ∀i. (1.78)

Again with the help of Lagrange multiplier it can be shown that,

Bnew
k,i =

∑
n,t s.t.xn

t =k γn
t,i∑N

n=1

∑T
t=1 γn

t,i

. (1.79)

This update of the B matrix indicates the expected number of times the
system is in state i and we observe k, divided by the expected number
times the system is in state i. The maximization or the M step of the
algorithm is now completed.

We now discuss the strategy of efficiently computing the quantities,
Ωt,ij , γt,i . This is done through intermediate computation of the quan-
tities αt,i, κt, βt,i recursively.

αt = p(yt|xt) =
∑

yt−1
p(xt|yt)p(yt|yt−1)p(yt−1|xt−1)

p(xt|xt−1)
, (1.80)

αt,i =
∑

j Bt,iAi,jαt−1,j

κt
. (1.81)

The initialization of the forward variable α is achieved as follows:

α1 = p(y1|x1) =
p(x1|y1)p(y1)∑
y1

p(x1|y1)p(y1)
, (1.82)

α1,i =
B1,iπ1,i∑
j B1,jπ1,j

. (1.83)

For the κ variable, we note that,

κt = p(xt|xt−1) =
∑
yt

∑
yt−1

p(xt|yt)p(yt|yt−1)p(yt−1|xt−1), (1.84)

κt =
∑
i,j

Bt,iAi,jαt−1,j , (1.85)

and the initial value is given by,

κ1 = p(x1)

=
∑
y1

p(x1|y1)p(y1)

=
∑

i

B1,iπ1,i. (1.86)
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Let us now focus on the backward recursions. We start with,

βt−1 =
p(xt, · · · , xT |yt−1)
p(xt, · · · , xT |xt−1)

=
∑

yt
p(xt, · · · , xT , yt|yt−1)

p(xt|xt−1)p(xt+1, · · · , xT |xt)

=
∑

yt
p(xt, · · · , xT |yt)p(yt|yt−1)

p(xt|xt−1)p(xt+1, · · · , xT |xt)

=
∑

yt
p(xt|yt)p(xt+1, · · · , xT |yt)p(yt|yt−1)
p(xt|xt−1)p(xt+1, · · · , xT |xt)

. (1.87)

(1.88)

This leads to

βt−1,j =
∑

i Bt,iβt,iAi,j

κt
. (1.89)

We initialize this recursion as follows:

βT−1 =
p(xT |yT−1)
p(xT |xT−1)

=
∑

yT
p(xT |yT )p(yT |yT−1)

κT
. (1.90)

Here again for initialization,

βT−1,j =
∑

i BT,jAi,j

κT
, (1.91)

βT,j = 1. (1.92)

With the help of the quantities, αt, κt and βt, we would be able to
complete the recursions of γt and Ωt. Thus,

γt = p(yt|xt)

=
p(yt, x

T )
p(xT )

=
p(xt+1, · · · , xT , yt|xt)p(xt)
p(xt+1, · · · , xT |xt)p(xt)

=
p(yt|xt)p(xt+1, · · · , xT |yt)

p(xt+1, · · · , xT |xt)
. (1.93)
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This leads to

γt,i = αt,iβt,i. (1.94)

The final recursion we need to formalize is,

Ωt = p(yt, yt−1|xT )

=
p(xt, · · · , xT |yt)p(yt|yt−1)p(yt−1|xt−1)

p(xt, · · · , xT |xt−1)

=
p(xt|yt)p(xt+1, · · · , xT |yt)p(yt|yt−1)p(yt−1|xt−1)

p(xt|xt−1)p(xt+1, · · · , xT |xt−1)
. (1.95)

Thus the final relation in the E-step (Expectation step) is,

Ωt,ij =
Bt,iβt,iAi,jαt−1,j

κt
. (1.96)

The essence of the EM-algorithm is to alternate between the M-step
and E-step until the desired convergence is reached.8

9. HMM Most Probable State Sequence: Viterbi
Algorithm

Next we address the question of how to infer the hidden states given
the observations. The task is comparable to estimating the smoothed
states in the Kalman filter application, where the mean state is estimated
given all the observations. In discrete situations it would be more mean-
ingful to estimate the most likely state at each time instant, t. In other
words,

ŷT
t = arg max

yt
p(yt|xT ) = arg max

i
γt.i ∀t. (1.97)

Note that this does not imply the single most likely state sequence. If
all transitions are not permissible, the above sequence given by equation
(1.97) may have no probability of occurring. At first glance, however, the
task appears daunting. If there are M hidden states, then there are MT

sequences to consider. Fortunately, we can solve this dilemma by apply-
ing a Viterbi algorithm, a special formulation of dynamic programming
utilizing the Markov structure. We are attempting to find,

ŷT = arg max
yT

p(yT |xT )
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= arg max
yT

p(yT , xT )
p(xT )

= arg max
yT

p(yT , xT ). (1.98)

As before, the superscript indicates the whole sequence.
We now explore ways to compute this recursively. In this context, we

define,

δt(yt) = max
yt−1

p(yt, xt), (1.99)

which implies,

δt,i = max
yt−1

p(yt−1, yt = i, xt). (1.100)

As we are clearly maximizing over the entire sequence yt−1, we initialize
with,

δ1 = p(y1, x1) = p(x1|y1)p(y1). (1.101)

In other words,

δ1,i = B1,iπ1,i, (1.102)

and

max
yT

p(yT , xT ) = max
yT

δT = max
i

δT,i. (1.103)

Now, the Markov structure of the model gives the recursion as follows:

δt+1 = max
yt

p(yt+1, xt+1)

= max
yt

[p(xt+1|yt+1)p(yt+1|yt)p(yt, xt)]

= p(xt+1|yt+1) max
yt

{p(yt+1|yt) max
yt−1

[p(yt, xt)]}

= p(xt+1|yt+1) max
yt

[p(yt+1|yt)δt]. (1.104)

The recursion thus turns out to be,

δt+1,i = Bt+1,i max
j

[Ai,jδt,j ]. (1.105)

We start the recursion by initializing with equation (1.102), then com-
pute δ2, · · · , δT with the above recursion, and finally use equation (1.103)
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to get the overall maximum. Regarding the computation, we should un-
derstand that since δt is generated by multiplying probability terms, its
value decreases as the value of t rises. As a consequence, we may have to
re-normalize δt at each iteration in order to avoid computing exceptions
due to underflow. This step in no way compromises our objective of
inferring the state sequence that maximizes the overall probability, and
we are not interested in the actual value of that probability.

In order to extract the sequence that maximizes the probability, we
need to store the relevant values. The following expressions achieve this
task by storing the yt values that maximize [p(yt+1|yt)δt(yt)] for all yt+1.
Accordingly,

In order to extract the sequence that maximizes the probability we
need to store the relevant values. The following expressions achieve this
task by storing the yt values that maximizes [p(yt+1|yt)δt(yt)] for all yt+1.
Accordingly,

Ψt+1(yt+1) = arg max
yt

[p(yt+1|yt)δt(yt)], (1.106)

Ψt+1,i = arg max
j

(Ai,jδt,j), t = 1, 2, · · · , T − 1. (1.107)

We thus find the optimal state sequence that maximizes the probability
p(yT |xT ).

10. HMM Illustrative Examples
In this section we describe two relatively recent research findings that

make use of the algorithms discussed above. The first, from Manton,
Muscatelli, Krishnamurthy, and Hurn (1998), is reported in an analysis
of excess stock market returns in a number of OECD countries recorded
at a monthly frequency from the period of 1960 to 1988.

In concordance with related works on excess stock market returns,
these authors also find negative skewness and excess kurtosis in the data.
Instead of following the widely accepted ARCH (Auto-Regressive Con-
ditional Heteroskedasticity) type models, they model the non-linearity
in the data using a Hidden Markov structure with two or three states at
each observation point driving the data-generating process. The emis-
sion mechanism is a straightforward set of mean-variance pairs corre-
sponding to each state. After estimating the model parameters using
the EM algorithm, the most probable state sequence is determined by
applying the Viterbi algorithm. In this example, the optimal state esti-
mates indicate whether the excess return in a particular month is in a
high, medium, or low state. The accuracy of the model is established by
the results for the residuals, which turn out to be white noise.
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A number of interesting observations were obtained through this ap-
proach. To begin with, the well-known leverage effect seen by other
researchers using ARCH type models are also seen here. In addition,
the HMM approach shows an absence of the leverage effect over pro-
longed periods. This provides an observation that would be impossible
to make using ARCH type models, namely, that the leverage effect may
only become observable after sudden sharp movements in equity values.
ARCH type models also allow volatility to persist far too long, while
failing to detect sharp changes. In contrast, the HMM approach accu-
rately detects sharp changes in the market, and increases in volatility
does not persist beyond a few months. While the HMM approach seems
to capture the major features of the data quite well, it may be more
suitable for analyzing minor changes in the excess return or volatility.
When working with financial applications, the HMM approach may thus
be more suitable for high-frequency data. This is a prime candidate for
future research.

In the second example, Guha and Banerji (1998/1999) develop the
interesting approach of comparing two HMMs applied to economic data.
They explore whether the underlying drivers of the business cycle data
are the same in different levels of aggregation within an economy. To
be more precise, they investigate non-farm employment data in several
regions of the USA and in the US economy as a whole. Their results
show significant differences between the US employment cycle at the
national and regional levels. Guha and Banerji (1998/1999) claim that
this is consistent with economic intuition.

The approach is to fit a two state HMM to this data, i.e. data at
national and regional levels, and to estimate the parameters by applying
the EM algorithm discussed earlier. The observation variable is the log
difference of the quarterly non-farm employment data. The two hidden
states describe either the low-growth or the high-growth phases of the
economy. The emission process is simply two different rates of growths
corresponding to the underlying states, and the residual is assumed to
be Gaussian with the same variance in both states. Once the parameters
are estimated using the EM algorithm, the most probable state sequence
is estimated for both datasets using Viterbi algorithm. The innovation
in the paper is to construct two residual series: one based on the regional
growth rate and the means of the regional model based on the regional
state sequences, and one based on the same observation data based on
the means of the national model and national state sequence. If the
estimated state sequences are the same, then intuition holds that the
computed residual series will also be the same, on average.
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These authors compare the square differences of the above two residual
series by computing the probability that this difference is greater than
zero. If the two residual series are independent normal, then this com-
parison can be accomplished by matching only the first two moments.
Since this is not the case in this study, the authors resort to the moving
block bootstrap method suggested by Kunsch (1989) to compute the
probability estimate mentioned above. The entire statistical approach
developed in this article appears to significantly enhance the procedure
to compare pairs of HMMs applied to business cycle research. We are
very encouraged by this development and expect it to be applicable in
other areas of financial economics as well.
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Notes
1 The illustrations in this section follow Ross (2000) and Tapeiro

(1998).
2 See Das (1996) for further information on extending this methodology

to contingent claims, e.g. for options or for time invariant risk premia.
3 Additional information on the state space models and their wide array

of applications can be found in Shumway and Stoffer (2000) and Bar-
Shalom and Li (1993).

4 See MacDonald and Zucchini(1997).
5 See Rabiner (1989).
6 For example, see Rabiner (1989).
7 The discussion of this section relies primarily on the exposition in

Rabiner (1989).
8 The analysis presented here is due to Sahani (1999) and this has

similarity to the Kalman filter recursions.
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Chapter 2

VOLATILITY IN GROWTH RATE
OF REAL GDP

1. Introduction

As many know, instability in a structural model describing a data-
generating process can be modeled as a switching regression. Hamil-
ton (1989) shows that a state-dependent switching model might capture
some form of non-linearity where the states are driven by an unobserved
Markov process. This has been successful in capturing the characteris-
tics of the mean growth rate of the US GDP. In the original formulation
of the Hamilton’s Markov switching model, the volatility is assumed to
remain constant irrespective of the changes from state to state. On the
other hand, recent studies by McConnell and Quiros (2000) suggest that
volatility among different components of the GDP was lower during the
1990-91 recovery in the United States. As a matter of course, this merits
testing for a break in the GDP volatility during expansions and reces-
sions. Kim, Nelson and Piger (2001) also adopt a Bayesian test for the
structural break in variance to document some stylized facts regarding
volatility reduction.

This chapter attempts to empirically characterize the volatility in the
growth rate of real GDP for Japan, the UK and the USA using quarterly
data spanning the period from 1960 through to 1996. A recent article
by Hamori (2000) presents evidence that the symmetric GARCH (1,1)
structure applies reasonably well to these three countries when quar-
terly observations are applied.1 Although it is meaningful to expect some
asymmetric effect, Hamori (2000) does not find support for this view in
the data analyzed. Hamori (2000) explains that economic growth re-
quires expansion of production capacity, increases in labor supply, tech-
nological progress, and other prerequisites, whereas economic downturn
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is somewhat easier to achieve. A fall in demand may be the only nec-
essary trigger to achieve contraction. Based on this premise, Hamori
(2000) models the growth rate of real GDP in the GARCH model, a
framework capable of factoring in asymmetry.

While GARCH effects are highly significant with daily and weekly
financial data, they tend to be much less pronounced in less frequently
sampled data, for example, quarterly data on GDP (Bollerslev, Chou
and Kroner, 1992). With some types of financial time series, it may be
possible to use estimates obtained from more frequently sampled data
to make inferences about parameters for less frequently sampled data.
Though Drost and Nijman (1993) have demonstrated this for foreign
currencies, Bollerslev, Chou and Kroner point out that this temporal
aggregation has yet to be confirmed workable for other economic series.

More recently, Markov switching heteroskedasticity has been adopted
as an alternative method for dealing with ARCH effects in economic
data.2 The behavior of the unconditional variance constitutes the main
difference between the ARCH type conditional heteroskedasticity and
the Markov switching variance model. Specifically, the unconditional
variance remains constant in the case of the former, whereas it changes
with the state of the economy in the latter. In the case of GDP, a
more intuitive approach is to think in terms of the different regimes
through which the economy may have passed. Hamilton and Susmel
(1994) suggest that the long-run variance dynamics may be subjected to
regime shifts, and follow an ARCH type process within a given regime.
Using weekly data, Hamilton and Susmel (1994) show that the ARCH
effect completely dies out after a month. This gives us sufficient reason
to examine infrequently sampled data, e.g. quarterly or yearly GDP
data, in a Markov switching heteroskedasticity framework. In view of
the structural break in volatility foreshadowed in Kim, Nelson and Piger
(2001), it becomes important in the modeling of the GDP volatility to
reflect its differences during expansion and recession and to drive it by
an unobserved Markov process.

Kim, Nelson and Startz (1998) demonstrate good fitting of the Markov
switching variance model to monthly stock return data, particularly in
terms of normality of the standardized return. Although, Hamori (2000)
obtains significant coefficient statistics in the GARCH framework, the
model residual still exhibits non-normality. In this chapter we examine
the growth rates of real GDP in three countries (Japan, the UK and the
USA) within the Markov switching variance framework and compare the
results with those derived from the GARCH model using quarterly data.
This chapter also seeks to document whether the structural break in the
GDP variance in the USA pointed out by Kim, Nelson and Piger (2001)
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can also be found in the GDP data on the other two OECD members,
Japan and the UK.

2. Models
2.1 GARCH Model

This chapter uses two kinds of volatility model. One is a GARCH
model and the other is the Markov switching variance model. The
GARCH(1,1) model is specified as follows:

rt = φ0 + φ1rt−1 + · · · + φprt−p + εt, εt|It−1 ∼ N(0, ht), (2.1)

ht = α0 + α1ε
2
t−1 + βht−1, (2.2)

where It−1 = (rt−1, rt−2, · · · , rt−p).
Equation (2.1) is the mean equation and is specified as an AR(p)

process. Equation (2.2) is the conditional variance equation and is spec-
ified as the GARCH(1, 1) process. By successively substituting for the
lagged conditional variance into equation (2.2), the following expression
is found:

ht =
α0

1 − β
+ α1

∑∞
i=1

βi−1ε
2
t−i. (2.3)

An ordinary sample variance would give each of the past squares an
equal weight rather than declining weights. Thus the GARCH variance
is like a sample variance but it emphasizes the most recent observations.
Since ht is the one period ahead forecast variance based on past infor-
mation, it is called the conditional variance. The surprise in squared
residuals is given by,

vt = ε2
t − ht. (2.4)

Equation (2.4) is by definition unpredictable based on the past. Sub-
stituting Equation (2.4) into equation (2.2) yields an alternative expres-
sion as follows:

ε2
t = ω + (α1 + β)ε2

t−1 + vt − βvt−1. (2.5)

It can immediately be seen that the squared errors follow an ARMA(1,
l) process. The autoregressive root is the sum of α1 and β, and this is
the root which governs the persistence of volatility shocks.
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2.2 Markov Switching Variance Model
The second approach, the Markov switching variance model is speci-

fied as follows:

yt ∼ N(0, σ2
t ), (2.6)

σ2
t = σ2

1S1t + σ2
2S2t, (2.7)

Skt =

{
1

0

if St = k

otherwise
(k = 1, 2), (2.8)

Pr (St = j|St−1 = i) = pij , i, j = 1, 2, (2.9)

2∑
j=1

pij = 1, (2.10)

σ2
1 < σ2

2, (2.11)

where yt is the demeaned real growth rate, St is an unobserved state
variable which evolves according to a first order Markov process with
transition probabilities in equation (2.9). Equation (2.9) denotes the
conditional probability that the date t state is the value St = j and the
date t − 1 is the value St−1 = i. Equation (2.11) shows that state 1
corresponds to the low volatility state and state 2 corresponds to the
high volatility. This would help us establish any break in variance in the
GDP process as suggested in Kim, Nelson and Piger (2001).

In this model, the long-run dynamics are governed by regime shifts
in unconditional variance according to a first order Markov switching
process and as discussed earlier with quarterly data no ARCH terms
may be necessary. The model is estimated using the maximum likeli-
hood method and the likelihood function is constructed following the
discussion in chapter 4 of Kim and Nelson (1999). The smoothed prob-
abilities i.e. the transition probabilities given the complete data are also
obtained following Kim and Nelson. The variance of the growth rate in
GDP may then be computed as,

E(σ2
t |ΨT ) = σ̂2

1E(St = 1|ΨT ) + σ̂2
2E(St = 2|ΨT ), (2.12)

where, σ̂2
1 is the estimate of volatility in state 1, σ̂2

2 is the estimate of
the volatility in state 2, and ΨT is the complete observation set, i.e.
ΨT = [y1, y2, · · · , yT ]′.
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3. Data
This chapter uses the data on the quarterly real GDP in the United

States, the United Kingdom, and Japan. The source is the OECD Main
Economic Indicators. The sample period is the first quarter of 1960
through the fourth quarter of 1996. Each variable is seasonally adjusted.
The quarterly real growth rate is calculated as (Yt − Yt−1) × 100/Yt−1,
where Yt is the original data series (real GDP for the United States, the
United Kingdom and Japan) at time t.

4. Empirical Results
Table 2.1 shows the results of GARCH model estimation. The AR or-

der for the mean equation is selected by the AIC criterion and is found
to be three for all three countries. As the table clearly indicates, the
ARCH term and GARCH term are both significant in Japan, with coef-
ficients of 0.0911 and 0.8811, respectively. Similar parameter estimates
are obtained for both coefficients in the USA, whereas the estimates are
quite discrepant in the UK, with a relatively large estimate for ARCH
(0.3682) and small estimate for GARCH (0.4539). Moreover, the sum of
α1 and β1, a parameter that shows the persistence of volatility, is 0.8221
for the UK, versus 0.9722 and 0.9876 for Japan and the USA, respec-
tively. Thus, the persistence of volatility is relatively high in Japan and
the USA but relatively low in the UK.

Table 2.2 gives the residual diagnostics corresponding to the estima-
tion in Table 2.1. The Ljung-Box test is used to check the autocorrela-
tion of the residuals (Ljung and Box, 1979) and the Jarque-Bera test is
used to check the normality of residuals (Jarque and Bera, 1987). The
entries in this table are P−values. LB2(12) is the Ljung-Box test of or-
der 12 using squared standardized residuals. As the table indicates, the
null hypothesis of no autocorrelation is not rejected for any of the three
countries, whereas the null hypothesis of normality is rejected for all
three countries at the 1% significance level. The result of non-normality
in residuals shows that the GARCH effect is insufficient to capture the
characteristics of the distribution.

The empirical results of the Markov switching heteroskedasticity es-
timation are shown in Table 2.3. The probability p11 (the tendency to
remain in the low variance state once in that state) is estimated at 0.9764
for Japan, 0.9412 for the UK, and 0.9346 for the USA, and all three val-
ues are significant at the 5% significance level. Similarly, the probability
p22 (the tendency to remain in the high variance state once in that state)
is estimated at 0.0128 for Japan, 0.1566 for the UK, and 0.0379 for the
USA, but only that for the UK is significant, and only at the 10% level.



34 HIDDEN MARKOV MODELS

Table 2.1. Growth rate in real GDP: GARCH(1,1) estimation

Japan UK USA

φ0 0.2517* 0.5186* 0.4413*
(0.1024) (0.1190) (0.0958)

φ1 0.1418** 0.0368 0.2660*
(0.0837) (0.1006) (0.0899)

φ2 0.3082* 0.0454 0.1678*
(0.0888) (0.0857) (0.0863)

φ3 0.2695* 0.2205* 0.0132
(0.0794) (0.0951) (0.0976)

α0 0.0227 0.2420 0.0148
(0.0279) (0.1554) (0.0269)

α1 0.0911* 0.3682** 0.1478*
(0.0394) (0.2170) (0.0578)

β1 0.8811* 0.4539* 0.8398*
(0.0440) (0.2281) (0.0777)

Note: AR order for the mean equation selected by the AIC criterion is found to be three for
all three datasets. The numbers in parentheses below the parameter estimates are standard
errors obtained from the heteroskedasticity consistent covariance matrix of the parameters.
Significance at 5% level is indicated by * and at 10% level is indicated by **.

Table 2.2. Diagnostics using standardized residuals from GARCH(1,1) model

Japan UK USA

LB2(12) 0.962 0.498 0.307
Normality Test 0.000 0.000 0.029

Note: LB2(12) is the Ljung-Box test of order 12 using squared standardized residuals and
the normality test is obtained from Jarque-Bera statistic. Entries represent corresponding
P−values. P−value less than 0.05 implies the hypothesis of remaining no ARCH effect is
rejected and the hypothesis of normal distribution is rejected at the 5% level of significance.

The variance in the low volatility state is estimated at 0.4968 for Japan,
0.4719 for the UK, and 0.1517 for the USA, and all values are significant
at the 5% significance level. The variance in the high volatility state is
estimated at 2.1081 for Japan, 2.9757 for the UK, and 1.3118 for the
USA, and all values are all significant at the 5% significance level. Note
that the variances in the high volatility state (St = 2) in Japan, the
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Table 2.3. Growth rate in real GDP: Markov switching heteroskedasticity estimation

Japan UK USA

p11 0.9764* 0.9412* 0.9346*
(0.0203) (0.0344) (0.0475)

p22 0.0128 0.1566** 0.0379
(0.0148) (0.0865) (0.0311)

σ2
1 0.4968* 0.4719* 0.1517*

(0.1019) (0.0927) (0.0353)
σ2

2 2.1081* 2.9757* 1.3118*
(0.3502) (0.9215) (0.2165)

Note: Growth rate in real GDP is modeled as yt ∼ N(0, σ2
t ), where yt is the demeaned

variable. p11 = Pr (St = 1|St−1 = 1), p22 = Pr (St = 2|St−1 = 2), St is the unobserved state
variable that evolves according a first-order Markov process with probabilities defined by
p11, p22. σ2

1 and σ2
2 are the variances in the two states and σ2

1 < σ2
2 . The numbers in

parentheses below the parameter estimates are standard errors. Significance at 5% level is
indicated by * and at 10% level is indicated by **.

Table 2.4. Diagnostics using standardized residuals from Markov switching het-
eroskedasticity model

Japan UK USA

LB2(12) 0.510 0.547 0.141
Normality Test 0.473 0.245 0.619

Note: LB2(12) is the Ljung-Box test of order 12 using squared standardized residuals and
the normality test is obtained from Jarque-Bera statistic. Entries represent corresponding
P−values. P−value less than 0.05 implies the hypothesis of remaining no ARCH effect is
rejected and the hypothesis of normal distribution is rejected at the 5% level of significance.

UK, and USA are more than four times, six times, and eight times as
great as the variances in the low volatility state, respectively. We are
thus able to quantify the differences or the breaks in the variance of the
GDP process reported in studies such as that of Kim, Nelson, and Piger
(2001).

Table 2.4 shows the diagnostics of the estimation results given in Table
2.3. The table clearly indicates that the null hypotheses of normality
and of no autocorrelation are not rejected for any of three countries at
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the 5% significance level. Note that while the normality of residuals is
not supported for the GARCH model, it is supported for the Markov
switching heteroskedasticity estimation.

How can we explain these empirical results? One possibility would be
a structural change in volatility during the sample period. This accords
with the explanation proposed by Kim, Nelson and Piger (2001). As Per-
ron (1989) pointed out, researchers tend to find high persistence in eco-
nomic variables when they ignore the effects of structural change in their
empirical analyses. Diebold (1986) suggested that the high persistence
of volatility might be due to the regime shifts in conditional variance.
Lamoureux and Lastrapes (1990) conclusively demonstrated that ignor-
ing simple structural shifts in unconditional volatility can lead to the
spurious appearance of extremely strong persistence in variance. This
spurious persistence may correspond to stationary GARCH movements
within regimes with unconditional jumps occurring between regimes. If
this hypothesis is true, then the Markov switching variance model should
give us good empirical results. In our analysis, the standardized residual
of the Markov switching variance model actually supported the normal
distribution, whereas the standardized residual of the GARCH model
did not.
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Figure 2.1. Estimated variance from the Markov switching heteroskedasticity model:
Japan
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Figure 2.2. Estimated variance from the Markov switching heteroskedasticity model:
UK
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Figure 2.3. Estimated variance from the Markov switching heteroskedasticity model:
USA
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Figure 2.1, Figure 2.2, and Figure 2.3 show the estimated variance
from the Markov switching heteroskedasticity model for each country.
These figures depict clear evidence of the structural break in the vari-
ance of the GDP process for Japan and the USA. This corresponds to
the high persistence of the GARCH estimation reported in Table 2.1.
In the case of Japan, we obtain a high variance for the period between
1960 and the middle of the 1970s, whereas we observe a low variance
between the middle of the 1970s and the beginning of the 1990s. These
years correspond to periods of high and low economic growth in Japan.
The apparent similarity of the estimates of variance for all three coun-
tries after the middle of the 1980s may be due to the synchronization of
business cycles among these countries induced by the liberalization of in-
ternational capital markets. Upon entering the 1990s, the high variance
continues only in Japan, however. When the collapsing bubbles of the
Japanese stock markets triggered depression in the Japanese economy
in the early 1990s, the resulting economic uncertainty might have been
the cause for the increase in the variance.

5. Conclusion
Recent studies have uncovered evidence of a structural break in the

variance of the GDP process in the USA. For further clarification,
this chapter has investigated an alternative method to characterize the
volatility in the growth rate of real GDP for three countries, i.e. Japan,
the UK, and the USA. Previous work has documented the usefulness
of a GARCH (1,1) model without asymmetry in the innovation for this
data. However, the standardized residuals did not support model diag-
nostics such as normality in the distribution. Besides, the ARCH effect
may be largely absent or weak in infrequently sampled data. In stock
market applications, the effects of ARCH have been shown to filter out
in monthly data.

This chapter has modeled a state-dependent process in order to model
the volatility in the growth rate of real GDP. An unobserved Markov
process drives the states. Using a Markov switching specification with
two states, we find that the model does a credible job in capturing the
different episodes. The residual diagnostics all support the proposed
specification. In addition to inferring the probability of remaining in
any one of these two states, the estimation result quantifies the levels of
variance in these two states.3
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Notes
1 The GARCH (generalized autoregressive conditional heteroskedas-

ticity) model was originally developed by Bollerslev (1986) as an
extension of the ARCH (autoregressive conditional heteroskedastic-
ity) model developed by Engle (1982). Bollerslev, Chou and Kroner
(1992) published a compelling article surveying the application of
ARCH modeling in financial economics.

2 For an example, see Kim, Nelson, and Startz (1998).
3 This chapter is an edited version of Bhar and Hamori (2003a) with

permission from Elsevier.
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Chapter 3

LINKAGES AMONG G7
STOCK MARKETS

1. Introduction

Financial deregulation, technological advancements, and other influ-
ences over the last three decades have resulted in a closer integration
of world stock markets. Economic researchers have been studying the
various aspects of this market integration and the way it evolves. Some
studies have focused on the interrelationships among national stock mar-
kets immediately following significant world events. Malliaris and Ur-
rutia (1992) confirm that almost all stock markets fell together during
the crash of October 1987, in spite of the considerable differences in na-
tional economies at that time. Similarly, Malliaris and Urrutia (1997)
confirm the simultaneous fall of national stock market returns following
the Kuwaiti war in July 1990. In the absence of global events, however,
national stock markets are dominated by domestic fundamentals. These
analyses are at the heart of the question of the benefits of international
diversification.

McCarthy and Najand (1995) have reviewed the literature on linkages
among international stock markets. Using the state-space methodology,
these authors infer the linkage relationship between the stock markets in
Canada, Germany, Japan, the UK, and the USA. The authors hold that
this methodology delivers the causal relationship in the Granger sense
with the minimum number of parameters needed. Their data suggest
that the US market exerts a strong influence on all of the other markets
studied, while none of the other markets exert a strong influence on the
US market. McCarthy and Najand (1995) use daily data and attempt
to appropriately handle the overlapping of trading in these markets in
the interpretation of their results. Their results concord well with those
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obtained by Eun and Shim (1989) in their examination of nine stock
markets over the period from 1980 to 1985 in the VAR framework.

According to the results obtained by Kasa (1992) and Corhay, Rad
and Urbin (1993), stock prices are cointegrated in such a way that world
stock markets are driven by one or more common stochastic trends.
The presence of a common trend can be interpreted as a natural con-
sequence of well functioning, integrated capital markets that are freely
accessible to both domestic and foreign investors. On the other hand,
a re-examination by Ahlgren and Antell (2002) using small-sample cor-
rections finds no evidence of cointegration between international stock
prices. To explain their finding, they point out that the previous empiri-
cal results may have been subject to small-sample bias and size distortion
of cointegration tests.

Stock market volatility has been a widely researched topic in financial
economics. Shiller (1993) presents a number of articles documenting the
sources of market volatility. Some studies have suggested that investors
must understand these sources in order to take effective actions to reduce
their impact. Based on the premise that excess volatility is the portion
of volatility beyond that justifiable by the efficient market hypothesis,
Shiller (1993) explores several popular models in order to understand
the events surrounding the stock market crash in October 1987. It may
also be noteworthy that high levels of volatility have not been recorded
exclusively during such isolated events. Jochum (1999), for example,
reports regular occurrences of such events in the Swiss market.

Much research effort has also been directed toward modeling market
volatility. This has important implications on the derivatives markets as
well. Volatility models based on autoregressive conditional heteroskedas-
ticity (ARCH) have been particularly successful in capturing some of
the stylized facts. Various researchers have used GARCH (generalized
ARCH) models to account for the leptokurtosis, skewness, and volatility
clustering often characterizing stock returns. Nelson (1991) and Glosten,
Jagannathan and Runkle (1993) extend the standard GARCH model to
account for the difference in the effects of negative and positive shocks
of the past period on the conditional volatility.

Bollerslev, Chou and Kroner (1992) suggest that although GARCH
effects may be highly significant with many daily and weekly financial
data, its effect tends to be much milder in less frequently sampled data
e.g. quarterly data. The presence of sequential structural shifts due
to the nature of news releases in the market, as a cause of conditional
heteroscedasticity, has also been proposed by other researchers e.g. Kim
and Kon (1996, 1999). In this context, the stock market returns may be
viewed as drawn from a mixture of normal distributions. As a rationale
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for different regimes in the stock market, Cecchetti, Lam and Mark
(1990) propose that this may be due to the switching of the economy’s
endowment between high and low growth phases.

More recently, Kim, Nelson and Startz (1998) adopt Markov switch-
ing heteroskedasticity as an alternative method for dealing with the
ARCH effects in economic data. The behavior of the unconditional
variance constitutes the main difference between the ARCH type con-
ditional heteroskedasticity and the Markov switching variance model.
Specifically, the unconditional variance remains constant in the case of
the former, whereas it changes with the state of the economy in the
latter. If there are sequential changes in regime, as suggested by some
authors, a more intuitive approach would be to think in terms of the
different regimes contributing to the return-generating process in the
stock market. Hamilton and Susmel (1994) also suggest that the long-
run variance dynamics may be subjected to regime shift, while those
within a single regime are more likely to follow an ARCH type process.
Using weekly data, Hamilton and Susmel show that the ARCH effect
completely dies out after a month. This gives us sufficient reason to ex-
amine less frequently sampled data (e.g. monthly) in a Markov switching
heteroskedasticity framework.

In the Markov switching framework Chu, Santoni and Liu (1996)
adopt a two-stage process to describe the return behavior in the stock
market. In the first stage they model the stock return as a Markov
switching process, and in the second stage they estimate a volatility
equation using different return regimes derived from the first stage. Re-
turns either above or below some normal level are construed as evidence
of high volatility. According to their results, the increase in volatility
is larger for negative deviations in returns than for positive deviations.
Thus, they conclude that the return and volatility relate to each asym-
metrically rather than linearly.

In this chapter we attempt to analyze the stock return characteristics
of the G7 countries using monthly returns, and to capture the changes in
mean-variance in a two-state framework, where an unobserved Markov
process drives the states. Our work complements the study by Chu,
Santoni and Liu (1996). Whereas Chu, Santoni and Liu (1996) adopt a
two-stage approach, we estimate the model in one stage, allowing both
the mean and variance to depend on the state. The estimation of this
model for the G7 countries can be used to infer the differences in the
volatility regimes and the likelihood that an economy will remain in one
of the two states.

The contributions of this chapter are therefore twofold. First, we char-
acterize the national stock markets of the G7 countries using a Markov
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switching specification to the mean and variance, and thus document the
probability that these markets will stay in low or high volatility states.
Compared to the GARCH process, the Markov switching variance struc-
ture is a more intuitive method for modeling changes in variance in
less frequently sampled data. In this context we extend the analysis of
Schaller and Van Norden (1997) to other members of the G7. Secondly,
we use concordance, a measure of co-movement of stock prices proposed
by Harding and Pagan (1999), to analyze the informational dependence
between these markets, as well as to describe the proportion of time
during which the stock prices of two countries remain concurrently in
the same phase. Information on the clustering of turning points is also
summarized.

2. Empirical Technique
2.1 Markov Switching Stock Return Model

We model the series as an AR process with mean and variance de-
pending on an unobserved state. Denoting the return at time t by yt,
the two-state Markov mean-variance model is written as,

yt − µSt = φ1(yt−1 − µSt−1) + εt, εt ∼ i.i.d.N(0, σ2
St

), (3.1)

where

Pr(St = j|St−1 = i) = pij , i, j = 1, 2,
2∑

j=1

pij = 1, (3.2)

µSt = µ1S1t + µ2S2t, (3.3)

σ2
St

= σ2
1S1t + σ2

2S2t, (3.4)

Smt =

{
1 if St = m,

0 otherwise.
(3.5)

State 1 corresponds to the low volatility state and state 2 corresponds
to the high volatility (σ2

1 < σ2
2). The estimation of the model is carried

out by constructing the probability weighted likelihood function and
maximizing this with respect to the model parameters. In this context
we follow the procedure discussed in Kim and Nelson (1999, p. 65) to
deal with the unobserved state variable. The estimation process also
yields the filtered probabilities i.e. the probabilities about the state
St conditional on the information, Ψt, up to time. Conditional on the
information in the whole sample period, ΨT , and using the algorithm
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described in Kim and Nelson (1999, p. 68) we develop the estimates of
the smoothed probabilities of the states.

Given the estimates of the parameters and the smoothed probabilities,
it is then straightforward to compute the variance of the stock returns
as follows:

E(σ2
t |ΨT ) = σ̂2

1E(St = 1|ΨT ) + σ̂2
2E(St = 2|ΨT ), (3.6)

where, σ̂2
1 is the estimate of volatility is state 1, σ̂2

2 is the estimate of
the volatility in state 2, ΨT is the complete observation set. Besides, we
perform the model diagnostics using the residual generated during the
construction of the likelihood function. This may be described as,

yt − E (yt|Ψt−1) = yt − E (µSt |Ψt) − φ1E
(
yt−1 − µSt−1 |Ψt

)
. (3.7)

The above expression may be interpreted as the forecast error.

2.2 Concordance Measure
The recursive estimation process (Hamilton, 1994) generates the prob-

ability that a particular month is in high volatility or low volatility state.
Using these probability state estimates we form the concordance statis-
tics. Here is the brief description of this new statistic. Concordance
measure is a non-parametric statistic, first proposed by Harding and
Pagan (1999) and later extended by McDermott and Scott (1999) for
its distributional properties. This statistic has been successfully applied
in studies of co-movement of prices in seemingly unrelated commodities,
e.g. Cashin, McDermott, and Scott (1999). The concordance statistic
between the two series, xi and xj is defined by,

Ci,j = T−1

{
T∑

t=1

(Si,tSj,t) + (1 − Si,t) (1 − Sj,t)

}
, (3.8)

where T is the number of observations in each series, Si,t is a binary
variable taking on the value 0 when the corresponding value of xi is be-
low a certain reference level, otherwise it is 1. Similarly, Sj,t is defined.
In this chapter we are dealing with the probability series, we choose
0.25 as a reference value. This implies that when the estimated state
probability is less than 25% we consider it low and assign 0 to the cor-
responding S variable. In order to make statistical significance test of
the computed concordance statistic between two series, Cashin, McDer-
mott, and Scott (1999) propose and carry out simulation experiment to
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establish validity of their approach. We follow that guideline and com-
pute the critical values of the concordance statistic for 10%, 5%, and
1% level of significances under the assumption that a Brownian motion
without a drift has generated the probability state realizations. The ap-
plication of Markov switching model fitted to the stock return process
makes this a valid assumption. The relevant critical values are included
in the table describing the concordance matrix of the seven series under
investigation.

3. Data
This study uses data on the monthly stock prices of the G7 countries,

i.e. Canada, France, Germany, Italy, Japan, the UK, and the USA. The
data were taken from the International Financial Statistics of the Inter-
national Monetary Fund. The sample period spans the approximately
30-year period from January 1970 through March 1999. The rate of re-
turn is calculated as Rt = 100× (Pt −Pt−1)/Pt−1, where Pt is the stock
price index at time t. Thus, the stock returns are obtained for the pe-
riod between February 1970 and March 1999. Table 3.1 gives statistics
summarizing the national stock market return in each country. The ta-
ble includes descriptive statistics such as the mean, standard deviation
(Std. Dev.), skewness, kurtosis, and the P−value of the Jarque-Bera
test (JB test). The hypothesis of normal distribution is rejected at the
5% (1%) level of significance if the P−value for the JB-test is less than
0.05 (0.01). In Table 3.2 we include the correlation among these national
stock market returns. Table 3.1 clearly shows that France, the UK, and
Italy are relatively high risk and high return countries, whereas Canada,
Germany, and Japan are relatively low risk and low return countries.
The hypothesis of normal distribution is rejected at the 1% significance
level for all of the countries.

4. Empirical Results
The parameter estimates of the Markov switching heteroskedasticity

models are given in Table 3.3. The estimates of the transition proba-
bility of both p11 (low variance state) and p22 (high variance state) are
significant at the 1% level for all of the data sets. The p11 estimates are
higher than the p22 estimates for all of the G7 countries except Japan.

The variance estimates in the low volatility state are much lower than
the corresponding estimates in the high volatility state. Though all
variance estimates are statistically significant, those in the high volatility
state for France and the UK are much higher than those for the other
G7 members. This confirms the conclusion of Schaller and Van Norden
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Table 3.1. Summary statistics on stock return

Canada France Germany Italy Japan UK USA

Mean 0.6636 0.9640 0.6302 0.9556 0.6382 0.9571 0.8517
Std. Dev. 4.8020 6.9157 4.8397 6.3748 4.2285 5.1632 3.6323
Skewness -0.6382 0.9685 -0.5094 0.2674 -0.1959 1.2558 -0.4279
Kurtosis 5.9324 12.3093 5.1450 3.6035 3.7579 16.9842 4.8675
JB test 0.0000 0.0000 0.0000 0.0087 0.0050 0.0000 0.0000

Note: The hypothesis of normal distribution is rejected at the 5% (1%) level of significance
if the P−value for the JB test is less than 0.05 (0.01).

Table 3.2. Correlation of stock returns

Canada France Germany Italy Japan UK USA

Canada 1.0000 0.4221 0.3877 0.2149 0.2730 0.3378 0.5897
France 1.0000 0.4294 0.1829 0.1847 0.2278 0.3173
Germany 1.0000 0.2914 0.2515 0.3355 0.4242
Italy 1.0000 0.2423 0.3629 0.3225
Japan 1.0000 0.3545 0.3788
UK 1.0000 0.5642
USA 1.0000

(1997) on the US stock market and applies to other members of the G7 as
well. The means in the low volatility state range from a low of −0.4504
for Italy to a high of 1.1520 for UK, and these values are significant
at the 1% level for all countries except Italy. The mean in the high
volatility state is only significant at the 5% level for Italy. Notice that
all of the countries except Italy have higher return in the low volatility
state. This is consistent with the findings of Chu et al. (1996).

Table 3.4 provides some diagnostics of the empirical results. As the
table shows, neither the null hypothesis of no autocorrelation (in both
the standardized residual and squared standardized residual) nor the
null hypothesis of normality is rejected for any of the seven countries
at the 1% significance level. These results are very encouraging and
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Table 3.3. Parameter estimates: Markov switching heteroscedasticity model of stock
return

Canada France Germany Italy

p11 0.9593∗∗ 0.9735∗∗ 0.9632∗∗ 0.8427∗∗

(0.0203) (0.0521) (0.0252) (0.1199)
p22 0.8402∗∗ 0.6493∗∗ 0.9080∗∗ 0.8182∗∗

(0.0709) (0.1503) (0.0620) (0.1252)
σ2

1 12.7513∗∗ 27.6203∗∗ 12.7855∗∗ 15.0558∗∗

(1.4493) (3.6934) (1.9127) (4.2326)
σ2

2 62.0948∗∗ 317.8201∗ 49.7709∗∗ 59.9137∗∗

(13.8951) (151.7166) (11.1484) (10.0798)
µ1 1.0239∗∗ 1.0248∗∗ 0.7720∗∗ -0.4504

(0.2389) (0.3305) (0.2699) (0.5863)
µ2 -0.8325 0.1402 0.3004 2.6457∗∗

(1.1027) (0.7428) (0.9785) (1.0183)
φ1 0.0041 0.0521 0.0704 0.2519∗∗

(0.0437) (0.0613) (0.0557) (0.0564)

Japan UK USA

p11 0.9809∗∗ 0.9893∗∗ 0.8555∗∗

(0.0142) (0.0084) (0.0599)
p22 0.9906∗∗ 0.8509∗∗ 0.5372∗∗

(0.0089) (0.1165) (0.1480)
σ2

1 5.5655∗∗ 14.7712∗∗ 5.6962∗∗

(0.8346) (1.3439) (0.7759)
σ2

2 22.5227∗∗ 143.7775∗ 31.9665∗∗

(2.5471) (57.2016) (7.3916)
µ1 1.0259∗∗ 1.1520∗∗ 1.1024∗∗

(0.3134) (0.2842) (0.2329)
µ2 0.4167 -2.2098 0.0017

(0.4793) (3.4521) (0.0630)
φ1 0.3043∗∗ 0.2258∗∗ 0.2502∗∗

(0.0519) (0.0494) (0.0468)

Note: The parameters are described in text. Standard errors are given in parentheses below
the parameter estimates. Significance at the 1% level is indicated by ∗∗ and at the 5% level
is indicated by ∗.

strongly support the empirical results obtained in Table 3.3, as well as
the modeling approach adopted in this chapter.
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Table 3.4. Diagnostics using standardized returns from Markov switching het-
eroscedasticity model

Canada France Germany Italy Japan UK USA

LB (16) 0.789 0.107 0.416 0.045 0.673 0.030 0.615
LB2 (16) 0.048 0.984 0.485 0.381 0.512 0.924 0.187
JB test 0.344 0.064 0.219 0.318 0.623 0.412 0.033

Note: LB (16) and LB2 (16) are the Ljung-Box tests of order 16 using standardized residuals
and squared standardized residuals respectively. The JB test is for normality obtained from
Jarque-Bera statistic. Entries represent corresponding P−values. For LB (16) test, P−value
less than 0.05 (0.01) implies that the hypothesis of white noise is rejected at the 5% (1%) level
of significance. Similarly, for LB2 (16) remaining no ARCH effect is rejected for P−value less
than 0.05 (0.01) at the 5% (1%) level of significance. The hypothesis of normal distribution
is rejected at the 5% (1%) level of significance if the P−value for the JB-test is less than 0.05
(0.01).

Table 3.5. Estimated Markov probabilities of staying in the same state for the G7
countries

Canada France Germany Italy Japan UK USA

Regime 1 0.9593 0.9735 0.9632 0.8427 0.9809 0.9893 0.8555
Regime 2 0.8402 0.6493 0.9080 0.8182 0.9906 0.8509 0.5372

Note: Regime 1 represents the low variance state and the regime2 represents the high variance
state.

Table 3.5 highlights the estimated Markov probabilities that the mar-
kets in the G7 countries will stay in the same states. The probability
of staying in regime 1, i.e. the low volatility state, is very high for all
G7 members. The probability of staying in regime 2, the high volatility
state, appears to be relatively low for six of the G7 countries, that is,
all of them but Japan. Japan has the highest propensity to remain in
the high volatility state once it enters that state. The probability of
staying in regime 2 is the lowest for the US market, followed by France.
If the current month falls inside the low variance state, the probability
of remaining in the same state the next month is very high for all of the
countries but Japan. Again, to the best of our knowledge, this obser-
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Table 3.6. Correlation statistics between probability of high variance state

Canada France Germany Japan Italy UK USA

Canada 1.0000 0.3208∗ 0.0288 0.1981∗ -0.0857 0.4819∗ 0.6012∗

France 1.0000 0.1836∗ 0.2736∗ 0.0143 0.4115∗ 0.3287∗

Germany 1.0000 0.2662∗ 0.4352∗ 0.1236∗ 0.1318∗

Japan 1.0000 -0.0279 0.2306∗ 0.1765∗

Italy 1.0000 0.1800∗ 0.0651
UK 1.0000 0.5301∗

USA 1.0000

Note: Critical value for individual correlation at 5% level significance is 0.1049 (indicated with

*). This is calculated as 1.96/
√

N , where N is the number of observations. Test statistic
for significance as a group is 549.82. This is computed as −2 ln(|R|)0.5N , where R is the
correlation matrix. The critical value for the group statistic is obtained from a Chi-squared
distribution with degrees of freedom 0.5p(p − 1), where p is the number of series, and at 5%
level this is 32.67.

Table 3.7. Concordance statistics between probability of high variance state

Canada France Germany Japan Italy UK USA

Canada 1.0000 0.7794∗ 0.6132∗ 0.5158 0.3696 0.8138∗ 0.7994∗

France 1.0000 0.6619∗ 0.4499 0.3553 0.8968∗ 0.7507∗

Germany 1.0000 0.5072 0.6132∗ 0.6676∗ 0.6189∗

Japan 1.0000 0.4527 0.4499 0.5158
Italy 1.0000 0.3897 0.4269
UK 1.0000 0.7794∗

USA 1.0000

Note: The critical values are computed following McDermott, and Scott (1999) under the
assumption that a Brownian motion without a drift has generated the realizations of the
state probabilities. These values are 0.5456, 0.5636 and 0.5949 for 10% (∗∗∗), 5% (∗∗) and
1% (∗) level of significances.

vation of the behavior of national stock markets has not been reported
earlier.

Table 3.6 shows the correlations between the probabilities of high vari-
ance states. The analysis using probabilities of low volatility states will
produce the same result. This occurs because these two probabilities
for a particular month add up to one. Individual cross-correlations ex-
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ceeding 0.1049 in magnitude are significant at the 5 percent level. As
the table clearly shows, 16 out of 21 correlations satisfy this criterion:
the USA is correlated with Canada, France, Germany, Japan, and the
UK; the UK is correlated with Canada, France, Germany, Japan, Italy,
and the USA; Italy is correlated with Germany; Japan is correlated with
Canada, France, and Germany; Germany is correlated with France; and
France is correlated with Canada.

Table 3.7 shows the concordance statistics. The (i, j)−th cell rep-
resents concordance between the i−th and j−th countries. Thus, the
numbers along with the diagonal are unity. For all the combinations, 11
statistics are significant at the 1 percent level. The highest concordance,
0.8968, is recorded between the UK and France, and this is significant
at the 1 percent level. This high concordance indicates that the stock
prices of the two countries are in the same phase most of the time. By
comparing the results in Table 3.6 and Table 3.7, we see that the two
measures support quite discrepant conclusions on co-movement. For ex-
ample, it would appear that some of the significant correlations in the
case of the UK and USA are not supported by the concordance statistics.
Similarly, the significant correlations in the case of Japan do not consti-
tute evidence of phase synchronization among Japan, Canada, France,
and Germany. The underlying reason could be the different economic
forces at play in these markets. The overall evidence suggests that inter-
national co-movement in equity markets, at least in these G7 economies,
is doubtful and requires further exploration.

5. Conclusion
This chapter enhances the investigation of international linkages in

stock markets by focusing on the information dependence between the
markets. The characteristics of the monthly stock market return from
G7 countries are first captured in a Markov switching framework. Al-
though the traditional notion of volatility clustering is less predominant
in the monthly frequency, volatility clustering is likely to represent a
mixture of distribution. Accordingly, this study adopts an approach
that allows both the mean and variance to depend on an unobserved
state driven by a Markov process. The efficacy of this model to capture
the monthly stock return characteristic is illustrated by the diagnostics
of the standardized residuals.

The results show that the low variance states are quite stable, whereas
the high variance states are relatively short-lived. Thus, if the current
month falls inside the low variance state, the probability of remaining in
the same state the next month is very high. Among the seven countries,
it is also interesting to note that the USA has the lowest propensity to
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stay in the high volatility state once already in that state, whereas the
Japanese market has the highest propensity to stay in the high volatility
state. Moreover, the magnitude of the variance in the high variance
state is several times higher than that in the low variance state for all
the markets.

When we defined co-movements in terms of concordance, i.e. the
proportion of time that stock prices are in the same state, we do not
find clear evidence that international stock prices move together. This
is consistent with Ahlgren and Antell (2002). The underlying reason
could be the different economic forces at play in these markets. The
overall evidence suggests that international co-movement in equity mar-
kets, at least in these G7 economies, is doubtful, and requires further
exploration.1
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Notes
1 This chapter is an edited version of Bhar and Hamori (2003b) with

permission from Finance Letters.

APPENDIX 3.A
Data

The stock price indices are obtained from the International Financial Statistics of
the International Monetary Fund. The series code of stock price index in each country
is shown as follows:

Canada: 15662...ZF
France: 13262...ZF
Germany: 13462...ZF
Italy: 13662...ZF
Japan: 15862...ZF
UK: 11262...ZF
USA: 11162...ZF
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Chapter 4

INTERPLAY BETWEEN INDUSTRIAL
PRODUCTION AND STOCK MARKET

1. Introduction
Extensive studies have focused on the empirical regularity in the de-

gree of correlations and related issues between different equity markets.
These studies have provided insight into the nature of comovements
across markets and what might be driving this phenomenon. Baca et
al. (2000) ascribe the phenomenon to the global industry factor. Brooks
and Del Negro (2002) find that there may be only one industry factor
(high technology) that might explain this notion. They also demonstrate
that this might be a temporary phenomenon, as country-based diversi-
fication appears to have remained effective for portfolio risk since the
collapse of the technology bubble.

In studies adopting a slightly different focus, researchers such as Kasa
(1992) and Engsted and Lund (1997) rely on the results from cointe-
gration tests in international equity prices. They also examine whether
the underlying dividend process can explain this cointegrating behavior.
Although the return patterns from these markets can differ in the short
term, cointegrating behavior would suggest that they are closely linked
over the long term. In a paper stressing the unlikelihood of cointegrat-
ing behavior from the perspective of economic theory, Richard (1995)
proves that Kasa’s (1992) finding may result from the inappropriate use
of critical values in their statistical tests.

In this chapter we attempt to explore the phenomenon of comove-
ment among the G7 equity markets from a different perspective. We
make use of a concordance measure to document whether any of these
markets tend to be in phase with the equivalent volatility state of the
economy. Specifically, our analysis focuses on the G7 markets over a
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30-year period at a monthly frequency. The first step in our approach
is to model the interaction between the state of the economy and the
stock market. This stems from the work of Hamilton and Lin (1996) and
Chauvet (1998/1999), who demonstrate important relationships between
stock markets and business cycle variables such as industrial production.
Once equipped with our model, we can develop a probabilistic picture
of whether a particular month is in the state of expansion or contrac-
tion. We then utilize this information and apply the concordance mea-
sure (Harding and Pagan, 1999) to capture the likelihood that the stock
markets are in the same phase. Our results show that not all the G7
economies are commoving in this respect.

In modeling stock return and return volatility, the return volatility
can be forecasted though the return itself cannot. Another important
point to recognize is the dynamic relationship between the stock market
and business cycle observed by Chauvet (1998/1999) in his attempts to
anticipate turning points in the business cycle using stock market factors
in a dynamic factor framework at a monthly frequency.

As large changes in volatility may alarm investors and adversely in-
fluence their investment behavior, many investigators have sought to
capture the patterns of stock return volatility. Several studies have ap-
plied time-varying conditional moments to capture such stylized facts.
ARCH and GARCH models have been popular for this purpose, and
Nelson (1991) and Glosten, Jagannathan and Runkle (1993) have pro-
posed a variation of the GARCH model to capture asymmetries in stock
return and stock index return.

Schwert (1989, 1990) focuses on two major aspects of stock market
volatility, namely changes in stock price volatility over time and the eco-
nomic factors related to significant changes in stock price volatility over
time. Based on an analysis of 105 years of stock price history, Schwert
(1989) reports that the greatest single-day decline took place on Octo-
ber 19, 1987, while almost all other large declines took place from 1929
to 1939. Schwert also finds weak evidence that financial and operating
leverage measures are positively correlated with stock market volatility.
His findings additionally demonstrate that stock return volatility rises
during periods of recessions, and a similar analysis by Jones and Wil-
son (1989) demonstrates that the modeled volatility during the 1980s
depends on the measures of volatility employed and interval used.

Others have proposed an alternative characterization of volatility
episodes focusing on different regimes in the return generating process.
Cecchetti, Lam and Mark (1990) consider a Lucas asset pricing model
where the economy’s endowment switches between high- and low-growth
phases. In doing so, they demonstrate that such switching in fundamen-



Chapter 4 57

tals can explain several features of stock market return. Chu, Santoni
and Liu (1996) adopt a two-stage process to describe the return behavior.
In the first stage the stock return is modeled as a Markov switching pro-
cess, and in the second a volatility equation is estimated using different
return regimes derived from the first stage. They find evidence of higher
volatilities when the returns are either above or below some ”normal’”
level. In a multivariate extension of the regime switching approach,
Schaller and Van Norden (1997) show that the response of returns to
the past price-dividend ratio in the US is strongly asymmetric. More
specifically, they showed that the impact of the past price-dividend ratio
is about four times larger in the low-return state than in the high-return
state.

Thus, regime switching behavior is now well established as a viable
method to analyze stock market behavior. As a natural extension of the
most commonly applied stock return model (GARCH), Hamilton and
Susmel (1994) propose a switching ARCH model in which the parameters
of the ARCH process can be drawn from one of several different regimes.
Although the ARCH process controls the short-run dynamics, the long-
run dynamics are governed by regime shifts in unconditional variance,
and an unobserved Markov switching process drives the regime changes.
When these authors apply the model to weekly return data, the ARCH
effects almost completely fade away after a month. This suggests that
no ARCH term is necessary in modeling the monthly return.

Hamilton and Lin (1996) adopt the switching ARCH structure of
Hamilton and Susmel (1994) to characterize the stock return process.
They enhance the model to a bivariate system where a relevant macro-
economic variable is used as a determinant of stock market volatility.
They propose that an unobserved Markov switching variable drives the
learning process of the market participants and thereby affects the indus-
trial output and stock market with a time lag. This joint specification
does a credible job in capturing the behavior of the stock market volatil-
ity when applied to US data at the monthly frequency.

In this chapter we adopt Hamilton and Lin’s (1996) basic precept
that the anticipation of an economic downturn affects the stock market
before the industrial output actually starts to decline. At the same
time, we presume that most of the ARCH effect would fade away at
monthly frequency, as suggested by Hamilton and Susmel (1994), and
therefore model the conditional heteroskedasticity directly in the Markov
switching framework. Kim, Nelson and Startz (1998) also demonstrate
good fitting of Markov switching variance model to monthly stock return
data.
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Moving forward with the above ideas described by Hamilton and Lin
(1996) and Kim, Nelson and Startz (1998), we set up a bivariate frame-
work for the growth in industrial production and stock return and extend
the results of Hamilton and Lin to all the G7 countries using more re-
cent data. As a result, we find a similar yet varying interaction between
the two variables. Our work then extends to analyzing comovement
in these stock markets using a new statistical measure of concordance.
Specifically, we measure whether the state probabilities of being in the
expansionary phase coincide in these markets. Within the same experi-
mental framework, we can use the estimated model parameters to check
whether the three-month ahead expectations of the state probabilities
are in phase.

2. Markov Switching Heteroscedasticity Model of
Output and Equity

We discuss the joint modeling of the industrial output and the equity
market return in this section following Hamilton and Lin (1996). We
present a simplified exposition of the generalized version of Hamilton and
Lin (1996) along with our changes to the excess equity return process.
We have endeavored to present the essential concepts in such a way that
it can be easily applied to other similar situations as well as help develop
the algorithm using a suitable computer language.

The main hypothesis in this chapter concerns the delayed impact of
upswing and downswing of industrial output on the volatility of equity
return. It is assumed that an unobserved two-state Markov switching
process drives these variables. The impact of this Markov variable, how-
ever, is not contemporaneous and there is a lag of one time period.
In other words, the impact of increasing industrial output this period,
for example, during economic expansion will be transmitted to the eq-
uity market volatility next period. Let yt represent the growth rate of
industrial output and its dynamics consist of two components - an au-
toregressive component and an economic state dependent mean term.
We express this as,

yt = a1zt−1 + µS,t−1 + et, (4.1)

where, zt−1 = yt−1 − µS,t−2, et ∼ N(0, σ2
y) is the error term with time

invariant variance. The economic state dependent mean component is
captured by µS,t, where,

µS,t =

{
µ1, St = 1,

µ2, St = 2,
(4.2)
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and we may associate St = 1 with the state of economic slowdown and
St = 2 with the state of economic expansion.

We next express the excess equity market return as an autoregressive
process with Markov switching variance, as,

xt = α0 + α1xt−1 + νt, νt ∼ N(0, σ2
S,t), (4.3)

where,

σ2
S,t =

{
σ2

1, St = 1,

σ2
2, St = 2.

(4.4)

Our model of the equity excess return is different from that employed
by Hamilton and Lin (1996) and this is explained below. Since we pro-
pose to carry out the empirical investigation using monthly data it is
more appropriate to model the volatility process as consisting of differ-
ent regimes rather than an ARCH process. Hamilton and Lin (1996)
also reinforce our observation and state that ARCH terms could not be
estimated from the monthly data for their model.1

The bivariate model of the industrial production and the excess re-
turn given by equations (4.1) and (4.3) respectively may be estimated by
constructing the probability weighted conditional density function. To
achieve this we need to specify the probability law governing the evolu-
tion the Markov switching variable. We define the transition probability
of the Markov chain defined by St as below:

[
p11 1 − p22

1 − p11 p22

]
. (4.5)

It may be observed from equation (4.1) and (4.3) that we need to
carry information of the Markov switching variable St, for three time
periods at any one time i.e. for the time periods, t−2, t−1, and t. This
implies that there are eight relevant states that are of importance to
this bivariate system. We can define them as a set of eight combinations
where the ordering of the state occurrences of 1 or 2 reflects the time
steps t − 2, t − 1, and t respectively:

{1, 1, 1} , {1, 1, 2} , {1, 2, 1} , {1, 2, 2} ,

{2, 1, 1} , {2, 1, 2} , {2, 2, 1} , {2, 2, 2} . (4.6)

With the help of (4.5) it is now possible to represent the transition
probability matrix of the eight- state Markov chain in (4.6) as,
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P =



p11 0 0 0 p11 0 0 0
1 − p11 0 0 0 1 − p11 0 0 0

0 1 − p22 0 0 0 1 − p22 0 0
0 p22 0 0 0 p22 0 0
0 0 p11 0 0 0 p11 0
0 0 1 − p11 0 0 0 1 − p11 0
0 0 0 1 − p22 0 0 0 1 − p22

0 0 0 p22 0 0 0 p22


.

(4.7)

Before we can apply the probability weighting to the conditional den-
sity function we describe the structure of the bivariate density of the
model. We can rewrite equation (4.1) as,

et = (yt − a1yt−1) − (µS,t−1 − a1µS,t−2) , (4.8)

and equation (4.3) as,

νt = xt − α0 − α1xt−1. (4.9)

The variance of equation (4.8) is time invariant and that of equation
(4.9) is state dependent as described earlier. Both these are condition-
ally normal and uncorrelated. It is, therefore, straightforward to write
the conditional density function given the parameters and the states as
the product of the two normal densities. We then multiply the condi-
tional densities for different states by the corresponding probabilities of
the states and sum them to obtain the likelihood function. It is this
likelihood function we maximize with respect to the parameters of the
model. The algorithm is described in detail in Hamilton (1994, chapter
22) and Kim and Nelson (1999, chapter 4). The unknown parameters of
the model include, Θ ≡

(
a1, µ1, µ2, σ

2
y , α0, α1, σ

2
1, σ

2
2, p11, p22

)
.2

In order to understand the effectiveness of the model we further carry
out diagnostics using standardized residual from the excess return equa-
tion. This is generated as follows. From the estimated filtered probabil-
ities we can define,

E
(
ν2

t |xt−1, xt−2, ...
)

= σ2
1 × Pr (St = 1 |xt−1, xt−2, ...)

+σ2
2 × Pr (St = 2 |xt−1, xt−2, ...) . (4.10)
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Using equation (4.10) and the excess return residual defined by equa-
tion (4.9), we construct the standardized residual series and test for
correlation in the level as well as in squared series. These tests are
discussed in the empirical results section.

As is explained in Chapter 3, The recursive estimation process gen-
erates the probability that a particular month is in high volatility or
low volatility state. Using these probability state estimates we form the
concordance statistics. The concordance statistic between the two series,
xiand xj is defined by,

Ci,j = T−1

{
T∑

t=1

(Si,tSj,t) + (1 − Si,t) (1 − Sj,t)

}
, (4.11)

where T is the number of observations in each series, Si,t is a binary
variable taking on the value 0 when the corresponding value of xi is be-
low a certain reference level, otherwise it is 1. Similarly, Sj,t is defined.
This measure is different from correlations since that is influenced by
the magnitude of the variable, whereas here the emphasis is on being in
the same phase in some meaningful way. In this chapter since we are
dealing with the probability series, we choose 0.50 as a reference value.
This implies that when the estimated state probability is less than 50%
we consider it low and assign 0 to the corresponding S variable. In order
to make statistical significance test of the computed concordance statis-
tic between two series, Cashin, McDermott, and Scott (1999) propose
and carry out simulation experiment to establish validity of their ap-
proach. We follow that guideline and compute the critical values of the
concordance statistic for 10%, 5%, and 1% level of significances under
the assumption that a Brownian motion without a drift has generated
the probability state realizations. The application of Markov switching
model fitted to the stock return process makes this a valid assumption
in our model.

We are not only interested in finding whether the probability of be-
ing in a particular volatility state is in phase, we would also like to
explore whether the expectation of such volatility states are in phase a
few months ahead. The Markov model structure allows us to investi-
gate this relatively easily. Given the current state probabilities we could
form the expectation for k period ahead using the estimated transition
probabilities. The following equation captures this relationship:

Pr (St+k = 1|�t) =
[

1 0
] [

p11 1 − p22

1 − p11 p22

]k [
Pr (St = 1|�t)
Pr (St = 2|�t)

]
,

(4.12)
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Table 4.1. Summary statistics: monthly excess return

Canada France Germany Italy Japan UK USA

Mean (%) 0.4437 0.6583 0.5922 0.3368 0.5370 0.6339 0.5926
Std. Dev. 5.0066 6.1178 5.3756 7.3216 5.4592 6.2581 4.4140
Skewness -0.4206 -0.0941 -0.3232 0.4601 -0.0431 1.3837 -0.3168
Kurtosis 5.3067 4.0583 4.8181 3.8929 4.1826 18.2241 5.3182
JB test 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

Note: The hypothesis of normal distribution is rejected at the 5% (1%) level of significance
if the P−value for the JB test is less than 0.05 (0.01).

where, �t is the information available at time t.

3. Data
We use monthly data on industrial production indices and stock re-

turns in the G7 countries, i.e. Canada, France, Germany, Italy, Japan,
the UK, and the USA. The sample period runs from January 1971
through June 2000, and thus includes 354 observations for each sample.
Our data set covers more of recent years compared to that in Hamilton
and Lin (1996), though it also starts a few years later. The industrial
production indexes are seasonally adjusted data from the International
Financial Statistics provided by the International Monetary Fund. The
growth rate of the industrial production index is used for empirical re-
search. The stock returns are obtained from the Morgan Stanley Capital
International (MSCI) Index. The MSCI takes into consideration both
capital gain and dividend income, and is thus appropriate for our anal-
ysis. Stock returns are calculated as the growth rate of the MSCI index.
Nominal short-term interest rates are also obtained from the Interna-
tional Financial Statistics of the International Monetary Fund. The
excess stock return is calculated from the growth rate of the MSCI in-
dex and the nominal short-term interest rate. Further details on our
data sources are given in the appendix.

Tables 4.1 and 4.2 summarize the monthly excess returns and the
monthly growth rates of industrial production indexes in the G7 coun-
tries. The figures given are means expressed percentages, standard devi-
ations (Std. Dev.), skewness, kurtosis, and the P−value of Jarque-Bera
test statistics (JB test) for testing normality of the series. Under the null
hypothesis, the Jarque-Bera statistic has a chi-square distribution with
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Table 4.2. Summary statistics: monthly industrial production growth

Canada France Germany Italy Japan UK USA

Mean (%) 0.2444 0.1670 0.1383 0.1993 0.2307 0.1287 0.2585
Std. Dev. 1.3008 1.4602 1.7668 2.5404 1.5603 1.5487 0.7831
Skewness 0.5135 0.0580 0.2522 0.0060 -0.0555 0.1147 -0.8284
Kurtosis 6.7899 4.4421 10.2027 5.8543 3.2803 12.6923 7.3010
JB test 0.0000 0.0000 0.0000 0.0000 0.5115 0.0000 0.0000

Note: The hypothesis of normal distribution is rejected at the 5% (1%) level of significance
if the P−value for the JB test is less than 0.05 (0.01).

two degrees of freedom. When the reported probability for the Jarque-
Bera statistic is small, the null hypothesis of a normal distribution is
rejected.

As seen in Table 4.1, the lowest mean excess return is found Italy
(0.3368) and the highest is found in France (0.6583). However, the
highest standard deviation in excess return is observed in Italy (7.3216)
whereas the lowest one is found in the USA (4.4140). The null hypoth-
esis of normal distribution in excess equity return is rejected for every
country.

Turning to the descriptive statistics of the growth of industrial pro-
duction in Table 4.2, the highest mean is recorded in the USA (0.2585)
and the lowest is recorded in the UK (0.1287). The standard deviation
in the growth of industrial production is the lowest in the USA (0.7831)
and the highest in Italy (2.5404). Interestingly, the null hypothesis of
normal distribution in the growth of industrial production is rejected for
all countries except Japan.

4. Empirical Results
In table 4.3 we show the maximum likelihood estimates of the model

given by equations (4.1) through (4.4) along with the transition prob-
abilities defined by equation (4.5).3 During the periods of contraction
(St = 1), the mean growth of industrial production falls by 1.01% each
month for the USA. The corresponding figures for Canada and France
are 0.69% and 1.56%, respectively. The parameter µ1 is not significant
for Germany, Italy, Japan, or the UK at the 5% significance level. This
indicates zero growth in industrial production during the downturns in
these four countries.
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Table 4.3. Parameter estimates: bivariate Markov switching heteroscedasticity
model of output and equity

Canada France Germany Italy

a1 -0.2258∗∗ -0.4532∗∗ -0.4022∗∗ -0.4209∗∗

(0.0548) (0.0518) (0.0490) (0.0484)
µ1 -0.6939∗∗ -1.5652∗∗ 0.2086 0.0711

(0.1817) (0.4272) (0.1275) (0.1759)
µ2 0.4065∗∗ 0.2805∗∗ 0.1025 0.3245∗

(0.0627) (0.0578) (0.0823) (0.1585)
σ2

y 1.4603∗∗ 1.5176∗∗ 2.6177∗∗ 5.2768∗∗

(0.1170) (0.1439) (0.1972) (0.3997)
α0 0.7544∗∗ 0.6477∗ 0.4621 0.0714

(0.2324) (0.3105) (0.2545) (0.6830)
α1 -0.0267 0.0530 0.0469 0.0783

(0.0492) (0.0503) (0.0530) (0.0562)
σ2

1 82.0369∗∗ 150.6109∗∗ 56.2699∗∗ 83.2761∗∗

(18.5777) (56.1026) (9.9937) (16.7178)
σ2

2 15.2857∗∗ 29.4379∗∗ 14.8588∗∗ 26.4668∗∗

(1.4262) (2.7362) (2.1981) (6.7655)
p11 0.8303∗∗ 0.3555∗ 0.9486∗∗ 0.8691∗∗

(0.0638) (0.1810) (0.0321) (0.0840)
p22 0.9706∗∗ 0.9563∗∗ 0.9747∗∗ 0.8834∗∗

(0.0131) (0.0207) (0.0180) (0.0612)

Japan UK USA

a1 -0.2861∗∗ -0.1747∗∗ 0.2210∗∗

(0.0512) (0.0528) (0.0604)
µ1 0.1387 -0.2114 -1.0194∗∗

(0.0808) (0.3262) (0.1727)
µ2 0.4314∗∗ 0.1708∗ 0.4068∗∗

(0.1289) (0.0763) (0.0483)
σ2

y 2.2174∗∗ 2.3003∗∗ 0.4009∗∗

(0.1677) (0.1746) (0.0329)
α0 0.5813∗ 0.7110∗∗ 0.8167∗∗

(0.2365) (0.2630) (0.2194)
α1 0.0222 0.0275 -0.0643

(0.0577) (0.0606) (0.0540)
σ2

1 40.4185∗∗ 153.0646∗∗ 66.5685∗∗

(4.9706) (44.8695) (16.8037)
σ2

2 7.1741∗∗ 20.2164∗∗ 14.1243∗∗

(1.9494) (1.9383) (1.2891)
p11 0.9656∗∗ 0.8372∗∗ 0.7657∗∗

(0.0201) (0.0858) (0.0797)
p22 0.9261∗∗ 0.9827∗∗ 0.9736∗∗

(0.0350) (0.0110) (0.0107)

Note: The parameters are described in the text. Standard errors are given in parentheses
below the parameter estimates. Significance at the 1% level and 5% level is respectively
indicated by ∗∗ and ∗.
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The parameter µ2 implies the mean growth rate during periods of
expansion (St = 2). Japan has the highest value, at 0.43% monthly, but
those of the USA and Canada trail behind by only a very small margin,
at 0.41% each. The mean growth is also significantly positive for France
(0.28%), Italy (0.32%) and the UK (0.17%). In the case of the last
country, Germany, the model is unable to differentiate the mean growth
of industrial production during the expansionary phase. Focusing on
the variances in the excess stock return during the two phases, we note
that the variance during the contraction of industrial production is much
higher than that during expansionary phases in all of the G7 countries..
The ratio of σ2

1 to σ2
2 ranges from a low of 3.79 for Germany to a high of

7.57 for the UK. The ratios for Canada and the USA are 4.42 and 4.71,
respectively. Thus, the unpredictable component of the excess stock
returns in regime 1 can be concluded to have a variance threefold higher
than that in regime 2 for all the G7 countries.

Next, we analyze the persistence of each regime based on the esti-
mated parameters. Each regime appears highly persistent. The param-
eter p11, the probability that a month of depression will be followed
by another month of contraction, is 83% for Canada, 35% for France,
95% for Germany, 87% for Italy, 97% for Japan, 84% for the UK, and
77% for the USA. This regime will persist on average for 1/(1 − p11)
months, i.e. for about 5.89 months for Canada, 1.55 for France, 39.53
for Germany, 7.64 for Italy, 29.07 for Japan, 6.14 for UK, and 4.27 for
the USA. Interestingly, France had the lowest the average duration per
economic depression, followed by the USA. Germany had the highest
average duration.

Following the same argument as above, the parameter p22 expresses
the probability that a month of expansion will be followed by another
month of expansion. The values here are 97% for Canada, 96% for
France, 97% for Germany, 88% for Italy, 93% for Japan, 98% for the
UK, and 97% for the USA. An economic upturn will typically persist
for 1/(1 − p22) months, i.e. about 34.01 for Canada, 22.88 for France,
39.53 for Germany, 8.58 for Italy, 13.53 for Japan, 57.80 for the UK, and
37.88 for the USA. When the G7 countries enter expansionary phases,
apparently the duration of expansion will be briefest in Italy. The UK,
in contrast, will continue expanding for the longest period.

The unconditional probability that an economy will be in state 1 at
any time can be calculated as Pr(St = 1) = (1−p22)/(2−p11−p22).4 The
maximum likelihood estimates in table 4.3 show this probability to be
14.8% for Canada, 6.3% for France, 67% for Germany, 47.1% for Italy,
68.2% for Japan, 9.6% for the UK, and 10.1% for the USA. Thus, Ger-
many, Italy, and Japan are the mostly likely to be in the contractionary
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Table 4.4. Diagnostics using standardized residuals from excess return equation

Canada France Germany Italy Japan UK USA

LB (36) 0.444 0.862 0.606 0.570 0.352 0.604 0.702
LB2 (36) 0.989 0.762 0.265 0.207 0.920 0.314 0.331

Note: LB (36) and LB2 (36) are the Ljung-Box tests of order 36 using standardized residuals
and squared standardized residuals respectively. For LB (36) test, P−value less than 0.05
(0.01) implies that the hypothesis of white noise is rejected at the 5% (1%) level of significance.
Similarly, for LB2 (36) remaining no ARCH effect is rejected for P−value less than 0.05 (0.01)
at the 5% (1%) level of significance.

phase at any given time among the G7 countries. The results also show,
however, that Italy will continue contracting for an average of only 7.64
months, a far shorter duration than the contractions in Germany and
Japan. These peculiarities in the economies analyzed cannot be cap-
tured if only the excess stock return is modeled in a univariate setup.
This becomes useful when we later analyze the concordance measure to
describe the comovement of the stock markets.

We now analyze the model fitting statistics using the data in table 4.4.
This table shows the diagnostics using standardized residuals from the
excess return equation. The entries in the table are the P−values of the
Ljung-Box Q−statistics (Ljung and Box, 1979). The Q−statistic at lag
k is the statistic for the null hypothesis that there is no autocorrelation
up to order k for residuals. LB (36) and LB2 (36) are the P−values of
the Ljung-Box tests of order 36 using standardized residuals and squared
standardized residuals, respectively. We can infer from this table that
the null hypothesis of no autocorrelation up to order 36 is not rejected
for all cases. In other words, the hypothesis of whiteness of the residuals
in both the level and the squared form cannot be rejected. This test
supports our modeling approach in this chapter.

Figures 4.1 through 4.21 show each country’s industrial production
growth, each country’s excess return, and the estimated filtered prob-
ability that the economy of each country is in a state of higher eco-
nomic growth or a relatively lower variance state, i.e. Pr(st+1 =
2|wt, wt−1, · · · , w1) for wt = (yt, xt)′. This corresponds to the probabil-
ity that the industrial production would be in the higher output growth
state at month t+1. This estimate of the volatility state probability is in-
ferred from the joint distribution of the data under the assumption that
an ergodic Markov chain drives its transition from month to month.5
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Figure 4.1. Industrial production growth: Canada
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Figure 4.2. Excess return: Canada
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Figure 4.3. Estimated filtered probability, Pr(St = 2): Canada
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Figure 4.4. Industrial production growth: France
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Figure 4.5. Excess return: France
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Figure 4.6. Estimated filtered probability, Pr(St = 2): France
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Figure 4.7. Industrial production growth: Germany
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Figure 4.8. Excess return: Germany
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Figure 4.9. Estimated filtered probability, Pr(St = 2): Germany
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Figure 4.10. Industrial production growth: Italy
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Figure 4.11. Excess return: Italy
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Figure 4.12. Estimated filtered probability, Pr(St = 2): Italy



Chapter 4 71

-15

-10

-5

0

5

10

15

1975 1980 1985 1990 1995 2000

Figure 4.13. Industrial production growth: Japan
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Figure 4.14. Excess return: Japan
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Figure 4.15. Estimated filtered probability, Pr(St = 2): Japan
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Figure 4.16. Industrial production growth: UK
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Figure 4.17. Excess return: UK
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Figure 4.18. Estimated filtered probability, Pr(St = 2): UK
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Figure 4.19. Industrial production growth: USA
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Figure 4.20. Excess return: USA
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Figure 4.21. Estimated filtered probability, Pr(St = 2): USA
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Table 4.5. Correlation between probabilities of expansion states

Canada France Germany Italy Japan UK USA

Canada 1.0000
France 0.3701∗ 1.0000
Germany 0.0077 -0.0437∗ 1.0000
Italy 0.2085∗ 0.2049∗ -0.2543∗ 1.0000
Japan 0.0627 0.0669 -0.2841∗ 0.1277∗ 1.0000
UK 0.4802∗ 0.3584∗ -0.0944 0.2128∗ 0.1956∗ 1.0000
USA 0.7568∗ 0.3690∗ -0.0593∗ 0.2291∗ 0.0742 0.4369∗ 1.0000

Note: Critical value for individual correlation at 5% level significance is 0.1043 (indicated

with a *). This is calculated as 1.96/
√

N , where N is the number of observations. Test
statistic for significance as a group is 573.10. This is computed as −2 ln(|R|)0.5N , where R
is the correlation matrix. The critical value for the group statistic is obtained from a Chi-
squared distribution with degrees of freedom 0.5p(p−1), where p is the number of series, and
at 5% level this is 32.67.

These figures indicate that there is a close correspondence between the
econometric inference and the actual data process.6

As the figures clearly show, the probabilities that the volatility states
will move, i.e. the probabilities that the economies are in expansionary
phases, differ from country to country. However, these probabilities ap-
pear to move together internationally during three periods, namely, the
periods corresponding to the 1st oil crisis of 1973, the oil crisis of 1979,
and Black Monday in 1987. These are typically observed in the UK and
USA. In contrast to Hamilton and Lin (1996), this model successfully
indicates the high probability that the US economy will enter a reces-
sion just after Black Monday. Only Japan shows a high probability of
economic downturn continuing into the 1990s. This may be due to the
collapse of the stock market bubbles, which increased the likelihood that
the Japanese economy would enter a recession in the 1990s. The proba-
bility of entering a recession is also high in Germany in 1990, the period
of German reunification, and in the late 1990s, a period of recession.

Following from the above graphical analysis, we would like to quantify
the possible comovements in terms of the concordance statistic discussed
earlier. Before doing so, we check the sample correlations between these
probability series given in the Table 4.5. Most of these correlations
are statistically significant, indicating that most of these markets are
in the same volatility state during the sample period. As mentioned
before, the correlation statistics are influenced by the magnitude of the
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Table 4.6. Concordance statistics, probabilities of expansion states or low volatility
states

Canada France Germany Italy Japan UK USA

Canada 1.0000
France 0.8814∗ 1.0000
Germany 0.3729 0.3220 1.0000
Italy 0.6102∗ 0.5876∗∗ 0.3842 1.0000
Japan 0.3672 0.3277 0.5085 0.5198 1.0000
UK 0.8842∗ 0.9181∗ 0.3362 0.6243∗ 0.3814 1.0000
USA 0.9266∗ 0.8983∗ 0.3333 0.6158∗ 0.3503 0.8955∗ 1.0000

Note: The critical values are computed following McDermott, and Scott (1999) under the
assumption that a Brownian motion without a drift has generated the realizations of the
state probabilities. These values are 0.5454, 0.5633 and 0.5944 for 10% (∗∗∗), 5% (∗∗) and
1% (∗) level of significances, respectively. Reference probability 0.50 is used in concordance
statistic.

Table 4.7. Concordance statistics, expected probabilities in three months for expan-
sion states

Canada France Germany Italy Japan UK USA

Canada 1.0000
France 0.1225 1.0000
Germany 0.3675 0.6866∗ 1.0000
Italy 0.6125∗ 0.4131 0.3846 1.0000
Japan 0.3647 0.6781∗ 0.5071 0.5242 1.0000
UK 0.8832∗ 0.0855 0.3305 0.6268∗ 0.3789 1.0000
USA 0.9259∗ 0.1054 0.3276 0.6182∗ 0.3476 0.8946∗ 1.0000

Note: The critical values are computed following McDermott, and Scott (1999) under the
assumption that a Brownian motion without a drift has generated the realizations of the
state probabilities. These values are 0.5454, 0.5633 and 0.5944 for 10% (∗∗∗), 5% (∗∗) and
1% (∗) level of significances, respectively. Reference probability 0.50 is used in concordance
statistic.

observation, whereas the concordance measure better captures whether
the observations are in the same phase in some meaningful way. Both
the Tables 4.6 and 4.7 use 50% probability as the reference point for
the concordance measure, and Germany and Japan are clearly never in
phase, as neither ever show a more than 50% probability of being in
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the same volatility state. This observation is strikingly different from
the correlations measure in table 4.5, which shows that Germany and
Japan are correlated with some of the other markets. Table 4.7 refers
to the expected volatility state, as given by the equation (4.12), and the
message is essentially the same as that of Table 4.6.

5. Conclusion
In this chapter we analyze the question of comovement in stock prices

between the G7 economies with the help of a new statistical measure of
concordance. This allows us to quantify which of these markets are in
phase, in terms of sharing the same volatility state. This is done not
only in the context of the volatility state as inferred from the data, but
also from the expectations of the volatility state predicted by the model
parameters.

The relevant volatility state of the economy is obtained from a bivari-
ate model describing the joint distribution of the stock price and the
industrial production data. Some researchers have previously reported
a causal link between the growth in industrial production and the stock
market volatility for US data. We extend that analysis to all the G7
countries using monthly data spanning the period from January 1971
through June 2000. The basic idea of the model originates from the
work of Hamilton and Lin (1996), who show that the anticipation of
an economic downturn affects stock market returns before the industrial
output actually starts to decline. In the present study we modify their
approach and take the view that most of the ARCH effect fades away
at the monthly frequency. This was suggested by Hamilton and Susmel
(1994), and we model the conditional heteroskedasticity directly in the
Markov switching framework.

This framework does a credible job in capturing the behavior of the
G7 economies over the sample period. The model diagnostics support
our approach and allow us to quantify the differences in stock mar-
ket volatility during the contractionary and expansionary phases of the
economies. We are also able to quantify the likelihood that an economy
will be in a contractionary or expansionary phase, as well as the average
duration of these phases. We find that each phase is highly persistent
among the G7 countries, although there are some variations. We also
identify a relatively high unconditional probability that the economies
of Germany, Italy and Japan will be in recession.

The concordance measure of the comovement suggests that with the
exception of Germany and Japan, the economies in the G7 countries
display statistically significant comovement over the sample period. The
same is true in terms of the expectation of the volatility state as well.
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This result differs from that obtained from simple sample correlations of
the probability series.
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Notes
1 Glosten, Jagannathan, and Runkle (1993) propose a variation of stan-

dard GARCH model to capture the asymmetries in stock return and
in particular in stock index return. Hamilton and Lin (1996) also in-
corporate such asymmetries in their model of the equity excess return.
But since their results indicate that such a parameter is statistically
insignificant we do not include this effect in our model of excess re-
turn, thereby reducing the number of parameters to be estimated.

2 In order to make the algorithm operational we need starting values
of the state probabilities and a mechanism to update it from obser-
vation to observation. Starting values of the state probabilities are
derived following the procedure in Hamilton (1994, p. 693), Kim and
Nelson (1999, p. 70). The probability updating process is described
in Hamilton (1994, p. 692). The maximization of the likelihood
function can be carried out by any suitable numerical method. As
a by-product of this algorithm we also get the filtered probabilities
of the states i.e. probability of the state occurring given the infor-
mation up to that point in time. However, once the parameters are
estimated, it is possible to utilize the whole sample information to in-
fer the probabilities of the states and this referred to as the smoothed
probabilities. The algorithm is described in Hamilton (1994, p. 694).
We have implemented this algorithm in Gauss. Although the code
for Hamilton and Lin (1996) is available from the journal, we chose
to write the program in the most recent version of the Gauss package.
Besides, our model is somewhat different from that in Hamilton and
Lin (1996).

3 The estimation results for the USA data closely match those of Model
C of Hamilton and Lin (1996). The apparent differences can be at-
tributed to the different sample coverage, as well as the differences in
the excess equity return equation.

4 See Hamilton and Lin (1996).
5 See Hamilton (1994, p. 681)
6 We could not obtain the business cycle peak and trough dates for all

G7 countries.

APPENDIX 4.A
Data

Industrial Production Index:
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Industrial production index is obtained from the International Financial Statistics
of International Monetary Fund.

Canada: 15666..CZF...
France: 13266..CZF..
Germany: 13466..CZF..
Italy: 13666..CZF..
Japan: 15866..CZF.
UK: 11266..CZF...
USA: 11166..CZF...

Stock Returns:
Nominal stock returns are obtained from the Morgan Stanley Capital International

Index.
Nominal interest rate:

Nominal interest rate is obtained from International Financial Statistics of Inter-
national Monetary Fund.

Canada: 15660C..ZF..
France: 13260C..ZF...
Germany: 13460B..ZF...
Italy: 13660B..ZF...
Japan: 15860B..ZF...
UK: 11260C..ZF...
USA: 11160C..ZF...

Excess return
The excess return is calculated as follows:

Excess return (%) = stock return (%) -
interest rate (percent per annum)

12
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Chapter 5

LINKING INFLATION AND
INFLATION UNCERTAINTY

1. Introduction
1.1 Inflation and Inflation Uncertainty

Macroeconomists have long been studying the impacts of inflation on
various economic activities. Unanticipated inflation is generally thought
to lead to a redistribution of wealth, although moderate inflation is not
necessarily considered harmful (Cooley and Hansen, 1991). The exact
impacts of inflation are often difficult to document. Some researchers
examine the relationship between inflation, inflation uncertainty, and
growth. In one study, Judson and Orphanides (1996) investigate this
link using a cross-country panel data approach over a long period of
time. According to their results, inflation volatility is negatively cor-
related with income growth across the inflation level, time, and type
of country. They also find that the level and volatility of inflation are
independently significant in influencing growth. In other words, high
inflation is detrimental to growth above a certain level of inflation, while
volatile inflation is correlated to lower growth at all levels of inflation.

Hess and Morris (1996) take a slightly different perspective. They
attempt to establish the long-run costs of moderate inflation. Their
hypothesis holds that anti-inflationary policies are costly in the short-
run. In response, we question whether it is costly to allow low inflation
to rise? Their article identifies three potential consequences of inflation,
namely, inflation uncertainty, real growth variability, and relative price
volatility. Using long-run data from countries with low to moderate
inflation, they show that rising inflation is associated with higher values
for all three of these consequences. In this context, there seem to be
long-run benefits in not allowing inflation to rise even above low levels.
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Holland (1995), on the other hand, attempts to clarify whether an
increase in inflation increases inflation uncertainty. The author stresses
that a positive association between the inflation rate and inflation un-
certainty implies a particular temporal ordering. Based on the results
of three different tests of temporal ordering, Holland concludes that an
increase in the rate of inflation Granger-causes an increase in inflation
uncertainty.

The preceding discussions indicate the importance of understanding
the relationship between inflation and inflation uncertainty. Grier and
Perry (1998) explore this aspect further for G7 economies in a two-step
procedure. After fitting the GARCH (and some variation of it) model to
generate a measure of inflation uncertainty, they use the Granger causal-
ity approach to determine the relationship between average inflation and
inflation uncertainty. They use the autoregressive-GARCH(1,1) model
for inflation at time t (πt) as follows:

πt = β0 +
N∑

i=1

βiπt−i + εt, (5.1)

σ2
εt = α0 + α1ε

2
t−1 + α2σ

2
εt−1, (5.2)

where Et−1(εt) = 0 and Et−1(ε2t ) = σ2
εt. Equation (5.1) is an autore-

gressive representation of the conditional mean of inflation. Equation
(5.2) is a GARCH(1,1) representation of the conditional variance. In
all G7 countries they found that inflation significantly raises inflation
uncertainty, as predicted by Friedman (1977). On the other hand, there
was less evidence to suggest that inflation uncertainty Granger-causes
inflation. In the same paper, Grier and Perry also suggest that GARCH
estimation is much better than other survey-based measures of volatility.
GARCH estimation directly tests the statistical significance of time vari-
ation of conditional variance, whereas survey-based measures do not.1

Some researchers have also emphasized the impact of inflation on the
distribution of relative prices in an economy. Relative price dispersion
at time t (RPDt) is typically measured as:

RPDt =
1
n

n∑
i=1

(πit − πt)2, (5.3)

where πt is the aggregate inflation rate and πit is rate of price change
in the i−th individual commodity group.2 For example, Grier and Perry
(1996) report that menu cost models imply that higher trend inflation
tend to increase price dispersion, whereas signal extraction models usu-
ally predict that increased inflation uncertainty raises relative price dis-



Chapter 5 83

persion. These authors construct a bi-variate GARCH-M model of in-
flation and price dispersion to test these differing hypotheses. They use
the following simplified bi-variate GARCH(1,1)-M model for inflation
and relative price dispersion:

πt = β0 + β1πt−1 + β2πt−2 + β3πt−6 + β4εt−12 + εt, (5.4)

σ2
εt = α0 + α1ε

2
t−1 + α2σ

2
εt−1, (5.5)

RPDt = γ0 + γ1RPDt−1 + γ2νt−1 + γ3π
2
t−1 + γ4σ

2
εt + νt, (5.6)

σ2
νt

= σ̄2
ν , ∀t, (5.7)

Covt = ρσεtσ̄ν . (5.8)

where Et−1(εt) = Et−1(νt) = 0, Et−1(ε2t ) = σ2
εt, and Et−1(ν2

t ) = σ2
νt.

Equation (5.4) describes the inflation rate as a function of the first, sec-
ond, and sixth lags of inflation and a 12-th order moving average term.
Equation (5.5) is a GARCH(1,1) model of the conditional variance of in-
flation. Equation (5.6) shows that the relative price dispersion depends
on the first-order moving average term, the first lag of the squared in-
flation rate, and the conditional variance of inflation. Equation (5.7)
indicates the homoskedasticity of relative price dispersion, where σ̄2

ν is
constant. Equation (5.8) is a simple constant correlation model of covari-
ance between εt and νt, where ρ is the coefficient of correlation between
εt and νt. Grier and Perry (1996) conclude that inflation uncertainty
dominates trend inflation as a predictor of relative price dispersion.

1.2 Inflation Uncertainty and Markov Switching
Model

Although GARCH models measure the conditional variation of volatil-
ity, the unconditional volatility remains constant. Evans and Wachtel
(1993) remark on the paucity of studies investigating how uncertainty in
the inflation regime may be the underlying source of the positive relation
observed between inflation rates and inflation uncertainty. Conditional
volatility models like GARCH ignore the structural instability due to
changes in regimes. Evans and Wachtel develop a Markov switching
model of inflation that decomposes uncertainty about future inflation
into two components: a certainty-equivalent component and a regime
uncertainty component. This decomposition allows them to examine
Friedman’s conjecture that uncertainty concerning regime changes de-
presses real economic activity. According to the authors, the model will
seriously underestimate both the degree and impact of uncertainty unless
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the consequences of regime switches are much more closely considered
in dealing with inflation uncertainty.

Kim (1993) and Kim and Nelson (1999) take this analysis further
in four respects. First, since volatility or some measure of uncertainty
remains essentially an unobserved component (UC), they extend the
standard UC model to capture the observed heteroskedasticity in the
data.3 This is achieved by allowing an unobserved Markov process to
change the volatility regime over the sample period. Unlike the case
in GARCH models, the unconditional volatility in this scenario does
not remain constant. This conforms with the observations of inflation
regimes in Evans and Wachtel (1993), as well as the papers by Raymond
and Rich (1992), who conclude that regime changes may constitute a
single source of persistence in the conditional variance of the inflation
series.

Second, the inflation series modeled by Kim (1993) and Kim and Nel-
son (1999) consists of both a temporary and permanent component. A
paper by Ball and Cecchetti (1990) is the first to suggest a separation
of this kind for inflation series. By establishing this separation, investi-
gators can study the impact of uncertainty on each component.

Third, Kim (1993) and Kim and Nelson (1999) let another unobserved
Markov process drive the mean inflation rate, thereby allowing them to
test the link between inflation and its uncertainty over both short and
long horizons.

Finally, since the resulting model is no longer conditionally Gaussian,
as it is normally assumed in estimating UC models using Kalman filter,
Kim (1993) develops an algorithm that results in a quasi-optimal filter.
Kim also demonstrates a numerically efficient way to implement such a
filter by an application to the US GDP deflator series. This holds an
advantage over alternative approaches such as that of Grier and Perry
(1998), as the entire estimation is performed in one step. For the US
data, Kim reports a positive association between a higher inflation rate
and long-run uncertainty.

This chapter takes advantage of the abovementioned advances in deal-
ing with unobserved component models (e.g. Kim, 1993) and extends
the inflation model of Evans and Wachtel (1993) by considering two
different Markov processes, one driving the permanent component and
one driving the transitory component. This approach allows more in-
sight into the process of inflation forecast variance decomposition and
its impact on the level of inflation at different horizons. We also extend
the analysis to more recent data and cover four major countries, i.e.
Germany, Japan, the UK, and the USA.
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2. Empirical Technique
2.1 Markov Switching Heteroscedasticity Model

of the Inflation Rate
As in Kim (1993) and Ball and Cecchetti (1990), we model the in-

flation series for a particular country as consisting of a stochastic trend
component and a stationary component around the trend. Ball and Cec-
chetti adopt this approach of distinguishing between the long-term and
the short-term components in order to resolve the empirical issue of the
link between the level of inflation and its uncertainty. If we assume that
the inflation series consists of a temporary component (white noise) and
a permanent component (random-walk) then the investigation of this
link is possible on both short and long horizons. We may think of the
trend in money growth is responsible for determining the trend com-
ponent and the other fiscal adjustments contributing to the stationary
deviation from this trend.

The next step of the model development has to deal with the measure
of uncertainty. As outlined earlier, GARCH type of model is not suit-
able for capturing the changes in regime as foreshadowed in Evans and
Wachtel (1993). Although in GARCH type model conditional volatility
changes, the unconditional volatility is, however, constant. When the
inflation series is decomposed into two parts, it is possible to think of
different uncertainties associated with these two components. In this re-
spect the idea in Kim (1993) is an elegant way to approach this problem.
Kim assumes that two different volatility regimes characterize the two
components and these are driven by two different (unrelated) Markov
stochastic processes. This concept brings in the required richness in the
model, although it becomes more complex from the estimation point of
view. In the section on results we compare two different GARCH models
with the Markov switching model adopted in this paper. These models
are clearly non-nested, and we compare these using a recently developed
statistical procedure by Vuong (1989).

We focus in this article on individual inflation rate (πt) modeling for
each of the four countries and following the argument in Kim (1993) and
Kim and Nelson (1999, p. 154), we assume the specification as follows:

πt = Tt + µ2S1,t + µ3S2,t + µ4S1,tS2,t + (h0 + h1S2t)et, (5.9)

Tt = Tt−1 + (Q0 + Q1S1,t)vt, (5.10)

where et ∼ N(0, 1), and vt ∼ N(0, 1). The model specified in equation
(5.9) and (5.10) is justified by Ball and Cecchetti (1990, p. 225). Infla-
tion rate consists of a stochastic trend (random walk) component and
a stationary component. Trend inflation for example is determined by
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trend money growth, and thus the permanent shock (vt) captures events
that change trend inflation. A negative shock occurs if the central bank
creates a recession to disinflation. A positive shock occurs, when the
central bank allows trend inflation to rise in accommodating a supply
shock. The deviation of inflation from its trend is caused by monetary
and other shocks. Thus, the transitory shock (et) captures events that
affect inflation temporarily but do not affect the trend. Some examples
are supply shocks that are not accommodated, fluctuations in velocity,
and so on. The two unobserved Markov processes, S1,t, S2,t, determine
the regime the economy is in at any point in time and these evolve in-
dependently of each other according to their own probability transition
matrices (defined fully in the appendix B). The Markov process S1,t is
associated with the trend component and S2,t is associated with the
temporary component. The two Markov switching variables can take on
values of 0 or 1. The value of 1 represents the high variance states of
the corresponding component and 0 represent the low variance state.

The parameters µ2, µ3, µ4 measure the shift in the mean depending on
the state. From the formulation of the problem above it can be observed
that µ2 is associated with the high variance state of the trend (or the
permanent) component. Similarly, µ3 is associated with the high vari-
ance state of the stationary (or the transitory) component. We include
µ4 accounting for the shift in the mean inflation rate when both compo-
nents are in a high variance state. Q1 determines the extent of shift in
variance during the high variance state of the trend component. Simi-
larly, h1 determines the increase in variance of the temporary component
during its high variance state.

The estimation results will help us comment on the time series be-
havior of the inflation series for a particular country. The nature of
the model given by the equations (5.9) and (5.10) suggest unobserved
component modeling in a state space framework. The details of the
estimation algorithm are quite involved and we have presented a sim-
plified version in the appendix A. For a general understanding of the
issues in unobserved component modeling Harvey (1991) is an excellent
reference. The modification to the standard estimation of state space
models needed due to the presence of the Markov switching variables
are developed in Kim (1993).

2.2 Non-Nested Model Selection using Vuong
Statistic

Vuong’s (1989) test for selection of non-nested models is related to
the classical likelihood ratio based test and uses Kullback-Leibler Infor-
mation criterion to measure the closeness of the model to the true data
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Table 5.1. Summary statistics

Germany Japan UK USA

Mean 0.7799 0.9650 1.7144 1.0065
Std. Dev. 0.6892 1.1855 1.4888 0.6327
Skewness 0.2672 1.4840 1.5726 0.9566
Kurtosis 3.0138 6.5674 6.3268 3.3451
JB Test 0.3973 0.0000 0.0000 0.0000

Note: The hypothesis of normal distribution is rejected at the 5% (1%) level of significance
if the P−value for the JB test is less than 0.05 (0.01).

generating process. The test is directional and may be used to decide
which model is performing better than the other one in explaining the
data under consideration.

Consider two competing models with the conditional densities for the
observations, y, with the explanatory variables, z, are given by, f(y|z; Θ),
and g(y|z; Ψ), where Θ and Ψ are the parameter vectors for the first
and second model respectively. For non-nested models, under certain
regulatory conditions, Vuong showed that the following test statistic,

∑n
i=1{ln f(yi) − ln g(yi)}√

nω̂n

D−→ N(0, 1), (5.11)

where n is the number of observations and ω̂n given by,

ω̂2
n =

1
n

n∑
i=1

[ln f(yi) − ln g(yi)]2 − { 1
n

n∑
i=1

{ln f(yi) − ln g(yi)]}2 (5.12)

is the variance of the test statistic.
This statistic is easy to compute once the maximum likelihood esti-

mation of the parameters has been carried out. The procedure needs to
store all the conditional densities computed at the point of convergence.
If the computed test statistic is higher than the chosen critical value
we reject the hypothesis that the models are equivalent in favor of the
model represented by the conditional densities, f(y|z; Θ).

3. Data
This paper uses the data on the quarterly price level in four major

countries, i.e. Germany, Japan, the UK, and USA. The sample period
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Table 5.2. Unit root test

Test Statistic
CT C None

Germany -2.541 (0.308) -2.089 (0.249) -1.199 (0.210)
Japan -2.769 (0.211) -1.030 (0.741) -1.163 (0.222)
UK -2.749 (0.219) -2.453 (0.129) -1.512 (0.122)
USA -2.633 (0.267) -1.920 (0.322) -0.888 (0.330)

Note: Numbers in parentheses are P−values. The hypothesis of a unit root is rejected at
the 5% (1%) level of significance if the P−value for the test is less than 0.05 (0.01). CT
shows that the test regression includes a time trend and a constant term. C shows that the
test regression includes a constant. None shows that the test regression does not include
deterministic term.

runs from the first quarter of 1961 through the fourth quarter of 1999.
GDP deflators are used for Japan, the UK, and USA. The consumer price
levels are used for Germany since GDP deflators were unavailable for
this country during the corresponding period. The data sources include
the Main OECD Economic Indicators for Japan, the UK, and USA,
and the International Financial Statistics of the International Monetary
Fund for Germany. The rate of inflation (πt) is calculated as πt =
(Pt − Pt−1) × 100/Pt−1, where Pt is the price level at time t. Thus,
inflation rates are obtained for the period between the second quarter of
1961 and the fourth quarter of 1999. Figures 5.1 through 5.4 show the
movements of inflation rate for each country.

Table 5.1 summarizes the inflation rate statistics in each country. This
table shows the mean, standard deviation (Std. Dev.), skewness, kurto-
sis, and P−value of the Jarque-Bera test (JB test). The hypothesis of
normal distribution is rejected at the 5% (1%) level of significance if the
P−value for the JB test is less than 0.05 (0.01). As clearly shown in the
table, the mean and standard deviation of inflation rates are relatively
high for the UK, and relatively low for Germany. The hypothesis of nor-
mal distribution is rejected at the 1% significance level for all countries
except Germany.

Table 5.2 shows the results of the augmented Dickey and Fuller (ADF)
test.4 This test is used to analyze whether inflation rate in each country
has a unit root.5 The hypothesis of a unit root is rejected at the 5%
(1%) level of significance if the P−value for the ADF-test is less than
0.05 (0.01). Importantly, ADF test statistics support the assumption
of the integrated inflation rate series for all countries examined in this
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chapter. This is important, since the model of decomposition adopted
here to measure the impact of the high variance state on the mean
inflation rate at both short and long horizons depends on this feature of
the data.

4. Empirical Results
Table 5.3 shows the empirical results of Markov switching het-

eroscedasticity estimation for the sample period of the first quarter of
1964 through the fourth quarter of 1999.6 The observations between the
second quarter of 1961 and the fourth quarter of 1963 are used to obtain
initial values for the filter. The elements of the transition probability
matrix of the switching variable, S1,t, given by p11 and p00, are all sta-
tistically significant. Similarly, q11 and q00are all statistically significant
for the switching variable, S2,t. These quantities may be interpreted in
the context of the conditional variance of the inflation rate given by the
equation (5.B.30) and (5.B.18) in the appendix. The first part of the
equation (5.B.18) is contributed by the trend component and its persis-
tence may be measured by (p11 + p00 − 1).7 Similarly, the second part of
(5.B.18) is contributed by the temporary component and its persistence
may be measured by (q11 + q00 − 1).

Based upon the estimated parameters the persistence of the trend
component contribution to the conditional variance is 0.9613, 0.7238,
0.9565, and 0.9671 for Germany, Japan, the UK and the USA respec-
tively. Similarly, the persistence of the temporary component contribu-
tion to the conditional variance is 0.9205, 0.9817, 0.8461, and 0.9224 for
Germany, Japan, the UK and the USA respectively. Therefore, the in-
flation series for and Japan behave differently from the other countries in
the sample, with respect to the contribution from the two components
to the persistence in conditional variance. A GARCH based variance
model would not allow such insight into the variance process. Figures
5.5, 5.6, 5.7, and 5.8 show the relationship among the probability of high
variance state for permanent shocks (Pr(St = 1)), the probability of high
variance state for transitory shocks (Pr(St = 2)), and inflation rates for
four countries.

The parameter µ2 is the contribution to the mean inflation rate as-
sociated with the high variance state of the trend (or the permanent)
component. Judging from the estimates of µ2, it is found that high
uncertainty about long-run inflation is associated with a significant pos-
itive shift in inflation for Germany and Japan. The positive association
between the long-run uncertainty and level of inflation is consistent with
Kim (1993)’s finding for US data for 1958 through 1990 although we do
not obtain a significant estimate for USA in our dataset. As suggested
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Figure 5.5. Relationship among the probability of high variance state for perma-
nent shocks, Pr(St = 1), the probability of high variance state for transitory shocks,
Pr(St = 2), and inflation rates: Germany
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Figure 5.6. Relationship among the probability of high variance state for perma-
nent shocks, Pr(St = 1), the probability of high variance state for transitory shocks,
Pr(St = 2), and inflation rates: Japan
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Figure 5.7. Relationship among the probability of high variance state for perma-
nent shocks, Pr(St = 1), the probability of high variance state for transitory shocks,
Pr(St = 2), and inflation rates: UK
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Figure 5.8. Relationship among the probability of high variance state for perma-
nent shocks, Pr(St = 1), the probability of high variance state for transitory shocks,
Pr(St = 2), and inflation rates: USA
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Table 5.3. Parameter estimates: Markov switching heteroscedasticity model of infla-
tion rate

Germany Japan UK USA

p11 0.9698** 0.7397** 0.9653** 0.9808**
(0.0276) (0.1425) (0.0436) (0.0210)

p00 0.9915** 0.9841** 0.9912** 0.9863**
(0.0091) (0.0120) (0.0098) (0.0131)

q11 0.9636** 0.9819** 0.8674** 0.9559**
(0.0276) (0.0176) (0.0821) (0.0540)

q00 0.9569** 0.9998** 0.9787** 0.9665**
(0.0377) (0.0009) (0.0157) (0.0365)

Q0 0.0001 0.0958** 0.1419** 0.0382
(0.0449) (0.0313) (0.0408) (0.0235)

h0 0.3891** 0.3592** 0.5383** 0.1241**
(0.0615) (0.0338) (0.0445) (0.0186)

Q1 0.0068 0.0000 0.0125 0.2467**
(0.2708) (0.0010) (0.1391) (0.0530)

h1 0.2044* 0.6054** 0.9266** 0.0562
(0.0825) (0.1091) (0.2355) (0.0398)

µ2 0.6946* 1.1988** 0.9841 0.3663
(0.3087) (0.3405) (0.6408) (0.2258)

µ3 0.5421** 0.4794 -0.2644 0.3049**
(0.1785) (0.4673) (0.6343) (0.1008)

µ4 0.1594 1.6493** 2.5369** -0.2236
(0.3802) (0.5798) (0.7803) (0.5485)

Note: The parameters are described in the text. Standard errors are given in parentheses
below the parameter estimates. Significance at the 1% level is indicated by ** and at the 5%
level is indicated by *.

in Kim (1993), if inflation increases above normal, it increases long-run
uncertainty by making monetary policy less stable for Germany and
Japan. This positive association between long-run uncertainty and level
of inflation is also consistent with Ball and Cecchetti (1990) and Evans
(1991).

Figures 5.9 through 5.12 show the probability of high variance state
for permanent shocks for four countries. These figures reveal at least
three facts about the relationship between the inflation rate and the
probability of high variance state for permanent shocks. Firstly, the
movements of probability of high variance state for permanent shocks
differ from country to country. It is clear from the figures, however, there
are two periods that variance moves together internationally. One cor-
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responds to the 1st oil crisis occurred in 1973 and the other corresponds
to second oil crises occurred in 1979. These are typically observed in
Japan and the UK. There are two peaks in the Japanese probability of
high variance state for permanent shocks, which correspond to these two
incidents. Secondly, there is clear positive correspondence between the
inflation rate and the probability of high variance state for permanent
shocks for Germany, and Japan. This leads to the significant positive
estimates of µ2 for these two countries. Thirdly, there is a possibility
of structural change for each country. For example, the probability of
high variance state of the permanent component is close to one between
1973 and 1982 for USA. An important motivation for considering the
Markov-switching heteroscedasticity model is this possibility of struc-
tural change. As pointed out by Lastrapes (1989) and Lamoureux and
Lastrapes (1990), failure to allow for regime shifts leads to an overstate-
ment of the persistence of the variance of a series. This paper successfully
takes into consideration this possibility of regime shift in the framework
of Markov-switching model.

The parameter µ3 is the contribution to the mean inflation rate asso-
ciated with the high variance state of the stationary (or the transitory)
component. Judging from the estimates of µ3, it is also found that high
uncertainty about short-run inflation is associated with a significant pos-
itive shift in inflation for Germany and the USA. Kim (1993) found the
negative association between the short-run uncertainty and level of in-
flation for US data. Our findings support his results for Germany and
the USA, but not for Japan and the UK. When inflation increases above
normal, it increases short-run uncertainty by making monetary policy
less stable for Germany and USA. This may result in more stable short-
run monetary policy for these two countries, but not for Japan and the
UK.

The parameter µ4 is statistically significant only for Japan and the
UK. This implies that uncertainty in both the trend component and the
temporary component contributes to a significant shift in the inflation
rate for these two countries. Kim (1993) also reports insignificant µ4 for
the US data analyzed there.

Figures 5.13 through 5.16 show the probability of high variance state
for transitory shocks for four countries. At least two observations can
be made about the relationship between the inflation rate and the prob-
ability of high variance state for the transitory shocks. Firstly, contrary
to the case of permanent shocks, there are no clear international co-
movements about the probability of high variance state for transitory
shocks. This is probably due to the fact that the source of the tempo-
rary shocks is within the national economy. Second, there is a possibility
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Figure 5.9. Probability of high variance state for permanent shocks: Germany
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Figure 5.10. Probability of high variance state for permanent shocks: Japan
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Figure 5.11. Probability of high variance state for permanent shocks: UK

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995

Figure 5.12. Probability of high variance state for permanent shocks: USA
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Figure 5.13. Probability of high variance state for transitory shocks: Germany
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Figure 5.14. Probability of high variance state for transitory shocks: Japan
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Figure 5.15. Probability of high variance state for transitory shocks: UK
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Figure 5.16. Probability of high variance state for transitory shocks: USA
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Table 5.4. Residual diagnostics and model adequacy tests

BDS ARCH KS Test MNR Recursive T

Germany 0.023 0.802 0.063 0.835 0.901
Japan 0.495 0.251 0.058 0.616 0.673
UK 0.492 0.374 0.065 0.574 0.824
USA 0.020 0.707 0.063 0.481 0.656

Note: Entries are P−values for the respective statistics except for the KS statistic. These
diagnostics are computed from the recursive residual (standardized) of the measurement
equation. BDS test checks for the i.i.d. assumption in the residual from the non-linear
model. This test statistic has a N(0,1) distribution under the null i.i.d. hypothesis. The
details of this statistic may be found in Brock et al (1996). The two parameters needed for
this test are: embedding dimension = 2, and epsilon = 0.1*range. The ARCH test checks for
no serial correlations in the squared residual up to lag 26. This test is applicable to recursive
residuals as explained in Wells (1996, p. 27). MNR is the modified Von Neumann ratio
test using recursive residual for model adequacy (Harvey, 1990, chapter 5). Similarly, if the
model is correctly specified then Recursive T has a Student’s t-distribution (Harvey, 1990,
p. 157). KS statistic represents the Kolmogorov-Smirnov test statistic for normality. 95%
significance level in this test is 0.113. When KS statistic is less than 0.113 the null hypothesis
of normality cannot be rejected at the indicated level of significance.

of structural change for each country. For example, the probability of
high variance is close to one between 1964 and 1977 for Japan. The
Markov-switching model can take this regime shift into consideration.

Kim (1993) found that the ratio of high to low variances of permanent
shocks is larger than that of transitory shocks for US, which means
Q1 > h1. The entries in Table 5.3 suggest that Kim’s finding is true for
the USA but it is the reverse for Japan, and the UK. Kim also points
out that the variance of permanent-shocks when low, denoted by Q0, is
close to 0. However, it is clear from Table 5.3, Q0 is significantly different
from 0 for all countries except for Germany and the USA. This suggests
that infrequent permanent shocks to the price level does not necessarily
account for most of the persistence in the price level.

Before proceeding further we would like to ascertain the performance
of the model. In this respect, we analyze the residual from the model
using a variety of diagnostics tests. We present these test results in Table
5.4. The BDS test for non-linear models of Brock et al (1996) checks
for the i.i.d. assumption for the disturbances. The two parameters
required for this test are to be supplied. The first one is the embedding
dimension and for our model we set this to 2, given the size of our
sample. The second one is the distance measure, epsilon, and we set this



Chapter 5 101

Table 5.5. Regime classification measure (RCM)

Germany Japan UK USA

Trend 54.07 7.06 44.62 40.89
Temporary 45.13 11.12 18.79 67.07

Note: Ang and Bekaert (2002) introduce this RCM measure. Good regime classification is
associated with a low value of the measure. A value of 0 implies perfect classification and a
value of 100 implies no information about regimes is found in the data.

Table 5.6. Vuong statistics for non-nested model selection: Markov switching model
against two different GARCH models

AR(1)-GARCH(1,1) MA(1)-GARCH(1,1)-in Mean

Germany 1.64 1.81
Japan 4.31 2.85
UK 2.89 1.92
USA 1.28 1.97

Note: The limiting distribution of Vuong statistic is N(0,1). The critical value at 5% level
is 1.64. If the entry in the table is greater than the critical value then the Markov switching
model is performing better in explaining the data generating process than the other model.

to 0.10 times the range of the data being examined.8 The tests support
the whiteness of the residuals for all the countries. The ARCH tests
indicate no remaining heteroscedasticity in the residuals. Besides, the
Kolmogorov-Smirnov tests support the normality of the residuals. These
three tests overwhelmingly support the modeling approach adopted here
and, therefore, the conclusions drawn are statistically meaningful.

In addition to the three tests just outlined above, we also include two
additional tests particularly designed for recursive residuals produced
by the state space system adopted in this study. The modified von-
Neumann ratio tests against serial correlations in the residuals where as
the recursive t-test is used to check for correct model specification. As
the entries in Table 5.4 indicate the model applied to different country
dataset perform extremely well in respect of these two tests. There is
overwhelming support for the adequacy of the model in describing the in-
flation process involving the permanent and the transitory components.
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In Table 5.5 we show the result regime classification measure recently
introduced by Ang and Bekaert (2002). In addition to other diagnostic
tests it provides a measure of the information of regime switches available
in the data. It relies upon the estimated filtered probability of the states
from the model that indicate the likelihood of a particular regime from
which a particular data point is drawn. This is what underlies any
regime-switching model as inferred by the econometrician. If there is
insufficient information in the series then the regime classification will
be weak. Based upon the notion that the true regime classification is
a Bernoulli random variable, Ang and Bekaert develop the following
measure:

RCM = 400 × 1
T

T∑
t=1

pS1,t (1 − pS1,t). (5.13)

Similarly, the measure based on the switching variable S2 can be defined.
In the case of a perfect regime classification the inferred state probabil-
ity for a particular data point would be either 0 or 1. This leads to
the conclusion that the RCM measure is simply the sample estimate of
variance of the Bernoulli variable. A value of 0 indicates perfect regime
classification and a value of 100 indicates no regime switching informa-
tion available in the data. The entries in Table 5.5 support to a varying
degree our modeling approach based upon the Markov switching het-
eroscedasticity. The sharpest classification for both the components are
obtained or Japan.

In Table 5.6 we present the results of Vuong test statistics to compare
the Markov switching model with an AR(1)-GARCH(1,1) and also with
a MA(1)-GARCH(1,1)-in-mean model. We include in the appendix suf-
ficient details of this test and the associated references. This is a fairly
recent development and has been successfully adopted by, for exam-
ple, by Danielsson (1998), Ball and Torous (1999), and Smith (2002).
This test statistic has a well-defined limiting distribution i.e. N(0,1).
If the statistic is greater than the critical value at, say, 5% level then
the Markov switching model captures the data generating process bet-
ter than the other model. Thus, the entries in Table 5.6 demonstrate
the dominance of the Markov switching model for all cases except for
the USA compared with the AR(1)-GARCH(1,1) model. However, com-
pared to MA(1)-GARCH(1,1)-in-mean model for the USA the Markov
switching model performs better. This test result along with that of
the RCM measure discussed above, we are confident that the modeling
approach adopted here is a sound one.

We also derive the two components of the variance of inflation fore-
cast for a particular forecast horizon. Evans and Wachtel (1993) de-
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Figure 5.17. Components of forecast variance at k = 2: Germany
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Figure 5.18. Components of forecast variance at k = 4: Germany
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Figure 5.19. Components of forecast variance at k = 2: Japan
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Figure 5.20. Components of forecast variance at k = 4: Japan
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Figure 5.21. Components of forecast variance at k = 2: UK
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Figure 5.22. Components of forecast variance at k = 4: UK
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Figure 5.23. Components of forecast variance at k = 2: USA
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Figure 5.24. Components of forecast variance at k = 4: USA
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scribe these two as the certainty equivalent (Var(CE)) and the regime
uncertainty components (Var(RU)). They suggest that it is intuitive to
analyze this way since there is uncertainty in the inflation process that
is likely to be present at a future date. These two components help us
analyze the interaction between these two parts of inflation uncertainty
and the realized inflation for different horizon. Appendix C explains the
details.

Figures 5.17 through 5.24 show the two components of variance fore-
cast for forecast horizons of two (k = 2) and four quarters (k = 4)
for each country. Generally, the figures show that inflation uncertainty
increases at all horizons in the middle of 1970s and return to the low
level in the middle of 1980s. This result is consistent with Evans and
Wachtel (1993) and these periods correspond to the first and the second
oil crises. It is interesting to see that the adjustment is found to be
relatively fast for Japan. Inflation uncertainty return to the original low
level in a few years for the case of Japan, whereas it takes more years
for other countries.

5. Conclusion
In this chapter we adopt the modeling approach of Kim (1993), in

which the mean inflation rate and volatility are subject to regime changes
and driven by two independent Markov processes of order one. We
apply this model to the inflation series for Germany, Japan, the UK,
and the USA, and examine the interaction between inflation rate and its
uncertainty over both the short- and long-run. The data sets examined
in this study are also more up-to-date than those that were available in
December 1999.

Grier and Perry (1998) fit the GARCH model to generate a measure
of inflation uncertainty and use the Granger causality approach to deter-
mine the relationship between average inflation and inflation uncertainty.
They found that inflation significantly raises inflation uncertainty, fulfill-
ing the prediction by Friedman (1977), in four countries. However, the
Markov-switching model estimation is superior to the GARCH model in
at least two respects. Firstly, as emphasized by Lastrapes (1989) and
Lamoureux and Lastrapes (1990), the Markov-switching model explic-
itly accounts for the possibility of regime shifts, whereas the GARCH
model does not. Secondly, the Markov-switching model can decompose
the shock into two components: permanent shock and transitory shock.
Our specification for inflation rates are empirically supported by var-
ious diagnostics tests for each country. As pointed out by Cosimano
and Jansen (1988) and Raymond and Rich (1992), regime changes seem
to be an important source of persistence in the conditional variance of
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inflation. By introducing regime shifts in both mean and variance struc-
tures, we carried out a direct test of the link between inflation and its
uncertainty over different time horizons for four countries.

Empirical results show that the relationship between inflation and in-
flation uncertainty depends on whether the shock is permanent or transi-
tory. The relationship also differs from country to country. High uncer-
tainty about long-run inflation is associated with a significant positive
shift in inflation for Germany and Japan. This positive association be-
tween long-run uncertainty and the inflation level is consistent with Ball
and Cecchetti (1990) and Evans (1991). High uncertainty about short-
run inflation is associated with a significant positive shift in inflation for
Germany and the USA. This is consistent with Kim (1993).

We adopt a more recent test for model selection in order to establish
the superiority of our proposed model for inflation. Specifically, we test
the non-nested model selection procedure developed by Vuong (1989).
The Vuong test statistic is used to compare the Markov switching model
with two alternative GARCH specifications that are clearly non-nested.
The results of this testing and the RCM measure empirically support
our modeling approach.

We also derive the two components of the variance of inflation forecast
for a particular forecast horizon. These two components help us analyze
the interaction between these two parts of inflation uncertainty and the
realized inflation for different horizons. The figures generally show that
inflation uncertainty increases at all horizons in the middle of 1970s and
returns to a low level in the mid 1980s. This result is consistent with
Evans and Wachtel (1993), and these periods correspond to the first
and second oil crises. It is interesting to note that the adjustment is
relatively fast for Japan. The inflation uncertainty drops back to its
formerly low level in a few years in Japan, whereas those in the other
countries subside much more gradually.
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Notes
1 Grier and Perry (1998), p. 675, footnote 10.
2 Grier and Perry (1996, p.393).
3 For application to finance and economics, see Harvey (1991),

Shumway and Stoffer (2000).
4 See Fuller (1976) and Dickey and Fuller (1979).
5 AIC is used to choose the order of augmented terms.
6 The programming for this model has benefited from the support pro-

vided through the website associated with the book by Kim and Nel-
son (1999).

7 See Kim and Nelson (1999, p. 164)
8 The programming for the BDS test is non-trivial, particularly when

the speed of operation is important. We gratefully acknowledge the
code available from W. Dechert, University of Houston, one of the
authors of the BDS statistic.

APPENDIX 5.A
Data

GDP deflator is obtained from OECD Main Economic Indicator, whereas consumer
price index is obtained from the International Financial Statistics of the International
Monetary Fund. The series code of price level in each country is shown as follows:

Germany: 13464...ZF (International Financial Statistics, IMF),

Japan: JPNDEFLS (OECD Main Economic Indicator),

UK: GBRDEFLS (OECD Main Economic Indicator),

USA: USADEFLS (OECD Main Economic Indicator).

APPENDIX 5.B
Unobserved Component Model: Markov Switching Vari-
ance in State and Observation Equations

We discuss the problem of estimation of a dynamic linear system that is represented
in term of a state space formulation. The general nature of such a system gives
equation (5.B.1) as the measurement equation and the equation (5.B.2) as the state
equation. In our problem for modeling inflation (πt) series, the measurement vector is
one-dimensional and the state vector may be constructed as consisting of two elements,
e.g. the permanent component and the transitory component. In order to express the
essential elements of the algorithm succinctly we express the model of the return with
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convenient notations as follows. However, first we consider the state space system
(without the switching variables),

yt = Hβt + M + et, (5.B.1)

βt = Fβt−1 + vt, (5.B.2)[
et

vt

]
∼ N

([
0
0

]
,

[
Rt 0
0 Qt

])
, (5.B.3)

where equation (5.B.1) describes the observations made along with an error, and
equation (5.B.2) describes the dynamic of the unobserved state(s). For example, if
the permanent component consists of a random-walk and the transitory component is
simply a white noise process then the elements of the system are: yt = πt, H = 1. The
state vector consists of the permanent component (Tt), and F = 1 while νt represents
the state noise. The measurement equation noise et will correspond to transitory
components, which simply the white noise under the assumption. In the absence of
any other specification, M = 0.

As given by equation (5.B.3) the variances of the two noise sources are given by Rt

and Qt and these are independent of each other. It is instructive to go through the
recursive relations without the switching variables first. This implies that the vari-
ances of the measurement and the state equations are simply h0 and Q0 respectively.
In the usual applications of state space system in finance and economics the unknown
parameters are embedded in H and F in addition to the variance parameters. Using
Kalman filter the prediction error form of likelihood function can be built which when
maximized gives the estimates of these unknown parameters. Further details of this
procedure can be found in Harvey (1991). Here we just summaries the main pre-
diction and updating equations for the filter. Prediction equations move the system
from period (t − 1) to t based upon all the information at (t − 1) and the updating
equations modify the system parameters once an observation has been made.

Prediction:

βt|t−1 = Fβt−1|t−1, (5.B.4)

Pt|t−1 = FPt−1|t−1F
′ + Qt, (5.B.5)

ηt|t−1 = yt − yt|t−1 = yt − Hβt|t−1 − M, (5.B.6)

ft|t−1 = HPt|t−1H
′ + Rt, (5.B.7)

where, Pt|t−1 is the covariance of the state conditional on information at (t−1), ηt|t−1

is the prediction error, ft|t−1 is the conditional variance of the forecast error.

Updating:

βt|t = βt|t−1 + Ktηt|t−1, (5.B.8)

Pt|t = Pt|t−1 + KtHPt|t−1, (5.B.9)

Kt = Pt|t−1H
′f−1

t|t−1, (5.B.10)
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where, Kt is known as the Kalman gain.
As required by our model in this paper we describe the extension of the basic state

space model by assuming that an unobserved discrete-time, discrete state, first order
Markov-switching process drives the variances. These two Markov processes are as-
sumed to be independent. This helps account for the heteroscedasticity in the residual
series. Application of ARCH type errors in state space system requires augmenting
the state space as described in Harvey, Ruiz, and Sentana (1992). The basic idea for
Markov switching processes to account for the heteroscedasticity originate from the
works of Lamoureaux and Lastrapes (1990), Raymond and Rich (1992). In addition
to this, since we are interested in exploring the impact of the Markov switching states
on the mean inflation rate, we augment the model mean, M in equation (5.B.1) as
M = µ2S1,t + µ3S2,t + µ4S1,tS2,t.

With this background we define the variances as,

Qs1,t = Q1Θ1,0t + Q2Θ1,1t, (5.B.11)

Θ1,0t =

{
1 if S1,t = 0,
0 if S1,t = 1,

Θ1,1t =

{
1 if S1,t = 1,
0 if S1,t = 0,

Rs2,t = R1Θ2,0t + R2Θ2,1t, (5.B.12)

Θ2,0t =

{
1 if S2,t = 0,
0 if S2,t = 1,

Θ2,1t =

{
1 if S2,t = 1,
0 if S2,t = 0,

where S1,t and S2,t are two independent (two state) Markov processes, which evolve
according to the transition probability matrices defined below:

PS1 =

[
p00 1 − p11

1 − p00 p11

]
, (5.B.13)

PS2 =

[
q00 1 − q11

1 − q00 q11

]
. (5.B.14)

Comparing the above specification with that for standard ARCH type models we
note that for the Markov switching variance model, where the unconditional variances
are different in different states, past values of disturbances are not needed. The pres-
ence of state dependent variances in the process complicates the direct application of
the prediction and updating equations described earlier. A simplification based on an
approximation algorithm suggested by Kim (1993) greatly reduces the computational
complexity. We describe this next.

Consider the realizations of the state variables at time (t−1) and t as S1,t−1 = m,
S2,t−1 = n, and S1,t = m′ and S2,t = n′, where m, m′ = 0, 1, and n, n′ = 0, 1
representing the possible combinations of states in the two consecutive time slots.
Given these realizations, we can rewrite the prediction and updating equations as
below:



112 HIDDEN MARKOV MODELS

Prediction:

βm,n
t|t−1 = Fβm,n

t−1|t−1, (5.B.15)

P m,n,m′
t|t−1 = FP m,n

t−1|t−1F
′ + Qm′

t , (5.B.16)

ηm,n
t|t−1 = yt − ym,n

t|t−1 = yt − Hβm,n
t|t−1 − M, (5.B.17)

fm,n,m′,n′
t|t−1 = HP m,n,m′

t|t−1 H ′ + Rn′
t , (5.B.18)

Updating:

βm,n,m′,n′
t|t = βm,n

t|t−1 + Km,n,m′,n′
t ηm,n

t|t−1, (5.B.19)

P m,n,m′,n′
t|t = P m,n,m′

t|t−1 + Km,n,m′,n′
t HP m,n,m′

t|t−1 , (5.B.20)

Km,n,m′,n′
t = P m,n,m′,

t|t−1 H ′(fm,n,m′,n′
t|t−1 )−1. (5.B.21)

This recursion in the filter produces (2 × 2 × 2 × 2) posteriors for βm,n,m′,n′
t|t and

P m,n,m′,n′
t|t when moving from (t− 1) to t. Depending on the observations to consider

this becomes an almost impossible task. Kim (1993) develops the following approxi-
mation where by taking appropriate weighted average over the states at (t − 1) this
can be reduced to (2 × 2). We define the probability weighting as,

Γm,n,m′,n′
=

Pr(S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt)

Pr(S1,t = m′, S2,t = n′|Ψt)
, (5.B.22)

where Ψt is the information available at time t. The approximation for βm,n,m′,n′
t|t is,

βm′,n′
t|t =

l∑
m=0

l∑
n=0

βm,n,m′,n′
t|t × Γm,n,m′,n′

, (5.B.23)

and the approximation for P m,n,m′,n′
t|t is,

P m′,n′
t|t =

l∑
m=0

l∑
n=0

[P m,n,m′,n′
t|t

+ (βm′,n′
t|t − βm,n,m′,n′

t|t )(βm′,n′
t|t − βm,n,m′,n′

t|t )′] × Γm,n,m′,n′
,

(5.B.24)

The equations (5.B.23) and (5.B.24) describe the nature of approximation applied
to collapse the (2 × 2 × 2 × 2) posteriors to (2 × 2) posteriors with the help of the
probability weighting factor. The probability terms necessary to achieve this can be
obtained as follows:
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Γm,n,m′,n′
=

Pr(S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt)

Pr(S1,t = m′, S2,t = n′|Ψt)

=
Pr(yt, S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt−1)

Pr(yt|Ψt−1)

= (
Pr(yt|S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′, Ψt−1)

Pr(yt|Ψt−1)
)

×Pr(S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt−1),

(5.B.25)

where as before m, m′ = 0, 1 and n, n′ = 0, 1. With the help of the forecast error
in the prediction relations we can now construct the numerator of the last term of
equation (5.B.25) as,

Pr(yt | S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′, Ψt−1)

=
1√

2π(fm,n,m′,n′
t|t−1 )

exp[−1

2
(ηm,n′

t|t−1)
′(fm,n,m′,n′

t|t−1 )−1(ηm,n′
t|t−1)],

(5.B.26)

and Pr(yt|Ψt−1) may be expressed as,

Pr(yt|Ψt−1) =

l∑
0

l∑
0

l∑
0

l∑
0

Pr(yt, S1,t−1 = m,

S2,t−1 = n, S1,t = m′, S2,t = m′|Ψt−1). (5.B.27)

The equation (5.B.27) is the basis for generating the log likelihood functions and
shows that in this model there are sixteen combinations of state possible. To move
the inference on probabilities forward we need to specify the last multiplier term
in equation (5.B.25). Based on the assumption of independence of the two Markov
processes, we have

Pr(S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt−1)

= Pr(S1,t = m′|S1,t−1 = m) × Pr(S2,t = n′|S2,t−1 = n)

×Pr(S1,t−1 = m, S2,t−1 = n|Ψt−1), (5.B.28)

where the first two terms on the right hand side are recognizable as the corresponding
transition probabilities. The third term on the right hand side of equation (5.B.28)
can be separated in term of the realizations of the states in the previous time step.
It, therefore, follows that,

Pr(S1,t−1 = m , S2,t−1 = n|Ψt−1)
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=

l∑
i=0

l∑
i=0

Pr(S1,t−2 = i, S1,t−1 = m, S2,t−2 = j, S2,t−1 = n|Ψt−1).

(5.B.29)

The log likelihood function constructed from equation (5.B.27) may be maximized
with respect to the unknown parameters using suitable numerical optimization al-
gorithm. We implemented this in GAUSSTMand we started with the program code
available as part of book, Kim and Nelson (1999). However, to make the filter op-
erational we need starting values, . These are obtained following the suggestions in
Kim and Nelson (1999, pp. 28-29, 70-71). The Markov switching heteroscedasticity
model involving the unobserved component is suitable for constructing the conditional
variance of the stock return. This is simply achieved by multiplying the filtered prob-
ability of the states with the conditional forecast error variance given by equation
(5.B.18). The conditional variance is thus given by,

l∑
0

l∑
0

l∑
0

l∑
0

Pr(S1,t−1 = m, S2,t−1 = n, S1,t = m′, S2,t = n′|Ψt−1) × fm,n,m′,n′
t|t−1 .

(5.B.30)

In a similar manner the estimate of probability weighted forecast error could be
generated using (5.B.17). This generated error series may then be analyzed for model
diagnostics tests.

APPENDIX 5.C
Components of Variance of Inflation Forecast With Process
Switching

In this appendix we derive the two components of the variance of inflation forecast
for a particular forecast horizon. Evans and Wachtel (1993) describe these two as the
certainty equivalent and the regime uncertainty components. They suggest that it is
intuitive to analyze this way since there is uncertainty in the inflation process that
is likely to be present at a future date. These two components help us analyze the
interaction between these two parts of inflation uncertainty and the realized inflation
for different horizon. Our basic inflation model may be restated as:

πt = Tt + Mt, (5.C.1)

Tt = Tt−1 + (Q0 + Q1S1,t)vt, (5.C.2)

Mt = µ2S1,t + µ3S2,t + µ4S1,tS2,t + (h0 + h1S2,t)et. (5.C.3)

Denoting the model expectation by EM and the information set at time t by Ωt,
we can write k−quarter ahead expectation as,

EM (πt+k|Ωt) = Tt + µ2 Pr(S1,t+k = 1||Ωt) + µ3 Pr(S2,t+k = 1|Ωt)
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+ µ4 Pr(S1,t+k = 1, S2,t+k = 1|Ωt), (5.C.4)

where the probability terms may be obtained as,[
Pr(S1,t+k = 0|Ωt)
Pr(S1,t+k = 1|Ωt)

]
=

[
p00 1 − p11

1 − p00 p11

]k [
Pr(S1,t = 0||Ωt)
Pr(S1,t = 1|Ωt)

]
, (5.C.5)

similarly,[
Pr(S2,t+k = 0|Ωt)
Pr(S2,t+k = 1|Ωt)

]
=

[
q00 1 − q11

1 − q00 q11

]k [
Pr(S2,t = 0||Ωt)
Pr(S2,t = 1|Ωt)

]
. (5.C.6)

Following the definition in Evans and Wachtel (1993), the certainty equivalent of
the variance of inflation at k quarters in future is given by,

V ar(k)CE = E[V ar(πt+k)|Ωt, S1,t+k|Ωt, S2,t+k|Ωt], (5.C.7)

and

V ar(k)CE = k(Q0 + Q1) Pr(S1,t+k = 1|Ωt)

+k Pr(S1,t+k = 0|Ωt)

+(h0 + h1) Pr(S2,t+k = 1|Ωt)

+h0 Pr(S2,t+k = 0|Ωt). (5.C.8)

In a manner similar to that in Evans and Wachtel (1993), the regime uncertainty
component of the forecast inflation variance is given by,

V ar(k)RU = (Tt − µ2)
2 Pr(S1,t+k = 1|Ωt) Pr(S2,t+k = 0|Ωt)

+(Tt − µ2 − µ3 − µ4)
2 Pr(S1,t+k = 1|Ωt) Pr(S2,t+k = 0|Ωt)

+(Tt − 0)2 Pr(S1,t+k = 0|Ωt) Pr(S2,t+k = 0|Ωt)

+(Tt − µ3)
2 Pr(S1,t+k = 0|Ωt) Pr(S2,t+k = 1|Ωt). (5.C.9)
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Chapter 6

EXPLORING PERMANENT AND
TRANSITORY COMPONENTS
OF STOCK RETURN

1. Introduction

An economic variable can naturally be considered in terms of a per-
manent component and a transitory component. Several approaches
have been proposed in the related literature to decompose the univari-
ate economic time series into permanent and transitory components.
Nelson and Plosser (1982) use autocorrelation functions of a model com-
prising permanent and temporary components to ascertain the relative
size of each component. Other researchers, for example, Watson (1986)
and Clark (1987), have attempted this type of decomposition using un-
observed component models of gross national product. Campbell and
Mankiw (1987) use the parameters of a low order ARMA model to de-
termine the impact of a shock on the long-run forecasts. Their technique
enables them to decide the relative importance of the two components.

Another group of researchers focus on the mean reversion in stock
prices. Based on an analysis of mean reversion using an autoregressive
test, Fama and French (1988) report that stock prices in the US have a
transitory mean-reverting component in addition to a permanent com-
ponent. Porterba and Summers (1988), Lo and MacKinlay (1988) and
Kim, Nelson and Startz (1991) employ the variance ratio methodology
of Cochrane (1988) to detect mean reversion in stock prices 1. These au-
thors report mixed evidence on the presence of mean reversion in stock
prices. More recently, Chou and Ng (1995) have applied the canonical
decomposition method of Tsay and Chou (1994) to decompose equity in-
dices into permanent and temporary components. They assert, based on
their findings, that this multivariate model is relatively easy to estimate.



118 HIDDEN MARKOV MODELS

Beveridge and Nelson (1981) adopt a decomposition method that can
conveniently estimate the permanent and transitory components of a
time series using a forecasting model of the first difference of the se-
ries. As pointed out by Morley (2002), however, the need to evaluate
infinite sums makes their method somewhat unwieldy. As a clever alter-
native, Morley (2002) suggests setting up the problem in a state space
framework, a very convenient framework for dealing with unobserved
component modeling.

In this chapter we adapt the empirical model of stock return proposed
by Kim and Kim (1996) to decompose stock returns into permanent
and transitory components, and then analyze the movements of stock
returns for Germany, Japan, the UK and the USA. We also make use
of state space structures with enhancements that allow different shocks
to drive the two components. Two questions are specifically addressed.
(1) How different are the speeds of the mean reversion of the temporary
components? (2) How different are the patterns of correlation between
permanent and temporal components across international markets?

Our analysis is carried out in two stages. First, we apply the Markov
switching heteroskedasticity model. This approach has been adopted
as an alternative method for dealing with ARCH effects in economic
data.2 The behavior of the unconditional variance constitutes the main
difference between the ARCH type conditional heteroskedasticity and
the Markov switching variance model. Specifically, the unconditional
variance remains constant in the case of the former, whereas it changes
with the state of the economy in the latter. Kim, Nelson and Startz
(1998) demonstrate good fitting of the Markov switching variance model
to monthly stock return data, particularly in terms of normality of the
standardized return. In the framework of Kim and Kim (1996) the two
components of the return are driven by different unobserved Markov
processes, and this separation of stock return allows us to study how
each of the two components impacts the variance of the return. Also,
the estimated Markov switching parameters indicate the probability of
each of these components to be in a high variance state and thus link
them to different stages in the stock return process.

Second, we apply the model to stock return data for the four countries
previously mentioned and examine how interactions between the stock
return components and return variance differ from country to country.
While many of the studies cited above use only US data for empirical
analysis, our extended analysis attempts to detect the behavior of other
influential economies of the world.
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2. Markov Switching Heteroscedasticity Model of
Stock Return

Under the empirical model of stock return proposed by Kim and Kim
(1996) that we adapted for this study, the stock return series for a par-
ticular country is assumed to consist of a permanent component (pmt)
and a stationary component. We also assume that the return rt consists
of a constant plus noise and an autoregressive stationary component, xt.
Although the most commonly used method in modeling the well-known
variance clustering in stock return is by a GARCH process, we adopt
an alternative specification more suitable at the monthly frequency. An
important feature of this model is the incorporation of the shocks to
the transitory component. This allows us to examine an impact on the
overall return variance.

In a GARCH framework, the unconditional variance does not change,
whereas in a Markov switching specification it changes depending on
the state of volatility. This is the main difference between these two
approaches to capture the empirical characteristics of the stock return
volatility. Hamilton and Susmel (1994) propose a switching ARCH
model in which they allow the parameters of the ARCH process to come
from one of several different regimes. Although the ARCH process con-
trols the short-run dynamics, the long-run dynamics are governed by
regime shifts in unconditional variance, while an unobserved Markov
switching process drives the regime changes. These authors apply the
model to weekly return data and show that the ARCH effects almost
completely diminish after a month. This tends to indicate that in mod-
eling monthly return an ARCH term may not be necessary.

The regime switching approach has also been popular to examine the
mean reversion in stock return, as in, for example, Kim and Nelson
(1998) and Graflund (2000). These authors argue that the variance
ratio test that is often used for analyzing mean reversion may need to
be modified to take into account the changes in variance due to changes
in regimes. In this present study we assume that the return series is
drawn from a mixture of normal distributions, as in Kim, Nelson and
Startz (1998). These authors have shown that the Markov switching
heteroscedasticity model of stock return is a good approximation of the
underlying data generating process. This leads us to formulate the return
series as

rt = pmt + xt, (6.1)

pmt = µ + (Q0 + Q1S1,t) vt, (6.2)
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xt = φxt−1 + (h0 + h1S2,t) et, (6.3)

where et ∼ N(0, 1), and vt ∼ N(0, 1). In this model we use xt to
represent the temporary part of the return and not the prices directly.
We include φ simply reflecting the fact that the temporary component
of the return could be auto-correlated.3 S1,t and S2,t are unobserved
state variables that evolve independently as two state Markov processes.
These state variables determine the underlying regime at any given time.
Their associated transition probability matrices govern the evolution of
these state variables. The parameters h1 and Q1 help us identify any
shift in variance during periods of high uncertainty. The estimation
of this model allows us to comment on the time series behavior of the
return volatility for a particular country and how this is influenced by
the switching probability of the transitory component.

The two Markov switching variables are independent of each other
and the respective transition probabilities are defined as:

Pr (S1,t = 0|S1,t−1 = 0) = p00, Pr (S1,t = 1|S1,t−1 = 1) = p11, (6.4)

Pr (S2,t = 0|S2,t−1 = 0) = q00, Pr (S2,t = 1|S2,t−1 = 1) = q11. (6.5)

In order to estimate such a model that involves unobserved compo-
nents and is subject to Markov switching shocks, we utilize the procedure
discussed by Kim and Nelson (1999). This involves generating a proba-
bility weighted likelihood function and a recursive algorithm to update
the probabilities as new observations becomes available. This has been
written with computer programming in mind. The parameters to be
estimated are, therefore, [p11, p00, Q0, Q1, µ, q11, q00, h0, h1, φ].

3. Data
This analysis uses the data from the monthly stock price indexes of

Germany, Japan, the UK and the USA. The sample period spans the
32 years from December 1969 to March 2001. Each stock price index
is obtained from the Morgan Stanley Capital International Index and
represents the end-of-month index. The rate of return on stocks for
each country is calculated as yt = (Pt − Pt−1) × 100/Pt−1, where Pt is
the stock price index at time t. Thus, the rates of return on stocks are
obtained for the period from January 1970 to March 2001.

Table 6.1 summarizes statistics on the rate of return in each country,
including descriptive statistics on the mean, standard deviation (Std.
Dev.), skewness, kurtosis and the P−value of the Jarque-Bera test statis-
tic (JB test) for testing the normality of the series. Under the null hy-
pothesis, the Jarque-Bera statistic has a chi-square distribution with two
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Table 6.1. Summary statistics

Germany Japan UK USA

Mean (%) 0.9101 0.8351 1.2973 1.0416
Std. Dev. 5.3472 5.3987 6.1799 4.4699
Skewness -0.3007 -0.0290 1.4162 -0.3095
Kurtosis 4.6979 4.2131 18.3381 4.9873
JB test 0.0000 0.0000 0.0000 0.0000

Note: The hypothesis of normal distribution is rejected at the 5% (1%) level of significance
if the P−value for the JB test is less than 0.05 (0.01).

degrees of freedom. When the reported probability for the Jarque-Bera
statistic is small, the null hypothesis of a normal distribution is rejected.
As clearly demonstrated in Table 1, the mean and standard deviation of
stock return are relatively high for the UK, but relatively low for Ger-
many and Japan. The hypothesis of normal distribution is rejected at
the 1% significance level for all of the countries.

4. Empirical Results
Table 6.2 shows the parameter estimates of the Markov switching het-

eroskedasticity model for the sample period from March 1971 to March
2001. The results are computed using the algorithm discussed in the
previous chapter. The initial values for the filter are obtained from
the observations recorded during the first year, i.e. between January
1970 and February 1971. The estimates of transition probability p11

(high-variance state of the permanent component) and the probability
p00 (low-variance state of the permanent component) are both highly
significant for all of the countries.

The variance estimates of the permanent component of the return
also significantly differ between the countries. The low-variance state
estimate (Q0) is highly significant for both the UK and USA, but not
for Germany or Japan. In contrast, the additional variance (Q1) of the
permanent component due to the high volatility regime is significant
for all four countries. This means that the variance of the permanent
component of the return increases for all of these markets as they enter
the high volatility state. We were also interested to note that the mag-
nitude of the overall variance of the permanent component during the
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Table 6.2. Permanent and transitory components of equity return: Markov switching
heteroscedasticity framework

Germany Japan UK USA

p11 0.9922∗ 0.9963* 0.9945∗ 0.9948∗

(0.0077) (0.0051) (0.0055) (0.0055)
p00 0.9746∗ 0.9785* 0.9448∗ 0.9695∗

(0.0256) (0.0141) (0.0499) (0.0266)
Q0 0.1192 0.0045 0.8048∗ 1.5918∗

(1.4704) (0.3146) (0.1082) (0.1870)
Q1 2.4398∗∗ 3.3458* 2.3961∗ 1.3405∗

(1.4703) (0.5074) (0.2237) (0.2163)
µ 0.8443∗ 1.0070* 1.5258∗ 1.2070∗

(0.2330) (0.2289) (0.2239) (0.1932)
q11 0.9515∗ 0.8070* 0.8683∗ 0.7078∗

(0.0394) (0.1708) (0.0780) (0.1702)
q00 0.9792∗ 0.9325* 0.9896∗ 0.9855∗

(0.0172) (0.0511) (0.0078) (0.0113)
h0 2.7861∗ 2.3276* 1.6005∗ 0.0270

(0.3919) (0.4436) (0.3311) (0.3744)
h1 3.8856∗ 3.6222* 13.6552∗ 9.1604∗

(0.7958) (1.2882) (2.5826) (2.8335)
φ 0.0902 0.2887 0.0047 -0.1434

(0.2031) (0.2052) (0.1266) (0.1286)

Note: The parameters are described in the text. Standard errors are given in parentheses
below the parameter estimates. Significance at the 10% level is indicated by ** and at the
5% level is indicated by *.

high volatility state, i.e. Q0 + Q1, diverges very little among the four
markets.

The parameters of particular interest in this study are those relating to
the transitory component of the return. The transition probabilities q11

(high-variance state of the transitory component) and q00 (low-variance
state of the transitory component) are both is highly significant for all
of the countries. This is an indication that the low volatility state dom-
inates in each country. The expected duration of the low volatility state
ranges from a low of 14.81 months for Japan to a high of 96.15 months
for the UK, while that for the USA falls closer to the latter, at 68.97
months. The expected duration of the high volatility state also ranges
quite widely, from a low of 3.42 months for the USA to a high of 20.62
months for Germany. The average duration of the low volatility state
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Table 6.3. Residual diagnostics and model adequacy tests

Portmanteau ARCH KS Test MNR Recursive T

Germany 0.362 0.276 0.060 0.632 0.506
Japan 0.179 0.679 0.050 0.258 0.669
UK 0.064 0.067 0.083 0.957 0.572
USA 0.769 0.811 0.043 0.747 0.633

Note: Entries are P−values for the respective statistics except for the KS statistic. These
diagnostics are computed from the recursive residual of the measurement equation. The null
hypothesis in portmanteau test is that the residuals are serially uncorrelated. The ARCH
test checks for no serial correlations in the squared residual up to lag 26. Both these tests are
applicable to recursive residuals as explained in Wells (1996, p. 27). MNR is the modified Von
Neumann ratio test using recursive residual for model adequacy (see Harvey, 1990, chapter 5).
Similarly, if the model is correctly specified then Recursive T has a Student’s t−distribution
(see Harvey, 1990, p. 157). KS statistic represents the Kolmogorov-Smirnov test statistic for
normality. 95% significance level in this test is 0.072. When KS statistic is less than 0.072
the null hypothesis of normality cannot be rejected at the indicated level of significance.

Table 6.4. Correlations: return, permanent and temporary components

Return
Germany Japan UK USA

Germany 1.0000
Japan 0.3166 1.0000
UK 0.3930 0.3013 1.0000
U.S.A. 0.4212 0.3356 0.5676 1.0000

Permanent component
Germany Japan UK USA

Germany 1.0000
Japan 0.3154 1.0000
UK 0.3925 0.2987 1.0000
USA 0.4274 0.3434 0.5680 1.0000

Temporary component
Germany Japan UK USA

Germany 1.0000
Japan 0.2545 1.0000
UK 0.3651 0.2783 1.0000
USA -0.3085 -0.2900 -0.5214 1.0000
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among the four countries is 57.00 months, while the average duration of
the high volatility state is 9.20 months. The latter value means that the
high volatility transitory state fades in about 9 months on average for
this group of countries.

The variance measure for the low volatility state of the transitory
component (h0) is significant for Germany, Japan and the UK, but not
the USA. On the other hand, h1, the additional variance measure for the
high volatility state of the transitory component, is highly significant for
all of the countries. Moreover, h1 is relatively high for all the countries.
It is interesting to observe that the overall variance in the high volatility
regime (h0 + h1) is quite comparable among all of the countries, and
the highest for the UK. This, coupled with the fairly long duration of
the high volatility state (average of 9 months), indicates that the high
variance of the transitory component tends to be relatively short lived.

In order to check the performance of the model, we analyze the resid-
ual from the model using a variety of diagnostics tests. Our test results
are presented in Table 6.3. The portmanteau tests support the whiteness
of the residuals, the ARCH tests indicate no remaining heteroskedastic-
ity in the residuals, and the Kolmogorov-Smirnov tests support the nor-
mality of the residuals. The test results taken collectively overwhelm-
ingly support the modeling approach adopted, and on this basis they
validate the significance of the statistical conclusions drawn from this
approach.

In addition to the three tests outlined above, we also apply a pair
of tests specifically designed for the recursive residuals produced by the
state space system adopted in this study. The former, the modified von-
Neumann ratio, tests against serial correlations in the residuals, while
the latter, the recursive t-test, checks for correct model specifications. As
the entries in Table 6.3 indicate, the model applied to different country
datasets performs extremely well in both these tests. Again, there is
overwhelming support for the adequacy of the model in describing the
price process involving the permanent and transitory components.

Table 6.4 shows the correlation patterns for the return itself, for the
permanent component, and for the temporal component across interna-
tional markets.

The returns of all four markets are positively correlated with each
other. The highest correlation is 0.5676, between the USA and UK, and
the lowest correlation is 0.3013, between the UK and Japan. The USA,
UK and German markets correlate strongly with each other, but rela-
tively weakly with the market in Japan. The inter-country correlations
for the temporary component tend to be slightly smaller than those for
the permanent component. The correlations between Germany and the
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UK, for example, are 0.3925 for the permanent component versus 0.3651
for the temporary component. It is of interest to note that all of the
correlation coefficients between the USA and other three countries are
negative for temporary components and positive for the permanent ones.
This implies that the USA market moves in the same direction as the
other three markets in the long run, but in an opposite direction in the
short run.

5. Conclusion
In this chapter we apply the Markov switching heteroskedasticity

model to stock returns for Germany, Japan, the UK, and USA, and
decompose these stock returns into permanent and transitory compo-
nents. This modeling approach is superior to the GARCH model, as
emphasized by Lamoureux and Lastrapes (1990). In particular, the
Markov-switching model explicitly considers the possibility of regime
shift, whereas the GARCH model does not.

According to our evaluation of the differences between the speeds of
mean reversion of the temporary components, the high-variance state of
the transitory component lasts for an average of only 3.42 months for
the USA, versus 20.62 months for Germany. The time periods for the
other two countries fall between these values.

Regarding the second objective of this study, to determine differences
in the patterns of correlation between permanent and temporal compo-
nents across international markets, we find that the US market corre-
lates positively with the other markets for the permanent component,
but negatively for the temporal component. This implies that the USA
moves in the same direction as the other three countries in the long run,
and in an opposite direction in the short run.4
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Notes
1 Porterba and Summers (1988) test for the presence of a transitory

component, though they do not formally decompose stock prices into
permanent and transitory components.

2 See for example Kim, Nelson and Startz (1998).
3 In Kim and Kim (1996) the state equation consists of the model for

the temporary component of the prices and the authors obtain rela-
tively high values of the AR parameters. Moreover, the permanent
component contains only constant and regime dependent volatility
terms. In that context, we believe our model is quite parsimonious.

4 This chapter is an edited version of Bhar and Hamori (2004) with
permission from Elsevier.
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EXPLORING THE RELATIONSHIP
BETWEEN COINCIDENT FINANCIAL
MARKET INDICATORS

1. Introduction

The time series properties of expectations and volatility of stock re-
turns have attracted attention in the financial literature. Driven by the
strong intuition that risk and return should be positively correlated, re-
searchers have empirically examined the covariance between the mean
and volatility of returns in search of a positive relationship between
expected returns and conditional volatility. However, these efforts have
yet to yield conclusive results. In fact, prior empirical investigations into
the contemporaneous correlation between the first two moments of stock
market returns have yielded decidedly mixed results.1 Further, Backus
and Gregory (1993) point out that a negative and even non-monotonic
relationship is consistent with equilibrium. Researchers nonetheless con-
tinue to investigate stock return data within the framework of ARCH-M
and its generalizations, descriptive empirical models that impose a linear
relationship between the conditional expectation and conditional volatil-
ity of returns.

However, the mixed empirical results in the literature indicate that
inferences are sensitive to the way in which the moments and the re-
lationships between them are modeled. Thus, some empirical studies
have focused on the non-linearity between stock returns and proxies for
market risk. Whitelaw (1994), for example, empirically investigates the
comovements of the conditional mean and volatility of stock returns
using monthly US data from April 1953 to March 1989. His results
show that the conditional mean and volatility exhibit an asymmetric re-
lationship that contrasts with the contemporaneous relationship found
earlier. As a consequence, Whitelaw (1994) questions the value of mod-
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eling expected returns as a constant function of conditional volatility
and concludes that imposing a constant linear relationship between the
mean and volatility may lead to erroneous inferences.

Many studies also show that stock returns can be predicted by means
of publicly available information, such as time series data on financial
and macroeconomic variables. Pesaran and Timmermann (1995), for
example, assess the economic significance of the predictability of US
stock returns at a monthly frequency over the period between January
1954 and December 1992. According to their results, the power of eco-
nomic factors to predict stock returns changes through time and tends
to vary with the volatility of the returns. Noting the close links between
important episodes of stock return predictability and the incidence of
sudden shocks to the economy, they recommend the use of forecasting
procedures that allow for possible regime changes when analyzing stock
return predictability.

These two lines of research suggest the importance of considering non-
linearity when grouping the behavior of excess returns according to the
state of the business cycle.

Following the example of Chauvet and Potter (2000), we attempt to
represent stock market fluctuations in this chapter by constructing a
non-linear coincident financial indicator. The indicator we use is based
on a broad information set of market conditions generated from expec-
tations about changes in future economic activity, including the overall
state of financial markets.

Chauvet and Potter (2000) formulate swings in the stock market as
a function of investor reactions towards changes in unobserved market
risk factors. They construct a non-linear proxy for market risk premia as
a latent factor, whose first moment and conditional second moment are
driven by a two-state Markov variable. Excess returns and their volatil-
ity may reflect changes in average opinion about financial information as
investors learn more about the data. Chauvet and Potter (2000) stress
the fact that when econometricians try to evaluate how stock returns
affect changes in systematic risk, they cannot directly see the informa-
tion that market participants use. Moreover, investors may respond
asymmetrically when a broad information set is adopted, depending on
how the investors perceive business conditions.2 In addition to captur-
ing the asymmetric behavior of investors toward risk and the inclinations
of investors to hedge against noise, the Markov-switching introduced in
the unobservable factor can generate higher levels of volatility when an
economy moves into certain states.
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2. Markov Switching Coincidence Index Model
Many economic and/or financial time series are found to be highly

correlated, but nor necessarily cointegrated. Economists have attempted
to make use such observation to develop models that might be able to
predict the likely direction of the particular market being investigated.
It has also been found useful to be able to summarize a number of
series into a smaller number and use that for prediction purposes. In
this context the factor structure has been employed. Stock and Watson
(1991) model of coincident economic indicator in this context is a classic
example. Since such a factor is essentially unobservable, it is well suited
for modeling by an appropriate state space system.

More recently, Chauvet (1998) and Chauvet and Potter (2000) have
enhanced such a modeling strategy by incorporating heteroscedastic in-
novations. This not only allows them to incorporate different regimes
the economy might pass through over a long period of time, say twenty
years or more. In the following paragraphs we outline this modeling
approach and apply that to infer the indicator variable for the finan-
cial markets for three countries, e.g. Japan, the UK and the USA. We
then study the dependence pattern of these indicator variables, which,
in turn, shed light on comovement between these markets. Chauvet and
Potter (2000) exploit this inferred variable to alter portfolio composition
in order to earn additional return. In our case, all three markets could
be involved in such a portfolio strategy, although we do not pursue this
line of investigation in this chapter.

We focus on four financial market variables that have been reported
in the literature to be commoving and these are, equity market excess
return, proxy for the market volatility, short-term interest rate and the
price-earning ratio. As we find the short-term interest rate and the price-
earning ratios are non-stationary, we use the first difference of the log of
these variables in the model. The preliminary analysis of the principal
component of these four variables indicate one dominant factor, hence
we set up the model to account for this unobserved factor with a given
dynamic characteristic. Additional details of the data and their sources
are given the data section.

The model is, thus, based around the unobserved dynamic factor wit
the following structure:

λt = α0 + α1St + φλt−1 + ηSt , ηSt ∼ N(0, σ2
St

), (7.1)

where, λt is the coincident financial indicator, and St = {0, 1} is the
Markov switching variable indicating the state of the financial market
at any given month. This evolves with its own transition probability
property. This is discussed further in the appendix. The innovation
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variance also depends on the state of the financial market as does the
mean of the unobserved factor.

Our model assumes that the observations of the four financial market
variables are related to this dynamic factor as well as its own idiosyn-
cratic innovations. Under this proposal the measurement process is given
by, 

yret

yvol

yir

ype

 =


βret

βvol

βir

βpe

 λt +


vret

vvol

vir

vpe

 . (7.2)

The idiosyncratic innovations are assumed to have an AR(1) structure
of their own as described by,

vi,t = θivi,t−1 + εi, εi ∼ N(0, σ2
i ). (7.3)

Here i represents either return, volatility, interest rate or the price-
earning variables. We also assume that these innovations are uncor-
related between themselves as well as with the innovation of the factor.
With a little thought we could put these set of equations in the state
space form which then directly comparable to the model estimation pro-
cedure discussed in the appendix. The measurement equation of the
state space form is, therefore,


yret

yvol

yir

ype

 =


βret 1 0 0 0
βvol 0 1 0 0
βir 0 0 1 0
βpe 0 0 0 1




λt

vret

vvol

vir

vpe

 , (7.4)

and the state transition equation becomes,
λt

vret,t

vvol,t

vir,t

vpe,t

 =


α0 + α1St

0
0
0
0



+


φ 0 0 0 0
0 θret 0 0 0
0 0 θvol 0 0
0 0 0 θir 0
0 0 0 0 θpe




λt−1

vret,t−1

vvol,t−1

vir,t−1

vpe,t−1

 +


ηSt

εret

εvol

εir

εpe

 .

(7.5)
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The estimation of the unknown parameters of this model is achieved
via the numerical maximization of the prediction error form of the like-
lihood function as described in the appendix.

3. Data
To carry out empirical analysis, we need a set of financial variables

that vary contemporaneously with stock market cycles. This includes
equity market excess returns, proxies for market volatility, short-term
interest rates, and price-earnings ratios. These variables contain infor-
mation on the underlying systematic risks within the economy, and they
have been successfully used in previous empirical studies. We use these
data for three countries: Japan, the UK, and the USA. The data were
taken from Data Stream and International Financial Statistics (Interna-
tional Monetary Fund). The sample period spans the approximately 30
year period from January 1973 through June 2001. As the short-term
interest rates and price-earnings ratios turn out to be non-stationary, we
use the first difference of the log of these variables in the model. Thus,
the data are obtained for the period between February 1973 and June
2001.

4. Empirical Results
We estimate the monthly coincident indicators for Japan, the UK,

and the USA. Table 7.1 reports the results for the dynamic factor model
when both its mean and variances are assumed to switch regimes.

State 0 is characterized by a positive mean rate (α0 = 0.07770 for
Japan, 0.05629 for the UK, and 0.05844 for the USA) and low variance
(σ2

η0 = 0.09764 for Japan, 0.21467 for the UK, and 0.15178 for the
USA), conditions that describe bull markets. State 1 is characterized by
a negative mean rate (α1 = −0.10613 for Japan, −0.25420 for the UK,
and −0.41292 for the USA) and high variance (σ2

η1 = 0.57381 for Japan,
1.97569 for the UK, and 1.10593 for the USA), conditions that prevail
during bear markets. Notice that the volatility in bear markets is 5.88
times (Japan), 9.20 times (UK), and 7.29 times (USA) higher than the
volatility during bull markets, respectively. In other words, the model
captures empirical observation of asymmetry during the stages of stock
market cycles: bear markets are shown to be volatile and associated with
steep and short contractions, while bull markets are shown to change
more gradually.

The transition probabilities Pr(St = i|St−1 = i) = pii, i = 0, 1 are
that a financial market will remain in state i, given that it is in state i.
The probability of staying in a bull market (p00) is estimated at 0.93744
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Table 7.1. Parameter estimates for the Markov switching coincidence index model

Japan UK USA

α0 0.07770 (0.0315) 0.05629 (0.0295) 0.05844 (0.0273)

α1 -0.10613 (0.0737) -0.25420 (0.2540) -0.41292 (0.3512)

φ 0.02937 (0.0515) 0.05190 (0.0594) 0.10522 (0.0596)

σ2
η0 0.09764 (0.0254) 0.21467 (0.0230) 0.15178 (0.0229)

σ2
η1 0.57381 (0.0739) 1.97569 (0.5407) 1.10593 (0.5176)

p00 0.93744 (0.0461) 0.98392 (0.0108) 0.97618 (0.0194)

p11 0.96187 (0.0302) 0.84466 (0.0785) 0.60952 (0.1851)

βvol 0.02799 (0.0374) -0.05287 (0.0399) -0.08797 (0.0550)

βir -0.15221 (0.1590) -0.09190 (0.0493) 0.01678 (0.0746)

βpe 0.84269 (0.0323) 1.03485 (0.0283) 0.97917 (0.0891)

θret -0.25824 (0.4442) -0.06042 (0.0732) -0.29387 (0.1060)

θvol 0.61852 (0.0435) 0.58351 (0.0414) 0.60788 (0.0420)

θir 0.23427 (0.0535) 0.36696 (0.0436) 0.23691 (0.0498)

θpe 0.19116 (0.0694) 0.84117 (0.0751) -0.11752 (0.0866)

σ2
ret 0.00806 (0.0100) 0.07525 (0.0076) 0.05791 (0.0203)

σ2
vol 0.24708 (0.0194) 0.32301 (0.0231) 0.16828 (0.0128)

σ2
ir 3.62191 (0.2583) 0.31148 (0.0210) 0.42581 (0.0290)

σ2
pe 0.07112 (0.0092) 0.00485 (0.0028) 0.07204 (0.0192)

Note: Maximum likelihood estimates of the parameters are reported here. The numbers
in parentheses are the standard errors computed from the diagonal elements of the final
covariance matrix.
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Table 7.2. Diagnostic statistics for the residuals of measurement equations

Portmanteau ARCH KS Test Recursive T

Japan
Return 0.137 0.531 0.054 0.972
Volatility 0.188 0.486 0.053 0.988
T Bill 0.186 0.434 0.052 0.995
P/E 0.167 0.443 0.051 0.914

UK
Return 0.431 0.366 0.097 0.479
Volatility 0.424 0.329 0.097 0.471
T Bill 0.41 0.336 0.097 0.473
P/E 0.349 0.279 0.097 0.477

USA
Return 0.451 0.572 0.047 0.501
Volatility 0.699 0.527 0.047 0.475
T Bill 0.681 0.537 0.046 0.468
P/E 0.784 0.440 0.046 0.447

Note: Entries are P−values for the respective statistics except for the KS statistic. These
diagnostics are computed from the recursive residual of the corresponding measurement equa-
tion. The null hypothesis in portmanteau test is that the residuals are serially uncorrelated.
The ARCH test checks for no serial correlations in the squared residual up to lag 26. Both
these test are applicable to recursive residuals as explained in Wells (1996, p. 27). If the
model is correctly specified then Recursive T has a Student’s t-distribution (Harvey, 1990,
p. 157). KS statistic represents the Kolmogorov-Smirnov test statistic for normality. 95%
significance level in this test is 0.074. When KS statistic is less than 0.074 the null hypothesis
of normality cannot be rejected at the indicated level of significance.

Table 7.3. Correlation between the coincident financial indicator and its components

Excess Return Volatility T-bill P/E

Japan 0.9989 -0.1339 -0.0747 0.8988
UK 0.9295 0.0606 -0.1518 0.9945
USA 0.9447 -0.3111 0.0020 0.9258
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Table 7.4. Granger causality tests

Country Null Hypothesis P−value

Japan Excess return does not cause coincident indicator. 0.4597
Coincident indicator does not cause excess return. 0.5021
Volatility does not cause coincident indicator. 0.1314
Coincident indicator does not cause volatility. 0.0000
T-bill does not cause coincident indicator. 0.0265
Coincident indicator does not cause T-bill. 0.3841
P/E does not cause coincident indicator. 0.5063
Coincident indicator does not cause P/E. 0.0062

UK Excess return does not cause coincident indicator. 0.0663
Coincident indicator does not cause excess return. 0.0814
Volatility does not cause coincident indicator. 0.0533
Coincident indicator does not cause volatility. 0.0007
T-bill does not cause coincident indicator. 0.0193
Coincident indicator does not cause T-bill. 0.4096
P/E does not cause coincident indicator. 0.7083
Coincident indicator does not cause P/E. 0.3506

USA Excess return does not cause coincident indicator. 0.0599
Coincident indicator does not cause excess return. 0.0224
Volatility does not cause coincident indicator. 0.0534
Coincident indicator does not cause volatility. 0.1075
T-bill does not cause coincident indicator. 0.0000
Coincident indicator does not cause T-bill. 0.0048
P/E does not cause coincident indicator. 0.0836
Coincident indicator does not cause P/E. 0.0012

for Japan, 0.98392 for the UK, and 0.97618 for the USA, while the
probability of staying in a bear market (p11) is estimated at 0.96187 for
Japan, 0.84466 for the UK, and 0.60952 for the USA. These estimates are
highly significant for all countries. Chauvet and Potter (2000) showed
that p00 is higher than p11 in the USA, which means that the average
duration of bull markets is longer than that of bear markets. According
to our own results, the findings of Chauvet and Potter hold true for the
US data, but not for data from Japan or the UK.

The factor loadings characterize the direct structural relations be-
tween the unobservable variable λt and the observable variables Yit. The
βi coefficients measure the sensitivity of Yit to a one-unit change in λt.
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The financial market indicator has the same scale as the excess return,
since we set its factor loading to one. Thus, the sign of the other factor
loadings indicates the direction of correlation of the financial variables
with the financial market indicator. Using the US data, Chauvet and
Potter (2000) find that the financial market indicator is positively re-
lated to growth in the price-earning ratio but negatively related to both
market volatility and changes in interest rates. However, our own empir-
ical results are only consistent with their findings in the case of the UK.
According to the data from our study, the financial market indicator in
Japan is negatively related to changes in interest rates and positively
related to market volatility and growth in the price-earnings ratio, while
that in the USA is negatively related to the financial market indicator
and positively related to changes in interest rates and growth in the
price-earnings ratio.

The adequacy of the model specification is verified through the di-
agnostic analysis outlined in Table 7.2. The analysis consists of the
Portmanteau test, ARCH test, KS test, and Recursive test. These di-
agnostics are computed from the recursive residual of the corresponding
measurement equation. The null hypothesis in the Portmanteau test is
that the residuals are serially uncorrelated. The ARCH test checks for
an absence of serial correlations in the squared residual up to lag 26.3

If the model is correctly specified, then Recursive T has a Student’s t-
distribution.4 The KS statistic represents the Kolmogorov-Smirnov test
statistic for normality. The 95% significance level in this test is 0.074.
When the KS statistic is less than 0.074, the null hypothesis of nor-
mality cannot be rejected at the indicated level of significance. This
table basically shows that our specification improvement in Table 7.1 is
empirically supported.

Figures 7.1, 7.2, and 7.3 show the estimated coincident indicator and
the excess return for the three countries. The time series path of the
financial indicator is remarkably similar to the excess return series for
all countries. Figures 7.4, 7.5, and 7.6 show the inferred probabilities of
the low variance state in Japan, the UK, and the USA, respectively.

Table 7.3 shows the correlation coefficient between the coincident fi-
nancial indicator and its components. The financial market indicators
have particularly high correlations with excess returns, i.e. 0.9989 for
Japan, 0.9295 for the UK, and 0.9447 for the USA. The growth rates
of the price-earnings ratios are also highly correlated with the financial
indicators, i.e. 0.8988 for Japan, 0.9945 for the UK, and 0.9258 for the
USA. These results are consistent with those of Chauvet and Potter
(2000), indicating that the structure of the financial market indicator
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Figure 7.1. Estimated coincident indicator and excess return: Japan
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Figure 7.2. Estimated coincident indicator and excess return: UK
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Figure 7.3. Estimated coincident indicator and excess return: USA
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Figure 7.5. Inferred probability of low variance state: UK
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cannot be simply imposed on the financial variables by assuming large
idiosyncratic noise terms.

Table 7.4 shows the results of the Granger causality test of the bivari-
ate system between the coincident financial indicator and other compo-
nents. Here, we use the AIC to choose the optimal lag length of the
system. In Japan, the coincident index causes the volatility and price-
earning ratio, while the interest rate causes the financial indicator. In
the UK, the coincident index causes the volatility and the interest rate
causes the financial indicator. In the USA, the financial indicator causes
the excess return, price-earning ratio, and interest rate, while the inter-
est rate causes the coincident indicator. Thus, the interest rate is found
to lead the coincident indicator in each of the three countries.

5. Conclusion
Following Chauvet and Potter (2000), we represented the monthly

stock market fluctuations by constructing a non-linear coincident finan-
cial indicator in this chapter. The indicator is constructed as an unob-
servable factor whose first moment and conditional volatility are driven
by a two-state Markov variable. The model is applied to economic data
from Japan, the UK, and the USA, and successfully estimated for each
of these industrialized countries. The coincident indicator has a partic-
ularly high correlation with excess returns, and its time series path is
remarkably similar to the excess return series in Japan, the UK, and
the USA. The estimated indicator can be interpreted as the investor’s
real-time belief about the state of financial conditions. In other words,
it can be viewed as a coincident indicator of movements in the stock
market reflecting common assessments of the implications of given sets
of financial information.5
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Notes
1 French, Schwert, and Stambaugh (1993) find a statistically signifi-

cant positive relationship between expected returns and anticipated
volatility. Glosten, Jagannathan, and Runkle (1987) conclude that
there is a negative relationship, or no relationship, between expected
returns and anticipated volatility. Chan, Karolyi, and Stulz (1992)
conclude that the expected return on the US market is not related to
its own conditional variance, but positively related to the conditional
covariance with a foreign index.

2 For example, changes in interest rates may be interpreted as bad or
good news, depending on whether the economy is in a recession or a
boom.

3 Both these tests are applicable to recursive residuals as explained in
Wells (1996, p. 27).

4 See Harvey (1990, p. 157).
5 See Chauvet and Potter (2000, p.89).

APPENDIX 7.A
Data

The main sources of the data are tabulated below.

Data Set Codes from DataStream and IFS

Price Index Dividend Yield P/E Ratio Interest Rate
(PI) (DY) (PE) (IR)

Japan TOTMKJP(PI) TOTMKJP(DY) TOTMKJP(PE) 15860B..ZF...
UK TOTMKUK(PI) TOTMKUK(DY) TOTMKUK(PE) 11260C..ZF...
USA S&PCOMP(PI) S&PCOMP(DY) S&PCOMP(PE) USCOD3M

Excess return and volatility are calculated as follows:

Excess return(xst) = [ln(PIt + PIt−1 × DYt) − ln(PIt−1) − ln(1 + IRt/12)]12,

Volatility =
√

(xst − xsavg)2.
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APPENDIX 7.B
State Space Model Estimation Algorithm
State Dynamic Subject to First Order Markov Chain Evo-
lution

We discuss the problem of estimation of a state space model when only the state
equation is subjected to multiple regimes and the switch between regimes take place
according to a first order Markov chain. Both the mean and the variance part of
the state equation may be subjected to this influence. Following the steps of this
algorithm is important in understanding the accompanying program logic. Without
the presence of this Markov chain, the state space system can be estimated using
the standard Kalman filter recursion and updating algorithms that would be used to
derive the prediction error form of the likelihood function.

The main issues that have to addressed due to the Markov chain driving the state
transition are: 1) The probabilities of being in a particular state assuming that the
system were in a given state in the previous time step, 2) How to cope with the
exploding number of states to be accounted for as each observation is processed. For
example, given that there are only two states possible, then at each time step there
is a two-fold increase of number of state to account for. This implies that for a 100-
time step observation of a given system there will be at the end 2100 states to be
dealt with. This is clearly impractical. Hence, there is a need for approximating the
system with a sensible approach. The algorithm discussed below deals with the first
issue following the approach suggested in Hamilton (1989) and the second issue is
addressed by the algorithm suggested in Kim (1994). Kim’s procedure collapses the
number of states to the previous number by a probability weighting scheme. Thus for
a two-state Markov chain, we will always deal with two states after each observation
input is processed.

The general structures to reference with respect these algorithms we focus on
the system given in equation (7.B.1) as the measurement equation and the equation
(7.B.2) as the state equation. Obviously, all the matrices and vectors are of compatible
dimensions. The 2-state Markov chain St = {0, 1} is used as a suffix to explicitly
recognize those variables that may depend on the state we are in at any time. The
equation (7.B.3) also states that the innovations of the measurement and the state
equations are uncorrelated.

yt = Hβt + Azt + et, (7.B.1)
βt = MSt + FStβt−1 + GStvt, (7.B.2)

and [
et

vt

]
∼ N

([
0
0

]
,

[
R 0
0 QSt

])
. (7.B.3)

The covariance matrix of the innovations in measurement equation is given by R
and that of the state equation is given by QSt . This representation is somewhat gen-
eral and not all the elements of the system could be present for a given problem. For
example, the component Azt is the measurement equation suggests possible presence
of endogenous variables zt entering the measurement process through the coefficient
matrix A.

We next focus on the prediction and the updating equation of the basic Kalman
filter assuming that in the previous time slot St−1 = i and the next time step it is
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St = j. At this stage we define the probability transition matrix for the Markov chain
variable. This is given by,

P =

[
p00 1 − p11

1 − p00 p11

]
. (7.B.4)

Following Harvey (1991) and Kim and Nelson (1999) and assuming that we are
moving from state realization of i to state realization j, the relevant equations are
given below.

Prediction:

βi,j
t|t−1 = Mjβ

i
t−1|t−1, (7.B.5)

P i,j
t|t−1 = FjP

i
t−1|t−1F

′
j + GjQjG

′
j , (7.B.6)

ηi,j
t|t−1 = yt − Hβi,j

t|t−1 − Azt, (7.B.7)

f i,j
t|t−1 = HP i,j

t|t−1H
′ + R, (7.B.8)

Updating:

βi,j
t|t = βi,j

t|t−1 + P i,j
t|t−1H(f i,j

t|t−1)
−1ηi,j

t|t−1, (7.B.9)

P i,j
t|t = [I − P i,j

t|t−1H
′(f i,j

t|t−1)
−1H]P i,j

t|t−1, (7.B.10)

In the above equations, βi
t−1|t−1 is the state vector estimated based upon informa-

tion at time (t−1), and the equation (7.B.5) states how it would evolve if at time t the
state realization happens to be j. Similar interpretation applies to the estimate of the
state covariance matrix, P i

t−1|t−1 with respect to the equation (7.B.6). The equation
(7.B.7) describes the forecast error at time t when the state realization is j assuming
the previous state was j at time (t − 1). The equation (7.B.8) gives the covariance
of the forecast error just discussed above. Thus, the equations (7.B.7) and (7.B.8)
would provide the input required to build the state dependent conditional density of
observations. The updating equations propel the equations (7.B.5) and (7.B.6) based
upon the observations just made and makes it ready for use at the next time step.
Thus, the basic nature of the Kalman filter is preserved; only these are now state
contingent. Obviously, for this recursive procedure to work, we need to supply the
prior starting values for β0|0, P0|0. We use the method discussed in Kim and Nelson
(1999, p. 27).

For a two state Markov process, this recursion in the filter produces (2×2) posteri-
ors for βi,j

t|t and P i,j
t|t when moving from (t−1) to t. Kim (1994) develops the following

approximation where by taking appropriate weighted average over the states at (t−1)
from which the particular state at t could be reached, this can be reduced to (2). We
define the probability weighting as,

Γi,j =
Pr(St−1 = i, St = j|Ψt)

Pr(St = j|Ψt)
, (7.B.11)
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where Ψt is the information available at time t. Therefore, the approximation for the
state vector is,

βj
t|t =

l∑
i=0

βi,j
t|t × Γi,j , (7.B.12)

and the approximation for P j
t|t is,

P j
t|t =

l∑
i=0

[P i,j
t|t + (βj

t|t − βi,j
t|t )(β

j
t|t − βi,j

t|t )
′] × Γi,j . (7.B.13)

The equations (7.B.12) and (7.B.13) describe the nature of approximation applied
to collapse the (2 × 2) posteriors to (2) posteriors with the help of the probability
weighting factor. The detailed derivation of this could be found in Kim and Nelson
(1999, p. 101). The probability terms necessary to achieve this can be obtained as
follows:

Γi,j =
Pr(St−1 = i, St = j|Ψt)

Pr(St = j|Ψt)

=
Pr(yt, St−1 = i, St = j|Ψt−1)

Pr(yt|Ψt−1)

= (
Pr(yt|St−1 = i, St = j, |Ψt−1)

Pr(yt|Ψt−1)
) × Pr(St−1 = i, St = j|Ψt−1),

(7.B.14)

where as before i = 0, 1 and j = 0, 1. With the help of the forecast error in the
prediction relations we can now construct the numerator (in the parentheses) of the
last term of equation (7.B.14) as,

Pr(yt|St−1 = i, St = j|Ψt−1) =
1√

2π(f i,j
t|t−1)

exp[−1

2
(ηi,j

t|t−1)
′(f i,j

t|t−1)
−1(ηi,j

t|t−1)],

(7.B.15)

and Pr(yt|Ψt−1) may be expressed as,

Pr(yt|Ψt−1) =

l∑
i=0

l∑
j=0

Pr(yt, St−1 = i, St = j|Ψt−1) × Pr(St−1 = i, St = j|Ψt−1).

(7.B.16)

It may be recognized that the last product term in equation (7.B.14) is the tran-
sition probability. Furthermore, the separation of the joint probability in equation
(7.B.14) is possible due to the Markov assumption. The equation (7.B.16) shows
how to propagate the probability information as new observation is processed. This
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also gives the log likelihood function that has to be maximized with respect to all
the unknown parameters in the model by using some suitable numerical optimization
routine.

The logic of propagation of the probability information requires starting values at
time 0. This is based on steady state probabilities of the assumed ergodic Markov
chain. In this context we adopt the steps outlined in Kim and Nelson (1999, p. 71).

This Markov switching state space model generate, during the estimation process,
the conditional variance of the forecast error given by equation (7.B.8) based upon
a given state realization. Using the probability of the state occurring as discussed
above, we could easily construct the conditional variance of the state process. The
conditional variance is thus given by,

l∑
0

l∑
0

Pr(St−1 = i, St = j|Ψt−1) × f i,j
t|t−1.

In a similar manner the estimate of probability weighted forecast error could be
generated using (7.B.7). This generated error series may then be analyzed for model
diagnostics tests. Furthermore, we make inference of the expected state vector based
on the relation given by equation (7.B.16) but the last term is replace by βi,j

t|t from

the equation (7.B.9).
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