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0

Goals of this Book and Global Overview

0.1 WHAT IS THIS BOOK?

The goal of this book is to develop robust, accurate and efficient numerical methods to price a
number of derivative products in quantitative finance. We focus on one-factor and multi-factor
models for a wide range of derivative products such as options, fixed income products, interest
rate products and ‘real’ options. Due to the complexity of these products it is very difficult to
find exact or closed solutions for the pricing functions. Even if a closed solution can be found
it may be very difficult to compute. For this and other reasons we need to resort to approximate
methods. Our interest in this book lies in the application of the finite difference method (FDM)
to these problems.

This book is a thorough introduction to FDM and how to use it to approximate the various
kinds of partial differential equations for contingent claims such as:� One-factor European and American options� One-factor and two-factor barrier options with continuous and discrete monitoring� Multi-asset options� Asian options, continuous and discrete monitoring� One-factor and two-factor bond options� Interest rate models� The Heston model and stochastic volatility� Merton jump models and extensions to the Black–Scholes model.

Finite difference theory has a long history and has been applied for more than 200 years
to approximate the solutions of partial differential equations in the physical sciences and
engineering.

What is the relationship between FDM and financial engineering? To answer this ques-
tion we note that the behaviour of a stock (or some other underlying) can be described by
a stochastic differential equation. Then, a contingent claim that depends on the underlying
is modelled by a partial differential equation in combination with some initial and bound-
ary conditions. Solving this problem means that we have found the value for the contingent
claim.

Furthermore, we discuss finite difference and variational schemes that model free and mov-
ing boundaries. This is the style for exercising American options, and we employ a number of
new modelling techniques to locate the position of the free boundary.

Finally, we introduce and elaborate the theory of partial integro-differential equations
(PIDEs), their applications to financial engineering and their approximations by FDM. In
particular, we show how the basic Black–Scholes partial differential equation is augmented by
an integral term in order to model jumps (the Merton model). Finally, we provide worked-out
C++ code on the CD that accompanies this book.

1
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2 Finite Difference Methods in Financial Engineering

0.2 WHY HAS THIS BOOK BEEN WRITTEN?

There are a number of reasons why this book has been written. First, the author wanted to
produce a text that showed how to apply numerical methods (in this case, finite difference
schemes) to quantitative finance. Furthermore, it is important to justify the applicability of
the schemes rather than just rely on numerical recipes that are sometimes difficult to apply
to real problems. The second desire was to construct robust finite difference schemes for use
in financial engineering, creating algorithms that describe how to solve the discrete set of
equations that result from such schemes and then to map them to C++ code.

0.3 FOR WHOM IS THIS BOOK INTENDED?

This book is for quantitative analysts, financial engineers and others who are involved in
defining and implementing models for various kinds of derivatives products. No previous
knowledge of partial differential equations (PDEs) or of finite difference theory is assumed.
It is, however, assumed that you have some knowledge of financial engineering basics, such
as stochastic differential equations, Ito calculus, the Black–Scholes equation and derivative
pricing in general. This book will be of value to those financial engineers who use the binomial
and trinomial methods to price options, as these two methods are special cases of explicit finite
difference schemes. This book will also hopefully be employed by those engineers who use
simulation methods (for example, the Monte Carlo method) to price derivatives, and it is hoped
that the book will help to bridge the gap between the stochastics and PDE approaches.

Finally, this book could be interesting for mathematicians, physicists and engineers who
wish to see how a well-known branch of numerical analysis is applied to financial engineering.
The information in the book may even improve your job prospects!

0.4 WHY SHOULD I READ THIS BOOK?

In the author’s opinion, this is one of the first self-contained introductions to the finite difference
method and its applications to derivatives pricing. The book introduces the theory of PDE and
FDM and their applications to quantitative finance, and can be used as a self-contained guide
to learning and discovering the most important finite difference schemes for derivative pricing
problems.

Some of the advantages of the approach and the resulting added value of the book are:� A defined process starting from the financial models through PDEs, FDM and algorithms� An application of robust, accurate and efficient finite difference schemes for derivatives
pricing applications.

This book is more than just a cookbook: it motivates why a method does or does not work and
you can learn from this knowledge in a meaningful way. This book is also a good companion
to my other book, Financial Instrument Pricing in C++ (Duffy, 2004). The algorithms in
the present book can be mapped to C++, the de-facto object-oriented language for financial
engineering applications

In short, it is hoped that this book will help you to master all the details needed for a good
understanding of FDM in your daily work.
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Goals of this Book and Global Overview 3

0.5 THE STRUCTURE OF THIS BOOK

The book has been partitioned into seven parts, each of which deals with one specific topic in
detail. Furthermore, each part contains material that is required by its successor. In general,
we interleave the parts by first discussing the theory (for example, basic finite difference
schemes) in a given part and then applying this theory to a problem in financial engineering.
This ‘separation of concerns’ approach promotes understandability of the material, and the
parts in the book discuss the following topics:

I. The Continuous Theory of Partial Differential Equations
II. Finite Difference Methods: the Fundamentals

III. Applying FDM to One-Factor Instrument Pricing
IV. FDM for Multidimensional Problems
V. Applying FDM to Multi-Factor Instrument Pricing

VI. Free and Moving Boundary Value Problems
VII. Design and Implementation in C++

Part I presents an introduction to partial differential equations (PDE). This theory may be
new for some readers and for this reason these equations are discussed in some detail. The
relevance of PDE to instrument pricing is that a contingent claim or derivative can be modelled
as an initial boundary value problem for a second-order parabolic partial differential equation.
The partial differential equation has one time variable and one or more space variables. The
focus in Part I is to develop enough mathematical theory to provide a basis for work on finite
differences.

Part II is an introduction to the finite difference method for a number of partial differential
equations that appear in instrument pricing problems. We learn FDM in the following way:
(1) We introduce the model PDEs for the heat, convection and convection–diffusion equations
and propose several important finite difference schemes to approximate them. In particular,
we discuss a number of schemes that are used in the financial engineering literature and we
also introduce some special schemes that work under a range of parameter values. In this part,
focus is on the practical application of FDM to parabolic partial differential equations in one
space variable.

Part III examines the partial differential equations that describe one-factor instrument
models and their approximation by the finite difference schemes. In particular, we concen-
trate on European options, barrier options and options with jumps, and propose several finite
difference schemes for such options. An important class of problems discussed in this part
is the class of barrier options with continuous or discrete monitoring and robust methods are
proposed for each case. Finally, we model the partial integro-differential equations (PIDEs)
that describe options with jumps, and we show how to approximate them by finite difference
schemes.

Part IV discusses how to define and use finite difference schemes for initial boundary value
problems in several space variables. First, we discuss ‘direct’ scheme where we discretise the
time and space dimensions simultaneously. This approach works well with problems in two
space dimensions but for problems in higher dimensions we may need to solve the problem as a
series of simpler problems. There are two main contenders: first, alternating direction implicit
(ADI) methods are popular in the financial engineering literature; second, we discuss operator
splitting methods (or the method of fractional steps) that have their origins in the former Soviet
Union. Finally, we discuss some modern developments in this area.
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Part V applies the results and schemes from Part IV to approximating some multi-factor
problems. In particular, we examine the Heston PDE with stochastic volatility, Asian options,
rainbow options and two-factor bond models and how to apply ADI and operator splitting
methods to them.

Part VI deals with instrument pricing problems with the so-called early exercise feature.
Mathematically, these problems fall under the umbrella of free and moving boundary value
problems. We concentrate on the theory of such problems and the application to one-factor
American options. We also discuss ADI method in conjunction with free boundaries.

Part VII contains a number of chapters that support the work in the previous parts of the
book. Here we address issues that are relevant to the design and implementation of the FDM
algorithms in the book. We provide hints, guidelines and C++ sources to help the reader to
make the transition to production code.

0.6 WHAT THIS BOOK DOES NOT COVER

This book is concerned with the application of the finite difference method to instrument
pricing. This viewpoint implies that we concentrate on a number of issues while neglecting
others. Thus, this book is not:� an introduction to numerical analysis� a guide to the theoretical foundations of the theory of finite differences� an introduction to instrument pricing� a full ‘production’ C++ course.

These problems are considered in detail in other books and will be discussed elsewhere.

0.7 CONTACT, FEEDBACK AND MORE INFORMATION

The author welcomes your feedback, comments and suggestions for improvement. As far as I
am aware, all typos and errors have been removed from the text, but some may have slipped
past unnoticed. Nevertheless, all errors are my responsibility.

I am a trainer and developer and my main professional interests are in quantitative finance,
computational finance and object-oriented programming. In my free time I enjoy judo and
studying foreign (natural) languages.

If you have any questions on this book, please do not hesitate to contact me at
dduffy@datasim.nl.
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1
An Introduction to Ordinary

Differential Equations

1.1 INTRODUCTION AND OBJECTIVES

Part I of this book is devoted to an overview of ordinary and partial differential equations. We
discuss the mathematical theory of these equations and their relevance to quantitative finance.
After having read the chapters in Part I you will have gained an appreciation of one-factor and
multi-factor partial differential equations.

In this chapter we introduce a class of second-order ordinary differential equations as they
contain derivatives up to order 2 in one independent variable. Furthermore, the (unknown)
function appearing in the differential equation is a function of a single variable. A simple
example is the linear equation

Lu ≡ a(x)u′′ + b(x)u′ + c(x)u = f (x) (1.1)

In general we seek a solution u of (1.1) in conjunction with some auxiliary conditions. The
coefficients a, b, c and f are known functions of the variable x . Equation (1.1) is called linear
because all coefficients are independent of the unknown variable u. Furthermore, we have used
the following shorthand for the first- and second-order derivatives with respect to x :

u′ = du
dx

and u′′ = d2u
dx2

(1.2)

We examine (1.1) in some detail in this chapter because it is part of the Black–Scholes
equation

∂C
∂t

+ 1

2
σ 2S2 ∂2C

∂S2
+ r S

∂C
∂S

− rC = 0 (1.3)

where the asset price S plays the role of the independent variable x and t plays the role of
time. We replace the unknown function u by C (the option price). Furthermore, in this case,
the coefficients in (1.1) have the special form

a(S) = 1
2σ 2S2

b(S) = r S

c(S) = −r

f (S) = 0

(1.4)

In the following chapters our intention is to solve problems of the form (1.1) and we then
apply our results to the specialised equations in quantitative finance.

7
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1.2 TWO-POINT BOUNDARY VALUE PROBLEM

Let us examine a general second-order ordinary differential equation given in the form

u′′ = f (x ; u, u′) (1.5)

where the function f depends on three variables. The reader may like to check that (1.1)
is a special case of (1.5). In general, there will be many solutions of (1.5) but our interest is
in defining extra conditions to ensure that it will have a unique solution. Intuitively, we might
correctly expect that two conditions are sufficient, considering the fact that you could integrate
(1.5) twice and this will deliver two constants of integration. To this end, we determine these
extra conditions by examining (1.5) on a bounded interval (a, b). In general, we discuss linear
combinations of the unknown solution u and its first derivative at these end-points:

a0u(a) − a1u′(a) = α , |a0| + |a1| �= 0

b0u(b) + b1u′(b) = β , |b0| + |b1| �= 0
(1.6)

We wish to know the conditions under which problem (1.5), (1.6) has a unique solution.
The full treatment is given in Keller (1992), but we discuss the main results in this section.
First, we need to place some restrictions on the function f that appears on the right-hand side
of equation (1.5).

Definition 1.1. The function f (x, u, v) is called uniformly Lipschitz continuous if

| f (x ; u,v) − f (x ; w, z)| ≤ K max(|u − w|, |v − z|) (1.7)

where K is some constant, and x, ut , and v are real numbers.

We now state the main result (taken from Keller, 1992).

Theorem 1.1. Consider the function f (x ; u, v) in (1.5) and suppose that it is uniformly
Lipschitz continuous in the region R, defined by:

R : a ≤ x ≤ b, u2 + v2 < ∞ (1.8)

Suppose, furthermore, that f has continuous derivatives in R satisfying, for some constant M,

∂ f
∂u

> 0,

∣∣∣∣∂ f
∂v

∣∣∣∣ ≤ M (1.9)

and, that

a0a1 ≥ 0, b0b1 ≥ 0, |a0| + |b0| �= 0 (1.10)

Then the boundary-value problem (1.5), (1.6) has a unique solution.

This is a general result and we can use it in new problems to assure us that they have a
unique solution.

1.2.1 Special kinds of boundary condition

The linear boundary conditions in (1.6) are quite general and they subsume a number of special
cases. In particular, we shall encounter these cases when we discuss boundary conditions for
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the Black–Scholes equation. The main categories are:� Robin boundary conditions� Dirichlet boundary conditions� Neumann boundary conditions.

The most general of those is the Robin condition, which is, in fact, (1.6). Special cases of
(1.6) at the boundaries x = a or x = b are formed by setting some of the coefficients to zero.
For example, the boundary conditions at the end-point x = a:

u(a) = α

u′(a) = β
(1.11)

are called Dirichlet and Neumann boundary conditions at x = a and at x = b, respectively.
Thus, in the first case the value of the unknown function u is known at x = a while, in the

second case, its derivative is known at x = b (but not u itself). We shall encounter the above
three types of boundary condition in this book, not only in a one-dimensional setting but also
in multiple dimensions. Furthermore, we shall discuss other kinds of boundary condition that
are needed in financial engineering applications.

1.3 LINEAR BOUNDARY VALUE PROBLEMS

We now consider a special case of (1.5), namely (1.1). This is called a linear equation and
is important in many kinds of applications. A special case of Theorem 1.1 occurs when the
function f (x ; u, v) is linear in both u and v. For convenience, we write (1.1) in the canonical
form

−u′′ + p(x)u′ + q(x)u = r (x) (1.12)

and the result is:

Theorem 1.2. Let the functions p(x), q(x) and r (x) be continuous in the closed interval [a, b]
with

q(x) > 0, a ≤ x ≤ b,

a0a1 ≥ 0, |a0| + |a1| �= 0,

b0b1 ≥ 0, |b0| + |b1| �= 0,

(1.13)

Assume that

|a0| + |b0| �= 0

then the two-point boundary value problem (BVP)

Lu ≡ −u′′ + p(x)u′ + q(x)u = r (x), a < x < b

a0u(a) − a1u′(a) = α, b0u(b) + b1u′(b) = β
(1.14)

has a unique solution.

Remark. The condition |a0| + |b0| �= 0 excludes boundary value problems with Neumann
boundary conditions at both ends.
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1.4 INITIAL VALUE PROBLEMS

In the previous section we examined a differential equation on a bounded interval. In this case
we assumed that the solution was defined in this interval and that certain boundary conditions
were defined at the interval’s end-points. We now consider a different problem where we wish
to find the solution on a semi-infinite interval, let’s say (a, ∞). In this case we define the initial
value problem (IVP)

u′′ = f (x ; u, u′)
a0u(a) − a1u′(a) = α

b0u(a) − b1u′(a) = β

(1.15)

where we assume that the two conditions at x = a are independent, that is

a1b0 − a0b1 �= 0 (1.16)

It is possible to write (1.15) as a first-order system by a change of variables:

u′ = v, v′ = f (x ; u, v)

a0u(a) − a1v(a) = α

b0u(a) − b1v(a) = β

(1.17)

This is now a first-order system containing no explicit derivatives at x = a. System (1.17)
is in a form that can be solved numerically by standard schemes (Keller, 1992). In fact, we can
apply the same transformation technique to the boundary value problem (1.14) to get

−v′ + p(x)v + q(x)u = r (x)

u′ = v

a0u(a) − a1v(a) = α,

b0u(b) + b1v(b) = β

(1.18)

This approach has a number of advantages when we apply finite difference schemes to
approximate the solution of problem (1.18). First, we do not need to worry about approximating
derivatives at the boundaries and, second, we are able to approximate v with the same accuracy
as u itself. This is important in financial engineering applications because the first derivative
represents an option’s delta function.

1.5 SOME SPECIAL CASES

There are a number of common specialisations of equation (1.5), and each has its own special
name, depending on its form:

Reaction–diffusion: u′′ = q(x)u

Convection–diffusion: u′′ = p(x)u′

Diffusion: u′′ = 0

(1.19)

Each of these equations is a model for more complex equations in multiple dimensions,
and, we shall discuss the time-dependent versions of the equations in (1.19). For example, the
convection–diffusion equation has been studied extensively in science and engineering and
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has applications to fluid dynamics, semiconductor modelling and groundwater flow, to name
just a few (Morton, 1996). It is also an essential part of the Black–Scholes equation (1.3).

We can transform equation (1.1) into a more convenient form (the so-called normal form)
by a change of variables under the constraint that the coefficient of the second derivative a(x)
is always positive. For convenience we assume that the right-hand side term f is zero. To this
end, define

p(x) = exp
∫

b(x)

a(x)
dx

(1.20)

q(x) = c(x)p(x)

a(x)

If we multiply equation (1.1) (note f = 0) by p(x)/a(x) we then get:

d

dx
p(x)

du
dx

+ q(x)u = 0 (1.21)

This is sometimes known as the self-adjoint form. A further change of variables

ζ =
∫

dx
p(x)

(1.22)

allows us to write (1.21) to an even simpler form

d2u
dζ 2

+ p(x)q(x)u = 0 (1.23)

Equation (1.23) is simpler to solve than equation (1.1).

1.6 SUMMARY AND CONCLUSIONS

We have given an introduction to second-order ordinary differential equations and the as-
sociated two-point boundary value problems. We have discussed various kinds of boundary
conditions and a number of sufficient conditions for uniqueness of the solutions of these prob-
lems. Finally, we have introduced a number of topics that will be required in later chapters.
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2
An Introduction to Partial

Differential Equations

2.1 INTRODUCTION AND OBJECTIVES

In this chapter we give a gentle introduction to partial differential equations (PDEs). It can be
considered to be a panoramic view and is meant to introduce some notation and examples. A
PDE is an equation that depends on several independent variables. A well-known example is
the Laplace equation:

∂2u
∂x2

+ ∂2u
∂y2

= 0 (2.1)

In this case the dependent variable u satisfies (2.1) in some bounded, infinite or semi-infinite
space in two dimensions.

In this book we examine PDEs in one or more space dimensions and a single time dimension.
An example of a PDE with a derivative in the time direction is the heat equation in two spatial
dimensions:

∂u
∂t

= ∂2u
∂x2

+ ∂2u
∂y2

(2.2)

We classify PDEs into three categories of equation, namely parabolic, hyperbolic and
elliptic. Parabolic equations are important for financial engineering applications because the
Black–Scholes equation is a specific instance of such a category. Furthermore, generalisations
and extensions to the Black–Scholes model may have hyperbolic equations as components.
Finally, elliptic equations are useful because they form the time-independent part of the Black–
Scholes equations.

2.2 PARTIAL DIFFERENTIAL EQUATIONS

We have attempted to categorise partial differential equations as shown in Figure 2.1. At the
highest level we have the three major categories already mentioned. At the second level we
have classes of equation based on the orders of the derivatives appearing in the PDE, while at
level three we have given examples that serve as model problems for more complex equations.
The hierarchy is incomplete and somewhat arbitrary (as all taxonomies are). It is not our
intention to discuss all PDEs that are in existence but rather to give the reader an overview of
some different types. This may be useful for readers who may not have had exposure to such
equations in the past.

What makes a PDE parabolic, hyperbolic or elliptic? To answer this question let us examine
the linear partial differential equation in two independent variables (Carrier and Pearson, 1976;
Petrovsky, 1991)

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu + G = 0 (2.3)

13
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PDE

Parabolic Elliptic Hyperbolic

Convection–diffusion

Black–Scholes

Diffusion

Heat equation

Poisson

Laplace

1st order 

Shocks
Hamilton–Jacobi

Friedrichs’ systems

2nd order 

Wave equation

Figure 2.1 PDE classification

where we have used the (common) shorthand notation

ux = ∂u
∂x

, uy = ∂u
∂y

uxx = ∂2u
∂x2

, uyy = ∂2u
∂y2

uxy = ∂2u
∂x∂y

(2.4)

and the coefficients A, B, C, D, E, F and G are functions of x and y in general. Equation (2.3)
is linear because these functions do not have a dependency on the unknown function u =
u(x, y). We assume that equation (2.3) is specified in some region of (x, y) space. Note the
presence of the cross (mixed) derivatives in (2.3). We shall encounter these terms again in later
chapters.

Equation (2.3) subsumes well-known equations in mathematical physics as special cases.
For example, the Laplace equation (2.1) is a special case, having the following values:

A = C = 1

B = D = E = F = G = 0
(2.5)

A detailed discussion of (2.3), and the conditions that determine whether it is elliptic,
hyperbolic or parabolic, is given in Carrier and Pearson (1976). We give the main results in
this section. The discussion in Carrier and Pearson (1976) examines the quadratic equation:

Aξ 2
x + 2Bξxξy + Cξ 2

y = 0 (2.6)

where ξ (x, y) is some family of curves in (x, y) space (see Figure 2.2). In particular, we wish
to find the solutions of the quadratic form by defining the variables:

θ = ξx

ξy
(2.7)
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curves

ξ (x, y) = const

η (x, y) = const 

Γ

Figure 2.2 (ξ,η) Coordinate system

Then we get the roots

Aθ2 + 2Bθ + C = 0

θ = −2B ± 2
√

B2 − AC
2A

= −B ± √
B2 − AC
A

(2.8)

Thus, we distinguish between the following cases:

elliptic: B2 − AC < 0

parabolic: B2 − AC = 0

hyperbolic: B2 − AC > 0

(2.9)

We note that the variables x and y appearing in (2.3) are generic and in some cases we may
wish to replace them by other more specific variables – for example, replacing y by a time
variable t as in the well-known one-dimensional wave equation

∂2u
∂t2

− ∂2u
∂x2

= 0 (2.10)

It is easy to check that in this case the coefficients are: A = 1, C = −1, B = D = E =
F = G = 0 and hence the equation is hyperbolic.

2.3 SPECIALISATIONS

We now discuss a number of special cases of elliptic, parabolic and hyperbolic equations that
occur in many areas of application. These equations have been discovered and investigated by
the greatest mathematicians of the last three centuries and there is an enormous literature on
the theory of these equations and their applications to the world around us.

2.3.1 Elliptic equations

These time-independent equations occur in many kinds of application:� Steady-state heat conduction (Kreider et al., 1966)� Semiconductor device simulation (Fraser, 1986; Bank and Fichtner, 1983)
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Γ

η

Ω

Figure 2.3 Two-dimensional bounded region

� Harmonic functions (Du Plessis, 1970; Rudin, 1970)� Mapping functions between two-dimensional regions (George, 1991).

In general, we must specify boundary conditions for elliptic equations if we wish to have a
unique solution. To this end, let us consider a two-dimensional region � with smooth boundary
� as shown in Figure 2.3, and let η be the positive outward normal vector on �. A famous
example of an elliptic equation is the Poisson equation defined by:

�u ≡ ∂2u
∂x2

+ ∂2u
∂y2

= f (x, y) in � (2.11)

where � is the Laplace operator.
Equation (2.11) has a unique solution if we define boundary conditions. There are various

options, the most general of which is the Robin condition:

α
∂u
∂η

+ βu = g (2.12)

where α, β and g are given functions defined on the boundary �. A special case is when α = 0,
in which case (2.12) reduces to Dirichlet boundary conditions.

A special case of the Poisson equation (2.11) is when f = 0. This is then called the Laplace
equation (2.1).

In general, we must resort to numerical methods if we wish to find a solution of prob-
lem (2.11), (2.12). For general domains, the finite element method (FEM) and other so-called
variational techniques have been applied with success (see, for example, Strang et al., 1973;
Hughes, 2000). In this book we are mainly interested in square and rectangular regions be-
cause many financial engineering applications are defined in such regions. In this case the finite
difference method (FDM) is our method of choice (see Richtmyer and Morton, 1967).

In some cases we can find an exact solution to the problem (2.11), (2.12) when the domain
� is a rectangle. In this case we can then use the separation of variables principle, for example.
Furthermore, if the domain is defined in a spherical or cylindrical region we can transform
(2.11) to a simpler form. For a discussion of these topics, see Kreider et al. (1966).
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2.3.2 Free boundary value problems

In the previous section we assumed that the boundary � of the domain of interest is known. In
many applications, however, we not only need to find the solution of a PDE in some region but
we define auxiliary constraints on some unknown boundary. This boundary may be internal
or external to the domain. For time-independent problems we speak of free boundaries while
for time-dependent problems we use the term ‘moving’ boundaries. These boundaries occur
in numerous applications, some of which are:� Flow in dams (Baiocchi, 1972; Friedman, 1979)� Stefan problem: standard model for the melting of ice (Crank, 1984)� Flow in porous media (Huyakorn and Pinder, 1983)� Early exercise and American style option (Nielson et al., 2002).

The following is a good example of a free boundary problem. Imagine immersing a block of
ice in luke-warm water at time t = 0. Of course, the ice block eventually disappears because
of its state change to water. The interesting question is: What is the profile of the block at any
time after t = 0? This is a typical moving boundary value problem.

Another example that is easy to understand is the following. Consider a rectangular dam
D = {(x, y) : 0 < x < a, 0 < y < H} and suppose that the walls x = 0 and x = a border
reservoirs of water maintained at given levels g(t) and f (t), respectively (see Figure 2.4). The
so-called piezometric head is given by u = u(x, y, t) = y + p(x, y, t), where p is the pressure
in the dam. The velocity components are given by:

velocity of water = − (ux , uy) (2.13)

y

x

H

a

Water

dry part

Waterg (t )

wet part

f(t )

0

),( txϕ

Figure 2.4 Dam with wet and dry parts



0470858826c02 JWBK073-Duffy February 1, 2006 13:46 Char Count= 0

18 Finite Difference Methods in Financial Engineering

Furthermore, we distinguish between the dry part and the wet part of the dam as defined by
the function ϕ(x, t). The defining equations are (Friedman, 1979; Magenes, 1972):

∂2u
∂x2

+ ∂2u
∂y2

= 0 if 0 < x < a, 0 < y < ϕ(x, t), t > 0

u(0, y, t) = g(t), 0 < y < g(t)

u(0, y, t) = y, g(t) < y < ϕ(0, t)

u(a, y, t) = f (t), 0 < y < f (t)

u(a, y, t) = y, f (t) < y < ϕ(a, t)

uy(x, 0, t) = 0, 0 < x < a, t > 0

(2.14)

The function ϕ(x, t) is called the free boundary and it separates the wet part from the dry
part of the dam.

Furthermore, on the free boundary y = ϕ(x, t) we have the following conditions:

u = y

ut = u2
x + u2

y − uy
(2.15)

Finally, we have the initial conditions:

ϕ(x, 0) = ϕ0(x), 0 ≤ x ≤ a

ϕ0(x) > 0, ϕ0(0) ≥ g(0), ϕ0(a) ≥ f (0)
(2.16)

We thus see that the problem is the solution of the Laplace equation in the wet region of the
dam while, on the free boundary, the equation is a first-order nonlinear hyperbolic equation.
Thus, the free boundary is part of the problem and it must be evaluated.

A discussion of analytic and numerical methods for free and moving boundary value prob-
lems is given in Crank (1984). Free and moving boundary problems are extremely important
in financial engineering, as we shall see in later chapters.

A special case of (2.14) is the so-called stationary dam problem (Baiocchi, 1972). In this
case the levels of the reservoirs do not change and we then have the special cases

g(t) ≡ g(0) f (t) ≡ f (0)

and y = ϕ0(x) is the free boundary.
There may be similarities between the above problem and the free boundary problems that

we encounter when modelling options with early excercise features.

2.4 PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

This is the most important PDE category in this book because of its relationship to the Black–
Scholes equation. The most general linear parabolic PDE in n dimensions in this context is
given by

∂u
∂t

= Lu

Lu ≡
n∑

i, j=1

ai, j (x, t)
∂2u

∂xi∂x j
+

n∑
j=1

b j (x, t)
∂u
∂x j

+ cu
(2.17)
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where x is a point in n-dimensional real space and t is the time variable, where t is increasing
from t = 0. We assume that the operator L is uniformly elliptical, that is, there exist positive
constants α and β such that

α|ξ |2 ≤
n∑

i, j=1

ai, j (x, t)ξiξ j ≤ β|ξ |2

|ξ |2 ≡ ξ 2
1 + · · · + ξ 2

n

(2.18)

for x in some region of n-dimensional space and t ≥ 0. Another way of expressing (2.18) is
by saying that matrix A, defined by

A = (ai, j )
n
i, j=1 (2.19)

is positive-definite.
A special case of (2.17) is the famous multivariate Black–Scholes equation

∂C
∂τ

+ 1
2

n∑
i, j=1

ρi, jσiσ j Si S j
∂2C

∂Si∂Sj
+

n∑
j=1

(r − d j )Sj
∂C
∂Sj

− rC = 0 (2.20)

where τ is the time left to the expiry T and C is the value of the option on n underlying assets.
The other parameters and coefficients are:

σ j = volatility of asset j

ρi j = correlation between asset i and asset j

r = risk-free intererst rate

d j = dividend yield of the j th asset

(2.21)

Equation (2.20) can be derived from the following stochastic differential equation (SDE):

dSj = (μ j − d j )Sj dt + σ j S j dz j (2.22)

where

Sj = j th asset

μ j = expected growth rate of j th asset

dz j = the j th Wiener process

(2.23)

and using the generalised Ito’s lemma (see, for example, Bhansali, 1998).
In general, we need to define a unique solution to (2.17) by augmenting the equation with

initial conditions and boundary conditions. We shall deal with these in later chapters but for
the moment we give one example of a parabolic initial boundary value problem (IBVP) on a
bounded domain � with boundary �. This is defined as the PDE augmented with the following
extra boundary and initial conditions

α
∂u
∂η

+ βu = g on � × (0, T )

u(x, 0) = u0(x), x ε �

(2.24)

where � is the closure of �.
We shall discuss parabolic equations in detail in this book by examining them from several

viewpoints. First, we discuss the properties of the continuous problem (2.17), (2.24); second, we
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introduce finite difference schemes for these problems; and finally we examine their relevance
to financial engineering.

2.4.1 Special cases

The second-order terms in (2.17) are called diffusion terms while the first-order terms are
called convection (or advection) terms. If the convection terms are zero we then arrive at a
diffusion equation, and if the diffusion terms are zero we then arrive at a first-order (hyperbolic)
convection equation.

An even more special case of a diffusion equation is when all the diffusion coefficients are
equal to 1. We then arrive at the heat equation in non-dimensional form. For example, in three
space dimensions this equation has the form

∂u
∂t

= ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

(2.25)

A special class of equations is called convection–diffusion. A prototypical example in one
space dimension is

∂u
∂t

= σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u (2.26)

Convection–diffusion equations will receive much attention in this book because they model
the behaviour of one-factor option pricing problems.

2.5 HYPERBOLIC EQUATIONS

Whereas parabolic equations model fluid and heat flow phenomena, hyperbolic equations
model wave phenomena, and there are many application areas where hyperbolic wave equations
play an important role:� Shock waves (Lax, 1973)� Acoustics (Kinsler et al., 1982)� Neutron transport phenomena (Richtmyer and Morton, 1967)� Deterministic models in quantitative finance (for example, deterministic interest rates).

We are interested in two sub-categories, namely second-order and first-order hyperbolic equa-
tions.

2.5.1 Second-order equations

In this case we have a PDE containing a second-order derivative in time. A typical example is
the equation (written in self-adjoint form)

∂2u
∂t2

= Lu =
n∑

i, j=1

∂

∂xi

(
ai, j (x, t)

∂u
∂x j

)
− q(x)u (2.27)

In order to define a unique solution to (2.27) we define boundary conditions in space in
the usual way. However, since we have a second derivative in time, we shall need to give two
initial conditions.
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We now take a specific example. Consider an infinite stretched rod of negligible mass. The
equations for the displacement of the string given a certain displacement are given by:

∂2u
∂t2

= c2 ∂2u
∂x2

, x ∈ (−∞, ∞), t ≥ 0

u(x, 0) = ϕ(x),
∂u
∂t

(x, 0) = ψ(x), x ∈ (−∞, ∞)

(2.28)

A common procedure when viewing (2.28) both analytically and numerically is to define
new variables v and w:

v = ∂u
∂x

and w = ∂u
∂t

(2.29)

We can write equations (2.28) as a first-order system:

A
∂U
∂t

+ B
∂U
∂x

+ CU = 0 (2.30)

where we define the vectors

U =
⎛⎝ u

v

w

⎞⎠ (2.31)

and

A =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ , B =
⎛⎝ 0 0 0

0 −1 0
0 −c2 0

⎞⎠ , C =
⎛⎝ 0 0 −1

0 0 0
0 0 0

⎞⎠ (2.32)

It can be advantageous from both an analytical and numerical viewpoint to transform higher-
order equations to a first-order system.

2.5.2 First-order equations

First-order hyperbolic equations occur in many applications, especially in the theory of gas
flow and in shock waves. The prototypical scalar initial value problem is

∂u
∂t

+ a(x, t)
∂u
∂x

= 0 in (−∞, ∞) × (0, T )

u(x, 0) = u0(x), x ∈ (−∞, ∞)
(2.33)

Furthermore, the smoothness of the solution of (2.33) is determined by its discontinuities
(determined by the continuity of the initial condition) and these will be propagated indefinitely.
This is different from parabolic PDEs where discontinuities in the initial condition become
smeared out as time goes on.

Closely associated with first-order equations is the Method of Characteristics (MOC) (see
Courant and Hilbert, 1968). We shall discuss MOC later as a method for solving first-order
equations numerically.
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2.6 SYSTEMS OF EQUATIONS

In some applications we may wish to solve a PDE for vector-valued functions, that is sys-
tems of equations. We shall also come across some examples of such systems in the finan-
cial engineering applications in this book. Typical cases are chooser options and compound
options.

2.6.1 Parabolic systems

Let us consider the two-dimensional problem

∂U
∂t

= A
∂2U
∂x2

+ B
∂2U
∂y2

+ C
∂U
∂x

+ D
∂U
∂y

+ EU (2.34)

where U is a vector of unknowns and A, B, C, D and E are matrices. We say that the system
(2.34) is parabolic if for each vector w ∈ R2

w = t (w1, w2) the eigenvalues K j (w), j = 1, . . . , n of − w2
1 A − w2

2 B (2.35)

satisfy Re K j (w) ≤ δ|w|2, j = 1, . . . , n for some δ > 0 independent of w (Thomas, 1998).

2.6.2 First-order hyperbolic systems

This is an important and common class of partial differential equations. In particular, the
Friedrichs systems constitute an important sub-category (Friedrichs, 1958). Let us take an
example (Duffy, 1977). Let I = (0, 1), the open unit interval, and let T be a number such that
0 < T < ∞. Define the domain Q = I × (0, T ). Let U be a vector of length n and define
partitions of U as follows

U I = t (u1, . . . , ul), l < n

U II = t (ul+1, . . . , un)
(2.36)

We now consider the initial boundary value problem.
Find U : Q → Rn such that

∂U
∂t

+ A
∂U
∂x

= F in Q (2.37)

that is augmented with boundary conditions

U I(0, t) = αU II(0, t) + g0(t), t ε (0, T )

U II(1, t) = βU I(1, t) + g1(t), t ε (0, T )
(2.38)

where g0 ε Rl , g1 ε Rn−l and α and β are matrices of size l × (n − l) and (n − l) × l, respec-
tively (existence and uniqueness proofs are given in Friedrichs, 1958), and initial condition

u(x, 0) = u0(x), x ε I (2.39)

Many problems of interest can be cast into the form (2.36) to (2.39).
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2.7 EQUATIONS CONTAINING INTEGRALS

Equations that involve integrals occur in many kinds of applications:� Applications that model the past behaviour of a process� The effect of temperature feedback in a nuclear reactor model (Pao, 1992)� Problems in epidemics and combustion (Pao, 1992)� Instrument pricing applications (Tavella et al., 2000).

In general, we solve a problem by finding the solution of an integral equation. To begin with,
we consider a function of one variable only. The two main categories are� Fredholm integral equations� Volterra integral equations.

Let f (t) be the unknown function and suppose that g(t) and K (s, t) are known functions.
Then Fredholm equations of the first kind are:

g(t) =
∫ b

a
K (t, s) f (s) ds (2.40)

and Fredholm equations of the second kind are:

f (t) = λ

∫ b

a
K (t, s) f (s) ds + g(t) (2.41)

In both cases we are interested in finding the solution f (t) in the interval (a, b). This interval
may be bounded, infinite or semi-infinite. Volterra integral equations are slightly different. The
interval of integration is variable. Volterra integral equations of the first kind are:

g(t) =
∫ t

a
K (t, s) f (s) ds (2.42)

while Volterra integral equations of the second kind are:

f (t) = λ

∫ t

a
K (t, s) f (s) ds + g(t) (2.43)

The main difference between Volterra and Fredholm equations is in the limits of integration
in the integral terms.

We can combine PDEs and integral equations to form an integro-parabolic equation (also
known as partial integro-differential equations, PIDEs). An example is the Fredholm type
PIDE defined by

∂u
∂t

− Lu = f (x, t, u) +
∫

�

g(x, t, ξ, u(x, t), u(ξ, t)) dξ (2.44)

where the operator L is the same as in equation (2.17). An example of a Volterra type PIDE
that models the effect of temperature feedback is

∂u
∂t

− D�u = au − bu
∫ t

0
u(s, x) ds (2.45)

In this equation the constants a and b associated with the various physical parameters are
both positive or both negative, depending on whether the temperature feedback is negative or
positive.
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A more general PIDE of Volterra type is

∂u
∂t

− Lu = f (x, t, u) +
∫ t

0
g(x, t, s, u(x, t), u(x, s)) ds (2.46)

For an introductory discussion of numerical methods for solving integral equations, see
Press et al. (2002), and for a more detailed discussion, see Kress (1989). We shall examine
integral equations when we model option problems containing jumps.

2.8 SUMMARY AND CONCLUSIONS

We have given an overview of some categories of partial differential equations as well as
their specialisations. We distinguished between parabolic, elliptic and hyperbolic equations.
Our main interest in this book is in parabolic equations because of their relationship with the
Black–Scholes model.

We have given a short introduction to systems of first-order hyperbolic equations and par-
tial integro differential equations (PIDE). We shall encounter applications of these special
equations to financial engineering in later chapters.
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3
Second-Order Parabolic
Differential Equations

3.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce second-order parabolic partial differential equations in some
detail as well as their relevance to the Black–Scholes model. In particular, we study essential
properties of the solutions of initial boundary value problems:� How positive initial and boundary values lead to positive values of the solution� How the solution of a parabolic initial boundary value problem is bounded by its input data� Constructing the solution of a parabolic initial boundary value problem by using the Green’s

function.

The results in this chapter are interesting in their own right because they are applicable to
a whole range of PDEs that occur in many kinds of application (see Morton, 1996, for a
discussion), and not just the Black–Scholes model.

In later chapters we shall develop similar results to those in this chapter for the discrete
approximations of parabolic PDEs and the associated initial boundary value problems. We
give the main results that we need later without becoming too involved in mathematical detail.
For a rigorous discussion, see Il’in et al. (1962) and Pao (1992).

For readers who are new to this theory, we recommend the works of Kreider et al. (1966),
Petrovsky (1991) and Carrier and Pearson (1976) as good introductory text books.

3.2 LINEAR PARABOLIC EQUATIONS

Many of the topics in this chapter are based on some of the fundamental results that were
developed in Il’in et al. (1962).

Let us define the elliptic differential operator LE by

LEu ≡
n∑

i, j=1

ai j (x, t)
∂2u

∂xi ∂x j
+

n∑
j=1

b j (x, t)
∂u
∂x j

+ c(x, t)u (3.1)

where

The functions ai j , b j and c are real and take finite values (3.2a)

ai j = a ji and
n∑

i, j=1

ai j (x, t)αiα j > 0 if
n∑

j=1

α2
j > 0 (3.2b)

x = t (x1, . . . , xn) is an n-dimensional point in real space (3.2c)

Let t represent a time variable. We examine the second-order linear parabolic equation

Lu ≡ −∂u
∂t

+ LEu = f (x, t) (3.3)

25
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at the point (x, t) where u is continuous and has continuous derivatives

∂u
∂x j

,
∂u
∂t

,
∂2u

∂xi∂x j
(i, j = 1, . . . , n) (3.4)

Furthermore, f = f (x, t) is some given function.
In general there will be many solutions of (3.3) and in order to define a unique solution we

must define some auxiliary conditions. We shall now discuss some specific scenarios.
We denote by Rn the n-dimensional Euclidean space of points with coordinates

(x1, . . . , xn)

Furthermore, the notation (x, t) will denote an arbitrary point in the (n + 1)-dimensional space

Rn+1 = Rn × (−∞, ∞)

We distinguish between space and time coordinates because we shall use different discretisa-
tions for them.

3.3 THE CONTINUOUS PROBLEM

We introduce the basic set of equations that model the behaviour of a class of derivative
products. In particular, we model derivatives that are described by so-called initial boundary
value problems of parabolic type (see Il’in et al., 1962). To this end, consider the general
parabolic equation (3.1) again.

The variable x is a point in n-dimensional space and t is considered to be a positive time
variable. Equation (3.1) is the general equation that describes the behaviour of many derivative
types. For example, in the one-dimensional case (n = 1) it reduces to the famous Black–Scholes
equation (see Black and Scholes, 1973)

∂V
∂t�

+ 1
2σ 2S2 ∂2V

∂S2
+ (r − D)S

∂V
∂S

− r V = 0 (3.5)

where V is the derivative type, S is the underlying asset (or stock), σ is the constant volatility,
r is the interest rate and D is a dividend. Equation (3.5) can be generalised to the multivariate
case

∂V
∂t�

+
n∑

j=1

(r − D j )Sj
∂V
∂Sj

+ 1
2

n∑
i, j=1

ρi jσiσ j Si S j
∂2V

∂Si∂Sj
− r V = 0 (3.6)

(see Bhansali, 1998). This equation models a multi-asset environment. In this case σi is the
volatility of the i th asset and ρi j is the correlation between assets i and j . We see that the local
change in time (namely the factor ∂V/∂t�) is written as the sum of three terms:� Interest earned on cash position: r

(
V −

n∑
j=1

Sj
∂V
∂Sj

)

� Gain from dividend yield:
n∑

j=1

D j Sj
∂V
∂Sj� Hedging costs or slippage: −1

2

n∑
i, j=1

ρi jσiσ j
∂2V

∂Si ∂Sj
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Returning to equation (3.1) we note that it has an infinite number of solutions in general.
In order to reduce this number to 1, we need to define some extra constraints. To this end, we
define so-called initial condition and boundary conditions for (3.1). We achieve this by defining
the space in which this equation is assumed to be valid. Since the equation has a second-order
derivative in x and a first-order derivative in t , we should expect that a unique solution can be
found by defining two boundary conditions and one initial condition.

In general, we note that there are three types of boundary condition associated with equa-
tion (3.1) (see Il’in et al., 1962). These are:� First boundary value problem (Dirichlet problem)� Second boundary value problem (Neumann/Robins problems)� Cauchy problem

The first boundary value problem is concerned with the solution of (3.1) in a domain D =
� × (0, T ) where � is a bounded subset of Rn and T is a positive number. In this case we
seek to find a solution of (3.1) satisfying the conditions

u|t=0 = ϕ(x) (initial condition)

u|	 = ψ(x, t) (boundary condition)
(3.7)

where 	 is the boundary of � and ψ is a given function. The boundary conditions in (3.7)
are called Dirichlet boundary conditions. These conditions arise when we model single and
double barrier options in the one-factor case, for example. They also occur when we model
European options.

The second boundary value problem is similar to (3.7) except that instead of giving the
value of u on the boundary 	, the directional derivatives are included, as seen in the following
specification: [

∂u
∂η

+ a(x, t)u
]

	

= ψ(x, t) x ∈ 	 (3.8)

In this case a(x, t) and ψ(x, t) are known functions of x and t , and ∂u/∂η denotes the derivative
of u with respect to the outward normal η at 	. A special case of (3.8) arises when a(x, t) ≡ 0;
there are the so-called Neumann boundary conditions. That occur when modelling certain
kinds of put options.

Finally, the solution of the Cauchy problem for (3.1) in the strip Rn × (0, T ) is given by the
initial condition

u|t=0 = ϕ(x) (3.9)

where, first, ϕ(x) is a given continuous function, and, second, u(x, t) is a function that satisfies
(3.1) in Rn × (0, T ). A special case of the Cauchy problem can be seen in the modelling of
one-factor European and American options (see Wilmott, 1993) where x plays the role of
the underlying asset S. Boundary conditions are given by values at S = 0 and S = ∞. For
European options these conditions are:

C(0, t) = 0

C(S, t) → S as S → ∞ (3.10)
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Here C (the role played by u in equation (3.1)) is the variable representing the price of the call
option. For European put options, on the other hand, the boundary conditions are:

P(0, t) = K e−r (T −t�)

P(S, t) → 0 as S → ∞ (3.11)

Here P (the role played by u in equation (3.1)) is the variable representing the price of the put
option, K is the strike price, r is the risk-free interest rate, T is the time to expiry and t is the
current time.

In practice, it is common to solve European options problems numerically by assuming a
finite domain – that is, one in which the right-hand boundary conditions in (3.10) or (3.11) are
defined at large but finite values of S.

3.4 THE MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS

The results in this section are very important because they tell us things about the solutions of
parabolic PDEs. In particular, the results have a physical and financial interpretation. In general
terms, we say that positive input to a problem gives us a positive solution. For example, the
value of an option is always non-negative.

Theorem 3.1. Assume that the function u(x, t) is continuous in D and assume that the coef-
ficients in (3.1) are continuous. Suppose that Lu ≤ 0 in D̄\	, where b(x, t) < M (M is some
constant) and suppose furthermore that u(x, t) ≥ 0 on 	. Then

u(x, t) ≥ 0 in D̄,

where D = (0, 1) × (0, T ).

This theorem states that positive initial and boundary conditions lead to a positive solution
in the interior of the domain D. This has far-reaching consequences. For example, we can use
this theorem to prove that the solution of the Black–Scholes PDE is positive. Furthermore, the
finite difference schemes that approximate the Black–Scholes equation should have similar
properties.

Theorem 3.2. Suppose that u(x, t) is continuous and satisfies (3.1) in D̄\	, where f (x, t) is
a bounded function (| f | ≤ N ) and b(x, t) ≤ 0. If |u(x, t)|	 ≤ m, then

|u(x, t)| ≤ Nt + m in D̄ (3.12)

We can sharpen the results of Theorem 3.2 in the case where b(x, t) ≤ b0 < 0. In this case
estimate (3.12) is replaced by

|u(x, t)| ≤ max

(−N
b0

, m
)

(3.13)

Proof. Define the so-called ‘barrier’ function w±(x, t) = N1 ± u(x, t), where N1 =
max(−N/b0, m). Then w± ≥ 0 and Lw± ≤ 0. By Theorem 3.1 we deduce that w± ≥ 0 in
D̄. The desired result follows.

The inequality (3.13) states that the growth of u is bounded by its initial and boundary
values. It is interesting to note that in the special cases b ≡ 0 and f ≡ 0 we can deduce the
following maximum and minimum principles for the heat equation and its variants.
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Corollary 3.1. Assume that the conditions of Theorem 3.2 are satisfied and that b ≡ 0 and
f ≡ 0. Then the function u(x, t) takes its least and greatest values on 	, that is

m1 = min u(x, t) ≤ u(x, t) ≤ max u(x, t) ≡ m2

The results from Theorems 3.1 and 3.2 and Corollary 3.1 are very appealing: you cannot
get negative values of the solution u from positive input. It would be nice if the corresponding
finite difference scheme for this problem gave similar estimates. Generalisation of these results
can be found in Pao (1992).

3.5 A SPECIAL CASE: ONE-FACTOR GENERALISED
BLACK–SCHOLES MODELS

We now focus on a specific problem, namely the one-factor generalised Black–Scholes equation
with initial condition and Dirichlet boundary conditions. We formulate the problem in a general
setting; the specification can be used in various kinds of pricing applications by a specialisation
process.

Define � = (A, B), where A and B are two real finite numbers. Further, let D = � × (0, T ).
The formal statement of the problem is: Find a function u : D → R1 such that

Lu ≡ −∂u
∂t

+ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u = f (x, t) in D (3.14)

u(x, 0) = ϕ(x), x ∈ � (3.15)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T ) (3.16)

The initial boundary value problem (3.14)–(3.16) is very general and it subsumes many
specific cases (in particular it is a generalisation of the original Black–Scholes equation).

In general, the coefficients σ (x, t) and μ(x, t) represent volatility (diffusivity) and drift
(convection), respectively. Equation (3.14) is called the convection–diffusion and has been the
subject of much study. It serves as a model for many kinds of physical phenomena. Much
research has been carried out in this area, both on the continuous problem and its discrete
formulations (for example, using finite difference and finite element methods). In particular,
research has shown that standard centred-difference schemes fail to approximate (3.14)–(3.16)
properly in certain cases (see Duffy, 1980). The problems are well known in the scientific and
engineering worlds.

We now investigate some special limiting cases in the system (3.14)–(3.16). One particular
case is when the function σ (x, t) tends to zero. The Black–Scholes equation assumes that
volatility is constant, but this is not always true in practice. For example, the volatility may be
time-dependent (see Wilmott et al., 1993). In general, the volatility may be a function of both
time and the underlying variable. If the volatility is a function of time only, then an explicit
solution can be found but an explicit solution cannot be found in more complicated cases.
For example we note that the so-called exponentially declining volatility functions (see Van
Deventer and Imai, 1997) – as given by the formula

σ (t) = σ0 e−α(T −t) (3.17)

where σ0 and α are given constants – can be used in this model.
Having described situations in which the coefficient σ is small or tends to zero, we now dis-

cuss the mathematical implications. This is very important in general because finite difference
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schemes must be robust enough to approximate the exact solution in these extreme cases as
well as in ‘normal’ regimes. Setting σ to zero in (3.14) leads to a formally first-order hyperbolic
equation

L1u ≡ −∂u
∂t

+ μ(x, t)
∂u
∂x

+ b(x, t)u = f (x, t) (3.18)

Since the second derivative in x is not present in (3.18) we conclude that only one boundary
condition and one initial condition are needed in order to specify a unique solution (see
Friedrichs, 1958; Duffy, 1977). But the question is: Which boundary condition in (3.16) should
we choose? In order to answer this question we must define the so-called characteristic lines
associated with equation (3.18) (see Godounov, 1973; Godounov et al., 1979). These are
defined as lines that satisfy the ordinary differential equation

dx
dt

= −μ (3.19)

The lines have positive or negative slope depending on whether μ has negative or positive
values. In general, it can be shown (see Friedrichs, 1958, for a definitive report) how to
discover the ‘correct’ boundary condition for (3.18), namely:

u(A, t) = g0(t) if μ < 0

u(B, t) = g1(t) if μ > 0
(3.20)

We see that one of the boundary conditions in (3.16) is superfluous.

3.6 FUNDAMENTAL SOLUTION AND THE GREEN’S FUNCTION

When studying linear parabolic partial differential equations such as (3.3), the so-called funda-
mental solution plays an important role. In general the fundamental solution has a singularity
of a certain type – for example, a Dirac delta function δ(x). This function is defined on the real
line (−∞, ∞) and is zero there, except at x = 0. Furthermore,

∫ ∞
−∞ δ(x) = 1.

We now construct the fundamental solution for parabolic equations. In general, a function

	(x, t ; ξ, τ )

is called a fundamental solution of the parabolic operator

L ≡ − ∂

∂t
+ LE in Rn × [0, T ]

if for any fixed

(ξ, τ ) ε Rn × [0, T ]

it satisfies the equation

L	 ≡ −∂	

∂t
+ LE	 = δ (x − ξ ) δ (t − τ )

where δ is the Dirac δ-function. For the operator L, the function 	 is a positive function in
Rn × (0, T ] except at the singular point (ξ, τ ).
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We now discuss the Green’s function and its relationship with the fundamental solution, the
parabolic operator L defined by equation (3.3) and the boundary operator

Bu ≡ α
∂u
∂η

+ βu (3.21)

Then the Green’s function is expressed as

G(x, t ; ξ, τ ) = 	(x, t ; ξ, τ ) + W (x, t ; ξ, τ ) with (x, t) �= (ξ, τ ) (3.22)

It can be shown (Il’in et al., 1962; Pao, 1992) that W is smooth. The function W is the
solution of the PDE

LW = 0, (x, t) ∈ � × (τ, T ]

BW = −B	, (x, t) ∈ ∂� × (τ, T ]

W (x, t ; ξ, τ ) = 0, t ≤ τ, x ∈ �

(3.23)

where ∂� is the boundary of �. We shall need the above results in the next section.

3.7 INTEGRAL REPRESENTATION OF THE SOLUTION
OF PARABOLIC PDES

This discussion until now has implicitly assumed that a parabolic PDE has a solution. We
must now prove that a parabolic initial boundary value problem has a solution having certain
smoothness properties and, if possible, we would like to describe the solution analytically. To
this end, we focus on the initial boundary value problem

−∂u
∂t

+ LEu = f (x, t) in D ≡ � × (0, T ) (3.24a)

α(x, t)
∂u
∂η

+ β(x, t)u = h(x, t) on ∂� × (0, T ) (3.24b)

u(x, 0) = u0(x), x ε � (3.24c)

This problem subsumes Dirichlet, Neumann and Robin boundary conditions as special cases
and hence a number of cases in quantitative finance.

We define the following functions based on the fundamental solution, the Green’s function
and a new function that we define shortly.

Let 	 and G be defined as before.
Define the functions:

J (0)(x, t) ≡
∫

�

	(x, t ; ξ, 0)u0(ξ ) dξ (3.25a)

J (1)(x, t) ≡
∫

�

G(x, t ; ξ, 0)u0(ξ ) dξ (3.25b)

J (2)(x, t) ≡
∫

�

Q(x, t ; ξ, 0)u0(ξ ) dξ (3.25c)
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where the function Q is defined by

Q(x, t ; ξ, τ ) ≡ ∂	

∂ηx
(x, t ; ξ, τ ) + β(x, t)	(x, t ; ξ, τ ) (3.26)

where ηx = normal direction to 	 at the point x .
Finally, we define the function H (x, t) as:

H (x, t) = J (2)(x, t) + h(x, t) +
∫ t

0
dτ

∫
�

Q(x, t ; ξ, τ ) f (ξ, τ ) dξ (3.27)

We are now ready to give integral expressions for the solution u of system (3.24). We
distinguish two cases as far as boundary conditions are concerned:� α = 0 (Dirichlet boundary conditions)� α is non-zero (Robin/Neumann boundary conditions).

We give the main results in both these cases (for the mathematical niceties, see Pao, 1992,
chapter 2)

Theorem 3.3. (First boundary value problem.) Let u be the solution of system (3.24) with
α = 0 and assume the compatibility conditions

β(x, 0)u0(x) = h(x, 0) on ∂�

Then

u(x, t) = J (1)(x, t) +
∫ t

0
dτ

∫
�

G(x, t ; ξ, τ ) f (ξ, τ ) dξ

+
∫ t

0
dτ

∫
∂�

∂	

∂ηξ

(x, t ; ξ, τ )ψ(ξ, τ ) dξ (3.28)

where ψ is the so-called density function defined as the solution of the integral equation

ψ(x, t) = 2
∫ t

0
dτ

∫
∂�

∂	

∂ηξ

(x, t ; ξ, τ )ψ(ξ, τ ) dξ − 2h(x, t)/β(x, t) (3.29)

Theorem 3.4. (Robin/Neumann boundary condition.) The solution of system (3.24) with α = 1
has the integral representation

u(x, t) = J (0)(x, t) +
∫ t

0
dτ

∫
�

	(x, t ; ξ, τ ) f (ξ, τ ) dξ

+
∫ t

0
dτ

∫
∂�

	(x, t ; ξ, τ )ψ(ξ, τ ) dξ (3.30)

where ψ is again a density function (see Pao, 1992, for details).

Remark. The solutions in Theorems 3.3 and 3.4 must have continuous partial derivatives

∂u
∂t

,
∂u
∂x j

,
∂2u

∂xi∂x j
, i, j = 1, . . . , n

and must satisfy (3.24a) for every (x, t) in D. Furthermore, the boundary and initial con-
ditions in system (3.24) are also satisfied in the pointwise sense. Then the solution has
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continuous first derivatives in the time variable t and continuous second derivatives in the space
variable x .

We now consider the problem (3.24) in an infinite domain. This is called the Cauchy problem:

−∂u
∂t

+ LEu = f (x, t) in Rn × (0, T )

u(x, 0) = u0(x), x ε Rn
(3.31)

where we assume the following growth conditions on the initial condition and the right-hand
forcing function:

| f (x, t)| ≤ Aeb|x |2 and |u0(x)| ≤ Ceb|x |2 as x → ∞ (3.32)

where |x |2 = ∑n
j=1x2

j .

Theorem 3.5. (Cauchy problem.) Let u = u(x, t) be the solution of (3.31) given the conditions
(3.32). Then the dependent variable u can be expressed in integral equation form:

u(x, t) = J (0)(x, t) +
∫ t

0
dτ

∫
Rn

	(x, t ; ξ, τ ) f (ξ, τ ) dξ (3.33)

where

J (0)(x, t) =
∫

Rn
	(x, t ; ξ, 0)u0(ξ ) dξ (3.34)

Furthermore, the solution is bounded as follows:

|u(x, t)| ≤ Ceb′|x |2 as x → ∞ (3.35)

3.8 PARABOLIC EQUATIONS IN ONE SPACE DIMENSION

In this section we look at a second-order parabolic partial differential equation in one space
dimension. In other words, this is a specialisation of the equations in previous sections for the
case n = 1. To this end, we examine the equation

−∂u
∂t

+ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u = f (x, t) (3.36)

in the domain D defined by

D = {(x, t) : 0 ≤ t ≤ T, s1(t) < x < s2(t)} (3.37)

subject to the conditions

s1(0) = 0, s2(0) = 1

s1(t) < s2(t), 0 ≤ t ≤ T
(3.38)

Furthermore, we augment (3.36) with boundary conditions

u(s1(t), t) = ψ1(t)

u(s2(t), t) = ψ2(t)

}
0 ≤ t ≤ T (3.39)
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t

x

D

s1(t )

(t )

s2(t )

(t )ψ2

ψ1

Figure 3.1 Region of integration D

and initial conditions

u(x, 0) = ϕ(x), s1(t) < x < s2(t) (3.40)

(see Figure 3.1). Here, ψ1, ψ2 and ϕ are given functions.
Finally, we assume the so-called compatibility conditions

ψ1(0) = ϕ(0)

ψ2(0) = ϕ(1)
(3.41)

The domain D is somewhat irregular because it is a function of time. We can map D onto the
unit square by a change of variables

z = x − s1(t)
s2(t) − s1(t)

, s1(t) �= s2(t) (3.42)

In this case the point (x, t) is mapped to the point (z, t) (see Bobisud, 1967).
The above problem is a model for many one-factor Black–Scholes equations (Wilmott, 1998;

Tavella et al., 2000). For example, standard European options can be formulated as a system
(3.36), (3.39), (3.40) having constant boundaries while barrier options also fit into this model
because in practice the boundaries (see Figure 3.1 again) are time-dependent. For example,
a down-and-out/up-and-out call barrier option is described by the following model (Tavella
et al., 2000, p. 183):

∂V
∂t

+ 1
2σ 2S2 ∂2V

∂S2
+ (r − D0)S

∂V
∂S

− r V = 0

V [S ≤ L(t), t] = 0

V [S ≥ U (t), t] = 0

V (S, T ) = max(S − K , 0)

(3.43)
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In general, the barrier functions L(t) and U (t) can be analytic functions but they could
also be the solution of ordinary differential equations or even the solution of other PDEs (for
example, U (t) could be a forward swap rate). We shall have more to say about this problem in
later chapters.

3.9 SUMMARY AND CONCLUSIONS

We have given an introduction to second-order parabolic partial differential equations. We
focused on expressing the solution of a parabolic initial boundary value problem in terms of
its input data and we discussed several positivity and maximum principle theorems. We have
also paid some attention to proving the existence of the solution to parabolic initial boundary
value problems.
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4
An Introduction to the Heat Equation

in One Dimension

4.1 INTRODUCTION AND OBJECTIVES

In this chapter we examine one of the most important differential equations in mathematical
physics. This is the heat equation and it models many diffusion phenomena in real and artificial
worlds. It is a special case of the second-order parabolic differential equations that we discussed
in Chapter 3. In general terms diffusion describes the movement of one species, entity or
material through some medium due to the presence of some concentration gradient. There are
numerous examples of diffusion processes:� Flow of heat in a one-dimensional bar (Tolstov, 1962)� Animal and plant diffusion to new regions (Lotka, 1956)� Movement of doping atoms into crystals (Fraser, 1986)� VLSI device simulation (SIAM, 1983)� Flow of water in a porous media (Bear, 1979)� Diffusion models of neuron activity using Wiener and Ornstein–Uhlenbeck models (Arbib,

1998)� Numerical reservoir engineering (Peaceman, 1977)� Diffusion that can be attributed to Markov processes (Karatzas and Shreve, 1991).

Many of the diffusion processes originate in the physical sciences and we shall attempt to
apply some of the results in this book. In particular, we need to show the role of the heat
equation in the context of the Black–Scholes equation. In fact, the original Black-Scholes
equation with constant volatility and risk-free interest rate can be reduced to the heat equation
by a suitable change of variables (Wilmott, 1998).

Other reasons for studying the heat equation are:� It is an essential component in more general convection–diffusion equations. These equations
are models for the one-factor Black–Scholes equation and its generalisation to multiple
dimensions.� A number of the techniques in this chapter (for example, Fourier and Laplace transforms)
are widely used in financial engineering and we discuss how they are applied in a simple
but illustrative context.� We produce an exact solution to initial boundary value problems for the heat equation. We
can then compare this solution with discrete solutions from the Finite Difference Method.

In general, understanding the heat equation and its corresponding initial boundary value prob-
lems will help in our understanding of more general problems. A number of books on financial
engineering discuss the heat equation while this chapter complements such treatments by
examining it from a partial differential equation viewpoint. Eventually we shall show how to
approximate the heat equation using several finite difference schemes.

37
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4.2 MOTIVATION AND BACKGROUND

The one-dimensional heat equation describes the temperature distribution u(x, t) at some point
x in space and at some moment in time t . To be more specific, we shall be interested in the
following regions:� A bounded interval (both ends are finite) (a, b), −∞ < a, b < ∞� A semi-infinite interval (this is usually the positive semi-infinite interval), (0, ∞)� An infinite interval (−∞, ∞).

We introduce some key properties. In this chapter the interval represents a rod of some
kind of material (for example, copper or steel). First, let K be the thermal conductivity of the
rod material, c its heat capacity and ρ its density. It can be shown (Tolstov, 1962) that the
temperature u(x, t) satisfies the differential equation:

∂u
∂t

= a2 ∂2u
∂x2

(a2 = K/cρ) (4.1)

In general, the coefficient a is a function of x and t and can even be nonlinear, for example,
a = a(x, t, u). Furthermore, it may be discontinuous or even degenerate (that is, it is zero at
certain points). These cases occur in real applications but for the purposes of this chapter we
shall assume that a is a constant.

If sources are present in the rod, then (4.1) is replaced by the non-homogeneous equation:

∂u
∂t

= a2 ∂2u
∂x2

+ q(x, t) (4.2)

where the source term q is a function of x and t . As before, q may be nonlinear and even
discontinuous at certain points.

For the moment we assume that the rod has finite length; it extends from x = 0 to x = L .
Examining equation (4.1) we suspect that we need three auxiliary conditions in order to produce
a unique solution. This intuition is well founded and to this end we define the following
constraints:� Initial condition: Equation (4.1) is first order in time, so we need one condition:

u(x, 0) = f (x), 0 ≤ x ≤ L (4.3)� Boundary conditions: Equation (4.1) is second order with respect to the space variable x and
thus we need two conditions. There are various possibilities:

(a) Dirichlet conditions: The temperature is given at the end-point(s), for example,

u(0, t) = g(t), t > 0 (4.4)

where g(t) is a given function
(b) Neumann conditions: The derivative of u is given at the end-point(s), for example,

∂u
∂x

(0, t) = g(t), t > 0 (4.5)

A special case is when g(t) = 0; in this case the rod is insulated, which means that the
heat flux is zero on the boundary
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(c) Robin condition: This is a combination of Dirichlet and Neumann boundary conditions

K
∂u
∂x

(0, t) = H [u(0, t) − F(t)], t > 0

−K
∂u
∂x

(L , t) = H [u(L , t) − F(t)], t > 0

(4.6)

Physically, the end-points are in contact with another medium and in this case we have
applied Newton’s law of cooling, which states that the heat flux at an end-point is proportional
to the difference between the temperature of the rod and the (known) temperature F(t) of the
external medium. The parameter H > 0 is called heat transfer coefficient.

In general, we speak of an initial boundary value problem (IBVP) consisting of the partial
differential equation (4.1) and its associated initial condition (4.3) and boundary conditions (of
Dirichlet, Neumann or Robin type). In general, mathematicians are interested in determining
necessary and sufficient conditions under which an IBVP will have a unique solution. Further-
more, they may also be interested in finding conditions under which the solution is sufficiently
smooth.

We conclude this section defining the boundary conditions for semi-infinite and infinite
intervals. For the semi-infinite case we formulate the problem as follows:

∂u
∂t

= a2 ∂2u
∂x2

, 0 < x < ∞, t > 0

u(x, 0) = f (x), 0 ≤ x < ∞
u(x, t) is bounded as x → ∞

(4.7)

whereas for a rod of infinite length we can formulate the problem (the so-called Cauchy
problem) as follows:

∂u
∂t

= a2 ∂2u
∂x2

, −∞ < x < ∞, t > 0

u(x, 0) = f (x), −∞ < x < ∞

u(x, t),
∂u
∂x

(x, t) → 0 as x → ±∞, t > 0

(4.8)

In practical applications (for example, using finite differences) we must approximate infinity
by some large number. Another tactic is to transform the original problem to one on a bounded
interval by a change of variables, for example. We are then left with the problem of determining
what the boundary condition should be at this new boundary point. We discuss this issue in
detail in later chapters.

4.3 THE HEAT EQUATION AND FINANCIAL ENGINEERING

The heat equation is fundamental to financial engineering for a number of reasons. First,
it is a component in the Black–Scholes equation and an understanding of it helps in our
appreciation of Black–Scholes. Second, the Black–Scholes equation can be transformed to
the heat equation by a change of variables, thus allowing us to produce closed form solutions.
Finally, the boundary conditions for the heat equation can also be applied to the Black–Scholes
equation, and it is possible to transform the Black–Scholes equation to the heat equation by a
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change of variables (Wilmott, 1998). To this end, consider the Black–Scholes equation

∂V
∂t

+ 1
2σ 2S2 ∂2V

∂S2
+ r S

∂V
∂S

− r V = 0 (4.9)

and let us define the new variable V by

V (S, t) = eαx+βτ u(x, t) (4.10)

where α = − 1
2 (2r/σ 2 − 1)

β = − 1
4 (2r/σ 2 + 1)2

S = ex , t = T − 2τ/σ 2

We can then show that the function u satisfies the basic heat equation

∂u
∂τ

= ∂2u
∂x2

(4.11)

Specifying boundary conditions for the Black–Scholes equation is somewhat of a black art.
It is possible to define Dirichlet, Neumann and Robin conditions but there are other alternatives.

Let us consider the semi-infinite case. This corresponds to the problem in which we model
the underlying asset price as lying between zero and infinity. For a European call option C(S, t)
the boundary conditions are:

C(0, t) = 0

C(S, t) = S as S → ∞ (4.12)

The motivation in this case is that if the value of the asset is zero then the call option is
worthless, and for very large S the value of the option will be the asset price. For a European
put option P(S, t) the boundary condition is

P(0, t) = K e−r (T −t)

P(S, t) = 0 as S → ∞ (4.13)

Here K is the option strike price, T is the expiry date and r is the risk-free interest rate. The
first condition states that the value of the put option at S = 0 is the present value of the amount
K received at time T . More generally, in the case of time-dependent (deterministic) interest
rates we have

P(0, t) = K exp

(
−

∫ T

t
r (s) ds

)
(4.14)

The second condition in equation (4.13) states that we are unlikely to exercise, thus the
value is zero when S is large.

4.4 THE SEPARATION OF VARIABLES TECHNIQUE

In this and the following sections we give an introduction to a technique that allows us to find
the solution (in closed form) to certain kinds of partial differential equations. This is called
the method of separation of variables (Kreider et al., 1966; Tolstov, 1962; Constanda, 2002).
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To this end, we motivate the method by applying it to the heat equation with zero Dirichlet
boundary conditions. We examine the following initial boundary value problem for the heat
equation:

∂u
∂t

= a2 ∂2u
∂x2

, 0 < x < L , t > 0

u(x, 0) = f (x), 0 ≤ x ≤ L

u(0, t) = u(L , t) = 0, t > 0

(4.15)

We seek a solution of this problem in the form

u(x, t) = X (x)T (t)

Substituting this representation into the partial differential equation gives

X ′′(x)

X (x)
= T ′(t)

a2T (t)
= −λ2 (4.16)

The left-hand side of (4.16) is a function of x only and the right-hand side is a function of t
only. We then deduce that this is possible only when each side is equal to a so-called separation
constant. Rearranging terms in (4.16) gives us the following ordinary differential equations:

X ′′(x) + λ2 X (x) = 0, 0 < x < L

T ′(t) + λ2a2T (t) = 0, t > 0
(4.17)

Investigating the boundary conditions in (4.15) in relation to the representation u = XT
allows us to conclude that

X (0) = X (L) = 0

In general, the function X is the solution of a Sturm–Liouville problem whose eigenvalues
and eigenvectors are given by

λn = nπ

L
, Xn(x) = sin

nπx
L

, n = 1, 2, . . . (4.18)

respectively (Constanda, 2002). Furthermore, from (4.17) we see that the solution of the time
component is given by

Tn(t) = Ane−a2λ2
n t = Ane

−a2n2π2

L2 t
, An constant (4.19)

The complete solution is then given by

u(x, t) =
∞∑

n=1

un(x, t) (4.20a)

where

un(x, t) = An sin
nπx

L
exp

(
−a2n2π2

L2
t
)

(4.20b)
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It only remains now to determine the constant An in (4.20b). We achieve this end by using
the initial condition in (4.15) and the orthogonal property of the trigonometric sin function.
Thus

An = 2

L

∫ L

0
f (x)

sin nπx
L

dx, n = 1, 2, . . . (4.21)

Summarising, we have produced a solution of the initial boundary value problem by the
method of separation of variables. For more information, we refer the reader to Tolstov (1962).

We can calculate (4.20a) and (4.21) numerically for each value of x and t by summing the
series. We can use the value as a benchmark against the solution from a finite difference scheme.

4.4.1 Heat flow in a rod with ends held at constant temperature

Consider the problem (Tolstov, 1962)

∂u
∂t

= a2 ∂2u
∂x2

, 0 < x < L , t > 0

u(x, 0) = f (x), 0 ≤ x ≤ L

u(0, t) = A, u(L , t) = B, (A, B constant), t > 0

(4.22)

The solution to this problem is given by

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

L
(4.23)

where

Tn(t) = Anexp

(
−a2n2π2

L2

)
t + 2

[
A − (−1)n B

πn

]
and

An = 2

L

∫ L

0
f (x)

sin nπx
L

dx − 2

[
A − (−1)n B

πn

]

4.4.2 Heat flow in a rod whose ends are at a specified variable temperature

Consider the problem where the boundary conditions are time-dependent:

∂u
∂t

= a2 ∂2u
∂x2

, 0 < x < L , t > 0

u(x, 0) = f (x), 0 ≤ x ≤ L

u(0, t) = ϕ(t), u(L , t) = ψ(t), t > 0

(4.24)

The solution to this problem is given by

Tn = Anexp

(
−a2n2π2

L2
t
)

+ 2a2πn
L2

exp

(
−a2π2n2

L2

)
t

×
∫ L

0
exp

(
a2π2n2s

L2

)
[ϕ(s) − (−1)nψ(s)] ds (4.25)
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where

An = 2

L

∫ L

0
f (x)

sin πnx
L

dx

4.4.3 Heat flow in an infinite rod

We now consider the important case of a rod that extends to infinity in both directions:

∂u
∂t

= a2 ∂2u
∂x2

, −∞ < x < ∞, t > 0

u(x, 0) = f (x), −∞ < x < ∞
(4.26)

In this case there are no boundary conditions but we do place some restrictions on the
solution, for example, that u and its derivative with respect to the variable x should tend to
zero at plus and minus infinity. Again we can apply the separation of variables technique but in
contrast to a finite rod (where the eigenvalues are discrete), the eigenvalues vary continuously
in this case. After a lengthy analysis (Tolstov, 1962) we produce a solution to problem (4.26):

u(x, t) = 1

2a
√

π t

∫ ∞

−∞
f (s)exp

(
− (x − s)2

4a2t

)
ds (4.27)

From this equation we can see that the temperature approaches zero for very large x (the
heat ‘spreads’ out). We can also see how the initial temperature f (x) influences the subsequent
evolution of the temperature in the rod. Incidentally, the function

G(x, t ; ξ, 0) ≡ 1

2a
√

π t
exp

(
− (x − ξ )2

4a2t

)
(4.28)

is called the Gauss–Weierstrass kernel or influence function and it is important in stochastic
calculus and Brownian motion applications (see Karatzas and Shreve, 1991). Furthermore, this
function has the following properties (Varadhan, 1980):∫

G(x, t ; 0, 0) dx = 1 ∀ t > 0

lim
t→0+

∫
G(x, t ; 0, 0) f (x) dx = f (0)

(4.29)

4.4.4 Eigenfunction expansions

In this section we discuss the non-homogeneous heat equation:

∂u
∂t

= a2 ∂2u
∂x2

+ q(x, t), 0 < x < L , t > 0

u(x, 0) = f (x), 0 ≤ x ≤ L

u(0, t) = u(L , t) = 0, t > 0

(4.30)

The separation of variables technique does not work in this case because of the term q(x, t).
Instead, we consider the solution of (4.30) in the form

u(x, t) =
∞∑

n=1

cn(t)Xn(x) (4.31)



0470858826c04 JWBK073-Duffy February 1, 2006 14:7 Char Count= 0

44 Finite Difference Methods in Financial Engineering

where

Xn(x) = sin nπx
L

, λn = nπ

L
, n = 1, 2, . . .

In this case we wish to determine the time-dependent coefficients appearing in (4.31). To
this end, differentiating the series term by term and noting that

X ′′
n + λ2

n Xn = 0

we get

∞∑
n=1

[c′
n(t) + a2λ2

ncn(t)]Xn(x) = q(x, t) (4.32)

Multiplying this equation by the nth eigenfunction and integrating between 0 and L gives us

c′
n(t) + a2λ2

ncn(t) =

∫ L

0
q(x, t)Xn(x)∫ L

0
X2

n(x) dx
, t > 0, n = 1, 2 . . . (4.33)

It is also easy to show that the initial condition for the time-dependent terms is given by:

cn(0) =

∫ L

0
f (x)Xn(x) dx∫ L

0
X2

n(x) dx
(4.34)

Thus, (4.33) and (4.34) constitute an initial-value problem whose solution can be found,
either analytically or numerically.

The discussion in this subsection is very important because many approximate methods use
a finite-dimensional variant of the series representation (4.31). For example, the finite element
method (FEM), collocation, spectral and Meshless methods are based on the assumption that
the approximate solution is represented as a series solution of some kind.

4.5 TRANSFORMATION TECHNIQUES
FOR THE HEAT EQUATION

We now discuss some more techniques for finding the solution of the heat equation. This
equation is a function of two independent variables. The essence of an integral transformation
method is to reduce the original problem to some kind of ordinary differential equation, finding
the solution of this problem and then applying the inverse transform to recover the solution
of the original problem. We discuss the Laplace and Fourier transforms as applied to the
heat equations. These are popular techniques in the financial engineering literature (Carr and
Madan, 1999; Fu et al., 1998; Craddock et al., 2000).
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4.5.1 Laplace transform

Consider the following initial boundary value problem equation on a bounded interval:

∂u
∂t

= a2 ∂2u
∂x2

, 0 < x < L , t > 0

u(x, 0) = f (x), 0 < x < L

u(0, t) = u(L , t) = 0, t > 0

(4.35)

The Laplace transform of a function f is given by

L[ f ](s) = F(s) =
∫ ∞

0
f (t) e−st dt

Applying this transform to the initial boundary value problem (4.35) gives us the two-point
boundary value problem:

a2U ′′(x, s) − sU (x, s) + f (x) = 0, 0 < x < ∞
U (0, s) = U (L , S) = 0

U (x, s) bounded as x → ∞
(4.36)

where L [u](x, s) = U (x, s).
We can now apply well-known techniques to find the solution U (x, s) of (4.36). Having

done that we can then use Laplace transform tables to find the original solution of problem
(4.23) (Hochstadt, 1964).

4.5.2 Fourier transform for the heat equation

Consider the Cauchy problem on an infinite interval:

∂u
∂t

= a2 ∂2u
∂x2

, −∞ < x < ∞, t > 0

u(x, 0) = f (x), −∞ < x < ∞

u(x, t),
∂u
∂x

(x, t) → 0 as x → ±∞, t > 0

(4.37)

The Fourier transform is defined by

F[ f ](ω) = 1

2π

∫ ∞

−∞
f (x) eiwx dx (4.38)

We now apply the Fourier transform the initial value problem (4.37) to an initial value
problem for an ordinary differential equation in the transform domain.

U ′(ω, t) + a2ω2U (ω, t) = 0, t > 0

U (ω, 0) = F(ω)
(4.39)

where

F [u](ω, t) = U (ω, t) and F [ f ](ω) = F(ω)
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In order to recover the original solution we apply the inverse Fourier transform defined by

F −1[F](x) = f (x) =
∫ ∞

−∞
F(ω) e−iωx dw

to (4.39). After some calculations we find (Constanda 2002) that the solution of (4.39) is given
by

U (ω, t) = F(ω) e−a2ω2t (4.40)

and then

u(x, t) = 1

2a
√

π t

∫ ∞

−∞
f (ξ )exp

(
− (x − ξ )2

4a2t

)
dξ (4.41)

which is the same as the result we obtained by using the method of separation of variables
(see equation (4.27)).

4.6 SUMMARY AND CONCLUSIONS

In this chapter we have examined the one-dimensional heat equation. This is a prototype
example of a diffusion equation and an understanding of it will be of benefit when we discuss
more general equations. The focus in this chapter is on giving an overview of a number
of analytical methods that allow us to produce an exact solution to the heat equation. The
techniques are:� Separation of variables� Eigenfunction expansions� Laplace transform� Fourier transform.

These techniques are of interest in their own right and they have many applications in numerical
analysis and financial engineering. As good references we recommend Kreider et al. (1966),
Tolstov (1962) and Constanda (2002).
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5
An Introduction to the Method

of Characteristics

5.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce the Method of Characteristics (MOC). This method is used in the
analysis of fluid flow applications; it is simple to use and to code in a programming language
and it has been used in financial engineering applications, for example, Asian options and
certain kinds of real options. The reader can skip this chapter on a first reading without loss of
continuity.

This chapter discusses the following topics. In section 2 we motivate MOC by applying
it to a first-order scalar hyperbolic equation. It is useful to understand this problem because
it is an essential component when studying certain classes of two-factor models in financial
engineering. In particular, convection terms are of this type. Section 3 is an extension of MOC
to second-order hyperbolic equations and we discuss how to solve these equations numerically.
We then move to a discussion of hyperbolic equations for financial engineering applications
in section 5.4, with special applications to real options (in this case the harvesting of wood).
In section 5.5 we show how to apply MOC to systems of equations and how to transform
such equations to systems of ordinary differential equations. Finally, section 5.6 deals with
the nasty world of discontinuous initial conditions and other problems (such as reflections at
downstream computational boundaries) and why discontinuous initial conditions always lead
to discontinuous solutions along the characteristic lines.

It can be proved that the solutions of parabolic equations are smooth even if the initial
conditions or boundary conditions are not smooth. Hyperbolic equations are different because
discontinuities in the initial conditions are propagated as discontinuities into the solution
domain.

The MOC is used in combination with convection–diffusion equations and for this reason
we consider it to be important to pay some attention to it.

5.2 FIRST-ORDER HYPERBOLIC EQUATIONS

In order to motivate how MOC works we consider the first-order scalar, quasilinear hyperbolic
equation

b
∂u
∂t

+ a
∂u
∂x

= c (5.1)

where any of the coefficients a, b or c is a function of x, t and u (this latter dependence on the
unknown solution u makes equation (5.1) quasilinear). If b is not zero we can write (5.1) in
the form

∂u
∂t

+ a
b

∂u
∂x

− c
b

= 0 (5.2)

47
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Now, from the chain rule for differentiation we see that

du
dt

= ∂u
∂t

+ dx
dt

∂u
∂x

or

dx
dt

∂u
∂x

+ ∂u
∂t

− du
dt

= 0 (5.3)

By subtracting (5.3) from (5.2) and using a little bit of arithmetic we get(
a
b

− dx
dt

)
∂u
∂x

−
(

c
b

− du
dt

)
= 0 (5.4)

This equation holds at arbitrary points in (x, t) space. We now define special points where
equation (5.4) reduces to an ordinary differential equation. To this end, if we define the so-called
characteristic curves

dx
dt

= a
b

(5.5)

then (5.4) reduces to the ordinary differential equation

du
dt

= c
b

(5.6)

Equation (5.6) can now be integrated by analytical methods or numerical methods (see
Dahlquist, 1974). For example, we can use an Euler scheme or some kind of predictor–corrector
to integrate (5.6) along the characteristic curves (5.5). Finally, we can write equations (5.5)
and (5.6) in the combined forms

dx
a

= dt
b

= du
c

(5.7)

A discussion of ordinary differential equations, their numerical approximation and imple-
mentation in C++ is given in Duffy (2004).

5.2.1 An example

We give an example of how to use MOC (the example is taken from Huyakorn and Pinder,
1983). The equation is

u
∂u
∂t

+ √
x
∂u
∂x

+ u2 = 0 (5.8)

with initial condition

u(x, 0) = 1, 0 < x < ∞ (5.9)

In this case equation (5.7) takes the form

dx√
x

= dt
u

= du
−u2

(5.10)
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We now consider a point on the characteristic curve with x = A and t = 0. We wish
to integrate the first equation in (5.10) from this point to another arbitrary point (x, t) as
follows ∫ x

A

dy√
y

=
∫ t

0

dt
u

or

2
(√

x −
√

A
)

=
∫ t

0

dt
u

(5.11)

We now use the second equation in (5.10) to evaluate the integral on the right-hand side of
(5.11); again, this equation is:

dt
u

= du
−u2

or dt = −du
u

Thus ∫ t

0
dt = −

∫ u

u0

du
u

Integrating this equation and using the initial condition (5.9) we get

t = ln

(
1

u

)
from which we deduce that

1

u
= et

Substituting this equation into equation (5.11) and integrating in (0, t) we get

t = ln
(

2
√

x + 1 − 2
√

A
)

or

et − 1 = 2(
√

x −
√

A)

Finally, along this characteristic direction the solution of equation (5.8) is given by

u = e−t = 1

2
√

x + 1 − 2
√

A

This example shows how to find the exact solution of a first-order quasilinear hyperbolic
differential equation using an analytical approach. To summarise the main steps, we first found
the characteristic direction and then found the solution of the equation along this direction. We
can use this technique in a number of quantitative finance applications relating to stochastic
volatility and bond models. In general, it can be difficult to find an analytical solution and for
this reason we resort to numerical methods.
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5.3 SECOND-ORDER HYPERBOLIC EQUATIONS

We now extend MOC to the study of the second-order hyperbolic equation

a
∂2u
∂x2

+ b
∂2u
∂x∂t

+ c
∂2u
∂t2

+ e = 0 (5.12)

where the coefficients a, b, c and e are functions of x, t, u and the first derivatives of u. Define
p and q as follows

p = ∂u
∂x

, q = ∂u
∂t

Then using the chain rule we get ⎧⎪⎪⎪⎨⎪⎪⎪⎩
dp
dx

= ∂2u
∂x2

+ ∂2u
∂t ∂x

dt
dx

dq
dt

= ∂2u
∂t2

+ ∂2u
∂x ∂t

dx
dt

(5.13)

Solving for the ‘pure’ second derivative terms in equation (5.13) in x and t , and inserting
the result into equation (5.12), shows that

∂2u
∂x ∂t

(
−a

dt
dx

+ b − c
dx
dt

)
+ a

dp
dx

+ c
dq
dt

+ e = 0 (5.14)

Multiplying (5.14) by −dt/dx gives

∂2u
∂x ∂t

[
a

(
dt
dx

)2

− b
dt
dx

+ c

]
−

(
a

dp
dx

+ c
dq
dt

+ e
)

dt
dx

= 0 (5.15)

We now define the so-called characteristic curves so that the term in the square brackets in
(5.15) is zero. Since this term is a quadratic equation in dt/dx we get the following expression
for dt/dx : (

dt
dx

)
±

= b ± √
b2 − 4ac
2a

(5.16)

Since (5.12) is hyperbolic we know that the square root term in (5.16) is positive and hence
the characteristic curves exist in real space (that is, they are not complex-valued).

5.3.1 Numerical integration along the characteristic lines

We now describe how to solve equation (5.12) by numerical integration along the two charac-
teristic lines (5.16). For convenience, we define the roots of equation (5.16) as follows(

dt
dx

)
+

= f,
(

dt
dx

)
−

= g

We focus on an initial boundary-value problem and to this end we examine the situation as
shown in Figure 5.1. In particular, we give boundary conditions at x = 0 and at x = L as well
as the initial conditions at t = 0. To commence, let us assume that we are given the values
of u at the points P and Q because they are on the initial line t = 0. By moving along the
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x 
x 

= 0
= L

t

x
P Q W

R S

Initial line

Time 1

Time 2

dx

dt = f+)(

dx

dt = g−)(

Figure 5.1 Grid points for MOC

characteristic lines passing through these points, the point R can be located as shown in the
figure. In other words, we determine complete information about point R by the following
two-stage procedure:

1. Find the coordinates of R by solving equation (5.16) by an application of the explicit Euler
method. We take the positive characteristic as an example. We can then rewrite the equation
as follows:

dt = dx f

or ∫ R

P
dt =

∫ R

P
dx f ≈ fP

∫ R

P
dx = fP(xR − xP)

or

tR − tP = fP(xR − xP)

A similar equation for the negative characteristic gives

tR − tQ = gQ(xR − xQ)

Solving for the coordinates of R in these last two equations (two equations in two unknowns
xR and tR) gives:

xR = fPxP − gQxQ + tQ − tP
fP − gQ

tR = tP + fP(xR − xP)

2. We find the first-order derivatives in x and t of u at the point R. To this end, we now write
the non-bracketed part of equation (5.15) along the charateristic curve in the following form
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by multiplying it by dx :

a
(

dt
dx

)
dp + c dq + e dt = 0 (5.17)

in finite difference form (using the explicit Euler scheme) along the line (dt/dx)+ = f and
(dt/dx)− = g, respectively:{

ap f p (pR − pP) + cp(qR − qp) + eP (tR − tP) = 0

aQgQ(pR − pQ) + cQ(qR − qQ) + eQ
(
tR − tQ

) = 0

Some tedious but simple arithmetic gives the following needed information by solving the
above equation:

pR = ap fP pP/cp − aQ fQPQ/CQ + qp − qQ + (epcp − eQ/cQ)tR + eptp/cp − eQtQ/cQ

ap f p/cp − aQ fQ/cQ

qR = ep(tP − tQ)/cp + ap f p(pp − pR)/cp + qP

3. Having found the derivatives p and q at the point R we find the value u by using the formula

du = p dx + q dt

We now integrate this equation using the midpoint scheme in order to achieve second-order
accurary. The formula that we use in going from P to R is∫ R

P
du =

∫ R

P
p dx +

∫ R

P
q dt

or

uR − uP ≈ 1
2 (pP + pR)(xR − xP) + 1

2 (qP + qR)(tR − tP)

Similarly, in going from Q to R we get

uR − uQ ≈ 1
2 (pQ + pR)(xR − xQ) + 1

2 (qQ + qR)(tR − tQ)

Adding these last two equations we then get the final representation for the value of u at
the point R

uR = 1
2

[
u p + 1

2 (pR + pP)(xR − xP) + 1
2 (qR + qp)(tR − tP)

+ uQ + 1
2 (pR + pQ)(xR − xQ) + 1

2 (qR + qQ)(tR − tQ)
]

(5.18)

In general this is a quasilinear equation and we must use some kind of iteration to solve it
at R. To this end, improved values are obtained by solving

tR − tP = 1
2 ( fP + fR)(xR − xP )

tR − tQ = 1
2 ( fP + fQ)(xR − xQ)

Improved values for pR and qR are obtained by solving

a p f P(pR − pP) + cp(qR − qP) + eP(tR − tP) = 0

aQgQ(pR − pQ) + cQ(qR − qQ) + eQ(tR − tQ) = 0
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where

a p = 1
2 (aP + aR), cp = 1

2 (cP + cR), ep = 1
2 (eP + eR)

aQ = 1
2 (cQ + aR), cQ = 1

2 (cQ + cR), eQ = 1
2 (eQ + eR)

If Q is close to P the number of iterations should be small.
4. Having found the solution at R, we can then apply steps (1) to (3) to the point S (see

Figure 5.1). This point is the intersection of the characteristic lines through Q and another
initial point W. Notice that at the vertical boundaries x = 0 and x = L either the value u or
its derivative p are given.

A special case is when the hyperbolic equation (5.12) is linear; then the terms on the right-
hand side of (5.18) are known or can be calculated.

5.4 APPLICATIONS TO FINANCIAL ENGINEERING

Although hyperbolic equations are not as common as parabolic equations in financial engi-
neering applications, there are opportunities for the application of MOC to certain classes of
PDE that model two-factor equations. In general, we can employ MOC in cases where one
of the underlying quantities has no diffusion term and is in fact modelled as a deterministic
process.

A prototypical PDE is:

∂V
∂t

+ σ1
∂2V
∂x2

+ μ1
∂V
∂x

+ μ2
∂V
∂y

+ bV = f (5.19)

In this case V is a derivative quantity based on the two state variables x and y. The PDE is
second-order parabolic in x and first-order hyperbolic in y. The PDE in y is a wave equation
and thus is deterministic. Some examples where this kind of equation is necessary up are:

1. Asian options (Ingersoll, 1987; Wilmott et al., 1993); in this case the variable x plays the
role of the underlying asset price S and y plays the role of some average (for example,
denoted by I or A) of the underlying:

I =
∫ t

0
S(τ ) dτ (5.20)

2. Pricing Bermudan swaptions (Cheyette, 1992, Andreason, 2001); the Cheyette model is the
specification of the volatility structure of the continuously compounded forward rates in
the HJM (Heath–Jarrow–Morton) model. We do not go into the details of how the Cheyette
PDE is set up, but the basic PDE is given by

∂V
∂t

+ 1
2η2 ∂2V

∂x2
+ (−K x + y)

∂V
∂x

+ (η2 − 2K y)
∂V
∂y

− r V = 0 (5.21)

Equations of the form (5.21) can be used to model zero-coupon bonds, for example. Again,
we see that this equation has the same form as equation (5.19). As noted in Andreasen
(2001), standard ADI difference schemes are prone to spurious oscillations because of the
absence of a second-order derivative in the y direction. Using centred difference schemes
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in the y direction will also cause problems because these schemes are only weakly stable
(Peaceman, 1977). Some alternatives to these schemes are:�Use one-sided difference schemes in the y direction (upwinding)�Use ADI or splitting methods, using centred difference schemes in the x direction and the

method of characteristics in the y direction (since this is a first-order hyperbolic equation)�Modern schemes, such as Implicit Explicit (IMEX) splitting schemes (Hundsdorfer and
Verwer, 2003).

We shall discuss each of these methods in later chapters.
3. Real options and forest harvesting decisions (Insley and Rollins, 2002). This is a two-factor

real options model of the harvesting decisions over infinite rotations with mean reverting
stochastic prices. The authors view the opportunity to harvest a stand of trees as a real
option similar to an American option that can be exercised at any time. The exercise price
is the cost of harvesting the trees and transporting them to the point of sale. Embedded in
the tree-harvesting opportunity is the option to choose the optimal harvest time based on
wood volume and price. There is also an option to abandon the investment if wood prices
are too low.

The mean reverting price process is given by

dP = η(Pavg − P) dt + σ P dz (5.22)

where P = the price of saw logs

η = mean reversion parameter

σ = the constant variance rate

dz = increment of a Wiener process.

In general, this model tells us that the price reverts to a long run average of Pavg. We assume
the wood volume Q is deterministic and depends on the time since the last harvest

dQ = ϕ(Q) dt

for some function ϕ.
The basic PDE model for this problem is (Dixit and Pindyck, 1994; Insley and Rollins,

2002)

∂V
∂τ

− ϕ
∂V
∂ Q

= 1
2σ 2 P2 ∂2V

∂ P2
+ η(Pavg − P)

∂V
∂ P

− ρV + A + �(V ) (5.23)

where V = value of the opportunity to harvest

τ = time to expiry of the option (τ = T − t)

Q = current volume of timber

ϕ = dQ/dt

P = price of saw logs

A = the per-period amenity value of standing forest less any management costs

P = annual discount rate.
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Furthermore, the term �(V ) is a so-called penalty term that prevents the value of the option
V from ever falling below the payout from harvesting immediately. We shall encounter more
examples of penalty terms in the chapters on options with early exercise features.

We must now specify the boundary conditions for problem (5.23). The region of integration
is a two-dimensional semi-infinite region in (P, Q) space and we specify boundary conditions
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) As P → 0, dP → ηP

(b) As P → ∞, chose ∂2V
∂ P2 = 0 (linearity boundary condition)

(c) As Q → 0, since ϕ(Q) ≥ 0 when Q ≥ 0, no boundary condition is needed

and in this case we have a first-order hyperbolic equation in the Q direction.

∂V
∂τ

− ϕ
∂V
∂ Q

= 0

We see that the outgoing characteristics are in the negative Q direction.

(d) As Q → ∞, we assume ϕ(Q) → 0, no boundary condition is needed.

(5.24)

The initial/terminal condition is given by

V (P, Q, T ) = 0 (t = T ) (5.25a)

or equivalently

V (P, Q, 0) = 0 (τ = 0) (5.25b)

We then assume that V = 0 when T is large, and thus we make T large enough that this
assumption has a negligible effect on the current V .

5.4.1 Generalisations

The details of the numerical approximation of this problem are given in Insley and Rollins
(2000). In short, they use central difference schems in the P direction and MOC in the Q
direction.

We return to the general equation (5.19). In financial terms, we reason that its solution
depends on the state variable x (which is stochastic) and hence we see a specific convective
term and volatility term σ . This reflects the stochastic differential equation for the state variable
x . However, the variable y is deterministic and has no volatility terms. Hence we expect its
derivative quantity to have a more ‘wave-like’ property, and this is seen in the hyperbolic
component in equation (5.19).

5.5 SYSTEMS OF EQUATIONS

It is possible to apply the Method of Characteristics to system of equations. To this end, let us
consider the quasilinear system of first-order equations

n∑
j=1

ai j
∂ui

∂x
+

n∑
j=1

bi j
∂ui

∂t
= Fi , i = 1, . . . , n (5.26)
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in the two independent variables x and t . The coefficients appearing in (5.26) are functions of
x, t and u but they do not depend on the derivatives of u. Let us define the matrices and the
vectors

A = (ai j )

B = (bi j )

}
i, j = 1, . . . , n (5.27a)

U = t (u1, . . . , un)

F = t (F1, . . . , Fn)

}
i = 1, . . . , n (5.27b)

We can then write (5.26) in vector form

A
∂U
∂x

+ B
∂U
∂t

= F (5.28)

Definition 1. The system (5.28) is said to be hyperbolic if the eigenvalue problem

det(A − λB) = 0 (5.29)

has n real roots corresponding n real directions in the (x, t) plane (we assume that these roots
are distinct).

We now find the characteristic lines for system (5.28) by a generalisation of the process for
the scalar case. As before, the total derivative of U is given by

dU = ∂U
∂t

dt + ∂U
∂x

dx (5.30)

We then see that equations (5.28) and (5.30) constitute a system of 2n equations in the 2n
unknowns

∂u j

∂t
,

∂u j

∂x
, j = 1, . . . , n (5.31)

Formally, the system of equations is

A
∂U
∂x

+ B
∂U
∂t

= F

I dt
∂U
∂x

+ I dx
∂U
∂x

= dU

(5.32)

where I is the unit diagonal matrix of size n.
Define the matrix D by

D =
(

A B
Idt Idx

)
(5.33)

Then the system (5.32) has a solution if

det(D) = 0 (5.34)

Thus, condition (5.34) allows us to find the characteristic directions for the system (5.26).
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5.5.1 An example

Let us consider the 2 × 2 system

∂u
∂t

+ a1
∂v

∂x
= 0

∂v

∂t
+ a2

∂u
∂x

= 0

⎫⎪⎬⎪⎭ a1, a2 > 0 constant (5.35)

By calculating the determinant, the condition (5.34) reduces to(
dx
dt

)2

= a1a2 or
dx
dt

= ±√
a1a2 (5.36)

A special case of (5.35) occurs with acoustic waves in a homogeneous medium

∂u
∂t

+ 1

ρ

∂p
∂x

= 0

∂p
∂t

+ ρc2 ∂u
∂x

= 0

(5.37)

where u is the sound and p is the pressure. The variable ρ is the density and c is the local speed
of sound in the medium. In this case the local ordinary differential equations and characteristic
directions are

du
dt

= 0 on C+ =
{

(x, t) :
dx
dt

= +c
}

du
dt

= 0 on C− =
{

(x, t) :
dx
dt

= −c
} (5.38)

5.6 PROPAGATION OF DISCONTINUITIES

A property of hyperbolic equations is that discontinuities in initial conditions lead to discon-
tinuous solutions at later times. We shall give an example that has a discontinuous initial value.
Consider the initial value problem

∂u
∂x

+ ∂u
∂y

= 1, y ≥ 0, −∞ < x < ∞ (5.39)

where u is known at point A(xa, 0) on the x-axis (see Figure 5.2). The characteristic direction
is given by dx = dy and u satisfies du = dy on this line. Hence the characteristic through A
is y = x − xa and the solution is u = u(A) + y. Now consider the initial condition

u(x, 0) = f1(x), −∞ < x < xb

u(x, 0) = f2(x), xb < x < ∞
(5.40)

To the left of the characteristic y = x − xb the solution is

u(L) = f1(xa) + y along y = x − xb

To the right of the characteristic y = x − xb the solution is

u(R) = f2(xc) + y along y = x − xc
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A(xa,0) B(xb,0) C(xc,0)

f1 (x) f2 (x)

Figure 5.2 Discontinuous initial condition

The jump in the solution to the left and right of B is

u(L) − u(R) = f1(xa) − f2(xc)

Letting both A and C converge to B we see that the solution is discontinuous because we
have assumed that the initial condition (5.40) is not continuous, i.e. f1(xb) �= f2(xb).

Hence we conclude that when the initial condition is discontinuous at a particular point B,
then the solution is discontinuous along the characteristic curve 
 emanating from B. The
effect of this initial discontinuity does not diminish as we move away from B along 
. The
situation with parabolic equations is quite different: initial discontinuities tend to be localised
and diminish rapidly with distance from the point of discontinuity.

5.6.1 Other problems

It is possible to analyse first-order hyperbolic problems in an infinite interval using Fourier
transforms, but this technique is not suitable for initial boundary value problems with discon-
tinuities at the boundaries or when we need to perform mesh refinement (Vichnevetsky and
Bowles, 1982). Let us consider the model hyperbolic problem

∂u
∂t

+ a
∂u
∂x

= 0, a > 0, x ∈ (0, L)

and its semi-discretisation

du j

dt
+ a

(
u j+1 − u j−1

2h

)
= 0, j = 1, . . . , J − 1

The boundary conditions are: at x = 0,

u(0, t) = g(t)

and at x = L ,

du J

dt
+ a

(
u J − u J−1

h

)
= 0
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We thus impose the ‘real’ boundary condition at x = 0, while at x = L we approximate the
differential equation itself by a one-sided difference scheme. As discussed in Vichnevetsky
and Bowles (1982), this approach leads to spurious reflections.

5.7 SUMMARY AND CONCLUSIONS

We have given an introduction to the Method of Characteristics (MOC), which is used mainly
for hyperbolic equations. Its added value is that a partial differential equation can be reduced
to an ordinary differential equation along so-called characteristic curves.

We discussed the application of MOC to financial engineering applications and it can be
seen as an alternative to the finite difference method in such situations.

First-order hyperbolic equations need to be studied in certain financial engineering applica-
tions, for example in two-factor models where one underlying has a deterministic behaviour.
Asian and Real options are typical examples. Then the derivative quantity will be modelled by
a partial differential equation, one of whose components has no diffusion term.
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6
An Introduction to the Finite

Difference Method

6.1 INTRODUCTION AND OBJECTIVES

Part II introduces the finite difference method (FDM). The chapters in this part focus on produc-
ing accurate and robust schemes for second-order parabolic and first-order hyperbolic partial
differential equations in two independent variables, usually called x and t . The first variable x
plays the role of a space coordinate and the second variable t plays the role of time. We model
the partial differential equations by approximating the derivatives using divided differences.
These latter quantities are defined at so-called discrete mesh points. Having motivated FDM
in a generic setting we then apply the resulting finite difference schemes to the one-factor
Black–Scholes model in Part III.

In this chapter we investigate the application of FDM to ordinary differential equations
(ODEs). An ODE has one independent variable and hence it is conceptually easier to under-
stand and to approximate than equations in two or more variables. In particular, we examine a
special kind of problem in this chapter. This is called first-order initial value problems (IVP).
They are useful objects of study in their own right and our objective is to approximate them
using FDM in order to pave the way for more complex applications later in the book. In
particular, the added value is:� Initial value problems provide the motivation for finite difference schemes that will be used

to approximate the time dimension in the Black–Scholes partial differential equation.� In this chapter we introduce notation that will be used throughout the book. We aim to be as
consistent as possible in our use of notation.

We shall also introduce the concept of divided differences and how we use them to approximate
the first- and second-order derivatives of real-valued functions of one variable. The chapter
should be read and understood before embarking on the other chapters. It is fundamental.

6.2 FUNDAMENTALS OF NUMERICAL DIFFERENTIATION

In this section let us look at a real-valued function of a real variable, as follows:

y = f (x) (6.1)

In general we are interested in finding approximations to the first and second derivatives
of the function f . This is needed because, in general, the form of the function f is unknown
and it is thus impossible to calculate its derivatives analytically. To this end, we must resort
to numerical approximations. Suppose that we wish to approximate the first derivative of y
at some point a (see Figure 6.1) and assume that h is a (small) positive number. The first

63
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y

x
a a + ha - h

(6.2)(6.3)
(6.4)

y = f (x )

Figure 6.1 Motivating divided differences

approximation (called the centred difference formula) is given by

f ′(a) ≈ f (a + h) − f (a − h)

2h
(6.2)

Another approximation is called the forward difference formula given by

f ′(a) ≈ f (a + h) − f (a)

h
(6.3)

Finally, the backward difference formula is given by

f ′(a) ≈ f (a) − f (a − h)

h
(6.4)

For future work, we use the following notation:

D0 f (a) ≡ f (a + h) − f (a − h)

2h
(6.5a)

D+ f (a) ≡ f (a + h) − f (a)

h
(6.5b)

D− f (a) ≡ f (a) − f (a − h)

h
(6.5c)

The next question is: How good are these approximations to the derivative of f at a and which
one should we use? The answer to the second question will be addressed in later sections. To
answer the first question, let us examine the centred difference case. We use Taylor’s expansion
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(Davis, 1975) to show that

f (a ± h) = f (a) ± h f ′(a) + h2

2!
f ′′(a) ± h3

3!
f ′′′(η±)

η− ∈ (a − h, a), η+ ∈ (a, a + h)

(6.6)

from which we conclude that in this particular case

D0 f (a) = f ′(a) + h2

6

(
f ′′′(η+) + f ′′′(η−)

2

)
(6.7)

We thus see that centred differences give a second-order approximation to the first deriva-
tive if h is small enough and if f has continuous derivatives up to order 3. Similarly, some
arithmetic shows that forward and backward differencing give first-order approximation to the
first derivative of f at the point a:

D+ f (a) = f ′(a) + h
2

f ′′(η+), η+ ∈ (a, a + h)

D− f (a) = f ′(a) − h
2

f ′′(η−), η− ∈ (a − h, a)

(6.8)

We see that these one-sided schemes are first-order accurate. On the other hand, they place
low continuity constraints on the function f , namely we only need to assume that its second
derivative is continuous.

We now discuss divided differences for the second derivative of f at some point a. To this
end, we propose the following popular and much used three-point formula (see Conte, 1980):

D+ D− f (a) ≡ f (a − h) − 2 f (a) + f (a + h)

h2
(6.9)

Thus, this divided difference is a second-order approximation to the second derivative of f
at the point a and we assume that this function has continuous derivatives up to and including
order 4. The discretisation error is given by

D+ D− f (a) = f ′′(a) + h4

4!

(
f (iv)(η+) + f (iv)(η−)

)
(6.10)

In later chapters we shall apply the divided differences as defined in equations (6.5) to PDEs
whose solutions may not have the necessary degree of continuity. In general, you cannot get a
high-order approximation to a problem whose solution is discontinuous at certain points. For
example, trying to find the derivatives in the classical sense of a Heaviside function or Dirac
function is pointless.

6.3 CAVEAT: ACCURACY AND ROUND-OFF ERRORS

From the previous section we can deduce that it is possible (at least in theory) to approximate
the derivatives of a smooth function to any degree of accuracy by choosing the mesh distance
h to be as small as desired. In practice, however, the fact that computers have limited word
length and that loss of significant digits occurs when nearly equal quantities are subtracted
combine to make high accuracy difficult to obtain (Conte and de Boor, 1980; Dahlquist, 1974).
In particular, if the computer cannot handle numbers with more than s digits, then the exact
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Table 6.1 Approximating first derivatives

Single precision
h (float) Double

1 1.752 1.1752
10−1 1.00167 1.00167
10−2 1.00002 1.00002
10−3 1.00001 1
10−4 1.00006 1
10−5 1.00068 1
10−6 0.976837 1
10−7 1.09605 1

Table 6.2 Approximating second derivatives

Single precision
h (float) Double

10−3 1 1
10−4 1 1
10−5 1 0.999999
10−6 1.00004 0.999962
10−7 1.0107 0.994338

product of two s-digit numbers cannot be used in subsequent calculations, and in this case the
product must be rounded off. The effect of such rounding off can be noticeable in calculations.
The conclusion is that there is a critical size of h below which the results of calculations cannot
be trusted. Some authors resort to interval analysis techniques (see Moore, 1966, 1979) to
resolve this problem. The solution to a problem is no longer a single point estimate but is
situated in a range or interval.

Let us take an example (taken from Conte and de Boor, 1980). We discuss the application
of the divided differences in formulae (6.5) (the centred difference option) and (6.9) to ap-
proximating the derivatives of the exponential function at x = 0. Of course, all derivatives
have the value 1 at x = 0 and we investigate how well the divided differences approximate
these values as the mesh size h becomes progressively smaller. Furthermore, we investigate
the effect of round-off error when using single-precision float data type and double-precision
double data type. We first discuss approximating the first derivative and the results are shown
in Table 6.1. In the case of single-precision numbers we see that the approximation gets better
until the mesh size h becomes 0.0001, after which time the approximation becomes worse. No
appreciable degradation occurs in the double precision case. The results are shown in Table 6.2.
On the other hand, when applying the somewhat more complex formula (6.9) we see that the
accuracy becomes worse for values of h smaller than 0.0001 for both single-precision and
double-precision cases. It is possible to calculate the critical value of h below which the round-
off errors start to play a role. See Conte and de Boor (1980) for the example in this section.
This optimum value of h is the value for which the sum of the magnitude of the round-off
error and of the discretisation error is minimised. In Conte and de Boor (1980) the authors
determine this value as h = 0.0033.
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We shall develop finite difference schemes in later chapters and in these cases we may need
to choose very small mesh sizes in order to improve accuracy. We must also be careful that we
do not introduce round-off errors, thus destroying accuracy rather than improving it!

6.4 WHERE ARE DIVIDED DIFFERENCES USED
IN INSTRUMENT PRICING?

This book is about approximating the solution of partial differential equations (PDEs) that
describe the behaviour of financial derivatives. In general, the PDE is multidimensional. It
has a time dimension and one or more space (or underlying) dimensions. The order of the
derivatives in the PDE are:� First order in time� First order and second order in space.

Since it is not possible or even desirable to search for an exact solution to the initial boundary
value problem for the PDE, we have to seek refuge in some kind of approximate method. In this
book we examine the applicability of the finite difference method (FDM) to such problems. If
we had to summarise FDM we would say that it is a method that approximates the derivatives in
a PDE (defined on a continuous region) by so-called divided differences defined on a discrete
mesh.

6.5 INITIAL VALUE PROBLEMS

In this section we consider a class of first-order linear systems of ordinary differential equations
in the independent variable t (this is usually a time dimension):

dV (t)
dt

+ A(t)V (t) = F(t), 0 < t ≤ T (6.11)

where V (t) = t(u1(t), . . . , un(t))

F(t) = t( f1(t), . . . , fn(t))

A(t) = (ai j (t))1≤i, j≤n

(see Varga, 1962; Crouzeix, 1975; Le Roux, 1979). In this case the vector F(t) and matrix
function A(t) are known quantities and the vector V (t) is unknown. The system (6.11) will
have a unique solution if we give an initial condition for V (t) when t = 0:

V (0) = U0, U0 = t(u01, . . . , u0n) (6.12)

where U0 is a given constant vector.
The initial value problem (IVP) is highly relevant to the material in this book and in particular

its applications to finite difference methods for parabolic initial boundary problems. For the
moment, we concentrate on two aspects of the problem:� Analytical properties of IVP (6.11), (6.12)� Finite difference approximations to IVP (6.11), (6.12).

We now discuss these two approaches.
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6.5.1 Padé matrix approximations

Let us assume for the moment that the matrix A in equation (6.11) is independent of t . We
define (formally) the exponential of a matrix as follows:

exp (A) ≡ I + A + A2

2!
+ · · · ≡

∞∑
j=0

An

n!
(6.13)

where I is the identity matrix. This is the n × n matrix with the value 1 on the main diagonal
and zero everywhere else. Based on this definition, the solution of (6.11), (6.12) is given by:

V (t) = exp (−At)U0 + exp (−At)
∫ t

0
exp (Aλ)F(λ) dλ, t ≥ 0 (6.14)

(see Varga, 1962). In general, it is difficult or undesirable to attempt to use (6.14) directly in
calculations. Furthermore, the matrix A can be a function of time, in which case formula (6.14)
needs to be modified. Thus, we resort to numerical techniques to approximate the IVP (6.11),
(6.12). Some examples are:� One-step and multi-step finite difference method (FDM)� Runge–Kutta methods (Stoer and Bulirsch, 1980)� Predictor–corrector methods.

In this chapter we concentrate on one-step methods. To this end, we partition the interval [0, T ]
into sub-intervals

0 = t0 < t1 < t2 < · · · < tN = T

kn = tn+1 − tn, n = 0, . . . , N − 1
(6.15)

The sub-intervals do not necessarily have to be of the same size but for convenience we
partition [0, T ] into N equal sub-intervals as follows:

k = T/N

k = tn+1 − tn, n = 0, . . . , N − 1
(6.16)

Having done this, we must approximate the solution of IVP (6.11), (6.12). The case n = 1
(the so-called scalar IVP) has been discussed in detail in Duffy (2004) and we extend some of
the results to the general case here.

The challenge is to approximate the derivative appearing in (6.11). To this end, some popular
schemes are:

Implicit Euler scheme

U n+1 − U n

k
+ An+1U n+1 = Fn+1, n = 0, . . . , N − 1

U 0 = U0

An+1 ≡ A(tn+1), Fn+1 ≡ F(tn+1)

(6.17)
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Explicit Euler scheme

U n+1 − U n

k
+ AnU n = Fn, n = 0, . . . , N − 1

U 0 = U0

An ≡ A(tn), Fn ≡ F(tn)

(6.18)

Crank–Nicolson scheme

U n+1 − U n

k
+ An+ 1

2
U n+1 + U n

2
= Fn+ 1

2 , n = 0, . . . , N − 1

U 0 = U0

tn+ 1
2

≡ tn+1+tn
2 , An+ 1

2 ≡ A(tn+ 1
2
), Fn+ 1

2 ≡ F(tn+ 1
2
)

(6.19)

Noting from these schemes that data is known at time level n we can then calculate new
values at time level n + 1. Formally, the new values are:

Implicit Euler scheme

(I + k An+1)U n+1 = U n + k Fn+1 (6.20)

Explicit Euler scheme

U n+1 = (I − k An)U n + k Fn (6.21)

Crank–Nicolson scheme(
I + k An+ 1

2

2

)
U n+1 =

(
I − k An+ 1

2

2

)
U n + k Fn+ 1

2 (6.22)

where I is the identity matrix.
The solution at time level n + 1 in equation (6.21) can be found directly while we must

solve a matrix system for the equations (6.20) and (6.22). We note that the implicit Euler
scheme is also called the backward-difference method and the explicit Euler method is called
the forward-difference method.

Let us now take the case of F(t) = 0 and where the matrix A is independent of time. We
can then write equations (6.20), (6.21) and (6.22) in the equivalent forms (at least formally)

U n+1 = (I + k A)−1U n (6.23a)

U n+1 = (I − k A)U n (6.23b)

U n+1 =
(

I + k
2

A
)−1 (

I − k
2

A
)

U n (6.23c)

If we compare these solutions with the exact solution, namely (see equation (6.14))

W (t) = exp (−t A)U0 (6.24)

we realise that the solutions in system (6.23) are essentially approximations to the exponential
matrix term in (6.24). We can show how well the approximate solutions agree with the series
in equation (6.13). To make this statement more clear, we look at the Crank–Nicolson scheme
because of its popularity in financial engineering applications (by the way, it does not always
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live up to its name, as we shall see in later chapters). Let us assume that the time-step k is
sufficiently small. Then we can formally expand the expression for the approximate solution
as follows (with A replaced by −A):(

I + k
2

A
)−1 (

I − k
2

A
)

= I − k A + (k A)2

2
− (k A)3

4
+ · · · (6.25)

and we thus see that this series agrees with that in (6.13) to second order. Similarly it can be
shown that the other numerical solutions in equations (6.23) approximate the exponential term
to first order in k. However, the scheme for the explicit Euler scheme is only conditionally
stable, which means that k must be chosen to be less than some critical value. The implicit
Euler and Crank–Nicolson schemes are unconditionally stable for any value of k. This means
that

‖U n‖ ≤ M‖U0‖ n = 0, 1, . . . (6.26)

in some norm. Here the constant M is independent of the step size k.

Theorem 6.1. (Stability of the explicit Euler scheme.) Let A be an n × n matrix whose eigen-
values λ j satisfy 0 < ∞ ≤ 
 λ j ≤ β, 1 ≤ j ≤ n (here 
λ j denotes the real part of the com-
plex number λ j )

Then, the explicit Euler scheme approximant I − k A is stable for

0 ≤ k ≤ min
1≤ j≤n

(
2
λ j

| λ j |2
)

Looking at equations (6.23) again, we might ask ourselves how the approximations to the
exponential are generated. In fact, the approximations in (6.23) are special cases of Padé
rational approximations (Varga, 1962; de Bruin and Van Rossum, 1980). A rational function
is a quotient of two polynomials and we use such functions to approximate the exponential
function as follows:

exp(−z) = n p,q (z)

dp,q (z)
(6.27)

where n (the numerator) and d (the denominator) are polynomials of degrees q and p in
z, respectively. In general, we select for each pair of non-negative integers p and q those
polynomials n and d such that the Taylor’s series expansion of n/d agrees with as many
leading terms of Taylor expansion of exp(−z). We can thus create a so-called Padé table for
exp(−z). Some of the first few terms in the table are shown in Table 6.3.

Table 6.3 Padé table for exp(−z)

q = 0 q = 1 q = 2

p = 0 1 1 − z 1 − z + z2/2

p = 1
1

1 + z
2 − z
2 + z

6 − 4z + z2

6 + 2z

p = 2
1

1 + z + z2/2

6 − 2z
6 + 4z + z2

12 − 6z + z2

12 + 6z + z2
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The reader can verify that the entries in Table 6.3 are correct. An important result concerning
Padé approximations and stability of difference schemes for IVP (6.11), (6.12) is that if the
eigenvalues of a matrix A are positive real numbers, then the Padé matrix approximation is
unconditionally stable if and only if p ≥ q . The Padé matrix approximation technique can be
applied to other functions. A discussion, however, is outside the scope of this book and we
refer the reader to de Bruin (1980).

6.5.2 Extrapolation

Much of the financial engineering literature uses the Crank–Nicolson method, and many people
use it probably for the main reason that it is second-order accurate. However, as we shall see
in later chapters, it produces spurious (artificial) oscillations, especially near the strike price
and barriers.

In this section we discuss how to ’bootstrap’ the accuracy of the implicit Euler method from
first-order to second-order accuracy while also avoiding spurious oscillations. We motivate the
extrapolated scheme in two ways. Let� U n

k be the solution of (6.23a)� W be the solution of (6.24)

where we have introduced the subscript k in the approximate solution to denote its dependence
on k. Then, we can prove (this will be discussed later) that

U n
k = W + Mk + O(k2) (6.28)

where the constant M does not depend on k. By now taking a scheme with a mesh of size k/2
we also see that

U 2n
k/2 = W + Mk

2
+ O(k2) (6.29)

Some arithmetic shows that

V 2n
k/2 ≡ 2U 2n

k/2 − U n
k = W + O(k2) (6.30)

Thus, we now get a second-order scheme with little extra effort. We have programmed
this method and the C++ code for the scalar case is given in Duffy (2004). We motivate the
extrapolated scheme based on Padé matrix approximations and the series form for exponential
matrices (based on Lawson and Morris, 1978 and Gourlay and Morris, 1980). Let us for
convenience denote the approximate solution by V and drop the dependence on the discrete
time level t ; we just take any time value t . Applying (6.23a) on a mesh of size k we see that

V (t + k) = (I + k A)−1V (t) (6.31)

Alternatively, we can progress from time t to time t + k in two steps, namely from t to
t + k/2 and then from t + k/2 to t + k and this combined step gives:

V (t + k) =
(

I + k
2

A
)−1 (

I + k
2

A
)−1

V (t) (6.32)

Expanding (6.31) and (6.32) in powers of k gives, respectively,

V (t + k) = (I + k A + k2 A2)V (t) + O(k3) (6.33)
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and

V (t + k) =
(

I + k A + 3

4
k2 A2

)
V (t) + O(k3) (6.34)

If we now multiply equation (6.34) by a factor of 2 and subtract equation (6.33) we get

V (t + k) =
(

I + k A + k2

2
A2

)
V (t) + O(k3) (6.35)

Comparing this result with the series expansion in equation (6.13) we then get a second-order
approximation. This suggests the following algorithm:

V (1)(t + k) = (I + k A)−1V (t)

V (2)(t + k) =
(

I + k
2

A
)−1 (

I + k
2

A
)−1

V (t)

V (t + k) = 2V (2) − V (1)

(6.36)

We thus have produced the second-order scheme!
Extrapolation techniques in conjunction with the implicit Euler scheme have been applied

to the Black–Scholes equation and good results have been obtained: i.e. second-order accuracy
and no spurious oscillations. For the details, we refer the reader to Cooney (1999).

6.6 NONLINEAR INITIAL VALUE PROBLEMS

The system (6.11), (6.12) is linear because neither the matrix function A(t) nor the vector
function F(t) depends on the unknown solution V . If this is not the case, however, we need a
different scheme, which we describe as follows (Dalhquist, 1974). Let us consider the nonlinear
IVP:

dy
dt

= f (t, y), 0 < t ≤ T

y(0) = A
(6.37)

where

y = y(t) = t (y1(t), . . . , yn(t))

f = f (t, y) = t ( f1(t, y), . . . , fn(t, y))

A = t(a1, . . . , an) is a constant vector

In this case the vector y is the unknown variable. The function f is a nonlinear vector-
valued function and it is not possible to apply the linear methods (such as Crank–Nicolson)
to (6.37); whereas for linear problems we can solve a system of linear equations at each time
level (using LU decomposition, for example), applying Crank–Nicolson leads to a nonlinear
system of equations that must be solved by Newton’s method, for example. Instead, we prefer
to linearise the IVP (6.37) in some way and then apply well-known finite difference schemes.
To this end, we discuss two techniques, namely the predictor–corrector and the Runge–Kutta
methods.

Nonlinear problems such as the IVP (6.37) are very important in financial engineering
applications. First, they form part of the theory of stochastic differential equations (SDEs).
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An SDE is similar to an IVP but has a noise term added on. For a discussion of this topic see
Kloeden et al. (1994) and for an implementation in C++, see Duffy (2004). Second, nonlinear
IVPs arise when we carry out a semi-discretisation of various kinds of nonlinear parabolic
partial differential equations. A number of generalisations of the Black–Scholes equation have
been proposed in the last few years (for example, passport options, nonlinear volatility and
problems with transaction costs) and they lead to nonlinear partial differential equations that
are then solved using the solvers in this section.

6.6.1 Predictor–corrector methods

The idea behind predictor–corrector methods is easy. In marching from time level n to time
level n + 1, we first ‘predict’ an intermediate and ‘rough’ solution using some explicit finite
difference scheme and we then ‘correct’ it at time level n + 1. The advantage of this approach is
that we can approximate a nonlinear IVP by a sequence of simpler (and linear!) finite difference
schemes.

In order to motivate the current scheme, let us first discretise (6.37) by the trapezoidal rule

yn+1 − yn = 1
2 h[ f (tn, yn) + f (tn+1, yn+1)], n = 0, 1, 2, . . . (6.38)

This is an example of an implicit method because the unknown value of y at time level n + 1
appears implicitly on the right-hand side of equation (6.38). Thus we cannot directly solve
this problem at time level n + 1. If f is a nonlinear function we then have to solve a nonlinear
system at each time level because the unknown function lives on both sides of equation (6.38)
as it were. This complicates matters somewhat but not all is lost because we modify (6.38)
so that the unknown value is removed from the right-hand side. To this end, we propose the
following (iterative) algorithm:� Step 1: Calculate an ‘intermediate’ value (called the predictor) as follows:

y(0)
n+1 = yn + h f (tn, yn) (6.39)

Please note that we calculate the predictor by using the explicit Euler method. We now adapt
equation (6.38), by using the predicted value on the right-hand side instead of the unknown
function to get the approximation

y(1)
n+1 = yn + h

2
[ f (tn, yn) + f (tn+1, y(0)

n+1)] (6.40)� Step 2: The general iteration is given by

y(k)
n+1 = yn + h

2
[ f (tn, yn) + f (tn+1, y(k−1)

n+1 )], k = 1, 2, . . . (6.41)� Step 3: We compute the left-hand side of (6.41) until

‖y(k)
n+1 − y(k−1)

n+1 ‖
‖y(k)

n+1‖
≤ ε for prescribed tolerance ε (6.42)

We conclude with the remark that we need some guarantee that the iterations in equation (6.41)
converge to a unique value. A sufficient condition for convergence is that∥∥∥∥∂ f

∂y

∥∥∥∥ h < 2 (6.43)
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where ∂ f /∂y is a square matrix defined by

∂ f
∂y

=
(

∂ fi

∂y j

)
, 1 ≤ i, j ≤ n

and ‖ · ‖ is some suitable norm, for example the L∞ or L2 norm.
This concludes the basics of the predictor–corrector methods. For a good introduction,

see Conte and de Boor (1980). For applications of predictor–corrector methods to stochastic
differential equations, see Kloeden et al. (1994, 1995).

We have applied predictor–corrector methods to a number of problems and differential
equations and we are impressed by its robustness, ease of use and efficiency. We shall apply
the method in later chapters for several nonlinear partial differential equations that model
financial instruments. The method is not so well known in financial engineering but it is well
worth investigating. A discussion of the predictor–corrector method for one-factor stochastic
differential equations is given in Duffy (2004).

6.6.2 Runge–Kutta methods

There is a vast literature on Runge–Kutta (RK) methods and their applications to initial value
problems (Stoer and Bulirsch, 1980; Conte and de Boor, 1980, Crouzeix, 1975). We give the
essentials of these methods in this section. Basically, Runge–Kutta methods are based on the
idea of comparing the value of f (t, y) to several strategically chosen points near the solution
curve in the interval (tn, tn+1) and then to combine these values in such a way as to get good
accuracy in the computed increment yn+1 − yn .

The simplest RK method is called Heun’s method:

k1 = h f (tn, yn)

k2 = h f (tn + h, yn + k1)

yn+1 = yn + 1
2 (k1 + k2)

(6.44)

This is a second-order scheme, as can be seen from the series

y(t, h) = y(t) + c2(t)h2 +
∞∑
j=3

c j (t)h j (6.45)

where y(t, h) is the solution of (6.44) at the value t . Notice that we are using h as the time step
value. Thus, we can apply Richardson extrapolation to improve the accuracy.

A well-known RK method is the fourth-order method defined as follows:

k1 = h f (tn, yn) (6.46a)

k2 = h f
(

tn + h
2
, yn + k1

2

)
(6.46b)

k3 = h f
(

tn + h
2
, yn + k2

2

)
(6.46c)

k4 = h f (tn + h, yn + k3) (6.46d)

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4) (6.46e)
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The series for the error term is given by

y(x, h) = y(x) + c4(t)h4 +
∞∑
j=5

c j (t)h j (6.47)

Again, we can apply Richardson extrapolation to this problem.

6.7 SCALAR INITIAL VALUE PROBLEMS

A special case of an initial value problem is when the number of dimension n in the initial value
problem (6.11)–(6.12) is equal to 1. In this case we speak of a scalar problem and it is useful
to study these problems if one wishes to get some insights into how finite difference methods
work. A numerical and computational discussion of scalar IVP is given in Duffy (2004). In
this section we discuss some numerical properties of one-step finite difference schemes for the
linear scalar problem:

Lu ≡ du
dt

+ a(t)u = f (t), 0 < t < T

u(0) = u0 (6.48)

where a(t) ≥ α > 0, ∀ t ε [0, T ]
The reader can check that the one-step methods (equations (6.17), (6.18) and (6.19)) can be

cast as the general form recurrence relation

U n+1 = AnU n + Bn, n ≥ 0 (6.49)

Then, using this formula and mathematical induction we can give an explicit solution at any
time level as follows:

U n =
(

n−1∏
j=0

A j

)
U 0 +

n−1∑
ν=0

Bν
n−1∏

j=ν+1

A j , n ≥ 1 with
j=J∏
j=I

g j ≡ 1 if I > J (6.50)

A special case is when the coefficients A and B are constant, that is:

U n+1 = AU n + B, n ≥ 0 (6.51)

Then the general solution is given by

U n = AnU 0 + B
1 − An

1 − A
, n ≥ 0 (6.52)

where in equation (6.52) we note that An ≡ nth power of constant A and A �= 1.
The proof of this requires the formula for the sum of a series

1 + A + · · · + An = 1 − An+1

1 − A
, A �= 1 (6.53)

For a readable introduction to difference schemes we refer the reader to Goldberg (1986).
Learning finite difference theory for the Black–Scholes equation involves not only understand-
ing the main concepts but also developing skills in basic arithmetic. This is absolutely vital if
you wish to become proficient in this area of numerical analysis.
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6.7.1 Exponentially fitted schemes

We now introduce a special class of schemes that prove to be very useful in approximating the
solution of the Black–Scholes PDE. In particular, these so-called exponentially fitted schemes
are able to handle discontinuities (near a strike price and at barriers, for example). In general,
a fitted scheme is a modification of the Crank–Nicolson scheme (see equation (6.19)) except
that we introduce a new coefficient into the difference equation. In order to find this coefficient
we argue as follows: Consider the trivial IVP

du
dt

+ au = 0, a > 0 constant

u(0) = A

with solution u(t) = Ae−at

(6.54)

and we propose the ‘fitted’ Crank–Nicolson scheme, defined by:

σ
U n+1 − U n

k
+ a

U n+1 + U n

2
= 0

U 0 = A
(6.55)

We now demand that the solution of (6.55) should equal the solution of (6.54) at the mesh
points. This will determine the value of σ , and some arithmetic shows that

σ = ak
2

coth
ak
2

(6.56)

where coth x = (e2x + 1)/(e2x − 1).
This is the famous fitting factor and it has been known since the 1950s (de Allen and

Southwell, 1955), elaborated upon by Soviet scientists (Il’in, 1969) and generalised to
convection–diffusion equations in Duffy (1980). Based on the fitting factor defined in equation
(6.56), we propose the generalised finite difference scheme when the coefficient a in equation
(6.54) is variable a = a(t) and non-zero right-hand side f = f (t):

σ n U n+1 − U n

k
+ an+ 1

2
U n+1 + U n

2
= f n+ 1

2 , n ≥ 0

u0 = A

σ n ≡ an+ 1
2 k

2
coth

an+ 1
2 k

2

(6.57)

A full discussion of this scheme, its applicability to the Black–Scholes equations and its
implementation in C++ is given in Duffy (2004). We shall also reuse this fitting factor finite
difference schemes for the Black–Scholes equation in later chapters in this book.

6.8 SUMMARY AND CONCLUSIONS

In this chapter we have introduced divided differences as a means of approximating derivatives
of smooth functions. They are needed when we approximate the solution of problems involving
derivatives of an unknown function. In particular, we shall need them when approximating the
one-factor and multi-factor Black–Scholes equation.
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We introduced a number of finite difference schemes for linear and nonlinear first-order
initial value problems. We have taken this approach for a number of reasons. First, first-order
equations are simple enough to understand and we can develop finite difference schemes for
them in order to pave the way for later work. Second, the initial value problems in this chapter
will resurface in later chapters.
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7

An Introduction to the Method of Lines

7.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a number of mathematical and numerical techniques that allow us
to simplify PDEs. The main techniques we discuss are:� Rothe’s method� Semi-discretisation methods in general� Method of lines (MOL).

For general initial boundary value problems (IBVP) we distinguish between the space vari-
able (which forms an n-dimensional space in general) and the scalar time variable. Since these
combined variables form an (n + 1)-dimensional continuous space, we must approximate the
solution of the IBVP on a discrete mesh in the space and time directions. Having decided on
this, we are then confronted with the problem of actually producing a finite difference scheme.
To this end, we discuss and elaborate the following issues (or action points) relating to the
approximate schemes:

A1: How to discretise in the time direction.
A2: How to discretise in the space direction.
A3: Do we discretise in all n + 1 directions at once or do we do it in steps?
A4: If we disctretise in steps, do we discretise first in time and then in space, or the other way

around?

This is quite a list to work through, but having given answers to the points will mean that we
have a good overview of how approximate schemes come to life, what their advantages are
and what the consequences are of using a given approximation method.

There are several reasons for studying the method of lines. First, it allows us to approximate
an IVBP in space and time. The end-result is usually a simpler set of differential equations that
may have been solved elsewhere using known and proven techniques. Then we can reapply
these numerical methods to approximate the new problem. For example, a one-dimensional
parabolic IBVP is discretised in space using centred differences, resulting in a system of first-
order ODEs in time. We can solve these ODEs by standard time-marching schemes; we could
even resort to a commercial ODE solver! The second reason for using MOL it that it is easy
to prove existence and uniqueness results using this approach. The results in this chapter are
easily applicable to more complex problems.

7.2 CLASSIFYING SEMI-DISCRETISATION METHODS

Many of the schemes in this book relate to the approximation of initial boundary value problems
for PDEs. In general we make a distinction between time and space variables. There are many

79
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ways to replace derivatives in the time and space variables. Some scenarios for one-factor
models are:� Centred differences in space and one-step marching scheme in time.� Exponentially fitted schemes (Duffy, 1980, 2004) in space and one-step marching scheme

in time.

For multi-factor models there are a number of options:� Simultaneous discretisation in all space variables and one-step marching scheme in time.� Using ADI or splitting schemes in the space variables and one-step marching scheme in
time.� Advanced and modern splitting methods (for example, IMEX schemes).

We shall discuss a number of other competitors to FDM, namely the meshless (or meshfree)
method and the finite element method (FEM). These are examples of semi-discretisers:� FEM discretises in space using locally compact polynomial basis functions and one-step

marching schemes in time.� Meshless uses Rothe’s method to discretise in time and then uses radial basis functions
(RBFs) to approximate the space derivatives.� In some cases the meshless method discretises first in the space direction using RBFs and
then one-step marching scheme in time.

7.3 SEMI-DISCRETISATION IN SPACE USING FDM

We shall now discuss classic semi-discretisation with finite difference schemes.

7.3.1 A test case

In this case we discretise a parabolic PDE in the space direction only (using centred difference
schemes, for instance) while keeping the time variable t continuous. In order to focus our
attention we examine the following initial boundary value problem for the one-dimensional
heat equation with zero Dirichlet boundary conditions. It is easy to extend the idea to more
general cases. The problem is:

∂u
∂t

= ∂2u
∂x2

, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ 1

(7.1)

We now partition the x interval (0, 1) into J sub-intervals and we approximate (7.1) by the
so-called semi-discrete scheme:

du j

dt
= h−2(u j+1 − 2u j + u j−1), 1 ≤ j ≤ J − 1

u0 = u J = 0, t > 0

u j (0) = f (x j ), j = 1, . . . , J − 1

(7.2)
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We define the following vectors by:

U (t) = t (u1(t), . . . , u J−1(t))

U0 = t ( f (x1), . . . , f (xJ−1))

Then we can rewrite system (7.2) as an ODE system:

dU
dt

= AU, t > 0

U (0) = U0

(7.3)

where the matrix A is given by

A = h−2

⎛⎜⎜⎜⎜⎝
−2 1

1
. . .

. . . 0

0
. . .

. . . 1
1 −2

⎞⎟⎟⎟⎟⎠
Where do we go from here? There are a number of questions we would like to ask, for

example:

Q1: Does system (7.3) have a unique solution and what are its qualitative properties?
Q2: How accurate is scheme (7.3) as an approximation to the solution of system (7.1)?
Q3: How do we discretise (7.3) in time and how accurate is the discretisation?

We shall discuss Q1 and Q2 in later sections but here we discuss Q3. There are many
alternatives ranging from one-step to multi-step methods (see Dahlquist, 1974, for example)
and from explicit to implicit methods. We can use other approximate methods such as Runge–
Kutta (Stoer and Bulirsch, 1980). In this section however, we concentrate on one-step explicit
and implicit theta methods defined in the usual way:

U n+1 − U n

k
= θ AU n + (1 − θ )AU n+1, 0 ≤ n ≤ N − 1, 0 ≤ θ ≤ 1

U 0 = U0

(7.4)

We can rewrite equations (7.4) in the equivalent form:

[I − k(1 − θ )A]U n+1 = (I + kθ A)U n (7.5)

or formally as:

U n+1 = [I − k(1 − θ )A]−1(I + kθ A)U n (7.6)

Some special cases of θ are:

θ = 0, implicit Euler scheme
θ = 1, explicit Euler scheme
θ = 1

2 , Crank–Nicolson scheme
(7.7)

When the schemes are implicit we can solve the system of equations (7.4) at each time level
n + 1 using LU decomposition (for more details, see Duffy, 2004).
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7.3.2 Toeplitz matrices

In order to prepare for some general theorems concerning systems similar to (7.3) we look at
the constant matrix A that is the coefficient of U . This is an example of a Toeplitz matrix, one
that is a band matrix in which each diagonal consists of identical elements although different
diagonals may contain different values. A special case is a tridiagonal matrix as follows:⎛⎜⎜⎜⎜⎝

b c

a
. . .

. . . 0

0
. . .

. . . c
a b

⎞⎟⎟⎟⎟⎠
Then (Bronson, 1989; Thomas, 1998, p. 52) the eigenvalues of A are given by:

λ j = b + 2
√

ac cos
jπ

n + 1
, j = 1, . . . , n (7.8)

and the associated eigenvectors are given by:

U j = t (u1, . . . , uk, . . . , un)

uk = 2

(√
a
c

)k

sin
k jπ

n + 1
, k = 1, . . . , n, j = 1, . . . , n

(7.9)

It is useful to know (7.8) and (7.9) when testing model problems.

7.3.3 Semi-discretisation for convection–diffusion problems

In this section we investigate the semi-discretisation of the one-dimensional convection–
diffusion equation (which includes the Black–Scholes as a special case):

−∂u
∂t

+ σ (x)
∂2u
∂x2

+ μ(x)
∂u
∂x

+ c(x)u = f (x) (7.10)

where

σ (x) > 0, μ(x) > 0, c(x) ≤ 0.

We shall define a number of fully discrete schemes for this equation in Parts II and III of this
book. In this section however, we discretise in the space direction only and we concentrate on
the centred difference and the fitting methods (to be discussed in more detail in Chapter 11).
The semi-discrete scheme is:

−du j

dt
+ σ̃ j D+ D−u j + μ j D0u j + c j u j = f j , 1 ≤ j ≤ J − 1 (7.11)

where

σ̃ j =
⎧⎨⎩σ (x j ) ≡ σ j for standard centred difference scheme

μ j h
2 coth μ j h

2σ j
for fitted scheme

and μ j = μ(x j ), c j = c(x j ), f j = f (x j ), 1 ≤ j ≤ J − 1. As already stated, we shall
motivate this fitted scheme in more detail in Chapter 11.
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As usual, we can write this equation as a vector system as follows:

−dU
dt

+ AU = F

U (0) = U0

(7.12)

where

U = t (u1, . . . , u J−1)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0
. . . C j
. . . B j

. . .

A j
. . .

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

A j = σ̃ j

h2
− μ j

2h

B j = −2σ̃ j

h2
+ c j

C j = σ̃ j

h2
+ μ j

2h

We investigate the matrix A because this determines the behaviour of the solution of (7.12)
to a large extent. We take a special example where all the coefficients in (7.10) are constants.
Then A is a Toeplitz matrix whose eigenvalues are given by equation (7.8). You can check that
the eigenvalues are:

λ j = (−2α + c) + 2
√

α2 − β2 cos
jπ
J

, j = 1, . . . , J − 1 (7.13)

where α ≡ σ̃ /h2 and β ≡ μ/2h.
A bit of arithmetic shows that the eigenvalues of A are real and non-positive for any range of

values of the parameters in equation (7.10) for the fitted scheme. In this case we always have
α > β. For the centred difference scheme we have a different story. In this case the eigenvalues
will be real if:

A ≥ 0 ⇔ σ̃ j

h2
− μ

2h
≥ 0

⇔ h ≤ 2σ

μ

(7.14)

This is a well-known constraint and the conclusion is: standard difference schemes have
matrices with complex eigenvalues. Oscillations can occur if the mesh size is not chosen small
enough. A full discussion of the consequences of this fact is given in Duffy (2004 and 2004A).

The reader might be interested in calculating the eigenvectors corresponding to the eigen-
vectors in (7.13).
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7.3.4 Essentially positive matrices

We now give a mathematical discussion of the properties of the general initial value problem:

−dU
dt

+ AU = F

U (0) = U0

(7.15)

We assume for convenience that the matrix A and the vector F are independent of time. We
are interested in two aspects of this problem:� Behaviour of U (t) for large time behaviour� Numerical approximation of system (7.15).

In this section we shall discuss the first problem based on the results in Varga (1962) and
discuss numerical approximations using one-step finite difference schemes.

We now study the stability of the system (7.15) as a function of the right-hand terms and the
initial condition. To this end, we must examine the properties of the matrix A. We say that A
is irreducible if its directed graph is strongly connected. An equivalent statement is that A has
non-vanishing off-diagonal elements. We say that A is an M-matrix (with ai j ≤ 0 ∀ i �= j) if
A is non-singular, and a sufficient condition for A to satisfy A−1 > 0 is that ai j ≤ 0 ∀i �= j
and aii > 0, i = 1, . . . , J − 1 (for a proof see Varga, 1962).

Theorem 7.1. (Limit theorem.) Let A be an irreducible M-matrix having n rows and n
columns. Then the unique solution of (7.15) is uniformly bounded in norm for all t ≥ 0 and
satisfies

lim
t→∞ U (t) = A−1 F

We are interested in determining the conditions under which spurious oscillations oc-
cur in the semi-discrete scheme (7.15). Most of the problems are caused by the eigenvalues of A.

Definition: A real matrix Q = (qi j ) is said to be essentially positive if qi j ≥ 0 for i �= j and Q
is irreducible.

The following theorems and definitions are taken from Varga (1962).

Theorem 7.2. Let Q be an essentially positive matrix. Then Q has a real eigenvalue λ(Q)
such that

1. There exists an eigenvector x > 0 corresponding to λ(Q).
2. If α is another eigenvalue of Q, then Re α ≤ λ(Q).
3. λ(Q) increases when an element of Q increases.

Theorem 7.3. (Asymptotic behaviour.) Let Q be an n × n essentially positive matrix. If λ(Q)
is the eigenvalue of Theorem 7.2 then

||exp (t Q)|| ≤ K exp (tλ(Q)), t → ∞
where K is a positive constant independent of t .

Thus λ(Q) dictates asymptotic behaviour of ||exp (t Q)|| for large t.
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Definition: Let Q be essentially positive. Then Q is called:� Supercritical if λ(Q) > 0� Critical if λ(Q) = 0� Subcritical if λ(Q) < 0

We now consider (7.15) posed in a slightly different form (in fact, we use the same notation
as in Varga, 1962):

dU
dt

= QU + r in (0, T )
(7.16)

U (0) = U0.

Theorem 7.4. (Asymptotic behaviour of solution.) Let Q be essentially positive and non-
singular. If Q is supercritical then for a given initial vector U0 the solution of (7.16) satisfies

lim
t→∞ ||U (t)|| = ∞.

If Q is subcritical then U (t) is uniformly bounded in norm for all t > 0 and satisfies

lim
t→∞ U (t) = −Q−1r.

We thus see that it is necessary to have negative eigenvalues if we wish to ensure stable
asymptotic behaviour of the solution of (7.16).

We give an example in the scalar case to motivate Theorem 7.4. Consider the simple initial
value problem

du
dt

= qu + r, t > 0

u(0) = A

where q and r are constant. By using the integrating factor method, we can show that the
solution is given by

u(t) = Aeqt − r
q

[1 − eqt ]

Thus, if q < 0 (the subcritical case) we see that

lim
t→∞ u(t) = − r

q

while if q > 0 (the supercritical case) the solution is unbounded. Finally, if q ≡ 0 the
solution is given by

u(t) = A + r t (linear growth).

Many authors use this model problem for testing new difference schemes (Dahlquist, 1974).

7.4 NUMERICAL APPROXIMATION OF FIRST-ORDER SYSTEMS

We shall now discuss linear, semi-linear and general nonlinear problems.
We first consider the system (7.15) on a closed time interval [0, T ], and discretise this

interval in the usual way.
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7.4.1 Fully discrete schemes

We divide the interval [0, T ] into N sub-intervals, defined by

0 = t0 < t1 < · · · < tN = T, with (k = T/N )

We replace the continuous time derivative by divided differences. There are many ways to
do this (Conte and de Boor, 1980; Crouzeix, 1975). We shall concentrate on so-called two-level
schemes, and, to this end, we approximate dU/dt at some time level as follows:

dU
dt

∼= U n+1 − U n

k
, U n ≡ U (tn)

For the other terms in (7.15) we use weighted averages defined as:

	n,θ ≡ (1 − θ )	n + θ	n+1

where θ ∈ [0, 1]. The discrete scheme is now defined as:

−U n+1 − U n

k
+ AU n,θ = F

(7.17)

U 0 = U0

Some well-known special cases are now given. Assume for the moment that A and F are
constant.

θ = 0: The explicit Euler scheme

−U n+1 − U n

k
+ AU n = F (7.18)

θ = 1
2 : The Crank–Nicolson scheme

−U n+1 − U n

k
+ AU n, 1

2 = F

(U n, 1
2 ≡ (U n+1 + U n))

(7.19)

θ = 1: The fully implicit scheme

−U n+1 − U n

k
+ AU n,1 = F (7.20)

We are interested in determining if the above schemes are stable (in some sense) and whether
their solution converges to the solution of (7.15) as k → 0. To this end, we write equation (7.17)
in the equivalent form

U n+1 = CU n + H (7.21)

where the matrix C is given by

C = (I − k Aθ )−1[I + k A(1 − θ )]

and

H = −k(I − k Aθ )−1 F
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A well-known result (see Varga, 1962) states that the solution of (7.15) is given by

U (t) = A−1 F + exp(t A)[U (0) − A−1 F].

So, in a sense the accuracy of the approximation (7.17) will be determined by how well the
matrix C approximates the exponential function of a matrix. We shall now discuss this problem.

Definition: Let A = (ai j ) be an n × n real matrix with eigenvalues λ j , j = 1, . . . , n.
The spectral radius ρ(A) is given by

ρ(A) = max|λ j |, j = 1, . . . , n

Definition: The time-dependent matrix T (t) is stable for 0 ≤ t ≤ T if ρ[T (t)] ≤ 1. It is un-
conditionally stable if ρ[T (t)] < 1 for all 0 ≤ t ≤ ∞. We now state the main result of this
section (see Varga, 1962, p. 265).

Theorem 7.5. Let A be a matrix whose eigenvalues λ j satisfy 0 < α < Re λ j < β ∀ j =
1, . . . , n. Then the explicit Euler scheme (7.18) is stable if

0 ≤ k ≤ min

(
2Re λ j

|λ j |2
)

, 1 ≤ j ≤ n (7.22)

while the Crank–Nicolson scheme (7.19) and fully implicit scheme (7.20) are both uncondi-
tionally stable.

Definition: The matrix T (t) is consistent with exp(−tA) if T(t) has a matrix power development
about t = 0 that agrees through at least linear terms with the expansion of exp(−tA).

We remark that the schemes defined by (7.18), (7.19) and (7.20) have matrices that are
consistent with the exponential function.

7.4.2 Semi-linear problems

We now discuss the abstract semi-linear problem:

dU
dt

+ A(t, U ) = B(t, U ), 0 < t ≤ T

U (0) = U0

(7.23)

where

A(t, ·) : D C H → H, t > 0

is a strongly dissipative and maximal operator and H is a real or complex Hilbert space. The
operator B(t, ·) : D C H → H is a uniformaly Lipschitz continuous operator with Lipschitz
contant K .

This is an extremely short discussion as a full treatment is outside the scope of this
book. See Hille and Philips (1957) and Zeidler (1990) for more information on a pow-
erful branch of mathematics called Functional Analysis). A special case is the m-factor
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Black–Scholes equation where the operator A is a mapping from a Hilbert space of func-
tions to itself:

A(t, ·) =
m∑

i, j=1

ai j (x, t)
∂2

∂xi ∂x j
+ · · +

m∑
i=1

bi (x, t)
∂u
∂xi

+ c(x, t) (7.24)

In this case A is a linear elliptic operator. Furthermore, in the case of the classic Black–
Scholes problem the operator B is identically zero. Our aim in this section is to propose some
discrete schemes for (7.23) and examine their properties in a Hilbert-space setting. Some
special cases are:� Ordinary differential equations� Partial differential equations� Integro-differential equations� Systems of equations.

We shall give some examples of these equations but first let us examine some schemes for
approximating equation (7.23). The explicit scheme is given by

U n+1 − U n

k
+ A(tn, U n) = B(tn, U n), n ≥ 0 (7.25)

and the fully implicit method is given by

U n+1 − U n

k
+ A(tn, U n+1) = B(tn, U n+1), n ≥ 0 (7.26)

Finally, the Crank–Nicolson scheme is given by

U n+1 − U n

k
+ A

(
tn+ 1

2
, U n+ 1

2

)
= B

(
tn+ 1

2
, U n+ 1

2

)
n ≥ 0

U n+ 1
2 ≡ 1

2 (U n + U n+1)

(7.27)

The advantage of the explicit scheme is that it is easy to program but it is only conditionally
stable. The other two schemes are unconditionally stable but we must solve a nonlinear system
at every time level. Can we find a compromise? The answer is yes. When the system (7.23)
is semi-linear (by which we mean that A is linear and B is nonlinear) a ploy is to apply some
kind of implicit scheme with respect to the A part and an explicit scheme with respect to the
B part. The result is called the semi-implicit method, and one particular case is given by

U n+1 − U n

k
+ A(tn+1, U n+1) = B(tn, U n), n ≥ 0 (7.28)

We can solve this system using standard matrix solvers at each time level since there are
no nonlinear terms. We give some examples of this scheme in Chapter 28 where we discuss
penalty methods for one-factor and multi-factor American option problems. Of course, we
wish to know how good scheme (7.28) is. In general, we should perform a full error analysis,
including consistency, stability and convergence. We summarise the main results here. To this
end, we write (7.23) in the more general form:

dU
dt

= f (t ; U, U ), 0 < t ≤ T

U (0) = U0

(7.29)
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where, for example, the second parameter corresponds to the derivative terms (the A operator),
and the third term might correspond to the zero-order terms (the B operator). In this case
we assume that the function f (t ; ·, v) satisfies a Lipschitz condition with respect to the inner
product in H , that is

∀ t ε [0, T ], v ε D

〈 f (t ; u1, v) − f (t ; u2, v), u1 − u2〉 ≤ K1‖u1 − u2‖2 ∀u1, u2

(7.30)

where, K1 ∈ R1 and ‖ · ‖ is the norm in a Hilbert space H, and 〈·, ·〉 is the inner product in H .
Condition (7.30) is called the one-sided Lipschitz condition. Furthermore,

f (t ; u, ·)
is uniformly Lipschitz continuous in the classical sense with constant

K2 > 0 with ‖ f (t ; u, v1) − f (t ; u, v2)‖ ≤ K2‖v1 − v2‖
A particular case is when:

f (t ; u, v) = A(t, u) + B(t, v) (7.31)

where A is dissipative (K1 ≤ 0) or strongly dissipative (K1 < 0) and B(t, ·) is Lipschitz
continuous.

The approximate scheme is defined by:

U n+1 − U n

k
= f (tn+1; U n+1, U n) (7.32)

We shall discuss several special cases of (7.23) in later chapters.

7.5 SUMMARY AND CONCLUSIONS

We have summarised the main approximate schemes in this book by viewing them as appli-
cations of a so-called semi-discretisation process: first discretise in time and then in space (or
vice versa). We have also discussed some existence theorems for the semi-discretised set of
equations.

The mathematical formalism in this chapter will be useful when we examine specialized
problems in quantitative finance in later chapters.
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8
General Theory of the Finite

Difference Method

8.1 INTRODUCTION AND OBJECTIVES

In this chapter we analyse difference schemes for initial boundary value problems and initial
value problems. We are interested in finding necessary and sufficient conditions for a given
finite difference scheme to be a ‘good’ approximation to some continuous problem. By ‘good’
we mean that the solution of the difference scheme should have the same qualitative properties
as the solution of the continuous problem and that the error between the approximate and exact
solutions should be ‘small’ (when measured in some norm).

The approach taken in this chapter dates from the 1950s and can be attributed to John
Von Neumann, the father of the modern computer and one of the mathematical geniuses of
the twentieth century. Von Neumann worked on fluid dynamics and military problems and
approximated them using finite difference schemes. He used Fourier transform techniques to
prove the stability of difference schemes. For a good account of developments, see Richtmyer
(1967) – and although the book is somewhat outdated, it is well worth reading.

8.2 SOME FUNDAMENTAL CONCEPTS

The discussion in this and the following sections is based on well-known theory and results.
There are many books that deal with the current topics; however, we recommend the works of
Smith (1978), Thomas (1998) and Hundsdorfer and Verwer (2003) as important references.

We need to develop some notation. We view a partial differential equation as an operator L
from a given space of functions to some other space of functions. For example, we can write
the heat equation in the form:

Lu ≡ ∂u
∂t

− ∂2u
∂x2

= 0 (8.1)

We wish to distinguish between the derivative term in t and the elliptic part of the operator,
as can be seen from heat equation again:

∂u
∂t

+ Lu = 0 (8.2)

where Lu ≡ −∂2u/∂x2 (an elliptic operator).
We can write the general linear parabolic partial differential equation in one-space dimension

in the following form:

−∂u
∂t

+ Lu = f (x, t) (8.3)

91
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where

Lu ≡ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u

This is the model equation that we use in this part of the book. It encompasses many special
cases of interest, of which some examples are:

Diffusion equation

Lu ≡ σ (x, t)
∂2u
∂x2

(8.4a)

Reaction–diffusion equation

Lu ≡ σ (x, t)
∂2u
∂x2

+ b(x, t)u (8.4b)

Convection equation

Lu ≡ μ(x, t)
∂u
∂x

+ b(x, t)u (8.4c)

Convection–diffusion equation

Lu ≡ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u (8.4d)

Conservation-form equation

Lu ≡ ∂

∂x

[
σ (x, t)

∂u
∂x

]
+ b(x, t)u (8.4e)

Since this is a book on option pricing applications we are mainly interested in equation (8.4d).
This is called the convection–diffusion equation. The convection term is the first-order term
and the diffusion term is the second-order term. It is a model for many kinds of one-factor
Black–Scholes equations. For example, the Black–Scholes equation for a standard European
call option with continuous dividend D is:

−∂C
∂t

+ 1
2σ 2S2 ∂2C

∂S2
+ (r − D)S

∂C
∂S

− rC = 0 (8.5)

where C is the option price (the dependent variable). Please note that we use the ‘engineering’
variable t (starting from t = 0) while the financial literature uses the variable t starting from
the terminal condition T (see Wilmott, 1998, p. 77).

We now define a discrete operator that is defined at mesh points and where the derivatives are
replaced by divided differences, for example the explicit Euler scheme for the heat equation:

Lk
hun

j ≡ un+1
j − un

j

k
− D+ D−un

j (8.6)

Thus, we have included the steps k and h in the discrete operator to denote its dependence
on two meshes. We wish to prove that (8.6) is a good approximation to (8.1). To this end, we
discuss a number of general concepts.
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8.2.1 Consistency

Let us consider the general initial value problem

∂u
∂t

+ Lu = F, −∞ < x < ∞, t > 0 (8.7a)

u(x, 0) = f (x), −∞ < x < ∞ (8.7b)

and consider some finite difference scheme

Lk
hun

j = Gn
j (8.8a)

u0
j = f (x j ) (8.8b)

where Gn
j is some approximation to F(x j , tn) and Lk

h is a discrete approximation to L

Definition 8.1. The finite difference scheme (8.8a) is pointwise consistent with the partial
differential equation (8.7a) if for any function v = v(x, t) the following relationship holds:(

∂v

∂t
+ Lv − F

)n

j
− [

Lk
hv(x j , tn) − Gn

j

] → 0 as h, k → 0 and (x j , tn+1) → (x, t)

(8.9)

This definition tells us how well the differential equation approximates the finite difference
scheme. We can write (8.9) in the equivalent form(

∂

∂t
+ L − Lh

k

)
v(x j , tn) + Gn

j − Fn
j = 0 (8.10)

Thus the scheme is consistent (or compatible) with the initial value problem if the terms in
(8.10) approach zero as h and k tends to zero. The second term represents approximations to
the source term F in equations (8.7) and this tends to zero. It only remains to prove that the
first term in (8.10) also tends to zero in general.

Let us take the example of scheme (8.6) that approximates the heat equation (notice that
F = 0 in this case). Then for the scheme (8.6) we get:(

∂

∂t
+ L − Lh

k

)
u(x j , tn) = ∂u(x j , tn)

∂t
− u(x j , tn+1) − u(x j , tn)

k

− a2

(
∂2u(x j , tn)

∂x2
− D+ D−u(x j , tn)

)
(8.11)

Then, by applying Taylor’s theorem with an exact remainder we can show that this term is
bounded by

M(h2 + k) (8.12)

where M depends on the derivatives of u with respect to x and t but is independent of k and
h. Thus, scheme (8.6) is consistent with the heat equation.

8.2.2 Stability

We now investigate the concept of stability of finite difference schemes. For the moment, let
us take a scheme whose inhomogeneous term is zero. We write a general one-step scheme for
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an initial value problem in the vector form

un+1 = Qun, n ≥ 0

un = t (. . . , un
−1, un

0, un
1, . . .)

(8.13)

where Q is an operator.

Definition 8.2. The difference scheme (8.13) is said to be stable with respect to the norm ‖ · ‖
if there exist positive constants k0 and h0 and two non-negative constants K and β such that

‖un+1‖ ≤ K eβt‖un‖ for 0 ≤ t = tn+1, 0 < h ≤ h0 and 0 < k ≤ k0 (8.14)

We now generalise (8.13) to include an inhomogeneous term

un+1 = Qun + kGn

Gn ≡ t (. . . , Gn
−1, Gn

0, Gn
1, . . .)

(8.15)

Definition 8.3. The difference scheme (8.15) is consistent with the partial differential equation
(8.7a) if the solution of (8.7a) satisfies

vn+1 = Qvn + kGn + kττn and ‖ττn‖ → 0, as h, k → 0 (8.16)

where vn denotes the vector whose j th component is u(x j , tn).

Definition 8.4. The difference scheme (8.15) is said to be accurate of order (p, q) to the given
partial differential equation if

‖ττn‖ = O(h p) + O(kq ) (8.17)

We refer to ττn or ‖τn‖ as the trunction error.

8.2.3 Convergence

We now discuss the fundamental relationship between consistency and stability.

Theorem 8.1. (The Lax equivalence theorem.) A consistent, two-level scheme of the form
(8.15) for a well-posed linear initial value problem is convergent if and only if it is stable.

As long as we have a consistent scheme, convergence is synonymous with stability. In short,
all we need to prove is that a scheme is consistent (use Taylor’s theorem) and stable. As we
shall see, there are a few technical methods to prove stability. We discuss the first approach,
namely the von Neumann amplification factor method, that is based on the Fourier transform.

8.3 STABILITY AND THE FOURIER TRANSFORM

We give a short introduction to the Fourier transform. We use it to prove the stability of finite
difference schemes.

Let us suppose that a function f (x) is a complex-valued function of the real variable x .
Furthermore, assume that f is integrable in the following sense:∫ ∞

−∞
| f (x)| dx < ∞ (8.18)
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We then define the Fourier transform of f as follows:

f̂ (t) =
∫ ∞

−∞
e−i2π t x f (x) dx, i = √−1 (8.19)

The transformed function is also complex-valued:

f̂ (t) = R(t) + i I (t) = | f̂ (t)| eiθ (t)

where | f̂ (t)| is called the amplitude and θ is called the phase angle, defined as follows

θ = tan−1(I (t)/R(t))

| f̂ (t)| =
√

R2(t) + I 2(t)
(8.20)

Let us take an example. Define the function f (x) by

f (x) =
{

βe−αx , x ≥ 0

0, x < 0

Then

f̂ (t) =
∫ ∞

−∞
e−i2π t x f (x) dx =

∫ ∞

0
e−i2π t xβ e−αx dx = β

∫ ∞

0
e−(α+i2π t)x dx

= β

α + i2π t

= βα

α2 + (2π t)2
− i

2π tβ
α2 + (2π t)2

(8.21)

We now introduce the inverse Fourier transform that recovers a function from the transformed
function and is defined by

f (x) =
∫ ∞

−∞
ei2π t x f̂ (t) dt (8.22)

An important relationship between the Fourier transform and its inverse is Parseval’s theo-
rem, namely ∫ ∞

−∞
| f (x)|2 dx =

∫ ∞

−∞
| f̂ (t)|2 dt (8.23)

In this case we say that the transforms are norm-preserving. The relevance of the Fourier
transform to partial differential equations is that these PDEs can be transformed to a simpler
problem, this latter problem is solved and then the inverse transform recovers the solution to
the original problem. Let us take an example. Consider the initial value problem (Thomas,
1998):

∂u
∂t

= ∂2u
∂x2

, x ∈ R, t > 0

u(x, 0) = f (x), x ∈ R
(8.24)
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Taking the Fourier transform on both sides of the partial differential equation we get

∂ û
∂t

(ω, t) ≡
∫ ∞

−∞
e−i2πωx ∂u

∂t
(x, t) dx

=
∫ ∞

−∞

∂2u
∂x2

(x, t) e−i2πωx dx

= −ω2
∫ ∞

−∞
u(x, t) e−i2πωx dx (8.25)

where we have used integration by parts twice and the fact that u and its first derivative in x
are zero at plus and minus infinity. We rewrite (8.25) in the equivalent form

∂ û
∂t

(ω, t) = −ω2û(ω, t) (8.26)

We thus see the PDE is transformed to an ODE in transform space (the space of transformed
functions). We define the initial condition for (8.26) as:

û(ω, 0) =
∫ ∞

−∞
e−i2πωx u(x, 0) dx

=
∫ ∞

−∞
e−i2πωx f (x) dx (8.27)

The solution of (8.26), (8.27) is then given by

û(ω, t) = û(ω, 0) e−ω2t (8.28)

Now for the last step; the original solution to IVP (8.24) is realised by using the inverse
Fourier transform as follows:

u(x, t) =
∫ ∞

−∞
ei2πωx û(ω, t) dw (8.29)

and we are finished.
This process is a special case of using transforms in general and a schematic representation

is shown in Figure 8.1, which shows how we can use transform methods in general to simplify
a given problem.

8.4 THE DISCRETE FOURIER TRANSFORM

We now introduce the discrete variant of the continuous Fourier transform. We apply the
discrete Fourier transform (DFT) to a finite difference scheme that will allow us to prove that
the scheme is stable (or otherwise).

Let u = t (. . . , u−1, u0, u1, . . .) be an infinite sequence of values. Then the DFT (given in
Thomas, 1998) is defined as

û(ξ ) = 1√
2π

∞∑
n = −∞

e−inξ un (8.30)

Using this definition we can apply it to the study of finite difference schemes. In particular,
we use it to transform an arbitrary finite difference scheme to a much simpler form. But first
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Problem 
statement

Complex 
analysis

Solution

Transform

Solution

Inverse 
transform

Figure 8.1 Solving a problem

let us take an example of the explicit Euler scheme for the heat equation that we again write
in the form

un+1
j = λun

j−1 + (1 − 2λ)un
j + λun

j+1 (8.31)

where λ ≡ ak/h2.
Applying the DFT (8.30) to both sides of (8.31) gives the following sequence of results:

1√
2π

∞∑
j =−∞

e−i jξ un+1
j ≡ ûn+1(ξ )

= 1√
2π

{ ∞∑
j =−∞

e−i jξ [
λun

j−1 + (1 − 2λ)un
j + λun

j+1

]}

= λ√
2π

∞∑
j =−∞

e−i jξ un
j−1 + 1 − 2λ√

2π

∞∑
j=−∞

e−i jξ un
j + λ√

2π

∞∑
j =−∞

e−i jξ un
j+1

(8.32)

By making a change of variables we can easily prove that

1√
2π

∞∑
j =−∞

e−i jξ un
j±1 = e±iξ

√
2π

∞∑
m =−∞

e−imξ un
m = e±iξ ûn(ξ ) (m = j ± 1) (8.33)

Using this result in (8.32) we see that, after having done some arithmetic,

ûn+1(ξ ) = λ e−iξ ûn(ξ ) + (1 − 2λ)ûn(ξ ) + λ eiξ ûn(ξ )

= [
λ e−iξ + (1 − 2λ) + λ eiξ ] ûn(ξ )

= [2λ cos ξ + (1 − 2λ)] ûn(ξ )

=
(

1 − 4λ2sin2 ξ

2

)
ûn(ξ ) (8.34)
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We thus eliminate the x dependency and this greatly simplifies matters. Continuing, we
define the symbol of the difference scheme (8.31) by

ρ(ξ ) = 1 − 4λ2sin2 ξ

2
(8.35)

Applying this formula n + 1 times gives

ûn+1(ξ ) = ρ(ξ )n+1û0(ξ ) (8.36)

From Thomas (1998) this quantity needs to be less than 1 in absolute value and some tedious
but simple arithmetic shows that a sufficient condition is

|ρ(ξ )| ≤ 1 or λ ≤ 1
2 (8.37)

This technique can be applied to more general finite difference schemes.

8.4.1 Some other examples

We conclude this section with some other examples of difference equations whose stability we
prove using DFT.

We consider the heat equation for convenience. Some arithmetic shows that its symbol for
Crank–Nicolson is given by

ρ(ξ ) = 1 − 2λ sin2 ξ/2

1 + 2λ sin2 ξ/2
(8.38)

The implicit Euler scheme has the symbol:

ρ(ξ ) = 1

1 + 4λ sin2 ξ/2
(8.39)

Both symbols have absolute value less than 1 and we conclude that the schemes are uncon-
ditionally stable.

As a counterexample, we give an example of a scheme that is not stable. The equation is:

∂u
∂t

− ∂u
∂x

= 0 (8.40)

This is wave equation with the wave travelling in the negative x direction with speed equal
to 1. We propose upwinding in space, explicit in time scheme:

un+1
j − un

j

k
− un

j − un
j−1

h
= 0 (8.41)

Again, some arithmetic shows that

ρ(ξ ) = 1 + λ − λ e−iξ , λ = k
h

|ρ(ξ )| ≤ 1 never satisfied
(8.42)

Thus (8.41) is an unconditionally unstable scheme!
Finally, we consider the convection–diffusion equation with constant coefficients

∂u
∂t

+ a
∂u
∂x

= ν
∂2u
∂x2

(8.43)
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with corresponding difference scheme (centred differences in x , explicit in time)

un+1
j − un

j

k
+ a

un
j+1 − un

j−1

2h
= νD+ D−un

j (8.44)

The symbol is given by

ρ(ξ ) = (1 − 2λ) + 2λ cos ξ − i R sin ξ (8.45)

where λ = νk/h2 and R = ak/h.
Again, some long-winded arithmetic shows that the symbol has absolute value less than 1 if

R2

2
≤ λ ≤ 1

2 (8.46)

See, for example, Thomas (1998) or Richtmyer and Morton (1967).

8.5 STABILITY FOR INITIAL BOUNDARY VALUE PROBLEMS

Up until now we have discussed problems on an infinite interval. We shall now consider
problems on a finite space interval, namely initial boundary value problems. In general, schemes
that are unstable for an IVP (such as (8.41)) will also be unstable for the corresponding initial
boundary value problem. In order to keep things concrete for the moment, we examine the
following initial boundary value problem for the heat equation:

∂u
∂t

= ∂2u
∂x2

, 0 < x < 1, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ 1

u(0, t) = g(t), u(1, t) = h(t), t > 0

(8.47)

along with the compatibility conditions

f (0) = g(0), f (1) = h(0)

We then propose the Crank–Nicolson scheme

un+1
j − k

2 D+ D−un+1
j = un

j + k
2 D+ D−un

j , j = 1, . . . , J − 1

u0
j = f (x j ), j = 1, . . . , J − 1

un+1
0 = g(tn+1), un+1

J = h(tn+1), n ≥ 0

(8.48)

Assembling the information in equation (8.48) and assuming zero boundary conditions we
can write it in the equivalent matrix form

Mun+1 = Qun, n ≥ 0 (8.49)

where

un = t (un
1, . . . , un

J−1) (8.50)

The questions concerning system (8.49) are: Does it have a solution and is it stable? The
following discussion attempts to answer these questions in general. To this end, we introduce
a useful technique from matrix algebra.
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8.5.1 Gerschgorin’s circle theorem

In many of the following chapters we shall develop finite difference schemes for one-factor
and multi-factor Black–Scholes equations. To this end, it is important to determine if a solution
of the resulting matrix system exists and is unique. In the following discussions we assume
that A is a real square matrix – that is, one with n rows and n columns:

A = (ai j ) i, j=1,n

Definition 8.5. Let the matrix A have eigenvalues λ j , j = 1, . . . , n. Then

ρ(A) ≡ max
j=1,...,n

|λ j |

is called the spectral radius of the matrix A.

Definition 8.6. The quantity

‖A‖ = sup
x
=0

‖Ax‖
‖x‖

is the spectral norm of the matrix A, where x is a vector.

It can be shown (Varga, 1962) that

‖A‖ ≥ ρ(A)

which gives the relationship between the spectral norm and spectral radius.
We define the quantity

∧i ≡
n∑

j=1
j 
=i

|ai j | for 1 ≤ i ≤ n

The following theorem describes the distribution of the eigenvalues of a matrix.

Theorem 8.2. (Gerschgorin, 1931.) The eigenvalues of the matrix A lie in the union of the
disks

|z − aii | ≤ ∧i , 1 ≤ i ≤ n

Corollary 8.1. If A is a square matrix and

ν ≡ max
1≤i≤n

n∑
j=1

|ai j |

then ρ(A) ≤ ν.
Thus, the maximum of the row sums of the moduli of the entries of the matrix A give a simple

upper bound for the spectral radius of the matrix A.

Let us take an example. This is the matrix M in equation (8.49):

M =

⎛⎜⎜⎜⎜⎝
1 + r −r/2 0

−r/2
. . .

. . .
. . .

. . . −r/2

0 −r/2 1 + r

⎞⎟⎟⎟⎟⎠
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and define

Q =

⎛⎜⎜⎜⎜⎝
1 − r r/2 0

r/2
. . .

. . .
. . .

. . . r/2
0 r/2 1 − r

⎞⎟⎟⎟⎟⎠
where r = k/h2.

∧1 = ∧n = r
2

∧ j = r, j = 2, . . . , n − 1

We then get

|z − (1 + r )| ≤ r
2

and |z − (1 + r )| ≤ r

If the first inequality is satisfied, then the second inequality is also satisfied.
But then we get

1 ≤ z ≤ 1 + 2r

We thus see that the eigenvalues of M are always greater than or equal to 1. This implies that
the eigenvalues of its inverse are always less than or equal to 1.

Definition 8.7. A Toeplitz matrix is a band matrix in which each diagonal consists of identical
elements, although different diagonals may contain different values.

We are particularly interested in tridiagonal Toeplitz matrices. Then the eigenvalues are known
(Thomas, 1998; Bronson, 1989), namely:⎛⎜⎜⎜⎜⎝

b c 0

a
. . .

. . .
. . .

. . . c
0 a b

⎞⎟⎟⎟⎟⎠ (8.51)

where the eigenvalues are defined by

λ j = b + 2
√

ac cos
jπ

n + 1
, j = 1, 2, . . . , n

This is a useful formula because some difference schemes lead to matrices whose eigenvalues
are not real but complex. Oscillatory solutions will appear in such cases.

8.6 SUMMARY AND CONCLUSIONS

We have given an introduction to a number of theoretical issues that help us to determine if a
given finite difference scheme is a ‘good’ approximation to an initial value problem or initial
boundary value problem. We discussed consistency, convergence and stability of a difference
scheme. In particular, we introduced the ‘Lax equivalence theorem’, one of the most famous
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theorems in numerical analysis. Many of the examples centred around the heat equation because
we can show how the theory works in this case. In the next two chapters we shall build on our
results by examining the convection–diffusion equation and various finite difference schemes
that approximate it. Furthermore, we need to investigate the effect of boundary conditions
(Dirichlet, Neumann and linearity conditions) on the overall accuracy of the schemes.
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9
Finite Difference Schemes for

First-Order Partial Differential Equations

9.1 INTRODUCTION AND OBJECTIVES

In this chapter we develop stable and accurate finite difference schemes for partial differential
equations in two independent variables x and t where the derivatives in x and t are both
of order 1. In other words, we discuss a number of first-order hyperbolic partial differential
equations and we approximate them by explicit and implicit finite difference schemes. We
take a model problem in order to motivate these schemes. In later chapters we shall reuse
these schemes in larger and more complex applications. Thus, it is important to first master
the finite difference schemes for initial value problems and initial boundary value problems
for first-order hyperbolic partial differential equations.

The examples in this chapter are found in the physical sciences as well as in financial
engineering. We shall need the results from this chapter in later chapters, especially when we
investigate the convective terms in the Black–Scholes equation.

9.2 SCOPING THE PROBLEM

There is a vast literature on first-order hyperbolic equations. Much effort has gone into devising
robust approximate schemes in application areas such as gas and fluid dynamics, chemical
reactor theory and wave phenomena (see Rhee et al., 1986, 1989; Godounov et al., 1979). We
consider first-order partial differential equations in two independent variables x and t . The first
variable is typically space (or some other dimension) and the second variable usually represents
time. The first model problem is an initial value problem (IVP) on an infinite interval:

∂u
∂t

+ a
∂u
∂x

= 0, −∞ < x < ∞, t > 0
(9.1)

u(x, 0) = f (x), −∞ < x < ∞

In these equations the constant a can be positive or negative and f = f (x) is some given
function that we call the initial condition. System (9.1) is a model for wave propagation in
homogeneous media. For example, the solution u(x, t) could represent the concentration of
a reactant in a chemical process and a is the linear velocity of the reactant mixture (Rhee
et al., 1986). Another example models problems related to multi-phase flow in porous media
in reservoir engineering (Peaceman, 1977). In this case u(x, t) is the saturation variable and
a is the positive velocity and represents flow in the direction of increasing x . We shall later
discuss examples from financial engineering in which the variables x, t and u will take on
specific roles, but for the present we shall view (9.1) from a generic perspective.

103
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The second model problem is the so-called initial boundary value problem (IBVP)
defined as:

∂u
∂t

+ a
∂u
∂x

= 0, 0 < x < 1, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ 1 (9.2)

u(0, t) = g(t), t ≥ 0

In this case we assume that a > 0 and that a boundary condition g(t) is given when x = 0.
This is the correct boundary condition because information is coming from left to right. In the
case when a < 0 the IBVP is formulated as follows:

∂u
∂t

+ a
∂u
∂x

= 0, 0 < x < 1, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ 1 (9.3)

u(1, t) = g(t), t ≥ 0

The main difference between the IVP (9.1) and IBVP (9.2) or (9.3) is the presence of
a boundary condition. This latter condition is needed in many situations. For example, the
simplest form of heat exchanger consists of a tube immersed in a bath held at a constant
temperature K . If the temperature of the fluid flowing through the tube is u(x, t) at some point
from the inlet at x = 0, then the IBVP for this case is given by

∂u
∂t

+ V
∂u
∂x

= H (K − u), 0 < x < 1, t > 0

u(x, 0) = f (x), 0 ≤ x ≤ 1 (9.4)

u(0, t) = g(t), t ≥ 0

where V is the velocity of the fluid, H is some constant, f (x) is the initial temperature
distribution and g(t) is the inlet boundary condition. In general, for first-order IBVP we place
the boundary condition at x = 0 when a > 0 (as in equation (9.2)) or at x = 1 when a < 0
(as in equation (9.3)).

We conclude this section with some examples from financial engineering. The first example
is the PDE for an Asian option (Ingersoll, 1987; Wilmott, 1998):

−∂ F
∂t

+ 1
2σ 2S2 ∂2 F

∂S2
+ r S

∂ F
∂S

+ S
∂ F
∂ A

− r F = 0

0 < S < ∞, 0 < A < ∞, 0 < t < T (9.5a)

F(0, A, t) = 0, t ≥ 0 (9.5b)

F(∞, A, T ) = 1, 0 ≤ A < ∞ (9.5c)

F(S, ∞, t) = 0, t ≥ 0 (9.5d)

F(S, A, T ) = max

(
S − A

T
, 0

)
(9.5e)

where the average A is defined by:

A = A(T ) ≡
∫ T

0
S(t) dt (9.6)

and F is the variable representing the Asian option price.
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We see that the equation in the A direction is first order (there is no diffusion term) and thus
only one boundary condition needs to be given. We can convince ourselves that the condition
at infinity is the right one (in fact, it is similar to equation (9.3)). Thus, system (9.5) is well
posed.

The second example is taken from Tavella et al. (2000). In this case we examine the Black–
Scholes equation:

−∂V
∂t

+ 1
2σ 2S2 ∂2V

∂S2
+ (r − D)S

∂V
∂S

− r V = 0 (9.7)

We investigate the consequences of applying the linearity boundary condition

∂2V
∂S2

= 0 when S = Smax (9.8)

where Smax is the position of the so-called far field.
In this case the pricing equation (9.7) at S = 0 degenerates into the ordinary differential

equation

−dV
dt

− r V = 0 (9.9)

and it is possible to solve this analytically.
The final example is concerned with the pricing of a zero coupon bond under a Cox–

Ingersoll–Ross (CIR) interest-rate model. The pricing equation is given by the parabolic PDE
(Tavella et al., 2000)

−∂ B
∂t

+ 1
2σ 2r

∂2 B
∂r2

+ (a − br )
∂ B
∂r

− r B = 0 (9.10)

where B is the bond price.
If we let the PDE ‘degenerate’ to r = 0, we get the following boundary condition

−∂ B
∂t

+ a
∂ B
∂r

= 0 (9.11)

Thus, on the boundary r = 0 we must solve a first-order hyperbolic equation that can be solved
numerically, for example.

9.3 WHY FIRST-ORDER EQUATIONS ARE DIFFERENT:
ESSENTIAL DIFFICULTIES

Hyperbolic partial differential equations model many kinds of phenomena in the real world – for
example, aerodynamics, atmospheric flow, fluid flow in porous media, and more (see Morton,
1996; Dutton, 1986). Hyperbolic equations tend to be more difficult to model than parabolic
and elliptic equations. In particular, finding good schemes for nonlinear systems of equations
is a non-trivial task (Lax, 1973).

We first take a look at the model initial value problem (9.1). In this case we can conveniently
ignore boundary conditions. The reader can check that the solution of (9.1) is given by

u(x, t) = f (x − at), −∞ < x < ∞, t > 0 (9.12)

Thus, we know what the solution is and we also know that it is constant along the char-
acteristic curve x − at = constant. The family of characteristics completely determines the
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solution at any point (x, t). Furthermore, the form of the solution u(x, t) is the same as that of
f (x) except that the form is translated to the right in the case a > 0 and to the left in the case
a < 0.

A special property of the solution of (9.1) is that it contains no dissipation. This means that
the Fourier modes neither decay nor grow with time. A major challenge when designing finite
difference schemes for hyperbolic equations is to design them to be stable while at the same
time ensuring that they do not damp out the solution.

Another challenge is to develop schemes that take the speed of propagation of the solu-
tion u into account. It is intuitively obvious that the numerical schemes should give good
approximations to the speed of propagation of the wave forms from the analytic solution.

Finally, dispersion is concerned with how the numerical solution loses its form in time. A
good discussion of these topics is given in Vichnevetsky and Bowles (1982).

9.3.1 Discontinuous initial conditions

As stated in Thomas (1999), the solution will only be as smooth as the initial condition. This
is in sharp contrast to parabolic equations where the solution becomes smooth after a certain
time even if the initial condition is discontinuous. A simple example is given by defining the
initial condition

f (x) =
{

1 if x ≤ 0

0 if x > 0
(9.13)

Using the exact formula (9.12) we see that the solution u(x, t) will be discontinuous along
the lines x − at = constant. The solution in this case is given by

u(x, t) =
{

1, x ≤ at

0, x > at
(9.14)

We conclude that the solution cannot satisfy (9.1) in the classical sense and in this case we
must resort to finding a so-called weak solution. For a detailed discussion of this topic, see
Thomas (1999) and Lax (1973) as this topic is outside the scope of this book.

9.4 A SIMPLE EXPLICIT SCHEME

In this section we introduce a simple finite difference scheme. To this end, we partition (x, t)
space by a uniform rectangular mesh and we define the constants h and k to be the mesh sizes in
the x and t directions, respectively. In general, we employ one-step methods in the t direction
and choose between one-sided or centred differencing in the x direction. We depict the mesh
in Figure 9.1.

Let us examine IVP (9.1) again. The first scheme, called Forward in Time, Backward in
Space (FTBS), is defined by

un+1
j − un

j

k
+ a

un
j − un

j−1

h
= 0, a > 0

(9.15)or un+1
j = (1 − λ)un

j + λun
j−1, n ≥ 0

λ ≡ ak
h
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t

n + 1

n

x

jj -1 j + 1

Figure 9.1 Mesh in (x, t) space

Thus, the value at time level n + 1 is computed directly from the value at time level n.
However, if the parameter λ is greater than 1 the solution may oscillate boundedly or unbound-
edly. This is a common problem with explicit difference schemes, and we say that (9.15) is
conditionally stable. This means that the inequality

|λ| =
∣∣∣∣ak

h

∣∣∣∣ ≤ 1 (9.16)

must hold if we wish to have a stable and, hence, convergent scheme. Inequality (9.16) is called
the Courant–Friedrichs–Lewy (CFL) condition, in honour of the mathematicians who devised
it and is one of the most famous inequalities in numerical analysis. It can be shown that the
CFL condition is necessary for convergence of the discrete solution to the analytic solution.
In fact, we can ‘replicate’ the CFL inequality by applying the von Neumann stability analysis
and examining Fourier modes:

un
j = γ n eiα jh, i = √−1 (9.17)

Using this representation in the scheme (9.15) gives an expression for the amplification
factor as follows:

γ = (1 − λ + λ cos αh) − iλ sin αh

= 1 − λ(1 − cos αh) − iλ sin αh (9.18)

Under the constraint (9.16) you can prove with some artithmetic that

|γ | ≤ 1 (9.19)

When the coefficient a in equation (9.1) is negative we advocate the following Forward in
Time, Forward in Space (FTFS) scheme

un+1
j − un

j

k
+ a

un
j+1 − un

j

h
= 0, a < 0

(9.20)
or un+1

j = (1 + λ)un
j − λun

j+1 = un
j − λ

(
un

j+1 − un
j

)
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Again, we can calculate the amplification factor as before and it will be less than 1 in absolute
value if the CFL inequality (9.16) holds. Thus, we must be careful when constructing good
schemes; the sign of the coefficient a is important.

The scheme (9.15) uses so-called backward differencing (with a > 0) while the scheme
(9.20) uses forward differencing (with a < 0). Unstable schemes will result if we use backward
differencing with a < 0 or forward differencing with a > 0. You can convince yourself of this
fact by calculating the amplification factors for the schemes. This is also important when
working with more complex PDEs.

9.5 SOME COMMON SCHEMES FOR INITIAL
VALUE PROBLEMS

We start with a FTCS (Forward in Time, Centred in Space) scheme where the derivative with
respect to x is taken at the mesh points ( j − 1)h and ( j + 1)h and we use explicit Euler in
time:

un+1
j − un

j

k
+ a

un
j+1 − un

j−1

2h
= 0 (9.21a)

Then

γ (ξ ) = 1 − i λ sin ξ

(
λ = ak

h

)
and |γ (ξ )|2 ≥ 1 always! (9.21b)

This scheme is thus never stable for any value of the CFL number! We say that this scheme
is unconditionally unstable. This is a pity but the situation can be improved somewhat by
adding a so-called viscosity term to scheme (9.21) in order to stabilise it. The result is called
the Lax–Wendroff scheme and is given by a second-order perturbation of scheme (9.21),
namely:

un+1
j = un

j − λ

2

(
un

j+1 − un
j−1

) + λ2

2

(
un

j+1 − 2un
j + un

j−1

)
(9.22)

and this scheme is stable if |λ| ≤ 1.
Thus, Lax–Wendroff is a conditionally stable explicit scheme.
We now discuss some implicit schemes. The first scheme, Backward in Time, Backward in

Space (BTBS), is given by:

un+1
j − un

j

k
+ a

un+1
j − un+1

j−1

h
= 0, a > 0 (9.23a)

or

un+1
j (1 + λ) = un

j + λun+1
j−1 (9.23b)

This scheme is always stable. The centred difference scheme is given by:

un+1
j − un

j

k
+ a

un+1
j+1 − un+1

j−1

2h
= 0 (9.24)
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We can show that the amplification factor in this case is

γ = 1

1 + λi sin αh
, |γ | < 1 (9.25)

and hence the scheme is unconditionally stable.
We conclude this section by applying the Crank–Nicolson scheme to (9.1). It is an implicit

scheme and uses averaging in time and centred differences in x :

un+1
j − un

j

k
+ a

u
n, 1

2
j+1 − u

n, 1
2

j−1

2h
= 0 (9.26)

where u
n, 1

2
j ≡ 1

2 (un+1
j + un

j ).
After some lengthy but simple arithmetic we see that the amplification factor is given by:

γ = 1 − iβ
1 + iβ

where β = λ

2
sin αh, λ = ak

h
(9.27)

and hence | γ |= 1
The Crank–Nicolson scheme is called neutrally stable because the absolute value of its

amplification factor is exactly equal to 1! Any perturbation (for example, due to round-off
errors) could make this value greater than 1. The end-result is possible instability and Gibbs-
type oscillation phenomena.

Figure 9.2 is a schematic diagram of the different kinds of schemes for IVP (9.1), based
on Peaceman (1977). It shows the stability ‘levels’ of the different kinds of finite difference
schemes of (9.1). You can use this figure as a roadmap.

Backward Centred Forward
(1) (2) (3)

Backward

(1)

(2)

Centred

Forward

(3)

Space

Time

j - 1 j
n + 1 

n
S S CS

S NS U

CS U U

j - 1 j + 1
j

n

n + 1 n + 1

n
j + 1

j

S= Always Stable
U= Always Unstable
NS= Neutrally Stable
CS= Conditionally Stable

Figure 9.2 Special cases
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9.5.1 Some other schemes

We give some other examples of finite difference schemes for first-order hyperbolic partial
differential equations. We can use them as well as components or ‘building blocks’ for schemes
for the Black–Scholes equation. We consider the three-level leapfrog scheme defined as

un+1
j − un−1

j

2k
+ a

un
j+1 − un

j−1

2h
= 0 (9.28)

This is a second-order accurate scheme with respect to k and h, which makes the scheme
appealing. However, it requires two initial values which are usually determined by a two-level
scheme. It can be shown (Dautray and Lions, 1983) that the leapfrog scheme is stable if

|a| k
h

< 1 (9.29)

Applying a von Neumann analysis to (9.28) shows that the leapfrog scheme is neutrally
stable because the absolute value of its amplification factor is exactly 1.

The following scheme is called the Thomee or box scheme and gets its name from the fact
that we take averages in the x and t directions on a box:

un+1
j+ 1

2
− un

j+ 1
2

k
+ a

u
n+ 1

2
j+1 − u

n+ 1
2

j

h
= 0 (9.30)

with

un
j+ 1

2
≡ 1

2

(
un

j+1 + un
j

)
and u

n+ 1
2

j ≡ 1
2

(
un+1

j + un
j

)
This is also a second-order scheme in k and h. What is its amplification factor?

9.6 SOME COMMON SCHEMES FOR INITIAL BOUNDARY
VALUE PROBLEMS

Having discussed IVP (9.1) in some detail, we now turn our attention to approximating the
solution of the IBVP (9.2) using finite differences, starting in section 9.8. In principle the
difference schemes that we used to approximate the solution of IVPs can be used for hyperbolic
IBVPs under the proviso that we take the boundary conditions into consideration. In particular,
for system (9.2) we see that data is given at x = 0 and that there is no data at x = 1. We must be
careful not to destroy accuracy or stability just because we have applied a bad approximation
on the boundaries.

In this chapter we discuss two-level schemes. A discussion of three-level schemes is given
in Thomas (1998, 1999) and Dautray and Lions (1983).

9.7 MONOTONE AND POSITIVE-TYPE SCHEMES

In general the Lax equivalence theorem also holds for first-order hyperbolic schemes. If the
difference scheme is stable and consistent, then it is convergent. We can prove stability by
the von Neumann stability analysis, and we can prove consistency by using Taylor expansions
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(Richtmyer and Morton, 1967). In this section, however, we take a different approach to proving
stability and convergence. In particular, we are interested in positive schemes for IVP (9.1).
We note that the solution of (9.1) is positive at all points (x, t) if the initial condition f (x)
is positive, because the exact solution is given by equation (9.12). We can now ask ourselves
the following question: Which finite difference schemes give positive solutions from positive
initial data? To this end, we write all two-level difference schemes in the form:

un+1
i =

∑
j

c j u
n
i+ j (9.31)

In this case the index j ranges over some set of integers. Incidentally, all the schemes in this
chapter can be written in this form.

Definition 9.1. The scheme (9.31) is of positive type if and only if all the coefficients c j are
non-negative.

Not all schemes are of positive type. For example, the Lax–Wendroff scheme (9.22) is not of
positive type.

Definition 9.2. A scheme is called stable if there exists a constant M (independent of k and h)
such that

max
i

|un
i | ≤ M max

i
|u0

i | ∀n > 0 (9.32)

The added value of positive type schemes is that they produce positive solutions from
positive initial conditions. This is appealing because many applications do not allow a solution
to become negative. For example, a negative option price in a difference scheme is unacceptable.

An important convergence result for positive type schemes states that the best order pos-
sible is 1.

Theorem 9.1. If the scheme (9.31) is consistent with (9.1) and is of positive type, then it is of
order 1 or ‘infinity’.

Another important property of positive type schemes is that they are stable in the max
(‘pointwise’) norm.

Theorem 9.2. If the scheme (9.31) is consistent with (9.1) and is of positive type, then it is
stable in the sense of the inequality in equation (9.32).

Again, the Lax–Wendroff scheme has order 2 and is not stable in the sense of inequality (9.32).

9.8 EXTENSIONS, GENERALISATIONS
AND OTHER APPLICATIONS

There is a vast literature on first-order partial differential equations, much of which is not (yet)
of direct relevance to financial engineering. We list certain classes of problems that can be seen
as generalisations of the linear, constant-coefficient case in this chapter. Some of these classes
will be needed when we discuss one-factor and multi-factor Black–Scholes equations.

You may skip this section on a first reading without loss of continuity.
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9.8.1 General linear problems

The most general linear IBVP problem in this context is given by:

∂u
∂t

+ a(x, t)
∂u
∂x

= R(x, t), 0 < x < 1, t > 0, a > 0

u(x, 0) = f (x), 0 ≤ x < 1 (9.33)

u(0, t) = g(t), t ≥ 0

and the finite difference schemes in this chapter can easily be adapted to accommodate the
non-constantness in the coefficients.

For example, the FTBS scheme generalisation of (9.15) is:

un+1
j − un

j

k
+ a(x j , tn)

un
j − un

j−1

h
= R(x j , tn), 1 ≤ j ≤ J, n ≥ 0

u0
j = f (x j ), 1 ≤ j ≤ J − 1 (9.34)

un
0 = g(tn), n ≥ 0

Other two-level schemes are defined in a similar fashion and we shall meet them in later
chapters.

9.8.2 Systems of equations

In this case the solution is a vector quantity of the form

U = t (u1, . . . , un)

u j = u j (x, t), j = 1, . . . , n
(9.35)

and we consider the system of partial differential equations

∂U
∂t

+ A
∂U
∂x

= 0 (9.36)

where A is a square matrix of order n and is partitioned as follows

A =
(

C 0
0 D

)
(9.37)

The matrices C and D are symmetric square matrices of order l and n − l, respectively where
0 ≤ l ≤ n. In order to define an IBVP for (9.36) we define initial and boundary conditions.

Intuitively, we need l boundary conditions at x = 0 (characteristics going from left to right)
and n − l boundary conditions at x = 1 (characteristics going from right to left). The initial
boundary conditions are given by equations:

u(x, 0) = f (x), 0 < x < 1, f = t ( f1, . . . , fn)

uI(0, t) = αuII(0, t) + g0(t), t > 0

uII(1, t) = βuI(1, t) + g1(t), t > 0

uI = t (u1, . . . , . . . ul), uII = t (ul+1, . . . , un)

(9.38)

where g0 ∈ Rl , g1 ∈ Rn−l , and α and β are matrices.
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T2i

T1 (L, t )

T2 (0, t )

x = Lx = 0

T1i

Figure 9.3 Countercurrent heat exchange r

Systems of the form (9.36) have been extensively studied and various approximate schemes
advocated for them (see Dupont and Todd, 1973; Duffy, 1977; Friedrichs, 1958; Gustafsson
et al., 1972).

Let us take an example. The background to the example is somewhat technical (Rhee et al.,
1986) but it does illustrate how systems of first-order equations are proposed. We consider a
so-called countercurrent heat exchanger depicted in Figure 9.3.

In this case the system consists of two temperature ‘waves’, one travelling from x = 0 to
x = L and the other variable from x = L to x = 0. The system of equations is given by

∂T1

∂t
+ V1

∂T1

∂x
= H1(T2 − T1)

∂T2

∂t
− V2

∂T2

∂x
= H2(T1 − T2)

(9.39)

where the (positive) constant coefficients V1 and V2 are velocities of the streams in the
exchanger.

The initial and boundary conditions are:

T1(x, 0) = T10(x) (9.40a)

T2(x, 0) = T20(x) (9.40b)

T1(0, t) = T1i (t) (9.40c)

T2(L , t) = T2i (t) (9.40d)

where the functions on the right-hand side of equations (9.40) are given.
The relevance of hyperbolic systems to financial engineering is that such systems appear in

systems of Black–Scholes equations, for example chooser and compound options (see Wilmott,
1998, p. 185) and convertible bonds with credit risk (see Ayache, 2002). In all cases we can
formally arrive at a first-order system by setting the volatilities to zero. It is obvious that the
finite difference schemes should be good approximations in this limiting case.
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9.8.3 Nonlinear problems

A problem is nonlinear if one or more coefficients in the problems are functions of x, t and
the (unknown) solution u.

We recognise three major categories of nonlinear functions, each of which is important in
financial engineering:� Semilinear equations� Quasilinear equations� Highly nonlinear equations.

A semilinear equation has the general form

∂u
∂t

+ a
∂u
∂x

+ f (u) = 0 (9.41)

where f (u) is some nonlinear function of u. This kind of equation will be introduced when we
discuss the approximate of American-style option problems using so-called penalty methods
(see Nielson et al., 2002). An example of a quasilinear equation has the general form

∂u
∂t

+ a(u)
∂u
∂x

= 0 (9.42)

Finally, highly nonlinear equations are discussed in Wilmott (1998) where they are used
to model the short-term interest rate using non-probabilistic methods. The defining equations
are:

∂V
∂t

+ c
(

∂V
∂r

) (
∂V
∂r

)
− r V = 0

V (r, T ) = known function

V (r, t−
i ) = V (r, t+

i ) + K

c(x) =
{

c+, x < 0

c−, x > 0

(9.43)

Again, good schemes need to be devised for this class of problem.

9.8.4 Several independent variables

Multi-factor pricing equations have first-order convection components. For example, a two-
factor model will have the following generic form for its convection component:

∂u
∂t

+ a
∂u
∂x

+ b
∂u
∂y

= 0 (9.44)

In this case the coefficients a and b may be either positive or negative. We need to provide
an initial condition of the form

u(x, y, 0) = f (x, y) (9.45)
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As in the discussion that has gone before we can consider initial value problems as well
as initial boundary value problems for model (9.44). These topics will be discussed later. The
options are:� Discretise simultaneously with respect to x, y and t� Approximate the two-dimensional problem as a sequence of simpler one-dimensional

problems.

The second option implies the use of so-called alternating direction implicit (ADI) or operator
splitting methods.

9.9 SUMMARY AND CONCLUSIONS

In this chapter we have introduced a number of finite difference schemes to approximate the
convective (or advective) component of the Black–Scholes equation. This component is more
difficult to approximate than simple diffusion equations and for this reason we must pay special
attention to issues such as boundary conditions, stability and convergence.

We have analysed finite difference schemes for first-order problems in some depth for a
number of reasons. First, they have not had much exposure in the quantitative finance literature
and readers may not be certain of what does or does not constitute a good scheme. For instance,
we have already given an example of a scheme that looks good (see scheme (9.21)) but which is
always unconditionally unstable! Second, a good understanding of the theory in this chapter is
essential when modelling one-factor and multi-factor PDEs, in particular those with convective
terms. In particular, we shall need to investigate the relationship between convective and
diffusion terms. Finally, some pricing applications can be modelled by PDEs that ‘evolve’ or
reduce into a first-order PDE and we must be able to construct suitable schemes that degrade
gracefully. For example, in certain bond pricing problems the time-dependent volatility may
decrease exponentially to zero as we approach the maturity date. We then have a so-called
singular perturbation problem and special schemes are needed in this case.
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10
FDM for the One-Dimensional
Convection–Diffusion Equation

10.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce standard difference schemes for parabolic differential equations
containing second-order terms (diffusion) and first-order terms (convection or advection).
In particular, this chapter contains details concerning finite difference schemes for the one-
dimensional convection–diffusion equation. We focus on the special issues:� Time-independent and time-dependent convection–diffusion equations� Using standard finite difference schemes for convection–diffusion equations� How to approximate Dirichlet, Neumann, Robin and linearity boundary conditions� Setting up the linear system of equations� Analysing the stability of the approximate schemes� Approximating the derivatives of the solution� Nasty and problematic cases (for example, discontinuous initial conditions).

The added value of this approach is that the transition to the one-factor and multi-factor Black–
Scholes equation will be easy to realise.

In this book we are mainly interested in linear second-order BVP, and to this end we deal
with the problem defined by

Lu ≡ −u′′ + p(x)u
′ + q(x)u = r (x) (10.1)

We now approximate this BVP using finite differences. There are two aspects to this problem.
First, we must approximate the derivatives appearing in (10.1) using divided differences and
second we have the added challenge of approximating the dependent variable or its first order
derivative on the boundaries x = a and x = b.

The first issue is addressed by defining a sub-division of the interval (a, b) into J equal
sub-intervals

a = x0 < x1 < · · · < xJ−1 < xJ = b

h = x j − x j−1, j = 1, . . . , J

We then use centred-differencing at each discrete mesh point and to this end we define the
discrete operator

Lhu j ≡ −
(

u j+1 − 2u j + u j−1

h2

)
+ p(x j )

(
u j+1 − u j−1

2h

)
+ q(x j )u j (10.2)

We now come to the problem of how to tackle the boundary conditions. There are two main
options, namely� Dirichlet condition: function u known at a and b� Neumann condition: first derivative of u known at a or b.

117
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We could also have hybrid boundary conditions in which case we would have Dirichlet
boundary conditions at one end and Neumann boundary conditions at the other. Let us first
look at Dirichlet boundary conditions for both continuous and discrete solutions:

u(a) = u0 = α

u(b) = u J = β
(10.3)

Where α and β are given constants.

Theorem 10.1. Let the coefficients p(x) and q(x) in (10.1) satisfy

|p(x)| ≤ P∗, 0 < Q∗ ≤ q(x) ≤ Q∗ for a ≤ x ≤ b,

where P∗, Q∗ and Q∗ are positive constants, and suppose that the mesh size h satisfies

h ≤ 2

P∗ (10.4)

Then the finite difference scheme (10.2) with boundary conditions (10.3) has a unique solution.

Remark. We may wonder what happens to the finite difference scheme if the condition in
(10.4) is not satisfied. This situation occurs if the convection coefficient p(x) becomes very
large (of the order of 10 000, for example). Then the mesh size has to be chosen very small to
ensure boundedness of the solution. In this case we speak of convection-dominated problems
and these are common in fluid dynamics applications.

10.2 APPROXIMATION OF DERIVATIVES ON THE BOUNDARIES

In some cases we may wish to define Neumann boundary conditions. In these cases the depen-
dent variable’s first-order derivative is known on the boundary. We approximate the derivative
by some kind of divided difference. The main options are:� One-sided difference scheme (with first-order accuracy)� Centred-difference scheme with ghost point (second-order accuracy).

To be specific, let us consider the Robin boundary condition at x = a while keeping Dirichlet
boundary condition at x = b:

α0u(a) + α1u′(a) = α (10.5)

The first-order approximation is given by

α0u0 + α1

h
(u1 − u0) = α

or (α0h − α1) u0 + α1u1 = αh
(10.6)

This approximation destroys the second-order accuracy of scheme (10.2). In order to resolve
this problem we introduce a ghost or fictitious point, one step length to the left of a. The
boundary condition (10.5) is now approximated by a centred-difference scheme

α0u0 + α1

2h
(u1 − u−1) = α

or 2hα0u0 + α1 (u1 − u−1) = 2αh
(10.7)
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Then we have the ansatz or assumption that the differential equation (10.1) is satisfied at
x = a (we call this continuity to the boundary) and thus the difference approximation (10.2)
is valid at that point as well:

−
(

u1 − 2u0 + u−1

h2

)
+ p(x0)

(
u1 − u−1

2h

)
+ q(x0)u0 = r (x0) (10.8)

We can now eliminate the value at the ghost point from equations (10.7) and (10.8) and we
can then produce a linear system that we solve using LU decomposition. Assuming Dirichlet
boundary conditions at x = b, the unknown vector U has the components

U = t (u0, u1, . . . , u J−1)

This vector has thus one extra component compared with the vector for the problem with
Dirichlet boundary conditions at both end-points!

We conclude this section with a convergence theorem.

Theorem 10.2. Let p(x) and q(x) satisfy

|p(x)| ≤ P∗, 0 < Q∗ ≤ q(x) ≤ Q∗, a ≤ x ≤ b

and suppose that h satisfies the inequality

h ≤ 2

P∗

Let {u j }J
j=0 and u(x) be the solutions of the discrete BVP (10.2) and continuous BVP (10.1),

respectively, where both problems have boundary conditions in (10.3).
Set

M = max (1, 1/Q∗)

Then

|u j − u(x j )| ≤ M max |τ j (u)|, 0 ≤ j ≤ J

where

τ j (u) = −[D+ D−u(x j ) − u′′(x j )] + p(x j )[D0u(x j ) − u′(x j )]

= −h2

12
[u′′′(ξ j ) − 2p(x j )u′′(η j )] 0 ≤ j ≤ J ξ j , η j ∈ [x j−1, x j+1]

Furthermore, if u has four continuous derivatives, then

|u j − u(x j )| ≤ M
h2

12
(M4 + 2P∗M3) 0 ≤ j ≤ J

where

Mk = max
a≤x≤b

∣∣∣∣duk

dxk

∣∣∣∣ , k = 3, 4.

This result states that the finite difference scheme is second-order accurate.
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10.3 TIME-DEPENDENT CONVECTION–DIFFUSION
EQUATIONS

We now generalise the equations and results from section 10.1 to the time-dependent
convection–diffusion problem

−∂u
∂t

+ Lu = f (x, t), a < x < b, t > 0 (10.9)

where

Lu(x, t) ≡ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t)u

The initial and boundary conditions are:

u(x, 0) = f (x), a ≤ x ≤ b

u(a, t) = g(t), u(b, t) = h(t), t > 0

There are different ways to discretise (10.9), namely� Discretise in x and t simultaneously (fully discrete schemes)� Discretise in x and keep t continuous (Method of Lines)� Discretise in t and keep x continuous (Rothe’s method).

The choice will be determined by a number of factors that we shall explain in this chapter.

10.4 FULLY DISCRETE SCHEMES

We use the usual notation for meshes in the x and t directions. For example, h is the mesh size
in the x direction while k is the mesh size in the t direction. Define the operator

Lh
k w

n
j ≡ σ n

j D+ D−wn
j + μn

j D0w
n
j + bn

j w
n
j , 1 ≤ j ≤ J − 1, n ≥ 0

for some mesh function wn
j where

σ n
j = σ (x j , tn)

μn
j = μ(x j , tn)

bn
j = b(x j , tn)

f n
j = f (x j , tn)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1 ≤ j ≤ J − 1, n ≥ 0

Then, based on the first-order schemes in previous chapters, we can define a number of fully
discrete schemes as follows:� Implicit Euler scheme

−un+1
j − un

j

k
+ Lh

k un+1
j = 0 (10.10)� Explicit Euler scheme

−un+1
j − un

j

k
+ Lh

k un
j = 0 (10.11)� Crank–Nicolson scheme



0470858826c10 JWBK073-Duffy February 1, 2006 19:22 Char Count= 0

FDM for the One-Dimensional Convection–Diffusion Equation 121

This is the average of schemes (10.10) and (10.11) defined as

−un+1
j − un

j

k
+ 1

2

(
Lh

k un+1
j + Lh

k un
j

) = 0 (10.12)

This equation, in the context of the financial engineering literature, seems to be the de-
facto standard finite difference scheme for the one-factor Black–Scholes equation. It is not
a perfect scheme and the author has discussed some its shortcomings in Duffy (2004A).

Summarising these problems, we note:� The Crank–Nicolson method is second-order accurate on uniform meshes only.� It produces spurious oscillations and possibly spikes for problems with non-smooth initial
and boundary conditions, and for problems where the compatibility conditions between
boundary and initial conditions are not satisfied.� It reduces to a neutrally stable method when the diffusion coefficient is small. This has the
implication that the accuracy of the results will be compromised due to possible rounding
errors.� It gives terrible results near the stike price for approximations to the first and second deriva-
tives in the space direction. In pricing applications, this translates to the statement that the
Crank–Nicolson method gives bad approximations to the delta and gamma of the option
price.

10.5 SPECIFYING INITIAL AND BOUNDARY CONDITIONS

No finite difference scheme would be complete without specifying its associated initial and
boundary conditions. Let us examine system (10.9) again and let us approximate it using
scheme (10.10).

The continuous initial conditions in (10.9) are approximated by

u0
j = f (x j ), 1 ≤ j ≤ J − 1 (10.13)

Thus, in order to specify a well-defined problem we use one of the schemes (10.10), (10.11)
or (10.12) in combination with (10.13) and with the boundary conditions

un
0 = g(tn), un

J = h(tn), n ≥ 0 (10.14)

Thus, this system can be solved at each time level using LU decomposition, for example.

10.6 SEMI-DISCRETISATION IN SPACE

This approach entails approximating the derivatives in the x direction only. Applied to system
(10.9) a semi-discrete scheme looks like

−du j

dt
+ σ j (t)D+ D−u j (t) + μ j (t)D0u j (t) + b j (t)u j (t) = f j (t), (10.15)

where σ j (t) ≡ σ (x j , t), etc.
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We can then write (10.15) as a vector system:

dU
dt

+ A(t) U = F(t), t > 0

U (0) = U0

(10.16)

We can now discretise (10.16) using the methods from Chapter 6.

10.7 SEMI-DISCRETISATION IN TIME

Let us recall the parabolic initial boundary value problem (10.9). We can apply discretisation
in t using different schemes. Let us examine the implicit Euler scheme:

−U n+1(x) − U n(x)

k
+ LU n+1(x) = f n+1(x), n ≥ 0 (10.17)

where

LU n+1(x) ≡ σ (x, tn+1)
d2U n+1

dx2
+ μ(x, tn+1)

dU n+1

dx
+ b(x, tn+1)U n+1

f n+1(x) = f (x, tn+1)

with boundary conditions

U n(a) = g(tn), U n(b) = h(tn), n ≥ 0

and initial condition

U 0(x) = f (x), a ≤ x ≤ b

System (10.17) is now an ordinary differential equation and it is solved from level n to level
n + 1.

10.8 CONCLUSIONS AND SUMMARY

We have introduced a number of standard finite difference schemes that approximate the
solution of convection–diffusion equations in one space dimension. Such equations contain
both a diffusion term and a convection term and they model the Black–Scholes equation. We
also discuss how to approximate Dirichlet and Neumann boundary conditions and assemble
the system of equations that we solve at each time level.
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Exponentially Fitted Finite

Difference Schemes

11.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce robust finite difference schemes that are suitable for a range of
applications in financial engineering. In particular, the schemes can be applied to one-factor
and multi-factor Black–Scholes equations. They are called exponentially fitted finite difference
schemes (Duffy, 1980). The schemes use the implicit Euler scheme for time marching and hence
do not suffer from the spurious oscillation problems that we witness with the Crank–Nicolson
method, for example. This chapter is important for a number of reasons:� It provides a robust, accurate and easy to program finite difference scheme for a general

one-factor Black–Scholes equation. The volatility and other terms may be functions of S
and t .� The finite difference scheme resolves many of the oscillation problems that we see with some
standard schemes. Furthermore, some authors have resolved these problems by mapping the
Black–Scholes PDE (which is linear) into a nonlinear finite difference scheme (for example,
the Van Leer method (see Zvan et al., 1997)). This scheme must be solved by some iterative
method at each time level, which slows down performance.� The fitted scheme gives good approximations to the first and second derivatives (in Black–
Scholes, called delta and gamma) with no wiggly oscillations near the strike price.� We prove stability of the fitted scheme by using the discrete Maximum Principle and M
matrices. This is an improvement on the somewhat outdated von Neumann stability analysis
(this technique is, strictly speaking, only valid for linear initial value problems with constant
coefficients).

In short, this chapter paves the way for a discussion of the Black–Scholes equation and its
approximation using robust finite differences schemes.

11.2 MOTIVATING EXPONENTIAL FITTING

We first discuss some issues in quantative finance in order to motivate exponentially fitted
methods. Exponential fitting is a technique that we can apply to both ordinary and partial
differential equations. In many cases we know that the solution contains terms involving the
exponential function. However, we do not know the exact form and we must guess a solution
or try to approximate the solution in some way. For example, the exact formula for the price
of a standard European option on stock paying no dividend is given by

C = SN (d1) − K e−rT N (d2) (11.1)

123
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where

d1 = ln(S/K ) + (r + σ 2/2)T

σ
√

T

d2 = ln(S/K ) + (r − σ 2/2)T

σ
√

T
= d1 − σ

√
T

N (x) = 1√
2π

∫ x

−∞
e− z2

2 dz

n(x) = dN (x)

dx
= 1√

2π
e−x2/2

(see Haug, 1998). Here we see exponential terms in both time T and asset variable S. In general
it is not possible to find an exact solution for more complicated problems.

We discuss two specific cases: the first technique is used in the financial engineering literature
to guess an ‘approximate exact solution’ to the original differential equation. The second
technique mimics exponential behaviour by creating special finite difference equations that
contain so-called fitting factors (see Duffy, 1980 and 2004). In a sense we speak of continuous
and discrete fitting.

11.2.1 ‘Continuous’ exponential approximation

We take an example to show what we mean. Consider the partial differential equation that
describes a zero coupon bond price P (Van Deventer and Imai, 1997; Wilmott, 1998):

∂ P
∂t

+ 1
2σ 2 ∂2 P

∂r2
+ [α(t) + λσ ]

∂ P
∂r

− r P = 0 (11.2)

with the final condition

P(r, T, T ) = 1 (11.3)

(this is because the value of a zero coupon bond is equal to 1 at maturity). In this case we are
using the extended Merton SDE for the short-term interest rate:

dr = α(t) dt + σ dZ (11.4)

where α(t) = drift rate

σ = instantaneous standard deviation of interest rates

Z = standard Wiener process with mean 0 and standard deviation 1.

In Van Deventer and Imai (1997) the authors take an educated guess in order to postulate a
solution of (11.2) in a form assuming that the price P closely approximate the Merton model,
as follows (called an ansatz):

P(r, t, T ) = e−rτ+G(t,T ), τ = T − t (11.5)

We can verify from equation (11.2) that the function G satisfies the ordinary differential
equation

dG
dt

+ 1
2σ 2τ 2 − [α(t) + λσ ]τ = 0 (11.6)
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by using the relationships

∂ P
∂r

= −τ P

∂2 P
∂r2

= τ 2 P

∂ P
∂t

=
(

r + dG
dt

)
P

and substituting these three partial derivatives into the differential equation (11.2). Now, in-
tegrating the ordinary differential equation (11.6) between the limits t and T , and using the
easy-to-verify relationships

G(T, T ) = 0 (since P(r, T, T ) = 1)

1
2σ 2

∫ T

t
(T − s)2 ds = σ 2τ 3

6

λσ

∫ T

t
(T − s) dS = λστ 2

2

(11.7)

we see that the solution of (11.6) is given by

G(t, T ) = −λστ 2

2
+ 1

6σ 2τ 3 −
∫ T

t
α(s)(T − s) ds (11.8)

Hence using the ansatz we can now write the solution of (11.2) in the explicit form

P(r, t, T ) = exp

[
−rτ − λστ 2

2
+ 1

6σ 2τ 3 −
∫ T

t
α(s)(T − s) ds

]
(11.9)

We now give an objective critique of the above analysis. This approach may work in isolated
cases but in general we refrain from this approach in this book for the following reasons:� It would seem that the ansatz is mathematically unfounded. I have seen no justification

and the approach is very difficult to scale to multi-factor, nonlinear problems containing
discontinuities.� Having arrived at the solution equation (11.9) we still have to approximate the integral term,
either analytically or numerically. Thus, the fact that we have produced a closed solution
does not mean that our work is finished.

On the other hand, this technique gives us some insight into the financial model.

11.2.2 ‘Discrete’ exponential approximation

In this section we examine a boundary value problem and attempt to fit the exponential terms
(which are the most difficult terms to approximate) by a specially designed finite difference
scheme. To this end, let us begin with a homogeneous second-order ordinary differential
equation with constant coefficients:

d2u
dx2

+ a
du
dx

+ bu = 0 (11.10)
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It is known that the general solution of (11.10) is a sum of exponentials whose coefficients
are roots of the so-called auxiliary equation

m2 + am + b = 0 (roots α1, α2) (11.11)

Thus, depending on these roots, the general solution is given by one of the following equa-
tions:

Real Roots, α1 �= α2:

u = c1 eα1x + c2 eα2x (11.12a)

Real Roots, α1 = α2 = α:

u = (c1 + c2x) eαx (11.12b)

Complex Roots, α1 = A + i B, α2 = A − i B

u = eAx (c1 cos Bx + c2 sin Bx) (11.12c)

where c1 and c2 are (undetermined) constants.
Some authors have developed special finite difference schemes that closely approximate

the general solution of (11.10) at mesh points. For example, Roscoe (1975) defines difference
schemes that are in some sense the discrete analogues of the solutions in equations (11.12)
and the schemes achieve accurate and oscillation-free approximation to one-dimensional and
two-dimensional convection–diffusion equations. In fact, for the boundary value problem:

d2u
dx2

− ε
(

1
2 − x

) du
dx

= 0, 0 < x < 1

u(0) = 0, u(1) = 1

(11.13)

with exact solution given by

u(x) =

∫ x

0
e

1
2 εy(1−y) dy∫ 1

0
e

1
2 εy(1−y) dy

The standard schemes such as upwinding, downwinding and centred differencing give terrible
answers at x = 0.5 for certain large values of ε. In fact, the solution exhibits spurious oscil-
lations at these points while the so-called unified difference representation (UDR) in Roscoe
(1975) does not suffer from these schemes. The scheme is given by:

U j+1 − (1 + ew(x j )) U j + ew(x j )U j−1 = 0

w(x) ≡ ε

(
1

2
− x

) (11.14)

The reason why standard-difference schemes are not good is because the convection term
w(x) changes sign at x = 0.5 and for this reason we call (11.13) a turning-point problem. This
kind of equation can occur in financial applications when the drift term changes sign.

We now introduce another fitting difference scheme (based on Il’in, 1969) which is also the
foundation for a number of schemes for the Black–Scholes equation. To this end, we consider
the second-order equation

σ
d2u
dx2

+ μ
du
dx

= 0 (11.15)

where σ and μ are constants.
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We now define the so-called fitted centred-difference equation:

ρD+ D−U j + μD0U j = 0, 1 ≤ j ≤ J − 1 (11.16)

where the fitting factor ρ is chosen in such a way that the discrete and exact solutions have the
same values at mesh points. If we insert the exact solution of (11.15) into equation (11.16) we
can convince ourselves that

ρ ≡ μh
2

coth
μh
2σ

(11.17)

This scheme is a faithful representation of the exact solution. For example, let us suppose
that the coefficient σ tends to zero. Then by using the limits:

lim
σ→0

μh
2

coth
μh
2σ

=
{+ μh/2, μ > 0

− μh/2, μ < 0 (11.18a)

lim
μ→0

μh
2

coth
μh
2σ

= 1 (11.18b)

we see that the ‘reduced’ difference schemes are:
μ

h
(U j+1 − U j ) = 0, μ > 0

μ

h
(U j − U j−1) = 0, μ < 0

(11.19)

We thus get the correct upwinding or downwinding depending on the sign of μ. Many standard
schemes have to be modified in order to get the correct winding. Il’in’s scheme takes care of
these problems automatically!

What happens next? We usually have to solve boundary value problems with non-constant
coefficients, as in the following case with Dirichlet boundary conditions:

σ (x)
d2u
dx2

+ μ(x)
du
dx

+ b(x)u = f (x), x ∈ (A, B)

u(A) = α, u(B) = β

(11.20)

We now approximate the solution of (11.20) by the generalisation of the scheme (11.16),
namely

ρ j D+ D−U j + μ j D0U j + b jU j = f j , 1 ≤ j ≤ J − 1

U0 = α, UJ = β
(11.21)

where

ρ j ≡ μ j h
2

coth
μ j h
2σ j

, σ j ≡ σ (x j ), μ j ≡ μ(x j ), f j ≡ f (x j ), b j ≡ b(x j )

Theorem 11.1. (Convergence.) Let u and U be the solutions of (11.20) and (11.21), respec-
tively. Then

|u(x j ) − U j | ≤ Mh, j = 0, . . . , J

where the constant M is independent of h, μ and σ .
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We say that scheme (11.21) is uniformly convergent irrespective of the relative sizes of the
coefficients μ and σ . In order to improve the accuracy of the scheme we can use extrapolation.
We take two approximate solutions on mesh sizes h and h/2:

U j ≡ U h
j = u(x j ) + A1h + A2h2 + · · ·

U2 j ≡ U h/2
2 j = u(x j ) + A1

h
2

+ A2
h2

4
+ · · ·

(11.22)

Then the discrete scheme defined by

V h/2
2 j ≡ 2U h/2

2 j − U h
j = u(x j ) + B2h2 (11.23)

is a second-order approximation to the solution of (11.20). This estimate is borne out in theory
and in numerical experiments. So, we calculate the solution on two consecutive meshes and
use (11.23).

11.2.3 Where is exponential fitting being used?

Fitted schemes have been in use for more than fifty years. In 1955 de Allen and Southwell
used a novel finite difference representation to solve certain fluid dynamics problems. They
derived an ‘exact’ difference scheme in much the same way as we have motivated in previous
sections. This scheme involved exponential terms that were not suitable from the point of view
of the human relaxer, and probably, as a consequence, the schemes were not developed further
at that time.

One of the first articles that analysed fitted schemes from a numerical analysis viewpoint
was Il’in (1969), in which the two-point boundary value problem (11.20) was approximated
by the fitted scheme (11.21). The scheme was generalised to one-factor convection–diffusion
equations by the author (Duffy, 1980) and consequently applied to the Black–Scholes equa-
tion in Cooney (1999). More information on fitting methods can be found in the specialised
monographs by Morton (1996) and Farrell et al. (2000).

11.3 EXPONENTIAL FITTING AND TIME-DEPENDENT
CONVECTION–DIFFUSION

We now come to the central theme of this chapter. We examine an initial boundary value problem
with Dirichlet boundary conditions for the one-factor Black–Scholes, written in general form:

Lu ≡ −∂u
∂t

+ σ (x, t)
∂2u
∂x2

+ μ(x, t)
∂u
∂x

+ b(x, t) u = f (x, t) in D

u(x, 0) = ϕ(x), x ε �

u(A, t) = g0(t), u(B, t) = g1(t), t ε (0, T )

(11.24)

where � = (A, B) and D = � × (0, T ).
We introduce and apply exponentially fitted schemes to the problem (11.24) and discuss

the stability and convergence properties using the discrete maximum principle. As always, we
partition the space and time intervals as follows:

A = x0 < x1 < · · · < xJ = B (h = x j − x j−1)

0 = t0 < t1 < · · · < tN = T (k = T/N )
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We also approximate derivatives by divided differences, and to this end we define the follow-
ing discrete operators:

Lh
k U n

j ≡ −U n+1
j − U n

j

k
+ ρn+1

j D+ D−U n+1
j + μn+1

j D0U n+1
j + bn+1

j U n+1
j (11.25)

Here we use the notation

ϕn+1
j = ϕ(x j , tn+1) in general

and a similar notation for the other coefficients. Furthermore,

ρn+1
j ≡ μn+1

j h

2
coth

μn+1
j h

2σ n+1
j

We are now in a position to define the exponentially fitted scheme:

Lh
k U n

j = f n+1
j , j = 1, . . . , J − 1, n = 0, . . . , N − 1

U n
0 = g0(tn), U n

J = g1(tn), n = 0, . . . , N

U 0
j = ϕ(x j ), j = 1, . . . , J − 1

(11.26)

What is going on here? Well, in the x direction we use the Il’in fitting scheme while in the
time direction we use the implicit Euler method. As we shall see later, the method is first-
order accurate in both k and h. The difference between (11.26) and traditional finite difference
schemes is the presence of the fitting factor. Accuracy can be improved by extrapolation (as
already described in section 11.2.2) and this process will give us second-order accuracy.

In general, the fitted scheme combines fitting in space and implicit Euler in time.

11.4 STABILITY AND CONVERGENCE ANALYSIS

In this section we examine the scheme (11.26) from a numerical analysis viewpoint. In partic-
ular, we ask the questions:� Does the scheme always produce realistic output from input?� Is the solution bounded by the input?� How close is the approximate solution to the exact solution?� How does the scheme (11.26) perform compared to the Crank–Nicolson method?

The first result states that positive input data leads to a positive solution at all space and time.

Lemma 11.1. Let the discrete function wn
j satisfy Lh

k w
n
j ≤ 0 in the interior of the mesh with

wn
j ≥ 0 on the boundary 
. Then

wn
j ≥ 0, ∀ j = 0, . . . , J, n = 0, . . . , N .

The next result gives an estimate for the growth of the solution of (11.26) in terms of its input
data.

Lemma 11.2 (Uniform stability.) Let
{

U n
j

}
be the solution of scheme (11.26) and suppose that

max |U n
j | ≤ N for all j and n

max | f n
j | ≤ N for all j and n

Then

max j |U n
j | ≤ − N

β
+ m in D, where b(x, t) ≤ β < 0
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We have thus proved stability by application of the discrete maximum principle. The result
is general and is valid for problems with non-constant coefficients, discontinuous coefficients,
and Neumann and Robin boundary conditions. The following result tells us how accurate our
exponentially fitted scheme is (we state the essential conclusions), see Duffy (1980).

Theorem 11.2. Let u and U n
j be the solution of (11.24) and (11.26), respectively. Then

|u(x j , tn) − U n
j | ≤ M(h + k).

where M is independent of h, k, σ and μ.

Remark. We say that scheme (11.26) is uniformly convergent because the accuracy does not
depend on the relative sizes of the coefficients σ and μ in the original problem.

We now discuss the detailed issues of numerical accuracy and performance of scheme
(11.26). All code has been written in C++. Extensive tests have been carried out in Cooney
(1999) and Mirani (2002). We compare fitting with a number of other schemes:

S1: Implicit Euler in time, standard centred differencing in x
S2: Duffy exponential fitting (11.26)
S3: Crank–Nicolson (standard)
S4: Fitted Crank–Nicolson (CN in time, fitting in x).

We give the discrete operators corresponding to the above schemes. The notation remains
the same as before:

Implicit Euler scheme (no fitting)

Lh
k U n

j = −U n+1
j − U n

j

k
+ σ n+1

j D+ D−U n+1
j + μn+1

j D0U n+1
j + bn+1

j U n+1
j

Crank–Nicolson scheme:

Lh
k U n

j = −U n+1
j − U n

j

k
+ σ

n+ 1
2

j D+ D−U
n+ 1

2
j + μ

n+ 1
2

j D0U
n+ 1

2
j + b

n+ 1
2

j U
n+ 1

2
j

where

σ
n+ 1

2
j = σ

(
x j , tn+ 1

2

)
μ

n+ 1
2

j = μ
(

x j , tn+ 1
2

)
b

n+ 1
2

j = b
(

x j , tn+ 1
2

)
U

n+ 1
2

j ≡ 1

2

(
U n+1

j + U n
j

)
Fitted Crank–Nicolson scheme:

Lh
k U n

j = −U n+1
j − U n

j

k
+ ρ

n+ 1
2

j D+ D−U
n+ 1

2
j + μ

n+ 1
2

j D0U
n+ 1

2
j + b

n+ 1
2

j U
n+ 1

2
j

We first examine the performance of the different schemes. In principle we are interested
in the relative performance. We have taken meshes of size 500 × 500 and 1000 × 1000
and compared the different schemes with these as benchmarks (Cooney, 2000). The results
are presented in Table 11.1 (units are seconds). The code was run on, at the time, (2000) a
state-of-the art Pentium machine.
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Table 11.1 Comparison of finite difference schemes

Scheme 500 × 500 1000 × 1000

Fully implicit 1.750000 7.210938
Fitted Duffy 2.281250 9.539062
Crank–Nicolson 1.851562 7.632812
Fitted Crank–Nicolson 2.406250 10.015625
Van Leer flux limiter 3.320312 13.250000

Table 11.2 Execution time ratios for
the numerical schemes

Scheme Ratio

Fully implicit 1.00
Crank–Nicolson 1.06
Fitted Duffy 1.31
Fitted Crank–Nicolson 1.38
Van Leer flux limiter 1.87

The results in Table 11.1 include writing the output data to an ASCII file. This file was then
used as input to the package gnuplot. We see that the implicit Euler scheme performs best
while the Van Leer method is slowest (this is because the Van Leer is a nonlinear scheme and
we must apply the Newton–Raphson iterative method at each time level to find the solution).

We now wish to compare the relative performance of the different schemes (Cooney, 2000).
The results are shown in Table 11.2.

We now discuss accuracy. The two Crank–Nicolson schemes produce spurious oscillations
at the strike price (or where the initial condition is not smooth) and for large values of x (or
for large values of S in the case of the Black–Scholes equation). The Van Leer scheme is the
most accurate of all the schemes.

11.5 APPROXIMATING THE DERIVATIVES OF THE SOLUTION

An important requirement in option pricing and hedging applications is the approximation of
the option’s sensitivities (or ‘Greeks’ are they are also known. The main Greeks are (V is the
option price):

Delta � = ∂V
∂S

Gamma 
 = ∂�

∂S
= ∂2V

∂S2

Theta � = −∂V
∂t

Rho ρ = ∂V
∂r

Strike
∂V
∂K

Vega
∂V
∂σ

(11.27)
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Table 11.3 Error measure

Scheme Sol � 
 �

Fully implicit 1.05e-05 0.0030627 1.017440 0.809263
Fitted Duffy 1.05e-05 0.0.003080 0.947018 0.809278
Crank–Nicolson 1.64e-05 0.0237210 5.142210 5.313600
Fitted Crank–Nicolson 1.54e-05 0.0151708 5.413000 9.628910

(Hull, 2000). For certain kinds of options we have exact formulae (see Haug, 1998) but in
general we must resort to numerical techniques to approximate them. Our interest here lies in
approximating the delta and gamma of an option. We use divided differences of the solution
V of the fitted scheme as estimates of delta and gamma:

� ∼ Vj+1 − Vj−1

2h


 ∼ Vj+1 − 2Vj + Vj−1

h2

(11.28)

We compare a number of these schemes in the region of the strike price K (‘at-the-money’)
and the results are shown in Table 11.3.

The finite difference schemes are less dependable when we try to approximate the other
sensitivities.

11.6 SPECIAL LIMITING CASES

In some applications the coefficient σ (x, t) can become very small, in which case we have
essentially a first-order hyperbolic equation. The question now is: If we let σ (x, t) tend to zero,
will we get a scheme that is the same or similar to an upwinding or downwinding scheme? To
answer this question, we use the limits (see equation (11.18)) for the fitting factor. We then get
the difference schemes:

μ > 0, −U n+1
j − U n

j

k
+ μn+1

j

(U n+1
j+1 − U n+1

j )

h
+ bn+1

j U n+1
j = f n+1

j

μ < 0, −U n+1
j − U n

j

k
+ μn+1

j

(U n+1
j − U n+1

j−1 )

h
+ bn+1

j U n+1
j = f n+1

j

These are just the standard upwind or downwind schemes that we met in Chapter 9! Thus,
the fitting scheme degenerates into a stable upwinding/downwinding scheme for a first-order
hyperbolic partial differential equation. This is reassuring.

11.7 SUMMARY AND CONCLUSIONS

We have introduced a robust finite difference scheme that is suitable for awkward convection–
diffusion equations and that we have applied to the Black–Scholes equation. It gives good
approximations to problems with small volatility and/or large drift terms and also gives accu-
rate results for the full spectrum of values of these functions. Second, it gives accurate results
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near points where the initial condition (payoff function) is discontinuous or has discontinuous
derivatives, for example, at-the-money. In fact it gives good results for the delta (first deriva-
tive in space), in contrast to some traditional methods (for example, Crank–Nicolson) where
spurious oscillations and spikes can and do occur. Finally, the method is first-order accurate in
time and space and we can produce a second-order scheme by Richardson extrapolation.
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12
Exact Solutions and Explicit Finite

Difference Method for One-Factor

Models

12.1 INTRODUCTION AND OBJECTIVES

In this chapter we discuss some simple finite difference schemes for the one-factor Black–
Scholes partial differential equation for plain options with no early exercise. This is a well-
known problem in the literature and has an exact solution. The schemes in this chapter use the
explicit Euler scheme in time.

In order to reduce the scope we restrict our attention to calculating the price C of a standard
European call option. Furthermore, we wish to calculate the values of some of its senstivities
(the so-called Greeks), for example:

Delta = �C = ∂C

∂S

Gamma = �C = ∂2C

∂S2
= ∂�C

∂S

Vega = ∂C

∂σ

Theta = �C = −∂C

∂t

(12.1)

For European options we can give an exact formula for the call price and its sensitivities
(Cox et al., 1985) and we use these values as benchmarks against which to test our finite
difference schemes. We have not listed all possible sensitivities in (12.1) and the interested
reader can find formulae for all major ones in Haug (1998).

We discuss constructing a simple algorithm to calculate the option price and its sensitivities
by perturbing one parameter (such as the strike price K or expiry time T ) in a given interval. We
shall then get a range of values that can be displayed in Excel for example (see Duffy, 2004).
This is the basis for a Risk Engine. We then introduce two finite difference schemes for the one-
factor Black–Scholes equation by approximating the derivatives in the underlying variable by
centred differences in S, and the derivative in t by the explicit Euler scheme. We examine
accuracy by comparing the exact and approximate solutions. Furthermore, we investigate the
problem of calculating the option delta and gamma based on the approximate solution.

12.2 EXACT SOLUTIONS AND BENCHMARK CASES

We introduce the generalised Black–Scholes formula to calculate the price of a call option on
some underlying asset. In general the call price is a function

C = C(S, K , T, r, σ ) (12.2)

137
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where S = asset price
K = strike (exercise) price
T = exercise (maturity) date
r = risk-free interest rate
σ = constant volatility

We can view the call option price C as a vector function because it maps a vector of para-
meters into a real value. The exact formula for C is given by:

C = S e(b−r )T N (d1) − K e−rT N (d2) (12.3)

where N (x) is the standard cumulative normal (Gaussian) distribution function defined by

N (x) = 1√
2π

∫ x

−∞
e−y2/2dy (12.4)

and

d1 = ln(S/K ) + (b + σ 2/2)T

σ
√

T

d2 = ln(S/K ) + (b − σ 2/2)T

σ
√

T
= d1 − σ

√
T

(12.5)

The cost-of-carry parameter b has specific values depending on the kind of security in
question (Haug, 1998):

b = r is the Black–Scholes stock option model

b = r − q is the Morton model with continuous dividend yield q

b = 0 is the Black–Scholes futures option model

b = r − R is the Garman and Kohlhagen currency option model, where R is the foreign

risk-free interest rate.

Thus, we can find the price of a plain call option by using formula (12.3). Furthermore, it is
possible to differentiate C with respect to any of the parameters to produce a formula for the
option sensitivities. For example, some tedious differentiation allows us to prove that:

�C ≡ ∂C

∂S
= e(b−r )T N (d1)

�C ≡ ∂2C

∂S2
= ∂�C

∂S
= n(d1) e(b−r )T

Sσ
√

T

Vega C ≡ ∂C

∂σ
= S

√
T e(b−r )T n(d1)

�C ≡ −∂C

∂T
= − Sσ e(b−r )T n(d1)

2
√

T
− (b − r )S e(b−r )T N (d1) − r K e−rT N (d2)

(12.6)

In the appendix (section 12.8) we have developed the formula for option Vega for the benefit
of those readers who would like to see how it is derived in a step-by-step fashion. Thus, not
only do we have exact formulae for C but we also have exact formulae for its sensitivities. We
can then determine how C varies as a function of the change in one or more of the option’s
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parameters. In particular, we are interested in delta and gamma for problems where there is no
exact solution, and in these cases we resort to finite difference schemes. Of course, we need
some assurance that our approximations are accurate.

12.3 PERTURBATION ANALYSIS AND RISK ENGINES

From the previous section we know how to calculate the price of a call option and its sensitivities
for specific values of the defining parameters. What we would now like to do is calculate these
functions for a range of values of the parameters. The ability to do this would be the first step
on the way to creating a risk engine for options. At this stage we create arrays of values and
display them on a screen or save them to a database. We could also produce line drawings
in two dimensions or surface plots in thee dimensions. In two dimensions, for example, we
would like to plot C and its sensitivities as a function of one of the parameters. Some specific
examples of what we would like to do are (Cox et al., 1985):� Value of C as a function of the asset price S� Value of C as a function of the expiry date T� Value of C as a function of the volatility σ� Value of C as a function of the interest rate r .

The same set of questions can be applied to each of the call’s sensitivities. In general, we
draw a function on an X–Y axis, where X is the range of the independent variable (one of the
parameters in (12.2)) and Y is the value of C or one of its sensitivities.

Viewing this problem from an algorithmic and data-processing point of view we model it as
an activity that produces an array of values. The input consists of two pieces; first, the function
(for example, for C or its sensitivities) and, second, the specific parameter (for example, S) in
which we are also interested.

A good example of what we mean is to calculate the vector of values of C with the following
parameter values (Cox et al., 1985, p. 217):

K = 50
T = 0.4
r = 1.06 (expressed in annualised terms)
σ = 3 (expressed in annualised terms)
b = r (Black–Scholes stock option).

The special parameter in this case is S, and we shall generate the call price in the range
[0, 100] at 25 evenly distributed discrete values of S. We realise this kind of output using
finite difference schemes, for example. We provide some examples of C++ code on the
accompanying CD.

12.4 THE TRINOMIAL METHOD: PREVIEW

It seems like a good idea to motivate explicit finite difference schemes for the one-factor Black–
Scholes equation by giving a short introduction to the trinomial method. We shall discuss this
method in more detail in Chapter 13. We can discuss the stability of finite difference schemes
by using probabilistic heuristics without having to go into more difficult numerical analysis
techniques. Explicit schemes are easy to program (no matrix inversion needed) and to this end
we see them as a good way to learn and to experiment with finite difference schemes. The
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trinomial method is an improvement on the binomial method in a number of ways. First, it
models the real world better because there are three possible asset price movements during
each time interval. Second, it has better stability properties than the binomial method. We focus
in this section on the Black–Scholes equation and its relationship with the trinomial method:

−∂C

∂t
+ 1

2
σ 2S2 ∂2C

∂S2
+ r S

∂C

∂S
− rC = 0 (12.7)

Notice that time increases from t = 0 to t = T ! (Note that some authors let t vary from
t = T to t = 0 and the finite difference schemes differ somewhat from the schemes in this
section, for example Hull, 2000). We employ centred differencing in S and the explicit Euler
scheme in time to produce the fully discrete scheme:

Cn+1
j = α j Cn

j−1 + β j Cn
j + γ j Cn

j+1, j = 1, . . . , J − 1 (12.8)

where α j , β j and γ j are easily calculated.
In order to complete the specification of this problem we must provide initial and boundary

conditions. We give them in continuous/discrete pairs for convenience:

C(S, 0) = max (S − K , 0) (call option)

C0
j = max (Sj − K , 0), j = 1, . . . , J − 1

(12.9)

and

C(0, t) = 0

Cn
0 = 0, n = 0, . . . , N

(12.10a)

and

C(S, t) ∼ S as S → ∞
Cn

J = SJ , n = 0, . . . , N
(12.10b)

Equations (12.10) represent Dirichlet boundary conditions and since we are working on an
infinite domain in the continuous problem we must truncate it to a finite domain in the discrete
problem.

Equations (12.8), (12.9) and (12.10) constitute a discrete system of equations that we can
solve at every time level n from n = 0 to n = N . The basic algorithm that computes the values
is as follows:
Init:� Calculate the initial value based on equation (12.9)� Calculate the arrays of coefficients α, β, γ in equation (12.8)� n = 0

Continue:� Calculate new vector at time level n + 1 using equation (12.8)� If (n < N ) then� go to Continue

You can then choose how to program this algorithm in your favourite programming language.
It is interesting to note that Hull (2000) discusses a variant of equation (12.8) in which the
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reaction term is evaluated at the new time level n + 1 rather than at the level n, namely:

−Cn+1
j − Cn

j

k
+ 1

2
σ 2 S2

j D+ D−Cn
j + r S j D0Cn

j − rCn+1
j = 0 (12.11)

It is possible to rewrite equation (12.11) in a form similar to equation (12.8) and, as we shall
now see it has slightly better stability properties than scheme (12.8). In fact, scheme (12.11)
is a kind of mixed implicit–explicit scheme.

12.4.1 Stability of the trinomial method

We have already discussed stability for finite difference schemes using both von Neumann
stability and the maximum principle. Another interesting way of analysing the stability of
scheme (12.8) is from a probability perspective (Hull, 2000). We can interpret the coefficients
as probabilities:� α the probability that the stock price decreases from jh to ( j − 1)h� β the probability that the stock price remains unchanged at jh� γ the probability that the stock price increases from jh to ( j + 1)h

To this end, in order to examine stability, we prefer the more general form of the Black–
Scholes equation:

−∂C

∂t
+ σ (S, t)

∂2C

∂S2
+ μ(S, t)

∂C

∂S
+ b (S, t)C = 0 (12.12)

and we approximate it as before by an explicit Euler scheme:

−Cn+1
j − Cn

j

k
+ σ n

j D+ D−Cn
j + μn

j D0Cn
j + bn

j C
n
j = 0 (12.13)

We examine this scheme from the viewpoint of positivity arguments. In particular, we rewrite
(12.13) in the form

Cn+1
j = αn

j C
n
j−1 + βn

j Cn
j + γ n

j Cn
j+1 (12.14)

where

αn
j ≡

(
σ n

j

h2
− μn

j

2h

)
k

βn
j ≡ 1 + kbn

j − 2kσ n
j

h2
(bn

j ≤ 0)

γ n
j ≡

(
σ n

j

h2
+ μn

j

2h

)
k

and we wish to choose the mesh sizes h and k such that the coefficients in (12.14) are always
positive. We see that this scheme has the same form as (12.8). In this case we can deduce
that a positive solution at level n will also be positive at time level n + 1 and hence will be
stable, albeit it at a cost in performance. On the other hand, we may be pleasantly surprised that
the performance of explicit schemes, even with small mesh sizes, is acceptable, especially on
modern 32-bit and 64-bit computers. Of course, we have to back up any claims that we make.
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Examining the coefficients in (12.14) we see that they are positive if the following constraints
are satisfied:

σ n
j

h2
− μn

j

2h
≥ 0 ⇒ h ≤ 2σ n

j

μn
j

(12.15)

and

1 + kbn
j − 2kσ n

j

h2
≥ 0 ⇒ k ≤ 1[(

2σ n
j /h2

) − bn
j

] (12.16)

We must thus determine the minimum values for h and k for each problem that we tackle.
In the case of the Black–Scholes equation, for example, we get the following constraints:

h ≤ σ 2Sj

r
(12.17)

and

k ≤ 1

(σ 2 j2 + r )
(12.18)

12.5 USING EXPONENTIAL FITTING WITH EXPLICIT
TIME MARCHING

It is possible to use exponential fitting in S and explicit Euler in t to produce a scheme that is
similar to (12.13) except the Il’in fitting operator appears in the coefficients (we have already
discussed this scheme in Chapter 11). Some useful features of the scheme are:� It is stable independently of the size of the mesh size h. Constraint (12.15) is always satisfied

and is thus insensitive to the relative sizes of the diffusion and drift terms.� It is conditionally stable when the volatility approaches zero. The resulting upwinding
scheme must satisfy the CFL stability condition. On the other hand, formally setting the
volatility to zero for the explicit Euler scheme (12.13) we arrive at a scheme that is only
neutrally stable.

The exponentially fitted scheme for the PDE (12.7) is thus:

−Cn+1
j − Cn

j

k
+ ρ j D+ D−Cn

j + r S j D0Cn
j − rCn

j = 0 (12.19)

where

ρ j = a j h

2
coth

a j h

2σ j
and a j = r S j and σ j = 1

2
σ 2S2

j

12.6 APPROXIMATING THE GREEKS

It is important to calculate an option’s sensitivities. First, the delta measures the absolute change
in the option price with respect to a small change in the price of the underlying asset:

�C = ∂C

∂S
(12.20)
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The delta represents the hedge ratio, the number of options to write or to buy in order to
create a risk-free portfolio. The delta varies from zero for deep out-of-the money options to
one for deep in-the-money calls. This is clear if we examine the payoff function. However, the
delta is not continuous at the strike price K because it is zero to the left of K and one to the
right of K for a call option. We thus expect problems near K , and this is borne out in practice
by the appearance of so-called spurious or non-physical oscillations (see Duffy, 2004A) when
we use Crank–Nicolson time averaging.

Approximation of the delta takes place by using divided differences, as discussed in Chap-
ter 6. We can choose between forward, backward or centred difference schemes. For example,
we use centred differences in the interior of the domain while we use one-sided divided dif-
ferences at the boundaries:

Discrete delta Dn
j = Cn

j+1 − Cn
j−1

2h
, 1 ≤ j ≤ J − 1

= Cn
1 − Cn

0

h
( j = 1)

= Cn
J − Cn

J−1

h
( j = J ) (12.21)

This approach gives good results in combination with fitted schemes.
The gamma measures the change in delta:

�C = ∂2C

∂S2
= ∂�C

∂S
(12.22)

It is greatest for at-the-money options and it is nearly zero for deep in-the-money or deep
out-of-the-money. The gamma gives us an indication of the vulnerability of the hedge ratio.
We approximate formula (12.22) for the gamma by using the divided differences:

Discrete gamma Gn
j = Dn

j+1 − Dn
j−1

2h
, 1 ≤ j ≤ J − 1, (12.23)

where Dn
j is the discrete delta function.

Similarly, we can calculate the derivative of C with respect to r :

ρC = ∂C

∂r
(12.24)

Exact formulae are known for this quantity (Haug, 1998). For a call option with zero and
non-zero cost-of-carry these are:

ρC = TK e−rT N (d2) (b 
= 0)

ρC = −T C (b = 0)
(12.25)

One possible formula to approximate Rho is given by the divided difference:

Rho (discrete) = Cn+1
j − Cn

j

k
(12.26)

In general, an exact option price eludes us and we then resort to finite differences to find an
approximate solution.
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12.7 SUMMARY AND CONCLUSIONS

This was the first chapter of Part III of the book and it is here that we used finite difference
schemes to find option prices and their corresponding sensitivities (in particular, delta and
gamma). We focus mainly on European call option modelling because closed solutions are
known and we can use these solutions as a benchmark when testing the accuracy of finite
difference schemes. There are two reasons for including this chapter: first, the schemes are
easy to understand and to implement and, second, they are in fact the same as the trinomial
method – a method that is well established in the literature. Finite difference schemes for
the Black–Scholes equations are discussed in Duffy (2004), including C++ source code and
techniques for approximating option sensitivities as formulated in this chapter. You can consider
this chapter as an introduction to finite difference schemes for option pricing problems.

12.8 APPENDIX: THE FORMULA FOR VEGA

We shall work out the formula for the Vega of a call option for those readers who wish to refresh
their mathematics in the area of differential calculus. For more information on calculus, see, for
example, Widder (1989). Before we embark on calculating Vega, we must do some preliminary
work. First, let n(x) be the derivative of the normal cumulative distribution function. Then

n(x) = dN (x)

dx
= 1√

2π
e−x2/2

and, furthermore, you can check that the following are true:

(1) ∂ N (x)
∂η

= n(x) ∂x
∂η

for η = σ, S or T

(2) n(d2) = n(d1) S ebT /K

Then the formula for the Vega is calculated using the following sequence of steps:

Vega = ∂C

∂σ

= ∂

∂σ

[
S e(b−r )T N (d1) − K e−rT N (d2)

]
= S e(b−r )T ∂

∂σ
N (d1) − K e−rT ∂

∂σ
N (d2)

= S e(b−r )T n(d1)
∂d1

∂σ
− K e−rT n(d2)

∂d2

∂σ

= S e(b−r )T n(d1)
∂d1

∂σ
− K e−rT

[
n(d1)S ebr

K

]
∂d2

∂σ

= S e(b−r )T n(d1)

[
∂d1

∂σ
− ∂d2

∂σ

]
= S e(b−r )T n(d1)

√
T

This is the same answer as in Haug (1998).
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Here we have used the fact that

∂d2

∂σ
= ∂d1

∂σ
−

√
T

because of the relationship d2 = d1 − σ
√

T .
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13

An Introduction to the Trinomial Method

13.1 INTRODUCTION AND OBJECTIVES

In this chapter we give a short introduction to the trinomial method. Discussing the trinomial
method and its relationship with finite difference methods will hopefully help some readers to
appreciate the relevance and importance of the finite difference method in financial engineering.

We begin with the trinomial method for a standard European option. We then compare the
method with some other methods and show that the trinomial method is fact an instance of an
explicit finite difference scheme. We also show how the method is applied to pricing barrier
options. We include this chapter for comparison with finite difference schemes. It is not as
relevant to the tenor of this book as the other chapters.

13.2 MOTIVATING THE TRINOMIAL METHOD

We can use the trinomial method for one-factor option models. In general terms we build up
a trinomial tree of asset prices (the forward induction step) using the stochastic differential
equation (SDE) for the asset price. We build the tree up to the maturity date. Having done that
we calculate, starting from the payoff function at maturity, the option prices using discounted
expectations (the backwards induction phase).

We take a step-by-step approach to explaining the trinomial method. To this end, we assume
that the geometric Brownian motion model holds for the asset price behaviour (Clewlow and
Strickland, 1998; Hull, 2000):

dS = (r − D)S dt + σ S dW (13.1)

where r = risk-free interest rate

D = continuous dividend yield

σ = volatility

W = Brownian motion

We now define the new variable x = ln S. We then get the modified SDE:

dx = ν dt + σdW, ν = r − D − 1
2σ 2 (13.2)

We thus get a modified SDE and this is what we use in the subsequent discussion. We now
model (13.2) in a special way (see Figure 13.1). Let us consider what happens to the price x
in a small interval of time �t . We assume that x can take one of three values in this interval: it
can go up or down by an amount �x , or it can stay the same. Each transition is associated with
a corresponding probability, as shown in Figure 13.1, namely an up, down and no change. We
must find values for these probabilities and this is based on a financial argument, namely the
relationship between the continuous time and the trinomial process by equating the mean and

147
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x Δx−

xx Δ+

pu

pm

pd

Δt

x

Figure 13.1 Trinomial tree model

variance over the time interval �x and equating the sum of the probabilities to 1:

E[�x] = pu(�x) + pm(0) + pd (−�x) = ν�t

E[�x2] = pu(�x2) + pm(0) + pd (�x2) = σ 2�t + ν2�t2 (13.3)

pu + pm + pd = 1

Let us define the following ‘convenience’ parameters:

α = ν�t

�x
and β = σ 2�t + ν2�t

�x2

then a bit of arithmetic shows that

pu = α + β

2
, pd = β − α

2
, pm = 1 − β

We now embark on the mechanics of the trinomial method. To this end, we prefer to use the
index n to represent time and j to represent the index for the underlying (much of the literature
uses the indices i and j , which I personally find confusing). If S is the price at time n = 0,
then the price at level j is given by:

Sn
j = S e j�x

We compute the array using a vector Sarr:

Sarr[−N ] = S e−N�x

(13.4)
Sarr[ j] = Sarr[ j − 1] e�x , j = −N + 1, . . . , N

Here N is the number of sub-divisions of the interval (0, T ) where T is the maturity date,
that is N�t = T . We model call options with price C and its discrete values will be denoted
in the same way as the stock price S, namely Cn

j .
The value of the call option is known at the maturity date, and the continuous and discrete

variants are given by:

C(S, T ) = max(S − K , 0)
(13.5)

C N
j = max(SN

j − K , 0)
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Finally, we compute the call option value at time n as discounted expectations in a risk-
neutral world based on the call option values at time n + 1 as follows:

Cn
j = e−r�t (puCn+1

j+1 + pmCn+1
j + pdCn+1

j−1 ) (13.6)

where the probabilities are defined as above. Summarising this process as a computational
algorithm:

1. Create the trinomial tree structure
2. Initialise the call option values in the tree using formula (13.4)
3. Compute the vector payoff, equation (13.5)
4. Compute the call values at previous time steps using equation (13.6).

Steps 1 and 2 correspond to the forward induction step while 3 and 4 constitute the backward
induction step. We can now easily compute this algorithm in C++ if desired.

13.3 TRINOMIAL METHOD: COMPARISONS
WITH OTHER METHODS

The binomial and trinomial methods are both examples of lattice methods. Although the
binomial method is very popular it does have a number of shortcomings.

There is evidence to show that the binomial method with one underyling variable does not
always produce accurate numerical results, and in this case the trinomial method is preferred
(Boyle, 1986). However, we must realise that the trinomial method is an example of an explicit
finite difference scheme and the conclusion is that it is only conditionally stable. To this end,
we now show that the standard explicit finite difference scheme for the Black–Scholes PDE is
equivalent to performing discounted expectations in a trinomial tree. Let us first consider the
Black–Scholes PDE:

−∂C

∂t
= 1

2σ 2 ∂2C

∂x2
+ ν

∂C

∂x
− rC (13.7)

We are marching from the maturity date down to time zero (as done in Hull, 2000) and we
construct the explicit finite difference approximation to (13.7) as follows:

−Cn+1
j − Cn

j

�t
= 1

2σ 2
Cn+1

j+1 − 2Cn+1
j + Cn+1

j−1

�x2
+ ν

Cn+1
j+1 − Cn+1

j−1

2�x
− rCn+1

j (13.8)

Rearranging terms we get the following representation:

Cn
j = puCn+1

j+1 + pmCn+1
j + pdCn+1

j−1 (13.9)

where

pu = A + B

pm = 1 − 2A − r�t

pd = A − B

and

A = �tσ 2

2�x2
, B = �tν

2�x
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This scheme is similar to taking discounted expectations. In general the free term is evaluated
at time level n (implicit) (see Hull, 2000; Clewlow and Strickland, 1998). Of course the
probabilities in equation (13.9) should be positive, and this leads to restrictions on the step
size �t .

We mention finally that the trinomial method can be used to find an approximate solution
for American options. This is quite easy because it is a variation of the European case and is
well documented in the literature. In particular, we must check that the free boundary condition
remains valid and hence we must have, for an American put option,

Cn
j = max(Cn

j , Sn
j − K ) (13.10)

at each time level. In general, the relationship between the steps in time and S is given by
(Clewlow and Strickland, 1998):

�x = σ
√

3�t

If this relationship is not satisfied then we will get negative values for the option price,
something that is not possible, neither physically nor financially.

13.3.1 A general formulation

The trinomial method can be applied to a range of products such as equities, currencies,
interest rates or any other quantity that can be described as a stochastic differential equation
(see Wilmott, 1998, p. 140 for an elegant presentation). Let us examine the general SDE:

dy = A(y, t)dt + B(y, t)dx

y = Real-valued function (13.11)

x = Brownian motion

Furthermore, A and B are given functions. They are nonlinear in general.
As before, the variable y can rise, fall or remain at the same value in the interval �t . Let:

ϕ+(y, t) = probability of a rise
(13.12)

ϕ−(y, t) = probability of a fall

Then the mean of the change in y in the given time step is:

(ϕ+ − ϕ−)�y,

where �y = jump size in y and the variance is given by

[ϕ+(1 − ϕ+ + ϕ−)2 + (1 − ϕ+ − ϕ−)(ϕ+ − ϕ−)2 + ϕ−(1 + ϕ+ − ϕ−)2]�y2

Now, from equation (13.11) the mean and variance in the continuous-time variant are ap-
proximately:

A(y, t)�t

B(y, t)2�t

(13.13)
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Equating like-terms we choose:

ϕ+(y, t) = 1
2

�t
�y2 [B(y, t)2 + A(y, t)�y]

ϕ−(y, t) = 1
2

�t
�y2 [B(y, t)2 − A(y, t)�y]

(13.14)

This is a powerful result because it allows us to create a trinomial tree for any SDE. The
reader might like to check that the specific case in equation (13.9) is consistent with equation
(13.14). As mentioned in Wilmott, the scheme is only conditionally stable and we must have
a constraint of the form �y = O(

√
�t).

13.4 THE TRINOMIAL METHOD FOR BARRIER OPTIONS

We now discuss the application of the trinomial method to barrier option pricing. It is known that
the binomial method gives erroneous answers for non-constant barriers or multiple barriers
(Boyle and Lau, 1994). A major challenge is aligning the location of the barriers with the
layers of nodes in the lattice. In Chapters 14 and 15 we shall develop robust and accurate
finite difference schemes that can price barrier options, but in this chapter we show how to
achieve the same results with trinomial lattices, albeit with more effort. The results are based
on Ritchken (1995). We assume that the SDE holds:

dS = μSdt + σ SdW (13.15)

Taking logarithmic terms on each side of (13.15) gives:

S(t + �t) = S(t) eμ�t+σ W , W ∼ N (0, �t) (13.16)

We now define the term

ξ (t) = μ�t + σ W

ξ (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λσ

√
�t with probability pu

0 with probability pm

−λσ
√

�t with probability pd

where λ is the ‘stretch’ parameter and we must approximate in the interval [0, �t] by the
following discrete random variable, defined by:

ln S(t + �t) = ln S(t) + μ�t + σ W (13.17)

where the probabilities are given by:

pu = 1

2λ2
+ μ

√
�t

2λσ

pm = 1 − 1/λ2

pd = 1

2λ2
− μ

√
�t

2λσ

(13.18)
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The factor λ controls the ‘gap’ between layers of prices on the lattice; when it is equal to 1
we revert to the binomial method. For barrier options we choose λ such that the barrier is hit
exactly. We take the example of a down-and-out call option and H is the value of the knock-out
barrier. We need to compute the number of consecutive down moves that lead to the lowest
layer of nodes just above the barrier H . This is the largest integer smaller than the following
value:

η = ln(S0/H )

σ
√

�t
when λ = 1; η0 < η

Then

λ = ln(S0/H )

η0σ
√

�t

Using this value of λ will give us a layer of nodes that coincides with the barrier. We note
that this approach has been applied to other kinds of barrier options (Ritchken, 1995):� Barrier options with exponential barrier� Complex barrier options� Multiple barriers� Problems when the underlying is very close to the barrier� Extensions to higher dimensions.

A discussion of these problems is outside the scope of this book. However, Chapter 14 discusses
finite difference methods for double barrier option problems and it is the author’s opinion that
FDM is easier to apply than the trinomial method for this type of problem.

13.5 SUMMARY AND CONCLUSIONS

We have given an introduction to the trinomial method for one-factor models. The material is
well known but we have included it because we wish to view it as a special kind of explicit
finite difference scheme. In fact, the finite difference method is more powerful because it uses
a rectangular grid instead of an oddly shaped lattice.
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14
Exponentially Fitted Difference Schemes

for Barrier Options

14.1 INTRODUCTION AND OBJECTIVES

In this chapter we apply the exponentially fitted finite difference schemes to an important
class of one-factor options, namely barrier options. A barrier option is one that comes into
existence or becomes worthless if the underlying asset reaches some prescribed value before
expiry. In this case we speak of a single barrier. It is possible to define double barrier options
in which case there is both a lower and an upper barrier. We shall give a compact overview of
the different kinds of barrier options. The main goals in this chapter are:� Describing all barrier option problems by a parabolic initial boundary value problem (IBVP)

based on Black–Scholes PDE with Dirichlet boundary conditions� Approximating the IBVP by robust finite difference schemes.

We concentrate on well-behaved barriers, that is barriers that are defined by either constant
or sufficiently smooth functions. In the next chapter we shall treat barrier option problems with
intermittent, exponentially increasing, decreasing and other time-dependent barriers. Further-
more, in this chapter we assume continuous monitoring. Thus, having posed the problem as
a well-defined IBVP we then apply to it the exponentially fitted finite difference scheme as
described in Duffy (1980) and Cooney (1999).

We focus on exponentially fitted difference schemes and compare them to a number of other
solutions, for example the exact solution (Haug, 1998) and numerical solutions using the finite
element method (see Topper, 1998, 2005).

14.2 WHAT ARE BARRIER OPTIONS?

Barrier options are options where the payoff depends on whether the underlying asset’s price
reaches a given level during a certain period of time before the expiry date. Barrier options are
the most popular of the exotic options. There are two kinds of barriers:� In barrier: This is reached when the asset price S hits the barrier value H before maturity.

In other words, if S never hits H before maturity then the payout is zero.� Out barrier: This is similar to a plain option except that the option is knocked out or becomes
worthless if the asset price S hits the barrier H before expiration. This is an option that is
knocked out if the underlying asset touches a lower boundary L or upper boundary U , prior
to maturity.

The above examples were based on constant values for U and L . In other words, we assume
that the values of U and L are time-independent. This is a major simplification; in general U
and L are functions of time, U = U (t) and L = L(t). In fact, these functions may even be
discontinuous at certain points. For more detailed information, see Haug (1998).

153
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14.3 INITIAL BOUNDARY VALUE PROBLEMS
FOR BARRIER OPTIONS

In this chapter we concentrate on one-factor barrier options described by the following partial
differential equation:

−∂V

∂t
+ 1

2σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0 (14.1)

In contrast to plain options we now need to specify two boundary conditions at finite values
of S. For a double barrier option this is not a problem because two finite boundaries are
specified:

V (A, t) = g0(t), 0 < t < T
V (B, t) = g1(t), 0 < t < T

(14.2)

where g0 and g1 are given functions of t .
Here A and B are specific values of the underlying S and we assume that these barriers

are constant for the moment. In Chapter 15 we shall discuss problems with time-dependent
barriers L(t) and U (t) that are defined in boundary conditions as:

V (L(t), t) = g0(t), 0 < t < T
V (U (t), t) = g1(t), 0 < t < T

(14.3)

For single barriers (we are only given one barrier) we have to decide on how to define the
other barrier! Given a positive single barrier we then can choose between S = 0 or some large
value for S. A more analytical technique can be used to find this far-field boundary condition.

There are a number of scenarios when working with single barrier options. For example, we
view a single up-and-out barrier as a double barrier option with rebate of value 0 at the down-
and-out barrier (that is, when S = 0). In this case the company whose stock is being modelled
is probably bankrupt and is therefore unable to recover (Jarrow and Turnbull, 1996). Another
example is a down-and-out call option in which case we need to truncate the semi-infinite
domain. In this case we take the boundary conditions as follows:

V (Smax, t) = Smax − K e−r (T −t) (14.4)

where Smax is ‘large enough’.
The payoff function is the initial condition for equation (14.1) and is given by:

V (S, 0) = max(S − K , 0) (14.5)

We shall now examine how to approximate barrier option problems by finite difference
methods.

14.4 USING EXPONENTIAL FITTING FOR BARRIER OPTIONS

The exponentially fitted schemes were developed specifically for boundary layer problems
and convection–diffusion equations whose solutions have large gradients in certain regions of
the domain of interest (see Il’in, 1969; Duffy, 1980). In particular, the schemes are ideal for
approximating the solution of IBVP that describe barrier options. We have already analysed
these schemes in Chapter 11. In this chapter we now use exponential fitting in the space
(S) direction and implicit Euler time marching in the t direction. If needed, we can employ
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extrapolation techniques in order to promote accuracy. For convenience, we write the Black–
Scholes equation (14.1) in the more general and convenient form

LV ≡ −∂V

∂t
+ σ (S, t)

∂2V

∂S2
+ μ(S, t)

∂V

∂S
+ b(S, t)V = 0 (14.6)

where σ (S, t) = 1

2
σ 2S2

μ(S, t) = r S

b(S, t) = −r.

The corresponding fitted scheme is now defined as:

Lh
k V n

j ≡ − V n+1
j − V n

j

k
+ ρn+1

j D+ D−V n+1
j

(14.7)

+ μn+1
j D0V n+1

j + bn+1
j V n+1

j = 0, 1 ≤ j ≤ J − 1

where

ρn
j ≡ μn

j h

2
coth

μn
j h

2σ n
j

We must define the discrete variants of the initial condition (14.5) and boundary conditions
(14.2) and we realise them as follows:

V 0
j = max(Sj − K , 0), 1 ≤ j ≤ J − 1 (14.8)

and

V n
0 = g0(tn)

V n
J = g1(tn)

}
0 ≤ n ≤ N (14.9)

The system (14.7), (14.8), (14.9) can be cast as a linear matrix system:

AnU n+1 = Fn, n ≥ 0 with U 0 given (14.10)

and we solve this system using LU decomposition, for example. A discussion of this topic
with algorithms and implementation in C++ can be found in Duffy (2004). We now compare
the accuracy and performance of the fitted Duffy scheme by comparing it and benchmarking
it with several other approaches:� Exact solutions (Haug, 1998)� Finite element method (Topper, 1998, 2005)� Trinomial method and explicit finite difference schemes.

In general, our schemes compare favourably. Let us discuss some examples. The test cases
are taken from Topper (1998) and Haug (1998).
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Table 14.1 Performance

Mesh size Time

11 × 11 0.02 sec
55 × 55 0.16 sec
110 × 110 0.54 sec
1100 × 1100 49 sec

14.4.1 Double barrier call options

We consider an up-and-out :: down-and-out call option with continuous monitoring, and we
supply the following data:� Strike price K 100� Down-and-out barrier 75� Up-and-out barrier 130� Rebates none� Interest rate r 0.1� Volatility 0.2� Maturity T 1 year.

In this case we see that there are no rebates, making the option worthless if the stock price
hits either barrier before maturity.

In Table 14.1 we give the timing results from Duffy fitting. We carried out the experiments
at the time on a 400-Mhz Pentium II machine and the execution times were as follows (in the
year 1999). At the moment of writing (2005) these processing times are drastically improved.

14.4.2 Single barrier call options

We now discuss an up-and-out call option with a given rebate. We model this as a double
barrier with rebate 0 at the down-and-out barrier S = 0:� Strike price K 100� Up-and-out barrier 110� Rebates 10� Interest rate r 0.05� Volatility 0.2� Maturity T 0.5 year

Table 14.2 compares the exact solution in Topper (1998) with the fitting scheme.

14.5 TIME-DEPENDENT VOLATILITY

We now discuss the accuracy of the fitted scheme when the volatility is non-constant. We are
assuming a term structure of volatility. In particular, it has the simple linear form:

σ (t) = at + b (14.11)



0470858826c14 JWBK073-Duffy February 1, 2006 20:5 Char Count= 0

Exponentially Fitted Difference Schemes for Barrier Options 157

Table 14.2

Stock-price Topper Duffy (55 × 55) Duffy (1100 × 1100)

80 0.43223 0.43123 0.43222
90 2.10253 2.09175 2.10248

100 5.60968 5.59806 5.60968
105 7.79972 7.79342 7.79967
109 9.56930 9.56490 9.56929

Table 14.3

Problem Initial volatility Ending volatility a b

1 0.25 0.25 0 0.25
2 0.177 0.306 −0.129 0.306
3 0.306 0.177 0.129 0.177

This form is related to the term structure of volatility. Some exact solutions are known
for barrier options with a linear volatility model. We consider three problems, as shown in
Table 14.3. Here we have constant, decreasing and increasing volatilities. The data for this
problem is:� Asset price 95� Strike price K 100� Down-and-out barrier 90� Rebates 10� Interest rate r 0.1� (Volatility is now a function)� Maturity T 1 year

We compare finite element (FEM), trinomial and fitting methods and the results are shown
in Table 14.4. Here we see that the methods converge to slightly different values, but the FEM
and fitting methods agree most.

Table 14.4

Problem Topper (Trinomial) Topper (FE) Duffy (110 × 110) Duffy (1100 × 1100)

1 5.9968 5.9969 5.9960 5.9968
2 6.4566 6.4632 6.4628 6.4642
3 5.7286 5.7169 5.7160 5.7167

14.6 SOME OTHER KINDS OF EXOTIC OPTIONS

We shall now discuss some other kinds of exotic options.
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14.6.1 Plain vanilla power call options

We continue with an analysis of exponentially fitted schemes by examining a class of options
whose payoff at maturity depends on the power of the asset. There are two main sub-categories:� Symmetric power call

V (S, T ) = max((S − K )p, 0) (14.12)� Asymmetric power call

V (S, T ) = max(S p − K , 0) (14.13)

We formulate the boundary conditions as follows:

V (0, t) = 0
V (1000, t) = S p − K e−r t (14.14)

The first boundary condition states that the option is worthless at S = 0 while the second
boundary condition states that the option is deep in-the-money. Again, we have truncated the
domain of interest.

Here, p is some number (p = 1 corresponds to a ‘normal’ option), and exact solutions are
known for such problems (see Zhang, 1998). We concentrate on asymmetric power call options
in this section given the following data:� Asset price 555� Strike price K 550� Interest rate r 0.06� Volatility 0.15� Dividend yield 0.04� Maturity T 0.5 year

The results of the fitting scheme and the FEM scheme are shown in Table 14.5, with p
ranging from p = 0.96 to p = 1.05.

Table 14.5

p 0.96 0.97 0.98 0.99 1.00

Topper 0.17614 1.01010 4.08800 12.21638 28.29032
Duffy 0.17621 1.01023 4.08816 12.21617 28.28956

p 1.01 1.02 1.03 1.04 1.05

Topper 53.39500 86.29781 124.81669 167.30009 213.01648
Duffy 53.39503 86.29759 124.81687 167.30023 213.01652

14.6.2 Capped power call options

Capped power options are traded in the marketplace. The major difference with non-capped
power calls lies in the payoff:
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V (S, T ) = min[max[(S − K )p, 0], C] (14.15)� Asymmetric capped power call

V (S, T ) = min[max(S p − K , 0), C] (14.16)

where C is the floor value.
We take the example with

V (0, t) = 0

V (1000, t) = 50

C = 50

with the same data as in the previous sub-section. Table 14.6 compares FEM, Monte Carlo
and fitting schemes for this problem for the asymmetric case, while Table 14.7 shows the
results for the symmetric case with p = 2 and the stock price varies from out-of-the-money to
in-the-money.

Table 14.6

p 0.96 0.97 0.98 0.99 1.00

Monte Carlo 0.163 0.909 3.442 9.327 18.887
Topper (FE) 0.165 1.008 3.434 9.332 18.886
Duffy (FDM) 0.165 0.907 3.437 9.325 18.879

p 1.01 1.02 1.03 1.04 1.05

Monte Carlo 29.897 39.098 44.745 47.327 48.219
Topper (FE) 29.839 39.084 44.736 47.326 48.224
Duffy (FDM) 29.897 39.091 44.735 47.323 48.222

Table 14.7

S 500 550 555 560 600

Monte Carlo 8.47390 23.50052 25.15097 26.78109 37.98719
Topper (FE) 8.46219 23.51419 25.16434 26.79323 37.97783
Duffy (FDM) 8.45895 23.50785 25.15838 26.78773 37.97530

In these cases, we see that fitting and Monte Carlo give similar values.

14.7 COMPARISONS WITH EXACT SOLUTIONS

As another endorsement of the exponentially fitted schemes and their ability to approximate
the price of call and put barrier options, we compare the exact solutions in Haug (1998) with
ours. Let us take an example:� Asset price 100� Strike price K (will be a range of values)
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Table 14.8 Down-and-out call option

σ K H Haug Duffy σ K H Haug Duffy

0.25 90 95 9.0246 9.0246 0.25 90 100 3.0000 3.0000
0.30 90 95 8.8334 8.8336 0.30 90 100 3.0000 3.0000
0.25 100 95 6.7924 6.7922 0.25 100 100 3.0000 3.0000
0.30 100 95 7.0285 7.0286 0.30 100 100 3.0000 3.0000
0.25 110 95 4.8759 4.8755 0.25 110 100 3.0000 3.0000
0.30 110 95 5.4137 5.4137 0.30 110 100 3.0000 3.0000

Table 14.9 An up-and-out call option

σ K H Haug Duffy σ K H Haug Duffy

0.25 90 105 2.6789 2.6787 0.30 100 105 2.4389 2.4389
0.30 90 105 2.6341 2.6339 0.25 110 105 2.3453 2.3453
0.25 100 105 2.3580 2.3579 0.30 110 105 2.4315 2.4315

Table 14.10 Down-and-out put option

σ K H Haug Duffy σ K H Haug Duffy

0.25 90 95 2.2798 2.2798 0.25 90 100 3.0000 3.0000
0.30 90 95 2.4170 2.4170 0.30 90 100 3.0000 3.0000
0.25 100 95 2.2947 2.2946 0.25 100 100 3.0000 3.0000
0.30 100 95 2.4258 2.4257 0.30 100 100 3.0000 3.0000
0.25 110 95 2.6252 2.6250 0.25 110 100 3.0000 3.0000
0.30 110 95 2.6246 2.6244 0.30 110 100 3.0000 3.0000

� Interest rate r 0.08� Volatility (will be a range of values)� Dividend (cost-of-carry) 0.04� Maturity T 0.5 year� Rebate 3.

In the current case Haug (1998, Table 2-9, p. 72) varies the strike price K and the boundary
H as well as the volatility. The results in Table 14.8 allows us to compare Haug and fitting
(we take a right boundary S = 200, boundary condition as in equation (14.4) and a 200 × 200
mesh for fitting).

Again, the agreement between the two sets of values is good.
In Table 14.9 we provide the results for an up-and-out call option. In Table 14.10 we provide

the results for a down-and-out put. In this case we use the initial conditions

V (S, 0) = max (K − S, 0) (14.17)

with the right-hand boundary condition

V (Smax, t) = 0 (Smax ≡ 200) (14.18)
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Table 14.11 An up-and-out put option

σ K H Haug Duffy σ K H Haug Duffy

0.25 90 105 3.7760 3.7757 0.30 100 105 5.8032 5.8032
0.30 90 105 4.2293 4.2290 0.25 110 105 7.5187 7.5187
0.25 100 105 5.4932 5.4931 0.30 110 105 7.5649 7.5650

In Table 14.11 we provide the results for an up-and-out put option. In this case we take the
left-hand boundary condition

V (0, t) = K e−(r−d)(T −t) (14.19)

where d is the dividend.
Finally, we discuss Table 2-10, p. 75 of Haug (1998) where data is provided for up-and-out

and down-and-out call options. Let L denote the lower boundary and U the upper boundary.
Haug (1998) uses the parameters

δ1 = curvature of lower boundary
δ2 = curvature of upper boundary

(14.20)

We take these values to be zero in this chapter, and deploy the following data:� Asset price 100� Strike price K� Interest rate r 0.1� Volatility (will be a range of values)

The results are shown in Tables 14.12 to 14.14.

Table 14.12 L = 50 and U = 150

σ T Haug Duffy σ T Haug Duffy

0.15 0.25 4.3515 4.3511 0.15 0.5 7.9336 7.9332
0.25 0.25 6.1644 6.1641 0.25 0.5 7.9336 7.9332
0.35 0.25 7.0373 7.0370 0.35 0.5 6.5088 6.5087

Table 14.13 L = 70 and U = 130

σ T Haug Duffy σ T Haug Duffy

0.15 0.25 4.3139 4.3133 0.15 0.5 5.9697 5.9689
0.25 0.25 4.8293 4.8288 0.25 0.5 4.0004 4.0002
0.35 0.25 3.7765 3.7762 0.35 0.5 2.2563 2.2562
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Table 14.14 L = 90 and U = 110

σ T Haug Duffy σ T Haug Duffy

0.15 0.25 1.2055 1.2051 0.15 0.5 0.5537 0.5535
0.25 0.25 0.3098 0.3098 0.25 0.5 0.0441 0.0441
0.35 0.25 0.0477 0.0477 0.35 0.5 0.0011 0.0011

14.8 OTHER SCHEMES AND APPROXIMATIONS

There are other popular finite difference schemes that are used to approximate the price of
barrier options:� Binomial method (not discussed in this book)� Trinomial method (as discussed in Chapter 13)

Boyle and Lau (1994) reported that the binomial method is very unstable (‘bumpy’) when used
to price barrier options. A major problem is how to approximate the barrier at each time level.
The data structure for the binomial method is a lattice – not the most symmetric of structures
at the best of times – while, on the other hand, the datastructures for FDM are rectangular. The
binomial method is conditionally stable and stability is assured if

h =
√

k or k = h2 (14.21)

Use of the trinomial method is a better solution than use of the binomial method. Again, it
is equivalent to an explicit finite difference scheme. It will produce negative and non-physical
values if the time step k is not small enough.

We mention that there are other analytical techniques for finding the value of a barrier
option:� Infinite series, single or double integral solution (Kunitomo and Ikeda, 1992)� Laplace transforms (Geman and Yor, 1996)� Method of images (Rich, 1994; Lo, 1997).

While it is very interesting to examine these methods, a treatment of these topics is outside
the scope of this book.

14.9 EXTENSIONS TO THE MODEL

We have deliberately restricted the scope in this chapter because we wish to demonstrate the
applicability of fitting schemes. In particular, we did not examine:� Discrete monitoring� In-barriers; here the rebate is the output from a plain vanilla calculation� Support for boundaries with variable curvature� Support for time-dependent barriers� Intermittent and partial barriers – in this case a barrier may be defined in one part of the

domain and not in other parts� American or Asian barrier options.

We shall examine some of these issues in the next chapter.
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14.10 SUMMARY AND CONCLUSIONS

In this chapter we examined the application of the exponentially fitted finite difference schemes
to approximate the price of barrier options (see Duffy, 1980). We have compared our results with
Monte Carlo, FEM (Topper, 1998), exact solutions (Haug, 1998) and the trinomial method. We
can conclude that our method is robust and produces accurate results. Although not mentioned,
we can obtain accurate values for delta and gamma with this method.

The numerical experiments and results confirm the mathematical findings on exponentially
fitted schemes in Duffy (1980). The method in this chapter can be applied to Black–Scholes
equations with time-dependent coefficients

−∂V

∂t
+ 1

2σ 2(t)S2 ∂2V

∂S2
+ [r (t) − d(t)]S

∂V

∂S
− r (t)V = 0

For example, we could model interest rate behaviour by a function that has been perturbed
from some equilibrium level to which it returns via an exponential decay

r (t) = r∞ + [r (0) − r∞]exp(−ct)

where c is some constant.
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15
Advanced Issues in Barrier

and Lookback Option Modelling

15.1 INTRODUCTION AND OBJECTIVES

In Chapter 14 we applied exponentially fitted finite difference schemes to finding good ap-
proximate solutions to the partial differential equations that describe one-factor barrier options
with continuous monitoring. We also assumed that the barriers were constant throughout the
life of the option.

In this chapter we discuss a number of advanced features that have to do with barrier option
pricing. First, we model problems with time-dependent (non-constant) barriers. These prob-
lems can be reduced to a modified PDE on a fixed domain and we can then solve this new
problem using the schemes from Chapter 14. Second, we investigate how to apply finite dif-
ference schemes to barrier option problems with discrete monitoring. Furthermore, we discuss
a result by Broadie et al. (1997) on how to modify the barrier boundary so that the problem
can be posed as a problem with continuous monitoring. Finally, we discuss some complex
barrier option classes and give guidelines on how to apply FDM to finding approximations to
them.

15.2 KINDS OF BOUNDARIES AND BOUNDARY CONDITIONS

In this section we discuss time-dependent barriers. A regular barrier option subjects investors to
barrier exposure throughout the life of the option. Time-dependent barrier options are hybrids
between regular barrier options and ordinary options.

In Chapter 14 we assumed that the boundaries associated with the PDE for barrier options
were ‘flat’, that is, we had boundary conditions of the form

V (A, t) = g0(t), 0 < t < T
(15.1)

V (B, t) = g1(t), 0 < t < T

where A and B are the constant barriers (see Figure 15.1). On the boundaries we need to
specify boundary conditions. In general, it is possible and common to define time-dependent
boundary conditions

V (L(t), t) = g0(t), 0 < t < T
(15.2)

V (U (t), t) = g1(t), 0 < t < T

where g0 and g1 are given functions of t (see Figure 15.2). In this case we assume that the
functions L(t) (lower absorbing boundary) and U (t) (upper absorbing boundary) are well
behaved for the moment. We need to make this more precise.

There are different kinds of barrier options that are characterised by the form of the barrier
functions. A ‘protected’ barrier option is one where the barrier clause is only effective part
of the time. A ‘rainbow’ barrier option is one where the barrier clause refers to the price

165
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t

S

S = A S = B

Lower boundary Upper boundary

Figure 15.1 Fixed boundaries

of a second stock while a ‘Parisian’ option is cancelled or knocked out some time after the
stock exceeds a threshold. It is obvious that these types must be modelled properly using the
PDE/FDM approach.

Let us assume, as another way of looking at the problem, that we are pricing an up-and-out
call option and that the stock price satisfies a SDE whose solution is given by:

St = S0 exp(σ Bt + αt) (15.3)

where Bt = standard Brownian motion

σ = volatility

S0 = initial stock price ≡ S(0)

r = interest rate > 0

α = r − 1

2
σ 2.

Region of interest

L(t) U(t)

t

S

Figure 15.2 Time-dependent boundaries
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We can describe the boundary in terms of the underlying Brownian motion. To this end,
define the function

f (t) = σ−1{log[U (t)/S0] − αt}
Now, the up-and-out option is cancelled if and only if the Brownian motion Bt ever hits

f (t). For a double barrier option, we see that the contract is cancelled if

Bt /∈ (g(t), f (t)) for some 0 ≤ t ≤ T

where

g(t) = σ−1{log[L(t)/S0] − αt}
There are various kinds of barriers:� Constant barriers� Exponential barriers� Linear boundaries

Problems involving constant or exponential barriers have known analytic solutions
(Kunitomo and Ikeda, 1992; Geman and Yor, 1996). We have also discussed these in Chapter 14.

In general, we must examine the IBVP describing barrier options from a number of per-
spectives; for example, under which conditions does the problem have a unique solution and
what is the smoothness of the solution? Two crucial questions must be addressed:� What is the smoothness of the barrier functions L(t) and U (t)?� What are the compatibility conditions between the initial and boundary conditions?

Some authors assume that the functions L(t) and U (t) are four time continuously differen-
tiable (see Bobisud, 1967). Furthermore, the compatibility conditions between boundary and
initial conditions state that

g0(0) = ϕ(A)
(15.4)

g1(0) = ϕ(B)

where g0 and g1 are boundary conditions and ϕ is the initial condition, as discussed in previous
chapters.

These conditions may or may not be valid for a given problem. Lack of compatibility will
influence the accuracy of the finite difference scheme near the corners.

Given a problem with time-dependent barriers we can transform this problem to one with
constant barriers by a change of variables (Bobisud, 1967). To this end, define the variable z
by

z = S − L(t)

U (t) − L(t)
(15.5)

where S is the underlying price.
This transforms (S, t) space into (z, t) space and we can then apply the techniques of

Chapter 14 to the IBVP in (z, t) space. Of course, the Black–Scholes PDE in S will need to be
transformed into a PDE in z and t . We leave this as an exercise in partial differentiation but we
shall come back to this issue when we discuss free boundary value problems and American
options.
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‘infinite’ barrier

Barrier 
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t

Figure 15.3 Discontinuous barrier function

In equation (15.5) we see that the barriers should not touch each other (otherwise we get
division by zero) and should be smooth in some sense. Unfortunately, not all barrier option
problems have this property – for example, barrier options with partial barriers, where we
can experience jumps in the boundary. We can then expect minor hiccups at best, and wrong
answers at worst.

A good example of a problem with a discontinuous barrier is the Front-End Barrier Call
Option (see Hui, 1997). The barrier H for this type exists from option start time to some time t
in the future. It behaves as a regular barrier in this region. The option then becomes an ordinary
option after the barrier period t (see Figure 15.3). Similarly we can define the Rear-End Barrier
Call Option where the option is an ordinary option before the barrier date t . Then, after that
date up to expiration T , it is a regular barrier option.

15.3 DISCRETE AND CONTINUOUS MONITORING

In practice most, if not all, barrier options traded in markets are discretely monitored. Thus, fixed
times for monitoring of the barrier must be specified (usually daily closings). There are legal
and financial reasons why discretely monitored barrier options are preferred to continuously
monitored barrier options.

15.3.1 What is discrete monitoring?

We have discussed barrier options in Chapter 14 where we have assumed that the price of
the underlying was continuously monitored. In real markets, the asset price is monitored at
discrete time instances

D ≡ {
t∗
k

}K

k=0
⊂ {tn}N

n=0 (15.6)

where t0 = 0 and tN = T .
Thus, we are assuming that the set of monitoring dates is a subset of the set of ‘full’ dis-

crete time points (consisting of N + 1 points) in the interval [0, T ] where T is the expiry
time. The analytical solution of discrete barrier options involves the evaluation of multidi-
mensional integrals. Attempting to evaluate such integrals is not feasible. For a discussion of
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analytical methods in combination with simulation techniques for barrier options, see Steinberg
(2003).

In this section we focus on the application of finite difference schemes to the problem of
barrier option pricing in the presence of discrete monitoring points. We concentrate on one
kind of barrier option, namely out-options. In-options can then be handled through an in–out
parity argument.

Consider a discretely monitored up-and-out call V (t, S) with monitoring date set D, as in
equation (15.6), and consider the barrier constraint

V −(t∗
k , Sj ) = BC[V +(t∗

k , Sj )]

≡
{

0, if Sj ≥ h(t∗
k )H, j = 0, . . . , J

V +(t∗
k , Sj ), if Sj < h(t∗

k )H, j = 0, . . . , J
(15.7)

where H is the barrier and h(t) is a time-dependent positive function that allows the barrier
to move in time (Foufas et al., 2004). A special case is when the barrier is a flat constant and
equation (15.7) then takes the simpler form

V −(tk, Sj ) =
{

0, Sj ≥ H, j = 0, . . . , J
V +(t∗

k , Sj ), Sj < H, j = 0, . . . , J
(15.8)

where

V −(t, S) ≡ lim
ε→0

V (t − ε, S) (ε > 0) (15.9)

V +(t, S) ≡ lim
ε→0

V (t + ε, S) (ε > 0)

We thus see that the option price V can experience a jump at the monitoring dates and it is
obvious that it is not continuous at such dates. We can thus expect a problem with ‘standard’
FDM and FEM schemes that assume continuity of the solution. For example, using the Crank–
Nicolson method in time leads to large ‘spikes’ in the solution (Tavella et al., 2000). It is
well-known that Crank–Nicolson has its problems but these are even more pronounced when
the solution is discontinuous.

15.3.2 Finite difference schemes and jumps in time

We now discuss how to approximate Black–Scholes in the presence of discrete barriers. We
pose the question: can we adapt the finite difference schemes from Chapter 14 to allow them to
cater for jumps? Based on the experiences from the previous sub-section we propose solving
the following more general PDE

−∂V

∂t
+ σ (t, S)

∂2V

∂S2
+ μ(t, S)

∂V

∂S
− r V = 0 (15.10)

by the scheme that uses centred differencing in S and implicit Euler in time:

− V n+1
j − V n

j

k
+ σ n

j D+ D−V n+1
j + μn

j D0V n+1
j − r V n+1

j = 0

V n
j+ = V n

j−, tn ε D (15.11)

V n
j+ = B C (V n

j−), tn ε D

V 0
j+ = max(S − K , 0)
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where we use the discrete analogues of ‘jumps’ as defined in (15.8). In general, we march from
t = 0 to t = T while taking into account jumps in time at the special monitoring points.

Please note that the system has now been written in the ‘engineer’s’ form (we speak of initial
condition instead of terminal condition).

15.3.3 Lookback options and jumps

As a final example, we examine lookback options. A lookback option has a payoff that depends
on the maximum or minimum of the underlying stock price over some given period in time.
Let us denote the maximum price of the asset in the interval [0, T ] as M ; then the payoff of
put and call options is given by the floating strike (lookback strike option)

payoff = max[M − S(T ), 0] (put)
(15.12)

payoff = max[S(T ) − M, 0] (call)

and the put and call option payoffs for the fixed strike (lookback rate)

payoff = max(K − M, 0) (put)
(15.13)

payoff = max(M − K , 0) (call)

(see Wilmott, 1998, p. 232).
We now concentrate on fixed strike lookbacks. As in Wilmott et al. (1993) we define the

variables

ξ = S/M

V (S, M, t) = Mu(ξ, t),

where u(ξ, t) is a new dependent variable.
The PDE for u in the new independent variable ξ and t then reads

∂u

∂t
+ 1

2
σ 2ξ 2 ∂2u

∂ξ 2
+ (r − d) ξ

∂u

∂ξ
− ru = 0 (15.14)

The final condition becomes

u(ξ, T ) = UT :=
{

max(ξ − 1, 0), for a call option
max(1 − ξ, 0), for a put option

(15.15)

The jump condition across sampling dates t∗
k ε D is similar to the case for Barrier options

and is given by

u−(t∗
k ) = JC[u+(t∗

k )] :=
{

max(ξ, 1)u+(min(ξ, 1), t∗
k ), for a put option

min(ξ, 1)u+(max(ξ, 1), t∗
k ), for a call option

(15.16)

The boundary condition at 0 is given by

u(0, t) = e−r (T −t) (put)
(15.17)

u(0, t) = 0 (call)

while at ξ = 1 we have the Robin condition ∂u/∂ξ = u.
All further algorithmic details, as discussed for barrier options, remain the same.
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15.4 CONTINUITY CORRECTIONS FOR DISCRETE
BARRIER OPTIONS

It is obvious from the previous section that approximating barrier option prices when discrete
monitoring is used is, in effect, more difficult than when continuous monitoring is used. In
general, it is not possible to find closed solutions to discrete problems but our intuition tells us
that the discrete price converges to the continuous price as the monitoring frequency increases,
thus suggesting that the continuous price may be used as a naive approximation in some way. In
Broadie et al. (1997) a result is given that allows us to adjust the continuous formula to obtain
a good approximation to the discrete price. In short, the authors apply a continuity correction
to the barrier.

The main result is as follows:

Theorem 15.1. Let Vm(H ) be the price of a discretely monitored knock-in or knock-out down
call or up put with barrrier H, where m is the number of monitoring points. Let V (H ) be the
price of the corresponding continuously monitored barrier option.

Then

Vm(H ) = V (He±βσ
√

T/m) + O

(
1√
m

)
where we apply

+ if H > S0

− if H < S0

where S0 ≡ inital asset value.
Furthermore,

β = −ϕ
(

1
2

)
√

2π
≈ 0.5826,

where ϕ is the Riemann zeta function.
In this theorem we assume that the barrier is monitored at times nk, n = 0, 1, . . . , m where

k = T/m (thus m is the number of monitoring points).
The results in Broadie et al. (1997) have been extended to more cases and a simpler proof

to the above theorem has been given in Kou (2003).
The conclusion is that we can apply the methods of Chapter 14 to discretely monitored

barrier option problems by realigning the boundary and solving the problem as a continuously
monitored barrier option. This might be a pragmatic approach in some cases.

15.5 COMPLEX BARRIER OPTIONS

In Chapter 14 we proposed the exponentially fitted scheme for calculating the price of single
and double barrier option problems with continuous monitoring while, in the first four sections
of the current chapter, we introduced FDM schemes that enabled us to take jumps into account.
We now conclude this chapter by discussing how complex barrier problems can be modelled
using these kinds of schemes.
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Figure 15.4 Forward starting barrier option

What is a complex barrier option? In general terms, this is an option that has a ‘barrier
structure’ that cannot be described as a single double barrier (Nelken, 1995; Zhang, 1998; Carr
and Chou, 1997):� Partial barrier options: The barrier is active only in some time interval, and disappears at

some prescribed time. In general, the payoff at expiry may be a function of the spot price
at the time that the barrier disappears. An analytical solution for partial barrier options is
known (use of the cumulative bivariate normal distribution is given in Carr and Chou, 1997).� Double barrier options: There are two barriers, namely an upper and lower barrier. We have
already discussed finite difference schemes for this class of problems.� Lookback options: In this case the payoff depends on the maximum or minimum of the
value of the underlying during the lookback period. This period is contained in the interval
between the valuation date and the expiry date. We have already proposed finite difference
schemes in the current chapter for this class of problems.� Forward starting barrier options: The barrier is active only in the latter period of the option’s
life. The barrier level may be fixed beforehand or it may be defined as a function of the
current underlying date at the so-called forward start date (see Figure 15.4 for a visual cue).
Furthermore, the payoff may be a function of the spot price at the time that the barrier
becomes active.� Rolling options: These are options that are defined by a sequence of barriers. When each
barrier is reached the option strike price is lowered (for calls) or raised (for puts). Rolling
options are a subclass of barrier options because they are knocked out only at the last barrier.
There are two main kinds of rolling barrier options, namely roll-down where all barriers are
below the initial spot price, and roll-up where all barriers are above the initial spot price.� Rachet options: A rachet option (also known as moving strike option or cliquet option)
consists of a sequence of forward starting options where the strike price for the next maturity
date is set to be equal to a (positive) constant times the underlying value of the previous
maturity date. The exact formula for rachet calls and puts is known (see, for example, Haug,
1998, p. 37).

In general, we are interested in approximating the option price by using finite difference
schemes. Exact solutions can be found for one-factor problems with constant coefficients but
life soon becomes difficult as, for example, we progress to two-factor problems with time-
dependent coefficients and non-constant boundaries.
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We shall now discuss how to approach the problem of pricing complex barrier options using
finite difference schemes, and a major objective is to flesh out the algorithms that describe
how to use the schemes. We first take an example of a so-called front-end single barrier
option (Steinberg, 2003). This option is a barrier option from the start of the option to some
prespecified time t < T , where T is the maturity date. Thus, the option behaves as a down-
and-out barrier option to time t and then as an ordinary call option after that. The strategy is
as follows: first, solve the Black–Scholes equation from t to T (for example, we could give
the analytical solution or we could employ an approximate scheme to find the option price).
Second, we use the option value at time t as the initial (actually terminal) condition for the
barrier option problem and we can then use our finite difference schemes. Again, we can use
the exact formula for such problems (Haug, 1998) or we can apply the finite difference schemes
from Chapter 14.

The procedure in the general case is to solve the Black–Scholes equation, starting from the
maturity date T to the first ‘type’ change (for example, barrier to no barrier) and progressively
down to time zero. At each date we must recalculate the payoff.

15.6 SUMMARY AND CONCLUSIONS

In this chapter we have introduced a number of topics that are concerned with barrier option
pricing. In particular, we focused on time-dependent barriers, discrete monitoring, approximat-
ing discrete barriers by continuous ones and finally finite differences to finding approximate
solutions to these problems.

When modelling barrier options with discrete monitoring dates, the conclusion is that it is
not so much more difficult than modelling such options with continuous monitoring; you do a
semi-discretisation in FEM or FDM, for example, and then discretise the corresponding ODE
while taking the jumps into account. However, we must model the discrete monotoring dates
explicitly in our algorithm schemes, and this procedure can be generalised to lookback and
Asian options.
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16
The Meshless (Meshfree) Method

in Financial Engineering

16.1 INTRODUCTION AND OBJECTIVES

In this chapter we give a short overview of a modern method that is a competitor of the finite
difference method (FDM) and the finite element method (FEM). In particular, we discuss the
meshless method that attempts to resolve some of the shortcomings of FDM and FEM. First,
FDM and FEM schemes are difficult to construct and solve, even in two and three dimensions.
Second, they achieve low-order, polynomial accuracy only. Third, they do not scale easily to
n-dimensional problems and this can result in these methods being unsuitable for multi-asset
derivative problems, for example. Finally, the computational complexity grows exponentially.
The meshless method, on the other hand, does not suffer from these problems. In fact, it is
‘dimension blind’ in the sense that it can be applied to n-dimensional problems with ease.
Furthermore, it is easy to program and to understand. To this end, we give an introduction to
the meshless method and apply it to convection–diffusion and Black–Scholes equations.

16.2 MOTIVATING THE MESHLESS METHOD

In order to motivate the meshless method we take the one-dimensional heat equation as our
model problem:

∂u

∂t
= ∂2u

∂x2
, 0 < x < L , t > 0 (16.1)

We now describe what we are going to do; first, we discretise (16.1) in t by applying the
explicit Euler scheme (this is Rothe’s method) while still keeping the variable x continuous.
Then we approximate the solution of the resulting ordinary differential equation (ODE) by
using special functions that satisfy the ODE exactly.

In particular, a semi-discretisation of equation (16.1) in time using explicit Euler gives us
the system of ordinary differential equations:

U n+1(x) − U n(x)

k
= d2U n(x)

dx2
, 0 < x < L , n = 0, . . . , N − 1

(16.2)
U 0(x) given, 0 < x < L

or in the differential operator form:

H+U n+1(x) = H−U n(x), 0 < x < L , n = 0, . . . , N − 1 (16.3)

where we define the operators as

H+ ≡ 1

H− ≡ 1 + k
d2

dx2

175
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As usual, we have partitioned the interval (0, T ) into N equal sub-intervals of length k.
We now assume a solution of (16.3) in the form

U n(x) �
J∑

j=1

λn
jϕ(r j ), 0 < x < L (16.4)

where r j is the Eucliden distance between point x and x j , r j = √
(x − x j )2 and (x j )

J
j=1 are

given or known collocation points.
In particular letting the value x be a specific collocation point we get the expression:

U n(xi ) �
J∑

j=1

λn
jϕ(ri j ), (16.5)

where ri j = √
(xi − x j )2.

We approximate the ODE (16.3) at each collocation point by inserting the expression (16.5)
into equation (16.3), giving the identity:

J∑
j=1

λn+1
j H+ϕ(ri j ) =

J∑
j=1

λn
j H−ϕ(ri j ), 1 ≤ i ≤ J (16.6)

or in matrix form:

AU n+1 = Bn, n ≥ 0 (16.7)

where U n = t (λ1, . . . , λJ ) (unknowns)

A = (H+ϕ(ri j ))1≤i, j≤J

B = t (B1, . . . , BJ )

where

Bn
i =

J∑
j=1

λn
j H−ϕ(ri j ), i = 1, . . . , J

We can then use a matrix solver such as Gaussian elimination with partial pivoting, for
example, to solve the above system of equations.

Some initial remarks are in order:� The so-called radial basic function (RBF) ϕ (unspecified as of yet) is defined on the whole
region of interest, in contrast to FEM where we use piecewise polynomials with compact
support.� The matrix A in (16.7) is dense in general. This means that all its values must be stored
in memory, again in contrast to FDM and FEM where we usually encounter tridiagonal,
band or even sparse matrices. The matrix A is sometimes called the stiffness matrix. More
dramatically, it is often ill-conditioned and we must use regularisation techniques to solve
system (16.7).� No mesh is needed in the meshless method. We do, however, have to determine the collocation
points where the ODE (16.7) is evaluated. This has potential advantages that add to the
understandability of the method, thus making it easier to program.
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16.3 AN INTRODUCTION TO RADIAL BASIS FUNCTIONS

Before we discuss more complex examples we give an introduction to radial basis functions
(or RBF for short). Radial basis functions are a special class of functions. Their characteristic
feature is that they increase or decrease monotonically from a central point. We give the first
example of such a function in one dimension. This is the Gaussian RBF with centre c and
radius r :

ϕ(x) = exp

[
− (x − c)2

r2

]
(16.8)

This function decreases monotonically with distance from the centre c. Another function is
the multiquadric (MQ) RBF defined by the formula:

ϕ(x) =
√

r2 + (x − c)2

r
(16.9)

This function increases monotonically with distance from the centre c. We thus see that
Gaussian functions are ‘local’ in the sense that they decrease to zero as we move from the
centre while the multiquadric RBF has a global response. Other popular RBFs are:

TPS (Thin Plate Shell): ϕ(x, x j ) = ϕ(r j ) = r4
j log(r j )

MQ: ϕ(x, x j ) = ϕ(r j ) =
√

c2 + r2
j

(16.10)
Cubic: ϕ(x, x j ) = ϕ(r j ) = r3

j

Gaussian: ϕ(x, x j ) = ϕ(r j ) = e−c2r2
j

where r j = ‖x − x j‖ in the Euclidean norm.

16.4 SEMI-DISCRETISATIONS AND CONVECTION–DIFFUSION
EQUATIONS

In general, we are interested in convection–diffusion equations and their applications to the
Black–Scholes equation. The meshless method is quite general and can be applied to elliptic,
hyperbolic and integro-differential equations as well as to integral equations and ordinary
differential equations.

In this section we concentrate on the general convection–diffusion equation in n dimensions:

∂u(x, t)

∂t
= K�u(x, t)t + v · �u(x, t) x ε � ⊂ Rn, t > 0 (16.11)

with Robin boundary conditions:

c1u(x, t) + c2 · �u(x, t) = f (x, t), x ε ∂�, t > 0 (16.12)

and initial conditions:

u(x, 0) = u0(x), t = 0 (16.13)
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Using Rothe’s method we discretise first in time using Crank–Nicolson averaging. We then
get the ODE:

u(x, t + k) − u(x, t) = k

2
[K�u(x, t + k) + K�u(x, t)

+ v · �u(x, t + k) + v · �u(x, t)] (16.14)

Define the following terms (n = 3):

un = u(x, tn), tn+1 = tn + k

α = − K k

2
, β = t [βx , βy, βz] = −k

2
v (16.15)

η = K k

2
, ξ = t [ξx , ξy, ξz] = k

2
v

and the operators

H+ ≡ 1 + α� + ββ · �
H− ≡ 1 + η� + ξξ · � (16.16)

Then we can pose equation (16.14) in the following equivalent form:

H+un+1 = H−un (Semi-discrete scheme) (16.17)

and we can solve this using the same strategy that we used for the heat equation in section 16.2
except that we use multidimensional radial basis functions. The problem (16.11)–(16.13)
has been solved in Boztosun and Chirafi (2002) using the meshless method. Some general
conclusions are:� When compared with the standard FDM scheme, both FDM and RBF solutions are in

good agreement with the exact solution for diffusion-dominated problems. However, for
convection-dominated problems the FDM displayed oscillations and signs of numerical
diffusion. Thus, sharp gradients within the solution are smeared, resulting in inaccuracies.
The RBF solution, on the other hand, gives good results even in the convection-dominated
case.� On performance, BBF is slower than FDM because it generates a dense matrix whereas
FDM generates a tridiagonal matrix.� When comparing the methods for a given accuracy, the RBF is much better than FDM.
A typical example is as follows (Boztosun and Chirafi, 2002); let’s say we wish to have
an accuracy of 0.006. Then the following results are valid; for RBF we have CPU time of
1.6 seconds and we need 100 collocation nodes, while with FDM we have CPU time of
60.8 seconds with 500 nodes approximately.

The meshless method uses random points as collocation nodes. Meshless works where the
traditional FDM fails. We note finally that is it possible to discretise a convection–diffusion
equation in space first by using RBFs. This will give us a system of ODEs that we can
subsequently solve in the usual way. For an example, see Cao and Traw-Cong (2003).
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16.5 APPLICATIONS OF THE ONE-FACTOR
BLACK–SCHOLES EQUATION

We now discuss the application of the meshless method to approximate the solution of the
one-factor Black–Scholes equation (Koc et al., 2003). We shall examine the one-factor Black–
Scholes equation

−∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0 (16.18)

with terminal condition

V (S, T ) =
{

max(K − S, 0) for a put

max(S − K , 0) for a call

and we approximate the solution V (S, t) of system (16.18) by a linear combination of radial
basis functions

V (S, t) ∼=
J∑

j=1

λ j (t)ϕ(S, Sj ), S ∈ � ⊂ R1 (16.19)

where J is the number of data points, λ is the time-dependent unknown quantity and ϕ is the
radial basis function. We first discretise (16.18) using Crank–Nicolson averaging to give the
ODE:

− V n+1(S) − V n(S)

k
+ 1

2
σ 2S2 d2V n+1/2

dS2
+ r S

dV n+1/2

dS
− r V n+1/2 = 0 (16.20)

where V n+1/2 ≡ 1
2
(V n+1 + V n) or, in the equivalent form,

H+V n+1(S) = H−V n(S) (16.21)

where

H− = 1 + α

(
1
2
σ 2S2 d2

ds2
+ r S

d

ds
− r

)

H+ = 1 − α

(
1
2
σ 2S2 d2

dS2
+ r S

d

dS
− r

)
and α = k/2

We can then calculate the discrete option price at each time level as follows:

J∑
j=1

λn+1
j H+ϕ(Si j ) =

J∑
j=1

λn
j H−ϕ(Si j ) (16.22)

The authors in Koc et al. (2003) used the following test data for a standard European option:

K = 10, r = 0.05, σ = 0.20, T = 0.5, Spatial domain is [0, 30]

The number of time steps N is 100. The authors compared the option price and its delta
using TPS, MQ, Cubic and Gaussian. In general, the MQ and TPS radial functions were
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the most accurate. For example, if the number of collocation nodes is J = 121, then the
accuracy was

TPS 0.00013971

MQ 0.00013637

CUBIC 0.06190414
GAUSSIAN 0.00464602

The approximations to the delta were:

TPS 0.00008954
MQ 0.00017647
CUBIC 0.63676377
GAUSSIAN 0.00379306

The relative error in these experiments was defined as

ε(t) ≡ 1

J − 1

J∑
j=1

|V (Sj , t)RBF − V (Sj,t)| (16.23)

Concluding, the meshless method gives accurate results for the TPS and MQ RBFs when
compared to the FDM. Finally, expressions for some option sensitivities are given as follows
by differentiation of expression (16.19):

∂V

∂S
=

J∑
j=1

λ j (t)
dϕ

dS
(S, Sj ) (Delta) (16.24a)

∂2V

∂S2
=

J∑
j=1

λ j (t)
d2ϕ

dS2
(S, Sj ) (Gamma) (16.24b)

∂V

∂t
=

J∑
j=1

dλ j (t)

dt
ϕ(S, Sj ) (Theta) (16.24c)

16.6 ADVANTAGES AND DISADVANTAGES OF MESHLESS

We conclude this chapter with a short summary of the advantages and disadvantages of the
meshless method. The advantages are:� Simple and straightforward; easy to implement.� It is ‘dimension-blind’; for example, a three-dimensional problem is not much more difficult

than a one-dimensional problem.� It can achieve the same accuracy as FDM but with less effort.

The perceived disadvantages at the moment of writing are:� Error analysis is often difficult or impractical; in this sense the full mathematical basis of
the meshless method has yet to be established. This is a new area of research.
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may be difficult to invert. We must then use regularisation techniques (see Golub and Van
Loan, 1996).� We do not yet have a body of work on how accurate the meshless method is for the Black–
Scholes equation and its generalisations.

16.7 SUMMARY AND CONCLUSIONS

We have given an introduction to a new technique to approximate the solution of convection–
diffusion problems in general and Black–Scholes equation in particular. It is called meshless (or
meshfree) and could become a major competitor to such accepted methods as FDM and FEM.
It is easy to understand and to implement, gives accurate results for the option price and its
sensitivities and is ‘dimension-blind’, meaning that it scales easily to multi-factor derivatives
problem. The meshless method has been applied to 2- and 3-factor asset problems and the
convergence is somewhat better than that achieved using the splitting method. Finally, for a
given tolerance, performance of meshless also seems to be better in general.



0470858826c16 JWBK073-Duffy January 18, 2006 23:38 Char Count= 0

182



0470858826c17 JWBK073-Duffy February 1, 2006 20:9 Char Count= 0

17
Extending the Black–Scholes Model:

Jump Processes

17.1 INTRODUCTION AND OBJECTIVES

The Black–Scholes model assumes that the probability distribution of the stock price at any
given future time is lognormal. If this assumption is not true we shall get biases in the prices
produced by the model. If the true distribution is different from the lognormal distribution we
shall underprice or overprice call and put options, depending on the distributions’ tails (Hull,
2000). A number of models have been proposed to resolve these shortcomings:� Model the volatility as a stochastic process (for example, the Heston model).� Models where the company’s equity is assumed to be an option on its asset.� Models where the stock price may experience occasional jumps rather than continuous

changes, as happened on 19 and 20 October 1987, for example (Bates, 1991).

In this chapter we concentrate on the third of these models and introduce a partial integro-
differential equation (PIDE) that models contingent claims for stocks with jumps. Examining
these equations from a theoretical and numerical point of view will necessitate the introduction
of new techniques.

In this chapter we shall discuss the following topics:� Stochastic models for a number of processes that model stock behaviour with jumps.� Setting up PIDEs that model contingent claims on stock.� A discussion and comparison of several techniques that approximate PIDEs.

Informally, we can describe a PIDE as:

PIDE = PDE + an integral term

The PDE term is usually a convection–diffusion equation while the integral term involves the
(unknown) option price evaluated over an infinite or semi-infinite interval.

In Appendix 1 we give some background information on integrals and integral equations.

17.2 JUMP–DIFFUSION PROCESSES

There is evidence to suggest that the geometric Brownian motion model for stock price be-
haviour does not always model real stock behaviour. In particular, financial instruments do not
follow a lognormal random walk (see, for example, Bates, 1991; Wilmott, 1998). Jumps can
appear at random times and to this end a number of alternative models have been proposed,
for example, the jump diffusion (Poisson) model (see Merton, 1976).

183
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The Poisson process is a special case of a so-called counting process. In general, a random
process X (t) is said to be a counting process if X (t) represents the total number of events
that have occurred in the time interval (0, t). A counting process must satisfy the following
conditions:

1. X (t) ≥ 0, X (0) = 0
2. X (t) is integer-valued
3. X (s) < X (t) if s < t
4. X (t) − X (s) equals the number of events that have occurred in the interval (s, t)

A Poisson process X (t) is a counting process with rate or intensity λ > 0 if

1. X (0) = 0
2. X (t) has independent and stationary increments
3. P[X (t + dt) − X (t) = 1] = λ dt + O(dt), P = probability
4. P[X (t + dt) − X (t) ≥ 2] = O(dt) when O(dt) is a function that tends to zero faster than

dt , that is:

lim
dt→0

O(dt)

dt
= 0

(Hsu, 1997). In the current context we prefer to define a Poisson process dq as follows:

dq =
{

0, with probability 1 − λ dt

1, with probability λ dt
(17.1)

where λ = Poisson arrival intensity.
Thus, there is a probability λ dt of a jump in q in the time step dt . The Poisson process

models many kinds of arrival patterns and its applications are numerous, for example in queuing
systems, inventory control applications and telecommunications. It also models the behaviour
of underlying assets in real options modelling, for example:� Energy prices (Pilipović, 1998)� Oil and natural gas prices� Business models (Mun, 2002).

These quantities can exhibit peaks and spikes; for example, in one case the unit price of
natural gas jumped from 30 euros to more than 1500 euros in one day during a period of short
supply. Fortunately, the price dropped again shortly afterwards. With shares, however, the price
plummeted, as was witnessed in October 1987.

We now introduce the modified stochastic differential equation that models jumps:

dS

S
= μ dt + σ dz + (η − 1) dq (17.2)

where S = underlying stock price
μ = drift rate
σ = volatility

dz = increment of Gauss–Wiener process
dq = Poisson process with arrival rate λ

η − 1 = impulse function producing a jump from S to Sη

K = E(η − 1), expected relative jump size.
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In other words, the arrival of a jump is random and this is part of the stochastic differential
equation for S. We thus have two sources of uncertainty. In short, the term dz corresponds
to the usual Brownian motion while the term dq corresponds to exceptional (and infrequent)
events. Two special cases of (17.2) are geometric Brownian motion and pure jump diffusion,
the latter being defined by the equation

dS

S
= (η − 1) dq

In the case of equation (17.2) the path followed by S is continuous most of the time while
finite negative or positive jumps will appear at discrete points in time. Based on the SDE (17.2)
the resulting PIDE for a contingent claim V (S, t) that depends on S is given by (Merton, 1976):

∂V

∂τ
= 1

2σ 2S2 ∂2V

∂S2
+ (r − λK )S

∂V

∂S
− r V +

[
λ

∫ ∞

0
V (Sη)g(η) dη − λV

]
(17.3)

where τ = T − t = time to expiry

η = jump amplitude and the function g satisfies

g(η) ≥ 0 and
∫ ∞

0 g(η) dη = 1

We rewrite equation (17.3) in the form:

∂V

∂τ
= 1

2σ 2S2 ∂2V

∂S2
+ (r − λK )S

∂V

∂S
− (r + λ)V + λ

∫ ∞

0
V (Sη)g(η) dη (17.4)

We now must think about this problem in more detail. In particular, we are interested in
approximating the solution of this problem using finite difference schemes. Some questions
and problems arise:� The integral term in the PIDE is on a semi-infinite interval; how are we to put a semi-infinite

interval into the computer? How are we going to approximate the integral term? In some
cases the integrand may contain singularities.� The PDE part of the PIDE is also defined on a semi-infinite interval. It too must be truncated,
but how? Furthermore, we are now confronted by two truncated intervals and how should
they be chosen so as they do not destroy accuracy?� Can we apply standard finite difference schemes (Euler, Crank–Nicolson, fitting) in combi-
nation with numerical integration techniques to produce stable and accurate approximations?� How can we avoid producing a dense system of equations when we approximate the integral
term on a bounded interval?� How do we compare one method with another one? For example, is Crank–Nicolson really
better than implicit Euler even though the former method may produce spurious oscillations?

17.2.1 Convolution transformations

We rewrite the integral term in equation (17.4) so that it is formulated in convolution (or
Faltung) form (Tricomi, 1957; Zemanian, 1987). To this end, we define a change of variables
of (S, η) to (x, y) as follows:

y = log η, x = logS
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Then

F(S) ≡
∫ ∞

0
V (Sη)g(η) dη

=
∫ ∞

−∞
V (x + y) f (y) dy

where

V (y) ≡ V (ey), f (y) = g(ey)ey

We can perform another change of variables from y to t to describe the integral in a form
that is common in the mathematical literature:

t = −y, f (t) = f (−t)

This gives the new form:

F(x) =
∫ ∞

−∞
V (x − t) f (t) dt

In more general terms we can write the transform in the following form:

F(x) =
∫ ∞

−∞
G(x − t) f (t) dt

This latter equation is in fact an example of a convolution transform. This expression is
a mapping that transforms f (t) into F(x) with kernel G(x − t). A detailed study of these
transforms is given in Zemanian (1987). In particular, a function-theoretic approach determines
the conditions under which F(x) is a smooth function, given certain assumptions on the kernel
G. This is important in relation to the PIDE (17.4) where we are also interested in the regularity
(smoothness) of the solution. Extensive use is made of delta functions and distribution theory
in Zemanian (1987). It is interesting to note that the one-sided Laplace transform (often used
in financial engineering applications – see, for example, Fu et al., 1998; Craddock et al., 2000;
Fusai, 2004) can be viewed as a special kind of convolution integral.

17.3 PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS
AND FINANCIAL APPLICATIONS

There are two main formulations for the PIDE, depending on how we wish to describe the
integral term. In order to reduce the cognitive overload we define the elliptic operator (written
in a slightly more generic form) as:

Lu ≡ σ̃
∂2u

∂x2
+ μ

∂u

∂x
− (r + λ)u (17.5)

Then the PIDE (17.4) can be written in the new form:

∂u

∂t
= Lu + λ

∫ ∞

0
u(xy, t)g(y) dy (17.6)

or as
∂u

∂t
= Lu + λ

∫ ∞

−∞
u(x + y, t)g(y) dy (17.7)

depending on how you transform the original PIDE.
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It does not really matter which form you take, but we should be aware of these two op-
tions when we consider the numerical methods for these equations. Since we are using the
‘engineer’s’ time we need to augment the PIDE by an initial condition:

u(x, 0) = ψ(x), −∞ < x < ∞ or 0 < x < ∞ (17.8)

The corresponding boundary conditions are always an issue in these kinds of problems and
we use the following one corresponding to equation (17.6), for example:

∂u

∂t
− ru = 0 as x → 0

∂2u

∂x2
= 0 as x → ∞

(17.9)

We shall have similar boundary conditions in the infinite interval case.

17.4 NUMERICAL SOLUTION OF PIDE: PRELIMINARIES

We now begin our study of the finite difference schemes for approximating the solution of the
problem (17.7), (17.8) and (17.9). The situation is complicated by the fact that the unknown
solution appears in the differential equation and in the integral term. In general, we then must
construct two meshes, namely one for the PDE and one for the integral term. These meshes do
not necessarily have to coincide but things become messy in this case because we have to use
some kind of interpolation when we construct the discrete systems of equations. It is easier to
use the same mesh for both the differential and integral terms.

Another potential problem is that the discrete system of equations can result in a dense
matrix. In the pure PDE we get a band matrix of some kind (for example, a tridiagonal system)
but again the integral term confuses things. We shall see how to avoid this problem.

Finally, the PDE is defined on an semi-infinite interval and we must truncate this to a
finite interval. However, the integral term in equation (17.7) is also defined on an infinite
interval and this must always be truncated. This issue is discussed in La Chioma (2003) and
we give the main results here. In general, the procedure is to choose two finite values A and
B such that the difference between the infinite and truncated integrals is less than a given
tolerance: ∣∣∣∣∫ ∞

−∞
f (x) dx −

∫ B

A
f (x) dx

∣∣∣∣ < ε

Then we can approximate the truncated integral by some kind of Newton–Cotes integration
method: ∫ B

A
f (x) dx ≈ B − A

N

N∑
j=0

w j f (x j )

where {w j } is some set of weights.
In the current problem we have a specific integrand (kernel), namely a probability density

function of the form

g(y) ≡ 	δ(y) = 1√
2πδ

exp

(
− y2

2δ2

)
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This function goes to zero very quickly and we only look at this when it values are greater
than a given tolerance ε. Then we have the inequalities:

	δ(y) ≥ ε

⇔ −
√

−2 δ2 log(εδ
√

2π ) ≤ y ≤
√

−2 δ2 log(ε δ
√

2π )

In the above context we then choose the limits of integration as:

A = +
√

−2 δ2 log(εδ
√

2π )

B = −A

We now propose the modified form of equation (17.7)

∂u

∂t
= Lu + λ

∫ B

A
u(x + y, t)	δ(y) dy (17.10)

We now have a PIDE whose integrand is defined on a bounded interval.

17.5 TECHNIQUES FOR THE NUMERICAL SOLUTION OF PIDEs

In recent years there has been a lot of interest in PIDEs for financial derivatives problems.
In Tavella (2000) a discussion is given on how to approximate such problems using finite
difference methods.

We discuss some methods in this section. We first introduce some notation in order to
promote the understandability of the PIDE (17.10):

Lh,k = fully discrete approximate to L (PDE term)

I h = discrete approximation to the integral term I (u) (integral term)

In the time dimension, we apply exclusively one-step methods and we can then choose
between fully explicit, fully implicit and Crank–Nicolson variants.

In the following discussion we suppress the dependence of the discrete solution on the index
corresponding to the S direction. This makes the schemes more readable.

17.6 IMPLICIT AND EXPLICIT METHODS

A simple approach is to apply the so-called θ -method to both the PDE and integral terms:

U n+1 − U n

k
= θ1Lh,k(U n) + (1 − θ1)Lh,k(U n+1)

+ θ2 I h(U n) + (1 − θ2)I h(U n+1), 0 ≤ θ j ≤ 1, j = 1, 2 (17.11)

This system of equations leads to a dense matrix system in general because the integral terms
also contain the unknown solution at time level n + 1 and the specific numerical integration
technique uses its values at a finite (and possibly large) number of points in the integration
domain. This can be remedied by approximating the integral term only at the known time level
n. For example, using Crank–Nicolson for the PDE term and integral evaluation at level n
leads to the equation:

U n+1 − U n

k
= 1

2

[
Lh,k(U n) + Lh,k(U n+1)

] + I h(U n) (17.12)
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This is an interesting scheme because it is a tridiagonal matrix system and it has been proved
that this scheme is stable (see Cont and Voltchkova, 2003) when the integral is evaluated using
the trapezoidal rule. The authors prove stability and accuracy of the scheme (17.12) using
the so-called viscosity method. This is needed because the Lax Equivalence Principle is no
longer valid due to the fact that solutions of the PIDE may be non-smooth and higher-order
derivatives may not exist. There exist more modern techniques and these should be applied
whenever possible as Cont and Voltchkova (2003) and other articles have shown.

17.7 IMPLICIT–EXPLICIT RUNGE–KUTTA METHODS

It is obvious that the coupling between the differential and integral terms in equation (17.10)
complicates the discovery of suitable numerical schemes and their subsequent analysis. It
would be nice if we could split the problem in some way to enable us to solve several simpler
sub-problems. To this end, we introduce a method that splits the PIDE in such a way that one
part is implicit in time and the other part is explicit in time. The method is called the implicit–
explicit (IMEX) and the rationale behind it is to split a scheme into its stiff and non-stiff parts
(see Hundsdorfer, 2003 for a good introduction to IMEX methods). In the current case we
define the following ‘components’ of the PIDE.

∂u

∂t
= σ

∂2u

∂x2
+ μ

∂u

∂x
+ bu + λ

[∫ ∞

−∞
u(x + y, t)	σ (y) dy − u(x, t)

]
(17.13)

where

∂u

∂t
= H (u) + G(u)

H (u) = convection (advection) integral term

= μ
∂u

∂x
+ λ

[∫ ∞

−∞
u(x + y, t)	σ (y) dy − u(x, t)

]
G(u) = diffusion/reaction term = σ

∂2u

∂x2
+ bu

In this case we use explicit time-stepping for the convection (advection) term H (u) and
implicit time-stepping for the diffusion term G(u). Then one particular IMEX scheme for this
problem becomes

U n+1 − U n

k
= H (U n) + θ G(U n) + (1 − θ )G(U n+1), θ ≥ 1

2 (17.14)

Here we see that the Euler method is combined with an A-stable θ method (Hunsdorfer
and Verwer, 2003). A generalisation of this method is given in Briani et at. (2004) where the
authors propose a multi-step extension of equation (17.14). Thus, we can now solve (17.14)
with the techniques that we developed for PDEs.

17.8 USING OPERATOR SPLITTING

Operator splitting methods are a powerful technique for partitioning a problem into simpler
problems. In general, an n-dimensional problem is split into a series of one-dimensional
problems using this method. In the current context, operator splitting has been applied to
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integro-differential equations for the neutron transport problem (see Yanenko, 1971, p. 99).
We already know that the PIDE (17.10) has a differential and an integral form:

∂u

∂t
= Lu + I u (17.15)

Based on this remark we split the problem into two sub-problems, which we write as (in an
intuitive/semi-formal form):

∂u

∂t
= I u and

∂u

∂t
= Lu (17.16)

Based on Yanenko (1971) we propose the following splitting scheme:

(a)
U n+ 1

2 − U n

k
= I h(α U n+ 1

2 + βU n)

(b)
U n+1 − U n+ 1

2

k
= Lh,k(α U n+1 + βU n+ 1

2 )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ α ≥ 0, β ≥ 0, α + β = 1 (17.17)

We can choose different sets of values of α and β to give us implicit or explicit schemes in
both (17.17a) and (17.17b). For example, we could take an explicit scheme for (17.17a) and
the exponentially fitted implicit-in-time scheme for (17.17b):

(a)
U n+ 1

2 − U n

k
= I h(U n)

(b)
U n+1 − U n+ 1

2

k
= Lh,k

E (U n+1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Lh,k
E ≡ (Duffy) exponential fitting operator (17.18)

These schemes have first-order accuracy in general.

17.9 SPLITTING AND PREDICTOR–CORRECTOR METHODS

We now discuss the following problem: Can we devise a scheme that has the computational
ease of the explicit Euler scheme while at the same time achieving high-order accuracy?
We answer this question by appealing to the predictor–corrector method that is used in the
approximation of the solutions of initial value problems (see Conte and de Boor, 1980, p. 379)
and that we have applied it with success to financial engineering applications, in particular
the numerical solution of stochastic differential equations (Duffy, 2004). Let us recall how
predictor–corrector works for the initial value problem:

du

dt
= f (t, u), 0 < t < T

u(0) = A

u(t) = t (u1(t), . . . , un(t))

(17.19)

If we apply the standard trapezoidal rule to (17.19) we get the scheme:

un+1 − un

k
= 1

2 [ f (tn, un) + f (tn+1, un+1)] (17.20)

One problem with this scheme is that it is nonlinear since the function f (t, u) is in general a
nonlinear function of u. Hence the system (17.20) cannot be solved without resorting to some
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nonlinear solver such as Newton–Raphson, for example. In order to resolve this problem we
define predictor and corrector solutions as follows:

u(0)
n+1 = un + k f (tn, un) (Explicit Euler)

u(1)
n+1 = un + k

2
[ f (tn, un) + f (tn+1, u(0)

n+1)] (Modified Trapezoidal rule)
(17.21)

This is the essence of predictor–corrector method. In general, we define the iterative scheme:

u( j)
n+1 = un + k

2
[ f (tn, un) + f (tn+1, u( j−1)

n+1 )], j = 1, 2, . . . (17.22)

and the stopping criterion for a given tolerance TOL is given by

‖u( j)
n+1 − u( j−1)

n+1 ‖
‖u( j)

n+1‖
≤ TOL (17.23)

in some suitable norm (for example, the max norm).
We now apply the predictor–corrector method to generalise the scheme (17.18a). We define

U (0)
n+1 = Un + k I h(Un)

and

(17.24)

U (1)
n+1 = Un + k

2
[I h(Un) + I h(U (0)

n+1)]

More generally, we have

U ( j)
n+1 = Un + k

2
[I h(Un) + I h(U ( j−1)

n+1 )], j = 1, 2, . . .

with the same stopping criteria as in inequality (17.23). Summarising, we have produced a
scheme that allows us to get as good an approximation as we like to the integral term (17.18a)
while we can continue using our favourite finite difference scheme for the PDE term (17.18b).

17.10 SUMMARY AND CONCLUSIONS

We have introduced a number of finite difference schemes for European-style options with a
jump-diffusion term. This is a relatively new area of research in financial engineering and a
number of numerical techniques have been proposed to approximate the solution of the partial
integro-differential equation (PIDE) that models contingent claims depending on an underlying
asset with jumps. For more background information, see Appendix 1 for an introduction to
integral equations and their numerical approximation. Some conclusions on the advantages
and disadvantages of the finite difference methods are:� Explicit and implicit: Easy to implement as it builds on well-known schemes. Conditionally

stable. First-order accurate.� IMEX: Robust, modern schemes. Ability to handle stiff problems. Second and higher order
accuracy. This is a specialised area of research.� Operator splitting: Reliable and robust. Watch out for the errors induced by splitting. You
may not always get second-order accuracy.� Predictor–Corrector: A good performer, as has been proved in many applications.
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18
Finite Difference Schemes

for Multidimensional Problems

18.1 INTRODUCTION AND OBJECTIVES

This is the first chapter of Part IV. It is here that we introduce finite difference schemes in two
space variables (two-factor problems). The resulting system of equations can become quite
large and special matrix solvers must be devised to solve the resulting linear system of equa-
tions. The complexity is due to the fact that we are discretising in all directions simultaneously.
We can avoid solving a large system at each time level if we use an explicit time-marching
scheme but then the scheme will only be conditionally stable and this may constrain the time
mesh size k to be small.

The main goal of this chapter is to introduce finite difference schemes for a number of
prototypical partial differential equations. We discuss the relevance of the schemes to the
Black–Scholes equation; however, the main applications to financial engineering will appear
in Part V of this book.

After having read and studied this chapter you should have a good understanding of finite
difference schemes for two-factor partial differential equations. This chapter can be seen as a
warming-up session to n-factor PDEs in quantitative finance.

18.2 ELLIPTIC EQUATIONS

The Black–Scholes equation (in n dimensions) is a parabolic partial differential equation of
the form

∂u

∂t
= Lu (18.1)

where the operator L is defined by

Lu ≡
n∑

i, j=1

ai j (x)
∂2u

∂xi∂x j
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u

x = t (x1, . . . , xn) ε Rn

(18.2)

For the moment we assume that the coefficients in (18.2) are independent of t . We shall see
later how to approximate equation (18.2) by finite difference schemes. To this end, we shall
solve a system of equations at each time level and the solvers that are used are based on results
from elliptic equations (see the classic work Varga, 1962, and a more recent work Thomas,
1999). For a modern and definitive treatment of matrix computational problems, see Golub
and Van Loan (1996).

195
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Definition 18.1. The operator L is elliptic if for each point x in n-dimensional space the
following inequality holds:

0 < λ(x) ‖ξ‖2 ≤
n∑

i, j=1

ai j (x) ξi ξ j ≤ �(x) ‖ξ‖2 (18.3)

where

ξ = t (ξ1, . . . , ξn)

λ(x) = smallest eigenvalue of matrix (ai j ) i, j = 1, . . . , n

�(x) = largest eigenvalue of matrix (ai j ) i, j = 1, . . . , n

‖ξ‖2 ≡
n∑

i=1

|ξi |2
(18.4)

We now give some examples of elliptic operators in two space dimensions. First, we define
the Laplace differential operator by:

�u ≡ �2u ≡ ∂2u

∂x2
+ ∂2u

∂y2
(18.5)

This leads to two well-known equations

�u = f (Poisson equation)

�u = 0 (Laplace equation)
(18.6)

We notice that the so-called cross-term (the second derivative term with one contribution by
each of x and y) is not present in the Laplacian operator. In financial engineering applications,
however, this term is present and it represents the correlation between the underlying assets.

We take an example of a two-factor interest rate model (Wilmott, 1998, ch. 37):

−∂ Z

∂t
+ 1

2
w2

∂2 Z

∂r2
+ ρwq

∂2 Z

∂r∂l
+ 1

2
q2

∂2 Z

∂l2
+ (u − λrw)

∂ Z

∂r
+ (p − λlq)

∂ Z

∂l
− r Z = 0

(18.7)

where r = spot interest rate

l = another independent variable, for example the long rate

ρ = correlation between dW1 and dW2 (appearing in SDEs)

Z = price of a zero coupon bond

λr , λl = market prices of risk for factors r and l

and the stochastic processes r and l are defined by the pair of SDEs:

dr = u dt + w dW1

dl = p dt + q dW2

dW j = standard geometric Brownian motion, j = 1, 2

(18.8)
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The question is whether the time-independent part of equation (18.7) is elliptic. In this case
the relevant coefficients in inequality (18.3) have the specific values:

a11 = 1
2
w2

a12 = 1
2
ρwq

a21 = 1
2
ρwq (= a12)

a22 = 1
2
q2

(18.9)

and

A = (ai j )1≤i, j≤2 = 1
2

(
ω2 ρwq

ρωq q2

)
(18.10)

A bit of ‘nitty-gritty’ arithmetic shows that the eigenvalues of A are given by:

λ± = (ω2 + q2) ±
√

(ω2 + q2)2 − 4ω2q2(1 − ρ2)

2
(18.11)

and are real if

ρ ≤ 1 (18.12)

which is the case in financial engineering; the correlation coefficient ρ is always in the range
[−1, 1]. You can check this result by using calculus.

We now discuss how to approximate elliptic problems using finite difference techniques.
In many cases in financial engineering the domain in which the equation is defined is a rect-
angle. To this end we partition the domain into a number of boxes of equal or unequal size.
Furthermore, we approximate derivatives in the different directions by the analogues of the
one-dimensional divided differences:

�2
xUi j = h−2(Ui+1, j − 2Ui, j + Ui−1, j )

and �2
yUi j = h−2(Ui, j+1 − 2Ui, j + Ui, j−1)

(18.13)

For convenience we have chosen the mesh sizes in the x and y directions to be the same (we
denote this common length by h).

In order to motivate the use of finite difference schemes for elliptic boundary value problems
we examine the following Poisson problem on a unit square in two dimensions with Dirichlet
boundary conditions:

�u = f in R = (0, 1) × (0, 1)

u = g on ∂ R
(18.14)

where ∂R is the boundary of R.
Then letting I and J denote the number of sub-divisions in the x and y directions, respectively

we propose the following scheme:

�2
xUi j + �2

yUi j = fi j , i = 1, . . . , I − 1, j = 1, . . . , J − 1 (18.15)
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with discrete boundary conditions

u0 j = g0 j , j = 0, . . . , J

uI j = gI j , j = 0, . . . , J

ui0 = gi0, i = 1, . . . , I − 1

ui J = gi J , i = 1, . . . , I − 1

(18.16)

Then we pose system (18.15)–(18.16) in the following matrix form:

AU = F

A = (ai j )L×L , U = t (u1, . . . , uL )

F = t ( f1, . . . , fL ), L = (I − 1) × (J − 1)

(18.17)

The matrix A has a special structure. In particular, it is positive definite, has thus an inverse
and hence the problem (18.15), (18.16) has a unique solution (see Thomas, 1999).

18.2.1 A self-adjoint elliptic operator

We now discuss a slightly more general form of equation (18.6), namely the self-adjoint semi-
linear equation

∂

∂x

[
σ1(x, y)

∂u

∂x

]
+ ∂

∂y

[
σ2(x, y)

∂u

∂y

]
+ f (x, y, u) = 0, 0 < x < L , 0 < y < M

(18.18)
with Neumann boundary conditions

∂u

∂x
= 0, x = 0, x = L

∂u

∂y
= 0, y = 0, y = M

(18.19)

This problem occurs in many physical applications (see Peaceman, 1977). We now de-
fine non-uniform meshes in the x and y directions and to this end we adopt the following
notation:

xi± 1
2

= 1
2
(xi + xi±1)

y j± 1
2

= 1
2
(y j + y j±1)

�xi ≡ xi+ 1
2
− xi− 1

2

�y j ≡ y j+ 1
2
− y j− 1

2

ai+ 1
2
, j ≡

σ1(xi+ 1
2
, y j )�y j

xi+1 − xi

bi, j+ 1
2

≡
σ2(xi , y j+ 1

2
)�xi

y j+1 − y j

ai− 1
2
, j =

σ1(xi− 1
2
, y j )�y j

xi − xi−1

bi, j− 1
2

=
σ2(xi , y j− 1

2
)�xi

y j − y j−1

(18.20)
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We approximate the separate terms in equation (18.18) as follows:

∂

∂x

[
σ1(xi , y j )

∂u

∂x

]
i, j

≈
σ1(xi+ 1

2
, y j )

ui+1, j − ui, j

xi+1 − xi
− σ1(xi− 1

2
, y j )

ui, j − ui−1, j

xi − xi−1

�xi
(18.21)

in the x direction, and

∂

∂y

[
σ2(xi , y j )

∂u

∂y

]
i, j

≈
σ2(xi , y j+ 1

2
)

ui, j+1 − ui, j

y j+1 − y j
− σ2(xi , y j− 1

2
)

ui, j − ui−1, j

y j − y j−1

�y j
(18.22)

in the y direction. Combining these terms and doing a bit of rearranging we can pose the
problem in matrix form, as in system (18.17), that is

ai+ 1
2
, j (ui+1, j − ui, j ) − ai− 1

2
, j (ui, j − ui−1, j ) + bi, j+ 1

2
(ui, j+1 − ui, j )

− bi, j− 1
2
(ui, j − ui, j−1) + �xi�y j f (xi .y j , ui, j ) = 0 (18.23)

This leads us to the discussion on how to actually solve the system (18.17).

18.2.2 Solving the matrix systems

In general the matrix A in equation (18.17) is sparse. This means that many of the entries in the
matrix are not needed and that a small percentage of the entries will be used. For this reason
we need efficient storage structures for such matrices. Discussion of the actual mechanics can
be found in Dahlquist (1974) and Duff et al. (1990). In most of our applications the matrix
will be sparse but it is also broadly banded.

It is not our intention to give an exhaustive overview of the different solvers for elliptic
problems of the form (18.17). A good overview can be found in Thomas (1999) and an
overview of solvers with applications in financial engineering can be found in Tavella et al.
(2000, p. 98). For more detailed information on the actual implementation of these solvers, we
refer to Golub and Van Loan (1996). We shall also discuss the so-called residual correction
methods that are very popular for elliptic systems (Varga, 1962; Thomas, 1999). To this end,
let U be the solution of (18.17) and let W be some approximation to U. We define the quantities

Algebraic error e = U − W

Residual error r = F − AW

We use both of these errors (with respect to some norm). We see that these two errors are
related by the residual equation

Ae = A(U − W) = F − AW = r

From this last equation we obtain a correction equation defined by

U = W + e = W + A−1r

Continuing, we define the residual correction method to approximate the inverse of the
matrix A as follows using the residual correction method:

Wk+1 = Wk + Brk, k ≥ 0 (18.24)
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where rk = F − AWk, k ≥ 0

Specific values of the matrix B lead to the following specific schemes:

Richardson:

B = I (identity matrix)

Wk+1 = Wk + rk, k ≥ 0 and B is some aproximation to A−1
(18.25)

We thus compute r and we use the correction equation to find U. Other approaches: in this
case we decompose A into

A = L + D + U

where L and U are the triangular matrices representing the elements below and above the
diagonal, respectively while D is the diagonal matrix of A. Some special choices are:

Jacobi:

B = D−1

Gauss–Seidel:

B = (L + D)−1

Successive over-relaxation:

B = ω(I + ωD−1L)D−1 = ω(D + ωL)−1

where ω is some parameter.
The corresponding algorithms for these schemes are discussed in Thomas 1999. In general,

we do not often use these methods as we prefer to use ADI and splitting methods, as we shall
see in later chapters.

18.2.3 Exact solutions to elliptic problems

In general, it is not possible to find a closed solution for elliptic boundary value problems.
However, we may wish to test the accuracy of a finite difference scheme and it is then useful to
have some solution to benchmark against. To this end, we give a crash course in the Separation of
Variables technique for two-dimensional problems (see Kreider et al., 1966; Tolstov, 1962). We
first examine Laplace’s equation on a rectangular region with Dirichlet boundary conditions:

∂2u

∂x2
+ ∂2u

∂y2
= 0, 0 < x < L , 0 < y < M (18.26a)

u(0, y) = u(L , y) = 0, 0 < y < M (18.26b)

u(x, M) = 0, u(x, 0) = f (x), 0 < x < L (18.26c)

We then seek a solution u(x, y) of the boundary value problem (18.26) by using the ansatz
(assumption)

u(x, y) = XY, X = X (x), Y = Y (y)
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Plugging this representation into equation (18.26a) we get

d2Y

dy2
/Y − d2 X

dx2
/X = λ

d2 X

dx2
+ λX = 0

d2Y

dy2
− λY = 0

where λ is a constant.
From equations (18.26b) and (18.26c) we see that

X (0) = X (L) = 0

Y (0) = Y (M) = 0

We then get the representation

Xn(x) = An
sin nπx

L
, n = 1, 2, . . .

λ = λn =
(nπ

L

)2

Using this fact in the ordinary differential equation for Y gives us

d2Y

dy2
− n2π2

L2
Y = 0

that has the solution (containing two constants to be determined via Y (0) = Y (M) = 0)

Yn(y) = Bn sinh
nπy

L
+ Cn cosh

nπy

L

Bn = − cosh
nπ M

L
, Cn = sin

nπ

L
M

Using the formula

sinh α cosh β − cosh α sinh β = sinh(α − β)

gives us the general expression

Yn(y) = sinh
nπ

L
(M − y)

and hence

u(x, y) =
∞∑

n=1

An sinh
nπx

L
sinh

nπ

L
(M − y)

There is only one unknown term left, and using equation (18.26)(c)

u(x, 0) =
∞∑

n=1

An sinh

(
nπ M

L

)
sinh

nπx

L
= f (x)

An = 2

sinh(nπ M/L)

∫ L

0

f (x) sin
(nπx

L

)
dx
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Finally, the exact solution of the boundary value problem (18.26) is given by

u(x, y) = 2

L

∞∑
n=1

∫ L

0

f (x) sin(nπx/L) dx

sinh(nπ M/L)
sin

(nπx

L

)
sinh

nπ

L
(M − y)

This solution is valid when f is sufficiently smooth. In particular, if the function f and its first
derivative are piecewise continuous in the interval [0, L], then the formal solution is uniformly
and absolutely convergent to the exact solution in [0, L] × [0, M]. The Separation of Variables
technique that we discussed above can be applied to more general boundary conditions, for
example Neumann, Robin and the following non-homogeneous Dirichlet boundary conditions:

u(0, y) = f1(y), u(L , y) = f2(y), 0 < y < M

u(x, 0) = f3(x), u(x, M) = f4(x), 0 < x < L

For further details, see Tolstov (1962).

18.3 DIFFUSION AND HEAT EQUATIONS

The heat equation is probably one of the most famous equations in mathematical physics. In
two dimensions it is given by

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
(18.27)

This equation is usually defined on a bounded, semi-infinite or infinite two-dimensional
region. On the boundaries we defined boundary conditions as well as an associated initial con-
dition. For example, on a bounded rectangle [0, L] × [0, M] we define the Dirichlet boundary
conditions on one part of the boundary and Neumann boundary conditions on the other part:

u(x, 0, t) = 0, 0 < x < L

u(x, M, t) = 0, 0 < x < L

(18.28a)

∂u

∂x
(0, y, t) = 0, 0 < y < M

∂u

∂x
(L , y, t) = 0, 0 < y < M

(18.28b)

Finally, we prescribe the initial condition

u(x, y, 0) = f (x, y), 0 ≤ x ≤ L , 0 ≤ y ≤ M (18.29)

We call equations (18.27), (18.28) and (18.29) the initial boundary value problem (IBVP)
for the heat equation. We are interested in finding stable and accurate finite difference schemes
for this problem. In general, we employ centred difference schemes in the x and y directions
while for time discretisation we use the theta methods (its special cases are the explicit Euler,
implicit Euler and Crank–Nicolson schemes). We first discretise (18.27) by the explicit Euler
scheme:

U n+1
i, j − U n

i, j

k
= �2

xU n
i, j + �2

yU n
i, j (18.30)
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This is a time-marching scheme from level n (where the value is known) to level n + 1
(where the value is unknown). Rearranging terms gives us the following explicit formula:

U n+1
i, j = λU n

i−1, j + rU n
i, j + λU n

i+1, j + λU n
i, j−1 + λU n

i, j+1

= rU n
i, j + λ(U n

i−1, j + U n
i+1, j + U n

i, j−1 + U n
i, j+1) (18.31)

where λ = k/h2 and r = 1 − 4λ.

We now examine the discrete scheme from the following perspective: given that the discrete
solution is positive at time level n, can we find sufficient conditions that ensure that the
solution is also positive at level n + 1? Examining equation (18.31) allows us to conclude that
this constraint is:

r ≥ 0 ⇔ k

h2
≤ 1

4

Of course, we do not want to get negative solutions from positive input. Negative values are
non-physical (on ‘non-financial’).

We can also apply the von Neumann stability analysis technique to the scheme (18.30) to
get the same constraint as above. Let (see Peaceman, 1977)

εn
i j = γ n exp(iαih) exp(iβ jh), i = √−1

Then constructing the terms

�2
x εn

i j + �2
yε

n
i j

and noting that

cos αh − 1 = 2 sin2 αh

2

and then doing a little arithmetic, we see that

γ = 1 − 4λ sin2 αh

2
− 4λ sin2 βh

2

For stability, we must have

−1 ≤ γ ≤ 1

and this leads to the same constraint as before. This is a requirement for stability. Of course,
the positivity argument is more intuitive than the von Neumann analysis.

The (fully) implicit method is given by:

U n+1
i, j − U n

i, j

k
= �2

xU n+1
i, j + �2

yU n+1
i, j (18.32)

and rearranging gives us

U n+1
i, j (1 + 4λ) = λ(U n

i−1, j + U n
i+1, j + U n

i, j−1 + U n
i, j+1) (18.33)

Again, we see that positive values at level n give us positive values at level n + 1 irrespective
of the relative sizes of k and h. We say that this scheme is unconditionally stable. It is sometimes
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called a monotonic scheme. Some arithmetic shows that the amplification factor is:

γ = 1

1 + 4λ sin2(αh/2) + 4λ sin2(βh/2)
(18.34)

This is always less than 1 in absolute value.
Finally, the Crank–Nicolson scheme is given by:

U n+1
i, j − U n

i, j

k
= �2

xU
n+ 1

2

i, j + �2
yU

n+ 1
2

i, j (18.35)

where

U
n+ 1

2

i, j ≡ 1
2
(U n+1

i, j + U n
i, j )

This scheme is not positive in the above sense but it is unconditionally stable. The von
Neumann symbol is given by:

γ = 1 − iβ

1 + iβ
(18.36)

where

β = 2λ sin2 αh

2
+ 2λ sin2 βh

2

What is the absolute value of γ ?

18.3.1 Exact solutions to the heat equation

We can apply the Separation of Variables technique to find a solution to the IBVP (18.27),
(18.28) and (18.29) in the form of a bi-orthogonal Fourier series. The details are discussed in
Kreider et al. (1966) and Tolstov (1962) and we summarise the main results here. To this end,
we seek a solution in the form:

u(x, y, t) = X (x)Y (y)T (t)

The components are given by

Yn(y) = An sin
nπy

M
, n = 1, 2, . . . ,

Xm(x) = Bm cos
mπx

L
, m = 0, 1, 2, . . .

T = exp

[
−π2

(
m2

L2
+ n2

M2

)
t

]
Then

u(x, y, t) =
∞∑

m=0
n=1

umn(x, y, t)

where

umn(x, y, t) = Amn cos
mπx

L
sin

nπy

M
e−π2

(
m2

L2
+ n2

M2

)
t



0470858826c18 JWBK073-Duffy February 1, 2006 20:13 Char Count= 0

Finite Difference Schemes for Multidimensional Problems 205

We find the constant term in this last equation by using the initial condition (18.29) and
some integration. When t = 0 we get:

f (x, y) =
∞∑

m=0
n=1

Amn cos
mπx

L
sin

nπy

M

where the coefficients are given by:

A0n = 2
L M

∫ M

0

∫ L

0

f (x, y) sin
(nπy

M

)
dx dy (m = 0)

Amn = 4
L M

∫ M

0

∫ L

0

f (x, y) cos
(mπx

L

)
sin

(nπy

M

)
dx dy (m > 0)

You can use this example in benchmarks to test the effectiveness of FDM schemes.

18.4 ADVECTION EQUATION IN TWO DIMENSIONS

First-order hyperbolic equations have been extensively studied in the literature. We motivate the
theory by providing some appropriate examples. To start, let us examine the scalar first-order
hyperbolic equation (initial value problem)

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, −∞ < x < ∞, −∞ < y < ∞ (18.37)

with the associated initial condition

u(x, y, 0) = f (x, y) (18.38)

We assume that

a > 0, b > 0

The solution of the initial value problem (18.37), (18.38) is then given by

u(x, y, t) = f (x − at, y − bt) (18.39)

Thus, as in the one-dimensional case the solution consists of translating the initial condition
in the appropriate direction. The constant coefficients a and b are called the speed of propagation
in the x and y directions, respectively. The curve through the point (x, y, t) defined by the
equations

x − at = x0

y − bt = y0

(18.40)

is called a characteristic curve. Here x0 and y0 are arbitrary points.
First-order hyperbolic equations are a bit more tricky than the heat equations and other

second-order parabolic equations. Some of the reasons are:� Since the equation is first order only in x and y we need just one boundary condition at one
of the boundaries in the domain of dependence. But the question is: Where do we place the
boundary condition?� Centred difference schemes do not necessarily produce stable results.
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after a short time), discontinuities propagate through the domain of dependence when we
model hyperbolic equations. Furthermore, for some kinds of nonlinear hyperbolic equations
the solution may become discontinuous after a finite time, even if the initial conditions are
continuous.� The imposition of boundary conditions can be tricky, especially for systems (Friedrichs,
1958).

Let us start with an example and suppose that we discretise equation (18.37) using explicit
Euler in time and centred differencing in the x and y directions:

U n+1
i, j − U n

i, j

k
+ a

2h1

(
U n

i+1, j − U n
i−1, j

) + b

2h2

(
U n

i, j+1 − U n
i, j−1

) = 0 (18.41)

where h1 and h2 are the steplengths in the x and y directions, respectively.
The symbol for this operator and its absolute value are given by

γ = 1 − i
(
Rx sin ξ + Ry sin η

) (
Rx = ak

h1

, Ry = bk

h2

)
|γ |2 = 1 + R2

x sin2 ξ + R2
y sin2 η ≥ 1

(18.42)

(see for example, Thomas, 1998, 1999). We thus see that this harmless looking scheme is
unconditionally unstable! The problem is that some centred difference schemes are not suitable
for this kind of problem. Instead, the first-order upwinding schemes produce better results as
we shall now see. The scheme is:

U n+1
i, j − U n

i, j

k
+ a

h1

(
U n

i, j − U n
i−1, j

) + b

h2

(
U n

i, j − U n
i, j−1

) = 0 (18.43)

Calculation shows that the symbol is

γ = γ (ξ, η) = 1 − Rx (1 − e−iξ ) − Ry(1 − e−iη) (18.44)

and that it is less than 1 in absolute value if

0 ≤ Rx + Ry ≤ 1, Rx ≥ 0, Ry ≥ 0 (18.45)

We now try to derive the same result on the basis of positivity arguments. From equation
(18.43) the value at level n + 1 can be written in terms of the solution at level n as follows:

U n+1
i, j =

(
1 − ak

h1

− bk

h2

)
U n

i, j + a

h1

U n
i−1, j + b

h2

U n
i, j−1 (18.46)

We would like to define sufficient conditions for the right-hand side of equation (18.46) to
be positive. This criterion thus leads to the inequality:

1 − ak

h1

− bk

h2

≥ 0 or Rx + Ry ≤ 1 (18.47)

and this is precisely the inequality in equations (18.45). First-order hyperbolic problems are
important in the Black–Scholes environment because we need to model them in Asian option
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problems and basket option models, for example. This section has given insight into FDM for
these problems.

18.4.1 Initial boundary value problems

A new challenge arises when we wish to approximate the solution of first-order hyperbolic
initial boundary value problems. The theory is well developed (see, for example, Friedrichs,
1958) and knowing where to place the boundary conditions is important when we model Asian
options and the convective terms in the Black–Scholes PDE, for example. Let us consider
equation (18.37) in the rectangle:

0 ≤ x ≤ L

0 ≤ y ≤ M
(18.48)

When a and b are positive, the boundary conditions are specified at the ‘incoming’ bound-
aries, thus:

u(0, y, t) = g(y, t), 0 ≤ y ≤ M, t > 0

u(x, 0, t) = h(x, t), 0 ≤ x ≤ L , t > 0
(18.49)

If we use one-sided upwinding schemes to solve this problem, then everything works fine.
If we use centred difference schemes (for example, the scheme in equation (18.41) but with
Crank–Nicolson in time) we have to provide a numerical boundary condition on the boundaries
that do not have analytic boundary conditions. This has been a source of errors when modelling
Asian options in the past (see Mirani, 2002b). A solution to this problem is to use upwinding
schemes. A thorough treatment of numerical boundary conditions is given in Thomas (1999).

18.5 CONVECTION–DIFFUSION EQUATION

A convection–diffusion equation in n dimension contains both diffusion and convection terms
and these equations have received much attention in the engineering literature in the last
50 years because they model many kinds of physical problems such as the Navier–Stokes
equation and its specialisations. In financial engineering we view the Black–Scholes equation
as an instance of a convection–diffusion equation:

∂C

∂t
+ 1

2

n∑
i, j=1

∂2C

∂Si ∂Sj
ρi jσiσ j +

n∑
i=1

r Si
∂C

∂Si
− rC = 0 (18.50)

In this case we have n underlying assets and C is the contingent claim. We note the presence
of cross-terms if the assets are correlated and our resulting finite difference schemes must
produce accurate approximations to these terms.

An example of equation (18.50) is with n = 2. In this case we model an option with more
than one underlying asset. In particular, we can model the following kinds of options (see
Clewlow and Strickland, 1998; Zhang, 1998):� The difference of two assets (spread option)� Options on the maximum or minimum of two assets
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In this case the partial differential equation (a specialisation of equation (18.50)) is given
by:

− ∂C

∂t
= (r − D1)S1

∂C

∂S1

+ (r − D2)S2

∂C

∂S2

+ 1
2

σ 2
1 S2

1

∂2C

∂S2
1

+ 1
2

σ 2
2 S2

2

∂2C

∂S2
2

+ ρσ1S1σ2S2

∂2C

∂S1∂S2

− rC (18.51)

We discuss multi-asset options in more detail in Chapter 24.
As in Clewlow (1998), we can transform this equation to the simpler form

−∂C

∂t
= ν1

∂C

∂x1

+ ν2

∂C

∂x2

+ 1
2

σ 2
1

∂2C

∂x2
1

+ 1
2

σ 2
2

∂2C

∂x2
2

+ ρσ1σ2

∂2C

∂x1∂x2

− rC (18.52)

where ν1 = r − D1 − 1
2
σ 2

1 and ν2 = r − D2 − 1
2
σ 2

2

By the change of variables

x1 = ln(S1)

x2 = ln(S2)

where ν1 = r − D1 − 1
2
σ 2

1 and ν2 = r − D2 − 1
2
σ 2

2 .

In general, we prefer not to use these transformations but instead tackle the original PDE
(18.50) ‘head-on’ as it were.

18.6 SUMMARY AND CONCLUSIONS

In this chapter we have given an introduction to finite difference schemes for parabolic partial
differential equations in two space variables. This corresponds to two-factor models in financial
engineering applications. The focus in this chapter is on explaining the essential models and
difficulties that we need to understand when approximating the solution of multi-factor prob-
lems. To this end, we have adopted a ‘building-block’ approach by proposing useful schemes
for the heat equation, convection equations and convection–diffusion equations. The knowl-
edge that we gain here will be extremely useful in later chapters of this book, not only for the
theory but also applications to financial instrument pricing. Much of the financial literature
makes use of the schemes in this chapter.
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19
An Introduction to Alternating Direction

Implicit and Splitting Methods

19.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a class of finite difference schemes that are suitable for multi-factor
Black–Scholes equations. In general, finite difference schemes tend to become more difficult
to set up, understand and implement as the dimensionality of the space increases. Is there a
way to resolve this ‘curse of dimensionality’? We discuss how to resolve this problem in this
and the next chapter by decomposing a multidimensional problem into a number of simpler
sub-problems. Our interest is in applying and reusing the schemes from previous chapters if
possible. Some typical applications are:� Asian options (payoff depends on the underlying S and the average price of S over some

prescribed period)� Multi-asset options (for example, basket options and options with two or more underlyings)� Convertible bonds (bond price is a function of the underlying S and the (stochastic) interest
rate r )� Multidimensional interest rate models.

We now give a short introduction to the origins of alternating direct implicit (ADI) and split-
ting methods. Like much of numerical analysis, many techniques were developed during the
1960s when the digital computer was introduced to model many kinds of industrial, scientific
and military problems. Some examples are:� Reservoir engineering (Peaceman, 1977)� Solving the heat equations in several dimensions (Douglas et al., 1955)� Problems in hydrodynamics and elasticity (Yanenko, 1971).

The ADI method – pioneered in the United States by Douglas, Rachford, Peaceman, Gunn
and others – has a number of advantages. First, explicit difference methods are rarely used to
solve initial boundary value problems owing to their poor stability problems. Implicit meth-
ods have superior stability properties but unfortunately they are difficult to solve in two and
more dimensions. Consequently, ADI methods became an alternative because they can be
programmed by solving a simple tridiagonal system of equations.

During the period that ADI was being developed a number of Soviet scientists (most notably
Yanenko, Marchuk, Samarskii and D’Yakanov) were developing splitting methods (also known
as fractional step or locally one-dimensional (LOD) methods) for solving time-dependent
partial differential equations in two and three dimensions.

The ADI method is popular in the financial literature. However, there are many interpreta-
tions on how to use it and how to split a Black–Scholes equation into simpler one-dimensional

209
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problems. We hope that this chapter and the subsequent chapters will help to resolve some
issues such as:� The approximation of cross derivatives� Using Crank–Nicolson with ADI� How to split a multi-factor PDE� Algorithms for ADI schemes (Thomas, 1998).

19.2 WHAT IS ADI, REALLY?

In general, ADI is a method that approximates the solution of an initial boundary value problem
by a sequence of simpler problems. In order to motivate what ADI is we consider the prototype
example, namely the heat equation:

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
(19.1)

In Chapter 18 we approximated this equation by centred difference schemes (recall the
notation for divided differences in that chapter):

U n+1
i j − U n

i j

k
= �2

xU n+1
i j + �2

yU n+1
i j (19.2)

The disadvantage of this scheme is that we must solve a large system of equations at each
time level. In Chapter 18 we discussed a number of iterative schemes to solve such problems.
In this chapter, however, we propose schemes that allow us to simplify scheme (19.2) in some
way while still keeping the schemes stable and accurate. We now modify equation (19.2)
somewhat so that it becomes implicit in the x direction and explicit in the y direction:

U n+1
i j − U n

i j

k
= �2

xU n+1
i j + �2

yU n
i j (19.3)

In this case we can solve problem (19.3) since it can be cast as a tridiagonal system that
can subsequently be solved using LU decomposition, for example (Duffy, 2004). However,
we must determine if it is stable (be it unconditionally (absolutely) or conditionally). To prove
stability, we can employ the following techniques:� Von Neumann stability analysis� Positivity and maximum principle analysis.

We examine the positivity argument first. We rewrite system (19.3) as follows:

−λU n+1
i−1, j + (1 + 2λ) U n+1

i j − λ U n+1
i+1, j

= λU n
i, j−1 + (1 − 2λ) U n

i j + λ U n
i, j+1 (λ ≡ k/h2) (19.4)

We wish to find sufficient conditions to ensure that the right-hand side of (19.4) is positive
at time level n + 1, assuming that the discrete solution at time level n is positive. We then get
the condition

1 − 2λ ≥ 0 ⇔ λ = k

h2
≤ 1

2 (19.5)
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We get the same condition if we apply von Neumann stability analysis. Continuing, we write
(19.4) in the matrix form

MU n+1 = BU n or U n+1 = M−1 BU n (19.6)

where M and B are matrices.
The solution at time level n + 1 is positive because both the inverse of M and the matrix B

are positive matrices, and since the product of positive matrices is positive we get the result.
The matrix B is positive because the constraint (19.5) must be satisfied, and the inverse of M
is positive because M is an M-matrix, that is:

M = (mi j ), i, j = 1, . . . , n

mii > 0,

mi j ≤ 0, i �= j

(see Morton, 1996; Duffy, 2004).
So we see that the scheme (19.3) is only conditionally stable, and this is unacceptable. Can

we improve on this situation? To answer this question, let us consider consecutive applications
of this scheme at two time ‘legs’: the first leg is implicit in x and explicit in y while the second
leg is explicit in x and implicit in y. The new scheme moves from the time level n to a somewhat
‘fictitious’ time level n + 1

2 and then to time level n + 1. The full scheme is:

U
n+ 1

2
i j − U n

i j

k/2
= �2

xU
n+ 1

2
i j + �2

yU n
i j (19.7a)

U n+1
i j − U

n+ 1
2

i j

k/2
= �2

xU
n+ 1

2
i j + �2

yU n+1
i j (19.7b)

The hope is that even though the scheme at each leg is only conditionally stable there might
be a chance that the full scheme that marches the solution from time level n to time level n + 1
will be stable. The scheme alternates between what are essentially one-dimensional implicit
schemes, thus the name alternating direction implicit (ADI). In general, the increase in the
error due to the presence of the explicit term in a given leg is balanced by the error decrease
in the implicit scheme in the next leg. To verify this statement, we use von Neumann stability
analysis to prove unconditional stability of scheme (19.7). We assume an equal step length h
in the x and y directions for convenience only. Let

εn
i j = γ n exp(iαih) exp(iβ jh)

Then after using the results

�2
xε

n
i j = − 4

h2
sin2 αh

2

�2
yε

n
i j = − 4

h2
sin2 βh

2
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we get the following expressions for the growth factors:

γ n+ 1
2

γ n
= 1 − α1

1 + α2

γ n+1

γ n+ 1
2

= 1 − α2

1 + α1

where

α1 = 4λ sin2 βh

2

α2 = 4λ sin2 αh

2

and λ = k

2h2

Hence

γ n+1

γ n
= 1 − α2

1 + α1
· 1 − α1

1 + α2

We thus see that the growth factor γ from n to n + 1 is less than 1 in absolute value. Hence,
scheme (19.7) is unconditionally stable. This scheme, which is known as the Peaceman–
Rachford scheme, is second-order accurate in time and space (see, for example, Thomas,
1998).

Please note that we have not yet discussed boundary conditions but shall need to incorporate
them into these ADI schemes. We discuss this issue later.

19.3 IMPROVEMENTS ON THE BASIC ADI SCHEME

We introduce some variations on the basic ADI scheme.

19.3.1 The D’Yakonov scheme

In this section we discuss some modifications of the original scheme (19.7) in order to improve
computational efficiency. First, we eliminate the solution at time level n + 1

2 by using equation
(19.7a) to get the scheme:(

1 − k

2
�2

x

) (
1 − k

2
�2

y

)
U n+1

i j =
(

1 + k

2
�2

x

) (
1 + k

2
�2

y

)
U n

i j (19.8)

This equation suggests another splitting by the so-called D’Yakonov scheme, which we
define as follows: (

1 − k

2
�2

x

)
U ∗

i j =
(

1 + k

2
�2

x

) (
1 + k

2
�2

y

)
U n

i j

(19.9)(
1 − k

2
�2

y

)
U n+1

i j = U ∗
i j
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This set of equations is easy to solve: we apply LU decomposition at each leg and note that
the matrix in the matrix system is tridiagonal.

19.3.2 Approximate factorization of operators

We now discuss a technique that allows us to factor a given difference operator in two dimen-
sions into the product of two one-dimensional operators. Let us again take the example of the
Crank–Nicolson scheme for the two-dimensional heat equation (19.1):

U n+1
i j − U n

i j

k
= 1

2 (�2
xU n+1

i j + �2
yU n+1

i j + �2
xU n

i j + �2
yU n

i j ) (19.10)

We write this equation in the equivalent form

(1 − Lx − L y)U n+1
i j = (1 + Lx + L y)U n

i j (19.11)

where

Lx ≡ (k/2)�2
x and L y ≡ (k/2)�2

y

We now factor the terms on both sides of equation (19.11) by using the formula

(1 − Lx )(1 − L y) = 1 − Lx − L y − Lx L y

(1 + Lx )(1 + L y) = 1 + Lx + L y + Lx L y

We then get the so-called approximate factorisation scheme by neglecting the cross terms:

(1 − Lx )(1 − L y)U n+1
i j = (1 + Lx )(1 + L y)U n

i j (19.12)

This scheme is second order in k, and the idea can be generalised to more complex PDEs.
As a more general example, let us now examine the heat equation in m dimensions:

∂u

∂t
=

m∑
j=1

∂2u

∂x2
j

(19.13)

and its approximation by the n-dimensional difference scheme

U n+1 − U n

k
= LU n+1

L =
m∑

j=1

L j (discrete operator) (19.14)

L j = �+�−
h2

j

where �+ and �− are the forward and backward approximations to the first derivative of a
function in the direction j .

This is the m-dimensional equivalent of the difference scheme (19.2). Please note that, for
convenience, we have suppressed the subscripts that show dependence on the spatial mesh
points. We then write equations (19.14) in the form:

(I − kL)U n+1 = U n (19.15)
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We now factor the operator I − kL by producing a second-order accurate approximation
(Yanenko, 1971):

(1 − kL1)(1 − kL2) . . . (1 − kLm) = 1 − kL + k2	 (19.16)

where

	 =
∑
i< j

Li L j − k
∑

i< j<k

Li L j Lk + · · · + (−1)mkm−2L1 . . . Lm

Based on this expression we now propose a modified form of scheme (19.15):

m∏
j=1

(1 − kL j )U
n+1 = U n (19.17)

The splitting scheme, based on the so-called upper operator in (19.17), is now defined as:

(1 − kL1)U n+1/m = U n

(1 − kL2)U n+2/m = U n+1/m

. . .

(1 − kLm)U n+1 = U n+(m−1)/m

(19.18)

As an application of this scheme, we now examine the convection–diffusion equation:

∂u

∂t
+ A

∂u

∂x
+ B

∂u

∂y
= ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
(19.19)

We assume that this problem is to be solved in a rectangular region

D = {(x, y) : 0 < x < 1, 0 < y < 1}
However, we do not worry about boundary conditions just yet. Furthermore, we assume that
all the coefficients appearing in (19.19) are constant. We define the divided differences:

�xUi j = 1
2h (Ui+1, j − Ui−1, j )

�yUi j = 1
2h (Ui, j+1 − Ui, j−1)

Let us consider the two-level difference scheme depending on a single parameter β

U n+1
i j − U n

i j

k
+ Aβ�xU n+1

i j + A(1 − β)�xU n
i j + Bβ�yU n+1

i j + B(1 − β)�yU n
i j

= β(ν�2
xU n+1

i j + ν�2
yU n+1

i j ) + (1 − β)(ν�2
xU n

i j + ν�2
yU n

i j ) (0 ≤ β ≤ 1)

(19.20)

We write this longwinded expression in the more compact form

(1 + kβLx + kβL y)U n+1
i j = [1 − k(1 − β)Lx − k(1 − β)L y]U n

i j (19.21)

where Lx ≡ A�x − ν�2
x and L y ≡ B�y − ν�2

y .
As before, we factor out as follows:

(1 + kβLx )(1 + kβL y) = (1 + kβLx + kβL y) + k2β2Lx L y
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which leads us to the approximate factorisation scheme:

(1 + kβLx )(1 + kβL y)U n+1
i j = (1 − k(1 − β)Lx − k(1 − β)L y)U n

i j

≡ L3U n
i j (19.22)

As before, we can implement this scheme as a two-stage algorithm:

(1 + kβLx )U ∗
i j = L3U n

i j

(1 + kβL y)U n+1
i j = U ∗

i j

(19.23)

Some remarks:� The scheme can be generalised to more general convection–diffusion problems than those
proposed in equation (19.19) – for example, coefficients that depends on both space and
time and equations having inhomogeneous terms.� The scheme can be generalised to higher dimensions as we saw with the m-dimensional heat
equation in this section.� The technique can be applied to system of equations.� Of course convection-dominated problems will impact the stability of the schemes. In this
case we could use the exponentially fitted schemes (see Chapter 11) in each leg of the
approximate factorisation scheme, for example.

19.3.3 ADI classico for two-factor models

In the previous section we introduced an approximate factorisation (AF) method for splitting a
problem into a sequence of simpler one-dimensional problems. In this section we discuss the
original Peaceman–Rachford ADI for equation (19.19). The two-leg scheme is given by:

U n+ 1
2 − U n

i j

k
+ A�xU

n+ 1
2

i j + B�yU n
i j = ν(�2

xU
n+ 1

2
i j + �2

yU n
i j ) (19.24a)

U n+1
i j − U

n+ 1
2

i j

k
+ A�xU

n+ 1
2

i j + B�yU n+1
i j = ν(�2

xU
n+ 1

2
i j + �2

yU n+1
i j ) (19.24b)

As before, the scheme is implicit in x and explicit in y in the first leg, while it is explicit in x
and implicit in y in the second leg. The method is unconditionally stable and has second-order
accuracy, that is of order

O(k2 + h2)

where k is the step-size in time and h is the step-size in both the x and y directions. We can
use LU decomposition with tridiagonal matrices to solve system (19.24).

19.4 ADI FOR FIRST-ORDER HYPERBOLIC EQUATIONS

For completeness, we discuss the use of ADI and AF methods for first-order hyperbolic
problems. We take the model initial value problem:

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, (x, y) ∈ D = (0, 1) × (0, 1), t > 0

u(x, y, 0) = f (x, y), (x, y) ∈ D

(19.25)



0470858826c19 JWBK073-Duffy February 1, 2006 20:15 Char Count= 0

216 Finite Difference Methods in Financial Engineering

The two-dimensional Crank–Nicolson scheme (averaging in time) and centred differences
in space is given by:

U n+1
i j − U n

i j

k
+ a�xU

n+ 1
2

i j + b�yU
n+ 1

2
i j = 0 (19.26)

where

U
n+ 1

2
i j ≡ 1

2 (U n
i j + U n+1

i j )

�xU n
i j = 1

2h (U n
i+1, j − U n

i−1, j )

�yU n
i j = 1

2h (U n
i, j+1 − U n

i, j−1)

Rearranging terms leads to the following representation (step size is h in the x and y
directions): (

1 + λx

2
�x + λy

2
�y

)
U n+1

i j =
(

1 − λx

2
�x − λy

2
�y

)
U n

i j (19.27)

where λx = ak/h and λy = bk/h.

We now apply the same techniques as in the previous section to produce the following
approximate scheme:(

1 + λx

2
�x

) (
1 + λy

2
�y

)
U n+1

i j =
(

1 − λx

2
�x

) (
1 − λy

2
�y

)
U n

i j (19.28)

This is the so-called Beam–Warming scheme and we usually write in the computational
form: (

1 + λx

2
�x

)
U ∗

i j =
(

1 − λx

2
�x

) (
1 − λy

2
�y

)
U n

i j(
1 + λy

2
�y

)
U n+1

i j = U ∗
i j

(19.29)

Some arithmetic shows that the symbol of this scheme is:

γ (ξ, η) = (1 − i λx
2 sin ξ )(1 − i λy

2 sin η)

(1 + i λx
2 sin ξ )(1 + i λy

2 sin η)
(19.30a)

and

|γ (ξ, η)|2 = 1 (19.30b)

The Beam–Warming scheme is a second-order, unconditionally stable scheme, and hence
convergent.

Finally, by subtracting the term(
1 + λx

2
�x

) (
1 + λy

2
�y

)
U n

i j
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from each side of equation (19.28), we can us to write the scheme in the computational form:(
1 + λx

2
�x

)
�U ∗

i j = (−λx�x − λy�y)U n
i j(

1 + λy

2
�y

)
�Ui j = �U ∗

i j (19.31)

where �Ui j = U n+1
i j − U n

i j .

This is called the delta formulation (Thomas, 1998).
Finally, we discuss a so-called locally one-dimensional or LOD scheme for the initial value

problem (19.25). The idea is that we break up the equation into two one-dimensional equations
and approximate each one by a well-known finite difference scheme. In this case we use the
implicit Euler scheme in time and centred differences in space:

U
n+ 1

2
i j − U n

i j

k
+ a�xU

n+ 1
2

i j = 0

U n+1
i j − U

n+ 1
2

i j

k
+ b�yU n+1

i j = 0

(19.32)

We rewrite this scheme in the computational form:

(1 + λx�x )U
n+ 1

2
i j = U n

i j

(1 + λy�y)U n+1
i j = U

n+ 1
2

i j

(19.33)

An analysis of this scheme allows us to conclude the following (see Thomas, 1998, p. 247):� It is unconditionally stable for solving IVP (19.25)� It is first-order accurate in time, that is O(k)� It is second-order accurate in space, that is O(h2
1 + h2

2).

19.5 ADI CLASSICO AND THREE-DIMENSIONAL PROBLEMS

We have already seen that ADI produces a conditionally stable scheme on each leg, but this
potential instability gets balanced out at the next leg. Of course, if there is an uneven number
of legs we will get unstable schemes! Take for example, the innocent-looking scheme for
approximating the three-dimensional heat equation

U n+1/3 − U n

k/3
= �2

xU n+1/3 + �2
yU n + �2

zU n

U n+2/3 − U n+1/3

k/3
= �2

xU n+1/3 + �2
yU n+2/3 + �2

zU n+1/3 (19.34)

U n+1 − U n+2/3

k/3
= �2

xU n+2/3 + �2
yU n+2/3 + �2

zU n+1

In this equation we have suppressed dependence on the space variable for readability reasons.
It has been proved that this scheme is not unconditionally stable (Yanenko, 1971). There are a
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number of solutions to this problem. First, the Douglas–Rachford scheme is

U n+1/3 − U n

k
= �2

xU n+1/3 + �2
yU n + �2

zU n

U n+2/3 − U n+1/3

k
= �2

y(U n+2/3 − U n) (19.35)

U n+1 − U n+2/3

k
= �2

z (U n+1 − U n)

Furthermore, the simplest splitting scheme for this problem is:

U n+1/3 − U n

k
= �2

xU n+1/3

U n+2/3 − U n+1/3

k
= �2

yU n+2/3 (19.36)

U n+1 − U n+2/3

k
= �2

zU n+1

Another problem with the standard ADI method is that it is not applicable to problems with
mixed derivatives:

∂u

∂t
=

m∑
i, j=1

ai j
∂2u

∂xi∂x j
(19.37)

even in the case m = 2 because an explicit operator breaches the stability of the scheme
(Yanenko, 1971). This is bad news for two-factor Black–Scholes problems where we have
correlation between the underlying assets. We shall resolve this problem in the next chapter.

19.6 THE HOPSCOTCH METHOD

For the sake of completeness we give an introduction to the Hopscotch method (Gourlay,
1970). We focus on the heat equation (19.1) for convenience. The basic idea is to divide the
mesh points in the two-dimensional x–y mesh (ih, jh) as follows:

i + j odd

i + j even

The Hopscotch consists of two ‘sweeps’. In the first sweep (and subsequent odd-numbered
sweeps) the mesh points that are marked by a diamond (see Figure 19.1), that is for which
i + j is odd, are calculated based on current values (time level n) at the neighbouring points.
We use a FTCS scheme defined as follows:

U n+1
i j − U n

i j

k
= �2

xU n
i j + �2

yU n
i j for (i + j) odd (19.38)

For the second sweep at the same time level n + 1 the same calculation is used at nodes
marked with a circle, as shown in Figure 19.1. This second sweep is fully implicit. The scheme
is:

U n+1
i j − U n

i j

k
= �2

xU n+1
i j + �2

yU n+1
i j (i + j) even (19.39)
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‘odd’ ‘even’

Figure 19.1 Hopscotch mesh points

From this equation we can find the value at time level n + 1 as follows:

U n+1
i j =

[
U n

i j + k
U n+1

i+1, j +U n+1
i−1, j

h2
x

+ k
U n+1

i, j+1+U n+1
i, j−1

h2
y

]
[
1 + 2k

h2
x
+ 2k

h2
y

] (19.40)

In the second and subsequent even-numbered time steps, the roles of the diamonds and
circles are interchanged.

Some remarks on the Hopscotch method are in order.� It can be applied to convection–diffusion equations and the scheme is unconditionally stable
if upwind (one-sided) differencing is used for approximating the first-order derivative terms
(see Gourlay, 1970).� The method is 3 to 4 times as fast as the Peaceman–Rachford method owing to the absence
of tridiagonal inversions.� The method has been applied to problems with cross derivatives, but this fact is not well
documented in the literature.� How would you apply Hopscotch to problems in three space dimensions? (The neighbouring
points live in a cube.)

The devil is in the details. It seems that the Hopscotch method is not widely used in practice.
We have some anecdotal evidence of its use in quantitative finance applications.

A discussion of the Hopscotch methods for convection–diffusion equations is given in
Hunsdorfer and Verwer (2003).

19.7 BOUNDARY CONDITIONS

When solving initial boundary value problems for the heat equation we must model the bounded
or unbounded region in which the equation is defined. In particular, we must describe the
conditions on the solution at the boundary of the region. There are five main issues that we
must address:� The shape or geometry of the region� The kinds of boundary conditions (Dirichlet, Neumann, Robin, linearity)� How to approximate the boundary conditions� How to incorporate the boundary conditions into the ADI or splitting equations
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and accuracy of the difference scheme.

We now give a brief discussion of each of these topics. We focus on creating the algorithm for
the two-dimensional heat equation in a rectangular region with Dirichlet boundary conditions.
We extend the technique to more general PDEs later.

In general, it would seem that ADI and splitting methods are better suited to rectangular
regions than to non-rectangular regions, because it is more difficult to approximate function
values and their derivatives on curved boundaries than on horizontal or vertical boundaries.
(see Greenspan, 1966).

We shall now discuss the case of Dirichlet boundary conditions. To this end, we consider
the heat equation (19.1). We rewrite the ADI equations (19.7) by grouping known terms on
the right-hand side of the equations and unknown terms on the left-hand side:(

1 − k

2
	2

x

)
U

n+ 1
2

i j =
(

1 + k

2
	2

y

)
U n

i j (19.41a)(
1 − k

2
	2

y

)
U n+1

i j =
(

1 + k

2
	2

x

)
U

n+ 1
2

i j (19.41b)

In general, there is not much difficulty involved if we wish to calculate the boundary values
of the approximate solution at times n and n + 1. The real challenge is to determine suitable
boundary conditions for the intermediate value n + 1

2 in equations (19.41). To this end, we add
the left-hand side of equation (19.41)(a) to the right-hand side of equation (19.41b) and vice
versa. This give use a formula for the intermediate solution in terms of the solution at time
levels n and n + 1:

U
n+ 1

2
i j = 1

2

(
1 − k

2
	2

y

)
U n+1

i j + 1
2

(
1 + k

2
	2

y

)
U n

i j (19.42)

This formula allows us to find the appropriate boundary values. For example, in the x
directions these will be:

i = 0: U
n+ 1

2
0 j = 1

2

(
1 − k

2
	2

y

)
g[0, jh2, (n + 1)k] + 1

2

(
1 + k

2
	2

y

)
g (0, jh2, nk)

(19.43)

i = I: U
n+ 1

2
I j = 1

2

(
1 − k

2
	2

y

)
g[1, jh2, (n + 1)k] + 1

2

(
1 + k

2
	2

y

)
g (1, jh2, nk)

We can find the corresponding boundary conditions in the y direction by plugging in special
index values of ( j = 0, j = J ) in equations (19.42). Equations (19.43) are second-order (in
time) accurate approximations to the boundary condition. An alternative solution is to use the
(again) second-order approximation

U
n+ 1

2
0 j = g

[
0, jh2,

(
n + 1

2

)
k
]

(19.44)
U

n+ 1
2

I j = g
[
1, jh2,

(
n + 1

2

)
k
]

Thus, you may choose between (19.43) and (19.44) as each gives second-order accuracy.
It is also possible to handle Neumann boundary conditions in conjunction with ADI. A full
treatment of these topics is given in Thomas (1998).
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19.8 SUMMARY AND CONCLUSIONS

We have given an introduction to alternating direction implicit (ADI) methods that are used in
engineering, science and finance to solve multidimensional partial differential equations. These
methods are based on the decomposition of a multidimensional problem into a series of one-
dimensional problems. We then solve each sub-problem using the techniques for one-factor
equations, as already discussed in earlier chapters of this book.

We have included this chapter for a number of reasons. First, there is growing interest in ADI,
as can be seen in the financial literature, and it is probably a good idea to present the essence
of the method for a simple but important model problem, namely the two-dimensional heat
equation and the convection–diffusion equation. There is some evidence to show that splitting
methods give better results than ADI for two-factor Black–Scholes equations. Third, ADI and
splitting methods are easy to understand and to implement and are sometimes preferable to
direct methods.
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20
Advanced Operator Splitting Methods:

Fractional Steps

20.1 INTRODUCTION AND OBJECTIVES

Splitting methods were developed in the 1950s and 1960s by Soviet scientists. In this chapter
we apply the splitting method to the two-dimensional heat equation and from there we move
to more challenging problems such as:� Modelling cross-derivative terms� Applications to three and higher dimensions� Predictor–corrector methods in conjunction with splitting.

A detailed analysis of splitting methods can be found in the definitive monograph, Yanenko
(1971). ADI and operator splitting were introduced in Duffy (2004).

20.2 INITIAL EXAMPLES

We examine the two-dimensional heat equation:

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
(20.1)

The idea behind operator splitting is to reduce equation (20.1) into two one-dimensional
problems. We then approximate each sub-problem by implicit or explicit schemes. Thus, we
are thinking intuitively of two one-dimensional partial differential equations:

∂v

∂t
= ∂2v

∂x2
and

∂w

∂t
= ∂2w

∂y2
(20.2)

where the functions v and w are deliberately unspecified. In general we take centred differenc-
ing in space and explicit or implicit time marching in time. For example, using explicit Euler
we get the two-leg scheme

Ũi j − U n
i j

�t
= �2

xU n
i j

U n+1
i j − Ũi j

�t
= �2

yŨi j

(20.3)

where we have used the notation of Ũ for the intermediate value.
Let us assume for convenience that the mesh size in the x and y directions is the same,

namely h. We wish to examine the stability of this scheme. We expect it to be conditionally
stable only, and we can prove this using either von Neumann stability analysis or the max-
imum principle. Using the former method we see that the amplification factor is given by

223
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(in much the same way as in Chapter 19)

γ n+1

γ n
=

(
1 − 4λ sin2 αh

2

) (
1 − 4λ sin2 βh

2

)
, λ = k

h2
(20.4)

This leads to the constraint:
k

h2
≤ 1

2
(20.5)

Now, the implicit splitting scheme is defined by:

Ũi j − U n
i j

�t
= �2

xŨi j

U n+1
i j − Ũi j

�t
= �2

yU n+1
i j

(20.6)

This scheme is unconditionally stable. In fact each leg is stable, a property not shared
by the ADI schemes. Finally, it is possible to define a splitting method in conjunction with
Crank–Nicolson time marching:

Ũi j − U n
i j

k
= 1

2
(�2

xŨi j + �2
xU n

i j )

U n+1
i j − Ũi j

k
= 1

2
(�2

yU n+1
i j + �2

yŨi j )

(20.7)

Having motivated splitting we now discuss a number of important issues that will be useful
when we model multi-factor Black–Scholes problems.

20.3 PROBLEMS WITH MIXED DERIVATIVES

The standard ADI method is not good at approximating mixed derivatives and a number
of workarounds have been suggested by researchers and practitioners in financial engineering
(Bhar et al., 2000; Andreasen, 2001). The splitting method is better and to this end we examine
the problem:

∂u

∂t
= Lu

Lu ∼=
2∑

i, j=1

ai j
∂2u

∂xi∂x j

a11 a22 − a2
12 > 0, a11 > 0, a22 > 0

ai j constant

(20.8)

In Yanenko (1971) the following scheme is proposed:

Ũi j − U n
i j

�t
= a11�2

xŨi j + a12�x�yU n
i j

U n+1
i j − Ũi j

�t
= a21�x�yŨi j + a22�2

yU n+1
i j

(20.9)

This scheme is stable and convergent (see Yanenko, 1971) and it resolves the problems that
ADI methods show for this equation.
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We shall see later how to use scheme (20.9) in multi-factor Black–Scholes problems.
Yanenko has also produced a scheme for the three-dimensional heat conduction equation:

∂u

∂t
=

3∑
i, j=1

ai j
∂2u

∂xi ∂x j
(20.10)

The proposed scheme is:

U n+ 1
6 − U n

k
= 1

2
�11U n+ 1

6 + �12U n

U n+ 2
6 − U n+ 1

6

k
= �21U n+ 1

6 + 1
2
�22U n+ 2

6

U n+ 3
6 − U n+ 2

6

k
= 1

2
�11U n+ 3

6 + �13U n+ 2
6

(20.11)
U n+ 4

6 − U n+ 3
6

k
= �31U n+ 3

6 + 1
2
�33U n+ 4

6

U n+ 5
6 − U n+ 4

6

k
= 1

2
�22U n+ 5

6 + �23U n+ 4
6

U n+1 − U n+ 5
6

k
= �32U n+ 5

6 + 1
2
�33U n+1

where

� j j u ∼ a j j
∂2u

∂x2
j

, j = 1, 2, 3

�i, j u ∼ ai j
∂2u

∂xi∂x j
, i �= j, i, j = 1, 2, 3

This scheme is consistent with PDE (20.10) and is stable provided that the matrix B = (bi j )
is positive definite, where bi j = ai j , i �= j and bii = aii/2.

This scheme can be generalised to more general differential operators that appear in the
financial engineering literature, for example currency options that depend on the spot exchange
rate and two activity rates (Carr, 2004, private communication). We conclude our discussion
of mixed derivatives by proving a result concerning the approximation of the mixed derivative
by divided differences:

∂2u

∂x∂y
(xi , y j ) ∼ 1

4hx hy
(ui+1, j+1 − ui+1, j−1 − ui−1, j+1 + ui−1, j−1) (20.12)

The steps in the proof are given as follows:

�x�yui j = 1

2hy
�x (ui, j+1 − ui, j−1)

= 1

4hx hy
[(ui+1, j+1 − ui−1, j+1) − (ui+1, j−1 − ui−1, j−1)]

= 1

4hx hy
(ui+1, j+1 − ui−1, j+1 − ui+1, j−1 + ui−1, j−1) (20.13)
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as was to be shown. Summarising, scheme (20.11) could be one leg of a splitting scheme for
Black–Scholes. The other leg could be a convective PDE.

20.4 PREDICTOR–CORRECTOR METHODS
(APPROXIMATION CORRECTORS)

These are methods that are based on predictor–corrector methods for initial value problems
for ordinary differential equations (Conte and de Boor, 1980). Again, let us examine the three-
dimensional heat equation:

∂u

∂t
=

3∑
j=1

∂2u

∂x2
j

(20.14)

The following scheme is then unconditionally stable and second-order accurate (for a proof,
see Yanenko, 1971, p. 29):

U n+1/6 − U n

k/2
= �2

xU n+1/6 + �2
yU n + �2

zU n (20.15a)

U n+2/6 − U n+1/6

k/2
= �2

y(U n+2/6 − U n) (20.15b)

U n+3/6 − U n+2/6

k/2
= �2

z (U n+3/6 − U n) (20.15c)

U n+1 − U n

k
= �2

xU n+1/6 + �2
yU n+2/6 + �2

zU n+3/6 (20.15d)

In this case we have defined three predictors and the ‘final’ corrector that represents the
desired approximate solution at time level n + 1. This is thus called a stabilising corrections
scheme. The scheme is unconditionally stable and of second-order accuracy in both time and
space.

One final example of a predictor–corrector method is given by:

U n+1/6 − U n

k/2
= �2

xU n+1/6 (20.16a)

U n+2/6 − U n+1/6

k/2
= �2

yU n+2/6 (20.16b)

U n+3/6 − U n+2/6

k/2
= �2

zU n+3/6 (20.16c)

U n+1 − U n

k
= (�2

x + �2
y + �2

z )U n+3/6 (20.16d)

Again, we have three predictors and one corrector. Again, this scheme is unconditionally
stable and second-order accurate. This scheme can be generalised to more general partial
differential equations, for example convection–diffusion equations and equations with mixed
derivatives. Furthermore, the scheme is easy to implement and has good stability and conver-
gence properties.
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20.5 PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

The splitting technique has been applied to the solution of partial integro-differential equations
(PIDEs) by Yanenko, Marchuk and others. For example, consider the PIDE for the kinetic
theory equation:

∂u

∂t
+

m−1∑
k=1

uk
∂u

∂xk
+ σu = σs

4π

∫
u(x, y, t) dy + f (x, y, t) (20.17)

Now let

∧1 = approximation to σ I + σ s

4π

∫
u dy

∧2 = approximation to
m−1∑
k=1

uk
∂u

∂xk

f = approximation to f

where the integral term is taken on some interval (it may be bounded, infinite or semi-infinite).
Then the splitting scheme is defined by:

U n+1/2 − U n

k
= ∧1(αU n+1/2 + βU n) + f

U n+1 − U n+1/2

k
= ∧2(αU n+1 + βU n+1/2)

(20.18)

where

α ≥ 0, β ≥ 0, α + β = 1

∧2 = ∧21 + · · · + ∧2,m−1

∧2 j = approximation to the differential operator u j
∂

∂x j
, j = 1, . . . , m − 1

A so-called complete splitting is defined in Yanenko (1971) in which the first-order terms
in equation (20.17) are split.

Then the complete splitting scheme is given by:

U (n+1)/m − U n

k
= ∧1(αU (n+1)/m + βU n) + f

U n+( j+1)/m − U n+ j/m

k
= ∧2 j (αU n+( j+1)/m + βU n+ j/m) j = 1, . . . , m − 1 (20.19)

We can choose between different marching schemes in each leg of this scheme, for example
explicit in the first leg and fully implicit in the second leg when m = 2:

U n+1/2 − U n

k
= ∧1U n

(
α = 0
β = 1

)
(20.20a)

U n+1 − U n

k
= ∧21U n+1

(
α = 1
β = 0

)
(20.20b)
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We can thus solve the problem as a sequence of one-dimensional problems. We note finally
that splitting methods can be applied to integral and algebraic equations. A discussion is outside
the scope of this book.

20.6 MORE GENERAL RESULTS

We conclude our discussion of splitting methods with some general schemes for general PDEs
and PIDEs. Consider the general PIDE initial value problem in m dimensions:

∂u

∂t
= Lu

u(x, 0) = u0(x)

(20.21)

where L is an integro-differental operator of the form

L = L1 + L2 + · · · + Lm (20.22)

and the individual operators are approximated by some finite difference schemes:

L1 ∼ ∧10 + ∧11

L2 ∼ ∧20 + ∧21 + ∧22

. . .

Lm ∼ ∧20 + · · · + ∧mm

(20.23)

The splitting method is defined by:

U n+1/m − U n

k
= ∧10U n + ∧11U n+1/m

U n+2/m − U n+1/m

k
= ∧20U n + ∧21U n+1/m + ∧22U n+2/m

. . .

U n+1 − U n+(m−1)/m

k
= ∧m0U n + ∧m1U n+1/m + · · · + ∧mmU n+1

(20.24)

where ∧sr = 0 if r < s − 1.
It is possible to prove convergence of this scheme if the discrete operators are commutative.

20.7 SUMMARY AND CONCLUSIONS

We have given an introduction to splitting methods. These are similar to ADI methods but
are somewhat easier to understand and to apply in practice. Furthermore, splitting solves
problems with cross derivatives well and it can be applied to multi-factor problems, PIDE and
applications where classical ADI methods fail (Levin, 1999, private communication).
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Modern Splitting Methods

21.1 INTRODUCTION AND OBJECTIVES

In this short chapter we deal with a number of emerging techniques and schemes that are useful
for approximating initial boundary value problems in financial engineering. Some of the topics
to be discussed are:� Systems of Black–Scholes equations and their numerical approximation� ADI and operator splitting schemes for systems of PDEs� A new kind of splitting: implicit–explicit (IMEX) schemes

This chapter can be skipped on a first reading of this book.

21.2 SYSTEMS OF EQUATIONS

We shall examine systems of partial differential equations. In order to reduce the scope we shall
look at parabolic systems in two dimensions. In general, nonlinear systems of equations occur
in many application areas such as weather prediction, oil reservoir simulation, groundwater
flow and computational aerodynamics. In financial engineering we see applications to chooser
options (Wilmott, 1998) and leveraged knock-in options (Tavella et al., 2000). In this section
we examine systems of parabolic equations of the form:

∂v
∂t

= B1
∂2v
∂x2

+ B2
∂2v
∂y2

+ A1
∂v
∂x

+ A2
∂v
∂y

+ C0v (21.1)

where

v = t (v1, . . . , vn), v j = v j (x, y, t), j = 1, . . . , n

and B1, B2, A1, A2 and C0 are n × n matrices.
This is a general system and there are special sub-cases that have been extensively studied

in the literature. One special case is the class of first-order hyperbolic systems of the form:

∂v
∂t

= A1
∂v
∂x

+ A2
∂v
∂y

+ C0v (21.2)

A discussion of this kind of problem is outside the scope of this book. For more information,
see Thomas (1998). Instead, we examine parabolic systems of the form (21.1).

Definition 21.1. The system (21.1) is said to be parabolic if for all

ω = t (ω1, ω2) ∈ R2 the eigenvalues λ j (ω), j = 1, . . . n of the matrix

−ω2
1 B1 − ω2

2 B2 satisfy �λ j (ω) ≤ δ|ω|2

for j = 1, . . . , n for some δ > 0 independent of ω.
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Definition 21.2. The matrices B1 and B2 are said to be simultaneously diagonisable if there
exists a matrix S such that D1 = SB1S−1 and D2 = SB2S−1 are both diagonal matrices.

We reduce the scope for the moment by examining the system:

∂v
∂t

= A
∂2v
∂x2

+ B
∂2v
∂y2

(21.3)

where we assume that A and B are both positive definite and simultaneously diagonalisable.
We propose a number of schemes for this problem where we assume that the notation in the
scalar case carries over to the vector case. The first FTCS scheme uses explicit time marching
and centred differencing in space:

Un+1
i j − Un

i j

k
= A�2

x Un
i j + B�2

yUn
i j (21.4)

Let μ j and ν j ( j = 1, . . . , n) be the eigenvalues of A and B, respectively. Then the condition
μ j rx + ν j ry ≤ 1

2 where rx = k/h2
x , ry = k/h2

y is both necessary and sufficient for convergence
of the difference scheme (21.4) to the solution of (21.3).

We now discuss the applicability of the Crank–Nicolson scheme to the system (21.3). It is
given by:

Un+1
i j − Un

i j

k
= 1

2

{
A�2

x Un+1
i j + B�2

yUn+1
i j + A�2

x Un
i j + B�2

yUn
i j

}
(21.5)

By taking the discrete Fourier transform of equation (21.5) it can be shown that this scheme
is unconditionally stable (see Thomas, 1998, for details).

21.2.1 ADI and splitting for parabolic systems

The finite difference scheme (21.5) is quite expensive at run-time in terms of memory usage
and processing time, and for this reason we investigate the option of applying ADI methods.
The ADI scheme with implicit Euler time stepping is given by:

Un+1/2
i j − Un

i j

k
= A�2

x Un+1/2
i j + B�2

yUn
i j

Un+1
i j − Un+1/2

i j

k
= A�2

x Un+1/2
i j + B�2

yUn+1
i j

(21.6)

On the other hand, the splitting scheme with implicit Euler time stepping is given by:

Un+1/2
i j − Un

i j

k
= A�2

x Un+1/2
i j

Un+1
i j − Un+1/2

i j

k
= B�2

yUn+1
i j

(21.7)

In short, these equations are the equivalents of the scalar schemes in Chapters 19 and 20.
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21.2.2 Compound and chooser options

A compound option is an option on an option. It gives the holder the right to buy (call) or
sell (put) another option. If we exercise the option we shall then own a call or put option that
will then give us the right to buy or sell the underlying. We say that the compound option is
of second order because it gives the holder rights over another derivative. A chooser option
is similar to a compound option because it gives the holder the right to buy a further option
(Wilmott, 1998). However, in this case the holder can choose to receive a call or put. The
value Ch of a chooser option depends on two other options, as seen by the following parabolic
system:

∂Ch

∂t
+ 1

2σ 2S2 ∂2Ch

∂S2
+ r S

∂Ch

∂S
− rCh = 0

∂V1

∂t
+ 1

2σ 2S2 ∂2V1

∂S2
+ r S

∂V1

∂S
− r V1 = 0

∂V2

∂t
+ 1

2σ 2S2 ∂2V2

∂S2
+ r S

∂V2

∂S
− r V2 = 0

(21.8)

where Ch = price of chooser option

V1 = underlying option

V2 = underlying option.

This is an uncoupled system of equations and can be posed in the form (21.1). The coupling
between the different variables in system (21.8) is seen at the expiry of the chooser option:

Ch(S, T ) = max[V1(S, T ) − K1, V2(S, T ) − K2] (21.9)

where T = expiry date of chooser option

K1 = strike price of option V1

K2 = strike price of option V2.

The price of a chooser option can be calculated as the sum of two suitable vanilla options.
But it is also interesting to view it from a PDE point of view.

With compound options, on the other hand, we have two steps. First, we price the ‘underlying’
option and then the compound option. To this end, let the underlying option have payoff F(S)
at time T :

∂V

∂t
+ 1

2σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0

V (S, T ) = F(S)

(21.10)

Now suppose that the compound option can be exercised at time TC < T with a given payoff
G[V (S, TC )]. Then the PDE for the compound option C(S, t) is given by:

∂C

∂t
+ 1

2σ 2S2 ∂2C

∂S2
+ r S

∂C

∂S
− rC = 0

C(S, TC ) = G[V (S, TC )]

(21.11)
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For example, a call option on a call option with exercise prices K for the underlying and
KC for the compound option gives the payoffs:

F(S) = max(S − K , 0)

G(S) = max(V − KC , 0)
(21.12)

It is possible to approximate the solution of system (21.11) by finite differences. The process
involves schemes for approximating V and then C . This might be overkill because exact
solutions are known (see Haug, 1998, p. 43), but for some problems an exact solution may not
be known.

21.2.3 Leveraged knock-in options

In Tavella (2000) an example is given of a standard knock-in barrier put option that has no
value until the spot price touches a barrier B, at which time the option becomes a standard put
option. In order to price the knock-in we can add another Black–Scholes equation that gives
the value of the standard option that the knock-in option becomes when knocked in:

∂Vsp

∂t
+ 1

2σ 2S2 ∂2Vsp

∂S2
+ (r − D0)S

∂Vsp

∂S
− r Vsp = 0

∂Vki

∂t
+ 1

2σ 2S2 ∂2Vki

∂S2
+ (r − D0)S

∂Vki

∂S
− r Vki = 0

(21.13)

where Vsp = standard put option price

Vki = knock-in option

D0 = dividend.

At expiration the payoff conditions are given by:

Vsp(S, T ) = max(K − S, 0)

Vki(S, T ) = Vsp(S, T ), S ≤ B (knock-in condition)

Vki(S, T ) = 0, S > B

(21.14)

The domain of integration needs to be truncated and the corresponding boundary conditions
are:

∂2Vsp

∂S2
= ∂2Vki

∂S2
= 0 at S = Smin (21.15)

or

Vsp = Vki = 0 at S = Smax

The systems in this section can be modelled using standard finite difference scheme, ADI
and splitting methods. We omit the details. Please note that there are no mixed derivative terms
in (21.13).

21.3 A DIFFERENT KIND OF SPLITTING: THE IMEX SCHEMES

Until now we have carried out so-called dimensional splitting, but many problems can be split
into two parts, one of which is stiff and the other non-stiff.
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In this section we give a brief introduction to IMEX methods. They have this name because
part of the scheme uses implicit time differencing while the other part uses explicit time
differencing. Let us take the simple convection–diffusion equation for motivational purposes:

∂u

∂t
= σ

∂2u

∂x2
+ μ

∂u

∂x
σ, μ > 0 constant (21.16)

We now carry out a semi-discretisation of problem (21.16) by applying centred differencing
in the space direction. The scheme is:

du j

dt
= σ D+ D−u j + μD0u j , 1 ≤ j ≤ J − 1 (21.17)

or in matrix form

dU

dt
= AU + BU, U = t (u1, . . . , u J−1)

A = σ
h2

⎛⎜⎜⎜⎜⎝
−2 1 0

1
. . .

. . .
. . .

. . . 1
0 1 −2

⎞⎟⎟⎟⎟⎠

B = μ

2h

⎛⎜⎜⎜⎜⎝
0 +1 0

−1
. . .

. . .
. . .

. . . +1
0 −1 0

⎞⎟⎟⎟⎟⎠

(21.18)

In other words, we have decomposed the term in the ODE into a stiff (diffusive) and a
non-stiff (convective) term. We now fully discretise scheme (21.18) in time by using explicit
Euler for the convection term and the θ method for the diffusion term, as follows:

U n+1 − U n

k
= (1 − θ )AU n + θ AU n+1 + BU n (21.19)

where 0 ≤ θ ≤ 1.

This is the simplest example of what we call the IMEX-θ method. We generalise it to the
nonlinear semi-discrete scheme:

dU

dt
= F[t, U (t)] = F0[t, U (t)] + F1[t, U (t)] (21.20)

where F0 is the non-stiff term (convection, for example) and F1 is the stiff term (diffusion and
reaction, for example).

The corresponding IMEX-θ method is given by:

U n+1 = U n + k[F0(tn, U n) + (1 − θ )F1(tn, U n) + θ F1(tn+1, U n+1)] (21.21)

We shall see some examples of scheme (21.21) when we examine finite difference schemes
for American option problems.

This method has more favourable truncation errors than methods based on operator splitting
with fractional steps. The big challenge, however, is to examine the stability properties of the
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scheme (Hundsdorfer and Verwer, 2003). A disadvantage of this method is that explicit Euler
is not well suited to convection problems and first-order accuracy may not be good enough.
We should then resort to IMEX multi-step methods, but that topic is outside the scope of this
book.

21.4 APPLICABILITY OF IMEX SCHEMES
TO ASIAN OPTION PRICING

We shall examine Asian option pricing in Chapter 23 where we discuss ADI and splitting
methods. For the moment, let us accept that the two-factor PDE governing the option behaviour
is given by:

−∂u

∂t
+ L Su + L I u = 0 (21.22)

where the elliptic and hyperbolic operators are given by

L Su ≡ 1
2σ 2S2 ∂2u

∂S2
+ r S

∂u

∂S
− ru

L I u ≡ S
∂u

∂ I

(21.23)

respectively. Of course, we could solve this problem using operator splitting (as we have seen
in Chapters 19 and 20) but this has its own problems:� The act of splitting introduces so-called splitting errors� Numerical boundary conditions are difficult to approximate and have caused us many

headaches in the past.

For these reasons the IMEX schemes are an improvement (Hundsdorfer and Verwer, 2003;
Briani et al., 2004). The motivation is to split a semi-discretised scheme into its stiff and non-
stiff components. The former group usually corresponds to diffusion, and reaction–diffusion
equations while the latter group corresponds to convection (advection) equations. Looking at
the operators in (21.22) we see that we have two possible candidates for the IMEX scheme.
To this end, let us discretise (21.22) in the S and I directions using centred differencing. The
discrete schemes are then:

dui j

dt
= L̃ Sui j + L̃ I ui j (21.24)

where the discrete operators are defined:

L̃ Sui j ≡ 1
2σ 2S2

i D+ D(S)
− ui j + r Si D(S)

0 u(S)
i j − r Si

L̃ I ui j ≡ Si D(I )
0 u(I )

i j

(21.25)

We can write the semi-discrete schemes in the vector form (as in Hundsdorfer and Verwer,
2003, p. 383):

dU

dt
= F[t, U (t)] = F0[t, U (t)] + F1[t, U (t)] (21.26)

where F0 = non-stiff term (I direction)
F1 = stiff term (S direction).
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In fact the terms in (21.26) can be nonlinear in general but in the current situation they will
be linear, in which case we get a simpler form of (21.26), namely:

dU

dt
= A1U + A2U (21.27)

Scheme (21.21) can then be used in this case.
We see IMEX methods as an active area of reseach in the coming years.

21.5 SUMMARY AND CONCLUSIONS

We have given an overview of a number of special problems in option pricing, for example
applications where we must deal with systems of Black–Scholes equations. Furthermore,
we also introduced some new schemes that compete with the current FDM ‘establishment’.
We feel that it is necessary to give these schemes some air space and we expect to see more
development work in this area in the future.
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Applying FDM to Multi-Factor

Instrument PricingInstrument Pricing
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22
Options with Stochastic Volatility:

The Heston Model

22.1 INTRODUCTION AND OBJECTIVES

Until now we have assumed that the volatility is either constant (as in the original Black–
Scholes formulation) or is some deterministic function of time and of the underlying assets.
The Black–Scholes model has been successful in explaining stock option prices but is less
robust in other areas such as foreign currency option pricing. In particular, since the model
assumes that volatility is uncorrelated with spot returns it cannot capture important skewness
effects.

In this chapter we examine a model that was proposed in Heston (1993). The original
article was devoted to finding a closed-form solution for the price of a European call option
on an asset that has stochastic volatility. Both the asset and the volatility are modelled by
separate stochastic differential equations (SDEs). Based on these SDEs we describe the partial
differential equation that models the behaviour of a contingent claim on the asset. We describe
the boundary conditions and initial condition that, together with the PDE, describes a well-
defined initial boundary value problem.

Since the PDE for the Heston model contains two factors and since it has cross derivatives
we shall investigate the applicability of operator splitting schemes to solving this problem. We
thus ignore ADI methods in this chapter. A further complication is that the boundary conditions
associated with the Heston model can be complex (for example, in one case we have a first-
order hyperbolic PDE in two space variables, in which case we have to devise finite difference
schemes on the boundaries.

In this chapter we shall need all our PDE skills, and knowledge of FDM (splitting and
exponential fitting), to devise good scheme for the Heston model.

22.2 AN INTRODUCTION TO ORNSTEIN–UHLENBECK
PROCESSES

We start with some stochastics theory. Those readers for whom this material is known may
wish to skip this section. We need three types of stochastic process

{Yt : t ≥ 0}

It is called� Stationary if ∀ t1 < t2 < · · · < tN and h > 0, (Yt1 , Yt2 , . . . , YtN ) and (Yt1+h, . . . YtN +h) are
identically distributed, that is, time shifts leave joint probabilities unchanged� Gaussian if (Yt1 , Yt2 , . . . , YtN ) is multi-variate normally distributed� Markovian if P(YtN ≤ y | Yt1 , Yt2 , . . . , YtN −1) = P(YtN ≤ y | YtN −1), that is, the future is de-
termined only by the present and not by the past.

239
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A stochastic process is an Ornstein–Uhlenbeck (OU) process or a Gauss–Markov process if
it is stationary, Gaussian, Markovian and continuous in probability (Uhlenbeck and Ornstein,
1930; Wang and Uhlenbeck, 1945). A fundamental theorem (see Doob, 1942) states that the
stochastic process satisfies the following linear SDE:

dXt = −ρ(Xt − μ) dt + σ dWt (22.1)

where {Wt : t ≥ 0} is a Brownian motion with unit variance and ρ, μ and σ are constants.
Furthermore, we have the moments:

E(Xt ) = μ, Cov(Xs, Xt ) = σ 2

2ρ
e−ρ|s−t | (22.2)

in the unconditional (strictly stationary) case and

E(Xt |X0 = c) = μ + (c − μ) e−ρt

Cov(Xs, Xt |X0 = c) = σ 2

2ρ
(e−ρ|s−t | − e−ρ(s+t))

(22.3)

in the conditional (asymptotically stationary) case, where X0 is constant. The Brownian motion
process is a special case of the Ornstein–Uhlenbeck process.

One final remark: let

f (x, t) ≡ d

dx
P [X (t) ≤ x] (22.4)

be the probability density function of the OU process. Then this function satisfies the Fokker–
Planck equation, namely:

∂ f

∂t
= ∂2 f

∂x2
+ ∂

∂x
(x f ) (22.5)

(Øksendal 1998, p. 159). We shall see that OU processes are used in the Heston model.

22.3 STOCHASTIC DIFFERENTIAL EQUATIONS
AND THE HESTON MODEL

Since there are two factors in the Heston model we need two SDEs. First, the spot asset price
satisfies the SDE:

dSt = μSt dt +
√

v(t)St dW (1)
t (22.6)

where St = spot price

W (1)
t = a Wiener process

v(t) = variance

μ = (risk neutral) drift.

Second, the variance v(t) satisfies an OU process defined by the SDE:

d
√

v(t) = −β
√

v(t) dt + σ dW (2)
t
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It can be shown that:

dv(t) = κ [θ − v(t)] dt + σ
√

v(t) dW (2)
t (22.7)

where σ = volatility of the volatility

0 < θ = long-term variance

θ < κ = rate of mean reversion

W (2)
t = a Wiener process and ρ is the correlation value.

The correlation between the two Wiener processes is given by:

dW (1)
t dW (2)

t = ρ dt (22.8)

In general, an increase in ρ generates an asymmetry in the distribution while a change of
volatility of variance σ results in a higher kurtosis. Finally (as discussed in Heston, 1993) the
PDE for a contingent claim U is given by:

∂U

∂t
+ LsU + LvU + ρσvS

∂2U

∂S∂v
= 0

where

L SU ≡ 1
2
vS2

∂2U

∂S2
+ r S

∂U

∂S
− rU = 0

LvU ≡ 1
2
σ 2v

∂2U

∂v2
+ {K [θ − v(t)] − λ(S, v, t)} ∂U

∂v

(22.9)

and λ is the market price of volatility risk.
Let us pause to examine system (22.9) from a mathematical viewpoint. We see that the

PDE is a convection–diffusion equation in two variables and there is a mixed derivative term
appearing in the equation. From a PDE and FDM point of view, (22.9) is now well known.

In order to complete the jigsaw we need to define boundary conditions and a terminal
condition for this PDE.

22.4 BOUNDARY CONDITIONS

We now discuss how to augment the PDE (22.9) by a variety of boundary conditions and let
us focus on standard European options. In general, we must define boundary conditions at the
following points:

S → 0, S → ∞
v → 0, v → ∞

(22.10)

Thus, we give some kind of boundary condition at each of these four points (intuitively, we
need four conditions because integrating the second derivatives in S and v in the PDE (22.9 )
gives us four constants that can be found from the four conditions in conditions (22.10)). We
now look at some particular examples of boundary conditions.
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22.4.1 Standard European call option

This is the formulation as first mentioned in Heston (1993). When S = 0 we consider the call
to be worthless; when S becomes very large we use a Neumann boundary condition which
more or less is the same as a linearity boundary condition. When the volatility is 0 we assume
that the PDE (22.9) is satisfied on the line v = 0; in this case some of the terms in (22.9) fall
away. Finally, when v is very large we assume that the option behaves as a standard European
option. Summarising, the boundary conditions become:

U (0, v, t) = 0 (S = 0) (22.11)

∂U

∂S
(∞, v, t) = 1 (S = ∞) (22.12)

∂U

∂t
+ r S

∂U

∂S
− rU + K θ

∂U

∂v
= 0 (v = 0) (22.13)

U (S, ∞, t) = S (v = ∞) (22.14)

These conditions are easy to approximate numerically, with the exception of (22.13) which
we must handle with kid gloves. The boundary conditions (22.11) to (22.14) are those as
specified in Heston (1993). Other variations have also been discussed in the literature.

22.4.2 European put options

We define the boundary conditions for a put option (Ikonen and Toivanen, 2004):

U (0, v, t) = K (22.15)

∂U

∂S
(∞, v, t) = 0 (22.16)

U (S, 0, t) = max(K − S, 0) (22.17)

∂U

∂v
(S, ∞, t) = 0 (22.18)

These boundary conditions are easy to approximate as we have seen in previous chapters.
Of course, we must use far-field conditions and decide between one-sided or two-sided ap-
proximations to the derivatives on the boundary. Having done that, we can then apply operator
splitting methods to solve the problem.

22.4.3 Other kinds of boundary conditions

Another vision and interpretation on how to define boundary conditions for the Heston model
is given in Zvan et al. (1998). They let the PDE be satisfied at the boundaries in three of the
four cases. The full set is given by:

∂U

∂t
− rU + LvU = 0 (S = 0) (22.19)

U = S (call)

U = 0 (put)

}
(S → ∞) (22.20)
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∂U

∂t
+ r S

∂U

∂S
− rU + K θ

∂U

∂v
= 0 (v → 0) (22.21)

∂U

∂t
+ 1

2
vS2 ∂2U

∂S2
+ r S

∂U

∂S
− rU = 0 (v → ∞) (22.22)

As before, some of the boundary conditions (for example, equation (22.22)) may have an
exact solution. If this is not possible we must resort to a finite difference scheme, for example.
It is also possible to integrate barrier options into the Heston model (see Faulhaber, 2002).

22.5 USING FINITE DIFFERENCE SCHEMES: PROLOGUE

We have now set up the initial boundary value problem (IBVP) for the Heston model – that
is, equations (22.9), (22.11), (22.12), (22.13) and (22.14) – in conjunction with the following
initial condition (payoff function) for the call option:

U (S, v, 0) = max (S − K , 0) (22.23)

In order to reduce the scope we restrict our attention to splitting methods. We deal with
the most challenging problems in some detail. In particular, the following issues deserve our
attention:� How to approximate the mixed derivative terms� How to approximate the boundary condition (22.13); boundary conditions (22.11), (22.12)

and (22.14) are easy at this stage in the game.

22.6 A DETAILED EXAMPLE

We now discuss the application of the splitting method to the Heston problem. For convenience,
we concentrate on first-order accurate methods in the time direction, but the ideas can be
extended to give second-order methods. In order to ease the burden of understanding and
holding in short-term memory, a myriad of symbols and equations, we adopt some new notation.
To this end, we define the operators:

L SU ≡ A
∂2U

∂S2
+ B

∂U

∂S
+ CU

LvU ≡ D
∂2U

∂v2
+ E

∂U

∂v

F ≡ ρσvS (coefficient of cross term)

(22.24)

when the coefficients A, B, C , D, E and F have obvious meaning.
Formally, our splitting scheme is given by the following set of equations:

−∂U

∂t
+ L SU + F

∂2U

∂S ∂v
= 0

−∂U

∂t
+ LvU = 0

(22.25)
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Note: We are now using a forward equation in time in the respective directions. This is why
there is a minus sign in front of the derivative with respect to t .

Furthermore, we approximate the elliptic operators in (22.24) by their finite difference
equivalents:

L̃ SU n
i j = An

i j D+ D(S)
− U n

i j + Bn
i j D(S)

0 U n
i j + Cn

i jU
n
i j

L̃vU n
i j = Dn

i j D+ D(v)
− U n

i j + En
i j D(v)

0 U n
i j

(22.26)

We are now ready to formulate the splitting scheme. The first leg calculates a solution at
level n + 1

2
given the solution at level n:

−U
n+ 1

2

i j − U n
i j

k
+ L̃ SU

n+ 1
2

i j + 1
2

Fn
i j D(S)

0 D(v)
0 U n

i j = 0 (22.27)

with n ≥ 0, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.
The second leg brings us from level n + 1

2
to level n + 1:

−U n+1
i j − U

n+ 1
2

i j

k
+ L̃vU n+1

i j + 1
2

Fn
i j D(S)

O D(v)
0 U n+1/2

i j = 0 (22.28)

with n ≥ 0, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.
Please note how we have approximated the mixed derivative terms as advocated in Yanenko

(1971), namely in an explicit way.
We now come to the approximation of the boundary conditions for this problem. We con-

centrate on condition (22.13) because it is new and the other conditions have already been
discussed in previous chapters. We write (22.13) in the more convenient form:

−∂U

∂t
+ α

∂U

∂S
+ β

∂U

∂v
+ bU = 0 (v = 0) (22.29)

where the new coefficients are defined by:

α = r S, α > 0

b = −r, b < 0

β = K θ, β > 0

We mention that the signs of the coefficients α and β determine where the information in
the system is coming from. This is shown in Figure 22.1 for the four different cases. Our
current situation corresponds to case (a). Thus, information at some node (i, j) is coming from
‘upwind’ nodes such as (i + 1, i), (i, j + 1) and (i + 1, j + 1), for example. This regime must
be mirrored by the finite difference schemes for (22.13). We thus choose the correct scheme
in space and we can choose between the following kinds of time marching:� Explicit Euler scheme (conditionally stable)� Implicit Euler (unconditionally stable).

Of course, we could take time-averaging schemes (Crank–Nicolson) to produce second-
order accuracy, but this is outside the scope of this chapter.
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v

S

(a)

v

S

(b)

v

S

(c)

v

S

(d)

0,0 >> βα 0,0 <> βα

0,0 >< βα 0,0 << βα

V = Vmax

S = Smax

Figure 22.1 Direction of information flow (2d case)

Looking at Figure 22.2 we see that we must approximate (22.13) when j = 0. Taking into
account the upwinding effects we then propose the following scheme:

−U n+1
i,0 − U n

i,0

k
+ αi,0

U n
i+1,0 − U n

i,0

h1

+ βi,0
U n

i,1 − U n
i,0

h2

+ bU n
i,0 = 0 (22.30)

Some arithmetic and rearranging shows that:

U n+1
i,0 = (1 − λ1 − λ2 + bk)U n

i,0 + λ1U n
i+1,0 + λ2U n

i,1 (22.31)

where

λ1 = αi,0k

h1

> 0 and λ2 = βi,0k

h2

> 0

Appealing to the discrete maximum principle by examining the right-hand side of equation
(22.31) we know that the values at level n and at the nodes (i, 1) and (i + 1, 0) are non-negative;
we also know that there is just one sufficient condition to make the right-hand side positive,
namely (taking b = 0 for convenience):

1 − λ1 − λ2 ≥ 0 or k ≤ 1

α/h1 + β/h2
(22.32)

When b �= 0 we get a slightly different estimate.
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v

S

 ih1 

j = 1

j = 0

B

A

(i − 1) h1 (i +1) h1

unknown values

Figure 22.2 Approximating on the boundary

This is the same conditions as in Thomas (1998). Thus, the scheme (22.30) is conditionally
stable and this allows us to define what is essentially the Dirichlet boundary conditions on
v = 0.

We now consider the implicit Euler scheme. In space it is exactly the same as (22.31) except
that readings are taken at time level n + 1:

−U n+1
i,0 − U n

i,0

k
+ αi,0

U n+1
i+1,0 − U n+1

i,0

h1

+ βi,0
U n+1

i,1 − U n+1
i,0

h2

+ bU n+1
i,0 = 0 (22.33)

Some arithmetic shows that:

−U n+1
i,0 + U n

i,0 + λ1

(
U n+1

i+1,0 − U n+1
i,0

) + λ2

(
U n+1

i,1 − U n
i,0

) + bkU n+1
i,0 = 0

and thus

U n+1
i,0 = U n

i,0 + λ1U n+1
i+1,0 + λ2U n+1

i,1

1 + λ1 + λ2 − bk
(22.34)

Appealing to the maximum principle and monotonicity, we see that the solution at time
level n + 1 is positive because all data on the right-hand side of (22.34) is positive (notice that
b < 0). Summarising, we solve this problem using splitting and incorporating the appropriate
boundary conditions in S and v.

22.7 SUMMARY AND CONCLUSIONS

We have discussed the Heston stochastic model in this chapter. First, it addresses a non-trivial
pricing problem, namely an option pricing problem with stochastic volatility. We formulate
this model as a parabolic initial boundary value problem. The PDE part of the problem contains
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two independent factors (the underlying S and the volatility v) as well as a mixed derivative
in S and v that models correlation effects. Furthermore, we experience a mixture of Dirichlet,
Neumann and other boundary conditions that describe the solution.

We apply the operator splitting method to approximate the Heston model and we employ
schemes that are first order in space and time. On one boundary, on which a first-order, two-
factor hyperbolic problem is defined, we discuss both explicit-in-time and implicit-in-time
upwinding schemes. Having done that, we can assemble the system of equations that we then
solve by standard matrix techniques at each time level.

The results in this chapter made extensive use of the finite difference schemes from previous
chapters.
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23
Finite Difference Methods for Asian

Options and other ‘Mixed’ Problems

23.1 INTRODUCTION AND OBJECTIVES

In this short chapter we introduce the partial differential equations and the corresponding initial
boundary value problems that model Asian options. An Asian option is a contract that gives
the holder the right to buy an asset based on its average price over some prescribed period of
time (Wilmott et al., 1993). The PDE formulation is a two-factor model; the first independent
variable is the underlying asset while the second variable is an average of the underlying asset
over a prescribed period.

Our interest in Asian options lies in determining which finite difference schemes are appro-
priate for this kind of problem. In general, the PDE for an Asian option consists of two parts:
the first part is based on the underlying S and is a standard convection–diffusion equation (the
standard one-factor Black Scholes model), while the second part (based on the continuously
sampled arithmetic average I or A) is a first-order hyperbolic equation (thus containing no
diffusion term) and hence we need only one boundary condition for this direction (Ingersoll,
1987).

We conclude this chapter with a short discussion of a Cheyette two-factor interest rate model
(Cheyette, 1992; Andreasen, 2001). The PDE models for these problems are similar in structure
to the PDE models for Asian options because they have a random part (convection–diffusion)
and a deterministic part (modelled as a first-order hyperbolic PDE).

We discuss only the most fundamental issues pertaining to Asian options in this chapter. We
do not include topics such as discrete monitoring or early exercise features, for example.

23.2 AN INTRODUCTION TO ASIAN OPTIONS

In general we can sample either continuously or discretely. The first alternative is to take the
continuously sampled arithmetic average of the underlying asset in some time interval, namely:

I = I (t) =
∫ t

0

S(τ ) dτ (23.1)

The other continuous formulation is given by:

A(t) = I (t)

t
= 1

t

∫ t

0

S(τ ) dτ (23.2)

The PDE that models the Asian option is given by:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
+ S

∂V

∂ I
− r V = 0 (23.3)

249
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while in the second case the PDE is given by:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
+ 1

t
(S − A)

∂V

∂ A
− r V = 0 (23.4)

Both PDEs have the same structure from a mathematical point of view: informally we can write:

Asian PDE == one-factor Black–Scholes PDE + First-order hyperbolic PDE

In both cases the first-order PDE component in equations (23.3) and (23.4) can be written
in the generic form:

∂V

∂t
+ a(S, y, t)

∂V

∂y
= 0 (y = I or A) (23.5)

We have studied this equation in great detail in this book. We know that it is a wave equation
and we know what the boundary condition should be, as a function of the sign of the coefficient
a(S, y, t). In particular, we have proposed and analysed robust and accurate finite difference
schemes for solving equations such as (23.5).

23.3 MY FIRST PDE FORMULATION

We examine the PDE (23.3) and we consider the so-called similarity reduction technique by
defining a new variable R as R = I/S and the function H by (Wilmott et al., 1993):

V (S, R, t) = SH (R, t)

Please note that we are now using the engineer’s t variable in this and future sections in this
chapter!

You can check that the function H satisfies the following PDE:

−∂ H

∂t
+ 1

2
σ 2 R2 ∂2 H

∂ R2
+ (1 − r R)

∂ H

∂ R
= 0 (23.6)

The initial/terminal condition for H is now:

H (R, 0) = V (S, R, 0)

S(0)
= g(S(0), I (0)) (23.7)

where g is some function.
Now for the tricky part. At large values of R the value of H is zero:

lim
R→∞

H (R, t) = 0 (23.8)

while when R = 0 the PDE degenerates into the first-order hyperbolic PDE:

−∂ H

∂t
+ ∂ H

∂ R
= 0 (23.9)

We now discuss how to find an approximation to the initial boundary value problem defined
by equations (23.6), (23.7), (23.8) and (23.9). In this case we use implicit Euler in time and
some kind of centred difference scheme (for example, the standard scheme or exponential
fitting) in the R direction. This gives the difference scheme for equation (23.6):

− H n+1
j − H n

j

k
+ Lh

k H n+1
j = 0, 1 ≤ j ≤ J − 1, n ≥ 0 (23.10)

where Lh
k is some approximation to the time-independent terms in (23.6).
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We must define a far-field point and the boundary condition at this point is:

H n
J = 0, n ≥ 0 (23.11)

When R = 0 we have to take upwinding/downwinding into consideration. Then:

− H n+1
0 − H n

0

k
+ H n+1

1 − H n+1
0

h
= 0, n ≥ 0 (23.12)

(It might be worth investigating the possibility of finding an exact solution to (23.9) instead
of using (23.12).) Finally, the initial condition is given by:

H 0
j = g(Sj , I j ), 1 ≤ j ≤ J − 1 (23.13)

We can now formulate this problem as a matrix system at each time level:

AU n+1 = Fn, n ≥ 0,

U 0 given by equation (23.13)

}
(23.14)

where U n = t (H n
0 , . . . , H n

J−1) and A is a positive-definite matrix and hence this problem has
a unique solution.

23.4 USING OPERATOR SPLITTING METHODS

It may not always be possible to find a similarity solution and we then must devise other meth-
ods. To this end, we have already discussed operator splitting methods and their applications
to two-factor and multi-factor problems. In general, the PDE in each separate dimension was
of convection–diffusion type. In the case of the Asian option PDE, however, the PDE in the
I (or A) direction is now a first-order hyperbolic PDE. Formally, the splitting of the original
PDE in equation (23.3) takes the form:

− ∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0 (23.15a)

− ∂V

∂t
+ S

∂V

∂ I
= 0 (23.15b)

We thus need to approximate both of these PDEs using the finite difference method. In
general, we can choose between explicit and implicit time-marching in time in each PDE
in (23.15). Futhermore, in the S and I directions we can choose from a variety of ‘spatial’
discretisations; for example, for (23.15a) we can choose from:� Traditional centred differencing� Duffy exponentially fitted schemes� Reduce (23.15a) to a first-order system and approximate V and its delta to second-order

accuracy (for example, using the Keller box scheme (Keller, 1971)).

In the I direction there are also many suitable finite difference schemes, for example:� Upwinding/downwinding schemes� Centred difference schemes� Other schemes (for example, Lax–Wendroff scheme)� The Method of Characteristics (MOC)� Analytical solution.
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The combination of the discretisation types for equations (23.15) will determine the stability
and accuracy of the resulting schemes. For example, some schemes are unconditionally stable,
some are conditionally stable while other schemes are unconditionally unstable. These issues
have already been discussed in this book. Furthermore, first-order or second-order accuracy in
any of the directions S, I or t is possible.

In order to focus on one specific finite difference scheme, let us examine the partial differ-
ential equation (23.3) in conjunction with the boundary conditions (two for the S direction and
one for the I direction!), for example:

V (0, I, t) = g0(I, t), 0 < I < IM

V (SM , I, t) = g1(I, t), 0 < I < IM

V (S, IM , t) = h0(S, t), 0 < S < SM

(23.16)

where SM , IM are far-field values in the S and I directions respectively and go, g and h0 are
known functions along with some payoff function that we describe as the initial condition:

V (S, I, 0) = V0(S, I ) (23.17)

We now propose using the exponentially fitted scheme with implicit Euler for the approxi-
mation of (23.15a) (we know that this scheme is uniformly accurate to first order in time and
space) while we take an upwinding scheme in I and implicit Euler in time in (23.15b) (this
scheme is first-order accurate in I and t). Finally, splitting the PDE (23.3) into two separate
PDEs also introduces a splitting error. The proposed schemes are thus:

− Ṽi j − V n
i j

k
+ Lh

k Ṽi j = 0, 1 ≤ i ≤ I − 1, j fixed (23.18a)

− V n+1
i j − Ṽi j

k
+ Si

V n+1
i, j+1 − V n+1

i j

h
= 0, 1 ≤ j ≤ J − 1, i fixed (23.18b)

while the discrete boundary conditions (corresponding to (23.16)) at each time level are:

V n
0 j = g0(I j , tn), 0 ≤ j ≤ J

V n
I j = g1(I j , tn), 0 ≤ j ≤ J

V n
i J = h0(Si , tn), 0 ≤ i ≤ I

(23.19)

where g0, g1 and h0 are known functions.
Finally, the discrete initial conditions (corresponding to (23.17)) are:

V 0
i j = V0(Si , I j ) (23.20)

Other operator splitting schemes can be proposed if, for example, you wish to get second-
order accuracy. The example in this section is of use in itself but it also gives guidelines on
applying different finite difference schemes to Asian option problems.
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23.4.1 For sake of completeness: ADI methods for Asian option PDEs

In Duffy (2004) we discussed the applicability of the ADI method for Asian option PDEs. We
used centred differences to approximate all derivatives, including the first-order derivative in
I . Be warned! We must define numerical boundary conditions with this scheme and avoiding
boundary errors is non-trivial (for a discussion of these problems, see Thomas, 1999). We pose
the PDE (23.3) in more neutral and generic form:

−c
∂V

∂t
+ ε

∂2V

∂S2
+ a

∂V

∂S
+ α

∂V

∂ I
− bV = f (23.21)

With ADI, as we already know, we march from time level n to time level n + 1
2

and then

from time level n + 1
2

to time level n + 1. In this case we use exponential fitting in all space
variables and implicit Euler in time. The first leg is given by the scheme:

−c
n+ 1

2

i j

V
n+ 1

2

i j − V n
i j

1
2
k

+ σ
n+ 1

2

i j

V
n+ 1

2

i+1 j − 2V
n+ 1

2

i j + V
n+ 1

2

i−1 j

h2

+ a
n+ 1

2

i j

V
n+ 1

2

i+1 j − V
n+ 1

2

i−1 j

2h
+ α

n+ 1
2

i j

V n
i j+1 − V n

i j−1

2m

− b
n+ 1

2

i j V
n+ 1

2

i j = f
n+ 1

2

i j (23.22)

The second leg is given by:

−cn+1
i j

V n+1
i j − V

n+ 1
2

i j
1
2
k

+ σ n+1
i j

V
n+ 1

2

i+1 j − 2V
n+ 1

2

i j + V
n+ 1

2

i−1 j

h2

+ an+1
i j

V
n+ 1

2

i+1 j − V
n+ 1

2

i−1 j

2h
+ αn+1

i j

V n+1
i j+1 − V n+1

i j−1

2m

− bn+1
i j V

n+ 1
2

i j = f n+1
i j (23.23)

Each of these legs can be solved using LU decomposition, as shown in Duffy (2004).
We prefer operator splitting to ADI mainly because it is conceptually easier to understand

and is easier to program. It is computationally somewhat more efficient than ADI because there
are less terms to evaluate at each leg. Finally we have seen that it is giving better results than
ADI for complex problems.

23.5 CHEYETTE INTEREST MODELS

An interesting example is the problem of modelling the volatility structure of the continuously
compounded forward rates in the Heath, Jarrow, Morton (HJM) framework (Andreasen, 2001;
Cheyette, 1992). In Andreasen (2001) the author produces the PDE:

∂V

∂t
+ 1

2
η2 ∂2V

∂x2
+ (−K x + y)

∂V

∂x
+ (η2 − 2K y)

∂V

∂y
− r V = 0 (23.24)

We remark that this equation has the same basic format as the PDE (23.3). We do not go
into the financial relevance of the parameters in (23.24).
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Defining the operators:

Lx V ≡ 1
2
η2 ∂2V

∂x2
+ (−K x + y)

∂V

∂x
− r V

L y V ≡ (η2 − 2K y)
∂V

∂y
(23.25)

we can then write the PDE (23.24) in the form:

∂V

∂t
+ Lx V + L y V = 0 (23.26)

Andreasen takes an ADI scheme to solve (23.26). This scheme is an adaption of the standard
ADI scheme that does not perform well due to spurious oscillations. Andreasen employs an
ADI scheme (with five points in the discretisation) that is solved using tridiagonal and band
martrix solvers at each time level. An alternative to this approach is to employ a splitting
method based on the formal splitting:

∂V

∂t
+ Lx V = 0

(23.27)
∂V

∂t
+ L y V = 0

Stable and second-order accurate schemes can now be produced for this problem without
resorting to the somewhat more difficult five-point schemes as discussed in Andreasen (2001).

23.6 NEW DEVELOPMENTS

Both ADI and splitting are very popular methods that we can use to partition a PDE into
simpler PDEs. They are called dimension-splitting methods. In this section we discuss another
method that we call the corrected operator splitting (COS) method. The basic assumption is that
we separate the convection/advection and the diffusion/reaction terms in the Black–Scholes
equations. The method can be applied to both one-factor and multi-factor problems and we
give a short summary here (see Karlsen, 2003). The authors model nonlinear problems whose
solutions have sharp fronts.

Let us start with the one-factor model (23.6). Conceptually, the COS is defined by:

L1 H ≡ −∂ H

∂t
+ b

∂ H

∂ R
= 0 (convection) (23.28a)

L2 H ≡ −∂ H

∂t
+ a

∂2 H

∂ R2
= 0 (diffusion) (23.28b)

In short, we approximate (23.28) by marching from n to n + 1 by the introduction of an
intermediate step

L1 H = 0, H (x, 0) = H n(x) (23.29a)

L2 H = 0, H (x, 0) = H n+ 1
3 (x) (23.29b)

where H n+ 1
3 is the solution of (22.28a)).
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The method can be applied to problems involving several factors. Again, we refer to Karlsen
(2003). This topic could be pursued as a project in the future.

23.7 SUMMARY AND CONCLUSIONS

We have given a short introduction to modelling Asian options using a PDE formulation.
These two-factor problems present their own numerical challenges because the diffusion term
is missing in one of the dimensions. This leads to a first-order hyperbolic PDE which can be
approximated using upwinding or downwinding correctly if we wish to get accurate results.
We discuss operator splitting and ADI methods that solve the initial boundary value problems
for continuously monitored Asian options.
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24

Multi-Asset Options

24.1 INTRODUCTION AND OBJECTIVES

In this chapter we give an introduction to option problems with two or more correlated under-
lyings. These are the so-called correlated options or multi-asset options. This chapter focuses
on producing finite difference schemes for these problems, not using ADI or splitting (where
an n-dimensional problem is partitioned into a sequence of one-dimensional problems) but
instead solving a system of equations ‘in all space variables’ simultaneously. Splitting meth-
ods, for example, are ideally suited to these problems but we have discussed these already. In
general, matrix iterative schemes are needed because of the size of the matrices involved. For
large systems, direct methods such as LU decomposition are inefficient and in this chapter we
show how iterative methods work by explaining the point Jacobian and line Jacobian methods,
although it is a good idea to investigate the Gauss–Seidel and successive over-relaxation (SOR)
methods (see Thomas, 1999).

One of the goals of this chapter is to provide a setting so that financial models for correla-
tion options can be posed and then mapped to a PDE formulation. We then approximate the
corresponding initial boundary value problem using finite differences. Finally, we solve the
discrete sets of equations using matrix iterative methods.

We note that we can easily apply the techniques of Chapters 19 and 20 (ADI and operator
splitting methods) to finding approximations to the solution of correlation options problems,
but this is outside the scope of this chapter. We reiterate that splitting methods are good at
approximating the mixed derivative terms.

The application of finite difference schemes to n-factor option problems is in its infancy,
especially with n ≥ 3.

24.2 A TAXONOMY OF MULTI-ASSET OPTIONS

In this section we give an overview of some kinds of options that depend on two or more
underlying assets. These are called correlation options in general (see Zhang, 1998, for a
comprehensive introduction). Our interest in these options is to cast them in PDE form. In
particular, we must define the payoff function, boundary conditions and the coefficients of the
PDE. We focus on the following specific types:� Exchange options� Rainbow options� Basket options� Best/worst options� Quotient options� Foreign exchange options� Quanto options� Spread options

257
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Even though many of these option problems have analytical solutions (as discussed in Zhang,
1998) we wish to approximate them using the finite difference method.

FDM is more flexible because it allows a wider range of parameters than the examples in
Zhang (1998). Secondly, FDM is easier to implement than closed form solutions.

We give a basic review of statistics. First, the mean or mathematical expectation of a con-
tinuous random variable X is defined as:

E(X ) =
∫ ∞

−∞
x f (x) dx (24.1)

where f (x) is the density function of the random variable. The variance of the random variable
is defined as:

Var(X ) = E
{
[X − E(X )]2} =

∫ ∞

−∞
[x − E(X )]2 f (x) dx (24.2)

The variance is always non-negative; in particular, for a deterministic variable it is zero.
The standard deviation is defined as the square root of the variance:

σ =
√

Var(X ) (24.3)

The covariance between two random variables X and Y is defined as:

Cov(X, Y ) = E [X − E(X )] [Y − E(Y )]

=
∫ ∞

−∞

∫ ∞

−∞
[x − E(X )] [y − E(Y )} g(x, y) dx dy (24.4)

where g(x, y) is the so-called joint density function of the variables X and Y . In general,
variance is a special case of covariance, in particular Var(X ) = Cov(X, X ). Another way to
express the covariance is:

Cov(X, Y ) = E[XY ] − [E(X )][E(Y )] (24.5)

In general, covariance Cov can be negative, zero or positive.
We define the correlation coefficient ρ between X and Y by;

ρ = Cov(X, Y )√
Var(X )

√
Var(Y )

= Cov(X, Y )

σxσy
(24.6)

This factor can be negative, zero or positive.
If ρ is zero we say that X and Y are uncorrelated, while if it is positive or negative they are

said to be positively or negatively correlated, respectively.
We now look at the stochastic differential equations for correlation options. For convenience

we examine an option with two underlying assets (Zhang, 1998). The SDE for the underlying
price uses the standard geometric Brownian motion and is given by:

dI j = (μ j − g j )I j dt + σ j I j dW j (t), j = 1, 2 (24.7)
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where W j = standard Gauss–Wiener process, j = 1, 2

μ j = instantaneous mean of asset j

σ j = standard deviation of asset j or of index j

g j = payout rate of asset j.

We can show that the solution of this SDE is given by (Karatzas and Shreve, 1991):

I j (τ ) = I j exp
[
(μ j − g j − 1

2σ 2
j )τ + σ j W j (τ )

]
, j = 1, 2 (24.8)

where I j = current price of asset, j = 1, 2.
We now carry out some change of variables as follows:

x = ln[I1(τ )/I1]

y = ln[I2(τ )/I2]

μx = −g1 − σ 2
1 /2

μy = −g2 − σ 2
2 /2

σ 2
x = σ 2

1 τ

σ 2
y = σ 2

2 τ

Here τ = T − t , where T is the maturity date of the option and t is the current time.
Furthermore, I1 and I2 are the current prices of the assets.

Now we define the joint density function by:

f (x, y) = 1

2πσxσy

√
1 − ρ2

exp

(
−u2 − 2ρuv + v2

2(1 − ρ2)

)
(24.9)

where

u = x − μx

σx
and v = y − μy

σy

Finally, this can be written in either the form:

f (x, y) = f (y) f (x |y) (24.10)

where

f (y) = 1

σy
√

2π
exp

(
−v2

2

)
and

f (x |y) = 1

σx
√

2π
√

1 − ρ2
exp

(−(u − ρv)2

2(1 − ρ2)

)
or in the form:

f (x, y) = f (x) f (y|x) (24.11)
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where

f (x) = 1

σx
√

2π
exp

(
−u2

2

)
and

f (y|x) = 1

σy
√

2π
√

1 − ρ2
exp

(−(v − ρu)2

2(1 − ρ2)

)
The added value of the bivariate density functions in (24.10) and (24.11) is that they are used

to derive pricing formulae for many correlation options. In particular, it is possible to derive
closed form solutions for European options, but American options are more problematic. We
shall have mixed derivatives in the Black–Scholes partial differential equation, for example in
the case of a two-factor model:

ρi jσiσ j Ii I j
∂2C

∂ Ii∂ I j
(24.12)

where ρi j is a correlation coefficient between asset i and asset j .
As always, we must approximate these terms using finite differences. This problem has been

discussed in detail in Chapters 19 and 20, and as we have already seen, we know that ADI
schemes are less suitable than operator splitting schemes, especially in the presence of these
mixed derivatives.

In the following discussion we assume that all options are European and that the maturity
date is given by the symbol T . Furthermore, we assume that the underlying assets satisfy the
SDEs in equation (24.7). In many of the examples, we shall assume that n = 2, that is some
kind of two-factor systems that can be modelled effectively by finite difference schemes.

In the following sub-sections we concentrate on the following issues:� The financial relevance� The payoff function� The domain of integration (i.e. the ranges that the underlying assets take).

In general, the integration domain is a source of complexity when pricing correlation options,
both analytically and numerically. We shall need this information later when we map the
financial model to the corresponding partial differential formulation. It is then a straightforward
process.

24.2.1 Exchange options

An exchange option is one that gives the holder the right to exchange one asset for another.
This implies a two-factor problem, of course. At maturity, the holder is entitled to receive one
underlying asset in return for paying for the other underlying asset. An exchange option is a
correlation option. The underlying assets can be in the same or different asset classes. An asset
class is a specific category of assets or investments. Assets in the same class exhibit similar
characteristics, for example the same business sector. The payoff function is given by:

payoff = max[I1(T ) − I2(T ), 0] (24.13)

This payoff allows us to exchange the second asset for the first asset. It is equivalent to a
vanilla option if we use the strike price K instead of the second asset; we can thus view it as
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I2

 > I1 (T ) I2 (T )

I1

Figure 24.1 Integration domain for exchange option

a call option written in the first asset where the strike price is the future price of the second
asset. Alternatively, we can view the exchange option as a put option where the strike price K
is the same as the future price of the first option.

Expression (24.13) can be written in the following ‘more readable’ version:

max(I1(T ) − I2(T ), 0) = max[I1(T ), I2(T )] − I2(T )

max(I1(T ) − I2(T ), 0) = I1(T ) − min[I1(T ), I2(T )]

The reader can check that these are indeed equivalent; the last two expressions are used to
price the better or worse of two underlying risky assets. In general, exchange options are the
simplest kind of correlation option because their integration domain is simple. This is shown
in Figure 24.1. In this case the domain is where the exchange option has a positive value. In
finite difference terms, we must solve the problem on a triangle.

24.2.2 Rainbow options

A good example of a rainbow option is one that is written on the maximum or minimum of
two assets or indices. The payoff function on the maximum is given by:

payoff = max {w max[I1(T ), I2(T )] − wK , 0} (24.14)

where w = +1 for a call or −1 for a put.
Similarly, the payoff for a two-colour rainbow option on the minimum of two assets is given

by:

payoff = max {w min[I1(T ), I2(T )] − wK , 0} (24.15)
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The payoff for an option on the maximum of n ≥ 2 underlying assets is:

payoff = max {w max[I1(T ), . . . , In(T )] − wK , 0}

24.2.3 Basket options

Options written on baskets of risky assets can be used by portfolio managers to hedge the risks
of their portfolios (Zhang, 1998). The most popular basket options are based on currencies and
commodities. A basket option is defined as:

I (τ ) =
n∑

j=1

w j I j (τ ) (24.16)

where w j = total investment in asset j (as a percentage)

I j (τ ) = price of j th asset

and
∑n

j=1w j = 1.
An example would be a portfolio of value-weighted indices; in this case the baskets consist

of assets with weights proportional to their market values. The payoff of a basket based on
formula (24.16) is given by:

payoff = max{w[I (T ) − K ], 0} (24.17)

where K is the exercise price of the option and w is as in equation (24.14). We now take an
example of a two-basket option. In this case we have two weights denoted by:

a = w1 > 0 and b = w2 > 0

The domain of integration for this kind of two-asset option is shown in Figure 24.2. In
general, the sign of the weights will determine the slope of the domain of integration.

I2 (T )

K/I2

K /I1

I1(T )

Figure 24.2 Integration domain for two-asset basket option
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I2 (T )

I1 (T )

K

K

I1(T ) < I2 (T ) < K

I2  (T ) < I1 (T ) < K

K < I1 (T ) < I2  (T )

Figure 24.3 Integration domain for an option paying best of two assets

24.2.4 The best and worst

An option that pays the best (or worst) of two asset entities grants the holder the right to receive
the maximum (or minimum) of the two underlying assets at maturity (Stulz, 1982). The payoff
of an option paying the best and cash or the worst and cash are given by the following formulae:

payoff = max c(T ) = max[I1(T ), I2(T ), K ]

payoff = min c(T ) = min[I1(T ), I2(T ), K ]
(24.18)

where the constant K is a pre-specified amount of cash. The integration domain for an option
on two assets without any cash payment is shown in Figure 24.3.

24.2.5 Quotient options

A quotient option (also called a ratio option) is one that is written on the ratio of two underlying
asset prices, indices or other quantities. They take advantage of the relative performance of
two assets, markets or portfolios. They are used to compare the relative performance of two
assets.

The payoff function is given by:

payoff = max

[
w

I1(T )

I2(T )
− wK , 0

]
(24.19)

or equivalently as:

payoff = max

[
w

I2(T )

I1(T )
− wK , 0

]
(24.20)

where K is the strike price of the option. The integration domain is the area under the line
starting from the origin with slope K .
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24.2.6 Foreign equity options

These are options written on foreign equity with strike price in foreign currency. The payoff
is given by the formula:

payoff = max [w I1(T ) − wKf, 0] (24.21)

where I1(T ) = foreign equity price at maturity
Kf = strike price in foreign currency

w = as in equation (24.14).

In general, we are interested in converting the foreign currency into domestic currency for
domestic investors. To this end, let I2(T ) be the exchange rate in domestic currency per unit
of foreign currency; it has an SDE of the form (24.7) with

g2 = rf,

where rf is the foreign interest rate.
Then the payoff of a foreign equity option in domestic currency is given as the product of

(24.21) and the exchange rate, namely:

payoff = I2(T ) max [w I1(T ) − wKf, 0] (24.22a)

or

payoff = max[w I1(T )I2(T ) − wKf I2(T ), 0] (24.22b)

System (24.22) is similar to a product option with a floating strike price, in fact a kind of
Asian option.

24.2.7 Quanto options

A quanto option is a fixed exchange-rate foreign-equity option and its added value is to mitigate
foreign exchange risks. They are used mostly in currency-related markets with the price of one
underlying asset converted to another one at a fixed guaranteed rate.

The payoff for a quanto option in domestic currency is given by:

payoff = I 2 max [w I1(T ) − wKf, 0] (24.23)

where Kf is the strike price in the foreign currency and I 2 is a fixed exchange rate.

24.2.8 Spread options

A spread option is one that is written on the difference between two indices, prices or rates.
The payoff of a European option on the spread of two instruments is given by:

payoff = max [aw I1(T ) + bw I2(T ) − wK , 0] , a > 0, b < 0 (24.24)

For a standard spread option we set a = 1, b = −1 and K = 0. In this case the payoff
is exactly the same as an exchange option. We can then view exchange options as being
a specialisation of spread options. Thus, there is no point in modelling exchange options
explicitly because they are subsumed in the current model.
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In general we can view the spread as one imaginary asset price and this is called the one-factor
model. No distinction is made between the two assets. The spread has some limitations:� The correlation coefficient between the two assets does not appear explicitly in the pricing

formula (Black–Scholes is used).� The sensitivities of the spread option price cannot be found.� There is an implicit assumption that the spread cannot be negative because the underlying
asset price must be non-negative in a Black–Scholes formulation.

The solution to these problems is to propose a two-factor model in which the two assets are
modelled explicitly. We realise this by a two-factor Black–Scholes PDE.

24.2.9 Dual-strike options

These are options with two strike prices written on two underlying assets. This category includes
options on the maximum or minimum when the two strike prices have the same value. The
payoff of a European-style dual-strike option on two assets is given by:

payoff = max {w1 [I1(T ) − K1] , w2 [I2(T ) − K2] , 0} (24.25)

where w j = ±1, for call or put, respectively, j = 1, 2
and K j = strike price of option j , j = 1, 2

We see that there are four combinations on equation (24.25), namely:

Call–Call/Call–Put/Put–Call/Put–Put

The first combination is discussed in detail in Zhang (1998).

24.2.10 Out-perfomance options

This is a special kind of call option that allows investors to take advantage of the expected
difference in the relative performance of two underlying assets or indices. The payoff function
is given by:

payoff = max

{
w

[
1i (T )

I1
− I2(T )

I2

]
− wk, 0

}
(24.26)

where I j = current value of underlying, j = 1,2

I j (T ) = values at maturity, j = 1, 2

k = strike rate of the option

w = ±1, for call and put, respectively.

24.3 COMMON FRAMEWORK FOR MULTI-ASSET OPTIONS

In the previous section we gave a short overview of the different multi-asset option types and
their applications in financial engineering. Furthermore, we gave the formulae for the payoff
function for each type. This function corresponds to the initial condition in the corresponding
PDE formulation. Finally, we discussed the domain of integration for a number of the types
as this will be important when we set up the finite difference schemes for the two-factor
Black–Scholes PDE for these option types.
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There are many kind of multi-asset options in the marketplace but we shall attempt to define
one general model for all of them. In particular, we shall set up the initial boundary value
problem (IBVP) for the multi-factor Black–Scholes equation for them. Recall that the main
attention points are:� Define the PDE for the problem (include the mixed derivative terms)� Define the initial condition (the payoff functions)� Define the boundary conditions.

In general, the main difference between the various kinds of assets lies in the payoff function.
The PDE term remains the same. We can formulate the IBVP in a generic context. After that
we can then apply finite difference methods. Of course, the devil is in the details and we must
examine each candidate solution on its merits, namely performance and accuracy. In general,
the basic PDE for multi-asset options is given by:

∂u
∂t

+ Lu = 0 (24.27)

where

Lu ≡ 1
2

n∑
i, j=1

σiσ jρi j Si S j
∂2u

∂Si ∂Sj
+ r

n∑
i=1

Si
∂u
∂Si

− ru

in which ρi j = asset correlations

r = risk-free interest rate

σ j = volatility of asset j.

Each underlying asset variable has non-negative values. We need to specify boundary con-
ditions for this PDE. One strategy is to let the PDE be applicable at S = 0 while we could take
Dirichlet or Neumann boundary conditions at infinity, for example:

−∂u
∂t

− ru = 0 as Sj → 0, j = 1, . . . , n

Dirichlet boundary conditions as Sj → ∞, j = 1, . . . , n

⎫⎬⎭ . (24.28)

We thus conclude that the full problem specification is given by equations (24.27), (24.28)
and one of the pay-off functions in section 24.2 of this chapter. We then can map this system
to some kind of numerical scheme.

24.4 AN OVERVIEW OF FINITE DIFFERENCE SCHEMES
FOR MULTI-ASSET PROBLEMS

There are many kinds of numerical schemes that produce an approximate solution to the initial
boundary value problem defined by equations (24.27), (24.28) and a given payoff function from
section 24.2. We concentrate on the finite difference method. In particular, we have already
discussed alternating direction implicit (ADI) and operator splitting methods in Chapters 19
and 20, respectively. These schemes can be applied to correlation option pricing problems.
We prefer splitting to ADI in general because, first, it is easier to understand and to program
than ADI and, second, it is superior to ADI when it comes to approximating the cross (mixed)
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derivative terms. We do not examine these kinds of schemes here because we feel that we have
done them enough justice in Chapters 19 and 20 and the results in those chapters are easily
transferrable to the current situation. Chapter 18 discussed direct finite difference schemes
for multi-dimensional time-dependent problems. In particular, we examined explicit finite
difference schemes that allow us to compute a solution at time level n + 1 in terms of a
solution at time level n. However, such schemes are only conditionally stable and we must
choose a sufficiently small time step. Another approach to approximating multi-asset options
by finite differences is given in Bhansali (1998).

In this chapter we approximate the solution of the multi-asset initial boundary value problem
(IBVP) by a completely different approach to those we have already seen. The general approach
can be paraphrased as follows: ‘We discretise the IBVP in time using Rothe’s method. The
resulting set of equations is of elliptic type. We solve these equations using well-known iterative
methods at each time level’. Rothe’s method has considerable theoretical and practical value in
numerical analysis and its applications. We shall give an example in a nutshell: consider the
two-dimensional heat equation:

∂u
∂t

= �u = ∂2u
∂x2

+ ∂2u
∂y2

(24.29)

which is defined in the continuous space (x, y, t). If we discretise in t using the implicit Euler
scheme in the usual way, we get the elliptic equation:

V n+1 − V n

k
= �V n+1, n ≥ 0 (24.30a)

or

−k�V n+1 + V n+1 = V n (24.30b)

These are now reaction diffusion equations that we must solve at each time level. For
example, we can discretise in the space variables using centred difference operators as follows:

−k
(
�2

x V n+1
i j + �2

y V n+1
i j

) + V n+1
i j = V n

i j (24.31)

where

�2
x V n

i j ≡ h−2
x

(
V n

i+1, j − 2V n
i, j + V n

i−1, j

)
�2

y V n
i j = h−2

y

(
V n

i, j+1 − 2V n
i, j + V n

i, j−1

)
We have now a fully-discrete elliptic scheme. We now show how to solve this set of equations

using matrix iterative techniques. To this end, we start with some background material on these
methods. Incidentally, Rothe’s method can be applied to the Black–Scholes equation but a full
treatment is not discussed here.

24.5 NUMERICAL SOLUTION OF ELLIPTIC EQUATIONS

In order to motivate the theory we first start with a specific example. To this end, let us
consider the Poisson equation and its associated boundary value problem on the unit square
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and determined by the BVP:

�2u ≡ �u = ∂2u
∂x2

+ ∂2u
∂y2

= f (x, y) in Q = (0, 1) × (0, 1)

u(x, y) = g(x, y), (x, y) ∈ �

⎫⎪⎬⎪⎭ (24.32)

where � = [
(x, 0) ∪ (x, 1) ∪ (0, y) ∪ (1, y), (x, y) ∈ Q

]
The finite difference scheme is given by:

�2
xUi j + �2

yUi j = fi j , i = 1, . . . , I − 1, j = 1, . . . , J − 1 (24.33)

and the discrete boundary conditions are given by:

U0 j = g0 j , j = 0, . . . , J

UI j = gI j , j = 0, . . . , J

Ui0 = gi0, i = 1, . . . , I − 1

Ui J = gi J , i = 1, . . . , I − 1

(24.34)

We rewrite equation (24.33) in the equivalent form (East–West–North–South notation):

Ei jUi+1, j + Wi jUi−1, j + Ni jUi, j+1 + Si jUi, j−1 + αi jUi, j = fi j (24.35)

where E, W, N , S and α are coefficients that can easily be evalutated from equation (24.33)
Rearranging this equation we get:

Ui. j = α−1
i j ( fi j − Ei jUi+1, j − Wi jUi−1, j − Ni jUi, j+1 − Si jUi, j−1) (24.36)

We use iterative schemes to solve this equation and to this end we construct a sequence
of approximate solutions. In particular, the point Jacobi method (also called the method of
simultaneous displacements) is defined by the iterative scheme:

U (k+1)
i j = α−1

i j

(
fi j − Ei jU

(k)
i+1, j − Wi jU

(k)
i−1, j − Ni jU

(k)
i, j+1 − Si jU

(k)
i, j−1

)
, k ≥ 0 (24.37)

In other words, we start with some arbitrary initial approximation corresponding to k = 0
and we calculate future values using the recurrence relation (24.37) (Peaceman, 1977). The
following theorem states the conditions under which the iterative scheme (24.37) converges
(see Thomas, 1999, for a good introduction to this and other related topics).

Theorem 24.1. Let the solution of problem (24.33), (24.34) be expressed in the form:

Ax = F

x = t (U1,1,...UI−1,1, U1,2,...UI−1,J−1)

and A is a matrix. If A is irreducible and diagonally dominant and, for at least one j, we have

|a j j | > ρ j =
L∑

k=1
k 
= j

|a jk |

then the Jacobi iteration scheme converges for any start vector.
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We now consider the so-called line Jacobi method. Let us review equation (24.37). In this
case the new value at a point (i, j) is calculated in terms of the old values of its neighbours.
Now, instead of doing this, let us move only the values at points (i, j − 1) and (i, j + 1) to the
right-hand side. In this case we tie the values in the x direction tightly together as the following
equation shows:

For j = 1, . . . , J − 1

Solve

Ei jUi+1, j + αi jUi j + Wi jUi−1, j = fi j − Ni jUi, j+1 − Si jUi, j−1 i = 1, . . . , I − 1
(24.38)

Next j

We solve the ‘ j loop’ equations using a standard tridiagonal matrix solver (see Keller, 1992
and Thomas, 1998 for the theory, and Duffy, 2004 for the implementation in C++). The line
Jacobi method is also applicable to general difference schemes in two and three dimensions.

There are other important iterative schemes:� Gauss–Seidel relaxation scheme� Successive over-relaxation (SOR) scheme� Symmetric successive over-relaxation (SSOR) scheme.

These schemes are more efficient than the Jacobi schemes and we would advise the reader to
investigate them for his or her own specific applications. More details can be found in Thomas
(1999) and Peacemen (1977), for example. We are unable to include them here because of the
scope. Finally, the transition to two-factor PDEs for the asset problems in this chapter will be a
variation of the scheme (24.38). We omit the details, but they are not too difficult at this stage.

24.6 SOLVING MULTI-ASSET BLACK–SCHOLES EQUATIONS

We have now developed enough theory to develop suites of finite difference schemes for
correlation options. As already stated, this chapter focuses on discretising the corresponding
PDE in time (using a known time-marching scheme) that results in an elliptic equation. We
then discretise this equation by using standard centred divided differences. The fully discrete
system of equations is solved using an iterative scheme such as Jacobi, Gauss–Seidel or SOR.

Let us first examine a put basket option f with two underlyings (Topper, 1998 and 2005, and
section 24.2.3 of this book). The partial differential equation is given by:

1
2σ 2

1 S2
1

∂2 f
∂S2

1

+ 1
2σ 2

2 S2
2

∂2 f
∂S2

2

+ ρσ1σ2S1S2
∂2 f

∂S1∂S2
+

+ (r − q1)S1
∂ f
∂S1

+ (r − q2)S2
∂ f
∂S2

= r f − ∂ f
∂t

(24.39)

where D is the two-dimensional region (0, 100) × (0, 100).
The payoff for the basket put is given by:

f (S1, S2, T ) = max[0, K − (w1S1 + w2S2)] in D (24.40)
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We now discuss the boundary conditions. When S1 = 0 and S2 = 0 we solve the basic
Black–Scholes equation of a normal put with given strikes:

f (S1, 0, t) = g
(

S1,
K
w2

, t
)

(24.41a)

f (0, S2, t) = g
(

S2,
K
w1

, t
)

(24.41b)

where First strike = K/w2

Second strike = K/w1

For the second boundary condition we suggest using Dirichlet boundary conditions with the
value of the option equal to zero at the far field (that was chosen to be equal to 100 in Topper,
1998):

f (100, S2, t) = 0 and f (S1, 100, t) = 0 (24.42)

This problem can now be solved using the iterative methods in this chapter. We give a
summary of the steps in assembling the finite difference scheme for this problem:� Discretise equation (24.39) using Rothe’s method� Discretise the resulting elliptic equation (to give a system of the form (24.35)� Solve the schemes at each time level using Gauss–Seidel’s method, for example.

Of course, we have to take boundary conditions into account as we march from time level
n to time level n + 1. This process is well known by now.

24.7 SPECIAL GUIDELINES AND CAVEATS

Numerical analysis is as much an art as a science and it takes time and energy to come up with
good schemes for a given problem. There is always a trade-off between accuracy, performance
and robustness. We give some guidelines to help the reader to decide which scheme is most
appropriate for his or her problem.� Iterative FDM schemes (as discussed in this chapter) may be preferable to ADI or splitting

methods because the latter methods produce inherent splitting errors. On the other hand,
ADI and splitting methods are efficient whereas the direct methods use iterative schemes
(these may converge slowly) to compute a discrete solution.� For convection-dominated problems we may have difficulty with Crank–Nicolson (time-
averaging), in particular we experience spurious oscillations and spikes in the solution and
the ‘Greeks’ as well as near barriers (Tavella et al., 2000). A remedy is to use the exponentially
fitted schemes in each ‘underlying direction’ (see Dennis and Hudson, 1980 or Duffy, 1980).� The payoff functions in section 24.2 of this chapter have discontinuous first derivatives in
general, especially near the strike price and just as in the one-factor case we can expect
similar problems in the two-factor case (Duffy, 2004A).� The finite difference and finite element methods are suitable for n-factor problems with
n = 1, 2 and 3. After that, life becomes more difficult, and in these cases we must resort to
other methods, for example Monte Carlo or the meshless (meshfree) method (see Boztosun
et al., 2002).
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For example, the domain could be a triangle. It is possible to apply FDM in these cases
(see Greenspan, 1966) and, while not impossible, and we might prefer to use finite elements
(Topper, 2005).� The classic references on matrix analysis are Varga (1962) and Golub and Van Loan (1996).� Modern schemes, such as multi-grid methods, are discussed in Thomas (1999) and Roache
(1998).

24.8 SUMMARY AND CONCLUSIONS

We have given an overview of the financial background to the class of correlation options, their
essential properties, payoff functions and integration domains. We then map these ‘financial
entities’ to a multi-factor initial boundary value problem involving the Black–Scholes PDE
(with correlation terms), initial condition and boundary conditions. We approximate this con-
tinuous problem by first discretising in the t direction using Rothe’s method and then solving
in the ‘underlying asset’ directions using standard elliptic solvers such as point and line Jacobi
methods. We have implemented the payoff functions from this chapter as C++ classes and
have included the code on the accompanying CD.
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25
Finite Difference Methods
for Fixed-Income Problems

25.1 INTRODUCTION AND OBJECTIVES

In this chapter we give an introduction to fixed-income products and how to model them
using partial differential equations (PDEs) and finite difference methods. In particular, we
concentrate on one-factor and two-factor interest rate models and show how to formulate such
problems as parabolic initial boundary value problems. To this end, we give an inventory of
some of the major stochastic models that describe the behaviour of the short-term interest rate
and the corresponding PDE using Ito’s lemma. In this way we can describe the behaviour of
interest rate related contingent claims, such as zero-coupon bonds, swaps, caplets, floorlets
and plain vanilla bond options. We then move on to more complicated theory where the term
structure of interest rates is determined by two factors: in general one of the factors is the
short-term rate while the other term can describe the instantaneous inflation rate, the long-term
rate or the spread (the difference between the long and short rates).

Our main goal in this chapter is to accentuate the PDE issues involved in interest rate
modelling.

25.2 AN INTRODUCTION TO INTEREST RATE MODELLING

Our main objective is to define the partial differential equations and the corresponding initial
boundary value problems that model contingent claims involving interest rates. However, we
do need to give a general introduction. For a more detailed account, see Hull (2000), Wilmott
(1998) and Gibson et al. (2001). The theory is well known and you may wish to skip this
section.

A discount bound B(t, T ) is a zero-coupon bond that pays one current unit at time T and
nothing else at any other time up to T . We see that B is a function of both t and T and in
particular we have B(T, T ) = 1. By definition, the yield to maturity R(t, T ) of the discount
bond B(t, T ) is the continuously compounded rate of return that causes the bound to rise to a
value 1 at time t = T . Then we have:

B(t, T ) e(T −t)R(t,T ) = 1 (25.1)

By rearranging this equation we can see that the yield to maturity is:

R(t, T ) = − lnB(t, T )

T − t
(25.2)

For a fixed t the shape of R(t, T ) as T increases determines the term structure of interest
rates.

273
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We now define the instantaneous risk-free interest (also called the short-term interest rate)
as the following limit:

r (t) = lim
T →t

R(t, T ) (25.3)

The forward rate f (t, T1, T2) is a function of three parameters and it is the rate that can be
agreed upon at time t for a risk-free loan starting at time T1 and finishing at time T2; it is given
by the formula:

f (t, T1, T2) = lnB(t, T1) − ln B(t, T2)

T2 − T1
(25.4)

The instantaneous forward rate has a limit in (25.4) and is defined by:

f (t, T ) ≡ f (t, T, T ) (25.5)

By going to the limit in equation (25.4) and using the definition in (25.5) we see that:

f (t, T ) = −∂ln B(t, τ )

∂τ

∣∣∣∣
τ=T

= − 1

B(t, T )

∂ B(t, T )

∂T
(25.6)

After some integration we write the last expression in the equivalent form for the bond price:

B(t, T ) = exp

[
−

∫ T

t
f (t, s) ds

]
(25.7)

We now turn our attention to the study of stochastic models for one-factor interest rate
models.

25.3 SINGLE-FACTOR MODELS

A single-factor model for a contingent claim assumes that all information about the term
structure at any point in time can be summarised by a single factor, for example the short-term
interest rate r (t). In this case only r (t) and the expiry time T will affect the price of any interest
rate contingent claim. We then write the zero-coupon price as follows:

B(t, T ) ≡ B[t, T, r (t)] (25.8)

We consider the short-term interest rate as the only factor driving the entire term structure.
Its dynamics are given by the stochastic differential equation (SDE):

dr (t) = μr () dt + σr () dW (t) (25.9)

where we use the shorthand notation for the real-valued functions

μr ≡ μr [t, r (t)] and σr ≡ σr (t, r (t))

Now let

V (t) ≡ V [t, T, r (t)]
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be any contingent claim based on r (t). It can be shown that V satisfies the Feynman–Kac
equation (Gibson et al., 2001):

∂V

∂t
+ [μr () − λ(t, r (t))σr ()]

∂V

∂r
+ σ 2

r ()

2

∂2V

∂r2
− r (t)V = 0 (25.10)

where λ(t, r (t)) is the market risk premium and it is independent of T .
We now give some examples of contingent claims V but we must first introduce some

notation. Define the differential operator L by:

Lu ≡ σ 2
r ()

2

∂2u

∂r2
+ [μr () − λ()σr ()]

∂u

∂r

Then we can define the following kinds of interest rate products.
They all satisfy a Black–Scholes PDE with a special inhomogeneous term in each specific

case. Furthermore, each type will also have its own payoff function.� Zero-coupon bond B(t, T ) with maturity date T :⎧⎨⎩
∂ B

∂t
+ L B − r (t)B = 0

B(T, T ) = 1
(25.11)

� Swap of fixed rate r∗ against a floating rate r with maturity date T :⎧⎨⎩
∂V

∂t
+ LV − r (t)V + (r − r∗) = 0

V (T ) = 0
(25.12)

An interest rate swap is an agreement between two parties to exchange interest payments
for a predefined period of time. One party (called A) agrees to pay the other party B cash flows
equal to a fixed amount r∗ on a notional principal for a predefined period of time. On the other
hand, A receives payments from B at a floating rate r on the same notional principal for the
same period. As can be seen in equations (25.12) we have a PDE as with a zero-coupon bond
with an additional inhomogeneous term (r − r∗) that represents the so-called coupon payment
term. We note that the price of an interest rate swap can be positive or negative.� Closely related to the swap is the swaption. This is an option on a swap and it provides
the holder with the right but not the obligation to enter a swap agreement at some time in the
future.

Let T and TS be the expiry dates of the swaption and the swap, respectively (with T < TS).
The PDE for the swaption is the same as for the zero-coupon bond (see (25.11)). However, the
payoff function is different:

V (r, T ) = max{α[W (r, T ) − K ], 0}
where V = price of swaption

W = price of swap

K = strike price of swaption

α = −1 for a put, α = 1 for call.
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Computationally speaking, we solve for the swap W (r, T ) first (using FDM or analytically,
for example) and then we solve for the swaption V (r, T ).� A European call option on a zero-coupon bond B(t, T ) with maturity TC < T :

∂V

∂t
+ LV − r (t)V = 0

V (TC ) = max [B(t, TC ) − K , 0]
(25.13)

A bond is a debt capital market instrument issued by a borrower who is then required to
repay the lender/investor the amount borrowed plus interest, over a specified period of time. A
zero-coupon bond is a special kind of bond. A zero-coupon bond pays a known fixed amount,
called the principal at some given date in the future, the so-called maturity date T .� A caplet at rate r∗:

∂V

∂t
+ LV − r (t)V + min (r, r∗) = 0

V (T ) = max [r (T ) − r∗, 0]
(25.14)

A caplet guarantees that the interest rate charged on a floating rate loan at any given time will
be the minimum of the prevailing rate r and the ceiling rate r∗. This can be seen as insurance
on the maximum interest rate level for a floating rate loan.

A caplet is similar to a call option.� A floorlet at rate r∗:

∂V

∂t
+ LV − r (t)V + max (r, r∗) = 0

V (T ) = max [r∗ − r (T ), 0]
(25.15)

A floorlet is the opposite of a caplet. It guarantees the holder to receive the maximum of the
prevailing rate r and floor rate r∗ on a floating rate deposit. It is a put on the spot rate.

The PDEs in all these cases are similar in structure; in fact they can be cast in a generic form,
and we can approximate such equations using finite difference schemes. Some preliminary
attention points are:� We need to examine the boundary conditions when r = 0 and when r is large. There are

several possibilities and the discovery of the correct boundary conditions is sometimes a bit
fuzzy; there are severe possibilities.� The inhomogeneous term (for example, min(r, r∗)) in the above PDEs can have discontinuous
first derivatives but this is not a major problem in general because it is a low-order term.� We shall also need to model PDEs in two underlyings.

25.4 SOME SPECIFIC STOCHASTIC MODELS

There are many one-factor processes that model the short-term interest rate. We give an
overview of some of these models. We are interested in the PDE formulation that is, in a
sense, independent of which model we use.

We now give a list of some special cases of the general SDE (25.9). Most of them are named
after the people who invented them. The partial differential equations that model the derivatives
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based on the models below are consequently special cases of the partial differential equations
in equations (25.11)–(25.15).

25.4.1 The Merton model

Merton (1973) was one of the first to propose a stochastic model for the short rate:

dr (t) = μr dt + σr dW (t) (25.16)

where μr and σr are constant and W (t) is the standard Brownian motion.
Furthermore, Merton assumed that the risk market premiun λ was constant.

25.4.2 The Vasicek model

In this case the short rate is modelled as an Ornstein–Uhlenbeck process:

dr (t) = K (θ − r (t)) dt + σ dW (t) (25.17)

where K , θ and σ are positive constants.
This process defines an elastic random walk around some trend with a so-called mean-

reverting characteristic. Furthermore, this model assumes that the market risk premium λ is
constant.

25.4.3 Cox, Ingersoll and Ross (CIR)

In this case interest rates are determined by the supply and demand of individuals having a
logarithmic utility function. The equilibrium model is given by:

dr (t) = K (θ − r (t)) dt + σ
√

r (t) dW (t) (25.18)

where K , θ and σ are positive constants.
The market risk premium at equilibrium is given by:

λ(r, t) = λ
√

r (t)

The disadvantage of the above three models is that they cannot be calibrated with yield
curves. To this end, a number of researchers have introduced a new class of models that do not
have these problems and are consistent with existing models.

25.4.4 The Hull–White model

The general specification is (Hull and White, 1993):

dr (t) = ((θ (t) − K (t))r (t)) dt + σ (t)rβ(t) dW (t) (25.19)

and the risk premium is given by:

λ(r, t) = λrγ , with λ ≥ 0 and γ ≥ 0

In general, the coefficients in equation (25.19) are functions of time and can be used to
calibrate exactly the model to current market prices. The down side is that the bond option
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price can no longer be found analytically but there again we can use numerical techniques such
as the finite difference method.

25.4.5 Lognormal models

In the previous examples we modelled the short rate or the forward rate as Gaussian processes.
The disadvantage is that there is a positive probability of producing negative interest rates
and this implies arbitrage opportunities. To circumvent this problem we discuss a number of
models that do not produce negative rates. We summarise them here for completeness. These
are called lognormal models.

Black, Derman and Toy (1987):

dlog[r (t)] = (θ (t) − K log(r (t))) dt + σr dW (t) (25.20)

This incorporates the mean reversion feature of interest rates. This model is used by practi-
tioners for a number of reasons as discussed in Gibson et al. (2001).

Numeric solutions of one-factor SDEs are given in Kloeden et al. (1995) and implementation
details in C++ are given in Duffy (2004).

25.5 AN INTRODUCTION TO MULTIDIMENSIONAL MODELS

We now discuss interest rate models in which the short rate r (t) and one or more other state
variables drive the process. Single-factor models have a number of drawbacks and for this
reason other models have to be found.

In Richard (1978) a model is proposed in which the term structure of interest rates is
determined by the real short-term rate and the instantaneous inflation rate. These factors have
independent diffusion processes:

dq(t) = μq (t) dt + σq (t) dWq (t)

dπ (t) = μπ (t) dt + σπ (t) dWπ (t)
(25.21)

where Wq and Wπ are independent Brownian motions.
Then, by Ito’s lemma the price of a zero-coupon bond is given by the PDE:

∂ B

∂t
+ Lq B + Lπ B − r B = 0 (25.22)

where

Lq B = σ 2
q

2

∂2 B

∂q2
+ (μq − λqσq )

∂ B

∂q

Lπ B = σ 2
π

2

∂2 B

∂π2
+ (μπ − λπσπ )

∂ B

∂π

and λq , λπ are risk premiums.
At face value (no pun intended), this is a well-known two-factor PDE. We notice that there

is no mixed (cross-derivative) term in this equation. This is because the processes in (25.21)
are independent.

We now discuss some specific models.
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Brennan and Schwartz (1979) proposed a two-factor model where the term structure of
interest rates depends on the short-term rate r (t) and the long-term rate l(t). This latter concept
is defined as:

l(t) = lim
T →∞

R(t, T ) (25.23)

where R(t, T ) is the yield to maturity as defined in equation (25.2). In this case we have a joint
diffusion process given by:

dr (t) = μr ()dt + σr ()dWr (t)

dl(t) = μl()dt + σl()dWl(t)
(25.24)

where Wr (t) and Wl(t) are two correlated standard Brownian motions with

E(Wr (t), Wl(t)) = ρt, t ε [0, T ]

This specification allows the model to reflect the fact that the long-term rate contains some
information about the future value of the short rate, hence the correlation term.

The zero-coupon bond is defined as B(t, T ) = B(t, T, r (t), l(t)) and satisfies the following
PDE (notice the presence of the cross or mixed derivative):

∂ B

∂t
+ Lr B + Ll B + ρσrσl

∂2 B

∂r∂l
− r B = 0 (25.25)

where

Lr B ≡ σ 2
r

2

∂2 B

∂r2
+ (μr − λrσr )

∂ B

∂r

Ll B ≡ σ 2
l

2

∂2 B

∂l2
+ (μl − λlσl)

∂ B

∂l

and B(T, T ) = 1.
This type of PDE has already been discussed in previous chapters, in particular on how to

approximate its solution using FDM by using splitting methods.
Another example is given in Hull and White (1994b) in order to resolve some of the limi-

tations of the one-factor model:

dr (t) = (θ (t) + u − r (t)) dt + σ1 dW1(t)

du(t) = −bu(t) dt + σ2 dW2(t)
(25.26)

where

E(dW1(t), dW2(t)) = ρ dt, with u(0) = 0

In this case the short-term rate is mean-reverting but we now have a stochastic drift u which
is itself mean-reverting to 0 at the rate b. The resulting PDE is then given by:

∂ B

∂t
+ Lr B + Lu B + ρσ1σ2

∂2 B

∂r∂u
− r B = 0 (25.27)
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where

Lr B ≡ 1
2σ2

1
∂2 B

∂r2
+ (θ (t) + u − ar )

∂ B

∂r

Lu B ≡ 1
2σ2

2
∂2 B

∂u2
− bu

∂ B

∂u

Again, this is a PDE that can be solved using splitting methods, for example. We must take
care of the mixed derivative term, of course.

25.6 THE THORNY ISSUE OF BOUNDARY CONDITIONS

In general, when solving initial boundary value problems associated with one-factor partial
differential equations we must specify the boundary (auxiliary) conditions as well as the payoff
conditions. Here we distinguish between one-factor and two-factor problems. In the former
case we have a PDE with the short rate as one variable, while in the latter case the variables
represent the short rate, for example, and some other quantity. Since the values are defined on
the semi-infinite positive axis we have two points to attend to:� Far-field condition: Truncating the semi-infinite domain to a finite domain. Another option

is to find a transformation that maps the semi-infinte interval to a bounded interval.� Defining the boundary conditions themselves.

Much of the literature is very Spartan in the author’s opinion when it comes to defining
boundary conditions, their numerical approximation and their assembly into the discrete system
of equations. In general, a combination of mathematical, financial and heuristic reasoning
allows us to find consistent and acceptable boundary conditions for a problem.

25.6.1 One-factor models

In this case the independent variable is r , the short-term interest rate. In principle it is non-
negative and hence takes values in the range zero to infinity. We first truncate the semi-infinite
interval to a finite interval and then we must specify conditions on the new boundary:� For very high values of r the value of a contingent claim is zero; thus the boundary condition

V (r, t) → 0 as r → ∞ becomes

V (rmax, t) = 0 (25.28)

Another common boundary condition is the Neumann boundary condition:

∂V

∂r
(r, t) → 0 as r → ∞ or

(25.29)
∂V

∂r
(rmax, 0) = 0

We already know how to approximate these conditions numerically; for example, we can
approximate (25.29) by one-sided (first-order accurate) divided differences or by two-sided
(second-order accurate) divided differences in combination with ghost or fictitious points.

When r approaches zero (or is zero) the situation is a little more complicated. We can-
not prescribe an explicit boundary condition as such (because the Black–Scholes equation
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is degenerate) but we allow the Black–Scholes equation to hold when r = 0. The resulting
PDE will then be a first-order hyperbolic equation! Let us take an example. Consider first the
Cox–Ingersoll–Ross (CIR) interest-rate model (Hull, 2000):

dr = u(r, t) dt + w(r, t) dW (25.30)

where u(r, t) = a − br and w(r, t) = σ
√

r .
The pricing equation for a zero-coupon bond in this case is given by (Tavella et al., 2000):

∂ B

∂t
+ 1

2σ 2r
∂2 B

∂r2
+ (a − br )

∂ B

∂r
− r B = 0 (25.31)

In this model the boundary conditions at r = 0 is given by:

∂ B

∂t
+ a

∂ B

∂r
= 0 if σ <

√
2a (25.32)

This is a first-order hyperbolic equation and it must be augmented with an initial condition
and boundary conditions in order to define a valid initial boundary value problem. In this case
(beware characteristic direction!) we define them as follows:

B(rmax, t) = 0

B(r, T ) = 1
(25.33)

25.6.2 Multi-factor models

In this case we have two (or more) independent variables, one for the short rate and the other
for another variable such as the underlying share price S (in the case of a convertible bond,
for example), the long rate or spread. We take an example of a PDE that models a convertible
bond:

∂V

∂t
+ 1

2σ 2S2 ∂2V

∂S2
+ ρσ Sw

∂2V

∂S ∂r
+ 1

2w2 ∂2V

∂r2
+

+ r S
∂V

∂S
+ (u − λw)

∂V

∂r
− r V = 0 (25.34)

The problem cases are at r = 0 and S = 0. For example, when S = 0 the PDE (25.34)
reduces to the one-factor PDE on the boundary:

∂V

∂t
+ 1

2w2 ∂2V

∂r2
+ (u − λw)

∂V

∂r
− r V = 0 (25.35)

We see that no derivatives with respect to S appear in equation (25.35). We may be able to
find an exact solution to this problem; otherwise we approximate it using the techniques in this
book. On the other hand, when r = 0 we get the PDE (Sun, 1999):

∂V

∂t
+ 1

2σ 2S2 ∂2V

∂S2
+ u

∂V

∂r
= 0 (25.36)

where w(0, t) = 0.
We thus see that we must solve a PDE on the boundary. It is second order in S and first

order in r and is similar in structure to the Asian option PDEs in Chapter 23. Ideally, an exact
solution would be most advantageous, but this may not always be possible. An interesting
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model is the Heath–Jarrow–Morton (HJM) (Heath et al., 1992) but such a discussion is outside
the scope of this book.

25.7 INTRODUCTION TO APPROXIMATE METHODS
FOR INTEREST RATE MODELS

Finite difference schemes can be applied to constructing schemes for one-factor and multi-
factor interest rate models. The main points of attention are:� Approximating the PDE terms by divided differences� How to handle cross-derivatives� Choosing between ADI and splitting methods� Truncating semi-infinite intervals (far-field condition)� Approximation the boundary conditions� Assembling the discrete system of equations.

We have already discussed each of these issues in detail in previous chapters. Of particular
importance in this case is the numerical approximation of the continuous boundary conditions
and the presence of cross-derivatives in multi-factor models.

25.7.1 One-factor models

We take the example of a one-factor zero-coupon bond (see Tavella et al., 2000). The ‘forward’
initial boundary value problem is given by:

−∂ B

∂t
+ 1

2σ 2r
∂2 B

∂r2
+ (a − br )

∂ B

∂r
− r B = 0, 0 < r < rmax, t > 0 (25.37a)

B(rmax, t) = 0, t > 0

−∂ B

∂t
(0, t) + a

∂ B

∂r
(0, t) = 0, t > 0, a > 0 (25.37b)

B(r, 0) = H (r ) (payoff ), 0 < r < rmax

Please note that we are using the engineer’s time. The tricky part is the boundary condition
at r = 0, which is a first-order hyperbolic equation. We thus conclude that the bond price B
is not known at r = 0 and for this reason we must discretise all the PDEs in problem (25.37)
simultaneously. To this end, the implicit Euler scheme for the Black–Scholes equation is:

− Bn+1
j − Bn

j

k
+ σ n+1

j D+ D− Bn+1
j + μn+1

j D0 Bn+1
j − r j Bn+1

j = 0, 1 ≤ j ≤ J − 1 (25.38)

where σ ≡ 1
2σ 2r (slight misuse of notation)

μ ≡ a − br

while the scheme at r = 0 is given by:

− Bn+1
j − Bn

j

k
+ a

Bn+1
j+1 − Bn+1

j

h
= 0, when ( j = 0) (25.39a)
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or

Bn+1
o (1 + λ) = Bn

0 + λBn+1
1

(
λ ≡ ak

h

)
(25.39b)

(Another possibility is to use the exact solution of the first-order PDE at r = 0.)
We now assemble these equations. Define the unknown vector B by:

Bn+1 = t (Bn+1
0 , . . . , Bn+1

J−1)

Then the system of equations is:

An+1 Bn+1 = Fn (25.40)

where

An =

⎛⎜⎜⎜⎜⎜⎜⎝

1 + λ λ

an
2 bn

1 cn
1

. . .
. . .

. . . 0

0
. . .

. . . cn
J−1

an
J bn

J−1

⎞⎟⎟⎟⎟⎟⎟⎠
and

Fn = t (Bn
0 , 0, . . . , 0)

The matrix A is an M-matrix and hence has a positive inverse. We thus conclude that our
finite difference scheme is monotone. The accuracy of the scheme (25.39) is first order in time
and space.

25.7.2 Many-factor models

For two-factor models we can apply ADI or splitting, although much of the literature tends
to employ ADI. Furthermore, we have worked on a default risk model using ADI and Crank–
Nicolson where we were not successful in obtaining good approximations, whereas application
of the splitting method gave good results (Levin, 1999, private communication; Levin and
Duffy, 2000). We can apply the splitting methods to the systems (25.25) or (25.27). See
Chapter 19 for a full discussion.

25.8 SUMMARY AND CONCLUSIONS

We have given an introduction to the partial differential equations and corresponding initial
boundary value problems that model one-factor and two-factor interest rate models. The PDEs
are standard and tractable and these can be approximated by the finite difference schemes
that we have already discussed in this book. Complicating factors lie in determining how to
formulate and approximate the corresponding boundary conditions on the one hand and coping
with mixed derivatives on the other.

Our standpoint is that splitting methods are suitable for two-factor interest rate models.
They perform better than ADI methods, especially when there are mixed derivative terms in
the models.
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26
Background to Free and Moving

Boundary Value Problems

26.1 INTRODUCTION AND OBJECTIVES

In this chapter we examine free and moving boundary values problems from a theoretical
viewpoint. Furthermore, we discuss their application to financial engineering. In particular, we
discuss the early exercise feature of one-factor and multi-factor option modelling problems.
This is called the American exercise feature. In short, this chapter paves the way for future
chapters.

Part VI consists of four chapters. The main goal is to cover enough material to enable the
reader to apply finite difference schemes to the Black–Scholes equation with a free or moving
boundary.

We have written the material on free boundaries for two major reader groups. First, those
readers who may have had some exposure to free boundary value problems and who wish to
apply their existing knowledge to financial engineering applications. The second reason is to
introduce the theory and application of free and moving boundary value problems to a wider
audience – in particular to those practitioners who have not necessarily studied such problems
before. To this end, we introduce the material in a step-by-step fashion, culminating with the
formulation of an option pricing problem with the early exercise feature as a free boundary
value problem. Having done that, we are then able to solve the problem using robust numerical
methods. This is a relatively new area of research.

The range of applications of free boundary value problems in engineering and mathematical
physics is quite extensive. The set of problems in financial engineering is a proper subset of
these problems that we encounter in the physical sciences. There are many analogies between
heat flow problems and the Black–Scholes model and numerical techniques that are used with
success to solve the former problems. These can be applied to the latter group as well, as the
chapters in this part will show.

26.2 NOTATION AND DEFINITIONS

Free and moving boundary value problems have their origins in the physical sciences. Problems
in which the solution of differential equations must satisfy certain conditions on the boundary
of a prescribed domain are called boundary value problems. In many cases the boundary of the
domain is not known a priori but it must be determined as part of the problem. We partition such
problems into two groups: first, the term ‘free boundary problem’ is used when the boundary is
stationary and a steady-state solution exists (for example, the solution of an elliptic problem).
We then have the class of moving boundary value problems that are associated with time-
dependent problems (for example, defined by a parabolic partial differential equation). The
unknown boundaries in the latter case are a function of both space and time. In all cases we
must specify two conditions on the free or moving boundary. Of course, the usual boundary

287
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conditions are specified on the fixed boundary as well as some appropriate initial conditions,
as already discussed in this book.

In general, we can classify free and moving boundary value problems into different categories
depending on the types of problem that they model. For example, a one-phase problem is one
where we model a PDE in a single domain with an unknown boundary. The solution on the other
side of the unknown boundary is known. With two-phase problems we model different PDEs,
that is, defined in two domains that are separated by a free or moving boundary. Most problems
in financial engineering at the moment of writing are described as one-phase problems. In this
case the solution is zero on one side of the moving boundary and it satisfies the Black–Scholes
equation on the other side of the boundary, for example.

Moving boundary value problems are sometimes called Stefan problems in honour of the
Austrian mathematician, J. Stefan, who in 1890 studied the melting of the polar ice cap.

26.3 SOME PRELIMINARY EXAMPLES

We discuss a number of problems in order to motivate the theory. An excellent source
of these problems is Crank (1984). These problems originate in many application areas,
such as:� Soil mechanics� Engineering� Physical and biological sciences� Metallurgy� Decision and control theory.

We shall see that the techniques for these problems can be applied to pricing applications
with an early exercise feature.

26.3.1 Single-phase melting ice

Consider a semi-infinite sheet of ice. The initial point is at x = 0 and we assume that the sheet
is initially at the melting temperature, that is zero degrees. We now raise the temperature of
the sheet surface at time t = 0 and we maintain the temperature. What we get is the following
phenomenon: a boundary surface or interface is born at which melting occurs. This boundary
moves from the surface into the sheet and separates a region of water from one of ice at
zero temperature. Let us denote the moving boundary by the function B(t). Let u(x, t) be the
temperature at time t and at some point x in the water phase. (The temperature on the other
side of the moving boundary is zero.) Then the heat equation is valid in the liquid region and
is defined by:

cρ
∂u

∂t
= K

∂2u

∂x2
, 0 < x < B(t), t > 0 (26.1)

where c = specific heat

ρ = density

K = heat conductivity.
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We augment this equation, first by a fixed boundary condition

u(0, t) = A, t > 0 (26.2)

where the value A is the constant surface temperature, and second by an initial condition

u(x, 0) = 0, 0 < x < ∞, t > 0

B(0) = 0
(26.3)

Continuing, we need two further conditions on the moving boundary x = B(t) namely:

u = 0

−K
∂u

∂x
= Lρ

d B

d t

⎫⎬⎭ t > 0 (26.4)

where L = latent heat required to melt ice, and K and ρ are defined in (26.1).
Equation (26.4), called the ‘Stefan condition’, expresses the heat balance on the moving

boundary. It is similar to the ‘smooth pasting condition’ for the pricing of American options.
The name ‘one-phase’ should be clear at this stage: we are modelling the temperature in the

liquid region by the heat equation while in the solid region the temperature is identically zero.
Thus, we do not need to model the solid region by a PDE.

26.3.2 One-factor option modelling: American exercise style

We already know that a European option can be exercised only at the expiry date. American
options, on the other hand, can be exercised at any time before, or up to, the expiry date. In
this section we concentrate on a put option with an early exercise feature. Let P = P(S, t) be
the put option price. Then P satisfies the PDE:

∂ P

∂t
+ 1

2σ 2S2 ∂2 P

∂S2
+ r S

∂ P

∂S
− r P = 0, S > B(t), 0 ≤ t ≤ T (26.5)

Here B(t) is the moving boundary. We are assuming that no dividends are paid throughout
the life of the option. The terminal condition is given by:

P(S, T ) = max(K − S, 0), S ≥ 0, 0 ≤ t ≤ T (26.6)

where K is the strike price.
We now need to prescribe boundary conditions. Since the problem is defined on a region

containing both fixed and free boundaries, we define the first ‘fixed’ boundary condition as:

lim
S→∞

P(S, t) = 0 (26.7)

and the so-called pasting conditions at the free boundary as:

∂ P

∂S
(B(t), t) = −1

P(B(t), t) = K − B(t)
(26.8)

Furthermore, we define the terminal value for the free boundary as follows:

B(T ) = K (26.9)
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Finally, ‘in front’ of the free boundary the option price is given by:

P(S, t) = max(K − S, 0), 0 ≤ S < B(t) (26.10)

The problem (26.5)–(26.10) is similar to the Stefan problem that we studied in section
26.3.1. It is an example of a one-phase problem.

Since early exercise is permitted, the option price P must satisfy the constraint:

P(S, t) ≥ max(K − S, 0), S ≥ 0, 0 ≤ t ≤ T (26.11)

As in the previous section we see that there are two unknowns, namely the option price
P(S, t) and the free boundary B(t). The curve B(t) is called the optimal exercise boundary.
When S > B(t) we see from equation (26.5) that P satisfies the Black–Scholes equation, while
if S ≤ B(t) it is optimal to exercise the put.

26.3.3 Two-phase melting ice

This section can be skipped on a first reading without loss of continuity. We now revisit the
melting-ice problem of section 26.3.1. In particular, we assume that the ice is initially at a
temperature below the melting point and we assume that heat flows in both the water and ice
phases. Then we must model a PDE in each phase (that is, ice and water). The problem is to
find a triple:

u1(x, t), u2(x, t), B(t)

where u1 = tenperature in the water phase

u2 = temperature in the ice phase

and B(t) = the free boundary between the two phases.

The heat equation in the two phases in a bounded interval (0, A) is given by:

c jρ j
∂u j

∂t
= K j

∂2u j

∂x2
, j = 1, 2, x ∈ (0, A) (26.12)

Where c j = specific heat in phase j

ρ j = density in phase j

K j = thermal conductivity in phase j.

In the interior of the interval (0, A) there is an unknown moving boundary B(t) where the
following so-called Stefan condition is satisfied:

u1 = u2 = 0

K2
∂u2

∂x
− K1

∂u1

∂x
= Lρ

dB

dt

⎫⎬⎭ x = B(t) (26.13)

We must thus solve two PDEs, one in each domain. The domains are separated by a common,
free boundary.

26.3.4 The inverse Stefan problem

An interesting problem is when the interface between water and ice is known. Why would
we want this situation? One reason would be to let the melting interface move in a prescribed
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way. This is the so-called inverse Stefan problem and since the moving boundary is known we
must compensate this by prescribing other conditions, for example:� The boundary condition g(t) at x = 0� By prescribing a heat input q(t).

The corresponding problem is now:

∂u

∂t
= ∂2u

∂x2
, 0 < x < B(t)

u = g0(t),
∂u

∂x
= λ

dB

dt
+ q(t), x = B(t)

u = ϕ(x) < 0, 0 < x < L , t = 0

u = g(t) < 0, x = 0, t > 0

B(0) = L

(26.14)

where λ = dimensionless latent heat

1/λ = the ‘Stefan number’.

Physically, the boundary condition at x = 0 has to be determined such that the melting
interface moves in a prescribed way. Another inverse problem is to determine the heat source
q(t) on the surface B(t), given both g(t) and B(t)

26.3.5 Two and three space dimensions

We can formulate the Stefan problem in n dimensions. Let us consider the situation as shown in
Figure 26.1 in which two regions are separated by an unknown boundary B(x, t). The diffusion
equation with inhomogeneous term Q is defined in each region:

cρ
∂u

∂t
= �(K�) + Q, x ε � j , j = 1, 2, 0 < t < T (26.15)

where

�(K � u) =
n∑

j=1

∂

∂x j

(
K

∂u

∂x j

)

),(1 txu ),(2 txu

B (x, t ) = 0

1Γ
2Γ

1Ω

2Ω

η

Figure 26.1 Two-phase flow with moving boundary B (x, t)
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and the boundary conditions on the fixed boundaries are given by:

∂u

∂η
− hu = g j (x t), x ε 
 j , 0 < t < T (26.16)

when η = outward normal to boundary 
 j and where vη ≡ (∂v/∂η) and g j are known, j =
1, . . . , n, while the conditions on the unknown boundary are given by:

u1(x, t) = u2(x, t) = um[
K

∂u

∂η

]2

1

≡ K2
∂u2

∂η
− K1

∂u1

∂η
= −ρLvη + g

⎫⎪⎬⎪⎭ on B(x t) = 0, 0 < t < T (26.17)

where um is the phase-change temperature and vη is the velocity on the free boundary.
Finally, the initial conditions are given by:

u(x, 0) = u0(x)

B(x, 0) = B0(x)

}
t = 0 (26.18)

where u0 and B0 are given functions.
Problem (26.15)–(26.18) is the n-dimensional equivalent of the problem (26.1)–(26.4). We

shall need to understand these higher-dimensional problems when we discuss multi-factor
contingent claims containing an American early exercise feature.

An interesting special case is when the free boundary is not ‘well defined’. For example,
between the solid and liquid phase we experience a ‘mushy’ phase (part ice, part water). The
situation is depicted in Figure 26.2. For example, in one dimension on the interval [−1, 1] we
define the different regions as follows:

�−
T = [(x, t) : −1 < x < B−(t), 0 < t < T ] (solid)

�+
T = [(x, t) : B+(t) < x < 1, 0 < t < T ] (liquid)

�∗
T = [(x, t) : B−(t) < x < B+(t), 0 < t < T ] (mushy)

(26.19)

It is obvious that this problem is more difficult to solve numerically than one-phase or
two-phase time-dependent problems. Incidentally, we do not know if there is an analogy with
quantitative finance applications.

−ΩT

mushysolid liquid

*
TΩ +ΩT

)(tB−
)(tB+

Figure 26.2 Solid, liquid and ‘mushy’ regions
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26.3.6 Oxygen diffusion

Our last example concerns oxygen diffusing into a medium that absorbs and immobilises the
oxygen at a constant rate (Crank, 1984). The concentration of the oxygen at the surface of
the medium is kept constant. Then a moving boundary marks the innermost limit of oxygen
penetration. The surface is then sealed so that no more oxygen penetration takes place. This
problem is special because there is a discontinuity in the derivative boundary condition due
to the abrupt sealing of the surface. If u(x, t) denotes the concentration of oxygen free to
diffuse at a distance x from the surface at time t , then the partial differential equation (in
non-dimensional form) is given by:

∂u

∂t
= ∂2u

∂x2
, (x, t) ε �+

T
(26.20)

where

�+
T = [(x, t) : 0 < x < B(t), 0 < t < T ]

and B(t) is the moving boundary; the fixed boundary condition is given by:

u = g0(t) or
∂u

∂x
+ b(t)u = g1(t) (26.21)

while the free boundary condition is given by:

u = 0

dB

dt
= −∂u

∂x

⎫⎬⎭ x = B(t), 0 < t < T (26.22)

When t = 0 the initial condition is given by:

u(x, 0) = u0(x)

B(0) = x0

}
x ε �+(0) (26.23)

26.4 SOLUTIONS IN FINANCIAL ENGINEERING: A PREVIEW

In principle, all the examples and test cases that we have discussed in previous chapters for the
European exercise case can and do have their American counterparts. We need to formulate
the mathematical problem (there may be more than one formulation) and then determine how
to approximate this problem using numerical methods.

26.4.1 What kinds of early exercise features?

As already mentioned, for every European option we can think of a corresponding American
one. Some possibilities are:� A one-factor model with constant volatility and no dividends. We can model this problem

by the binomial method and checking for early exercise at each time level (Wilmott, 1993).
Accuracy is first order, however.� Problems with stochastic volatility: this corresponds to the Heston model with early exercise
features (Oosterloo, 2003).
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it) as a parabolic integro differential variational inequality (PIVI).� Asian American options.� American passport options.� Multi-factor options with early exercise feature.� Problems with jumps, thus introducing integral terms as in the Merton jump model.

We shall discuss a number of these problems in the following chapters. As far as a mathematical
formulation is concerned, there are several possibilities:� We can transform the initial boundary value problem with free boundary to a nonlinear

problem on a fixed domain. The free boundary is modelled as part of a nonlinear partial
differential equation. This process is called ‘front fixing’.� We can add a so-called penalty term to the option PDE, thus allowing us to find the option
price without having to worry about the free boundary. This is called the ‘regularisaton
process’.� We can adopt a variational formulation; this results in some kind of parabolic variational
inequality (PVI) or even parabolic integro-differential variational inequality (PIVI).

26.4.2 What kinds of numerical techniques?

Depending on the mathematical model, we have a number of numerical techniques at our
disposal. The two main categories are those based on finite differences or approximations that
rely on a variational formulation. The latter category uses many ideas from the finite element
method (FEM). Again, we study the various numerical methods in more detail in the coming
chapters.

26.5 SUMMARY AND CONCLUSIONS

We have given an introduction to free and moving boundary value problems by looking at
some examples from heat transfer applications. The mathematical theory for such problems is
well-developed and much numerical work has been done. We also discuss the initial boundary
value problem (with moving boundary) that describes an option with the American exercise
feature. There are many similarities between this problem and problems from the physical
sciences. Thus, understanding the background to free boundary problems will be of benefit
when modelling American option problems in the coming chapters.



0470858826c27 JWBK073-Duffy February 2, 2006 12:8 Char Count= 0

27
Numerical Methods for Free Boundary

Value Problems: Front-Fixing Methods

27.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a class of finite difference schemes to approximate the solution
of a parabolic initial boundary value problem (IBVP) with a free boundary. Not only do we
wish to find the solution of the IBVP but we also need to find the position of the free boundary.
To this end, we define a new variable that allows us to transform the original IBVP to one in
which the free boundary is absent. The method is called front-fixing because all boundaries
are known or fixed.

As an application, we apply the method to finding schemes for a one-factor put option with
American exercise feature. We examine implicit, explicit and predictor–corrector schemes.
Furthermore, we discuss the use of the front-fixing methods to two-factor convertible bond
modelling.

27.2 AN INTRODUCTION TO FRONT-FIXING METHODS

Free boundary value problems are special because we have to find the solution of a partial
differential equation that satisfies auxiliary initial conditions and boundary conditions on a
fixed boundary as well as on a free boundary. The first technique that we discuss is called front
fixing and in this case we track the free surface by a suitable change of variables. We then use
partial differentiation to produce a nonlinear partial differential equation on a fixed domain. In
the examples in this chapter we have a free boundary somewhere in the interior of the domain
of interest. In this case we look specifically at the transformation that was suggested in Landau
(1950)

x = S

B(t)
(27.1)

where, for the Black–Scholes equation, S is the underlying and B(t) is the early exercise bound-
ary. Now, we transform the (linear) Black–Scholes equation in the independent variables (S, t)
to a nonlinear PDE in the new independent variables (x, t). In order to effect the transformation
we must use partial derivatives and, to this end, we give a quick review of them. Then we look
at some examples, including applications to one-factor American option pricing.

27.3 A CRASH COURSE ON PARTIAL DERIVATIVES

You can skip this sub-section if you can do partial derivatives blind-folded. In general, we are
interested in functions of two variables and we consider a function of the form:

z = f (x, y)

295
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The variables x and y can take values in a given bounded or unbounded interval. First, we say
that f (x, y) is continuous at (a, b) if the limit

lim
x→a
y→b

f (x, y)

exists and is equal to f (a, b). We now need definitions for the derivatives of f in the x and y
directions.

In general, we calculate the partial derivatives by keeping one variable fixed and differenti-
ating with respect to the other variable, for example:

z = f (x, y) = ekx cos ly

∂z

∂x
= k ekx cos ly

∂z

∂y
= −l ekx sin ly

We now discuss the situation when we introduce a change of variables into some problem
and then wish to calculate the new partial derivatives. To this end, we start with the variables
(x, y) and we define new variables (u, v). We can think of these as ‘original’ and ‘transformed’
coordinate axes, respectively. Now define the functions z(u, v) as follows:

z = z(u, v), u = u(x, y), v = v(x, y)

This can be seen as ‘a function of a function’. We are interested in the following result: if
z is a differentiable function of (u, v) and u, v are continuous functions of x, y, with partial
derivatives, then the following rule holds:

∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x

∂z

∂y
= ∂z

∂u

∂u

∂y
+ ∂z

∂v

∂v

∂y

(27.2)

This is a fundamental result that we shall apply in this chapter. We take a simple example
of equation (27.2) to show how things work. To this end, consider the Laplace equation in
Cartesian geometry:

∂2u

∂x2
+ ∂2u

∂y2
= 0

We now wish to transform this equation into an equation in a circular region defined by the
polar coordinates:

x = r cos θ, y = r sin θ

The derivative in r is given by:

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
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and you can check that the derivative in θ is:

∂u

∂θ
= −r sin θ

∂u

∂x
+ r cos θ

∂u

∂y

hence

∂u

∂x
= cos θ

∂u

∂r
− 1

r
sin θ

∂u

∂θ

∂u

∂y
= sin θ

∂u

∂r
+ 1

r
cos θ

∂u

∂θ

and

∂2u

∂x2
= cos θ

∂

∂r

(
∂u

∂x

)
− 1

r
sin θ

∂

∂θ

(
∂u

∂x

)
∂2u

∂y2
= sin θ

∂

∂r

(
∂u

∂y

)
+ 1

r
cos θ

∂

∂θ

(
∂u

∂y

)
Combining these results allows us finally to write Laplace’s equation in polar coordinates

as follows:

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0, u(l, θ ) = f (θ )

Thus, the original heat equation in Cartesian coordinates is transformed to a singular initial
boundary value problem of convection–diffusion type. We can find a solution to this problem
using the separation of variables method, for example.

27.4 FUNCTIONS AND IMPLICIT FORMS

Some problems use functions of two variables that are written in the implicit form:

f (x, y) = 0

In this case we have an implicit relationship between the variables x and y. We assume that
y is a function of x . The basic result for the differentiation of this implicit function is:

d f ≡ ∂ f

∂x
dx + ∂ f

∂y
dy = 0 (27.3a)

or

dy

dx
= −∂ f/∂x

∂ f/∂y
(27.3b)

We now use this result by posing the following problem; consider the transformation:

u = u(x, y)

v = v(x, y)

}
original equations

and suppose we wish to ‘transform back’:

x = x(u, v)

y = y(u, v)

}
find x, y (inverse functions)
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To this end, we examine the following differentials

du = ∂u

∂x
dx + ∂u

∂y
dy

dv = ∂v

∂x
dx + ∂v

∂y
dy

(27.4)

Let us assume that we wish to find dx and dy given that all other quantities are known.
Some arithmetic applied to (27.4) (two equations in two unknowns!) results in:

dx =
(

∂v

∂y
du − ∂u

∂y
dv

) /
J

dy =
(

−∂v

∂x
du + ∂u

∂x
dv

) /
J

(27.5)

where J is the Jacobian determinant defined by:

J =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ = ∂(u, v)

∂(x, y)
(27.6)

We can thus conclude the following result.

Theorem 27.1. The functions x = F(u, v) and y = G(u, v) exist if

∂u

∂x
,

∂u

∂y
,

∂v

∂x
,

∂v

∂y

are continuous at (a, b) and if the Jacobian determinant is non-zero at (a, b).

Let us take the example:

u = x2

y
, v = y2

x

You can check that the Jacobian is given by

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣∣∣∣
2x

y

−x2

y2

−y2

x2

2y

x

∣∣∣∣∣∣∣∣∣ = 3 �= 0

Solving for x and y gives

x = u1/3v2/3, y = u2/3v1/3

You need to be comfortable with partial derivatives and the basic results in this section are
a prerequisite for what is to come. A good reference is Widder (1989).
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27.5 FRONT FIXING FOR THE HEAT EQUATION

As a first example, we examine the one-dimensional Stefan problem (Crank, 1984):

∂u

∂t
= ∂2u

∂x2
, 0 < x < s(t), t > 0

u = 1, x = 0, t > 0

u = 0, x > 0, t = 0

(27.7)

where s(0) = 0

u = 0

−∂u

∂x
= λ

ds

dt
, x = s(t), t > 0

and λ = latent heat.
Applying the Landau transformation where s = s(t) is the moving boundary

ξ = x

s(t)
(27.8)

Using the rules for partial differentiation we can calculate the derivatives in the new variables
(set τ ≡ t identically just to be complete):

∂u

∂x
= ∂u

∂ξ

∂ξ

∂x
+ ∂u

∂τ

∂τ

∂x
= 1

s(t)

∂u

∂ξ
+ 0 (27.9a)

∂u

∂t
= ∂u

∂ξ

∂ξ

∂t
+ ∂u

∂τ

∂τ

∂t
= ∂u

∂ξ

∂ξ

∂s

ds

dt
+ ∂u

∂τ
= ∂u

∂ξ

∂ξ

∂s

ds

dt
+ ∂u

∂t
(27.9b)

or

∂u

∂x
= 1

s(t)

∂u

∂ξ
,

∂2u

∂x2
= 1

s(t)2

∂2u

∂ξ 2
(27.9.c)

(
∂u

∂t

)
x

= ∂u

∂ξ

∂ξ

∂t
+

(
∂u

∂t

)
ξ

= −x

s(t)2

ds

dt

∂u

∂ξ
+

(
∂u

∂t

)
ξ

(27.9.d)

We now get a convection–diffusion equation in the new coordinate system:

∂2u

∂ξ 2
= s2 ∂u

∂t
− sξ

ds

dt

∂u

∂ξ
, 0 < ξ < 1, t > 0 (27.10)

We have thus transformed a linear diffusion equation with a moving boundary into a nonlinear
convection–diffusion equation on a fixed domain (0, 1).

Furthermore, the conditions on the free boundary are given by:

−1

s

∂u

∂ξ
= λ

ds

dt
, ξ = 1, t > 0 (27.11)

Looking at this equation we conclude that we now have a PDE on a fixed interval (no free
boundary) but now there are two unknowns, namely the temperature u and the free surface
s = s(t). Thus, we have simplified the problem in one direction but it has become more complex
in the other direction!
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We shall discuss later how to approximate the transformed problem by finite difference
schemes when we discuss one-factor American option models.

27.6 FRONT FIXING FOR GENERAL PROBLEMS

The front-fixing method can be applied to more general two-phase problems involving
convection–diffusion equations (see Crank, 1984). To this end, let us examine the situation in
equation (27.12). In each of the regions ( j = 1 and j = 2) we have the following PDE:

−c j
∂u j

∂t
+ σ j

∂2u

∂x2
+ μ j

∂u j

∂x
+ b j u j = f j (x, t), 0 < t < T ( j = 1, 2) (27.12)

Phase 1 is defined by the region I ( j = 1) and phase 2 is defined by region II ( j = 2). Again,
let s(t) be the moving boundary.

The initial conditions are given by:

u1(x, 0) = u10(x), l1 ≤ x ≤ s(0)

u2(x, 0) = u20(x), s(0) ≤ x ≤ l2 (s(0) given)
(27.13)

The fixed boundary conditions are of the Robin type:

α1 j (t)u j + α2 j (t)
∂u j

∂x
= α j (t), j = 1, 2 for x = l j , 0 < t < T (27.14)

The conditions on the free boundary take the following general form:

u1 = u2 = G

(
s,

ds

dt
, t

)
F

(
u,

∂u1

∂x
,
∂u2

∂x
,
∂u

∂t
, s,

ds

dt
, t

)
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
x = s(t)

0 < t < T
(27.15)

We transform the PDE in each phase by the change of variables:

ξ j = x − l j

s(t) − l j
, j = 1, 2 (27.16)

We show what the transformed PDE is in region I (we drop the subscript for convenience):

σ
∂2u

∂ξ 2
+ (s − l1)

(
μ + cξ

ds

dt

)
∂u

∂ξ
+ (s − l1)2bu − (s − l1)2c

∂u

∂t

= (s − l1)2 f (x, t), 0 < ξ < 1, 0 < t < T (27.17)

A similar equation holds for region II. Again, we have a nonlinear convection–diffusion
equation on a fixed domain. The reader has enough information to check that (27.17) is indeed
true. We shall apply this knowledge to the Black–Scholes equation.

27.7 MULTIDIMENSIONAL PROBLEMS

The one-dimensional Landau coordinate transformation (27.1) is a special case of a more
general transformation of curved-shaped regions in two or more dimension to straight-edged
rectangular or cubed regions (Crank, 1984; Hughes, 2000). A discussion of this problem is
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beyond the scope of this book; however, we do mention that such transformations may be
needed in financial engineering applications, for example convertible bond modelling with an
American exercise feature (Sun, 1999). We describe the basic financial problem and we show
how this two-factor problem with a free boundary reduces to a problem on a fixed boundary.

A convertible bond is a bond issued by a corporation offering investors the right to convert
the bond to a specified number of shares of stock from the issuing firm. The conversion option
of the bond is exercisable when and if the investor wishes to do so. The holder, on the other
hand, has the right but not the obligation to exchange the convertible bond for common stock
of the issuing firm. In general the bond price V = V (S, r, t) is a function of three variables:� S, the stock price� r , the spot interest rate� t , time

The stock price S is modelled using the stochastic differential equation (SDE):

dS = μ(S, t)S dt + σ (S, t) dX1 (27.18)

where dX1 = normally, distributed random variable (mean 0 and variance dt)

μ = drift

σ = volatility

The SDE for the interest rate r is given by:

dr = u(r, t) dt + w(r, t) dX2 (27.19)

where dX2 is the normally distributed random variable (mean 0 and variable dt) and u(r, t)
and w(r, t) are (as of now) unspecified functions.

The stock market and the fixed income market are related to each other and the correlation
is given by the relationship:

E(dX1, dX2) = ρ(S, r, t) dt (27.20)

Furthermore, we assume continuous dividends and that the bond pays a coupon at an annual
rate k and that at expiry the convertible returns Z unless it has been converted into n shares
in the meantime. Finally, we assume that there are no transaction costs. Then the PDE for the
convertible bond V becomes (Wilmott, 1998; Sun, 1999):

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ ρσ Sw

∂2V

∂S ∂r
+ 1

2
w2 ∂2V

∂r2
+

+ (r − D0)S
∂V

∂S
+ (u − λw)

∂v

∂r
− r V + k Z = 0 (27.21)

where λ = λ(S, r, t) is the market price of risk.
The payoff function is given by:

V (S, r, T ) = max(nS, Z ) (27.22)

Since the bond can be converted into n shares of the underlying stock at any time before
expiry, the price V must satisfy the so-called conversion constraint:

V (S, r, t) ≥ nS (27.23)
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We now commence with a formulation of the problem. First, we define the PDE (27.21)
that is defined in the domain [0, B(r, t)], where t is in the closed range [0, T ]. The terminal
conditions are given by:

B(r, T ) = max

(
Z

n
,

k Z

D0n

)
, rl ≤ r ≤ ru

V (S, r, T ) = max(nS, Z ), 0 ≤ S ≤ B(r, T ), rl ≤ r ≤ ru

(27.24)

The conditions on the free boundary are given by:

V (B(r, t), r, t) = nB(r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T

∂V

∂S
(B(r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T

(27.25)

Here we are saying that the bond price and its derivative are continuous at the free boundary.
We now must specify the fixed boundary condition when S = 0:

∂V

∂t
+ 1

2
w2 ∂2V

∂r2
+ (u − λw)

∂V

∂r
− r V + k Z = 0 (27.26)

In this case we are saying that the PDE is satisfied at S = 0; it is not allowed to specify
boundary conditions because the PDE is singular at that point. We now define either of the
following boundary conditions for large values of r :

V (ru, t) = 0 or
∂V

∂r
(ru, t) = 0 (27.27)

In Sun (1999) the author takes the following change of variables in order to reduce the
problem to dimensionless form:

s = nS

Z

U (s, r, t) = V (S, r, t)

Z
= V (Z S/r, r, t)

Z

b(r, t) = nB(r, t)

Z

Using the Landau transformation we define new coordinate system as follows:

ξ = s/B(r, t)
r = r
τ = T − t

Then the new variable W (ξ, r, t) satisfies the nonlinear initial boundary value problem on a
fixed interval:

∂W

∂τ
= ∂W

∂ξ

ξ

b

∂b

∂τ
+ a1ξ

2 ∂2W

∂ξ 2
+ a2ξ

∂2W

∂ξ∂r
+ a3

∂2W

∂r2
+ a4ξ

∂W

∂ξ
+

+ a5

∂W

∂r
+ a6W + a7, 0 ≤ ξ ≤ 1, rl ≤ r ≤ ru (27.28a)
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W (ξ, r, 0) = max(ξ B(r, 0), 1), 0 ≤ ξ ≤ 1, rl ≤ r ≤ ru (27.28b)

W (1, r, τ ) = B(r, τ ), rl ≤ r ≤ ru, 0 ≤ τ ≤ T (27.28c)

∂W

∂ξ
(1, r, τ ) = b(r, τ ), rl ≤ r ≤ ru, 0 ≤ τ ≤ T (27.28d)

B(r, 0) = max

(
1,

k

D0

)
, rl ≤ r ≤ ru (27.28e)

where

B(r, τ ) = B(r, T − t)

and

a j = a j

(
u, λ, w, ρσ, r, k, D0, b,

∂b

∂r
,
∂2b

∂r2

)
Thus, we have transformed the original convertible bond problem to a problem on a fixed

boundary using the front-fixing method as introduced in this chapter. We then must solve
problem (27.28) in some way. For example, Sun (1999) uses ADI methods.

27.8 FRONT-FIXING AND AMERICAN OPTIONS

In this section we discuss the details of a finite difference schemes for a one-factor American
put option problem using the front-fixing method. The basic technique is discussed in Crank
(1984) and has been applied to option pricing in Nielson et al. (2002). We recall the basic
option pricing problem from Chapter 26. Applying the Landau transformation the reader may
like to check that the transformed system is given by:

∂ P

∂t
+ 1

2
σ 2x2 ∂2 P

∂x2
+ x

[
r − B ′(t)

B(t)

]
∂ P

∂x
− r P = 0, x > 1, 1 < x < ∞, 0 ≤ t ≤ T

(27.29)

P(x, T ) = 0, x ≥ 1

lim
x→∞ P(x, t) = 0

∂ P

∂x
(1, t) = −B(t)

P(1, t) = K − B(t)

B(T ) = K

We now approximate this problem using finite difference schemes. There are a number of
issues that we must address:� Approximating the nonlinear differential equation: we have two unknowns, namely the

put price P and free boundary B. We need to choose between explicit and implicit
schemes.
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ditions at the new boundary; another possibility is to define the new variable y = x/(x + K ).
Then we get a PDE on a bounded interval.� How to approximate the Neumann boundary condition at the boundary x = 1, (one-sided
or two-sided schemes).

In the following we apply the scheme that is discussed in Nielsen et al. (2002). We first
discuss the approximation of the PDE. The implicit scheme is given by:

Pn+1
j − Pn

j

k
+ 1

2
σ 2x2

j D+ D− Pn
j + x j

(
r − Bn+1 − Bn

k Bn

)
× D0 Pn

j − r Pn
j = 0 ( j = 1 . . . J, n = N , N − 1, . . . , 0) (27.30)

Here we see that the free boundary B(t) is evaluated at the time level n, thus it is unknown.
We shall need a non-linear solver (for example, the Newton–Raphson method) for this problem
as we shall presently see. The explicit method, on the other hand is given by:

Pn+1
j − Pn

j

k
+ 1

2
σ 2x2

j D+ D− Pn+1
j + x j

(
r − Bn+1 − Bn

k Bn+1

)
× D0 Pn+1

j − r Pn+1
j = 0 ( j = 1 . . . J, n = N , N − 1, . . . , 0) (27.31)

Here we see that there are two ‘uncoupled’ unknowns at time level n, namely the put price
P and the free boundary B. The corresponding system is linear. In both cases (27.30) and
(27.31) we are assuming that the x interval is partitioned into J + 1 sub-intervals and the t
interval is partitioned into N + 1 sub-intervals. The final conditions are given by:

P N+1
j = 0, j = 0, . . . , J + 1

B N+1 = K
(27.32)

The boundary conditions are given by:

Pn
0 = K − Bn,

Pn
J+1 = 0, n = N , . . . , 0

(27.33)

while the first-order approximation to the Neumann boundary condition is given by:

Pn
1 − Pn

0

h
= −Bn, n = N , . . . , 0 (27.34)

We are now ready to write this scheme in a more compact form that is suitable for Newton’s
method in the implicit case (27.30). As in Nielsen et al. (2002), the nonlinear system can be
written in the form:

F(Pn, Bn) ≡ A(Bn)Pn − f (Bn) = 0, n = N , . . . , 0

Pn = t (Pn
2 , . . . , PJ )

(27.35)

where A is a tridiagonal matrix and

f (·) = t
(

f2(Bn), f3(Bn), . . . , f J (Bn)
)
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Then Newton’s method becomes an iterative scheme. Let y = t (Pn
1 , . . . , Pn

J , Bn) and define
the iterative scheme:

yk+1 = yk − J−1(yk)F(yk), k ≥ 0

J =
(

∂ Fi

∂x j

)
, 1 ≤ i, j ≤ J

(27.36)

where J is the Jacobian of F (for more information on Newton’s method, see Press et al.,
2002 or Dahlquist, 1974, for example). The algorithm for the explicit scheme (27.31) is given
in Nielsen (2002). We note that the schemes in this section can be applied to approximating
call options with dividends with an early exercise feature:

∂C

∂t
+ 1

2
σ 2S2 ∂2C

∂S2
+ (r − D0)S

∂C

∂S
− rC = 0 (27.37)

and

C(S, T ) = max(S − K , 0)

lim
S→∞

C(S, t) = S

∂C

∂S
(B(t), t) = 1

C(B(t), t) = B(t) − K

B(T ) = K

C(S, t) = S − K , 0 ≤ S < B(t)

27.9 OTHER FINITE DIFFERENCE SCHEMES

In this section we give some pointers to other finite difference methods that explicitly model
the free boundary as part of the problem. Not all methods are equally popular. An analysis of
the different methods could be the subject of an MSc of PhD thesis.

27.9.1 The method of lines and predictor–corrector

Looking at the transformed PDE (27.29) again, we decide to carry out a semi-discretisation in
the x direction only while keeping t continuous. The resulting system of ordinary differential
equations becomes:

dPj

dt
+ 1

2
σ 2x2

j D+ D− Pj + x j

[
r − B ′(t)

B(t)

]
D0 Pj − r Pj = 0, 1 ≤ j ≤ J (27.38)

This problem can now be posed (after incorporating boundary conditions of course) as a
nonlinear initial value problem (IVP):

U ′(t) + F[t, U (t)] = 0 (U (0) given) (27.39)

where U = t (P2, . . . , PJ , B)
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We can now solve this problem by a predictor–corrector method as already discussed in this
book (see Conte and de Boor, 1980). The advantages of using the predictor–corrector method
when compared to the finite difference schemes in Nielsen et al. (2002) are:� It is a robust method and performs well under many conditions� No need to solve a nonlinear system of equations at each time level� Setting up the semi-discrete system of equations is easy� It has good accuracy properties.

27.10 SUMMARY AND CONCLUSIONS

We have introduced the front-fixing method for one-factor American options. The idea is to
define new variables so that the original problem with a free boundary is replaced by one
containing fixed boundaries. We then must decide how to approximate this new problem using
finite differences.

We discussed a number of approaches. The front-fixing method is certainly applicable to
one-factor problems but it may be difficult to apply to higher-dimensional problems. For these
problems, we have discussed some other techniques, such as:� Implicit finite difference scheme� Explicit difference scheme� Predictor–corrector method.
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28
Viscosity Solutions and Penalty Methods

for American Option Problems

28.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a class of finite difference schemes without having to model the free
boundary explicitly. Instead, a so-called nonlinear penalty term is added to the Black–Scholes
equation and a solution is produced that satisfies the constraint:

P(S, t) ≥ max(K − S, 0)

at all times. Thus, we do not have to worry about the free boundary. The penalty term is non
linear and we must think about what kinds of finite difference schemes to use. However, the
nonlinearity appears in the reaction (zero-order) term and hence is not too severe, at least
from a computational point of view. To this end, we propose explicit, implicit and semi-
implicit schemes for one-factor problems. We discuss the stability of these schemes and their
applicability to multi-factor problems.

The mathematical theory in this chapter is quite advanced. You may go directly to sec-
tion 28.3 if you are interested in the numerical methods.

28.2 DEFINITIONS AND MAIN RESULTS
FOR PARABOLIC PROBLEMS

In this section we introduce a number of mathematical results that are related to the work in
this chapter. In particular, we use some of the fundamental results from Crandall et al. (1992).

28.2.1 Semi-continuity

We introduce some definitions. We first introduce the concept of a metric space (Haaser and
Sullivan, 1991). Let X be an arbitrary set. Then a metric or distance function d on X is a
real-valued function defined on the product space X × X satisfying the following properties:

d(x, y) ≥ 0; d(x, y) = 0 ⇔ x = y (28.1a)

d(x, y) = d(y, x) (28.1b)

d(x, y) ≤ d(x, z) + d(z, y) (28.1c)

Then we define X to be a metric space if it is non-empty and equipped with a metric d. In
this case we use the notation (X, d).

307
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As an example of a metric space, let X be the n-dimensional real space whose metric is the
Euclidean distance function:

x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn)

d(x, y) =
[

n∑
j=1

(x j − y j )
2

] 1
2

The reader can check that this is indeed a metric space by verifying the axioms in (28.1)
Now, let (X, d) be a metric space and let f be a real-valued function defined on a subset E of
X . Then f is continuous at a point a ∈ E if for each ε > 0 there exists a δ > 0 such that

f (a) − ε < f (x) < f (a) + ε ∀x ∈ B(a; δ) ∩ E (28.2)

where B (a; δ) is the open ball in X with centre a and radius δ, that is

B(a; δ) = {x ∈ E : d(x, a) < δ} , where d(. , .) is a metric.

The function f is said to be semi-continuous if one of the inequalities in (28.2) holds.
Suppose now for each ε > 0 there exists a δ > 0 such that

f (x) < f (a) + ε ∀x ∈ B(a; δ) ∩ E (28.3)

Then f is said to be upper semi-continuous at a. Similarly, f is said to be lower semi-
continuous at a if for each ε > 0 there exists a δ > 0 such that

f (a) − ε < f (x) ∀x ∈ B(a; δ) ∩ E (28.4)

Semi-continuity is a more general concept than continuity. In fact, we can prove that a
real-valued function is continuous if and only if it is both upper semi-continuous and lower
semi-continuous (see Rudin, 1970).

Let us take an example. Let E be a subset of a metric space X . Define the characteristic
function:

χE (x) =
{

1, x ∈ E

0, x /∈ E

If E is closed then the characteristic function is upper semi-continuous; if E is open then
the characteristic function is lower semi-continuous. The set E can be closed or open.

We define the following notations. Let X be a metric space. Then define the sets

USC(X ) = {upper semi-continous functions f : X → R1}
(28.5)

LSC(X ) = {lower semi-continuous functions f : X → R1}
These function spaces will play an important role in the following sections.

28.2.2 Viscosity solutions of nonlinear parabolic problems

The results in this section are based on the article by Crandall, Ishi and Lions (1992). Inciden-
tally, one of the authors (P.L. Lions) received the Fields Medal (the equivalent of the Nobel
Prize for mathematics) for his work on nonlinear differential equations.
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We consider second-order parabolic initial boundary value problems in m dimensions. The
results in Crandall et al. (1992) are valid for a wider class of equation than just the linear
Black–Scholes equation. To this end, consider the nonlinear parabolic differential equation:

∂u

∂t
+ F(t, x, Du, D2u) = 0 (28.6)

where u is a real-valued function defined on some open subset E in m-dimensional real space.
Furthermore, we use the notation:

Du = gradient of u

D2u = matrix of second derivatives of u

These quantities are not necessarily differentiable in the classical sense and hence equation
(28.6) may not have solutions in the classical sense. In this section we relax the idea of a classical
solution of (28.6) by defining so-called sub- and super-solutions. There are many special cases
of equation (28.6), one of which is the linear Black–Scholes equation in m dimensions:

F ≡ 1
2

m∑
i=1

m∑
j=1

ρi jσiσ j Si S j
∂2 P

∂Si∂Sj
+

+
m∑

j=1

(r − D j )Sj
∂ P

∂Sj
− r P = 0 (28.7)

We now need to discuss the concept of sub-solution and super-solution of equation (28.6).
To this end, let Q be a locally compact subset of Rn and let T > 0. Define QT = (0, T ) × Q.

We now define one more, somewhat tricky, concept.
First, let S(m) be the set of symmetric m × m matrices. If u : QT → R1 then P2,+

Q u is

defined by the set (a, p, X ) ∈ R1 × Rm × S(m) and lies in P2,+
0 u(s, z) if (s, z) ∈ QT and

u(t, x) ≤ u(s, z) + a(t − s) + 〈p, x − z〉 + 1
2 〈X (x − z), x − z〉

+ O(|t − s| + |x − z|2) as QT � (t, x) → (s, z)

Here 〈. , .〉 represents the inner product in Rm . Similarly, we define P2,−
Q u = −P2,+

Q (−u).

Definition 28.1. (Sub-solution of (28.6)) A sub-solution u of equation (28.6) satisfies
uεUSC(QT ) such that

a + F(t, x, u(t, x), p, X ) ≤ 0 for (t, x) ∈ QT

and (a, p, X )εP2,+
Q u(t, x)

(28.8)

Definition 28.2. (Super-solution of (28.6)) A super-solution v of equation (28.6) satisfies
v ∈ LSC(QT ) such that

a + F(t, x, v(t, x), p, X ) ≥ 0 for (t, x)εQT

and (a, p, X ) ∈ P2,−
Q v(t, x)

(28.9)
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Let us define an initial boundary value problem based on equation (28.6). For convenience
we take Dirichlet boundary conditions:

∂u

∂t
+ F(t, x, u, Du, D2u) = 0 on QT (28.10a)

u(t, x) = 0, 0 ≤ t < T, xε∂ Q (28.10b)

u(0, x) = 	(x), xεQ (28.10c)

where ∂ Q is the lateral boundary of Q and Q is the closure of Q.
Furthermore, let us assume that F satisfies the following: There is a function w : [0, ∞] →

[0, ∞] that satisfies w(0+) = 0 and

(F(y, r, α(x − y), Y ) − F(x, r, α(x − y), X ) ≤ w(α|x − y|2 + |x − y|) (28.11)

where x, y ∈ Q, r ∈ R1, X, Y ∈ S(m) and the following condition holds:

−3α

(
I 0

0 I

)
≤

(
X 0

0 −Y

)
≤ 3α

(
I −I

−I I

)
(28.12)

We now have the following:

Theorem 28.1. Let Q ⊂ Rm be open and bounded. Let F ∈ C([0, T ] × Q × R1 × Rm ×
S(m)) and satisfy (28.11) for each fixed tε[0, T ] with the same function w. If u is a sub-
solution of (28.10) and v is a super-solution of (28.10) then u ≤ v on [0, T ] × Q.

This result is the nonlinear and more general version of the maximum principle for linear
parabolic problems (Il’in et al., 1962; Duffy, 1980).

A number of articles have appeared that employ viscosity solutions in quantitative engineer-
ing (Cont and Voltchkova, 2003).

28.3 AN INTRODUCTION TO SEMI-LINEAR EQUATIONS
AND PENALTY METHOD

We are interested in approximating the Black–Scholes equation (28.7) by adding a penalty term
to it, thus allowing us to solve the problem without actually having to take the free boundary into
account. The approach taken is an application of the viscosity solution approach. In general,
the free boundary is removed by adding a small, continuous penalty term to the Black–Scholes
equation (28.7) as follows:

∂ Pε

∂t
+ F + fε(Pε) = 0 (28.13)

where fε is some nonlinear function of Pε . We use a subscript to denote dependence on the
parameter ε.

This equation is called semi-linear because it is linear in the high-order terms and nonlinear
only in the zero-order term. There are various choices for the penalty term and we shall discuss
them presently. There are two pressing issues:� Does the ‘perturbed’ problem (28.13) have a solution?� How do we find good finite difference schemes for the perturbed problem?
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We begin our discussion with a particular case of the penalty term. For convenience, we
examine the one-factor problem. First, let us assume that the payoff function for the non-
perturbed Black–Scholes equation is given by:

P(T, S) = g(S) (28.14)

where g(S) = (K − S)+ = max(K − S, 0) for a put option.
We now define the penalty function as follows:

fε(Pε) ≡ 1

ε
[g(S) − Pε]+ (28.15)

where the perturbed solution Pε satisfies:

∂ Pε

∂t
+ F + fε(Pε) = 0 (28.16)

Theorem 28.2. Let P be the unique viscosity solution of the unperturbed Black–Scholes
equation. Then, for each ε > 0, let Pε be the unique viscosity solution of (28.16). Then Pε → P
in L∞

loc(QT ) as ε ↘ 0.

Another example of the penalty function is:

fε(Pε) = εC

Pε + ε − q(S)
(28.17)

where q(S) = K − S and C ≥ r K is a positive constant.

28.4 IMPLICIT, EXPLICIT AND SEMI-IMPLICIT SCHEMES

For ease of presentation we examine the one-factor model (Nielsen et al., 2002):

∂ Pε

∂t
+ L Pε + fε(Pε) = 0, S ≥ 0, t ∈ [0, T ] (28.18)

where

L Pε ≡ 1
2σ 2S2 ∂2 Pε

∂S2
+ r S

∂ Pε

∂S
− r Pε

and the nonlinear term fε is given by equation (28.17).
The terminal condition is given by:

Pε(S, T ) = max(K − S, 0) (28.19)

and the boundary conditions are given by:

Pε(0, t) = K
(28.20)

Pε(S, t) = 0 as S → ∞ (far-field condition)

Let us define the usual standard centred difference mesh operator in the S direction as
follows:

Lh Pn
j ≡ 1

2σ 2S2
j D+ D− Pn

j + r S j D0 Pn
j − r Pn

j (28.21)
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Since there is a nonlinear term in equation (28.18) we must be careful about how we discretise
the equation as far as time is concerned. We march from t = T to t = 0. Three basic options
spring to mind:� Explicit method: We employ explicit Euler and we march from time level n (known) to time

level n − 1 (unknown):

Pn
j − Pn−1

j

k
+ Lh Pn

j + f n
j (Pn

j ) = 0 n = N + 1, . . . , 1 (28.22)

This equation is then easily solved for the solution at time level n − 1. However, the scheme
is only conditionally stable and the mesh size k must satisfy the inequality (Nielsen et al.,
2002):

k ≤ h2

σ 2S2
max + r Smaxh + rh2 + Ch2

ε

(28.23)

where Smax is the truncated value corresponding to the far-field condition.� Implicit method: Here we use implicit Euler for the terms:

Pn+1
j − Pn

j

k
+ Lh Pn

j + f n
j (Pn

j ) = 0 (28.24)

In this case we get a nonlinear equation to solve at each time step. The implicit scheme is
stable.� Semi-implicit methods: In this case we use explicit Euler in the nonlinear term and implicit
Euler in the linear terms:

Pn+1
j − Pn

j

k
+ Lh Pn

j + f n+1
j (Pn+1

j ) = 0 (28.25)

This is an attractive scheme: we can solve this problem at each time level by solving a
tridiagonal system of equations. However, the stability criterion is given by:

k ≤ ε

r K
(28.26)

This is a less restrictive constraint then that in equation (28.23).

Summarising, we have discussed three schemes that approximate the Black–Scholes equation
with a free boundary. We still have to be sure that the discrete equations satisfy the usual
constraints:

Pn
j ≥ max(K − Sj , 0) ∀ j (28.27)

The implicit solution (28.24) always satisfies this condition while the semi-implicit method
also satisfies the constraint if the stability condition (28.26) holds.

28.5 MULTI-ASSET AMERICAN OPTIONS

The penalty method can be applied to multi-asset American option pricing problems. By adding
a penalty term to the n-factor Black–Scholes PDE, we extend the solution to a fixed domain. The
penalty function forces the solution to stay above the payoff function at expiry. In the case of
barrier options, the penalty term is small and the solution satisfies the Black–Scholes equation
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approximately far away from the boundary. As before we can define semi-implicit schemes,
thus avoiding the need to solving nonlinear algebraic equations. We discuss some results on
the application of the penalty method to the solution of the multidimensional Black–Scholes
equation (28.7). Let us take the case m = 2 (that is, two underlying assets) and consider the
perturbed equation in conjunction with boundary and initial conditions. We write the PDE in
a generic form:

∂ P

∂t
+ Lx P + L y P − r P + fε(P) = 0, x, y > 0, t ∈ [0, T ] (28.28)

where

Lx P = 1
2σ 2

1 x2 ∂2 P

∂x2
+ (r − D1)x

∂ P

∂x

L y P = 1
2σ 2

2 y2 ∂2 P

∂y2
+ (r − D2)y

∂ P

∂y

fε(P) = εC

P + ε − q

We have assumed in this case that the underlying assets are independent and thus the
cross-derivative term is zero for convenience. The terminal condition is a function of the state
variables x and y and is given by:

P(x, y, T ) = ϕ(x, y), x, y ≥ 0 (28.29)

The boundary conditions at x = 0 and y = 0 are:

P(x, 0, t) = g1(x, t), x ≥ 0, t ∈ [0, T ]

P(0, y, t) = g2(y, t), y ≥ 0, t ∈ [0, T ]
(28.30)

Based on financial arguments the g functions in equation (28.30) will the solution of single-
asset American put problems as already discussed in earlier chapters. This is because the PDE
(28.28) reduces to a single-asset PDE on the boundaries. Of course, this must be augmented
by an initial condition, boundary conditions and the smooth pasting conditions. Thus, we
must solve two one-dimensional American option problems to find the necessary boundary
conditions in equation (28.30). The far-field boundary conditions are given by:

lim
x→∞ P(x, y, t) = G1(y, t), y ≥ 0, t ∈ [0, T ]

lim
y→∞ P(x, y, t) = G2(x, t), x ≥ 0, t ∈ [0, T ]

(28.31)

In the case of put options, for example, the contract is worthless as the price of either asset
approaches infinity and hence the boundary conditions in equations (28.31) will be zero. Here
the barrier function q appearing in the nonlinear term fε(P) is defined in general as:

q(S1, . . . , SN ) = K −
m∑

j=1

α j S j (28.32)

This is the m-dimension generalization of the representation in (28.17). It is a payoff as
discussed for multi-asset options in Chapter 24.
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In the current case (two-asset model) we have the expression for a put option:

q(x, y) = K − (α1x + α2 y)

φ(x, y) = max[q(x, y), 0]
(28.33)

where α1 and α2 are weights.
The two-dimensional equivalents of the schemes in the previous section can be created. For

example, the semi-implicit scheme is given by the discrete variant of (28.28):

Pn+1
i j − Pn

i j

k
+ Lh

x Pn
i j + Lh

y Pn
i j + f n+1

i j (Pn+1
i j ) = 0 (28.34)

where Lh
x and Lh

y are finite difference approximations to Lx and L y, respectively.
We have the following result.

Theorem 28.3. For every C ≥ r K the approximate option prices {Pn
i j } defined by the scheme

(28.34) satisfies

Pn
i j ≥ max[q(xi y j ), 0], i = 0, . . . , I + 1, j = 0, . . . , J + 1, n = N + 1, N , . . . , 0

if the following condition holds:

k ≤ ε

r K

We conclude that the explicit, semi-implicit and fully implicit schemes (in the x and y direc-
tions) can be applied to the system (28.28) to (28.33). Of course, a concern is that a given
scheme must not violate the early exercise constraints.

28.6 SUMMARY AND CONCLUSIONS

We have proposed several schemes that approximate the solution of one-factor and two-factor
American option problems. This is a relatively new area of research. We concentrate on explicit,
implicit and semi-implicit schemes. An interesting alternative would be to apply the predictor–
corrector scheme to such problems. We have also given an example to show the applicability
of the penalty method to multi-factor problems.
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29
Variational Formulation of American

Option Problems

29.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a technique to approximate the solution of free and moving
boundary value problems. It is related to the finite difference method as we shall presently see,
but an entire book would need to be devoted to a full discussion of the technique.

Variational methods fall under the category of fixed domain methods. In general, it can be
difficult to track the moving boundary directly if it does not move smoothly or monotonically
in time (Crank, 1984). The moving boundary may disappear, have sharp peaks or even double
back. To resolve these potential problems we reformulate the original problem whereby the
Stefan condition (in finance, the smooth pasting conditions of American options) is implicitly
defined as a set of equations that are defined on a fixed domain. In this case, the moving
boundary appears a posteriori, namely as one feature of the solution.

The methods in this chapter are quite advanced, both from a mathematical and numerical
point of view. The mathematical formulation uses theorems, results and concepts from a branch
of mathematics called functional analysis (see Haaser and Sullivan, 1991; Adams, 1975). In
particular, we seek solutions of free boundary value problems in Hilbert, Banach or Sobolev
spaces. In this respect these is some common ground between what we need to know here
and the mathematical basis of the finite element method (see Strang et al., 1973; Aziz, 1972).
The schemes reduce to a set of matrix inequalities that we must solve. The goal is to map a
free or moving boundary problem to a discrete form. To this end, we propose the following
activities:

A1: Financial model (partial differential inequality)
A2: Continuous variational formulation
A3: Semi-discrete approximate variational formulation
A4: Fully discrete approximate variational formulation
A5: Assembly and solution of the discrete system.

We now describe each of these activities. Activity A1 is formulated as a partial differential
inequality that models the problem at hand, for example an American option valuation problem.
We execute activity A2 by mapping the formulation from A1 into one in integral or variational
form. In activity A3 we replace the space of functions in which the solution of A2 is sought by
some finite-dimensional approximation, usually locally compact polynomial spaces (as with
FEM) or by approximating the derivatives in space by divided differences (as with FDM). In
activity A4 we discretise the remaining variable in the problem, namely time, using for example
Crank–Nicolson or some other time-marching scheme. Finally, in activity A5 we assemble the
discrete set of equations and inequalities and prepare them for standard solvers.

Before reading this chapter, we think it is necessary that you have mastered the basics of
FEM given in Appendix 2.

315
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29.2 A SHORT HISTORY OF VARIATIONAL INEQUALITIES

The origins of variational inequalities can be traced back to the late 1960s. An early reference
is Lions (1971). Other researchers around this time were Enrico Magenes, Claudio Baiocchi
and colleagues in Pavia (see Baiocchi and Capelo, 1984), and a classic reference on optimal
control theory is Bensoussan and Lions (1978). The work that was done in those early years
is now making its way into financial engineering applications.

29.3 A FIRST PARABOLIC VARIATIONAL INEQUALITY

In order to motivate variational inequalities we take a one-dimensional heat equation problem
and discretise it using finite difference schemes. This model is useful because we can apply the
results to American options and we can also show how the activities A1 to A5, as discussed
in section 29.1, are realised. Let us reconsider the oxygen diffusion problem (Crank, 1984),
and recall that this is the problem of oxygen that diffuses into some medium which absorbs
and immobilises the oxygen at a constant rate. The concentration of the oxygen at the moving
surface remains constant and we thus conclude that this boundary represents the limit of oxygen
penetration. Let us denote this sealed surface by s(t). Then the initial boundary value problem
in non-dimensional form is given by:

∂c

∂t
= ∂2c

∂x2
− 1, 0 ≤ x ≤ s(t) (29.1)

where
∂c

∂x
= 0, x = 0, t ≥ 0 (fixed boundary condition)

c = ∂c

∂x
= 0, x = s(t), t ≥ 0 (free boundary condition)

c = 1
2
(1 − x)2, 0 ≤ x ≤ 1, t = 0 (initial condition)

This problem is amenable to a variational approach. In this case we get the differential
inequality:

∂c

∂t
− ∂2c

∂x2
+ 1 ≥ 0, c ≥ 0 (29.2)

in conjunction with the equality:(
∂c

∂t
− ∂2c

∂x2
+ 1

)
c = 0, 0 ≤ x ≤ 1 (29.3)

This is always zero because the first inequality in (29.2) is zero in 0 < x < s(t) and c ≡ 0
in the interval s(t) ≤ x ≤ 1.

We now discretise this problem in space and time. In particular, we use centred differencing
in space and implicit Euler in time. For the inequality (29.2) we have:

cn+1
j − cn

j

k
− cn+1

j+1 − 2cn+1
j + cn+1

j−1

h2
+ 1 ≥ 0, j = 1, . . . , J − 1 (29.4)

The Neumann boundary condition at x = 0 can be approximated by centred differences with
ghost points:

cn
−1 − cn

1

2h
= 0 (29.5)
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We can put these discrete equations in the form:

Find c where c = t (c1, . . . , cJ−1)

A c + b ≥ 0; c ≥ 0; (Ac + b)cT = 0
(29.6)

where A is a tridiagonal matrix and b is a known vector. This is now a problem in quadratic
programming.

In Wilmott (1993) the Black–Scholes equation is transformed to the heat equation and then
posed in a general linear complementarity LCP form, as follows:

∂u

∂t
− ∂2u

∂x2
≥ 0, u − g ≥ 0(

∂u

∂t
− ∂2u

∂x2

)
(u − g) = 0

(29.7)

where g = g(x, t) is the transformed payoff constraint function. As in the oxygen diffusion
case we can reduce this problem to the form:

AUn+1 − bn ≥ 0, Un+1 − gn+1 ≥ 0(
A(U)n+1 − bn

)
(Un+1 − gn+1)T = 0

(29.8)

Here the index n refers to discrete time levels, as in the usual sense in this book.
The next question is to determine how to solve the system (29.6), or equivalently system

(29.8). There are several techniques; one of the original and famous ones is the Cryer projected
SOR (PSOR) method (Cryer, 1979). We define a new notation as follows:

z = Ac + b

then Ac = z − b, cT z = 0, c ≥ 0, z ≥ 0
(29.9)

and then this problem is equivalent to the minimisation problem:

minimize bT c + 1
2
cT Ac for c ≥ 0 (29.10)

The Cryer algorithm produces sequences of vectors as follows:

z(k+1)
j = b j +

j−1∑
i=1

A ji c
(k+1)
i −

J∑
i= j

A ji c
(k)
i

c(k+1)
j = max

{
0, c(k)

j + ωz(k+1)
j /A j j

} (29.11)

where J is the size of the matrix A and ω is the so-called relaxation parameter.

Theorem 29.1. (Cryer, 1979) Let A be positive definite. Then the PSOR scheme (29.11)
converges for all initial guessed c(0) if and only if 0 < ω < 2.

Caveat: The positive-definiteness of the matrix A is crucial.

The PSOR scheme can be used for schemes that result from a finite element/variational
formulation of moving boundary value problems. There are many other schemes, for example
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the conjugate gradient method (Press et al., 2002, p. 424) and Lagrange method with penalty
terms (Scales, 1985), but a discussion of these issues is outside the scope of this book.� Equations (29.1) to (29.3) correspond to the activities A1 and A2. In this case we have two

equivalent formulations of the moving boundary value problem.� Equations (29.4) and (29.5) correspond to activities A3 and A4. In this case we carry out a
full discretisation in one sweep.� System (29.6) corresponds to activity A5.

Generalizing the problem (29.1) to convection–diffusion equations is not too difficult.

29.4 FUNCTIONAL ANALYSIS BACKGROUND

In the previous section we approximated the solution of parabolic variational inequalities by
replacing derivatives by divided differences. In the following sections, however, we approx-
imate variational inequalities using certain classes of functions. To this end, we introduce a
number of function spaces and other concepts from a powerful branch of mathematics called
functional analysis.

Let � be a domain in Rn and let p be a positive real number. We denote by L p(�) the space
of functions u, defined on � such that∫

�

|u(x)|p dx < ∞

We define the functional ‖ · ‖p by

‖u‖p =
{∫

�

|u(x)|p dx

}1/p

(29.12)

and we note that this is a norm in L P (�), 1 ≤ p < ∞. When p = ∞, the functional ‖ · ‖∞
defined by

‖u‖∞ = ess sup
x ε �

|u(x)|

is a norm on L∞(�).
This space of functions is very important in functional analysis and its applications. Some

important inequalities are:

Theorem 29.2. (Hölder’s inequality.) If 1 < p < ∞ and u ε L p(�) and v ε Lq (�) (where
1/p + 1/q = 1) then uv ε L1(�) and∫

�

|u(x)v(x)| dx ≤ ‖u‖p‖v‖q (29.13)

Theorem 29.3. (Minkowski’s inequality.) If 1 ≤ p < ∞ then

‖u + v‖p ≤ ‖u‖p + ‖v‖p (29.14)

We now turn our attention to a class of functions whose derivatives up to a certain order are
in L P (�). These are the so-called Sobolev spaces of integer order. To this end, we define a
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functional ‖ · ‖m,p where m is a non-negative integer and 1 ≤ p ≤ ∞, as follows:

‖u‖m,p =
( ∑

0≤|α|≤m

‖Dαu‖p
p

)1/p

1 ≤ p < ∞

‖u‖m,0 = max0≤|α|≤m ‖Dαu‖∞

where Dαu is the α derivative in u.
A special and common case of the above Sobolev spaces is when p = 2.

29.5 KINDS OF VARIATIONAL INEQUALITIES

We now introduce the reader to the subject of variational inequalities. We try to build knowledge
incrementally as the subject is mathematically very sophisticated (it uses a lot of functional
analysis and finite element theory).

29.5.1 Diffusion with semi-permeable membrane

Let � be a domain in Rn that is also an open bounded set with smooth boundary �, and let the
final time T < ∞ be given.

Consider the problem of finding u(x, t) such that

∂u

∂t
− �u = f (x, t) ε � × (0, T ) (29.15)

u(x, 0) = u0(x), x ε � (29.16)

u ≥ 0,
∂u

∂η
≥ 0, u

∂u

∂η
= 0 for (x, t) ε � × (0, T ) (29.17)

where

�u ≡
n∑

j=1

∂2u

∂x2
j

Defining V = H 1(�) we seek a solution u ε V = L2(0, T ; V ). Assume further that
f (t) ε V ∗ and u0 ε H = L2(�).

K ⊂ V, K = {v ε V : v(x) ≥ 0, x ε �}
for any v ε V , with v(t) ε K .

We multiply equation (29.15) by v(t) − u(t), and integration over � gives the trivial equality:∫
�

[
∂u(t)

∂t
− f (t)

]
[v(t) − u(t)] dx

=
∫

�

�u(t)[v(t) − u(t)] dx, v ε V, v(t) ε K (29.18)

We now use the divergence theorem (n-dimensional integration by parts) and using boundary
conditions (29.17) we formulate (29.18) in the equivalent form by the application of the
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Green’s formula:∫
�

�u(t) [v(t) − u(t)] dt =
∫

�

∂u(t)

∂η
[v(t) − u(t)] dt

−
∫

�

	 u(t) · 	(v(t) − u(t)) dt (29.19a)

or ∫
�

{�u(t)[v(t) − u(t)] + 	u(t) · 	[v(t) − u(t)]} dx

=
∫

�

∂u(t)

∂η
[v(t) − u(t)] dx ≥ 0 (29.19b)

From this we deduce the inequality:∫
�


u(t)[v(t) − u(t)] dt ≥ −
∫

�

	 u(t) · 	[v(t) − u(t)] dt (29.20)

Finally, combining (29.18) and (29.20) produces the parabolic variational inequality:∫
�

{
∂u(t)

∂t
[v(t) − u(t)] + 	u(t) · 	[v(t) − u(t)]

}
dx

≥
∫

�

f (t)[v(t) − u(t)]dx ∀v ε K (29.21)

where K = {v ε V ; v(t) ε K for a.a. t ε (0, T )} where a.a. t denotes ‘for almost all t’ in the
Lebesgue sense.

This is the so-called continuous formulation of the free boundary problem. Of course, this
problem must be approximated. For motivational purposes we return to a one-dimensional
case of system (29.21), namely the oxygen absorption problem. This is a good example to use
as a model.

29.5.2 A one-dimensional finite element approximation

We now discuss the variational formulation of the oxygen absorption problem (taken from the
classic reference Crank, 1984). In this case we start with the system (29.1). This problem is
then formulated as the one-dimensional equivalent of (29.21).

The steps that we execute in this section are:� Formulate the continuous variational inequality� Semi-discretisation in x using linear ‘hat’ functions (finite elements) piecewise polynomials� Full-discretisation using implicit Euler or Crank–Nicolson schemes� Assembling the set of discrete inequalities.

We multiply both sides of scheme (29.1) by (v − c), where v belongs to the space of test
functions

V = {
v : v ε H 1(0, 1), v(1) = 0

}
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Then using the equality:∫ 1

0

(
∂c

∂t
− ∂2c

∂x2
+ 1

)
(v − c) dx =

∫ 1

0

∂c

∂t
(v − c) dx

−
[

(v − c)
∂c

∂x

]1

0

+
∫ 1

0

∂c

∂x

∂

∂x
(v − c) dx +

∫ 1

0

(v − c) dx (29.22)

and the fact that

v = c = 0 on x = 1

∂c

∂x
= 0 on x = 0

we then get the rearranged form of equation (29.22), namely:∫ 1

0

∂c

∂t
(v − c) dx +

∫ 1

0

∂c

∂x

∂

∂x
(v − c) dx

= −
∫ 1

0

(v − c) dx +
∫ 1

0

(
∂c

∂t
− ∂2c

∂x2
+ 1

)
dx (29.23)

The final term on the right-hand-side in (29.23) is non-negative because of inequality (29.2),
hence we get the variational inequality:∫ 1

0

∂c

∂t
(v − c) dx +

∫ 1

0

∂c

∂x

∂

∂x
(v − c) dx

= −
∫ 1

0

(v − c) dx +
∫ 1

0

(
∂c

∂t
− ∂2c

∂x2
+ 1) dx

≥ −
∫ 1

0

(v − c) dx (29.24)

or in more compact and general form as:(
∂c

∂t
, v − c

)
+ a(c, v − c) ≥ (−1, v − c) (29.25)

where

( f, g) ≡
∫ 1

0

f g dx (inner product)

a(u, v) ≡
∫ 1

0

∂u

∂x

∂v

∂x
dx (bilinear form)

We now find an approximate solution to a slightly more generalised form of (29.25), namely:(
∂u

∂t
, v − c

)
+ a(u, v − c) ≥ ( f, v − c) (29.26)
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As is common in finite element theory, we seek an approximate solution of (29.26) using
combinations of linear polynomials with compact support on the interval (0, 1), namely:

u =
n∑

j=1

u jϕ j , v =
n∑

j=1

v jϕ j

where the support functions are defined by the formula:

ϕ j =
{

[x − ( j − 1)h] /h, ( j − 1)h ≤ x ≤ jh

[( j + 1)h − x] /h, jh ≤ x ≤ ( j + 1)h

If we now insert the above expressions for u and v into inequality (29.26) we get the following
expression: ∫ 1

0

[
n∑

i=1

∂ui

∂t
ϕi

] [
n∑

j=1

(v j − u j )ϕ j

]
dx

+
∫ 1

0

[
n∑

i=1

ui
∂ϕi

∂x

] [
n∑

j=1

(v j − u j )
∂ϕ j

∂x

]
dx

−
∫ 1

0

f

[
n∑

j=1

(v j − u j )ϕ j

]
dx ≥ 0 (29.27)

We now wish to formulate this problem in matrix form, and to this end we define the so-called
mass matrix M , stiffness matrix K and inhomogeneous terms as follows:

Mi j ≡ (ϕi , ϕ j )

Ki j = a(ϕi , ϕ j ), f j = ( f, ϕ j )

Some arithmetic shows that:

n∑
i=1

∂ui

∂t

n∑
j=1

(v j − u j )

∫ 1

0

ϕiϕ j dx

+
n∑

i=1

ui

n∑
j=1

(v j − u j )

∫ 1

0

∂ϕi

∂x

∂ϕ j

∂x
dx

−
n∑

j=1

(v j − u j )

∫ 1

0

f ϕ j dx ≥ 0 (29.28)

or, in shorthand notation (neglecting summation signs), we get:

M ji
∂ui

∂t
(v j − u j ) + K ji ui (v j − u j ) − f j (v j − u j ) ≥ 0 (29.29)

This is a semi-discrete scheme; in other words, the x variable has been discretised while
the t variable is continuous. In order to carry out the last step, namely full discretisation, we
replace the t-derivative in (29.29) by a divided difference. In this case we employ an implicit
Euler scheme as follows:

M ji
un+1

i − un
i

k
(v j − un+1

j ) + K ji u
n+1
i (v j − un+1

j ) − f j (v j − un+1
j ) ≥ 0 (29.30)
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or (
M ji

k
+ K ji

)
un+1

i (v j − un+1
j ) ≥

(
f + M ji

k

)
(v j − un+1

j ) (29.31)

This inequality is in the same form as (29.8) and can be solved by the Cryer algorithm, for
example. We can carry out the same analysis for the convection–diffusion problem, but the
mathematics become more tedious. We remark that it takes time to learn how to apply the
above schemes to practical problems.

29.6 VARIATIONAL INEQUALITIES USING ROTHE’S METHOD

In the previous section we found an approximate solution to a variational inequality by first
discretising in space and then in time. In this section we first discretise the PVI in time using
Rothe’s method. To this end, we look again at PVI (29.26) with f = 0 and u = c:(

∂u

∂t
, v − u

)
+ a(u, v − u) ≥ 0 (29.32)

where

(u, v) =
∫

�

u(x)v(x) dx

a(u, v) =
∫

�

	 u · 	v dx

The first step in Rothe’s method is to discretise in time; in this case we use implicit Euler
method (we take f = 0 for convenience):(

U n+1 − U n

k
, v − U n+1

)
+ a

(
U n+1, v − U n+1

) ≥ 0, ∀v ε K (29.33)

with U 0 = u0(x), x ε � (given initial condition).
Rearranging terms in (29.33) gives us the elliptic variational inequality (EVI):

k−1(U n+1, v − U n+1) + a(U n+1, v − U n+1) ≥ k−1(U n, v − U n+1), ∀v ε K , n ≥ 0

(29.34)

where U n is known and the new bilinear form is:

a(u, v) = k−1

∫
�

uv dx +
∫

�

	 u · 	v dx

Thus, we have reduced the PVI to a sequence of EVIs at each time level. We know that the
EVI problem (29.34) has a unique solution (see, for example, Rudd and Schmidt, 2002 or
Glowinski et al., 1981). We thus see how useful Rothe’s method is, both theoretically and
numerically.

We note that the problem (29.34) can be solved at every time level using linear polynomial
hat functions (see Glowinski et al., 1981). Unfortunately, any treatment is outside the scope
of the current book.
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29.7 AMERICAN OPTIONS AND VARIATIONAL INEQUALITIES

We have now gained enough experience of the material to tackle variational problems for
American options. In fact, the problem is not much more difficult than the heat equation except
that it involves an extra convection term in the bilinear form. In general, the steps are:� Formulate the continuous variational system: we should prove existence, uniqueness and

regularity results. The domain is infinite.� Define the variational inequality on a truncated, bounded domain in n-dimensional space.� Formulate the finite-dimensional variational inequality using finite elements or finite differ-
ence approximations to the derivatives.� Solve the system.

29.8 SUMMARY AND CONCLUSIONS

We have given an introduction to an important branch of applied functional analysis that we
call variational inequalities. A vast literature has been written on this subject but our interest
lies in its applications to free boundary value problems in general and American options in
particular. We discussed the following issues:� Formulation of the continuous problem� Formulation of the discrete problem (using finite elements or finite differences)� Assembling the discrete set of inequalities� Solving the discrete set of inequalities.

We have given a number of relevant and practical examples to help the reader to explore
more of the literature in this field, but much more research needs to be done.
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30
Finding the Appropriate Finite

Difference Schemes for your Financial
Engineering Problem

30.1 INTRODUCTION AND OBJECTIVES

This is the first chapter of Part VII and it is here that we summarise the finite difference schemes
of the previous 29 chapters. First, we examine the problem of choosing the most appropriate
scheme for a given financial problem while at the same time taking customer requirements
(such as performance and accuracy issues, for example) into account. To take a specific case,
we might be interested in determining what the most efficient and accurate finite difference
schemes are for two-factor models containing jump terms. The answer in general to this kind
of question is difficult to give unless we partition the problem into a number of more focused
and simpler sub-problems. The problem is easy enough to state:

Given a precise description of a pricing problem, find the most appropriate approximate
method(s) (for example, a finite difference scheme) that satisfies given functional and non-
functional requirements.

We shall see in a later section how to realise this goal by implementing the problem as
three main activities. Before we start, however, we must agree on what we want, namely an
unambiguous description of the finite difference scheme that best fits the current problem. The
input is an unambiguous description of the financial problem. The activities that glue output
(the FDM product) to input (the ‘raw materials’ or financial product) are:

A1: Produce a continuous PDE, PIDE or PVI model from the QF model.
A2: Produce discrete FDM, FEM or Meshless models from the continuous model.
A3: Produce an optimised discrete model based on the given functional and non-functional

requirements.

In general, we must make a series of decisions whose outcome will hopefully lead to the
discovery of a good and workable scheme that solves the problem at hand. We try to incorporate
as much know-how into the process as possible. It would be an interesting project to automate
the process of mapping financial models to finite differences by encapsulating the knowledge
in an adaptive database system. This topic is outside the scope of the current book. We do,
however give tips and guidelines in this chapter on how to choose appropriate schemes.

The second major topic of concern in this part of the book is that, once we have short-listed
a finite difference scheme we must design and implement it in some object-oriented language,
for example C++ or C#. In this book we concentrate on C++ because of its wide acceptance
in the financial engineering community. In particular, we pay attention to actually defining and
utilising the C++ data structures (such as vectors, matrices and lattices) to help us to realise
the finite difference schemes for one-factor and multi-factor pricing models. We define the
‘C++ skeletons’ that can be used and customised by the reader to suit his or her own models.

327
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Furthermore, we provide C++ code for several pricing models that can be compiled and run
to give real output values. In summary, this chapter is a high-level analysis of the problem of
mapping the financial world to the world of finite difference schemes.

30.2 THE FINANCIAL MODEL

This book is concerned with finding robust and accurate finite difference schemes for certain
kinds of derivatives products. We wish to group these products into certain categories, but there
is no unique or ‘best’ way of doing this. In general, most models have to do with one-factor
and many-factor option problems but we also discuss a number of other derivatives problems
such as real options and interest rate problems. For this reason we propose the following three
broad categories:

C1: One-factor models
C2: Two-factor models
C3: Many-factor models (more than two factors).

We examined several specific instances of derivative products in each category, for example:� C1
Plain vanilla options (original Black–Scholes model)
One-factor barrier option (single barrier, double barrier)
One-factor bond models.� C2
Basket/rainbow option on two assets
Models with an asset and a stochastic volatility (Heston)
Two-factor interest-rate models
Asian options
Merton model (asset with jumps), PIDE.� C3
Multi-asset options
Options with early exercise feature.

Of course, the behaviour of the underlyings in these problems is described as either stochastic
or deterministic processes, but our main interest lies in the unambiguous description of the
initial boundary value problem that describes the derivative quantity based on those underlying
quantities. This is the subject of the next section.

30.3 THE VIEWPOINTS IN THE CONTINUOUS MODEL

Since we are taking a PDE approach in this book we must address a number of ‘dimensions’,
viewpoints and attention areas whose resolution will enable us to specify the categories C1,
C2 and C3 more precisely. Again, we propose a list that we hope subsumes the most important
attention points:

VC1: Payoff function and exercise style
VC2: The PDE domain and boundary conditions
VC3: Transformation variables and simplifications.
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We now discuss each of these topics in more detail. We pay particular attention to nitty-gritty
and ‘nasty’ aspects of the problem that compromise the robustness of the eventual schemes
and we decide on a course of action to help to mitigate these potential risks.

30.3.1 Payoff functions

In general, the payoff function is usually defined at the expiry date t = T while in general
we prefer to convert this to an initial condition for the corresponding IBVP. Payoff is one of
the most important pieces of the FDM jigsaw because it contains much financial information
about the contingent claim. It is a function that expresses the value of the contingent claim
as a function of the underlying asset price at expiry. It also needs other parameters to define
it uniquely. For example, it may contain information about strike price(s) and whether the
corresponding option is a call or a put. In this book we have examined both one-factor and
multi-factor problems (in the latter case we examine multi-asset correlation options as well as
multi-factor interest models). In general, we must write the payoff function in the following
form:

double payoff (NPoint S)
{ // NPoint is n-dimension ’underlying’ space
// code here

}

We have created a hierarchy of C++ classes in which each class models a specific payoff
function. In the constructor we give the parameters that are needed to allow us to define the
body of the above payoff() function. Each concrete class is derived from an abstract base
class that defines a pure virtual payoff() function. We note in the above pseudo-code that
NPoint is an abstraction of an n-dimensional point in ‘asset’ space. We realise it as a template
class in C++. We provide the C++ code for this hierarchy on the accompanying CD.

In general, the payoff function is a well-behaved function with the exception of certain
points or hyperplanes in the region of integration. For many problems, it is either zero or a
linear function of the underlying asset variable(s). Discontinuities in the payoff function or its
derivatives appear at these so-called transition regions. In mathematical terms the solution of the
corresponding IBVP will experience sharp spikes or oscillatory behaviour in the neighbourhood
of these regions for small values of time t but the solution quickly becomes smooth. We must
be aware of both of these facts when we approximate the IBVP by second-order schemes near
t = 0. We may get inaccurate approximations to the solution of the IBVP.

Some general remarks are:� Many multi-asset problems have similar PDE structure (and even similar boundary con-
ditions); it is the particular form of the payoff function that distinguishes the different
instances.� It is possible to smooth or regularise the payoff function before embarking on a finite
difference approximation, but we do not discuss this topic here.� Some payoff functions may be nonlinear functions of the underlying, for example one-factor
power options. This class of functions is easily incorporated into our formulations.

In this section we assume that the IBVP is defined on a bounded interval or domain. For the
sake of simplicity, we examine a one-factor model on the bounded interval (0, B) where the
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value B is the so-called ‘far-field’ boundary. The main boundary value types are:

B1: Dirichlet boundary conditions
B2: Neumann boundary conditions
B3: Linearity (‘convexity’) boundary conditions
B4: The PDE is ‘continued’ to the boundary (resulting in an ODE or a PDE).

We have examined these boundary conditions in detail in this book. Condition B4 refers to
the fact that we allow the Black–Scholes PDE to be satisfied at S = 0. The resulting degenerate
equation can often be solved exactly or, failing that, it will be possible to solve it using some
suitable finite difference scheme. In this sense it is sometimes possible to solve the equation
corresponding to B4 and thus allow us to cast it in the form B1, whether it be in continuous or
discrete form.

The above discussion is easily extended to multi-factor models on n-dimensional cubes
(‘hypercubes’).

30.3.2 Boundary conditions

One of the most difficult aspects of producing robust and accurate finite difference schemes is
the imposition of appropriate boundary conditions for a given IVBP. In particular, we have a
number of hurdles to overcome:� Many problems are defined on infinite or semi-infinite intervals and domains. We must

devise a means of transforming these domains to bounded domains.� Having succeeded in transforming the original problem to a bounded domain, we must then
determine the kind of boundary condition that is appropriate for the transformed problem.

We shall discuss the first problem in the next section but we shall now assume that the IBVP is
such that it is defined in a bounded region. It now remains to define the boundary conditions. The
easiest ones from a computational point of view are Dirichlet boundary conditions because
the value of the solution is known on the boundary and this fact allows us to avoid many
complications when compared with Neumann and linearity (convexity) boundary conditions
that involve derivatives of the solutions on the boundary.

A special ‘degenerate’ boundary condition is defined when the underlying asset value is
zero. In this case the Black–Scholes PDE is satisfied exactly on the boundary. In general the
resulting differential equation will be of lower order than the PDE in the interior of the domain
of interest. Some examples in this book are:� The one-factor Black–Scholes PDE reduces to an ordinary differential equation (ODE) in

the boundary S = 0. This equation has an exact solution. We thus have a Dirichlet boundary
condition at S = 0.� For one-factor bond models (where the underlying is the interest rate r ) the second-order
parabolic PDE reduces to a first-order hyperbolic PDE. In fact, this is an initial value problem
whose solution can be found exactly. In more complicated cases an exact solution may not
be forthcoming and we then resort to finite difference approximations or the Method of
Characteristics (MOC). In the first case we have two major choices. First, we can take
explicit finite difference schemes, in which case we can find an approximate solution on
the boundary and are then back to Dirichlet boundary conditions. Of course, the scheme is
conditionally stable. Second, we can construct unconditionally stable implicit schemes, but
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we no longer have Dirichlet boundary conditions, we have in essence Neumann boundary
conditions. The value on the boundary is unknown and thus must be incorporated into the
full system of equations in the interior of the domain.� For n-factor models the full PDE reduces to a first-order hyperbolic PDE. In general, we
must solve these problems using numerical techniques. For example, we have mentioned
how to do this in the case n = 2 when we discussed the Heston stochastic volatility model.� The most tractable problems in the author’s opinion are barrier option models because we
define Dirichlet boundary conditions on the whole boundary.

30.3.3 Transformations

We now discuss the PDE, PIDE or PVI that describes a derivative quantity and the domain in
which it is defined. In general, a given problem is defined in a domain in ‘asset space’ having
fixed boundaries and possibly free or moving boundaries as well.

For option problems without an early exercise feature we define a PDE on a semi-infinite
domain. There are no free or moving boundaries. Because we cannot fit a semi-infinite problem
on a computer we must replace it by a problem on some kind of transformed domain. Popular
choices are:� Transformation to a ‘symmetrical’ infinite domain� Transformation to a bounded domain� Truncation of the semi-infinite domain.

The first two transformations are realised by a change of independent variables. For example, in
one-factor models the transformation x = log(S) transforms the Black–Scholes PDE to a PDE
on an infinite interval (Wilmott, 1998) while the transformation x = S/(S + K ) transforms it to
the interval (0, 1). In the latter case imposition of boundary conditions is not necessary because
the coefficients of the transformed PDE are zero at the end-points. The third transformation is
also popular; choose some multiple of the strike price K and use this as the so-called far-field
value. Of course, we must impose boundary conditions at this point as already described.

The use of new independent variables is certainly useful for one-factor models but it lacks
generality in the author’s opinion. It is not clear how one would apply it to n-factor models
and equations containing nonlinear terms. We prefer to tackle problems head-on by numerical
methods with as little ‘massaging’ of the continuous problem as possible.

For option problems with early exercise feature we have an added complication. In this case
we model an unknown free or moving boundary as part of the problem. In financial terms, the
derivative quantity satisfies the smooth pasting conditions on this unknown boundary. Having
done this we must decide how to model this free boundary. To this end, there are two main
approaches:� Model the free boundary a priori as part of the model� Model the free boundary a posteriori.

We have given some examples of each of these approaches in this book. An example of the
first approach is the front-fixing method in which we transform a linear PDE containing a free
boundary to a PDE that is defined on a fixed boundary. However, the transformed PDE has a
nonlinear term as the coefficient of the first derivative with respect to the underlying variable.
Of course this PDE is more difficult to solve numerically than a linear PDE, but that is the
price we must pay; in general, we say that the problem has become simpler in one direction
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but more complex in another. The second approach to solving problems with early exercise
feature can be realised in a number of ways:� Variational techniques and parabolic variational inequalities� Regularisation techniques and penalty methods.

The first case is based on posing the original problem in integral or variational form, thus allow-
ing us to treat the free boundary implicitly. The second approach adds a nonlinear zero-order
term to the original Black–Scholes PDE thereby ensuring that the solution of the transformed
PDE will automatically satisfy the well-known ‘financial constraints’. Thus, we no longer need
to worry about the free boundary but we will have to approximate a semi-linear PDE.

30.4 THE VIEWPOINTS IN THE DISCRETE MODEL

In general, we are pessimists (or realists?) in the sense that we assume that most, if not all,
interesting and challenging problems cannot be solved exactly but we must employ numerical
methods to approximate the solution of the PDE model. We now describe the most important
attention points to be addressed:� Approximating the partial derivatives appearing in the PDE (in both space and time)� Approximating the payoff function� Approximating boundary conditions.

We shall describe these in detail in the coming sections, but we must first determine how ‘good’
our finite difference schemes need to be.

30.4.1 Functional and non-functional requirements

‘All schemes are equal but some schemes are more equal than others.’ By this statement we
mean that some schemes are better than others for a given problem. Of course, determining
which scheme is best is not easy but we can provide some general guidelines. There is no best
solution as such in general.

We think that quantitative analysts place great emphasis on the following properties of a
numerical method:� Suitability: This means that the finite difference scheme can be used to approximate the

financial problem at hand. In other words, the scheme is general enough to accommodate
variations in the financial problem, such as:
◦ non-constant and nonlinear coefficients
◦ ability to handle various kinds of payoff functions
◦ ability to handle various kinds of boundary conditions
◦ and more.

Finite difference methods are very flexible and can be applied to a wide range of problems, in
contrast to lattice (binomial, trinomial) methods that must be ‘tweaked’ to make them suitable
for problems that have non-constant coefficients, for example.� Accuracy: The solution to the FDM scheme should be close (in some norm) to the solution

of the IBVP that it approximates. In general, we are interested in point error estimates and
for this reason we usually examine the L∞ norm.
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In general, there are several sources of error when we discretise an IBVP using FDM:� Error due to space discretisation� Error due to time discretisation� Error due to approximation of the boundary and initial conditions� Splitting errors with ADI and Soviet splitting methods� Round-off errors.

Whew! With a list like this we may be wondering if we should use numerical methods in the
first place. Fortunately, we can choose appropriate values for the mesh sizes in the space and
time directions to give us a certain level of accuracy, as desired.� Performance/efficiency: This viewpoint has two aspects. First, time efficiency refers to the

amount of CPU time needed to calculate option price at time level n + 1 given the price at
level n. In this context we speak of response time and this may vary between a few mil-
liseconds to a couple of seconds, depending on the requirements of the trader or quantitative
analyst. Some rules of thumb are:
– explicit methods are faster than implicit methods
– iterative methods (e.g. those in which we compare successive values of a candidate solution)

tend to be slower than direct methods.

In some cases, it might be more advantageous to use explicit methods (which we know are
conditionally stable) with a small mesh size in the time direction than an implicit method that
must be solved using LU decomposition, for example, at each time level. The second aspect
is that of resource efficiency. This refers to the amount of memory that we need to hold data
structures such as vectors, matrices, lattices and hashtables. Since we tend to allocate memory
on the heap (free store) we usually do not have to worry about memory problems. Having said
that, we should avoid ‘memory thrashing’, that is allocating and deallocating memory on the
fly because this fragments contiguous memory.� Ease of use/ease of implementation: It is obvious that it is preferable to use and apply a

scheme that is easy to comprehend. On the other hand, it takes a finite amount of time to
learn the subject of this book and to become comfortable with it. For example, in the author’s
opinion the finite difference schemes in this book are easier to understand than the variational
schemes and the schemes that employ the finite element method (FEM). The reader can have
both short-term and medium-term goals; in the short term you can employ simpler schemes
and you can advance to the more sophisticated schemes when you gain more experience.

30.4.2 Approximating the spatial derivatives in the PDE

In most cases we use three-point difference schemes to approximate the second and first-order
derivatives appearing in the Black–Scholes PDE. In general we use second-order parabolic
PDEs by approximating their partial derivatives by appropriate divided differences.

The Black–Scholes equation is a special case of a convection–diffusion equation (Morton,
1996). This type of equation is well known and has been studied in the context of computational
fluid dynamics (CFD), and many schemes have been devised for it. A particular situation
arises in so-called convective-dominated flow, whereby the convective terms are larger than
the diffusion terms. In this case we may need to use special schemes, for example, finite volume
methods (FVM) or exponentially splitting methods (Duffy, 1980).
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A number of multi-factor PDEs in quantitative finance have components that are not of
convection–diffusion type. Instead, the PDE is a first-order hyperbolic equation because the
diffusion term is absent; this corresponds to a deterministic term in the PDE. Care must be taken
when approximating first-order hyperbolic equations because we can only give one boundary
condition, in contrast to second-order diffusion equations.

30.4.3 Time discretisation in the PDE

Most of the approximations to the time derivative are first-order or second-order accurate. The
most popular schemes are implicit and explicit Euler and Crank–Nicolson. The Euler schemes
are first-order accurate and, in particular for the implicit Euler scheme, we can apply Richardson
extrapolation to achieve second-order accuracy. The Crank–Nicolson scheme is second-order
accurate and is very popular in the quantitative finance literature, but it can produce oscillations
or spikes in the solution near the strike price and barriers, for example. A good workaround
is to employ implicit Euler scheme for the first few time steps (no oscillations or spikes) and
Crank–Nicolson thereafterwards.

A particularly powerful scheme (that incidentally, is easy to program) is the predictor–
corrector method. The method is iterative, has fast convergence properties and is second-order
accurate. An important property is that, for linear PDE problems, it is not necessary to solve a
tridiagonal matrix system at each time level and this has implications for the performance of
schemes for both one-factor and n-factor models.

Finally, the predictor–corrector method is well suited to nonlinear problems because both
the predictor and corrector steps are explicit and linear. This ideal situation is lost if we employ
Crank–Nicolson or implicit Euler. In these cases we need to solve a nonlinear system of
equations at each time level, something that is not to everyone’s taste. This may also reduce
the performance of the algorithm.

Finally, we note that the small set of schemes for solving initial value problems that we use
in this book is only the tip of the iceberg. There is a huge literature on all kinds of schemes
for solving IVPs – for example, Runge–Kutta methods – but a discussion of these methods is
outside the scope of this book.

30.4.4 Payoff functions

We approximate the continuous payoff function by discretising the underlying asset space in
some way. In many cases we create a uniform mesh but this is not mandatory. For example,
we can choose more mesh points near transition regions. The accuracy and stability of various
finite difference schemes in neighbourhoods of transition regions will, in part, be determined by
the type of time discretisation used. For example, it is now well known that the Crank–Nicolson
scheme produces oscillations when the asset price is at the money, for example. The reason for
this problem is that the derivatives of the solution to the continuous IBVP become large and
discontinuous, whereas lower-order Euler schemes do not have this problem. However, these
latter schemes are only first-order accurate and in order to achieve second-order accuracy we
can choose from a number of options:� Implicit Euler schemes with Richardson extrapolation� Rannacher method: using implicit Euler for the first few time steps and Crank–Nicolson

thereafter� Predictor–corrector methods.
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Finally, we model the discrete payoff function as a vector/array in C++. A very important
point to remember is that the discrete mesh points are defined in the interior of the domain
of integration. In other words, the discrete payoff does not ‘touch’ the asset boundaries. The
values on the boundaries will be taken care of by another vector that contains discrete boundary
values. If you ‘extend’ the discrete payoff function to the boundaries you will get erroneous
values for the discrete solution. We shall show how to define the discrete payoff function in
C++ correctly in the following chapters.

30.4.5 Boundary conditions

In general, the boundary conditions corresponding to the initial boundary value problem must
be discretised in some way. There are some issues to be addressed:

1. The discretised boundary conditions must be stable and accurate.
2. It must be easy to incorporate the discretised values in a neighbourhood of the boundary

into the finite difference scheme throughout the full discretised domain.

In this book we tend to concentrate on first-order accurate and second-order accurate difference
schemes and this position is reflected in the way we define discrete boundary conditions. First,
we define first-order approximations to the derivative of the continuous solution by taking
one-sided divided differences. The advantage is that this approach is easy to implement; the
disadvantage is that it is only first-order accurate and this affects accuracy in the interior of the
domain. Second, it is possible to get second-order accuracy by taking centred differences to
approximate the first-order derivatives. However, this comes at a cost and we must introduce
temporary ghost (fictitious) points that we can eliminate from the system of equations.

30.5 AUXILIARY NUMERICAL METHODS

This book focuses primarily on partial differential equations and their approximation by finite
difference schemes. However, we need some other supporting numerical techniques that are
needed when solving such problems. We have touched on some of them in this book but we
have hardly done them justice:� Numerical linear algebra and the solution of linear systems of equations (Golub and Van

Loan, 1996)� Numerical integration� The foundations of numerical analysis (Dahlquist, 1974).

Furthermore, we have excluded a number of important numerical techniques for the main
reason that there was not enough space!� Solution of nonlinear systems of equations� Interpolation and extrapolation� Adaptive mesh methods; multi-grid methods.

Information on these subjects can be found in the numerical analysis literature.
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30.6 NEW DEVELOPMENTS

Although the application of finite difference schemes to option pricing models is still in its
infancy, in the author’s humble opinion there is a growing interest in the method as a competitor
to well-known lattice methods. This book has introduced a number of schemes that are used
to solve pricing problems. We have excluded some new methods but we review them here for
completeness. We summarise some new developments that are in the embryonic stages or have
not yet been documented and tested by the author (we mention, however, that they are being
used by a number of practitioners):� The Meshless method� The combination of FDM and FEM for PIDE problems� The alternating direction explicit (ADE) method (Saul’yev, 1964; Roache, 1998).

Most of the results are anecdotal at the moment of writing but they are encouraging and the
above methods could challenge the FDM ‘establishment’ in the future because of their ease
of implementation, speed of execution and ability to model multidimensional problems. For
example, ADE methods are both explicit and unconditionally stable while the Meshless method
is ‘dimension-blind’, that is, it can handle multi-asset option models with almost as much ease
as it can approximate one-factor models. Finally, for PIDE problems, it is possible to model the
PDE part using finite differences while the Galerkin method (in fact, this is FEM) is suitable
for the integral part.

30.7 SUMMARY AND CONCLUSIONS

In this chapter we have given a summary of the main issues involved when defining initial
boundary value problems (IBVP) that describe the behaviour of derivatives (such as options) as
well as the essential activities to be executed when approximating the IBVP by finite difference
techniques.

This chapter serves a number of purposes. First, it is a high-level summary of the PDE and
FDM techniques of the earlier part of this book. Second, it discusses a number of alternative
schemes to use when approximating the solution of PDE-based pricing models. Finally, the
results in this chapter will be mapped in the chapters that follow to a form that is suitable for
design and implementation in C++. This chapter can be read on a regular basis to refresh your
memory on PDE and FDM techniques.
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31
Design and Implementation

of First-Order Problems

‘Get it working, then get it right, then get it optimised.’

31.1 INTRODUCTION AND OBJECTIVES

In this chapter we start ‘closing to C++ code’ as it were. In particular, we commence mapping
the PDE and FDM ‘products’ that we summarised in Chapter 30 to a working C++ program.
The main challenge of course is to program FDM algorithms in C++. There are many ways
of achieving this end and in this chapter we examine simple first-order hyperbolic partial
differential equations (both one-factor and two-factor models) and we approximate them by
using implicit in time and upwinding or downwinding schemes in space. There are three main
reasons for taking this approach. First, hyperbolic equations – taken on their own – tend to
be somewhat neglected in the quantitative finance literature. In fact, they crop up as boundary
conditions when the Black–Scholes PDE is continued to a boundary, for example in one-factor
bond-modelling problems and the Heston stochastic volatility model. Second, the schemes that
we use for these problems are easy to understand because they are defined in a box or cube. We
also are able to define unconditionally first-order convergent schemes without actually having
to use matrix inversion techniques. The subsequent mapping of the FDM schemes to C++
will hopefully be easier than taking a full-blown two-factor Black–Scholes as a first example.
Finally, we lay the foundations in this chapter for a transition to more complex problems and
models. The only difference between this and subsequent chapters is the level of detail needed
in mapping the finite difference schemes to C++. The code works (it is not pseudo code) and
of course it can be considerably refined but our objective is to get a working system, however
simple, up and running.

An important and sometimes forgotten issue is that we must start thinking about the data
structures (such as vectors and matrices) that we design, implement and integrate with the
finite difference schemes. This is a recurring theme in general.

31.2 SOFTWARE REQUIREMENTS

When commencing on a software project we must determine what the level of flexibility of the
final software product will be. By ‘flexibility’ we mean the ease with which our code can be
modified to suit new requirements. In general, we define three levels of software flexibility:� Level 1 (hard-coded). The code has been developed for a specific problem. If you wish

to use the code for another problem the source code must be recompiled for this new
problem.� Level 2 (using design patterns – GOF, 1995; Duffy, 2004). We decompose a software system
into loosely coupled subsystems and flexibility is achieved using design patterns. The focus
is on the flexibility of the numerical algorithms and less on input and output mechanisms.

337
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338 Finite Difference Methods in Financial Engineering� Level 3 (full-scale software systems). In general, this level is achieved by integrating the
Level 2 design patterns with input and output mechanisms. For example, we use GUI controls
to enter data while output data could be presented in Excel.

In this book we concentrate mainly on Level 1 aspects.

31.3 MODULAR DECOMPOSITION

The idea of breaking a problem into loosely coupled and independent software modules is
not new. In fact, when the programming language Fortran was top of the heap it was stan-
dard practice to write generic software modules and reuse them without having to modify
them in applications. The love affair with the object-oriented paradigm has relegated modular
programming to the second division. In this chapter we redress the situation somewhat by com-
bining the two paradigms: each independent module will be implemented as a C++ class or
structure.

In this chapter we examine one-factor and two-factor first-order hyperbolic initial boundary
value problems, their numerical approximation using FDM and their implementation in C++.
To this end, we cluster similar functionality into classes or structures. The general system
topology is shown in Figure 31.1 and displays the main concepts in the current problem as
well as the relationships between them:� HIBVP: This models the hyperbolic initial boundary value problem, including the domain

space (in (x , t) coordinates) in which its PDE is defined, the coefficients appearing in the
PDE as well as the initial and boundary conditions.� HFDM: This models the finite difference scheme that approximates HIBVP. It needs a discrete
mesh and this is created by Mesher code while, for both the one-factor and two-factor
problems, we employ an implicit scheme in time and upwinding scheme in space.

Finite difference scheme 
(HFDM)

Discrete domain SolutionDomain Functions

Mesher Algorithm

Hyperbolic IBVP (HIBVP)

defined in uses
produces

creates

uses

uses

defined in 

Figure 31.1 Structure of C++ design
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In this chapter only the concepts HIBVP and HFDM appearing in Figure 31.1 will be imple-
mented as C++ classes. In fact, we implement them as structs. A struct can be likened to a
lightweight class because it is easier to program and has less overhead than a C++ class.

31.4 USEFUL C++++ DATA STRUCTURES

In the past (and up to the present time), Fortran programmers developed scientific and en-
gineering applications. They used ready-made modules and algorithms and integrated them
within their applications. There are many Fortran libraries in the marketplace and an important
subset are libraries for arrays and matrices. We have constructed similar structures in C++
(see Duffy, 2004) and can use them directly in our finite difference schemes. For those readers
who are not familiar with these structures we have included an appendix (see section 31.9)
describing the main functionality. The full source code can be found on the accompanying CD.

31.5 ONE-FACTOR MODELS

We examine the initial boundary value problem:

∂u

∂t
+ a(x, t)

∂u

∂x
= F(x, t), tε(0, T )

u(0, t) = g(t), tε(0, T ) (31.1)

u(x, 0) = f (x), xε(0, 1)

where a(x, t) > 0, xε[0, 1], tε[0, T ].
In this case we see that the characteristic direction is positive from x = 0 and hence the

boundary condition must be defined there. This constrains the kind of finite difference scheme
that we can use because it must be consistent with this. In other words, information is travelling
from the inlet/downstream end-point x = 0 into the interior of the region.

We approximate the solution of the IBVP (31.1) using implicit Euler in time and upwinding
in x . We also must approximate the initial and boundary conditions appearing in (31.1). To
this end, we partition the interval (0, 1) into J equal sub-intervals and the interval (0, T ) into
N equal sub-intervals. Then the resulting finite difference scheme is given by:

un+1
j − un

j

k
+ an+1

j

un+1
j − un+1

j−1

h
= Fn+1

j , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1 (31.2a)

un
0 = g(tn), 0 ≤ n ≤ N (31.2b)

u0
j = f (x j ), 1 ≤ j ≤ J (31.2c)

where h = 1/J
k = T/N
an+1

j = a( jh, (n + 1)k)

Fn+1
j = F( jh, (n + 1)k)

⎫⎪⎪⎬⎪⎪⎭
0 ≤ j ≤ J

0 ≤ n ≤ N − 1

Rearranging (31.2a) by placing all known quantities on the right-hand side and all unknown
quantities on the left-hand side we get the following equivalent expression:

un+1(1 + λn+1
j ) = un

j + λn
j u

n+1
j−1 + k Fn+1

j , 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1 (31.3)

where λn+1
j = kan+1

j /h (the CFL condition).
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We thus see from this equation that the solution at time level n + 1 and mesh-point jh is
given in terms of the inhomogeneous term F , an initial condition at time level n and a boundary
condition from mesh-point ( j − 1)h.

In order to keep things concrete we examine (31.1) for the test case whose solution is
u(x, t) = x + t . This is purely for pedagogical reasons. We encapsulate knowledge of (31.1)
in a C++ struct as follows:

struct HIBVP
{ // Assemble the defining properties of the initial
// boundary value problem in one place.

double T; // ‘End’ time
// Coefficients in PDE
double a(double x, double t)
{

return 1.0;
}
double F(double x, double t)
{

return 2.0;
}
// Boundary condition
double g(double t)
{

return t;
}
// Initial condition
double f(double x)
{

return x;
}

};

We implicitly assume that the extent of the domain in the x direction is the interval (0, 1)
and that the extent in the t direction is (0, T ).

We now design the C++ struct that encapsulates the code for the implicit finite difference
scheme (31.2). First, we discuss its member data. It consists of both mesh data and vector
data that holds the solution vectors at time levels n and n + 1. To this end, the following code
should be reasonably self-explanatory:

HIBVP* m_h;
// Discrete parameters
double h, k; // Mesh sizes
double J, N; // Number of sub-divisions

double T; // (Redundant)
double t; // Current time level
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// Vectors (work arrays)
Vector<double, int> XArr;
Vector<double, int> VOld; // Time level n
Vector<double, int> VNew; // Time level n+1

We now turn our attention to the corresponding member functions in this class. There are
just three of them:� Constructor� Producing the result at time level n + 1� Determining if the time-marching scheme has reached time T .

The constructor has two main uses; first, it constructs the mesh array and, second, it initialises
the solution vectors. Please note that it has a pointer to its ‘parent’ HIBVP:

HFDM(int NX, int NT, HIBVP* myIBVP)
{ // Use this constructor

J = NX;
N = NT;

m_h = myIBVP;
T = m_h->T;
t = 0.0;
h = 1.0 / double (J); // Assume x-interval (0,1)
k = T / double (N);

XArr = Vector<double, int> (J+1, 1);
XArr[XArr.MinIndex()] = 0.0;

double x = h;
for (int j = XArr.MinIndex() + 1;j <= XArr.MaxIndex(); j++)
{
XArr[j] = x;
x += h;

}

// Work with vector at time levels n and n+1
VOld = Vector<double, int> (J+1, 1);
VOld[VOld.MinIndex()] = m_h -> g(t);
for (j = VOld.MinIndex() + 1; j <= VOld.MaxIndex(); j++)
{
VOld[j] = m_h -> f(XArr[j]);

}

VNew = Vector<double, int> (VOld);

}

The member function that actually calculates the solution at time level n+1 is based on the
algorithm in equation (31.3) and is given by:

Vector<double, int>& result()
{ // The value of the solution at level n + 1
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−−
t + = k;
VNew[VNew.MinIndex()] = m_h > g(t);
double tmp;

for (int j = VNew.MinIndex() + 1; j <= VNew.MaxIndex(); j++)
{ // Implicit Euler

tmp = (k * m_h ->a(XArr[j], t)) / h; // Lambda factor

VNew[j] = (VOld[j] + (tmp * VNew[j-1])+(k * m_h ->F(t,j)) )
/ (1.0 + tmp);

}
VOld = VNew; // Update solution at time level n
return VNew;

}

Finally, we have defined the following simple function to tell us if we are finished marching
in time:

bool isDone() const
{

if (t < T)
{
return false;

}
return true;

}

31.5.1 Main program and output

We have completed the discussion of the C++ code that implements system (31.3). We now
give some code to show how to test the finite difference scheme. We march from t = 0 to
t = T and we print the solution (as a vector) at each time level. To this end, we have created a
simple function to print a vector:

template <class V, class I> void print(const Vector<V,I>& v)
{

cout << "\nARR:[";
for (I j = v.MinIndex(); j <= v.MaxIndex(); j++)
{

cout << v[j] << ", ";
}
cout << "]";

}

The main program for getting the job done is as follows:

int main()
{

// Define Continuous Problem



0470858826c31 JWBK073-Duffy February 2, 2006 12:37 Char Count= 0

Design and Implementation of First-Order Problems 343

HIBVP myIBVP;
myIBVP.T = 1.0;

// Define Discrete Problem
int NX = 10;
int NT = 5;
HFDM myFDM(NX, NT, &myIBVP);

L1:

Vector<double, int> answer = myFDM.result();
print(answer);cout << " Time Level: " << myFDM.t << endl;

if (myFDM.isDone() == false)
{

goto L1;
}

return 0;
}

The output from this program is:

ARR:[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2] Time Level: 0.2

ARR:[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4] Time Level: 0.4

ARR:[0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6] Time Level: 0.6

ARR:[0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8] Time Level: 0.8

ARR:[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2] Time Level: 1

31.6 MULTI-FACTOR MODELS

We now turn our attention to a two-factor generalisation of system (31.1). This is a first-order
hyperbolic initial boundary value problem in the space dimensions x and y and in the time
dimension t . We define the problem on a unit square in (x, y) space and we assume that
information is coming from the boundaries x = 0 and y = 0. The specification is given by the
system:

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = F, xε(0, 1), yε(0, 1), tε(0, T )

u(0, y, t) = g1(y, t), yε(0, 1), tε(0, T )

u(x, 0, t) = g2(x, t), xε(0, 1), tε(0, T )

u(x, y, 0) = f (x, y), x, yε(0, 1)

(31.4)

where

a(x, y, t) ≥ α > 0 and b(x, y, t) ≥ β > 0 (31.5)

From the inequalities in (31.5) we know that information is coming from the lower bound-
aries x = 0 and y = 0 and hence the boundary conditions in (31.4) are the correct ones.

We propose the following finite difference scheme to approximate the solution of system
(31.4): in the space dimensions we use the appropriate first-order upwinding schemes while
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in the time dimension we use the implicit Euler scheme:

un+1
i, j − un

i, j

k
+ an+1

i, j

un+1
i, j − un+1

i−1, j

h1

+ bn+1
i, j

un+1
i, j − un+1

i, j−1

h2

+cn+1
i, j un+1

i, j = Fn+1
i, j , 1 ≤ i ≤ I, 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1 (31.6a)

un
0, j = g1( jh2, nk), 1 ≤ j ≤ J, un

i,0 = g2(ih1, nk), 1 ≤ i ≤ I (31.6b)

u0
i, j = f (ih1, jh2), 1 ≤ i ≤ I, 1 ≤ j ≤ J (31.6c)

Rearranging the terms in equation (31.6a) allows us to write the discrete solution at any
point in terms of known quantities:

un+1
i, j (1 + An+1

i, j + Bn+1
i, j + kcn+1

i, j ) = un
i, j + An+1

i, j un+1
i−1, j + Bn+1

i, j−1 un+1
i, j−1 + k Fn+1

i, j (31.7)

where

A ≡ ka

h1

and B ≡ kb

h2

(31.8)

Remark. We note that schemes (31.3) and (31.7) are both positive in the sense that positive
initial condition, boundary conditions and forcing terms lead to a positive/monotone scheme.

We now discuss how to implement scheme (31.6) in C++. In fact, we copied the source code
from the one-factor solution. Of course, we had to modify the code but the basic structure is
the same as before. In fact, we implement the concept map in Figure 31.1 in the current case as
well. In short, we have everything ‘doubled’ with respect to the one-factor case, for example:� Mesh arrays in both the x and y dimensions� The solution at each time level n is a two-dimensional matrix instead of a one-dimensional

vector� Instead of single ‘for’ loops we now have two ‘for’ loops.

The member data for the class that implements the two-factor finite difference scheme is
given by:

HIBVP* m_h; // Pointer to PDE object
// Discrete parameters
double h1, h2, k; // Mesh sizes
double J1, J2, N; // Number of sub-divisions

double T; //(Redundant)
double t; // Current time level

// NumericMatrix (work arrays)
Vector<double, int> XArr;
Vector<double, int> YArr;

NumericMatrix<double, int> MOld; // Time level n
NumericMatrix<double, int> MNew; // Time level n+1

As with the one-factor case we now turn our attention to the corresponding member functions
in this class. There are only three of them:� Constructor� Producing the result at time level n + 1� Determining if the time-marching scheme has reached time T .
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The code for the constructor is responsible for creating the mesh arrays XArr and YArr as
well as defining the discrete initial condition, that is the solution at time level n = 0 (expressed
as a matrix):

HFDM(int NX, int NY, int NT, HIBVP* myIBVP)
{ // Use this constructor

J1 = NX; J2 = NY; N = NT;
m_h = myIBVP;
T = m_h->T; t = 0.0;
h1 = 1.0 / double (J1) // Assume x-interval (0,1)
h2 = 1.0 / double (J2); // Assume y-interval (0,1)
k = T / double (N);

XArr = Vector<double, int> (J1+1, 1);
XArr[XArr.MinIndex()] = 0.0;

double x = h1;
for (int j = XArr.MinIndex() + 1; j <= XArr.MaxIndex(); j++)
{

XArr[j] = x;
x += h1;

}

YArr = Vector<double, int> (J2+1, 1);
YArr[YArr.MinIndex()] = 0.0;

double y = h2;
for (j = YArr.MinIndex() + 1; j <= YArr.MaxIndex(); j++)
{

YArr[j] = y;
y += h2;

}
// Work with NumericMatrix at time levels n and n+1
MOld = NumericMatrix<double, int> (J1+1,J2+1,1,1);

// Initialise boundary conditions x = 0 and y = 0
for (int ii = MOld.MinColumnIndex();

ii <= MOld.MaxColumnIndex(); ii++)
{ // x == 0
MOld(MOld.MinRowIndex(), ii) =

m_h->g(XArr[XArr.MinIndex()], YArr[ii], t);
}
for (int jj = MOld.MinRowIndex(); jj <= MOld.MaxRowIndex(); jj++)
{ // y == 0

MOld(jj, MOld.MinColumnIndex()) =
m_h ->g(XArr[jj], YArr[YArr.MinIndex()], t);

}
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// Now the initial conditions ’off’ the characteristic boundaries
for (int kk = MOld.MinColumnIndex()+1;

kk <= MOld.MaxColumnIndex(); kk++)
{

for (j = MOld.MinRowIndex()+1;
j <= MOld.MaxRowIndex(); j++)

{
MOld(j, kk) = m_h -> f(XArr[j], YArr[kk]);

}
}
MNew = NumericMatrix<double, int> (MOld);

}

The function to actually calculate the solution at time level n + 1 in the form of a matrix is
given by the following code (it is based on the algorithm (31.7)):

double tmp1, tmp2, factor;
for (int kk = MNew.MinColumnIndex() + 1;

kk <= MNew.MaxColumnIndex(); kk++)
{ // Implicit Euler

for (int j = MNew.MinRowIndex() + 1;
j <= MNew.MaxRowIndex(); j++)

{

tmp1 = (m_h->a(XArr[j], YArr[kk], t) * k) / h1;
tmp2 = (m_h->a(XArr[j], YArr[kk], t) * k) / h2;
factor = 1.0 + tmp1 + tmp2

+ (k*m_h->c(XArr[j], YArr[k], t+k));

MNew(j, kk) = MOld(j,kk) + (tmp1 * MNew(j-1, kk))
+ (tmp2 * MNew(j,kk-1))+(k * m_h->F(XArr[j],YArr[kk],t));
MNew(j, kk) = MNew(j,kk) / factor;

}
}

The full source code can be found on the accompanying CD.

31.7 GENERALISATIONS AND APPLICATIONS
TO QUANTITATIVE FINANCE

In this chapter we have deliberately made things as concrete and as hard-coded as possible. We
have avoided clever C++ tricks and design patterns (for the moment, at least) in order to help
the reader to understand the essentials of the C++ code that implements the finite difference
schemes. We now give a list of the features in the current version of the software as well as
some guidelines on how to make the software more flexible.� Input (All input is hard-coded into the program at the moment). Input the functions defining

the initial boundary value problem (systems (31.1) and (31.4)). It is possible to extend
the set of IBVPs that can be modelled in the software by defining standard interfaces and
then loading components that implement these interfaces by using dynamic link libraries or
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assemblies, for example. In this way, we create software that works with any IBVP and that
does not have to be modified for each new set of parameters.

In general, we should enter all discrete data (for example, the number of mesh points)
using dialog boxes and other graphic user interface (GUI) controls. In this chapter we use
the C++ iostream library for input (and output).� Calculation and number crunching: The code implements a specific finite difference scheme.
If we wish to implement another scheme, such as explicit Euler or Crank–Nicolson, we must
insert the code and recompile. If we wish to have a more flexible regime, we could define
various so-called strategy objects (GOF, 1995; Duffy, 2004) with each strategy implementing
a specific finite difference scheme. We can dynamically load each strategy by implementing
it as a dynamic link library or assembly.� Output: The solution at each time level in all cases is either a one-dimensional or two-
dimensional structure. In the current version the values in these arrays are printed using
the iostream library. This is a basic techniques and is a good way to test and debug the
algorithms. For example, the simple procedure to print a matrix is given by:

void printNumericMatrix (const NumericMatrix<double, int>& mat)
{ // Print every vector in the NumericMatrix
for (int i = mat.MinRowIndex(); i <= mat.MaxRowIndex(); i++)
{

cout << "\n" << i << ": ";
for (int j=mat.MinColumnIndex();j<=mat.MaxColumnIndex(); j++)
{

cout << mat(i,j) << ", ";
}

}
cout << endl;
}

In later versions we could display the solution in other media, such as Excel.� Reusability and maintainability: The class HFDM contains a lot a functionality (as seen by
the large number of member data). In fact, it contains functionality for both mesh generation
and the details of the algorithm that implements the finite difference scheme. It is a good
idea to create dedicated classes for mesh generation and algorithms. To this end, we should
partition HFDM into more loosely coupled parts. The advantages are that HFDM becomes less
monolithic and it promotes reusability. For example, mesher functionality can be used in
many other finite difference schemes and not just the schemes in this chapter. We shall show
how to achieve this end in a future chapter.

31.8 SUMMARY AND CONCLUSIONS

We have shown how to map FDM algorithms to C++ code by taking a hyperbolic initial bound-
ary value problem as test case. The problem uses a one-step method in time and an upwinding
scheme in space. This ensures that we do not get bogged down (at least, not yet) in solving a
matrix system at each time level and this approach allows us to concentrate on the essential
algorithmic and coding issues. Furthermore, we have avoided sophisticated design patterns and
clever tricks because their introduction would confuse the understandability of the code.

We hope that this chapter will have helped the reader to appreciate the link between FDM
and C++.



0470858826c31 JWBK073-Duffy February 2, 2006 12:37 Char Count= 0

348 Finite Difference Methods in Financial Engineering

31.9 APPENDIX: USEFUL DATA STRUCTURES IN C++++

We concentrate on one-dimensional and two-dimensional data structures. To this end, we
introduce basic foundation classes, namely:� Array: sequential, indexible container containing arbitrary data types� Vector: array class that contains numeric data� Matrix: sequential, indexible container containing arbitrary data types� NumericMatrix: matrix class that contains numeric data.

The code for these classes is on the accompanying CD. The classes Array and Vector
are one-dimensional containers whose elements we access using a single index while Matrix
and NumericMatrix are two-dimensional containers whose elements we access using two
indices.

We now discuss each of these classes in more detail.
We start with the class Array. This is the most fundamental class in the library and it repre-

sents a sequential collection of values. This template class that we denote by Array <V, I,
S> has three generic parameters:� V: the data type of the underlying values in the array� I: the data type used for indexing the values in the array� S: the so-called storage class for the array.

The storage class is in fact an encapsulation of the STL vector class and it is here that
the data in the array is actually initialised. At the moment there are specific storage classes,
namely FullArray<V> and BandArray<V> that store a full array and a banded array of values,
respectively.

Please note that it is not possible to change the size of an Array instance once it has been
constructed. This is in contrast to the STL vector class in which it is possible to let it grow.

The declaration of the class Array is given by:

template <class V, class I=int, class S=FullArray<V> >
class Array
{
private:

S m_structure; // The array structure
I m_start; // The start index

};

We see that Array has an embedded storage object of type S and a start index. The default
storage is FullArray<V> and the default index type is int. This means that if we work with
these types on a regular basis we do not have to include them in the template declaration. Thus,
the following three declarations are the same:

Array<double, int, FullArray<double> > arr1;
Array<double, int> arr1;
Array<double> arr1;

You may choose whichever data types that are most suitable for your needs. The construc-
tors in Array allow us to create instances based on size of the array, start index and so on.
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The constructors are:

Array(); // Default constructor
Array(size_t size); // Give length start index ==1
Array(size_t size, I start); // Length and start index
Array(size_t size, I start,

const V& value); // Size, start, value
Array(const Array<V, I, S>& source); // Copy constructor

Once we have created an array, we may wish to navigate in the array, access the elements
in the array and to modify these elements. The member functions to help you in this case are:

// Selectors
I MinIndex() const; // Return the minimum index
I MaxIndex() const; // Return the maximum index
size_t Size() const; // The size of the array
const V& Element(I index) const; // Element at position

// Modifiers
void Element(I index, const V& val); // Change element at position
void StartIndex(I index); // Change the start index

// Operators
virtual V& operator [] (I index); // Subscripting operator
virtual const V& operator [] (I index) const;

This completes the description of the Array class. We do not describe the class that actually
stores the data in the array. The reader can find the source code on the accompanying media
kit.

We now discuss the Vector and NumericMatrix classes in detail. These classes are derived
from Array and Matrix, respectively. Thus all the functionality that we have described in pre-
vious sections remains valid for these new classes. Furthermore, we have created constructors
for Vector and NumericMatrix classes as well. So what do these classes have that their base
classes do not have? The general answer is that Vector and NumericMatrix assume that
their underlying types are numeric. We thus model these classes as implementations of the
corresponding mathematical structures.

We have implemented Vector and NumericMatrix as approximations to a vector space.
In some cases we have added functionality to suit our needs. However, we have simplified
things a little because we assume that the data types in a vector space are of the same types
as that of the underlying field. This is for convenience only and it satisfies our needs for most
applications in financial engineering. Class Vector is derived from Array. Its definition in
C++ is:

template <class V, class I=int, class S=FullArray<V> >
class Vector: public Array<V, I, S>
{
private:

// No member data
};
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We give the prototypes for some of the mathematical operations in Vector. The first group
is a straight implementation of a vector space; notice that we have applied operator overloading
in C++:

Vector<V, I, S> operator - () const;
Vector<V, I, S> operator + (const Vector<V, I, S>& v) const;
Vector<V, I, S> operator - (const Vector<V, I, S>& v) const;

The second group of functions is useful because it provides functionality for offsetting the
values in a vector:

Vector<V, I, S> operator + (const V& v) const;
Vector<V, I, S> operator - (const V& v) const;
Vector<V, I, S> operator * (const V& v) const;

The first function adds an element to each element in the vector and returns a new vector.
The second and third functions are similar except that we apply subtraction and multiplication
operators, respectively. Class NumericMatrix is derived from Matrix. Its definition in C++
is:

template <class V, class I=int, class S=FullMatrix<V> >
class NumericMatrix: public Matrix<V, I, S>
{
private:

// No member data
};

The constructors in NumericMatrix are the same as for Matrix. We may also wish to
manipulate the rows and columns of matrices and we provide ‘set/get’ functionality. Notice
that we return vectors for selectors but that modifiers accept Array instances (and instances
of any derived class!):

// Selectors
Vector<V, I> Row(I row) const;
Vector<V, I> Column(I column) const;

// Modifiers
void Row(I row, const Array<V, I>& val);
void Column(I column, const Array<V, I>& val);

Since we shall be solving linear systems of equations in later chapters we must provide
functionality for multiplying matrices with vectors and with other matrices:� Multiply a matrix and a vector� Multiply a (transpose of a) vector and a matrix� Multiply two matrices.

We give some simple examples showing how to create vectors and how to perform some
mathematical operations on the vectors.

// Create some vectors
Vector<double, int> vec1(10, 1, 2.0); // Start = 1, value 2.0
Vector<double, int> vec2(10, 1, 3.0); // Start = 1, value 3.0
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Vector<double, int> vec3 = vec1 + vec2;
Vector<double, int> vec4 = vec1 - vec2;

Vector<double, int> vec5 = vec1 - 3.14;

We give an example to show how to use numeric matrices. The code is:

int rowstart = 1;
int colstart = 1;
NumericMatrix<double, int> m3(3, 3, rowstart, colstart);
for (int i = m3.MinRowIndex(); i <= m3.MaxRowIndex(); i++)
{

for (int j = m3.MinColumnIndex(); j <= m3.MaxColumnIndex(); j++)
{

m3(i, j) = 1.0 /(i + j -1.0);
}

}
print (m3);

The output from this code is:

MinRowIndex: 1 , MaxRowIndex: 3
MinColumnIndex: 1 , MaxColumnIndex: 3

MAT:[
Row 1 (1,0.5,0.333333,)
Row 2 (0.5,0.333333,0.25,)
Row 3 (0.333333,0.25,0.2,)]

For more information on the above classes, see the code on the accompanying CD and Duffy
(2004) for some applications.
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32

Moving to Black–Scholes

We may consider ourselves lucky when, trying to solve a problem, we succeed in discovering a
simpler analogous problem.

George Polya

32.1 INTRODUCTION AND OBJECTIVES

In this chapter we continue with our discussion of finite difference schemes and their im-
plementation in C++. Whereas we considered first-order hyperbolic equations (convection
equations) in Chapter 31, we now examine the two-dimensional heat equation. In particular,
we wish to show how to map the FDM schemes for the equation to C++. This is a diffusion
equation and an important component of the Black–Scholes equation. Understanding how to
program the heat equation will allow us to generalise our code to handle two-factor option pric-
ing problems. As before, we use an explicit scheme to avoid making things more complicated
than necessary.

In general we must determine how we are going to solve a problem using finite difference
schemes and also determine the resources we need. Summarising, the major attention points
are:

A1: An unambiguous specification of the PDE model
A2: Determining which FDM model to use
A3: Implementing the model in C++.

These are the major issues we must resolve. They are not the only ones because we shall also
need to addresses issues such as design patterns and integration of the C++ code in production
environments.

In general, the so-called lifecycle of a financial derivatives product is given by the following
activities:� Financial model: The activity in which the quantitative engineer defines stochastic equations,

parameters, constraints and historical/calibrated data for the problem at hand.� PDE model: We map the financial model to an initial boundary value problem that unam-
biguously describes the derivative product. We produce the following products:

– The coefficients of the PDE
– The boundary conditions
– The initial condition (the payoff function).� FDM model: We must choose which finite difference scheme is most suitable for the current
PDE model. There are many choices at this stage and the final one will be determined by a
number of factors, some of which we discuss in the next section. In general, we do not wish to
‘over-engineer’ our schemes while at the same time we must satisfy customer requirements
such as accuracy and performance.

353
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before we implement the algorithms in C++ we determine the level to which the software
product will need to be customised in the future. To this end, we apply the design pattern
technique as originally discussed in GOF (1995) and elaborated in Duffy (2004).� C++ model: We now implement the design model using C++. To this end, we need to
create new functionality as well as reusing existing code and libraries. For example, we use
the Standard Template Library (STL) and the C++ datastructures in Duffy (2004).� Production model: Here we integrate the C++ code from the previous model into a real-
life development environment. For example, we could choose for a Microsoft Windows
environment, in which case we can integrate the C++ software with a number of software
environments:

– Graphical User Interfaces (Windows Forms, MFC)
– Relational database systems (Oracle, SQL Server)
– Visualisation Software (Excel, GDI+, OpenGL)
– Real-time data feeds.

In this chapter we focus mainly on activities A2, A3 and, to a certain extent, activity A1.

32.2 THE PDE MODEL

In general, we model derivatives product by a generalised Black–Scholes PDE or PIDE (in the
latter case there is an integral term that models jumps). In this book we concentrate on one-,
two- and three-factor models. Of course, one-factor models are the easiest to formulate and to
solve, both from a numerical and a computational point of view. In general, the underlyings
for one-factor models are typically:� The asset price S (or a future, commodity or stock)� The interest rate r .

The two-factor models in this book had to do with the following kinds of problems:� Multi-asset models (for example, the maximum of two assets)� Two-factor interest-rate models� Real options (for example, wood harvesting).

The coefficients of the Black–Scholes equation must be determined in each case.
We now complete the description of the PDE model by specifying the initial or payoff

condition and the corresponding boundary conditions. The payoff function depends on the
underlying prices and on a set of other parameters, usually strike prices. It is well-behaved in
general; however, it (or its derivatives) may be discontinuous at certain points.

Specifying boundary conditions seems to be a black hole at the moment of writing. In
general, the Black–Scholes equation is defined on a semi-infinite interval and in many cases
we must modify the equation so that it becomes a PDE on some bounded domain. There are
two main approaches:� Truncate the infinite domain, thus getting a bounded domain� Use a change of variables to transform the semi-infinite domain to a bounded domain.

The first approach is very popular and authors use the term ‘far-field’ condition to denote
the fact that they are working on a truncated interval and that ‘new’ boundary conditions need
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to be specified there. The most popular types of boundary condition are:� Dirichlet (value of solution known on boundary)� Neumann (first derivative of solution known on boundary)� Linearity (second derivative of solution known on boundary).

The linearity boundary condition is sometimes known as the convexity boundary condition.
Finally, must we specify a boundary condition when the underyings are zero? The answer is
‘no’ because the Black–Scholes equation degenerates at this point and no boundary conditions
are allowed! Instead, the PDE is satisfied at this point. The equation can be:� An ordinary differential equation� A first-order hyperbolic equation� A lower-order Black–Scholes equation.

A closed solution may or may not be possible in this case.

32.3 THE FDM MODEL

The FDM model is concerned with the setting up of the discrete set of equations that ap-
proximate the initial boundary value problem. To this end, we must produce discretisations
for:� The derivatives in the PDE� The coefficients in the PDE� The initial condition� The boundary conditions.

In general, we employ centred difference schemes to approximate the space derivatives while
we use one-step methods to approximate the time derivatives (in the future it might be worth
while investigating multi-step methods). On the boundary, we can employ one-sided, first-order
methods or second-order methods using ‘ghost’ (fictitious) points.

In general, boundaries and boundary conditions complicate the finite difference schemes.
For example, problems on semi-infinite space domains must be truncated to bounded domains
and then we must specify appropriate boundary conditions at this new ‘far-field’ boundary.
Finally, if we are modelling American option problems we must model the unknown moving
‘optimal exercise’ boundary. We have already discussed a number of ways of doing this:� The Landau transformation (change of variables)� Penalty methods� Variational methods.

The first two methods lead to nonlinear and semi-linear PDEs, respectively. We can ap-
proximate them using implicit, semi-implicit or explicit schemes. The end product from the
FDM model is an unambiguous set of equations that we can now design and implement in a
programming language.

32.4 ALGORITHMS AND DATA STRUCTURES

Having set up the discrete system of equations that allows us to march from one time level to
the next, we need some kind of language and a set of data structures that we use to bridge the
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gap between the finite difference schemes and the implementation (in C++, for example). In
general, the description of the marching process is procedural in nature, reminiscent of the way
Fortran programs are written. The process uses a combination of object-oriented data structures
and generic functions. The data structures hold the results of calculations as well as input data
while the generic functions transform continuous functions into their discrete equivalents, for
example. A high-level description of the process that maps the finite difference scheme to a
more computable form is as follows:

1. Read input from the continuous problem (coefficients, initial and boundary conditions,
domain).

2. Create a two-dimensional mesh (this is not time-dependent, so it can be initialised just
once).

3. Choose type of scheme; (in this chapter we take centred differences in space and explicit
Euler in time).

4. Create the discrete initial condition (the solution at time level n = 0).
5. ‘Start of Main Loop’; increment time level (from n to n + 1).
6. Calculate discrete boundary conditions.
7. Calculate discrete solution at level n + 1 in terms of discrete solution at previous level n

and discrete boundary conditions.
8. Postprocessing; store newly computed values in repository.
9. If we have reached the expiry time then stop; else go to step 5.

In fact, these steps are quite general and can be applied to many problems. Of course, the
devil is in the details, as the saying goes. We shall show how these steps are realised for the
specific case of the two-dimensional heat equation.

32.5 THE C++ MODEL

In this phase we implement the FDM model and the corresponding algorithms in C++. In
general, we can use a combination of procedural and object-oriented programming techniques.
In this chapter we concentrate on using object-oriented building blocks (for examples, vectors,
matrices and tensors) and then using these in procedures to calculate the solution.

The reusable classes are:� Vector: A class that models fixed-sized arrays with the corresponding mathematical struc-
ture� NumericMatrix: a matrix class that is endowed with mathematical properties� Tensor: A container that holds an array of matrices. We need this class because it will hold
the calculated data from the finite difference schemes at each time level.

Furthermore, we have defined a number of generic functions that are of use in this context,
for example:� Transforming continuous functions to discrete equivalents� Properties of vectors and matrices, for example norms.

We shall give concrete examples of C++ code when we discuss finite difference schemes
for the two-dimensional heat equation.
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32.6 TEST CASE: THE TWO-DIMENSIONAL HEAT EQUATION

In this section we discuss the problem of the flow of heat in a thin rectangular plate R of length
L and width M that is situated in the xy plane (Kreider et al., 1966). We assume that heat is
neither gained nor lost across the faces of the plate. This means that we can prescribe Dirichlet
boundary conditions on the boundary of R. Furthermore, we assume that the initial temperature
distribution f (x, y) is known. The initial boundary value problem now becomes:

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
in R (32.1a)

u = 0 on ∂R (boundary of R) (32.1b)

u(x, y, 0) = f (x, y) in R (32.1c)

We now describe how to approximate the solution of problem (32.1) using finite difference
schemes, and we then map the FDM algorithms to C++ code.

32.7 FINITE DIFFERENCE SOLUTION

We now discuss a particular finite difference scheme that approximates the solution of the
initial boundary value problem (32.1). We use centred differencing in space and explicit Euler
in time:

U n+1
i j − U n

i j

k
= �2

xU n
i j + �2

yU n
i j , 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1 (32.2)

Since this scheme is explicit in time we can rearrange the terms in equation (32.2) to produce
a solution at the time level n + 1:

U n+1
i j = λ1

(
U n

i+1, j + U n
i−1, j

) + λ2
(
U n

i, j+1 + U n
i, j−1

)
+ (1 − 2λ1 − 2λ2)U n

i, j , 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1 (32.3)

where λ1 = k/h2
x and λ2 = k/h2

y .
The initial condition and boundary conditions are defined by:

U 0
i j = f (xi , y j ), 1 ≤ i ≤ Nx−1, 1 ≤ j ≤ Ny−1 (32.4)

U n
0 j = 0, 0 ≤ j ≤ Ny ; U n

I j = 0, 0 ≤ j ≤ Ny

U n
i0 = 0, 0 ≤ i ≤ Nx ; U n

i J = 0, 0 ≤ i ≤ Nx

(I hx = Nx , Jhy = Ny)
(32.5)

We have chosen the boundary conditions as zero in this case but it is easy to adapt the
scheme to non-zero boundary conditions.

We note that the scheme (32.3) is conditionally stable. It is possible to show, using von
Neumann analysis or by the maximum principle, that the mesh size k in the time direction
must satisfy the constraint:

1 − 2(λ1 + λ2) ≥ 0

k ≤ 1

2
(
1/h2

x + 1/h2
y

) (32.6)
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32.8 MOVING TO SOFTWARE AND METHOD
IMPLEMENTATION

Having defined the continuous problem (32.1) and its discrete approximation (32.2)–(32.5)
we must now decide on how to ‘get this stuff into the computer’. In general, we create code
that realises these two models. We must take all parameters (in the broadest sense of the word)
into account.

In this section we give a step-by-step account of how we have implemented the C++ solution
to the current problem. You can apply these steps to more general problems.

32.8.1 Defining the continuous problem

Since we are working with system (32.1) at the moment we see that there are three main
parameters:� The region R in which the heat equation is defined� The initial condition� The boundary condition (of Dirichlet type).

We assume that the region is a rectangle (0, L) × (0, M) and that the time interval is (0, T ).
We define the parameters as follows:

double L = 1.0; double M = 1.0;
double T = 1.0;

We now define the initial and boundary conditions (you can change the bodies for other test
cases) as follows:

double IC(double x, double y)
{

if (x > y)
return x;

return 0.0;
}
double BC(double x, double y, double t)
{

return 1.0;
}

We have now completed the specification of the continuous problem.

32.8.2 Creating a mesh

We now need to discretise the region (0, L) × (0, M) × (0, T ). In this case we use constant
mesh sizes for ease of discussion. In the current example we partition each interval into a
number of subintervals:

int NX = 10; int NY = 10; int NT = 40;

// Calculated values
double hx = L / double(NX);
double hy = L / double(NY);
double k = T / double(NT);
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We now need to code the parameters as defined in equation (32.3) as well as discrete mesh
points in the x and y directions:

double a = hx*hx;
double b = hy*hy;
double lambda1 = k / a;
double lambda2 = k / b;
double factor = 1.0 - 2.0*(lambda1 + lambda2);

// Create mesh points in x and y directions
Range<double> rx(0.0, L);
Range<double> ry(0.0, M);
Vector<double, int> xMesh = rx.mesh(NX);
Vector<double, int> yMesh = ry.mesh(NY);

We note that the variable factor must be positive, otherwise this explicit finite difference
scheme will not be stable.

We now create discrete versions of the initial and boundary conditions. To this end, we use
a utility function (see code on CD) that allows us to do this:

NumericMatrix<double, int> V_IC
= createDiscreteFunction(IC,rx, ry, NX, NY);

Basically, this generic function creates a matrix of discrete values at the mesh points in the
finite difference scheme.

Defining the discrete boundary conditions requires a bit more work. First, we have to define
the function at the four boundaries of the rectangle R and then use it in the current example.
We define the discrete boundary condition by traversing the straight-line segments that enclose
the region R.

void DiscreteBC(
const Vector<double, int>& xMesh, const Vector<double, int>& yMesh,

double t,double (*Boundary NumericMatrix<double, int>& Solution)
{

// Initialise the ‘extremities’ of the solution, that is along
// the sides of the domain

int i, j; // Index for looping

// Bottom
int index = Solution.MinColumnIndex();
for (i = Solution.MinRowIndex();
i <= Solution.MaxRowIndex(); i++)
{

Solution(i, index) = BoundaryCondition(xMesh[i], 0.0, t);
}
// Top

// code removed
// Left

// code removed
// Right
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index = Solution.MaxRowIndex();

for (j = Solution.MinColumnIndex();
j <= Solution.MaxColumnIndex(); j++)
{
Solution(index, j) = BoundaryCondition(yMesh[yMesh.MaxIndex()],

yMesh[j], t);
}

}

This function uses a function pointer as input and we apply it in the current context as
follows (in this case we augment the discrete initial condition with its values on the boundary):

double current = 0.0; // Time counter
DiscreteBC(xMesh, yMesh, current, BC, V_IC);

Summarising, we can now define the discrete boundary condition at any time level as well
as defining the discrete initial condition (that is, at t = 0).

32.8.3 Choosing a scheme

In this chapter we have given one choice of scheme, namely explicit Euler (32.2). To program
this scheme all we need are two matrices, one for level n (the initial condition) and the other
for level n + 1 (the current value). The code for this algorithm is:

DiscreteBC(xMesh, yMesh, current, BC, V_NEXT);
for (int j = V_IC.MinColumnIndex()+1;
j < V_IC.MaxColumnIndex(); j++)
{

for (int i = V_IC.MinRowIndex()+1;
i < V_IC.MaxRowIndex(); i++)

{
V_NEXT(i, j)=lambda1*(V_IC(i+1, j)+V_IC(i-1, j))

+ lambda2 * (V_IC(i, j+1) + V_IC(i, j-1))
+ factor * V_IC(i, j);

}
}

Notice that we must first update the boundary conditions first for the solution at time level
n + 1. Having calculated this value we place it in a tensor (array of matrices):

// Now the data structure to hold all values, all start indices
// start at 1.
Tensor<double, int>
repository(V_IC.Rows(), V_IC.Columns(), NT+1);

// Postprocessing ...
index++; repository[index] = V_NEXT; // Add matrix to tensor
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32.8.4 Termination criterion

Since we are time marching as it were from t = 0 and t = T we need to test when the scheme
has finished. In this case we prefer to use the following loop (by the way, this is the only place
we use this construction):

L1: // Calculate the next level

// Go to next time level
current += k;

if (current < T)
{

V_IC = V_NEXT;
goto L1;

}

Notice that the time is incremented as well as the solution being updated from time level n to
n + 1.

32.9 GENERALISATIONS

Once you understand everything about the solution to a given problem (no matter how trivial it
might appear) you can then start thinking how to generalise it to more complicated problems.
In other words, we subsume current solutions in larger, more embrasive solutions.

32.9.1 More general PDEs

In this chapter we have discussed the two-dimensional heat equation with Dirichlet boundary
conditions. We can modify the schemes and code to handle convection terms, reaction terms and
even nonlinear terms in the PDE. Furthermore, we may have Neumann or convexity boundary
conditions. Finally, we need to create finite difference schemes for one-factor models on the
one hand and three-factor models on the other.

The contents of this chapter can be generalised to solve the two-factor Black–Scholes PDE,
for example.

32.9.2 Other finite difference schemes

We can adapt the scheme in this chapter to suit various requirements:� Convection–diffusion and Black–Scholes equations� Various kinds of boundary conditions.

In particular, we can adapt the code to allow us to approximate the solution of the two-factor
Black–Scholes model.

32.9.3 Flexible software solutions

In general, it is a good tactic to solve a simpler analogous problem first in order to get the struc-
ture right. Then we could progressively modify the software to suit new customer requirements.
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Let us take an example. Suppose that we wish to adapt the code in this chapter to the case
of the PDE that models multi-asset options that we discussed in Chapter 24. There is a large
gap in functionality between what we have and what we want. How do we proceed? There are
different strategies, one of which we now discuss. First, we must now model a convection–
diffusion equation and to this end we modify scheme (32.2) for the new PDE. Furthermore,
the code that implements the new scheme will need to be written. Second, and in contrast to
the hard-coded initial condition in this chapter, we can model the C++ payoff class hierarchy
(as introduced in Chapter 24 and coded in Chapter 33) and use it in our code. Finally, we have
to take new kinds of boundary conditions into account and this is always the most demanding
part of the exercise.

We now test the software to see if it works and if it produces accurate results. Once that has
been done we can then support new kinds of difference schemes, such as implicit Euler. We
then must enter a new round of extensions to the software. It is an incremental process.

32.10 SUMMARY AND CONCLUSIONS

We have implemented the explicit Euler difference scheme for the two-dimensional heat equa-
tion using C++. We have partitioned the problem in such a way that it becomes clear how
to map the concepts in the PDE and FDM formulations to C++ code. Furthermore, knowing
how the software product has been designed will help the reader to apply the same techniques
to more complex problems in quantitative finance.
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33
C++ Class Hierarchies for One-Factor

and Two-Factor Payoffs

33.1 INTRODUCTION AND OBJECTIVES

In this chapter we discuss a number of topics that have to do with the numerical and compu-
tational aspects of payoff functions for one-factor and multi-factor option pricing problems.
These are important topics because modelling payoff functions is a vital activity in all phases
of the software lifecycle:

A1: (Continuous) payoff function in the Black–Scholes PDE
A2: (Discrete) payoff function in the FDM schemes
A3: Implementing continuous and discrete payoff functions in C++.

We have already discussed what is needed to realise activities A1 and A2. In particular, we
have discussed payoff functions for call and put one-factor models as well as payoff functions
for multi-asset options (the latter group was discussed in Chapter 24). Furthermore, the discrete
payoff functions were modelled in the corresponding finite difference schemes. In general, these
discrete functions are defined at mesh-points but difficulties arise at certain points, in principle
those points where the payoff (or its derivatives) is discontinuous, for example:� Points in time where stock price is monitored� Interesting regions where we would like to have more data points (for example, near the

strike price)� Other points of discontinuity of the continuous payoff function.

The problem with non-smooth payoff functions is that approximating them using ‘bad’
schemes will lower the global accuracy of the difference scheme. Worse still, the discrete
option price will have spurious oscillations or spikes, thus rendering the values useless for
hedging purposes. We discuss these problems and suggest some remedies.

Topic A3 is next, and in particular we discuss how to model one-factor and two-factor con-
tinuous payoff functions in C++. We concentrate most of our attention on the one-factor case
while we give a short overview of how we developed the corresponding two-factor models. As
a practical example, we create a class hierarchy of option payoff functions in the single-factor
case. The ideas can be generalised to multi-factor option models. We have three design tech-
niques in C++ for modelling payoff functions. First, we create an abstract payoff class and
derive each specific payoff class from it; for example, we have defined classes for calls, bull
spreads and other single-factor options. The second approach uses composition by defining a
generic payoff class that contains a link to the algorithm that actually implements the payoff
function. The last design is to implement a payoff class that contains a function pointer as mem-
ber data. This function pointer implements the specific payoff functionality. In short, we can
choose the most appropriate design to suit our needs. In this sense we can offer ‘heavyweight’,
‘lightweight’ and ‘super-lightweight’ functionality for modelling payoff functions.

363
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Finally, we show how to integrate the payoff classes in other classes that model the PDEs
and FDM methods in this book. More information, including code and extra documentation,
can be found on the accompanying CD.

33.2 ABSTRACT AND CONCRETE PAYOFF CLASSES

By definition, an abstract class is one that cannot have any instances – that is, one from which
no objects can be created. We can produce abstract classes by defining at least one function to
be pure virtual. A concrete class, on the other hand, is one that is not abstract. In other words,
we can create instances of concrete classes.

What is the relationship between concrete and abstract classes? Usually an abstract class will
be a base class for many other derived classes (which may themselves be abstract or concrete).
The nice feature of this setup is that derived classes (if they wish to be concrete, that is) must
implement the pure virtual member functions, otherwise they will also be abstract.

An example of an abstract class is one that models one-factor option payoffs. In fact, we
create an abstract base class called Payoff that implements a pure virtual member function to
calculate the payoff value for a given stock price. The header file is given by:

class Payoff
{
public:

// Constructors and destructor
Payoff(); // Default constructor
Payoff(const Payoff& source); // Copy constructor
virtual ~Payoff(); // Destructor

// Operator overloading
Payoff& operator = (const Payoff& source);

// Pure virtual payoff function
virtual double payoff(double S) const = 0; // Spot price S

};

We notice that this class has no member data and this is advantageous because derived
classes will not inherit unwanted members. Specific payoff classes can be defined by deriving
them from Payoff and implementing the payoff() function. We look at call options in detail.
The header file is given by:

class CallPayoff: public Payoff
{
private:

double K; // Strike price
public:

// Constructors and destructor
CallPayoff();
CallPayoff(double strike);
CallPayoff(const CallPayoff& source);
virtual ~CallPayoff();
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// Selectors
double Strike() const; // Return strike price

// Modifiers
void Strike(double NewStrike); // Set strike price

CallPayoff& operator = (const CallPayoff& source);

// Implement the pure virtual payoff function from base class
double payoff(double S) const; // For a given spot price

};

We see that this class has private member data representing the strike price of the call
option as well as public set/get member functions for this data. Furthermore, we have coded
all essential functions in this class:� Default constructor� Copy constructor� Virtual destructor� Assignment operator.

Finally, we must implement the payoff() function, otherwise CallPayoff will itself be
an abstract class.

We now look at the bodies of the member functions of CallPayoff. In general, a constructor
in a derived class must initialise its local data and the data in the class that it is derived from. For
the former case we use normal assignment but we use the so-called colon syntax to initialise
the data in a base class. For example, the copy constructor in CallPayoff is given by:

CallPayoff::CallPayoff(const CallPayoff& source): Payoff(source)
{ // Copy constructor

K = source.K;
}

In this case we initialise the data in Payoff by using the colon syntax (of course there is no
data in the base class at the moment, but this is irrelevant). There is something subtle happening
here, namely the fact that the compiler knows what Payoff(source) is. The reason that the
code is acceptable is due to the Principle of Substitutability; this means that a function that
accepts a reference to a base class (in this case the copy constructor in Payoff) can be called
by giving an instance of a derived class. This is of course related to the fact that an instance of
a derived class is also an instance of its base class.

We now discuss how to implement the assignment operator in the derived class. In general,
the steps are:

1. Check that we are not assigning an object to itself
2. Assign the base class data
3. Assign the local data in the derived class
4. Return the ‘current’ object.

The code that performs these steps is given by:

CallPayoff& CallPayoff::operator = (const CallPayoff &source)
{ // Assignment operator
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// Exit if same object
if (this==&source) return *this;

// Call base class assignment
Payoff::operator = (source);

// Copy state
K = source.K;

return *this;
}

In derived classes we may have private member data and it is usual to provide public member
functions to access it:

double CallPayoff::Strike() const
{// Return K

return K;
}

void CallPayoff::Strike(double NewStrike)
{// Set K

K = NewStrike;
}

Finally, each derived class must implement the payoff function and in the case of a call
option this is given by the following code:

double CallPayoff::payoff(double S) const
{ // For a given spot price

if (S > K)
return (S - K);

return 0.0;

// remark; possible to say max (S - K, 0) if you prefer
}

We can define other kinds of payoff classes as derived classes of Payoff; see Figure 33.1.
We can define payoff functions for trading strategies involving options (see, for example, Hull,
2000), such as:� Spreads: We take a position on two options of the same kind. A bull spread entails we buy

a call option on a stock with strike K1 and sell a call on the same stock at a higher price K2.
A bear spread is similar to a bull spread except that K1 > K2. A butterfly spread involves
positions in options with three different strike prices.� Straddles: We buy a call option and a put option with the same strike price and expiry date.� Strangles: We buy a put and a call with the same expiration dates and different strike prices.

We implement each of these strategies by a separate derived class of Payoff called
BullSpreadPayoff and then by implementing the payoff function. For example, for a bull
spread the payoff function is:
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Payoff

{abstract}

CallPayoff BullSpreadPayoff

Figure 33.1 Payoff hierarchy: Version 1

double BullSpreadPayoff::payoff(double S) const
{ // Based on Hull’s book

if (S >= K2)
return K2 - K1;

if (S <= K1)
return 0.0;

// In the interval [K1, K2]
return S - K1;

}

33.3 USING PAYOFF CLASSES

We now give some examples of using payoff classes. We first consider payoffs for a call option.
To this end, we create a call payoff with strike K = 20 and we can query for a given stock
value and compute the payoff function:

CallPayoff call(20.0);

cout << "Give a stock price (plain Call): ";
double S;
cin >> S;

cout << "Call Payoff is: " << call.payoff(S) << endl;

We now create a bull spread payoff and we note that it has four member data, namely two
strike prices and the cost to buy a call as well as the sell price for the second call. The code is:

double K1 = 30.0; // Strike price of bought call
double K2 = 35.0; // Strike price of sell call
double costBuy = 3.0; // Cost to buy a call
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double sellPrice = 1.0; // Sell price for call
BullSpreadPayoff bs(K1, K2, costBuy, sellPrice);

cout << "Give a stock price (BullSpread): ";
cin >> S;

cout << "Bull Spread Payoff is: " << bs.payoff(S) << endl;
cout << "Bull Spread Profit is: " << bs.profit(S) << endl;

Incidentally, the C++ code for the profit() function is given by:

double BullSpreadPayoff::profit(double S) const
{ // Profit

return payoff(S) - (buyValue - sellValue);
}

The techniques developed in this section can be used in other applications in which we need
to create derived classes in C++.

33.4 LIGHTWEIGHT PAYOFF CLASSES

In this section we discuss another design in order to implement payoff functions. In section
33.3 we created a ‘heavyweight’ derived class for each kind of new payoff function. Once
we create an instance of a payoff class in Figure 33.1 it is then not possible to change it to
an instance of another class. For example, this approach might be difficult when we model
chooser options in C++ (recall that a chooser is one where the holder can choose whether to
receive a call or a put).

In order to resolve these and possible future problems, we adopt another approach. The UML
class diagram for this solution is shown in Figure 33.2. In this case we create a single payoff
class that has a pointer to what is essentially an encapsulation of a payoff function. The pattern
in Figure 33.2 is called the strategy pattern (GOF, 1995). This pattern allows us to define
interchangeable algorithms that can be used by many clients, as we can see in Figure 33.2;

PayoffStrategy

{abstract}

Call Bull

Payoff

Figure 33.2 Payoff hierarchy: Version 2 (using Strategy pattern)
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each instance of Payoff has a pointer to a payoff strategy and this pointer can be changed at
run-time. The header file for the concrete class Payoff is:

class Payoff
{
private:

PayoffStrategy* ps;
public:

// Constructors and destructor
Payoff(PayoffStrategy& pstrat);

// Other member functions
};

We see that we must give a reference to a payoff strategy. We have programmed the strategy
classes in Figure 33.2 in one file as follows:

class PayoffStrategy
{
public:

virtual double payoff(double S) const = 0;
};

class CallStrategy : public PayoffStrategy
{
private:

double K;
public:

CallStrategy(double strike) { K = strike;}
double payoff(double S) const
{

if (S > K)
return (S - K);

return 0.0;
}

};

We have also created a simple strategy for a bull spread. An example of using the new
configuration is now given, where we create a payoff and can choose its strategy type:

// Create a strategy and couple it with a payoff
CallStrategy call(20.0);
Payoff pay1(call);

This approach allows our software to be more efficient and flexible than the use of class
inheritance.

33.5 SUPER-LIGHTWEIGHT PAYOFF FUNCTIONS

We now discuss the last design technique for creating payoff functions and classes. It is less
object-oriented than the first two approaches (by the way, this does not necessarily make it
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bad) because we create a class with a function pointer as member data. This function pointer
will be assigned to a ‘real’ function representing some payoff function. For convenience we
look at special one-factor payoffs and in fact we create a class as follows:

class OneFactorPayoff
{
private:

double K;
double (*payoffFN)(double K, double S);

public:
// Constructors and destructor
OneFactorPayoff(double strike,
double(*payoff)(double K,double S));

// More

double payoff(double S) const; // For a given spot price
};

The bodies of these member functions are given by:

OneFactorPayoff::OneFactorPayoff(double strike,
double (*pay)(double K, double S))
{

K = strike;
payoffFN = pay;

}

double OneFactorPayoff::payoff(double S) const
{ // For a given spot price

return payoffFN(K, S); // Call function
}

How do we use this class? Well, we carry out the followings steps:

1. Write the payoff functions you would like to use.
2. Create an instance of OneFactorPayoff with the payoff function of your choice.
3. Test and use the payoff class.

An example of specific payoff functions is:

double CallPayoffFN(double K, double S)
{

if (S > K)
return (S - K);

return 0.0;
}
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double PutPayoffFN(double K, double S)
{

// max (K-S, 0)
if (K > S)

return (K - S);
return 0.0;

}

An example of the code is:

int main()
{

OneFactorPayoff pay1(20.0, CallPayoffFN);

cout << "Give a stock price (plain Call): ";
double S;
cin >> S;

cout << "Call Payoff is: " << pay1.payoff(S) << endl;

OneFactorPayoff pay2(20.0, PutPayoffFN);
cout << "Give a stock price (plain Put): ";
cin >> S;

cout << "Put Payoff is: " << pay2.payoff(S) << endl;

return 0;
}

This option can be quite effective; you do not have to create classes, just ‘flat’ C functions
that you use as function pointers in existing classes.

33.6 PAYOFF FUNCTIONS FOR MULTI-ASSET
OPTION PROBLEMS

We have created a C++ class hierarchy for two-dimensional payoff functions. The function-
ality is based on the theory in Chapter 24. The base class is:

class MultiAssetPayoffStrategy
{
public:

virtual double payoff(double S1, double S2) const = 0;
};

Here we see that there is no member data and only one pure virtual member function that
takes two input arguments. Specific payoff functionality is encapsulated in derived classes. We
have implemented most of the payoff functions from Chapter 24 in this way. We give the code
for exchange options, basket options and spread options:

class ExchangeStrategy : public MultiAssetPayoffStrategy
{
private:

// No member data
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public:
ExchangeStrategy() { }
double payoff(double S1, double S2) const
{

return max(S1-S2, 0.0);
}

};

class BasketStrategy : public MultiAssetPayoffStrategy
{ // 2-asset basket option payoff

private:
double K; // Strike
double w; // +1 call, -1 put
double w1, w2; // w1 + w2 = 1

public:
BasketStrategy(double strike, double cp,
double weight1, double weight2)
{

K = strike; w = cp; w1 = weight1; w2 = weight2;
}
double payoff(double S1, double S2) const
{

double sum = w1*S1 + w2*S2;
return max(w* (sum - K), 0.0);

}
};

class SpreadStrategy : public MultiAssetPayoffStrategy
{
private:

double K; // Strike
double w; // +1 call, -1 put
double a, b; // a > 0, b < 0

public:
SpreadStrategy(double cp, double strike = 0.0,
double A = 1.0, double B = -1.0)
{ K = strike; w = cp; a = A; b = B;}
double payoff(double S1, double S2) const
{

double sum = a*S1 + b*S2;
return max(w* (sum - K), 0.0);

}
};

Please see the code on the accompanying CD on how to integrate these functions with FDM
schemes.
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33.7 CAVEAT: NON-SMOOTH PAYOFF
AND CONVERGENCE DEGRADATION

The fact that the payoff function is not smooth at certain points has major consequences for
the accuracy of finite difference schemes that are not able to handle discontinuities. We give
some remarks on some popular schemes:� Explicit schemes are easily to implement, do not suffer from oscillation problems but are

only conditionally stable.� Implicit schemes are also oscillation-free, unconditionally stable but only first-order accu-
rate.� The Crank–Nicolson scheme is (theoretically) second-order accurate but it is well known
that it produce spurious oscillations and spikes near the strike price, barriers and monitoring
points.

What we would ideally like is an unconditionally stable, second-order scheme that is able
to produce good results even when the payoff function or its derivatives are discontinuous at
certain points. There are three main ploys for achieving this end. First, we can define ’hybrid’
schemes that combine the best of the above schemes. The second approach is to modify the
payoff function in some way so that it becomes smooth. The third option is to combine the
first two options. We discuss each of these options in turn.

A popular hybrid method is discussed in Rannacher (1984). This scheme uses fully implicit
Euler for the first few time steps and Crank–Nicolson after that. The scheme is stable, first-
order accurate and is oscillation-free. Another, less-well known but powerful scheme is to use
Richardson extrapolation in combination with implicit Euler (Gourlay, 1980). The resulting
scheme is stable, second-order accurate and again oscillation free.

We now discuss function smoothing. Some techniques are:� Averaging the initial condition� Projecting the initial condition onto a set of basis functions (Rannacher, 1984).

Let f = f (S) be the one-factor payoff function. Then the discrete averaging function is
defined as:

f j = 1

Sj+ 1
2
− Sj− 1

2

∫ S
j+ 1

2

S
j− 1

2

f (Sj − y) dy (33.1)

where Sj+ 1
2

= (Sj + Sj+1)/2.

The validity of this method was proved in Kreiss (1970) and Thomée (1974). We mention
that this method has also been applied to the binomial method in Heston (2000).

The projection method, on the other hand, uses some of the techniques that we introduce in
Appendix 2. We attempt to find an approximation F to the payoff f by describing it in terms
of piecewise polynomial hat functions:

F(x) =
N∑

j=1

c jϕ j (x) (33.2)

where c j = unknown coefficients
ϕ j = linear hat functions
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and we calculate the unknown function by minimising the functional∫
�

(F − f )2dx (33.3)

where � is the computational domain.
The objective is to calculate the unknown coefficients in (33.2) and they can be found as the

solution of the linear system:

AU = b (33.4)

where U = t (c1, . . . , cN )
A = (ai j )1≤i, j≤N , ai j ≡ (ϕi , ϕ j )
b = (b j )1≤ j≤N , b j ≡ (ϕ j , f )

and (., .) denotes the inner product as defined by ( f, g) = ∫
�

f (x)g(x) dx .
In general, it is possible to calculate the integrals analytically, but for more complex pay-

off functions we can use some kind of numerical integration scheme (as discussed in Ap-
pendix 1), for example, Simpson’s rule applied to the right-hand side of (33.4) in the case of
complex payoff functions.

Finally, we can combine smoothing and the Rannacher method to get a stable, second-order
accurate and oscillation-free finite difference scheme (Rannacher, 1984). It gives good results
for supershare binary call options (which behave as a discrete delta function near the strike
price) whose payoff is defined as follows:

V (t = T ) =
⎧⎨⎩ 0, S < K

1/d, K ≤ S ≤ K + d
0, S > K + d

(33.5)

We see in this case that there are discontinuities at the point S = K and S = K + d. In
general, we advise the use of Rannacher schemes instead of Crank–Nicolson.

33.8 SUMMARY AND CONCLUSIONS

We have constructed C++ class hierarchies for one-factor and two-factor payoff functions
based on the other chapters in this book. In particular, we have coded the payoff functions for
the multi-asset problems in Chapter 24.

A less well-documented problem is that standard and much-loved schemes (like Crank–
Nicolson) give low accuracy when the payoff function or its derivatives is discontinuous. To
this end, we discussed a number of schemes that do not have spurious oscillations or spikes.
For example, one good method is due to Rannacher (1984).
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Appendix 1
An Introduction to Integral and Partial

Integro-Differential Equations

A1.1 INTRODUCTION AND OBJECTIVES

This appendix is a self-contained introduction to a number of mathematical and numerical
techniques that we shall need when modelling certain kinds of derivative products. It provides
background information relating to the contents of Chapter 17. Although numerical integration
techniques are not used very much in conjunction with FDM we think it is important to give
a concise introduction to this topic.

In particular, we introduce the so-called partial integro-differential equations (PIDEs) that
arise in option pricing theory where the underlying asset is driven by a Levy process or by
some general time-inhomogeneous jump–diffusion process (Øksendal and Sulem, 2005). In
this case we recall the PIDE :

∂V
∂t

= 1
2σ 2S2 ∂2V

∂S2
+ (r − λK )S

∂V
∂S

− r V +
(

λ

∫ ∞

0
V (Sη)g(η) dη − λV

)
(A1.1)

where T − t = time to expiry

r = continously compounded risk free interest rate

g(η) = probability density function of the jump amplitude η

σ = constant volatility

K = expected relative jump size given by K = E(η − 1)

This equation is a modification of the original Black–Scholes equation and we see that it
contains an integral on the semi-infinite positive real line. This PIDE is found by application
of the generalised Ito formula to the following stochastic differential equation:

dS
S

= μ dt + σ dz + (η − 1) dq (A1.2)

where μ = drift rate

σ = volatility

dz = increment of a Gauss–Wiener process

dq = Poission process.

In general, we cannot hope to get a closed solution to the equation (A1.1) and we must then
resort to numerical methods. Equation (A1.1) is a combination of a convection–diffusion PDE
and an integral term. It will be fairly obvious that solving (A1.1) numerically will be somewhat
more difficult than solving one-factor Black–Scholes PDEs because we must approximate a
PDE and an integral equation simultaneously. Some of the challenges that spring to mind are:� We must come up with a scheme that models both the PDE term and integral term in (A1.1).� The integral is defined on a semi-infinite interval and we must thus truncate it.

375
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376 Appendix 1: An Introduction to Integral and Partial Integro-Differential Equations� The solution might be discontinuous at some points, at worst, or have large gradients, at
best. The solution may not exist in the classical, pointwise sense.� How can we construct economical and accurate schemes that approximate the solution of
(A1.1)?

Before we can embark on this problem we need to discuss a number of techniques that will
help us to find finite difference schemes that approximate the solution of equation (A1.1). To
this end, we introduce a number of topics:� A short history of integration and quadrature schemes for finding approximations to integrals.

This is standard numerical analysis and the information can be found in good numerical
analysis books (for example, Dahlquist, 1974; Conte and de Boor, 1980). We include a
discussion for completeness.� An introduction to integral equations in one dimension.� Numerically solving integral equations. We discuss a number of methods, including the
Galerkin method, numerical integration techniques and others.� A discussion of PIDEs in financial engineering, in particular for problems that are based on
exponential Levy and Variance Gamma processes. This is a new area of research.

In general, an understanding of integration theory is an asset because it is used in many
areas of quantative finance. We expect to find generalisation of (A1.1) in future applications,
for example two-dimensional cases (La Chioma, 2003; Carr, 2004, personal communication;
Øksendal, 2004).

A1.2 A SHORT INTRODUCTION TO INTEGRATION THEORY

Integrals and integration theory are used in many financial applications. To this end, we must
realise that there are different ways of defining the integral of a function. When integrating
in one dimension, for example, we partition an interval into smaller sub-intervals and then
approximate the function on each sub-interval in some way. Finally, by taking limits (for
example, letting the number of sub-intervals tend to infinity) we arrive at an approximation to
the integral. There are a number of approaches:� Riemann integral (Spiegel, 1969)� Riemann–Stieljtes integral (Rudin, 1964; Haaser and Sullivan, 1991)� Lebesgue integral (for a readable account see Spiegel, 1969; for a more advanced treatment

see Rudin, 1970)� Ito integral (Kloeden et al., 1995).

We now examine each of these approaches. We restrict our attention to real-valued functions
of a single real variable in this chapter:

y = f (x), x, y ε R1

Many of the results carry over to real-valued and complex-valued functions of several
variables, but a discussion of these topics is outside the scope of this book.
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A1.2.1 Riemann integration

This is the integral that is taught in introductory courses in calculus. Let y = f (x) be defined
and bounded on the closed interval [a, b]. We define a so-called partition of [a, b]. In order to
motivate the theory we need two definitions.

Definition A1.1. A real number u is called an upper bound of a set S of real numbers if for all
x in S we have x ≤ u. If an upper bound p can be found such that for all upper bounds u we
have p ≤ u, we say that p is the least upper bound (l.u.b.) or supremum (sup) of S. We write
this quantity as sup S.

Definition A1.2. A real number l is called a lower bound of a set S of real numbers if for all x
in S we have x ≥ l. If a lower bound p can be found such that for all lower bounds l we have
p ≥ l, we say that p is the greatest lower bound (g.l.b.) or infimum (inf) of S. We write this
quantity as inf S.

We now define the quantities:

M j = l.u.b. f (x) in [x j−1, x j ]

m j = g.l.b. f (x) in [x j−1, x j ]
(A1.3)

and then we form the sums:

S =
n∑

j=1

M j�x j (“upper sum”)

s =
n∑

j=1

m j�x j (“lower sum”) �x j = x j − x j−1

(A1.4)

By varying the partition we can obtain sets of values for S and s. We now define:

I = g.l.b. of values of S for all partitions

J = l.u.b. of values of s for all partitions
(A1.5)

These values always exist and are called the upper and lower Riemann integrals of f (x),
respectively. If I = J we say that f (x) is Riemann integrable on [a, b] and we denote this
common value by: ∫ b

a
f (x) dx

If these two values are different, we say that f (x) is not Riemann integrable in [a, b]. For
example, the function

f (x) =
{

1, x rational
0, x irrational

}
x ε [a, b]

is not Riemann integrable (see Spiegel, 1969). Another example of a function that is not
Riemann integrable is ∫ ∞

0

⏐⏐⏐⏐ sin x
x

⏐⏐⏐⏐ dx
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For a somewhat more intuitive approach to Riemann integration, it is possible to define the
Riemann integral as the limit of a sum. In this case we partition [a, b] as before but now we
define certain points in the interior of each sub-interval

x j−1 ≤ ξ j ≤ x j , j = 1, 2, . . . , n

and based on these points we form the sum

n∑
j=1

f (ξ j )�x j , �x j = x j − x j−1 (A1.6)

Let δ = max �x j , j = 1, . . . , n, then the Riemann integral is defined by the limit∫ b

a
f (x) dx = lim

n→∞
δ→0

n∑
j=1

f (ξ j )�x j (A1.7)

provided that the limit exists independently of the way that we choose the points of the
subdivision.

Formula (A1.7) will be the basis for a number of numerical integration schemes. In many
cases we assume the mesh size is a constant that we usually denote by h. We give some
examples of common schemes:

Rectangle rule: ξ j = x j−1+x j

2

Trapezoidal rule: ξ j = x j

Furthermore, the idea can be used to motivate stochastic integrals.

A1.2.2 Riemann–Stieltjes integration

We are now interested in an integration theory that can be used to treat both continuous and
discrete random variables. This is the Riemann–Stieltjes integral and it is particularly useful in
probability theory. It is a generalisation of the Riemann integral. In particular, we are interested
in defining the integral ∫ b

a
f (x) dα(x) (A1.8)

where α is a monotonically increasing function on the interval [a, b]. We assume that α(a) and
α(b) are finite. As before, we create a partition P of [a, b] and define the quantity

�α j = α(x j ) − α(x j−1)

We generalise equations (A1.4) by defining the following quantities:

U(P, f, α) =
n∑

j=1

M j�α j (‘upper sum’)

L(P, f, α) =
n∑

j=1

m j�α j (‘lower sum’)

(A1.9)

where M j and m j have been defined in (A1.3).
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We now define

I ≡ g.l.b. U(P, f, α)

J ≡ l.u.b. L(P, f, α)
(A1.10)

If I = J then we denote their common value by the term in expression (A1.8) and this is
then called the Riemann–Stieltjes integral of f with respect to α over the interval [a, b].

The Riemann–Stieltjes integral is used in probability theory, for example, when defining
expectations of random variables (Mikosch, 1998).

A1.2.3 Lebesgue integration

The Riemann integral has a number of shortcomings that we remedy by using the Lebesgue
integration technique. As we have already seen, the former method uses intervals and their
lengths while the Lebesgue method uses more general point sets and their measures.

In order to define what Lebesgue integration is, we must introduce a number of concepts:� Measurable sets� Measurable functions� The Lebesgue integral for bounded and unbounded measurable functions.

In rough terms we define measure as a generalisation of the concept of length. We extend
the concept to arbitrary sets on the real line and in this case we speak of the measure of a set.
We denote the measure of a set E by m(E) and we endow it with the following properties:

A1: m(E) is defined for each set E
A2: m(E) ≥ 0
A3: (Finite additivity.) If E = ∪n

j=1 E j , where the E j are mutually disjoint, then m(E) =∑n
j=1m(E j )

A4: (Denumerable additivity.) if E = ∪∞
j=1 E j , where the E j are mutually disjoint, then

m(E) = ∑∞
j=1m(E j ).

A5: (Monotonicity.) If E1 ⊂ E2, then m(E1) < m(E2)
A6: (Translation invariance.) If each x ε E is translated by equal distances in the same di-

rection on the real line, then the measure of the translated set is the same as that of
m(E)

A7: If E is an interval, then m(E) = L(E), the length of E .

The exterior or outer measure me of a set E has the following properties

B1: me(E) is defined for each set E
B2: me(E) ≥ 0
B3: me(∪∞

j=1 E j ) ≤ ∑∞
j=1me(E j ) whether the E j are disjoint or not

B4: Exterior measures are translation invariant (as in Axiom A6).

Definition A1.3. A set E is said to be measurable with respect to the outer measure me(E) if
for all sets T (the so-called test sets)

me(T ) = me(T ∩ E) + me(T ∩ Ẽ)

where Ẽ is the complement set of E

Another equivalent definition of set measurability is
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Definition A1.4. A set E is measurable if for all test sets T

me(T ) ≥ me(T ∩ E) + me(T ∩ Ẽ)

This inequality is often used to test if a set is measurable.

Definition A1.5. The Lebesgue exterior (outer) measure of a set E is

me(E) = g.l.b. L(K ) for all open sets K ⊃ E

Here we state that the open set K is expressed as a countable union of mutually disjoint open
intervals.

In other words, this measure is the greatest lower bound of the lengths of all open sets K
that contain E . In general, if a set is measurable in the sense of Definition A1.5 we then say
that it is Lebesgue measurable and we denote its measure as m(E), which is the same as its
outer measure.

We now introduce measurable functions. Let E be a measurable set and let f (x) be a real
valued function defined on E . We say that f (x) is Lebesgue measurable if for each real number
k the set of values x in E for which f (x) > k is measurable. If f (x) is measurable we then
call it a measurable function. Now, let f (x) be bounded and measurable on the interval [a, b].
Suppose that α and β are any two real numbers such that α < f (x) < β. We divide the range
[α, β] into n sub-intervals

α = y0 < y1 < · · · < yn−1 < yn = β

Let us define the following sets:

E j = {x : y j−1 < f (x) < y j }, j = 1, 2, . . . , n

Since f (x) is measurable we know that these sets are not only measurable but also disjoint.
Define

S =
n∑

j=1

y j m(E j )

s =
n∑

j=1

y j−1m(E j )

and define the quantities I and J as in equation (A1.5) applied to the current quantities S and
s. Then if I = J we say that f (x) is Lebesgue measurable on [a, b] and we denote the integral
as ∫ b

a
f (x) dx (A1.11)

and we call this the Lebesgue definite integral of f (x) on the interval [a, b]. If this integral
exists, we write ∫ b

a
f (x) dx < ∞ (A1.12)
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We now discuss the meaning of the Lebesgue integral for unbounded functions. Suppose for
the moment that f (x) is always non-negative, unbounded and measurable. Define the function

[ f (x)]p =
{

f (x), ∀x ε E such that f (x) ≤ p

p, ∀x ε E such that f (x) > p

where p is a natural number.
For each fixed p, [ f (x)]p is bounded and measurable and hence Lebesgue integrable. Now

we define the Lebesgue integral of f (x) in E as∫
E

f (x) dx = lim
p→∞

∫
E

[ f (x)]p dx (A1.13)

By definition, this limit is either bounded or infinite. In the former case we say that the
Lebesgue integral of f (x) exists, otherwise we say that it does not exist or is infinite.

Finally, we note that the Lebesgue integral can be applied to measurable functions on
unbounded sets or intervals, for example∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx (A1.14)

for either non-negative or non-positive functions.
For an arbitrary function f we now define the meaning of the integral

lim
b→∞

∫ b

a
f (x) dx

To this end, we define the integral of this function in terms of the Lebesque integral of its
positive ‘parts’ namely:∫ ∞

a
f (x) dx =

∫ ∞

a
f +(x) dx −

∫ ∞

a
f −(x) dx, f ≡ f + − f − (A1.15)

where

f +(x) = sup[0, f (x)] =
{

f (x), f (x) ≥ 0
0, otherwise

f −(x) = sup[0, − f (x)] =
{

0, f (x) ≥ 0
− f (x), f (x) < 0

Thus, the integral is expressed in terms of two simpler integrals.
An excellent introduction to integration theory is Spiegel (1969).

A1.3 NUMERICAL INTEGRATION

This section is a crash course in numerical integration. In general we cannot hope to evaluate
a given integral in closed form and we must resort to approximate methods. We do not discuss
all possibilities here but we develop just enough techniques to enable us to move on to the
numerical approximation of integral equations and partial integro-differential equations. For
more detailed discussion of numerical integration we refer the reader to Dahlquist (1974) and
Conte and de Boor (1980).
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Many of the techniques and methods for numerical integration can be derived from the
results in section A1.2. In general, a given numerical integration technique is similar to the
discrete sum in equation (A1.7). Let us take some examples based on this idea. Using the usual
notation for the partition of the interval [a, b] as before, we propose a numerical integration
scheme namely the Rectangle rule is given by:∫ b

a
f (x) dx ≈ h

n∑
j=1

f j− 1
2
, h ≡ b − a

n

f j− 1
2

≡ f (
x j−1 + x j

2
), j = 1, . . . , n

(A1.16)

This is a so-called composite rule because we apply a certain formula on each sub-interval
of [a, b]. We can see that this formula is a special case of equation (A1.7) with a constant mesh
size h and the meshpoints ξ j chosen appropriately, in this case by setting

h = �x j ∀ j = 1, . . . , n and ξ j = 1
2 (x j−1 + x j )

Another option is to take the values of the function at the mesh points and then take the
average. This is the so-called Trapezoidal rule. In its ‘basic’ or non-composite form it is given by∫ b

a
f (x) dx ≈ h

2
( f (a) + f (b)) (A1.17)

and in composite form as∫ b

a
f (x) dx ≈ h

2
f0 + h

n−1∑
j=1

f j + h
2

fn,

f j ≡ f (x j ), j = 0, . . . , n, h = (b − a)/n

(A1.18)

A popular method is Simpson’s rule:∫ b

a
f (x) dx ≈ h

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
(A1.19)

and its composite form is∫ b

a
f (x) dx ≈ h

6

[
f0 + fn + 2

n−1∑
j=1

f j + 4
n∑

j=1

f j− 1
2

]
(A1.20)

Having introduced a number of numerical integration rules, we must ask ourselves the
following questions:� For which classes of functions are these methods suitable?� Given a mesh size h, what is the accuracy of the approximation?� Can we devise adaptive numerical integration schemes? That is, given a desired tolerance

or accuracy, can we devise a scheme that approximates the integral to within that tolerance?

We discuss the first two topics now. In general, accuracy is proved by using Taylor expansions
and using the concept of truncation or discretisation errors. Define

I ( f ) =exact integral of f on [a, b]
I h( f ) = some numerical integral rule that approximates I ( f )
Eh( f ) = I ( f ) − I h( f ) , the so-called trunction error when h = b − a.
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Then we wish to find bounds on the truncation error. We give some estimates for some of
the above schemes, for example

Rectangle rule: Eh( f ) = f ′(η)(b − a)2

2
, η ε (a, b)

Trapezoidal rule: Eh( f ) = − f ′′(η)
(b − a)3

12
, η ε (a, b)

(A1.21)

These are known as local truncation errors. In general, the interval [a, b] will be a small
sub-interval of length h = b − a. Then the global truncation error is one power of h less than
the local truncation error. For example, the Trapezoidal rule is locally third-order accurate but
globally second-order accurate.

The above rules assume that the mesh size h is known. In some cases we may wish to
automatically select the mesh size. To this end, we can apply Richardson extrapolation to the
Trapezoidal rule (for example). We begin with a fairly large mesh size and then we halve
the mesh size and use extrapolation until two values agree to within a certain tolerance. This
process is called Romberg integration and it can be implemented as a binomial tree, a data
structure that is used in option pricing. For more information, see Dahlquist (1974) and Stoer
and Bulirsch (1980).

A1.3.1 Integrating badly behaved functions

In the previous section we implicitly assumed that the function to be integrated was smooth.
In fact, the truncation error in (A1.21) is expressed in terms of the derivatives of f at certain
points. This may give problems if f or its derivatives are discontinuous (or don’t even exist
in the classical sense) at certain points in [a, b]. We then speak of an improper integral, in
particular the integrand f can possess a number of properties that compromise the effectiveness
of standard numerical integration routines (see Press et al., 2002, p. 146). These problems
are:

1. The integrand f has an integrable singularity at a known or unknown point or points in the
open interval (a, b)

2. The upper limit is b = ∞ and/or the lower limit a = −∞
3. f (x) has an integrable singularity at either x = a or x = b (or both)
4. f (x) tends to a finite limit at x = a or at x = b but it cannot be evaluated right on one of

these end-points (for example, f (x) = sin x/x when x = 0)

A thorough classification of improper integrals is given in Widder (1989), ch. 10.
Some of these scenarios occur in financial engineering applications and in particular we have

to deal with them when we approximate PIDEs using finite difference schemes. The above
numerical integration routines do not always work and we must resort to mesh-refinement as
discussed in Press et al. (2002). A discussion of this topic is outside the scope of this chapter;
however, we do propose a numerical integration scheme (that we call the Tanh rule) that the
author discovered by chance (serendipity) when working with finite difference schemes for
convection–diffusion schemes (see Duffy, 1980). We have carried out extensive numerical tests
in one and two dimensions and have found the scheme to be very robust. In particular, the
scheme is able to handle the above four scenarios with ease. The basic rule in one and two
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dimensions is given by ∫ b

a
f (x) dx ≈ 2 tanh

[
h
2

f
(

a + b
2

)]
(A1.22a)

and ∫ d

c

∫ b

a
f (x, y) dx dy ≈ 4 tanh

[
hk
4

f (m1, m2)

]
(A1.22b)

with h = b − a
k = d − c

m1 = 1
2 (a + b)

m2 = 1
2 (c + d)

The extended version for the Tanh rule in one and two dimensions is given by

Qh( f ) ≡ 2
n∑

j=1

tanh

[
h
2

f (x j− 1
2
)

]
(A1.23a)

and

Qh,k( f ) ≡ 4
n∑

j=1

m∑
k=1

tanh

[
hk
4

f (x j− 1
2
, yk− 1

2
)

]
(A1.23b)

where the intervals (a, b) and (c, d) are divided into n and m equal sub-intervals, respectively.
Scheme (A1.22) is ‘singularity-insensitive’ and we can use it with impunity without having

to manage singularities explicitly.
There is no advantage using this method over standard integration schemes for well-behaved

functions but for functions with singularities we do notice a certain robustness. The method
is first-order accurate O(h). Some of the ‘nasty’ functions on the interval (0, 1) that we have
tested are:

x
ex − 1

,
log x
1 − x

,
log x

1 − x2
,

1

1 + x
,

log(1 + x)

x
,

xb − xa

log x
(A1.24)

Some examples of the extended two-dimensional Tanh rule on the square (−1, 1) × (−1, 1)
are:

1

1 − xy
1

r
(A1.25)

where r =
√

x2 + y2.
We now finish this section by discussing an adaptive form of the Tanh rule in one dimension.

We know that (by numerical validation)

|Qh( f ) − I ( f )| ≤ Mh (A1.26)

where I ( f ) ≡ ∫ b
a f (x) dx and constant M is independent of h.

We apply the Tanh rule on meshes of size h and h/2, then calculate the quantity

Rh/2( f ) = 2Qh/2( f ) − Qh( f ) (A1.27)

In other words, we apply scheme (A1.23) on two consecutive meshes as it were.
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This quantity Rh/2( f ), as defined in (A1.27), will then be a second-order approximation to
the integral. This is easy to prove and we already have discussed this topic in Part I. Defining
the constant that is called the order of convergence p by the expression

p = log(eh/eh/2)

log 2

and the error term by

eh = |Qh( f ) − I ( f )|
we then see from experiments that p = 1, thus confirming the first-order property of the rule.

All this leads us to an algorithm for the adaptive Tanh rule: assume that we want our rule to
be accurate to a given tolerance TOL. Then the algorithm goes as follows:

Set h := (b − a)/4;
Iter := 0;

Repeat:

diff = |Qh( f ) − Qh/2( f )|
iter = iter +1
h := h/2

Until (diff < TOL)

A1.3.2 Integrals on infinite intervals

Integrals on infinite and semi-infinite intervals occur in many practical problems. For example,
many of the PIDEs that model contingent claims using Levy processes lead to such integrals
(see Øksendal and Sulem, 2005). Thus, we need to devise accurate and robust schemes for
these cases. Let us take an example ∫ ∞

−∞
f (x) dx

We assume that f (x) is small enough outside some range R > 0. Then we truncate the
above integral to one of the form ∫ R

−R
f (x) dx

and then apply our favourite rule to this latter integral. A good example is the Gaussian function∫ ∞

−∞
e−x2

dx = √
π = 1.772454

Setting R = 4 and using the Trapezoidal rule gives∫ 4

−4
e−x2

dx ≈
{

1.772636 (h = 1)

1.772453 (h = 0.5)

These are encouraging results. Thus, for functions that decay fast enough we can achieve
economical schemes for integrals on infinite intervals.
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A1.4 AN INTRODUCTION TO INTEGRAL EQUATIONS

In one sense an integral equation is the mirror image of a differential equation. Differential
equations have been studied extensively for the past 200 years while integral equations have
received somewhat less attention during that period. However, integral equations are interesting
in their own right and are beginning to surface in the financial engineering literature (Øksendal
and Sulem, 2005).

We begin by taking an example of an integral equation. Consider the initial value problem
(IVP)

u′ = f (x, u), 0 < x < 1

u(0) = A
(A1.28)

By integrating (A1.28) between 0 and some specific value t we get the integral equation

u(t) =
∫ t

0
f (x, u(x)) dx + A

This equation is a simple example of a nonlinear Volterra equation of the second kind. In
general, the function u = u(x) is unknown. A more general form is given by

u(t) = λ

∫ t

0
f (t, x, u(x)) dx + g(t)

where λ is some parameter that may or may not be known.
It can be shown that this latter problem has a unique solution under certain conditions, the

main ones being that some terms in the above equation satisfy a Lipschitz condition, namely

|g(t1) − g(t2)| ≤ L1|t1 − t2|
and

| f (t, x, v1) − f (t, x, v2)| ≤ L2|v1 − v2|
where L1 and L2 are two constants and in this case we see the close relationship between
integral equations and two-point boundary value problems. Another example of an integral
equation is taken from Keller (1992). To this end, let us examine the two-point boundary value
problem in self-adjoint form

Lu(x) ≡ [p(x)u′(x)]′ − q(x)u(x) = f (x), a < x < b

u(a) = u(b) = 0
(A1.29)

where

p(x) > 0, q(x) ≥ 0

The Green’s function is determined by the differential operator L and the boundary condi-
tions in problem (A1.29). Then the solution of (A1.29) is given by

u(x) = −
∫ b

a
g(x, ξ ) f (ξ ) dξ (A1.30)

where g(x, ξ ) is the Green’s function, as already discussed in Chapter 3.
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Let us take a specific example of (A1.30). To this end, consider the nonlinear problem:

L0u ≡ u′′ = f (x, u), u(a) = u(b) = 0 (A1.31)

where

g0(x, ξ ) =
{

x(1 − ξ ), x < ξ

(1 − x)ξ, x > ξ

Then the solution of (A1.31) is given by

u(x) = −
∫ 1

0
g0(x, ξ ) f (ξ, u(ξ )) dξ (A1.32)

This is of course a nonlinear equation in u and we must resort to numerical methods to solve
it. What you gain on the swings, you lose on the roundabouts! Finally, the nonlinear problem

Lu = f (x, u, u′), a < x < b

u(a) = u(b) = 0
(A1.33)

has the solution

u(x) = −
∫ b

a
g(x, ξ ) f (ξ, u(ξ ), u′(ξ )) dξ (A1.34)

and we thus see that this is also a nonlinear equation. We discuss nonlinear integral equations
shortly. Equations similar to (A1.34) occur in financial engineering applications, for example
option models containing jumps.

For a good introduction to the numerical solution of integral equations, see Keller (1992).

A1.4.1 Categories of linear integral equation

We now categorise linear and nonlinear equations. We first discuss linear equations. The two
main categories are named after Volterra and Fredholm, the mathematicians who studied these
equations. Here follow the main categories (see Golberg, 1979)

Fredholm (second kind) : u(t) = g(t) +
∫ b

a
K (t, s)u(s) ds (A1.35a)

Fredholm (first kind) :
∫ b

a
K (t, s)u(s) ds = g(t) (A1.35b)

Wiener–Hopf : u(t) = g(t) +
∫ ∞

0
K (t − s)u(s) ds (A1.35c)

Volterra (second kind) : u(t) = g(t) +
∫ t

a
K (t, s)u(s) ds (A1.35d)

Volterra (first kind) :
∫ t

0
K (t, s)u(s) ds = g(t) (A1.35e)

Integral equations are closely related to integral transforms, some of which we now sum-
marise (see Zemanian, 1987).
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Two-sided Laplace transform:

F(s) =
∫ ∞

−∞
f (t)e−st dt (A1.36a)

Weierstrass transform:

F(s) = 1√
4π

∫ ∞

−∞
f (t)exp

[
− (s − t)2

4

]
dt (A1.36b)

Convolution transform:

F(s) =
∫ ∞

−∞
f (t)G(s − t) dt (A1.36c)

where G is the kernel function
These kinds of transforms are commonly seen in the quantitative finance literature.

A1.4.2 Categories of nonlinear integral equations

We finally give some examples of nonlinear integral equations:

Urysohn (second kind): u(t) = g(t) +
∫ b

a
F(t, s, u(s)) ds (A1.37a)

Urysohn (first kind):
∫ b

a
F(t, s, u(s)) ds = g(t) (A1.37b)

Urysohn Volterra: u(t) = g(t) +
∫ t

a
F(t, s, u(s)) ds (A1.37c)

In general, we must provide rigorous proofs for the existence and uniqueness of the solutions
of both linear and nonlinear integral equations, but such a topic is outside the scope of this
book. For more information, please consult Golberg (1979) or Tricomi (1957); the interplay
between differential and integral equations is discussed in Yosida (1991) and a number of
mathematical results are proved there. Existence and uniqueness theorems can be proved by
the theory called functional analysis.

A1.5 NUMERICAL APPROXIMATION
OF INTEGRAL EQUATIONS

We now give an introduction to the numerical approximation of integral equations and we
concentrate on linear Fredholm equations of the second kind, because these are found in
financial engineering applications at the moment of writing.

Let us again consider the Fredholm equation of the second kind

u(x) −
∫ b

a
K (x, y)u(y) dy = f (x) (A1.38)

In this case we call the function K (x, y) the kernel of the integral equation and in many
cases we can assume that it is symmetric, that is K (x, y) = K (y, x) (see Tricomi, 1957). We
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also assume that K is smooth. We can classify numerical methods for equation (A1.38) into
four broad categories (Golberg, 1979):� Analytical and semi-analytical methods� Kernel approximation methods� Projection methods (for example, Galerkin methods)� Quadrature methods.

We give a short overview of each of these techniques but our main interest will centre on
quadrature methods because of their ease of implementation.

Each of these methods is used in quantitative finance.

A1.5.1 Analytical and semi-analytical methods

In general, we cannot expect to find an analytical solution to an integral equation. We might
get lucky sometimes. For example, the Abel equation∫ x

0

u(y)√
x − y

dy = f (x) (A1.39)

has the amazingly simple solution (Tricomi, 1957; Cochran, 1972)

u(x) = 1

π

d

dx

∫ x

0

f (y)√
x − y

dy (A1.40)

Failing to find an analytical solution, the next best thing is possibly to find a semi-analytical
solution. There are a number of possibilities such as iteration, numerical inversion of transforms
and Wiener–Hopf factorisation.

A1.5.2 Kernel approximation methods

In this case we construct a sequence of kernels that converge to the given kernel K (x, y) in
some topology. To this end, we define a variant of equation (A1.38) as follows:

un(x) −
∫ b

a
Kn(x, y)un(y) dy = f (x), n ≥ 1 (A1.41)

where Kn = approximating kernel, n = 1, 2, . . .

un = approximation to u.

In general, we usually only discuss degenerate kernels – that is, those that are cross-products
of terms in a single variable:

Kn(x, y) =
n∑

j=1

an, j (x)bn, j (y) (A1.42)

In this case it is then possible to write equation (A1.41) as a linear systems of equations (see
Golberg, 1979).
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A1.5.3 Projection methods (Galerkin methods)

These methods include collocation, the method of moments, the Galerkin method and the
method of least squares. They can all be posed in a functional analytic form. This demands
some knowledge of functional analysis, in particular Banach spaces and linear mappings
between Banach spaces (see Adams, 1975; Haaser and Sullivan, 1991). Let X be a Banach
space and define the operator A : X ′ → X (where X ′ is the dual space of X ). In general
we assume that the kernel K is integrable. Then, we can write equation (A1.38) in operator
form as

(I − A)U = F (A1.43)

where

Au =
∫ b

a
K (x, y)u(y) dy (A1.44)

Having done this we can now approximate X by a sequence of finite-dimensional subpaces
(for example, polynomials or piecewise polynomials). A definitive discussion of this approach
can be found in Ikebe (1972).

A1.5.4 Quadrature methods

This is probably the most well-known numerical technique (Press et al., 2002) and it seems to
be the approach taken in most articles on pricing applications with jumps (Cont and Voltchkova,
2003). In short, we apply some quadrature rule to the integral in equation (A1.38). For example,
in Cont and Voltchkova the authors apply the Trapezoidal rule while in this section we use
Simpson’s rule. The resulting method in this context is then usually called the Nyström method,
and is as follows:� Define the following mesh points and values for even values of n

t j,n ≡ a + jh, j = 0, . . . , n

ω0,n = ωn,n = h
3

ω2 j−1,n = 4h
3

, ω2 j,n = 2h
3

,

where h = (b − n)/n.� Apply Simpson’s rule to the integral term for any point x in the interval (a, b):

un(x) −
n∑

j=0

ω j,n K (x, t j,n)un(y j,n) = f (x), a ≤ x ≤ b

This is a kind of semi-discrete scheme because the integral term in (A1.38) has been replaced
by a discrete equivalent but the variable x is still continuous.� We now choose special mesh points for x , namely the mesh points. Set

x = ti,n , i = 0, . . . , n

then

un(ti,n) −
n∑

j=0

ω j,n K (ti,n, t j,n)un(t j,n) = f (ti,n)
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This last set of equations is equivalent to the matrix system

(I − A)U = F (A1.45)

where

A = (ω j,n K (ti,n, t j,n)), 1 ≤ i, j ≤ n

and U = t (u0(t0,n), . . . , un(tn,n))� The next step is to solve (A1.45) by a matrix solver. The matrix A is a full matrix in general
and this can be a disadvantage for time-dependent financial engineering applications, and in
these cases we may need to resort to iterative methods.

There is a wealth of information pertaining to existence and uniqueness results for the
solution of system (A1.45). See, for example, Cochran (1972) and Golub and Van Loan (1996).

A1.5.5 Integral equations with singular kernels

We have now discussed quadrature rules but it is known that accuracy problems arise when the
kernel K (x, y) has singularities. In Press et al. (2002) the authors have a number of suggestions
for coping with these singularities:� Remove the singularity by a change of variable.� Factoring: set K (x, y) = w(x)L(x, y), where w(x) is a singular function and L(x, y) is

smooth. We then use a Gaussian quadrature formula based on w(x) as a weight. However,
the actual process can be quite cumbersome.� Use ‘special’ quadrature formulae, for example using polynomials or splines.� A special case of a singularity is when the interval of integration is infinite or semi-infinite.
In this case we truncate the interval (the authors claim that this should be done only as a last
resort, but no evidence is given as to why this approach is not acceptable). In many cases
the kernel approaches zero very quickly (as in financial engineering applications).� A nasty problem is when the kernel K (x, y) is singular along the line x = y. Then the popular
Nyström method fails and in this case we must subtract the singularity. We experience this
when modelling with Levy processes.

Examples of the above-mentioned kernels can be found in the integral equation (see Yosida,
1991)

K (x, y) = p(x, y)

(x − y)α

where 0 < α < 1 and p(x, y) is a continuous function. Thus, K (x, y) is the product of a smooth
and a singular function.

Another example is the Lalesco–Picard equation (Tricomi, 1957)

u(x) − λ

∫ ∞

−∞
e−|x−y| u(y) dy = f (x)

In this case the kernel has an infinite norm.
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Another example of a singular kernel arises when we model Carr–Geman–Madon–Yor
(CGMY) processes

K (x) =

⎧⎪⎪⎨⎪⎪⎩
C

exp(−G|x |)
|x |1+α

, x < 0

C
exp(−M |x |)

|x |1+α
, x > 0

for constant C > 0, G ≥ 0, M ≥ 0, α < 2.

We must take singular kernels into account because they arise in financial engineering
applications (see Cont and Voltchkova, 2003). In particular, we must be able to accommodate
problems with infinite activity and this requirement leads to the existence of singular kernels.
For example, we may get a singularity at zero of the integral kernel. In these cases standard
numerical integration techniques and FFT, for example, may not always be applicable.

Finally, we could modify the Nyström method by using the Tanh rule instead of Simpson’s
rule to produce the following semi-discrete scheme:

un(x) − 2
n∑

j=0

tanh

[
h
2

K (x, t j+ 1
2
)n

]
un(t j,n) = f (x), a ≤ x ≤ b (A1.46)

A1.6 SUMMARY AND CONCLUSIONS

We have given an introduction to integral equations, some of their applications and how to
approximate their solutions using numerical quadrature rules. Furthermore, we gave a crash
course on numerical integration of functions of one variable. The theory in this chapter was
used in Chapter 17 where we introduced partial integro-differential equations (PIDEs) in option
pricing problems in the presence of jumps.

In our opinion, this appendix should be useful to readers because it brings a number of
mathematical and numerical techniques together in one place. It can be used as a quick reference
guide and ‘pointer’ to more detailed texts.
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Appendix 2
An Introduction to the Finite

Element Method

A2.1 INTRODUCTION AND OBJECTIVES

In this appendix we give an introduction to the finite element method (FEM). Our main goal
is to discuss enough material to help the reader with more advanced texts. The finite element
method has its roots in papers by Richard Courant (Courant, 1943) and John Lighton Synge
(see Synge, 1952 and 1957). The 1960’s were the golden years of FEM. Engineers started
to apply the method to a wide range of applications in structural and civil engineering and
fluid dynamics (Hughes, 2000). It was in the late 1960’s that mathematicians started to take
an interest in the field and they developed a rigorous foundation for future study and there has
since been a rapid growth in the number of mathematics books on the subject. For example,
when the current author embarked on FEM very few books was available (Strang and Fix,
1973, was the only one I could find at the time), but by 1991 more than 400 books on FEM
were in existence.

FEM was first applied to equilibrium and time-independent problems, and was later applied
to time-dependent problems. More recently, the method is becoming popular in financial
engineering applications, as witnessed by the number of articles being published on the subject
and the arrival of monographs (see, for example, Topper, 2005). In particular, the success or
failure of FEM for time-dependent problems will probably depend on a number of technical
and organisational factors, such as:� Is it a suitable technology for financial engineering applications?� Does it produce accurate results?� How much effort (human, machine) is needed to achieve a given level of accuracy?� How long does it take to understand and to apply FEM to financial engineering prob-

lems?� Is the code for FEM applications stable, easy to maintain and to adapt?

We discuss a number of problems and we model them using FEM:� Using FEM for a simple scalar initial value problem in one dimension.� One-dimensional heat equation: This problem has two independent variables (namely time
t and space x). We discretise in two steps: first, in the x direction using ‘hat’ functions
and the result is a system of ordinary differential equations in t . We subsequently approxi-
mate this system using Crank–Nicolson, Runge–Kutta or predictor–corrector methods, for
example.� Simple wave equation: This is in fact a convection (advection) equation, an essential compo-
nent in the Back–Scholes equation. Again, we discretise first in x , then in t . Here we devote
some attention to proving that the schemes are stable and convergent (based on Duffy,
1977).

393
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For a treatment of the finite element method in option pricing applications, see Topper (2005),
and it is our hope that this appendix will help you when embarking on more advanced FEM
literature.

A2.2 AN INITIAL VALUE PROBLEM

We take a simple problem to motivate the finite element method, namely a scalar, linear first-
order initial value problem (IVP) on the unit interval I = (0, 1):

u′ + au = f (x), x ε (0, T )

u(0) = 0 (A2.1)

where a(x) ≥ α > 0 ∀ x ε [0, T ].
As the solution of this problem is known, it provides a good test case (note that we have

also discussed this problem from the viewpoint of FDM in Duffy, 2004). We note that (A2.1)
is in so-called differential form. The essence of FEM, on the other hand, is to transform this
problem into one that is in variational or integral form. To this end, we multiply each side of
the differential equation in (A2.1) by some unspecified function v. For the moment we accept
this at face value.

Before we map the above system to variational form, we must digress to give an introduction
to a certain class of functions. We shall soon return to problem (A2.1).

Central to the theory of finite elements is the idea of integrability of functions and of their
derivatives. Let f be a measurable real-valued function on I = (a, b) , and let 0 < p < ∞ be
a real number. We define the quantity

‖ f ‖p :=
(∫

I
| f |p dx

)1/p

(A2.2)

and we further denote L p(I ) to be set of those functions f for which

‖ f ‖p < ∞
In mathematical terms, ‖ f ‖p is called the L p norm of f .

Definition. A norm on a vector space X is a real-valued mapping f : X → R such that

(i) f (x) ≥ 0, x ε X with equality if and only if x = 0
(ii) f (cx) = |c| f (x), for all x εX , for all c ε R

(iii) f (x + y) ≤ f (x) + f (y), for all x, y ε R.

A normed space is a vector-space X that is provided with a norm.

The case of interest for us in definition (A2.2) is when p = 2. In this case we speak of functions
being ‘square-integrable’. It is also possible to define a class of functions whose derivatives
are also square-integrable. We define the quantity

‖ f ‖1,2 :=
[
‖ f ‖2

2 +
∥∥∥∥d f

dx

∥∥∥∥2

2

] 1
2

We define H 1(I ) to be set of those functions that have square-integrable first derivatives and
for which ‖ f ‖1,2 < ∞. Usually we write ‖ f ‖ ≡ ‖ f ‖2 and ‖ f ‖1 = ‖ f ‖1,2 when no confusion
can occur.
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We now define the inner product of two square-integrable functions f and g by

( f, g) =
∫ 1

0

f (x) g (x) dx

We now return to problem (A2.1) and define the weak solution for it. Define the space

V = H 1(I ) ∩ {v : v(0) = 0}
If we multiply each side of equation (A2.1) by a function vεV , we can then define the weak

approximation to (A2.1) as follows.
Find uεV such that (

u′ + au, v
) = ( f, v) for all v ε V (A2.3)

We can show that problem (A2.3) has a unique solution if the data is smooth enough, but we
do no do so here. We show uniqueness. To this end, let u1 and u2 be two solutions to (A2.3),
and set e = u1 − u2. Then, from (A2.3) we have(

e′, v
) + (ae, v) = 0, v ε V

In particular, setting v = e, we get

1
2

[
e2(1) − e2(0)

] + α‖e‖2 ≤ (e′, e) + (ae, e) = 0

from which we conclude that ‖e‖ = 0. Since this is a norm we conclude that u1 = u2.
Equation (A2.3) will serve as the basis for the finite element method, in which case the

infinite-dimensional space V will be replaced by a finite-dimensional sub-space.
To this end, suppose that N is a positive integer and that I = (0, 1) is divided into sub-

intervals I j = (
x j , x j−1

)
where the mesh δ is defined by

δ : 0 = x0 < x1 < · · · < xN = 1

with h j = x j − x j−1, h = max h j , j = 1, . . . , N
Let k be an non-negative integer. We define the space Pk(E) (where E is a subset of the real

line ) to be the space of those functions which are polynomials of degree less than or equal to
k on E . Moreover, let C0(I ) be the space of continuous functions on the interval I . Finally, we
define the space

V h
k (δ) = {v ε Co(I ) : vI j εPk(I j ), j = 1, . . . , N , v(0) = 0}

This is a finite-dimensional sub-space of the infinite-dimensional space V defined earlier,
called the space of piecewise polynomials of degree k.

In this section we shall deal exclusively with the case k = 1, in which we call V h
1 (δ) the

space of piecewise linear polynomials. For convenience, we set V h ≡ V h
1 .

Suppose that ϕ1, . . . , ϕm are elements of V h , and let y = c1ϕ1 + · · · + cmϕm , where
c j ε R, j = 1, . . . , m. The vector y is said to be a linear combination of the elements
ϕ1, . . . , ϕm . The elements ϕ1, . . . , ϕm are said to be linearly independent if the identity
c1ϕ1 + · · · + cmϕm = 0 implies that c1 = c2 = · · · = cm = 0.

The maximum number of linearly independent vectors in V h is called the dimension of V h

and such vectors span V h . Thus every element wh ε V h can be written as a combination

wh = c1ϕ1 + · · · + cmϕm
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Theorem A2.1. The maximum number of linearly independent elements for V h
k (written as

dimV h
k ) is Nk. Thus,

dimV h
k = Nk

Proof. We evaluate the number of free terms that need to be determined for an arbitrary
wh ε V h

k . Now, in each subinterval I j , wh can be written as

wh =
k∑

j=0

c j x
j

so that there are (k + 1) parameters to be evaluated on each sub-interval. Since
wh ε C0(I ), N − 1 continuity constraints are introduced at the interior nodes of the mesh.
Furthermore, wh(0) = 0, which introduces one more constraint. Hence the total numer of free
parameters is

N (k + 1) − (N − 1) − 1 = Nk.

Construction of basis functions in the case k = 1 (these are the piecewise linear ’hat’ functions,
see Strang and Fix, 1973, or Huyakorn and Pinder, 1983).

The basis functions are defined by

ϕ j (xk) = δ jk =
{

1, j = k
0, j �= k

It is easily verified that ϕ j (x) ≡ 0 except in case of the following sub-intervals:

ϕ j (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − x j−1

h j
, x j−1 ≤ x < x j

x j+1 − x

h j+1

, x j ≤ x ≤ x j + 1

j = 1, . . . , N − 1

When j = N we have

ϕN (x) = x − xN−1

hN
if xN−1 ≤ x ≤ xN ,

ϕN (x) ≡ 0 otherwise

The finite-dimensional analogue of (A2.3) is given by:

Find uh ε V h such that (
duh

dx
, v

)
+ (

auh, v
) = ( f, v) ∀ v ε V h (A2.4)

Theorem A2.2. Problem (A2.4) has a unique solution.

Proof. Since the problem is finite-dimensional, uniqueness implies existence (Kreider et al.,
1966). Set v = uh in (A2.4). We then get(

duh

dx
, uh

)
+ (

auh, uh
) = (

f, uh
)

or

1
2
uh2

(1) + α‖uh‖2 ≤ (
f, uh

) ≤ ‖ f ‖‖uh‖ (A2.5)
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where we have used Hölder’s inequality (Adams, 1975) on the right-hand side of (A2.5). Hence
‖uh‖ ≤ M‖ f ‖, where M is some constant that is independent of h. Thus, problem (A2.4) has
a unique solution.

We now construct the difference schemes using the basis functions in the following repre-
sentation for uh :

uh(x) =
N∑

j=1

u jϕ j (x)

To this end, we write (A2.4) in the equivalent form by inserting the above representation into
it. (we assume that the coefficient a in equation (A2.1) is constant):(

duh

dx
, ϕk

)
+ (

auh, ϕk
) = ( f, ϕk) , k = 1, . . . , N

(
ϕ′

j ≡ dϕ j

dx
, j = 1, . . . , N

)
Hence

N∑
j=1

u j
(
ϕ′

j , ϕk
) + a

N∑
j=1

u j
(
ϕ j , ϕk

) = ( f, ϕk) , k = 1, . . . , N (A2.6)

Noting that
(
ϕ j , ϕk

) = 0 for | j − k| ≥ 2, we get from equation (A2.6)

uk−1(ϕ′
k−1, ϕk) + uk(ϕ′

k, ϕk) + uk+1(ϕ′
k+1, ϕk)

+ a[uk−1(ϕk−1, ϕk) + uk(ϕk, ϕk) + uk+1(ϕk+1, ϕk)] = ( f, ϕk), k = 1, . . . , N

Some basic arithmetic shows that:(
ϕ′

k±1, ϕk
) = ± 1

2
,

(
ϕ′

k, ϕk
) = 0

(ϕk−1, ϕk) = 1
6
hk, (ϕk, ϕk) = 1

3
(hk + hk+1) , 1 ≤ k ≤ N − 1

(ϕk+1, ϕk) = 1
6
hk+1(

ϕ′
N−1, ϕN

) = − 1
2
, (ϕN−1, ϕN ) = 1

6
hN(

ϕ′
N , ϕN

) = 1
2
, (ϕN , ϕN ) = 1

3
hN

Finally the set of equations (A2.6) becomes

akuk−1 + bkuk + ckuk+1 = ( f, ϕk) , 1 ≤ k ≤ N − 1

and

aN uN−1 + bN uN = ( f, ϕN )

where ak = − 1
2

+ ahk/6, 1 ≤ k ≤ N

bk = a (hk + hk+1) /3, 1 ≤ k ≤ N − 1

ck = 1
2

+ [ah(k + 1)] /6, 1 ≤ k ≤ N − 1

bN = 1
2

+ ahN /3



0470858826app2 JWBK073-Duffy February 2, 2006 12:54 Char Count= 0

398 Appendix 2: An Introduction to the Finite Element Method

The system can be solved using LU decomposition (Duffy, 2004) Having found the
vector t (u1, . . . , uN ) it is now possible to find the solution of (A2.4) at any point
x̂ ε I = [0, 1]. This value is given by:

uh (x̂) =
N∑

j=1

u jϕ j (x̂)

A2.2.1 Remarks and special cases

1. In practice the integrals ( f, ϕk) , k = 1, . . . , N would be approximated by some numerical
integration scheme. For example, choosing the mid-point rule, we get

fk ≡ ( f, ϕk) =
∫ xk+1

xk−1

f (x)ϕk(x) dx

=
∫ xk

xx−1

f (x)ϕk(x) dx +
∫ xk+1

xk

f (x)ϕk(x) dx

∼= 1
2

[
hk f

(
xk− 1

2

)
+ hk+1 f

(
xk+ 1

2

)]
2. It is interesting to see what the corresponding difference scheme is in the case where the

mesh is uniform, i.e. h j = constant ≡ h, j = 1, . . . , N .

After some rearranging, we get the scheme

uk+1 − uk−1

2h
+ a

6
(uk−1 + 4uk + uk+1) = f (xk)

which is the discrete analogue of the equation u′ + au = f .
Of course, this scheme is a sledge-hammer but it does show the essence of FEM.

A2.3 THE ONE-DIMENSIONAL HEAT EQUATION

There is an enormous literature on the application of the finite element method to parabolic
equations in one and several space dimensions. It is not possible to deal with all the different
approaches here but we shall take the simple one-dimensional heat equation (Strang and Fix,
1973). The problem and its finite element approximation should be accessible enough so that
the reader can use the results to understand and learn more challenging problems, for example
the Black–Scholes equation (Topper, 2005; Foufas et al., 2004).

We examine the model heat equation problem:

∂u

∂t
− ∂2u

∂x2
= f (x, t), 0 < x < π, t > 0

u(x, 0) = u0(x), 0 < x < π

u(0, t) = ∂u
∂x (π, t) = 0, t > 0

(A2.7)

Physically, this initial boundary value problem models the flow of heat in a finite rod. At one
end x = 0 the temperature is kept at zero degrees while at the other end x = π there is no flow
in or out of the rod (it is insulated). There is a non-zero forcing term f (x, t) that corresponds to
an inhomogeneous source term. Initially (that is, t = 0) the temperature distribution is given
along the length of the rod.
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It is possible to find a closed solution to (A2.7) (using Separation of Variables technique, for
example). In this section we approximate the problem using finite elements. In fact, we shall
employ the linear hat polynomials that we introduced in section A2.2 for discretisation in the
x direction. Eventually, we shall solve a fully discrete set of equations. The main activities in
this process are:

A1: Set up the continuous semi-discrete variational formulation
A2: The approximate semi-discrete variational formulation using linear hat polynomials
A3: Set up the fully discrete scheme (discrete time levels) using Crank–Nicolson time aver-

aging, for example.

In activities A1 and A2 the time variable t is continuous while in activity A3 it has been
discretised. Furthermore, in activity A1 the x variable is continuous while in activity A2 we
discretise it using the hat functions.

We now discuss activity A1. Multiplying the PDE in (A2.7) by some smooth function v that
vanishes at x = 0 and then, integrating by parts (while using the boundary conditions for the
solution u) we get the variational form of equation (A2.7), namely:

Find u ε V such that

a(u, v) ≡ (ut , v) + (ux , vx ) = ( f, v) ∀ v ε V (A2.8)

where V = H 1 ∩ {v : v(0) = 0}, (. , .) is the inner product in (0, π ), and the subscripts denote
derivatives of u and v with respect to the variables x and t .

We see that this variational formulation incorporates the differential equation and the bound-
ary conditions, but we still have to define the initial condition for this new formulation. This
is usually the projection of the initial condition in (A2.7) onto the space V .

We now discuss activity A2 and we use the same notation as in section A2.2. We assume
that the approximate solution can be written in the form:

uh(x, t) =
N∑

j=1

u j (t)ϕ j (x) (A2.9)

then the approximate semi-discrete formulation is given by:

Find uhεV h such that

a(uh, v) ≡
(

∂uh

∂t
, v

)
+

(
∂uh

∂x
,
∂v

∂x

)
= ( f, v) ∀ v ε V h (A2.10a)

and

(uh(·, 0), v) = (u0, v) ∀v εV h (A2.10b)

where V h is the space of piecewise linear ‘hat’ functions already described.
By inserting the representation (A2.9) into (A2.10a)–(A2.10b) and using the integral rela-

tions from section A2.2 we can show that the system (A2.10) can be posed as a first-order
initial value problem (IVP):

MU ′(t) + KU (t) = F(t)

U (0) = U0

(A2.11)

where M and K are matrices, and U (t) = t (u1(t), . . . , uN (t)).
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Typically, the Toeplitz matrices M and K have representations of the form (on a uniform
mesh of size h):

M = 1

6

⎛⎜⎜⎜⎜⎝
4 1 0

1
. . .

. . .

. . .
. . . 1

0 1 4

⎞⎟⎟⎟⎟⎠ (A2.12a)

K = h−2

⎛⎜⎜⎜⎜⎝
2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2

⎞⎟⎟⎟⎟⎠ (A2.12b)

The final activity is A3. To this end, we discretise the time variable t in the IVP (A2.11). This
is old hat by now and we have lots of choices:� Runge–Kutta methods� Euler schemes� Crank–Nicolson (CN)� Many others.

The financial engineering community seems to have homed in on CN, so we shall discuss
its applicability in this case. For convenience, we take the right-hand side of (A2.11) to be
zero. The fully discrete scheme then becomes:

M(U n+1 − U n) + K k

2
(U n+1 + U n) = 0, n ≥ 0 (A2.13a)

or (
M + K k

2

)
U n+1 =

(
M − K k

2

)
U n (A2.13b)

U n+1 =
(

M + K k

2

)−1 (
M − K k

2

)
U n (A2.13c)

Normally, this gives a solution at time level n + 1:

U n+1 =
(

I + M−1 K k

2

)−1 (
I − M−1 K k

2

)
U n

We thus have a scheme for computing the value at level n + 1 based on the value at level n.
For example, we can use LU decomposition (see Keller, 1992 and Duffy, 2004 for details in
C++.) We are now done.

The step-by-step account in this section serves as a pattern in general for solving time-
dependent problems using FEM; first discretise in space, then in time. We can apply the same
technique to the Black–Scholes parabolic equation.

A good exercise would be to convert the Black–Scholes equation to the heat equation
using a change of variables (Wilmott, 1998) and then use FEM as described here to find an
approximate solution, possibly with support for non-constant meshes. An advantage of this
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approach is that discontinuous initial conditions (as in digital options) are approximated by
smoothed discrete equivalents using the projection in equation (A2.10b). This avoids spurious
oscillation problems.

A2.4 CONVECTION EQUATION IN ONE DIMENSION

Having discussed FEM for a simple diffusion equation (the heat equation) we now move on to
a discussion of its applicability to first-order hyperbolic PDEs. These equations are part of the
Black–Scholes PDE and are present in Asian option PDEs. Unlike diffusion equations, where
initial discontinuities become smoothed out, the solution of a convection equation remains
discontinuous if the initial conditions are discontinuous. Even worse, a continuous solution at
t = 0 can become discontinuous after some time.

We give a scheme for a scalar convection equation, based on Baker (1975), that was gener-
alised to systems of equations in Duffy (1977).

A2.4.1 Finite element formulation

We introduce a partial differential equation in two independent variables, namely a space
variable x and a time variable t . The problem now is one of finding a function u = u(x, t) in
the region Q = I × J = (0, 1) × (0, T ), where 0 < T < ∞ such that

∂u

∂t
+ a

∂u

∂x
= f (x, t), (x, t) εQ, a > 0 constant (A2.14)

u(0, t) = g(t), t ε J (boundary condition) (A2.15)

u(x, 0) = u0(x), x ε I (initial condition) (A2.16)

We shall now propose a finite element scheme to solve this system. (It was proposed in
Baker (1975) for the scalar case and generalised in Duffy (1977) for systems of equations.)

The method is based on a rather crucial step. Let u be the solution of (A2.14)–(A2.16) and
let v be a smooth function. Integration by parts shows us that(

a
∂u

∂x
, v

)
= −

(
au,

∂v

∂x

)
+ a [u (1, t) v (1) − g(t)v(0)]

In the sequel we shall assume further that v(1) = 0. We define the generalised L2 space as

L2[0, T ; L2(I )] = {v : (0, T ) → L2(I ), |||v||| < ∞}
where the norm |||.||| is defined by

|||v||| =
(∫ T

0

||v (., t) ||2 dt

) 1
2

and ||v(., t)|| is the ‘standard’ L2 norm, i.e.

||v(., t)|| =
(∫ 1

0

|v(x, t)|2 dx

) 1
2

.
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The so-called weak formulation of (A2.14) – (A2.16) is given by:

Find u ε L2[0, T ; L2(I )] with ut ε L2[0, T ; L2(I )] such that(
∂u

∂t
, v

)
−

(
au,

∂u

∂x

)
= ( f, v) + ag(t)v(0), v ε

◦
H (I ) (A2.17)

where
◦

H (I ) = {v : v, vx ε L2(I ), v(1) = 0}.
Using the notation developed in section A2.2 we define the spaces

Sh = {v : v ε Pk(I j ), j = 1, 2, . . . , N }
V h = {v ε C0(I ) : v ε Pk+1(I j ), j = 1, . . . , N , v(1) = 0}

We note that Sh is a subspace of L2(I ) (and we do not assume continuiity at the interior

mesh points) and V h is a subspace of
◦

H (I ); furthermore, you can check that:

dimSh = dimV h = N (k + 1)

The finite-dimensional semi-discrete scheme is defined as:

Find uh : [0, T ] → Sh such that(
∂uh

∂t
, v

)
−

(
auh

,

∂v

∂x

)
= ( f, v) + ag(t)v(0) ∀ v ε V h, t > 0

(
vh(., 0), v

) = (u0, v) ∀ v ε Sh (Projection of u0 onto Sh) (A2.18)

Theorem A2.3. (Baker, 1975). Let u be the solution of (A2.14)–(A2.16). Then there is a
constant C which is independent of h such that

sup
0≤ t ≤T

‖u − uh‖(t) ≤ Chk+1

where uh is the solution of system (A2.18).

Thus, we see that increasing the order k of the approximating polynomial space increases the
accuracy of the scheme.

We now construct the corresponding system of ordinary differential equations for (A2.18) in
the case k = 0. In this case Sh is the space of piecewise constant step functions. We then know

from above that its dimension is N (k + 1) = N . Let
{
ϕ j

}N

j=1
and

{
ψ j

}N

j=1
be basis functions

in Sh and V h, respectively and given by

ϕ j (x) =
{

1, if x ε
(
x j−1, x j

)
0, otherwise j = 1, . . . , N

and {ψ j }N
j=1 are linear hat functions. Thus, Sh is a space of constant step functions and V h is

a space of linear hat functions.
From (A2.18) we see that

N∑
j=1

[
du j

dt

(
ϕ j , ψk

) − au j
(
ϕ j , ψ

′
k

)] = ( f, ψk) + ag(t)ψk(0)
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and after having done some arithmetic, we see that

1

2

(
hk

duk

dt
+ hk+1

duk+1

dt

)
− a (uk − uk+1) = ( f, ψk ) , k = 2, . . . , N − 1

h1

2

du1

dt
+ au1 = ( f, ψ1) + ag (t), k = 1

These equations represent a system of ordinary differential equations. In order to produce a
unique solution we must specify initial conditions. These are given by the L2 projection of u0

onto the finite-dimensional space Sh(
uh(., 0), ϕk

) = (u0, ϕk) , k = 1, . . . , N

Since uh(x, 0) = ∑N
j=1 u j (0)ϕ j (x) the above projection becomes

u j (0) = h−1
j

∫ x j

x j−1

u0(x) dx, j = 1, . . . , N

In practice we calculate the integrals appearing above by some numerical integration tech-
nique. We have now constructed a system of ODEs that can be solved using standard time
discretisation schemes.

A2.4.2 Stability and convergence

We now discuss the stability and convergence properties of another semi-discrete scheme from
Dupont (1973). It is a traditional FEM scheme in the sense that we do not integrate by parts in
the x direction. You may skip this section on a first reading.

We consider the scalar hyperbolic problem in two independent variables

∂u

∂t
+ Lu = f (A2.19)

where L is a first-order linear operator defined by

Lu ≡ a
∂u

∂x
, a > 0 constant

We hope that the finite elements that are produced are ‘close’ to the true mathematical
and physical interpretation of (A2.19). For example, if the mathematical problem satisfies the
conservation of energy, then so will the discrete problem, and if energy is decreasing in the
analytical problem, then it is also decreasing in the discrete case.

By multiplying equation (A2.19) on both sides by u and integrating, we get(
∂u

∂t
, u

)
+ (Lu, u) = 0

or

1

2

d

dt
‖u‖2 + (Lu, u) = 0

where ‖u‖ is the L2 norm of u in the interval (0, 1). If (Lu, u) = 0 , then the equation is called
conservative and if (Lu, u) ≤ 0 it is called dissipative. In the latter case energy is decreasing.
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Hyperbolic systems are either conservative or weakly dissipative, which means that energy
leaks slowly out at the boundary.

We consider the initial boundary value problem (IBVP)(A2.14)–(A2.16) again and let us
assume without loss of generality that g(t) ≡ 0.

We now define the space

S =
{

u : u,
∂u

∂x
ε L2(I ), u(0) = 0

}
, I = (0, 1)

Now, multiplying (A2.14) by some v ε S, we get(
∂u

∂t
, v

)
+

(
a

∂u

∂x
, v

)
= ( f, v) (A2.20)

Lemma A2.1. Let u = u(x, t) be a solution of (A2.20), then

‖u‖ ≤ C{‖ f ‖L2[0,T ; L2(I )] + ‖u0‖}

where

‖ f ‖L2[0,T ; L2(I )] =
(∫ T

0

‖ f (., t) ‖2 dt

) 1
2

Proof. Setting v = u in (A2.20) we get(
∂u

∂t
, u

)
+ a

(
∂u

∂x
, u

)
= ( f, u)

or

1

2

d

dt
‖u‖2 + au2(1, t) = ( f, u) (A2.21)

We now use the Cauchy inequality

ab ≤ ε

2
a2 + b2

2ε
, for any ε > 0

applied to (A2.21) to get

1

2

d

dt
‖u2‖(t) ≤ ε

2
‖ f ‖2(t) + 1

2ε
‖u‖2(t)

integrating this last equation from t = 0 to t = ξ , for some ξ > 0 gives

sup
0 < ξ ≤ T

‖u‖2 (ξ ) ≤ ‖u0‖2 + εsup
0 < ξ ≤ T

∫ ξ

0

‖ f ‖2(t) dt + ε−1sup
0 ≤ ξ ≤ T

∫ ξ

0

‖u‖2(t) dt

= ‖u0‖2 + ε

∫ T

0

‖ f ‖2(t) dt + ε−1

∫ T

0

‖u‖2(t) dt

≤ ‖uo‖2 + ε

∫ T

0

‖ f ‖2(t) dt + ε−1T sup
0 < ξ ≤ T

‖u‖2 (ξ )
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Choosing ε such that ε−1T = 1
2

gives

sup
0 < ξ≤ T

‖u‖2(ξ ) ≤ c1(T )
{‖u0‖2 + ‖ f ‖2

L2[0,T ;L2(I )]

}
≤ C1(T ){‖u0‖ + ‖ f ‖L2[0,Tj L2(I )]}2

and the result of the lemma follows.
We now define the piecewise polynomial space

Sh = {
v : v ∈ Co(I ), v|I j ∈ Pk

(
I j

)
, j = 1, . . . , N , v(0) = 0

}
The Galerkin approximation (or the so-called semi-discrete finite element scheme) is defined

by:

Find a function uh : [0, T ] → Sh such that(
∂uh

∂t
, v

)
+

(
a

∂uh

∂x
, v

)
= ( f, v) ∀ v ε Sh

(
uh(0) − u0, v

) = 0 ∀ v ε Sh

(A2.22)

The last equation in (A2.22) means that uh(0) is the L2 projection of the function u0 = u0(x)
onto Sh .

Theorem A2.4. Let u and uh be the solutions of (A2.20) and (A2.22), respectively. Then

‖u − uh‖(t) ≤ Chk−1

where the constant C is independent of h.

For a proof of this theorem see Dupont (1973).
We now calculate the corresponding difference scheme which results from (A2.22) in the

case of piecewise linear polynomials (k = 1) and constant mesh size. We set

uh(x, t) =
N∑

j=1

u j (t)ϕ j (x),

where {ϕ j }N
j=1 are the piecewise linear ‘hat’ functions that form a basis for Sh . We can then

write the variational formulation in (A2.22) as:

N∑
j=1

du j

dt

(
ϕ j , ϕk

) + a
N∑

j=1

u j

(
dϕ j

dx
, ϕk

)
= ( f, ϕk), k = 1, . . . , N

or

h

6

(
duk−1

dt
+ 4

duk

dt
+ duk+1

dt

)
+ a

(
uk+1 − uk−1

2

)
= ( f, ϕk) , k = 1, . . . , N − 1

and

h

6

(
duN−1

dt
+ 2

duN

dt

)
+ a

(
uN − uN−1

2

)
= ( f, ϕN )
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Initial conditions become

N∑
j=1

u j (0)
(
ϕ j , ϕk

) = (u0, ϕk) , k = 1, . . . , N (L2 projecting of uo)

We thus arrive at an IVP that we can solve using Crank–Nicolson, for example. We have
already discussed this problem in section A2.3 (scheme (A2.13)).

A2.5 ONE-FACTOR BLACK–SCHOLES AND FEM

The finite element method presented in this appendix can be applied to the one-factor Black–
Scholes equation.

−∂u

∂t
+ 1

2
σ 2S2 ∂2u

∂S2
+ r S

∂u

∂S
− ru = 0 (A2.23)

A number of authors have applied FEM to solve this problem (Foufas et al., 2004; Topper,
2005). The major challenge is to define suitable approximation spaces and to set up the con-
tinuous and approximate formulations of the problems. There are numerous solutions but we
focus on one approach, taken from Wheeler (1975) for parabolic problems in a single vari-
able. Similar schemes were used in Duffy (1977) for hyperbolic systems of equations. A short
overview has already been given in section A2.4.1. The results of the following discussion
include conclusions that are applicable to the Black–Scholes equation. To this end, define the
invervals and the operator

Lu ≡ ∂

∂x

[
a(x)

∂u

∂x

]
− b(x)

∂u

∂x
+ c(x)u (A2.24)

where I = (0, 1), and J = (0, T ).

We wish to find a function u such that

∂u

∂t
+ Lu = f in Q = I × J.

This model is reasonably generic and includes many special and interesting cases from real
life applications. It is a model for Black–Scholes even though the elliptic operator L in (A2.24)
is written differently from what we are used to in the financial literature. The reader can check
that the Black–Scholes equation (A2.23) is consistent with (A2.24) if we define the coefficients
a and b by:

a = 1
2
σ 2S2

b = (σ 2 − r )S

We also assume that the elliptic problem:

Ly = g, where g ε C(I )

y(0) = y(1) = 0 (A2.25)
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has a unique solution. Here C(I ) is the set of continuous functions on I . Furthermore, we
assume that the coefficient a(x) satisfies:

0 < α0 ≤ a(x) ≤ α1

This inequality is not true in the case of Black–Scholes (A2.23) but it can be resolved by
the change of variables x = log(S), and we then get a modified PDE resulting in:

−∂u

∂t
+ 1

2
σ 2 ∂2u

∂x2
+ (

r − 1
2
σ 2

) ∂u

∂x
− ru = 0 (A2.26)

We now get down to the business. We define the so-called H−1 Galerkin formulation poly-
nomials. Using the notation as in section A2.2 we define the space:

Sh(−1, r, δ) ≡ {v|v ε Pr (I j ), j = 1, . . . , N }
This is the space of functions that are piecewise polynomials of degree r on each sub-interval.

They are not necessarily continuous across internal boundaries. We also define the space:

Sh(k, r, δ) = {v ε Ck(I )|v ε Pr (I j ), j = 1, . . . , N }
Finally, let us define for convenience the spaces:

Sh = Sh(k, r, δ) for k ≥ −1

V h = Sh(k + 2, r + 2, δ) ∩ H 1
0 (I )

where

H 1
0 (I ) = H 1(I ) ∩ {v : v(0) = v(1) = 0}

We are now ready to formulate the semi-discrete problem:

Find U : [0, T ] → Sh such that(
∂U

∂t
, v

)
= (

U, L∗v
) + ( f, v) ∀ v ε V h, t ε J (A2.27)

with U (·, 0) appropriately defined, usually a projection of u(x, 0) onto Sh . Here L* is the
adjoint operator of the operator L .

It can be shown that this schemes give high-order accuracy (Wheeler, 1975). It can be
discretised in time to give a fully discrete scheme, for example implicit Euler:

Find {U n}N
n=0 such that

(
U n+1−U n

k , v
)

= (
U n+1, L∗v

) + (
f n+1, v

) ∀ v ε V h

U 0 ∼ u0

(A2.28)

Building the system of equations from equation (A2.28) takes place as in previous sections.
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A2.6 COMPARING AND CONTRASTING FEM AND FDM

There are many similarities between the finite element method and the finite difference method.
Since they both address the same kinds of issues and problems in financial engineering the
reader might be wondering which method to use in general or in a particular context. There is
no black and white answer, but we shall try to give some answers.� Learning curve: This is steeper with FEM than with FDM. Some people see FEM as a branch

of applied functional analysis and they use concepts such as Hilbert and Sobolev spaces,
variational formulations and domain triangulation in their work. FDM is easier because it just
replaces derivatives by divided differences. FEM has its roots in engineering and structural
analysis. It is also extremely useful for integral equations.� Accuracy: In theory, higher order accuracy is possible with FEM but we must construct
piecewise polynomial spaces of higher degree. We get ‘polynomial snaking’ effects, which
means that the number of sub-intervals where the piecewise basis polynomial is non-zero
increases with the degree of the polynomial.

Since FEM is an integral formulation it is better at approximating discontinuous coefficients
than FDM.� Multi-factor problems: FEM suffers from the same ‘curse of dimensionality’ as FDM does.

Three dimensions is the limit (it would seem), after which things tend to become intractable.
A possible cure for this problem is to use Meshless or some form of operator splitting.� Domain of integration: FEM is particularly good at modelling problems with irregular
domains, while FDM has difficulties with such domains. On the other hand, most problems
in financial engineering are defined in boxes and cubes.

A2.7 SUMMARY AND CONCLUSIONS

We have given an introduction to the finite element method (FEM). We have included this
appendix because FEM has many similarities with FDM and is needed in other applications in
which variational or integral formulations are used – for example, free and moving boundary
value problems, as discussed in this book.

Finally, we hope that the reader will be able to appreciate what FEM can mean for his or
her applications in the years to come.
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box scheme, 110
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Cauchy problem, 27, 33, 39
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definition, 48, 50
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stability and convergence, 403–6

convection–diffusion equation, 10–11, 20, 29, 92,
98–9, 117–22

approximation of derivatives on, 118–19
fully discrete schemes, 120–1
multi-dimensional problems, 207–8
semi-discretisation for, 82–3, 177–8
semi-discretisation in space, 121–2
semi-discretisation in time, 122
specifying initial and boundary conditions, 121
time-dependent convection–diffusion
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cumulative bivariate normal distribution, 172

delta, 131, 132, 137, 139, 143, 217
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