P T -

dF'ﬂ‘M

D‘I’J C)"’Li

_'-_-‘.t*_- -__

Moorad Choudhry

Foreword by Professor Christineg Oughlon

J PRt Bttt
Ddrcoock. Univorsity of London s



Advanced Fixed Income Analysis



This page intentionally left blank



Advanced Fixed Income
Analysis

Moorad Choudhry

ELSEVIER

BUTTERWORTH
HEINEMANN

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD
PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO



Elsevier Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2004
Copyright © 2004 Moorad Choudhry. All rights reserved

The right of Moorad Choudhry to be identified as the author of this work
has been asserted in accordance with the Copyright, Designs and
Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England WI1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed

to the publisher

Permissions may be sought directly from Elsevier’s Science and

Technology Rights Department in Oxford, UK: phone: (+44) (0) 1865 843830;
fax: (+44) (0) 1865 853333; e-mail: permissions@elsevier.co.uk. You may also
complete your request on-line via the Elsevier homepage
(http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining
Permissions’

The views, thoughts and opinions expressed in this book are those of the author in

his individual private capacity and should not in any way be attributed to KBC Financial
Products UK Limited or to KBC Bank N.V., or to Moorad Choudhry as a representative,
officer, or employee of KBC Financial Products UK Limited or KBC Bank N.V.

Whilst every effort has been made to ensure accuracy, no responsibility for loss occasioned
to any person acting or refraining from action as a result of any material in this book can be
accepted by the author, publisher or any named person or corporate entity.

No part of this book constitutes investment advice and no part of this book should be construed
as such. Neither the author nor the publisher or any named individual or entity is soliciting any
action, response or trade in response to anything written in this book.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6263 8
0 7506 6279 4 (Fixed Income Markets Library)

For information on all Elsevier Butterworth-Heinemann finance
publications visit our website at http://books.elsevier.com/finance

Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India
www.integra-india.com
Printed and bound in Great Britain


http://www.integra-india.com
http://www.elsevier.com
http://books.elsevier.com/finance

For my grandfather, Mr Abdul Hakim (c. 1898-1983), Advocate.
Citizen of Noakhali, Bangladesh



Miss Page



Contents

Foreword ix
About the Author xi
Preface Xili
1 Approaches to Trading and Hedging 1
2 Relative Value Trading using Government Bonds 19
3 The Dynamics of Asset Prices 35
4 Interest-rate Models | 55
5 Interest-rate Models I 79
6 Estimating and Fitting the Term Structure | 97
7 Estimating and Interpreting the Term Structure II: a Practical
Implementation of the Cubic Spline Method 117
8 Advanced Analytics for Index-linked Bonds 141
9 Analysing the Long Bond Yield 153
10 The Default Risk of Corporate Bonds 163
11 Brady Bonds 169

Index 175



Miss Page



Foreword

The fixed income markets have always been centres of innovation and creativity. This much
is apparent from even a cursory glance at developments in recent and not-so-recent history.
However, it is only in the last twenty years or so that such innovation has really been required,
as markets changed significantly and capital started to move freely. The bond market has been
the vital conduit through which capital has been raised; continuing product development in
the markets has made a significant, and irreplaceable, contribution to global economic
progress. The range of products available is vast and growing, as the needs of both providers
and users of capital continually alters in response to changing conditions. This economic
dynamic means that market participants observe a state of constant learning, as they must
if they are to remain effective in their work. Consider, for instance, the new instruments and
techniques that we have had to become familiar with in just the last few years: new instru-
ments for hedging credit risk, new techniques for raising capital through synthetic securitisa-
tion of the most esoteric ‘reference’ assets, and new models for fitting the term structure of
interest rates — there is much for market participants to keep in touch with. Inevitably
practitioners are required to become specialists, as each segment of the debt markets
demands increasingly complex approaches in addressing its problems and requirements.

Of course, users of capital are not limited to existing products for raising finance or hedging
market risk exposure. They can ask an investment bank to design an instrument to meet their
individual requirements, and target it at specific groups of customers. For example, it is
arguable whether the growth of the ‘credit-card banks’ in the United States (such as MBNA)
could have occurred so rapidly without the securitisation mechanism that enabled them to
raise lower-cost funding. Witness also the introduction of exotic structured credit products,
such as the synthetic collateralised debt obligation (CDO), which uses credit derivatives
in its construction and followed rapidly on the development of more conventional CDO
structures. The so-called ‘CSO’ was designed to meet regulatory capital and credit risk manage-
ment requirements, as opposed to funding requirements. The increasing depth and complex-
ity of the markets requires participants to be completely up-to-date on the latest analytical and
valuation techniques if they are not to risk being left behind. It is clear that we operate in an
environment in which there exists a long-term interest in the application of ever more sophis-
ticated valuation and analytical techniques. The level of mathematical sophistication in use in
financial markets today is phenomenal, not to mention very specialised.

That is why this book, from one of the leading researchers and writers on fixed
income today, is such a welcome publication. I should of course say ‘books’, as we have a
series here that forms part of a handsome Library. The antecedents of the author promise
that these books will make a high-quality contribution to the field. But it is the books’ clarity
of approach and focus that I am most excited about. The books are welcome because they
are part of the continuing need to remain, as Alan Greenspan would have said, ahead of the
curve. They contain insights into practical techniques and applications used in the fixed
income markets today, with a hint at what one might expect in the future. They also
indicate the scope and significance of these techniques in the world of finance. Readers
will notice that the text is fairly technical at many points. This reflects the level of math-
ematical sophistication one encounters in the markets.

ix



X Foreword

If the author will indulge me, I would like to highlight those parts of the books I was
particularly interested in.

The treatment of yield curve analysis in Advanced Fixed Income Analysis is first rate. For
instance, I liked the comprehensive description of the ‘variable roughness penalty’ approach
to cubic spline estimation of the term structure (Chapter 6). The author rightly points out
that most market practitioners can have their analytical needs met by the simpler tech-
niques of yield curve fitting, and only exotic option traders, who wish to model the volatility
surface, really need to resort to multi-factor term structure models. That is why the practical
demonstration of the cubic spline technique is so welcome in this book. Portfolio managers
using this technique will get a good understanding of recent movements in the yield curve as
well as good interpretive information for the future. Elsewhere we have a comprehensive
treatment of the main single-factor and multi-factor yield curve models in use, with useful
comment on the efficacies of using both. The practical implications of using the different
interest-rate models are well handled and Chapters 4 and 5 will be of value to practitioners.
There is also accessible coverage of the Heath-Jarrow—Morton interest-rate model,
described and explained here in its single-factor and multi-factor forms. The author cleverly
draws out the link between academic research and market applications by showing how
financial institutions are able to continue meeting their clients’ ever more complex require-
ments by incorporating insights from research into their product development.

I am very enthusiastic about the book Corporate Bonds and Structured Financial
Products. The author captures all the key capital raising instruments. I was fascinated
to learn about the synthetic asset-backed CP structure or ‘conduit’. Distinct from conven-
tional AB-CP programmes, I was very interested to read about this. Of course, one might
(in hindsight!) easily have predicted its development, mirroring as it did the practice seen in
the bonds and note market when credit derivatives were allied with traditional securitisa-
tion techniques to produce the synthetic CDO. The author presents a new look at estab-
lished and new products, and both venerable and brand-new techniques. As such the book
should be practical interest to fund managers and traders, as well as corporate treasurers.

It is a privilege to be asked to write this foreword. By drawing on both his practical
experience of financial markets and research for his PhD at Birkbeck, University of London,
Moorad Choudhry successfully combines insights from theory and practice to make a
genuinely worthwhile contribution to the financial economics literature. I do hope that
this exciting and interesting new Library spurs readers on to their own research and
investigation; if they follow the application and dedication evident in this work, they will
not be going far wrong.

Professor Christine Oughton

School of Management and Organizational Psychology
Birkbeck, University of London

March 2004
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Preface

This book is a review of the bond markets but with specific emphasis on the fundamental
questions of the yield curve, the processes that determine the evolution of the interest-rate
term structure, and how these processes can be modelled. We consider some advanced
topics in bond market theory, so readers should be familiar with the basic concepts
including interest-rate risk, convexity, the pricing process for bonds with embedded options
and the concept of option-adjusted spread, the fundamentals of index-linked bonds, and
the application of the Black-Scholes model in options pricing. This book reviews:

m the concept of relative value trading using government bonds;

m a number of interest-rate models and the assumptions underlying these models.

We also look at the procedure involved in estimating and fitting the yield curve. This topic is
one of the most heavily researched subjects in financial market economics, and indeed
research is ongoing. There are a number of ways to estimate and fit the yield curve, and
there is no one right or wrong method.

It is important, both when discussing the subject matter or writing about it, to remem-
ber to place the relevant ideas in context, otherwise there is the danger of becoming too
theoretical. The aim is to confine the discussion within the boundary of user application;
there is a great deal of published material that is, quite simply, rather too theoretical, not to
mention highly technical. We must always try to keep in touch with the markets themselves.
The chapters are written from the point of view of both the market practitioner and the
research student.

In the following chapters we look at bond relative value trading as well as interest-rate
modelling. We summarise some interest-rate models, in a practical way that excludes
most of the mathematics. The aim is firmly to discuss application of the models, and not to
derive them or prove the maths. In this way readers should be able to assess the different
methodologies for themselves and decide the efficacies of each for their own purposes. As
always, selected recommended texts, plus chapter references are listed at the back, and
would be ideal as a starting point for further research. This serves to highlight that this book
is very much a summary of the latest developments, rather than a fully comprehensive
review of the subject. The topics would be suitable for a separate book in their own right, and
such a book would make an ideal companion to this book. However there is sufficient detail
and exposition here to leave the reader with, hopefully, a good understanding of the subject.

To begin with we look at relative value trading, and some aspects of this for the bond
trader. We then move on to the second part of this book, and introduce the dynamics of
asset pricing, which is fundamental to an understanding of yield curve analysis. We review
the main one-factor models that were initially developed to model the term structure. This
includes the Vasicek, Cox-Ingersoll-Ross and Hull-White models. In most cases the model
result is given and explained, rather than the full derivation. The objective here is to keep
the content accessible, and pertinent to practitioners and most postgraduate students. A
subsequent book is planned that will delve deeper into the models themselves, and the
latest developments in research. Later we look at more advanced multi-factor models, led

xiii
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by the Heath-Jarrow—Morton model. Finally, we review some techniques used to estimate
and fit the zero-coupon curve using the prices of bonds observed in the market, with an
illustration from the United Kingdom gilt market.

The last part of the book considers some advanced analytical techniques for index-
linked bonds. Chapter 9 is a look at some of the peculiar properties of very long-dated bond
yields, including the convexity bias inherent in such yields, and their relative volatility. In
Chapter 10 we review some concepts that apply to the analysis of the credit default risk of
corporate bonds, and how this might be priced.

The dynamics of the yield curve

In Chapter 2 of the companion volume to this book in the Fixed Income Markets Library,
Corporate Bonds and Structured Financial Products, we introduced the concept of the
yield curve, and reviewed some preliminary issues concerning both the shape of the
curve and to what extent the curve could be used to infer the shape and level of the yield
curve in the future. We do not know what interest rates will be in the future, but given a
set of zero-coupon (spot) rates today we can estimate the future level of forward rates
(given today’s spot rates) using a yield curve model. In many cases, however, we do not
have a zero-coupon curve to begin with, so it then becomes necessary to derive the spot
yield curve from the yields of coupon bonds, which one can observe readily in the
market. If a market only trades short-dated debt instruments, then it will be possible
to construct a short-dated spot curve.

It is important for a zero-coupon yield curve to be constructed as accurately as possible.
This is because the curve is used in the valuation of a wide range of instruments, not only
conventional cash market coupon bonds, which we can value using the appropriate spot
rate for each cash flow, but other interest-rate products such as swaps.

If using a spot rate curve for valuation purposes, banks use what are known as arbitrage-
freeyield curve models, where the derived curve has been matched to the current spot yield
curve. The concept of arbitrage-free, also known as no-arbitrage pricing or ‘the law of one
price’ is that if one is valuing the same product or cash flow in two different ways, the same
result will be obtained from either method. So, if one was valuing a two-year bond that was
put-able by the holder at par in one year’s time, it could be analysed as a one-year bond that
entitled the holder to reinvest it for another year. The rule of no-arbitrage pricing states that
an identical price will be obtained whichever way one chooses to analyse the bond. When
matching derived yield curves therefore, correctly matched curves will generate the same
price when valuing a bond, whether a derived spot curve is used or the current term
structure of spot rates.

From our understanding of derivatives, we know that option pricing models such as Black—
Scholes assume that asset price returns follow a lognormal distribution. The dynamics of
interest rates and the term structure is the subject of some debate, and the main difference
between the main interest-rate models is in the way that they choose to capture the change in
rates over a time period. However, although volatility of the yield curve is indeed the main area
of difference, certain models are easier to implement than others, and this is a key factor a
bank considers when deciding which model to use. The process of calibrating the model, that
is setting it up to estimate the spot and forward term structure using current interest rates that
are input to the model, is almost as important as deriving the model itself. So the availability of
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data for a range of products, including cash money markets, cash bonds, futures and swaps, is
vital to the successful implementation of the model.

As one might expect the yields on bonds are correlated, in most cases very closely
positively correlated. This enables us to analyse interest-rate risk in a portfolio for example,
but also to model the term structure in a systematic way. Much of the traditional approach to
bond portfolio management assumed a parallel shift in the yield curve, so that if the 5-year
bond yield moved upwards by 10 basis points, then the 30-year bond yield would also move
up by 10 basis points. This underpins traditional duration and modified duration analysis, and
the concept of immunisation. To analyse bonds in this way, we assume therefore that bond
yield volatilities are identical and correlations are perfectly positive. Although both types of
analysis are still common, it is clear that bond yields do not move in this fashion, and so we
must enhance our approach in order to perform more accurate analysis.

Factors influencing the yield curve

From the discussion in Chapter 2 of the companion volume to this book in the Fixed
Income Markets Library, Corporate Bonds and Structured Financial Products we are aware
that there are a range of factors that impact on the shape and level of the yield curve. A
combination of economic and non-economic factors are involved. A key factor is investor
expectations, with respect to the level of inflation, and the level of real interest rates in the
future. In the real world the market does not assume that either of these two factors is
constant, however given that there is a high level of uncertainty over anything longer than
the short-term, generally there is an assumption about both inflation and interest rates to
move towards some form of equilibrium in the long-term.

It is possible to infer market expectations about the level of real interest rates going
forward by observing yields in government index-linked bonds, which trade in a number of
countries including the US and UK. The market’s view on the future level of interest rates
may also be inferred from the shape and level of the current yield curve. We know that the
slope of the yield curve also has an information content. There is more than one way to
interpret any given slope, however, and this debate is still open.

The fact that there are a number of factors that influence changes in interest rates and the
shape of the yield curve means that it is not straightforward to model the curve itself. In Chapter
6 we consider some of the traditional and more recent approaches that have been developed.

Approaches to modelling

The area of interest-rate dynamics and yield curve modelling is one of the most heavily
researched in financial economics. There are a number of models available in the market today,
and generally it is possible to categorise them as following certain methodologies. By categorising
them in this way, participants in the market can assess them for their suitability, as well as draw
their own conclusions about how realistic they might be. Let us consider the main categories.

One-factor, two-factor and multi-factor models

The key assumption that is made by an interest-rate model is whether it is one-factor, that is
the dynamics of the yield change process are based on one factor, or multi-factor. From
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observation we know that in reality there are a number of factors that influence the price
change process, and that if we are using a model to value an option product, the valuation
of that product is dependent on more than one underlying factor. For example, the payoff
on a bond option is related to the underlying bond’s cash flows as well as to the reinvest-
ment rate that would be applied to each cash flow, in addition to certain other factors.
Valuing an option therefore is a multi-factor issue. In many cases, however, there is a close
degree of correlation between the different factors involved. If we are modelling the term
structure, we can calculate the correlation between the different maturity spot rates by
using a covariance matrix of changes for each of the spot rates, and thus obtain a common
factor that impacts all spot rates in the same direction. This factor can then be used to
model the entire term structure in a one-factor model, and although two-factor and multi-
factor models have been developed, the one-factor model is still commonly used. In
principle it is relatively straightforward to move from a one-factor to a multi-factor model,
but implementing and calibrating a multi-factor model is a more involved process. This is
because the model requires the estimation of more volatility and correlation parameters,
which slows down the process.

Readers will encounter the term Gaussian in reference to certain interest-rate models.
Put simply, a Gaussian process describes one that follows a normal distribution under a
probability density function. The distribution of rates in this way for Gaussian models
implies that interest rates can attain negative values under positive probability, which
makes the models undesirable for some market practitioners. Nevertheless, such models
are popular because they are relatively straightforward to implement and because the
probability of the model generating negative rates is low and occurs only under certain
extreme circumstances.

The short-term rate and the yield curve

The application of risk-neutral valuation requires that we know the sequence of short-term
rates for each scenario, which is provided in some interest-rate models. For this reason,
many yield curve models are essentially models of the stochastic evolution of the short-
term rate. They assume that changes in the short-term interest rate is a Markov process.
(It is outside the scope of this book to review the mathematics of such processes, but
references are provided in subsequent chapters.) This describes an evolution of short-term
rates in which the evolution of the rate is a function only of its current level, and not the
path by which it arrived there. The practical significance of this is that the valuation of
interest-rate products can be reduced to the solution of a single partial differential equation.

Short-rate models are composed of two components. The first attempts to capture the
average rate of change, also called the drift, of the short-term rate at each instant, while the
second component measures this drift as a function of the volatility of the short-term rate.
This is given by:

dr(t) = p(r, t)dt +o(r, £)dW (1)

where dr(?) is the instantaneous change in the short-term rate, and W(¢) is the stochastic
process that describes the evolution in interest rates, known as a Brownian or Weiner process.

The term u(r, #) is the value of the drift multiplied by the size of the time period. The
term o(r, )dW(z) is the volatility of the short-term rate multiplied by a random increment
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that is normally distributed. In most models the drift rate term is determined through a
numerical technique that matches the initial spot rate yield curve, while in some models an
analytical solution is available. Generally models assume an arbitrage-free relationship
between the initial forward rate curve, the volatility o(r, )dW(z), the market price of
interest-rate risk and the drift term u(r, £). In models such as those presented by Vasicek
(1977) and Cox-Ingersoll-Ross (1985), the initial spot rate yield curve is given by an analy-
tical formula in terms of the model parameters, and they are known as equilibrium models,
because they describe yield curves as being derived from an assumption of economic
equilibrium, based on a given market interest rate. So the Vasicek and CIR models are
models of the short-term rate, and both incorporate the same form for the drift term, which
is a tendency for the short-term rate to rise when it is below the long-term mean interest
rate, and to fall when it is above the long-term mean. This is known as mean reversion.
Therefore we can describe the short-term drift rate in the form:

uw=r(0—r)

where r is the short-term rate as before and « and  are the mean reversion and long-term
rate constants. In the Vasicek model, the rate dependence of the volatility is constant, in the
CIR model it is proportional to the square-root of the short rate. In both models, because the
dynamics of the short-rate cover all possible moves, it is possible to derive negative interest
rates, although under most conditions of initial spot rate and volatility levels, this is quite
rare. Essentially the Vasicek and CIR models express the complete forward rate curve as a
function of the current short-term rate, which is why later models are sometimes preferred.

Other models that are similar in concept are the Black-Derman-Toy (1990) and Black-
Karinski (1992) models, however these have different terms for the drift rate and require
numerical fitting to the initial interest rate and volatility term structures. The drift rate term
is not known analytically in these models. In the BDT model the short-term rate volatility is
related to the strength of the mean reversion in a way that reduces the volatility over time.

Arbitrage-free and equilibrium modelling

In an arbitrage-free model, the initial term structure described by spot rates today is an
input to the model. In fact such models could be described not as models per se, but
essentially a description of an arbitrary process that governs changes in the yield curve, and
projects a forward curve that results from the mean and volatility of the current short-term
rate. An equilibrium term structure model is rather more a true model of the term structure
process; in an equilibrium model the current term structure is an output from the model.
An equilibrium model employs a statistical approach, assuming that market prices are
observed with some statistical error, so that the term structure must be estimated, rather
than taken as given.

Risk-neutral probabilities

When valuing an option written on say, an equity the price of the underlying asset is the
current price of the equity. When pricing an interest-rate option the underlying is obtained
via a random process that describes the instantaneous risk-free zero-coupon rate, which is
generally termed the short rate.
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In the following chapters we explore the different models that may be used and their
application.

Mathematics primer

The level of mathematics required for a full understanding of even intermediate concepts in
finance is frighteningly high. To attempt to summarise even the basic concepts in just a few
pages would be a futile task and might give the impression that the mathematics was being
trivialised. Our intention is quite the opposite. As this is a financial markets book, and not a
mathematics textbook, a certain level of knowledge has been assumed, and a formal or
rigorous approach has not been adopted. Hence readers will find few derivations, and fewer
proofs. What we provide here is a very brief introduction to some of the concepts; the aim of
this is simply to provide a starting point for individual research. We assist this start by listing
recommended texts in the bibliography.

Random variables and probability distributions

In financial mathematics random variables are used to describe the movement of asset
prices, and assuming certain properties about the process followed by asset prices allows us
to state what the expected outcome of events are. A random variable may be any value from
a specified sample space. The specification of the probability distribution that applies to the
sample space will define the frequency of particular values taken by the random variable.
The cumulative distribution function of a random variable X is defined using the distribu-
tion function f() such that Pr{X < x} = f(). A discrete random variable is one that can
assume a finite or countable set of values, usually assumed to be the set of positive integers.
We define a discrete random variable X with its own probability function p(i) such that
p(i) = Pr{X = i}. In this case the probability distribution is

fy=PriX<i}=> p(n)
n=0

with 0 <p(i) <1 for all i. The sum of the probabilities is 1.
Discrete probability distributions include the Binomial distribution and the Poisson
distribution.

Continuous random variables
The next step is to move to a continuous framework. A continuous random variable X may
assume any real value and its probability density function f(x) is defined as

m Pr{x <X <x+dx} dF(x)
F@)=dm, = ===

The probability distribution function is given as F(x) = Pr{X < x} = [___ f(s)ds.
Continuous distributions are commonly encountered in finance theory. The normal or
Gaussian distribution is perhaps the most important. It is described by its mean p and
standard deviation o, sometimes called the location and spread respectively. The probabil-
ity density function is
1) = e 45

e o
V2mo?
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Where a random variable X is assumed to follow a normal distribution it will be
described in the form X ~ N(u, 02) where ~ means ‘is distributed according to’. The standard
normal distribution is written as N(0, 1) with 4 =0 and o=1. The cumulative distribution
function for the standard normal distribution is given by

»() =N = | e

The key assumption in the derivation of the Black-Scholes option pricing model is that
the asset price follows a lognormal distribution, so that if we assume the asset price is P
we write

log(%) ~ N((r —Yo?)t, o?1).

Expected values

A probability distribution function describes the distribution of a random variable X. The
expected value of X in a discrete environment is given by

EX]=X=>ip(i)
i=0
and the equivalent for a continuous random variable is
EX]=X = / of (s)ds.
s=—00

The dispersion around the mean is given by the variance which is
Var[X] = E(X - X)* = > (i— X)* p(i)
i=0
or

Var[X] = E(X - X)* = h f(s)ds

S§=—00

in a continuous distribution. A squared measure has little application so commonly the
square root of the variance, the standard deviation is used.

Regression analysis

A linear relationship between two variables, one of which is dependent, can be estimated
using the least squares method. The relationship is

Yi=a+8Xi+¢;

where X is the independent variable and ¢ is an error term capturing those explanatory
factors not covered by the model. ¢ is described as ; ~ N(0, ¢2). 3 is the slope of the linear
regression line that describes the relationship, while « is the intercept of the y-axis. The sum
of the squares of the form

8§ =2 (vi—3)’
i=1

is minimised in order to calculate the parameters.
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Where we believe the relationship is non-linear we can use a regression model of the form
Yi = aXii(1 + BXpi) + e

This can be transformed into a form that is linear and then fitted using least squares. This is
carried out by minimising squares and is described by

SS = zn:(y,- — a1 — e Pi))2
i=1

Yield curve fitting techniques that use splines are often fitted using multiple regression
methods.

Stochastic processes

This is perhaps the most difficult area of financial mathematics. Most references are also
very technical and therefore difficult to access for the non-mathematician.

We begin with some definitions. A random process is usually referred to as a stochastic
process. This is a collection of random variables X(#) and the process may be either discrete
or continuous. We write {X(f), t € T} and a sample {x(¢), 0 <t < fmax} of the random
process {X(¢), t > 0} is known as the realisation or path of the process.

A Markov process is one where the path is dependent on the present state of the process
only, so that all historical data, including the path taken to arrive at the present state, is
irrelevant. So in a Markov process, all data up to the present is contained in the present state.
The dynamics of asset prices are frequently assumed to follow a Markov process, and in fact
it represents a semi-strong form efficient market. It is written

PriX(t) <ylX(u) = x(u), 0 <u <s} = Pr{X(t) <y|X(s) = x(s)}

foro<s<t.
A Weiner process or Brownian motion for {X(¢), t > 0} has the following properties:

X(0)=0;
{X(®), t > 0} has independent increments, so that X (¢ + b) — X(¢) and
X(t +2b) — X(t + b) are independent and follow the same distribution;

the variable X(#) has the property X(¢) ~ N(0, ¢) for all £> 0;
X(t)—X(s) ~N(0, t—s)for0<s<t.

Many interest-rate models assume that the movement of interest rates over time follows
a Weiner process.

Stochastic calculus

The Weiner process is usually denoted with W although Z and z are also used. For a Weiner
process {W(#), t > 0} it can be shown that after an infinitesimal time interval Ar we have

W(t+ At)— W(t) ~ N(0, At).
If we also have U ~ N(0, 1) then we may write
W(t+ At) — W(t) = VALU.

As the time interval decreases and approaches (but does not reach) 0, then the expres-
sion above may be written
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dw(t) = VAtU.

A Weiner process is not differentiable but a generalised Weiner process termed an It6
process is differentiable and is described in the form

dX() = a(t, X)dt + b(t, X)dW

where a is the drift and b the noise or volatility of the stochastic process.
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1 Approaches to Trading and Hedging

It is not the intention of this book to suggest trading ‘strategies’ as such, or any particular
approach to running a fixed-income market making or proprietary trading book. Rather, we
will discuss certain approaches that have worked in the past and should, given the right
circumstances, work again at some point in the future. It is the intention however, to focus
on real-world application whilst maintaining analytical rigour. The term frading covers a
wide range of activity. Market makers who are quoting two-way prices to market partici-
pants may be tasked with providing a customer service, building up retail and institutional
volume, or they may be tasked with purely running the book at a profit and trying to
maximise return on capital. The nature of the market that is traded will also impact on
their approach. In a highly transparent and liquid market such as the US Treasury or the UK
gilt market the price spreads are fairly narrow,' although increased demand has reduced
this somewhat in both markets. However this means that opportunities for profitable
trading as a result of mispricing of individual securities, whilst not completely extinct, are
rare. It is much more common for traders in such markets to take a view on relative value

In fact, in the late 1990s spreads in the gilt market were beginning to widen as excess demand over
supply, particularly at the long end of the yield curve, drove down yields and reduced liquidity. In
the Treasury market at the start of 2000 the yield curve had inverted, with the yield on the long bond
at 6.05% in February that year, down over 70 basis points from the start of the year. The announce-
ment by the US Treasury that it would buy back over $30 billion of debt in the year also led to
increased demand at the long end, helping to depress yields. The volatility level in the market was at
a two-year high at that time. These developments in the two markets have led to wider price quotes
and lower liquidity. A sustained public sector deficit has many implications for the debt markets, if
governments start to repay national debt and cease issuing securities. This is an important topic
which is currently the subject of some debate. A significant reduction in government debt levels,
while advantageous in many respects, will pose new problems. This is because government bonds
play an important part in the financial systems of many countries. In the first instance, government
bonds are used as the benchmark against which many other instruments are priced, such as
corporate bonds. An illiquid market in government debt could have serious implications for the
corporate bond markets, with investors possibly becoming reluctant to invest in corporate paper
unless yield levels rise. Derivatives may also suffer from pricing problems, particularly bond futures
contracts. In addition, while long-horizon institutional investors such as pension funds may find
themselves short of investment products, many central banks and sovereign governments are big
holders of securities such as US Treasuries, gilts and bunds. A shortage of supply in these instru-
ments, particularly Treasuries, might have implications for all these investors unless an alternative
instrument is made available. The continuing inverted yield curve in the UK, which dated from July
1997, and the inversion of the US curve in February 2000, is put down partly to shortage of long-
dated government stock. The OECD, as reported in The Economist (12 February 2000) has suggested
a policy whereby governments maintain a minimum level of gross public debt, with this minimum
being an amount sufficient to maintain bond market liquidity. This may not be a practical solution
for large economies however, especially that of the United States, but is certainly viable for other
developed economies. The issue of alternative benchmarks is currently being researched by the
author.
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trades, such as the yield spreads between individual securities or the expected future shape
of the yield curve. This is also called spread trading. A large volume of trading on derivatives
exchanges is done for hedging purposes, but speculative trading is also prominent. Very
often bond and interest-rate traders will punt using futures or options contracts, based on
their view of market direction. Ironically, market makers who have a low level of customer
business, perhaps because they are newcomers to the market, for historical reasons or
because they do not have the appetite for risk that is required to service the high quality
customers, tend to speculate on the futures exchanges to relieve tedium, often with
unfortunate results.

Speculative trading is undertaken on the basis of the views of the trader, desk or head of
the department. This view may be an ‘in-house’ view, for example the collective belief of the
economics or research department, or the individual trader’s view, which will be formu-
lated as a result of fundamental analysis and technical analysis. The former is an assessment
of macroeconomic and microeconomic factors affecting not just the specific bond market
itself but the economy as a whole. Those running corporate debt desks will also concentrate
heavily on individual sectors and corporations and their wider environment, because the
credit spread, and what drives the credit spread, of corporate bonds is of course key to the
performance of the bonds. Technical analysis or charting is a discipline in its own right, and
has its adherents. It is based on the belief that over time the patterns displayed by a
continuous time series of asset prices will repeat themselves. Therefore detecting patterns
should give a reasonable expectation of how asset prices should behave in the future. Many
traders use a combination of fundamental and technical analysis, although chartists often
say that for technical analysis to work effectively, it must be the only method adopted by
the trader. A review of technical analysis is presented in Chapter 63 of the author’s book
The Bond and Money Markets.

In this chapter we introduce some common methods and approaches, and some not so
common, that might be employed on a fixed interest desk.

1.1 Futures trading

Trading with derivatives is often preferred, for both speculative or hedging purposes, to
trading in the cash markets mainly because of the liquidity of the market and the ease and
low cost of undertaking transactions. The essential features of futures trading are volatility
and leverage. To establish a futures position on an exchange, the level of margin required is
very low proportional to the notional value of the contracts traded. For speculative purposes
traders often carry out open, that is uncovered trading, which is a directional bet on the
market. So therefore if a trader believed that short-term sterling interest rates were going to
fall, they could buy a short sterling contract on LIFFE. This may be held for under a day, in
which case if the price rises the trader will gain, or for a longer period, depending on their
view. The tick value of a short sterling contract is £10, so if they bought one lot at 92.75 (that
is, 100 — 92.75 or 7.25%) and sold it at the end of the day for 98.85 they made a profit of £100
on their one lot, from which brokerage will be subtracted. The trade can be carried out with
any futures contract; the same idea could be carried out with a cash market product or a
FRA, but the liquidity, narrow price spread and the low cost of dealing make such a trade
easier on a futures exchange. It is much more interesting however to carry out a spread
trade on the difference between the rates of two different contracts. Consider Figures 1.1
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and 1.2 which relate to the prices for the LIFFE short-sterling futures contract on 22 March
1999. The specification for this contract is summarised in Chapter 35 of Choudhry (2001).

Most futures exchanges use the designatory letters H, M, U and Z to refer to the contract
months for March, June, September and December. So the June 1999 contract is denoted by
‘M99’. From Chapter 2 we know that forward rates can be calculated for any term, starting on
any date. In Figure 1.1 we see the future prices on that day, and the interest rate that the prices
imply. The ‘stub’ is the term for the interest rate from today to the expiry of the first futures
contract, which is called the front month contract (in this case the front month contract is the
June 1999 contract). Figure 1.2 lists the forward rates from the spot date to six months, one year
and so on. It is possible to trade a strip of contracts to replicate any term, out to the maximum
maturity of the contract. This can be done for hedging or speculative purposes. Note from
Figure 1.1 that there is a spread between the cash curve and the futures curve. A trader can take
positions on cash against futures, but it is easier to transact only on the futures exchange.

Short-term money market interest rates often behave independently of the yield curve
as a whole. A money markets trader may be aware of cash market trends, for example an
increased frequency of borrowing at a certain point of the curve, as well as other market
intelligence that suggests that one point of the curve will rise or fall relative to others. One
way to exploit this view is to run a position in a cash instrument such as CD against a
futures contract, which is a basis spread trade.

Date 22/03/1999 LIFFE SHORT STERLING CONTRACT
Term 1w 1m 2m 3m 4m 5m 6m 9m ly
Libor 5561 5.439 5407 5359 5344 5321 5304 5295 5.300
Futures M99  U99 799  HOO MOO U00 Z00 HO1 Mol Uo1
Price 94.88 94.97 94.75 94.85 94.77 94.68 94.56 94.58 94.56 94.57
Rate % 5.12 5.03 5.25 5.15 523 532 5.44 542 544 543
Expiry 16-Jun 15-Sep 15-Dec 15-Mar 21-Jun 20-Sep 20-Dec 21-Mar 20-Jun 19-Sep
Days 86 177 268 359 457 548 639 730 821 912
Yield curve % ly 2y 2.5y
Cash 5367 5.307 5.295 5.300 5.243 5.252 5.262 5.270 5.287 5.303
Futures 5367 5.273 5.234 5.289 5.214 5.223 5.242 5271 5.291 5.310
5.4 1
- - - Futures
5.35 1 N —— Cash
. 5.3 1
1
< 5.25 |
2
~ 52
5.15 4
5.1

86 177 268 359 457 548 639 730 821 912
Days

Figure 1.1: LIFFE short-sterling contract analysis, 22 March 1999.
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Date 22/03/1999 LIFFE SHORT STERLING CONTRACT
Date Days Contract Price Rate 6m-fwd ly-fwd 1.5y-fwd 2y-fwd 3y-fwd 4y-fwd
Spot 86 Stub 94.6317 5.3683 5.268 5.292 5.224 5.271 5.337 5.356
16-Jun-99 91 M99 94.88 5.1200 5.107 5.239 5.216 5.278 5.341 5.353
15-Sep-99 91 U99 9497 5.0300 5.173 5.267 5.269 5.318 5.363
15-Dec-99 91 799 94.75 5.2500 5.233 5.341 5.334 5.369 5.390
15-Mar-00 98 HO00 94.85 5.1500 5.223 5.390 5.366 5.392 5.399
21-Jun-00 91 MO0 94.77 5.2300 5.310 5.461 5.416 5.428 5.415
20-Sep-00 91 Uo0o 94.68 5.3200 5.416 5.515 5.452 5.447
20-Dec-00 91 700 94.56 5.4400 5.467 5.544 5.467 5.452
21-Mar-01 91 HO1 94.58 5.4200 5.467 5.544 5.457 5.440
20-Jun-01 91 MO1 94.56 5.4400 5.472 5.541 5.447 5.428
19-Sep-01 91 uo1 94.57 5.4300 5.472 5.526 5.431

6 -
5.8
561
5.4 S
524 SN
R Spot
51 ---- 6m-fwd
484 e 1y-fwd
6. - - - 2y-fwd
4.4 -
Date
4.2 : : : : : . . . . . .
D D D 2] (=) (=) (=) (=) — — —
¢ % 3 3 S S S S 5 g 3
& & A ) = o a, o) = =) o,
o] o] o]
= 2 4 & = 2 & 4 = 2 &
& € 2 4 B 5 8 g 5 8§ 2

Figure 1.2: LIFFE short-sterling forward rates analysis, 22 March 1999.

However the best way to trade on this view is to carry out a spread trade, shorting one
contract against a long position in another trade. Consider Figure 1.1; if we feel that three-
month interest rates in June 2000 will be lower than where they are implied by the futures
price today, but that September 2000 rates will be higher, we will buy the M00 contract
and short the U00 contract. This is not a market directional trade, rather a view on the
relative spread between two contracts. The trade must be carried out in equal weights, for
example 100 lots of the June against 100 lots of the September.” If the rates do move in the

2 The author would particularly like to thank Peter Matthews, now with ABN Amro Securities (UK)
Ltd, and Ed Hardman who was in the short sterling booth at GNI on LIFFE, with whom I've sadly

lost contact, for information on this type of trading back in 1994.
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direction that the trader expects, the trade will generate a profit. There are similar
possibilities available from an analysis of Figure 1.2, depending on our view of forward
interest rates.

Spread trading carries a lower margin requirement than open position trading, because
there is no directional risk in the trade. It is also possible to arbitrage between contracts on
different exchanges. If the trade is short the near contract and long the far contract, so the
opposite of our example, this is known as buying the spread and the trader believes the
spread will widen. The opposite is shorting the spread and is undertaken when the trader
believes the spread will narrow. Note that the difference between the two price levels is not
limitless, because the theoretical price of a futures contract provides an upper limit to the
size of the spread or the basis. The spread or the basis cannot exceed the cost of carry, that
is the net cost of buying the cash security today and then delivering it into the futures
market on the contract expiry. The same principle applies to short-dated interest-rate
contracts; the net cost is the difference between the interest cost of borrowing funds to
buy the ‘security’ and the income accruing on the security while it is held before delivery.
The two associated costs for a short-sterling spread trade are the notional borrowing and
lending rates from having bought one and sold another contract. If the trader believes that
the cost of carry will decrease they could sell the spread to exercise this view.

The trader may have a longer time horizon and trade the spread between the short-
term interest-rate contract and the long bond future. This is usually carried out only by
proprietary traders, because it is unlikely that one person would be trading both three-
month and 10-year (or 20-year, depending on the contract specification) interest rates. A
common example of such a spread trade is a yield curve trade. If a trader believes that
the sterling yield curve will steepen or flatten between the three-month and the 10-year
terms, they can buy or sell the spread by using the LIFFE short-sterling contract and the
long gilt contract. To be first-order risk neutral however the trade must be duration-
weighted, as one short-sterling contract is not equivalent to one gilt contract. The tick
value of both contracts is £10, although the gilt contract represents £100,000 of a
notional gilt and the short-sterling contract represents a £500,000 time deposit. We use
(1.1) to calculate the hedge ratio, with £1000 being the value of a 1% change in the value
of both contracts.

(100 x tick) x P! x D

h= (1.1)
(100 x tick) x P/,
where
tick is the tick value of the contract
D is the duration of the bond represented by the long bond contract
P{: is the price of the bond futures contract

st;wrt ; is the price of the short-term deposit contract.

The notional maturity of a long bond contract is always given in terms of a spread, for
example for the long gilt it is 8% —13 years. Therefore in practice one would use the duration
of the cheapest-to-deliver bond.

A butterfly spread is a spread trade that involves three contracts, with the two spreads
between all three contracts being traded. This is carried out when the middle contract

appears to be mispriced relative to the two contracts either side of it. The trader may believe
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that one or both of the outer contracts will move in relation to the middle contract; if the
belief is that only one of these two will shift relative to the middle contract, then a butterfly
will be put on if the trader is not sure which of these will adjust. For example, consider
Figure 1.1 again. The prices of the front three contracts are 94.88, 94.97 and 94.75. A trader
may feel that the September contract is too low, and has a spread of +9 basis points to the
June contract, and —22 basis points to the December contract. The trader feels that the
September contract will rise, but will that be because June and December prices fall or
because the September price will rise? Instead of having to answer this question, all the
trader need believe is that the Jun-Sep spread will widen and the Sep-Dec spread will
narrow. To put this view into effect, the trader puts on a butterfly spread, which is equal to
the Sep-Dec spread minus the Jun-Sep spread, which they expect to narrow. Therefore the
trader buys the Jun-Sep spread and sells the Sep-Dec spread, which is also known as selling
the butterfly spread.

1.2 Yield curves and relative value

Bond market participants take a keen interest in the yield curve, both cash and zero-coupon
(spot) yield curves. In markets where an active zero-coupon bond market exists, much
analysis is undertaken into the relative spreads between derived and actual zero-coupon
yields. In this section we review some of the yield curve analysis used in the market.

1.2.1 The determinants of government bond yields

Market makers in government bond markets will analyse various factors in the market in
deciding how to run their book. Customer business apart, decisions to purchase or sell
securities will be a function of their views on:

m  market direction itself, that is the direction in which short-term and long-term interest
rates are headed;

m  which maturity point along the entire term structure offers the best value;

m  which specific issue within a particular maturity point offers the best value.

All three areas are related but will react differently to certain pieces of information. A
report on the projected size of the government’s budget deficit for example, will not have
much effect on two-year bond yields, whereas if the expectations came as a surprise to the
market it could have an adverse effect on long-bond yields. The starting point for analysis is
of course the yield curve, both the traditional coupon curve plotted against duration and the
zero-coupon curve. Figure 1.3 illustrates the traditional yield curve for gilts in October 1999.

For a first-level analysis, many market practitioners will go no further than Figure 1.3. An
investor who had no particular view on the future shape of the yield curve or the level of
interest rates may well adopt a neutral outlook and hold bonds that have a duration that
matches their investment horizon. If they believed interest rates were likely to remain stable
for a time, they might hold bonds with a longer duration in a positive sloping yield curve
environment, and pick up additional yield but with higher interest-rate risk. Once the
decision has been made on which part of the yield curve to invest in or switch into, the
investor must decide on the specific securities to hold, which then brings us on to relative
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Figure 1.3: Yield and duration of gilts, 21 October 1999.

value analysis. For this the investor will analyse specific sectors of the curve, looking at
individual stocks. This is sometimes called looking at the ‘local’ part of the curve.

An assessment of a local part of the yield curve will include looking at other features of
individual stocks in addition to their duration. This recognises that the yield of a specific
bond is not only a function of its duration, and that two bonds with near-identical duration
can have different yields. The other determinants of yield are liquidity of the bond and its
coupon. To illustrate the effect of coupon on yield consider Table 1.1. This shows that,
where the duration of a bond is held roughly constant, a change in coupon of a bond can
have a significant effect on the bond’s yield.

In the case of the long bond, an investor could under this scenario both shorten
duration and pick up yield, which is not the first thing that an investor might expect.
However an anomaly of the markets is that, liquidity issues aside, the market does not
generally like high coupon bonds, so they usually trade cheap to the curve.

The other factors affecting yield are supply and demand, and liquidity. A shortage of
supply of stock at a particular point in the curve will have the effect of depressing yields at
that point. A reducing public sector deficit is the main reason why such a supply shortage
might exist. In addition as interest rates decline say ahead of or during a recession, the stock
of high coupon bonds increases, as the newer bonds are issued at lower levels, and these
‘outdated’ issues can end up trading at a higher yield. Demand factors are driven primarily
by the investor’s views of the country’s economic prospects, but also by government

Coupon Maturity Duration Yield
8% 20-Feb-02 1.927 5.75%
12% 5-Feb-02 1.911 5.80%
10% 20-Jun-10 7.134 4.95%
6% 1-Jul-10 7.867 4.77%

Table 1.1: Duration and yield comparisons for bonds in a hypothetical
inverted curve environment.
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legislation, for example the Minimum Funding Requirement in the UK compels pension
funds to hold a set minimum amount of their funds in long-dated gilts, which has the effect
of permanently keeping demand high.?

Liquidity often results in one bond having a higher yield than another, despite both
having similar durations. Institutional investors prefer to hold the benchmark bond, which
is the current two-year, five-year, ten-year or thirty-year bond and this depresses the yield
on the benchmark bond. A bond that is liquid also has a higher demand, thus a lower yield,
because it is easier to convert into cash if required. This can be demonstrated by valuing the
cash flows on a six-month bond with the rates obtainable in the Treasury bill market. We
could value the six-month cash flows at the six-month bill rate. The lowest obtainable yield
in virtually every market® is the T-bill yield, therefore valuing a six-month bond at the T-bill
rate will produce a discrepancy between the observed price of the bond and its theoretical
price implied by the T-bill rate; as the observed price will be lower. The reason for this is
simple: because the T-bill is more readily realisable into cash at any time, it trades at a lower
yield than the bond, even though the cash flows fall on the same day.

We have therefore determined that a bond’s coupon and liquidity level, as well as its
duration, will affect the yield at which it trades. These factors can be used in conjunction
with other areas of analysis, which we look at next, when deciding which bonds carry
relative value over others.

1.2.2 Characterising the complete term structure

As many readers would have gathered, the yield versus duration curve illustrated in Figure
1.3 is an ineffective technique with which to analyse the market.

This is because it does not highlight any characteristics of the yield curve other than its
general shape; this does not assist in the making of trading decisions. To facilitate a more
complete picture, we might wish to employ the technique described here. Figure 1.4 shows
the bond par yield curve® and T-bill yield curve for gilts in October 1999. Figure 1.5 shows
the difference between the yield on a bond with a coupon that is 100 basis points below the
par vield level, and the yield on a par bond. The other curve in Figure 1.5 shows the level for
a bond with a coupon that is 100 basis points above the par yield. These two curves show
the ‘low coupon’ and ‘high coupon’ yield spreads. Using the two figures together, an
investor can see the impact of coupons, the shape of the curve and the effect of yield on
different maturity points of the curve.

1.2.3 Identifying relative value in government bonds

Constructing a zero-coupon yield curve provides the framework within which a market
participant can analyse individual securities. In a government bond market, there is no
credit risk consideration (unless it is an emerging market government market), and

The requirements of the MFR were removed during 2002 and the UK gilt yield curve exhibited a
conventional positive-sloping shape shortly afterwards.

The author is not aware of any market where there is a yield lower than its shortest-maturity T-bill
yield, but that does not mean such a market doesn’t exist!

See Chapter 2 in the companion volume to this book in the Fixed Income Markets Library,
Corporate Bonds and Structured Financial Products, for a discussion of the par yield curve.
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Figure 1.4: T-bill and par yield curve, October 1999.

therefore no credit spreads to consider. There are a number of factors that can be assessed
in an attempt to identify relative value.

The objective of much of the analysis that occurs in bond markets is to identify value,
and identifying which individual securities should be purchased and which sold. At the
overview level, this identification is a function of whether one thinks interest rates are going
to rise or fall. At the local level though, the analysis is more concerned with a specific sector
of the yield curve, whether this will flatten or steepen, whether bonds of similar duration are
trading at enough of a spread to warrant switching from one into another. The difference in
these approaches is one of identifying which stocks have absolute value, and which have
relative value. A trade decision based on the expected direction of interest rates is based on
assessing absolute value, whether interest rates themselves are too low or too high. Yield
curve analysis is more a matter of assessing relative value. On (very!) rare occasions, this
process is fairly straightforward, for example if the three-year bond is trading at 5.75% when
two-year yields are 5.70% and four-year yields are at 6.15%, the three-year would appear to
be overpriced. However this is not really a real-life situation. Instead, a trader might find
himself assessing the relative value of the three-year bond compared to much shorter- or
longer-dated instruments. That said, there is considerable difference between comparing a
short-dated bond to other short-term securities and comparing say, the two-year bond to

2 0 . T T ]
g 0.5 10 15
§ -1 Duration (years)
I
B -2
-3
— High coupon bonds
-4 ---- Low coupon
-5-

Figure 1.5: Structure of bond yields, October 1999.
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the thirty-year bond. Although it looks like it on paper, the space along the x-axis should not
be taken to imply that the smooth link between one-year and five-year bonds is repeated
from the five-year out to the thirty-year bonds. It is also common for the very short-dated
sector of the yield curve to behave independently of the long end.

One method used to identify relative value is to quantify the coupon effect on the yields
of bonds. The relationship between yield and coupon is given by (1.2):

rm = rmp + ¢ - max(Cpp — rmp, 0) + d - min(Cpp — rmp, 0) (1.2)

where

rm s the yield on the bond being analysed

rmp is the yield on a par bond of specified duration

Cpp is the coupon on an arbitrary bond of similar duration to the part bond
and c and d are coefficients. The coefficient c reflects the effect of a high coupon on the yield
of a bond. If we consider a case where the coupon rate exceeds the yield on the similar-
duration par bond (Cpp > rmp), (1.2) reduces to (1.3):

rm = rmp + ¢ - (Cpp — rmp). (1.3)

Equation (1.3) specifies the spread between the yield on a high coupon bond and the
yield on a par bond as a linear function of the spread between the first bond’s coupon and
the yield and coupon of the par bond. In reality this relationship may not be purely linear;
for instance the yield spread may widen at a decreasing rate for higher coupon differences.
Therefore (1.3) is an approximation of the effect of a high coupon on yield where the
approximation is more appropriate for bonds trading close to par. The same analysis can
be applied to bonds with coupons lower than the same-duration par bond.

The value of a bond may be measured against comparable securities or against the par
or zero-coupon yield curve. In certain instances the first measure may be more appropriate
when for instance, a low coupon bond is priced expensive to the curve itself but fair
compared to other low coupon bonds. In that case the overpricing indicated by the par
yield curve may not represent unusual value, rather a valuation phenomenon that was
shared by all low coupon bonds. Having examined the local structure of a yield curve, the
analysis can be extended to the comparative valuation of a group of similar bonds. This is
an important part of the analysis, because it is particularly informative to know the
cheapness or dearness of a single stock compared to the whole yield curve, which might
be somewhat abstract. Instead we would seek to identify two or more bonds, one of which
was cheap and the other dear, so that we might carry out an outright switch between the
two, or put on a spread trade between them. Using the technique we can identify excess
positive or negative yield spread for all the bonds in the term structure. This has been
carried out for our five gilts, together with other less liquid issues as at October 1999 and the
results are summarised in Table 1.2.

From the table as we might expect the benchmark securities are all expensive to the par
curve, and the less liquid bonds are cheap. Note that the 6.25% 2010 appears cheap to the
curve, but the 5.75% 2009 offers a yield pick-up for what is a shorter-duration stock; this is a
curious anomaly and one that had disappeared a few days later.°®

5 In other words, we’ve missed the opportunity! This analysis used mid-prices, which would not be

available in practice.
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Coupon Maturity Duration Yield % Excess yield spread (bp)

8% 07/12/2000 1.072 5.972 —1.55
10% 26/02/2001 1.2601 6.051 4.5
7% 07/06/2002 2.388 6.367 -1.8
5% 07/06/2004 4.104 6.327 -3.8
6.75% 26/11/2004 4.233 6.351 2.7
5.75% 07/12/2009 7.437 5.77 —4.7
6.25% 25/11/2010 7.957 5.72 1.08
6% 07/12/2028 15.031 4.77 -8.7

Table 1.2: Yields and excess yield spreads for selected gilts, 22 October 1999.

What this section has introduced is the concept of relative value for individual securities,
and how the simple duration/yield analysis can be extended to assess other determinants of
a bond’s yield. We now look at the issues involved in putting on a spread trade.

1.3  Yield spread trades

In the earlier section on futures trading, we introduced the concept of spread trading, which
are not market directional trades but rather the expression of a viewpoint on the shape of a
yield curve, or more specifically the spread between two particular points on the yield
curve. Generally there is no analytical relationship between changes in a specific yield
spread and changes in the general level of interest rates. That is to say, the yield curve
can flatten when rates are both falling or rising, and equally may steepen under either
scenario as well. The key element of any spread trade is that it is structured so that a profit
(or any loss) is made only as a result of a change in the spread, and not due to any change in
overall yield levels. That is, spread trading eliminates market directional or first-order
market risk.

1.3.1 Bond spread weighting

Table 1.3 shows data for our selection of gilts but with additional information on the basis
point value (BPV) for each point. This is also known as the ‘dollar value of a basis point’
or DVO1.

If a trader believed that the yield curve was going to flatten, but had no particular
strong feeling about whether this flattening would occur in an environment of falling or
rising interest rates, and thought that the flattening would be most pronounced in the
two-year versus ten-year spread, they could put on a spread consisting of a short
position in the two-year and a long position in the ten-year. This spread must be
duration-weighted to eliminate first-order risk. At this stage we must point out, and it
is important to be aware of, the fact that basis point values, which are used to weight the
trade, are based on modified duration measures. This measure is an approximation, and
will be inaccurate for large changes in yield. Therefore the trader must monitor the
spread to ensure that the weights are not going out of line, especially in a volatile market
environment.
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Coupon Maturity Duration Yield %  Price BPV

8% 07/12/2000 1.072 5.972 102.17  0.01095
10% 26/02/2001 1.2601 6.051 105.01 0.01880
7% 07/06/2002 2.388 6.367 101.5 0.02410
5% 07/06/2004 4.104 6.327 94.74  0.03835
6.75% 26/11/2004 4.233 6.351 101.71  0.03980
5.75% 07/12/2009 7.437 5.77 99.84 0.07584
6.25% 25/11/2010 7.957 5.72 104.3 0.07526
6% 07/12/2028 15.031 4.77 119.25 0.17834

Table 1.3: Bond basis point value, 22 October 1999.

To weight the spread, we use the ratios of the BPVs of each bond to decide on how much
to trade. In our example, assume the trader wants to purchase £10 million of the ten-year. In
that case he must sell ((0.07584/0.02410) x 10,000,000) or £31,468,880 of the two-year bond.
It is also possible to weight a trade using the bonds’ duration values, but this is rare. It is
common practice to use the BPV.

The payoff from the trade will depend on what happens to the two-year versus ten-year
spread. If the yields on both bonds move by the same amount, there will be no profit
generated, although there will be a funding consideration. If the spread does indeed narrow,
the trade will generate profit. Note that disciplined trading calls for both an expected target
spread as well as a fixed time horizon. So for example, the current spread is 59.7 basis
points; the trader may decide to take the profit if the spread narrows to 50 basis points, with
a three-week horizon. If at the end of three weeks the spread has not reached the target, the
trader should unwind the position anyway, because that was their original target. On the
other hand what if the spread has narrowed to 48 basis points after one week and looks like
narrowing further — what should the trader do? Again, disciplined trading suggests the profit
should be taken. If contrary to expectations the spread starts to widen, if it reaches 64.5
basis points the trade should be unwound, this ‘stop-loss’ being at the half-way point of the
original profit target.

The financing of the trade in the repo markets is an important aspect of the trade, and
will set the trade’s break-even level. If the bond being shorted (in our example, the two-year
bond) is special, this will have an adverse impact on the financing of the trade. The repo
considerations are reviewed in Choudhry (2002).

1.3.2 Types of bond spreads

A bond spread has two fundamental characteristics; in theory there should be no P/L effect
due to a general change in interest rates, and any P/L should only occur as a result of a
change in the specific spread being traded. Most bond spread trades are yield curve trades
where a view is taken on whether a particular spread will widen or narrow. Therefore it is
important to be able to identify which sectors of the curve to sell. Assuming that a trader is
able to transact business along any part of the yield curve, there are a number of factors to
consider. In the first instance, the historic spread between the two sectors of the curve. To
illustrate in simplistic fashion, if the 2-10 year spread has been between 40 and 50 basis
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Figure 1.6: 2-year and 10-year spread, UK gilt market March 1999. Source: Bloomberg.

points over the last six months but very recently has narrowed to less than 35 basis points,
this may indicate imminent widening. Other factors to consider are demand and liquidity
for individual stocks relative to others, and any market intelligence that the trader gleans. If
there has been considerable customer interest on certain stocks relative to others, because
investors themselves are switching out of certain stocks and into others, this may indicate a
possible yield curve play. It is a matter of individual judgement.

An historical analysis requires that the trader identify some part of the yield curve within
which he expects to observe a flattening or steepening. It is of course entirely possible that
one segment of the curve will flatten while another segment is steepening, in fact this
phenomenon is quite common. This reflects the fact that different segments respond to
news and other occurrences in different ways.

A more exotic type of yield curve spread is a curvature trade. Consider for example a
trader who believes that three-year bonds will outperform on a relative basis, both two-year
and five-year bonds. That is, he believes that the two-year/three-year spread will narrow
relative to the three-year/five-year spread, in other words that the curvature of the yield
curve will decrease. This is also known as a butterfly/barbell trade. In our example the trader
will buy the three-year bond, against short sales of both the two-year and the five-year
bonds. All positions are duration-weighted. The principle is exactly the same as the butterfly
trade we described in the previous section on futures trading.

1.4 Hedging bond positions

Hedging is a straightforward concept to understand or describe, however it is very import-
ant that it is undertaken as accurately as possible. Therefore the calculation of a hedge is
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critical. A hedge is a position in a cash or off-balance sheet instrument that removes the
market risk exposure of another position. For example a long position in 10-year bonds can
be hedged with a short position in 20-year bonds, or with futures contracts. That is the
straightforward part; the calculation of the exact amount of the hedge is where complexities
can arise. In this section we review the basic concepts of hedging, and a case study at the
end illustrates some of the factors that must be considered.

1.4.1 Simple hedging approach

The hedge calculation that first presents itself is the duration-weighted approach. From the
sample of gilts in Table 1.3, it is possible to calculate the amount of one bond required to
hedge an amount of any other bond, using the ratio of the BPVs. This approach is very
common in the market; however it suffers from two basic flaws that hinder its effectiveness.
First, the approach assumes implicitly comparable volatility of yields on the two bonds, and
secondly it also assumes that yield changes on the two bonds are highly correlated. Where
one or both of these factors do not apply, the effectiveness of the hedge will be comprom-
ised.

The assumption of comparable volatility becomes increasingly unrealistic the more the
bonds differ in terms of market risk and market behaviour. Consider a long position in two-
year bonds hedged with a short-position in five-year bonds. Using the bonds from Table 1.3,
if we had a position of £1 million of the two-year, we would short £628,422 of the five-year.
Even if we imagine that yields between the two bonds are perfectly correlated, it may well
be that the amount of yield change is different because the bonds have different volatilities.
For example if the yield on the five-year bond changes only by half the amount that the two-
year does, if there was a 5 basis point rise in the two-year, the five-year would have risen
only by 2.5 basis points. This would indicate that the yield volatility of the two-year bond
was twice that of the five-year bond. This suggests that a hedge calculation that matched
nominal amounts, due to BPV, on the basis of an equal change in yield for both bonds
would be incorrect. In our illustration, the short position in the five-year bond would be
effectively hedging only half of the risk exposure of the two-year position.

The implicit assumption of perfectly correlated yield changes can also lead to inaccu-
racy. Across the whole term structure, it is not always the case that bond yields are even
positively correlated all the time (although most of the time there will be a close positive
correlation). Therefore, using our illustration again, imagine that the two-year and the five-
year bonds possess identical yield volatilities, but that changes in their yields are uncorre-
lated. This means that knowing that the yield on the two-year bond rose or fell by one basis
point does not tell us anything about the change in the yield on the five-year bond. If yield
changes between the two bonds are indeed uncorrelated, this means that the five-year
bonds cannot be used to hedge two-year bonds, at least not with accuracy.

1.4.2 Hedge analysis

From the foregoing we note that there are at least three factors that will impact the
effectiveness of a bond hedge; these are the basis point value, the yield volatility of each
bond and the correlation between changes in the two yields of a pair of bonds. Considering
volatilities and correlations, Table 1.4 shows the standard deviations and correlations of
weekly yield changes for a set of gilts during the nine months to October 1999. The standard
deviation of weekly yield changes was in fact highest for the short-date paper, and actually
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Segment
2-year 3-year 5-year 10-year 20-year 30-year

Volatility (bp) 19.3 19.5 20.2 20.0 20.1 20.3
Correlation

2-year 1.000 0.973 0.949 0.919 0.887 0.879
3-year 0.973 1.000 0.961 0.935 0.901 0.889
5-year 0.949 0.961 1.000 0.968 0.951 0.945
10-year 0.919 0.935 0.968 1.000 0.981 0.983
20-year 0.887 0.901 0.951 0.981 1.000 0.987
30-year 0.879 0.889 0.945 0.983 0.987 1.000

Table 1.4: Yield volatility and correlations, selected gilts October 1999.

declined for longer-dated paper. From the table we also note that changes in yield were
imperfectly correlated. We expect correlations to be highest for bonds in the same segments
of the yield curve, and to decline between bonds that are in different segments. This is not
surprising, and indeed two-year bond yields are more positively correlated with five-year
bonds and less so with 30-year bonds.

We can use the standard relationship for correlations and the effect of correlation to
adjust a hedge. Consider two bonds with nominal values M; and M,; if the yields on these
two bonds change by Ar; and Ar;, the net value of the change in position is given by:

APV = MlBPlerl + MgBPVzArz. (14)

The uncertainty of the change in the net value of a two-bond position is dependent on
the nominal values, the volatility of each bond and the correlation between these yield
changes. Therefore for a two-bond position we set the standard deviation of the change in
the position as (1.5):

Tpos = \/ M2BPV20? + M2BPVZ03 + 2M; My BPV, BPVyoy 02 (1.5)

where p is the correlation between the yield volatilities of bonds 1 and 2. We can rearrange
(1.5) to set the optimum hedge value for any bond using (1.6):

pBPVl g1

M, = - BPVy0,

M (1.6)
so that M, is the nominal value of any bond used as a hedge given any nominal value M; of
the first bond, and using each bond’s volatility and the correlation. The derivation of (1.6) is
given in Appendix 1.1. A lower correlation leads to a smaller hedge position, because where
yield changes are not closely related, this implies greater independence between yield
changes of the two bonds. In a scenario where the standard deviation of two bonds is
identical, and the correlation between yield changes is 1, (1.6) reduces to:

_ BPV;

M, =
27 Bpv, !

(1.7)

which is the traditional hedge calculation based solely on basis point values.
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Case study:

Hedging a portfolio of Eurobonds with US Treasuries

Consider a portfolio of value $10,000,000 composed of the following US$ Eurobonds:
7% 2000
7.75% 2002
9% 2004
9% 2006

A trader is concerned that yields will rise over the next 48 hours, and decides to construct
a short position of $100 million of US. Treasuries that will hedge the portfolio of US$
Eurobonds against the expected rise in yields. To determine the accuracy of hedge the trader
will compare the change in value of the US$ Eurobond portfolio to that of the short position
of the US Treasury hedge. All the possible hedge bonds under consideration are given below.

Bond Dirty price Duration Convexity
T7% 1999 100.375512 1.852 4.165
T7% 2000 99.994565 2.623 7.987
T7% 2000 100.71875 3.089 10.917
T7% 2002 99.668545 4.176 19.823
T7% 2004 100.262295 5.284 32.634
T8% 2007 99.315217 6.905 57.913
T9%% 1999 110.011395 8.168 90.636
T7%% 1999 90.654891 10.895 178.898
T8%% 1999 106.116885 10.794 186.779
T8% 1999 97.769361 11.251 199.657

The Eurobond portfolio has the following initial values:
Value Duration Convexity
$10,000,000 4.550 27.218

The duration and market value can be matched analytically with any two bonds pro-
vided the duration of one of the bonds is less than that of the portfolio and the duration of
the other bond is greater than that of the portfolio.

The trader might elect to do the following:

He can attempt to match both duration and convexity by constructing two portfolios
with a duration of 4.550, one with a convexity greater than 27.218 and the other with a
convexity less than 27.218. Assume these portfolios are called ‘A’ and ‘B’, respectively.
Inspection of the table given above suggests the following bonds would be suitable com-
ponents of these two portfolios:

A: T7% 2000 and T8% 2007
B: T7% 2002 and T7% 2004

Having identified two bonds with duration below and above 4.550 the trader then
calculates the nominal value required for each bond using the simultaneous equation
method giving an overall portfolio duration of 4.550.
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Portfolio A:
Nominal Combined
Bond required Duration duration Convexity
T7% 2002 6,644,185 4.176 } 4550 24151
T7% 2004 3,369,000 5.284 ’ '

Portfolio B:
As above, but with the following bonds:

Nominal Combined
Bond required Duration duration Convexity
T7% 2000 6,127,300 3.089 } 0 28.911
T8% 2007 3,855,059  6.905 455 :

There are now two portfolios with the same duration. Therefore, however the portfolios
are combined, the duration will remain at 4.550. We now need to determine what amounts
of each portfolio are required, such that the combined portfolio convexity is 27.218, match-
ing the convexity of the Eurobond portfolio. The trader can use simple proportions to
determine the amount of each portfolio which would be necessary to form a new portfolio
of convexity 27.218. The exact amounts are:

A: 0.356 B: 0.644

Thus the composition of the hedging portfolio, which has a value of $10 million is:

T7% 2000 3,945,464 nominal
T7% 2002 2,365,484 nominal
T7% 2004 1,199,442 nominal
T8% 2007 2,482,828 nominal

Assume that the yield curve scenario two days later is a curvature twist around the 5-year
maturity. The market value of the Eurobond portfolio improves by $75,984 to $10,075,984.
The suggested combination of US Treasuries would mirror this gain as a loss — the suggested
possible solution does result in a loss of $76,512 — a difference of $528.
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Appendix

Appendix 1.1:  Summary of derivation of optimum hedge
equation

From equation (1.5) we know that the variance of a net change in the value of a two-bond
portfolio is given by

0?,s = M?BPV{o? + M;BPVZ05 + 2M M, BPVi BPV,0102p. (1.8)

pos

Using the partial derivative of the variance ¢® with respect to the nominal value of the
second bond, we obtain
do?
0?M,
If (1.8) is set to zero and solved for M, we obtain (1.10) which is the hedge quantity for
the second bond
. ,OBPV1 01
BPVyo,

= 2M,BPV} 05 + 2M; BPV,BPV,0102p. (1.9)

M, = (1.10)
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2 Relative Value Trading using
Government Bonds'

2.1 Introduction

Portfolio managers who do not wish to put on a naked directional position, but rather
believe that the yield curve will change shape and flatten or widen between two
selected points, put on relative value trades to reflect their view. Such trades involve
simultaneous positions in bonds of different maturity. Other relative value trades may
position high-coupon bonds against low-coupon bonds of the same maturity, as a tax-
related transaction. These trades are concerned with the change in yield spread
between two or more bonds rather than a change in absolute interest rate level. The key
factor is that changes in spread are not conditional upon directional change in interest-
rate levels; that is, yield spreads may narrow or widen whether interest rates themselves
are rising or falling.

Typically, spread trades will be constructed as a long position in one bond against a
short position in another bond. If it is set up correctly, the trade will only incur a profit or
loss if there is a change in the shape of the yield curve. This is regarded as being first-order
risk neutral, which means that there is no interest-rate risk in the event of change in the
general level of market interest rates, provided the yield curve experiences essentially a
parallel shift. In this chapter we examine some common yield spread trades.

2.1.1 The determinants of yield

The yield at which a fixed interest security is traded is market-determined. This market
determination is a function of three factors: the term-to-maturity of the bond, the liquidity
of the bond and its credit quality. Government securities such as gilts are default-free and so
this factor drops out of the analysis. Under ‘normal’ circumstances the yield on a bond is
higher the greater its maturity, this reflecting both the expectations hypothesis and liquidity
preference theories. Intuitively we associate higher risk with longer-dated instruments, for
which investors must be compensated in the form of higher yield. This higher risk reflects
greater uncertainty with longer-dated bonds, both in terms of default and future inflation
and interest rate levels. However, for a number of reasons the yield curve assumes an

! This chapter was presented by the author as an internal paper in July 1997 when he was working at

Hambros Bank Limited. It previously appeared in Fabozzi (2002). The prices quoted are tick prices,
fractions of 32nd, identical to US Treasury pricing. Gilts are now quoted as decimal prices.
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inverted shape and long-dated yields become lower than short-dated ones.? Long-dated
yields, generally, are expected to be less volatile over time compared to short-dated yields.
This is mainly because incremental changes to economic circumstances or other technical
considerations generally have an impact for only short periods of time, which affects the
shorter end of the yield curve to a greater extent.

The liquidity of a bond also influences its yield level. The liquidity may be measured by
the size of the bid-offer spread, the ease with which the stock may be transacted in size, and
the impact of large-size bargains on the market. It is also measured by the extent of any
specialness in its repo rate. Supply and demand for an individual stock, and the amount of
stock available to trade, are the main drivers of liquidity.® The general rule is that there is a
yield premium for transacting business in lower-liquidity bonds.

In the analysis that follows we assume satisfactory levels of liquidity, that is, it is
straightforward to deal in large sizes without adversely moving the market.

2.1.2 Spread trade risk weighting

A relative value trade usually involves a long position set up against a short position in a
bond of different maturity. The trade must be weighted so that the two positions are first-
order neutral, which means the risk exposure of each position nets out when considered as
a single trade, but only with respect to a general change in interest rate levels. If there is a
change in yield spread, a profit or loss will be generated.

A common approach to weighting spread trades is to use the basis point value (BPV) of
each bond.* Figure 2.1 shows price and yield data for a set of benchmark gilts for value date
17 June 1997.° The BPV for each bond is also shown, per £100 of stock. For the purposes of
this discussion we quote mid-prices only and assume that the investor is able to trade at
these prices. The yield curve at that date is shown in Figure 2.2.

The yield spread history between these two stocks over the previous three months and
up to yesterday’s closing yields is shown in Figure 2.3. An investor believes that the yield
curve will flatten between the two-year and 10-year sectors of the curve and that the spread
between the 6% 1999 and the 7.25% 2007 will narrow further from its present value of 0.299%.

To reflect this view the investor buys the 10-year bond and sells short the two-year bond,
in amounts that leave the trade first-order risk neutral. If we assume the investor buys £1
million nominal of the 7.25% 2007 gilt, this represents an exposure of £1230.04 loss (profit)
if there is a 1 basis point increase (decrease) in yields. Therefore, the nominal amount of the
short position in the 6% 1999 gilt must equate this risk exposure. The BPV per £1
million nominal of the two-year bond is £166.42, which means that the investor must sell

For a summary of term structure theories see Chapter 2 of the companion volume to this book in
the Fixed Income Markets Library, Corporate Bonds and Structured Financial Products.

The amount of stock issued and the amount of stock available to trade are not the same thing. If a
large amount of a particular issue has been locked away by institutional investors, this may impede
liquidity. However, the existence of a large amount at least means that some of the paper may be
made available for lending in the stock loan and repo markets. A small issue size is a good indicator
of low liquidity.

This is also known as dollar value of a basis point (DVBP or DVO01) or present value of a basis point
(PVBP).

Gilts settle on a T + 1 basis.

&
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Term

Dirty Modified

Bond Price Accrued price Yield% duration BPV

Per £1m
nominal

2-yr
5-yr
10-yr
25-yr

6% 10/8/1999 98-17 127 100.62  6.753 1.689  0.016642
7% 7/6/2002 100-10 10 100.50  6.922 3.999  0.040115
7.25% 7/12/2007 101-14 10 101.64  7.052 6.911  0.070103
8% 7/6/2021 110-01 10 110.25  7.120 11.179  0.123004

166.42
401.15
701.03
1230.04

Yield %

7.200 7
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6.700 A
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Source: Williams de Broe and Hambros Bank Limited; author’s notes.
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Figure 2.1: Gilt prices and yields for value 17 June 1997.
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Figure 2.2: Benchmark gilt yield curve, 16 June 1997.
Source: Hambros Bank Limited; author’s notes.
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Figure 2.3: 6% Treasury 1999 and 7%% 2007 three months’ yield spread history as at 16 June
1997. Note: yield values are shown on the left axis, spread values on the right — which uses
a larger scale for clarity.

(1230.04/166.42) or £7.3912 million of this bond, given by a simple ratio of the two basis
point values. We expect to sell a greater nominal amount of the shorter-dated gilt because
its risk exposure is lower. This trade generates cash because the short sale proceeds exceed
the long buy purchase funds, which are, respectively,

Buy £1m 7.25% 2007 —£1,102,500
Sell £7.39m 6% 1999 +£7,437,025

What are the possible outcomes of this trade? If there is a parallel shift in the yield curve,
the trade neither gains nor loses. If the yield spread narrows by, say, 15 basis points, the
trade will gain either from a drop in yield on the long side or a gain in yield on the short side,
or a combination of both. Conversely, a widening of the spread will result in a loss. Any
narrowing spread is positive for the trade, while any widening is harmful.

The trade would be put on the same ratio if the amounts were higher, which is scaling
the trade. So, for example, if the investor had bought £100 million of the 7.25% 2007, he
would need to sell short £739 million of the two-year bonds. However, the risk exposure is
greater by the same amount, so that in this case the trade would generate 100 times the risk.
As can be imagined, there is a greater potential reward but at the same time a greater
amount of stress in managing the position.

Using BPVs to risk-weight a relative value trade is common but suffers from any
traditional duration-based measure because of the assumptions used in the analysis. Note
that when using this method the ratio of the nominal amount of the bonds must equate the
reciprocal of the bonds’ BPV ratio. So in this case the BPV ratio is (166.42/1230.04) or 0.1353,
which has a reciprocal of 7.3912. This means that the nominal values of the two bonds must
always be in the ratio of 7.39:1. This weighting is not static, however; we know that duration
measures are a static (snapshot) estimation of dynamic properties such as yield and term to
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maturity. Therefore, for anything but very short-term trades the relative values may need to
be adjusted as the BPVs alter over time, so-called dynamic adjustment of the portfolio.

Another method to weight trades is by duration-weighting, which involves weighting in
terms of market values. This compares to the BPV approach which provides a weighting
ratio in terms of nominal values. In practice the duration approach does not produce any
more accurate risk weighting.

A key element of any relative value trade is the financing cost of each position. This is
where the repo market in each bond becomes important. In the example just described, the
financing requirement is: repo out the 7.25% 2007, for which £1.1 million of cash must be
borrowed to finance the purchase; the trader pays the repo rate on this stock reverse repo
the 6% 1999 bond, which must be borrowed in repo to cover the short sale; the trader earns
the repo rate on this stock.

If the repo rate on both stocks is close to the general repo rate in the market, there will
be a bid-offer spread to pay but the greater amount of funds lent out against the 6% 1999
bond will result in a net financing gain on the trade whatever happens to the yield spread. If
the 7.25% 2007 gilt is special, because the stock is in excessive demand in the market (for
whatever reason), the financing gain will be greater still. If the 6% 1999 is special, the trade
will suffer a financing loss.

In this case, however, the cash sums involved for each bond make the financing rates
academic, as the amount paid in interest on the 7.25% 2007 repo is far outweighed by the
interest earned on cash lent out when undertaking reverse repo in the 6% 1999 bond.
Therefore, this trade will not be impacted by repo rate bid-offer spreads or specific rates,
unless the rate on the borrowed bond is excessively special.® The repo financing cash flows
for the 6% 1999 and 7.25% 2007 are shown in Figures 2.4 and 2.5 respectively, the Bloom-
berg repo/reverse repo screen RRRA. They show that at the time of the trade the investor
had anticipated a 14-day term for the position before reviewing it and/or unwinding it.

A detailed account of the issues involved in financing a spread trade is contained in
Choudhry (2002).”

2.1.3 Identifying yield spread trades

Yield spread trades are a type of relative value position that a trader can construct when the
objective is to gain from a change in the spread between two points on the yield curve. The
decision on which sectors of the curve to target is an important one and is based on a
number of factors. An investor may naturally target, say, the five- and 10-year areas of the
yield curve to meet investment objectives and have a view on these maturities. Or a trader
may draw conclusions from studying the historical spread between two sectors.

Yield spreads do not move in parallel however and there is not a perfect correlation
between the changes of short-, medium- and long-term sectors of the curve. The money
market yield curve can sometimes act independently of the bond curve. Table 2.1 shows
the change in benchmark yields during 1996/1997. There is no set pattern in the change in

In fact the 6% 1999 did experience very special rates at certain times, briefly reaching negative rates
at the start of 1998. However, the author had unwound the position long before then!

7 Choudhry, M., The Repo Handbook (Oxford, UK: Butterworth-Heinemann, 2002). And just so you
know, this trade was profitable as the yield spread between the 6% 1999 and 7.25% 2007 did indeed
narrow, prior to the entire curve inverting just over one month later.
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Figure 2.4: Bloomberg screen RRRA showing repo cash flows for 6% 1999, 17 June to
1 July 1997. ©Bloomberg L.P. Reproduced with permission.

both yield levels and spreads. It is apparent that one segment of the curve can flatten while
another is steepening, or remains unchanged.

Another type of trade is where an investor has a view on one part of the curve relative to
two other parts of the curve. This can be reflected in a number of ways, one of which is the
butterfly trade, which is considered below.

2.2 Coupon spreads®

Coupon spreads are becoming less common in the gilt market because of the disappear-
ance of high-coupon or other exotic gilts and the concentration on liquid benchmark issues.
However, they are genuine spread trades. The US Treasury market presents greater oppor-
tunity for coupon spreads due to the larger number of similar-maturity issues. The basic
principle behind the trade is a spread of two bonds that have similar maturity or similar
duration but different coupons.

Table 2.2 shows the yields for a set of high-coupon and low(er)-coupon gilts for a
specified date in May 1993 and the yields for the same gilts six months later. From the

8  First presented by the author as an internal paper to the head of Treasury at ABN Amro Hoare

Govett Sterling Bonds Limited in April 1995. Subsequently incorporated into this chapter.
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Figure 2.5: Bloomberg screen RRRA showing repo cash flows for 7.25% 2007, 17 June to
1 July 1997. ©Bloomberg L.P. Reproduced with permission.

Changes in yield spread

3-month 1-year 2-year 5-year 10-year 25-year
10/11/1996 6.06 6.71 6.83 7.31 7.67 7.91
10/07/1997 6.42 6.96 7.057 7.156 7.025 6.921
Change 0.36 0.25 0.227 —0.154 —0.645 —0.989
10/11/1997 7.15 7.3 7.09 6.8 6.69 6.47
Change 0.73 0.34 0.033 —0.356 —0.335 —0.451
Changes in yield spread
3m/ly ly/2y 2y/5y 5y/10y 5y/25y 10y/25y
10/11/1996 —0.65 —0.12 —0.48 —0.36 —-0.6 —0.24
10/07/1997 —0.54 —0.457 —0.099 0.131 0.235 0.104
Change 0.11 —0.337 0.381 0.491 0.835 0.344
10/11/1997 —-0.15 0.21 0.29 0.11 0.33 0.22
Change 0.39 0.667 0.389 —0.021 0.095 0.116

Table 2.1: Yield levels and yield spreads during November 1996 to November 1997.
Source: ABN Amro Hoare Govett Sterling Bonds Ltd, Hambros Bank Limited;
Tullett & Tokyo; author’s notes.
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Stock Term 10-May-93 12-Nov-93
Gilt 1 5.45 5.19
10Q 95 2 6.39 5.39
10 96 3 6.94 5.82
10H 97 4 7.13 5.97
9T 98 and 7Q 98 5 7.31 6.14
10Q 99 6 7.73 6.55
900 7 7.67 6.54
1001 8 8.01 6.82
9T 02 9 8.13 6.95
803 10 8.07 6.85
908 15 8.45 7.18
912 20 8.55 7.23
8T 17 30 8.6 7.22

Yield %

e ——10-May-93
5 - =--12-Nov-93

1 2 3 4 5 6 7 8 9 10 15 20 30

Term to maturity (years)

10/05/1993 12/11/1993
Gilt Maturity Yield % Yield % Yield change %
10Q 95 21-Jul-95 6.393 5.390 —1.003
14 96 10-Jan-96 6.608 5.576 —1.032
15Q 96 3-May-96 6.851 5.796 —1.055
13Q 96 15-May-96 6.847 5.769 —1.078
13Q 97 22-Jan-97 7.142 5.999 —1.143
10H 97 21-Feb-97 7.131 5.974 1.157
797 6-Aug-97 7.219 6.037 —1.182
8T 97 1-Sep-97 7.223 6.055 —1.168
15 97 27-0Oct-97 7.294 6.113 —1.161
9T 98 19-Jan-98 7.315 6.102 —1.213
7Q 98 30-Mar-98 7.362 6.144 —1.218
6 99 10-Aug-99 7.724 6.536 —1.188
10Q 99 22-Nov-99 7.731 6.552 —-1.179
8 03 10-Jun-03 8.075 6.854 —1.221
10 03 8-Sep-03 8.137 6.922 —1.215

Table 2.2: Yield changes on high- and low-coupon gilts from May 1993 to November 1993.
Source: ABN Amro Hoare Govett Sterling Bonds Ltd; Bloomberg; author’s notes.
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yield curves we see that general yield levels decline by approximately 80-130 basis
points. The last column in the table shows that, apart from the earliest pair of gilts
(which do not have strictly comparable maturity dates), the performance of the lower-
coupon gilt exceeded that of the higher-coupon gilt in every instance. Therefore, buying
the spread of the low-coupon versus the high-coupon should, in theory, generate a
trading gain in an environment of falling yields. One explanation of this is that the
lower-coupon bonds are often the benchmark, which means the demand for them is
higher. In addition, during a bull market, more bonds are considered to be ‘high’ coupon
as overall yield levels decrease.

The exception noted in Table 2.2 is the outperformance of the 14% Treasury 1996
compared to the lower-coupon 10%% 1995 stock. This is not necessarily conclusive,
because the bonds are six months apart in maturity, which is a significant amount for
short-dated stock. However, in an environment of low or falling interest rates, shorter-dated
investors such as banks and insurance companies often prefer to hold very high-coupon
bonds because of the high income levels they generate. This may explain the demand for
the 14% 1996 stock’ although the evidence at the time was only anecdotal.

2.3 Butterfly trades'®

Butterfly trades are another method by which traders can reflect a view on changing yield
levels without resorting to a naked punt on interest rates. They are another form of relative
value trade; amongst portfolio managers they are viewed as a means of enhancing returns.
In essence a butterfly trade is a short position in one bond against a long position of two
bonds, one of shorter maturity and the other of longer maturity than the short-sold bond.
Duration-weighting is used so that the net position is first-order risk-neutral, and nominal
values are calculated such that the short sale and long purchase cash flows net to zero, or
very closely to zero.
This section reviews some of the aspects of butterfly trades.

2.3.1 Basic concepts

A butterfly trade is par excellence a yield curve trade. If the average return on the combined
long position is greater than the return on the short position (which is a cost) during the time
the trade is maintained, the strategy will generate a profit. It reflects a view that the short-end
of the curve will steepen relative to the ‘middle’ of the curve while the long-end will flatten.
For this reason higher convexity stocks are usually preferred for the long positions, even if this
entails a loss in yield. However, the trade is not ‘risk-free’, for the same reasons that a
conventional two-bond yield spread is not. Although, in theory, a butterfly is risk-neutral
with respect to parallel changes in the yield curve, changes in the shape of the curve can
result in losses. For this reason the position must be managed dynamically and monitored for
changes in risk relative to changes in the shape of the yield curve.

This stock also has a special place in the author’s heart, although he was No. 2 on the desk when
the Treasury head put on a very large position in it...!

Revised and updated version of a paper first presented internally to Adrian Howard (head of Cash-
OBS desk, Treasury division) at Hambros Bank Limited in June 1997. Incorporated into this chapter.
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In a butterfly trade the trader is long a short-dated and long-dated bond, and short a
bond of a maturity that falls in between these two maturities. A portfolio manager with a
constraint on running short positions may consider this trade as a switch out of a long
position in the medium-dated bond and into duration-weighted amounts of the short-
dated and long-dated bond. However, it is not strictly correct to view the combined long
position to be an exact substitute for the short position — due to liquidity (and other
reasons) the two positions will behave differently for given changes in the yield curve. In
addition one must be careful to compare like for like, as the yield change in the short
position must be analysed against yield changes in fwo bonds. This raises the issue of
portfolio yield.

2.3.2 Putting on the trade

We begin by considering the calculation of the nominal amounts of the long positions,
assuming a user-specified starting amount in the short position. In Table 2.3 we show
three gilts as at 27 June 1997. The trade we wish to put on is a short position in the five-year
bond, the 7% Treasury 2002, against long positions in the two-year bond, the 6% Treasury
1999 and the 10-year bond, the 7% % Treasury 2007. Assuming £10 million nominal of the
five-year bond, the nominal values of the long positions can be calculated using duration,
modified duration or basis point values (the last two, unsurprisingly, will generate identical
results). The more common approach is to use basis point values.

In a butterfly trade the net cash flow should be as close to zero as possible, and the trade
must be basis point value-neutral. Using the following notation,

P, the dirty price of the short position;

p, the dirty price of the long position in the two-year bond;

Py the dirty price of the long position in the 10-year bond;

M, the nominal value of the short-position bond, with M, and M; the long-position
bonds;

BPV, the basis point value of the short-position bond;

if applying basis point values, the amounts required for each stock are given by

M, P, = MyP, + M3P3 (2.1)
2-year bond 5-year bond 10-year bond
Gilt 6% 1999 7% 2002 7.25% 2007
Maturity date 10 Aug 1999 07 Jun 2002 07 Dec 2007
Price 98-08 99-27 101-06
Accrued interest 2.30137 0.44110 0.45685
Dirty price 100.551 100.285 101.644
GRY % 6.913 7.034 7.085
Duration 1.969 4.243 7.489
Modified duration 1.904 4.099 7.233
Basis Point Value 0.01914 0.0411 0.07352
Convexity 0.047 0.204 0.676

Table 2.3: Bond values for butterfly strategy. Source: author’s notes.
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while the risk-neutral calculation is given by
M,BPV, = M,BPV, + M3BPV;. (2.2)

The value of M; is not unknown, as we have set it at £10 million. The equations can be
rearranged to solve for the remaining two bonds, which are

_ PyBPV; — P;3BPV,
" P,BPV; — P;BPV,

__ P,BPV, — P\BPV,
~ P,BPV3 — P;BPV,

M,
(2.3)
Using the dirty prices and BPVs from Table 2.3, we obtain the following values for the
long positions. The position required is short £10 million 7% 2002 and long £5.347 million of
the 6% 1999 and £4.576 million of the 7Y%% 2007. With these values the trade results in a zero
net cash flow and a first-order risk neutral interest-rate exposure. Identical results would be
obtained using the modified duration values, and similar results using the duration meas-
ures. If using Macaulay duration the nominal values are calculated using

. MVyD, + MV3Ds

N VA ViTA (2:4)
where D and MV represent duration and market value for each respective stock.
2.3.3 Yield gain
We know that the gross redemption yield for a vanilla bond is that rate r where
N
P,; = Z Cie ™. (2.5)
i—1

The right-hand side of equation (2.5) is simply the present value of the cash flow
payments C to be made by the bond in its remaining lifetime. Equation (2.5) gives the
continuously compounded yields to maturity; in practice users define a yield with com-
pounding interval m, that is

r— (ermn _ 1)/"’1 (2‘6)

Treasuries and gilts compound on a semi-annual basis.

In principle we may compute the yield on a portfolio of bonds exactly as for a single
bond, using equation (2.5) to give the yield for a set of cash flows which are purchased today
at their present value. In practice the market calculates portfolio yield as a weighted average
of the individual yields on each of the bonds in the portfolio. This is described, for example,
in Fabozzi (1993),"' and this description points out the weakness of this method. An
alternative approach is to weight individual yields using bonds’ basis point values, which
we illustrate here in the context of the earlier butterfly trade. In this trade we have

1 Fabozzi, F., Bond Portfolio Management, Chapters 10-14 (FJF Associates, 1996).
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m short £10 million 7% 2002;
m long £5.347 million 6% 1999 and £4.576 million 7% % 2007.

Using the semi-annual adjusted form of equation (2.5) the true yield of the long position
is 7.033%. To calculate the portfolio yield of the long position using market value weighting,
we may use

MV, MV
Tport = (Mvport) I + (MVpurt) T3 (2.7)

which results in a portfolio yield for the long position of 6.993%. If we weight the yield with
basis point values we use

r N BPVgMzrz + BPV3M3T‘3
POt =" BPV, M, + BPV3M;

(2.8)

Substituting the values from Table 2.3 we obtain

_ (1914)(5.347)(6.913) + (7352)(4.576)(7.085)
Tport = (1914)(5.347) + (7352)(4.576)
— 7.045%.

We see that using basis point values produces a seemingly more accurate weighted
yield, closer to the true yield computed using the expression above. In addition, using this
measure a portfolio manager switching into the long butterfly position from a position in
the 7% 2002 would pick up a yield gain of 1.2 basis points, compared to the 4 basis points
that an analyst would conclude had been lost using the first yield measure.'?

The butterfly trade therefore produces a yield gain in addition to the capital gain
expected if the yield curve changes in the anticipated way.

2.3.4 Convexity gain
In addition to yield pick-up, the butterfly trade provides, in theory, a convexity gain which
will outperform the short position irrespective of which direction interest rates move in,
provided we have a parallel shift. This is illustrated in Table 2.4. This shows the changes in
value of the 7% 2002 as interest rates rise and fall, together with the change in value of the
combined portfolio.

We observe from Table 2.4 that whatever the change in interest rates, up to a point, the
portfolio value will be higher than the value of the short position, although the effect is

The actual income gained on the spread will depend on the funding costs for all three bonds, a
function of the specific repo rates available for each bond. Shortly after the time of writing, the 6%
Treasury 1999 went special, so the funding gain on a long position in this stock would have been
excessive. However, buying the stock outright would have necessitated paying a yield premium, as
demand for it increased as a result of it going special. In the event the premium was deemed high,
an alternative stock was nominated, the 10%% Conversion 1999, a bond with near-identical
modified duration value.
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Yield change 7% 2002  Portfolio Difference BPV 7% BPV 6% BPV 7.25%
(bps) value (£) value* (£) £) 2002 (5-year) 1999 (2-year) 2007 (10-year)
+250 9,062,370 9,057,175 —5,195 0.0363 0.0180 0.0584
+200 9,246,170 9,243,200 -2,970 0.0372 0.0182 0.0611
+150 9,434,560 9,435,200 640 0.0381 0.0184 0.0640
+100 9,627,650 9,629,530 1,880 0.0391 0.0187 0.0670
+50 9,825,600 9,828,540 2,940 0.0401 0.0189 0.0702

0 10,028,500 10,028,500 0 0.0411 0.0191 0.0735
+50 10,236,560 10,251,300 14,740 0.0421 0.0194 0.0770
—100 10,450,000 10,483,800 33,800 0.0432 0.0196 0.0808
—150 10,668,600 10,725,700 57,100 0.0443 0.0199 0.0847
—200 10,893,000 10,977,300 84,300 0.0454 0.0201 0.0888
—250 11,123,000 11,240,435 117,435 0.0466 0.0204 0.0931

* Combined value of long positions in 6% 1999 and 7.25% 2007. Values rounded. Yield
change is parallel shift.

Table 2.4: Changes in bond values with changes in yield levels.

progressively reduced as yields rise. The butterfly will always gain if yields fall, and protects
against downside risk if yields rise to a certain extent. This is the effect of convexity; when
interest rates rise, the portfolio value declines by less than the short position value, and
when rates fall, the portfolio value increases by more. Essentially, the combined long
position exhibits greater convexity than the short position. The effect is greater if yields
fall, while there is an element of downside protection as yields rise, up to the +150 basis
point parallel shift.

Portfolio managers may seek greater convexity whether or not there is a yield pick-up
available from a switch. However, the convexity effect is only material for large changes in
yield, and so if there was not a corresponding yield gain from the switch, the trade may not
perform positively. As we noted, this depends partly on the funding position for each stock.
The price/yield profile for each stock is shown in Figure 2.6.

Essentially, by putting on a butterfly as opposed to a two-bond spread or a straight
directional play, the trader limits the downside risk if interest rates fall, while preserving the
upside gain if yields fall.

2.3.5 Analysis using Bloomberg screen ‘BBA’

To conclude the discussion of butterfly trade strategy, we describe the analysis using the
‘BBA’ screen on Bloomberg. The trade is illustrated in Figure 2.7.

Using this approach, the nominal values of the two long positions are calculated using
BPV ratios only. This is shown under the column ‘Risk Weight’, and we note that the
difference is zero. However, the nominal value required for the two-year bond is much
greater, at £10.76 million, and for the 10-year bond much lower at £2.8 million. This results
in a cash outflow of £3.632 million. The profit profile is, in theory, much improved; at the
bottom of the screen we observe the results of a 100 basis point parallel shift in either
direction, which is a profit. Positive results were also seen for 200 and 300 basis point
parallel shifts in either direction. This screen incorporates the effect of a (uniform) funding
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Figure 2.6: Illustration of convexity for each stock in butterfly trade, 27 June 1997.
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Figure 2.7: Butterfly trade analysis on 27 June 1997, on screen BBA. ©Bloomberg L.P.
Reproduced with permission.
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Figure 2.8: Butterfly trade spread history. ©Bloomberg L.P. Reproduced with permission.

rate, input on this occasion as 6.00%.'* Note that the screen allows the user to see the results
of a pivotal shift; however, in this example a 0 basis point pivotal shift is selected.

This trade therefore created a profit whatever direction interest rates moved in, assum-
ing a parallel shift.

The spread history for the position up to the day before the trade is shown in Figure 2.8,
a reproduction of the graph on Bloomberg screen BBA.

13 In reality the repo rate will be slightly different for each stock, and there will be a bid-offer spread

to pay, but as long as none of the stocks are special the calculations should be reasonably close.
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3 The Dynamics of Asset Prices

The modelling of the yield curve is a function of the movement in the price of the under-
lying asset, which in this case is the movement in interest rates. Both option valuation
models and interest-rate models describe an environment where the price of an option (or
the modelling of the yield curve) is related to the behaviour process of the variables that
drive asset prices. This process is described as a stochastic process, and pricing models
describe the stochastic dynamics of asset price changes, whether this is change in share
prices, interest rates, foreign exchange rates or bond prices. To understand the mechanics
of option pricing therefore, we must familiarise ourselves with the behaviour of functions of
stochastic variables. The concept of a stochastic process is a vital concept in finance theory.
It describes random phenomena that evolve over time, and these include asset prices. For
this reason an alternative title for this chapter could be An Introduction to Stochastic
Processes.

This is a book on bonds after all, not mathematics, and it is outside the scope of this
book comprehensively to derive and prove the main components of dynamic asset pricing
theory. There are a number of excellent textbooks that the reader is encouraged to read
which provide the necessary detail, in particular Ingersoll (1987), Baxter and Rennie
(1996), Neftci (1996) and James and Webber (2000). Another recommended text that deals
with probability models in general, as well as their application in derivatives pricing, is
Ross (2000). In this chapter we review the basic principles of the dynamics of asset prices,
which are required for an understanding of interest-rate modelling. The main principles
are then considered again in the context of yield curve modelling, in the following
chapters.

3.1 The behaviour of asset prices

The first property that asset prices, which can be taken to include interest rates, are
assumed to follow is that they are part of a continuous process. This means that the value
of any asset can and does change at any time and from one point in time to another, and
can assume any fraction of a unit of measurement. It is also assumed to pass through every
value as it changes, so for example if the price of a bond moves from 92.00 to 94.00 it must
also have passed through every point in between. This feature means that the asset price
does not exhibit jumps, which in fact is not the case in many markets, where price processes
do exhibit jump behaviour. For now however we may assume that the price process is
continuous.

3.1.1 Stochastic processes

Models that seek to value options or describe a yield curve also describe the dynamics of
asset price changes. The same process is said to apply to changes in share prices, bond
prices, interest rates and exchange rates. The process by which prices and interest rates
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evolve over time is known as a stochastic process, and this is a fundamental concept in
finance theory.'! Essentially a stochastic process is a time series of random variables.
Generally the random variables in a stochastic process are related in a non-random man-
ner, and so therefore we can capture them in a probability density function. A good
introduction is given in Neftci (1996), and following his approach we very briefly summarise
the main features here.

Consider the function y = f(x); given the value of x we can obtain the value of y. If we
denote the set W as the state of the world, where w € W, the function f{x, w) has the
property that given a value w € W it becomes a function of x only. If we say that x
represents the passage of time, two functions f(x, w;) and f(x, w,) will be different
because the second element w in each case is different. With x representing time, these
two functions describe two different processes that are dependent on different states of
the world W. The element w represents an underlying random process, and so therefore
the function flx, w) is a random function. A random function is also called a stochastic
process, one in which x represents time and x > 0. The random characteristic of the
process refers to the entire process, and not any particular value in that process at any
particular point in time.

Examples of functions include the exponential function denoted by y = e* and the
logarithmic function log,(y) = x.

The price processes of shares and bonds, as well as interest rate processes, are stochastic
processes. That is, they exhibit a random change over time. For the purposes of modelling,
the change in asset prices is divided into two components. These are the drift of the process,
which is a deterministic element,? also called the mean, and the random component known
as the noise, also called the volatility of the process.

We introduce the drift component briefly as follows. For an asset such as an ordinary
share, which is expected to rise over time (at least in line with assumed growth in inflation),
the drift can be modelled as a geometric growth progression. If the price process had no
‘noise’, the change in price of the stock over the time period d¢ can be given by

ds;

ar 1St 3.1)

where the term 1 describes the growth rate. Expression (3.1) can be rewritten in the form

which can also be written in integral form. For interest rates, the movement process can be
described in similar fashion, although as we shall see interest rate modelling often takes
into account the tendency for rates to return to a mean level or range of levels, a process
known as mean reversion. Without providing the derivation here, the equivalent expression
for interest rates takes the form

dr, = a(p— r;)de (3.3)

A formal definition of a stochastic process is given in Appendix 3.1.

There are two types of model: deterministic, which involves no randomness so the variables are
determined exactly; and stochastic, which incorporates the random nature of the variables into the
model.
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where « is the mean reversion rate that determines the pace at which the interest rate
reverts to its mean level. If the initial interest rate is less than the drift rate, the rate r will
increase, while if the level is above the drift rate it will tend to decrease.

For the purposes of employing option pricing models the dynamic behaviour of asset
prices is usually described as a function of what is known as a Weiner process, which is also
known as Brownian motion. The noise or volatility component is described by an adapted
Brownian or Weiner process, and involves introducing a random increment to the standard
random process. This is described next.

3.1.2 Weiner process or Brownian motion

The stochastic process we have briefly discussed above is known as Brownian motion or a
Weiner process. In fact a Weiner process is only a process that has a mean of 0 and a
variance of 1, but it is common to see these terms used synonymously. Weiner processes are
a very important part of continuous-time finance theory, and interested readers can obtain
more detailed and technical data on the subject in Neftci (1996) and Duffie (1996)3 among
others. It is a well-researched subject.

One of the properties of a Weiner process is that the sample pathway is continuous, that
is, there are no discontinuous changes. An example of a discontinuous process is the
Poisson process. Both are illustrated in Figures 3.1 and 3.2 below.

In the examples illustrated, both processes have an expected change of 0 and a variance
of 1 per unit of time. There are no discontinuities in the Weiner process, which is a plot of
many very tiny random changes. This is reflected in the ‘fuzzy’ nature of the sample path.
However the Poisson process has no fuzzy quality and appears to have a much smaller
number of random changes. We can conclude that asset prices, and the dynamics of
interest rates, are more akin to a Weiner process. This, therefore is how asset prices are
modelled. From observation we know that, in reality asset prices and interest rates do
exhibit discontinuities or jumps, however there are other advantages to assuming a Weiner
process, and in practice because continuous-time stochastic processes can be captured as a
combination of Brownian motion and a Poisson process, analysts and researchers use the
former as the basis of financial valuation models.

The first step in asset pricing theory builds on the assumption that prices follow a
Brownian motion. The properties of Brownian motion W state that it is continuous, and
the value of W; (¢ > 0) is normally distributed under a probability measure P as a random

Cumulated
Weiner

Process W\\Fwﬁw Time

Figure 3.1: An example of a Weiner process.

3 Duffie’s text requires a very good grounding in continuous-time mathematics.
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Figure 3.2: An example of a Poisson process.

variable with parameters N(0, ). An incremental change in the asset value over time dt,
which is a very small or infinitesimal change in the time, given by Wy, — W, is also
normally distributed with parameters N(0, f) under P. Perhaps the most significant feature
is that the change in value is independent of whatever the history of the price process has
been up to time s. If a process follows these conditions it is Brownian motion. In fact asset
prices do not generally have a mean of 0, because over time we expect them to rise.
Therefore modelling asset prices incorporates a drift measure that better reflects asset price
movement, so that an asset movement described by

would be a Brownian motion with a drift given by the constant x. A second parameter is
then added, a noise factor, which scales the Brownian motion by another constant measure,
the standard deviation . The process is then described by

St = O'W[ + Mt (35)

which can be used to simulate the price path taken by an asset, as long as we specify the two
parameters. An excellent and readable account of this is given in Baxter and Rennie (1996,
Chapter 3), who also state that under (3.5) there is a possibility of achieving negative values,
which is not realistic for asset prices. However using the exponential of the process given by
(3.5) is more accurate, and is given by (3.6):

S; = exp(cW; + ut). (3.6)

Brownian motion or the Weiner process is employed by virtually all option pricing
models, and we introduce it here with respect to a change in the variable W over an interval
of time ¢. If W represents a variable following a Weiner process and AW is a change in value
over a period of time ¢, the relationship between AW and At is given by (3.7):

AW = VAL (3.7)

where ¢ is a random sample from a normal distribution with a mean 0 and a standard
deviation of 1. Over a short period of time the values of AW are independent and therefore
also follow a normal distribution with a mean of 0 and a standard deviation of v/At. Over a
longer time period T made up of N periods of length At, the change in W over the period
from time 0 to time T is given by (3.8):

W(T) — W(0) = i eiVAL. (3.8)
i=1
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The successive values assumed by W are serially independent so from (3.8) we conclude
that changes in the variable W from time 0 to time T follow a normal distribution with mean
0 and a standard deviation of v/T. This describes the Weiner process, with a mean of zero or
a zero drift rate and a variance of T. This is an important result because a zero drift rate
implies that the change in the variable (for which now read asset price) in the future is equal
to the current change. This means that there is an equal chance of an asset return ending up
10% or down 10% over a long period of time.

The next step in the analysis involves using stochastic calculus. Without going into this
field here, we summarise from Baxter and Rennie (1996) and state that a stochastic process
X will incorporate a Newtonian term that is based on df and a Brownian term based on the
infinitesimal increment of W that is denoted by dW;. The Brownian term has a ‘noise’ factor
of o;. The infinitesimal change of X at X; is given by the differential equation

dXt = O';;th + Mtdt (39)

where o, is the volatility of the process X at time ¢ and y, is the drift of X at time ¢ For
interest rates that are modelled on the basis of mean reversion, the process is given by

drt = O'tdW[ + (l(u[ — r,;)dt (310)

where the mean reverting element is as before. Without providing the supporting mathe-
matics, which we have not covered here, the process described by (3.10) is called an
Ornstein-Uhlenbeck process, and has been assumed by a number of interest rate models.

One other important point to introduce here is that a random process described by
(3.10) operates in a continuous environment. In continuous-time mathematics the integral
is the tool that is used to denote the sum of an infinite number of objects, that is where the
number of objects is uncountable. A formal definition of the integral is outside the scope of
this book, but accessible accounts can be found in the texts referred to previously. A basic
introduction is given in Appendix 3.4. However the continuous stochastic process X
described by (3.9) can be written as an integral equation in the form

t

¢
Xt:X0+/ chdVVs+/ psds (3.11)
0 0

where ¢ and p are processes as before. The volatility and drift terms can be dependent on
the time ¢ but can also be dependent on X or W up to the point . This is a complex technical
subject and readers are encouraged to review the main elements in the referred texts.

3.1.3 The martingale property

Continuous time asset pricing is an important part of finance theory and involves some
quite advanced mathematics. An excellent introduction to this subject is given in Baxter and
Rennie (1996) and Neftci (1996). A more technical account is given in Williams (1991). It is
outside the scope of this book to derive, prove and detail the main elements. However we
wish to summarise the essential property, and begin by saying that in continuous time,
asset prices can take on an unlimited number of values. Stochastic differential equations
are used to capture the dynamics of asset prices in a generalised form. So for example, as we
saw in the previous section an incremental change in the price of an asset S at time ¢ could
be given by

dS = uSdt + oSAW (1) (3.12)
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where
ds is an infinitesimal change in the price of asset S
nSdt is the predicted movement during the infinitesimal time interval d¢

oSdW(f) is an unpredictable random shock.

Martingale theory is a branch of mathematics that classifies the trend in an observed
time series set of data. A stochastic process is said to behave like a martingale if there are no
observable trends in its pattern. The martingale property is often used in conjunction with a
Weiner process to describe asset price dynamics. The notion of the martingale property is
that the best approximation of a set of integrable random variables M at the end of a time
period ¢ is My, which essentially states that the most accurate way to predict a future asset
price is to use the price of the asset now. That is, using the price today is the same as using
all available historical information, as only the newest information regarding the asset is
relevant.

We do not describe or prove this property here but the martingale property is used to
derive (3.13), the price of an asset at time #:

P, = exp(ocW; — 1o°1). (3.13)

A martingale is an important type of stochastic process and the concept of a martingale
is fundamental to asset pricing theory. A process that is a martingale is one in which the
expected future value, based on what is known up to now, is the same as today’s value. That
is a martingale is a process in which the conditional expected future value, given current
information, is equal to the current value. The martingale representation theorem states
that given a Weiner process, and the fact that the path of the Weiner process up to that point
is known, then any martingale is equal to a constant plus a stochastic integral, with respect
to the Weiner process. This can be written as

E[[ST} = Sl’ fOI‘ t S T (314)

Therefore a stochastic process that is a martingale has no observable trend. The
price process described by (3.9) is not a martingale unless the drift component y is equal
to zero, otherwise a trend will be observed. A process that is observed to trend upwards is
known as a submartingale, while a process that on average declines over time is known as a
supermartingale.

What is the significance of this? Here we take it as given that because price processes can
be described as equivalent martingale measures (which we do not go into here) they enable
the practitioner to construct a risk-free hedge of a market instrument. By enabling a
no-arbitrage portfolio to be described, a mathematical model can be set up and solved,
including risk-free valuation models.

The background and mathematics to martingales can be found in Harrison and Kreps
(1979) and Harrison and Pliska (1981) as well as Baxter and Rennie (1996). For a description
of how, given that price processes are martingales, we are able to price derivative instru-
ments see James and Webber (2000, Chapter 4).

3.1.4 Generalised Weiner process

The standard Weiner process is a close approximation of the behaviour of asset prices but
does not account for some specific aspects of market behaviour. In the first instance the
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prices of financial assets do not start at zero, and their price increments have positive mean.
The variance of asset price moves is also not always unity. Therefore the standard Weiner
process is replaced by the generalised Weiner process, which describes a variable that may
start at something other than zero, and also has incremental changes that have a mean
other than zero as well as variances that are not unity. The mean and variance are still
constant in a generalised process, which is the same as the standard process, and a different
description must be used to describe processes that have variances that differ over time;
these are known as stochastic integrals.

We now denote the variable as X and for this variable a generalised Weiner process is
given by (3.15):

dX = adt + bdW (3.15)

where a and b are constants. This expression describes the dynamic process of the variable
X as a function of time and dW. The first term adt is known as the deterministic term and
states that the expected drift rate of X over time is a per unit of time; the second term bdW is
the stochastic element and describes the variability of the move in X over time, and is
quantified by b multiplied by the Weiner process. When the stochastic element is zero,
dX = adt, or put another way

dx/dt = a.

From this we state that at time 0, X = Xj 4 at. This enables us to describe the price of an
asset, given its initial price, over a period of time. That is, the value of X at any time is given
by its initial value at time 0, which is Xj, together with its drift multiplied by the length of the
time period. We can restate (3.15) to apply over a long time period At, shown as (3.16):

AX = aAt + beVdt. (3.16)

As with the standard Weiner process AX has a normal distribution with mean aAt and
standard deviation bv/At.

The generalised Weiner process is more flexible than the standard one but is still not
completely accurate as a model of the behaviour of asset prices. It has normally distributed
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Figure 3.3: Standard and generalised Weiner processes.
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values, which means that there is a probability of observing negative prices. For
assets such as equities, this is clearly unrealistic. In addition the increments of a Weiner
process are additive whereas the increments of asset prices are more realistically multi-
plicative. In fact as the increments of a Weiner process have constant expectation, this
implies that the percentage incremental change in asset prices, or the percentage rate of
return on the stock, would be declining as the stock price rises. This is also not realistic.
For this reason a geometric process or geometric Brownian motion has been introduced,*
which is developed by an exponential transformation of the generalised process. From
(3.16), a one-dimensional process is a geometric Brownian motion if it has the form e,
where X is a one-dimensional generalised Brownian motion with a deterministic initial
value of X(0).

Another type of stochastic process is an Itd process. This a generalised Weiner process
where the parameters a and b are functions of the value of the variable X and time t. An It
process for X can be written as (3.17):

dX = a(X, t)dt + b(X, t)dW. (3.17)
The expected drift rate and variance of an It6 process are liable to change over time; indeed
the dependence of the expected drift rate and variance on X and ¢ is the main difference

between it and a generalised Weiner process. The derivation of It6’s formula is given in
Appendix 3.3.

3.1.5 A model of the dynamics of asset prices
The above discussion is used to derive a model of the behaviour of asset prices sometimes
referred to as geometric Brownian motion. The dynamics of the asset price X are repre-
sented by the It6 process shown in (3.18), where there is a drift rate of a and a variance rate
of b?X?,

dX = aXdt + bXdW (3.18)
so that

%:a—}—bdw.

The uncertainty element is described by the Weiner process element, with
dW = evdr
where ¢ is the error term, a random sample from the standardised normal distribution, so

that ¢ ~ N(0, 1). From this, and over a longer period of time Az we can write

% = aAt + bevV At.

Over this longer period of time, for application in a discrete-time environment, if we
assume that volatility is zero, we have

AX = alAt + beV At (3.19)

4 See for instance, Nielson (1999).
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and

dX =adt and %:a.
dr

Return is given by X = Xpe®.

The discrete time version of the asset price model states that the proportional return on
the asset price X over a short time period is given by an expected return of aAt and a
stochastic return of beAdt. Therefore the returns of asset price changes AX/X are normally
distributed with a mean of aAt and a standard deviation of bv/At. This is the distribution of
asset price returns and is given by (3.20):

% ~ N(aAt, bVAt) (3.20)
Example 3.1

A conventional bond has an expected return of 5.875% and a standard deviation of
12.50% per annum. The initial price of the bond is 100. From (3.20) the dynamics of the
bond price are given by:

dP/P = 0.05875d¢ + 0.125dW
and for a time period At by dP/P = 0.05875A¢ + 0.125ev/ At.
If the short time interval At is four weeks or 0.07692 years, assuming ¢ = 1, then the
increase in price is given by:
AP = 100(0.05875(0.07692) + 0.125:1/0.07692)
= 100(0.00451905 + 0.0346681¢).
So the price increase is described as a random sample from a normal distribution with a

mean of 0.452 and a volatility of 3.467. Over a time interval of four weeks AP/P is
normal with:

AP/P ~ N(0.00452,0.001202).

3.1.6 The distribution of the risk-free interest rate

The continuously compounded rate of return is an important component of option pricing
theory. If r is the continuously compounded rate of return, we can use the lognormal
property to determine the distribution that this follows. At a future date 7T the asset price
S may be written as (3.21):

Sy = S;e"T=D (3.21)
1 St
and r _ﬁln(s—t).

Using the lognormal property we can describe the distribution of the risk-free rate as:

rwN((u—§02), T”_ t). (3.22)
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3.2 Stochastic calculus models: Brownian motion
and Ito calculus

We noted at the start of the chapter that the price of an option is a function of the price of
the underlying stock and its behaviour over the life of the option. Therefore this option price
is determined by the variables that describe the process followed by the asset price over a
continuous period of time. The behaviour of asset prices follows a stochastic process, and so
option pricing models must capture the behaviour of stochastic variables behind the move-
ment of asset prices. To accurately describe financial market processes a financial model
will depend on more than one variable. Generally a model is constructed where a function
is itself a function of more than one variable. Itd’s lemma, the principal instrument in
continuous time finance theory, is used to differentiate such functions. This was developed
by a mathematician, K. Ito, in 1951. Here we simply state the theorem, as a proof and
derivation are outside the scope of the book. Interested readers may wish to consult Briys
etal. (1998) and Hull (1997) for a background on It6’s lemma; we also recommend Neftci
(1996). Basic background on It0’s lemma is given in Appendices 3.2 and 3.3.

3.2.1 Brownian motion

Brownian motion is very similar to a Weiner process, which is why it is common to see the
terms used interchangeably. Note that the properties of a Weiner process require that it be
a martingale, while no such constraint is required for a Brownian process. A mathematical
property known as the Lévy theorem allows us to consider any Weiner process W; with
respect to an information set F; as a Brownian motion Z; with respect to the same
information set.

We can view Brownian motion as a continuous time random walk, visualised as a walk
along a line, beginning at X, = 0 and moving at each incremental time interval d¢ either up
or down by an amount V/dr. If we denote the position of the walk as X, after the nth move,
the position would be

Xp=X,1£Vdr, n=1273... (3.23)

where the + and — signs occur with an equal probability of 1/2. This is a simple random
walk. We can transform this into a continuous path by applying linear interpolation
between each move point, so that

X =X, + (t — ndp) - (X1 — Xp), ndt <t < (n+1)dt. (3.24)

It can be shown (but not here) that the path described in (3.24) has a number of
properties, including that the incremental change in value each time it moves is indepen-
dent of the behaviour leading up to the move, and that the mean value is 0 and variance is
finite. The mean and variance of the set of moves is independent of dz.

What is the importance of this? Essentially this: the probability distribution of the
motion can be shown, as df approaches 0, to be normal or Gaussian.

3.2.2 Stochastic calculus

It6’s theorem provides an analytical formula that simplifies the treatment of stochastic
differential equations, which is why it is so valuable. It is an important rule in the application
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of stochastic calculus to the pricing of financial instruments. Here we briefly describe the
power of the theorem.

The standard stochastic differential equation for the process of an asset price S; is given
in the form

ds, = a(S;, t)dt + b(S;, t)dw, (3.25)

where a(S;, 1) is the drift coefficient and b(S;, t) is the volatility or diffusion coefficient. The
Weiner process is denoted dW; and refers to the unpredictable events that occur at time
intervals dz. This is sometimes denoted dZ or dz.

Consider a function f(S;, t) dependent on two variables S and t, where S follows a
random process and varies with ¢. If S; is a continuous-time process that follows a Weiner
process W;, then it directly influences the function f{ ) through the variable ¢in f(S;, t). Over
time we observe new information about W, as well as the movement in S over each time
increment, given by dS;. The sum of both these effects represents the stochastic differential
and is given by the stochastic equivalent of the chain rule known as It0’s lemma. So for
example, if the price of a stock is 30 and an incremental time period later is 30%, the
differential is %

If we apply a Taylor expansion in two variables to the function f(S;, ) we obtain

af U ar + Lof pdr. (3.26)

s, 95+ 5 4+ 2 0s

df; =
Remember that 0t is the partial derivative while dt is the derivative.
If we substitute the stochastic differential equation (3.25) for S; we obtain Itd’s lemma of
the form

10?
df; = (% t+—f+zas];b2)dt+ fbtdwl (3.27)

What we have done is taken the stochastic differential equation (‘SDE’) for S; and
transformed it so that we can determine the SDE for f;. This is absolutely priceless, a
valuable mechanism by which we can obtain an expression for pricing derivatives that
are written on an underlying asset whose price can be determined using conventional
analysis. In other words, using It6’s formula enables us to determine the SDE for the
derivative, once we have set up the SDE for the underlying asset. This is the value of
Ito’s lemma.

The SDE for the underlying asset S; is written in most textbooks in the following form:

which has simply denoted the drift term a(S;, f) as uS; and the diffusion term b(S;, f) as oS;.
In the same way It6’s lemma is usually seen in the form

2
oF uSt+6—F+ 19 Fazs2 dt—i—a—aStth (3.29)

dF; = a8, ot 20S? S,

although the noise term is sometimes denoted dZ. Further applications are illustrated in
Example 3.2.
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Example 3.2

(i) Lognormal distribution

A variable (such as an asset price) may be assumed to have a lognormal distribution if
the natural logarithm of the variable is normally distributed. So if an asset price S
follows a stochastic process described by

dS = pSdr + oSAW (3.30)

how would we determine the expression for In S? This can be achieved using It6’s lemma.
If we say that F = In S, then the first derivative

dF 1 . dF
T and as there is nodz ;'Ne ha;/e T 0.
The second derivative is i

We substitute these values into It6’s lemma given in (3.29) and this gives us
02
dinS= b= dt 4+ odW. (3.31)

So we have moved from dF to dS using It6’s lemma, and (3.31) is a good representa-
tion of the asset price over time.

(ii) The bond price equation

The continuously compounded gross redemption yield at time ¢ on a default-free zero-
coupon bond that pays £1 at maturity date 7'is x. We assume that the movement in x is
described by

dx = a(a — x)dt + sxdZ

where a, o and s are positive constants. What is the expression for the process followed
by the price P of the bond? Let us say that the price of the bond is given by

P = *T-1),

We have dx, and we require dP. This is done by applying It6’s lemma. We require

2
% = —(T—t)e*T=) = (T —)*P
OP -ty _
T xe = xP.
From It6’s lemma
opP oP 10°P , , opP
dpP = {8—xa(a—x) +§+§WS x }dH—asde

which gives

dp = {f(T —t)Pa(a — x) + xP + % (T - t)zPszxz} dr — (T — t)PsxdZ
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which simplifies to
dP = |—a(a —x)(T—t) +x+ %szxz(T — 1)?| Pdt — sx(T — t)PdZ.

So using It6’s lemma we have transformed the SDE for the bond yield into an expres-
sion for the bond price.

3.2.3 Stochastic integrals

Whilst in no way wishing to trivialise the mathematical level, we will not consider the
derivations here, but simply state that the observed values of the Brownian motion up to
the point at time ¢ determine the process immediately after, and that this process is Gaussian.
Stochastic integrals are continuous path martingales. As described in Neftci (1996), the
integral is used to calculate sums where we have an infinite or uncountable number of items,
in contrast with the ¥ sum operator which is used for a finite number of objects. In defining
integrals we begin with an approximation, where there is a countable number of items, and
then set a limit and move to an uncountable number. A basic definition is given in Appendix
3.4. Stochastic integration is an operation that is closely associated with Brownian paths; a
path is partitioned into consecutive intervals or increments, and each increment is multiplied
by a random variable. These values are then summed to create the stochastic integral.
Therefore the stochastic integral can be viewed as a random walk Brownian motion with
increments that have varying values, a random walk with non-homogeneous movement.

3.2.4 Generalised Ito formula

It is possible to generalise 1t6’s formula in order to produce a multi-dimensional formula,
which can then be used to construct a model to price interest-rate derivatives or other
asset-class options where there is more than one variable. To do this we generalise the
formula to apply to situations where the dynamic function f{ ) is dependent on more than
one Ito process, each expressed as a standard Brownian motion.

Consider Wy = (WtT, ...,W}) where (Wf)_, are independent standard Brownian
motions and Wr is an n-dimensional Brownian motion. We can express It6’s formula

mathematically with respect to p Itd processes (X/,...,X}) as:
. . t . n t .e .
Xi = X +/ Kids + Z/ Hidx!. (3:32)
0 i—1 J0

Where the function f{) contains second-order partial derivatives with respect to x and
first-order partial derivatives with respect to ¢, which are a continuous function in (x, 1), the
generalised It6 formula is given by

ot a
f(t,th,...,Xj’f):f(O,X(},....,X(’)”)+/O <%>(S,Xsl,...,Xs’”)ds
Pt ’
+Z/
0

<%> (s, X},...,XP)dx! (3.33)

+lzp:/t of (s, X%,..., XP)d(X', X7)
2 = Jo \Ox;0x; )77 P
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with

n
dx! = Kids + " H"dW]
= (3.34)
d(x’, X/), =Y HI™HI"ds.
m=1

3.2.5 Information structures

A key element of the description of a stochastic process is a specification of the level of
information on the behaviour of prices that is available to an observer at each point in time.
As with the martingale property, a calculation of the expected future values of a price
process requires information on current prices. Generally financial valuation models
require data on both the current and the historical security prices, but investors are only able
to deal on the basis of current known information, and do not have access to future
information. In a stochastic model, this concept is captured via the process known as
filtration.

A filtration is a family F = (Fy), t € T of variables F; C F which is increasing in level in
the sense that F; C F; whenever s,¢ € T, s < t. Hence a filtration can be viewed as a dynamic
information structure, and F,; represents the information available to the investor at time t.
The behaviour of the asset price is seen by the increase in filtration, which implies that more
and more data is assimilated over time, and historical data is incorporated into the current
price, rather than disregarded or forgotten. A filtration F = (F;) is said to be augmented if F;
is augmented for each time ¢. This means that only F; is augmented. A stochastic process W
is described as being adapted to the filtration F if for each fixed ¢ € T, the random variable X:

X :we— X(w, t) =X (w) =X, (w) : Q — IR

is measurable with respect to F;.

This is an important description as it means that the value X; of X at ¢ is dependent only
on information that is available at time ¢. It might also mean that an investor with access to
the information level F is able to observe or make inferences on the value of X at each point
in time. The augmented filtration generated by X is the filtration F" = (F}"), t € T. Any
stochastic process X is adapted to the augmented filtration FX that it generates. If a
stochastic process is measurable as a mapping or vector then it is a measurable process,
however this does not impact significantly on finance theory so we shall ignore it.

3.3 Perfect capital markets

One of the assumptions of derivative pricing is that the financial markets are assumed to be
near-perfect, for example akin to Fama’s semi-strong or strong-form market. The term
complete market is also used. Essentially the market is assumed to be a general stochastic
economy where transactions may take place at any time, and interest rates behave under
Gaussian uncertainty. We shall look at this briefly later in this section. Generally pricing
models assume that there is an almost infinite number of tradable assets in the market, so
that markets are assumed to be complete. This includes the assumptions that there is
frictionless continuous trading, with no transaction costs or taxation.
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Let us consider then the key assumptions that form part of the economy of for example,
the Black-Scholes option pricing model.

3.3.1 Stochastic price processes

The uncertainty in asset price dynamics is described as having two sources, both repre-
sented by independent standard Brownian motions. These are denoted

(Wlt7 Wztv re [07 TD

on a probability space denoted by (12, F, P).

The flow of information to investors is described by the filtration process. The two
sources of risk in the Black-Scholes model are the risk-carrying underlying asset, and the
cash deposit which, though paying a riskless rate of interest, is at risk from the stochastic
character of the interest rate itself.

3.3.2 Perfect markets

The assumption of complete capital markets states that, as a result of arbitrage-free pricing,
there is a unique probability measure Q, which is identical to the historical probability P,
under which the continuously discounted price of any asset is a Q-martingale. This prob-
ability level Q then becomes the risk-neutral probability.

3.3.3 Uncertainty of interest rates

All derivative valuation models describe a process followed by market interest rates. As the
future level of the yield curve or spot rate curve is uncertain, the key assumption is that
interest rates follow a normal distribution, and follow a Gaussian process. Thus the interest
rate is described as being a Gaussian interest rate uncertainty. Only the short-term risk-free
interest rate, for which we read the T-bill rate or (in certain situations) the government bond
repo rate, is captured in most models. Following Merton (1973), Vasicek (1977), Cox,
Ingersoll and Ross (1985) and Jamshidian (1991), the short-dated risk-free interest r applic-
able to the period ¢ is said to follow a Gaussian diffusion process under a constant volatility.
The major drawback under this scenario is that under certain conditions it is possible to
model a term structure that produces negative forward interest rates. However in practice
this occurs only under certain limited conditions, so the validity of the models is not
diminished. The future path followed by r; is described by the following stochastic differ-
ential equation:

drt = a[[b[ - rt]dt + O'[dW[ (335)

where a and b are constant deterministic functions and o; is the instantaneous standard
deviation of r;. Under (3.35) the process describing the returns generated by a risk-free zero-
coupon bond P(t, T) that expires at time T and has a maturity of T—¢ under the risk-neutral
probability Q is given by (3.36):

dp(t, T)

Pl ) = e = ov(e, TYAW: (3.36)
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where op is the standard deviation of the price returns of the (T—f) bond and is a determin-
istic function defined by:

op(t, T)=0y- /fexp(— /tu a(s)ds) du.

In the Black-Scholes model the value of a $1 (or £1) deposit invested at the risk-free
zero-coupon interest rate r and continuously compounded over a period ¢ will have grown
to the value given by the expression below, where M; is the value of the deposit at time t:

M; = exp (/Ot r(u)du), (3.37)

3.3.4 Asset price processes

All valuation models must capture a process describing the dynamics of the asset price. This
was discussed at the start of the chapter and is a central tenet of derivatives valuation
models. Under the Black-Scholes model for example, the price dynamics of a risk-bearing
asset S; under the risk-neutral probability function Q are given by

% =rdt + og (de, +v1- pzdwz(f)> (3:38)
t

where oy is the standard deviation of the asset price returns. The correlation between the
price dynamics of the risk-bearing asset and the dynamics of interest-rate changes is given
by p, p € [0, 1] while W,(¢) is a standard Brownian motion that describes the dynamics of the
asset price, and not that of the interest rates which are captured by W; (and from which it is
independent).

Under these four assumptions, the price of an asset can be described in present value
terms relative to the value of the risk-free cash deposit M; and, in fact the price is described
as a Q-martingale. A European-style contingent liability with maturity date ¢ is therefore
valued at time 0 under the risk-neutral probability as

hy
V, = EQ| =L
o= B4z
where
Vo is the value of the asset at time 0
hy is the stochastic payoff at maturity date ¢, where & is a measurable stochastic
process

and EQ[] is the expectation of the value under probability function Q.
In the following chapter we tie in the work on dynamics of asset prices to option
valuation models.
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Appendices

Appendix 3.1:  An introduction to stochastic processes

A stochastic process can be described with respect to the notion of a vector of variables. If
we set the following parameters
2 is the set of all possible states ¢
v is a class of partitions of (2
X(w) is said to be a random variable when it is a measurable application from ({2, v) to
R. A vector of random variables X(w) = [Xj(w), ..., Xn(w)] is an application that can be
measured from (£, ) into ®". Therefore we have a vector of random variables that is
similar to n ordinary variables defined under the same probability function.
A stochastic process is an extension of the notion of a vector of variables when the
number of elements becomes infinite. It is described by

{Xi(w)}, teT

which is a set of random variables where the index varies in a finite or infinite group, and is
denoted by X(#).

Appendix 3.2:  1t6’s lemma

If fis a continuous and differentiable function of a variable x, and Ax is a small change in x,
then using a Taylor expansion the resulting change in fis given by (3.39):

d’ d
Af = <f>A += <d];>Ax2+ ( f)Ax + - (3.39)
If fis dependent on two variables x and y then the Taylor expansion of Afbecomes (3.40):

o (e (F)oro 1 (D)o 4GB (2o

(3.40)
The limiting case where Ax and Ay are close to zero will transform (3.40) to (3.41):
o= (L)or+ (L) o

Consider now a derivative asset f{x, 7) whose value is dependent on time and on the
asset price x. If we assume that x follows the general It6 process

dx = a(x, t)dt + b(x, t)dW (3.42)
where a and b are functions of x and ¢ and dW is a Weiner process. The asset price x is

described by a drift rate of x and a standard deviation of b. Using It6’s lemma it can be
shown that a function f of x and ¢ will follow the following process:

df = (f a];+ (gzjz>b2>dt+g—£bdw (3.43)
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and where dW is the Weiner process; therefore f follows an It6 process and its drift and
standard deviation are described by the expressions below:

of . o o°f o\,
ax* Tt <8x2 and {5
This may also be stated as:
Ax = a(x, t)At + beV At

where the term ¢ is normally distributed with a mean of 0, so that E(¢) = 0, and a variance of
1, so that E(c2) — E(¢)? = 1. In the limit case (3.40) becomes (3.44), which is Itd’s lemma:

df = ( f)dx+ (a];)dt+2 (ng)bzdt (3.44)

The expression in (3.44) is It6’s lemma and if we substitute (3.42) for dx, it can be
transformed to (3.45):

df = Kaﬁ) + (Z—];) += (ZZ) bz} dr + (gf) bdw. (3.45)

The derivation of Itd’s formula is given in Appendix 3.3.

Appendix 3.3:  Derivation of It6’s formula
Let X; be a stochastic process described by
dXt = ‘Lttdt + Utth (346)

where W, is a random variable and Brownian motion and dW; is an incremental change in
the Brownian motion W;, equal to Z/dt, Z, ~ N(0, 1). Then suppose that we have a
function Y; = f(X;, ) and we require the differential dY;. Applying a Taylor expansion of
Y; we would obtain

of of 1[f 2, >*f Pf o
dy; = axth’ 8tdt+ 8X2dX 0X8thtdt+8t2dt 4 (3.47)

In (3.46) if we square dX; we obtain
dX? = p2de* + 20, dW,dt + o2 dW?. (3.48)

The first two terms in (3.48) are of a higher order and of minimal impact when d¢ is
sufficiently small, and may be ignored. It can be shown that the variance of the (dW;)? term
will tend towards zero when the increment dt is sufficiently small. At this point it no longer
has the property of a random variable and becomes more a constant with expected value

E(Z*dr) = dr. (3.49)
It can then be shown that for sufficiently small d¢

dX? = o2dW} = o7dr.
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2
The differential dY; has an element that tends towards %ZT(!; o?dr for sufficiently small dr
t

but cannot be dropped as were the higher-order terms of (3.48) as it is of order dt. So the
first-order differential of Y; is

_of of . 1 ,0f
dYt_ﬁ_)QdX[+Edt+§at8—)(t2dt (350)

and now if we insert dX; from (3.46) into (3.49) we will obtain

_(, of of 1,0f of
dYt— (Mta_&+a+iata—)(t2 dt+at8_X}dW[ (351)

If the reader has followed this through he or she has arrived at It6’s lemma. We can
apply this immediately. Consider a process
t t
X =Xp +/ u,du+/ osdW; (3.52)
0 0
for which the differential form is
dXt = /L[dt -+ O'tth. (353)
If we set the function fiX) equal to X; the results of applying the 1t6 lemma terms are
2
of 1; 8—f*O and af*O.

ax Y e
Therefore using It6’s lemma we obtain
dX[ = )utdt -+ O'[dW[ (354)

which is what we expect. What we have here is a stochastic differential equation at (3.54) for
which the solution is (3.52).

Appendix 3.4:  The integral

Suppose we have a deterministic function f{x) of time, with x € [0, T] that corresponds to a
curve of flx) over the period from 0 to T, and we wish to calculate the area given by the
function from time f, to 7. This can be done by integrating the function over the time
interval [0, T'], given by

T
/ f(s)ds. (3.55)
JO

To calculate the integral we split the area given by the function in the time period into a
series of partitions or intervals, described by

h=0<t<h<..<t,=T. (3.56)

The approximate value of the area required is

gf (#) (ti —ti1); (3.57)

however, if we decrease the interval space such that it approaches 0, described by
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tifti—ll — 0

max
i
the area under the space is given by the integral in (3.49), as the approximating sum
approaches the area defined by the limit

S ()= ' Fe)ds. (3.56)
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4 Interest-rate Models |

In Chapter 3 we introduced the concept of stochastic processes. Most but not all interest rate
models are essentially a description of the short-rate in terms of a stochastic process. Recent
literature' has tended to categorise models into one of up to six different types, but for our
purposes we can generalise them into two types. Thus we introduce some of the main models,
according to their categorisation as equilibrium or arbitrage-free models. This chapter looks
at the earlier models, including the first ever term structure model presented by Vasicek in
1977. The next chapter considers what have been termed ‘whole yield curve’ models, or the
Heath-Jarrow-Morton family, while Chapter 6 reviews considerations in fitting the yield
curve.

4.1 Introduction

4.1.1 Bond price and yield
We first set the scene by introducing the interest rate market. The price of a zero-coupon
bond of maturity T at time ¢ is denoted by P(¢, T), so that its price at time 0 is denoted by
P(0, T). The process followed by the bond price is a stochastic one and therefore can be
modelled, equally options that have been written on the bond can be hedged by it. If market
interest rates are constant, the price of the bond at time ¢ is given by e""~9_ This enables us
to state that given a zero-coupon bond price P(¢, T) at time ¢, the yield r(t, T) is given by
(4.1):
log P(t, T)

- T—t

Of course interest rates are not constant but (4.1) is valuable as it is used later in
constructing a model. By using (4.1) we are able to produce a yield curve given a set of
zero-coupon bond prices. For modelling purposes we require a definition of the short rate,
or the current interest rate for borrowing a sum of money that is paid back a very short
period later (in fact, almost instantaneously). This is the rate payable at time ¢ for repay-
ment at time ¢ + At where At is an incremental passage of time. This is given by

log P(t, t+ At)

B At
and the incremental change can be steadily decreased to give the instantaneous rate, which
is described by

rt, T) = (4.1)

r(t, t+ Al) = (4.2)

d
ro=—o5log P(t, 1) (4.3)

and is identical to r(t, 1).

For example, see James and Webber (2000), or Van Deventer and Imai (1997).

55
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The instantaneous rate is an important mathematical construct that is widely used in
the modelling process.

We can define forward rates in terms of the short rate. Again for infinitesimal change in
time from a forward date T, to T, (for example, two bonds whose maturity dates are very
close together), we can define a forward rate for instantaneous borrowing, given by

0 log P(t, T) (4.4)

f(t, T)= ~3T

which is called the forward rate. We can also set
(0 =r (45)

that is the forward rate for borrowing at the point ¢ = T which is identical to the short rate.
The forward rate is valuable because, given the set of forward rates from ¢ to 7, we can
calculate the bond price for a T-maturity date. This is presented in a number of texts, one of
the best being Jarrow (1996). Given the expressions for the bond yield and the forward rate,
the bond prices can be defined in terms of either the yield,

P(t, T)=exp(—(T —t)r(t, T)) (4.6)

or the forward rates, as a stochastic integral

P(t, T)= exp<f /tTrf(t, s)ds). (4.7)

This is convenient because this means that the price at time ¢ of a zero-coupon bond
maturing at T is given by (4.7), and forward rates can be calculated from the current term
structure or vice-versa.

For readers unfamiliar with the basic maths, an introductory primer is given in the
Preface, which can be used to reference the relevant texts.

4.1.2 Interest rate models

An interest rate model provides a description of the dynamic process by which rates change
over time, in terms of a statistical construct, as well as a means by which interest rate
derivatives such as options can be priced. It is often the practical implementation of the
model that dictates which type is used, rather than mathematical neatness or more realistic
assumptions. An excellent categorisation is given in James and Webber (2000) who list
models as being one of the following types:

m the traditional one-, two- and multi-factor equilibrium models, known as affine term
structure models (see James and Webber (2000) or Duffie (1996, p. 136)).” These include
Gaussian affine models such as Vasicek, Hull-White and Steeley, where the model
describes a process with constant volatility; and models that have a square-root volatil-
ity such as Cox-Ingersoll-Ross (CIR);

m  whole yield curve models such as Heath-Jarrow—Morton;

2 Afunction ® — R is affine if there are constants a and b such that for all values of x, H(x) = a + bx.

This describes certain term structure models’ drift and diffusion functions.
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m so-called market models such as Jamshidian;

m so-called consol models such as Brennan and Schwartz.

There are also other types of models and we suggest that interested readers consult a
specialist text; James and Webber is an excellent start, which also contains detailed sections
on implementing models as well as a comparison of the different models themselves.

The most commonly used models are the Hull-White type models which are relatively
straightforward to implement, although HJM models are also more commonly encountered.
The Hull-White and extended CIR models incorporate a mean reversion feature that means
that they can be fitted to the term structure in place at the time. The CIR model has a square-
root factor in its volatility component, which prevents the short-term rate reaching negative
values. What criteria are used by a bank in deciding which model to implement? Generally a
user will seek to implement a model that fits current market data, fits the process by which
interest rates change over time and is tractable. This means that it should be computationally
efficient, and provide explicit solutions when used for pricing bonds and vanilla options.

4.1.3 Introduction to bond analysis using spot rates and forward rates in
continuous time

This section analyses further the relationship between spot and forward rates and the yield curve.

The spot and forward rate relationship
In the discussion to date, we have assumed discrete time intervals and interest rates in
discrete time. Here we consider the relationship between spot and forward rates in con-
tinuous time. For this we assume the mathematical convenience of a continuously com-
pounded interest rate.

The rate r is compounded using ¢ and an initial investment M earning r(¢, T) over the
period T—t¢, initial investment at time ¢ and for maturity at T, where T> ¢, would have a
value of Me"® D=9 on maturity.® If we denote the initial value M, and the maturity value

M7y then we can state M;e'> DT=9 — My and therefore the continuously compounded yield,
defined as the continuously compounded interest rate r(¢, T) can be shown to be
log(Mr/M;)

r(t, T) = (4.8)

T—1t
We can then formulate a relationship between the continuously compounded interest
rate and yield. It can be shown that

" (s
My = Mye: 19% (4.9)

where r(s) is the instantaneous spot interest rate and is a function of time. It can further be
shown that the continuously compounded yield is actually the equivalent of the average
value of the continuously compounded interest rate. In addition it can be shown that

T r(s)ds

r(t, T) =ftT7t (4.10)

e is the mathematical constant 2.7182818... and it can be shown that an investment of £1 at time ¢
will have grown to e on maturity at time 7 (during the period T—71) if it is earning an interest rate of
1/(T - 1) continuously compounded.
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In a continuous time environment we do not assume discrete time intervals over which
interest rates are applicable, rather a period of time in which a borrowing of funds would be
repaid instantaneously. So we define the forward rate f{z, s) as the interest rate applicable for
borrowing funds where the deal is struck at time #; the actual loan is made at s (with s> 1)
and repayable almost instantly. In mathematics the period s—¢ is described as infinitesimally
small. The spot interest rate is defined as the continuously compounded yield or interest
rate r(t, T). In an environment of no arbitrage, the return generated by investing at the
forward rate f{z, s) over the period s—t must be equal to that generated by investing initially
at the spot rate r(¢, T). So we may set

T
eft f(6,9ds _ r(e)d (4.11)
which enables us to derive an expression for the spot rate itself, which is

_ S f s)ds

e, 1) =L

(4.12)

The relationship described by (4.12) states that the spot rate is given by the
arithmetic average of the forward rates f{t, s) where t<s<T. How does this differ from
the relationship in a discrete time environment? We know that the spot rate in such a
framework is the geometric average of the forward rates,* and this is the key difference
in introducing the continuous time structure. Equation (4.12) can be rearranged to

r(t, T(T—t)= /Tf(t, s)ds (4.13)

and this is used to show (by differentiation) the relationship between spot and forward
rates, given below:

dr(t, T)

f(t7 s):r(t, T)+(T_t) dr

(4.14)

If we assume we are dealing today (at time 0) for maturity at time 7, then the expression
for the spot rate becomes

T
70, T) = M (4.15)

SO we can write

O, T)- T = / " f0, s)ds. (4.16)
0

This is illustrated in Figure 4.1 which is a diagrammatic representation showing that the
spot rate r(0, T) is the average of the forward rates from 0 to T, using the hypothetical value
of 5% for r(0, T). Figure 4.1 also shows the area represented by (4.16).

4 To be precise, if we assume annual compounding, the relationship one plus the spot rate is equal to

the geometric average of one plus the forward rates.
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N Spotrate r (0, T) =5.0%
— Forward rate f (0, T)

6 -
X549 N
2
g -
s 41
A
g 37 0.7T
g Shaded area given by .[ o J0,9)ds
5 27 withf the instantaneous forward
borrowing rate for period s.
1
0

0 0.1T 0.2T 0.3T 04T 05T 07T 08T T T+1 T+2 T+5
Term to maturity

Figure 4.1: Diagrammatic representation of the relationship between spot and forward rate.
The spot rate r(t, T) is the average of the forward rates between ¢ and T.

What (4.14) implies is that if the spot rate increases, then by definition the forward rate
(or marginal rate as has been suggested that it may be called’) will be greater. From (4.14)
we deduce that the forward rate will be equal to the spot rate plus a value that is the
product of the rate of increase of the spot rate and the time period (T - ). In fact the
conclusions simply confirm that the forward rate for any period will lie above the spot rate
if the spot rate term structure is increasing, and will lie below the spot rate if it is
decreasing. In a constant spot rate environment, the forward rate will be equal to the spot
rate.

However it is not as simple as that. An increasing spot rate term structure only
implies that the forward rate lies above the spot rate, but not that the forward rate
structure is itself also increasing. In fact one can observe the forward rate term structure
to be increasing or decreasing while spot rates are increasing. As the spot rate is the
average of the forward rates, it can be shown that in order to accommodate this, forward
rates must in fact be decreasing before the point at which the spot rate reaches its
highest point. This confirms market observation. An illustration of this property is given
in Appendix 4.1. As Campbell et al. (1997) state, this is a property of average and
marginal cost curves in economics.

For example see Section 10.1 of Campbell, Lo and MacKinlay (1997), Chapter 10 of which is an
excellent and accessible study of the term structure, and provides proofs of some of the results
discussed here. This book is written in very readable style and is worth purchasing for Chapter 10
alone.
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Bond prices as a function of spot and forward rates
In this section we describe the relationship between the price of a zero-coupon bond and
spot and forward rates. We assume a risk-free zero-coupon bond of nominal value £1,
priced at time ¢ and maturing at time 7. We also assume a money market bank account of
initial value P(¢, T) invested at time ¢. The money market account is denoted M. The price of
the bond at time ¢ is denoted P(¢, T) and if today is time 0 (so that > 0) then the bond price
today is unknown and a random factor (similar to a future interest rate). The bond price can
be related to the spot rate or forward rate that is in force at time t.

Consider the scenario below, used to derive the risk-free zero-coupon bond price.®

The continuously compounded constant spot rate is r as before. An investor has a choice
of purchasing the zero-coupon bond at price P(t, T), which will return the sum of £1 at time
T or of investing this same amount of cash in the money market account, and this sum
would have grown to £1 at time T. We know that the value of the money market account is
given by Me™® DT _If M must have a value of £1 at time T then the function ¢~ DT
must give the present value of £1 at time ¢ and therefore the value of the zero-coupon bond
is given by

P(t, T) = e " 1T, (4.17)

If the same amount of cash that could be used to buy the bond at ¢, invested in
the money market account, does not return £1 then arbitrage opportunities will result. If
the price of the bond exceeded the discount function e "® D=9 then the investor
could short the bond and invest the proceeds in the money market account. At time T
the bond position would result in a cash outflow of £1, while the money market account
would be worth £1. However the investor would gain because in the first place
P(t, T) — 7" D=0 > 0, Equally if the price of the bond was below e~ D=9 then the
investor would borrow e~" 7= in cash and buy the bond at price P(z, T). On maturity
the bond would return £1, which proceeds would be used to repay the loan. However the
investor would gain because e"* DT=% _ p(z, T) > 0. To avoid arbitrage opportunities we
must therefore have

P(t, T) = e "I, (4.18)

Following the relationship between spot and forward rates it is also possible to
describe the bond price in terms of forward rates.” We show the result here only. First
we know that

T
P(t, T)el: 7-9% — 1 (4.19)

because the maturity value of the bond is £1, and we can rearrange (4.19) to give

T
P(t, T) = e Jo [0 (4.20)

Expression (4.20) states that the bond price is a function of the range of forward rates that
apply for all f(z, s) that is, the forward rates for all time periods s from ¢ to T (where t<s< T,
and where s is infinitesimally small). The forward rate f(z, s) that results for each s arises as a

This approach is also used in Campbell et al. (q.v.).
For instance, see ibid, Section 4.2.
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result of a random or stochastic process that is assumed to start today at time 0. Therefore
the bond price P(¢, T) also results from a random process, in this case all the random
processes for all the forward rates f(, s).

The zero-coupon bond price may also be given in terms of the spot rate r(t, T), as shown
in (4.18). From our earlier analysis we know that

P(t, T)e'» DT =1 (4.21)
which is rearranged to give the zero-coupon bond price equation

P(t, T) = e "= (4.22)
as before.

Equation (4.22) describes the bond price as a function of the spot rate only, as opposed
to the multiple processes that apply for all the forward rates from ¢ to T. As the bond has a
nominal value of £1 the value given by (4.22) is the discount factor for that term; the range
of zero-coupon bond prices would give us the discount function.

What is the importance of this result for our understanding of the term structure of
interest rates? First, we see (again, but this time in continuous time) that spot rates, forward
rates and the discount function are all closely related, and given one we can calculate the
remaining two. More significantly, we may model the term structure either as a function of
the spot rate only, described as a stochastic process, or as a function of all of the forward
rates f(t, s) for each period s in the period (T - 1), described by multiple random processes.
The first yield curve models adopted the first approach, while a later development
described the second approach.

4.2 Interest-rate processes

Term structure models are essentially models of the interest-rate process. The problem
being posed is, what behaviour is exhibited by interest rates, and by the short-term interest
rate in particular? An excellent description of the three most common processes that are
used to describe the dynamics of the short-rate is given in Phoa (1998), who describes:

m the Gaussian or normal process: random shifts in forward rates are normally distrib-
uted and any given forward rate drifts upward at a rate proportional to the initial time to
the forward date. The interest-rate volatility is independent of the current interest rate,
and the volatility term has the form cdW(#) where W(?) is a generalised Weiner process
or Brownian motion. An example of a Gaussian model is the Vasicek model;

m the square root or squared Gaussian process: the interest-rate volatility is proportional
to the square root of the current interest rate, so the volatility term is given by o/rdW (¢).
An example of this is the Cox-Ingersoll-Ross model;

m the lognormal process: interest-rate volatility is proportional to the current interest
rate, with the volatility term described by ordW(#). An example of this is the Black-
Derman-Toy model.

To illustrate the differences, this means that if the current short-rate is 8% and is
assumed to have an annualised volatility of 100 basis points, and at some point in the
future the short-rate moves to 4%, under the Gaussian process the volatility at the new rate
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will remain at 50 basis points, the square root process will assume a volatility of 82.8 basis
points and the lognormal process will assume a volatility of 50 basis points.

The most straightforward models to implement are normal models, followed by square
root models and then lognormal models. The process that is used will have an impact on
the distribution of future interest rates predicted by the model. A generalised distribution is
given in Figure 4.2.

Empirical studies have not pointed conclusively to one specific process as the most
realistic. One study (BoE 1999) states that observation of interest rate behaviour in different
markets suggests that when current interest rate levels are low, at 4% or below, the rate
process has tended to a Gaussian process, while when rates are relatively high the process is
more akin to a lognormal process. At levels between these two, it would seem an ‘inter-
mediate’ process is followed. These observations can be supported by economic argument
however. The nominal level of interest rates in an economy has two elements, a real interest
rate and an inflation component. Thus interest-rate volatility arises as a result of real
interest-rate volatility and consumer prices volatility. When interest rates are low, the
inflation component will be negligible, at which point only real rate volatility has an impact.
However as real rates are linked to the rate of growth, it is reasonable to assume that they
follow a normal distribution. An extreme case has occurred in some markets where the real
rates on index-linked bonds have occasionally been recorded as negative. When interest
rates are at relatively high levels, the inflation component is more significant, so that price
volatility is important. However economic rationale suggests that the price of traded goods
follows a lognormal distribution.

Where does this leave the thinking on interest-rate models? As we demonstrate in the
next section, one of the drawbacks of Gaussian interest-rate models is that they can result in
negative forward rates. Although not impossible, this is an extremely unusual, not to say
rare, situation and one that is unlikely in any environment bar one with very low current

\ - — — Gaussian process
1N — lognormal process
g N W square root process

3% 4% 5% 6% 7% 8% 9% 10%
Interest rate

Figure 4.2: Distribution of future interest rates implied by different processes.
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interest rates. However such a phenomenon is not completely unheard of, and an environ-
ment of low interest rates is one that is best described by a Gaussian process. Negative
interest rates have been recorded, for example in the Japanese government bond repo
market and certain other repo markets when bonds have gone very special, and bear in
mind that rates in Japan have been very low for some time now. Essentially then a model
that permits negative interest rates is not necessarily unrealistic in an economic sense.

4.3 One-factor models

A short-rate model can be used to derive a complete term structure. We can illustrate this by
showing how the model can be used to price discount bonds of any maturity. The deriva-
tion is not shown here. Let P(t, T) be the price of a risk-free zero-coupon bond at time ¢
maturing at time 7T that has a maturity value of 1. This price is a random process, although
we know that the price at time T will be 1. Assume that an investor holds this bond, which
has been financed by borrowing funds of value C;. Therefore at any time ¢ the value of the
short cash position must be C; = —P(¢, T), otherwise there would be an arbitrage position.
The value of the short cash position is growing at a rate dictated by the short-term risk-free
rate r, and this rate is given by

dc,
d—tf =r(t)C,.

By integrating this we obtain C; = Gy exp(—fot r(s)ds) which can be rearranged to give

PO, T)/P(t, T) =exp (—/Ot r(s)ds)

so that the random process on both sides is the same, so that their expected values are the
same. This can be used to show that the price of the zero-coupon bond at any point ¢ is
given by:

P(t, T)=E {exp(— l/[.T r(s)ds)} .

Therefore, once we have a full description of the random behaviour of the short-rate r,
we can calculate the price and yield of any zero-coupon bond at any time, by calculating
this expected value. The implication is clear: specifying the process r(f) determines the
behaviour of the entire term structure, so if we wish to build a term structure model we
need only (under these assumptions) specify the process for r(z).

So now we have determined that a short-rate model is related to the dynamics of bond
yields and therefore may be used to derive a complete term structure. We also said that in
the same way the model can be used to value bonds of any maturity. The original models
were one-factor models, which describe the process for the short-rate r in terms of one
source of uncertainty. This is used to capture the short-rate in the following form:

dr = p(r)dt + o(r)dW (4.23)
where p is the instantaneous drift rate and ¢ the standard deviation of the short-rate r. Both

these terms are assumed to be functions of the short-rate and independent over time. The key
assumption made in a one-factor model is that all interest rates move in the same direction.
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4.3.1 The Vasicek model

In the Vasicek model (1977) the instantaneous short-rate r is assumed to follow a stochastic
process known as the Ornstein—-Uhlenbeck process, a form of Gaussian process, described
by (4.24):

dr = a(b - r)dr + odW. (4.24)

This model incorporates mean reversion, which is a not unrealistic feature. Mean reversion
is the process that describes that when the short-rate r is high, it will tend to be pulled back
towards the long-term average level; when the rate is low, it will have an upward drift towards
the average level. In Vasicek’s model the short-rate is pulled to a mean level b at a rate of a. The
mean reversion is governed by the stochastic term ocdW which is normally distributed. Using
(4.24) Vasicek shows that the price at time ¢ of a zero-coupon bond of maturity T is given by:

P(t, T) = A(t, T)e Bt 1r® (4.25)
where r(f) is the value of r at time ¢,
_ ,—A(t-T)
BT, =17 (4.26)
a

B B(t, T) — (T — t)(a®b — (6%/2)) o*B(t, T)*

and A(f, T) = exp( e in . (4.27)
It can be shown further that

1 1

rit, T)=— T tln AL, T) +ﬁB(t7 T)r(T) (4.28)

which describes the complete term structure as a function of r(f) with parameters a, b and the
standard deviation o. The expression in (4.28) states that r(¢, T) is a linear function of r(f), and
that the value of r(f) will determine the level of the term structure at time ¢ Using the
parameters described above we can calculate the price function for a risk-free zero-coupon
bond. Chan et al. (1992) used the following parameters: a long-run mean b of 0.07, drift rate
a of 0.18 and standard deviation of 0.02. Using these parameters Figure 4.3 shows two zero-

1.2
17 I ~
T~ () =0.10
0.8 ~ . @
~ . - — - ()=0.04

Bond price
(=]
(o))

5 10 15 20 25 30
Term to maturity

Figure 4.3: Zero-coupon bond price curves at r(f) =0.04 and r(#) =0.10.
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coupon bond price curves that result from two different initial short rates, r(f) =4% and
r(t) = 10%. The time to maturity T is measured on the x-axis, with the price of the zero-coupon
bond with that time to maturity (a redemption value of 1) measured along the y-axis.

For derived forward rates the bond price function P(¢, T) continuously differentiable with
respect to t. Therefore the model produces the following for the instantaneous forward rates:

fl(t, T):—%ln P(t, T)

=A(T—t)+B(T-t)r(t) = (1 - e*“<”>)b - %V(T — 1) 4 e @T-0r0
=f(r(t), T—1) (4.29)

where f(r, T) is the function f(r, T) = (1 —e “")b — 1u(T) + e “Tr.

The forward rate is a function of the short-rate and is normally distributed. Figure 4.4
shows the forward rate curves that correspond to the price curves in Figure 4.3, under the
same parameters.

An increase in the initial short-rate r will have the effect of raising forward rates, as will
increasing the long-run mean value b. The effect of an increase in r is most pronounced at
shorter maturities, whereas an increase in b has the greatest effect the longer the term to
maturity. An equal increase or decrease in both r and b will have the effect of moving all
forward rates up or down by the same amount. With these changes the forward curve moves
up or down in a parallel fashion.

The derived forward rate is a decreasing function of the instantaneous standard devia-
tion o, one of the model parameters. The partial derivative of the forward rate with respect
to the standard deviation is given in (4.30):

8f(r, T) _ —O'B(T _ 5)2 _ _('%(_ze—aT + e*2dT + 1) (430)

Oo

The expression in (4.30) states that the forward rate is a decreasing function of T, that is
it becomes more negative as T becomes larger. The effect of the standard deviation on the
forward rate is shown in Figure 4.5, which shows the two forward rate curves from Figure
4.4, with two additional forward rate curves where the standard deviation has been raised
from 0.02 to 0.05.

0.12 4

r(5)=0.10

0.14 - - - (=004

0.08 +

0.06 - T T

0.04 1 -7

Forward rate

0.02 1

0 ; ; ; ; ; ,
5 10 15 20 25 30

Term to maturity

Figure 4.4: Forward rate curves with spot rate r(#) =0.04 and r(f) =0.10.
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- — = () =0.10, sd=0.02
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Figure 4.5: Forward rate curves with standard deviations of 0.02 and 0.05.

In describing the dynamics of the yield curve the Vasicek model only captures changes
in the short-rate r, and not the long-run average rate b.

A key point about this model is that as the short-rate follows a normal distribution, it has
a positive probability of becoming negative at any point in time. This is common to all
models that assume a Gaussian interest-rate process, and although it might be considered a
significant drawback, in fact it will only be exhibited under extreme parameter values. For
instance in the example in Figure 4.4 the forward rates are not unusual; however if we increase
the standard deviation the effect will be to decrease forward rates, and this ultimately
produces negative forward rates. For example if we calculate the forward rates for a standard
deviation o=0.09, the result will be to produce negative rates, as shown in Figure 4.6. A
negative forward rate is equivalent to a zero-coupon bond price that increases over time,
which is clearly unrealistic under all but the most unusual and rare conditions. The reason
that Gaussian interest-rate models can produce negative forward rates when the standard
deviation is high is because the probability of achieving negative interest rates is high. Under
certain parameter values, particularly under high values for the standard deviation, the
probability of negative forward rates exists. However we saw that this is only under certain
parameters, and in fact the presence of mean reversion makes this a low possibility.
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Figure 4.6: Forward rate curves under high volatility.
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It might be considered to be more realistic to consider that there are no constant param-
eters for the drift rate and the standard deviation that would ensure that the price of a zero-
coupon bond at any time is exactly the same as that suggested by observed market yields. For
this reason a modified version of the Vasicek model has been described by Hull and White
(1990), known as the Hull-White or extended Vasicek model, which we consider later.

4.3.2 The Merton model

In Merton’s model (1971) the interest-rate process is assumed to be a generalised Weiner
process, described by (4.31):

r(t) =1y +at+oW(k) (4.31)
which in differential form is given by (4.32):
dr = adt 4+ odW. (4.32)
For 0 < t< T it can be shown that
r(T)=r(t)+a(T—1t)+o(W(T) — W(t)). (4.33)
The distribution of 7(T) is normal with a mean of r(¢) + «(T — ¢) and standard deviation

of o/T —t.

For a fixed term to maturity T the forward rate f(r(f), T - 1) is an It6 process of the form:
dfr(r(t), T —t) =dr — adt + o*(T — t)dt
fr(r(), T 1) = dr — adi-+ (T — 1 s
=0 (T — t)ds + ocdW.

The continuously compounded yield at time ¢ of a risk-free zero-coupon bond paying 1
on maturity at time T is given by:

1 1
R(t, T) = T _ tln(P(r(If)7 T - t))

1
= ﬁA(T — 1)+ R(¥)
=R(r(t), T—1) (4.35)
where R is the function
R(r T)—lA(T)+r—1aTJ’2T2+r (4.36)
T 2 6 ' '

The average future interest rate over the time period (¢, T) is given by (4.37):

1 T
Fa =7 t r(s)ds. (4.37)
In the Merton model forward rates will always be negative at long maturities, unlike the
Vasicek model where there are a range of parameters under which the forward rates will be
positive at all maturities. This is because although in both models the forward rate is
negatively affected by the standard deviation of the future interest rate, which is an
increasing function of the time to maturity, in the Merton model it changes in a linear
fashion to infinity, whereas in the Vasicek model it grows to a finite limit. Therefore the
standard deviation is more powerful in the Merton model, and it results in the forward rates
being negative at long maturities.
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4.3.3 The Cox—Ingersoll-Ross model

From the previous section we see that under a model that assumes the short-rate to follow a
normal distribution, there can arise instances of negative forward rates. The Cox-Ingersoll-Ross
model (1985) is a one-factor model and as originally presented removed the possibility of
negative rates.® Under the CIR model the dynamics of the short-rate are described by (4.38):

dr = a(b - r)dt + o/rdW (4.38)

which like Vasicek also captures a mean-reverting phenomenon. However the stochastic
term has a standard deviation that is proportional to /r. This is a significant difference
because it states that as the short-rate increases, the standard deviation will decrease. This
means that forward rates will be positive. In the CIR model the price of a risk-free zero-
coupon bond is given by:

P(t, T) =A(t, T)e B¢ 1r (4.39)
where
2(eT-0 — 1)
(v+a) (e 0 1) +2y
2~ pla+n)(T=1)/2 2ab/o*
Alt, T) = 2
(v+a) (@0 —1) +2y
vy =Va?+ 202
The long-run interest rate R(¢, T') is a function of the short-rate r(#), so that the short-rate
only is all that is required to fit the entire term structure.

B(t, T) =

4.3.4 General comment

The Gaussian models, also called affine models (see for example, James and Webber, 2000) are
popular because they are straightforward to implement and they provide explicit numerical
solutions when used in instrument pricing. Although Gaussian models allow negative interest
rates under certain conditions, this is not necessarily a completely unrealistic trait, although
some academic opinion holds that any model that allows negative interest rates cannot be
correct and should not be used. Negative interest rates will only result under very specific
conditions, which have a low probability (see for example Rogers, 1995), and for this reason
these models remain popular. However in an environment of low interest rates for instance,
the CIR type models, which do not permit negative interest rates, may be preferred.

4.4 Arbitrage-free models

An equilibrium model of the term structure, of which we reviewed three in the previous
section, is a model that is derived from (or consistent with) a general equilibrium model of
the economy. They use generally constant parameters, including most crucially a constant
volatility, and the actual parameters used are often calculated from historical time series

8  Although formally published in 1985, the Cox-Ingersoll-Ross model was being circulated in

academic circles from the mid-1970s onwards, which would make it one of the earliest interest-rate
models.
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data. Banks commonly also use parameters that are calculated from actual data and implied
volatilities, which are obtained from the prices of exchange-traded option contracts.

An arbitrage-free model of the term structure on the other hand, can be made to fit
precisely with the current, observed term structure, so that observed bond yields are in fact
equal to the bond yields calculated by the model. So an arbitrage-free model is intended to be
consistent with the currently observed zero-coupon yield curve, and the short-rate drift rate is
dependent on time, because the future average path taken by the short-rate is determined by
the shape of the initial yield curve. This means that in a positively sloping yield curve
environment, the short-rate r will be increasing, on average, while it will be decreasing in an
initial inverted yield curve environment. In a humped initial yield curve environment, the
expected short-rate path will also be humped. In an equilibrium model the drift term for the
short rate (that is, the coefficient of the df term given above) is not dependent on time.

In theory, the price predicted by any model, were it to be observed in the market, would
render that model to be an arbitrage-free one; however arbitrage-free models are so-called
because they compare the model-predicted price to the actual market price. In an equilibrium
model the initial term structure is a product of the model, while in an arbitrage-free model the
actual term structure is an input to the model in the first place. In practice an equilibrium
model may not be arbitrage-free under certain conditions; namely it may show small errors at
particular points along the curve, or it may feature a large error across the whole term
structure. The most fundamental issue in this regard is that the concept of the risk-free
short-term interest rate is difficult to identify as an actual interest rate in the money market.
In practice there may be more than one interest rate that presents itself, for example the T-bill
rate or the same maturity government bond repo rate, and this remains a current issue.

For these reasons practitioners may prefer to use an arbitrage-free model if one can be
successfully implemented and calibrated. This is not always straightforward, and under
certain conditions it is easier to implement an equilibrium multi-factor model (which we
discuss in the next section) than it is to implement a multi-factor arbitrage-free model. Under
one particular set of circumstances however it is always preferable to use an equilibrium
model, and that is when reliable market data is not available. If modelling the term structure in
a developing or ‘emerging’ bond market, it will be more efficient to use an equilibrium model.

Some texts have suggested that equilibrium models can be converted into arbitrage-free
models by making the short-rate drift rate time dependent. However this may change the
whole nature of the model, presenting problems in calibration.

4.4.1 The Ho and Lee model

The Ho-Lee model (1986) was one of the first arbitrage-free models and was presented
using a binomial lattice approach, with two parameters; the standard deviation of the short-
rate, and the risk premium of the short-rate. We summarise it here. Following Ho and Lee,
let P (-) be the equilibrium price of a zero-coupon bond maturing at time T under state i.
That is P§")(~) is a discount function describing the entire term structure of interest rates,
and will satisfy the following conditions:

To describe the binomial lattice we denote the price at the initial time 0 as P"(-) = 1.
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At time 1 the discount function is specified by two possible functions P{" (0) and PS" (0)
which correspond respectively to the upside and the downside outcomes. Therefore at time
n the binomial process is given by the discount function P{" (-) which can move upwards to a
function P{";(-) and downwards to a function P{"*"(-) for i=0 to n.

As described by Ho and Lee there are two functions denoted /(7) and h*(7) that describe

the upstate and downstate as (4.40) and (4.41) respectively, below,

- P(T +1)

P§+1 (1) = (W) h(T) (4.40)
- P(T +1

PU(T) = (ﬁ) (1) (4.41)

with k(0) = h*(0) = 1.

The two functions specify the deviations of the discount functions from the implied
forward functions. To satisfy arbitrage-free conditions, they define an implied binomial
probability 7 that is independent of time 7, while the initial discount function P(T) is given by:

Th(T) + (1 — )k (T) =1 for n,i>0 (4.42)
and
P"(T) = (wpl?ﬁ‘)(T 1)+ (1= mP"(T - 1))p§">(1). (4.43)

Equation (4.43) shows that the bond price is equal to the expected value of the bond,
discounted at the prevailing one-period rate. Therefore 7 is the implied risk-neutral probability.

The assumption that the discount function evolves from one state to another as a function
only of the number of upward and downward movements is equivalent to the assumption that a
downward movement followed by an upward movement is equivalent to an upward movement
followed by a downward movement. This produces the values for i and h* given by (4.44).

1

(ST

) = et

(4.45)

where § is the interest-rate spread.
It has been shown® that the model describes a continuous time process given by

dr = 6(t)dt 4+ odW (¥) (4.46)
where ¢ is the constant instantaneous standard deviation of the short-rate and 4(¢) is a time-
dependent function that describes the short-rate process and fits the model to the current

observed term structure. This term defines the average direction that the short-rate moves
at time ¢, which is independent of the short-rate. The variable (?) is given by:

0(t) = f(0, 1) +o°t (4.47)

9 For example, see Hull (1997).
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where (0, ) is the instantaneous forward rate for the period ¢ at time 0. In fact the term 6(¢)
approximates to f(0, £) which states that the average direction of the short-rate in the future
is given by the slope of the instantaneous forward curve.

The Ho and Lee model is straightforward to implement and is regarded by practitioners
as convenient because it uses the information available from the current term structure, so
that it produces a model that precisely fits the current term structure. It also requires only
two parameters. However it assigns the same volatility to all spot and forward rates, so the
volatility structure is restrictive for some market participants. In addition the model does
not incorporate mean reversion.

4.4.2 The Hull-White model

The Hull-White model (1990) is an extension of the Vasicek model designed to produce a
precise fit with the current term structure of rates. It is also known as the extended Vasicek
model, with the interest rate following a process described by (4.48):

dr = (o — ar)dt + odW(t). (4.48)
It is also sometimes written as

dr = a(% - r)dr +odW(r) (4.49)

where a is the mean reversion rate and a and o are constants. It has been described as a
Vasicek model with a time-dependent reversion level. The model is also called the general
Hull-White model, while a special case where a # 0 is known as the simplified Hull-White
model. In the Vasicek model a # 0 and « =ab where b is constant.

The Hull-White model can be fitted to an initial term structure, and also a volatility
term structure. A comprehensive analysis is given in Pelsser (1996) as well as James and
Webber (2000).

It can be shown that

r(t) = e K0 (ro + /t TeKadt+ /z TeK(rdW(t)> (4.50)

where the process K is given by K(¢) = f[Tadt.

To calculate the price of a zero-coupon bond, the first step is to calculate the integral
I(t, T) = [ rds which follows a normal distribution with mean m(r(#), t; T) and standard
deviation /v(f; T). The price of a bond is given by (4.51):

P(t, T) = Eqlexp[—I(t, T)]|F]
=exp (—m(r(t), t;T)+ %u(t; T))
=P(r(t), t;T) (4.51)

where P(r, t; T) is the function
P(r(t),t;T) = exp (—m(r, tT)+ %u(t; T)). (4.52)

The price of a zero-coupon discount at time ¢ is defined in terms of the short-rate r at
time ¢ and the current term structure. The price function is not static, and the price of a
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bond at time ¢ that matures at time T is a function of the short-rate, as we have noted, and
separately of the time t.
The volatility of the bond price is given by the function B(t; T)o(f) where B is defined as

T T
B(t, T) = / eKWHK(t)du:eK(t)/ e Xdu. (4.53)
Jt t

The bond price volatility is a deterministic function of ¢. The ‘pull to par’ of the zero-
coupon bond is captured by the fact that the volatility reduces to zero as t approaches T, as
long as ¢ is continuous at ¢. As the mean m is normally distributed, it follows that the bond
price is lognormally distributed, so therefore we have the function

In P(t, T) = —A(t, T) — B(t, T)r(z)

where A(t, T) is defined by A(t, T) = [, e X® [ eKadxdu —Lv(r, T).
The price function above can be continuously differentiated as a function of z. The
forward rate is given by (4.54):

ft, T) = —(%ln P(t, T)
= Ar(t, T) + Br(t, T)r(t)

T
= e KD / adx — %I/T(l’, T) + e KID+KOp(p)

13
=f(r(®);¢, T) (4.54)

where f{r(9); t, T) is defined by the function below:

T
f(r(t);t, T) = e XD / adx — %I/T(t, T) + e K(D+KO (4.55)
13

The forward rate function f at time ¢ is not static and is a function of the short-rate r at
time ¢, the time ¢ and the time to maturity 7. The Hull-White model can be calibrated in
terms of the forward rate f. That is, at time ¢ the information (parameters) required to
implement this are the short-rate r(#), the standard deviation o of the short-rate, the forward
rate fand the standard deviations By (t, T )o(¢) of the forward rates at time ¢. If the forward
rates are known in a form that allows their first differential to be calculated with respect to ¢,
using the other information it is possible to calculate the function By, the derivative of this

function and thereby the value for a(¢), using the relationship in (4.56):

By(t, T)

which describes the volatility of the bond price as a function of the maturity date T.
The continuously compounded yield of a zero-coupon bond at time ¢ that matures at
time T is shown to be

R, T) :% (m(r(t),t; T) 7%,/0, T))

~r (i) (457
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1
= (A(t, T)+B(t, T)r(1))

=R(r(t), t, T)

where R is given by the function shown in (4.58):
1
R(r, t, T)= T4 (A(t, T)+ B(t, T)r). (4.58)
Like the bond price function, the yield on a zero-coupon bond is a function of the short-rate
r and follows a normal distribution; the yield curve is a function of the short-rate r, the time
t and the time to maturity 7. The long-run average future interest over the time to maturity
(t, T) is normally distributed and given by:
I 1

ra:ﬁ , r(S)dS:ﬁI(t, T) (459)

4.4.3 The Black—Derman—Toy model

In the models we have reviewed in this chapter there has only been one function of time,
the parameter «. In certain models either or both of the parameters a and ¢ are also made to
be functions of time. In their 1990 paper Black, Derman and Toy (BDT) proposed a
binomial lattice model described by (4.60),

/
dinr— (a + ‘;((g ln(r)) dr + o(t)dW (4.60)
where ¢’ (#) is the partial derivative of o with respect to time ¢. The BDT model is a lognormal
model, which means that the short-rate volatility is proportional to the instantaneous short-
rate, so that the ratio of the volatility to the rate level is constant. The drift term is more complex
than that described in the earlier models, and so the BDT model requires numerical fitting to
the observed current interest-rate and volatility term structures. That is, the drift term is not
calculated analytically. The short-rate volatility is also linked to the mean reversion such that
where long-term rates are less volatile than the short-rate, the short-rate volatility will decrease
in the long-term. A later model developed by Black and Karasinski (1991) removed the relation-
ship between mean reversion and the volatility level. This is given in (4.61):

d In r = (0(t) — a(t)In(r))dt + o(t)dW(1). (4.61)

As with the previous models the key factor is the short-rate. Using the binomial tree
approach, a one-step tree is used to derive the current short-rate to the short-rates one period
in the future. These derived rates are then used to derive rates two periods away, and so on.

4.5 Fitting the model

Implementing an interest-rate model requires the input of the term structure yields and
volatility parameters, which are used in the process of calibrating the model. The process of
fitting the model is called calibration. This can be done in at least three ways, which are:

m calibration to the current spot rate yield curve, using a pre-specified volatility level and
not the volatility values given by the prices of exchange-traded options. This may result
in mispriced bonds and options if the selected volatilities are not accurate;
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m calibration to the current spot rate curve and using the volatilities implied by the prices
of exchange-traded options; therefore the model would be implemented using volatility
parameters that were exactly similar to those implied by the traded option prices. In
practice this can be a lengthy process;

m calibrating the model to the current spot rate curve, using volatility parameters that are
approximately close enough to result in prices that are near to those of observed
exchange-traded options. This is usually the method that is adopted.

Generally volatility values for the different period interest rates are taken from the
volatilities of exchange-traded options. However where great accuracy is not required, for
example for regulatory capital purposes practitioners may use the first method, while for
the purposes of fixed income research the third method is suitable. In both the second and
third methods there is the danger that calibrating the model to option prices will result in
error simply because the options are mispriced. This is quite possible if using long-dated
and/or OTC options, which frequently differ in price according to which bank is pricing
them.

In any case a model will usually therefore use volatility inputs from option prices for a
range of options that range in maturity from the shortest period to the longest in the term
structure. To test the accuracy of the model, one can use the expression in (4.62):

N
Z(pn - Py’ (4.62)
n=1

where p, is the observed price of the nth option and P,, is the price of the option as
calculated by the model, and N options have been used to calibrate the model. A model
that has the lowest value given by (4.62) can be considered to be the most accurate. In
deciding which option products should be used to calibrate the model, care should be
taken to use instruments that are most similar to the instrument that is being priced by
the model.

The different models can lend themselves to a particular calibration method. In the
Ho-Lee model, only parallel yield curve shifts are captured and the current yield
curve is a direct input; therefore a constant volatility parameter is used. This implies
that all the forward rate implied volatilities are identical. In practice this is not neces-
sarily realistic, as long-dated bond prices often experience lower volatility than short-
dated bond prices. The model also assumes that volatility is a decreasing function of
the time to maturity, which may also be unrealistic. Models that incorporate mean
reversion can be implemented with more realistic volatility parameters, as it is the
mean reversion effect that results in long-dated bonds having lower volatilities. There-
fore a mean-reverting model can be implemented more accurately using the second or
third methods described above.

To recap on the issues involved in fitting the extended Vasicek model or Hull-White
model; this describes the short-rate process as following the form

dr = (a — ar)dt + odW(t). (4.63)
In implementing this model, there are three possible approaches. The model could be

calibrated by keeping « and a constant and calibrating the standard deviation parameter.
This means that the model is fitted to the current yield curve and the volatility value is
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adjusted to that required to produce the observed curve. However this may result in high
volatility values, which rise by a squared function, and therefore will not be realistic.
The second method is to calibrate «, keeping the other two parameters constant. This is
adjusting the mean reversion rate in order to fit the derived curve with the observed curve.
The resulting derived yield curve will be a function of the current short-rate and the mean
reversion rate. This method is sometimes applied in practice, although it can result in
inaccurate volatility levels for long-dated bonds, because large adjustments in the mean
reversion rate are needed to fit the derived curve to the long-dated part of the observed
curve. The third approach would be to calibrate ar, keeping the other parameters constant.
This produces a stable yield curve and is most commonly followed by practitioners in the
market.

4.6 Summary

In this chapter we have considered both equilibrium and arbitrage-free interest-rate
models. These are one-factor Gaussian models of the term structure of interest rates.
We saw that in order to specify a term structure model, the respective authors described
the dynamics of the price process, and that this was then used to price a zero-coupon
bond. The short-rate that is modelled is assumed to be a risk-free interest rate, and once
this is modelled we can derive the forward rate and the yield of a zero-coupon bond, as
well as its price. So it is possible to model the entire forward rate curve as a function of
the current short-rate only, in the Vasicek and Cox-Ingersoll-Ross models, among
others. Both the Vasicek and Merton models assume constant parameters, and because
of equal probabilities of forward rates and the assumption of a normal distribution, they
can, under certain conditions relating to the level of the standard deviation, produce
negative forward rates.

The models are based on the fact that the price of a bond, which exhibits a pull-to-par
effect, and the forward rate, are both Itd6 processes. For the bond price the relative
drift is the interest rate, and is deterministic, as is the forward rate. The bond price, yield
and forward rate are functions of the current short-rate, and follow a normal distribution.
An increase in the short-rate will result in a rise in the forward rates, and this is more
pronounced for the shortest maturity rates. The instantaneous volatility of the
forward rates decreases with decreasing time to maturity, and approaches the volatility
of the current short-rate at time ¢.

The Vasicek, Cox-Ingersoll-Ross, Hull-White and other models incorporate mean
reversion. As the time to maturity increases and as it approaches infinity, the forward rates
converge to a point at the long-run mean reversion level of the current short-rate. This is the
limiting level of the forward rate and is a function of the volatility of the current short-rate.
As the time to maturity approaches zero, the short-term forward rate converges to the same
level as the instantaneous short-rate. In the Merton and Vasicek models the mean of
the short-rate over the maturity period T is assumed to be constant. The same constant
for the mean, or the drift of the interest rate, is described in the Ho-Lee model, but not the
extended Vasicek or Hull-White model.

We also noted that the efficacy of a model was not necessarily solely related to how
realistic its assumptions might be, but how straightforward it was to implement in practice,
that is, the ease with which it could be calibrated.
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Appendix

Appendix 4.1:  lllustration of forward rate structure when
spot rate structure is increasing

We assume the spot rate r(0, T) is a function of time and is increasing to a high point at 7. It
is given by

fo [0, s)ds

0, T)= . 4.64
ro, ) =24 (4.64)
At its high point the function is neither increasing nor decreasing, so we may write

dr(0, T)
A N ) 4.65
a7 (4.65)
and therefore the second derivative with respect to T will be
d*r(0, T)
=0 2 4.
qpz <0 (4.66)
From (4.14) and (4.65) we may state
f(, T)=r(0, T) (4.67)

and from (4.66) and (4.67) the second derivative of the spot rate is

d’r(0, T) [df(0, T) dr(0, T)] 1
arr -~ | ar ~ ar 7% (4.68)

From (4.65) we know the spot rate function is zero at T so the derivative of the forward
rate with respect to T would therefore be
df (o, T)

g5 <0 (4.69)

So in this case the forward rate is decreasing at the point T when the spot rate is at its
maximum value. This is illustrated hypothetically in Figure 4.1 and it is common to observe
the forward rate curve decreasing as the spot rate is increasing.
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5 Interest-rate Models Il

In this chapter we consider multi-factor and whole yield curve models. As we noted in the
previous chapter, short-rate models have certain drawbacks, which though not necessarily
limiting their usefulness, do leave room for further development. The drawbacks are that, as
the single short-rate is used to derive the complete term structure, in practice this can be
unsuitable for the calculation of bond yields. When this happens it becomes difficult to
visualise the actual dynamics of the yield curve, and the model no longer fits observed
changes in the curve. This means that the accuracy of the model cannot be observed.
Another drawback is that in certain equilibrium model cases the model cannot be fitted
precisely to the observed yield curve, as they have constant parameters. In these cases
calibration of the model is on a ‘goodness of fit’ or best fit approach.

In response to these issues interest-rate models have been developed that model
the entire yield curve. In a whole yield curve, the dynamics of the entire term structure
are modelled. The Ho-Lee model is a simple type of whole curve model, which allows
random parallel shifts in the yield curve. More advanced models, the Heath-Jarrow—
Morton family of models, are discussed in this chapter, as are factors involved in their
implementation.

5.1 Introduction

A landmark development in interest-rate modelling has been the specification of the
dynamics of the complete term structure. In this case the volatility of the term structure
is given by a specified function, which may be a function of time, term to maturity or zero-
coupon rates. A simple approach is described in the Ho-Lee model, in which the volatility of
the term structure is a parallel shift in the yield curve, the extent of which is independent of
the current time and the level of current interest rates. The Ho-Lee model is not widely
used, although it was the basis for the Heath-Jarrow—Morton (HJM) model, which is widely
used. The HJM model describes a process whereby the whole yield curve evolves simultan-
eously, in accordance with a set of volatility term structures. The model is usually
described as being one that describes the evolution of the forward rate, however it can also be
expressed in terms of the spot rate or of bond prices (see for example James and Webber
(2000), Chapter 8). For a more detailed description of the HIM framework refer to Baxter
and Rennie (1996), Hull (1997), Rebonato (1998), Bjork (1996) and James and Webber
(2000). Baxter and Rennie is very accessible, while Neftci (1996) is an excellent introduction
to the mathematical background.

In seeking to develop a model for the entire term structure, the requirement is to model the
behaviour of the entire forward yield curve, that is the behaviour of the forward short-rate f(z, T)
for all forward dates T. Therefore we require the random process f(T') for all forward dates T.

79
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Given this, it can be shown that the yield R on a T-maturity zero-coupon bond at time ¢ is the
average of the forward rates at that time on all the forward dates s between ¢t and T, given by (5.1):

T
R(t, T) :%/t fi(s)ds. (5.1)

To model the complete curve it is necessary to specify a drift rate and volatility level for
f(t T) for each T.

5.2 The Heath-Jarrow-Morton model

A landmark development in the longstanding research into yield curve modelling was
presented by David Heath, Robert Jarrow and Andrew Morton in their 1989 paper, which
formally appeared in volume 60 of Econometrica (1992). The paper considered interest-
rate modelling as a stochastic process, but applied to the entire term structure rather than
only the short-rate. The importance of the Heath-Jarrow-Morton (HJM) presentation is
this: in a market that permits no arbitrage, where interest rates including forward rates are
assumed to follow a Weiner process, the drift term and the volatility term in the model’s
stochastic differential equation are not independent from each other, and in fact the drift
term is a deterministic function of the volatility term. This has significant practical implica-
tions for the pricing and hedging of interest-rate options.

The general form of the HIM model is very complex, not surprisingly as it is a multi-
factor model. We begin by describing the single-factor HIM model. This section is based on
Chapter 5 of Baxter and Rennie, Financial Calculus, Cambridge University Press (1996), and
follows their approach with permission. This work is an accessible and excellent text and is
highly recommended.

5.2.1 The single-factor HIM model

In the previous chapter, and indeed in previous analysis, we have defined the forward rate
as the interest rate applicable to a loan made at a future point in time and repayable
instantaneously. We assume that the dynamics of the forward rate follow a Weiner process.
The spot rate is the rate for borrowing undertaken now and maturing at 7, and we know
from previous analysis that it is the geometric average of the forward rates from 0 to T that is

r0, T) = T / "F0. 1)dr. (5.2)

We also specify a money market account that accumulates interest at the continuously
compounded spot rate r.

A default-free zero-coupon bond can be defined in terms of its current value under an
initial probability measure, which is the Weiner process that describes the forward rate
dynamics, and its price or present value under this probability measure. This leads us to
the HJM model, in that we are required to determine what is termed a ‘change in probability
measure’, such that the dynamics of the zero-coupon bond price are transformed into a
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martingale. This is carried out using It6’s lemma and a transformation of the differential
equation of the bond price process. It can then be shown that in order to prevent arbitrage there
would have to be a relationship between drift rate of the forward rate and its volatility coefficient.

First we look at the forward rate process. We know from the previous chapter for [0, T] at
time ¢ that the stochastic evolution of the forward rate f{#, T) can be described as

df (¢, T) = a(t, T)dt + o(t, T)dW, (5.3)

or alternatively in integral form as

‘als, T)ds+ /ta(s, T)dW, (5.4)
0

ﬂanzﬂan+/

JO

where a is the drift parameter, o the volatility coefficient and W; is the Weiner process or
Brownian motion. The terms dz or dZ are sometimes used to denote the Weiner process.

In (5.3) the drift and volatility coefficients are functions of time ¢ and T. For all forward
rates f(t, T) in the period [0, T] the only source of uncertainty is the Brownian motion. In
practice this would mean that all forward rates would be perfectly positively correlated,
irrespective of their terms to maturity. However if we introduce the feature that there is
more than one source of uncertainty in the evolution of interest rates, it would result in less
than perfect correlation of interest rates, which is what is described by the HJM model.

Before we come to that however we wish to describe the spot rate and the money market
account processes. In (5.4) under the particular condition of the maturity point T as it tends
towards ¢ (that is T — ?), the forward rate tends to approach the value of the short rate (spot
rate), so we have

im f(t, T) = f(t, 1) = (2

so that it can be shown that

t

r(t) = £(0, 1)+ / a(s, t)ds + /0 ta(s, £)dW,. (5.5)

0

The money market account is also described as a Weiner process. We denote by
M(z, t) = M(t) the value of the money market account at time ¢, which has an initial value
of 1 at time 0 so that M(0, 0) = 1. This account earns interest at the spot rate r(f) which
means that at time ¢ the value of the account is given by

M([) = eJo r(s)ds (56)

that is the interest accumulated at the continuously compounded spot rate r(#). It can be
shown by substituting (5.5) into (5.6), that

M(r) :exp( /0 "F(0, s)ds + /o t /0 "a(u, s)duds + /0 t /0 ol s)quds). (5.7)

To simplify the description we write the double integrals in (5.7) in the form given
below, which is

t t t t
/ / af(s, u)duds+/ / o(s, u)dudW;.
0 Js 0 Js

For reasons of space the description of the process by which this simplification is
achieved is relegated to a page on the author’s Web site.
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Using the simplification above, it can be shown that the value of the money market
account, which is growing by an amount generated by the continuously compounded spot
rate r(?), is given by

M(t) = exp</0tf(0, u)du+/0t/sta(s, u)duds+/0t/sta(s, u)dudW5>. (5.8)

The expression for the value of the money market account can be used to determine the
expression for the zero-coupon bond price, which we denote P(f, T). The money market
account earns interest at the spot rate r(#), while the bond price is the present value of 1
discounted at this rate. Therefore the inverse of (5.8) is required, which is

MY (1) = & o700 (5.9)

Hence the present value at time 0 of the bond P(t, T) is

P(t, T) = e Jo"™%p(, 1)

and it can be shown that as a Weiner process the present value is given by

P(t, T) :exp(— /OTf(O, u)du—/ot/STa(s, u)dudWS—/Ot/sTa(& u)duds).

(5.10)

5.2.2 Transforming the probability measure

Since the pioneering work of Harrison and Pliska (1981), which recognised that the absence
of arbitrage was linked to the existence of a martingale probability measure, the valuation of
derivatives has been deemed to require a probability measure that would transform the
underlying security process into a martingale. This is the case here, what is required is a
change in probability measure such that P(z, T) becomes a martingale.

This is done by using It6’s lemma’ to transform the stochastic differential equation of
the price process, and then determine the change in the Brownian differential dW so that
there remains no drift term. The first step is to consider the differential of P(¢, T). We
express this in the form

P(t, T)=e* (5.11)

where X; is a Weiner process described by

T t T ot T
Xt:/ f(o, u)du+/ / o(s, u)dudWs—i—/ / a(s, u)dudt. (5.12)
J0 JO Js JO Js
The differential of X; is written as
T T
dX; :/ o(t, u)dudWH—/ a(t, u)dudt
t t

T
= u(t, T)dW,+/ a(t, u)dudt (5.13)
t

See Appendices 3.2 and 3.3.
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where v(t, T) = f tT o(t, u)du represents the volatility element of the X; stochastic process.
It can be shown by applying It6’s lemma to (5.11) that

T 2
dP(t, T)=P(t, T) (fzz(t, T)dW[f/ a(t, u)dudt+%(t, T)dt>. (5.14)

To obtain a new probability measure such that P(¢, T) is transformed into a martingale,
following Baxter and Rennie we effect a change in dW; such that (5.14) may be expressed as
dP(t, T) = —P(t, T)v(t, T)dW,. (5.15)

It can then be shown that the solution of (5.15) under such conditions is indeed a
martingale, described by

P(t) = Poexp</0ty(7, T)dw, — %/Otyz(r, T)dr>. (5.16)

To reiterate, then, we require a transformation of (5.14) so that it becomes a Weiner
process with no drift term, in other words a relationship between dW; and dW,. It has been
shown that this exists in the form

- 1 T v(t, T) ,
where the change of measure ~, is given by
1 T v(t, T)

5.2.3 The principle of no-arbitrage

The demonstration of the no-arbitrage condition in the evolution of the HIM model is
perhaps its most significant aspect, as it demonstrates that for arbitrage to be avoided, the
volatility function must be related to the drift parameter. This is effected through a con-
straint that is the change of measure element we introduced just now: again, following
Baxter and Rennie and to summarise the original paper, in order to prevent arbitrage, a
bond of maturity less than T must have the same change of measure 7,. The change of
measure must by implication therefore not be a function of and be independent from 7. It
can be shown that if we multiply (5.18) by v(¢, T) and then differentiate it with respect to T
we obtain (5.19):

ov(t, T)
T(V(l? T)+)

=o(t, T)(v(t, T)+ ).

a(t, T) = (5.19)

The expressions (5.18) and (5.19) represent the two fundamental constraints of the single-
factor HIM model. (5.18) is the result of the change in the drift term required by the
transformation of P(t, T) into a martingale, while (5.19) comes from the need to incorporate
a no-arbitrage condition. This is the model in essence, an expression for the value of the
drift parameter for f{¢, T) in the context of the W; Brownian motion. This impacts as follows:
in (5.3) the Brownian motion term dW; is replaced by dw, — ~:dt and a(t, T) is replaced with
the constraint given by (5.19). This results in



84 Advanced Fixed Income Analysis

df (¢, T)=o(t, T)(dW, — ~dt) + o(t, T)(v(t, T) + ~,)dt

=o(t, T)AW, + o(t, T)v(t, T)dt. (5.20)

In conclusion, then, in the single-factor HIM model under the martingale measure the
coefficient of the drift must be equal to (5.21):

o(t, T)u(t, T) =o(t, T) /t Tcr(t, w)du. (5.21)

In an important application of the HIM model Jarrow and Turnbull (1996) express the
price of a zero-coupon risk-free bond as a function of the spot rate r(#), given by

P(0, T)

Pt 1) =505

exp(—(r(t)—f(O, 0)X(t, T)—%Xz(t, T)(1—e*2”)) (5.22)

where X(¢, T) = (1—e"")/) and o and \ are positive constants of the volatility coeffi-
cient o(¢, T) which is of the form gexp( — AT — 1)).

Thus at time ¢ the price of any bond of maturity T'is given by the ratio of prices of bonds
of maturity ¢ and T, which are the first part of (5.22) and which are observed in the market,
and the random variable given by the exponential element of (5.22). If we express the latter
as A(t, T) we have

P(0, T)
P(0, 1)

P(t, T) = A(t, T) (5.23)

and under conditions of zero volatility where o (¢, T) = 0 it can be shown that this element
disappears and

PO, T) e'T
P, T)= =—
& 1) =0, e (5.24)
— e—r(T—t)

which is exactly what we expect.

5.3 Multi-factor term structure models

Previously we considered one-factor models used to varying degrees in the market; these
describe only a single kind of change in the yield curve, the parallel shift. In practice there
are a range of changes that may occur to the curve, including non-parallel (pivotal) shifts
and changes in the slope of the curve. Certain two-factor and multi-factor models have
been developed that seek to describe the different type of yield curve shifts. An early two-
factor model was that presented by Brennan and Schwartz (1982) which described the
stochastic process of the short-rate r and the yield of the long-dated government bond R. In
the model these two factors move independently of each other, thus permitting both
parallel and pivotal changes in the yield curve. The Brennan-Schwartz model is categorised
as a consol model in James and Webber (2000). A modified version of the Brennan-Schwartz
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model? has been developed in which the two variable factors are the price of the long bond
P = 1/R and the spread between the long-dated yield and the short-rate, whichis S =R —r.
Both factors are assumed to follow a random stochastic process described by (5.25):

dP = ppPdt + opPdW,"
o (5.25)
dS = usdt + osW;

where E[dWdW®] = pdt, and the values of p and s are set to be arbitrage-free in terms
of the price of bonds of different maturities. So the price of the long-dated bond follows a
lognormal process, while the spread S follows a Gaussian process. This means that the
spread can be either positive or negative, which permits both a positive sloping or an
inverted yield curve.

The modified Brennan-Schwartz model is used in the markets and describes a realistic
process for changes in the yield curve and is relatively straightforward to implement; only
two variables are required to model the entire term structure.

The Heath-Jarrow—-Morton model (1992) is a general approach which is a multi-factor
whole yield curve model, where arbitrary changes in the entire term structure can be one of
the factors. In practice because of the mass of data that is required to derive the yield curve,
the HIM model is usually implemented by means of Monte Carlo simulation, and requires
powerful computing systems. The model is described in the next section.

5.3.1 The multi-factor Heath—Jarrow—Morton model

A multi-factor model of the whole yield curve has been presented by Heath, Jarrow and
Morton (1992).% This is a seminal work and a ground-breaking piece of research. The
approach models the forward curve as a process arising from the entire initial yield curve,
rather than the short-rate only. The spot rate is a stochastic process and the derived yield
curve is a function of a number of stochastic factors. The HIM model uses the current yield
curve and forward rate curve, and then specifies a continuous time stochastic process to
describe the evolution of the yield curve over a specified time period.

The model is summarised here only; readers interested in the derivation of the model
are directed to the original paper or a discussion of it in Baxter and Rennie (1996), Hull
(1997) or James and Webber (2000). To describe the model we use the following notation:

t, T) is the trading interval for a fixed period from ¢ to T, where >0

W(1) is the independent Brownian motion or Weiner process that describes the inter-
est rate process

(2, F, Q) is the probability space where F is the o-algebra representing measurable events
and Q is the measure of probability

P, T) is the price at time ¢ of a zero-coupon bond that matures at time T.
The bond has a redemption value of 1 at time T.

See Rebonato and Cooper (1996).
Heath, D., Jarrow, R., Morton, A., ‘Bond pricing and the term structure of interest rates: a new
methodology’, Econometrica 60(1), 1992, pp. 77-105.

3



86 Advanced Fixed Income Analysis

The instantaneous forward rate f{¢, T) at time ¢ is given by (5.26):

~91n P(t, T)

f(t, T)= oT (5.26)

and describes the interest rate that is applicable on a default-free loan at time ¢ for the
period from T to a point one instant later. In their paper Heath, Jarrow and Morton state
that the solution to the differential equation (5.26) results in the expression for the price of
the bond, shown in (5.27):

P(t, T)= exp(f/tTf(t, s)ds) (5.27)

while the spot interest rate at time ¢ is the instantaneous forward rate at time ¢ for maturity
date ¢, shown by:

r(t) =f(t, t).

We now describe the model’s exposition of movements in the term structure.

The HJM model describes the evolution of forward rates given an initial forward rate
curve, which is taken as given. For the period T € [0, t] the forward rate f{¢, T) satisfies the
equation (5.28):

ft, T) = f(0, T) = /0 a(v, T, wydv+ Y /0 oi(v, T, w)dW(). (5.28)
i=1

The expression describes a stochastic process composed of n independent Weiner pro-
cesses, from which the whole forward rate curve, from the initial curve at time 0, is derived.
Each individual forward rate maturity is a function of a specific volatility coefficient. The
volatility values (0;(¢, T, w)) are not specified in the model and are dependent on historical
Weiner processes. From (5.28) following the HJM model the spot rate stochastic process is
given by (5.29):

r(t) = f(0, t)+/(;tau t, wdl/-i-Z/ oi(v, t, w)dW(t) (5.29)

for the period t € (0, T).
The model then goes on to show that the process of changes in the bond price is given by:

In P(t, T) =In P(0, T) + /O t(r(u)-i—b(u T))dv

_%; /0 ai(v, T)Zdz/—i—; /0 a(v, T)dW(t)

where a;(t, T, w) = — ftT oit, v, wdv for i=1,2,...,nand

(5.30)

n

T
b(t, T, w) = f/ a(t, v, w)du+%2ai(t, T, w)?.
t

i=1

The expression in (5.30) describes the dynamics of the bond price as a continuous
stochastic process with a drift of (r, (¢, w)) + b(t, T, w) and a volatility value of a;(¢, T, w).
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The no-arbitrage condition is set by defining the price of a zero-coupon bond that
matures at time T in terms of an ‘accumulation factor’ B(f) which is the value of a money
market account that is invested at time 0 and reinvested at time ¢ at an interest rate of r(?).
This accumulation factor is defined as (5.31):

B(r) = exp( /0 t r(y)dy) (5.31)

and the value of the zero-coupon bond in terms of this accumulation factor is
Z(t, T) = P(¢t, T)/B(t) for the period T € (0, t) and t € (0, T).

Following HJM, by applying It6’s lemma the model obtains the following result for
Z(t, T), shown in (5.32):

InZ(t, T)=1InZ(0, T)—i—/tb (v, T) du—— E / a;(v, T)*dv + En /t(,li(y7 T)dw(t).
0 i=1 /0
(5.32)

In the HIM model the processes for the bond price and the spot rate are not independent of
each other. As an arbitrage-free pricing model it differs in crucial respects from the equilib-
rium models presented in the previous chapter. The core of the HIM model is that given a
current forward rate curve, and a function capturing the dynamics of the forward rate
process, it models the entire term structure.

A drawback of the model is that it requires the input of instantaneous forward rates,
which cannot necessarily be observed directly in the market. Models have been developed
that are in the HJM approach that take this factor into account, including those presented
by Brace, Gatarek and Musiela (1997) and Jamshidian (1997). This family of models is
known as the LIBOR market model or the BGM model. In the BGM model there is initially
one factor, the forward rate f(f) which is the rate applicable from time #; to time #;. , ; at time .
The forward rate is described by (5.33):

df (1) = 6(2)f (1)dw (5.33)

where the market is assumed to be forward risk-neutral.
The relationship between forward rates and the price of a zero-coupon bond at time ¢ is
given by (5.34):

P(t7 ti)
P(t7 ti+l)

where §; is the compounding period between ¢ and ;4.
To determine the volatility of the zero-coupon bond price v(#) at time ¢, it can be shown
that applying It6’s lemma to (5.34) we obtain

vi(t) — vi (1) = % (5.35)

It is possible to extend the BGM model to incorporate more independent factors.

=1+ 68fi(2) (5.34)

5.3.2 Jump-augmented models

Further research has produced a category of models that attempt to describe the jump
feature of asset prices and interest rates. Observation of the markets confirms that many
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asset price patterns and interest rate changes do not move continuously from one price
(rate) to another, but sometimes follow a series of jumps. A good example of a jump
movement is when a central bank changes the base interest rate; when this happens, the
entire yield curve shifts to incorporate the effect of the new base rate. There is a
considerable body of literature on the subject, and we only refer to a small number of
texts here.

One type of jump model is the jump-augmented HIM model, described in Jarrow and
Madan (1991), Bjork (1996) and Das (1997). This is not described here because we have not
covered the necessary technical background. Another is the jump-augmented Vasicek
model described by Das and Foresi (1996) and Baz and Das (1996). In this, the short rate
process is captured by

dr, = a(p— r;)dt + odW; + JdAN, (5.36)

where N; is a Poisson process with a constant intensity A and J is a random jump size.
Other jump models have been described by Attari (1996), Das and Foresi (1996) and
Honore (1998).

5.4 Assessing one-factor and multi-factor models

In assessing the value of the different models that have been developed and the efficacy
of each, what is important is how they can be applied in the market, rather than any
notion that multi-factor models are necessarily ‘better’ than one-factor models because
they are somehow more ‘real-world’. What is required is a mechanism that efficiently
prices bonds and interest-rate options; a term structure model attempts to accomplish
this by describing the dynamics of the interest rate process and generating random
interest-rate paths. The generated paths are then used to discount the cash flows from
the fixed income instrument, having initially been used to generate the cash flows in the
first place. In practice a one-factor model that has been accurately calibrated will value
fixed income instruments efficiently. This is because of the determinants of bond pricing;
to illustrate, consider a fixed income instrument with a fixed maturity date. To value
such a bond at a particular time, we need only know the bond yield at that time, and
this is essentially a one-factor process. Similarly for a callable bond: when generating its
cash flow, we will know whether it will be called by knowing its price at a future date.
Generating this cash flow from the interest-rate model is again a one-factor process.
Therefore if we are pricing a bond, the dynamics of the price process can usually be
adequately described by (5.37):

dP = ppPdt + opPdW (1) (5.37)

which is the process followed by for example the Black-Scholes option model when used to
price an interest-rate option. This model does not discount the forward price of the option,
which is the second part of the B-S approach: that of assuming a single continuously
compounded short-term risk-free interest-rate.

While this approach would work in practice, this would only be for a single security portfolio;
it would be unwieldy and inaccurate for valuing a number of securities. As banks and market
makers must value many hundreds of cash and off-balance sheet instruments, another approach
is required. This other approach was considered in this chapter and involves describing
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the dynamics of the bond price process in the form of a term structure model. Under this
situation a multi-factor model may be more suitable, particularly when used to value options.

To consider one-factor models then, we know that the yield of a bond at a future date
is essentially a one-factor process, so a one-factor model may well be accurate. A one-
factor model describes only parallel shift yield changes, and it assumes that bond yields
and discount rates are perfectly correlated, so that it will not generate all the possible
paths of the future discount rate. In practice however much yield curve movement is
close to a parallel shift, so this may not be as much of a problem for the majority of
situations. If a term structure model accurately reflects the random evolution of the price
of a bond, and the actual current rate and forward rate volatilities of the bond are as
generated by the model, then the model can be considered effective, and it will generate
reasonable cash flow scenarios and with accurate probabilities. It is possible to achieve
this with one-factor models. Essentially then, a bank can use a one-factor model when
conditions are appropriate, and need only use a multi-factor model where the one-factor
model cannot be expected to be accurate. That said, why not simply use a multi-factor
model at all times? The main reason is because generating forward rates and valuations
from a multi-factor model is a time-consuming process, employing considerable com-
puting power, and as rapidity of analysis and response is of the essence in the markets, it
is logical to use a slower model only when it is significantly more accurate than the one-
factor model.

It is generally accepted that one-factor models can be used for most bond applications;
where multi-factor models are more appropriate may be in the following situations:

m  where the instrument being valued is linked to two different interest rates, for example
an interest-rate quanto option, or an option with a payoff profile that is a function of the
spread between two different reference rates;

m for the valuation of long-dated options or deeply in-the-money or out-of-the-money
options, which are affected by the volatility smile. As a stochastic volatility factor will
impact the price, a model that assumes constant volatilities would be inaccurate;

m for the valuation of securities that to some extent reflect the slope of the yield curve,
such as certain mortgage-backed bonds whose level of prepayment is sometimes a
function of the slope of the yield curve;

m for the valuation of very long-dated options, where all possible paths of the future
discount rate may be required.

The optimum approach would appear to be a combination of a one-factor model and a
multi-factor model to suit individual requirements. However this may not be practical; it
might not be ideal to have different parts of a bank using different models (although this
does happen; desks across the larger investment banks sometimes use different models)
and valuing instruments using different models. The key factors to focus on are accessi-
bility, accuracy, appropriateness and speed of computation.

5.4.1 Choosing the model

There are essentially two approaches to modelling the term structure that we have dis-
cussed in this and the previous chapter. The Ho-Lee and HJM models begin with the
evolution of the whole yield curve, while the BDT, Hull-White and other models specify
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the dynamics of the short rate, and determine the parameters so that the model itself
corresponds to the current term structure. We have also discussed the relative merits of
the equilibrium model approach and the no-arbitrage approach. In this final section we
discuss the different issues that apply in each case.

Essentially there are two dimensions to consider: risk-neutral versus realistic and equi-
librium versus no-arbitrage. There are situations under which each approach may be
applied with validity.

No-arbitrage, risk-neutral approach

A commonly encountered approach is the risk-neutral, no-arbitrage model. This is a
no-arbitrage model used frequently to value interest-rate options, using parameters that have
been interpolated from a set of current market prices rather than estimated from actual
historical data. This approach is valid when there is a reliable set of observable market
prices and rates. Note that two different no-arbitrage models that are applied in a risk-
neutral framework will only generate identical term structures and valuations if exactly
identical input parameters have been used. The actual type of model used will have a
significant effect on the valuation that is achieved. If however market data is not readily
observable, or not reliable, this approach can lead to inaccuracies. This can be expected in
illiquid markets such as that for certain long-dated exotic options; where this occurs there is
no way to estimate a correlation term structure that allows the model to interpolate
between the option prices, because there are two of them or their reliability is not accepted.
In this scenario, a multi-factor model that captures the correlations between interest rates
of different maturities, as well as the impact of the shape of the yield curve on these
correlations, may be more valid. A model with a good statistical fit to the historical
correlations recorded by the option product may therefore produce more robust prices.
We hesitate to say ‘accurate’ because, in an illiquid market with only a small number of
market makers, who is to say which price is the most accurate? For certain exotic options
the valuation depends on each market making bank’s valuation model, and how effectively
the model has been calibrated.

No-arbitrage, realistic approach

A no-arbitrage model that is implemented in a realistic approach matches precisely the
term structure of interest rates that are implied by the current (or initial) observed market
yields. It then derives a forward curve for the future that is dependent on the way it has
modelled the dynamics of the interest-rate process, which is a measure of probability. This
approach is valid when it is important that the initial yield curve must be identical to the
current observed yield curve, and is often used for analysing hedging strategy or portfolio
strategies. In implementing this method it is sometimes difficult to evaluate the efficacy of
the model because of problems in discriminating between model error and exogenous
effects. In this approach the model parameters are set to match precisely observed market
yields, with no regard to historical data, and there is little degree of freedom by which one
can evaluate the model results. Only in a situation where the model generated an identical
true term structure, so that the time-dependent parameters resulted in no pricing error at
all points along the term structure, and for all dates past and forward, could the model be
described for certainty as accurate. Otherwise the difficulty in assessing the effectiveness of
this approach means that it is rarely used in practice.



Chapter 5: Interest-rate Models I1 91

Equilibrium, risk-neutral approach

The second approach is an equilibrium model under risk-neutral conditions. This is also valid
under certain conditions. Remember that a no-arbitrage model uses input parameters that
are based on observed prices and yields. However observed bond yields reflect a number of
factors that frequently distort them away from ‘fair value’, resulting in a discount function
that is also distorted. For instance we saw in our discussions in Part I that bond prices reflect
liquidity, benchmark effects, supply and demand and other factors, which can include
taxation, coupon size, convexity effect and so on. The same applies in the government
zero-coupon bond market. Therefore a no-arbitrage model will use parameters that have
been distorted by these factors. However equilibrium models are able to capture the global
behaviour of the term structure over a long-term period, which has the effect of stripping out
the market distortions (they are treated as ‘noise’). Therefore risk-neutral equilibrium models
have an advantage over no-arbitrage models as they are not as sensitive to external market
factors. In addition when used to price bonds today, equilibrium models can be estimated
from historical data when market-observed current prices are unavailable or unreliable. So
we conclude that one of the most appropriate times to adopt the risk-neutral equilibrium
approach is when observed market yields are not available or subject to excessive distortions.
This brings us to the subject of horizon pricing, which is the estimation of prices for a bond or
other instrument under some expected future market state. While parameters are usually
available, and reasonably reliable (in developed markets) for use in current pricing, they will
not be available for a scenario-type valuation. In this situation, no-arbitrage models cannot
be used at all, because they require the input of a set of market yields, which would not be
available for horizon pricing as they would be unknown. Therefore in this case we use an
equilibrium model, otherwise no analysis would be possible.

Equilibrium, realistic approach

In fact the inappropriateness of the no-arbitrage realistic approach means that only the
equilibrium realistic approach is available. This methodology is used where speed of com-
putation and accuracy of term structure generation and valuation are not of prime import-
ance. It is used most frequently for risk management, regulatory and testing purposes; this
includes value-at-risk calculations, VaR stress testing, capital adequacy calculations and
other scenario purposes. In this approach and with equilibrium models the derived current
term structure that is generated will not match the actual current term structure precisely.
This has led to some analysts suggesting that any testing performed with the model will not
be perfectly realistic. However the main purpose behind scenario analysis is to assess the
impact of different situations; there is nothing illogical about comparing the effect of a
theoretical future yield curve on an asset book held today and valued using today’s actual
yield curve. An equilibrium model is a statistical model of the behaviour of the term structure
of rates; therefore using it implies an acceptance that its derived curve will differ from the
observed curve. Using a no-arbitrage model would imply that the current term structure
model was completely accurate. Therefore for risk management and capital purposes it is
common to encounter the equilibrium model, realistic approach.

5.4.2 Choosing the model: second-time around

It is important to remain focused on the practical requirements of interest-rate modelling.
Market participants are more concerned with the ease with which a model can be implemented,
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and its accuracy with regard to pricing. In practice different models are suited to different
applications, so the range of products traded by a market practitioner will also influence
which model is chosen. For instance the extended Vasicek model can be fitted very
accurately to the initial term structure, and its implementation is relatively straightforward,
being based on a lattice structure. It is also able to accurately price most products, however
like all one-factor models it is not a valid model to use when pricing instruments that are
sensitive to two or more risk factors, for example quanto options. The extended CIR model
is also tractable, although it has a more restricted set of term structures compared to the
extended Vasicek model, as a result of the limitations imposed by the /r; term on the
volatility parameter. Both types of models are unable to capture the dynamics of the whole
yield curve, for which HJM models must be used.

A drawback of these models is that although they fit the initial term structure, due to
their structure they may not continue to calculate prices as the term structure evolves. In
practice the models must be re-calibrated frequently to ensure that they continue to
describe term structure volatilities that exist in the market.

In selecting the model, a practitioner will select the market variables that are incorpor-
ated in the model; these can be directly observed such as zero-coupon rates or forward
rates, or swap rates, or they can be indeterminate such as the mean of the short rate. The
practitioner will then decide the dynamics of these market or state variables, so for example
the short rate may be assumed to be mean reverting. Finally the model must be calibrated
to market prices, so the model parameter values input must be those that produce market
prices as accurately as possible. There are a number of ways that parameters can be
estimated; the most common techniques of calibrating to time series data such as interest
rate data are general method of moments and the maximum likelihood method. For
information on these estimation methods refer to the bibliography.

Models exhibit different levels of sensitivity to changes in market prices and rates. The
extent of a model’s sensitivity will also influence the frequency with which the model must
be re-calibrated. For example the Black-Derman-Toy model is very sensitive to changes in
market prices; because it is a log-r model changes in the process of the underlying variable
are larger as they are log-r, than those in the process for rz itself. Some practitioners believe
that as they take bond prices and the term structure as given, arbitrage models suffer from
an inherent weakness. Liquidity and other considerations frequently result in discrepancies
between market yields and theoretical value, and such discrepancies would feed through
into an arbitrage model. This drawback of arbitrage models means that users must take care
about term structure inputs, and the curve fitting techniques and smoothing techniques
that are used become critical to model effectiveness. This is discussed in the next chapter.

Other considerations are detailed below.

m  Model inputs: Arbitrage models use the term structure of spot rate as an input, and this
data is straightforward to obtain. Equilibrium models require a measure of the investor’s
market risk premium, which is rather more problematic. Practitioners analyse historical
data on interest rate movements, which is considered less desirable.

m  Using models as part of bond trading strategy: A key element of market makers’ and
proprietary traders’ strategy is relative value trading, which includes simultaneous
buying and selling of certain bonds against others, or classes of bonds against other
classes. A yield curve spread trade is a typical relative value trade. How does one
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determine relative value? Using an interest-rate model is the answer. For such purposes
though, only equilibrium models can be used. By definition since arbitrage models take
bond prices and the current term structure as given, they clearly cannot be used to
assess relative value. This is because the current price structure would be assumed to be
correct. If one were to use such a model for a yield curve trade, it would imply a zero
profit potential. Therefore only equilibrium models can be used for such purposes.

m  Model consistency: As we have noted elsewhere, using models requires their constant
calibration and re-calibration over time. For instance, an arbitrage model makes a
number of assumptions about the interest rate drift rate and volatility, and in some
cases the mean reversion of the dynamics of the rate process. Of course these values
will fluctuate constantly over time, so that the estimate of these model parameters
used one day will not remain the same over time. So the model will be inconsistent
over time and must be re-calibrated to the market. Equilibrium models use para-
meters that are estimated from historical data, and so there is no unused daily
change. Model parameters remain stable. Over time therefore these models remain
consistent, at least with themselves. However given the points we have noted above,
market participants usually prefer to use arbitrage models and re-calibrate them
frequently.

We have only touched on the range of considerations that must be followed when
evaluating and implementing an interest-rate model. This is a complex subject with a
number of factors to consider, and ongoing research in the area serves to reinforce the fact
that it is an important and very current topic.
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6 Estimating and Fitting the Term
Structure |

The two previous chapters introduced and described a fraction of the most important
research into interest rate models that has been carried out since the first model, presented
by Oldrich Vasicek, appeared in 1977. These models can be used to price derivative
securities, and equilibrium models can be used to assess fair value in the bond market.
Before this can take place however a model must be fitted to the yield curve, or calibrated.'
In practice this is carried out in two ways; the most popular approach involves calibrating
the model against market interest rates given by instruments such as cash Libor deposits,
futures, swaps and bonds. The alternative method is to model the yield curve from the
market rates and then calibrate the model to this fitted yield curve. The first approach is
common when using for example extended Vasicek models, while the second technique is
more useful with whole yield curve models such as the Heath-Jarrow—-Morton model.

There are a number of techniques that can be used to fit the yield curve. These include
regression methods and spline techniques. More recent methods such as kernel approxi-
mations and linear programming are also beginning to be used by practitioners. In this
chapter we provide an introduction to some of these, however a detailed exposition would
warrant a book in its own right. We discuss fitting the spot and forward yield curve and
review the methods used to estimate spot and forward yield curves. We then illustrate the
cubic spline method for fitting a yield curve from observed government bond yields. There
is a large body of literature on this subject. For further information readers are recom-
mended to review Anderson et al. (1996) and James and Webber (2000) for the most
important research, and interested readers may also wish to consider Bliss (1997), Dahlquist
and Svensson (1996) and Waggoner (1997). Alternative approaches are given in Kim (1993)
and Zheng (1994).

For a number of reasons practitioners, investors, central banks and government author-
ities are interested in fitting the zero-coupon yield curve, or the true term structure of
interest rates. The use of yield curves is standard in monetary policy analysis, and central
banks are increasingly making use of forward interest rates for this purpose as well. Forward
rates must be estimated from the yield curve that has been constructed from current market
yields, generally T-bill and government bond yields. Particularly useful information that can
be derived from government bond prices includes the yield curve for implied forward rates,
as these reflect the market’s expectations of the future path of interest rates.? They are also

In fact a model needs to be calibrated to the market, but the most important item against which it
must be calibrated is the current term structure.

Remember of course that the forward rate is derived from the current spot rate term structure, and
therefore although it is an expectation based on all currently known information, it is not a
prediction of the term structure in the future. Nevertheless the forward rate is important because
it enables market makers to price and hedge financial instruments.
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used by the market to price bonds and determine the extent of the credit spread applicable
to corporate bonds. The requirements of the monetary authorities however are slightly
different to those of market practitioners: central bankers and the government are not so
concerned with the accuracy of the spot curve with regard to pricing securities; rather, they
are interested in the information content of the fitted curve, particularly concerning implied
forward rates and the market expectations of future interest rates and levels of inflation. In
the second part of this chapter we review the information content of the yield curve in the
UK gilt market.

6.1 Introduction

From an elementary understanding of the markets we know that there is a relationship
between a set of discount factors, and the discount function, the par yield curve, the zero-
coupon yield curve and the forward yield curve. If we know one of these functions we may
readily compute the other three. In practice although the zero-coupon yield curve is directly
observable from the yields of zero-coupon government bonds, liquidity and investor pref-
erences usually mean that a theoretical set of all these curves is derived from the yields of
coupon government bonds in the market. There are a number of ways that the zero-coupon
curve can be fitted, using either a discount function or the par yield curve.

The pricing of financial instruments in the debt market revolves around the yield curve.
The use in the market and by the central authorities of the government term structure to
ascertain the market’s expectation of future interest rates is well established. This reflects
the fact that the spot yield curve is the geometric average of the same maturity structure
implied forward rates. Here we discuss the information content of the yield curve, and how
the zero-coupon curve may be best fitted to enable analysts to extract information from the
implied forward rate yield curve. This is used for a number of purposes by central govern-
ment monetary authorities and by analysts and economists. In the United Kingdom for
example the yield on government bonds is used as the benchmark for interest charges to
local authorities and public sector bodies. Yield curve data may also be used as one of the
parameters for a general interest rate model (for example, see Cox, Ingersoll, Ross (1985) for
a one-factor model and Heath, Jarrow, Morton (1992) for a multi-factor model).

Although the use of yield curves is quite common as part of monetary policy analysis,
central banks such as the US Federal Reserve and the Bank of England have only recently
begun to use forward interest rates as an indicator for monetary policy purposes. We know
that a forward rate is an interest rate applicable to a debt instrument whose term begins at a
future date, and ends at a date beyond that. Although there is a market in forward rates, the
prices at which forward instruments are quoted are derived from spot interest rates. That is,
implied forward rates are calculated from the spot yield curve, which is in turn modelled
from the prices of instruments in the market, usually government bills and bonds. This
implies that the shape and position of the spot curve reflects market belief on future interest
rates, which is why it is used to calculate forward rates. The information content and
predictive power of a spot term structure is based on this belief. Forward rates may be
estimated using any one of a number of models. They can be interpreted as reflecting the
market’s expectations of future short-term interest rates, which in turn are indicators of
expected inflation levels. The same information is contained in the spot yield curve, how-
ever monetary authorities often prefer to use forward rates as they are better applied to
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policy analysis. Whereas the spot yield curve is the expected average of forward rates, the
forward rate curve reflects the expected future time period of one short-term forward rate.
This means that the forward curve can be split into short-term and long-term segments in a
more straightforward fashion than the spot curve.

As it is used as a predictive indicator, the spot yield curve needs to be fitted as accurately
as possible. This is an area that has been extensively researched (see McCulloch 1975,
Deacon and Derry 1994, Schaefer 1981, Waggoner 1997, Nelson and Siegel 1987, Svensson
1994, 1995 inter alia). Invariably researchers use the government debt market as the basis
for modelling the term structure. This is because the government market is the most liquid
debt market in any country, and also because (in a developed economy) government
securities are default-free, so that government borrowing rates are considered risk-free.
Whatever method is used to fit the term structure, it should aim to meet the following
criteria when the main use is for government policy, rather than the pricing of financial
instruments:

m the method should attempt to fit implied forward rates, because the primary objective is
to derive the forward curve and not market spot yields;

m the resulting derived forward curve should be as smooth as possible, again because the
aim is to provide information on the future level and direction of interest rates, and
expectations on central bank monetary policy, rather than an accurate valuation of
financial instruments along the maturity term structure;

m it should have as few market assumptions as possible.

There are a number of curve fitting methods that may be employed. In the United
Kingdom gilt market the Bank of England previously used an in-house model® but has
since adopted a modified technique proposed by Svensson (1995) and subsequently
Fisher, Nychka and Zervos (1995), Waggoner (1997) and Anderson and Sleath (1999).
The Waggoner method is discussed in a later section. In the UK the introduction of a
market in government zero-coupon bonds has enabled the accuracy of a fitted spot term
structure to be compared to actual market spot rates; there is also useful information to be
gleaned from using data from the gilt repo market when comparing the accuracy of the
short-end of the fitted curve, as discussed by Anderson and Sleath (1999). We set the scene
below.

6.2 Bond market information

6.2.1 Basic concepts

Central banks and market practitioners use interest rates prevailing in the government
bond market to extract certain information, the most important of which is implied forward
rates. These are an estimate of the market’s expectations about the future direction of short-
term interest rates. They are important because they signify the market’s expectations
about the future path of interest rates, however they are also used in derivative pricing
and to create synthetic bond prices from the extent of credit spreads of corporate bonds.

3 See Mastronikola (1991).
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Forward rates may be calculated using the discount function or spot interest rates. If
spot interest rates are known then the bond price equation can be set as:
C o C+M

P:(1+rsl)+(1+r52)2+m+(1+rsn)” (6.1)

where
C is the coupon
M is the redemption payment on maturity (par)
rs; is the spot interest rate applicable to the cash flow in period ¢ (t =1, ..., n).

The bond price equation is usually given in terms of discount factors, with the present
value of each coupon payment and the maturity payment being the product of multiplying
them by their relevant discount factors. This allows us to set the price equation as shown
by (6.2),

p= Z cdf, + Mdf, (6.2)
=1

where df; is the ¢-period discount factor (¢t =1, ..., m) given by (6.3):

1
dft_m, t=1,...,m. (6.3)
A discount factor is a value for a discrete point in time, whereas markets often prefer to
think of a continuous value of discount factors that applies a specific discount factor to any
time t. This is known as the discount function, which is the continuous set of discrete
discount factors and is indicated by df; = (¢).
The discount function relates the current cash bond yield curve with the spot yield curve
and the implied forward rate yield curve. From (6.3) we can set:

df, = (1 +rs,)".

As the spot rate rs is the average of the implied short-term forward rates rf5, 1f>, ..., 1f;
we state
1/dfi =(1+rs1) = (1 +1f)
1/dfy = (1 +rs2)” = (1 + 1) (1 + 12) (6.4)

1/df; =(1+ rs[)t =(1+rA)Q+1f) - (1+1f).

From (6.4) we see that 1 + rs; is the geometric mean of (1 +rf;), A1 +1£2),..., A +1f1).

Implied forward rates indicate the expected short-term (one-period) future interest rate
for a specific point along the term structure; they reflect the spread on the marginal rate of
return that the market requires if it is investing in debt instruments of longer and longer
maturities.

In order to calculate the range of implied forward rates we require the term structure of
spot rates for all periods along the continuous discount function. This is not possible in
practice because a bond market will only contain a finite number of coupon-bearing bonds
maturing on discrete dates. While the coupon yield curve can be observed, we are then
required to ‘fit’ the observed curve to a continuous term structure. Note that in the UK gilt
market for example, there is a zero-coupon bond market, so that it is possible to observe
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spot rates directly, but for reasons of liquidity, analysts prefer to use a fitted yield curve (the
theoretical curve) and compare this to the observed curve.

6.2.2 Estimating yield curve functions

The traditional approach to yield curve fitting involves the calculation of a set of discount
factors from market interest rates. From this a spot yield curve can be estimated. The
market data can be money market interest rates, futures and swap rates and bond yields.
In general though this approach tends to produce ‘ragged’ spot rates and a forward rate
curve with pronounced jagged knot points, due to the scarcity of data along the maturity
structure.? A refinement of this technique is to use polynomial approximation to the yield
curve.

The McCulloch method (1971, 1975) describes the discount function as a linear combin-
ation of a specified number of approximating functions, so for example if there are k such
functions on which j coefficients are estimated, the discount function that is generated by
the set of approximations is a kth degree polynomial. The drawback of this approach is that
unless the market observations are spaced at equal intervals through the maturity range,
such a polynomial will fit the long end of the curve fairly inaccurately. To account for this
McCulloch proposed using piecewise polynomial functions or splines to approximate the
discount function. A polynomial spline can be thought of as a number of separate poly-
nomial functions, joined smoothly at a number of join, break or knot points. In mathe-
matics the term ‘smooth’ has a precise meaning, but in the context of a piecewise r-degree
spline it is generally taken to mean that the (r — 1)th derivative of the functions either side
of each knot point are continuous. McCulloch originally used a quadratic spline to estimate
the discount function. This results however in extreme bumps or ‘knuckles’ in the corres-
ponding forward rate curve, which makes the curve unsuitable for policy analysis. To avoid
this effect, it is necessary to increase the number of estimating functions and to use a cubic
spline. This was presented by McCulloch in his second paper, and his specification is
summarised in Appendix 6.1.

One of the main criticisms of cubic and polynomial functions is that they produce
forward rate curves that exhibit unrealistic properties at the long end, usually a steep fall
or rise in the curve. A method proposed by Vasicek and Fong (1982) avoids this feature, and
produces smoother forward curves. Their approach characterises the discount function as
exponential in shape, which is why splines, being polynomials, do not provide a good fit to
the discount function, as they have a different curvature to exponential functions. Vasicek
and Fong instead propose a transform to the argument T of the discount function v(T). This
transform is given by

T=—-(1/a)in(l —x), where 0 <x <1 (6.5)

and has the effect of transforming the discount function from an approximately exponential
function of T to an approximately linear function of x. Polynomial splines can then be
employed to estimate this transformed discount function. Using this transform it is
straightforward to impose additional constraints on the discount function. The parameter
« constitutes the limiting value of the forward rates, and can be fitted to the date as part of

4 Fora good account of why this approach is not satisfactory see James and Webber (2000, Chapter 15).
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the estimation. Vasicek and Fong use a cubic spline to estimate the transformed discount
function. In terms of the original variable T this is equivalent to estimating the discount
function by a third-order exponential spline, that is between each pair of knot points v(7)
takes the form:

V(T) = by + ble—Z(yT + b3€3“T. (66)

However, Shea (1985) has indicated that in practice exponential splines do not produce
more stable estimates of the term structure than polynomial splines. He also recommended
using basis splines or B-splines, functions that are identically zero over most of the approxi-
mation space, to prevent loss of accuracy due to the lack of observations at the long end of
the curve.

6.3 Curve-fitting techniques: parametric

There are a number of models that one may use to fit the spot rate term structure. One-
factor models (see Vasicek 1977, Dothan 1978, Cox, Ingersoll, Ross 1985) model the one-
period short rate to obtain a forward yield curve. The simplest method uses a binomial
model of probabilities to model the forward rate. Multi-factor models (see Heath, Jarrow,
Morton 1992) express analytically the entire yield curve in terms of two forward rates (or
‘spanning’ rates). For an analysis of the information content of both methodologies see
Edmister and Madan (1993), who conclude that the multi-factor models provide more
accurate results. Essentially the information content of the yield curve is best estimated
using a multi-factor model, and is more accurate at the longer end of the curve whatever
methodology is used. Edmister and Madan also conclude that modelling the short-end of
the curve suffers from distortions resulting from government intervention in short-term
interest rates.

The Bank of England uses a variation of the Svensson yield curve model, a one-dimen-
sional parametric yield curve model. This is similar to the Nelson and Siegel model and
defines the forward rate curve f(m) as a function of a set of unknown parameters, which are
related to the short-term interest rate and the slope of the yield curve. The model is
summarised in Appendix 6.2. Anderson and Sleath (1999) assess parametric models,
including the Svensson model, against spline-based methods such as those described by
Waggoner (1997), and we summarise their results later in this chapter.

6.3.1 Parametric techniques

Curve-fitting techniques generally fit into two classes, as described for example in Chapter
15 of James and Webber (2000), parametric methods and spline-based methods. Parametric
techniques are so-called because they model the forward rate using a parametric function.
An early parametric technique was that described by Nelson and Siegel (1987), which
models the forward rate curve. Given the relationship between spot and forward rates, such
an approach is identical to modelling a spot rate curve by taking a geometric average of the
forward rates curve. A fairly flexible function for the forward rate is described in the Nelson-
Siegel approach, known as a Laguerre function (plus a constant) and is given by

1) = o+ e 110+ E el (6.7)
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where T'is the variable being calculated and gy, 51, 52, and 7; are the parameters required to
be estimated. Remembering that the spot rate is an average of the forward rates, that is

T
rs — Jo Ll (6.8)
T
then (6.7) implies that the spot rate is given by
rs(T) = o+ (b1 + ﬁz)LTl(l —e Ty — BeT/m. (6.9)

To illustrate implementation, we adapt with permission the Anderson and Sleath (1999)
evaluation of the Nelson-Siegel method; we set parameter values of:

50:50 51271 7'1:1
and denote the remaining parameter as a, which reduces (6.9) to

1—-eT

rs(T) =5+ (-1+a) —ae T (6.10)

Setting 0y as 5.0 means that the spot rate has been set to a common value of 5.0%. As an
exercise we evaluate the possible results with the same parameters used by Anderson and
Sleath in their analysis with the exception of the initial spot rate, and change the values for
the term to maturity to 10, 20, 30 and 1000 years and the value of a to —5, -3, —1, 0, 1, 3 and
5. Our results are given in Table 6.1. As the value for T increases to very high values the
convergence of spot rates to the initial value proceeds only slowly. However, our results
illustrate the process.

An evaluation fitting the Nelson-Siegel curve to actual gilt yields from June 1997 is
described in the next section.

Another parametric method is described by Svensson (1994, 1995). This adds an extra
coefficient to the Nelson-Siegel model and has been described as an extended Nelson-
Siegel model. The extra parameter introduces greater flexibility, so that the resulting curve
can model forward curves that have more than one ‘hump’. It is given by (6.11):

T T
F(T) = Bo+ pre "™ + ﬂz;le‘T/” + B T—le‘”ﬁ. (6.11)

In the Svensson model there are six coefficients 5y, 51, 52, 83, 71, T that must be estimated.
The model was adopted by central monetary authorities such as the Swedish Riksbank and
the Bank of England (who subsequently adopted a modified version of this model, which we
describe shortly, following the publication of the Waggoner paper by the Federal Reserve
Bank of England). In their 1999 paper Anderson and Sleath evaluate the two parametric

a values
Maturity (7) years -5 -3 -1 0 1 3 5
10 4.4003 4.6002 4.8001 4.9 5.0000 5.1999 5.3998
20 47000 4.8000 4.9000 4.9500 5.0000 5.1000 5.2000
30 4.8000 4.8667 4.9333 4.9667 5.0000 5.0667 5.1333
1000 4.9940 4.996 49980 4.9990 5.0000 5.0200 5.0040

Table 6.1: Spot rate values using Nelson-Siegel model and user-specified parameters.
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Figure 6.1: A Nelson and Siegel fitted yield curve and gilt redemption yield curve.

techniques we have described, in an effort to improve their flexibility, based on the spline
methods presented by Fisher, Nychka and Zervos (1995) and Waggoner (1997).

6.3.2 Parameterised yield curves

The technique for curve fitting presented by Nelson and Siegel and variants on it described
by Svensson (1994), Wiseman (1994) and Bjork and Christensen (1997) have a small number
of parameters, and generally one obtains a relatively close approximation to the yield curve
with them. As we saw above, the Nelson and Siegel curve contains four parameters while
the Svensson curve has six parameters. The curve presented by Wiseman contains

-----

f(r) = i Bie . (6.12)
=0

The original Nelson and Siegel curve does not produce close approximations for all types
of yield curves, because the small number of parameters limits flexibility. It can be used to
model the spot rate or the forward rate curve, but does not produce accurate results if used to
model the discount curve. An example of a fitted Nelson and Siegel curve is shown in Figure
6.1 for UK gilt yields from June 1997. The table of actual gilt yields is shown as well (Table 6.2).

The fitted curve is a close approximation to the redemption yield curve, and is also very
smooth. However the fit is inaccurate at the very short end, indicating an underpriced six-
month bond, and also does not approximate the long end of the curve. For this reason
B-spline methods are more commonly used.

6.4 The cubic spline method for estimating and fitting the
yield curve

In mathematical applications a spline is piecewise polynomial, this being a function that is
composed of a number of individual polynomial segments that are joined at user-specified
points known as knot points. The function is twice-differentiable at each knot point, which
produces a smooth curve at each connecting knot point. The commonest approach uses
regression methods to fit the spline function, and an excellent and accessible account of
this technique is given in Suits et al. (1978); the article is summarised in Choudhry (2001).
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Gilt redemption Gilt redemption

Term to maturity yield % Term to maturity yield %

0.5 5.90 7 6.52

1 6.29 8 6.54

2 6.37 9 6.55

3 6.40 12 6.60

4 6.47 15 6.58

5 6.45 21 6.54

6 6.50

Table 6.2: Gilt redemption yields. Source: Butler Gilts.

In this section we summarise with permission the spline approach described by Waggoner
in his ground-breaking article published by the Federal Reserve Bank of Atlanta in 1997.

Spline methods are commonly used to derive spot and forward rate curves and the
discount function from the observed yields of bonds in the market. A popular method is that
proposed by McCulloch (1975), which uses regression cubic splines to derive the discount
function. Waggoner (1996) has written that this method however, while accurate and stable,
produces forward rate curves that oscillate. In fact this property is exhibited by virtually all
curve fitting techniques, but the objective for the analyst is to produce curves with the smallest
amount of oscillation. A technique posited by Fisher, Nychka and Zervos (1995) used a cubic
spline that incorporated a ‘roughness penalty’ when extracting the forward rate curve. This
approach produces a decreased level of oscillation but also reduces the fit of the curve to the
actual observed yields. A later technique modified this method by using a ‘variable roughness
penalty’ (Waggoner 1997) and this approach is described here.

6.4.1 Using a cubic spline: the Waggoner model

A cubic spline approach can be used as the functional form for the discount function or the
forward rate curve. We define a function g on the interval [#;, £5] as a cubic spline with node
points #; < f, <... <, ifitis a cubic polynomial on each of the subintervals [f;_;, ;] for
1 <j < n and if it can be continuously differentiated over the interval [#;, #y]. The node
points are 1 < 72 < ... < 7y which are the cash flow and maturity dates of the set of bonds
(assuming the bonds are semi-annual coupon instruments). Following Waggoner (1997) we
set 79 = 0 so that the curve is derived from the point zero to the point of the longest-dated
bond in the sample. It is possible to use all the node points in the interval to produce the
yield curve, however the more points there are in a cubic spline, the greater the tendency for
the derived forward curve to oscillate, more so at longer maturities. We wish to minimise
the level of oscillation, because for monetary policy purposes the curve is used to provide
information on expected future interest rates. A fluctuating yield curve would imply oscilla-
tions in expected future prices, and this can produce illogical results, particularly at the long
end of the curve. For example, a curve may imply that while the current yield of a six-month
T-bill is £97.50, the price of a six-month bill in one year’s time will be £98, while the price of
such a bill in two years’ time will be £95. This is not an unreasonable expectation. However
the same implications for six-month bill prices in 25, 26 and 27 years’ time is less reasonable.
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Therefore the fitted curve should smooth out the forward rates at longer maturities, which
calls for a reduced level of oscillation. The McCulloch technique uses regression splines to
reduce forward rate fluctuation, while the Fisher et al. and the Waggoner approach use a
smoothed spline and a modified smoothed spline.

In a regression spline a smaller number of node points are used in order to reduce the
level of oscillation. This affects the flexibility of the cubic spline over the interval that is
being considered; there is a trade-off between accuracy and the level of oscillation. By
reducing node points at the longer end but keeping more at the short end, oscillation is
reduced but the curve retains accuracy at the short end. In practice it is common for node
points to be set in one of the ways shown in Figure 6.2, but obviously there are any number
of ways that node points may be set.

Once we have chosen the node points we set the yield curve ¢ as the cubic spline that
minimises the function (6.13):

N . 2
S (Pi-Biw) . (6.13)
=1

The technique proposed by McCulloch (1975) used a regression cubic spline to approxi-
mate the discount function, and he suggested that the number of node points that are used
be roughly equal to the square root of the number of bonds in the sample, with equal
spacing so that an equal number of bonds mature between adjacent nodes. A number of
writers have suggested that this approach produces accurate results in practice.” The
discount function is constrained to set v(0) = 1. Given these parameters the discount
function chosen is the one that minimises the function (6.14). As this is a discount function
and not a yield curve, (6.14) can be solved using the least squares method.

N

S N\2
3 (Pl- > (y)) . (6.14)
i=1
For a smoothed spline, the level of oscillation is controlled by setting a ‘roughness
penalty’ in the function, and not by reducing the number of node points. The yield curve
¢ is chosen that minimises the objective function (6.15):

N . 2 IN )

S (P-Ew) [ wod (6.15)
i=1 /0

for all the cubic splines over the node points 7p < 71 < 72 < ... < 7. In minimising this
function there is a trade-off between the goodness of fit, which is given by the first term, and
the degree of smoothness, which is measured by the second term. This trade-off is known as

|1W|1m|3m|6m|9m|1y|2y|3y|4y|5y|6y|7y|8y|9y|10y

|3m|6m| 1y|2y|3y|4y|5y|7y |10y|15y|20y|25y|30y

Figure 6.2: Suggested node points.

5

For example see Bliss (1997).
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the ‘roughness penalty’ and is given by A, which is a positive constant. If X is set to zero the
function reverts to a regression spline, and as it increases g approaches a linear function.
The flexibility of the spline is a function of both the spacing between the node points and
the magnitude of ), although as A increases the impact of the node spacing decreases. For
large values of ) the flexibility of the spline is essentially similar across all terms. This is not
necessarily ideal because as we saw from Figure 6.1 we require the spline to be more flexible
at the short end, and less so at the long end. Therefore Waggoner (1997) has proposed a
modified smoothed spline. For a modified smoothed spline the objective function (6.16) is
minimised over the whole term covering the node points 7o <73 <7 < ... < 7n.

N 2 ™
S (P Biw) + [ A o) (6.16)

The approach used by Fisher et al. (1995) is a smoothed cubic spline that approximates
the forward curve. The number of nodes to use is recommended as approximately one-third
of the number of bonds used in the sample, spaced apart so that there is an equal
number of bonds maturing between adjacent nodes. This is different to the theoretical
approach, which is to have node points at every interval where there is a bond cash flow,
however in practice using the smaller number of nodes as proposed by Fisher et al.
produces essentially an identical forward rate curve, but with fewer calculations required.
The resulting forward rate curve is the cubic spline that minimises the function (6.17):

S (Pi— BL()) 4 / " ()%, (6.17)

i=1

The value of X is obtained by a method known as generalised cross-validation (GCV). It
is the value that minimises the expression in (6.18):

rss(A
Y(A) = % (6.18)
(N —fep()))
where
N is the number of bonds in the sample

rss(\) is the residual sum of squares, given by
rss(\) = Zﬁ-\i (P — Pif (fA))2 where f, is the forward rate curve that minimises
the expression

ep()\) is the effective number of parameters

0 is the cost or tuning parameter.

The higher the value for 6, the more rigid is the resulting spline. Fisher et al. and
Waggoner both set 6 equal to 2. Expression (6.17), for a fixed term A can be solved using a
non-linear least squares method. The GCV method can be implemented by using a method
known as a line search.

Following Fisher et al., Waggoner (1997) proposes using a cubic spline to approximate
the forward rate function, with the number of nodes again being approximately one-third of
the number of bonds in the sample, and spaced so that there is an equal number of bonds
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maturing between adjacent nodes. The Waggoner approach is termed the ‘variable roughness
penalty method’ (VRP). The cubic spline forward rate curve is selected that will minimise
the function (6.19):

N

. 2 [
S (Pi=P) + [ M09 s (6.19)
=1
The roughness penalty ) is set as follows:
0.1 0<r<1
A(t) =< 100 1<r<10

100,000 10<¢

where ¢ is measured in years. The VRP method is non-linear and can be solved using the
non-linear least squares method.

6.4.2 The Anderson—Sleath model

In this section we summarise a paper by Anderson and Sleath which first appeared in the
Bank of England Quarterly Bulletin in November 1999. The main objective of this work was
to evaluate the relative efficacy of parametric versus spline-based methods. In fact different
applications call for different methods; the main advantage of spline methods is that
individual functions in between knot points may move in fairly independent fashion, which
makes the resulting curve more flexible than that possible using parametric techniques. In
Section 6.5.1 we reproduce their results with permission, which shows that a shock intro-
duced at one end of the curve produces unsatisfactory results in the parametric curve.

The Anderson-Sleath model, which is the method adopted by the Bank of England, is a
modification of the Waggoner approach in a number of significant ways. The A(#) function
of Waggoner was adapted thus:

log \(m) =L — (L— S)e™ ™" (6.20)

where the parameters to be estimated are L, S, pi. In addition the difference in bond market

and theoretical prices is weighted with the inverse of the modified duration of the bond.

This accounts for observed pricing errors for bonds that are more volatile than others.
The model therefore minimises the expression in (6.21):

- i~ i ’ M 1 2
x=3 (") + [ xomaomam (621

where P and MD are the price and modified duration of bond i, c is the parameter vector of
the polynomial spline being estimated and M is the time to maturity of the longest-dated
bond.

The outstanding feature of the Anderson-Sleath approach is their adaptation of both
spline and parametric techniques.

6.4.3 Applications

Each of the methods described in this section can be used to fit the zero-coupon curve
with validity. In practice results produced by each method imply that certain techniques
are more suitable than others under specific conditions. Generally the incorporation
of a ‘roughness’ penalty that varies across maturities produces more accurate pricing of
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short-dated bonds, and this is the case in the Fisher et al. and Waggoner methods. The
McCulloch technique is reasonably accurate and, as it is a linear method, is more straight-
forward to implement than the other techniques. It produces a similar curve to the VRP
method in terms of goodness of fit and smoothness. Therefore in most cases it is reasonable
to use this method. The advantage of the VRP method is that it allows the user to select the
degree of smoothing.

In deciding which method to use, practitioners will need to consider the effectiveness of
each approach with regard to flexibility, simplicity and consistency. The requirements of
central monetary authorities differ in some respects to investment and commercial banks,
as we noted at the start of the chapter. Generally however curves should fit as wide a range
of term structures as possible, and be tractable, or straightforward to compute. They should
also be consistent with a yield curve model. For example the approach presented by Bjork
and Christensen (1997) is compatible with the Hull-White or extended Vasicek yield curve
model. In the same paper it is stated that the Nelson and Siegel technique is not consistent
with any common term structure model. James and Webber (2000) state that the simplicity
of the Nelson and Siegel approach, which is an advantage of the technique, is also its main
drawback. In the same review it is concluded that B-spline methods are the most flexible
and consistent, along with that described by Bjork and Christensen.

6.5 The Anderson-Sleath evaluation

6.5.1 Fitting the spot curve

In this section we summarise, with permission, results obtained in highly innovative
research by Anderson and Sleath (1999), comparing the different methods. The accuracy
of any of the techniques is usually tested by using a goodness of fit measure, for example if
we fit the curve using n bonds we wish to minimise the measure given by (6.22):

where
P; is the market price of the ith bond
MD; is the modified duration of the ith bond
[L; (p) is the fitted price of the ith bond.

A popular technique is the spline-based method of curve fitting. Unlike other methods
(such as the parametric Svensson method) which specify a single short-rate to describe the
instantaneous forward rate curve, spline-based methods fit a curve to observed data that is
composed of a number of sections, but with constraints to ensure that the curve is smooth
and continuous. As this is one of the aims we stated at the beginning, this is an advantage of
the spline-based method, as it allows individual sections of the curve to move independ-
ently of each other. This is demonstrated in Figures 6.3 and 6.4, which show a hypothetical
yield curve that has been fitted, from an assumed set of bond prices, using the cubic spline
method and a parametric method such as Svensson. The change of the long bond yield has
a significant effect on the Svensson curve, notably at the short end of the curve. The spline
curve however undergoes only a slight change in response to the change in yield, and only
at the long end.
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Figure 6.3: Yield curves fitted using cubic spline method and Svensson parametric method,
hypothetical bond yields. Reproduced with permission from the Bank of England Quarterly
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Bulletin, November 1999.
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Figure 6.4: Effect on fitted yield curves of change in long-dated bond yield. Reproduced

with permission from the Bank of England Quarterly Bulletin, November 1999.

The effect of a change in yield on the Svensson curve is amplified because the technique

specifies a constraint that results in yields converging to a constant level. This assumption is
based on the belief that forward rates reflect market expectations of the future level of short
rates, and following this the 30-year forward rate will be expected to be not significantly
different from the 25-year or 20-year forward rate. This causes the forward rate after about
10 years to converge to a constant level.

We can compare fitted yield curves to an actual spot rate curve wherever there is an

active government (risk-free) zero-coupon market in operation. In the UK a zero-coupon
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bond market was introduced in December 1997. In theory any derived spot rate curve
can be compared to the actual spot rate curve, this comparison serving to provide an
instant check of the accuracy of the yield curve model. In practice however, discrepan-
cies between the observed and fitted curves may not have that much significance,
because of the way that strip yields behave in practice. In the UK market there is a
certain level of illiquidity associated with strip yields at certain points of the term
structure; the UK market also exhibits a common trait of strip markets everywhere that
the longest-dated issue traded dear to the yield curve. Another factor is that coupon
strips trade cheaper to principal strips; which yield should be used in the comparison?®
In Figure 6.5 we compare the theoretical spot curve fitted using the Svensson method to
the observed coupon strip curve in July 1998, at a time when the UK gilt yield curve was
inverted.

The fitted curve exhibits the constant long yield that we observed in the hypothetical
yield curve in Figure 6.1, while the strip curve trades expensive at the long end, which as we
noted is a common observation. Nevertheless for the purposes of accurate fitting the
parametric method exhibits a significant difference to the observed curve. A cubic spline-
based fitted curve such as that proposed by Waggoner (1997) produces a more realistic
curve, as shown in Figure 6.6.

This reflects the properties of the spline curve, including the fact that forward rates are
described by a series of segments that are in effect connected together. This has the effect of
localising the influence of individual yield movements to only the relevant part of the yield

7 — Svensson
¢ Strips

6.5

Yield (%)

g
000000000000000

0 5 10 15 20 25 30
Maturity (years)

Figure 6.5: Comparison of fitted spot yield curve to observed spot yield curve. Reproduced
with permission from the Bank of England Quarterly Bulletin, November 1999.

6 This is the observation that, due to demand and liquidity reasons, zero-coupon bonds sourced from
the principal cash flow of a coupon bond trade at a lower yield than equivalent-maturity zero-

coupon bonds sourced from the coupon cash flow of a conventional bond.
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Figure 6.6: Fitted yield curves and observed strip yield curve, July 1998. Reproduced with
permission from the Bank of England Quarterly Bulletin, November 1999.

curve; it also allows the curve to match more closely the observed yield curve. The goodness
of the spline-based method is measured using (6.23):

M
X, = Xp + / A (m)(F"(m))2dm (6.23)
0

where f”(m) is the second derivative of the fitted forward curve and M is the maturity of the
longest-dated bond. The term A;(m) is the ‘roughness penalty’. Figure 6.6 shows that the
spline-based method generates a more realistic curve, that better mirrors the strip yield
curve seen in Figure 6.5.

6.5.2 Repo and estimating the short-end of the yield curve

For the purposes of conducting monetary policy and for central government requirements,
little use is made of the short-end of the yield curve. This is for two reasons; one is that
monetary and government policy is primarily concerned with medium-term views, for
which a short-term curve has no practical input, the second is that there is often a shortage
of data that can be used to fit the short-term curve accurately. In the same way that the
long-term term structure must be fitted using risk-free instruments, the short-term curve
can only be estimated using Treasury bills. The T-bill can be restricted to only a small
number of participants in some markets; moreover the yield available on T-bills reflects its
near cash, risk-free status, and so may not be the ideal instrument to use when seeking to
extract market views on forward rates. So for liquidity purposes the existence of an alter-
native instrument to T-bills would be useful. In most respects the government repurchase
market or repo market is a satisfactory substitute for T-bills, although there is an element of
counterparty risk associated with repo that does not apply to T-bills, they can be considered
to be essentially risk-free instruments, more so if margin has been taken by the party
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Figure 6.7: Fitting short-term yield curves using government repo rates. Reproduced with
permission from the Bank of England Quarterly Bulletin, November 1999.

lending cash. We can therefore consider general collateral repo to be essentially a liquid,
short-term and risk-free instrument.”

The fitted spot curve can differ considerably if yields on short-term repo are included.
The effect is shown in Figure 6.7, which is reproduced from Anderson and Sleath (1999).
Note that this is a short-term spot curve only; the maturity extends out to only two years.
Two curves have been estimated; the cubic spline-based yield curve using the repo rate and
without the repo rate. The curve that uses repo data generates a curve that is much closer to
the money market yield curve than the one that does not. The only impact is at the very
short end. After about one year, both approaches generate very similar curves.

For an account of the impact of ‘special’ repo rates on term structure modelling see
Barone and Risa (1994) and Duffie (1993), which are available from the respective institu-
tion Web sites.

Appendices

Appendix 6.1:  The McCulloch cubic spline model

This was first described by McCulloch (1975) and is referred to in Deacon and Derry (1994).
We assume the maturity term structure is partitioned into g knot points with ¢, ...,qq
where g; = 0 and g, is the maturity of the longest-dated bond. The remaining knot points
are spaced such that there is, as far as possible, an equal number of bonds between each
pair of knot points. With j < g, we employ the following functions:

m form< g,

fim)=0 (6.24)

7 See Choudhry (2002) for more information on the repo markets and the UK gilt repo market.
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m forgi,<m<yq;
i(m) = U= (6.25)
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m forj=g¢g

the function f;(m) = m for all values of m.

Appendix 6.2:  Parametric and cubic spline yield curve
models

In the Nelson and Siegel method (1987), we may model the implied forward rate yield curve
along the entire term structure using the following function:

if(m, 8) = 5o+ A exp( >+ﬁz< )exp( lln) (6.28)

where 3 = (8y, 1, B2, 1) is the vector of parameters describing the yield curve, and m is the
maturity at which the forward rate is calculated. There are three components, the constant
term, a decay term and a term reflecting the ‘humped’ nature of the curve. The shape of the
curve will gradually lead into an asymptote at the long end, the value of which is given by (3,
with a value of 3, + 3; at the short end.

Svensson (1994) presents a modification of this, by means of an adjustment to allow for
the humped characteristic of most yield curves. This is fitted by adding an extension, as
shown by (6.29):

1if(m, B) = Bo+ p1 exp (%) + Bs (%) exp (%) + B3 CZ) exp (;T)- (6.29)

So we note that the Svensson curve is modelled using six parameters, the additional
inputs being 33 and £,.

A different approach is adopted by smoothing cubic spline models. A generic spline is a
segmented polynomial, or a curve that is constructed from individual polynomial segments
that are joined together at user-specified ‘knot points’. That is, the x-axis is divided into selected
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segments (the knot points). The segments can be at equal intervals or otherwise. At the knot
points the curve and its first derivative are continuous at all points along the curve. Generally
the market uses cubic functions, resulting in a cubic spline. A cubic spline is given by (6.30):

N-1
S(x) = ax® + Bx* +x + 6+ Y milx — ki’ (6.30)

i=1

for a range of constants «, 5, v, §, n and where k;, i = [0, N] is the set of knot points. The
expression in (6.30) is the most common one used for a cubic spline, however in practice it
is unwieldy for the purposes of calculation. Therefore splines are usually constructed as a
linear combination of cubic basis splines or B-splines. This is a general transformation
which removes the numerical problems associated with (6.30). A B-spline of order n can be
written in the form:

X — ki ki+n -

-Bi n1(x) + X By w1 (%) (6.31)

Bi n(x) = [ Kin — ki1

where B; ;(x) = 1 if k; < x < k;;1, and B; 1 (x) = 0 otherwise. This approach was described in
Lancaster and Salkauskas (1986). When a large number of knot points are used a cubic spline
can be used for interpolation, however as noted by Anderson and Sleath (1999) this approach
is not used for monetary policy purposes, because it does not produce a smooth curve.
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Estimating and Interpreting the
Term Structure ll: a Practical

Implementation of the Cubic Spline
Method’

We noted in Chapter 4 that the term structure of interest rates defines the set of spot or
zero-coupon rates that exist in a debt capital market, of default-free bonds, distinguished
only by their term to maturity. In practice the term structure is defined as the array of
discount factors on the same maturity term. Extracting the term structure from market
interest rates has been the focus of extensive research, reflecting its importance in the field
of finance. We also noted that the term structure is used by market practitioners for
valuation purposes and by central banks for forecasting purposes. The accurate fitting of
the term structure is vital to the smooth functioning of the market. Of the methods
proposed for fitting the term structure, practitioners desire an approach that is accessible,
straightforward to implement and as accurate as possible. In general there are two classes of
curve fitting techniques; the parametric methods, so-called because they attempt to model
the yield curve using a parametric function; and the spline methods.? Parametric methods
include the Nelson-Siegel model and a modification of this proposed by Svensson (1994,
1995), as well as models described by Wiseman (1994) and Bjork and Christensen (1997).
James and Webber (2000) suggest that these methods produce a satisfactory overall shape
for the term structure but are suitable only where good accuracy is not required. Market
practitioners instead generally prefer an approach that gives a reasonable trade-off between
accuracy and ease of implementation, an issue we explore in this chapter.

The cubic spline process presents no conceptual problems, and is an approximation of
the market discount function. McCulloch (1975) uses cubic splines and Beim (1992) states
that this approach performs at least as satisfactorily as other methods. Although the basic
approach can lead to unrealistic shapes for the forward curve (for example, see Vasicek and
Fong (1982) and their suggested improvement on the approach using exponential splines),

This chapter was co-authored with Rod Pienaar of Deutsche Bank AG, London. The views and
opinions expressed remain those of the authors in their individual private capacity, and do not
represent the views of any employing institution. It was published previously in Fabozzi, F., (ed.),
Interest Rate, Term Structure and Valuation Modeling, John Wiley & Sons, 2002.

Parametric models are also known as parsimonious models.
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it is an accessible method and one that gives reasonable accuracy for the spot rate curve.
Adams and van Deventer (1994) illustrate using the technique to obtain maximum smooth-
ness for forward curves (and an extension to quartic splines), while the basic technique has
been improved as described by Fisher, Nychka and Zervos (1995), Waggoner (1997) and
Anderson and Sleath (1999). These references are considered later.

Splines are a non-parametric polynomial interpolation method.® There is more than one
way of fitting them. The simplest method is an ordinary least squares regression spline, but
this approach produces wildly oscillating curves. The more satisfactory is a smoothing
splines method. Following on from our overview of fitting techniques in Chapter 6, in this
chapter we consider the cubic spline approach and how to implement it.

7.1  Cubic splines

7.1.1 Fitting a discount function

In mathematics a spline is a piecewise polynomial function, made up of individual poly-
nomial sections or segments that are joined together at (user-selected) points known as
knot points. Splines used in term structure modelling are generally made up with cubic
polynomials, and the reason for cubic polynomials, as opposed to polynomials of order say,
two or five, is explained in straightforward fashion by de la Grandville (2001). A cubic spline
is a function of order three, and a piecewise cubic polynomial that is twice differentiable at
each knot point. At each knot point the slope and curvature of the curve on either side must
match. We employ the cubic spline approach to fit a smooth curve to bond prices (yields)
given by the term discount factors.

A polynomial of sufficiently high order may be used to approximate to varying degrees
of accuracy any continuous function, which is why a polynomial approximation of a yield
curve may be attempted. For example James and Webber (2000) state that given a set of m
points with distinct values, a Lagrange polynomial of degree m will pass through every
point.* However, the fit can be very wild with extreme behaviour at the long end. We
demonstrate how a cubic spline approximation can be used to obtain better results.

This chapter provides a discussion of piecewise cubic spline interpolation methodology
and its application to the term structure. We recommend a cubic spline technique because
this ensures that the curve passes through all the selected (market determined) node points.
This enables practitioners to fit a yield curve to observed market rates (Libor or bond yields)
reasonably accurately and produces a satisfactory zero coupon curve under most circum-
stances.

Our starting point is a set of zero curve tenors (or discount factors) obtained from a
collection of market instruments such as cash deposits, futures, swaps or coupon bonds.
We therefore have a set of tenor points and their respective zero rates (or discount factors).
The mathematics of cubic splines is straightforward but we assume a basic understanding
of calculus and a familiarity with solving simultaneous linear equations by substitution. An
account of the methods analysed in this chapter is given in Burden and Faires (1997), which
has very accessible text on cubic spline interpolation.

A spline originally referred to a tool used by draughtsmen or carpenters for drawing smooth curves.
4 James and Webber (2000), pp. 430-432.
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7.1.2 Background on cubic splines

When fitting a curve by interpolating between nodes or tenor points, the user must consider
conflicting issues. There is a need to balance between simplicity and correctness, and hence
a trade off between ease of use and the accuracy of the result. In certain cases practitioners
will accept a lower degree of accuracy at the nodes, in favour of smoothness across the
curve. In the cubic spline approach the primary aim is smoothness. In an attempt to create
a smooth and accurate measurement at the nodes, however, we may be confronted by
oscillation in the curve. Although linear interpolation is a reasonable calculation method,
interest rate markets are not linear environments made up of coupled straight lines. The
point between two tenors cannot be accurately estimated using a straight line.

Although there are a number of alternative methods available to the practitioner, a
reasonable approach is to stick with the concept of piecewise interpolation but to abandon
the use of straight lines. The reason that we do not depart from piecewise interpolation, is
that this method of curve smoothing provides accuracy at the nodes because each piece-
wise function touches a node. Accuracy at the nodes can be an important consideration
when a pricing methodology based on the elimination of arbitrage is employed. Thus we
continue with piecewise fitting, but instead of applying a linear fitting technique, we apply a
cubic polynomial to each piece of the interpolation. Cubic splines provide a great deal of
flexibility in creating a continuous smooth curve both between and at tenor points.’

7.2 Cubic spline methodology

We assume that the practitioner has already calculated a set of nodes using a yield curve
construction technique such as bootstrapping. A zero curve is then fitted using the cubic spline
methodology by interpolating between nodes using individual cubic polynomials. Each poly-
nomial has its own parameters but are constructed in such a way that their ends touch each
node at the start and end of the polynomial. The set of splines, which touch at the nodes,
therefore form a continuous curve. Our objective is to produce a continuous curve, joining
market observed rates as smoothly as possible, which is the most straightforward means by
which we can deduce meaningful data on the correct interest rate term structure in the market.

In Figure 7.1 we can see that two cubic polynomials which join at point xy, ; are used to
form a continuous curve. However, it is also clear from the curves in Figure 7.1 that the two
polynomials do not result in a smooth curve. In order to have a smooth curve we need to
establish ‘smoothing’ criteria for each spline. To do this we must first ensure that the
polynomials touch or join together at the nodes. Secondly, we must ensure that where
the polynomials touch the curve is smooth. Finally, we ensure that the curve is continuously
differentiable or, in other words, the curve has a smooth rate of change at and between
tenor points. The required criteria to meet these conditions are:

Requirement 1: the value of each polynomial is equal at tenor points;

Requirement 2: the first differential of each polynomial is equal at tenor points;

Requirement 3: the second differential of each polynomial is equal at tenor points; and

Requirement 4: the second differential of each polynomial is continuous between tenor
points.

5

See the earlier footnote for a word on the origin of the use of the term ‘spline’.
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Figure 7.1: Forming a continuous curve, cubic polynomials.

Considering a polynomial of the form y=ax®+bx*+cx+d, the second differential
Y’ =6ax+2b is a linear function and by its very definition is continuous between tenor
points. The fourth requirement is therefore always met and this chapter will not deal with
this requirement in any further detail. The rest of this chapter will refer to the first three
requirements and how they are met at the nodes.

7.3 The supposition

Assuming the final solution is unknown at this stage, it seems plausible that an almost
infinite set of parameters a, b and ¢ can be found which will result in all of our cubic spline
requirements being met.

We observe in Figure 7.2 three imaginary curves, all of which would meet our require-
ments that the:

m first differential of each spline is equal at tenor points; and

m second differential of each spline is equal at tenor points.

Figure 7.2: Three different possible solutions.
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" A

Figure 7.3: Two acceptable solutions.

Admittedly we have considered nodes that are sitting in a straight line but even where the
nodes do not line up it may be possible to find a range of possible solutions. Taking this
further, spline A and spline B as shown in Figure 7.3 are valid solutions yet it is intuitive,
given our knowledge of interest rate markets, that A is likely to be more suitable for our
purposes of yield curve interpolation.

The issue to determine therefore, is, is there an infinite set of parameters each of which
would meet our requirements for fitting the curve; or is it possible to determine a single
solution? Of course our requirement is in a single solution; moreover, a solution that can be
found quickly from any set of market rates.

7.4 Practical approach

7.4.1 A working environment

By splitting the yield curve into individual node/tenor pairs, we may work with individual
lines within each tenor. A cubic polynomial can then be added to each line to provide
the cubic spline. For ease of illustration, we take this one step further and imagine
an alternative horizontal axis. This is referred to as ‘capital’ X as shown in Figure 7.4.
Assume that between each node pair this horizontal axis X runs from 0 (at xp) to
Xn41— Xy (@t Xy ).

In Figure 7.4 the X axis is a calculated value determined from the x axis. The points xy
and xy,; are isolated for spline Sy. It is then assumed that X, equals zero at xy and
stretches to X which equals (xy, ; — xn) on the X axis. If these lines are fully isolated then
a cubic polynomial, of the form y=aX?+ bX?+cX+d, can be constructed to touch the
points xy and xy 1.

7.4.2 The first requirement

In order for the polynomial to touch the nodes then a cubic polynomial must be con-
structed so that at point X, the polynomial provides a result that is equal to y. This is very
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Figure 7.4: The imaginary X’ axis.
easy to achieve. Since X is equal to zero at its starting point, the polynomial takes the
following form:

v = any0® + by0? + cn0 + dy

¥n =dn
So as long as dy is equal to yy then our polynomial will touch the node at Xj.
In order for the polynomial to touch the second node, the node at point x ;, then the
polynomial must take the following form at point Xu:
yn = an(xn — xn)* + by (v — Xv)° + en (v — xXn) + dy
OR
dni1 = an Xy + by Xy + enXy + dy (7.1)
where: Xy=xn,1—Xn

It is worth noting that at this point in our process we do not know what the values of @, b or ¢
are. These will be derived below from our other requirements.

7.4.3 The second requirement
To meet the second requirement of a cubic spline, the first differential y5’ must equal the
first differential yy, ;" at the tenor point xy ;.

In other words at node x, ;:

3(/ZNXK, 4+ 2byXN + oy = 3aN+1X1%,+1 + 2by 1 XN + N1 (7.2)

We know from our conditional working environment that at node x, ; for function y,’ that
X=(xn41—Xn). We also know from the same assumption that X=0 at the start of the next
polynomial, i.e. for function yy . ,’. Therefore:
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361N+102 + 2bN+10 +CNt1 = 3(,1NX]%] + ZbNXN +CN
so that

CNy1 = 3(/1NX1%, + 2bnXy + ey (73)

7.4.4 Third requirement

To meet the third requirement of a cubic spline, the second differential y,/’ assessed at the
point xy, ; should equal the second differential yn, ;" .
In other words at node xy, 1:

6anXy + 2by = 6an 1 Xn+1 + 2bn i
We know from our conditions that at node x, ; for function yy” that X= (xy. 1 —xn). We
also know from the same assumption that X=0 for function yx,”. Therefore:

6anXn + 2by = 6an10 + 2by 1
6(,lNXN = 2b1\/+1 — 2bN

by —by
e (7.4)

7.4.5 Meeting all requirements simultaneously

We now have equations which ensure that each of the requirements can be met. We now
need a solution that will ensure that all requirements are met at the same time. By
substitution a set of calculations can be performed which meet both requirements and
reduce these equations down to a factor of parameter b only.

Using equation (7.4) as a substitute for a in equation (7.3) we obtain:

cni1 = 3an X3 + 2by Xy + oy

3(bn+1 — bw)

X2 + 2byX,
3Xy Nt bnXn + cn

CNy1 =

cn+1 = (bny1 — bv)Xn + 2byXn + on

cni1 = Xn(byi1 +by) +on (7.5)
Using equation (7.4) as a substitute for a in equation (7.1) we get:
b - b,
dyi1 = (MiN)Xj:’; + by X% + enXy + dy
3Xy
b - b
dy,1 = MXI% + bNXI%/ + cnXy +dy

3

b -b
cnXy = _(N+13—N)X1%] — bNX]%/ + dN+1 —dn

(by 1 + 2by) n (dny1 —dn)
3 XN

CN = —XN (76)
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Taking this solution one step further we can substitute equation (7.6) into equation (7.5) as
follows:

(dny2—dni1) (bny2+2bn+1)
—— Xnp

(bn+1+2by) + (dns1—dn)
XN 3

3 Xn

=Xn(bnp +bn) —Xn

—Xn1 (b2 + 2by11) =3Xn(Dny1 + by) — Xy (b1 + 2by)
(dN+1 - dN) _3 (dN+2 - dN+l)
XN XN+

(dni1—dn) 4 (A2 —dni1)
XN XNt1

+3

—Xni1(bny2 + 2by 1) =Xn(2bny1 + by) +3

(dy1 = dv) | o (dnz = die)

Xni1bni2= — Xn(2bni1 +by) — 3 Xn Xt

—2Xn11bn

(d]\prl - dN) +3 (dN+2 - dN+1)

—2XNbyi1 — Xnby — 2Xnbyi — 3 Xn Xvo

bz = (7.7)

Xn11

7.4.6 A unique solution

For clarity and ease of illustration, the results of these equations are set out as a table of
related formulas shown below in Table 7.1.

It is a simple matter to determine the values of parameters g, b, ¢ and d at each node n
by using the formulas set out in Table 7.1. Each node (from n > 2) is directly or indirectly
dependent on the values of previous parameters and can be determined from those pre-
vious parameters. This is an important result, and means that any errors in the calculation
early on are replicated and magnified throughout the analysis. However, the first two
occurrences of b (b, and b;) do not have previous nodes from which to determine their
values. In other words, the only values for which we do not have solutions are those for b,
and b;.

Using
equation
7.3 we
y can Using equation 7.5 we can
X (d) derive a Using equation 7.6 we can derive b derive ¢
b=l by+2b dy—d
Xl dl §X171 b() 7X1( 2 ; 1) +( ZX1 1)
bs—by _ (b3+2by) (d3—dy)
X2 d2 3X3 bl (dy —d. (d3—dy) X2 3 + XZ
~2X1 by X1 by ~2X; by ~32 4 302
; by—bs X X _ Y, bat2bs) | (dy—ds)
Xs dy % % B e e

y_p—dy_3) | oldn_1-dN_p)
—2Xn-_3b; 2—Xn_3bn_3—2XN_oby_p—3-~-N=2"°N-3) 4 3 CN_1 N2
X, d by—bn_1 N-3TN-27ANSPNS N-2PN2 Xn-3 XN o _X (bn+2by-1) + (dy—dn_1)
N—-1 HN-1 3Xn 1 X2 N-1 3 Xn-1
—2XN-2bN-1 —XN-2DN-2—2XN-1DN-1 *3M\¢+3M
N-2

Xy dv  N/A . ot N/A

Table 7.1
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Depending on the values assumed for b, and b, the result is usually an oscillating b and
ever increasing |b|. This means that the slope of the spline gets steeper at each tenor as the
absolute value of the first differential increases, so the slope of the curve oscillates.

This systematic wave, shown in Figure 7.5, is clearly not the kind of behaviour that is
commonly observed in a yield curve and should therefore not be modelled into the curve.
Furthermore, we have no unique solution at this stage. An infinite number of values can be
assigned to by and b; and therefore an infinite number of solutions can be obtained (most of
which exhibit the depicted oscillation effect). So this is still not what we seek.

We need an additional restriction that allows us to find a single solution and which
eliminates the oscillation of the output. The restriction that we put in place is to set the
second differential of the first spline y,”” and last spline yn’’ equal to a constant. We will use
a constant of zero for now, but we come back to this constant at a later stage. Creating this
additional restriction means that we are left with only one unknown, parameter b,. This is
demonstrated, using the constant zero, in Table 7.2.

If we find a value for b, that results in a final value of zero for by then we have a single
solution and this solution should eliminate the oscillation shown above. We can determine
this solution using two different methods:

m iteration; or

m  Gaussian Elimination of a tri-diagonal matrix.

Figure 7.5: Increasing oscillation, and the systematic wave.

Using
equation
7.3 we
y can Using equation 7.5 we can
X (d) derive a Using equation 7.6 we can derive b derive ¢
by—b (p+2by) | (dp—dy)
X, - 0 =X e e
bs—b . (bs+2b) | (d3—d>)
X, dy en The only parameter left to solve for is b, —Xp e 4R
—2X, by — X by —2X, by —3¥2 ) 31 _4) ;
by—by X *2 _ vy, (bat2b3) | (ds—d3)
X3 ds 3%, X, X3 3 + X3
_ X 9% g2y y) gy 1 -dy )
X d by—bn_1 2Xn-3bx—2—Xn-sby-—3—2XN-2by——3 XN-3 +3 AN-2 ' (bn+2bn-1) + (dn—dn_1)
N—-1 UN-1 3Xn_1 Xn_2 N—1 3 N1
Xy dy N/A 0 N/A

Table 7.2
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Before we consider each of these solution techniques we consider first the requirement of a
boundary condition in order to obtain a unique solution for a cubic spline. In our discus-
sion above we ordained a boundary condition of by=by=0. In practice two boundary
conditions have become widely accepted:

1. Natural spline: In a natural spline the second differential at x, and x is set to zero. In
other words y,” =yn’ =0.

2. Clamped spline: In a clamped spline the first differential of the function that pro-
duced the nodes and the first derivative of the spline are set equal. In other words
Yo =fx9)” and ynr =flxn) . It is immediately apparent when we construct a yield curve
that we do not have a function that can be used to replicate the nodes. The first
differential of this function is therefore not available. A reasonable approximation can
be used based on the slope of the linear interpolation function between the first two
and the last two nodes. Although this provides a reasonable approximation in most
circumstances it is not always an appropriate measure. An incorrect choice of bound-
ary values could result in spurious and oscillating results at the short and/or long end
of the curve.

An example using the same input data but different (albeit rather extreme) boundary
values is shown in Figure 7.6. The natural boundary uses values zero and zero. In the
clamped boundary we have used —50 and —50 as boundary values. Although these bound-
ary values are extreme, they do illustrate the effect that inappropriate boundary values can
have on spline results.

These results are not unexpected. Readers may question the practical difference
between having a natural boundary condition against having a boundary condition that is
obviously inappropriate. Both approaches may lead to oscillation and an incorrect result.
The sole practical difference is that where we set our own boundary value, however
inappropriate, the extent of the error is under our own control. For this reason users may
prefer this approach.

Boundary 0 and 0

Boundary -50 and -50

Figure 7.6: Natural and clamped splines.
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7.4.7 The solution

We now consider each approach to obtaining the solution.

Iterative solution
A solution for b; can be obtained by iteration. This ‘trial-and-error’ style approach is
straightforward to understand but is not without its limitations.

When a cubic spline solution is solved by iteration for a single parameter, the degree
of accuracy required is very high. In test solutions the authors found that a higher
degree of accuracy was required for a higher number of nodes. A calculation for fifteen
nodes or more required the solution to be accurate to at least eight decimal places.
Even apparently negligible differences in decimal accuracy can result in strange spline
parameters and in turn produce the same oscillation observed above when no boundary
values were set. This is particularly evident at the long end of the curve as the error
becomes compounded by previous inaccuracies, thus leading to yield curves of limited
practical application when anything longer than the medium-term maturity range is
modelled.

A fictional set of numbers has been used to demonstrate this point in Table 7.3. The
‘Date’ column holds the maturity dates for each rate, while the ‘Rate’ column is of course
the set of interest rates for each particular term to maturity.

This data is illustrated graphically in Figure 7.7.

In Table 7.3, an accuracy of eight decimal places is shown but in fact a much higher level
(over 15 decimal places) of accuracy was required to calculate the results. When we adjust

Date Rate (d) parameter a parameter b parameter c
1-Jan-00 6.000 —0.00001228 0.00000000 0.00544212
7-Jan-00 6.030 0.00000351 —0.00022106 0.00411577
31-Jan-00 6.050 —0.00000019 0.00003181  —0.00042615
1-Apr-00 6.100 —0.00000001  —0.00000235 0.00137086
1-Jul-00 6.200 0.00000002  —0.00000426 0.00076898
1-Oct-00 6.250 —0.00000001 0.00000117 0.00048462
1-Jan-01 6.300 0.00000000  —0.00000042 0.00055340
1-Jul-01 6.400 —0.00000000 0.00000083 0.00062739
1-Jan-02 6.520 0.00000000 —0.00000126 0.00054853
1-Jan-03 6.610 —0.00000000 0.00000004 0.00010301
1-Jan-05 6.700 0.00000000 0.00000000 0.00013362
1-Jan-06 6.750 —0.00000000 0.00000003 0.00014328
1-Jan-07 6.800 0.00000000  —0.00000010 0.00011518
1-Jan-10 6.900 —0.00000000 0.00000014 0.00015545
1-Jan-11 6.960 0.00000000  —0.00000020 0.00013152
1-Jan-12 7.000 —0.00000000 0.00000023 0.00014041
1-Jan-14 7.100 0.00000000  —0.00000047  —0.00003778
1-Jan-15 7.050 —0.00000000 0.00000013  —0.00016286
1-Jan-20 7.000 0.00000000  —0.00000004 0.00000616
1-Jan-25 6.950 —0.00000000 0.00000002  —0.00002600
1-Jan-30 6.950 0.00000000

Table 7.3
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Figure 7.7: Graphic illustration of data in Table 7.3.

the level of accuracy, just on parameter b;, to seven decimal places the results are signifi-
cantly flawed, as shown in Table 7.4.°

It can be seen that within the long dates, parameter b starts to oscillate and grow in an
exponential manner. A graphical representation of the rates as a result of this flawed data is
shown in Figure 7.8. Note that the oscillation error is highly pronounced.

The degree of accuracy obtained through iteration is dependent on the starting point for
the first calculation and the number of iterations allowed as a maximum. There is no way of
ensuring that the required degree of accuracy will be obtained without undertaking very
high magnitude (and process intensive) calculations in the iterative algorithm. Without the
comfort of extensive manual review of the results by a person with a clear understanding
of the calculation and its implications, we do not recommend the use of the iteration
approach to derive a solution.

Solving for a system of linear equations by elimination
We now consider again equation (7.7) derived above, and re-arrange it slightly as (7.8).

(dn+1 —dn) | o (dnse = dyi)

Xni1bnio +2(Xn + Xni1)bn + Xvby = -3
XN Xni1

(7.8)

It can be seen that all parameters X and d can be obtained by reference to values that are
already known at the nodes. These are in fact node (or time-to-maturity) dependent
constants. In other words we have a system of linear equations from node 1 to N. Readers
will know that simultaneous linear equations can be solved by substitution. This method of
solving linear equation can be applied to larger sets of linear equations, although we require
increased processing power.

5 The results were calculated using the ‘Goal Seek’ function in Microsoft Excel.
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Date Rate (d) parameter a parameter b parameter c
1-Jan-00 6.000 —0.00001228 0.00000000 0.00544210
7-Jan-00 6.030 0.00000351 —0.00022105 0.00411580
31-Jan-00 6.050 —0.00000019 0.00003179 —0.00042640
1-Apr-00 6.100 —0.00000001 —0.00000230 0.00137252
1-Jul-00 6.200 0.00000002 —0.00000442 0.00076105
1-Oct-00 6.250 —0.00000002 0.00000174 0.00051482
1-Jan-01 6.300 0.00000002 —0.00000255 0.00044055
1-Jul-01 6.400 —0.00000006 0.00000695 0.00123776
1-Jan-02 6.520 0.00000008 —0.00002345 —0.00179846
1-Jan-03 6.610 —0.00000011 0.00006372 0.01289764
1-Jan-05 6.700 0.00000103 —0.00017986 —0.07200383
1-Jan-06 6.750 —0.00000419 0.00095266 0.21006837
1-Jan-07 6.800 0.00000395 —0.00363079 —0.76744773
1-Jan-10 6.900 —0.00006704 0.00936251 5.51451411
1-Jan-11 6.960 0.00028391 —0.06404843 —14.44584982
1-Jan-12 7.000 —0.00043548 0.24683078 52.26970709
1-Jan-14 7.100 0.00407923 —0.70817417 —284.97230573
1-Jan-15 7.050 —0.00230683 3.75858533 828.42777079
1-Jan-20 7.000 0.00741195 —8.87822401 -8, 520.0324431
1-Jan-25 6.950 —0.02736125 31.74664902 33,260.580061
1-Jan-30 6.950 —118.13828171
Table 7.4

50,000,000.00
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30,000,000.00 -

20,000,000.00 -

10,000,000.00

0.00 \/
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01/01/03
01/01/06
01/01/09
01/01/12
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01/01/21
01/01/24
01/01/27

Figure 7.8: Graphic illustration of data in Table 7.4, showing excessive oscillation.
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The system of equations can be represented in a N— 2 by N+ 1 matrix as follows:

X, 2%+X) X YRR
X, 206G+ %) X gt (ddy

dy_=dy 2 N %N-1
Xy 200y o+ Xy 1) Xy | -3t (oded)

In essence, if you look at the parameters b for which we are attempting to solve, this can
be laid over the above matrix as follows:

by b b,
b, b, by

bN—Z bN—l hN

In other words, we are looking for a set of values for by to by that will solve the linear
system for each and every node N.

Our basic limitation imposed above is not lifted. We set by and by equal to 0 in order to
apply the natural boundary condition. We can then substitute our solution for equation/
row 1 into equation/row 2. We perform a similar continuous set of substitutions until we
have a solution for by_;. This solution can then be substituted backward through the solved
equations to obtain a solution for b;.

A matrix of this form, that is, an upper and lower triangular quadrant for which no value
is required (observed by the grey shaded area) is also known as a tri-diagonal matrix. More
advanced methods of solving matrices (and in particular tri-diagonal types) are available. It
is outside the scope of this chapter to cover these methods in detail; interested readers may
wish to consult Burden and Faires (1997). For the purposes of illustration, however, we have
prepared a simple example solution for a small matrix of values, and this appears as an
Appendix to this chapter.

The same values used for the iterative solution were processed using the elimination
solution. The results and their illustrative chart are set out in Table 7.5 and Figure 7.9
respectively below.

On first observation these values appear to be identical to those obtained using the
iterative solution. In fact, even at the highest level of accuracy possible in our iterative
solution we notice a difference in the values for parameter ¢ when we look at the dates 1 Jan
2014 onwards (which appear in the grey boxes in Table 7.5). Although this is not apparent in
the chart, the results in the table where numbers appear with greater accuracy, show these
and other small differences not shown in Figure 7.9.
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7.20
7.00
6.80
6.60
6.40
6.20
6.00
5.80
5.60
5.40

Date Rate (d) parameter a parameter b parameter c
1-Jan-00 6.000 —0.00001228 0.00000000 0.00544212
7-Jan-00 6.030 0.00000351  —0.00022106 0.00411577
31-Jan-00 6.050 —0.00000019 0.00003181  —0.00042615
1-Apr-00 6.100 —0.00000001  —0.00000235 0.00137086
1-Jul-00 6.200 0.00000002  —0.00000426 0.00076898
1-Oct-00 6.250 —0.00000001 0.00000117 0.00048462
1-Jan-01 6.300 0.00000000  —0.00000042 0.00055340
1-Jul-01 6.400 —0.00000000 0.00000083 0.00062739
1-Jan-02 6.520 0.00000000 —0.00000126 0.00054853
1-Jan-03 6.610 —0.00000000 0.00000004 0.00010301
1-Jan-05 6.700 0.00000000 0.00000000 0.00013362
1-Jan-06 6.750 —0.00000000 0.00000003 0.00014328
1-Jan-07 6.800 0.00000000  —0.00000010 0.00011518
1-Jan-10 6.900 —0.00000000 0.00000014 0.00015545
1-Jan-11 6.960 0.00000000  —0.00000020 0.00013151
1-Jan-12 7.000 —0.00000000 0.00000023 0.00014041
1-Jan-14 7.100 0.00000000 —0.00000047
1-Jan-15 7.050 —0.00000000 0.00000013
1-Jan-20 7.000 0.00000000  —0.00000004
1-Jan-25 6.950 —0.00000000 0.00000002
1-Jan-30 6.950 0.00000000
Table 7.5
g g & & = 2 = £ £ 8 8 3 & §
S s 8 8 8 8 8 8 & & &8 & & & ¢
S 5 5 3 5 &5 © 5 &5 B 5 5 © =5 °

Figure 7.9: Graphic illustration of data in Table 7.5.
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Based on these results we conclude that the technique of solving for a system of linear
equations is superior to an iterative solution. This is because:

m no starting point for the calculation needs to be determined by the user or the system;

m the accuracy of the solution is not dependent on the number of iterative calculations
performed; and

m the results do not need the same degree of review to assess their accuracy.

This is not to say that this method is flawless. Even a tri-diagonal methodology is reliant on the
degree of precision applied in its calculation. Modern computing hardware and software has
limitations in the size or length of the floating point numbers that it can process. However, if
programmed with care, a typical application can deal with significantly large numbers.

7.5 Empirical proof of precision

The cubic spline application (CUBED?) is available on the website www.YieldCurve.com. This
demonstrates the methodology we have described in this chapter. In this application we have
chosen C++ as the programming language and we have used the C++ ‘long double’ variable type
to store and process our values. A long double is usually anything between a 74 and 128 bit place
holder, depending on the compiler and the system on which the calculations are performed.
Applying some basic binary mathematics and allowing 1 bit for sign storage we can calculate:

271 =2 361,183,241, 434, 820,000,000

This should be sufficient to provide an adequate level of accuracy for most cubic spline
calculations required of a zero curve application.” To test this we have performed empirical
testing to corroborate our conclusion using a completely fictitious set of data that was
designed to provide an extreme testing environment and data that is more sensitive to
calculation anomalies than any likely to occur in real life.> Our fake input values were
chosen to include:

m alarge number of nodes (over 100);
m  high oscillations at various points in the curve; and
m various points of flat data.

A large number of tenors was chosen to compound any rounding errors that might occur as
part of the elimination multiplier. Oscillation at various points in the curve are used to set up
waves that can continue when they subsequently flow into areas of flat data and which would

highlight errors, if they occur. Flat sections of the curve are used so that any errors become
highly visible.

This assurance is based on the fact that a typical yield curve application very, very rarely has more
than 30 nodes. Any application where there are large node numbers may require higher levels of
accuracy.

In other words we use interest rate values that are extreme and unlikely to be observed in a yield
curve in practice. Bond traders would be amused if one morning they discovered that the bond
redemption yield curve looked anything like Figure 7.10.
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A graph of this extreme test data is set out in Figure 7.10.

The resulting smooth graph after the cubic spline parameter have been calculated and
applied looks like that shown in Figure 7.11.

Two areas on the graph with relatively flat or consistent data values have been high-
lighted in Figure 7.11 as potential areas where calculation error may be observed. These
areas of the graph are isolated and shown in Figures 7.12 and 7.13.

In the first area we observe some oscillation. However, this is not oscillation as a result of
calculation errors. This is a smoothing effect that is required to meet the requirements of a cubic
spline and to ensure a smooth curve. The data between points 63 and 71 is consistently down-
ward sloping but the data then slopes upward again at point 72. The curve starts to ‘adapt’ at an
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Figure 7.10: Graphic illustration of extreme test data.
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Figure 7.11: Graph from Figure 7.10 highlighting areas of error.
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Figure 7.12: Exploded view of first error in Figure 7.11.
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Figure 7.13: Exploded view of second error in Figure 7.11.

earlier stage in order to facilitate this change in direction. Therefore this behaviour is unavoid-
able, but under most applications for the spot curve does not present a material problem.

The second area of the curve provides another typical cubic spline example as the curve
‘adapts’ to its new parameters. Once again this is a natural spline phenomenon and not an
error in the calculated values.

Empirical data does not prove beyond a doubt that a cubic spline method, applied using
an appropriate solution technique and precise software, will always produce accurate
results. Nonetheless we believe that it is reasonable to assume from the test data set out
above that the cubic spline methodology, used in conjunction with appropriate calculation
tools, provides accurate zero curve results in most fixed income market conditions.
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7.6 A look at forward rates

Previous literature has highlighted the use of the cubic spline approach to model forward
curves, and its limitations. Certainly a cubic spline discussion would be incomplete without
a look at its application to forward rates. We will use our empirical data to highlight typical
forward rate behaviour under the cubic spline technique. Our sample data does not reflect
actual market conditions and is an extreme data set, to say the least. However, it does
highlight a point with regards to forward rates that can often be observed sometimes under
normal market conditions. To this end we isolate the last sub-set of the data, as shown
above, and plot the forward rates for that data set.

From data that was interpolated using the linear method versus data interpolated using the
cubic spline, a comparison of forwards shows how the forwards in a cubic spline environment
can oscillate. As expected, the relatively minor oscillations observed first in the zero rates curve
are compounded excessively in the forward rate calculation. The linear interpolation approach,
shown for comparison purposes in Figure 7.14, eliminates much of the oscillation but of course
is not a smooth curve, which is as undesirable. The user is confronted with the need to balance
the conflicting requirements; a trade-off is called for and for most practical applications the
cubic spline approach and its smoothing results is preferred. It remains important, however,
that the user reviews cubic spline data by looking at both the zero and forward rates.

Using the actual United Kingdom 10-year zero curve for 2 January 2000, the forward rates
have been calculated using cubic spline and linear interpolation and compared in Figures 7.15
and 7.16 respectively. There is no observed reason to favour the latter approach over the former.

7.6.1 Improvements to the basic approach

As a result of the drawback when fitting the forward curve, the basic technique has been
improved to remove the oscillation effect at longer maturities. As we saw from the test results
presented earlier, the oscillation of a spline is partly a function of the number of nodes used.
The paradox with this factor is that in practice, at very long maturities the forward (and also
the spot) curve would be expected to be reasonably flat. To remove the oscillation, as
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Figure 7.14: The linear approach, and unacceptable lack of ‘smoothness’.
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Figure 7.15: Graph prepared using cubic spline and linear interpolation.

described first by Fisher, Nychka and Zervos (1995), this involves the addition of a roughness
penalty when minimising the sums of squares. Waggoner (1997) introduced a variable rough-
ness penalty, which enabled the approach to retain the flexibility at the short end and reduce
oscillation at the long end. Using the Waggoner approach enables users to retain the flexibility
and ease of the cubic spline approach as well as a more realistic forward curve. Anderson and
Sleath (1999) state that the advantage of the spline approach over parametric methods is that
separate segments of the spline can be adjusted independently of each other. The significance
of this is that a change in market levels at one of the term structure will not affect significantly
at other parts of the curve. This is a drawback of the parametric methods. Ironically Anderson
and Sleath modify the Waggoner model in a way that would appear to incorporate elements of
the parametric approach, and their results appear to improve on the earlier works.
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Figure 7.16: Graph prepared using cubic spline and linear interpolation.
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7.7 Conclusion

The purpose of this chapter has been to present an accessible account of how the cubic
spline methodology of term structure estimation could be implemented by users involved
in any area of the debt capital markets. The technique is straightforward and quick, and is
valid for a number of applications, most of which are ‘normal’ or conventional yield curves.
For example users are recommended to use it when curves are positively sloping, or when
the long end of the curve is not downward sloping. The existence of humps along the short
or medium terms of the curve can cause excessive oscillation in the forward curve but the
zero curve may still be used for valuation or relative value purposes.

Oscillation is a natural effect of the cubic spline methodology and its existence does not
impair its effectiveness under many conditions. If observed rates produce very humped
curves, the fitted zero-curve using cubic spline does not produce usable results. For policy
making purposes, for example as used in central banks, and also for certain market valua-
tion purposes, users require forward rates with minimal oscillation. In such cases, however,
the Waggoner or Anderson-Sleath models will overcome this problem. The cubic spline
approach can therefore be recommended under most market conditions.

Appendix

Appendix 7.1:  Example matrix solution based on Gaussian
elimination

We will solve for the following values (where the values of X have already been calculated).

X X y
0.90 0.40 1.30
1.30 0.60 1.50
1.90 0.20 1.85
2.10 0.90 2.10
3.00 0.80 1.95
3.80 0.50 0.40
4.30 0.25

Firstly we construct our matrix as follows.

X, 206+X) X, (et )y

X, 206,+X) X, e )

X

(d;\ Iy z) (d\r’dmul
Xnop 2o+ Xy_1) Xy _3( X, xm))
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Where b, is set to zero this provides the values.

bl b2 b3 b4 b5 b6 b7

0.0 2.0 0.6 0.3
0.6 1.6 0.2 2.0

0.2 2.2 0.9 —4.3

0.9 3.4 0.8 -5.3

0.8 2.6 0.5 4.9

In turn we can substitute row 1 into row 2 to obtain.

bl b2 b3 b4 b5 b6 b7

0.0 2.0 0.6 0.3
0.0 4.7 0.7 6.4

0.2 2.2 0.9 —4.3

0.9 34 0.8 -5.3

0.8 2.6 0.5 4.9

Similar substitutions, and the fact that b; is constrained as zero, yield the matrix
below.

bl b2 b3 b4 b5 b6 b7

0.0 20 0.6 0.3
0.0 4.7 0.7 6.4
0.0 514 213 —-107.0

0.0 1729 45.7 —196.4

0.0 5162 0.0 1,258.0

This means that we can solve for bg. Once we have a solution for bg we can solve for bs
and so on. As a final result we get the following values for parameter b.

bl b2 b3 b4 b5 b6 b7

0.0 -0338 1544 —-1344 -1.780 2437 0.0

Parameters a and ¢ can be determined directly from the values of b above.
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8 Advanced Analytics for
Index-linked Bonds

Bonds that have part or all of their cash flows linked to an inflation index form an important
segment of several government bond markets. In the United Kingdom the first index-linked
bonds were issued in 1981 and at the end of 1999 they accounted for approximately 15% of
outstanding nominal value in the gilt market. Index-linked bonds were only recently introduced
in the US Treasury market but are more established in Australia, Canada, the Netherlands, New
Zealand and Sweden. There is no uniformity in market structure and as such there are sig-
nificant differences between the index-linked markets in these countries. There is also a wide
variation in the depth and liquidity of these markets.

Index-linked bonds or inflation-indexed bonds present additional issues in their analysis,
due to the nature of their cash flows. Measuring the return on index-linked bonds is less
straightforward than with conventional bonds, and in certain cases there are peculiar market
structures that must be taken into account as well. For example, in the US market for index-
linked Treasuries (known as ‘TIPS’ from Treasury inflation-indexed securities) there is no
significant lag between the inflation link and the cash flow payment date. In the UK there is an
eight-month lag between the inflation adjustment of the cash flow and the cash flow payment
date itself, while in New Zealand there is a three-month lag. The existence of a lag means that
inflation protection is not available in the lag period, and that the return in this period is
exposed to inflation risk; it also must be taken into account when analysing the bond.

From market observation we know that index-linked bonds can experience considerable
volatility in prices, similar to conventional bonds, and therefore there is an element of
volatility in the real yield return of these bonds. Traditional economic theory states that the
level of real interest rates is constant, however in practice they do vary over time. In addition
there are liquidity and supply and demand factors that affect the market prices of index-
linked bonds. In this chapter we present analytical techniques that can be applied to index-
linked bonds, the duration and volatility of index-linked bonds and the concept of the real
interest rate term structure.

8.1 Index-linked bonds and real yields

The real return generated by an index-linked bond, or its real yield, is usually defined as
yield on risk-free index-linked bonds, or in other words the long-term interest rate on risk-
free funds minus the effect of inflation. There may also be other factors involved, such as
the impact of taxation. Therefore the return on an index-linked bond should in theory move
in line with the real cost of capital. This will be influenced by the long-term growth in the
level of real gross domestic product in the economy. This is because in an economy
experiencing rapid growth, real interest rates are pushed upwards as the demand for capital
increases, and investors therefore expect higher real yields. Returns are also influenced by
the demand for the bonds themselves.

141
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The effect of general economic conditions and the change in these over time results in
real yields on index-linked bonds fluctuating over time, in the same way nominal yields
fluctuate for conventional bonds. This means that the price behaviour of indexed bonds can
also be fairly volatile.

The yields on indexed bonds can be used to imply market expectations about the level of
inflation. For analysts and policy makers to use indexed bond yields in this way, it is
important that a liquid secondary market exists in the bonds themselves. For example the
market in Australian index-linked bonds is relatively illiquid, so attempting to extract an
information content from their yields may not be valid. Generally though the real yields on
indexed bonds reflect investors’ demand for an inflation premium, or rather a premium for
the uncertainty regarding future inflation levels. This is because holders of indexed bonds
are not exposed to inflation-eroded returns; therefore if future inflation was expected to be
zero, or known with certainty (whatever its level) there would be no requirement for an
inflation premium, because there would be no uncertainty. In the same way, the (nominal)
yields on conventional bonds reflect market expectations on inflation levels. Therefore
higher volatility of the expected inflation rate will lead to a higher inflation risk premium
on conventional bonds, and a lower real yield on indexed bonds relative to nominal yields.
It is the uncertainty regarding future inflation levels that creates a demand for an inflation
risk yield premium, rather than past experience of inflation levels. However investor senti-
ment may well demand a higher inflation premium in a country with a poor record in
combating inflation.

Traditionally information on inflation expectations has been obtained by survey meth-
ods or theoretical methods. These have not proved reliable however, and were followed
only because of the absence of an inflation-indexed futures market.! Certain methods for
assessing market inflation expectations are not analytically valid; for example the sugges-
tion that the spread between short-term and long-term bond yields cannot be taken to be
a measure of inflation expectation, because there are other factors that drive this yield
spread, and not just inflation risk premium. Equally, the spread between the very short-
term (overnight or one week) interest rate and the two-year bond yield cannot be viewed
as purely driven by inflation expectations. Using such approaches to glean information on
inflation expectations is logically unsound. One approach that is valid, as far as it goes,
would be to analyse the spread between historical real and nominal yields, although this
is not a forward-looking method. It would however indicate the market’s inflation pre-
mium over a period of time. The best approach though is to use the indexed bond market;
given a liquid market in conventional and index-linked bonds it is possible to derive
estimates of inflation expectations from the yields of both sets of bonds. This is reviewed
later in the chapter.

8.2 Duration and index-linked bonds

In earlier chapters we reviewed the basic features of index-linked bonds and their main
uses. We also discussed the techniques used to measure the yield on these bonds. The

! The New York Coffee, Sugar and Cocoa Exchange traded a futures contract on the US consumer

prices index (CPI) in the 1980s.
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largest investors in indexed bonds are long-dated institutions such as pension fund man-
agers, who use them to match long-dated liabilities that are also index-linked, for example a
pension contract that has payments linked to the inflation index. It is common though for
investors to hold a mixture of indexed and conventional bonds in their overall portfolio.

The duration of a bond is used as a measure of its sensitivity to changes in interest
rate. The traditional measure, if applied to indexed bonds, will result in high values due
to the low coupon on these bonds and the low real yield. In fact the longest-duration
bonds in most markets are long-dated indexed bonds. The measure, if used in this way
however, is not directly comparable to the duration measure for a conventional bond.
Remember that the duration of a conventional bond measures its sensitivity to changes
in (nominal) yields, or put another way to changes in the combined effect of inflation
expectations and real yields. The duration measure of an indexed bond on the other
hand, would be a measure of its sensitivity to changes in real yields only, that is to
changes in real interest rate expectations. Therefore it is not valid to compare traditional
duration measures between conventional bonds and indexed bonds, because one would
not be comparing like-for-like. This has important implications for the portfolio level. If a
portfolio is composed of both conventional and indexed bonds, how does one measure
its combined duration? The traditional approach of combining the duration values of
individual bonds would have no meaning in this context, because the duration measure
for each type of bond is measuring something different. For example, consider a situ-
ation where there are two portfolios with the same duration measure. If one portfolio was
composed of a greater amount by weighting of index-linked bonds, it would have a
different response to changes in market yields, especially so if investors’ economic
expectations shifted significantly, compared to the portfolio with a lower weighting in
indexed bonds. Therefore a duration-based approach to market risk would no longer be
adequate as a means of controlling portfolio market risk.

Therefore the key focus of fund managers that run combined portfolios of conventional
and indexed bonds is to manage the duration of the conventional and indexed bonds on a
separate basis, and to be aware of the relative weighting of the portfolio in terms of the two
bond types. A common approach is to report two separate duration values for the portfolio,
which would measure two separate types of risk exposure. One measure would be the
portfolio real yield duration, which is the value of the combined durations of both the
conventional and indexed bonds. This measure is an indication of how the portfolio value
will be affected by a change in market real yields, which would impact both indexed and
conventional bond yields. The other measure would be the portfolio inflation duration,
which is a duration measure for the conventional bonds only. This duration measure
indicates the sensitivity of the portfolio to a change in market inflation expectations, which
have an impact on nominal yields but not real yields. Portfolio managers also follow a
similar approach with regard to interest-rate volatility scenarios. Therefore if carrying out a
parallel yield curve shift simulation, which in terms of a combined portfolio would actually
correspond to a real-yield simulation, the portfolio manager would also need to undertake a
simulation that mirrored the effect of a change in inflation expectations, which would have
an impact on nominal yields only.

The traditional duration approach can be used with care in other areas. For instance,
the Bank of England monetary policy committee is tasked with keeping inflation at a level
of 2.5%. If therefore the ten-year benchmark gilt is trading at a yield of 6.00% while the
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ten-year index-linked gilt is trading at a real yield of 3.00%, this implies that the market
expectation of average inflation rates during the next ten years is 3.00%. This would
suggest that the benchmark gilt is undervalued relative to the indexed gilt. To effect a
trade that matched the market maker’s view, one would short the ten-year index-linked
gilt and buy the conventional gilt. If the view turned out to be correct and market inflation
expectations declined, the trade would generate a profit. If on the other hand real interest-
rate expectations changed, thus altering real yields, there would be no effect. The other
use of the traditional duration approach is with regard to hedging. Indexed bonds
are sometimes difficult to hedge because of the lack of suitable hedging instruments.
The most common hedging instrument is another indexed bond, and the market maker
would use a duration weighting approach to calculate the nominal value of the hedging
bond.

In the traditional approach the duration value is calculated using nominal cash flows,
discounted at the nominal yield. A more common approach is to assume a constant average
rate of inflation, and adjust cash flows using this inflation rate. The real yield is then used to
discount the assumed future cash flows. There are a number of other techniques that can be
used to calculate a duration value, all requiring the forecasting of the level of future cash
flows and discounting using the nominal yield. These include:

m as above, assuming a constant average inflation rate, which is then used to calculate the
value of the bond’s coupon and redemption payments. The duration of the cash flow is
then calculated by observing the effect of a parallel shift in the zero-coupon yield curve.
By assuming a constant inflation rate and constant increase in the cash flow stream, a
further assumption is made that the parallel shift in the yield curve is as a result of
changes in real yields, not because of changes in inflation expectations. Therefore this
duration measure becomes in effect a real yield duration;

m a repeat of the above procedure, with the additional step, after the shift in the yield
curve, of recalculating the bond cash flows based on a new inflation forecast. This
produces a duration measure that is a function of the level of nominal yields. This
measure is in effect an inflation duration, or the sensitivity to changes in market
inflation expectations, which is a different measure to the real yield duration;

m an assumption that the inflation scenario will change by an amount based on the
historical relationship between nominal yields and the market expectation of inflation.
This is in effect a calculation of nominal yield duration, and would be a measure of
sensitivity to changes in nominal yields.

Possibly the most important duration measure is the real yield duration, which is more
significant in markets where there is a lag between the indexation and cash flow dates, due
to the inflation risk exposure that is in place during the lag period. This is the case in both
the UK and Australia, although as we noted the lag is not significant in the US market. It is
worth noting that index-linked bonds do not have stable nominal duration values, that is,
they do not exhibit a perfectly predictable response to changes in nominal yields. If they
did, there would be no advantage in holding them, as their behaviour could be replicated by
conventional bonds. For this reason, index-linked bonds cannot be hedged perfectly with
conventional bonds, although this does happen in practice on occasions when no other
hedging instrument is available.



Chapter 8: Advanced Analytics for Index-linked Bonds 145

Larp W

"INDEX-LIMKED ¥IELD AMALYSIS

L
FPAYMEMT IMCOME

Figure 8.1: Example of index-linked yield analysis, UK 2% % Treasury 2009 (assumed annual
inflation rate 3.00%, base inflation index 89.2015, current index 181.3), showing real yield
and money yield, 18 August 2003. ©Bloomberg L.P. Reproduced and used with permission.

One final point regarding duration is that it is possible to calculate a tax-adjusted
duration for an index-linked bond in markets where there is a different tax treatment to
indexed bonds compared to conventional bonds. In the US market the returns on indexed
and conventional bonds are taxed in essentially the same manner, so that in similar fashion
to Treasury strips, the inflation adjustment to the indexed bond’s principal is taxable as it
occurs, and not only on the maturity date. Therefore in the US indexed bonds do not offer
protection against any impact of after-tax effects of high inflation. That is, Tips real yields
reflect a premium for only pre-tax inflation risk. In the UK market however, index-linked
gilts receive preferential tax treatment, so their yields also reflect a premium for after-tax
inflation risk. In practice this means that the majority of indexed gilt investors are those
with high marginal tax rates.? This factor also introduces another element in analysis; if the
demand for indexed or conventional bonds were to be a function of expected after-tax
returns, this would imply that pre-tax real yields should rise as expected inflation rates rise,
in order to maintain a constant after-tax real yield. This has not been observed explicitly in
practice, but is a further factor of uncertainty about the behaviour of real yields on index-
linked bonds.?

For example, see Brown and Schaefer (1996).
For further detail on this phenomenon, see Roll (1996).
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8.3 Estimating the real term structure of interest rates

In Chapter 11 of the author’s book The Bond and Money Markets we show some approaches
used to measure inflation expectations, with reference to UK index-linked gilts. To recap,
these measures include:

m the ‘simple’ approach, where the average expected inflation rate is calculated using the
Fisher identity, so that the inflation estimate is regarded as the straight difference
between the real yield on an index-linked bond, at an assumed average rate of inflation,
and the yield on a conventional bond of similar maturity;

m the ‘break-even’ inflation expectation, where average inflation expectations are esti-
mated by comparing the return on a conventional bond against that on an indexed bond
of similar maturity, but including an application of the compound form of the Fisher
identity. This has the effect of decomposing the nominal rate of return on the bond into
components of real yield and inflation;

m a variation of the break-even approach, but matching stocks by duration rather than by
maturity.

The drawbacks of each of these approaches are apparent. A rather more valid and sound
approach is to construct a term structure of the real interest rates, which would indicate, in
exactly the same way that the conventional forward rate curve does for nominal rates, the
market’s expectations on future inflation rates. In countries where there are liquid markets
in both conventional and inflation-indexed bonds, we can observe a nominal yield curve
and a real yield curve. It then becomes possible to estimate both a conventional term
structure and a real term structure; using these allows us to create pairs of hypothetical
conventional and indexed bonds that have identical maturity dates, for any point on the
term structure.* We could then apply the break-even approach to any pair of bonds to
obtain a continuous curve for both the average and the forward inflation expectations. To
maximise use of the available information we can use all the conventional and indexed
bonds that have reasonable liquidity in the secondary market.

In this section we review one method that can be used to estimate and fit a real term
structure.

8.3.1 The term structure of implied forward inflation rates

In previous chapters we reviewed the different approaches to yield curve modelling used
to derive a nominal term structure of interest rates. We saw that the choice of yield curve
model can have a significant effect on the resulting term structure; in the same way, the
choice of model will impact the resulting real rate term structure as well. One approach
has been described by McCulloch (1975), while in the UK market the Bank of England
uses a modified version of the approach posited by Waggoner (1997) which we discussed
in the previous chapter. McCulloch’s approach involves estimating a discount function
by imposing a constraint on the price of bonds in the sample to equal the sum of the

*  We are restricted however to the longest-dated maturity of either of the two types of bonds.
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discounted values of the bonds’ cash flows. The Waggoner approach uses a cubic
spline-based method, like McCulloch, with a roughness penalty that imposes a trade-
off between the smoothness of the curve and its level of forward rate oscillation. The
difference between the two approaches is that with McCulloch it is the discount function
that is specified by the spline function, whereas in the Waggoner model it is the zero-coupon
curve. Both approaches are valid, in fact due to the relationship between the discount
function, zero-coupon rate and forward rate, both methods will derive similar curves
under most conditions.

Using the prices of index-linked bonds it is possible to estimate a term structure of real
interest rates. The estimation of such a curve provides a real interest counterpart to the
nominal term structure that was discussed in the previous chapters. More important it
enables us to derive a real forward rate curve. This enables the real yield curve to be used as
a source of information on the market’s view of expected future inflation. In the UK market
there are two factors that present problems for the estimation of the real term structure;
the first is the eight-month lag between the indexation uplift and the cash flow date, and the
second is the fact that there are fewer index-linked bonds in issue, compared to the number
of conventional bonds. The indexation lag means that in the absence of a measure of
expected inflation, real bond yields are dependent to some extent on the assumed rate of
future inflation. The second factor presents practical problems in curve estimation; in
December 1999 there were only 11 index-linked gilts in existence, and this is not sufficient
for most models. Neither of these factors presents an insurmountable problem however,
and it is still possible to estimate a real term structure.

8.3.2 Estimating the real term structure®

There are a number of techniques that can be applied in estimating the real term structure.
One method was described by Schaefer (1981). The method we describe here is a modified
version of the cubic spline technique described by Schaefer. This is a relatively straightfor-
ward approach. The adjustment involves simplifying the model, ignoring tax effects and
fitting the yield-to-maturity structure. A reduced number of nodes defining the cubic spline
is specified compared with the conventional term structure, because of the fewer number of
index-linked bonds available, and usually only three node points are used. Our approach
therefore estimates three parameters, defining a spline consisting of two cubic functions,
using 11 data points. The approach is defined below.

In the first instance, we require the real redemption yield for each of the indexed
bonds. This is the yield that is calculated by assuming a constant average rate of
inflation, applying this to the cash flows for each bond, and computing the redemption
yield in the normal manner. The yield is therefore the market-observed yield, using the
price quoted for each bond. These yields are used to define an initial estimate of the real
yield curve, as they form the initial values of the parameters that represent the real yield
at each node point. The second step is to use a non-linear technique to estimate the
values of the parameters that will minimise the sum of the squared residuals between

> This section follows the approach (with permission) from Deacon and Derry (1994), a highly

accessible account. This is their Bank of England working paper, ‘Deriving Estimates of Inflation
Expectations from the Prices of UK Government Bonds'.
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the observed and fitted real yields. The fitted yield curve is viewed as the real par yield
curve; from this curve we calculate the term structure of real interest rates and the
implied forward rate curve, using the technique described in Chapter 6. In estimating the
real term structure in this way, we need to be aware of any tax effects. In the UK market,
there is a potentially favourable tax effect, which may not apply in say, the US Tips
market. Generally for UK indexed gilts, high marginal taxpayers are the biggest holders of
index-linked bonds because of the ratio of capital gain to income, and their preference is
to hold shorter-dated indexed bonds. On the other hand pension funds, which are
exempt from income tax, prefer to hold longer-dated indexed gilts. The approach we
have summarised here ignores any tax effects, but to be completely accurate any tax
impact must be accounted for in the real term structure.

8.3.3 Fitting the discount function

The term structure method described by McCulloch (1971) involved fitting a discount

function, rather than a spot curve, using the market prices of a sample of bonds. This

approach can be used with only minor modifications to produce a real term structure.
Given the bond price equation (8.1):

T;
PG /0 df ()dp + Mdf(Ty) (8.1)

where P;, C;, T;, M; are the price, coupon, maturity and principal payment of the ith
bond, we set the set of discrete discount factors as the discount function df, defined as a
linear combination of a set of k linearly independent underlying basis functions, given
by (8.2):

k
df(T) =1+ afi(T) (8.2)
j=1

where fi(T) is the jth basis function and a; is the corresponding coefficient, with
j=1,2,...,k. It can be shown (see Deacon and Derry (1994)) that for index-linked bonds
equation (8.2) can be adapted by a scaling factor A; that is known for each bond, once an
assumption has been made about the future average inflation rate, to fit a discount function
for indexed bonds. We estimate the coefficients a; from:

k
Yi=Y_ ax
=

where

yi = Pi — ACT; — AiM;
T;

Xij = AiCi/ findp+ AiMifi(Ti)
0

u= (l + 77_6)*1/2
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. RPID;
tdjy . J : i
B [u']; RPIB; if RPID; is known
Ai= RPIL
tdi-L/67 ;
[u I; RPIB; otherwise

where P;, C;, T;, M; are as before, but this time representing the index-linked bond. The
scaling factor A; is that for the ith bond, and depends on the ratio of the retail price index
(RPI) at the time compared to the RPI level in place at the time the bond was issued, known
as the base RPL° If in fact the RPI that is used to index any particular cash flow is not known,
it must be estimated using the latest available RPI figure, in conjunction with an assump-
tion about the path of future inflation, using =°.

8.3.4 Deriving the term structure of inflation expectations

Using any of the methods described in Chapter 6 or the discount function approach
summarised above, we can construct curves for both the nominal and the real implied
forward rates. These two curves can then be used to infer market expectations of future
inflation rates. The term structure of forward inflation rates is obtained from both these
curves by applying the Fisher identity:

1+£= (1+i)1/2(1+£> (8.3)

where fis the implied nominal forward rate, r is the implied real forward rate and i is the
implied forward inflation rate. As with the term structure of real spot rates, the real implied
forward rate curve is dependent on an assumed rate of inflation. To make this assumption
consistent with the inflation term structure that is calculated, we can use an iterative
procedure for the assumed inflation rate. Essentially this means that the real yield curve
is re-estimated until the assumed inflation term structure and the estimated inflation term
structure are consistent. Real yields are usually calculated using either a 3% or a 5% flat
inflation rate. This enables us to estimate the real yield curve, from which the real forward
rate curve is derived. Using (8.3) we can then obtain an initial estimate of the inflation term
structure. This forward inflation curve is then converted into an average inflation curve,
using (8.4):

k

i=JJa+in " -1 (8.4)

J

where
if; is the forward inflation rate at maturity i
i; is the average inflation rate at maturity i.
From this average inflation curve, we can select specific inflation rates for each index-
linked bond in our sample. The real yields on each indexed bond are then re-calculated

6 Due to the lag in the UK gilt market, for index-linked gilts the base RP1I is actually the level recorded

for the month eight months before the issue date.
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Figure 8.2: UK market nominal and real term structure of interest rates, July 1999.
Yield source: BoE.

using these new inflation assumptions. From these yields the real forward curve is calcu-
lated, enabling us to produce a new estimate of the inflation term structure. This process is
repeated until there is consistency between the inflation term structure used to estimate the
real yields and that produced by (8.3).

Using the modified Waggoner method described in Chapter 6, the nominal spot yield
curve for the gilt market in July 1999 is shown in Figure 8.2. The real term structure is also
shown, which enables us to draw the implied forward inflation expectation curve, which is
simply the difference between the first two curves.

8.3.5 Application

Real yield curves are of some use to investors, for a number of reasons. These include
applications that arise in insurance investment management and corporate finance, such as
the following:

m they can be used to value inflation-linked liabilities, such as index-linked annuity
contracts;

m they can be used to value inflation-linked revenue streams, such as taxes that are raised
in line with inflation, or for returns generated in corporate finance projects; this makes it
possible to assess the real returns of project finance or government revenue;

m they can be used to estimate the present value of a company’s future staff costs, which
are broadly linked to inflation.

Traditionally, valuation methods for such purposes would use nominal discount rates
and an inflation forecast, which would be constant. Although the real term structure also
includes an assumption element, using estimated market real yields is equivalent to using a
nominal rate together with an implied market inflation forecast, which need not be con-
stant. This is a more valid approach; a project financier in the UK in July 1999 can obtain
more meaningful estimates on the effects of inflation using the rates implied in Figure 8.2,
rather than an arbitrary, constant inflation rate. The inflation term structure can be used in
other ways as well; for example, an investor in mortgage-backed bonds, who uses a
prepayment model to assess the prepayment risk associated with the bonds, will make
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certain assumptions about the level of prepayment of the mortgage pool backing the bond.
This prepayment rate is a function of a number of factors, including the level of interest
rates, house prices and the general health of the economy. Rather than use an arbitrary
assumed prepayment rate, the rate can be derived from market inflation forecasts.

In essence, the real yield curve can and should be used for all the purposes for which the
nominal yield curve is used. Provided that there are enough liquid index-linked bonds in the
market, the real term structure can be estimated using standard models, and the result is
more valid as a measure of market inflation expectations than any of the other methods that
have been used in the past.
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9 Analysing the Long Bond Yield

A common observation in government bond markets is that the longest-dated bond trades
expensive to the yield curve. It also exhibits other singular features that have been the subject
of recent research for example by Phoa (1998), which we review in this chapter. The main
feature of long bond yields is that they reflect a convexity effect. Analysts have attempted to
explain the convexity effects of long bond yields in a number of ways. These are discussed
first. We then consider the volatility and convexity bias that is observed in long bond yields.

9.1 Theories of long-dated bond yields

In both the United States and United Kingdom government markets extremely long-dated
bonds have been actively traded. These include ‘century’ bonds in the US and undated or
irredeemable bonds in the UK, including gilt issues such as the ‘consols’ or War Loan. At
what yields should very long-dated bonds trade? Under the conventional hypothesis
reviewed in Chapter 2, investors might believe that if the yield on the 30-year government
bond is 6.00%, the yield on a hypothetical 100-year government bond will be higher, say
6.25%, the higher rate signifying the term premium payable on the longer bond. In fact, this
is extremely unlikely, and it has been shown that, for such a term structure to be observed,
we would require forward interest rates to be very high. Expected rates will not therefore be
as high as the forward rates. We explore the issues in this section.

Theories of very long-dated interest rates have been proposed that on observation,
would appear to hold; these include:

m that very long-dated yields are not an unbiased average of expected future interest rates,
but rather can be estimated using a weighting of various interest-rate scenarios; at
sufficiently long maturities the highest interest-rate scenarios do not impact the long-
dated yield (Dybvig and Marshall 1996);

m extremely long-dated zero-coupon and forward rates can never decline, even when
expected long-term future interest rates fall; therefore this limits the extent to which
very long-dated bond yields are affected by a change in the current interest-rate envir-
onment (Dybvig, Ingersoll and Ross 1996).

The very long-dated zero-coupon yield is taken to be the infinite maturity zero-coupon
yield, that is the limiting yield of a risk-free zero-coupon bond whose maturity approaches
infinity. Although it might appear so, the infinite maturity yield is not identical to the yield
on an irredeemable bond, which pays coupons during its life and so has a shorter-
dated yield. It is also not identical to the long-term interest rate, which is defined as the
expected long-term rate of return on bonds, or the expected rate of return on a bond with
infinite duration. The long rate is a measure of the expected future rate of return, rather
than a present bond yield. The two interest-rate hypotheses above are general and apply to
both conventional and index-linked bonds. They use the principal of no-arbitrage pricing,
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in terms of a trading strategy, in their derivation, which we do not present here. They do
however have a practical significance in terms of the valuation of long-dated bonds.

9.1.1 Long-dated yields

In an environment of interest-rate uncertainty, from previous chapters we know the price
today of a zero-coupon bond of maturity T to be a function of the expectation of future
short rates, which at time ¢ are not known; this is given in (9.1):

P(t, T)= exp(— '/tTr(s)ds). (9.1)

Expression (9.1) states that the price of a zero-coupon bond is equal to the discount
factor from time ¢ to its maturity date, or the average of the discount factors under all
interest-rate scenarios, weighted by their probabilities. It can be shown that the T-maturity
forward rate at time ¢ is given by

E; [rT exp(— ftT r(s)ds)}
fin = E, [exp(f ftT r(s)ds)]

which expresses the T-term forward rate in terms of the dynamics of the T-maturity short-
rate rr under all possible interest-rate scenarios, that is, along all possible random interest-
rate paths. The weightings are in terms of the probabilities of each interest-rate path
occurring and the discount factors from the period ¢ to T that occur in each scenario. So
for instance consider an environment where there are only two possible interest-rate
scenarios, each with a probability of p(1) and p(2). Phoa (1998) states that the T-maturity
forward rate is given by the weighted average, shown in (9.3) where Dfis the discount factor:

p(L)Dfi(¢, T) - rr ) +p2)Dfa(t, T) - 112
p(L)Dfi(t, T) + p(2)Dfa(t, T) .

The effect of weighting using discount factors is to make the lower level interest-rate
scenario more significant, because the discount factors are higher under these scenarios.
This means that a lower interest-rate scenario has more influence on the forward rate than
a higher-rate scenario, and this influence steadily increases as the forward rate term grows
in maturity, since the difference between the discount factors increases. This is an import-
ant result.

9.2)

f(t, T) = (9.3)

9.1.2 Long-dated forward rates

Following Phoa (1998), we can illustrate this with a hypothetical example. Consider a bino-
mial interest-rate environment under which there are the following interest-rate scenarios:

m the short-rate is at a constant level of 8.00%, with a probability of 70%;
m the short-rate is at a constant level of 4.00%, with a probability of 30%.

The expected future short-rate at any point in the future will be 8%, given the probabil-
ities, however the forward rate will be lower than 8%, because it is calculated by weighting
each interest-rate scenario by the relevant discount factors. This is illustrated in Figure 9.1.

The weight attached to the lower 4% interest-rate scenario increases with increasing
term-to-maturity, while the weight on the higher rate will diminish. Therefore the 30-year
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Figure 9.1: Forward rate calculation weighted by discount factors.

forward rate will be below 8% while the 100-year forward rate will be around half of the
short-rate for the most probable scenario. Put another way, over a long period only the
lowest interest-rate scenario is relevant, which is the theorem posited by Dybvig and
Marshall. This tendency for the forward rate curve to fall with very long maturities is as a
result of a convexity bias in the behaviour of the yield curve, which we consider later. This
effect influences zero-coupon yields, which also exhibit a tendency to gravitate towards the
lowest interest-rate scenario. Consider now another hypothetical example, where the cur-
rent short-rate is 6%, and that there are now three (and only three) possible interest-rate
scenarios, which are:

m that the short-rate increases from 6% to a long-term rate of 10%;
m that the short-rate increases from 6% to a long-term rate of 8%;

m that the short-rate decreases from 6% to a long-term rate of 4%.

The probabilities of each of these occurrences are 10%, 80% and 10% respectively,
that is the most likely scenario is a rise in the short-rate from 6% to 8%. For each scenario
we assume that the short-rate approaches the expected long-term level in exponential
fashion. The expected interest-rate scenario therefore is a rise from 6% to 8%. From
Figure 9.2 we see that the forward rate curve behaves differently to expected future short-
rate levels. The forward rates peak at around 12-14 years, and then steadily decline as the
term to maturity increases. The zero-coupon yield curve, which can be derived from the
forward yield curve, has a different shape and starts to decline from the 20-year term
period.

Figure 9.2 suggests that the unbiased expectations hypothesis which states that forward
rates are equal to the expected level of future short-term rates, is incorrect, and so it is not
valid to calculate par and zero-coupon yield curves using the expected short-rate curve.
Instead the forward rate curve should be used. Figure 9.3 illustrates the extent of the error
that might be made using the expected short-rate curve to calculate the zero-coupon yield
curve, which is magnified over longer terms to maturity.



156 Advanced Fixed Income Analysis

Rate (%)

----- Expected short-rate curve - -
—— Zero-coupon yield curve
— — - Forward rate

3 T T T T T T |
0 1 10 20 30 40 50 60 70 80 90 100

Term to maturity

Figure 9.2: The theoretical behaviour of the long-bond yield.

From Figure 9.3 we see that to price a very long-dated bond off the yield of the 30-year
government bond would lead to errors. The unbiased expectations hypothesis suggests that
100-year bond yields are essentially identical to 30-year yields, however this is in fact
incorrect. The theoretical 100-year yield in fact will be approximately 20-25 basis points
lower. This reflects the convexity bias in longer-dated yields. In our illustration we used a
hypothetical scenario where only three possible interest-rate states were permitted. Dybvig
and Marshall showed that in a more realistic environment, with forward rates calculated
using a Monte Carlo simulation, similar observations would result. Therefore the observa-
tions have a practical relevance.

This is an important result for the pricing of longer-dated bonds. Certain corporate
bonds including those issued by Walt Disney, Coca-Cola and British Gas to name three
instances in recent years, have been very long-dated bonds, from 50 to 99 years’ maturity.
The analysis above suggests that such bonds priced at a spread over the 30-year government

Yield (%)
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— — — Calculated using forward rates

1 10 20 30 40 50 60 70 8 90 100
Term to maturity

Figure 9.3: Zero-coupon yield curves calculated using expected short-rates and
forward rates.
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bond are theoretically undervalued. While investor sentiment would appear to demand
a yield premium for buying such long-dated bonds, the theoretical credit-risk spread for a
100-year corporate bond is essentially the same as that for a 30-year corporate bond.
For instance if a 30-year corporate bond has a default probability of 1% each year, while
a 100-year corporate bond has a default probability of 1% for the first 30 years and a
subsequent default probability of 3% for the remainder of its life, the longer-dated bond
appears at first sight to hold considerably more credit risk. However it can be shown that
the yield premium an investor should demand for holding the longer-dated bond will not be
much more than 15-20 basis points. This is because the impact of future loss scenarios is
weighted by the discount factor that applies from today to the loss date; the influence of
each discount factor steadily diminishes over an increasing term to maturity.

9.2 Pricing a long bond

In a conventional positive yield curve environment it is common for the 30-year govern-
ment bond to yield say 10-20 basis points above the ten-year bond. This might indicate to
investors that a 100-year bond should yield approximately 20-25 basis points more than the
30-year bond. Is this accurate? As we noted in the previous section, such an assumption
would not be theoretically valid. Marshall and Dybvig have shown that such a yield spread
would indicate an undervaluation of the very long-dated bond, and that should such yields
be available an investor, unless he or she has extreme views on future interest rates, should
hold the 100-year bond.

This is intuitively apparent. In the first instance, long-dated forward rates have very little
influence on the prices of bonds, and therefore for there to be a yield spread of say 20 basis
points between 30 years and 40 years, forward rates would have to be very high. This reflects
the relationship between spot and forward rates, the former being an average of the latter to
the longest maturity. Similarly, expected future short-rates are assumed to be composed of
the market’s expectation of these rates and a premium for interest-rate risk. For there to be
a high enough expectation such that there is a yield premium of 20 basis points between 30
and 100 years would require very high expectations about the future level of short-rates, or a
very high risk premium. We now consider this in greater detail.

9.2.1 The impact of forward rates on the long-bond yield
From elementary financial arithmetic we know that an investment of £1 at a continuously
compounded interest rate of r will have a value at time ¢ given by e~"*, so that the value of a
coupon C at this time is given by Ce™".

This enables us to set the value of a bond with a coupon of C maturing at time T and
redemption value of M as (9.4):

T
/ MCe™"'ds + Me " (9.4)
0
which can also be given as

MC
T(l —e )+ Me T, (9.5)
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We assume that the zero-coupon rate r term structure is flat until the time s and that
forward rates are flat at f. The value of £1 to be received at time ¢ > s is given by:

e ) (9.6)

while the price of a bond maturing at T is given by (9.7):
¢ T
P :/ MCe’”ds—k/ MCe s =9ds 4 Me=s~(T-0F, (9.7)
0 t

Equation (9.7) can be integrated to give:

MTC (1—e) + MTCe*ﬂT*” + Me (T, (9.8)

This can be illustrated with an example. Consider a situation where the zero-coupon
rates term structure is flat at 6% for 30 years and that forward rates are flat at f for terms
from 30 years to 100 years. This results in the price of a 30-year bond with a coupon of 6%
and a redemption value of £100 having a price of par, shown below:

6
P=100=—-(1— e—0-06><30) + 100g0-06x30

Now let us imagine that the yield on a 100-year government bond with a coupon of
6.20% is 6.20%. This fits investor expectations that the very long-dated bond should have a
yield premium of approximately 20 basis points. This would set the price of the 100-year
bond as:

6.20
P=100= 0.06 (1 _ e*0.0GXSO) 4 e*OA06><30(

6.20

f

where the price of the bond is par. The forward rate given by the expression above must be
greater than 6.20%, and is higher because long-dated forward rates have very little influence
on the price of a coupon bond. The size of the coefficient e~%*30  in this instance, indicates
the extent of the impact of the forward rate on the price of the bond. In fact in a term
structure environment that is flat or only very slightly positive out to 30 years, the zero-
coupon term structure beyond this term is flat.

Let us look now at the T-period forward rate again as a function of the range of spot rates
from the time ¢ today to point Tin more detail than in Section 9.1. If P(z, T) is the price today
of a zero-coupon bond that has a redemption value of £1 at time T, then this price is given in
terms of the instantaneous structure of forward rates by (9.9):

)(1 _ e70f) + e*0.0GX3OIOOeffX70

T
P(t, T) :exp(—/ f(e, s)ds) (9.9)
t
where the forward rate f (¢, T) is given by:
_9InP(t, T)
&, T) = - (9.10)

However, the price of the zero-coupon bond is also given in terms of the spot rate as the
expression in (9.1), where E; is the expectation under the risk-free probability function.
Therefore forward rates are related to the expected level of the instantaneous spot rates, and
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if we differentiate the expression in (9.10) we obtain a result that states that the forward rate
is a weighted average of the range of spot rates in the period ¢ to 7. This is given in (9.11),
which we encountered earlier as (9.2):

exp<f ftT r(s)ds)
E, [exp<f ftT r(s)ds)] .

In the spot-rate scenario where the expected future rate is high, the interest rate r(T) will
exert very little influence, while it exerts more weight at lower levels. Therefore the forward
rate will be lower than the expected spot rate, and this is described below, where

E; {r(T) \/tTr(s)ds}

is an increasing function in |, [T r(s)ds.

Therefore we may write for long-term forward rates f(¢, T) < E;[r(T)], where interest
rates are assumed to not be deterministic. This result has an important effect on the pricing
of very long-dated bonds. Since forward rates lie below the level of expected short-term
rates, for a very long-dated bond to trade at a yield of 6.20% means that the average level of
future short-rates over the life of the bond would have to be higher than 6.20%. If this is not
the case, a yield premium of 20-25 basis points between the long-bond and a very long-
dated bond would indicate an unrealistically low price for the latter instrument. And
crucially, for there to be a spread of this magnitude for up to say, 50 years beyond the
benchmark long bond, we would observe unrealistically high forward rates and an explod-
ing forward rate curve.

ft, T) = (9.11)

9.3 Further views on the long-dated bond yield

In the previous section we described a theorem from Dybvig, Ingersoll and Ross stating that
extremely long-dated bond yields cannot decline. This carries implications about the level
of interest-rate risk attached to the very long-dated yield. We present a summary of their
results here.

Assume that along all random interest-rate paths w, the short-rate gravitates towards a
long-term equilibrium level of r>°, which is dependent on the path w. A long-term level r can
result if the set of interest-rate paths w for which & < r has a positive probability. Consider
then the lowest possible value r> of the long-term equilibrium level r>°. The result from the
previous section, that very long-dated forward rates do not reflect the unbiased expect-
ations hypothesis but rather a disproportionate weighting of the lowest yields, implies that
long-dated rates are determined by . That is, as the maturity approaches infinity, both the
forward rate and the zero-coupon rate are essentially equal to the lowest possible long-term
interest rate r>°. Over time a particular long-term interest-rate level r>° that was previously
possible may become impossible, so that r may rise over time. However a previously
unattainable level r>° will remain impossible, and if it is possible today it will have been
possible before. Therefore r> cannot fall over time, which indicates that very long-dated
forward rates and zero-coupon rates cannot fall. This means that long-dated yields are
essentially given by the lowest interest-rate scenario, and will remain sticky at this level. It
also means that there is a limit to the extent to which long-dated yields will be affected by
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changes in the expectations of future interest rates. The yield on a 100-year bond is
essentially determined by the lowest yield scenario, and a fall in expected future short-term
rates will have very little impact indeed.

We can illustrate this with the same example as before. Consider now that there is a 50
basis point decline in the short-rate, and that the probabilities of the three interest-rate
scenarios are now:

m that there is a zero probability that the short-rate increases from 5.50% to a long-term
rate of 10%;

m that there is an 80% probability that the short-rate increases from 5.50% to a long-term
rate of 8%;

m that there is a 20% probability that the short-rate decreases from 5.50% to a long-term
rate of 4%.

The change in the short-rate will result in a 50 basis point decline in all the expected
future interest rates. However this will not result in a uniform fall in all bond yields. The
impact on the zero-coupon curve and the forward rate curve is shown in Figure 9.4.

From Figure 9.4 we observe that at the very short-end, yields fall by 50 basis points.
However the 100-year spot rate falls by only approximately 4 basis points, while the
100-year forward rate actually rises. This is because under the probabilities used in our scenario
the 6% scenario has a higher weight at these forward dates.

What are the practical implications of these results? We may conclude that if there is a
rally in the government bond market, very long-dated bond yields should be virtually
unaffected. More important though, the results indicate that any term structure model that
allows very long-dated yields to fall is inconsistent with the Dybvig-Ingersoll-Ross theorem,
and is therefore invalid because it would permit arbitrage. Such a model would also price
100-year bonds incorrectly (although it may well price 30-year bonds correctly). The
theorem is still consistent with the concept of mean reversion, and a term structure model
that assumes that long-term yields will revert to a constant long-term level will fit in with
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Figure 9.4: The effect of a decline in expected short rates on zero-coupon and forward
curves.
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the theorem. Dybvig et al. state that the long-term level must be the ‘lowest possible level’
of the average level of interest rates, but calculating this level is problematic. The issues
involved in accurately pricing a very long-dated bond, and the fact that term structure
modelling out to this maturity is not yet consistently applied, may explain why, despite
there being no theoretical basis for it, the yields on 50-, 90- and 100-year corporate bonds
sometimes lie some way above the 30-year risk-free yield.

9.4 Analysing the convexity bias in long-bond yields

In theory the results implied by a discussion of convexity imply that if there are two fixed
income portfolios that have identical durations and vyields, the portfolio with the higher
convexity will outperform the other under conditions of a parallel yield curve shift. In fact in
practice this will not be the case, as such portfolios will have lower yields, which reflects the
price paid for convexity in the market.' We can observe this yield/convexity trade-off in
the government bond yield curve: in a positive sloping yield curve environment, the yield on
the longest-dated (usually 30-year) bond is almost always lower than the 15- or 20-year
bond yield. This is explained by the fact that the longer-dated bond has higher convexity
and that the value of this convexity is the difference in the yields. This convexity bias is
evident in other markets, and in Chapters 41 and 43 of Choudhry (2001) we review the
convexity bias that exists between the swap yield curve and the yield curve implied by
long-dated interest-rate futures contracts. For example in one study” the ten-year interest-rate
swap rate was found to be significantly lower than the rate implied by the equivalent strip of
ten-year Eurodollar futures contracts. This reflects the fact that the swap instrument has
convexity while the futures position does not. Therefore it is theoretically possible to benefit
from a position where the trading book is short the swap (receiving fixed) and short the
futures strip, as the combined effect is to be long convexity.

9.4.1 Estimating the convexity bias

Phoa (1998) presents an approximation of the convexity bias as follows. Consider a con-
ventional fixed coupon bond, which has a yield at a future time ¢ of r and a price at this time
of P(r). The convexity bias is estimated using

E[r] — rjua ~ (C/D)c*t (9.12)
where

E[r] — rfwa s the difference between the forward yield and the expected future yield
(which is the convexity adjustment to the bond yield)

C is the convexity divided by two
D is the duration of the forward bond position
o is the basis point volatility of bond yields.

The volatility value used can be estimated in two ways. We can estimate volatility
separately, and then use this to calculate what the approximate convexity adjustment
should be. Or we may observe the convexity bias directly and derive a volatility value from

! For example, see Lacey and Nawalkha (1993).

See Burghardt and Hoskins (1995).
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this. This would require an examination of market swap rates and bond yields, and use
these to estimate the volatility implied by these rates.
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1 O The Default Risk of Corporate
Bonds

In the companion volume to this book, part of the Fixed Income Markets Library, we looked
at the range of corporate bond instruments that are held by investors. Institutions are
interested in holding non-government bonds because of the higher yield that these bonds
offer, relative to government bonds. The existence of a credit default risk on such bonds
means that bondholders must ensure that the return is satisfactory and compensates them
for the risk of the bond portfolio. This can be done by measuring the risk premium
obtainable from the corporate bond, the total return that is expected from holding the
bond, and assessing whether this is sufficient to compensate for all the risks associated with
the bond, excluding the interest-rate risk. These risks must be identified and quantified, and
the higher the risk, the higher the risk premium should be. A common measure for the risk
premium is the option-adjusted spread (OAS). It is basically the spread of the corporate
bond over the equivalent-maturity risk-free bond. A bond’s OAS measures the constant
spread that must be added to the current short-term interest rate to make the theoretical
price of the corporate bond, as calculated by the pricing model, identical to the observed
market price. This means that it is a quantification of the excess return of the bond over the
short-rate. There is no one measure of OAS however, and it means different things depend-
ing on what type of bond it is applied to. This means that if it is used to measure the yield
premium on a corporate bond that reflects a particular bond’s credit risk, any specific
limitations of the measure must be accounted for. There are other measures that may be
considered however, in terms of the default risk of a bond, and these are considered in this
chapter. We also present a theoretical default spread model.

10.1 Corporate bond default spread risk
10.1.1 Spread risk

The general rule of corporate bonds is that they are priced at a spread to the government yield
curve. This price is a yield spread for conventional bonds or on an OAS basis for callable or
other option-embedded bonds. If an OAS calculation is undertaken in a consistent frame-
work, price changes that result in credit events will result in changes in the OAS. Therefore we
can speak in terms of a sensitivity measure for the change in value of a bond or portfolio in
terms of changes to a bond’s OAS measure. One of these measures is the spread duration. The
spread duration of a bond is the sensitivity of its OAS to a change in yield of one basis point.
For a conventional bond, the spread duration is essentially its modified duration, because a
change in the OAS would have an identical effect on the price of such a bond as a similar
magnitude change in the yield on the equivalent government bond. For the same reason the
spread duration of a callable bond is essentially identical to its modified duration. However
the spread duration for an asset-backed security such as a mortgage-backed bond is not equal
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to its modified duration. This is because a change in the OAS will not have the same effect
necessarily as a similar change in government bond yields.

The effect of a change in OAS for mortgage-backed bonds can be explained thus. For
instance a rise in yields will lead to a rise in the level of mortgage rates, which will have the
effect of decreasing prepayment rates. This will change the expected cash flow profile of the
bond. However a change in the OAS of the bond will only have an effect on the bond’s
expected cash flows if it also leads to a rise in the prevailing mortgage interest rate.

The spread duration of a bond can be applied to calculate the break-even spread change.
Remember that investors who are looking to outperform government bonds will set up
portfolios to include corporate bonds, whose yields are higher than those of government
bonds. However it is important for them to determine the extent to which yield spreads can
widen before the additional income from the higher-yield corporate bonds is offset by the
negative price effect of these bonds with regard to the price of government bonds. This
measure will indicate the extent of the risk profile of their portfolios. One approach is to
calculate break-even spreads for a holding period of up to one year using (10.1):

Income excess _ Holding period x spread

Break- d= =
reak-even sprea Spread duration Spread duration

(10.1)

Example 10.1:  Spread duration

An investor’s corporate bond portfolio has an identical duration to a benchmark
portfolio of government bonds, and an OAS of 50 basis points. Assume that the portfolio
has a spread duration of five. During a 12-month holding period, the excess income
of the portfolio compared to government bonds is 0.25%. How much can the OAS
widen before the corporate bond portfolio begins to underperform the government
portfolio?

Break-even spread shift = 0.25/5 = 5 basis points.

Therefore if spreads widen by five basis points or more over the 12-month period, or
if the OAS of the portfolio widens beyond 55 basis points, the portfolio will underper-
form the government portfolio.

Note that this is an approximation that is valid for short-term holdings only.

10.1.2 Spread risk and government bond yields

The risk premium available on a corporate bond reflects the total risk exposure of the bond,
over and above the interest-rate risk which is expected to be identical in theory to the
interest-rate risk on an otherwise risk-free bond. This means that the discussion of spread
risk above implies that it is independent of interest-rate risk. In practice this is not so.
Observation shows that the yield spread of corporate bonds is positively correlated to the
outright government bond yield: when yields increase, the yield spread often decreases,
while when yields fall the yield spread usually increases. Empirically though this effect can
only be measured for specific issuers, and not for a class of identical credit-quality bonds.
This is because the group of same-rated bond issuers is constantly fluctuating, and measur-
ing the change in yield spread for a group of say, single-A rated borrowers will reflect
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changes to the group of issuers as some are re-rated, and others enter or leave the group. In
most OAS calculations the relationship between outright yield levels and corporate yield
spreads is not taken into account, resulting in an OAS spread of a corporate bond being
equal to its nominal spread over the government yield curve.

To assess the impact of changing yield spreads therefore, it is necessary to carry out a
simulation on the effect of different yield curve assumptions. For instance we may wish to
analyse one-year holding period returns on a portfolio of investment-grade corporate
bonds, under an assumption of widening yield spreads. This might be an analysis of the
effect on portfolio returns if the yield spread for triple-B rated bonds widened by 20 basis
points, in conjunction with a varying government bond yield. This requires an assessment
of a different number of scenarios, in order to capture this interest-rate uncertainty.

10.2 Default risk and default spreads
10.2.1 The theoretical default spread

We have stated that the yield premium required on a corporate bond accounts for the
default risk exposure of such a bond. The level of yield spread is determined by the expected
default loss of the bond, and assumes that investors can assess the level of the default risk.
This makes it possible to calculate the level of the theoretical default spread.

We set p, as the probability that a bond will default in year ¢, and is the probability of default
up to year £, while r, is the expected recovery rate on the bond should it default. The default
probability is assumed to fluctuate over time, while the recovery rate remains constant. There-
fore the probability that the bond will not have defaulted up to the beginning of year ¢is given by:

t—1
se=]]~ps) (10.2)
=1

while the probability that the bond will default in year ¢ is given by:
p(t) = pis:. (10.3)

If the bond has a maturity of T, there are T + 1 scenarios, represented by default in years
1 to T or survival until maturity. The final scenario has a probability of

T
Q=sra=1-> p(r). (10.4)
=1

Therefore using the assumed recovery rate, we may calculate the cash flows of the bond
under each of the possible scenarios. For any given yield r, we can then calculate the
present value of the bond’s cash flows for each of these scenarios. These are denoted by
PV}, PV, ..., PVrand PVr.,. Let p(r) be the probability-weighted average for all the possible
scenarios, shown by (10.5):

T
p(r) = (Z pr- PVz> + Q- PVry. (10.5)
=1

This means that p(r) is the expected value of the present value of the bond’s cash flows,
that is, the expected yield gained by buying the bond at the price p(r) and holding it to
maturity is . If our required yield is r, for example this is the yield on the equivalent-maturity
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government bond, then we are able to determine the coupon rate C for which p(r) is equal to
100. The default-risk spread that is required for a corporate bond means that C will be
greater than r. Therefore the theoretical default spread is C — r basis points. If there is a zero
probability of default, then the default spread is zero and C = r.

Generally the theoretical default spread is almost exactly proportional to the default
probability, assuming a constant default probability. Generally however the default probability
is not constant over time, nor do we expect it to be. In Figure 10.1 we show the theoretical
default spread for triple-B rated bonds of various maturities, where the default probability rises
from 0.2% to 1% over time. The longer-dated bonds therefore have a higher annual default risk
and so their theoretical default spread is higher. Note that after around 20 years the expected
default probability is constant at 1%, so the required yield premium is also fairly constant.

For lower-rated and non-rated bonds, the observed effect is the opposite to that of an
investment-grade corporate. Over time the probability of default decreases, therefore the
theoretical default spread decreases over time. This means that the spread on a long-dated
bond will be lower than that of a short-dated bond, because if the issuer has not defaulted
on the long-dated bond in the first few years of its existence, it will then be viewed as a lower
risk credit, although the investor may well continue to earn the same yield spread.

Default probabilities are not known with certainty, and credit rating agencies suggest
that higher-risk bonds have more uncertain default probabilities. The agencies publish
default rates for each rating category (which are used in credit value-at-risk calculations),
but the default probability values assume wider spreads for lower-rated bonds. For example
along-dated triple-B bond may have a default probability of between 0.5% and 2%, whereas
a medium-dated single-B rated bond may have default probabilities of between 5% and
15%. This uncertainty will influence the calculation of the theoretical default yield spread.
To estimate this, one approach involves the use of a probability distribution of the default
probability, and applying the analysis using a range of possible default probabilities, rather
than a single default probability. This results in a range of theoretical yield spreads. The
result of this approach, somewhat surprisingly, is that the greater the range of uncertainty
about the future default probability, the lower the theoretical default spread. This result has
a significant impact on the yield spreads of high-risk or ‘junk’ bonds. The reason behind this
is that an assumption of lower default probabilities results in the generation of scenarios
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Figure 10.1: Theoretical default spread on BBB-rated corporate bond.
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with higher cash flows, and the scenarios generated by these lower default probability
assumptions carry a correspondingly higher weight. The default-adjusted yield being
earned under a given default assumption is essentially the coupon rate minus the loss rate,
where the loss rate is the product of the annual default probability and the recovery rate.
Therefore the assumption of a low default probability corresponds to a lower default-
adjusted yield, and has a higher weight in determining the theoretical default spread than
does a high default probability assumption. A greater level of uncertainty about the level of
the default probability means that more extreme high and low default probability assump-
tions are being used, and as the low assumptions carry greater weight in the calculation, the
theoretical default spread emerges as lower.

10.2.2 The default spread in relation to the outright government bond yield

In the previous section we noted that in practice there is a positive correlation between the
extent of the default yield spread and outright yield levels. We may wish to analyse the effect
of a correlation that results in a higher level of default in a lower yield environment, or a
recessionary environment when interest rates are lower. In fact the outcome will depend on
whether the default probability rate that is used is assumed to rise or fall over time. If the
default probability rises over time, as it does for an investment-grade bond, then the
theoretical yield spread has a negative correlation with the outright yield level, whereas
for a lower-rated bond or junk bond, where the default probability falls the further we move
into the future, the theoretical yield spread is positively correlated with the outright yield
level. This is illustrated in Figure 10.2.

Portfolio managers must also take account of a further relationship between default risk
and interest-rate risk. That is, if two corporate bonds have the same duration but one bond
has a higher default probability, it essentially has a ‘shorter’ duration because there is a
greater chance that it will experience premature cash flows, in the event of default. This
means that an investor who holds bonds that carry an element of default risk should in
theory take this default risk into consideration when calculating the duration of his or her
portfolio. In practical terms this only has an effect with unrated or junk bonds, which have
default probabilities much greater than 1%. Figure 10.3 shows how the theoretical duration
of a bond decreases as its assumed default probability increases.
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Figure 10.2: Correlation of theoretical yield spread with outright government bond yield,
ten-year corporate bonds.
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Figure 10.3: Duration of a 30-year bond relative to default probability.
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1 1 Brady Bonds

In this final chapter we present a discussion on Brady bonds, which are more complex fixed
income instruments. Brady bonds are bonds that have been issued as part of a restructuring
of a country’s commercial bank loans and other debt. Existing creditors tender their loans in
exchange for the new bonds, which are sovereign bonds. The name refers to Nicholas
Brady, chairman of the US Federal Reserve at the time the bonds were first introduced.
The Brady market is characterised by high yields and liquidity levels ranging from very
liquid to illiquid. Many Brady bonds are large size issues and trade in a liquid market. Due
to the features of a Brady bond, they are traded by investors taking a view on the country
risk, the yield spread to Treasuries or the volatility level.

There are a number of different types of bonds in existence, for example collateralised and
uncollateralised, fixed-rate and floating-rate and so on. Although most of the issues to date
have been long-dated bonds, short-term Brady bonds have also been issued. The bonds are
denominated in US dollars, therefore they yield a spread over Treasury bonds. This makes the
bonds very interesting to trade," as the yield on them reflects both the country credit risk as well
as the shape and expectation of the Treasury yield curve. This is considered later in the chapter.

Countries that have completed Brady plans are listed in Table 11.1. At the end of 1998
there was over $160 billion of total debt in existence.

11.1 Brady bond structure

Brady bonds were introduced in the wake of the Latin American debt crisis of 1982. As
countries threatened to default it was realised that the global banking system could be in
danger if there was large-scale default. Therefore the debt was renegotiated and repacked as
Brady bonds. The first step of the process is when the creditor banks negotiate with the
debtor country to establish the level of borrowing that the country can realistically afford to
service. This is sometimes undertaken in conjunction with the International Monetary
Fund. The difference between the amount that the country can afford to service, and the
actual level of its debt, is reconciled using one or more of the following:

m discount bonds, where the principal amount is cut;
m par bonds, where the debtor pays sub-market interest rates;
m  a debt buy-back at an agreed discount rate.
There is an option available for creditors who do not wish to see the principal value of
the loans reduced or receive below-market rates, in which case they must agree to lend

additional funds in return for retaining the existing value of the obligation. Arrears in
interest are usually rescheduled into a separate tradable bond.

! Perhaps ‘interesting’ is the wrong word! But they are certainly exciting products.

169



170 Advanced Fixed Income Analysis

Argentina Ecuador Panama Venezuela
Ivory

Brazil Coast Peru Vietnam

Bulgaria Jordan Philippines

Costa Rica  Mexico Poland

Dominican

Republic Nigeria Uruguay

Table 11.1: Countries that have issued Brady bonds.
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Figure 11.1: Brady bond index. Source: JP Morgan (December 1991 = 100).

Country Bond Bid Offer
Bangladesh 73.00 78.00
Cambodia Trade 18.00 22.00
Costa Rica  Principal A 88.25 89.25
Costa Rica  Principal B 85.25 86.25
DEM
Cuba denominated 7.00 9.00
Cuba Yen 6.00 8.00
Guyana 20.00 30.00
Jamaica Tranche A 90.75 92.75
Jamaica Tranche B 86.50 87.75
Jordan Par bonds 67.75 68.75
Jordan Discount bonds  71.50  73.50
Jordan 1A bonds 97.00 98.00
Laos Trade 12.00 15.00
Mongolia 10.00  15.00
Restructured
Morocco loans 92.00 93.00
Nicaragua 9.00 12.00
Restructured
Sudan loans 2.00 5.00
Surinam Trade 23.00 27.00
Vietnam PDI 3 53.80 54.30

Table 11.2: Exotic debt prices, US dollar denominated, February 2000. Source: IFR.
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The principal amount of par and discount bonds is fully collateralised using zero-
coupon US Treasury bonds. This provides comfort to creditors that the obligations will
ultimately be repaid. In many cases interest payments, usually for the first few years of the
issue, are also collateralised on a rolling basis; that is when the collateral backing a coupon
payment is not used, it rolls forward to back the next coupon payment. This collateral
arrangement therefore acts as a form of security for the investor in a Brady bond.

11.2 Types of Brady bond

The main type of Brady bond is the collateralised fixed-rate par bond or Par bond. These bonds
are received in exchange for debt that is tendered at the face value. They offer the debtor
permanent interest rate relief and protection from fluctuations in interest rates. The bonds
are long-dated, usually of 25 or 30 years’ maturity, and are conventional bullet bonds. The princi-
pal is collateralised with specially-issued zero-coupon US Treasury bonds which are held at the
US Federal Reserve. There is also usually a rolling interest payment guarantee, collateralised
by high-quality financial instruments rated at double-A or better, which cover 12-24 months
of interest payments. In certain cases value recovery rights are attached to the bonds, which
grant bondholders rights to payments under a formula linked to a commodity price index.

Collateralised floating-rate discount bonds or Discount bonds are received in exchange for
eligible debt at a discount to face value, which results in permanent debt relief for the debtor
in the form of partial relief on the debt obligation. In return for this the creditor receives
higher interest payments, usually Libor plus 13-15%. When Mexico and Argentina issued
discount bonds the yield spread was 35%, while for Bulgaria and Poland the spread was 50%.
Again the bonds are long-dated, 25 or 30 years and have a single bullet payment at maturity.
The principal is collateralised with zero-coupon Treasury bonds, and there is usually a rolling
interest guarantee. Value recovery rights have also been attached to discount bonds.

Another type of Brady bond is the front-loaded interest reduction bond or Flirb. These bonds
are received in exchange for debt at face value. They pay below-market interest rates for the first
few years of their life, which is a temporary interest relief for the debtor. The principal is not
collateralised, although there may be a rolling interest guarantee. As there is no collateralisation
the bonds have a shorter average life, and amortise after an initial grace period of up to nine years.

Debt conversion bonds or new money bonds are received in exchange for debt at face
value. They are conditional upon the creditor providing additional new money equivalent to
a certain percentage of the amount of the eligible debt. Neither the principal nor the interest
payments are collateralised, so the average lives of the bonds are shorter than par or
discount bonds.

Interest arrears bonds are received in exchange for a creditor’s claim on certain past due
interest payments which have not been paid. There is no collateral backing for the
bonds.? The bonds are known by a number of names, including interest due and unpaid
or IDU bonds, past due interest bonds (PDI), or interest arrears bonds (IAB).2

The prices of selected Brady bonds on 5 April 2000 are given in Appendix 11.1.

2 The exception to this was in the case of bonds issued by Costa Rica.

In the case of Russia the bonds are known as interest arrears notes.
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11.3 Relative value

Since Brady bonds are (in most cases) collateralised instruments, we require additional
techniques when assessing their value, beyond the simple gross redemption yield measure.
Essentially a par bond has three elements: the principal, which is collateralised by US
Treasuries, the collateralised rolling interest guarantee, and the (risk-carrying) remaining bond
cash flows. The yield on a collateralised bond will be lower than that of a non-collateralised
bond because of the credit protection. The country-specific risk factor, which is in the form of
the spread to the Treasury yield, should in theory apply to the risk-carrying cash flows only.
This means that an investor will calculate the present value of both the principal and the
collateralised interest payments and subtract this from the price of the bond. This ‘stripped’
price is then used when calculating the yield-to-maturity of the non-collateralised cash flows,
and is known as the stripped yield. The stripped yield spread (as a spread to the Treasury
bond) is viewed as the market’s assessment of the sovereign risk. This approach enables the
yields of collateralised and non-collateralised bonds to be compared. As we noted at the start
of this section, the yield sensitivity of a Brady bond will reflect both the country credit risk and
the Treasury yield curve. Separating a Brady bond’s yield sensitivity to US interest rates and to
credit risk is therefore of some importance for the market maker. We consider this here.

For a US Treasury bond we are familiar with the price/yield formula, given here as (11.1):

C/2 Cc/2 Cc/2 C/2+ 100
/ / 2 C+

P = + + .
(L+3r) (1+ir* Q+1ir? (L+ir?

(11.1)

The most common Brady bond is the par bond, for which the principal is collateralised.
Given this security backing, the redemption payment can be taken as risk-free, which means
that in theory it should be discounted at the Treasury yield for that maturity, rather than at a
yield spread to the Treasury. Therefore the price/yield equation can be given as (11.2):

C/2 c/2 C/2 100

P:(l +%(f+$))+(1+%(r+s))2+m+(1+§(r+s))2”+(1 +1r)*" (11.2)

where
r is the corresponding US Treasury yield
s is the bond credit spread over the Treasury yield
rs is the Treasury zero-coupon yield.
The s is the stripped spread.
We apply the same analysis when calculating interest-rate sensitivity for a Brady bond.
The duration D of a par bond is given by (11.3):

C/2 1, C/2 2
p_L| A+zr+s) 2 (1+i(r+s)° 2 (11.3)
P c/2 100 1+iy+9) | ’
+ 1 o N+ 1 o X 1X T+l
1+3(r+59) (14579) +37s

The final term in the expression (11.3) receives a greater weight, because it is risk-free
and therefore is discounted less heavily. This is the correct analysis; what it means is that a
change in the Treasury yield curve will have a significant impact on the bond yield, as it
affects all the bond’s cash flows. However a change in the credit risk should have a smaller
impact, because it impacts only the coupon payments. This has the effect of raising the
duration of a par bond, compared to the duration calculation carried out using the
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conventional approach. Using this analysis, the yield sensitivity of a par bond, with respect
to changes in the Treasury yield, is given by (11.4):

AP/P D

Ay _1+%(r+s)'

(11.4)

The credit risk sensitivity is a function of changes in the credit quality of the bond, and
so it is not symmetrical with the bond’s Treasury yield sensitivity. This is because the credit
risk yield premium is only applicable to the bond’s coupon payments, so the sensitivity
measure will be lower. It is given by (11.5):

AP/P  D—(A/P)
As — 1+lr+s

(11.5)

1+5(r+59)
The presence of the A/P term has the effect of reducing the impact of a change in the
yield premium on the price of the bond compared to a change in the Treasury yield.

where A = n - 100-

Appendix

Appendix 11.1:  Brady bond prices

Bond Price Bond Price
Argentina  Par 69.78 Mexico Discount A 97.94
Discount 84.13 Par A 83.41
FRB 91.33 Par B 84.88
Brazil IDU 99.59 Nigeria Par 71.70
‘C 72.00 Panama PDI 83.73
Par 65.17 IRB 79.57
Discount 76.54 Peru PDI 65.85
EI 88.69 FLRB 60.73
DCB 71.79 Philippines FLB B 95.29
NM94 83.98 Par B 85.08
EXIT 68.92 Poland Discount 99.75
FLRB 76.17 RSTA 66.67
Bulgaria IAB 78.10 Par 62.17
Discount A 80.10 Russia TIAN 27.88
FLB A 72.25 PRIN 25.51
Croatia FRN A 92.84 Venezuela FLB A 79.17
FRN B 84.88 FLB B 79.17
Ecuador PDI 26.29 DCB 77.88
Discount 41.07 Discount A  76.42
Par 36.67
Jordan Discount 78.18
Par 60.67

Table 11.3: Brady bond prices, 5 April 2000. Source: Bloomberg.
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